Language Modeling in Automatic Speech Recognition ZRE lecture

Karel Beneš

08.04.2024

Roadmap of the Lecture

ASR Intro

Count-based Language Modeling

Neural-network Language Modeling

Automatic speech recognition

Automatic speech recognition

Determine the most probable word sequence \tilde{w} given the observed acoustic signal Y

$$\tilde{W} = argmax \ P(W|Y) = \frac{argmax \ P(W) P(Y|W)}{P(Y)}$$

- Search for word sequence \tilde{W} that maximizes P(W) and P(Y|W)
 - P(W) = language model (likelihood of word sequence)
 - P(Y|W) = acoustic model (likelihood of observed acoustic signal given word sequence)

Roadmap of the Lecture

ASR Intro

Count-based Language Modeling

Neural-network Language Modeling

Language model

Estimate probability of a word sequence W:

$$P(W) = P(w_1, w_2, \dots, w_N)$$
(1)

$$P(W) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_1, w_2) \cdot \dots \cdot P(w_N|w_1, \dots, w_{N-1})$$
(2)

Markov assumption, n-grams counting

Approximate by only considering 1-word history, e.g.:

$$P(W) \approx P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_2) \cdot \cdots \cdot P(w_N|w_{N-1})$$
 (3)

Gives raise to 2-gram / bigram language model. Probabilities $P(w_a|w_b)$ are estimated as:

$$P(w_a|w_b) = \frac{C(w_b, w_a)}{C(w_b)}$$
 (4)

Markov assumption, n-grams counting

Approximate by only considering 2-word history, e.g.:

$$P(W) \approx P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_1, w_2) \cdot \cdots \cdot P(w_N|w_{N-2}, w_{N-1})$$
 (5)

Gives raise to 3-gram / trigram language model. Probabilities $P(w_a|w_b,w_c)$ are estimated as:

$$P(w_a|w_b, w_c) = \frac{C(w_b, w_c, w_a)}{C(w_b, w_c)}$$
(6)

Problem of n-grams

- limited context, e.g.
 - "... to Paris, we couldn't wait to see the ???"
 Unfortunate, but acceptable.
- unseen n-grams, e.g. 2M words from Wikipedia -> 2.6 % of unseen words in other wiki texts. Cca 1/3 of trigrams not seen since 1970s. So called *Curse of Dimensionality*, severe.

Katz's backoff

If we have enough data, $C(w_{i-n+1}, \ldots, w_{i-1}, w_i) > k$:

$$P(w_i|w_{i-n+1},\ldots,w_{i-1})=d_{C(w_{i-n+1},\ldots,w_{i-1},w_i)}\frac{C(w_{i-n+1},\ldots,w_{i-1},w_i)}{C(w_{i-n+1},\ldots,w_{i-1})}$$
(7)

The discount factor $d_{C(\cdot)}$

Determines how much do we take away from n-grams appearing $C(\cdot)$ times; estimated typically with Good-Turing algorithm.

If
$$C(w_{i-n+1},...,w_{i-1},w_i) \le k$$
:

$$P(w_i|w_{i-n+1},...,w_{i-1}) = \alpha_{w_{i-n+1},...,w_{i-1}}P(w_i|w_{i-n+2},...,w_{i-1})$$
 (8)

The redistribution factor α

Determines how much of discounted probability is assigned to the (n-1)-gram $w_{i-n+1}, \ldots, w_{i-1}$.

The threshold k for "enough" can in practice be set to 0.

Kneser-Ney smoothing

For bigrams:

$$P(w_{i}|w_{i-1}) = \frac{\max(C(w_{i-1}w_{i}) - \delta, 0)}{C(w_{i-1})} + \lambda \frac{N_{1+}(\bullet w_{i})}{N_{1+}(\bullet \bullet)}$$
(9)

The mysterious $N_{1+}(\cdot)$ just counts how many unique bigrams have we seen:

$$N_{1+}(\bullet w_i) = |\{w_{i-1}|C(w_{i-1}, w_i)\}|$$
 (10)

$$N_{1+}(\bullet \bullet) = |\{w_{i-1}, w_i | C(w_{i-1}, w_i)\}|$$
 (11)

So effectively, we only believe the unigram w_i , if we have seen it in many different contexts.

Roadmap of the Lecture

ASR Intro

Count-based Language Modeling

Neural-network Language Modeling

Battling the Curse of Dimensionality using NNs

Battling the Curse of Dimensionality using NNs

$$\mathbf{e}_t = \mathbf{E}[w_t] \tag{12}$$

$$\mathbf{h}_t = \tanh(\mathbf{W}(\mathbf{e}_{t-2}||\mathbf{e}_{t-1}) + \mathbf{b}_h) \tag{13}$$

$$\mathbf{y}_t = \operatorname{softmax}(\mathbf{V}\mathbf{h}_t + \mathbf{b}_y) \tag{14}$$

First, words are replaced by embeddings (12). Then, several embeddings (two) are concatenated and serve as input to a hidden layer (13). Finally, the next word is predicted (14).

Battling the Curse of Dimensionality using RNNs

Battling the Curse of Dimensionality using RNNs

$$\mathbf{e}_t = \mathbf{E}[\mathbf{w}_t] \tag{15}$$

$$\mathbf{h}_t = \tanh(\mathbf{e}_{t-1} + \mathbf{W}\mathbf{h}_{t-1} + \mathbf{b}_h) \tag{16}$$

$$\mathbf{y}_t = \operatorname{softmax}(\mathbf{V}\mathbf{h}_t + \mathbf{b}_y) \tag{17}$$

Only the neural magic in the middle changes!

Long Short-Term Memory Architecture

Rather effective in processing longer contexts (up to 200 words).

Take-away

- LMs help recognition
- Effective LM can be based on simple counts . . .
- ... but smoothing is needed. When in doubt, pick Kneser-Ney.
- Neural networks pay with compute to reduce curse of dimensionality
- Commonly, LSTMs are used; in many variants (incl. GRUs)
- Transformers taking over, but more expensive
 - · Linearly increasing size of hidden state
 - Linearly increasing cost of each step (=> quadratic overall)
 - Visit ZPJa (winter semester) for all the crazy applications of huge transformers LMs.