
Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Weighted Finite State Transducers in
Automatic Speech Recognition

ZRE lecture 10.04.2013

Mirko Hannemann

Slides provided with permission, Daniel Povey
some slides from T. Schultz, M. Mohri and M. Riley

10.04.2013

Mirko Hannemann Weighted Finite State Transducers in ASR 1/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Automatic speech recognition

	�������3A�������

	�������/�������������
�����
�������������#����%��&�

�������������������������������B�������������>�����B������������������������� ����������

���������������������������������B�������������������B����������������������

�������@��
����'�

���������#����%

?((����
�
���������(���$�

()&*'+

.�
������(���$

()'+

+��
�
������
�
,�����
��

Mirko Hannemann Weighted Finite State Transducers in ASR 2/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Automatic speech recognition

� ,����%�
������%�������"�"$��!������@��
����������#�
�����

�"���#���������������
�$�;

� �����������!������@��
������������%�A�%�>���+�����
��+�;B��

� +����C�$�
������%���$��$�6�$���������!������@��
���

� +�;B���C����������%���$

�$�6�$����������"���#���������������
�$���#�
�!������@��
���

��������� � ���� ��
������ � �� �� ���� �

��� �

��

��

Mirko Hannemann Weighted Finite State Transducers in ASR 3/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Hidden Markov Model, Token passing

.

Mirko Hannemann Weighted Finite State Transducers in ASR 4/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Viterbi algorithm, trellis

Mirko Hannemann Weighted Finite State Transducers in ASR 5/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Decoding graph/recognition network

w ah n

t uw

th r iy

one

two

three

sil sil

P(one)

P(three)

P(two)

Mirko Hannemann Weighted Finite State Transducers in ASR 6/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Why Finite State Transducers?

Motivation:
most components (LM, lexicon, lattice) are finite-state
unified framework for describing models
integrate different models into a single model via composition
operations
improve search efficiency via optimization algorithms
flexibility to extend (add new models)

→ speed: pre-compiled search space, near realtime performance
on embedded systems

→ flexibility: same decoder used for hand-held devices and LVCSR

Mirko Hannemann Weighted Finite State Transducers in ASR 7/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Finite State Acceptor (FSA)

0 1a 2b

◮ An FSA “accepts” a set of strings

◮ (a string is a sequence of symbols).

◮ View FSA as a representation of a possibly infinite set of
strings.

◮ This FSA accepts just the string ab, i.e. the set {ab}

◮ Numbers in circles are state labels (not really important).

◮ Labels are on arcs are the symbols.
◮ Start state(s) bold; final/accepting states have extra circle.

◮ Note: it is sometimes assumed there is just one start state.

Mirko Hannemann Weighted Finite State Transducers in ASR 8/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

A less trivial FSA

0 1a

a

2b

◮ The previous example doesn’t show the power of FSAs
because we could represent the set of strings finitely.

◮ This example represents the infinite set {ab, aab, aaab, . . .}

◮ Note: a string is “accepted” (included in the set) if:
◮ There is a path with that sequence of symbols on it.
◮ That path is “successful’ (starts at an initial state, ends at a

final state).

Mirko Hannemann Weighted Finite State Transducers in ASR 9/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

The epsilon symbol

0 1a
<eps>

◮ The symbol ǫ has a special meaning in FSAs (and FSTs)
◮ It means “no symbol is there”.
◮ This example represents the set of strings {a, aa, aaa, . . .}
◮ If ǫ were treated as a normal symbol, this would be

{a, aǫa, aǫaǫa, . . .}
◮ In text form, ǫ is sometimes written as <eps>
◮ Toolkits implementing FSAs/FSTs generally assume <eps> is

the symbol numbered zero

Mirko Hannemann Weighted Finite State Transducers in ASR 10/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Weighted finite state acceptors

0 1a/1 2/1b/1

◮ Like a normal FSA but with costs on the arcs and final-states

◮ Note: cost comes after “/”. For final-state, “2/1” means
final-cost 1 on state 2.

◮ View WFSA as a function from a string to a cost.

◮ In this view, unweighted FSA is f : string → {0,∞}.

◮ If multiple paths have the same string, take the one with the
lowest cost.

◮ This example maps ab to (3 = 1 + 1 + 1), all else to ∞.

Mirko Hannemann Weighted Finite State Transducers in ASR 11/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Semirings

◮ The semiring concept makes WFSAs more general.

◮ A semiring is
◮ A set of elements (e.g. R)
◮ Two special elements 1̄ and 0̄ (the identity element and zero)
◮ Two operations, ⊕ (plus) and × (times) satsifying certain

axioms.

Springer Handbook on Speech Processing and Speech Communication 11

Table 1: Semiring examples. ⊕log is defined by: x⊕log y = − log(e−x + e
−y).

SEMIRING SET ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0

ply to countable sums (Lehmann [1977] and Mohri
[2002] give precise definitions). The Boolean and
tropical semirings are closed, while the probability
and log semirings are not.

A weighted finite-state transducer
over a semiring is

specified by a finite input alphabet , a finite output
alphabet , a finite set of states , a set of initial
states , a set of final states , a finite set
of transitions ,
an initial state weight assignment , and
a final state weight assignment .
denotes the set of transitions leaving state .

denotes the sum of the number of states and
transitions of .

Weighted automata (or weighted acceptors) are
defined in a similar way by simply omitting the
input or output labels. The projection operations

and obtain a weighted automaton from
a weighted transducer by omitting respectively the
input or the output labels of .

Given a transition , denotes its origin
or previous state, its destination or next state,

its input label, its output label, and its
weight. A path is a sequence of con-
secutive transitions: , .
The path is a cycle if . An -cycle
is a cycle in which the input and output labels of all
transitions are .

The functions , , and on transitions can
be extended to paths by setting and

, and by defining the weight of a path as
the -product of the weights of its constituent tran-
sitions: . More gen-
erally, is extended to any finite set of paths
by setting ; if the semiring is

closed, this is defined even for infinite . We de-
note by the set of paths from to and by

the set of paths from to with input
label and output label . For an accep-
tor, we denote by the set of paths with in-
put label . These definitions can be extended to sub-
sets by ,

, and, for
an acceptor, .
A transducer is regulated if the weight associated
by to any pair of input-output strings , given
by

(9)

is well defined and in . If , then
. A weighted transducer without -cycles

is regulated, as is any weighted transducer over a
closed semiring. Similarly, for a regulated acceptor,
we define

(10)

The transducer is trim if every state occurs in
some path . In other words, a trim trans-
ducer has no useless states. The same definition ap-
plies to acceptors.

3.2. Composition
Aswe outlined in Section 2.3, composition is the core
operation for relating multiple levels of representa-
tion in ASR. More generally, composition is the fun-
damental algorithm used to create complex weighted
transducers from simpler ones [Salomaa and Soittola,

In WFSAs, weights are multiplied along paths
summed over paths with identical symbol-sequences

Mirko Hannemann Weighted Finite State Transducers in ASR 12/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Weights vs. costs

0
1/0a/0

2
b/2

3/1c/1

◮ Personally I use “cost” to refer to the numeric value, and
“weight” when speaking abstractly, e.g.:

◮ The acceptor above accepts a with unit weight.
◮ It accepts a with zero cost.
◮ It accepts bc with cost 4 = 2 + 1 + 1
◮ State 1 is final with unit weight.
◮ The acceptor assigns zero weight to xyz.
◮ It assigns infinite cost to xyz.

Mirko Hannemann Weighted Finite State Transducers in ASR 13/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Weights and costs

0
1/2a/0

2
a/1

b/1

3/1d/1

4/2b/2

◮ Consider the WFSA above, with the tropical (“Viterbi-like”)
semiring. Take the string ab.

◮ We “multiply” (⊗) the weights along paths; this means
adding the costs.

◮ Two paths for ab:
◮ One goes through states (0, 1, 1); cost is (0 + 1 + 2) = 3
◮ One goes through states (0, 2, 3); cost is (1 + 2 + 2) = 5

◮ We add weights across different paths; tropical ⊕ is “take min
cost” → this WFSA maps ab to 3

Mirko Hannemann Weighted Finite State Transducers in ASR 14/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Weighted finite state transducers (WFST)

0 1/0a:x/1

◮ Like a WFSA except with two labels on each arc.

◮ View it as a function from a (pair of strings) to a weight

◮ This one maps (a, x) to 1 and all else to ∞

◮ Note: view 1 and ∞ as costs. ∞ is 0̄ in semiring.

◮ Symbols on the left and right are termed “input” and
“output” symbols.

Mirko Hannemann Weighted Finite State Transducers in ASR 15/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Composition of WFSTs

A B C

0 1/0a:x/1
b:x/1 0 1/0x:y/1 0 1/0a:y/2

b:y/2

◮ Notation: C = A ◦ B means, C is A composed with B .

◮ In special cases, composition is similar to function composition

◮ Composition algorithm “matches up” the “inner symbols”
◮ i.e. those on the output (right) of A and input (left) of B

Mirko Hannemann Weighted Finite State Transducers in ASR 16/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Composition algorithm

◮ Ignoring ǫ symbols, algorithm is quite simple.

◮ States in C correspond to tuples of (state in A, state in B).
◮ But some of these may be inaccessible and pruned away.

◮ Maintain queue of pairs, initially the single pair (0, 0) (start
states).

◮ When processing a pair (s, t):
◮ Consider each pair of (arc a from s), (arc b from t).
◮ If these have matching symbols (output of a, input of b):

◮ Create transition to state in C corresponding to (next-state of
a, next-state of b)

◮ If not seen before, add this pair to queue.

◮ With ǫ involved, need to be careful to avoid redundant paths...

Mirko Hannemann Weighted Finite State Transducers in ASR 17/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Construction of decoding network

WFST approach [Mohri et al.]
exploit several knowledge sources (lexicon, grammar, phonetics)
to find most likely spoken word sequence

HCLG = H ◦ C ◦ L ◦G (1)

G probabilistic grammar or language model acceptor (word)
L lexicon (phones to words)
C context-dependent relabeling (ctx-dep-phone to phone)
H HMM structure (PDF labels to context-dependent phones)

Create H, C, L, G separately and compose them together

Mirko Hannemann Weighted Finite State Transducers in ASR 18/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Language model
Estimate probability of a word sequence W :

P(W) = P(w1,w2, . . . ,wN)
(2)

P(W) = P(w1) · P(w2|w1) · P(w3|w1,w2) · . . . · P(wN |w1, . . . ,wN−1)
(3)

Approximate by sharing histories h (e.g. bigram history):

P(W) ≈ P(w1) · P(w2|w1) · P(w3|w2) · . . . · P(wN |wN−1) (4)

What to do if a certain history was not observed in training texts?
statistical smoothing of the distribution
interpolation of different orders of history
backing-off to shorter history

Mirko Hannemann Weighted Finite State Transducers in ASR 19/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Language model acceptor G

� .��2��%%���
��
������

'��6�
������$�
������%���$1

� �������!���

� '�	����������� �����
��
��!�������"�"�$��

Mirko Hannemann Weighted Finite State Transducers in ASR 20/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Language models (ARPA back-off)

\1-grams:
-5.2347 a -3.3
-3.4568 b
0.0000 <s> -2.5

-4.3333 </s>

\2-grams:
-1.4568 a b
-1.3049 <s> a
-1.78 b a
-2.30 b </s>

start SB
<s>

a

a/3.0046 backoff

<eps>/5.7565

<eps>/7.5985

b
b/3.3544

a/12.053

b/7.9595 SE
</s>/9.9779

a/4.0986

<eps>

</s>/5.2959

Mirko Hannemann Weighted Finite State Transducers in ASR 21/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Pronunciation lexicon L

A ax #1
ABERDEEN ae b er d iy n
ABOARD ax b r ao dd
ADD ae dd #1
ABOVE ax b ah v

Added disambiguation symbols:
if a phone sequences can output different words ("I scream for
ice cream.")
non-determinism: introduce disambiguation symbols, remove at
last stage

Mirko Hannemann Weighted Finite State Transducers in ASR 22/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Deterministic WFSTs

0 1/0a:x/1
b:x/1

◮ Taken to mean “deterministic on the input symbol”

◮ I.e., no state can have > 1 arc out of it with the same input
symbol.

◮ Some interpretations (e.g. Mohri/AT&T/OpenFst) allow ǫ

input symbols (i.e. being ǫ-free is a separate issue).

◮ I prefer a definition that disallows epsilons, except as
necessary to encode a string of output symbols on an arc.

◮ Regardless of definition, not all WFSTs can be determinized.

Mirko Hannemann Weighted Finite State Transducers in ASR 23/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Determinization (like making tree-structured lexicon)

Mirko Hannemann Weighted Finite State Transducers in ASR 24/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Minimal deterministic WFSTs

0 1a
2b

3
c

4d

5d
0 1a

2b

3
c 4

d
d

◮ Here, the left FSA is not minimal but the right one is.

◮ “Minimal” is normally only applied to deterministic FSAs.

◮ Think of it as suffix sharing, or combining redundant states.

◮ It’s useful to save space (but not as crucial as determinization,
for ASR).

Mirko Hannemann Weighted Finite State Transducers in ASR 25/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Minimization (like suffix sharing)

Mirko Hannemann Weighted Finite State Transducers in ASR 26/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Pronunciation lexicon L

� "��0�
��A��,���
��
� �
��
������
� ���������
��A���
����
��
�����
������
�%��

�
�������!���

� '�	��������
�
������
����"�"�$��

Mirko Hannemann Weighted Finite State Transducers in ASR 27/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Context-dependency of phonemes
So far we use phonemes independent of context, but:

co-articulation: pronunciation of phones changes with
surrounding phones

Mirko Hannemann Weighted Finite State Transducers in ASR 28/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Context-dependency transducer C

Introduce context-dependent phones:
tri-phones: each model depends on predecessor and successor
phoneme: a-b-c (b/ac)
implemented as context-dependency transducer C

Input: context-dependent phone (triphone)
Output: context-independent phone (phone)

shown is one path of it

eps-eps eps-a
#-1/a

a-b
eps-a-b/b

b-c
a-b-c/c

c-d
b-c-d/d

d/eps
c-d-eps/$

Mirko Hannemann Weighted Finite State Transducers in ASR 29/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Context-dependency transducer C
Springer Handbook on Speech Processing and Speech Communication 9

k,ae ae,tae:ae/k_t k,ae ae,tt:ae/k_t

(a) (b)

Figure 6: Context-dependent triphone transducer transition: (a) non-deterministic, (b) deterministic.

words. This is an attractive choice for tasks that have
fixed acoustic, lexical, and grammatical models since
the static transducer can be searched simply and effi-
ciently with no recognition-time overhead for model
combination and optimization.

Consider the pronunciation lexicon in Fig-
ure 2(b). Suppose we form the union of this trans-
ducer with the pronunciation transducers for the re-
maining words in the grammar of Figure 2(a) by
creating a new super-initial state and connecting an
-transition from that state to the former start states
of each pronunciation transducer. We then take its
Kleene closure by connecting an -transition from
each final state to the initial state. The resulting
pronunciation lexicon would pair any word string
from that vocabulary to their corresponding pronun-
ciations. Thus,

(4)
gives a transducer that maps from phones to word
strings restricted to .

We used composition here to implement a
context-independent substitution. However, a ma-
jor advantage of transducers in speech recogni-
tion is that they generalize naturally the notion of
context-independent substitution of a label to the
context-dependent case. In particular, the applica-
tion of the familiar triphone models in ASR to the
context-independent transducer, producing a context-
dependent transducer, can be performed simply with
composition.

To do so, we first construct a context-dependency
transducer that maps from context-independent
phones to context-dependent triphones. This trans-
ducer has a state for every pair of phones and a tran-
sition for every context-dependent model. In partic-
ular, if ae k t represents the triphonic model for

with left context and right context ,2 then there
is a transition in the context-dependency transducer
from state to state with output label
ae k t. For the input label on this transition, we
could choose the center phone as depicted in Fig-
ure 6(a). This will correctly implement the transduc-
tion; but the transducer will be non-deterministic. Al-
ternately, we can choose the right phone as depicted
in Figure 6(b). This will also correctly implement the
transduction, but the result will be deterministic. To
see why these are correct, realize that when we en-
ter a state, we have read (in the deterministic case)
or must read (in the non-deterministic case) the two
phones that label the state. Therefore, the source state
and destination state of a transition determine the tri-
phone context. In Section 4, we give the full details
of the triphonic context-dependency transducer con-
struction and further demonstrate its correctness.

The above context-dependency transducer
maps from context-independent phones to context-
dependent triphones. We can invert the relation
by interchanging the transducer’s input and output
labels to create a new transducer that maps from
context-dependent triphones to context-independent
phones. We do this inversion so we can left com-
pose it with our context-independent recognition
transducer . If we let represent a context-
dependency transducer from context-dependent
phones to context-independent phones, then:

(5)
gives a transducer that maps from context-dependent

2This use of to indicate “in the context of” in a triphone sym-
bol offers a potential ambiguity with our use of to separate a tran-
sition’s weight from its input and output symbols. However, since
context-dependency transducers are never weighted in this chap-
ter, the confusion is not a problem in what follows, so we chose to
stay with the notation of previous work rather than changing it to
avoid the potential ambiguity.

Springer Handbook on Speech Processing and Speech Communication 20

(a)

ε,ε

ε,x

x:ε

ε,y

y:ε

x,ε
$:x/ε_ε

x,x

x:x/ε_x

x,y
y:x/ε_y

y,ε

$:y/ε_ε

y,x

x:y/ε_y

y,y
y:y/ε_y

$:x/x_ε

x:x/x_x
y:x/x_y

$:y/x_ε

x:y/x_x

y:y/x_y

$:x/y_εx:x/y_x

y:x/y_y

$:y/y_ε

x:y/y_x

y:y/y_y

(b)

Figure 15: Context-dependent triphone transducers: (a) non-deterministic, (b) deterministic.

Mirko Hannemann Weighted Finite State Transducers in ASR 30/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

HMM as transducer

.

Mirko Hannemann Weighted Finite State Transducers in ASR 31/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

HMM as transducer (monophone)

� ?1�?((�
���$�� �
��
��������%�����������������
�%���
� ������������

�
���������
��A������
��
�����
���������
��

� '�	�����?((����
�����
����"�"�$��

Mirko Hannemann Weighted Finite State Transducers in ASR 32/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Phonetic decision tree

too many context-dependent models (N3)→ clustering
determine model-id (gaussian) based on phoneme context and
state in HMM
using questions about context (sets of phones)

“m”

Left=vowel?
Yes

No

Right=fricative?
Yes No

Square boxes correspond to Hidden Markov Models

Mirko Hannemann Weighted Finite State Transducers in ASR 33/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

HMM transducer Ha

0

12:aa/-2.3842e-07

2
8:ae

3

0:sil

4301:#0

5
4:<eps>

710:<eps>/1.1921e-07

9

284:<eps>/0.11113

10285:<eps>/2.9449

11

286:<eps>/2.9449

0:<eps>

6

6:<eps>/-5.9605e-08

812:<eps>/-1.1921e-07

288:<eps>/2.6975

289:<eps>/2.6975

12290:<eps>/0.14469

291:<eps>/0.55411

293:<eps>/1.5476

294:<eps>/1.5476

295:<eps>/0.17433

296:<eps>/2.5934
298:<eps>/2.4625

0:<eps>

0:<eps>

13

300:<eps>

0:<eps>

(here shown for monophone case, without self-loops)

Mirko Hannemann Weighted Finite State Transducers in ASR 34/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Construction of decoding network

WFST approach by [Mohri et al.]

HCLG = rds(min(det(H ◦ det(C ◦ det(L ◦G))))) (5)

rds - remove disambiguation symbols
min - minimization, includes weight pushing

det - determinization

Kaldi toolkit [Povey et al.]

HCLG = asl(min(rds(det(Ha ◦min(det(C ◦min(det(L ◦G))))))))
(6)

asl - add self loops

rds - remove disambiguation symbols

Mirko Hannemann Weighted Finite State Transducers in ASR 35/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Decoding graph construction (complexities)

Have to do things in a careful order or algorithms "blow up"
Determinization for WFSTs can fail

need to insert "disambiguation symbols" into the lexicon.
need to "propagate these through" H and C.

Need to guarantee that final HCLG is stochastic:
i.e. sums to one, like a properly normalized HMM
needed for optimal pruning (discard unlikely paths)
usually done by weight-pushing, but standard algorithm can fail,
because FST representation of back-off LMs is non-stochastic

We want to recover the phone sequence from the recognized
path (words)

sometimes also the model-indices (PDF-ids) and the HCLG arcs
that were used in best path

Mirko Hannemann Weighted Finite State Transducers in ASR 36/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Decoding with WFSTs (finding best path)

� ��$#�

� 0�%����������
�>�������?�K�0�K�.�K�2��!�����%�����������
���!������@��
���

� ,������" ��$��
�
��������������#�������Q�!����?0.2�==

�-�-)�

� 	�������� ��
�� ���� �

� 	��������
 ��� �� �
�� �

Mirko Hannemann Weighted Finite State Transducers in ASR 37/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Decoding with WFSTs

0 1

1/4.86

2/4.94
3/5.31
4/5.91

2

1/4.16

2/5.44
3/6.31
4/5.02

3/0

3/5.16

4/8.53
1/6.02
2/6.47

◮ First– a “WFST definition” of the decoding problem.

◮ Let U be an FST that encodes the acoustic scores of an
utterance (as above).

◮ Let S = U ◦ HCLG be called the search graph for an
utterance.

◮ Note: if U has N frames (3, above), then
◮ #states in S is ≤ (N + 1) times #states in HCLG .
◮ Like N + 1 copies of HCLG .

Mirko Hannemann Weighted Finite State Transducers in ASR 38/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Viterbi algorithm, trellis

Mirko Hannemann Weighted Finite State Transducers in ASR 39/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Decoding with WFSTs

◮ With beam pruning, we search a subgraph of S .

◮ The set of “active states” on all frames, with arcs linking

them as appropriate, is a subgraph of S .

◮ Let this be called the beam-pruned subgraph of S ; call it B .

◮ A standard speech recognition decoder finds the best path

through B .

◮ In our case, the output of the decoder is a linear WFST that

consists of this best path.

◮ This contains the following useful information:

◮ The word sequence, as output symbols.
◮ The state alignment, as input symbols.
◮ The cost of the path, as the total weight.

Mirko Hannemann Weighted Finite State Transducers in ASR 40/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Decoding output

utt1 [2 6 6 6 6 10] [614 613 613 613 711] [122 123 123 124]
utt1 SIL th ax
utt1 <s> THE

Mirko Hannemann Weighted Finite State Transducers in ASR 41/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Word Lattice / Word Graph

Word Lattice: a compact representation of the search space

COMPUTERS

0.7COMPUTES0.3

ARE0.5

EVERY

0.2

A
0.2 AVERAGE

0.1

VERY

0.5
5

VARIED0.15 ACTIVE

0.25

ATTRACTIVE0.2

OBJECTIVE0.3EFFECTIVE0.2

t1

Mirko Hannemann Weighted Finite State Transducers in ASR 42/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Lattices as WFSTs

The word "lattice" is used in the ASR literature as:
Some kind of compact representation of the alternate word
hypotheses for an utterance.
Like an N-best list but with less redundancy.
Usually has time information, sometimes state or word alignment
information.
Generally a directed acyclic graph with only one start node and
only one end node.

Mirko Hannemann Weighted Finite State Transducers in ASR 43/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Lattice Generation with WFSTs [Povey12]

Basic process (not memory efficient):
Generate beam-pruned subgraph B of search graph S
The states in B correspond to the active states on particular
frames.
Prune B with beam α to get pruned version P.
Convert P to acceptor and lattice-determinize to get A
(deterministic acceptor)

→ No two paths in L have same word sequence (take best)
Prune A with beam α to get final lattice L (in acceptor form).

Mirko Hannemann Weighted Finite State Transducers in ASR 44/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Finite State Transducers for ASR

Pro’s:
Fast: compact/minimal search space due to combined minimization of

lexicon, phonemes, HMM’s
Simple: easy construction of recognizer by composition from states,

HMMs, phonemes, lexicon, grammar
Flexible: whatever new knowledge sources, the compose/optimize/search

remains the same
Con’s:

composition of complex models generates a huge WFST
search space increases, and huge memory is required
esp. how to deal with huge language models

Mirko Hannemann Weighted Finite State Transducers in ASR 45/46

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Ressources

OpenFST http://www.openfst.org/ Library, developed at Google
Research (M. Riley, J. Schalkwyk, W. Skut) and NYU’s Courant
Institute (C. Allauzen, M. Mohri)

Mohri08 M. Mohri et al., “Speech Recognition with weighted finite state
transducers.”

Povey11 D. Povey et al., “The Kaldi Speech Recognition Toolkit.”
Povey12 D. Povey et al., “Generating exact lattices in the WFST

framework.”

Mirko Hannemann Weighted Finite State Transducers in ASR 46/46

http://www.openfst.org/

	Reminder: HMMs and ASR
	Reminder: FSA, FST, WFST
	Decoding with WFSTs

