
Strojové učení a rozpoznávání
Dokumentace

Adam Kučík (xkucik00)

Robin Volf (xvolfr00) May 5, 2025

1 Introduction

This paper contains documentation for the project SUR. The goal was to build a classifier for 31 people.
The first section discusses the image classifier, followed by the voice classifier. Finally, the conclusion
summarizes the achieved results.

2 Image classifier

For the image classification, the most common and straightforward approach was to train a convolutional
neural network. However, the primary limitation of this approach was the limited size of the given dataset,
which limited the power of the performance neural network. To address this problem, we used data aug-
mentation to improve the generalization of the neural network. The training data was divided into training
and validation sets. The dev data were used as testing data. In the following subsections, we will discuss in
more depth the development process of the image classifier.

2.1 Used libraries and technology

The code for the image classifier was written in Python 3.8, using Jupyter Notebook. We used following
libraries:

• Numpy for common mathematics operations

• PIL for image processing

• Os, Pathlib and Shutil for work with dataset

• Pytorch for training of neural network for image classification

• Albumentations for online augmentations during training

• other: sklearn, matplotlib

To run the code, all libraries need to be installed with pip install. By default, image.ipynb expects the
train and dev directories to be located in the same directory as the notebook. However, the path can be
manually changed in the code.

2.2 Data process

We started by processing the dataset. From the train data, we only kept png files, while audio files were
removed. The training set was then divided into training and validation subsets. For each person’s set of 6
images, the last 2 images were used as validation and the remaining were kept for training.

2.3 Data augmentation

To enlarge the limited dataset size, we augmented the training data. First, all images were horizontally
flipped. Then for each original and flipped image, we generated 3 additional variants by applying gaussian
noise, brightness reduction, and brightness enhancement. During training, we further applied more augmen-
tations with the Albumentations library to dynamically apply random augmentations, including rotation,
cropping, gaussian blur, color jitter, among others.

During experimenting, various augmentetions were applied, but aggressive augmentations of the neural
network were unable to generalize, so we stayed with slight augmentations. Another insight into the future
was not to include augmented validation data in training, which led to massive overfitting, 100 % validation
accuracy vs 20 % test accuracy.

1

2.4 Neural network

The creation of a neural network required finding the right balance between its size and its ability to gener-
alize patterns without memorizing the training data.

The best results were achieved by architecture that consist of 3 blocks, each with convolutional layers,
batch normalization, ReLU and either max pooling or adaptive average pooling. To avoid overfitting, we
added dropout layers with a rate of 0,3. Most of the time, we used CrossEntropy as activation, but due to task
requirements, we switched to log-softmax activation, which provides better training stability and improved
overall model results.

For optimization we chose stochastic Gradien descent, which outperformed Adam in our experiments.
The training ran for 50 epochs, achieving 77.42 % validation accuracy and 74.19 % test accuracy. The
model demonstrated solid generalization, with only a small accuracy gap, suggesting generalization. With
additional non-augmented training data we might further improve results, extending training beyond 50
epochs showed no improvements.

2.5 Summary and potential improvements

Our best model achieved about 75 % accuracy on the test data. The model is not perfect, and there are
several ways to improve its performance. We could try to optimize the model further by experimenting
with alternative optimizers, fine-tuning hyperparameters, or implementing more sophisticated regularization
techniques. As with most classification tasks, increasing the amount of real training data would likely lead
to better results. This was achieved in some manners by data augmentations, but is not perfect. Probably the
easiest way would be to use deep models with pre-trained weights, which was denied by the task. Overall,
our model was able to perform the task to a certain extent.

3 Voice Classifier

For voice classification we decided to use a GMM model on Mel-Frequency Cepstral Coefficients computed
from the input signal. First the signal is split into overlapping windows and then MFC Coefficients are
computed on them using FFT and then DCT. This is then used as the input into a MAP (Maximum a-
Posteriori) classifier which computes the likelihood of each class (P (x|C)) using a GMM. We are then left
with a 2D matrix of class likelihoods for each window. Matrix is converted into a vector of mean likelihood
for each class (mean class likelihood across all windows). This likelihood is then used in a classic generative
MAP classifier to get P (C|x) like this:

P (C|x) = P (x|C)P (C)

P (x)

Where we infer P (C) as a proportion of that class in the training data and P (x) =
∑

C P (x|C).

3.1 Hyperparameter tuning

Model was trained and then validated on provided data (dev/ and train/ datasets). Hyperparameters
were tuned on validation data by training the model with given hyperparameters and then measuring the
accuracy on the validation dataset. In the end, the best accuracy (≈ 74%) was achieved with 5 gaussians per
class with 100 iterations of EM (Expectation-Maximization) to train the GMM.

Included ZIP file contains a README (SRC/sound/README.md) outlining how to compile and
use the voice classifier. MFCC computation and GMM model were implemented from scratch in Rust
using the ndarray library and its extensions for linear algebra, FFT and DCT (Discrete Cosine Transform)
computation.

2

https://crates.io/crates/ndarray
https://crates.io/crates/ndarray-linalg
https://crates.io/crates/ndrustfft
https://crates.io/crates/ndrustfft

4 Conclusion

In this documentation, we discuss our approaches for image and voice classification. Both classifiers
achieved an accuracy of approximately 70 %. The image classifier was implemented by the convolutional
neural network, and the voice classifier was implemented by the GMM model with MFCC features.

3

	Introduction
	Image classifier
	Used libraries and technology
	Data process
	Data augmentation
	Neural network
	Summary and potential improvements

	Voice Classifier
	Hyperparameter tuning

	Conclusion

