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Roadmap of the Lecture

@ ASR Intro
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Automatic speech recognition
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Automatic speech recognition

* Determine the most probable word sequence # given the
observed acoustic signal Y

argmax P(W)P(Y|W)

W=argmax P(W1Y)= PY)

+ Search for word sequence W that maximizes P(W) and P(Y|W)
* P(W) = language model (likelihood of word sequence)
* P(Y|W) = acoustic model
(likelihood of observed acoustic signal given word sequence)
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Roadmap of the Lecture

e Language Modeling
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Language model

Estimate probability of a word sequence W:

P(W) = P(wy,wa, ..., wy)
(1)
P(W) = P(wy)- P(wz|wy) - P(ws|wy, W) - --- - P(wn|wy, ..., wn_1)
(2)
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Markov assumption, n-grams counting

Approximate by only considering 1-word history, e.g.:

P(W) =~ P(wy) - P(wa|wy) - P(ws|we) - --- - P(wn|wn-1)  (3)

Gives raise to 2-gram / bigram language model. Probabilities
P(wg|wp) are estimated as:

C( Wb7 Wa)

P(Wa|Wb) = C(Wb)

Karel Bene$ Language Modeling in Automatic Speech Recognition 771



Markov assumption, n-grams counting

Approximate by only considering 2-word history, e.g.:

P(W) ~ P(wq) - P(wa|wy) - P(ws|wy, o) -+ P(wn|wn_2, wn—1) (5)

Gives raise to 3-gram / trigram language model. Probabilities
P(wa|wp, w,) are estimated as:

C( Wba WC7 Wa)

P E) =G, )
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Problem of n-grams

@ limited context, e.g. “...to Paris, we couldn’t wait to see the ???
”. Unfortunate, but acceptable.

@ unseen n-grams, e.g. 2M words from Wikipedia -> 2.6 % of
unseen words in other wiki texts. Cca 1/3 of trigrams not seen
since 1970s. So called Curse of Dimensionality, severe.
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Katz’s backoff

If we have enough data (C(Wj_py1, ..., Wi—1, W;) > K):

C(Wi—nsts .-, Wimy, W))
C(M//—n+1a L) M/i—1)

(7)

P(Wi|Wi—n+1 ety Wi—1) = de,n+1.,...,W,‘,1,W,‘

Here, dcww,_,.....w_,.w) is @ discount factor, estimated typically with
Good-Turing algorithm.

If C(Wi—pit,..., Wiy, w;) < K:
P(WilWi—nt1, - Wis1) = aw_ppyrwi g w P(WilWing2, ... W) (8)

Here, we distribute the discounted probability from (7) through

AWty Wi g, W

The threshold k for “enough” can in practice be set to 0.
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Kneser-Ney smoothing

For bigrams:

max(C(w;_1w;) — §,0) Ny (ew;)
C(wi_+) A Ni i (oe)

P(wilw_1) = (9)

The mysterious Ny (+) just counts how many unique bigrams have we
seen:
Ny (ow;) = [{wi—+|C(Wi_1, W)} (10)

Nii(o0) = [{Wi—1, ;| C(Wi—1, W;) }| (11)

So effectively, we only believe the unigram w;, if we have seen it in
many different contexts.
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Battling the Curse of Dimensionality using NNs
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Battling the Curse of Dimensionality using NNs

e; = E[Wt] (12)
h; = tanh(W(etszetf1) + bh) (13)
y: = softmax(Vh; + by) (14)

First, words are replaced by embeddings (12). Then, several
embeddings (two) are concatenated and serve as input to a hidden
layer (13). Finally, the next word is predicted (14).
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Battling the Curse of Dimensionality using RNNs
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Battling the Curse of Dimensionality using RNNs

e = E[w] (15)
h; = tanh(e;_1 + Wh;_; + by,) (16)
y: = softmax(Vh; + b,) (17)

Only the neural magic in the middle changes!
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A Glimpse of State-of-the-Art: Long Short-Term

Memory Architecture

Xtﬁ

Rather effective in processing longer contexts (ca. 30 words).
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Roadmap of the Lecture

e Reminder: HMMs, ASR, Viterbi
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Hidden Markov Model, Token passing
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Viterbi algorithm, trellis




Phoneme based models — re-usable acoustic units

BB 088 888,
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Decoding graph/recognition network

Unigram language model

P () |
P(two) o B 4@__»
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Decoding graph/recognition network

Bigram language model
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Decoding graph/recognition network

-8.8-8..+.8.8
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Viterbi path with complex models

3
3
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Viterbi path with back-tracking
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Roadmap of the Lecture

@ Reminder: FSA, FST, WFST
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Why Finite State Transducers?

Motivation:
@ most components (LM, lexicon, lattice) are finite-state
@ unified framework for describing models

@ integrate different models into a single model via composition
operations

@ improve search efficiency via optimization algorithms
o flexibility to extend (add new models)

— speed: pre-compiled search space, near realtime performance
on embedded systems

— flexibility: same decoder used for hand-held devices and LVCSR
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Finite State Acceptor (FSA)

An FSA “accepts” a set of strings

v Yy

(a string is a sequence of symbols).

v

View FSA as a representation of a possibly infinite set of
strings.

» This FSA accepts just the string ab, i.e. the set {ab}

» Numbers in circles are state labels (not really important).
» Labels are on arcs are the symbols.

>

Start state(s) bold; final /accepting states have extra circle.
> Note: it is sometimes assumed there is just one start state.

Karel Bene$ Language Modeling in Automatic Speech Recognition 28/71



A less trivial FSA

OROmO

» The previous example doesn't show the power of FSAs
because we could represent the set of strings finitely.

» This example represents the infinite set {ab, aab, aaab, ...}

» Note: a string is “accepted” (included in the set) if:

» There is a path with that sequence of symbols on it.

» That path is “successful’ (starts at an initial state, ends at a
final state).
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The epsilon symbol

a a

The symbol € has a special meaning in FSAs (and FSTs)

>
» It means “no symbol is there”.

» This example represents the set of strings {a, aa, aaa, ...}

> If € were treated as a normal symbol, this would be

{a, aea, acaca, .. .}

In text form, € is sometimes written as <eps>

Toolkits implementing FSAs/FSTs generally assume <eps> is
the symbol numbered zero

vy
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Weighted finite state acceptors
o a/l o b/1

» Like a normal FSA but with costs on the arcs and final-states

» Note: cost comes after “/". For final-state, “2/1" means
final-cost 1 on state 2.

> View WFSA as a function from a string to a cost.

> In this view, unweighted FSA is f : string — {0, 00}.

» If multiple paths have the same string, take the one with the
lowest cost.

» This example maps ab to (3 =1+ 1+ 1), all else to cc.
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Weights vs. costs

» Personally | use “cost” to refer to the numeric value, and
“weight” when speaking abstractly, e.g.:

» The acceptor above accepts a with unit weight.
It accepts a with zero cost.

It accepts bc with cost 4 =2+ 1+ 1

State 1 is final with unit weight.

The acceptor assigns zero weight to xyz.

It assigns infinite cost to xyz.

vy vV vy VY
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Probability or tropical semi-ring

Probability semiring (R4, +, x,0,1) ‘ Tropical semiring (R4 U {oo}, min, +, 0o, 0)
[A](ab) = 14 [A](ab) = 4
(I1x1x2+2x3x2=14) (min(1+1+2,3+2+2) = 4)
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» The semiring concept makes WFSAs more general.
> A semiring is
> A set of elements (e.g. R)
» Two special elements 1 and 0 (the identity element and zero)
» Two operations, @ (plus) and X (times) satsifying certain
axioms.

Semiring examples. ®iog is defined by: x Siog y = — log(e™ + e~ V).

SEMIRING || SET e |®| 0 |1
Boolean {0,1} vV [ Al 0 |1
Probability Ry + X 0 1
Log RU{—00,+00} | @log | + | +0 | 0
Tropical RU{—o00,+00} | min | + | +oo | 0

@ In WFSAs, weights are multiplied along paths
@ summed over paths with identical symbol-sequences
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Weighted finite state transducers (WFST)

a ax/1

Like a WFSA except with two labels on each arc.

View it as a function from a (pair of strings) to a weight
This one maps (a, x) to 1 and all else to co

Note: view 1 and oo as costs. oo is 0 in semiring.

vV v.v. v Y

Symbols on the left and right are termed “input” and
“output” symbols.
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Composition of WFSTs

A B C

o oyl

» Notation: C = Ao B means, C is A composed with B.

» In special cases, composition is similar to function composition
» Composition algorithm “matches up” the “inner symbols”
> i.e. those on the output (right) of A and input (left) of B

Karel Bene$ Language Modeling in Automatic Speech Recognition 36/71



Composition algorithm

v

Ignoring € symbols, algorithm is quite simple.
States in C correspond to tuples of (state in A, state in B).
» But some of these may be inaccessible and pruned away.

v

v

Maintain queue of pairs, initially the single pair (0,0) (start
states).

» When processing a pair (s, t):

» Consider each pair of (arc a from s), (arc b from t).

» If these have matching symbols (output of a, input of b):

> Create transition to state in C corresponding to (next-state of
a, next-state of b)
> If not seen before, add this pair to queue.

v

With € involved, need to be careful to avoid redundant paths...
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Roadmap of the Lecture

e Encoding Knowledge in WFSTs
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Construction of decoding network

@ WFST approach [Mohri et al.]

@ exploit several knowledge sources (lexicon, grammar, phonetics)
to find most likely spoken word sequence

HCLG=HoColoG (18)

G probabilistic grammar or language model acceptor (word)
L lexicon (phones to words)

C context-dependent relabeling (ctx-dep-phone to phone)

H HMM structure (PDF labels to context-dependent phones)

Create H, C, L, G separately and compose them together
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Language model acceptor G

* G: Grammar Transducer
Backing-off language model:

_ [ f(w|h) :if N(w,h) >0
plwlh) = { a(h) - f(w[R) : if N(w, h) =0

* Input: word
* Weight: history dependent word probability

w/p(w|u, v
(@)
\ efa(v,w)
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Language models (ARPA back-off)

\l-grams:
-5.2347 a -3.3
-3.4568 Db

0.0000 <s> -2.5
-4.3333 </s>

\2-grams:
-1.4568 a b
-1.3049 <s> a
-1.78 b a
-2.30 b </s>

<eps>/5.7565
e 2/3.0046 <eps>/7.5085 y
a-@ m
al4.0986

</s>/9.9779
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Pronunciation lexicon L

A ax

ABERDEEN ae b er d iy n
ABOARD ax b r ao dd
ADD ae dd

ABOVE ax b ah v

Non-determinism: the same phone sequence can output different
words (“I scream for ice cream.)
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Deterministic WFSTs

» Taken to mean “deterministic on the input symbol”

> l.e., no state can have > 1 arc out of it with the same input
symbol.

» Some interpretations (e.g. Mohri/AT&T/OpenFst) allow €
input symbols (i.e. being e-free is a separate issue).

> | prefer a definition that disallows epsilons, except as
necessary to encode a string of output symbols on an arc.

» Regardless of definition, not all WFSTs can be determinized.
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Pronunciation lexicon L with disambiguation symbols

A ax #1
ABERDEEN ae b er d iy
ABOARD ax b r ao dd
ADD ae dd #1
ABOVE ax b ah v

n

Added disambiguation symbols:
@ if a phone sequences can output different words (“I scream for

ice cream.”)

@ non-determinism: introduce disambiguation symbols, remove at

last stage

Karel Bene$
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Determinization (like making tree-structured lexicon)
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Minimal deterministic WFSTs

» Here, the left FSA is not minimal but the right one is.
» “Minimal” is normally only applied to deterministic FSAs.
» Think of it as suffix sharing, or combining redundant states.

» It's useful to save space (but not as crucial as determinization,
for ASR).
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Minimization (like suffix sharing)
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Pronunciation lexicon L

* L: Context-Dependency Transducer
* Input: context-independent phone (phoneme)
¢ Output: word
* Weight: pronunciation probability

s : speech
p(s p iy ch|speech)

h : the
dh th
p(dh ax| 9)@

dh : the
p(dh iy|the)
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Context-dependency of phonemes

So far we use phonemes independent of context, but:

@ co-articulation: pronunciation of phones changes with
surrounding phones
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Context-dependency transducer C

Introduce context-dependent phones:
@ tri-phones: each model depends on predecessor and successor
phoneme: a-b-c (b/ac)
@ implemented as context-dependency transducer C
Input: context-dependent phone (triphone)
Output: context-independent phone (phone)
@ shown is one path of it

eps-ablb . abclc b-c-did . c-c-eps/$
eps-eps eps-a
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ae:ae/k_t l. . t:ae/k_t , .

(a) (b)

Figure 6: Context-dependent triphone transducer transition: (a) non-deterministic, (b) deterministic.

S:yle_e
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Phonetic decision tree

@ too many context-dependent models (N®) — clustering

@ determine model-id (gaussian) based on phoneme context and
state in HMM

@ using questions about context (sets of phones)

Yes
Right=fricative?
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HMM as transducer

VA NS EREY/AN

B
:
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HMM as transducer (monophone)

* H: HMM Topology Transducer (maps states to phonemes)
e Input: state

* Output: context-dependent phone (triphone)

* Weight: HMM transition probability

asle
r‘\ aekle
ltTrUi o — — _“/'

. ﬂﬁ'nﬂ t _,J, t_ aen] £ .w{j e aeﬂ’ N /1 — £
—w ) |—- ) -0
efle J \,  wile :kJ
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61<eps>/-5.96056-08

2961<eps>/2.5934
° 201:<eps>/0.55411
\ 293:<eps>/15476
285:<eps>/2.9%4Q)|  288:<eps>/2.6975 e =

290:<eps>/0.14469

(here shown for monophone case, vﬁhout self-loops)

Karel Bene$ Language Modeling in Automatic Speech Recognition 55/71



Construction of decoding network

Let’s put all together:

HCLG=HoColLoG (19)

H HMM: input PDF labels, output context-dependent phones
C context-dependency: input ctx-dep-phones, output phones
L lexicon: input phones, output words
G language model: input/output words
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Construction of decoding network

WEFST approach by [Mohri et al.]

HCLG = rds(min(det(H o det(C o det(L o G))))) (20)
rds — remove disambiguation symbols
min — minimization, includes weight pushing

det — determinization
Kaldi toolkit [Povey et al.]

HCLG = asl(min(rds(det(Ha o min(det(C o min(det(L o G))))))))
(21)

asl — add self loops
rds — remove disambiguation symbols
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Weight and label pushing

@ two WFSAs are equal, if they accept the same label sequences
with the same weights

@ local distribution of weights along the path can be different

@ same holds for output labels in WFSTs

@ for pruning: apply costs as early as possible
@ make outgoing arcs stochastic distribution
— output labels not synchronized anymore in WFST
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Decoding graph construction (complexities)

@ Have to do things in a careful order or algorithms “blow up”
@ Determinization for WFSTs can fail

e need to insert “disambiguation symbols” into the lexicon.

e need to “propagate these through” H and C.
@ Need to guarantee that final HCLG is stochastic:

@ i.e. sums to one, like a properly normalized HMM

e needed for optimal pruning (discard unlikely paths)

e usually done by weight-pushing, but standard algorithm can fail,
because FST representation of back-off LMs is non-stochastic

@ We want to recover the phone sequence from the recognized
path (words)

@ sometimes also the model-indices (PDF-ids) and the HCLG arcs
that were used in best path
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Roadmap of the Lecture

@ Decoding with WFSTs
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Decoding with WFSTs (finding best path)

* Solve
W '=argmax,, P(X|W)P(W)

* Compose recognizer as (H o C o L o G) which maps states
to word sequences

* Decode by aligning the feature vectors X with HCLG "

i.e.,
W'=argmax, X o(HoCoLcG)
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Decoding with WFSTs

1/4.86 1/4.16 3/5.16

» First—a “"WFST definition" of the decoding problem.

» Let U be an FST that encodes the acoustic scores of an
utterance (as above).

» Let S = U o HCLG be called the search graph for an
utterance.

» Note: if U has N frames (3, above), then

» #statesin Sis < (N + 1) times #states in HCLG.
» Like N+ 1 copies of HCLG.
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Viterbi algorithm, trellis




sea

All search nodes Local evaluation Global evaluation

b Beam width (f) =2 root
Filterwidth (o) = 3

Level 2
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Decoding with WFSTs

» With beam pruning, we search a subgraph of S.

» The set of “active states” on all frames, with arcs linking
them as appropriate, is a subgraph of S.

» Let this be called the beam-pruned subgraph of S; call it B.

> A standard speech recognition decoder finds the best path
through B.

» In our case, the output of the decoder is a linear WFST that
consists of this best path.
» This contains the following useful information:

» The word sequence, as output symbols.
» The state alignment, as input symbols.
» The cost of the path, as the total weight.
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Decoding output

uttl [ 2 6 6 6 610 ] [ 614 613 613 613 711 ] [ 122 123
uttl SIL th ax
uttl <s> THE
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Word Lattice / Word Graph

Word Lattice: a compact representation of the search space
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Lattices as WFSTs

The word “lattice” is used in the ASR literature as:

@ Some kind of compact representation of the alternate word
hypotheses for an utterance.

@ Like an N-best list but with less redundancy.

@ Usually has time information, sometimes state or word alignment
information.

@ Generally a directed acyclic graph with only one start node and
only one end node.
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Lattice Generation with WFSTs [Povey12]

Basic process (not memory efficient):
@ Generate beam-pruned subgraph B of search graph S

@ The states in B correspond to the active states on particular
frames.

@ Prune B with beam « to get pruned version P.

@ Convert P to acceptor and lattice-determinize to get A
(deterministic acceptor)

— No two paths in L have same word sequence (take best)
@ Prune A with beam « to get final lattice L (in acceptor form).
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Finite State Transducers for ASR

Pro’s:
Fast: compact/minimal search space due to combined minimization of
lexicon, phonemes, HMM’s

Simple: easy construction of recognizer by composition from states,
HMMs, phonemes, lexicon, grammar

Flexible: whatever new knowledge sources, the compose/optimize/search
remains the same

Con’s:
@ composition of complex models generates a huge WFST
@ search space increases, and huge memory is required
@ esp. how to deal with huge language models
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Resources

OpenFST http://www.openfst.org
Library, developed at Google Research (M. Riley, J. Schalkwyk,
W. Skut) and NYU’s Courant Institute (C. Allauzen, M. Mohri)

Mohri08 M. Mohri et al., “Speech Recognition with weighted finite state
transducers.”

Kaldi http://kaldi.sourceforge.net
Open source toolkit in C++ with recipes (D. Povey and others)

Povey11 D. Povey et al., “The Kaldi Speech Recognition Toolkit.”

Povey12 D. Povey et al., “Generating exact lattices in the WFST
framework.”
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