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Abstract
As speech processing technologies are getting increasingly more applied in the real world,
their robustness has become a very important issue. Particularly, the processing of speech
corrupted by interfering overlapping speakers is one of the challenging problems today.
Speech separation approaches tackle this problem by separating the mixed speech into sig-
nals of individual speakers. These methods have made a big headway recently by leveraging
the progress in deep learning.

In many applications, such as smartphones or digital home assistants, the goal is to
enhance the speech signal of one speaker of interest, while suppressing other speakers and
noise. In our work, we formulate this problem as target speech extraction and propose to
solve it directly, i.e. to use a neural network with the enrollment speech and the mixture
as inputs and the extracted speech of the target speaker as the output. We discuss and
experimentally show the benefits of this approach compared to conventional speech separa-
tion: needlessness of counting speakers in the mixture, or better consistency of the output
for longer recordings. We explore different aspects of the neural target speech extraction
pipeline, namely the speaker embeddings, methods to inform the neural network about the
target speaker, input and output domain, or loss function.

Furthermore, we demonstrate how to combine target speech extraction with multi-
channel methods, such as neural mask-based beamforming and spatial clustering. Such
combinations make use of both conventional statistical methods (for processing the spatial
information) and strong modeling power of neural networks.

Finally, we apply target speech extraction as a pre-processing for two downstream tasks:
automatic speech recognition, and clustering-based diarization. We investigate how to
efficiently combine the front-end processing with the downstream systems, including joint
optimization, or training with weakly supervised loss function based on speaker labels.

Keywords
target speech extraction, neural networks, multi-channel processing, multi-speaker auto-
matic speech recognition, multi-speaker diarization
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Abstrakt
S rostoucím nasazením řečových technologií v praxi roste důležitost jejich robustnosti. Ze-
jména zpracování řeči poškozené rušícími překrývajícími se řečníky je stále výzva. Přístupy
separace řeči tento problém řeší rozkladem smíchané řeči na signály jednotlivých řečníků.
Tyto metody v nedávné době výrazně pokročily s využitím vývoje v hlubokém učení.

Ve spoustě aplikací, jako jsou chytré telefony nebo digitální domácí asistenti, je cílem
zvýraznit řečový signál jednoho cílového řečníka, a potlačit ostatní řečníky a šum. V této
práci formulujeme tento problém jako extrakci řeči cílového řečníka a navrhujeme přímé
řešení — použití neuronové sítě, která na vstupu přijímá předregistrovanou nahrávku
cílového řečníka a pozorovanou směs, a na výstupu vrací extrahovanou řeč cílového řečníka.
Diskutujeme a experimentálně ukazujeme výhody tohoto přístupu ve srovnání s konvenční
separací řeči. Výhody zahrnují nepotřebnost počítání řečníku ve směsi nebo lepší konzis-
tenci výstupu pro delší nahrávky. Zkoumáme různé aspekty neurální extrakce řeči cílového
řečníka, jako jsou embeddingy reprezentující řečníka, metody jak informovat neuronovou
síť, vstupní a výstupní doména a ztrátová funkce.

Dále demonstrujeme, jak kombinovat extrakci cílového řečníka s multi-kanálovými meto-
dami, jako je beamforming založený na neurálních maskách nebo prostorové shlukování.
Tyto kombinace využívají jak konvenčních statistických metod pro zpracování prostorové
informace, tak silné modelovací schopnosti neuronových sítí.

Na závěr aplikujeme extrakci řeči cílového řečníka na dva finální úkoly: automatické
rozpoznávání řeči a diarizaci založenou na shlukování. Zkoumáme jak nejlépe zkombinovat
předzpracování signálu s cílovými systémy včetně společné optimalizace, nebo trénování se
slabou supervizí založenou na informaci o řečnících.

Klíčová slova
extrakce řeči cílového řečníka, neuronové sítě, multi-kanálové zpracování, rozpoznávání řeči
více řečníků, diarizace řeči více řečníků
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Chapter 1

Introduction

The applications of speech processing technologies are rising fast in recent years. Digital
home assistants with spoken interface have become a common consumer device [HUWN+19].
Applications transcribing speech in real-time can help hard of hearing people communicate
more easily [LBK+20]. Annotated meeting transcripts are getting very accurate [YAA+19].
The increase in the practical use of these technologies highlights the need for them to be
more robust against environmental distortions. These include background noise, rever-
beration, and interfering speakers. Especially when all of these factors are present, the
performance of speech processing technologies substantially degrades.

The research in speech separation tackles the problem of obtaining speech signals of
individual speakers given the observed mixture of all speakers. The separated signals can
then be used as an input for further processing, such as speech recognition. Over the past,
the research moved from rule-based approaches [BC94] to data-driven techniques based on
neural networks [HCLRW16]. These advances broadened the domain where the techniques
can be applied, from very limited scenarios, such as known speakers and constrained vo-
cabulary, to the uncontrolled speech of unseen speakers. Nowadays, the field is gradually
moving to realistic mixtures that also contain background noise and reverberation.

In many applications, the goal is to enhance the signal of one, or several, pre-defined
speakers of interest, while suppressing all remaining interfering speech and noise. For
instance, a smartphone can be set to react to speech commands of its owner only, even in
environments with background interference. The digital home assistant might focus only
on the speech of the user who uttered a particular wake-up keyword. Meeting participants
could be pre-enrolled for the system to transcribe each of their speech signals in turn. Such
a problem can be tackled by applying speech separation with a subsequent selection of the
target speaker.

In this work, we formulate this problem as target speech extraction (TSE) and propose
to tackle it more directly, i.e. use a neural network with the enrollment speech and the
mixture as the input and the extracted speech of the target speaker as the output. This
direct approach has its benefits, such as no need of counting speakers in the mixture,
avoiding permutation problems, or better consistency of the output for longer recordings.

There are several aspects of the problem that we describe and analyze. These include the
representation of the target speaker, the method of how to inform the neural network using
this representation, the domain in which the input and output are represented, or the loss
function to train the neural network with. We combine the advances in speech separation,
speaker verification, and speaker adaptation in acoustic modeling to guide these choices.
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In some practical scenarios, multiple microphones are used to record the scene. When
such multi-channel recording is available, it is possible to make use of spatial information
to better distinguish different sources of sound. We show how it is possible to take this
advantage and combine multi-channel methods with neural-network-based target speech
extraction. This includes using target speech extraction in a mask-based beamforming
scheme or integrating it with spatial clustering.

Finally, it is important not to study the target speech extraction techniques only in
isolation, but also as a pre-processing for subsequent tasks. We inspect the problems of
automatic speech recognition and speaker diarization of overlapped speech. We show the
challenges of applying target speech extraction for these tasks, such as processing artifacts or
inaccurate speaker identification, and possible ways to address those, such as joint training
of TSE with the task-specific systems.

1.1 Organization of the thesis
The thesis is organized as follows:

• In Chapter 2, we summarize the general speech separation problem and the popular
approaches.

• In Chapter 3, we formulate the target speech extraction problem, emphasize differ-
ences to other related tasks, and characterize the challenges.

• In Chapter 4, we further look into different aspects of target speech extraction in a
single-channel setting. These aspects are experimentally analyzed and compared with
speech separation methods.

• In Chapter 5, we show how to combine target speech extraction with multi-channel
approaches, both theoretically and experimentally.

• In Chapter 6, we describe how to combine target speech extraction with automatic
speech recognition (ASR) and speaker diarization, including joint training scheme of
training TSE and ASR modules.

1.2 Contributions
The formulation of target speech extraction and the use of the speaker-informed neural net-
work to address this problem was first proposed in our work in [ŽDK+17b]. We subsequently
developed this idea in [ŽDK+17a, ŽDK+18, ŽDK+19, ŽDR+21, DŽO+19, DOŽ+20]. These
publications gave rise to a lot of interest in this problem and many works followed the basic
ideas (according to Google Scholar, these works were cited 255 times in total).

This thesis is based on the publications [ŽDK+17b, ŽDK+17a, ŽDK+18, ŽDK+19,
ŽDR+21, DŽO+19, DOŽ+20] and updates the experiments with up-to-date architectures
and datasets, more closely inspects different aspects of the method and extends it in several
directions. Here, we clearly lay out the contributions of our work and link the content of
this thesis to our published papers.

The contributions of our work are the following:

7



• We formulate the target speech extraction problem as opposed to general speech
separation. We discuss the advantages of both of these approaches and experimen-
tally compare them. The formulation of target speech extraction was first pub-
lished in [ŽDK+17b] and made more precise and compared with speech separation
in [ŽDK+19]. In this thesis, the comparison is updated to use a more recent neural
network model and a variety of datasets.

• We analyze several aspects of the single-channel target speech extraction, namely
speaker embeddings, methods to inform the neural network, input/output domain,
and the loss function. A similar analysis was partly done in our previous publications
(comparison of i-vectors and jointly learned embeddings in [ŽDK+17a], comparison
of concatenation, multiplication, and factorized layer in [ŽDK+19]). We include also
techniques proposed by other works in the analysis (such as attention-based method,
x-vector embedding, time-domain inputs/outputs, and linked loss function). This
thesis however presents the first systematic analysis of all of these aspects in one
consistent setting over several datasets.

• We adapt and apply techniques that combine neural networks with multi-channel
approaches to the problem of target speech extraction. This includes mask-based
beamforming, which we first applied to target speech extraction in [ŽDK+17b]. In
this thesis, we further extend this with a combination of target speech extraction with
spatial clustering.

• We combine target speech extraction with automatic speech recognition (ASR) and
investigate several options of training the joint system. We first published our ASR
experiments on extracted speech in [ŽDK+17a] and joint training of TSE and ASR
in [ŽDK+18].

• We propose a way to combine TSE with clustering-based speaker diarization. This
combination is first proposed in this thesis and was previously not published.

• We propose an auxiliary weakly supervised loss function based on speaker charac-
teristics to fine-tune TSE with the application of ASR. This was proposed in our
Interspeech 2021 paper [ŽDR+21].

8



Chapter 2

Speech separation

This thesis focuses on the problem of target speech extraction, i.e. extracting the speech of
a target speaker from a mixture of multiple speakers. Most relevant previous work for this
problem is in the field of speech separation, i.e. blind estimation of signals of all speakers in
the mixture. In this chapter, we thus overview the speech separation task and approaches.
In the next chapter, we will relate this problem to target speech extraction.

2.1 Problem of overlapping speakers
In many applications of speech technologies, we encounter the problem of interfering speak-
ers disrupting the speech of interest. For instance, automatic speech recognition has the
potential to be applied for automatic transcription of meetings, where the ratio of speaking
time interrupted by interfering speaker is estimated to be more than 10% [ÇS06]. In other
application areas, such as in voice assistants used in home environments, or when creating
automatic subtitles for YouTube videos, the overlapped speech also naturally occurs.

The presence of the interfering speakers deteriorates the performance of speech tech-
nologies significantly. In a recent CHiME-5 challenge [BWVT18], considering the problem
of distant speech recognition in a challenging scenario, the error rate of the winning system
drops from 40% on low-overlap recordings to 60% on high-overlap ones [Bar]. The over-
lapped speech also presents a big challenge in today’s state-of-the-art diarization systems
[SSM+18]. Furthermore, it has been shown that overlapped speech is a big obstacle in
understanding speech for users of hearing aids [BP92].

In all of these scenarios, a pre-processing step that removes the interfering speech and
enhances the speech of interest could lead to a major improvement of the technology. Such a
task, formulated as speech separation or target speech extraction, has been long considered
extremely challenging. Traditional methods aiming at enhancement of speech in noise often
leveraged the different statistics of speech and noise signals to distinguish between the two
[Loi07]. In the case of interfering speech, this is not possible, as the interference is a signal
of the same category. However, with the rise of neural networks, there have been huge
advances in the task [HCLRW16, YKTJ17, LM19] and today, we are realistically close to
applying such pre-processing in practice.
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𝑠1(𝑡)

𝑠2(𝑡)

Figure 2.1: Considered scenario. Multiple speech and noise sources are present in the room
and captured by several microphones. The microphones capture both the direct paths and
the reflections of the walls, floor, ceiling, or objects.

2.2 Task definition
In this section, we formally define the task of speech separation. We describe the overall
setting — the observed signals, the goal of the method, its inputs, and outputs. The
depiction of the considered scenario is in Figure 2.1.

We expect a scenario where multiple (𝐽) speakers are speaking in a room with possible
other sources of noise and possibly multiple (𝐾) microphones recording the scene. The
signals received at the microphones can then be modeled as:

𝑦(𝑚)(𝑡) =

𝐽∑︁
𝑗=1

𝑎
(𝑚)
𝑗 (𝑡) ⋆ 𝑠𝑗(𝑡) + 𝑣(𝑚)(𝑡), (2.1)

where 𝑡 is the index of the sample, 𝑦(𝑚)(𝑡) is the observed mixture at the microphone 𝑚,
𝑠𝑗(𝑡) is the speech signal of the speaker 𝑗, 𝑎(𝑚)

𝑗 (𝑡) is the room impulse response (RIR)
between the speaker 𝑗 and microphone 𝑚, and 𝑣(𝑚)(𝑡) is the noise signal including the RIR
from the sources of the noise to the microphone 𝑚. When dealing with a single-channel use
case, we will omit the microphone index (𝑚).

Often, the signals are processed in the frequency domain, in which case the assumed
model transforms into

𝑌 (𝑚)(𝑛, 𝑓) =
𝐽∑︁

𝑗=1

𝐴
(𝑚)
𝑗 (𝑛, 𝑓)𝑆𝑗(𝑛, 𝑓) + 𝑉 (𝑚)(𝑛, 𝑓), (2.2)

where 𝑌 (𝑚)(𝑛, 𝑓), 𝑆𝑗(𝑛, 𝑓), 𝑉 (𝑚)(𝑛, 𝑓) are the short-time Fourier transform (STFT) counter-
parts of 𝑦(𝑚)(𝑡), 𝑠𝑗(𝑡), 𝑣

(𝑚)(𝑡), respectively, 𝐴(𝑚)
𝑗 (𝑛, 𝑓) models the effect of the room impulse

response in the frequency domain, 𝑛 is the index of STFT frame, and 𝑓 is the index of fre-
quency bin. With all signals in STFT domain ·(𝑛, 𝑓), we denote the magnitude part as
| · (𝑛, 𝑓)| and the phase part as ∠ · (𝑛, 𝑓).

The task of speech separation is to retrieve the speech signal of the speakers 𝑠𝑗(𝑡) given
the observed signal 𝑦(𝑚)(𝑡) at all microphones 𝑚 ∈ [1,𝐾]. We define the processing as

{𝑠𝑗(𝑡)}𝑗=1..𝐽 = ℱ
(︁[︁
𝑦(𝑚)(𝑡)

]︁
𝑚=1..𝐾

)︁
, (2.3)
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+

[︁
𝑎
(𝑚)
1 (𝑡)

]︁
𝑚=1..𝐾

[︁
𝑎
(𝑚)
2 (𝑡)

]︁
𝑚=1..𝐾

𝑠1(𝑡)

𝑠2(𝑡)

[︀
𝑣(𝑚)(𝑡)

]︀
𝑚=1..𝐾

Speech
separation

𝑠1(𝑡)

𝑠2(𝑡)

mixing model, Eq. (2.1) separation, Eq. (2.3)

[︀
𝑦(𝑚)(𝑡)

]︀
𝑚=1..𝐾

Figure 2.2: The assumed mixing model of the observed signal and the processing by speech
separation method. This is an example for 𝐽 = 2 speakers.

where 𝑠𝑗(𝑡) is the speech of speaker 𝑗 estimated by the method. The schematic overview of
both assumed generative and separation process is shown in Figure 2.2.

2.3 Evaluation
The goal of speech separation is to get the estimate of 𝑠𝑗(𝑡) as close as possible to the source
signal 𝑠𝑗(𝑡). There are different ways to evaluate the performance of a particular method,
which we organize into three categories:

1. objective metrics

2. subjective metrics

3. down-stream task evaluation metrics

Objective metrics

Objective metrics are the most commonly reported ones in the literature, mainly for the
ease of their evaluation. They can be divided into two categories, depending on whether
they make use of the ground truth signal. In intrusive metrics, we evaluate the discrepancy
between the ground truth 𝑠𝑗(𝑡) and the estimated signal 𝑠𝑗(𝑡). When the ground truth signal
is not available, it is possible to use non-intrusive metrics computed only from the estimated
signal. Non-intrusive evaluation metrics are more difficult to design and generally have a
lower correlation with the actual intelligibility [And17]. For this reason, we use intrusive
evaluation metrics in this work. Here, we review three different metrics, namely signal-
to-distortion ratio (SDR) and its variants, short-time objective intelligibility (STOI), and
perceptual evaluation of speech quality (PESQ).

Signal-to-distortion ratio is probably the most popular metric in recent speech sep-
aration and target speech extraction literature. Here, we will discuss its two variants,
i.e. signal-to-distortion as defined in [VGF06] and implemented in bss_eval toolbox1

(bss_eval SDR or just SDR) and scale-invariant signal-to-distortion ratio (SI-SDR, also
1bss_eval toolbox http://bass-db.gforge.inria.fr/bss_eval/
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s

ŝ

𝛼s 𝛼s− ŝ

SI-SDR =
|𝛼s|

|𝛼s− ŝ|2

Figure 2.3: Geometrical interpretation of the SI-SDR loss. For illustration 𝑠(𝑡) and 𝑠(𝑡) are
reduced here to two-dimensional vectors, s and ŝ. Scaling of the reference s corresponds to
orthogonal projection of the estimate ŝ onto s.

known as SI-SNR) [LRWEH19]. First, bss_eval SDR is defined as

SDR(𝑠(𝑡), 𝑠(𝑡)) = 10 log10

∑︀
𝑡 |𝛼(𝑡) ⋆ 𝑠(𝑡)|2∑︀

𝑡 |𝛼(𝑡) ⋆ 𝑠(𝑡) − 𝑠(𝑡)|2

with 𝛼 = argmin
𝛼

∑︁
𝑡

|𝛼(𝑡) ⋆ 𝑠(𝑡) − 𝑠(𝑡)|2,
(2.4)

where 𝛼 is a filter of maximum length 𝜏max = 512 (corresponding to 64 ms for sampling
frequency 8000 Hz) [VGF06, DHBHU19]. This measures the distortion between reference
𝑠(𝑡) and estimate 𝑠(𝑡), but allows for a short linear filter to be applied on the target to match
the estimate. This can tolerate short delays of the estimated signal, which can happen
for example when we use recording of different microphone as the reference [DHBHU19].
However, SDR can be overly permissive and lead to over-optimistic results even when some
frequency bands are completely omitted, as discussed in [LRWEH19].

SI-SDR is less permissive in this regard and allows only for a scale 𝛼 to be applied to
the target signal [LRWEH19]:

SI-SDR(𝑠(𝑡), 𝑠(𝑡)) = 10 log10

∑︀
𝑡 |𝛼𝑠(𝑡)|2∑︀

𝑡 |𝛼𝑠(𝑡) − 𝑠(𝑡)|2

with 𝛼 = argmin
𝛼

∑︁
𝑡

|𝛼𝑠(𝑡) − 𝑠(𝑡)|2.
(2.5)

The optimal scale 𝛼 can be obtained as 𝛼 =
∑︀

𝑡 𝑠(𝑡)𝑠(𝑡)/
∑︀

𝑡 𝑠
2(𝑡). The scaled reference

𝛼𝑠(𝑡) thus becomes an orthogonal projection of the estimated signal 𝑠(𝑡). This is depicted
in Figure 2.3. The metric is highly sensitive to small delays between the estimated and
target signal. On the other hand, in contrast with SDR, it does not score well the results
of degenerate solutions such as band-stop filters.

Short-time objective intelligibility [THHJ10] is a metric designed to well correlate
with subjective intelligibility, and thus is able to replace costly listening tests. It first
converts both reference and estimated signals into one-third octave band representations
𝑆(𝑜𝑐𝑡)(𝑛, 𝑜), 𝑆(𝑜𝑐𝑡)(𝑛, 𝑜), respectively, where 𝑜 ∈ [0, 14] is the index of third-octave band. The
measure is first computed locally, i.e. for each time frame 𝑛 and band index 𝑜, a score is
computed from a window of 30 consecutive frames of the reference 𝑆(𝑜𝑐𝑡)(𝑛− 30 + 1 . . . 𝑛, 𝑜)
and the estimate 𝑆(𝑜𝑐𝑡)(𝑛− 30 + 1 . . . 𝑛, 𝑜). The estimate window is first normalized to have
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equal energy to the reference window and then clipped to prevent extreme values. STOI is
then the average linear correlation coefficient between the reference and estimate window

STOI(𝑠(𝑡), 𝑠(𝑡)) =
1

𝑁𝑂

∑︁
𝑛,𝑜

corr(𝑆(𝑜𝑐𝑡)(𝑛− 30 + 1 . . . 𝑛, 𝑜), 𝑆
′(𝑜𝑐𝑡)(𝑛− 30 + 1 . . . 𝑛, 𝑜)), (2.6)

where 𝑆
′(𝑜𝑐𝑡)(𝑛 − 30 + 1 . . . 𝑛, 𝑜)) is the normalized and clipped version of the estimate

window, 𝑛 is the frame index, 𝑜 is the octave band index and corr is the linear correlation
coefficient. For more details on the computation steps, we refer to the original proposal
[THHJ10].

Perceptual evaluation of speech quality (PESQ) [RBHH01] is a measure designed
to approximate the subjective mean opinion score (MOS) of speech quality. It was originally
proposed for the assessment of telephone networks and codecs and today is also often used
for evaluating speech enhancement algorithms. Both the reference and the estimated signals
are transformed into a representation of perceived loudness in time and frequency, using
a psycho-acoustic model. The difference between the representations is further passed
through processing inspired by human cognition. We refer to the original work [RBHH01]
for more details about the computation.

Subjective metrics

Subjective metrics are obtained by performing listening tests with a group of listeners. For
applications where the enhanced signals are intended to be listened to, such as hearing
aids, performing listening tests can best reflect the final performance. There are standard
methodologies, that can be followed, such as the MUltiple Stimuli with Hidden Reference
and Anchor framework (MUSHRA) [Ser14] or the Mean opinion score framework (MOS)
[SWH16], which can be used for measuring speech quality. For measuring speech intelli-
gibility, the participants of the listening test are asked to identify the spoken words. The
percentage of correctly recognized words can then be used as the intelligibility measure
[MSCM12].

The disadvantage of subjective metrics is the difficulty of the evaluation. Especially
when developing new methods, it would be very costly to perform listening tests for each
modification of the techniques. Recently, there has been research on approximating the
subjective metrics using neural networks [RGC21]. Furthermore, when the speech extrac-
tion acts as a pre-processing for another system, such as an automatic speech recognizer,
the subjective metrics may not well reflect the effect on such system.

Down-stream task metrics

In the case, when the outputs of the target speech extraction are used as input to another
system, the best evaluation is the actual performance of the final system. This can be for
example word error rate (WER) of an automatic speech recognizer, equal error rate (EER)
of a speaker verification system, or diarization (DER) of a diarization system. In Chapter 6,
we cover some of these use-cases in more detail.

The disadvantage of such kind of evaluation is that it is usually more time-consuming
than the more easy-to-evaluate objective metrics. In addition, the evaluation is dependent
on a particular system and if the final system changes during the development, the metric
may need to be re-evaluated.
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2.4 Pre-neural approaches
The problem of speech separation has a long history of research. Although today, the
accuracy of neural networks seems to surpass all the previously used approaches, some ideas
from the past get re-used and combined with more modern methods. Here, we summarize
three important approaches, i.e. Computational auditory scene analysis (CASA), Non-
negative matrix factorization (NMF), and factorial hidden Markov model (FHMM).

2.4.1 Computational auditory scene analysis

Computational auditory scene analysis [BC94, Ell96] is inspired by findings about human
auditory system. It is known that humans have quite a remarkable ability to understand
speech in very challenging conditions, even in presence of interfering speakers. The auditory
and cognitive processes, enabling us to do so, have been long studied and described by a
theory known as Auditory scene analysis (ASA) [Bre94]. The basic theory of ASA states
that the auditory processes first transform the signal into a spectro-temporal representation.
Elements in this representation then get clustered based on different grouping cues, such as
harmonicity, common onsets, or amplitude modulation of different harmonic components.
CASA exactly follows these steps, with variations among works in the type of representation
used or differently designed grouping rules. Although CASA methods are well-grounded in
psychoacoustic research, they do not achieve the performance of later data-driven methods.

2.4.2 Non-negative matrix factorization

Non-negative matrix factorization [SFM+14, LS01, Vir07] has been for a long time a very
popular method for speech separation and was often used as a baseline for later approaches.
NMF was originally designed for dimensionality reduction [WZ13, PT94] and is part of a
more general family of approaches for decomposition of a data matrix into two factor
matrices (including Principal component analysis, Linear discriminant analysis, and others).
The uniqueness of NMF lies in the non-negativity constraint imposed on the factor matrices.
Due to this constraint, the learned components can be only combined in an additive way
and cannot cancel each other. This brings better interpretability of the components as
physically meaningful parts of the input.

When using NMF for speech separation, we decompose the observed spectrogram V
into two matrices V ≈ WH, where W are the components and H their activations. The
components W are usually learned on clean examples of the target sources, leading to a
source-specific dictionary. By inferring the activations H for a mixture with the fixed pre-
learned dictionary W, we can reconstruct the individual sources. In the simplest form, NMF
does not leverage any temporal dependencies in the data. To overcome this, several dynamic
versions of NMF have been proposed, where the temporal continuity can be either enforced
on the level of the components (e.g. convolutive NMF [Sma07]) or on the level of the
activations (e.g. smooth NMF [FBD09], non-negative dynamical systems [FLRH13], non-
negative hidden Markov models [MS12]). Today, most of the research on NMF for speech
separation looks into its combinations or extensions with neural networks [LRHW15, SV17].

2.4.3 Factorial hidden Markov models

Factorial hidden Markov models (FHMM) [HROK10, Vir06] are another notable approach
that used to be considered state-of-the-art in speech separation [KHO+06]. FHMM is
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used as a generative model of mixed speech, usually at the level of log-spectrogram. It
consists of separate models for generating (hidden) features of each of the speakers and an
interaction model, combining the features generated by the speaker models to explain the
mixed features. The single-speaker speech is modeled by GMM-HMM. There are different
alternatives for the interaction model which approximate the exact interaction function in
the log-spectral domain. One common example is the max-model, where the mixed feature
is modeled as the maximum of the features of individual speakers. The process of separation
is then an inference of the hidden features for each speaker given the mixed features. The
inference in the model is the main shortcoming of the method, as it is highly complex. The
model also cannot effectively handle unknown speakers or environments.

2.5 Neural approaches
Over the last decade, neural networks have become a predominant model in many machine
learning fields such as computer vision, language modeling, speech recognition, or speaker
identification. They have been shown to significantly outperform the previous approaches.
The same trend can be seen for the speech separation task, where the deployment of neural
networks leads to substantial advances in performance. In this section, we summarize
several neural approaches for speech separation.

2.5.1 Early neural network methods

In early neural network approaches, the problem of speech separation was often constrained
to a limited scenario. Numerous works focus on the case of two-speaker male-female mix-
tures [WDDL16, CK17, HKHJS14]. In this case, the neural network’s output is split
into two parts, one for the female signal and one for the male signal. A similar exam-
ple of a simplifying assumption is the work in [WYSD15a], where the neural network is
trained to separate two-speaker mixtures, where one of the speakers is always strongly
dominant. This can be a reasonable assumption for some use-cases, however, still not ap-
plicable in general. Another line of research focused on the case of a closed-set of speakers,
where the data used in test-time contain only the speakers present in the training dataset
[DTX+14, DTDL16, ZW16]. In this case, the neural network is trained separately for each
speaker pair. This assumes the availability of a sufficient amount of data from each speaker
and is not easily extendable to unseen speakers.

Although the listed works have quite strong limitations, they are valuable for showing
the capabilities of neural networks to separate speech and exploring various aspects, such as
suitable input and target representations. This set the ground for more elaborate methods
extending the applicability to more general cases.

2.5.2 Deep clustering

In contrast with most of the other approaches using the neural network to directly per-
form the regression from the mixed to the clean speech, Deep clustering (DC) [HCLRW16,
IRC+16] splits the procedure into two distinct steps. First, the neural network predicts an
embedding for each time-frequency (T-F) point of the input mixture. Second, these embed-
dings get clustered using conventional clustering methods, such as k-means. For training
of the neural network, the objective function is constructed in such a way, that embeddings
for T-F points corresponding to the same speaker are pulled closer to each other, while em-
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beddings for T-F points of different speakers are pulled away. In particular, the objective
function takes the form

ℒdc = |VVT −EET|2F, (2.7)

where E is the 𝑁 × 𝐽 matrix denoting the target speaker for each T-F point (𝑁 denotes
the number of T-F points, 𝐽 denotes the number of speakers), V is the 𝑁 ×𝐷 matrix of
estimated embeddings (𝐷 denotes dimension of the embedding) and | · |2𝐹 is the squared
Frobenius norm. The target speaker for each T-F bin is determined from the clean signals
as the most dominant of the speakers. The multiplication EET results in 𝑁 × 𝑁 affinity
matrix with 1 for a pair of T-F bins from the same speaker and 0 for a pair of T-F bins from
different speakers. The VVT is the 𝑁 ×𝑁 estimated affinity matrix, where each element
contains the dot product of the embeddings for the pair of T-F bins.

Note that the objective function of DC is independent of the order of the speakers in
the labels, i.e. permuting the columns of E does not change the value of the objective. The
architecture of the neural network and the objective function are also independent of the
number of speakers in the mixture, although in the testing time, the number of speakers
needs to be known or estimated in the clustering step.

A common critique of Deep clustering is the mismatch between the objective function
and the clustering algorithm actually used in testing time to separate the sources. The
indirect nature of the objective function also makes it difficult to use DC in end-to-end
frameworks, where the separation is trained to optimize a final task, such as speech recog-
nition. A variant of DC, Deep attractor network (DaNet) [CLM17] addresses these issues.
In DaNet, the objective function is modified by creating attractor points in the embedding
space as centroids of embeddings of each of the sources. Based on the attractor points,
T-F masks are computed, and the objective function is the mean squared error between
the masked mixture signal and the clean signal. In the test time, the masks are computed
with the same procedure, eliminating the training-testing mismatch.

2.5.3 Permutation invariant training

In permutation invariant training (PIT) [YKTJ17, KYT+17, QCY18] the neural network
maps an input mixture speech signal to an output consisting of clean speech signals from
all the sources. The key idea of PIT lies in how the reference signals of all speakers are
assigned to the outputs of the neural network during training. All possible permutations
of the outputs are considered for computing the objective function, and the one with the
lowest error is selected. The neural network is thus free to choose any order of the speakers
on the output. The objective function is

ℒpit = min
𝜑∈𝑃

𝐽∑︁
𝑗=1

ℓ(𝑠𝜑(𝑗), 𝑠𝑗), (2.8)

where ℓ is the loss function comparing two signals, 𝑠𝑖 is the 𝑖th estimated signal, 𝑠𝑗 is the
𝑗th reference signal, 𝑃 is the set of all possible permutations of the outputs and 𝜑 is one
of the permutations. Although the original PIT works used the loss in frequency-domain,
we choose a more general formulation, as in later publications it was applied to different
representations as well.

The architecture of the neural network in PIT depends on the number of speakers.
However, in [KYT+17] authors claim that this can be addressed by fixing the number of
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Figure 2.4: ConvTasnet model for speech separation. Colors denote the dilations factors 𝑑
in the individual 1-D convolutional blocks. Image adapted from [LM19].

outputs as the maximum number of speakers in the mixture and training the network to
output silence in case there are fewer.

The permutation invariant objective became quite popular for its simplicity and is
commonly used. The combination of PIT and DC was also explored in some works
[LCH+17, SLRH+18]. PIT can be also easily extended with end-to-end training with a
speech recognition system [YCQ17].

2.5.4 ConvTasnet

Both DC and PIT were introduced as frequency-domain approaches, where both inputs
and outputs of the network are time-frequency matrices. The neural networks processing
this input were then usually recurrent networks, such as Long-short term memory net-
works [HS97] or their bidirectional variant. This trend changed with the publication of
the ConvTasnet neural network for speech separation [LM19]. ConvTasnet is a convolu-
tional network that works directly with time-domain signals and uses the PIT principle to
compute the loss function.

ConvTasnet architecture is composed of three main parts, namely encoder, separator,
and decoder as depicted in Figure 2.4. The encoder is a convolutional layer, transforming
the time-domain signal into a higher-level representation. The decoder on the other hand
reverses this representation back into the time domain with a transposed convolutional
layer. The most important part is the separator, estimating a mask to apply to the encoded
representation in order to separate the individual speakers. The separator consists of several
repetitions, where each repetition is a sequence of convolutional blocks with increasing
dilation. This architecture is inspired by the previous success of temporal convolutional
networks [LVRH16]. The increasing dilation factor in the convolutional filters results in an
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Figure 2.5: Dual path RNN model for speech separation. Image adapted from [LCY20].

increased reception field of the model. The exact size of the reception field depends on the
hyper-parameters of the model, but is typically in the order of seconds.

The ConvTasnet work caused a small revolution in the speech separation field. Most
subsequent works follow the trend of time-domain approaches with PIT-based loss functions
and only differ in the architecture used in the separator.

2.5.5 Dual path RNN

The success of time-domain approaches has shown that it is beneficial to process the mixed-
signal with a high time resolution. For example, with ConvTasnet, the encoder uses much
smaller windows than would be typically used for frequency-domain representations. This
leads to several times longer sequences of features that the neural network works with,
increasing the need for a model to be able to work with long context. While recurrent
neural networks (RNN) can in theory learn long-term temporal dependency, in practice,
they are not effective due to optimization issues, such as vanishing gradients.

Dual-path RNN networks [LCY20] use RNN layers, but organize them in a way that
allows them to model long sequences. The input sequence is split into chunks and two
types of RNN are interleaved – intra-chunk RNN, processing each chunk independently,
and inter-chunk RNN aggregating the information over all the chunks. The two types of
RNN layers are then repeated several times. In this way, the individual RNNs perform on
much shorter sequences, but together, they can learn even the long-term dependency. The
dual-path principle is depicted in Figure 2.5.

The dual-path network has been then followed in other works. For example, in [NAW20]
the RNNs were extended with multiplication-concatenation blocks, or in [SRC+21] the RNN
layers were replaced by attention.
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Chapter 3

Target speech extraction problem

In this chapter, we introduce the problem of target speech extraction (TSE) and its relation
to other tasks, including speech separation. We also discuss the main factors influencing
TSE performance and briefly overview how TSE relates to the processing of multi-talker
speech by humans.

3.1 Task definition
In our work, we aim to tackle the problem of overlapping speakers by applying target speech
extraction, i.e. extracting the speech signal of the speaker of interest while suppressing the
speech of all interfering speakers and potential noise. In this section, we point out the
differences between this formulation of the task and the task definition of speech separation
presented in Section 2.2.

The scenario we tackle is the same as in speech separation, with the difference of con-
sidering one speaker as the target speaker. We can rewrite the signal model in both time-
and frequency-domain as

𝑦(𝑚)(𝑡) = 𝑎
(𝑚)
𝑖 (𝑡) ⋆ 𝑠𝑖(𝑡) +

∑︁
𝑗 ̸=𝑖

𝑎
(𝑚)
𝑗 (𝑡) ⋆ 𝑠𝑗(𝑡) + 𝑣(𝑚)(𝑡) (3.1)

𝑌 (𝑚)(𝑛, 𝑓) = 𝐴
(𝑚)
𝑖 (𝑛, 𝑓)𝑆𝑖(𝑛, 𝑓) +

∑︁
𝑗 ̸=𝑖

𝐴
(𝑚)
𝑗 (𝑛, 𝑓)𝑆𝑗(𝑛, 𝑓) + 𝑉 (𝑚)(𝑛, 𝑓), (3.2)

where 𝑖 is the index of the target speaker. We follow the notation introduced in Section 2.2,
i.e. 𝑡 is the index of the sample, 𝑦(𝑚)(𝑡) is the observed mixture at microphone 𝑚, 𝑠𝑗(𝑡) is
the speech signal of the speaker 𝑗, 𝑎(𝑚)

𝑗 (𝑡) is the RIR between the speaker 𝑗 and microphone
𝑚, 𝑣(𝑚)(𝑡) is the noise signal including the RIR from the sources of the noise to the mi-
crophone 𝑚; 𝑌 (𝑚)(𝑛, 𝑓), 𝑆𝑗(𝑛, 𝑓), 𝑉 (𝑚)(𝑛, 𝑓) are the short-time Fourier transform (STFT)
counterparts of 𝑦(𝑚)(𝑡), 𝑠𝑗(𝑡), 𝑣

(𝑚)(𝑡), respectively, 𝐴(𝑚)
𝑗 (𝑛, 𝑓) models the effect of the room

impulse response in the frequency domain, 𝑛 is the index of STFT frame, and 𝑓 is the index
of frequency bin.

To characterize the target speaker, we assume having an enrollment signal spoken by
the target speaker 𝑖, denoted as 𝑒𝑖(𝑡). In our work, we consider the enrollment to be
single-channel. The task of target speech extraction is to retrieve the speech signal of the
target speaker 𝑠𝑖(𝑡) given the observed signal 𝑦(𝑚)(𝑡) at all microphones 𝑚 ∈ [1,𝐾] and the
enrollment utterance 𝑒𝑖(𝑡). We define the processing as
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Figure 3.1: Assumed generative model and processing by target speech extraction method.
This is an example of two speakers and target speaker 𝑖 = 1 (in blue).
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Figure 3.2: Cascade of speech separation and target speaker selection.

𝑠𝑖(𝑡) = ℱ
(︁[︁
𝑦(𝑚)(𝑡)

]︁
𝑚=1..𝐾

, 𝑒𝑖(𝑡)
)︁
, (3.3)

where 𝑠𝑖(𝑡) is the target speech estimated by the method. The schematic overview of both
the assumed generative process and our method is shown in Figure 3.1.

3.2 Relation to speech separation
In speech separation, the task is to extract the speech signals of all speakers present in a
mixture. Nowadays, this task is mostly tackled by neural networks, and target speech ex-
traction methods often build upon these models. The task of target speech extraction could
be also solved by a cascade of speech separation and selection of the target speaker from
the outputs using, for example, a speaker recognition system. This option is schematically
depicted in Figure 3.2.

In the following, we discuss the benefits and drawbacks of both approaches, i.e. target
speech extraction and speech separation. We mainly focus on neural network methods here,
as they are the current state-of-the-art.

3.2.1 Benefits of target speech extraction

1. No speaker counting necessary. A typical neural network for the speech separation
task has as many outputs as there are speakers [YKTJ17]. This makes the architecture
dependent on the number of speakers in the mixture, and there is a need to either

20



have prior knowledge about the number of speakers, or first perform speaker counting.
Some speech separation works showed that it is possible to train a neural network
that has a larger number of outputs to separate a variable number of speakers and
keep the remaining outputs as zero or small noise [KYT+17]. This partially solves the
problem, but the neural network still needs to perform the counting of the speakers
internally. In some cases, such as a restaurant environment with a lot of babble noise,
it might be also difficult to define, which part of the signal should be still considered
as a speech to separate and which is already part of the noise. The direct target
speech extraction completely avoids these problems, as the neural network has only
one output for the target speaker. The architecture is thus completely independent
of the number of speakers present in the mixture.

2. No permutation solving. The fact that the neural network for speech separation has
one output per speaker, leads to issues related to the permutation of the speakers.
During the training of the network, it is not clear which speaker appears at which
output. For example, if an input mixture consists of three speakers A-B-C, there are
six possible orderings in which the speakers can appear at the outputs of the network
(A-B-C, A-C-B, B-A-C, B-C-A, C-A-B, C-B-A) and all of these should be considered
correct. The training thus needs to use specialized loss functions, such as the most
popular permutation invariant training [YKTJ17], which computes the loss for all
possible permutations and chooses the best one. The permutation problems might
also appear during the inference when we split recordings into blocks to be separated
using the network. In each block, the permutation on the output might be different,
and we need to use “stitching” techniques to correctly align the speakers [YEC+18]. In
some works, this is called “the global permutation problem”. Target speech extraction
completely avoids the permutation problems by using the additional target speaker
information.

3. Consistent output for longer recordings. Speech separation models sometimes make
errors by switching the speakers in the output streams in the middle of a sequence
[ŽDK+19]. Although such behavior is penalized in the loss function during the train-
ing, keeping the speakers on the output in a consistent order requires the network to
see enough context and “remember” the ordering in previous frames correctly. Em-
pirically, this is a common source of errors. In target speech extraction, the output
is kept consistent due to the usage of the enrollment speaker information.

4. One compact model trained for the task. In general, having one model solving the task
directly can be preferable to having separate modules. This is because all parameters
are optimized directly for the final task and can thus get closer to the optimum than
when two modules are optimized with different objective functions.

3.2.2 Benefits of speech separation

1. No enrollment necessary. When a prior enrollment recording of the speaker is not
available and not possible to obtain, the target speech extraction models cannot be
applied. The task of target speech extraction is itself ill-defined in this case, and
it is necessary to use the speech separation model if we want to extract the speech
of individual speakers. Some works explored models that can act as both separation
and target speech extraction, depending on the availability of the enrollment utterance
[ODK+19b].
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2. Possibility to tune the selection module separately. In some cases, it might be advanta-
geous to be able to explicitly modify only the speaker selection process. For instance,
it might be possible to make use of speaker verification models pre-trained on a large
amount of data. Furthermore, in some situations, we want to allow the enrollment
speaker not to be present in the mixture. The goal in such a case is to extract a
silent signal. For such cases, it might be useful to have an explicit threshold on the
similarity between the enrollment and mixture speakers, which decides whether the
enrollment speaker is present in the mixture or not. In the case of the target speech
extraction model, the threshold is implicitly learned by the neural network, and it is
not possible to tune it easily.

3. Less computation when extracting multiple speakers. If our goal is to extract all or
multiple speakers from the mixture, applying speech separation models requires less
computation than the target speech extraction. In the target speech extraction case,
it is necessary to forward the data once for each desired speaker. In speech separation,
only one forward pass extracts all the speakers.

In general, both approaches have their pros and cons and can be beneficial in different
applications. We further elaborate and experimentally verify some mentioned properties in
Section 4.8. It is noteworthy that some recent models [ZG21] perform speech separation by
first estimating speaker embeddings and then extracting all speakers given the embeddings.
Such a scheme can combine some benefits of both approaches.

3.3 Relation to other tasks
Target speech extraction is closely related to several other tasks in the speech processing
field. Here, we discuss the similarity and differences with several tasks, namely speech
enhancement, speaker diarization, and speaker adaptation.

Speech enhancement

In speech enhancement [Loi07], the task is to remove noise from a noisy speech signal.
This is similar to target speech extraction, as in both cases, we have speech corrupted by
interference as the input and the clean speech signal as the desired output. Similar methods
can be applied in both tasks, and neural architectures for speech enhancement and target
speech extraction are indeed very similar.

The main difference between the tasks comes from the nature of the interference. In
speech enhancement, the models can use the specific properties of speech and noise to dif-
ferentiate between the two, remove the noise and extract the speech. Generally, in target
speech extraction, this is not possible because the interference is also a speech signal. To
break this symmetry, we need to provide additional information about the target speaker.
Some early works in target speech extraction also avoided the symmetry by solving more
constrained tasks, such as extracting the dominant speaker [WYSD15b] or training a spe-
cialized neural network for a particular speaker [ŽDK+17b, DTX+14, ZW16]. This brings
the task closer to speech enhancement, but has limited applicability.
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Speaker diarization

The task of speaker diarization is to identify “who speaks when”, i.e. identify how many
speakers there are in a recording and when each of them is speaking [ABE+12]. Typi-
cally, this is done on long recordings of several minutes. If enrollment utterances for each
of the speakers were available, we could imagine solving the task by running the target
speech extraction system for each of the speakers and then using voice activity detection
on the outputs. Even when no enrollment is available (as is usually the case for diarization
tasks), it could be obtained from some single-speaker segments of the recording identified
by preliminary diarization.

Although this is possible in theory, such a scheme is not widely used in diarization.
A reason for that might be that target speech extraction is essentially a more difficult task
than diarization. While diarization needs to only decide about the speaker activity pattern,
target speech extraction needs to estimate the speech signals themselves. For this reason, it
is likely that approaches directly designed for diarization will always perform better, than
the application of target speech extraction.

Despite these reasons, both approaches can be combined and benefit from each other, as
done in some recent works [DŽO+21]. We further explore the combination of target speech
extraction and diarization in Chapter 6. Furthermore, a recent approach for diarization,
Target-speaker voice activity detection (TS-VAD) [MKP+20], has been inspired by target
speech extraction techniques. TS-VAD estimated target speaker activity given an enroll-
ment utterance of the speaker. This approach has been very successful in recent diarization
challenges [WMB+20, RSK+21].

Speaker adaptation in speech recognition

In automatic speech recognition (ASR) systems, the task is to obtain a sequence of words
spoken in the input recording. Today, this is mostly tackled by neural networks. A lot
of research has been done on how to adapt the neural network to a particular speaker
[SSNP13, Lia13, KVv+21], i.e. given a short speech of the speaker, alter the forward pass
through the network so that it better recognizes the target speaker’s speech.

The basic principle — altering the forward pass through the neural network using an
enrollment utterance of the speaker — is analogous to the task of target speech extrac-
tion. Indeed, many methods for target speech extraction have been inspired by speaker
adaptation in ASR. However, there are some differences between the two tasks. In speaker
adaptation, we aim to only slightly alter the output of the network by changing the speaker
information, and the model can work reasonably well even without adapting to a particu-
lar speaker. In contrast, in target speech extraction, the speaker information is essential,
and changing the enrollment speaker should totally change the output. Consequently, the
optimal methods for both tasks may be different.

3.4 Factors influencing target speech extraction performance
The target speech extraction is influenced by different factors, which make the task more
difficult. Here, we describe several of those, namely noise, reverberation, voice characteris-
tics, and domain mismatch.
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Figure 3.3: Examples of noise from CHiME-3 database [BMVW15]. Street noise includes
passing cars, bus noise includes sound of the engine.

3.4.1 Noise

Noise is present in many real-world situations. Examples of noise include cars passing
by, engine noise in a car, PC fan noise, air ducts, telephone ringing, or water running
in the kitchen. Figure 3.3 shows two example spectrograms of noises. We can classify
noise as either stationary (e.g. PC fan) or non-stationary (e.g. passing cars) [Loi07]. In
non-stationary noise, the spectral characteristics of the noise change over time, while for
stationary, they stay constant. The non-stationary noise is much more difficult to remove.
According to [Loi07], we can also categorize noises based on the shape of their spectrum.
Some noises are concentrated in a narrow range of frequencies (e.g. wind noise), while
others are spread across the entire frequency range.

The level of noise can differ in different environments. It is usually measured in terms
of dB of sound pressure level (SPL) — the relative pressure in reference to barely audible
sound pressure. Low levels of noise are present, for instance, in classrooms or hospitals
(around 50 dB to 55 dB SPL). On the other hand, train and airplane noise ranges around
70 dB to 75 dB SPL [Loi07]. The level of speech signal depends on the distance of the
listener or recording device to the speaker. It usually ranges around 60 dB to 70 dB SPL
in one-meter distance and decreases by 6 dB for every doubling of the distance. In very
high levels of noise, the speech level increases (a phenomenon known as the Lombard effect
[ZB11]).

Noise has been shown to significantly influence speech separation performance. For in-
stance, on the 8 kHz WHAM database, the SI-SDR performance of the chimera++ network
degrades from 11.0 dB to 5.4 dB [WAF+19]. The same trend stands also for target speech
extraction, as is shown in this work (Section 4.8.4).
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Figure 3.4: Example of clean and reverberant speech from WHAMr [MWMLR20] database.
The room impulse response here is artificially generated with 𝑇60 = 0.56 s.

3.4.2 Reverberation

In most environments, the sound captured by a distant microphone contains not only noise
but also reflections of the signal from walls and other objects. This effect is known as
reverberation [YSD+12]. Reverberation causes the microphone to receive multiple copies
of the original signal with different delays and attenuation. Due to this effect, the result-
ing speech signal is less intelligible and hurts the accuracy of many speech technologies,
including speech separation and target speech extraction.

Figure 3.4 shows an example of clean and reverberant speech. We can see that re-
verberation corrupts the transitions between the phonemes and makes them less distinct.
Perceptually, these effects lead to speech sounding “distant” and “echoic”.

According to [YSD+12], the room impulse response (RIR) describing the reverberation,
can be divided into three parts corresponding to three components of the reverberation

• direct sound: This part of reverberant speech is the signal received through the short-
est path from the source to the microphone.

• early reflections: Early reflections describe the first few copies of the signal received
by the microphone within the first 50 milliseconds after the direct sound. This part
of reverberation has been shown to improve the intelligibility of speech.

• late reverberation: The late reverberation describes the mixture of many small reflec-
tions received by the microphone after the first 50 milliseconds after the direct signal.
This part of reverberation is causing the degradation in intelligibility.

Figure 3.5 shows an example of a real room impulse response.
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Figure 3.5: Room impulse response from BUTReverbDB [SSM+19] recorded in a lecture
room.

The reverberation intensity is often described by so-called reverberation time 𝑇60. This
is the time required for the late reverberation to decay by 60 dB relative to the level of
direct sound. In office environments, this usually ranges from 0.2 s to 1 s [YSD+12].

Reverberation significantly influences speech separation performance. In [MWMLR20],
it is shown that SI-SDR performance of the ConvTasnet network reduced from 14.2 dB
on anechoic data to 5.6 dB on reverberant data. In this work, we will also show how
reverberation influences target speech extraction performance (Section 4.8.4).

3.4.3 Voice characteristics

Some works on single-channel speech separation report a significant gap in performance
between same- and different-gender mixtures [IRC+16]. This effect was further studied
in [DG19], where the authors analyze which speaker-specific characteristics influence the
performance. In particular, two characteristics are considered:

• Vocal tract length is the length of the tube starting at the vocal cords and ending
at the mouth entrance. For a particular speaker, this length is fixed and does not
change. It can be estimated from a speech signal.

• Fundamental frequency of speech is time-varying and can be measured during voiced
frames. It varies based on intonation, Lombard effect, speaker state, and can be
voluntarily changed.

The study shows that difference in the fundamental frequency of two speakers in the mixture
has an important effect on speech separation performance. In contrast, the difference in
vocal tract length is not predictive of the performance.

Although the same study has not been done for target speech extraction, the differ-
ence in performance on mixtures of same- and different-gender speakers is also present
[DOŽ+20] and is shown also in this work (Section 4.8.7). In target speech extraction, there
is an additional challenge of identifying correctly the target speaker in the mixture. When
the speaking style (and consequently fundamental frequency) of the target speaker in the
enrollment utterance and the mixture differs, the identification is more challenging.
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3.4.4 Domain mismatch
Most of the work done today in both speech separation and target speech extraction is based
on data-driven methods. In these, the training dataset is first used to learn parameters of
a system, which is then applied during test-time. When there is a mismatch between the
distribution of training and test data, the performance sharply degrades. For instance, in
the context of speech enhancement, [KTJ16] reports much better performance of neural
network-based methods when they are trained on matched noise types. In [MSF+19],
authors report that speech separation systems do not generalize well to recordings from
realistic environments.

Another source of mismatch is caused by the fact that today’s speech separation and
target speech extraction systems are mostly trained on artificially mixed data. The reason
for that is that it is difficult to record realistic overlapped data together with parallel single-
speaker references, needed to train the systems. The artificial simulation of the data might
not capture all the characteristics of real conditions, such as the Lombard effect, natural
overlap ratios, or realistic room impulse responses. This can cause problems when the
systems are applied in real applications.

3.5 Alternative target speaker clues
In this work, we focus on the case when the target speaker is determined based on enrollment
utterance, i.e. a short segment of their speech. In some applications, it might be however
possible to also use other sources of information. In this section, we give a short overview of
works utilizing alternative speaker clues, namely visual, speaker activity, location, or brain
signals.

Visual clue
Visual information has been utilized in the past for many problems in speech processing
such as speech recognition [NYN+15], voice activity detection [AM08] or source localization
[ALMD19]. Notably, some works showed that visual information can be also useful for
speech separation [HC02] and speech enhancement [MTZ+21]. Some studies have also
shown that visual clues help humans with focusing on a particular sound source [GCSP13].
It is thus natural to consider this clue in the context of target speech extraction.

Most of the works in this direction use video to provide the speaker clue [GSP18]. Such
systems can use very similar architectures as when using the audio clue. The video of the
scene is usually pre-processed with a face detector, then the face of the target speaker is
cropped. In some works, only the lip region is used as the clue. The usage of video of the
speaker’s face is beneficial, especially in cases when the speakers have very similar voice
characteristics, where audio-based clues may not be sufficient. On the other hand, in real-
istic videos, the face may be obstructed in some parts. For these reasons, it is particularly
helpful to use multi-modal clues, combining audio and video [ACZ19, ODK+19a].

Apart from the video, there are works using only still image as the speaker clue [CCCK20].
Such works assume that it is possible to infer the speaker characteristics only from the vi-
sual characteristics of the person’s face. The authors in [CCCK20] report modest SDR
improvements with the image-clue, more notable in different-gender cases.
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Speaker activity
As mentioned above, many works using video clues utilize only the lip region of the video.
This suggests that one important piece of information to identify the target speaker is their
activity, as this is something that can be easily predicted from the movement of the lips.
This hypothesis was explored in our work [DŽO+21], where we used the speaker activity
as the speaker clue. The activity can be estimated, for example, by using the diarization
system or the visual information. The results of the study suggest that using the activity
as the clue can indeed achieve similar performance as audio-based approaches.

Location clue
When the signals are recorded with multiple microphones, it is possible to infer some
spatial information about the speakers in the mixture. In this work, we explore multi-
channel methods in Chapter 5, but we assume not having any prior knowledge about the
target speaker’s position. In other works, however, location-based clues have been explored.
Some works use the location to construct a fixed beamformer in the direction of the target
speaker. The output of the fixed beamformer can then be post-processed into an additional
feature used at the input of a neural network [CXY+18, GCZ+19]. Other works use the
beamformer estimated from the location as a pre-processing [HFFHU19].

Brain signals
Some recent works [AD20] suggest using EEG signals of the listener together with the
auditory attention decoding method to identify which speaker is the target the listener is
attending to. This information is then used to extract the target speaker from a mixture.
Using brain signals as the target speaker clue has huge potential in hearing aid applications.
Although this research is only at the beginning, it is attracting much interest.

3.6 Human processing of multi-talker speech
Although the speech with competing speakers is very difficult to process for automatic
algorithms, humans seem to have a remarkable ability to attend to a single source in multi-
talker situations [MC12]. There is a long history of research into how the processing of
multi-talker speech is performed by the human auditory and cognitive system. According
to [FEDS07], there are several stages of the processing, including primitive grouping, using
auditory memory, and attention. The stage of primitive grouping uses simple cues, such
as harmonicity or common onset time, to group fragments of the speech signal together.
Auditory memory can further improve the grouping by using previously learned patterns
of speech and other signals. The mechanism of attention allows the listener to select and
focus on a source of interest.

The conceptual model of speech processing in [Bro15] shows that the attention mech-
anism influences also the very early stages of hearing, which can thus focus on the target
source. This is in line with the concept of target speech extraction as opposed to speech
separation, where the selection of the target source is done only at the very end of the
processing. Authors in [SCB08] argue that if the listener has prior knowledge of what dis-
tinguishes the desired source from the competing sources, the auditory system can perform
a “parallel search” of the target, which is more efficient and less error-prone than “serial
search”, where the listener selectively samples each stream in the mixture to test whether
it is the desired source.
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Chapter 4

Single-channel approaches to
target speech extraction

In this chapter, we focus on approaches for single-channel target speech extraction, i.e.
using a signal recorded with a single microphone. Most of the principles introduced in
this chapter can be however also re-used in the multi-channel case, further discussed in
Chapter 5. Our focus is on neural target speech extraction and its different aspects, such
as speaker embeddings, ways to inform the neural network, input and output domain,
loss function, and neural network architecture. Different approaches are compared in the
experiments.

4.1 Neural approaches and their aspects
Since the introduction of Deep clustering [HCLRW16] and Permutation invariant training
[YKTJ17] the field of speech separation has been dominated by approaches using neural
networks. This later also transferred into the emerging field of target speech extraction,
which builds upon the neural methods [ŽDK+19, WMW+19]. Figure 4.1 depicts the overall
scheme of the neural target speech extraction. The input of the neural network for this task
is the mixed signal of multiple speakers 𝑦(𝑡), and the network is additionally informed by
a speaker embedding 𝜆𝑖 extracted from the enrollment signal 𝑒𝑖(𝑡). The network outputs
the estimated target speech signal 𝑠𝑖(𝑡), which is (during the training stage) compared with
the true target speech signal 𝑠𝑖(𝑡) using a loss function ℒ(𝑠𝑖(𝑡), 𝑠𝑖(𝑡)).

There are several aspects to consider when designing the target speech extraction
method, namely:

1. Speaker embedding. How to compactly represent the speaker information from the
enrollment signal?

2. Informing the neural network. How to use the enrollment speaker embedding to alter
the behavior of the neural network to extract the target speech?

3. Input and output domain. In which domain to represent the input and output of the
neural network?

4. Loss function. How to compare the estimated and the true target speech signal?

5. Neural network architecture. Which neural network building blocks to use to form
the architecture?
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Figure 4.1: The overall scheme of the neural target speech extraction and different aspects
to consider when designing the method.

We explain the different aspects and possible choices in the following sections.

4.2 Speaker embeddings
The role of speaker embedding is to accurately and compactly represent the information
about the speaker in a speech signal. Speaker embeddings are heavily researched for the
task of speaker verification. In neural target speech extraction, speaker embeddings are
used to represent the target speaker using the information from the enrollment signal 𝑒𝑖(𝑡).
The speaker embedding is then used to inform the neural network, guiding it towards the
extraction of the target speaker. In this section, we describe several most popular choices of
speaker embedding, namely i-vector, neural network-based speaker embedding, and jointly
learned embedding.

I-vectors

I-vectors were for a long time considered state-of-the-art in speaker verification [MPG+20].
I-vector [DKD+10] is a fixed-length vector representing a speech utterance. The idea is to
model the features extracted from the utterance using a Gaussian mixture model (GMM)
with parameters constrained to a subspace. The subspace is defined by the Universal back-
ground model (UBM), i.e. GMM trained on a large amount of data from many speakers,
and a total variability subspace matrix.

Formally, we assume the following model [Plc14]:

s = u + Tw, (4.1)

where s is the mean super-vector of the utterance GMM, u is the mean super-vector of the
UBM, and T is a low-rank rectangular matrix representing the bases spanning the subspace.
Both the matrix T and the UBM are pre-trained on a large amount of data. Note that no
speaker labels are used in the training, each utterance is considered as a different speaker.
Vector w is a random variable with standard normal prior distribution. The posterior
distribution of w given the sequence of input features 𝒳 is a Gaussian distribution 𝑝(w|𝒳 ).
The MAP point estimate of w (the mean of 𝑝(w|𝒳 )) is what is called i-vector.
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Figure 4.2: Scheme of x-vector extractor. x1, . . . ,x𝑡 denote the sequence of input fea-
tures, commonly MFCCs. X-vector embeddings are obtained from any layer after statistics
pooling. Image from [Sny20].

An important characteristic of i-vectors is that they capture not only the speaker vari-
ability, but also the channel variability. This may be desired in some applications of target
speech extraction, where we obtain the enrollment utterance in the same conditions as the
mixed speech. In such a situation, the information about the channel may also help to dis-
tinguish the speakers. I-vectors have been used in several works of target speech extraction
[ZLD21, XRCL19b, ŽDK+19] and are also very commonly used for speaker adaptation in
acoustic modeling [KBM+11, SSNP13].

Neural network based embeddings: x-vectors, d-vectors

The current state-of-the-art systems in speaker verification are dominantly using neural
network-based speaker embeddings [MPG+20]. The most commonly used NN-based speaker
embeddings are x-vectors [SGRS+18], which have been also used for target speech extraction
[LZY19]. In many target speech extraction works, d-vectors [WWPM18] are also used
[WMW+19, MCHC20, ZHZ20].

A common idea is to train a neural network for the task of speaker classification. Such a
neural network usually contains a “pooling layer” which converts a sequence of features into
one vector. The pooling layer can be done, for example, by simple computation of mean and
standard deviation [SGRS+18] or by applying long short-term memory networks (LSTM)
[WWPM18] or attention [OKS18] layer. The pooled vector is then either classified into
speaker classes [SGRS+18] or trained by other loss functions to be speaker discriminative
[WWPM18]. For extraction of the embedding, the final layers are discarded, and speaker
embedding is obtained as a vector of activations in one of the last layers in the network.
The basic scheme of x-vector extractor is shown in Figure 4.2.

Since the neural network is trained for speaker classification or a related task, the embed-
dings are usually highly discriminative and most other variability (like channel or content)
is discarded. Another advantage of this class of embeddings is that the models are usually
trained on large corpora with many speakers, noises, and other variations, which makes the
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embedding extractors very robust. Such trained models are often publicly available, and
the embeddings can be thus readily used for the task of target speech extraction.

Jointly learned embeddings

The neural network-based embeddings, such as x-vectors, are designed and trained for
the task of speaker classification. Although this causes them to contain speaker informa-
tion, it is questionable whether the same representation is optimal for the task of target
speech extraction. A way to obtain embeddings that are closer to optimal is to train
the neural embeddings extractor together with the neural network performing the target
speech extraction. This has been proposed in [VWŽ+16] for speaker adaptation, in our
paper [ŽDK+17a] for target speech extraction and used in numerous other publications
(e.g. [XCY+19a, XRCL19a, HLZ20]).

The neural network performing the speaker embedding extraction takes the enrollment
utterance 𝑒𝑖(𝑡) as the input and, in most cases, contains a pooling layer converting the
frame-level features into one vector, similar to the embedding extractors discussed above.
The neural network is trained together with the main neural network using a common
objective function. Possibly, a second objective function can be used on the embeddings to
further improve their speaker discriminability.

As mentioned above, the advantage of such embeddings is that they are trained directly
for the task of target speech extraction and thus contain the information important for this
task. On the other hand, the pre-trained embedding extractors are often trained on larger
corpora and may be more robust. A possible middle ground could be to take a pre-trained
embeddings extractor and fine-tune it jointly with the target speech extraction task. This
has, however, to our knowledge, not been done yet.

4.3 Informing the neural network
Given an embedding extracted from the enrollment utterance, the neural network for target
speech extraction should extract the target speaker. There are different ways in which
the embedding can be passed to and utilized by the network. Here, we describe several
most popular ways, namely concatenation-based, multiplication-based, factorized layer, and
attention-based schemes. The schemes are depicted in Figures 4.3, 4.4 and 4.5.

Concatenation-based

Possibly the simplest way to pass the embedding to the neural network is to concatenate it
to the input of one of the layers (the adaptation layer). We can express the neural network
processing as

I𝑘 =

⎧⎨⎩ 𝜎𝑘(𝐿𝑘([I𝑘−1,𝜆];𝜓𝑘)) for 𝑘 = 𝑞,

𝜎𝑘(𝐿𝑘(I𝑘−1;𝜓𝑘)) for 𝑘 ̸= 𝑞,
(4.2)

where I𝑘 is the input to the 𝑘th layer, 𝑞 is the index of the adaptation layer, 𝐿𝑘(I𝑘−1, 𝜓𝑘) is
the transformation computed by the 𝑘th layer parameterized by 𝜓𝑘, and 𝜎𝑘 is an activation
function. For example, with fully connected layers, 𝜓 = {W,b} and 𝐿(I, 𝜓) = WI + b,
where W is a weight matrix and b is a bias vector. In the case of an affine layer, the con-
catenation is equivalent to adaptation of the biases of the layer 𝑞 (since 𝐿𝑞([I𝑞−1,𝜆];𝜓𝑞) =
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𝜎𝑞

I𝑞−1 𝜆

𝐿𝑞([I𝑞−1,𝜆];𝜓𝑞)

I𝑞

(a) Concatenation.

· · ·

∑︀𝜎𝑞

I𝑞−1 𝜆

I𝑞

𝐿𝑞(I𝑞−1;𝜓
(𝑓)
𝑞 )

(b) Factorized layer.

Figure 4.3: Two options for informing the neural network about the target speaker: con-
catenation and factorized layer. Blue color denotes hidden values in the main network, red
values denote the speaker embedding.

W𝑞[I𝑞−1,𝜆] +b = W
(𝐼)
𝑞 I𝑞−1 +W

(𝜆)
𝑞 𝜆+b and W

(𝜆)
𝑞 𝜆 is not dependent on the input). The

processing is depicted in Figure 4.3a.
The concatenation is very simple and has been heavily used for the task of speaker

adaptation in acoustic modeling. However, it may be a too weak scheme for target speech
extraction, as it modifies only the bias parameters. This has been shown in our earlier
work [ŽDK+19], where concatenation performed much worse than other methods. Different
works however applied this scheme successfully (e.g. [WMW+19, LZY19, XRCL19a]). The
suitability of the scheme may be thus dependent on the particular data and architecture.

Factorized layer

One option to adapt larger number of parameters in the network and so to influence its
behavior stronger, is to use factorized layer. This method was first proposed for speaker
adaptation in acoustic modeling [DKHN15, WG15] and later applied to the task of target
speech extraction [ŽDK+17b, HFFHU19]. The idea is to replace one layer in the network
with a set of sub-layers. The output of such factorized layer is then a weighted combination
of outputs of all sub-layers. Using different weights in the combination causes the network
to extract different speakers. Following the previous notation and denoting the index of the
factorized layer 𝑞 and the number of sub-layers as 𝐹 , the network processing is defined as

I𝑘 =

⎧⎪⎨⎪⎩ 𝜎𝑘

(︁∑︀𝐹−1
𝑓=0 𝜆𝑓𝐿𝑘(I𝑘−1;𝜓

(𝑓)
𝑘 )

)︁
for 𝑘 = 𝑞,

𝜎𝑘(𝐿𝑘(I𝑘−1;𝜓𝑘)) for 𝑘 ̸= 𝑞,
(4.3)

where 𝜓(𝑓)
𝑘 are the parameters of the 𝑓th sublayer. The processing is depicted in Figure 4.3b.

If the layer 𝐿𝑞 is an affine transform, the weighted combination can equivalently be done
directly on the parameters of the layer. We can then see the factorized layer as defining
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· · ·

𝜎𝑞

I𝑞−1 𝜆

𝐿𝑞(I𝑞−1;𝜓𝑞)

I𝑞

(a) Multiplication.

· · ·
+ + +

𝜎𝑞

I𝑞−1 𝜆

𝐿𝑞(I𝑞−1;𝜓𝑞)

I𝑞

(b) Multiplication-addition.

Figure 4.4: Two options for informing the neural network about the target speaker: multipli-
cation and multiplication-addition. Blue color denotes hidden values in the main network,
red values denote the speaker embedding.

a subspace in the parameter space, where different coordinates in the subspace correspond
to different target speakers.

The factorized layer method enables a strong influence of the speaker embedding on
the behavior of the network. Previous works have reported it to perform well in target
speech extraction [ŽDK+19]. However, this method is quite computationally and memory
expensive due to the large number of sub-layers.

Multiplication-based

An alternative approach was introduced for speaker adaptation [SR14] and later adopted
for target speech extraction [ŽDK+19, DŽO+19, HXS+20] where the outputs of a layer are
element-wise multiplied with a speaker embedding. Similar to factorized layer method, this
has a strong effect on the behavior of the neural network. However, it is computationally
simpler. In this case, the processing performed by the neural network is:

I𝑘 =

⎧⎨⎩ 𝜎𝑘(𝜆⊙ 𝐿𝑘(I𝑘−1;𝜓𝑘)) for 𝑘 = 𝑞,

𝜎𝑘(𝐿𝑘(I𝑘−1;𝜓𝑘)) for 𝑘 ̸= 𝑞,
(4.4)

where ⊙ is element-wise multiplication. A similar conditioning scheme called Feature-wise
linear modulation (FiLM) was also proposed for visual reasoning [PSDV+18]. FiLM uses a
bias vector on top of the multiplication.

I𝑘 =

⎧⎪⎨⎪⎩ 𝜎𝑘

(︁
𝜆(𝑚𝑢𝑙) ⊙ 𝐿𝑘(I𝑘−1;𝜓𝑘) + 𝜆(𝑎𝑑𝑑)

)︁
for 𝑘 = 𝑞,

𝜎𝑘(𝐿𝑘(I𝑘−1;𝜓𝑘)) for 𝑘 ̸= 𝑞.
(4.5)

Both options are depicted in Figure 4.4.
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Attention
Eq.(4.8) × Multiply/

concat
I𝑞

I𝑞−1

Λ 𝜆(𝑎𝑡𝑡)

Eq. (4.7)
watt

Figure 4.5: Attention-based scheme for informing the neural network. Blue color de-
notes hidden values in the main network, red values denote the speaker embedding.
Multiply/concat block denotes multiplication or concatenation, as shown in Figures 4.4
and 4.3a.

Multiplication-based method combine strength of the adaptation with simplicity and
were shown by some works [ŽDK+19] to be a good choice for target speech extraction.

Attention-based

All the previous methods for informing the neural network apply the same speaker embed-
ding at each time frame of the mixed speech. However, depending on the content of the
mixed speech in the current time frame, different information from the enrollment utter-
ance might be more important. For example, if the speakers in the mixed speech pronounce
vowels in the current time, we could focus more on parts of the enrollment utterance where
the target speaker pronounces vowels too. This might be achieved by using an attention
mechanism, as was proposed in [XCY+19b].

The processing with attention-mechanism is performed as follows:

I𝑘 =

⎧⎨⎩ 𝜎𝑘(𝜆(𝑎𝑡𝑡) ⊙ 𝐿𝑘(I𝑘−1;𝜓𝑘)) for 𝑘 = 𝑞,

𝜎𝑘(𝐿𝑘(I𝑘−1;𝜓𝑘)) for 𝑘 ̸= 𝑞.
(4.6)

with

𝜆(𝑎𝑡𝑡) = wT
attΛ (4.7)

watt = softmax(Λ𝐿𝑘(I𝑘−1, 𝜓𝑘)T). (4.8)

In this case, the embedding Λ is dynamic embedding, Λ ∈ R𝑁𝑒×𝐷, where 𝑁𝑒 is the number
of time frames in the enrollment utterance and 𝐷 is the dimension of the embedding. In
Equation 4.8, the similarity between the dynamic speaker embeddings and the represen-
tations of the mixed speech is computed. This leads to attention weight watt ∈ R𝑁𝑒×𝑁 ,
where 𝑁 is the number of frames in the mixed speech. These weights are then applied
to the dynamic speaker embedding Λ to create the final weighted dynamic speaker em-
bedding 𝜆(𝑎𝑡𝑡) ∈ R𝑁×𝐷. This is depicted in Figure 4.5. Due to the attention weights,
the final speaker embedding contains more information from the parts of the enrollment
utterance which are similar to the current mixed representations. In Equation 4.6, we use
the multiplication scheme to apply the embedding. This could however be also replaced
with concatenation or factorized layer method.

Note that the attention-based mechanism blends the stages of embedding extraction
and informing the neural network. As such, it slightly violates the overall scheme that
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we introduced in Section 4.1, where the embedding extraction and application are strictly
separated. Due to this, the attention scheme is impossible to combine with i-vector or x-
vector embeddings, which do not provide the dynamic information necessary for attention.

4.4 Input and output domain
There are different representations of the speech signal that can be used on the inputs and
at the output of the neural network performing target speech extraction. Here, we describe
the two most commonly used, namely time-domain and frequency-domain representations.
In the field of target speech extraction, higher-level features (such as Mel frequency cepstral
coefficients) are rarely seen, because of their low frequency resolution. We thus omit such
types of features in this section.

Frequency-domain

A natural representation when analyzing speech signals is the frequency domain as speech is
both produced by a periodic process in the vocal tract and frequency-analyzed by the human
ear. The early works in both speech separation and target speech extraction often used
short-time Fourier transform (STFT) to represent the mixed speech signal. The input of the
network is then usually the magnitude of the mixed-signal |𝑌 (𝑛, 𝑓)| or the log-magnitude
log |𝑌 (𝑛, 𝑓)|. The output can then be either in the same domain as the input, or very
commonly the neural network predicts a mask 𝑀(𝑛, 𝑓). The mask contains values between
0 and 1 and the magnitude STFT of the final extracted speech can be then obtained by
element-wise multiplying the mask with the magnitude mixture 𝑀(𝑛, 𝑓) · |𝑌 (𝑛, 𝑓)|.

In all of these cases, the neural network does not predict the phase of the output.
Instead, the phase of the mixture is usually used to reconstruct the extracted signal. This
is not optimal and some works have shown that using complex representation instead of
working with magnitude only can lead to better performance [WWW16].

Time-domain

In 2018, the publication of ConvTasnet [LM19] (Section 2.5.4) for speech separation has
shown that using the time-domain representation of speech directly can significantly im-
prove the performance. This advance was later transferred also into target speech extraction
works [XRCL19b, DOŽ+20, ZGS20]. In these, the first layer of the neural network is the
so-called encoder, which contains a single convolutional layer. The convolutional layer acts
on a time-domain signal and transforms it into an encoded representation S(𝑒𝑛𝑐) ∈ R𝑁×𝐾 ,
where 𝐾 is the number of filters in the convolution and 𝑁 is the number of resulting frames,
determined by the window shift in the convolution. Such layer can in theory implement
Fourier transform and thus the representations can be equivalent to STFT. In this case, the
parameters are however learned during the training of the network and can thus be opti-
mized for the task. The decoder on the other hand reconstructs the output extracted signal
from the estimated encoded representations and is usually implemented by a transposed
convolutional layer with parameters also learned during the training.

As analyzed in [HJB+20], the performance improvement when transitioning from frequency-
domain approaches to time-domain ConvTasnet comes from several sources. First, the
network can use and predict phase information, which has been discarded in approaches
working with magnitude-STFT. Second, the time-domain loss function used in ConvTasnet
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is a closer match with common evaluation metrics and as such can lead to better results in
these metrics1. Finally, it has been observed that the fact, that the window size used in the
ConvTasnet encoder is much smaller than typical STFT window sizes, has a big influence
on the results.

4.5 Loss function
Training of the neural network for target speech extraction requires computing a loss func-
tion that measures the discrepancy between the neural network prediction and ground truth
target speaker signal. The choice of the loss function is very connected with the domain
that the neural network works with. In this section, we summarize common loss functions
for both frequency and time domains.

Loss function in frequency domain

When the neural network works with frequency-domain signals, there are two options of
what it can predict: either the time-frequency mask 𝑀(𝑛, 𝑓) or directly the frequency-
domain target speech, most commonly in magnitude STFT |𝑆(𝑛, 𝑓)|. In the case of pre-
dicting time-frequency masks, the loss function can be computed either directly from the
estimated mask, or masked signal 𝑀(𝑛, 𝑓) · 𝑌 (𝑛, 𝑓).

First, we describe the loss functions acting directly on the predicted mask. The loss
function quantifies the discrepancy between the estimated mask and an “ideal mask”. There
are several options of how the ideal mask can be defined [EHWLR15]:

• Ideal binary mask (IBM) is defined as

𝑀
(𝑖𝑑𝑒𝑎𝑙)
𝑖 (𝑛, 𝑓) = 𝛿

⎛⎝⃒⃒⃒⃒
⃒⃒∑︁
𝑗 ̸=𝑖

𝑆𝑗(𝑛, 𝑓) +𝑁(𝑛, 𝑓)

⃒⃒⃒⃒
⃒⃒ < |𝑆𝑖(𝑛, 𝑓)|

⎞⎠ , (4.9)

i.e. it is 1 in T-F bins with dominant target source and 0 in T-F bins with dominant
interference. Such mask maximizes the signal-to-noise ratio (SNR) of the masked
mixture 𝑀(𝑛, 𝑓) · 𝑌 (𝑛, 𝑓) under the constraint of binary mask 𝑀(𝑛, 𝑓) ∈ {0, 1}.

• Ideal amplitude mask (IAM) is defined as

𝑀
(𝑖𝑑𝑒𝑎𝑙)
𝑖 (𝑛, 𝑓) =

|𝑆𝑖(𝑛, 𝑓)|
|𝑌 (𝑛, 𝑓)| . (4.10)

This mask leads to maximum SNR under the assumption of equal phases of the target
source and the mixture ∠𝑆𝑖(𝑛, 𝑓) = ∠𝑌 (𝑛, 𝑓). Applying the ideal amplitude mask
also leads to perfect reconstruction of the magnitude of the source.

• Ideal phase-sensitive mask (IPSM) is defined as

𝑀
(𝑖𝑑𝑒𝑎𝑙)
𝑖 (𝑛, 𝑓) =

|𝑆𝑖(𝑛, 𝑓)|
|𝑌 (𝑛, 𝑓)| cos(∠𝑌 (𝑛, 𝑓) − ∠𝑆𝑖(𝑛, 𝑓)). (4.11)

This is an optimal mask in terms of SNR under the constraint that the mask is
real-valued (as opposed to a complex-valued mask).

1Such improvement would not be very meaningful by itself if it does not transfer to other evaluation
metrics or down-stream performance. It however has been shown that the match of the loss function and
the metric is not the only source of improvement in ConvTasnet.
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The above list shows the most popular choices of ideal masks, however, it is not exhaustive.
In the literature, other definitions of ideal masks can be found, such as ideal ratio mask,
Wiener-like mask, and ideal complex mask [EHWLR15].

Using one of the definitions of the ideal mask, the loss function can be computed as the
mean-square error between the estimated and the ideal mask

ℒ(M̂𝑖,M
(𝑖𝑑𝑒𝑎𝑙)
𝑖 ) =

∑︁
𝑛,𝑓

|�̂�𝑖(𝑛, 𝑓) −𝑀
(𝑖𝑑𝑒𝑎𝑙)
𝑖 (𝑛, 𝑓)|2. (4.12)

In the case of ideal binary mask, the task can be also posed as a binary classification
problem and binary cross-entropy (CE) can be used

ℒ(M̂𝑖,M
(𝑖𝑑𝑒𝑎𝑙)
𝑖 ) =

∑︁
𝑛,𝑓

𝑀
(𝑖𝑑𝑒𝑎𝑙)
𝑖 (𝑛, 𝑓) log �̂�𝑖(𝑛, 𝑓) + (1 −𝑀

(𝑖𝑑𝑒𝑎𝑙)
𝑖 (𝑛, 𝑓)) log(1 − �̂�𝑖(𝑛, 𝑓)).

(4.13)
The second category of loss functions in the frequency domain are loss functions com-

puted directly from the predicted signal in the frequency domain, most commonly the
magnitude STFT |𝑆𝑖(𝑛, 𝑓)|. Note that these loss functions can be applied not only when
the network predicts the magnitude directly, but also when the predicted value is a mask,
by setting 𝑆𝑖(𝑛, 𝑓) = �̂�𝑖(𝑛, 𝑓) · |𝑌 (𝑛, 𝑓)|. The most popular loss function, in this case, is
mean-square error (MSE) on the magnitude

ℒ(|Ŝ𝑖,S𝑖|) =
∑︁
𝑛,𝑓

|𝑆𝑖(𝑛, 𝑓) − 𝑆𝑖(𝑛, 𝑓)|2 (4.14)

or its phase-sensitive counterpart (PS-MSE)

ℒ(|Ŝ𝑖,S𝑖|) =
∑︁
𝑛,𝑓

|𝑆𝑖(𝑛, 𝑓) − 𝑆𝑖(𝑛, 𝑓) cos(∠𝑌 (𝑛, 𝑓) − ∠𝑆𝑖(𝑛, 𝑓)|2. (4.15)

Loss function in time domain

The rise of neural networks predicting signals directly in the time-domain [LM19] got re-
flected also in the loss functions, that are now often computed on the time-domain signals.
It is noteworthy that time-domain loss functions can be applied also when the neural net-
work predicts frequency-domain signal (or mask) by using differentiable inverse STFT on
the output during the training. Vice-versa, time-domain networks can also be optimized
with frequency-domain loss functions by the usage of differentiable STFT. In the literature,
it is however much more common to match the domain of the output and the loss function.

The most popular loss function in the time-domain is scale-invariant signal to distor-
tion ratio (SI-SDR), which exactly matches the evaluation metric defined in Section 2.3,
Equation (2.5):

SI-SDR(𝑠(𝑡), 𝑠(𝑡)) = 10 log10

∑︀
𝑡 |𝛼𝑠(𝑡)|2∑︀

𝑡 |𝛼𝑠(𝑡) − 𝑠(𝑡)|2

with 𝛼 = argmin
𝛼

∑︁
𝑡

|𝛼𝑠(𝑡) − 𝑠(𝑡)|2.
(2.5 revisited)

Some works also propose using simple signal-to-noise ratio (SNR)

SNR(𝑠(𝑡), 𝑠(𝑡)) =

∑︀
𝑡 |𝑠(𝑡)|2∑︀

𝑡 |𝑠(𝑡) − 𝑠(𝑡)|2 , (4.16)

suitable when the scale of the estimated signal is of interest.
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Table 4.1: Selected approaches for target speech extraction and their classification into
categories.

Approach Speaker Informing I/O Loss NN
embedding method domain function architecture

SpeakerBeam [ŽDK+17b] posterior factorized frequency mask CE BLSTM
[ŽDK+17a] joint factorized frequency mask CE BLSTM
[ŽDK+19] joint multiplication frequency PS-MSE BLSTM
[DOŽ+20] joint multiplication time SI-SDR ConvTasnet

VoiceFilter [WMW+19] d-vector concatenation frequency MSE CNN+LSTM
Speaker Inventory [XCY+19a] joint attention frequency MSE BLSTM
Deep extractor [WCS+18] joint concatenation frequency MSE LSTM

4.6 Neural network architecture
Target speech extraction models can easily re-use the advances in neural network archi-
tecture for speech separation introduced in Section 2.5. As such, in earlier works, bidirec-
tional LSTM (BLSTM) or LSTM [ŽDK+19, XCY+19a, WCS+18] architectures were widely
used. More recently, ConvTasnet architecture became a popular choice [XRCL19b, ZHZ20,
GXW+20] (Section 2.5.4) and some works also employ dual-path RNN [HXS+20, DMS+21]
(Section 2.5.5).

The additional concern in target speech extraction is the architecture of the auxiliary
network in the case of jointly learned embeddings and the position where the network is
informed about the target speaker. For the auxiliary network, mostly very simple archi-
tectures have been used. In earlier works, the auxiliary network used either a few fully-
connected layers with a non-linearity or one recurrent layer. With the arrival of ConvTasnet,
time-dilated convolutional layers have also been commonly applied. For the position where
information about the target speaker is brought in, earlier layers in the network are usually
preferred. In BLSTM models, the position was usually chosen to be the second layer of the
model. In the case of ConvTasnet, the additional information is usually applied after the
first repetition of the convolutional blocks. Some works apply the information at multiple
positions, for instance at every layer of the network.

4.7 Existing approaches
After our publication [ŽDK+17b], many works devised approaches tackling the problem of
target speech extraction. In this section, we introduce several representative ones. First, we
cover our approach “SpeakerBeam” presented in [ŽDK+17b, ŽDK+17a, ŽDK+19, DOŽ+20].
Next, we introduce VoiceFilter, Speaker inventory, and Deep extractor. In Table 4.1, we de-
scribe these approaches in terms of the categories laid out earlier in this chapter. Note that
each of the approaches has a slightly different focus (e.g. ASR performance, or TSE per-
formance with very short enrollment). For this reason, the published results were obtained
on different datasets and are thus very difficult to compare.
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4.7.1 SpeakerBeam

SpeakerBeam was first introduced in [ŽDK+17b]. Although it was applied to multi-channel
signals, the core of the method is applicable also to the single-channel scenario. The work
introduced the idea of using speaker embedding to inform the neural network and extract the
target speaker’s speech. This was compared to a strategy where a separate neural network
or a separate layer is trained for each target speaker [DTX+14, ZW16]. Such schemes can
work only for a closed set of speakers. The speaker embedding used in [ŽDK+17b] was a
vector of posteriors obtained by neural network classification of the enrollment utterance
into classes formed by speakers from the training set. This is resembling methods using
x-vectors or d-vectors, which are also obtained using external speaker classifiers.

In [ŽDK+17a], SpeakerBeam was extended with jointly learned speaker embeddings,
which were also compared to i-vectors. The work also presented automatic speech recog-
nition of the extracted signals. This was later extended in [ŽDK+18] to joint training
with an ASR system. In [ŽDK+19], the previous work was summarized and a detailed
comparison with speech separation methods was provided. This work also applied a multi-
plication scheme for informing the neural network in addition to factorized layer. Finally,
in [DOŽ+20], SpeakerBeam was extended to time-domain using ConvTasnet architecture.

As stated in Section 1.2, most experiments in this thesis follow the work done in the
SpeakerBeam papers. Moreover, we test on more recent datasets and provide a more
detailed analysis of different aspects of the method.

4.7.2 VoiceFilter

VoiceFilter [WMW+19] is an approach similar to SpeakerBeam with differences in the used
architecture, speaker embedding, and way of informing the neural network. It is one of
the first TSE works successfully applying concatenation to inform the neural network. The
evaluation in [WMW+19] considers both TSE performance and ASR performance. The
experiments show that VoiceFilter is able not only to improve the ASR performance in
multi-speaker cases, but also to preserve the good performance when the input is single-
speaker. This is an important property for using the model in practice. One interesting
aspect of the experiment design in [WMW+19] is that the mean SDR of the original mixtures
is 10.1 dB, i.e. the target speaker is often dominant.

The VoiceFilter was later extended in several subsequent works [WMS+20, RWL+21b,
RWL+21a]. In [WMS+20], the authors focus on improving streaming speech recognition,
which requires designing the model to have minimal impact on CPU, memory, battery, and
latency. In [RWL+21b], VoiceFilter was used as a front-end for speaker verification, as a
part of streaming key phrase detection. In [RWL+21a], VoiceFilter was extended to handle
multi-speaker enrollment, similarly to the speaker inventory approach introduced in the
next section.

4.7.3 Speaker inventory

The Speaker inventory approach was applied to speech separation [WCX+19] but also
to target speech extraction [XCY+19a] problem. In contrast with conventional TSE, the
speaker inventory approach does not inform the network only about the target speaker, but
also about the potential interfering ones. This could be used for example in the scenario of
meeting transcription, where the list of possible speakers is available. The approach uses

40



attention to identify the interfering speakers actually present in the mixture among the
provided speaker inventory.

The results presented in [XCY+19a] clearly show that having the enrollment of the
interfering speaker helps the network to better extract the target speaker’s speech. In
case the information about the interfering speaker is not precise, i.e. inventory of possible
interfering speakers is provided, the gain is smaller but still significant.

4.7.4 Deep extractor

The Deep extractor approach [WCS+18] takes a very different approach for TSE which
builds upon Deep Attractor networks (Section 2.5.2). The neural network in the Deep
extractor outputs a mask corresponding to the target speaker in three steps:

1. The Neural network computes one embedding for each time-frequency bin. The em-
bedding should encode the information about the speaker which is dominant in the
T-F bin. This step is the same as in Deep clustering and Deep attractor approaches.

2. The embedding space is transformed by the second part of the neural network, which
is informed by the speaker embedding extracted from the enrollment utterance. This
should transform the embeddings in such a way, that the bins dominated by the target
speaker are moved to a particular part of the embedding space.

3. The mask is computed based on the similarity of the embeddings to a “canonical
extractor” embedding. The position of the canonical extractor is determined based
on the positions of the target speaker embeddings in the training data.

The evaluation of Deep Extraction focused on the use-case of spoken commands. Experi-
ments in [WCS+18] showed that the approach is very effective with very short enrollment
utterances (0.9 seconds on average).

4.8 Experiments

4.8.1 Datasets

For experiments in this chapter, we make use of three datasets: WSJ0mix [HCLRW16],
WHAM [WAF+19] and WHAMr [MWMLR20]. All three datasets were created for experi-
ments with speech separation and have been widely used for experiments in the literature.
We chose these datasets to cover all clean, noisy, and noisy-reverberant conditions. Further,
these three datasets are based on the same set of mixed utterances and are therefore useful
to isolate the effects of noise and reverberation on the performance. For our experiments
with target speech extraction, we extend the datasets by assigning each test mixture an
enrollment utterance from the same dataset. The enrollment utterance is always chosen
to be a different from the utterance in the mixture. In all three datasets, the mixtures
are artificially created from single-speaker data. This is a common choice in the literature
because it enables supervised training and direct evaluation with clean references.

WSJ0mix

The WSJ0-2mix [HCLRW16] contains mixtures of two speakers at signal-to-noise ratios
between 0 dB and 5 dB. It consists of a training set, a validation set, and an evaluation set
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of 30, 10, and 5 hours, respectively. For training and validation sets, the mixed utterances
were randomly selected from the si_tr_s, while for evaluation set, the utterances were
taken from si_dt_05 and si_et_05 parts of Wall Street Journal (WSJ0) [PB92]. In total,
the training set contains 20000 mixtures from 101 speakers, the cross-validation set contains
5000 mixtures from the same 101 speakers and the evaluation set contains 3000 utterances
from 18 speakers (unseen in the training). The WSJ0-3mix [IRC+16] contains three-speaker
mixtures analogous to WSJ0-2mix in terms of the amounts of data, numbers of speakers,
and WSJ0 sets from which the utterances are selected. All data are at 8 kHz sampling rate
for consistency with previous studies. We use “min” versions of the datasets, where the
mixture is cut to the length of the shortest utterance (for consistency with previous work).
For generating the WSJ0-4mix dataset with 4 overlapping speakers, we used lists provided
by [NAW20]2. In addition, we use our own dataset WSJ0-2mix-long. With this dataset,
we aim to test the performance of the methods on longer mixtures. We created the dataset
by concatenating several utterances for both speakers in the mixture. We created several
versions of the dataset with different lengths, by concatenating 2 to 5 utterances for each
speaker. The utterances were first used in their full length, but the final mixture was cut
to the length of the shorter one of the concatenated signals.

WHAM

WSJ0 Hipster Ambient Mixtures (WHAM) [WAF+19] is a dataset based on WSJ0-2mix,
extended by adding background noises. It was created to help move the field of speech
separation towards more realistic scenarios. The added background noises were recorded
in urban environments such as coffee shops, restaurants, bars, office buildings, or parks
in the San Francisco Bay Area. In total, there were 44 different locations, which were
then assigned to training, validation, or test split. The noises were recorded with two
microphones at 15 cm to 17 cm distance. During post-processing, all noise recordings with
intelligible speech were removed. The original noise recordings have 48 kHz sampling rate,
but were down-sampled to 8 kHz and 16 kHz. In this work, we use the 8 kHz version, as in
most of the previous literature.

WHAMr

WHAMr [MWMLR20] dataset augments WHAM by adding reverberation. It was created
to advance the research on speech separation on reverberant speech, as it is more common
in real-world scenarios than anechoic speech. The room impulse responses convolved with
the original data were created by pyroomacoustics3 [SBD18]. The reverberation times
and room sizes were randomly sampled in ranges approximating domestic and classroom
environments. This was chosen to be similar to the reverberation condition in WHAM
noises, which were recorded spatialized. The dataset contains several versions with different
levels of distortion, i.e. anechoic clean, anechoic noisy, reverberant clean, reverberant noisy.
In this work, we use the most difficult reverberant noisy condition.

4.8.2 Speech separation benchmarks

We first overview the published results of several representative speech separation ap-
proaches to put our baseline into context. Table 4.2 shows the results on the three mentioned

2WSJ0-4mix lists https://enk100.github.io/speaker_separation
3pyroomacoustics https://github.com/LCAV/pyroomacoustics
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datasets. Note that many of the published papers report results on WSJ0-2mix only. Also,
the literature is often inconsistent in terms of the evaluation metric. Some works report SI-
SDR, while others SDR (Section 2.3). However, results computed using these two metrics
are usually very similar and roughly comparable.

In this work, we use ConvTasnet trained for speech separation as the baseline for our
target speech extraction experiments, that are done using the ConvTasnet architecture,
too. We use the implementation of ConvTasnet provided in Asteroid4 [PCC+20] toolkit,
with our own hyperparameter tuning. This implementation provides slightly better results
than the ones originally published in ConvTasnet paper [LM19], as reported in Table 4.2
as ConvTasnet (here). We have chosen ConvTasnet for our experiments because of its
available implementation and faster run-time than other methods. Our methods are fully
compatible with architectures such as DP-RNN [LCY20] and Mulcat [NAW20] and could
be applied with these for further improvement of the overall results.

4.8.3 Configuration

The configuration described in this section applies to all experiments in this chapter unless
specified otherwise (e.g. when we explicitly explore the effect of certain setting).

ConvTasnet

For both speech separation and target speech extraction, ConvTasnet model was used
(Sections 2.5.4 and 4.6). The choice of hyper-parameters follows the setting used in Asteroid
toolkit, specified here in Table 4.3. We train the network for 200 epochs, with batch size 6
and SI-SDR loss. As the input of the network, a randomly selected 3-second chunk of each
mixture is used. We use Adam optimizer [KB14] with learning rate 0.001. The learning
rate is halved if the validation loss does not improve for 10 consecutive epochs.

Target speech extraction

The default setting of the target speech extraction experiments is multiplication-based
method to inform the network (Section 4.3) and jointly learned speaker embeddings (Sec-
tion 4.2). The speaker embedding is used to inform the main network after the first repeat
of ConvTasnet (i.e. after 8 convolutional blocks). The auxiliary network learning the
speaker embeddings consists of 1 repeat of ConvTasnet with other hyper-parameters iden-
tical to the main network (Table 4.3). The encoder parameters are not shared between
main and auxiliary network (from our experience, this does not have a big effect). In case
of using external speaker embeddings (i-vectors or x-vectors), we transform them by two
fully-connected layers with Leaky ReLU activation after the first one.

During training, we use 0.5 s randomly chosen segments of the enrollment utterance as
input of the auxiliary network. Analogously, the x-vectors are extracted from 0.5 s segments
during training. For i-vectors, we chose to extract them from the full utterances, as this
led to better performance.

For experiments with factorized layer, we chose 30 sub-layers. The dimension of the
speaker embedding (output of auxiliary network) depends on the used method to inform
the neural network. This is 128 in case of multiplication and attention-multiplication (cor-
responding to the number of channels in bottleneck), 30 in case of factorized layer (corre-

4Asteroid toolkit https://github.com/asteroid-team/asteroid

43

https://github.com/asteroid-team/asteroid


Ta
bl

e
4.

2:
Se

le
ct

ed
sp

ee
ch

se
pa

ra
tio

n
re

su
lts

in
th

e
lit

er
at

ur
e.

C
on

vT
as

ne
t

(h
er

e)
de

no
te

s
ou

r
ve

rs
io

n
of

C
on

vT
as

ne
t

us
ed

as
a

ba
se

lin
e

in
ou

r
wo

rk
.

∆
de

no
te

s
im

pr
ov

em
en

t
in

th
e

re
sp

ec
tiv

e
m

et
ric

ov
er

th
e

or
ig

in
al

m
ix

tu
re

.

W
SJ

0-
2m

ix
W

H
A

M
W

H
A

M
r

∆
SD

R
∆

SI
-S

D
R

∆
SD

R
∆

SI
-S

D
R

∆
SD

R
∆

SI
-S

D
R

D
C

10
.8

[IR
C
+

16
]

-
-

-
-

-
PI

T
+

D
C

11
.5

[W
R

H
18

]
-

9.
9

[W
A

F+
19

]
-

-
C

on
vT

as
ne

t
15

.6
[L

M
19

]
15

.3
[L

M
19

]
-

-
-

8.
3

[M
W

M
LR

20
]

D
P-

R
N

N
19

.0
[L

C
Y

20
]

18
.8

[L
C

Y
20

]
-

-
-

-
M

ul
ca

t
-

20
.1

[N
AW

20
]

-
15

.2
[N

AW
20

]
-

12
.2

[N
AW

20
]

C
on

vT
as

ne
t

(h
er

e)
16

.8
16

.6
14

.0
13

.7
9.

7
10

.6

44



Table 4.3: Hyper-parameters of the used ConvTasnet architecture.

Encoder/decoder
Number of filters 512
Length of filters 16 samples
Stride of filters 8 samples
Separator
Number of repeats 3
Number of convolutional blocks in each repeat 8
Number of channels in convolutional blocks 512
Number of channels in bottleneck 128
Number of channels in skip connection 128
Kernel size on convolutional blocks 3
Mask activation ReLU

sponding to the number of sub-layers) and 128 in case of concatenation (this is chosen as
hyper-parameter).

I-vectors

The i-vectors used in our experiments are obtained using i-vector extraction scripts in Kaldi
toolkit5 [PGB+11]. Both the Universal Background Model (UBM) and i-vector extractor
are trained on the single-speaker utterances in the training set of WSJ0-2mix, WHAM,
and WHAMr, respectively, for experiments on these datasets. The input features are
high-resolution Mel-frequency ceptral coefficients (MFCC) of dimension 40. The UBM
is composed of 256 Gaussians and the dimension of the i-vectors is 100.

X-vectors

For x-vectors, we used x-vectors extractor provided with VBx recipe6 [LPDB22]. The
x-vector extractor has ResNet101 [HZRS16, ZWS+19] architecture consisting of one 2-D
convolutional layer, followed by 4 standard ResNet blocks [HZRS16]. The architecture is
further described in Table 4.4. The inputs of the x-vector extractor are 64-dimensional log
Mel filterbank features extracted from 25 ms windows with 10 ms shift. Mean and standard-
deviation pooling are used to obtain 256-dimensional x-vectors. The model was trained us-
ing additive angular margin loss on the following datasets: VoxCeleb1 [NCZ17], VoxCeleb2
[CNZ18a], CN-CELEB [FKL+20], Mixer collection (NIST SRE 2004-2010), Switchboard,
DeepMine [ZSS18]. This makes around 8540 hours and 16881 speakers in total. All wide-
band data in the datasets are down-sampled to 8 kHz.

4.8.4 Comparison of target extraction and separation

In the first part of the experiments, we applied target speech extraction to the three datasets
and compared the results to using cascade speech separation and target speaker selection,
as discussed in Section 3.2. For speech separation, we report results using two different
methods for target speaker selection, i.e. oracle and x-vector. In the oracle setting, we

5Kaldi toolkit https://github.com/kaldi-asr/kaldi
6VBx recipe https://github.com/BUTSpeechFIT/VBx
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Table 4.4: The structure of the ResNet101 architecture used for x-vector extractor, as
described in [LPDB22].

Layer Structure Stride Output
Input - - 64×T×1
Conv2D-1 3 × 3, 32 1 64×T×32

ResNetBlock-1
[︂
1×1,32
3×3,32
1×1,128

]︂
× 3 1 64×T×128

ResNetBlock-2
[︂
1×1,64
3×3,64
1×1,256

]︂
× 4 2 32×T/2×256

ResNetBlock-3
[︂
1×1,128
3×3,128
1×1,512

]︂
× 23 2 16×T/4×512

ResNetBlock-4
[︂
1×1,256
3×3,256
1×1,1024

]︂
× 3 2 8×T/8×1024

Statistics Pooling - - 16 × 1024
Flatten - - 16384
Linear - - 256

Table 4.5: Comparison of target speech extraction and speech separation on three datasets.
The results show improvements in the metrics over the value of the metric for the original
mixture, which is shown in the first row.

WSJ0-2mix WHAM WHAMr
SI-SDR STOI SI-SDR STOI SI-SDR STOI

Mixture 0.00 73.81 -4.49 62.78 -6.13 59.95
Improvements over mixture
Separation (oracle) 16.56 22.37 13.69 24.65 10.63 21.47
Separation (x-vector) 16.54 22.38 13.48 24.34 9.93 20.33
Extraction 17.11 22.50 14.05 25.49 11.43 23.23

compare the reference target signal with all outputs of the network and choose the output
with the lowest SI-SDR. This experiment thus shows the performance of speech separa-
tion with perfect speaker selection. In the x-vector setting, we extract x-vectors from both
outputs of the neural network and the enrollment utterance. We then choose the output
whose x-vector has the lowest cosine distance to the x-vector of the enrollment utterance.
The x-vector extractor was trained on a variety of datasets with high speaker and envi-
ronment variability and should be fairly robust. Note that this cascade setup has much
more parameters than the direct target speech extraction due to the additional x-vector
extractor.

The results are shown in Table 4.5. The performance is reported in terms of improve-
ments over mixture in SI-SDR and STOI metrics. We can see that the target speech
extraction achieves better performance than separation with oracle speaker selection. This
is likely caused by the utilization of additional speaker information in TSE. For the separa-
tion experiments, speaker selection using x-vectors introduces additional errors compared
to the oracle selection. The errors are more common with the more challenging data, es-
pecially for the WHAMr dataset, where TSE leads to significantly better performance.

46



1 2 3 4 5
15

15.5

16

16.5

17

17.5

Number of concatenated utterances

S
I-
S
D
R

im
p
ro
v
em

en
t
[d
B
]

Separation (oracle)
TSE

Figure 4.6: Performance of target speech extraction and speech separation for different
lengths of the input recordings.

From the results, we can also see a significant drop in performance in presence of noise and
reverberation for both TSE and separation methods.

4.8.5 Performance for long recordings

In Section 3.3, we pointed out that speech separation methods often make mistakes by
switching the speakers on the output in the middle of the recording. This behavior is
pronounced when the recordings are longer. Target speech extraction can keep the speaker
at the output consistent due to the additional speaker information. We show this behavior
by testing both methods on WSJ0-2mix-long containing multiple concatenated utterances
from both speakers, as described in 4.8.1. The results in Figure 4.6 show the SI-SDR
improvements as a function of the number of concatenated utterances for each speaker in
the mixtures (1 corresponds to results reported in Table 4.5). The results show that the
performance of TSE stays approximately constant when making the mixtures longer, in
contrast to the separation, where the performance decreases. Figure 4.7 shows one example
of a case where the separation fails to keep the speaker on the output consistent over the
recording.

4.8.6 Performance for higher number of speakers

Finally, we also compare the performance of target speech extraction and separation on
mixtures with a higher number of speakers than 2. For these experiments, we use WSJ0-
𝐽mix datasets with 𝐽 ∈ {1, 2, 3, 4}. We explore cases when the number of mixed speakers
in the training and test time is matched, mismatched, and also a practical setup in which
we present mixtures with different numbers of speakers during the training. For target
speech extraction, the architecture of the neural network is not dependent on the number
of speakers, we can thus easily train and evaluate the network on different numbers of
speakers. For speech separation, the number of nodes in the output layer limits how many
speakers the network can separate. For training with a variable number of speakers, we
thus use 4 outputs and set the reference signals to zero in case there are less than 4 speakers
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Figure 4.7: Example of outputs of target speech extraction and speech separation on a
longer recording. The mixture is created as concatenation of 3 utterances of each speaker.
The speech separation often switches the speakers between the outputs in the middle of the
recording, as shown by labeling parts of the output as speaker A or speaker B.
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Table 4.6: Performance of target speech extraction and speech separation for different
number of speakers in mixtures during training and test time. The cases with matched
number of speakers in train and test are emphasized in blue for better orientation in the
table.

# of speakers in test mixtures
1 2 3 4

# of speakers SI-SDR [dB] ∆SI-SDR [dB] ∆SI-SDR [dB] ∆SI-SDR [dB]
in train mixtures Sep Extr Sep Extr Sep Extr Sep Extr

2 23.43 28.98 16.56 17.11 4.29 4.89 2.53 2.96
3 11.50 2.20 10.89 13.52 12.58 13.82 6.76 9.59
4 8.26 9.40 7.28 11.20 9.92 12.43 9.40 10.22

1+2+3+4 35.84 37.48 14.25 15.98 11.96 13.98 4.36 11.02

in the mixture. With zero reference signals and SI-SDR loss, the network would tend to
scale all output signals close to zero. For this reason, we also change the objective function
for this separation experiment to SNR. For both extraction and separation, we clip the
loss at 30 dB in the experiment with a variable number of speakers in training, to ensure
that the network does not focus too much on improving the performance of single-speaker
cases. We use the oracle selection for evaluation of the separation experiment, i.e. from all
outputs, we choose the signal closest to the reference target speech in terms of SI-SDR.

The results are shown in Table 4.6. For testing with a single speaker in the recording, we
report absolute SI-SDR, in contrast with other experiments where we report improvement
over the mixture SI-SDR. For the single-speaker case, the network does not need to do any
actual separation or extraction, we just hope that it will not corrupt the signal (SI-SDR
values larger than circa 20 dB). We can see that this is true for models trained on two-
speaker mixtures or the combined (1+2+3+4) model. Models trained on a larger number
of speakers in the mixture tend to separate the input signal even when only a single speaker
is present. When testing on a higher number of speakers, unsurprisingly, models trained on
a matched number of speakers perform well. We can also see that the models trained on a
variable number of speakers can perform well on all testing cases.

As for the comparison between extraction and separation, in matched experiments,
the advantage of extraction is similar to what we have seen in two-speaker experiments.
The difference in performance gets larger especially in cases when the number of training
speakers is larger than in the test (results under the diagonal). In these cases, the separation
models tend to over-separate the input mixture more than the extraction models. The
models trained on a variable number of speakers tend to perform well on different numbers
of speakers in test mixtures. One exception is the speech separation model performance on
4-speaker mixtures which is significantly lower than with the matched model. Interestingly,
for TSE, the 1+2+3+4 often performs even better than the matched models. This highlights
the independence of TSE on the number of speakers and shows that it is a more general
model.
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Figure 4.8: Performance of target speech extraction on WSJ0-2mix, shown separately for
each target speaker in the test-set. The plot shows minimum, mean and maximum SI-SDR,
together with the histogram of the results for each speaker.

4.8.7 Performance for different speakers

Target speech extraction is arguably more difficult when the target speaker has similar
voice characteristics as the interfering one. In the previous section, we reported the perfor-
mance aggregated over the entire test set. In this section, we look more closely at how the
performance varies for different speakers.

It has been shown that gender affects the characteristics of the voice [HC99]. It is thus
expected that mixtures, where target and interfering speakers are of the same gender, will
be more difficult to process than when the gender is different. Table 4.7 shows the SI-
SDR results for different combinations of the gender of the target and interfering speakers,
for both target speech extraction and separation experiments. For all three datasets, the
same gender mixtures (F-F, M-M) are clearly more difficult than different gender (F-M,
M-F) ones. Interestingly, for speech separation, the F-F combination seems to be the
most problematic, whereas for TSE it is in line with the M-M combination. Perhaps the
additional speaker information used in the TSE method helps the network to handle the
F-F case better.

Next, we explore the variance in the results for different speakers and speaker pairs.
Figure 4.8 shows the SI-SDR improvement on the WSJ0-2mix test set separately for each
target speaker in the set. The average results shown at the top of the plot reveal some,
but not very substantial differences in performance. The plot also shows the minimum
and maximum SI-SDR improvements for each speaker. We can see some extreme values for
some speakers (around -40 dB meaning severe deterioration). These are caused by incorrect
identification of the target speaker in some cases.

Figure 4.9 further shows the SI-SDR improvements for different speaker pairs. The
speakers in this plot are ordered by gender (050 to 441 female, 443 to 446 male). We can
again see the performance decline on same-gender mixtures. However, the plot also shows
that not all same-gender speaker pairs lead to bad performance. Overall, there are several
speaker pairs with significantly worse performance in TSE (dark blue color). These speaker
pairs mostly have bad performance also in SS. This suggests that the issue with similar
speakers is rather the separation itself than the identification of the target speaker.
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Figure 4.9: Performance of target speech extraction (left) and speech separation (right) on
WSJ0-2mix for different pairs of target-interfering speakers.

Table 4.7: Performance of target speech extraction and speech separation for different
gender pairs. F denotes female and M denotes male. The performance is also denoted
by the color scale from red to green (separately for each row) for better orientation in the
table.

Extraction Separation
Target-Inteference Target-Inteference

F-F M-M F-M M-F F-F M-M F-M M-F
WSJ0-2mix 15.15 15.52 18.76 18.49 13.73 15.67 18.07 17.89
WHAM 12.65 12.51 15.52 15.19 11.90 12.86 14.84 14.63
WHAMr 9.66 10.13 12.47 12.98 8.48 10.17 11.22 11.95
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Figure 4.10: Performance of target speech extraction using different lengths of enrollment
utterance during test time.

4.8.8 Length of the enrollment utterance

An important aspect to analyze for target speech extraction is the sensitivity to the length
of the enrollment utterance. Depending on the application, the techniques may need to
work with different lengths of enrollment utterances (e.g. one word or one sentence). Note
that we do not focus on cases where the data of the target speaker are very long (e.g. one
hour) — in such cases, it might be beneficial to directly re-train the network on the target
speaker data.

The neural network in our experiments is trained with 0.5 s segments of enrollment
utterances. During test time, we use the full lengths of the enrollment utterances, which,
in our datasets, range from 1.6 seconds to 13.9 seconds, with a mean of 5.8 seconds. To
analyze the sensitivity to the length, we limit the length of the enrollment utterances from
0.5 to 9 seconds. In all cases, we discard the first 0.5 seconds of the enrollment utterance
to skip potential initial silence. From the rest of the utterances, we choose the segment
randomly and re-run the evaluation three times to account for the random effect. We also
limit the test set to only those utterances for which the original enrollment utterance is
longer than 9.5 seconds so that we can evaluate the same set of utterances with all different
lengths. This results in 376 utterances in the evaluation.

Figure 4.10 shows the relationship between SI-SDR improvement and the length of the
enrollment utterance. We can see that after circa 2 seconds, the performance converges.
For very short enrollment utterances, the performance degrades, but even for as long as
0.25 seconds, the difference to using the full length is only about 2-3 dB. Such difference
is noticeable, but far from destructive. We thus conclude that the method is not overly
sensitive to the length of the enrollment.
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Table 4.8: Performance of target speech extraction with different methods to inform the
neural network using target speaker embedding. All reported results are improvements in
SI-SDR.

Informing method WSJ0-2mix WHAM WHAMr
Multiplication 17.11 14.05 11.43
Multiplication-addition 17.05 14.03 11.35
Concatenation 16.07 13.67 10.97
Factorized layer 16.71 13.99 10.46
Attention-multiplication 15.39 12.83 10.44

4.8.9 Informing the network

In Section 4.3, we have presented several methods for informing the neural network about
the target speaker using a speaker embedding. In previous experiments, we have used
multiplication (see Section 4.8.3). In this section, we compare this with different methods,
namely multiplication-addition, concatenation, factorized layer, and attention. The results
of all methods are shown in Table 4.8. We can see that with all methods, the neural network
is able to learn to extract the target speaker with fairly satisfactory performance. The
best results over all three datasets are achieved by the multiplication with multiplication-
addition, factorized layer and concatenation following closely. An interesting observation
is that the attention-based method produces worse results than multiplication, although it
has more freedom. We suspect that this is due to overfitting as the final training loss value
for the attention method was comparable to multiplication and better than other methods,
such as concatenation or factorized layer.

4.8.10 Speaker embedding

In Section 4.2, we reviewed different possibilities of how to represent speaker information
in the enrollment utterance in a speaker embedding. There are three common choices, i.e.
i-vectors, x-vectors and embeddings jointly learned with the task, that were used in the
previous sections. Here, we experimentally compare these options.

Table 4.9 shows the SI-SDR improvements using different speaker embeddings. We
report the results on both the test and validation sets. Note that the validation sets of all
WSJ0-2mix, WHAM, and WHAMr contain the speakers seen in the training. It may thus
be used to assess the performance on a closed-set of speakers, as opposed to the test set,
that contains unseen speakers only. On the test set, the jointly learned embeddings lead to
the best performance, followed by i-vectors. The advantage of jointly learned embeddings
is especially large in the case of clean data (WSJ0-2mix).

The trends are however different on the validation set with seen speakers. There, the
results of all methods are more even. This shows that in the case of using i-vectors or x-
vectors as the speaker embeddings, the neural network overfits to the training speakers. We
can hypothesize that this trend could be different in case of having larger speaker variability
in the training. The used datasets contain 101 speakers in the training set, which might
not be enough when the external embeddings are used.

From the presented results, the jointly learned embeddings seem to be well-suited for
informing the neural network about the target speaker, and thus they should contain speaker
information, even though the embeddings were not forced by an explicit speaker loss to
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Figure 4.11: Speaker embeddings extracted from test-set of WSJ0-2mix using auxiliary
network jointly learned with the task of target speech extraction. The embeddings are
reduced to two dimensions with t-SNE. Each point represents one utterance and colors
denote speakers.
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Table 4.9: Performance of target speech extraction using different speaker embeddings, on
both test and validation sets. All reported results are improvements in SI-SDR.

Test (unseen speakers) Validation (seen speakers)
WSJ0-2mix WHAM WHAMr WSJ0-2mix WHAM WHAMr

I-vector 13.76 12.51 10.60 18.29 14.63 12.00
X-vector 12.59 10.50 8.44 17.99 14.28 11.90
Jointly learned 17.11 14.05 11.43 18.20 14.49 11.95

Table 4.10: Performance of target speech extraction with different input and output
domains. For all domains, two sets of filter sizes are used denoted here by window-
length/window-shift/number-of-filters. All reported results are improvements in SI-SDR.

WSJ0-2mix WHAM WHAMr
16/8/512 256/64/256 16/8/512 256/64/256 16/8/512 256/64/256

Learnable 17.11 11.50 14.05 11.11 11.43 8.98
STFT 12.89 10.99 11.70 10.01 9.66 7.28
STFT-magnitude 11.64 11.08 10.00 9.60 7.77 6.92

model the speaker information. To confirm that the embeddings are a good representation
of the speakers, we plot the embeddings extracted from WSJ0-2mix test single-speaker
utterances reduced to two dimensions using the t-SNE method7 [VdMH08]. Figure 4.11
shows the plot of embeddings, where each point corresponds to one utterance and the
color labels the speaker identity. The embeddings clearly form clusters and embeddings of
utterances spoken by different speakers are in most cases parts of different clusters.

4.8.11 Domain and loss

In the literature, there are two prevalent setups of the input/output domain and loss func-
tion of the neural networks. First, in earlier works, STFT or STFT magnitude was often
used with bigger windows of about 200-500 samples. The loss function was usually MSE or
phase-sensitive MSE (PS-MSE). Second, in recent work, learnable filters are usually used
to extract the representation with short windows of about 10-40 samples. This is usually
trained with SI-SDR loss. The latter is also the default setup used in this work (see Sec-

7t-SNE https://lvdmaaten.github.io/tsne/

Table 4.11: Performance of target speech extraction for different loss functions. In these
experiments STFT representation with window length 256, window shift 64 was used.

WSJ0-2mix WHAM WHAMr
∆SI-SDR [db] ∆STOI [%] ∆SI-SDR [db] ∆STOI [%] ∆SI-SDR [db] ∆STOI [%]

SI-SDR 10.99 16.53 10.01 15.38 7.28 14.03
MSE 8.92 15.26 8.27 14.22 5.36 9.28
PS-MSE 9.83 15.06 7.23 12.79 4.78 7.81
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tion 4.8.3). In this section, we experiment not only with these two setups, but also combine
the individual settings.

First, we focus on the input and output domain and test three representations (learnable,
STFT, and STFT-magnitude) with two different sizes of windows (small and large). In the
small window setting, we use parameters often used with learnable filters, i.e. 16 sample
windows with 8 sample shifts, 512 filters). As in STFT, the number of meaningful outputs
corresponds to the number of input samples, we repeated the output values to obtain the
output size 512, as in the case of learnable filters. In the case of STFT, we concatenate real
and imaginary parts of the spectrum. For STFT-magnitude, we use magnitude only. In the
large window setting, we use 256 sample windows with 64 sample shifts and 256 filters. The
results of this experiment are shown in Table 4.10. First, the shorter window length and shift
lead to substantially better quality than the longer one. The difference is especially large in
the case of learnable filters but holds also for STFT and STFT-magnitude. Also, the results
exhibit the same trends for all three datasets. This is not completely expected, as especially
the reverberation condition could influence the choice of the window length. However, as
the results show, this is not the case. The neural network still benefits from having more
fine-grained information in time even for reverberant conditions. Among the three domains
(learnable, STFT, and STFT-magnitude), learnable filters are clearly beneficial, especially
in the case of shorter windows.

In the second set of experiments, we explored different loss functions. The earlier works
using the STFT domain mostly used MSE or PS-MSE as a loss function. Here, we compare
this with SI-SDR. In these experiments, we use the larger 256 sample windows and complex
STFT as the input. Table 4.11 shows the results of these experiments. Here, we report
both SI-SDR and STOI, to avoid the advantage of SI-SDR of having matched loss and
evaluation metric. The SI-SDR loss function leads to clearly better performance in terms
of both the SI-SDR and STOI metrics. Comparing MSE and PS-MSE, the only case where
PS-MSE exhibits better results is WSJ0-2mix evaluated with SI-SDR metric. Note that
this combination of dataset and metric is often used in the literature. In other cases, the
MSE loss function works better.
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Chapter 5

Multi-channel approaches to target
speech extraction

In the previous chapter, we applied target speech extraction to single-channel signals only.
In many real applications, multiple microphones are available to record the signal. This
includes many modern smartphones, personal assistant devices, game consoles, TVs, or
hearing aids. In this case, when the multi-channel signal is available, it is possible to
make use of spatial information to obtain an enhanced signal of a better quality [VGP07].
Research in multi-channel processing has a long history and a large variety of methods
are available [BCH08, SBA10, HUHD+21]. In this chapter, we show how neural target
speech extraction can be combined with multi-channel processing methods. Note that in
this work, we focus on the case when we do not have any location information about the
target speaker, i.e. only the input mixture is multi-channel.

5.1 Classical beamforming
Most multi-channel methods rely on linear spatial filtering, i.e. beamforming. In this
section, we summarize the most common beamforming methods.

5.1.1 Spatial filter design

Let us revisit the observed signal model in STFT domain defined in Section 3.1:

𝑌 (𝑚)(𝑛, 𝑓) = 𝐴
(𝑚)
𝑖 (𝑛, 𝑓)𝑆𝑖(𝑛, 𝑓) +

∑︁
𝑗 ̸=𝑖

𝐴
(𝑚)
𝑗 (𝑛, 𝑓)𝑆𝑗(𝑛, 𝑓) + 𝑉 (𝑚)(𝑛, 𝑓), (3.2 revisited)

where 𝑖 is the index of the target speaker, 𝑌 (𝑚)(𝑛, 𝑓) is the observed mixture at micro-
phone 𝑚 in STFT domain, 𝑆𝑗(𝑛, 𝑓) is the speech signal of the speaker 𝑗 in STFT do-
main, 𝐴(𝑚)

𝑗 (𝑛, 𝑓) models the effect of the room impulse response in the frequency domain,
𝑉 (𝑚)(𝑛, 𝑓) is the noise signal including the RIR from the sources of the noise to the micro-
phone 𝑚 in STFT domain, 𝑛 is the index of STFT frame, and 𝑓 is the index of frequency
bin. In this chapter, we will use vector notation

y(𝑛, 𝑓) = a𝑖(𝑛, 𝑓)𝑆𝑖(𝑛, 𝑓) +
∑︁
𝑗 ̸=𝑖

a𝑗(𝑛, 𝑓)𝑆𝑗(𝑛, 𝑓) + v(𝑛, 𝑓)⏟  ⏞  
r𝑖(𝑛,𝑓)

, (5.1)
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where y(𝑛, 𝑓) = [𝑌 (1)(𝑛, 𝑓), 𝑌 (2)(𝑛, 𝑓), . . . , 𝑌 (𝑀)(𝑛, 𝑓)]⊤ is a vector comprising STFT coef-
ficients in time-frame 𝑛 and frequency bin 𝑓 for all microphones. Analogously, v(𝑛, 𝑓) =

[𝑉 (1)(𝑛, 𝑓), 𝑉 (2)(𝑛, 𝑓), . . . , 𝑉 (𝑀)(𝑛, 𝑓)]⊤ and a𝑖(𝑛, 𝑓) = [𝐴
(1)
𝑖 (𝑛, 𝑓), 𝐴

(2)
𝑖 (𝑛, 𝑓), . . . , 𝐴

(𝑀)
𝑖 (𝑛, 𝑓)]⊤.

We additionally introduce the notation r𝑖(𝑛, 𝑓) for all interfering signals with respect to
target speaker 𝑖 (i.e. other speakers and noise), and 𝑋

(𝑚)
𝑖 (𝑛, 𝑓) = 𝐴

(𝑚)
𝑖 (𝑛, 𝑓)𝑆𝑖(𝑛, 𝑓) for

speech of the target speaker 𝑖 as received by microphone 𝑚.
In beamforming methods, we design a multi-channel filter w, that can extract the target

signal out of the mixture
�̂�

(𝑚′)
𝑖 (𝑛, 𝑓) = wH(𝑛, 𝑓)y(𝑛, 𝑓), (5.2)

where 𝑚′ is a reference microphone and ·H denotes Hermitian transpose. The filter is
designed to be in some sense “optimal”, i.e. leading to “best possible” reduction of the
noise and preservation of the target signal. Different definitions of optimality criterion lead
to different types of beamformers.

Multi-channel Wiener filter

First, minimizing the mean square error between the estimate and the reference signal leads
to Multi-channel Wiener filter (MWF) [BCH08]

wMWF(𝑛, 𝑓) = argmin
w

E[|�̂�(𝑚′)
𝑖 (𝑛, 𝑓) −𝑋

(𝑚)
𝑖 (𝑛, 𝑓)|2] = Σ−1

𝑦 (𝑛, 𝑓)Σ𝑖(𝑛, 𝑓)e (5.3)

where e is a one-hot vector denoting the reference microphone, Σ𝑦(𝑛, 𝑓) = E[y(𝑛, 𝑓)yH(𝑛, 𝑓)]
is the spatial correlation matrix of the observed signal and

Σ𝑖(𝑛, 𝑓) = E[|𝑆𝑖(𝑛, 𝑓)|2]a𝑖(𝑛, 𝑓)aH𝑖 (𝑛, 𝑓) (5.4)

is the spatial correlation matrix of the target signal. The spatial correlation matrices (SCM)
are 𝑀 ×𝑀 matrices encoding the correlation of the signals at different microphones in the
frequency-domain.

Minimum variance Distortionless Response filter

Multi-channel Wiener filter, in its basic form, weights equally the effect of speech distor-
tion and noise reduction. Often it is desirable not to cause any speech distortion for the
prize of smaller noise reduction. Such optimality criterion leads to Minimum Variance
Distortionless Response (MVDR) beamformer [GC08, SBA10]

wMVDR(𝑛, 𝑓) = argmin
w

[|wHr𝑖(𝑛, 𝑓)|2] s.t. wH𝑋
(𝑚)
𝑖 (𝑛, 𝑓) = 𝑋

(𝑚)
𝑖 (𝑛, 𝑓) (5.5)

wMVDR(𝑛, 𝑓) = 𝐴
*(𝑚)
𝑖 (𝑛, 𝑓)

Σ−1
𝑟 (𝑛, 𝑓)a𝑖(𝑛, 𝑓)

aH𝑖 (𝑛, 𝑓)Σ−1
𝑟 (𝑛, 𝑓)a𝑖(𝑛, 𝑓)

, (5.6)

where Σ𝑟(𝑛, 𝑓) = E[r(𝑛, 𝑓)rH(𝑛, 𝑓)] is the SCM of the interference signal.
Note that it can be shown that both MWF and MVDR are special cases of more general

parametric Multi-channel Wiener filter [SBA10], which allows tuning the amount of target
signal distortion and noise reduction.
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Figure 5.1: Estimation of the statistics of the target and interfering signals based on speech
presence probability, estimation of beamforming coefficients and the application of beam-
forming.

5.1.2 Estimation of beamformer parameters

In the previous section, several types of beamforming filters with different optimality cri-
teria were introduced. The formulations of the filters depend on statistics of the signals,
namely acoustic transfer function (ATF) of the target speaker a𝑖(𝑛, 𝑓) and spatial correla-
tion matrices of observed speech Σ𝑦(𝑛, 𝑓), target speech Σ𝑠(𝑛, 𝑓) and interference Σ𝑟(𝑛, 𝑓).
In the following, we revise ways to estimate these statistics. We assume stationarity of the
signals over 𝑁 time frames and thus drop the dependency of the SCMs and ATF on time
frame 𝑛. The SCM of the observed signal can then be estimated as

Σ𝑦(𝑓) =
1

𝑁

𝑁∑︁
𝑛=1

y(𝑛, 𝑓)yH(𝑛, 𝑓) (5.7)

assuming ergodicity of the signal y. The definition of Σ𝑖(𝑓) suggests that a𝑖(𝑓) can be
obtained as the principal eigenvector of Σ𝑖(𝑓)

a𝑖(𝑓) = 𝒫(Σ𝑖(𝑓)). (5.8)

The problem thus boils down to estimation of SCMs of target Σ𝑖(𝑓) and interference Σ𝑟(𝑓),
which cannot be obtained as in Equation 5.7 because of unavailability of isolated target
and interference signals.

There are numerous methods for the estimation of these spatial correlation matrices.
Here, we focus on methods based on speech presence probability (SPP), which are widely
used and combine well with neural networks. Denoting the probability of the target speaker
𝑖 being present in time-frequency bin (𝑛, 𝑓) as 𝑀𝑖(𝑛, 𝑓) and probability of the interference
being present in (𝑛, 𝑓) as 𝑀𝑟(𝑛, 𝑓) = 1 −𝑀𝑖(𝑛, 𝑓), we can estimate the SCMs as:

Σ𝑖(𝑓) =
1∑︀

𝑛𝑀𝑖(𝑛, 𝑓)

𝑁∑︁
𝑛=1

𝑀𝑖(𝑛, 𝑓)y(𝑛, 𝑓)yH(𝑛, 𝑓) (5.9)

Σ𝑟(𝑓) =
1∑︀

𝑛𝑀𝑟(𝑛, 𝑓)

𝑁∑︁
𝑛=1

𝑀𝑟(𝑛, 𝑓)y(𝑛, 𝑓)yH(𝑛, 𝑓), (5.10)

i.e. the estimates are being updated during time-frames which are likely dominated by the
target speaker or interference, respectively. We thus need an estimator of the target speech
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Figure 5.2: Graphical representation of the spatial CACGMM model.

presence probability to obtain the necessary statistics and subsequently the beamformer
coefficients. The overall estimation of the beamforming filters is schematically depicted in
Figure 5.1.

5.1.3 Spatial models for speech presence probability estimation

One popular approach for estimation of speech and interference presence probabilities are
statistical signal models [IAN, MWE09, VHU10]. These were shown to be very success-
ful, e.g. in CHiME challenges [YID+15, BHS+18] on distant automatic speech recognition,
where they were often parts of the winning systems. In these models, multi-channel obser-
vations in the form of spatial features are modeled by a mixture model. Each component of
the mixture model typically corresponds to one source. A graphical representation of the
full mixture model is depicted in Figure 5.2 and corresponds to the following model of the
probability density

𝑝(𝜓(𝑛, 𝑓)) =
∑︁
𝑐

𝜋(𝑐, 𝑛, 𝑓)𝑝(𝜓(𝑛, 𝑓)|𝑑(𝑛, 𝑓) = 𝑐), (5.11)

where 𝑐 is the index of the mixture component, 𝜓(𝑛, 𝑓) is the spatial feature for time-
frequency bin (𝑛, 𝑓) and 𝑑(𝑛, 𝑓) is the latent variable modeling affiliation of the time fre-
quency bin (𝑛, 𝑓) to the components of the mixture. The symbol 𝜋(𝑐, 𝑛, 𝑓) denotes the
prior probability 𝑝(𝑑(𝑛, 𝑓) = 𝑐) of time-frequency point (𝑛, 𝑓) belonging to mixture compo-
nent 𝑐 (mixture weight). In different works, the mixture weight is shared either across time
[IAN] or across frequency [IAN13]. Here, we will use the variant of sharing across frequency
𝜋(𝑐, 𝑛) = 𝜋(𝑐, 𝑛, 𝑓). In Section 5.2.3, we will introduce another variant, where 𝜋(𝑐, 𝑛, 𝑓) is
pre-estimated and fixed. The posterior probability of the affiliation to the components given
the observed spatial features 𝑝(D|Ψ) then corresponds to the sought presence probabilities.

To construct a spatial model, an important choice to make is the form of the spatial
features and corresponding probability density to model individual components of the mix-
ture model. Here, we will focus on normalized observation vectors as the spatial features,
modeled by complex angular central Gaussian (CACG) distribution [IAN]. The normalized
observation vectors are defined as

𝜓(𝑛, 𝑓) =
y(𝑛, 𝑓)

|y(𝑛, 𝑓)| . (5.12)
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The complex angular central Gaussian is defined as

𝑝(𝜓(𝑛, 𝑓)|𝑑(𝑛, 𝑓) = 𝑐) =
(𝐾 − 1)!

2𝜋𝐾 detB(𝑐, 𝑓)

1

(𝜓(𝑛, 𝑓)HB(𝑐, 𝑓)−1𝜓(𝑛, 𝑓))𝐾
, (5.13)

where 𝐾 is the number of channels (dimensionality of the spatial features) and B is the
parameter of the distribution. The full model is then referred to as complex angular central
Gaussian mixture model (CACGMM).

The parameters of the model 𝜋 and B are estimated using Expectation Maximization
algorithm. The algorithm iterates between E-step estimating the approximate posterior
𝑞(D) with the current values of parameters

𝑞(𝑑(𝑛, 𝑓) = 𝑐) =
𝜋(𝑜𝑙𝑑)(𝑐, 𝑛, 𝑓)𝑝(𝜓(𝑛, 𝑓)|𝑑(𝑛, 𝑓) = 𝑐;B(𝑜𝑙𝑑))∑︀
𝑐′ 𝜋

(𝑜𝑙𝑑)(𝑐′, 𝑛, 𝑓)𝑝(𝜓(𝑛, 𝑓)|𝑑(𝑛, 𝑓) = 𝑐′;B(𝑜𝑙𝑑))
(5.14)

and M-step estimating new parameter values with the current approximate posterior

B(𝑛𝑒𝑤),𝜋(𝑛𝑒𝑤) = argmax
B,𝜋

E𝑞(D)[ln 𝑝(Ψ,D;B,𝜋)], (5.15)

B(𝑐, 𝑓) =
𝐾∑︀

𝑛 𝑞(𝑑(𝑛, 𝑓) = 𝑐)

∑︁
𝑛

𝑞(𝑑(𝑛, 𝑓) = 𝑐)
𝜓(𝑛, 𝑓)𝜓H(𝑛, 𝑓)

(𝜓(𝑛, 𝑓)HB(𝑐, 𝑓)−1𝜓(𝑛, 𝑓))𝐾
, (5.16)

𝜋(𝑐, 𝑛, 𝑓) = 𝜋(𝑐, 𝑛) =
1

𝐹

∑︁
𝑓

𝑞(𝑑(𝑛, 𝑓) = 𝐶). (5.17)

Apart from the prior sharing over frequency bins, the model treats each frequency bin
independently. As a result, the components in different frequency bins are often permuted,
i.e. the first component in one frequency bin does not correspond to the first component
in another frequency bin. Permutation alignment algorithms are usually used to solve
this problem [SMAM04]. These algorithms compute the correct permutation based on
the similarity of the posterior probabilities (masks) at different frequencies. In the case
of shared mixture weight across frequency, the permutation alignment can be also used
“online”, i.e. in each iteration of the E-M algorithm.

5.2 Neural network-based beamforming
Following the dominance of neural networks for single-channel speech enhancement, sepa-
ration, and extraction, NN-based methods emerged also for multi-channel processing. In
many works, the strong modeling power of neural networks is combined with classical beam-
forming methods as introduced in the previous section. In this section, we overview such
combinations and focus on how they can be applied for target speech extraction.

5.2.1 Neural network for speech presence probability estimation

Using neural networks as speech presence estimator for beamforming was proposed in
[HDHU16, EHW+16] for speech enhancement task. In these works, the neural network
directly estimates probability of speech being present 𝑀 (𝑚)(𝑛, 𝑓) from the single-channel
observation 𝑦(𝑚)(𝑛, 𝑓). The estimates are then aggregated over all 𝐾 channels, e.g. using
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mean operation

𝑀 (𝑚)(𝑛, 𝑓) = 𝑓NN(𝑦(𝑚)) (5.18)

𝑀(𝑛, 𝑓) =
1

𝐾

𝐾∑︁
𝑚=1

𝑀 (𝑚)(𝑛, 𝑓). (5.19)

The obtained estimate𝑀(𝑛, 𝑓) then can be used to compute SCMs, as in Equations (5.9),(5.10)
and construct a beamformer (Equations (5.6),(5.3)). The neural network is trained with
one of the mask-based loss functions, introduced in Section 4.5. Note that the neural net-
work in this case does not use any spatial information because it processes only a single
channel at a time. This choice was made to prevent the neural network from overfitting on
the microphone array configurations in the training data.

To apply this scheme to target speech extraction, we simply need to inform the neural
network by the embedding extracted from the enrollment utterance

𝑀
(𝑚)
𝑖 (𝑛, 𝑓) = 𝑓NN(𝑦(𝑚), 𝑒𝑖) (5.20)

𝑀𝑖(𝑛, 𝑓) =
1

𝐾

𝐾∑︁
𝑚=1

𝑀
(𝑚)
𝑖 (𝑛, 𝑓). (5.21)

5.2.2 Speech presence probability estimation from time-domain

The neural networks estimating speech presence as proposed in [HDHU16, EHW+16] work
in frequency domain. Recent works (and our investigation in previous chapter) show that
time-domain neural networks with SI-SDR loss lead to superior performance. To make use
of these models, we can estimate the speech presence probability based on the estimated
time-domain signal. To do that, we can re-use the definitions of ideal masks as introduced
in Section 4.5. The estimated signal is then used in place of the reference. The estimated
ideal mask can then be used as the presence probability

𝑠
(𝑚)
𝑖 = 𝑓NN(𝑦(𝑚), 𝑒𝑖) (5.22)

𝑀
(𝑚)
𝑖 (𝑛, 𝑓) = ideal-mask(𝑠

(𝑚)
𝑖 , 𝑦(𝑚)) (5.23)

𝑀𝑖(𝑛, 𝑓) =
1

𝐾

𝐾∑︁
𝑚=1

𝑀
(𝑚)
𝑖 (𝑛, 𝑓), (5.24)

where function ideal-mask computes IBM, IAM or IPSM (Equations (4.9),(4.10),(4.11),
respectively), using STFT representation of both signals.

5.2.3 Integration of neural networks and spatial models

Both speech presence probability estimation based on spatial models (Section 5.1.3) and
neural networks (Section 5.2.1) have their benefits and drawbacks. Neural networks have
great modeling power and can make use of correlations of speech signals across time and
frequency. On the other hand, spatial models have been shown to well model spatial
patterns. Due to their unsupervised nature, they also do not suffer from a mismatch
between training and test conditions in contrast with neural networks.

In [NIH+17], it has been proposed to combine the two approaches for speech enhance-
ment. In this work, the neural network predicts presence probability 𝑀𝑖(𝑛, 𝑓), 𝑀𝑟(𝑛, 𝑓) for
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M-step
Eq. (5.32)
Eq. (5.16)

E-step
Eq. (5.14)

Concat
into 𝑞(D)

Concat
into 𝜋

Eq. (5.27)

𝑀𝑖(𝑛, 𝑓) 𝑀𝑖(𝑛, 𝑓)

Random
init

𝑞(𝑑(𝑛, 𝑓) = 0)

𝑞(𝑑(𝑛, 𝑓) = 𝑐), 𝑐 > 0

init

𝑞(D)

B

𝛼(𝑛, 𝑐), 𝑐 > 0

𝜋(0, 𝑛, 𝑓)

𝜋

Figure 5.3: The inference of integrated target speech extraction with spatial clustering. For
initialization of 𝑞(D), left part of the scheme is used. After that, the inference iterates as
shown on the right. Yellow blocks show where the masks estimated using TSE enter the
inference.

both speech and noise components of the signal. These predictions are then used as the
prior 𝜋(𝑐, 𝑛, 𝑓) on the affiliation of T-F bins to the respective components. In addition, the
approximate posterior 𝑞(D) is also initialized to the predicted presence probabilities in the
first iteration of the inference

𝜋(𝑐, 𝑛, 𝑓) = 𝑀𝑐(𝑛, 𝑓) (5.25)
𝑞(𝑖𝑛𝑖𝑡)(𝑑(𝑛, 𝑓) = 𝑐) = 𝑀𝑐(𝑛, 𝑓). (5.26)

In contrast with the conventional spatial clustering, the prior probabilities 𝜋 are not re-
estimated and stay fixed (Equation 5.17 is not used). The priors affect the E-step of the
inference algorithm (Equation 5.14), where the contribution of the spatial model in each
T-F bin is weighted according to 𝜋. It can thus significantly influence the final result.

The method can be also readily used with time-domain neural networks by re-applying
the concept introduced in the previous section to estimate the presence probabilities.

5.2.4 Integration of target speech extraction and spatial models

The above-described method for integration of the neural network with spatial clustering
was proposed for speech enhancement. Similar schemes have also been employed for speech
separation [DHU17]. In these, we however need an estimation of the presence probabilities
for each component in the signal. This does not agree with the concept of target speech
extraction where the neural network predicts an estimate of the target speaker’s speech
only. Here, we modify the method to deal with this case:

We aim to have the prior probability of the first component fixed to the presence prob-
ability estimated with the TSE neural network. At the same time, the priors for the other
components should be re-estimated in each iteration and tied across frequency. For this,
we re-parametrize the prior probability as

𝜋(𝑐, 𝑛, 𝑓) =

{︂
𝑀𝑖(𝑛, 𝑓) for 𝑐 = 0,
𝛼(𝑐, 𝑛) for 𝑐 > 0,

(5.27)

where 𝑀𝑖(𝑛, 𝑓) is the presence probability of the target speaker as predicted by the neural
network (either directly or through time-domain signal as specified in Section 5.2.2) and
𝛼(𝑐, 𝑛) is a new parameter specifying the prior for the other components.
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To find the update rule for 𝛼(𝑐, 𝑛), we need to solve the following optimization problem

𝛼 = argmax
𝛼

E𝑞(D)[ln 𝑝(Ψ,D;B,𝜋)] s.t.
∑︁
𝑐>0

𝛼(𝑐, 𝑛) +𝑀(𝑛, 𝑓) = 1 ∀𝑛, 𝑓. (5.28)

This leads to solving the following equation using Lagrange multipliers 𝜆(𝑛)

𝜕
∑︀

𝑓 𝑞(𝑑(𝑛, 𝑓) = 𝑐) ln𝛼(𝑛, 𝑐) − 𝜆(𝑛)(1 − 𝛼(𝑐, 𝑛))

𝜕𝛼(𝑛, 𝑐)
= 0 (5.29)

𝛼(𝑛, 𝑐) =
𝑞(𝑑(𝑛, 𝑓) = 𝑐)

𝜆(𝑛)
. (5.30)

Using the original constraint, we can derive the value of 𝜆(𝑛)∑︁
𝑐>0

𝑞(𝑑(𝑛, 𝑓) = 𝑐)

𝜆(𝑛)
+𝑀(𝑛, 𝑓) = 1 ⇒ 𝜆(𝑛) =

1 −𝑀(𝑛, 𝑓)∑︀
𝑐 𝑞(𝑑(𝑛, 𝑓) = 𝑐)

(5.31)

and the final update rule

𝛼(𝑛, 𝑐) =
𝑞(𝑑(𝑛, 𝑓) = 𝑐)∑︀
𝑐>0 𝑞(𝑑(𝑛, 𝑓) = 𝑐)

(1 −𝑀(𝑛, 𝑓)). (5.32)

The overall iterative inference used in combination of TSE and spatial clustering is
depicted in Figure 5.3.

5.3 Experiments

5.3.1 Dataset and configuration

For multi-channel experiments, we use SMS-WSJ (Spatialized Multi-Speaker Wall Street
Journal) database [DHBHU19] consisting of data artificially created based on WSJ0+1. In
particular, the utterances for training, validation and test were taken from si284, dev93 and
eval92 parts of WSJ, respectively. The data is downsampled to 8 kHz and multi-channel
mixtures are simulated using the image method [AB79]. The simulated microphone array is
a circular array with a radius of 10 cm and 6 microphones. The room impulse responses are
generated with 𝑇60 of 200 ms to 500 ms. The distance of each source from the microphone
array center is 1 m to 2 m. The training, validation and test sets contain 33561, 982,
and 1332 mixtures, and 283, 10, and 8 speakers, respectively. The mixtures are not fully
overlapped. Instead, the longer utterance determines the length of the mixture, and the
shorter utterance is padded with random offset in the beginning.

The model has an architecture described in Section 4.8.3, used also in experiments in
the previous chapter. For training, we used only the fully overlapped part of the utterance,
as determined by the boundaries of the original utterances1. As a loss function, we chose
SNR, as it lead to more stable training than SI-SDR on this database. We trained the
model for 135 epochs. As targets for the training, we used the reference signals including
early reflections. For evaluation, we used the reference sources without any reverberation
as the references and SDR metric, as recommended by the authors of SMS-WSJ database
[DHBHU19].

1Silence parts which are inside the original utterances are kept, the mixtures thus might contain short
segments of single speaker.
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Table 5.1: Comparison of different STFT window sizes and shifts, using oracle MVDR
beamforming with ideal binary mask. All reported results are SDR improvements over
mixture.

size 512 1024 2048
shift
32 12.67 14.82 14.71
64 12.67 14.81 14.71
128 12.64 14.80 14.70
256 12.33 14.74 14.68

Table 5.2: Comparison of different ideal masks, using oracle MVDR beamforming with
STFT window size 1024 and shift 128. All reported results are SDR improvements over
mixture.

MVDR MWF
IBM 14.80 12.45
IAM 12.34 11.75
IPSM 13.04 12.57

For experiments with spatial clustering, we use 100 iterations and 3 components (un-
less specified otherwise). We use inline permutation alignment implemented by pb_bss2

toolkit [DHU17].

5.3.2 Results

Before experiments with TSE, we used oracle beamforming to compare different choices for
the beamformer and window size. As we use the computation of mask from the estimated
time-domain signal, the window size can be determined flexibly without dependence on the
window size used in the neural network. Table 5.1 shows comparison of different STFT
window sizes and shifts. These experiments are done with an MVDR beamformer using
the ideal binary mask, computed using the reference signal, to estimate the beamformer
weights. The results show that a rather large window with a small shift is the optimal
configuration. In subsequent experiments we use the configuration 1024-128, as it has one
of the best results and leads to a shorter sequence (and thus shorter processing times) than
for example shift 32 or 64.

Table 5.2 shows the comparison of two different beamformers (MVDR and MWF) and
three different types of masks used to estimate the beamformer weights (ideal binary mask,
ideal amplitude mask, and ideal phase-sensitive mask). The MVDR beamformer consis-
tently outperforms MWF and is best estimated by using the IBM mask. In the subsequent
experiments, we will thus use the IBM mask and MVDR beamformer (unless specified
otherwise).

Next, we explore the combination of beamforming and TSE (Table 5.3). We compare
the SDR improvement achieved with single-channel TSE, with the combination of TSE and
beamforming. The results with oracle masks can serve as a topline for the performance.

2pb_bss toolkit https://github.com/fgnt/pb_bss
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Table 5.3: Performance of target speech extraction in both single- and multi-channel set-
tings, using mask-based beamforming.

∆SDR [dB]
Single-channel TSE3 9.34
TSE + MVDR 12.67
TSE + MWF 11.75
MVDR (oracle) 14.80
MWF (oracle) 12.35

Table 5.4: Performance of target speech extraction in multi-channel setting, using mask-
based beamforming and spatial clustering. Performance is also shown for different gender
pairs of target and interfering speaker. F denotes female, M denotes male speaker.

∆SDR [dB] all F-F M-M F-M M-F
TSE + MVDR 12.67 11.11 11.15 13.76 13.89
CACGMM + MVDR 11.54 11.29 12.02 11.61 11.29
TSE + CACGMM + MVDR 13.54 12.82 12.36 14.34 14.17
MVDR (oracle) 14.80 14.96 14.88 14.83 14.82

The TSE mask-based beamforming improves over the single-channel performance by about
2 dB to 4 dB, which brings it more than halfway to the oracle beamforming performance. As
in the oracle experiments, MVDR performs better than MWF, although the gap is smaller
than in the oracle case.

Finally, we compare the performance with spatial clustering and explore the combination
of TSE with spatial clustering. The results are shown in Table 5.4. The spatial clustering
with CACGMM by itself slightly under-performs the beamforming based on TSE. However,
in mixtures consisting of speakers of the same gender (F-F, M-M ), CACGMM works better.
This is because TSE works with spectral information, therefore it has more difficulties when
the two speakers have a similar voice. The combination of TSE and CACGMM combines
the advantages of both methods and outperforms both of them. In the case of different-
gender mixtures (F-M, M-F), the performance is approaching that of MVDR based on an
oracle mask.

Figure 5.4 shows an example of masks estimated by different methods. In this case, the
mask predicted by CACGMM is inaccurate at some parts, especially in lower frequencies.
TSE mostly correctly identifies the target speaker, however, also includes small noise (e.g. in
the final silence part of the signal). TSE combined with CACGMM corrects these mistakes
and leads to the most accurate mask.

In Section 3.3, we claimed the independence on the number of components as one of the
advantages of TSE compared to speech separation. However, in the combination with spa-
tial clustering, it is necessary to set the number of components of CACGMM, which could
violate this claim. In the next experiment, we show that the spatial clustering is actually
not sensitive to the number of components and that it can be set to a higher number with-

3Note that this result does not correspond to results in experiments presented in previous chapter as
here, we use SMS-WSJ dataset.
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Figure 5.4: Example of time-frequency masks (i.e. speech presence probabilities (SPP))
estimated by spatial clustering and target speech extraction.
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Figure 5.5: Performance of spatial clustering with and without target speech extraction as
a function of number of components of CACGMM.
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Figure 5.6: Performance of spatial clustering with and without target speech extraction as
a function of number of iterations in CACGMM inference.
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out hurting the performance. Figure 5.5 shows the SDR improvements of TSE combined
with spatial clustering for different numbers of components in CACGMM. Note that the
correct number of components is three, for two speakers and noise. The performance stays
approximately constant even when setting more than twice more components than present
in the mixture.

In the last experiment, we explore the performance as a function of the number of
iterations of the spatial clustering. Figure 5.6 shows that as few as five iterations are
already sufficient for a good performance (13.41 dB). This is in contrast with CACGMM,
for which the performance increases steeply until 50 iterations (11.29 dB). Of course, for
TSE+CACGMM+MVDR, part of the computational burden is on the forward pass through
the neural network, which is not present in CACGMM+MVDR.
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Chapter 6

Application of target speech
extraction

In previous chapters, we considered target speech extraction as an isolated task, evaluated
based on the quality of the output signal. Although the output of the extraction itself is
useful in some applications (e.g. hearing aids), we often aim to improve the performance of
other tasks. In this chapter, we focus on two such tasks, i.e. automatic speech recognition
(ASR) and speaker diarization. Note that this chapter should not serve as an exhaustive
overview of the research in either of the two tasks. We rather aim to provide a high-level
overview of how the tasks can be solved and how target speech extraction can be used to
improve their performance.

6.1 Automatic speech recognition

6.1.1 Single-speaker automatic speech recognition

Automatic speech recognition aims to automatically transcribe a speech signal into text, i.e.
recognize what has been said. In the past, the research progressed from simple tasks such
as recognizing spoken digits [DBB52] to more complicated scenarios with a large vocabu-
lary and conversational speech [You96]. Recently, the focus has also moved to scenarios
with a higher amount of interference such as noise, reverberation or interfering speakers
[WMB+20].

Nowadays, there are two main directions in ASR research: hybrid [HDY+12] and end-
to-end ASR systems [WWL19]. In the hybrid setting, the system consists of several modules
focusing on different parts of the task, such as acoustics, language, and pronunciation. In
contrast, end-to-end approaches aim to tackle the entire problem with one model. This
model is predominantly a neural network that accepts a sequence of features at its input
and outputs a sequence of characters. Although the research in end-to-end systems is
booming today, the hybrid systems are still on-par with end-to-end on many tasks [ALM20,
LWG+20]. In this work, we perform our experiments using a hybrid system, although it
could be analogously applied also to end-to-end ones [DWO+19].

The hybrid system has three main components - the acoustic model, language model,
and pronunciation model. The language model encodes the language information, that is
which sequences of words are likely to appear in the language or domain. Typically, it is
either a simple n-gram probabilistic model or a neural network predicting the next word.
The pronunciation model maps between words and phonemes and is mostly represented by
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a dictionary encoding this mapping. Our main focus in this work is on the acoustic model
mapping between acoustic features and fundamental speech units, such as phonemes.

The most commonly used acoustic features are Mel-filterbanks or Mel-frequency cepstral
coefficients (MFCC) which mimic the properties of human perception. The acoustic model
itself is a neural network mapping the sequence of the acoustic features into a sequence of
Hidden Markov model (HMM) state probabilities. The loss function to train the network
is so-called lattice-free maximum mutual information (LF-MMI) loss [PPG+16] defined for
one utterance as

ℒMMI = − log
∑︁

𝜔∈num
𝑝(𝜔|𝑂) = − log

∑︀
𝜔∈num 𝑃 (𝜔) exp(

∑︀
𝑛 𝜓𝑛,𝜔𝑛)∑︀

𝜔′∈den 𝑃 (𝜔′) exp(
∑︀

𝑛 𝜓𝑛,𝜔′
𝑛
)
, (6.1)

where num is the set of HMM state sequences corresponding to the ground-truth transcrip-
tion of the utterance and den is the set of all possible HMM state sequences (in practice,
only approximated). Further, 𝑂 is the sequence of input features and 𝜓𝑛,𝑠 is the potential
predicted by the neural network for time-frame 𝑛 and state 𝑠 based on the input features.

The acoustic, language and pronunciation models are combined into a recognition net-
work, usually represented as a weighted finite-state transducer [Moh97]. Obtaining a hy-
pothesis given a sequence of acoustic features then corresponds to finding the best path in
the transducer, usually referred to as decoding.

6.1.2 Combination with target speech extraction

Automatic speech recognition models degrade significantly in presence of interfering speak-
ers. This type of interference is especially harmful as, in contrast with background noise,
the interfering speech has the same characteristics as the target speech, so the ASR system
cannot differentiate well between the target and interference. In this work, we aim to tackle
this problem by employing a pre-processing done by target speech extraction. The resulting
system thus consists of two stages: First, target speech extraction takes the mixed speech
signal and the enrollment utterance and extracts the speech signal of the target speaker.
Second, the extracted speech is processed by the ASR system, i.e. acoustic features are
extracted, passed through the acoustic model, and decoded to obtain the final hypothesis.

Both stages of this modular system are typically trained separately with different ob-
jectives. The target speech extraction is trained with loss functions measuring discrepancy
between the estimated and the reference signal, as presented in Section 4.5. The ASR sys-
tem is typically trained on single-speaker signals with the objective of matching reference
transcription, as shown in Equation (6.1). This may be sub-optimal as the model used for
target speech extraction has limited capacity and thus needs to do trade-offs for minimiz-
ing the loss. The trade-offs might be different for optimizing the output signal purity as
opposed to optimizing the transcription by ASR. In practice, this usually manifests itself
as small artifacts, such as speech distortion, present in the output of TSE, which then hurt
the accuracy of the ASR.

These problems can be solved by considering both systems jointly during the training.
There are different options of what we can do:

1. Fine-tuning the acoustic model on the outputs of the TSE system. By doing this, the
acoustic model may learn to disregard the artifacts in TSE’s output.

2. Fine-tuning TSE system with the ASR objective. In this case, we need to compute
the gradients of the LF-MMI loss with respect to the parameters of the TSE network.
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This means backpropagating through the acoustic model and the feature extraction
stage. In this case, the TSE can learn to output a signal that is optimal given the
ASR system as opposed to the signal purity measures (for instance a different trade-off
between interference reduction and speech distortion).

3. Fine-tuning both systems jointly. Similarly to the previous step, we update TSE with
the ASR objective. However, we also keep updating the ASR system itself. This
option gives the most freedom to the models to adjust to each other. However, it is
also the least interpretable as the boundary between both models becomes blurred.

6.1.3 Evaluation of automatic speech recognition

To evaluate the ASR system, the hypothesis and reference sequences of words are compared.
The widely used metric is word error rate (WER). This measures the percentage of correctly
recognized words. More precisely, it is defined as

𝑊𝐸𝑅 =
𝑆 + 𝐼 +𝐷

𝑅
=
𝑆 + 𝐼 +𝐷

𝑆 +𝐷 + 𝐶
, (6.2)

where:

• 𝑆 is the number of substituted words

• 𝐼 is the number of inserted words

• 𝐷 is the number of deleted words

• 𝑅 is the number of words in reference transcription

• 𝐶 is the number of correctly recognized words.

To compute the above entities, dynamic string alignment is used to align the hypothesis
and the reference transcription.

6.2 Experiments with automatic speech recognition

6.2.1 Dataset and configuration

We perform experiments on WSJ0-2mix dataset introduced in Section 4.8.1. For the test,
we use the max version of the mixtures, where the mixture is of the length of the longest
utterance. This is necessary not to cut any word in half and thus to obtain meaningful
ASR results. The target speech extraction system corresponds to the settings described in
Section 4.8.3.

For training of the ASR system, we used PyChain toolkit1 [SWPK20] and followed the
WSJ recipe2. We trained the system on clean single-speaker data from the training and
validation set of WSJ0-2mix. The acoustic model was a time-delay neural network (TDNN)
[PPK15] with 5 layers. The basic idea of TDNN architecture is depicted in Figure 6.1.
The convolutional layers have filters with kernel of size 3, stride [1, 1, 1, 1, 3] and dilation
[1, 1, 3, 3, 3] in 5 layers respectively. Each layer is followed by a dropout with a probability

1PyChain toolkit https://github.com/YiwenShaoStephen/pychain
2PyChain WSJ recipe https://github.com/YiwenShaoStephen/pychain_example/tree/master/

examples/wsj
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Figure 6.1: Time-delay neural network architecture. Image from [PPK15].

of 0.2. The input of the model are 40-dimensional MFCC features with global mean and
variance normalization. The system is trained for 20 epochs with Adam optimizer and
learning rate 1 × 10−3 and the best model is chosen based on validation loss. For fine-
tuning, we use the learning rate 1 × 10−5 in case of ASR fine-tuning and 1 × 10−4 for TSE
fine-tuning and joint fine-tuning. These values were found empirically according to the
validation loss. Both TSE and ASR are initialized from the pre-trained models.

For decoding, tri-gram language model is used with CMU pronunciation dictionary. This
is subsequently re-scored with a four-gram language model. For building the numerator and
denominator graph, 84 mono-phone units are used.

6.2.2 Results

Table 6.1 shows the results of the ASR experiments measured by WER. First, the perfor-
mance of the ASR system on single-speaker data and on unprocessed mixtures serves as
the top- and bottom-line of the performance. Recognizing extracted signals obtained with
a TSE system trained with SI-SDR loss leads to 20.64% WER, which is a great improve-
ment from the mixture performance of 81.94%. The last three rows show the fine-tuning
of either the TSE, the ASR system, or both jointly. All three options further reduce the
error. We however see that fine-tuning the ASR system is more efficient than fine-tuning
the TSE. One possible reason for this is that it is easier for the ASR system to adjust to the
artifacts produced by the TSE, than for the TSE to stop producing such artifacts. Another
explanation might be simple optimization issues as the error based on the ASR loss needs
to be backpropagated through more transformations to reach the TSE model parameters.
Furthermore, the best performance is achieved when both systems are updated jointly. The
WER of 15.86%, in this case, is getting relatively close to 10.75% WER of recognizing clean
single-speaker signals.

To get a better idea of how the behavior of the model changes during the fine-tuning, we
can explore the SI-SDR of the signals extracted by the TSE block. The original pre-trained
system achieves 17.17 dB on the max test-set of WSJ0-2mix. We can see that fine-tuning the
system with the ASR objective hurts the SI-SDR. The degradation is much stronger in the
case when only TSE is fine-tuned and thus the ASR system cannot adjust to the extracted
signals. Although the SI-SDR value is as low as 5.93 dB, the system achieves better ASR
performance. This shows that the SI-SDR does not perfectly reflect how well the signal
will be recognized by the ASR system. Figure 6.2 shows an example of a signal segment,
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Table 6.1: Automatic speech recognition results on WSJ0-2mix.

fine-tuning
Method TSE ASR WER [%] ins [%] del [%] sub [%] ∆SI-SDR [dB]
Single-speaker - - 10.75 0.63 2.12 7.99 ∞
Mixtures - - 81.94 7.80 42.06 32.09 0.00
Extracted 7 7 20.64 2.20 6.38 12.06 17.17
Extracted 3 7 18.07 2.38 4.66 11.03 5.93
Extracted 7 3 17.09 2.78 3.73 10.57 17.17
Extracted 3 3 15.86 1.61 4.45 9.80 11.78

that is not well recognized by the ASR system when extracted by the pre-trained system,
although having a high SI-SDR value. After fine-tuning the TSE block, the SI-SDR value
substantially deteriorates, however, the ASR hypothesis improves. In the spectrogram, we
can see that the signal extracted with the pre-trained system is very close to the reference.
In some regions, the system however over-removes parts of the target signal. Although this
difference is very small, it is detrimental for the ASR, in contrast with the output of the
re-trained system, which leaves more interference in the signal.

6.3 Speaker diarization

6.3.1 Task of speaker diarization

Speaker diarization is the task of determining “who spoke when” [ABE+12]. The input
is an audio recording of a conversation and the diarization system should determine how
many speakers are present and label the segments spoken by each of these speakers. Such a
system is useful for instance as a pre-processing for subsequent ASR, which usually assumes
the segments and corresponding speaker identities as given. In some works, the diarization
task is handled together with the task of voice activity detection (VAD), in others, the
ground-truth (oracle) VAD is used. In our work, we will focus on the latter.

The diarization works today mostly fall into one of two categories: diarization based
on clustering [SGR14, LPDB22], and end-to-end diarization [HFW+20]. The clustering-
based approaches today commonly work with x-vectors (Section 4.2), as these encode well
the speaker information, as shown in speaker verification literature. The recording is split
into short segments, x-vector embedding is extracted from each segment, and finally, the x-
vectors are clustered. This can be done for example by Agglomerative hierarchical clustering
(AHC) or using Bayesian HMM and variational Bayes inference (VBx) [LPDB22]. The VBx
method will be detailed in the next sections. End-to-end diarization models rely on a neural
network that directly maps the acoustic features to speaker activities. Although the end-to-
end approaches are quickly rising nowadays, the clustering-based approaches still provide
competitive results [LPDB22].
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Figure 6.2: Example of utterance segment where ASR hypothesis of the original TSE output
is wrong despite high SI-SDR metric. ASR hypothesis after fine-tuning TSE block improves
despite the degradation in SI-SDR.
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6.3.2 Evaluation of speaker diarization

The most popular evaluation metric for speaker diarization is the Diarization error rate
(DER). This is defined as:

𝐷𝐸𝑅 =
𝑆𝑅+ 𝐹𝐴+𝑀𝑖𝑠𝑠

𝑇𝑜𝑡𝑎𝑙_𝑠𝑝𝑒𝑒𝑐ℎ , (6.3)

where:

• 𝑆𝐸𝑅 is speaker error, amount of time attributed to incorrect speakers,

• 𝐹𝐴 is false alarm, the amount of time which is attributed to a speaker in the non-
speech region or attributed to more speakers than present,

• 𝑀𝑖𝑠𝑠 is missed speech, the amount of time speech is not attributed to any speaker or
multi-speaker speech is attributed to a lower number of speakers,

• 𝑇𝑜𝑡𝑎𝑙_𝑠𝑝𝑒𝑒𝑐ℎ is total amount of speech, accounting for speaker overlaps.

6.3.3 Bayesian HMM-clustering of x-vector sequences (VBx)

In this work, we build upon the VBx clustering method, which has been shown to provide
excellent results across several tasks [LPDB22] and was often used in leading systems in
diarization evaluations [LWD+20, LGM+21]. The input of the VBx method is a sequence
of x-vectors, extracted from typically around 1 s long segments. The goal is to infer the
number of speakers and cluster the segments.

The VBx approach assumes that the sequence of x-vectors X is generated by a Hidden
Markov Model (HMM). Each state of the HMM corresponds to one speaker. The topology
of the HMM is depicted in Figure 6.3. The switching between speakers is controlled by
the transition probabilities 𝜋𝑠. These are learned and will turn zero in case there are fewer
speakers than the states in the HMM. In this way, VBx can determine the number of
speakers in the recording. The latent variable Z represents the assignment of segments to
the states (i.e. speakers). The emission probability distribution for each state is derived
from a pre-trained Probabilistic linear discriminant analysis (PLDA) model. On a high
level, each state emission probability distribution is represented by a speaker latent vector
y𝑠 of the same dimensionality as the x-vector. For details about the emission distributions
and the whole model, we refer to [LWD+20]. The entire model can be described by the
joint probability factorization:

𝑝(X,Z,Y) = 𝑝(X|Z,Y)𝑝(Z)𝑝(Y) =
∏︁
𝑡

𝑝(x𝑡|𝑧𝑡)
∏︁
𝑡

𝑝(𝑧𝑡|𝑧𝑡−1)
∏︁

𝑝(y𝑠), (6.4)

where 𝑝(x𝑡|𝑧𝑡 = 𝑠) = 𝑝(x𝑡|y𝑠) is the emission probability distribution of state 𝑠 derived from
PLDA model, 𝑝(𝑧𝑡|𝑧𝑡−1) are the transition probabilities and 𝑝(y𝑠) is the prior distribution
on speaker latent vectors.

The goal of the inference with the model is to obtain 𝑝(Z|X), i.e. the speaker activi-
ties. For this, Variational Bayes (VB) inference is used with the mean-field approximation
𝑞(Z,Y) = 𝑞(Z)𝑞(Y). Variational Bayes maximizes the evidence lower bound objective

ℒELBO = 𝐹𝐴E𝑞(Z,Y)[ln 𝑝(X|Y,Z)] + 𝐹𝐵E𝑞(Y)

[︂
ln
𝑝(Y)

𝑞(Y)

]︂
+ E𝑞(Z)

[︂
ln
𝑝(Z)

𝑞(Z)

]︂
. (6.5)
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Figure 6.3: Topology of Hidden Markov model used in VBx method for speaker diarization.
𝑃loop denotes probability of self-loop, 𝜋𝑖 is the probability of entering state 𝑠𝑖. Image
from [LPDB22].

The above equation is the proper lower bound for the likelihood in the case of 𝐹𝐴 =
𝐹𝐵 = 1. Empirically, tuning the values of the factors 𝐹𝐴,𝐹𝐵 can however help improve
the performance. The inference maximizing Equation (6.5) proceeds by iterative updates
of 𝑞(Y) and 𝑞(Z), that is updating the speaker models and updating the speaker activity,
respectively. We refer to [LWD+20] for the readers interested in the update formulae.

One drawback of the VBx method is that it does not deal with overlap. Each frame
is assumed to be generated from one speaker only. Some recent evaluations of diarization
in challenging conditions show that a big part of the remaining error is indeed from the
segments with more than one speaker [LGM+21]. Methods that can deal with overlap are
thus needed.

6.3.4 Combination with target speech extraction

As mentioned in the previous section, VBx diarization has issues in the case when multiple
speakers are overlapping. A target speech extraction system could be used to help to resolve
this issue. On the other hand, in target speech extraction, there is a need for enrollment
utterance. One way to obtain enrollment utterances in the case of conversational data is
to identify the speakers’ segments using diarization. The diarization and target speech
extraction systems can thus benefit each other, and it is natural to combine them.

The simplest way to use target speech extraction for diarization purposes is by following
three steps. First, running a preliminary VBx diarization system to identify segments that
can be used as enrollment utterances. Second, using the TSE system with the enrollment
utterances to extract the speech of each speaker from the recording. Third, running a voice
activity detector on the output to obtain the activity of each speaker. Such a process is
however problematic for two reasons:

1. Absent speaker problem. The TSE system, as we have defined it in previous chapters,
is trained on recordings where the target speaker is always present. For instance,
given the mixture of speaker-A + speaker-B, we ask the system to extract either
speaker-A or speaker-B, but not a different speaker-C. The system is thus trained
to resolve the issue of Which of the speakers in the input is the target one?, but not
Is the target speaker present in the mixture?. The latter is arguably a more difficult
task. Training of the TSE system including the absent speaker case is possible and
has been explored in the literature [BXLS21]. It however hurts the performance in
the usual present-speaker cases.
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2. Solving more difficult task. In the above-described process, the TSE step needs to
internally solve both diarization (where each speaker is speaking) and the extraction
in the overlapped parts. This is apparently a more difficult task than the diarization
itself. It is thus likely that a system aiming to solve diarization directly will always
work better than a system that has the additional burden of outputting the exact
signals.

For the above reasons, we focus here on a different way to combine the systems, where both
work in tandem, and solve only the task for which they are specialized. This combination
is carried out in the following steps:

1. Preliminary VBx diarization is run to identify segments that can be used as enrollment
utterances.

2. TSE system uses the enrollment utterances to extract each speakers’ speech from the
recording.

3. VBx diarization is run again on all extracted signals jointly.

4. Speaker activities obtained on each extracted signal in the previous step are combined
with union operation.

Figure 6.4 schematically depicts an example.
Using the above steps, it does not matter if TSE extracts the wrong speaker for the

absent speaker cases, as the final diarization step can assign them to the correct speaker
cluster. On the other hand, in the overlapped parts which VBx alone cannot solve, TSE
will extract different speakers in the respective outputs, and using the final diarization and
union combination will lead to identifying both speakers in the final output. Both systems
here are used in line with their specialization, i.e. TSE helps by extracting speakers from
overlap regions and VBx clusters single-speaker segments.

For step 3 of the process, we need to run the diarization on all extracted signals jointly.
Practically, this can be simply done by concatenating the extracted signals and running the
standard VBx algorithm on the result. We observed that when doing such prolongation of
the input sequence we need to divide the factor 𝐹𝐴 by the number of concatenated signals.
This counteracts the artificial dependencies introduced into the sequence.

Furthermore, in step 3 of the process, the final diarization run can re-use the results of
the initial run. In particular, the speaker models inferred by the initial diarization can be
used to initialize speaker models in the final diarization. We will compare three different
cases: 1) the final diarization is run from scratch, 2) we initialize the speaker models, 3)
we initialize speaker models and do only one step of inference of the speaker activities.
The final option is especially interesting, as it does not run the iterative diarization, but
only re-estimates 𝑞(Z) based on the existing speaker models. It thus does not add much
computational overhead.

As shown before, the outputs of TSE may contain small artifacts which are not well
processed by a system that was not trained on these extracted recordings. To combat
this problem, we follow a strategy suggested in speech enhancement [DSA20]: we add the
original observed signal with a small weight to the extracted signal. In our case, it means
that in case of overlap, the final signal will contain both speakers, but the one extracted by
the TSE system will be much stronger.
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Figure 6.4: Example of combined processing of TSE and VBx diarization. VBx in the first
step makes a diarization error as it cannot handle overlap. TSE makes small mistakes in
areas of absent target speaker. The combination of both is able to correct these mistakes
and leads to correct labeling of the overlapped part.
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6.4 Experiments with speaker diarization

6.4.1 Datasets and configuration

For the diarization experiments, we use NIST SRE 2000 CALLHOME dataset [CCD+08]
widely used in the diarization field. It consists of 500 recordings of conversational telephone
speech. There are 2 to 7 speakers per recording, although the majority of the recordings
contain 2 to 3 speakers. Overall, the length of the data is 15 hours, discounting silence
parts. In all experiments, we use ground-truth (oracle) VAD labels. Three different setups
are considered for evaluation, as in [LPDB22]: fair, which uses 0.25 s collar discounting
small imprecision in segment boundaries, full with no collar, and forgiving, where 0.25 s
collar is used and overlapped speech is not evaluated.

We follow the VBx experiments on CALLHOME described in [LPDB22] using the pub-
lished recipe3. The used x-vector extractor corresponds to the one described in Section 4.8.3.
The PLDA model is trained on x-vectors extracted from the same datasets as used for train-
ing of the x-vector extractor.

For the diarization itself, x-vectors are extracted from segments 1.5 s long with 0.25 s
shift. They are centered, whitened and length-normalized. Agglomerative hierarchical
clustering is run on the x-vectors to provide initialization of the speaker activities in VBx.
For VBx itself, the dimensionality of x-vectors is reduced to 128 with LDA. The hyper-
parameters 𝐹𝐴, 𝐹𝐵, 𝑃loop are set to 0.4, 17, 0.4, respectively, as found optimal in [LPDB22].
For the experiments combining TSE and VBx, we tune 𝐹𝐴 and 𝐹𝐵 using a two-fold partition
of CALLHOME (note that this tuning however brings only marginal difference compared to
the original values). For step 3 of the combined TSE and VBx experiments, we additionally
modify 𝐹𝐴 as described in Section 6.3.4.

For target speech extraction, we used the same architecture and training process as
described in Section 4.8.3. However, as we cannot train on a matched dataset (full CALL-
HOME is used as a test-set), we train on four datasets to provide enough variability:

1.–2. WSJ0-1mix and WSJ0-2mix as described in Section 4.8.1.

3. Libri2mix dataset [CPC+20] contains simulated two-speaker mixtures based on Lib-
riSpeech [PCPK15] corpus. It roughly follows conventions used when creating WSJ0-
2mix. It however contains a wider range of 921 speakers (compared to 101 in WSJ0-
2mix) in 364 hours of data. We use the clean version of the dataset without added
noises, as CALLHOME is also relatively clean.

4. VoxCeleb2Mix is a dataset of artificial mixtures of two speakers we created based on
VoxCeleb2 [CNZ18b]. We chose 6800 speakers for training, 152 for validation, and
100 for test-set. We roughly filtered the data according to simple SNR estimator
[KS08] to choose the cleaner segments of the dataset. We simulated 50000 mixtures
for training, 5000 for validation, and 3000 for test-set. The two speakers are mixed
with SNR ranging from −5 dB to 5 dB.

During training, we randomly choose one of the four datasets for each element of the batch.
The amount of data used from each dataset is thus balanced.

3VBx recipe https://github.com/BUTSpeechFIT/VBx
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Database ∆SI-SDR / SI-SDRS [dB]
WSJ0-1mix 37.67S
WSJ0-2mix 16.51
Libri2mix 14.63
Voxceleb2mix 9.74

Table 6.2: Target speech extraction results on test sets of four different databases. Reported
numbers are SI-SDR improvements apart from single-speaker data, where absolute SI-SDR
is used, denoted by S.

6.4.2 Results

Since for the following experiments we trained a model on a combination of artificial
datasets, we first report the performance on the respective test sets. Table 6.2 shows the
SI-SDR results. The result on WSJ0-1mix shows that the model does not degrade single-
speaker speech. On both WSJ0-2mix and Libri2mix, the model achieves good performance.
In the case of WSJ0-2mix, the result is comparable to the improvement achieved by the
model trained on matched dataset only (17.11 dB). The performance on Voxceleb2mix is
worse; this is caused by more challenging conditions in the dataset. Although during its cre-
ation, we roughly filtered out very noisy recordings, the dataset may still contain data with
reverberation or weaker noise. Furthermore, as the speakers in VoxCeleb are recorded in
many conditions, the enrollment utterance can have different conditions than the mixture.
Given these challenges, we find the performance on Voxceleb2mix satisfactory.

Next, we present the results of the diarization task itself. Table 6.3 shows the DER over
different configurations of our system. All results are confirmed with the VBx baseline.
For the combined experiments, we test four different settings. First, we do not add the
original mixture to the extracted outputs and run the final diarization without any initial-
ization. Second, we add the mixture with a weight of 0.2. This setting is then repeated
with initialization of the speaker models and initialization with only one step of inference.
We start by analyzing the results of the conditions considering overlap (fair, full). The
results clearly show that the addition of the original mixture to the extracted output is
necessary. This suggests that the diarization system does not handle well the extracted sig-
nals and maybe would benefit from re-training on the extracted signals (as in the previous
ASR experiments). Here, we however explore the more simple solution of the addition of
the observed signal. The three setups of the initialization of the speaker models perform
very comparably. The best setup is to initialize the speaker models and run the iterative
inference. However, the difference from performing only one step of the inference of the
activities is rather negligible. This is good news, as this setting does not require much
computation done in the final diarization step.

When we enable the system to detect also the overlapped parts, it is expected to get some
degradation on single-speaker parts. The results on fair and full conditions combine both
single-speaker and overlapped parts, thus include also the degradation of single-speaker
regions. This degradation can be seen in the results on forgiving condition, that does
not score the overlapped parts. Here, the combined system leads to about 1.5% DER
degradation.

We can further analyze the results by breaking down the DER into different parts:
missed speech (miss), false alarms (fa) and speaker error (spke). This break-down is shown

81



Table 6.3: Diarization results on CALLHOME using VBx and combination of VBx and
target speech extraction.

DER [%]
Method add mixture speaker model init fair full forgiving
VBx baseline [LPDB22] - - 14.21 21.77 4.42
VBx + TSE 0 7 24.30 30.84 22.63
VBx + TSE 0.2 7 12.62 20.43 6.02
VBx + TSE 0.2 3 12.47 20.35 5.94
VBx + TSE 0.2 3(1 step) 12.57 20.42 5.92

Table 6.4: Break-down of diarization results on CALLHOME using VBx and combination
of VBx and target speech extraction with fair evaluation.

Error rate [%]
Method add mixture speaker model init miss fa spke
VBx baseline [LPDB22] - - 10.11 0.00 4.10
VBx + TSE 0 7 4.73 13.64 5.92
VBx + TSE 0.2 7 7.04 1.72 3.86
VBx + TSE 0.2 3 7.03 1.70 3.75
VBx + TSE 0.2 3(1 step) 7.06 1.68 3.83

in Table 6.4. The biggest improvement of the combined system is caused by reducing missed
speech. On the other hand, the false alarm rate increases. The increase in false alarm rate
explains the degradation of DER in the fair condition.

Finally, we look at how the amount of overlap in the recording influences the results.
Figure 6.5 shows the average DER for recordings with different amounts of overlap. For
the combined system, we used the one with speaker model initialization, as it showed the
best result. The results clearly show an upward trend with a higher amount of overlap,
which confirms the difficulty of handling overlaps properly. Applying the combined system
of TSE+VBx reduces the errors with a higher reduction on the files with higher amounts
of overlap, as we would expect.

6.5 Using diarization labels to fine-tune speech recognition
In Section 6.2, we showed that training TSE neural network with the ASR loss can signif-
icantly improve the final ASR performance. For this type of fine-tuning, we however need
transcriptions for the data on which we fine-tune. In this section, we explore whether we
can fine-tune the TSE system using only speaker labels. In practice, these speaker labels
can be obtained for example by using a diarization system.

For fine-tuning with speaker labels, we use a loss function composed of two parts — a
speaker identity loss and a mixture consistency loss. The speaker identity loss forces the
output to have the characteristics of the desired speaker. To evaluate how well the speaker
characteristics match, we use x-vectors and PLDA. The mixture consistency loss forces all
signals extracted from the mixture to sum back to the mixture. Such constraint naturally
arises from the assumed mixing model and further restricts the network output.
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Figure 6.5: Break-down of diarization results on CALLHOME-fair for different amounts
of overlap in the recordings. Error bars correspond to the standard deviation of the per-
recording results in each overlap condition.

We can see the loss function as weakly supervised, as it does not require the strong
supervision of parallel single-speaker data, but instead uses the weak supervision in the
form of speaker labels. Weakly supervised loss functions have been previously explored
also in the area of universal sound separation [PWLR20a, PWLR20b, KWS+20]. Notably,
in [PWLR20a, PWLR20b] authors propose an objective function consisting of sound event
classification and mixture consistency, similarly to our proposed objective function. Direct
application of the loss from [PWLR20a, PWLR20b] to our task would however require
training a speaker classifier on the adaptation data; we avoid this by using the generative
PLDA model, that can be trained on a disjoint set of speakers and is considered state-of-
the-art in speaker verification.

6.5.1 Weakly supervised loss with speaker labels

The proposed loss function uses supervision in the form of speaker characteristics. The
speaker characteristics are obtained from a set of 𝑁𝑖 segments of speech of the target speaker
𝑖, denoted as 𝒮tgt

𝑖 = {𝑠(𝑡𝑔𝑡,1)𝑖 , 𝑠
(𝑡𝑔𝑡,2)
𝑖 , . . . , 𝑠

(𝑡𝑔𝑡,𝑁𝑖)
𝑖 }. If using segmented speech corpus such as

WSJ, the segments can be simply different utterances from the same speaker. In the case
of long recordings such as meetings, the segments can be obtained from other parts of the
recording where the speaker is speaking, after applying diarization.

We devise a loss function ℒspk forcing the output of TSE for each speaker 𝑖 to have the
same speaker characteristics as 𝒮tgt

𝑖 . Forcing the correct speaker information however does
not tie the output of TSE to the input mixture in any way. For this reason, we add an
additional loss ℒmix encouraging the mixture consistency. The full weakly supervised loss
function is then

ℒwsup(𝑠𝑖(𝑡),𝒮tgt
𝑖 ) = 𝜆spkℒspk + 𝜆mixℒmix, (6.6)

where 𝜆spk and 𝜆mix are hyper-parameters weighting the parts of the loss.
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Figure 6.6: Speaker identity part of the auxiliary weakly supervised loss.

Speaker identity loss

To encourage the TSE estimate 𝑠𝑖 to have the same speaker characteristics as 𝒮tgt
𝑖 , we

employ concepts from speaker identification. Namely, we use x-vectors to represent the
speaker characteristics and PLDA to model the x-vectors. Let us denote the x-vector
extracted from 𝑠𝑖(𝑡) as x̂ 𝑖 and the set of x-vectors extracted from 𝒮tgt

𝑖 as 𝒳 tgt
𝑖 .

In PLDA, the distribution of x-vectors is modeled as

𝑝(r) = 𝒩 (r;m,Σac) (6.7)
𝑝(x |r) = 𝒩 (x ; r,Σwc), (6.8)

where x is the x-vector, r is the speaker mean, m is the global mean and Σac, Σwc are
the across-speaker and within-speaker co-variance matrices. In the loss function, we aim
to maximize the likelihood of the estimated x-vector x̂ 𝑖 given the x-vectors 𝒳 tgt

𝑖 , under the
hypothesis ℋsame that both have been generated from the same speaker

𝑝(x̂ 𝑖|𝒳 tgt
𝑖 ,ℋsame) =

∫︁
𝑝(x̂ 𝑖|r)𝑝(r|𝒳 tgt

𝑖 ) 𝑑r = 𝒩 (x̂ 𝑖;𝜇𝑖,Σ𝑖) (6.9)

Σ𝑖 = (Σ−1
ac +𝑁𝑖Σ

−1
wc )−1 (6.10)

𝜇𝑖 = Σ𝑖 (Σ−1
ac m +𝑁𝑖Σ

−1
wc x̃𝑖), (6.11)

where x̃𝑖 and 𝑁𝑖 are the mean and the number of x-vectors in 𝒳 tgt
𝑖 . The equality fol-

lows Equation (213) in [Mur07] for computing predictive posterior distribution in case of
multivariate Gaussian prior and Gaussian likelihood. The loss function is then the inverse
log-likelihood summed over all speakers in the mixture

ℒspk = −
𝐼−1∑︁
𝑖=0

log 𝑝(x̂ 𝑖|𝒳 tgt
𝑖 ,ℋsame). (6.12)

Note that 𝜇 and Σ can be pre-computed for each speaker in advance. The evaluation of
the loss function is then the evaluation of the Gaussian p.d.f. of the estimated x-vector x̂ 𝑖.
Figure 6.6 shows the process for computing the speaker identification loss. The extraction
of the x-vector including the feature extraction needs to be implemented in a differentiable
way, which is possible using a toolkit such as PyTorch [PGM+19].

Mixture consistency loss

The mixture consistency loss reflects a property that should hold for the extracted sources,
i.e. summing back to the original signal. This directly follows from the assumed mixing
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Figure 6.7: Mixture consistency part of the auxiliary weakly supervised loss.

model. To enforce this, we minimize the mean-square error between the sum of the extracted
signals and the observed mixture in time-domain

ℒmix = ||𝑦(𝑡) −
𝐼−1∑︁
𝑖=0

𝑠𝑖(𝑡)||2. (6.13)

Note that we neglect the noise factor 𝑣(𝑡) in the loss. This could possibly lead to the network
learning to include the noise in the extracted sources. Extending the mixture consistency
with a noise model is a possible future direction, that could be beneficial for very noisy
conditions. The mixture consistency loss function is schematically depicted in Figure 6.7.

6.5.2 Overall steps

The proposed weakly supervised loss can be used for re-training a target speech extraction
system on data, where for each mixture 𝑦(𝑡) and corresponding enrollment utterance 𝑒𝑖(𝑡),
there is a set of segments 𝒮tgt

𝑖 spoken by the target speaker. Here, we describe the steps
we follow in our experiments with the proposed loss:

1. Train TSE with supervised loss. This step requires parallel single-speaker recording
𝑠𝑖(𝑡) for each mixture 𝑦(𝑡) and represents the baseline.

2. Re-train TSE initialized in step 1 with weakly supervised loss ℒwsup(𝑠𝑖(𝑡),𝒮tgt
𝑖 ) on the

same training data as in step 1, but using only weak supervision in the form of segments
𝒮tgt
𝑖 spoken by the target speaker. The segments are taken from other utterances of

the target speaker in the training data.
3. Re-train TSE with weakly supervised loss ℒwsup(𝑠𝑖(𝑡),𝒮tgt

𝑖 ) on the target data. The
target data consists of long recordings, so segments of the target speaker 𝒮tgt

𝑖 are found
by diarization.

The goal of step 2 is to evaluate the effect of the loss itself compared to the supervised loss,
while in step 3, we explore whether it is possible to use the loss to adapt the system to the
target data.

6.5.3 Dataset and configuration

The work described in this section was done as part of 2020 Seventh Frederick Jelinek
Memorial Summer Workshop4. As a consequence, the model and training data used here

42020 Seventh Frederick Jelinek Memorial Summer Workshop https://www.clsp.jhu.edu/workshops/
20-workshop/
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are not exactly consistent with the experiments in the rest of the thesis. The overall target
speech extraction methodology however remains the same.

We use two different sources of data, i.e. artificially mixed short utterances for training,
and long meeting-like recordings for testing and adaptation. The artificially mixed data
are based on LibriSpeech dataset [PCPK15]. We simulate mixtures of two speakers. We
will denote the mixed data as LibriSpeech-mix5. LibriSpeech dataset is also used to get
enrollment utterances in all experiments. For testing and adaptation, we use the LibriCSS
dataset [CYL+20] containing multi-channel recordings simulating conversations. For our
experiments, we use the first channel only. Each recording was created using multiple
utterances from LibriSpeech [PCPK15] from multiple speakers. The utterances were played
back from a loudspeaker in a room. The recordings can be grouped into six different overlap
conditions from 0% to 40% of overlap. Alternatively, the recordings can be grouped into 10
different sessions, where each session contains different speakers. Each session then contains
one recording for each overlap condition. We use session0 as the development set and the
remaining sessions as the evaluation set.

The main network used for TSE corresponds to frequency-domain SpeakerBeam [ŽDK+19]
(Section 4.7.1). It consists of 3 BLSTM layers, each with 600 units and 2 fully connected
layers with ReLU activation. We apply the multiplication operation after the first BLSTM
layer. The auxiliary network has 2 fully connected layers with 64 units, ReLU activation
after the first layer. For supervised training, we used Adam optimizer with learning rate
1×10−3 and gradient clipping 1. We trained the network for 450k iterations with batch size
36. We used STFT with window size and shift of 512 and 128 samples. When extracting
the target speech, we apply TSE by chunks of 10 seconds with 5-second shift.

We use x-vector extractor and PLDA model from VBx recipe6, as described in [LPDB22]
and Sections 4.8.3, 6.4.1.

For re-training the network with the proposed loss ℒwsup, we use Adam optimizer, with
learning rate 1×10−6 and gradient clipping 1. We perform 80k iterations with batch size 1.
We weigh both parts of the loss equally, setting 𝜆spk = 𝜆mix = 0.5, unless stated otherwise.

We use the hybrid HMM-DNN model from [RDC+21]. The acoustic model is a 17-
layer factored TDNN [PCW+18] trained using the lattice-free MMI objective [PPG+16]
(Section 6.1.1). The model was trained on the 960h Librispeech data with 3x speed pertur-
bation, and additionally fine-tuned for 1 epoch on reverberated Librispeech data. We use
the official 3-gram language model provided with Librispeech for decoding.

6.5.4 Results

We evaluate the target speech extraction performance with speech recognition on the Lib-
riCSS dataset. We show results on the evaluation set (all) and on the condition with the
highest amount of overlap (OV40 ). We compare four different setups: (1) unprocessed data
without TSE applied, (2) baseline TSE trained with the supervised loss ℒsup on LibriSpeech-
mix, (3) TSE re-trained with the weakly supervised loss ℒwsup on LibriSpeech-mix, and (4)
TSE re-trained on target LibriCSS data with ℒwsup. The setups (2)-(4) correspond to steps
1-3 as described in Section 6.5.2. Note that for (4), there are no parallel data available.

For the experiments, it is necessary to have diarization outputs — first, for ASR de-
coding, and second, to get speaker labels when adapting to the target data. To avoid the
influence of the diarization errors, we first perform experiments using oracle diarization.

5Note that this does not exactly correspond to LibriMix dataset described in Section 6.4.1.
6VBx recipe https://github.com/BUTSpeechFIT/VBx
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Table 6.5: Speech recognition performance in terms of Word error rate (WER) on single-
channel LibriCSS data using oracle diarization.

on target WER [%]
ℒwsup data all OV40

(1) Mixtures - - 26.2 41.6
(2) TSE 7 7 24.1 33.2
(3) TSE 3 7 20.8 31.1
(4) TSE 3 3 20.3 30.2

Table 6.6: Speech recognition performance in terms of Word error rate (WER) on single-
channel LibriCSS data using RPN and TS-VAD diarization.

on target RPN TS-VAD
ℒwsup data all OV40 all OV40

DER [%] - - 9.5 14.2 7.6 9.5
WER [%]

(1) Mixtures - - 31.2 47.2 28.4 42.4
(2) TSE 7 7 30.1 42.3 27.4 36.3
(3) TSE 3 7 27.0 40.0 24.3 33.7
(4) TSE 3 3 26.6 39.4 24.0 33.0

The results are shown in Table 6.5. Comparing the results on unprocessed data (row (1))
with applying baseline TSE trained with the supervised loss ℒsup (row (2)), we can see
that the target speech extraction improves the ASR performance significantly, especially
when a higher amount of overlap is present. Re-training the TSE system with the weakly
supervised loss ℒwsup on the original artificially mixed data (row (3)) improves the per-
formance further. By exploring the outputs of original and re-trained TSE, we can see
that after re-training with ℒwsup, the resulting speech contains slightly more noise, but less
speech distortion. Such outputs may be more favorable for the ASR system. Note that
the network in (2) is fully converged and training it longer with supervised loss does not
yield better results. The improvements in (3) are thus not simply caused by longer training.
Finally, re-training TSE directly on the target evaluation set, leads to further improvement,
showing that it is possible to adapt to the target conditions using the speaker labels only.

Although not directly comparable, a separation using a similar network architecture
and hybrid ASR back-end achieved a WER of 35.5% on OV40 condition in [CYL+20].
The performance of the proposed system could also be improved using more sophisticated
network architectures for both front-end and back-ends as in [CYL+20].

In the second set of experiments, we used outputs of the diarization system rather
than the oracle ground-truth diarization, to see whether errors in the speaker labels have a
detrimental effect on the adaptation. We used two different diarization systems, i.e. region
proposal network (RPN) [HWF+20] and target-speaker voice activity detection (TS-VAD)
[MKP+20]. Table 6.6 shows the results of the ASR, together with the diarization error rates
(DER) of the diarization systems. We can see that in both cases, the trends are similar as
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Figure 6.8: Speech recognition performance as a function of number of iterations during
adaptation and different values of weight 𝜆spk. The mixture consistency weight 𝜆mix is set
to 1 − 𝜆spk.

with the oracle diarization. Including the proposed loss brings from 2.3% to 3.1% WER
improvement, and adapting to the target data further improves the performance by 0.3-
0.7% WER. The adaptation to the target data is thus not significantly affected by the
diarization errors.

To understand better how the two parts of the loss function, defined in Section 6.5.1,
affect the training, we experimented with different weights 𝜆spk, 𝜆mix during the adaptation
stage. Figure 6.8 shows the speech recognition performance as a function of the number of
iterations performed. We set the weights so that 𝜆mix + 𝜆spk = 1. The results show greater
importance of the speaker identity loss ℒspk. When the mixture consistency is dominant
in the loss, the performance starts to worsen after 10k iterations. The speaker consistency
loss leads to improvements even by itself, however, the best results are still obtained when
both parts of the loss are balanced.
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Chapter 7

Conclusion

This thesis presents target speech extraction as a way to tackle issues with interfering
speakers which arise in many speech technologies. We offer target speech extraction as
an alternative to speech separation, having several benefits, such as the needlessness of
counting speakers in the mixture, avoiding permutation problems, or better consistency of
the output for longer recordings. Our work shows the advantage of TSE over SS, analyzes
its different aspects, suggests possible ways to combine it with multi-channel processing,
and proposes application to automatic speech recognition and speaker diarization. We
conclude the findings of the individual parts of our investigation below.

We first compared target speech extraction with speech separation; this showed the
advantage of target speech extraction, especially in difficult conditions. Our experiments
also showed better robustness of TSE to changing number of speakers in the mixture and
stable performance with the increasing length of the recording. We also show the method
is not too sensitive to the length of enrollment utterance of the target speaker. In further
analysis, we show one weakness of both TSE and SS — decreased performance when the
voice characteristics of the speakers in the mixture are very similar. We also studied how
different aspects affect the system, including choice of speaker representation, the method
to inform the network, input/output domain, or loss function.

We further pointed out the possibility to combine TSE with multi-channel methods and
achieve an improved quality of the extracted speech signal. The first explored approach
is mask-based beamforming with mask estimated using the TSE output. This simple ap-
proach already improves the performance substantially. Secondly, we demonstrate that the
TSE can be combined with spatial clustering, which brings a further increase in perfor-
mance. Although spatial clustering comes with prolonged inference time, we conclude that
in combination with TSE, the iterative inference converges to a good solution much sooner.
Additionally, according to our results, the combination of TSE and spatial clustering is not
very sensitive to the number of components; this preserves the independence of TSE on the
number of speakers in the mixture.

Finally, we present how TSE can be used to improve ASR performance. Further im-
provement of the accuracy is brought by fine-tuning either the TSE or ASR component,
or ideally both of these jointly. We show that the fine-tuning of the TSE jointly with
ASR leads to less aggressive suppression of the non-target parts of the signal, which leads
to better recognition. We also introduced a way to combine TSE with clustering-based
speaker diarization; this makes use of the strengths of both methods and leads to improved
diarization performance on overlapped parts. Lastly, we proposed a weakly supervised aux-
iliary loss based on speaker labels, which can be used to fine-tune TSE for improved ASR
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performance. We demonstrated that the loss can be also used for adaptation to a target
domain since it requires only speaker labels as supervision.

7.1 Future directions

Robustness and real recordings

The target speech extraction proves to be a promising approach to pre-process multi-talker
recordings. The biggest challenge today is to carry the performance over to realistic record-
ings. Most of the experiments in this thesis, and also generally in the literature, are obtained
on artificially mixed recordings. This applies to both target speech extraction and speech
separation. When presented with real recordings in challenging conditions, both methods
often fail. This can be observed for instance from the recent CHiME-6 challenge [WMB+20]
of automatic speech recognition and diarization in everyday environments, where none of
the participants utilized recent neural-network-based separation or extraction methods1.

One obstacle to applying these methods to real recordings is the difficulty of evaluation.
For real recordings, parallel single-speaker data are not available, and as such, objective
measures such as SI-SDR cannot be evaluated. It is possible to evaluate on a downstream
task, such as ASR, but these results are difficult to analyze as many factors are influencing
the final accuracy. One step towards solving this is the recent REAL-M dataset [SRCG21]
that offers real recordings together with a pre-trained estimator of SI-SDR performance
without the need for ground-truth. This could enable us to more closely analyze the per-
formance of TSE on real recordings.

Another promising direction to improve the robustness is unsupervised training or adap-
tation on the real recordings. We made one step towards this direction in the last part of
the thesis, where we presented a weakly supervised loss. Other approaches are appearing
in speech separation literature, such as unsupervised training on mixed data [WTE+20],
or utilizing spatial information as supervision [SWLRP19]. Some works attempted to use
adversarial training, however without much success [Hos19]. This direction, in our opinion,
is still open and could be explored further.

Finally, while the TSE and SS problems are nowadays mostly tackled using discrimina-
tive techniques, it is possible to approach them using generative models. We have explored
this direction in the context of multi-channel speech separation in [ŽDB+21] and showed
that it is possible to solve the separation problem as inference in the factorial generative
model. Such a model offers higher interpretability and as a consequence, the possibility to
adapt to different noise conditions. The model also includes a latent speaker variable which
opens a way to apply it for target speech extraction.

Latency

Another issue not addressed in most of the current methods is latency. In some applica-
tions, this does not pose a problem, in others, such as hearing devices, the latency is a
key factor. Advancements in neural network architectures which bring improved accuracy
however often come with increased latency. The research direction of improving latency
while keeping the same or slightly decreased performance is not very well explored. There
are exceptions, for instance in the field of sound source separation [TWJS21] or challenges

1Proceedings of CHiME-2020 workshop https://chimechallenge.github.io/chime2020-workshop/
programme.html
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in speech enhancement with limited latency [RGC+20, GBC+21]. We however believe that
this direction could be explored further.

Speaker discrimination

The final direction that could improve the current target speech extraction systems is better
speaker discriminability. There are two aspects that should be addressed:

• Better robustness to intra-speaker variability. When the speakers are in different
conditions, or in a different emotional state the system should still correctly identify
them.

• Better discrimination among speakers. Especially when applied to more challeng-
ing conditions, the system can confuse different speakers. Improved discrimination
among speakers would also enable tackling the absent speaker case, as discussed in
Section 6.3.4.

These two aspects however are opposing and need to be traded off. To advance in this
direction, simply training on datasets with more intra- and inter-speaker variability could
help. Other than that, advances in speaker verification can motivate further research in
TSE.
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