
The project Kaldi
Open source speech recognition

Karel Vesely

Speech@FIT, BUT

ZRE, Brno, 17.4.2019

What is Kaldi?

Wiki: A legendary Ethiopian
goatherd who found coffee seeds
after seeing the ‘energetic
jumping goats’ eating it.

Github: Open-source toolkit for
building speech recognition
systems.

A bit of history...

2009: Initiated in Summer workshop at Johns Hopkins
University (Baltimore, USA)

a toolkit was needed for new acoustic model (SGMM)
colleagues from Brno were there

2010: Dan Povey started coding Kaldi at Microsoft
2010, 2011, 2012, 2013: Kaldi development workshops

organised in Brno at FIT
international team of self-funded volunteers
(USA, Canada, China, India, Germany, Czech Republic, ...)

2011: Kaldi toolkit presented at conferences
ICASSP (Prague), ASRU (Hawaii)

2012: Dan Povey joins JHU in Baltimore (leaving Microsoft)
2015: Kaldi moves from SourceForge to GitHub

Who is ’Daniel Povey’?

main architect of Kaldi
also mathematician, programmer, help-support

and supervisor of PhD students from JHU

What is Kaldi? II.

Kaldi = GitHub project1, it consists of:

Set of command-line programs for training and
representing speech recognition models (C++).
example recipes = set of “standard experiments” on
cluster computer (BASH, perl, awk, SGE cluster)

Documentation2: Doxygen with tutorial, topic-based
pages and C++ code reference
Support (forum, issue tracking)

1https://github.com/kaldi-asr/kaldi
2http://kaldi-asr.org/doc/

https://github.com/kaldi-asr/kaldi
http://kaldi-asr.org/doc/

What is Kaldi? III.

Github traffic stats from last 14-days
(the blue curves are unique ‘cloners’ and ‘visitors’),

The example recipes = main strength of Kaldi

The recipes are main strength of Kaldi compared to other
toolkits! (HTK, Sphinx, Julius, ...)

Toy examples: yes/no, tidigits,

Free-databases: AMI meetings (80h), TED-LIUM talks
(120h), librispeech, voxforge, vystadial_cz

The standard tasks (from easy to difficult):
Read speech: Wall Street Journal (80h, WER3=2.5%),
Conversational telephone speech:
Switchboard (300h, WER=9%),
Spontaneous ‘distant microphone-array’ speech:
AMI meetings (80h captured by 8 mic-array WER=32%,
with ‘close-talk mic’ we get WER=19%)

3WER = word error rate

Why is Kaldi good for research?

Experiments are reproducible:
(researchers work with same baseline systems)
no need to implement everything from scratch
some data formats can be loaded in Python

It is a community project:
changes get-in by pull-requests
2.7k forks

License: Apache v2.0, a very liberal legal framework:
allows modifications and commercial use.

Speech recognition research ecosystem

Researchers:
- are using the toolkit
- some are contributors

Big companies:
- some use Kaldi
- all have access to the code

Start-ups:
- getting free ASR technology
- creating new ASR applications

Big companies doing speech research: Nuance, IBM, Google,
Microsoft, Apple, Amazon, Baidu, Telefonica, Samsung.
Many have open work positions...

Implemented techniques

Speech recognition:
HMM decoder using WFST transducers

Acoustic models: GMM, DNNs,
Language models: N-GRAM, RNNLM

speaker adaptation techniques (iVector based)
sequence-discriminative training sMBR, LF-MMI
(global optimization instead of ‘per-frame’ training)

Speech recognition: A hybrid approach

Speech signal

Feature extraction
(temporal context,

normalization)

HMM decoder
(OpenFST)

HMM
H

Context
(C

Lexicon
(L

Grammar
G))o o o

text

p
o
s
t
e
r
i
o
r
s

Neural networks
(4 hidden layers)

Recognition networkAcoustic model
Language

model

The decoding formula:

Ŵ = wrds

(
argmax

S
PAM (X|S)κ PG(S)ρ

)

Acoustic model: Neural network

Example: feed-forward neural network with one hidden layer,

x

h

y

W(1),b(1) W(2),b(2) x input vector
h hidden-layer vector
y output vector

W(1),W(2) matrices of trainable weights
b(1),b(2) vectors of trainable biases

Sigmoid,

h
(1)
i = σ(a

(1)
i) =

1

1 + exp(−a(1)i)

Softmax,

yi =
exp(a

(2)
i)∑

j exp(a
(2)
j)

,
∑
i

yi = 1

Forward pass,

y = softmax
(
W(2) σ

(
W(1)x+ b(1)

)
+ b(2)

)

Acoustic model: Time-delay Neural network (TDNN)

Inspired by our work on
Stacked Bottleneck
networks were created
TDNNs.
The weights in a ’Layer’
are shared by each ’red’
subtree (convolutional
networks do the same)
’Big-picture’ is gradually
assembled from
short-term inputs.
Feed-forward network
(fast, easy to train)

Acoustic model: Long-short term memory cell (LSTM)

TDNN layers can
have LSTM layers
in between.

LSTM is a
recurrent layer
(=output depends
on previous inputs
via internal state)

LSTM has a
memory cell ct and
Sigmoid gates
(forgetting, input,
output)

Acoustic model: Training the Neural Network

Supervised training of a classifier
acoustic model is trained from transcribed speech,
traditionally, classes are HMM states of phonemes in some
context (biphone, triphone),
but classes can be also whole-words, syllables or even
graphemes (end-to-end systems),

Training algorithm: mini-batch Stochastic Gradient Descent,
(noisy parameter updates according to local gradients with a
‘good’ global trend):

~wt+1 = ~wt − η∇E(~wt)

When training, we need to somehow ‘time-align’ the
transcriptions with the speech signal using an existing model.

Acoustic model: Training the Neural Network

The current state-of-the art loss function in Kaldi is:
Lattice-free MMI (sequence-discriminative training).

It is inspired in CTC (Connectionist Temporal Classification)
and MMI (Maximum Mutal Information training).

As in CTC, it maximizes posterior of the correct transcript in an
utterance and updates the ‘time-alignment’ on-the-fly.

As in MMI training there is a positive signals (numerator
posteriors) and a negative signal (denominator posteriors).

The numerator is generated from transcription. The
denominator are from ‘alternative hypotheses’ generated with
the current acoustic model on-the-fly on a GPU.

Where we use kaldi

in research, for publishing results in conference articles,
for building systems for funded research projects,

What can you do with Kaldi

Play with the toy examples:
yesno, voxforge, vystadial_cz
Think of a creative ‘speech-based’ application,
the pre-built models are available:
http://kaldi-asr.org/downloads/all/.

http://kaldi-asr.org/downloads/all/

Useful links

GitHub project:
https://github.com/kaldi-asr/kaldi

Documentation:
http://kaldi-asr.org/doc/

Support forum:
https://groups.google.com/forum/#!forum/kaldi-help

Other resources:

http://www.danielpovey.com/kaldi-lectures.html

http://www.danielpovey.com/publications.html

http://www.danielpovey.com/

http://kaldi-asr.org

https://github.com/kaldi-asr/kaldi
http://kaldi-asr.org/doc/
https://groups.google.com/forum/#!forum/kaldi-help
http://www.danielpovey.com/kaldi-lectures.html
http://www.danielpovey.com/publications.html
http://www.danielpovey.com/
http://kaldi-asr.org

The DEMO, I.

Speech signal

Feature extraction
(temporal context,

normalization)

HMM decoder
(OpenFST)

HMM
H

Context
(C

Lexicon
(L

Grammar
G))o o o

text

p
o
s
t
e
r
i
o
r
s

Neural networks
(4 hidden layers)

Recognition networkAcoustic model
Language

model

Feature extraction:
compute-fbank-feats

compute-pitch-feats

paste-feats, apply-cmvn
Acoustic model evaluation: nnet-forward
HMM decoder: decode-faster-mapped
Showing the output: utils\int2sym.pl

The DEMO, II.

Show the script...

Lexicon with 579k ‘words’,
HCLG network has 1.4GBs (after LM pruning),
Acoustic model has 9.7 million trainable parameters
(feed-forward neural network with 4 hidden layers and 5862 outputs),

On-line cepstral mean normalization,
Acoustic-model + HMM-decoder are background
processes (communicating via ‘named pipes’),

The DEMO, III., FBANK features

FBANK features = a smooth spectrogram,
10ms time-steps, non-uniform steps in frequency
(but uniform on Mel-scale, according to which we hear),

log of the ‘power’ at particular frequency as integrated with
the triangular Mel-filters,
we splice 21 FBANK frames to form the DNN input
(i.e. we take a window over 21 time-steps),

Bank of Mel-filters

0 20 40 60 80
Cas (10ms krok)

0

5

10

15

20

M
e
l-

b
in

s
(f

re
kv

e
n
cn

i
o
sa

)

12.0 13.5 15.0 16.5 18.0 19.5 21.0 22.5

FBANK features

The DEMO, IV., NN posteriors

How does the Neural Network output look like?
(posterior probabilities)

For illustration we summed the 5859 outputs into 36+2 phonemes:

0 20 40 60 80
Cas (10ms krok)

@
C
D
N
R
S
T
Z
a

a:
b
c
d
e

e:
f
g
h
i

i:
j
k
l

m
n
o

o:
p
r
s

sil
t
u

u:
unk

v
x
z

<sil>

M

E

Z

I

N'

I

M

I

J

E

The end

Thank you!

