
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

MAPPING OF PACKET PROCESSING FROM P4 LAN-
GUAGE TO FPGA TECHNOLOGY
MAPOVÁNÍ ZPRACOVÁNÍ PAKETŮ POPSANÉHO V JAZYCE P4 DO TECHNOLOGIE FPGA

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. MICHAL KEKELY
AUTOR PRÁCE

SUPERVISOR doc. Ing. JAN KOŘENEK, Ph.D.
ŠKOLITEL

BRNO 2023

Abstract
This thesis deals with the design of novel hardware architectures for packet classification.
The main goal is to propose general and flexible hardware approaches capable of classifying
packets on high-speed computer networks. The approaches need to be configurable via P4
language description and need to be scaleable to 100 Gbps and faster networks. The thesis
starts with an analysis of the current state of the art in packet classification on high-speed
networks. Based on the analysis, new architectures for packet classification are proposed.
The architectures are designed with scalability, flexibility, and memory efficiency in mind.
The goal is to achieve high throughput while maintaining P4-programmability and the
ability to carry out general packet classification. Proposed approaches are further optimized
and extended to be as efficient as possible. The first architecture uses the DCFL algorithm
extended by a parallel TCAM memory, memory duplication and ruleset analysis. The goal
is to achieve general packet classification, which has small memory requirements and offer
a trade-off between the achieved throughput and the memory requirements. The second
proposed approach is more specialized. It optimizes exact match packet classification by
leveraging the distributed memories on FPGAs to speed up the Cuckoo hashing algorithm.
The main goal is to achieve very high throughputs efficiently. Both approaches are further
extended by proposing a caching mechanism that enables efficient external memory usage.
Finally, all of the proposed mechanisms are evaluated on real network data, and the achieved
results are shown.
Abstrakt
Táto dizertačná práca sa zaoberá návrhom nových hardvérových architektúr na klasifikáciu
paketov. Hlavným cieľom je navrhnúť všeobecné a flexibilné hardvérové prístupy, ktoré sú
schopné klasifikovať pakety na vysokorýchlostných počítačových sieťach. Prístupy musia byť
konfigurovateľné pomocou popisu v jazyku P4 a musia byť škálovateľné na siete s rýchlosťou
100 Gb/s a viac. Práca začína analýzou aktuálneho stavu poznania v oblasti klasifikácie
paketov. Na základe tejto analýzy sú navrhnuté nové architektúry pre klasifikáciu paketov.
Pri návrhu sa dbá na škálovateľnost, flexibilitu a pamäťovú efektivitu. Cieľom je dosiahnuť
vysokú priepustnosť a zároveň udržať programovateľnosť pomocou P4 a schopnosť vykonať
všeobecnú klasifikáciu paketov. Navrhnuté prístupy su optimalizované a rozšírené, aby
boli čo najefektívnejšie. Prvá architektúra využíva algoritmus DCFL rozšírený o paralelnú
pamäť typu TCAM, duplikáciu pamätí a analýzu množiny pravidiel. Cieľom je dosiah-
nutie všeobecnej klasifikácie paketov, ktorá má nízke pamäťové nároky a ponúka možnosť
škálovať priepustnosť za cenu zvýšených zdrojov. Druhý navrhnutý prístup je špecializo-
vanejší. Optimalizuje klasifikáciu paketov založenú na úplnej zhode. Toto je dosiahnuté
využitím distribuovaných pamätí na čipe FPGA na zrýchlenie algoritmu kukučieho hešo-
vania. Hlavným cieľom je dosiahnuť veľmi vysokú priepustnosť efektívne. Architektúry
sú ďalej rozšírené navrhnutím mechanizmu vyrovnávacej pamäte, ktorá dovoľuje efektívne
použiť externé pamäťové bloky. Nakoniec sú tieto architektúry vyhodnotené na skutočných
sieťových dátach a sú ukázané dosiahnuté výsledky.
Keywords
P4, classification, hash table, cuckoo hashing, trie, FPGA, packet filtering, DCFL, cache,
optimization, high-speed networks
Klíčová slova
P4, klasifikácia, vyhľadávacia tabuľka, kukučie hešovanie, trie, FPGA, filtrovanie paketov,
DCFL, vyrovnávacia pamäť, optimalizácie, vysokorýchlostné siete

Reference
KEKELY, Michal. Mapping of packet processing from P4 Language to FPGA Technology.
Brno, 2023. PhD thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor doc. Ing. Jan Kořenek, Ph.D.

3

Rozšírený abstrakt
Táto dizertačná práca sa zaoberá návrhom nových hardvérových architektúr na klasifikáciu
paketov. Hlavným cieľom je navrhnúť všeobecné a flexibilné hadrvérové prístupy, ktoré sú
schopné klasifikovať pakety na vysokorýchlostných počítačových sieťach. Prístupy musia
byť konfigurovateľné pomocou popisu v jazyku P4 a musia byť škálovateľné na siete s
rýchlosťou 100 Gb/s a viac.

Práca začína analýzou aktuálneho stavu poznania v oblasti klasifikácie paketov. V dnešnej
dobe dochádza k neustálemu zrýchľovaniu sieťových liniek a zároveň sa samotné počítačové
sieťe stávajú komplexnejšími a dynamickejšími. Tieto trendy reflektuje aj softvérovo defi-
nované sieťovanie (SDN) a jazyk P4. Oba prístupy poskytujú flexibilnejšie a abstraktnejšie
spôsoby popisu sieťovej funkcionality. Túto flexibilitu je však potrebné skĺbiť s narasta-
júcimi rýchlosťami. Existujúce prístupy ku klasifikácii paketov sú často optimalizované
na konkrétne prípady použití a neposkytujú možnosť škálovania a rozšírenia. Ďalším ne-
dostatkom býva neefektívna hardvérová implementácia, ktorá znemožňuje využitie tech-
nológie FPGA, ktorá poskytuje výkon potrebný na spracovanie paketov na vysokorýchlost-
ných sieťach. Na základe analýzy je zostavená základná pracovná hypotéza, ktorá hovorí,
že aj napriek týmto nedostatkom je možné, využitím nových hardvérových architektúr a
jazyka P4, dosiahnuť vysokú priepustnosť (100 Gb/s, 200 Gb/s, 400 Gb/s) klasifikácie
paketov a zároveň zachovať potrebnú flexibilitu.

V práci sú navrhnuté nové architektúry pre klasifikáciu paketov. Pri návrhu sa dbá na
škálovateľnosť, flexibilitu a pamäťovú efektivitu. Cieľom je dosiahnuť vysokú priepustnosť a
zároveň udržať programovateľnosť pomocou P4 a schopnosť vykonať všeobecnú klasifikáciu
paketov. Navrhnuté prístupy sú optimalizované a rozšírené, aby boli čo najefektívnejšie.
Prvá architektúra využíva algoritmus DCFL rozšírený o paralelnú pamäť typu TCAM.
Cieľom je dosiahnutie všeobecnej klasifikácie paketov, ktorá má nízke pamäťové nároky a
ponúka možnosť škálovať priepustnosť za cenu zvýšených zdrojov. Škálovateľnosť je dosiah-
nutá pomocou duplikácie pamätí a techník na zníženie pamäťovej náročnosti riešenia. Ar-
chitektúra je navyše optimalizovaná analýzou množiny klasifikačných pravidiel, na základe
ktorej je možné odstrániť pravidlá, ktoré vytvárajú v algoritme DCFL úzke hrdlo. Tieto
pravidlá sú klasifikované samostatne v paralelnej pamäti typu TCAM. Výsledná architek-
túra je schopná dosiahnuť priepustnosť 100 Gb/s a je škálovateľná. Napríklad, na dosiahnu-
tie priepustnosti 10 Gb/s potrebuje pre 5500 pravidiel architektúra iba 20 pamätí BRAM.
Architektúra aj napriek svojej flexibilnosti a škálovateľnosti potrebuje menšie pamäťové
zdroje ako ostatné prístupy (rozhodovací les, BV-TCAM). Využitie pamäte TCAM a analýza
pravidiel dosahuje v niektorých prípadoch zvýšenie priepustnosti až o 76 % oproti základnej
implementácii DCFL.

Bežným príkladom klasifikácie paketov je napríklad filtrovanie alebo monitorovanie IP
tokov, ktorý vyžaduje iba vyhľadanie pravidiel na základe presnej zhody hodnôt. Fil-
trovanie paketov na základe IP tokov využíva takmer každé sieťové zariadenie a zároveň
tento druh filtrovanie vyžaduje veľkú kapacitu množiny pravidiel. Vyhľadanie pravidiel
na základe presnej zhody je menej komplexné ako ostatné typy vyhľadania, a preto je
možné tento špecifický prípad vykonať efektívnejšie. Druhý navrhnutý prístup je špeciali-
zovaný práve na úplnú zhodu a optimalizuje klasifikáciu paketov založenú na úplnej zhode.
Toto je dosiahnuté využitím distribuovaných pamätí na čipe FPGA na zrýchlenie algoritmu
kukučieho hešovania. Vďaka distribuovaným pamätiam je možné vykonať v každom takte
viac nezávislých vyhľadaní a tým pádom je možné zvýšiť rýchlosť vyhľadania aj minimál-
nou duplikáciou pamätí. Architektúra má teda nízke pamäťové nároky aj pri škálovaní
na vysoké priepustnosti. Architektúra je schopná dosiahnuť priepusnosť viac ako 2 Tb/s

s efektívnou kapacitou viac ako 40 000 pravidiel reprezentujúcich IPv4 toky za cenu len
niekoľko stoviek blokových pamätí (366 BRAM na čipoch od firmy Xilinx, 672 M20K na
čipoch od firmy Intel).

Navrhnuté architektúry využívajú pamätové bloky dostupné priamo na čipe, čo limituje
kapacitu pravidiel klasifikácie. Monitorovanie veľkých sietí vyžaduje rádovo milióny pra-
vidiel. Na dosiahnutie potrebnej kapacity pravidiel je potrebné využiť externé pamäťové
bloky. Externé pamäťové bloky prinášajú zvýšenú komplexitu prístupu do pamäte, najmä
v prípadoch, keď dochádza k úpravám hodnôt v externej pamäti. Aby bola zabezpečená
konzistencia a správnosť prístupov do externej pamäte, muselo by spracovanie paketov
často čakať. Navrhnutá architektúra vyrovnávacej pamäte dovoľuje efektívne využiť externé
pamäťové bloky. Architektúra dosahuje 3-krát vyššiu priepustnosť oproti iným mechaniz-
mom a umožňuje spracovanie paketov na plnej rýchlosti 100 Gb/s. Zároveň architektúra
znižuje počet potrebných skutočných prístupov do externej pamäte.

Využitím navrhnutých architektúr je možné dosiahnuť škálovateľnú a efektívnu klasifiká-
ciu paketov na vysokorýchlostných sieťach. Architektúry sú zároveň mapovateľné z popisu
v jazyku P4, čo prináša doposiaľ nevídanú flexibilitu.

Mapping of packet processing from P4 Language
to FPGA Technology

Declaration
I hereby declare that this PHD thesis was prepared as an original work by the author under
the supervision of Ing. Jan Kořenek, Ph.D. My colleagues from Netcope and Intel were
helpful as well. I have listed all the literary sources, publications, and other sources, which
were used during the preparation of this thesis.

. .
Michal Kekely

October 30, 2023

Contents

1 Introduction 4
1.1 Objectives . 5
1.2 Outline . 7

2 Current State of the Art 8
2.1 P4 Language . 10

2.1.1 Abstract Switch Forwarding Model 10
2.1.2 Match/Action Tables . 11

2.2 Packet Classification . 12
2.3 Related Work . 13

3 Research Summary 20
3.1 Research Process and Contributions . 20
3.2 Papers . 24

3.2.1 Included Papers . 24
3.2.2 Included Papers . 25
3.2.3 Other Relevant Papers . 29

3.3 List of Publications . 30

4 Disscussion and Conclusions 32
4.1 Results . 32
4.2 Conclusions . 37
4.3 Deployment and Future Work . 38

Bibliography 40

A Included Papers 45
A.1 Paper 1 . 46
A.2 Paper 2 . 49
A.3 Paper 3 . 55
A.4 Paper 4 . 64
A.5 Paper 5 . 69
A.6 Paper 6 . 82

1

List of Figures

2.1 Architecture of SDN. 9
2.2 Abstract switch forwarding model of the P4 language. 11
2.3 Basic idea of cuckoo hashing and adding a value into the table. 13
2.4 Example of a binary trie structure. 15
2.5 Example of constructed multibit trie. 16
2.6 Structure of the stored bit maps of Tree Bitmap algorithm of root node from

figure 2.5. 16
2.7 Example of search space cutting based on a binary decision tree. 17
2.8 Architecture using DCFL algorithm. 18

3.1 DCFL architecture using memory duplication and parallel TCAM. 21
3.2 Resource sharing between tables. 23

4.1 Block RAMs and LUTs used by optimized DCFL compared to other ap-
proaches. 33

4.2 Throughput increase achieved by offloading rules for different configurations. 34
4.3 The relation between utilized memory and achieved throughput for different

FPGAs and IPv6 flows when using three hash functions. 35
4.4 Throughput of the optimized Cuckoo hashing on real network traces for

architecture with ten lookups and memory replication of two. 36

2

List of Tables

3.1 Worst case and mean case sizes of cross-products for different rulesets. . . . 20

4.1 Basic characteristics of captured traffic traces from CESNET network. . . . 32
4.2 Charecteristics of rulesets used. 33
4.3 Comparison of different cache architectures. 37
4.4 Resource utilization and frequency of the proposed architecture. 38

3

Chapter 1

Introduction

Information technologies are constantly progressing, and the need for more and faster con-
nections between computational devices and users is increasing. The Internet is getting
bigger, and it supports a spectrum of different services. Computer networks and their in-
frastructure are required to be constantly faster and faster as users want to transfer more
data. There are more network devices that communicate over the network links, and data-
intensive communication is becoming more frequent, for example, video or audio streaming
and sharing of various other media. This trend requires devices to have more computational
power to be able to keep up with the amount of data transferred. The ever-increasing ca-
pacity of network links leads to a need for all network devices and systems to speed up
their packet processing. Finally, the whole character of the networks is changing as well.
The end devices are becoming more mobile, which leads to more dynamic networks.

Some applications require processing power that standard CPUs don’t provide. While
the software approach provides a lot of flexibility and ease-of-use the performance and
efficiency are limited. An alternative is to use hardware acceleration, where the critical
parts of the computation are offloaded into specialized hardware modules. Leveraging the
hardware allows for more parallelization, pipelining, and the modules can be optimized
with the desired functionality in mind. Hardware solutions can bring significant speed up
and decrease energy consumption. A downside is that hardware modules are specialized
and single-purpose. Therefore, flexibility suffers. Designing and implementing hardware
modules is also way more complex and time-consuming.

In order to achieve wire-speed processing with a throughput of 100 Gbps and more,
network systems have to utilize hardware-accelerated FPGA or ASIC technology. The
FPGA acceleration provides high performance and is highly configurable (flexible compared
to ASIC) as well. Flexibility is essential for any practical network system because traffic
processing is changing with the introduction of every new protocol, application or service.
Therefore, 40 Gbps and 100 Gbps network interface cards with FPGAs (also known as
FPGA Smart NICs) started to be recently deployed to data centres as hardware platforms
for acceleration [10] and will probably be more and more frequently used in the future.

The increasing complexity and computational requirements of computer networks led
to the idea of separating the more complex control plane and the more performance-heavy
data plane. The concept is also called Software Defined Networking (SDN) [47]. The
idea can be pushed even further, where flexible network traffic processing can be easily
described in the P4 high-level language [8]. The P4 language was originally designed at
Stanford University in order to enable protocol, vendor and target independent definitions
of packet processing. One of the integral parts of the P4 language specification [50, 51] is the

4

utilization of match/action tables as a basis to control the processing of each input packet.
Furthermore, this description can be automatically mapped directly to a high-throughput
packet processing architecture for an FPGA hardware accelerator [6, 7].

The core functionality performed by the match/action tables is packet classification
in various forms. During the classification process, packets are matched against a rule
set, which are usually defined by exact values, ranges or prefixes of a few selected packet
header fields. Generally, the performed classification is a mathematical problem of a multi-
dimensional range search. Packet classification is a core functionality for any network
function, from switching and routing to network monitoring and security. It allows to
change behaviour on a per-packet basis. Due to the large ruleset size and complexity of
rules, it is rather difficult to perform matching at such rate that is sufficient for wire-speed
processing of high-speed network data. Therefore, many different hardware architectures
have been designed to accelerate packet classification [48, 17, 43, 34, 12, 41, 31].

In order to achieve wire-speed 100 Gbps throughput, it is necessary to process every
incoming packet only in 6.7 ns because the shortest 64 B Ethernet packets can arrive within
such time intervals. The time to process a packet corresponds to a 150 MHz clock. This time
is even shorter for 400 Gbps and 1 Tbps, where we would need to scale the frequency to be
over 500 MHz. FPGAs are not ready for such high frequency, especially if large data widths
are used to transfer packet data. Therefore, the processing throughput is usually increased
simply by the utilization of multiple processing pipelines in parallel [33, 42], which require
multi-port memories or memory replication. Unfortunately, both approaches significantly
reduce throughput scalability at 400 Gbps or 1 Tbps fast links.

1.1 Objectives
This thesis focuses on researching the area of packet classification in FPGA. As previously
mentioned, packet classification needs to be efficient and scalable enough to be able to
handle the increasing link speeds. On the other hand, the approaches also need to be
flexible and general enough to handle different use cases with different amounts of available
resources. Therefore, the research steps are taken with an emphasis on the generality,
scalability and flexibility of designed algorithms. Since the FPGA resources are limited,
and a lot of them might be used by other parts of packet processing, the algorithms also
need to be as resource-efficient as possible. The research aims to satisfy at least 100 Gpbs
links. The main goal is to leverage FPGA performance for accelerating packet classification
flexibly and enabling it to be used via easy-to-use P4 language description.

Based on the mentioned focus in the area of hardware accelerated packet classification
and P4 language, the following working hypothesis was formulated for this thesis:

Despite current approaches to packet classification not being sufficient in terms of re-
quired throughput and flexibility required to classify packets based on different dimensions,
using the P4 language and new hardware architectures, it is possible to achieve high through-
put (100 Gbps, 200 Gbps, 400 Gbps) while maintaining high flexibility.

The main objective of the thesis can be divided into multiple sub-tasks:

1. Analyze different approaches to packet classification. The main focus of the analysis
should be on the feasibility of hardware implementation. Additionally, the different
characteristics of each approach should be analyzed.

2. Identify the best approaches for packet classification in FPGA. Create a set of different
approaches for different types of packet classification.

5

3. Design and implement selected approaches. The approaches should aim to satisfy a
throughput of at least 100 Gbps while being efficient in terms of chip resources.

4. Evaluate the throughput, scalability, flexibility and efficiency of implemented ap-
proaches.

5. Analyze the rule sets used for different use cases. The goal is to optimize and increase
the efficiency of selected approaches even further.

6. Design and implement an efficient way of mapping the P4 described packet classifi-
cation (match/action tables) onto a specific configuration of the designed hardware
approach.

P4 language can describe any match/action table. The tables can have different ca-
pacities (sizes of rule sets they can hold). The matching can be done based on different
numbers of packet header fields (dimensions), where each field might be matched using
different matching type (exact, ternary, longest prefix match). Different use cases might
also require different throughput. Additionally, resource requirements should be consid-
ered. Real use cases require multiple match/action tables. For general packet processing,
the packet also needs to be parsed, modified and then put together. Hardware modules for
different functions and multiple match/action tables need to all fit into the limited FPGA
resources. In order to properly analyze different approaches, there are multiple character-
istics that should be considered. Based on the focus of the thesis, the main characteristics
to consider are:

• Speed of look-ups. This characteristic is becoming more and more relevant. Even
for 10 Gbps, the edge case of 64-byte long TCP packets equals to the processing of 20
million packets every second.

• Low memory requirements. Low memory requirements enable the usage of faster
and smaller memories, which increases the throughput. Lower memory requirements
also give more space for other functionality on the chip.

• Support for different sizes of rule sets. More complex and bigger networks
require bigger rule sets. This characteristic usually goes hand in hand with memory
requirements.

• Supported types of matches. Different use cases need different types of matching
(exact, ternary, longest prefix match).

• Support for different number of dimensions. Dimensions are different packet
header fields that are used for matching. Some approaches do not scale well when
increasing the size or number of those fields.

• General scalability of other characteristics. Different use cases might need
different numbers and sizes of dimensions, different sizes of rule sets, and differ-
ent throughputs, and they might impose different area restrictions. The approaches
should most efficiently fit the specific use case.

6

1.2 Outline
This thesis is written as a collection of papers. Research contributions are presented by a
set of selected peer-reviewed papers and journal articles. The texts are provided at the end
of the thesis in their original format in appendix A. The text of the thesis itself is organized
into three chapters. Chapter 2 contains a summary of the relevant current state of the art.
It describes basic network principles, Software-Defined Networking (SDN), P4 language and
approaches used for packet classification. Chapter 3 describes the research and its main
contributions. It also contains overview of selected included research papers. Chapter 4
summarizes the results and conclusion of the thesis. It also provides some discussion and
possible future directions for the research.

7

Chapter 2

Current State of the Art

Computer networks are telecommunication networks that allow devices to exchange data.
The two devices that communicate (sender and receiver or also end devices) are usually not
connected directly but through a network of intermediary devices. Intermediary devices
ensure that the message is routed and delivered to the end device.

For two devices to properly communicate, they both also have to understand each
other. The data and metadata (data that are attached to the original data and carry some
additional information about the data, for example, length of the message, address of the
sender or time when the data were received) exchanged by the devices need to have a
meaning attached. Network protocols define the structure and meaning of different parts
of data. The protocols can also define specific sequences of messages or mechanisms for
managing the data exchange itself (for example, the size of messages). The most commonly
used network protocols are Ethernet, IP (versions 4 or 6) and TCP or UDP.

To transfer data between two devices, the network devices usually hold routing infor-
mation which describe where different traffic should be sent. Routing information can be
represented, for example, by a table of IP addresses and corresponding actions for traffic
coming from or bound for those addresses. The most basic action is to forward the packet
to a specific network interface (where another intermediary or end device is connected).
Each intermediary device needs to be properly configured. The standard way of doing this
was configuring each device independently. For more complex networks, this becomes diffi-
cult since there is a lot of overhead and redundancies for keeping policies consistent across
the entire network. Another problem is that the networks are not dynamic this way and
depend on the devices used and manufacturers of those devices.

Software-Define Networking (SDN) [47] is a networking architecture where the control
plane is separated from the data plane. The intelligence and state of the network are
centralized, and the actual infrastructure is abstracted for the applications using it. SDN
allows the network to be more programmable, automatized and controlled. It also enables
more scalable and flexible networks to be built.

The motivation behind the inception of SDN is the necessity to have the network ar-
chitectures that are suitable for today’s complex networks. Standard computer networks
are hierarchical, built from layers of switches connected in a tree-like structure. This hier-
archical structure is efficient for a client-server type of communication. However, current
networks are more dynamic (data transfers within data centres, distributed computation).
Trends leading up to SDN were mainly that the patterns of use for the networks are chang-
ing, there are more and more mobile devices, and the amount of data transferred is increas-
ing. These trends exposed the limitations of standard networking technologies. Standard

8

technologies were not designed with these use cases in mind. The main problems are in-
consistent policies, non-scalability and dependency on device manufacturers.

The main idea of SDN is to separate the control of network infrastructure from the
functional elements that route the data. Additionally, the architecture enables direct pro-
gramming of the network control. The separation of control from individual network devices
introduces abstraction on top of the functional infrastructure. Network applications and
services can view the entire network as a single logical unit interconnecting the end devices.
The function of an abstracted network is also easier to automatize, scale and is overall
flexible.

SDN is illustrated by figure 2.1. The architecture is logically separated into three
layers. Physical devices create the infrastructure of the network, and on top of them is
an abstract control layer. The control layer represents the network intelligence, centralized
in software SDN controllers that enable a global view of the network. Applications in the
application layer then treat the network as a single logical switch. The network can also be
managed from a single point, independent of specific requirements and attributes of devices
in the infrastructure. Design and management of such a network become simple. The
infrastructure devices can also be simpler as they only need to understand the instructions
from the SDN controller.

Figure 2.1: Architecture of SDN.

SDN also introduced the OpenFlow protocol. OpenFlow is a standardized communi-
cation interface between the control layer and the infrastructure layer. OpenFlow enables
direct and uniform access to network devices (switches, routers). The protocol is necessary
to separate network control of devices from centralized software. OpenFlow specifies basic
primitives used by the external software applications for the configuration of routing of the
network devices. The protocol is implemented and supported both in the devices and within
the control software. A concept of network flows is used. A flow represents packets that
belong to one logical network connection, so usually, they have the same 5-tuple of source
IP address, destination IP address, source port, destination port and protocol. OpenFlow

9

uses a set of static and dynamic rules based on flows to define the behaviour of the network.
The granularity of using flows enables fine control of the network.

SDN and OpenFlow are deployed on real networks, for example, by Google. The tech-
nology can be deployed in parallel with traditional routing, which makes it easier to switch
to SDN. SDN can also manage only a part of the network. Therefore, not every device has
to be SDN compatible.

There are downsides to SDN. While it is more flexible than standard networks, it is not
flexible enough. Emerging new protocols (for example, different encapsulation protocols)
introduce more and more header fields that can be used to classify packets. The issue
is that OpenFlow only supports a set of header fields that can be used and need to be
updated. OpenFlow needs to be constantly updated to support new fields. New versions of
the protocol are incompatible with older ones and with older devices. Overall, the process
of extending OpenFlow and updating all of the devices is slow and cumbersome.

2.1 P4 Language
The introduction of new network protocols requires the architectures and protocols like
SDN and OpenFlow to be constantly updated and extended. Originally, OpenFlow was an
abstraction of a single table of rules with 12 different header fields. The abstraction was
extended over time. OpenFlow version 1.4.0 [4] supports 41 different header fields. This
trend does not seem to stop anytime soon. Instead of extending OpenFlow, it is better to
use more flexible mechanisms for packet analysis and header field matching.

P4 language [8, 50, 51] is meant to be used to configure network devices. The source
code written in P4 language describes how the packets should be processed. This enables
an even higher level of abstraction for programming computer networks. P4 language is
highly domain-specific, and the expressive power is limited to the network functionality.
Implementing support for different functions across different network devices would not be
feasible.

P4 language has three main goals:

• Reconfigurability. The controller should be able to change the packet processing
on the fly.

• Protocol independence. The device should not be dependent on any concrete
packet format. The controller should be able to specify any protocol, any packet
parser, and any set of lookup tables.

• Target architecture independence. The programmer of the controller needs no
knowledge of the target architecture. The P4 compiler should be able to accept any
target-independent description and translate it to a target-dependent configuration
of the device.

2.1.1 Abstract Switch Forwarding Model

The P4 language works with an abstract model of a general switch device (figure 2.2). The
switch starts by analyzing the packet headers and parsing them out. Based on the parsed
values of header fields, packet processing is carried out as a sequence of Match/Action tables.
The model contains a programmable parser, which gives it more flexibility than OpenFlow.
Match/Action tables can be applied in parallel, and the actions that modify the packet

10

are constructed from primitives that are supported by each switch device. The model is a
generalization of how packets are processed on different devices and technologies. Two types
of operations are used for managing the model. Configuration operations programme the
parser, sequence and control flow of applied Match/Action tables and the specific format of
protocol headers. Runtime operations are used to fill the Match/Action tables with specific
rules.

Figure 2.2: Abstract switch forwarding model of the P4 language.

Input packets are parsed by the parser, which extracts specific protocol headers and
their fields. Parser ignores any meaning of the protocols or fields. Extracted header fields
serve as input for the Match/Action tables. Each Match/Action table represents a rule set
used to process the packets. The tables are separated into two groups, ingress and egress
tables. Ingress tables process all of the incoming packets and can modify the packets and
decide the output port of the packet or its priority. After ingress processing, the packets are
placed into buffers that can implement queueing mechanisms. At this point, the output port
for a packet is strictly set. Egress tables can further modify the packet for a given output
port. Each rule in the Match/Action table specifies an action that will be applied. The
action can modify header fields, modify packet metadata, duplicate the packet or drop it.
Metadata are used to carry some of the additional packet information. The most commonly
used metadata are the input port number of the incoming packet or the timestamp of arrival
time.

2.1.2 Match/Action Tables

The P4 language is defined over the abstract model. The language contains basic concepts
for defining the format of protocol headers and metadata, parse graphs, Match/Action

11

tables, actions based on primitives, and control flow. Control flow dictates the sequence of
Match/Action table applications. Values from protocol headers and packet metadata are
always tied to a single packet and do not persist between multiple packets. The P4 language
supports definitions of stateful registers, counters and meters, which hold information that
persists between packets. Accessing those stateful resources might be limited to specific
tables.

Match/Action tables represent the classification rule sets. The Match/Action table
description contains a set of header fields that are used for matching (classification dimen-
sions). A type of match is also defined for each header field. The description specifies a
set of actions that can be applied to modify the packet and maximal size of the table. An
actual implementation of the table is never specified, and it is fully in control of the P4
compiler. There are four basic types of possible matches:

• Exact match. The compared value of the header field and reference value have to
be the same.

• Range match. The rule defines a range of values. The header field is matched in
terms of belonging to a given range.

• Ternary match. The rule defines a value and a mask. Bitwise AND operation is
carried out on the header field before it is compared to the reference value. This
effectively means that some bits of the value can be ignored for each comparison.

• Longest prefix match (LPM). A rule with the longest matching prefix with the
header field value is looked up.

The P4 language is becoming more and more popular all over the networking world.
The language is currently being adopted by many companies, including Google and Intel.

2.2 Packet Classification
The P4 language tries to unify the programming of OpenFlow or other programmable
switches. The core part of the language are Match/Action tables, which represent the
standard packet classification problem [14, 54, 15].

The goal of packet classification is to assign packets to specified classes that are repre-
sented by a rule set (R, also called classifier). More specifically, a rule that corresponds to
the packet is looked up in the rule set. To determine which rule corresponds to the packet, a
value from packet header field is compared to values defined by the rules. Usually, the com-
parison is exact, ternary (using masks) or based on the longest matching prefixes. Based
on the result of the classification, a specific action can then be carried out for the packet,
for example, forwarding or dropping the packet.

The basic principle of packet classification can also be extended to matching based on
multiple packet header fields. Each field represents one dimension of the classification, and
it is also called multi-dimensional classification. The classification rule is represented as
an n-tuple of values that are used for matching. Based on the number of classification
dimensions, we can split the algorithms into single-dimensional and multi-dimensional.

12

2.3 Related Work
There is a lot of published research in the area of packet classification, with many completely
different approaches described in individual papers. Some of them focus on being as general
as possible, supporting packet classification in multiple different dimensions or supporting
different types of match strength. However, the only way to scale most of the published
approaches for higher throughputs is to utilize multiple copies of the same architecture
operating in parallel. The problem of effective scaling is not properly addressed.

The most basic example of rule lookup is a linear algorithm. The algorithm goes through
all the rules sequentially, comparing them to the packet. The algorithm either stops when
it finds a matching rule (also generally called a table hit) or when all of the rules were
compared and none of them matched the packet (also generally called a table miss). The
linear algorithm, while being simple, is feasible only for small rule sets. Time complexity
of the approach is O(N*D), where N is the number of rules, and D is the number of
dimensions.

In many cases, exact match packet classification is sufficient. This is prevalent mainly
when IP flows are concerned. Effective approaches to exact match packet classification are
usually based on hash tables. The hash table is a simple continuous table that is addressed
by the result of a hash function computed on the looked-up value. A more sophisticated
way of implementing hash tables is cuckoo hashing principle [39]. The main idea of cuckoo
hashing, illustrated in figure 2.3, is to increase the efficiency of memory utilization in the
hash table by multiple parallel hash functions/tables. Each table uses one of the different
hash functions for indexing. This means that if a new element cannot be inserted into the
first table because of a conflict with an already existing item, it can still be inserted into
one of the other tables through a different hash function. Even when the element cannot
be inserted into any of the tables, it can still be inserted by force, pushing out one of the
previous occupants. The previous occupant can then be reinserted into the tables in the
same manner. In the worst case, the insertion time for a new value is logarithmic. Using
more tables and reinsertions allows the cuckoo hashing to keep the high lookup speed while
decreasing the number of unresolvable conflicts and increasing the effective capacity.

Figure 2.3: Basic idea of cuckoo hashing and adding a value into the table.

13

The cuckoo hashing approach is well-suited for hardware because each hash table can
work in parallel [29, 22]. The hardware implementation can also leverage a small extra stash
memory that keeps any values that were pushed out of the tables or values that could not be
inserted due to a circular conflict. The stash memory is also matched and works in parallel
with hash tables. Using the stash increases the effective capacity of the approach. These
published implementations offer throughputs up to only 100 Gbps, with no proposed way
to increase it. Cuckoo-hash-based packet classification is also effectively used to monitor
or analyze network traffic with the idea of Software-Defined Monitoring (SDM) [21]. Here,
external memory is utilized, and the achieved throughput is again shown to be sufficient
only for up to 100 Gbps.

Packet classification based on bit-parallelism (or bit vectors, BV), proposed by Lak-
shman et al. [32], is a practical implementation that leverages the fact that rule updates
are infrequent compared to search operations. The algorithm works in two stages. In the
first stage, parallel searches are carried out within each of the dimensions, resulting in bit
vectors. Each bit of these vectors corresponds to one record in the classification ruleset,
therefore, their width is given by the number of rules used. A bit is set to a logical one if
a corresponding rule is matched in a given dimension and is reset to logical zero otherwise.
After the first stage, every bit vector represents the set of all the rules matched in one
dimension. Then, the second stage has to find an intersection of the sets created within
single dimensions. Since these sets are represented as bit vectors finding the intersection is
reduced to a bitwise AND operation among the bit vectors. The main problem with the
approach is scalability, as the width of bit vectors increases with the number of rules. The
HW implementation would need to dynamically change when adding rules.

Ternary content-addressable memory (TCAM) is another hardware-suitable implemen-
tation. TCAM is capable of storing and comparing values along with the bit mask. The
bit mask specifies which bits are used for the comparison. The hardware implementation
of TCAM also allows for all of the stored values to be compared to the looked-up value
in parallel. This means that the entire lookup can be done within a single clock cycle.
The downside is that the parallel ternary lookup is costly and TCAMs tend to have lim-
ited capacity. Increasing the capacity of TCAM exponentially increases the logic resources
required to implement the parallel lookup. Generally, only small TCAMs are used in com-
bination with different algorithmic approaches.

Song et al. [44] presented architecture that combines bit vector approach with TCAMs.
The architecture uses TCAMs for lookups within dimensions that require exact or prefix
matches and tree-bitmap implementation of the BV algorithm for source and destination
port lookups. This architecture is optimized for classification based on network flow 5-
tuples, and therefore, it is not very flexible and was not shown to have the ability to scale
to support different header fields.

Trie, shown in figure 2.4, is a binary tree data structure that is suitable for single-
dimensional classification. Values in rules are converted into bit prefixes, and each prefix
is represented by a path within a binary tree. Value from a packet is processed bit by bit.
The value of each bit decides if the computation continues within the right or left subtree.
The process is repeated until a leaf node is reached. Each node (or rather the entire path
into the node) represents the longest-matched prefix. Adding and removing rules means
adding or removing nodes representing the corresponding prefixes. The basic binary trie is
not very efficient for wide dimensions. For example, for IPv6 addresses that are 128-bits
wide, the matching may require up to 128 steps.

14

Figure 2.4: Example of a binary trie structure.

One of the possible solutions that make binary tries more efficient is to extend it to
general n-ary (or multibit) trie. Each cycle looks at n bits at once. The number of bits
used n is also called the stride. While this increases the lookup speed, it also increases
memory requirements as each node of the tree is bigger, and the prefixes have to be aligned
(or extended) to n bits. Controlled prefix expansion [45] uses multibit tries with additional
memory optimizations. For example, moving the prefixes between leaf nodes (leaf pushing).
Lulea algorithm [11] further improves the memory efficiency by compressing the data using
bit maps. LC-Trie algorithm [38] selects different strides for different nodes, which ensures
that no extended prefixes exist. Tree Bitmap [13] is comparable to Lulea. Additionally,
it provides the ability to quickly insert and remove rules. The main idea of the algorithm
is that each node has two functions. One is to guide the lookup. The other one is to
transfer information about the rule that was found. Each node uses two bit maps, one for
storing internal prefixes corresponding to the node and the other for storing pointers to
its successors. The number of pointers can be further decreased by storing successors of a
single node continuously. Therefore, each node only holds a pointer to the first successor
and a pointer to an array of transitions to the successors. Figure 2.5 shows the structure
of constructed multibit trie and figure 2.6 shows the structure of the stored bitmaps of
the root node. The algorithm has an efficient hardware implementation as it is easy to
parallelize. The memory requirements can be decreased even further by introducing hash
functions (Hash-Tree Bitmap [52]).

All of the trie-based algorithms have poor scalability for multiple classification dimen-
sions. Building hierarchical tries means that the size, lookup time and complexity increase
exponentially [16]. The lookup time can be decreased, but this introduces redundancies,
which further increase the size of the tries.

Several different approaches supporting multiple dimensions are described in [46]. A grid
of Tries extends standard Trie to two dimensions. However, it is not easily extensible for
more dimensions than two. The general solution using cross-products is more promising, but
with no further optimization, it utilizes too much memory, and the resulting cross-products
are large. Hierarchical tries are an extension of tries that support multiple dimensions. The
tries are constructed recursively. While the number of dimensions D is higher than one, we
build a trie for one of the dimensions. For each prefix in this dimension, we construct an
entire hierarchical trie with D-1 dimensions. The complexity and size of the constructed
tries go up exponentially with the number of dimensions. Tries are usually efficient only
for one or two dimensions.

15

Figure 2.5: Example of constructed multibit trie.

Figure 2.6: Structure of the stored bit maps of Tree Bitmap algorithm of root node from
figure 2.5.

McKeown et al. [15] proposed using recursive flow classification (RFC). They suggest
that packet classification can be viewed as mapping of N bits (given by the header fields)
to M bits representing the rule or action matching given packet. Obviously M is expected
to be way lower than N. Directly implementing such a mapping would require 2𝑁 entries
in memory. Therefore RFC algorithm splits this mapping into multiple stages that re-
cursively map one set of values to a smaller set of values. The downfall of this approach
is the memory requirements. Especially when the number of phases is low, the memory
requirements are very high.

Another group of approaches utilizes architectures based on decision trees. The searched
space can be represented geometrically, and the decision tree essentially recursively splits
the space into smaller parts that are easier to search. The idea is illustrated by figure 2.7.
Two-dimensional space is split into four parts by three cuts. Each rule can belong to
multiple parts, for example, rule R2 belongs to parts 2 and 4.

HiCuts [17] and HyperCuts [43] are examples of hardware architectures based on these
approaches. The main idea is to progressively cut the whole searched space represented by

16

Figure 2.7: Example of search space cutting based on a binary decision tree.

the classification dimensions into small enough parts (usually representing one or only a
few rules). Different heuristics can be used to decide how to cut the space efficiently, but
resulting trees tend to have many nodes. Additionally, adding or removing rules leads to
the need for rebuilding the whole tree. A way to increase throughput of HyperCuts was
introduced by Luo et al. [35]. Their method, called explicit range search, uses new methods
to cut ranges in dimensions and then search within the ranges. This leads to increased
throughput for the price of needing to store explicit marks in memory. Kennedy et al. [28]
implemented a simplified version of HyperCuts algorithm with the goal of reducing power
consumption and increasing power efficiency. They were able to lower the frequency to only
32 MHz which however means a throughput of only 0.47 Gbps.

Prasanna et al. [20] pushed the idea of constructing decision trees even further. They
have observed that HyperCuts and similar algorithms do not efficiently deal with rules that
have too much overlap with each other. In such cases, many rules need to be duplicated,
and the resulting tree (hence required memory) can explode exponentially with the number
of dimensions. To mitigate this issue, a decision forest is introduced. A ruleset is split into
subsets, and smaller decision trees are built for each of these subsets. Rules within each
subset are chosen so that they have as little overlap as possible and that they specify nearly
the same dimensions. Additionally, two other techniques are used to optimize HyperCuts
algorithm. Rule overlap reduction stores rules that should be replicated in a list in each
internal node instead of actually replicating it into all the child nodes. Precise range
cutting is used to determine the cutting points which will result in the least number of rule
duplications instead of deciding the number of cuts for a field.

Taylor et al. [48] introduced Distributed Crossproducting of Field Labels (DCFL).
The algorithm is illustrated by figure 2.8. The basic idea is that the number of unique
values that match the packet within a single dimension is low (usually up to five). The
algorithm decomposes classification into single dimensions. In each dimension, a regular
single-dimensional lookup is carried out, resulting in a set of unique values that match the
packet. Each unique value is represented by a local label. The sets from each dimension
are then aggregated together via a tree-like structure of aggregation nodes. In each node,
a cross-product of two sets of partial results is created. The cross-product should be small

17

since the sizes of the sets are also small. Bloom filter arrays [12] are used to determine which
elements of the cross-product are valid (part of some rule). Different aggregation nodes
and single-dimensional lookups can run in parallel. Therefore, the algorithm is suitable for
hardware implementation. Additionally, the approach is highly memory efficient and several
parts of the architecture can be duplicated to increase throughput while still maintaining
reasonable usage of on-chip memories and logic. The algorithm also scales well for any
number of classification dimensions. The downside of the approach is that the throughput
is dependent on the complexity of rule sets. Additionally, no efficient way of increasing the
throughput for complex rule sets was shown.

Figure 2.8: Architecture using DCFL algorithm.

The introduction of OpenFlow and later P4 language requires more flexible and scalable
packet classification. The packet classification needs to be carried out for different use cases
- multiple classification dimensions, different types of matches, different sizes of rule sets
and different throughput requirements. The P4 language also allows a description of a
series of multiple independent lookups, which need to be carried out for the same packet
on the limited computational resources of the network device. Once again, each of those
lookups might have different parameters. Therefore, all of the lookups need to be also

18

efficient. Most of the current approaches to packet classification are focused on solving only
one particular use case. They are not flexible and scalable enough. The main issues are
the bad scalability to multiple dimensions and unsupported types of matches, which makes
using those approaches inefficient for more complex use cases. Another common issue is
the inefficient use of memory, which leads to high memory requirements. This decreases
the ability of those approaches to be used when a large number of independent lookups are
needed. Finally, achieving high throughputs along with multiple lookups requires a level of
hardware parallelization. Some of the approaches cannot be properly parallelized and have
not been shown to have efficient hardware implementation.

19

Chapter 3

Research Summary

3.1 Research Process and Contributions
The current state of the art of packet classification, described in the previous chapter, is
not sufficient for the flexibility and generality that the P4 language introduces and current
high-speed networks. This leads to a need for more general, flexible and scalable approaches
that enable efficient mapping from the P4 language onto the FPGA. The P4 language can
describe any packet classification, and the target architecture (FPGA in our case) needs to
be able to support it. P4 Match/Action tables have different sizes, different dimensions and
different types of matches. Packet classification architecture has to address this flexibility
but still maintain high performance.

Table 3.1: Worst case and mean case sizes of cross-products for different rulesets.
Ruleset Cross-product 1 Cross-product 2 Cross-product 3 Cross-product 4

Worst Mean Worst Mean Worst Mean Worst Mean
fw1_05_05 12 6 30 10 40 12 10 5
fw1_05_05 9 6 12 4 6 4 - -
acl 54 46 148 8 148 12 - -

Therefore, I started by designing general packet classification architecture. The best
candidate for general packet classification is the DCFL algorithm. It splits the classifica-
tion into single dimensions so it can support any combination of dimensions and match
types. Thanks to the usage of probabilistic structures and a labelling technique, it is also
highly efficient. Evaluating the results of the architecture shows that the bottleneck of
the algorithm is the tree-like structure of aggregation nodes. Table 3.1 shows the sizes
of cross-products for different rulesets. Checking a member of the cross-product requires
one memory access, which means that big cross-products limit the achieved throughput,
especially for complex rulesets with many overlapping rules.

The second step was to optimize the general packet classification architecture. The
architecture needs to be fast and efficient. There are two techniques that can be used to
increase the throughput of DCFL. Architecture using both of those techniques is further
described in included papers [IP1] and [IP2] (appendixes A.1, A.2) and illustrated by fig-
ure 3.1. First, we can check the elements of cross-products faster. Duplicating memories
of aggregation units increases the number of memory accesses that can be carried out each
clock cycle. This means we can check multiple elements of the cross-product in parallel. We

20

Figure 3.1: DCFL architecture using memory duplication and parallel TCAM.

can afford to duplicate memories because the memory requirements of aggregation units are
already optimized by using Bloom filter arrays and the labelling of unique values. Mem-
ory duplication introduces the ability to find a balance between throughput and memory
requirements. The second technique is to offload some of the rules into a small parallel
TCAM. This technique aims to speed up the aggregation by decreasing the size of cross-
products. The idea is that some rules (usually the most general ones) can match most
packets. In other words, they contribute to the cross-product size the most. Removing
those rules from consideration makes the algorithm work more efficiently. Additionally,
this technique synergizes with memory duplication. Smaller cross-products require even
less memory duplication.

The next step was to identify the most interfering rules correctly. A more detailed
description of how rules can be identified and offloaded can be found in [IP6] (appendix A.6).
The basic idea is to find unique values in classification dimensions that can be matched along
the highest number of other unique values. These values are the ones that have the highest
overlap with other values, and corresponding rules should be offloaded. The analysis of
rules is done by building a trie structure from the unique values. Paths within the trie that
go through the highest number of rules are then found.

The highly optimized and efficient DCFL architecture can be used for any general packet
classification. If the use case requires only single-dimensional lookups or requires only
exact type matching, it would not be efficient to instantiate the entire DCFL architecture
when more efficient hardware architecture can be used for exact matching. For example, a
common use case is filtering or monitoring of IP flows, which requires only exact matching.

21

This use case is used by most network devices and it requires a large rule capacity, and
therefore, it is important to make it efficient. Each flow can be represented by one 5-tuple
of exact values. Exact match is less complex than other types of matches, and therefore,
the following step was designing an efficient architecture for this specific use case. The
goal was to design an architecture that can be scaled to higher throughputs (in order of
Tbps) and maintain low memory requirements. Such architecture is described in included
papers [IP3] and [IP5] (appendixes A.3, A.5). The general Cuckoo hashing architecture
can also be scaled up to higher throughputs by duplicating memories. However, due to
the distributed nature of on-chip memories, we don’t have to create as many duplicates.
Tables with high rule capacity have their data spread across multiple distributed memory
blocks. This means that even without any memory duplication, we can carry out multiple
lookups as long as those lookups target entries in different memory blocks. By evaluating
probabilities of collisions, we can determine how much memory duplication is required to
achieve a given throughput. This technique allows us to scale throughput with minimal
memory cost.

We cannot increase the capacity of tables enough by using only the on-chip memories, as
those are limited. For example, mitigating DDoS attacks or monitoring big networks require
millions of different flows to be matched (and therefore millions of exact match rules).
External memories offer sufficient capacity. The issue is that accessing external memories
may be costly. For example, updating stateful information (like a packet counter) in a
Match/Action table requires the current value to be read out of the memory, updated and
then written back (also called a read-modify-write operation). High and variable latency
of external memories introduces various hazards in this case. These hazards can be read
after write (RAW), write after read (WAR) and write after write (WAW). Multiple read-
modify-write operations might be in progress at any time and keeping everything consistent
becomes complicated. This may lead to packet processing pipeline stalls as it has to wait
until some of those memory operations finish. Generally, caching mechanisms [53, 5] are
used to address memory access issues. An alternative is to move the processing as close to
the memory as possible [19, 18]. However, all of the current approaches either rely on the
locality of the accessed data to be efficient or are not feasible for an FPGA implementation.

This led to another step in the research process. To increase the rule capacity of the
packet classification, an architecture capable of efficient external memory access was de-
signed. The architecture uses the caching mechanism described in the included paper [IP4]
(appendix A.4). The architecture keeps track of running memory accesses and updates.
Any new request from the packet processing pipeline is added to the cache or updates an
existing entry. The cache carries out the actual communication with external memory and
the processing pipeline is not blocked. The cache also aggregates any updates and accesses
to the same memory element, which lowers the number of external memory accesses and
ensures consistency. Using the caching architecture extends the packet classification and
increases rule capacity. It also provides a convenient way for storing and updating stateful
information.

Finally, different optimized architectures for different types of packet classification needed
to be properly utilized. Basic implementation of a P4 compiler is available within the p4c
project [2]. The project provides an implementation of the front-end, some mid-end op-
timizations and example back-ends of the P4 compiler. Since all of the above-mentioned
architectures are configurable and scalable, the main goal of the P4 FPGA back-end is
to select which implementation is the most efficient for each table. The general rules for
selecting tables are:

22

Figure 3.2: Resource sharing between tables.

• Very small tables are implemented using simple parallel comparisons via on-chip logic
and registers or TCAM.

• Exact match tables are implemented using optimized Cuckoo hashing architecture.

• Single-dimensional tables are implemented using the appropriate single-dimensional
approach.

• More complex tables are implemented using optimized DCFL architecture.

• Very large tables additionally leverage the caching and external memories.

One last thing that can be considered in terms of optimizations is that in most cases
the classification algorithm is typically a part of larger network application. This means that
it is instantiated along with other instances of packet classification. Figure 3.2 illustrates an
optimization when multiple P4 tables can share the same resources. There are three tables
t1, t2 and t3. These tables are applied in different branches of if-else statement (meaning
they are applied exclusively). Table t1 has actions a1, a2, table t2 has a2 and table t3 has
a2 and a3. If we generated every table independently, we would end up with 3 tables and 5
actions. If we were to use resource sharing, we would only need to generate 1 table with 3
times as much memory and 3 actions. This can be even further optimized if the tables
are rather small and do not take up an entire BlockRAM. In this case, the tables can even
share the BlockRAM (as at any given time only one of them will try to access the memory).
Assuming we have 32b wide BlockRAMs with 1024 entries and tables t1 and t2 require 512
entries of 16b wide data and table t3 requires 512 entries of 30b wide data. We can easily
fit memories for all of the 3 tables into a single BlockRAM - first 512 entries will contain
16b of t1 data and 16b of t2 data, while the other 512 entries will contain 30b of t3 data.
Some tables can even be merged together fully. For example, there are two P4 tables that
filter IP flows, but one does so using 32b IPv4 addresses, while the other uses 128b IPv6
addresses. Since a packet cannot simultaneously have both versions of the IP header, we
can merge these tables. The resulting merged table filters flows using 128 wide metadata
fields. Values of the metadata fields are either set to the IPv6 addresses (for IPv6 packets)
or IPv4 addresses are mapped onto the lower 32b of the metadata fields (for IPv4 packets).

To summarize, the research presented in this thesis is focused on the design, implemen-
tation and evaluation of packet classification on FPGA. The focus is on the classification

23

architectures being general, configurable and scalable. This allows them to be utilized by
a P4 language compiler to generate a packet processing architecture.

3.2 Papers
This section goes over brief descriptions of the included papers. For each paper, a brief
motivation is presented, followed by the key contributions to the research presented in
the thesis. Full texts of included papers can be found in appendix A. Afterwards, a brief
description of other papers is also mentioned.

3.2.1 Included Papers

Included Paper 1

Mapping of P4 Match Action Tables to FPGA
The full text of the paper [IP1] can be found in appendix A.1. Current approaches to
packet classification for high-speed networks are not flexible and scalable enough for an
efficient general mapping from the P4 language description. Network architects can describe
any type and number of tables in the P4 language. This means that there has to be a
general architecture that is capable of efficient packet classification for different numbers
of dimensions and types of matches in those dimensions. Additionally, the resources on an
FPGA are limited and for any reasonable packet processing the classification itself is not
sufficient. This means that those already limited resources need to be used as efficiently
as possible to accommodate all of the required functions and modules. Finally, there also
has to be an architecture that can be scaled to high throughputs without sacrificing the
above-mentioned qualities.

Key Contribution
The main contribution of this paper is an introduction of efficient hardware architecture
for packet classification. The architecture can be scaled to 100 Gbps while maintaining
feasible memory requirements. The architecture is general and supports any number of di-
mensions and all of the standard types of matches by leveraging optimal single-dimensional
approaches for each. The proposed techniques and optimizations also give us the ability to
balance between resource requirements and throughput. We can increase throughput by
using more resources. The paper introduces the architecture, optimizations and the results
that we were able to achieve. The paper also outlines how the intelligent mapping from P4
might look like.

Abstract
Current networks are changing very fast. Network administrators need more flexible and
powerful tools to be able to support new protocols or services very fast. The P4 language
provides new level of abstraction for flexible packet processing. Therefore, we have designed
new architecture for memory efficient mapping of P4 match/action tables to FPGA. The
architecture is based on DCFL algorithm and is able to balance the processing speed and
available memory resources.

24

3.2.2 Included Papers

Included Paper 2

Packet Classification with Limited Memory Resources
The full text of the paper [IP2] can be found in appendix A.2. The goal of this thesis is
to have packet classification that is flexible and efficient. Paper [IP1] only introduced the
DCFL architecture and presented some basic results. However, the architecture needs to
be further optimized and efficient for different use cases. Therefore, the main goal of this
paper is to show more detailed optimizations and evaluate the architecture for more use
cases.

Key Contribution
This paper extends and optimizes the hardware architecture from [IP1]. The architecture
and optimizations are described in more detail, which allows the architecture to be used
better. The paper also further evaluates results achieved by the architecture for more use
cases. The main contribution of this paper is an efficient hardware architecture for packet
classification that is shown to be efficient and scalable for different use cases of general
packet classification.

Abstract
Network security and monitoring devices use packet classification to match packet header
fields in a set of rules. Many hardware architectures have been designed to accelerate
packet classification and achieve wire-speed throughput for 100 Gbps networks. The archi-
tectures are designed for high throughput even for the shortest packets. However, FPGA
SoC and Intel Xeon with FPGA have limited resources for multiple accelerators. Usu-
ally, it is necessary to balance between available resources and the level of acceleration.
Therefore, we have designed new hardware architecture for packet classification, which can
balance between the processing speed and hardware resources. To achieve 10 Gbps average
throughput the architecture needs only 20 BlockRAMs for 5500 rules. Moreover, the archi-
tecture can scale the processing speed to wire-speed throughput on 100 Gbps line at the cost
of additional memory resources.

Included Paper 3

Memory Aware Packet Matching Architecture for High-Speed Networks
The full text of the paper [IP3] can be found in appendix A.3. There are use cases where
exact match lookups are sufficient for a Match/Action table. For example, filtering based on
the Software-Defined Monitoring (SDM). The Match/Action table is used to filter specific
flows. This generally also means that the table requires higher capacity. Using DCFL
architecture from [IP1] and [IP2] is not the most efficient approach. Existing approaches
to exact match packet classification were already optimized but have not been shown to
efficiently scale up to higher throughputs. This paper addresses the efficient scalability.
The paper also won the Best Student Paper Award at the conference, it was presented
on (DSD 2018).

Key Contribution
The paper introduces a novel way of scaling up the throughput of the Cuckoo hashing
algorithm. The memory-efficient parallel hardware architecture leverages the distributed

25

FPGA memories to increase throughput without requiring as much extra memory. In
terms of the research presented in the thesis, it enables even more efficient implementation
and mapping of large exact match Match/Action tables. The concept of efficient and
scalable packet classification, implemented in FPGA alongside other functions and modules,
is strengthened even further.

Abstract
Packet classification is a crucial operation for many different networking tasks ranging from
switching or routing to monitoring and security devices like firewall or IDS. Generally,
accelerated architectures implementing packet classification must be used to satisfy the
ever-growing demands of current high-speed networks. Furthermore, to keep up with the
rising network throughputs, the accelerated architectures for FPGAs must be able to classify
more than one packet in each clock cycle. This can be mainly achieved by utilization of
multiple processing pipelines in parallel, what brings replication of FPGA logic and more
importantly, scarce on-chip memory resources.

Therefore, in this paper, we propose a novel parallel hardware architecture for hash-
based exact match classification of multiple packets per clock cycle with reduced memory
replication requirements. The basic idea is to leverage the fact that modern FPGAs offer
hundreds of BlockRAM tiles that can be accessed (addressed) independently to maintain
high throughput of matching even without fully replicated memory architecture. Our results
show that the proposed approach can use memory very efficiently and scales exceptionally
well with increased record capacities. For example, the designed architecture is able to
achieve throughput of more than 2 Tbps (over 3 000 Mpps) with an effective capacity of
more than 40 000 IPv4 flow records for the cost of only 366 BlockRAM tiles and around
57 000 LUTs.

Included Paper 4

Pipelined ALU for Effective External Memory Access in FPGA
The full text of the paper [IP4] can be found in appendix A.4. One of the important
parts of any packet classification approach is the capacity of rules that it can support.
Architectures presented in papers [IP1], [IP2] and [IP3] use only on-chip memories. This
limits the rule capacity that can be achieved. External memories need to be used to
increase the capacity further. Accessing external memories on FPGA is generally not an
easy task. The high and variable latency of external memories might lead to stalls in
the entire processing pipeline. Additionally, nearly all network use cases require stateful
information to be stored. For example, the number of packets and bytes is counted for
specific flows. P4 language uses registers and counters for this. Storing the rules and
stateful information in on-chip memories or logic is simple. The access to those memories
is instant, and any stateful information updates can be done instantly. Variable and high
latency of external memory create issues where the computation might stall even more to
ensure consistency of updates of data in the external memory. Finally, access to external
memories is a potential bottleneck because they are centralized and have a limited number
of access ports. It is important to address all of those issues.

Key Contribution
The paper presents a design and evaluation of hardware architecture that optimizes exter-
nal memory accesses. The architecture acts as a cache for accessing the external memory.

26

There are multiple benefits that this introduces. First, the number of stalls for the pro-
cessing pipeline is greatly reduced. Second, the number of actual external memory accesses
is reduced as well. Third, the architecture can aggregate and ensures the consistency of
updates in external memory. The architecture enables efficient usage of external memo-
ries for storing packet classification rules and stateful information associated with them.
Therefore, packet classification can support higher rule capacities (millions of entries), while
maintaining full throughput of at least 100 Gbps.

Abstract
The external memories in digital design are closely related to high response time. The most
common approach to mitigate latency is adding a caching mechanism into the memory sub-
system. This solution might be sufficient in CPU architecture, where we can reschedule
operations when a cache miss occurs. However, the FPGA architectures are usually accel-
erators with simple functionality, where it is not possible to postpone work. The cache miss
often leads to a pipeline stall or even to data loss. The architecture we present in this paper
reduces this problem by aggregating arithmetic operations into the memory subsystem it-
self. Fast data processing is achieved because arithmetic operations working with external
data are offloaded. Our architecture reaches a speed of 200 Mp/s (operations carried out).
It is designed to be used in systems with link speeds of 100 Gb/s. It outperforms other
implementations by a factor of at least 3. The additional benefit of our architecture is
reducing the number of memory transactions by a factor of two on real-world datasets.

Included Paper 5

General Memory Efficient Packet Matching FPGA Architecture for Future
High-Speed Networks
The full text of the paper [IP5] can be found in appendix A.5. One of the main goals of the
P4 language is the target architecture independence. Additionally, the goal of this thesis is
to research, design and evaluate packet classification that is efficient for a broad spectrum
of use cases. However, paper [IP3] was evaluated on Xilinx hardware only and for a limited
scope of use cases. The exact match packet classification needs to be efficient for many
different use cases. Also, possible further optimizations are needed. The goal of this paper
is to provide a more detailed description and better evaluation of the results achieved.

Key Contribution
The key contribution of the paper is a better evaluation of optimized Cuckoo hashing
architecture. The paper presents a broader and more in-depth analysis and evaluation of
the proposed architecture. Results for Intel FPGA chips are also presented. This shows that
the approach and optimizations are efficient on a wide array of FPGA chips and supports
the target-independency notion of P4 language.

Abstract
Packet classification (matching) is one of the critical operations in networking widely used
in many different devices and tasks, ranging from switching or routing to a variety of
monitoring and security applications like firewall or IDS. To satisfy the ever-growing per-
formance demands of current and future high-speed networks, specially designed hardware
accelerated architectures implementing packet classification are necessary. These demands
are now growing to such an extent that in order to keep up with the rising throughputs of

27

network links, the FPGA accelerated architectures are required to perform the matching of
multiple packets in every single clock cycle. To meet this requirement, a simple replication
approach can be utilized – instantiate multiple copies of a processing pipeline matching in-
coming packets in parallel. However, the simple replication of pipelines inseparably brings
a significant increase in the utilization of FPGA resources of all types, which is especially
costly for rather scarce on-chip memories used in matching tables.

We propose and examine a unique parallel hardware architecture for hash-based exact
match classification of multiple packets in each clock cycle that offers a reduction of memory
replication requirements. The core idea of the proposed architecture is to exploit the basic
memory organization structure present in all modern FPGAs, where hundreds of individual
block memory tiles are available and can be accessed (addressed) independently. This way,
we are able to maintain a rather high throughput of matching multiple packets per clock
cycle even without fully replicated memory resources in matching tables. Our results show
that the designed approach can use on-chip block memory resources very efficiently and
even scales exceptionally well with increased capacities of match tables. For example, the
proposed architecture is able to achieve a throughput of more than 2 Tbps (over 3 000 Mpps)
with an effective capacity of more than 40 000 IPv4 flow records at the cost of only a few
hundred block memory tiles (366 BlockRAM for Xilinx or 672 M20K for Intel FPGAs)
utilizing only a small fraction of available logic resources (around 68 000 LUTs for Xilinx
or 95 000 ALMs for Intel).

Included Paper 6

Optimizing Packet Classification on FPGA
The full text of the paper [IP6] can be found in appendix A.6. As previously mentioned, the
packet classification needs to be efficient. The chip area is shared by other packet processing
(parsing, deparsing, complex actions, queuing, checksum computation) and possibly even
other functions (for example, cryptography [P2]). Higher efficiency can be leveraged to
scale the throughput or decrease memory requirements. The main goal of this paper is to
make the DCFL approach even more efficient by optimizing the throughput bottleneck of
the approach for complex rule sets.

Key Contribution
The paper further optimizes and evaluates the efficiency of DCFL-based architecture from [IP1]
and [IP2]. Instead of changing the architecture, the optimization analyses the rule sets. This
lowers the negative impact of some of the bottlenecks of DCFL and makes packet classifica-
tion more efficient. Once again, increased efficiency can be translated into better scalability,
better throughput or smaller resource strain. Overall flexibility increases even further.

Abstract
Packet classification is a crucial time-critical operation for many different networking tasks
ranging from switching or routing to monitoring and security devices like firewalls or IDS.
Accelerated architectures implementing packet classification must satisfy the ever-growing
demand for current high-speed networks. However, packet classification is generally used
together with other packet processing algorithms, which decreases the available hardware
resources on the FPGA chip. The introduction of the P4 language requires the packet
classification to be even more flexible while maintaining a high throughput with limited
resources. Thus, we need flexible and high-performance architectures to balance processing

28

speed and hardware resources for specific types of rules. DCFL algorithm provides high
performance and flexibility. Therefore, we propose optimizations to the DCFL algorithm
and overall packet processing hardware architecture. The goal is to maximize the through-
put and minimize the resource strain. The main idea of the approach is to analyze the
ruleset, identify some conflicting rules and offload these rules to other hardware modules.
This approach allows us to process packets faster, even in the worst-case scenarios. More-
over, we can fit more packet processing into the FPGA and fine-tune the packet processing
architecture to meet a specific network application’s throughput and resource demands.
With the proposed optimizations we can achieve up to a 76 % increase in the throughput
of the packet classification. Alternatively, we can achieve up to a 37 % decrease in resources
needed.

3.2.3 Other Relevant Papers

Relevant Paper 1

Configurable FPGA Packet Parser for Terabit Networks with Guaranteed Wire-
Speed Throughput
Paper [P1] describes a hardware implementation of a general configurable packet parser.
Packet parsing is a crucial operation that packet classification directly depends on. Efficient
and scalable packet parser and packet classification represent a minimal implementation
that is capable of processing packets (for example, filtering can be done using only those
two functions). The results of this paper show that it is possible to have high-speed packet
parsing on FPGA. In combination with the included papers, it is possible to have an
efficient and scalable packet processing pipeline on FPGA. This all builds on top of the
original papers that showed this for 100 Gbps [6, 7].

Abstract
As throughput of computer networks is on a constant rise, there is a need for ever-faster
packet parsing modules at all points of the networking infrastructure. Parsing is a crucial
operation which has an influence on the final throughput of a network device. Moreover,
this operation must precede any kind of further traffic processing like filtering/classification,
deep packet inspection, and so on. This paper presents a parser architecture which is
capable to currently scale up to a terabit throughput in a single FPGA, while the overall
processing speed is sustained even on the shortest frame lengths and for an arbitrary number
of supported protocols. The architecture of our parser can be also automatically generated
from a high-level description of a protocol stack in the P4 language which makes the rapid
deployment of new protocols considerably easier. The results presented in the paper confirm
that our automatically generated parsers are capable of reaching an effective throughput of
over 1 Tbps (or more than 2000 Mpps) on the Xilinx UltraScale+ FPGAs and around 800
Gbps (or more than 1200 Mpps) on their previous generation Virtex-7 FPGAs.

Relevant Paper 2

200 Gbps Hardware Accelerated Encryption System for FPGA Network Cards

Paper [P2] shows a specific use case for FPGA packet processing. It describes an encryption
system that is capable of high-speed (200 Gbps) network data encryption utilizing the IPsec
protocol. This demonstrates the need for efficient packet processing since it can be used

29

as a basis for other functions that are outside of the scope of P4 language (in this case,
cryptography).

Abstract
We present the architecture and implementation of our encryption system designed for
200 Gbps FPGA (Field Programmable Gate Array) network cards utilizing the IPsec (IP
security) protocol. To our knowledge, our hardware encryption system is the first, that is
able to encrypt network traffic at the full link speed of 200 Gbps using a proven algorithm
in a secure mode of operation on a network device that is already available on the market.
Our implementation is based on the AES (Advanced Encryption Standard) encryption
algorithm and the GCM (Galois Counter Mode) mode of operation, therefore it provides
both encryption and authentication of transferred data. The design is modular and the
AES can be easily substituted or extended by other ciphers. We present the full description
of the architecture of our scheme, the VHDL (VHSIC Hardware Description Language)
simulation results and the results of the practical implementation on the NFB-200G2QL
network cards based on the Xilinx Virtex UltraScale+ chip. We also present the integration
of the encryption core with the IPsec subsystem so that the resulting implementation is
interoperable with other systems.

3.3 List of Publications
Included Papers

[IP1] Kořenek, J. and Kekely, M. Mapping of P4 Match Action Tables to FPGA.
In: Preceedings of 27TH INTERNATIONAL CONFERENCE ON
FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS. Institute of Electrical
and Electronics Engineers, 2017. DOI: 10.23919/FPL.2017.8056768. ISBN
978-90-90-30428-1. Available at:
https://www.fit.vut.cz/research/publication/11551

[IP2] Kekely, M. and Kořenek, J. Packet Classification with Limited Memory
Resources. In: In proceedings 2017 Euromicro Conference on Digital System Design.
Institute of Electrical and Electronics Engineers, 2017, p. 179–183. DOI:
10.1109/DSD.2017.61. ISBN 978-1-5386-2145-5. Available at:
https://www.fit.vut.cz/research/publication/11550

[IP3] Kekely, M., Kekely, L. and Kořenek, J. Memory Aware Packet Matching
Architecture for High-Speed Networks. In: Proceedings of the 21st Euromicro
Conference on Digital Systems Design. IEEE Computer Society, 2018. DOI:
10.1109/DSD.2018.00017. ISBN 978-1-5386-7376-8. Available at:
https://www.fit.vut.cz/research/publication/11819

[IP4] Kekely, M., Hynek, K. and Čejka, T. Pipelined ALU for effective external
memory access in FPGA. In: 2020 23RD EUROMICRO CONFERENCE ON
DIGITAL SYSTEM DESIGN (DSD 2020). Institute of Electrical and Electronics
Engineers, 2020, p. 97–100. DOI: 10.1109/DSD51259.2020.00026. ISBN
978-1-7281-9535-3. Available at:
https://www.fit.vut.cz/research/publication/12450

30

https://www.fit.vut.cz/research/publication/11551
https://www.fit.vut.cz/research/publication/11550
https://www.fit.vut.cz/research/publication/11819
https://www.fit.vut.cz/research/publication/12450

[IP5] Kekely, M., Kekely, L. and Kořenek, J. General memory efficient packet
matching FPGA architecture for future high-speed networks. Microprocessors and
Microsystems. Elsevier Science. 2020, vol. 73, no. 3. DOI:
10.1016/j.micpro.2019.102950. ISSN 0141-9331. Available at:
https://www.fit.vut.cz/research/publication/12138

[IP6] Kekely, M. and Kořenek, J. Optimizing Packet Classification on FPGA.
In: PROCEEDINGS 2023 26th International Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS). Institute of Electrical and Electronics
Engineers, 2023, p. 7–12. ISBN 978-83-503-3276-7. Available at:
https://www.fit.vut.cz/research/publication/12805

Other Relevant Papers

[P1] Cabal, J., Benáček, P., Kekely, L., Kekely, M., Puš, V. et al. Configurable
FPGA Packet Parser for Terabit Networks with Guaranteed Wire-Speed
Throughput. In: Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. Association for Computing Machinery, 2018,
p. 249–258. DOI: 10.1145/3174243.3174250. ISBN 978-1-4503-5614-5. Available at:
https://www.fit.vut.cz/research/publication/11674

[P2] Martinásek, Z., Hajný, J., Smékal, D., Malina, L., Kekely, M. et al. 200
Gbps Hardware Accelerated Encryption System for FPGA Network Cards.
In: Proceedings of the ACM Conference on Computer and Communications Security.
Association for Computing Machinery, 2018, p. 11–17. DOI:
10.1145/3266444.3266446. ISBN 978-1-4503-5996-2. Available at:
https://www.fit.vut.cz/research/publication/12244

31

https://www.fit.vut.cz/research/publication/12138
https://www.fit.vut.cz/research/publication/12805
https://www.fit.vut.cz/research/publication/11674
https://www.fit.vut.cz/research/publication/12244

Chapter 4

Disscussion and Conclusions

This chapter discusses the research presented in this thesis and summarizes the achieved
results. Based on this, conclusions are drawn, and possible direction for future work is
outlined.

The thesis researches packet classification on FPGA with a focus on high performance
and flexibility. First, an analysis of the current state of packet processing and different
packet classification approaches was conducted. Obtained information is summarized in
chapter 2. The analysis was used as a base for further research and design of new hardware
architectures. These architectures were then further optimized. The goal was to make them
scalable and memory efficient. A valuable piece of information for the optimizations was
provided by an analysis of the rulesets and network data and how they overlap and interact
with the proposed architectures. Afterwards, the approaches were extended to higher rule
capacity by designing an architecture for efficient usage of external memories. All of the
architectures were tested and evaluated. Real network traces used for this evaluation were
obtained from the high-speed backbone network managed by Cesnet. Cesnet is the Czech
National Research and Educational Network operator with an infrastructure consisting of
multiple optical links with bandwidth up to 100 Gb/s. The research conducted to design,
optimize and implement the architectures is presented in chapter 3 and in included published
papers.

4.1 Results
In order to evaluate the proposed concepts, the hardware architectures were realized on
FPGA chips. Multiple classification rule sets were used. Two network data traces captured
from CESNET network were used: meter1 and meter4. Both traces contain 1,000,000
packets (approximately 1 second of network traffic) captured during different periods of
day. Their basic characteristics are shown in table 4.1. Throughput was also evaluated for
the worst-case scenario of shortest possible packets (packets from real traces truncated to
64B). This section summarizes the results achieved.

Table 4.1: Basic characteristics of captured traffic traces from CESNET network.
Trace name Packets Bytes Time period Capture time

meter1 1 000 000 1 081 259 293 1.033s 11:00
meter4 1 000 000 791 590 133 1.489s 15:00

32

General Packet Classification

General packet classification is carried out by the optimized DCFL architecture [IP1][IP2].
In order to analyze how effective the approach is, the architecture was implemented using
high-level synthesis. For the evaluation, we used a chip from Kintex-7 family of FPGAs.
To demonstrate a variety of rulesets, three classification rule sets are used. These sets were
generated by ClassBench [49] tool and are part of NetBench [40] framework. Table 4.2
shows the characteristics of the sets, main one being level of overlap between ranges or
prefixes within rules. acl1 is an example of ruleset with many overlapping ranges of port
values, which leads to DCFL not being as effective. fw2_05_05, on the other hand, has
little overlap between rules and prefixes, thus DCFL shows much better results. Finally,
fw1_05_05 represents a middle ground. The architecture runs at 200 MHz.

Table 4.2: Charecteristics of rulesets used.
Ruleset Dimensions Number of rules Overlap

acl1 4 2406 high
fw1_05_05 5 733 medium
fw2_05_05 4 941 low

Figure 4.1 show scaling of block RAMs and logic needed for increasing throughput
of the optimized architecture for rulesets fw1_05_05 and acl compared to results for com-
parable configurations of other general approaches. There are two graphs - one shows the
comparison and scaling of block RAMs, and the other the comparison and scaling of LUTs.
The logic requirements of BV-TCAM and HyperCuts could not be reliably determined,
therefore, they are omitted. Note that the architecture has capacity of around 5500 rules,
whereas other architectures may have different rule capacities (mainly decision forest has
capacity of 10 000 rules). Additionally, the architecture used quite small TCAMs (since
number of unique values in single dimensions is a lot lower than number of rules) as en-
gines for searching in some dimensions. We can see that the resource requirements stay
manageable even for high throughputs. The optimized approach is comparable to or even
better than other approaches in terms of block RAMs needed, while being also comparable
in logic required. Since other apporaches have not been shown to be scalable and flexible,
the other main benefit of the optimized approach is the scalability and flexibility that was
already mentioned.

 1

 10

 100

 1000

 0.1 1 10 100

B
R

A
M

Throughput [Gbps]

optimized DCFL (fw1_05_05)
optimized DCFL (acl1)

decision forest
BV-TCAM

HyperCuts

 0

 5000

 10000

 15000

 20000

 25000

 0.1 1 10 100

L
U

T

Throughput [Gbps]

optimized DCFL (fw1_05_05)
optimized DCFL (acl1)

decision forest

Figure 4.1: Block RAMs and LUTs used by optimized DCFL compared to other approaches.

33

Part of the scalability and efficiency is provided by memory duplication and Bloom filter
arrays. However, offloading the most conflicting rules into a small TCAM with 32 entries
also brings substantial results. Figure 4.2 shows the percentage increase in the throughput
brought by offloading of the rules. Different heuristics to determine which rules should be
offloaded are evaluated (as the full analysis might be complex and not always feasible).
There are two different types of heuristics - on-the-fly analysis when the rules are analyzed
one by one as they are being added to the packet classification and offline analysis, when
the entire rule set is available prior to the packet classification. Each case also evaluates
interference between rules (based on trie-based analysis described in [IP6]) or uses the
generality of a rule to determine if the rule should be offloaded. Additionally, two cases of
incoming packets are considered. First, a worst-case scenario when only packets generating
the biggest possible crossproducts are classified (which leads to the lowest throughput).
Second, a mean-case scenario where the real network data traces are used.

For less complex rulesets (fw1_05_05 and fw2_05_05), the increase in throughput
is around 25 % for the worst-case scenario. As expected, a higher increase is seen for
a more complex ruleset (acl). In this case, an increase in throughput is up to 76 %. Thanks
to memory duplication, the increase in throughput can be traded for an increase in memory
requirements.

 0

 10

 20

 30

 40

 50

 60

 70

 80

ac
l1

fw
1_

05
_0

5

fw
2_

05
_0

5

%
 t
h
ro

u
g
h
p
u
t
in

cr
e
a
se

Ruleset

on-the-fly generality (worst)
on-the-fly interference (worst)

offline interference (worst)
on-the-fly generality (mean)

on-the-fly interference (mean)
offline interference (mean)

Figure 4.2: Throughput increase achieved by offloading rules for different configurations.

Exact Match Packet Classification

For exact match packet classification, the optimized Cuckoo hashing architecture [IP3][IP5]
is used. Measurements of FPGA resource requirements for Xilinx technology are based on
design implementations for the UltraScale+ XCVU9P chip using Vivado 2018.2 tool and
for Intel are based on implementation for the Stratix10 1SG280HU2F50E1VG chip using
Quartus Prime 18.1 Pro. The architecture is able to achieve working frequency (𝐹𝑚𝑎𝑥) of
more than 400 MHz for every evaluated configuration on both chips. The results presented
are for architecture with three hash functions, 32 b wide arbitrary data (action) and 296 b
wide key (which is a key needed for IPv6 flow matching). Different configurations of the
architecture are considered - different sizes of the tables (memory rows) and different number

34

Figure 4.3: The relation between utilized memory and achieved throughput for different
FPGAs and IPv6 flows when using three hash functions.

of parallel lookups that are attempted each clock cycle. Every distributed memory row in
the presented results corresponds roughly to 2 765 effective rules that the table can hold.

Figure 4.3 captures the relations between lookups per cycle and memory tiles utilizations
for the designed architecture. Results for a simple replication scheme (lines) form a baseline
for evaluation of the designed optimization approach. With the Cuckoo hashing table using
16 rows (dotted line and triangle points), it is possible to achieve nearly twice the throughput
without any memory duplication when using the proposed architecture with only four
lookups (cross). If we use versions with 8 (‘x’) or 10 (star) lookups per cycle, the speedup
is even further amplified and nearly 7 or 7.5 times higher throughput is achieved with no
additional memory requirements. Additionally, when utilizing two replicas of memory, the
proposed approach can achieve nearly the full throughput of 10 lookups per cycle. In other
words, we achieve 99.7 % of throughput with only 40 % of used memory compared to simple
replication.

A basic look at the achievable throughput under realistic deployment is provided in
figure 4.4. It shows the achieved throughput for different numbers of block memory rows
on captured network traces. As a reference, a throughput for packets with random uni-
formly distributed identifiers is shown. For specific network traces, two types of results
are shown - results measured using packets truncated to 64B (packet window) and results
measured using full packets (byte window). On both network traces, the architecture shows

35

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 [G

bp
s]

Rows of block memories

random
packet window - meter4

byte window - meter4
packet window - meter1

byte window - meter1

Figure 4.4: Throughput of the optimized Cuckoo hashing on real network traces for archi-
tecture with ten lookups and memory replication of two.

similar behaviour. For the worst-case scenario (packet window) the throughput is overall
lower compared to random-case and the more realistic average-case (byte window). The
interesting fact to notice about the worst-case scenario for real network traces is that its
throughput falls behind random identifier distribution more and more with the rising num-
ber of block memory rows. The behaviour would suggest a more prevalent occurrence of
access collisions than random. This makes sense since multiple packets from the same flows
(representing the same end-to-end communication) tend to arrive within small time win-
dows. However, if we take into account realistic packet lengths (byte window), the observed
decrease in throughput is far outweighed by the lower arrival rate of matching requests into
the architecture.

Due to the favourable scaling, the architecture can achieve an unprecedented throughput
of 2.4 Tbps with an effective capacity of over 44 000 IPv4 5-tuple (flows) rules using on-chip
block memories for the cost of only 366 BlockRAM tiles on Xilinx FPGAs [IP4] or 672
M20K tiles on Intel FPGAs [IP5].

External Memory Cache

External memories can be used to increase the rule capacity of packet classification. While
the external memories offer an increased number of entries, the pattern of accessing them
is different and might introduce unwanted stalls. To remove this downside, a cache archi-
tecture was proposed [IP5]. Measurements are based on design implementations for the
UltraScale+ XCVU7P chip using Vivado 2019.1 tool.

The proposed approach was compared to three other possible implementations designed
to fulfil the same functionality. First of all, a trivial implementation using sequential au-

36

tomaton. It issues a memory transaction for each requested operation and waits for the
result to update it and write it back. The second approach is a trivial cache using the
same sequential automaton extended with a traditional memory cache. The final approach
is a trivial pipelined design with sufficient stages to cover the memory latency. However,
it stalls when a collision occurs (2 accesses to the same memory address) to prevent data
hazards.

The comparison of the architectures with 16 cache entries in table 4.3 consists of two
results. First is the throughput (based on clock cycles needed for processing the whole
input dataset). The value is shown as a ratio between the actual throughput and a maximal
theoretical limit of the throughput (throughput if the stalls would never happen). A higher
throughput value means faster processing and fewer or shorter stalls. The second value is
the number of external memory transactions needed for processing the whole input dataset.
The value is also represented as a ratio between the actual number of external memory
transactions and a maximal theoretical limit (each request is a cache miss and accesses the
external memory). In this case, a lower value means fewer external memory transactions
are needed.

Table 4.3: Comparison of different cache architectures.

Memory access pattern Trivial Trivial cache Pipeline Proposed
random 0.125-1.000 0.138-0.936 0.501-1.000 0.500-1.000

dst IP hashing 0.125-1.000 0.391-0.546 0.221-1.000 1.000-0.432
src and dst IP hashing 0.125-1.000 0.358-0.565 0.221-1.000 1.000-0.433
full flow classification 0.125-1.000 0.342-0.576 0.223-1.000 1.000-0.438

The proposed architecture outperforms all of the other implementations and reaches
almost the theoretical limits for almost every dataset, which translates to full throughput
for a given frequency. Only the results for the random dataset are close to equal with the
trivial pipeline because the proposed architecture uses a limited transaction table. When
the transaction table is saturated, the design begins to stall and is downgraded to the trivial
pipeline implementation. For real network traces, the architecture outperforms every other
implementation at least by a factor of 3 when it comes to throughput. Another benefit of
the architecture is that the number of memory transactions is reduced by a factor of 2.

Basic resource utilization of the architecture for different numbers of cache entries is
shown in Table 4.4. More cache entries means that the probability of cache miss is lower.
The configuration that was used worked with the 64b wide memory words. As expected,
the resource utilization goes up pretty linearly and is still manageable even for tens of
cache entries. However, the maximal frequency slowly decreases. The results show that
the architecture with 16 or 32 entries should be sufficient to satisfy at least the frequency
of 200 MHz, which means possibly up to 200 Mp/s (or in this case, 200 million operations
carried out). This is more than enough for packet processing at the line rate of at least
100 Gb/s.

4.2 Conclusions
The results show that it is possible to achieve high throughput (100 Gbps and more) using
new hardware architectures. The architectures are flexible enough and can be configured

37

Table 4.4: Resource utilization and frequency of the proposed architecture.

Size LUTs Registers Frequency
4 2849 1439 >350 MHz
8 4151 2484 >350 MHz
16 7862 4573 285 MHz
32 16241 8750 225 MHz
64 31491 17103 188 MHz

based on the P4 description. High flexibility is therefore achieved as well. It can be
concluded that the thesis confirms the initial hypothesis formulated in 1.1. This enables
efficient P4-programmable packet classification on FPGA. All defined research objectives
have been successfully completed.

The main contributions of the thesis are new flexible and optimized architectures for
packet classification on FPGA that have these key attributes:

• High flexibility. The architectures are highly configurable. All standard types
of matches are supported, as well as different capacities. This enables the packet
classification to be used for a wide array of use cases. Also, the architectures can be
used for mapping P4 to the FPGA.

• High performance. Wire-speed throughput for 100 Gbps links and faster can be
feasibly achieved.

• Memory efficiency. The approaches use memory efficiently without unnecessary
redundancies. This allows them to be used in more complex packet processing designs.

• Scalability. The architectures can be scaled to support more dimensions and higher
throughputs. This allows to adjust throughput and required hardware resources.
Additionally, a caching mechanism allows fast updates of memory items, which allows
the classification to be scaled to large rule capacities by efficient usage of external
memories.

The research conducted as part of the thesis also introduces these additional related
contributions:

• Hardware architecture capable of high-speed encryption and authentication of network
traffic using IPsec protocol. The architecture contains efficient hardware implemen-
tation of AES (Advanced Encryption Standard) encryption algorithm and the GCM
(Galois Counter Mode) mode of operation.

• Hardware implementation of general configurable packet parser. The implementation
allows efficient extraction of packet header fields used by the packet classification.

4.3 Deployment and Future Work
Parts of the presented research were deployed within the Netcope P4 compiler [37]. The
Netcope P4 is a compiler that translates the P4 description into FPGA design. It was

38

developed in the scope of NFV200 research project [3] in cooperation with the Cesnet
association and supported both Xilinx and Intel FPGAs. The compiler was later used to
generate the base infrastructure for the IPsec cryptography architecture described in [P2].
The technology and the compiler were acquired by Intel in 2020. Intel also participates
in the P4 ecosystem with Intel Tofino, a P4-programmable Ethernet switch ASIC. The
packet classification research mentioned in the thesis was also used in probes used by Police
of the Czech Republic to defend against cyber criminality and in probes used to defend
the CESNET network perimeter. The external memory cache architecture was used to
accelerate virtual Open vSwitch in the scope of OVS research project [1].

Computer networks are still evolving further, and 400 Gbps and 1 Tbps Ethernet will
soon become the norm. There is still a need for further optimizations and new packet
classification architectures. More specialized architectures might be leveraged for specific
use cases. There is still more room for improvement in optimizing the P4 description itself.
Some basic ideas of merging tables and sharing resources between tables were presented in
this thesis, but the presented approaches can be further improved.

39

Bibliography

[1] Acceleration platform for virtual switches
[https://starfos.tacr.cz/en/projekty/TH04010193]. Accessed: 2023-10-19.

[2] P4 Reference Compiler. GitHub. Available at: https://github.com/p4lang/p4c.

[3] Platform for Acceleration of Network Functions Virtualization
[https://starfos.tacr.cz/en/projekty/TH02010214]. Accessed: 2023-10-19.

[4] OpenFlow Switch Specification v1.4.0. 2013.

[5] Barish, G. and Obraczka, K. World Wide Web caching: trends and techniques.
IEEE Communications Magazine. 2000, vol. 38, no. 5, p. 178–184. DOI:
10.1109/35.841844.

[6] Benáček, P., Puš, V. and Kubátová, H. P4-to-VHDL: Automatic Generation of
100 Gbps Packet Parsers. In: 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). May 2016, p. 148–155.

[7] Benáček, P., Puš, V., Kubátová, H. and Čejka, T. P4-to-VHDL: Automatic
generation of high-speed input and output network blocks. Microprocessors and
Microsystems. 2018, vol. 56, p. 22 – 33. ISSN 0141-9331.

[8] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N. et al. P4:
Programming Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev. New York, NY, USA: ACM. july 2014, vol. 44, no. 3, p. 87–95. ISSN
0146-4833.

[9] Cabal, J., Benáček, P., Kekely, L., Kekely, M., Puš, V. et al. Configurable
FPGA Packet Parser for Terabit Networks with Guaranteed Wire-Speed
Throughput. In: Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. Association for Computing Machinery, 2018,
p. 249–258. DOI: 10.1145/3174243.3174250. ISBN 978-1-4503-5614-5. Available at:
https://www.fit.vut.cz/research/publication/11674.

[10] Caulfield, A., Chung, E., Putnam, A., Angepat, H., Fowers, J. et al. A
Cloud-Scale Acceleration Architecture. In: Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
October 2016.

[11] Degermark, M., Brodnik, A., Carlsson, S. and Pink, S. Small forwarding tables
for fast routing lookups. In: ACM Sigcomm. 1997, p. 3–14.

40

https://starfos.tacr.cz/en/projekty/TH04010193
https://github.com/p4lang/p4c
https://starfos.tacr.cz/en/projekty/TH02010214
https://www.fit.vut.cz/research/publication/11674

[12] Dharmapurikar, S., Song, H., Turner, J. and Lockwood, J. Fast packet
classification using Bloom filters. In: ANCS ’06: Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and communications systems. New York,
NY, USA: ACM, 2006, p. 61–70. ISBN 1-59593-580-0.

[13] Eatherton, W., Varghese, G. and Dittia, Z. Tree bitmap: hardware/software ip
lookups with incremental updates. 2004. Available at:
http://www.cs.cornell.edu/courses/cs419/2005sp/tree-bitmap.pdf.

[14] Gupta, P. and McKeown, N. Algorithms for Packet Classification. Available at:
http://yuba.stanford.edu/~nickm/papers/classification_tutorial_01.pdf.

[15] Gupta, P. and McKeown, N. Packet Classification on Multiple Fields. Available at:
http://yuba.stanford.edu/~nickm/papers/Sigcomm99.pdf.

[16] Gupta, P. and McKeown, N. Algorithms for packet classification. IEEE Network.
2001, vol. 15, no. 2, p. 24–32. DOI: 10.1109/65.912717.

[17] Gupta, P. and McKeown, N. Packet classification using hierarchical intelligent
cuttings. In: Proc. Hot Interconnects. 1999.

[18] Ielmini, D. and Wong, H.-S. P. In-memory computing with resistive switching
devices. Nature Electronics. 2018, vol. 1, p. 333–343. Available at:
https://api.semanticscholar.org/CorpusID:57248729.

[19] Jain, S., Ranjan, A., Roy, K. and Raghunathan, A. Computing in Memory With
Spin-Transfer Torque Magnetic RAM. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems. 2018, vol. 26, no. 3, p. 470–483. DOI:
10.1109/TVLSI.2017.2776954.

[20] Jiang, W. and Prasanna, V. K. Scalable Packet Classification on FPGA. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems. 2012, vol. 20.

[21] Kekely, L., Kucera, J., Pus, V., Korenek, J. and Vasilakos, A. V. Software
Defined Monitoring of Application Protocols. IEEE Trans. Comput. Washington,
DC, USA: IEEE Computer Society. february 2016, vol. 65, no. 2, p. 615–626. ISSN
0018-9340.

[22] Kekely, L., Žádník, M., Matoušek, J. and Kořenek, J. Fast Lookup for
Dynamic Packet Filtering in FPGA. In: 17th IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems. Warszaw, Poland: IEEE Computer
Society, 2014, p. 219–222. ISBN: 978-1-4799-4558-0.

[23] Kekely, M., Hynek, K. and Čejka, T. Pipelined ALU for effective external
memory access in FPGA. In: 2020 23RD EUROMICRO CONFERENCE ON
DIGITAL SYSTEM DESIGN (DSD 2020). Institute of Electrical and Electronics
Engineers, 2020, p. 97–100. DOI: 10.1109/DSD51259.2020.00026. ISBN
978-1-7281-9535-3. Available at:
https://www.fit.vut.cz/research/publication/12450.

[24] Kekely, M., Kekely, L. and Kořenek, J. Memory Aware Packet Matching
Architecture for High-Speed Networks. In: Proceedings of the 21st Euromicro

41

http://www.cs.cornell.edu/courses/cs419/2005sp/tree-bitmap.pdf
http://yuba.stanford.edu/~nickm/papers/classification_tutorial_01.pdf
http://yuba.stanford.edu/~nickm/papers/Sigcomm99.pdf
https://api.semanticscholar.org/CorpusID:57248729
https://www.fit.vut.cz/research/publication/12450

Conference on Digital Systems Design. IEEE Computer Society, 2018. DOI:
10.1109/DSD.2018.00017. ISBN 978-1-5386-7376-8. Available at:
https://www.fit.vut.cz/research/publication/11819.

[25] Kekely, M., Kekely, L. and Kořenek, J. General memory efficient packet
matching FPGA architecture for future high-speed networks. Microprocessors and
Microsystems. Elsevier Science. 2020, vol. 73, no. 3. DOI:
10.1016/j.micpro.2019.102950. ISSN 0141-9331. Available at:
https://www.fit.vut.cz/research/publication/12138.

[26] Kekely, M. and Kořenek, J. Packet Classification with Limited Memory
Resources. In: In proceedings 2017 Euromicro Conference on Digital System Design.
Institute of Electrical and Electronics Engineers, 2017, p. 179–183. DOI:
10.1109/DSD.2017.61. ISBN 978-1-5386-2145-5. Available at:
https://www.fit.vut.cz/research/publication/11550.

[27] Kekely, M. and Kořenek, J. Optimizing Packet Classification on FPGA.
In: PROCEEDINGS 2023 26th International Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS). Institute of Electrical and Electronics
Engineers, 2023, p. 7–12. ISBN 978-83-503-3276-7. Available at:
https://www.fit.vut.cz/research/publication/12805.

[28] Kennedy, A., Wang, X., Liu, Z. and Liu, B. Low power architecture for high speed
packet classification. In: Proceedings of the 2008 ACM Symposium on Architecture
for Networking and Communications. 2008. ANCS ’08.

[29] Kirsch, A., Mitzenmacher, M., Baohua, Y., Yibo, X. and Jun, L. Using a
Queue to De-amortize Cuckoo Hashing in Hardware. 2007. Available at:
http://www.eecs.harvard.edu/~michaelm/postscripts/aller2007.pdf.

[30] Kořenek, J. and Kekely, M. Mapping of P4 Match Action Tables to FPGA.
In: Preceedings of 27TH INTERNATIONAL CONFERENCE ON
FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS. Institute of Electrical
and Electronics Engineers, 2017. DOI: 10.23919/FPL.2017.8056768. ISBN
978-90-90-30428-1. Available at:
https://www.fit.vut.cz/research/publication/11551.

[31] Kořenek, J., Puš, V. and Blaho, J. Memory Optimization for Packet Classification
Algorithms. In: Proceedings of the 5th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems. Association for Computing Machinery,
2009, p. 165–166. Association for Computing Machinery. ISBN 978-1-60558-630-4.

[32] Lakshman, T. V. and Stiliadis, D. High-speed policy-based packet forwarding
using efficient multi-dimensional range matching. SIGCOMM Comput. Commun.
Rev. New York, NY, USA: ACM. 1998, vol. 28, no. 4, p. 203–214. ISSN 0146-4833.

[33] Le, H. and Prasanna, V. K. Scalable Tree-based Architectures for IPv4/v6 Lookup
Using Prefix Partitioning. july 2012, vol. 61, no. 7, p. 1026–1039. ISSN 0018-9340.

[34] Lee, H., Jiang, W. and Prasanna, V. K. Scalable High-Throughput SRAM-Based
Architecture for IP Lookup Using FPGA. In: International Conference on Field
Programmable Logic and Applications. 2008.

42

https://www.fit.vut.cz/research/publication/11819
https://www.fit.vut.cz/research/publication/12138
https://www.fit.vut.cz/research/publication/11550
https://www.fit.vut.cz/research/publication/12805
http://www.eecs.harvard.edu/~michaelm/postscripts/aller2007.pdf
https://www.fit.vut.cz/research/publication/11551

[35] Luo, Y., Xiang, K. and Li, S. Acceleration of decision tree searching for IP traffic
classification. In: Proceedings of the 2008 ACM Symposium on Architecture for
Networking and Communications. 2008. ANCS ’08.

[36] Martinásek, Z., Hajný, J., Smékal, D., Malina, L., Kekely, M. et al. 200 Gbps
Hardware Accelerated Encryption System for FPGA Network Cards. In: Proceedings
of the ACM Conference on Computer and Communications Security. Association for
Computing Machinery, 2018, p. 11–17. DOI: 10.1145/3266444.3266446. ISBN
978-1-4503-5996-2. Available at:
https://www.fit.vut.cz/research/publication/12244.

[37] Netcope. Netcope P4: User Guide. 2020.

[38] Nilsson, S. and Karlsson, G. Fast address lookup for internet routers. In: IEEE
Broadband Communications. 1998, p. 11–22.

[39] Pagh, R. and Rodler, F. F. Cuckoo Hashing. In: Algorithms - ESA 2001. Springer
Berlin Heidelberg, 2001, vol. 2161, p. 121–133. Lecture Notes in Computer Science.
ISBN 978-3-540-44676-7.

[40] Pus, V., Tobola, J., Kosar, V., Kastil, J. and Korenek, J. Netbench:
Framework for Evaluation of Packet Processing Algorithms. In: 2011 ACM/IEEE
Seventh Symposium on Architectures for Networking and Communications Systems.
2011, p. 95–96. DOI: 10.1109/ANCS.2011.25.

[41] Puš, V. and Kořenek, J. Fast and Scalable Packet Classification Using Perfect
Hash Functions. In: FPGA ’09: Proceedings of the 17th international ACM/SIGDA
symposium on Field programmable gate arrays. New York, NY, USA: ACM, 2009.

[42] Qi, Y., Fong, J., Jiang, W., Xu, B., Li, J. et al. Multi-dimensional packet
classification on FPGA: 100 Gbps and beyond. In: 2010 International Conference on
Field-Programmable Technology.

[43] Singh, S., Baboescu, F., Varghese, G. and Wang, J. Packet classification using
multidimensional cutting. In: Conference on Applications, technologies, architectures,
and protocols for computer communications. New York, NY, USA: ACM, 2003,
p. 213–224. ISBN 1-58113-735-4.

[44] Song, H. and Lockwood, J. W. Efficient packet classification for network intrusion
detection using FPGA. In: FPGA ’05: Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate arrays. New York, NY, USA:
ACM, 2005, p. 238–245. ISBN 1-59593-029-9.

[45] Srinivasan, V. and Varghese, G. Faster ip lookups using controlled prefix
expansion. In: Proceedings of the 1998 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems. New York, NY, USA:
ACM, 1998, p. 1–10.

[46] Srinivasan, V., Varghese, G., Suri, S. and Waldvogel, M. Fast and scalable
layer four switching. SIGCOMM Comput. Commun. Rev. New York, NY, USA:
ACM. 1998, vol. 28, no. 4, p. 191–202. ISSN 0146-4833.

43

https://www.fit.vut.cz/research/publication/12244

[47] Tank, G. P., Dixit, A., Vellanki, A. and Annapurna, D. Software-Defined
Networking: The New Norm for Networks. April 2012. Available at:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-
papers/wp-sdn-newnorm.pdf.

[48] Taylor, D. and Turner, J. Scalable Packet Classification using Distributed
Crossproducing of Field Labels. In: 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. 2005, p. 269–280.

[49] Taylor, D. and Turner, J. ClassBench: a packet classification benchmark.
In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. 2005, vol. 3, p. 2068–2079 vol. 3. DOI:
10.1109/INFCOM.2005.1498483.

[50] The P4 Language Consortium. The P4 Language Specification: Version 1.0.5.
2018.

[51] The P4 Language Consortium. P416 Language Specification: Version 1.1.0. 2018.

[52] Tobola, J. and Kořenek, J. Effective Hash-based IPv6 Longest Prefix Match.
In: IEEE Design and Diagnostics of Electronic Circuits and Systems DDECS’2011.
IEEE Computer Society, 2011, p. 325–328. ISBN 978-1-4244-9753-9. Available at:
http://www.fit.vutbr.cz/research/view_pub.php?id=9602.

[53] Wang, H., Sun, T. and Yang, Q. Minimizing area cost of on-chip cache memories
by caching address tags. IEEE Transactions on Computers. 1997, vol. 46, no. 11,
p. 1187–1201. DOI: 10.1109/12.644293.

[54] Yaxuan, Q., Lianghong, X., Baohua, Y., Yibo, X. and Jun, L. Packet
Classification Algorithm: From Theory to Practice. In: IEEE INFOCOM 2009
proceedings. IEEE Communications Society, 2009. Available at:
http://users.ece.cmu.edu/~lianghon/docs/infocom09-hypersplit.pdf.

44

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.fit.vutbr.cz/research/view_pub.php?id=9602
http://users.ece.cmu.edu/~lianghon/docs/infocom09-hypersplit.pdf

Appendix A

Included Papers

45

A.1 Paper 1
Mapping of P4 Match Action Tables to FPGA

46

Mapping of P4 Match Action Tables to FPGA
Michal Kekely

Faculty of Information Technology
Brno University of Technology

Brno, Czech republic
Email: ikekelym@fit.vutbr.cz

Jan Korenek
Faculty of Information Technology

Brno University of Technology
Brno, Czech republic

Email: korenek@fit.vutbr.cz

Abstract—Current networks are changing very fast. Network
administrators need more flexible and powerful tools to be able to
support new protocols or services very fast. The P4 language
provides new level of abstraction for flexible packet processing.
Therefore, we have designed new architecture for memory
efficient mapping of P4 match/action tables to FPGA. The
architecture is based on DCFL algorithm and is able to balance
the processing speed and available memory resources.

I. INTRODUCTION

In recent years, the capacity of network links has grown
steadily. Network traffic processing needs flexible and faster
algorithms. The time to process one packet is shortened.
For current 100 Gbps networks it is necessary to process
one packet in 5 ns, for the 400 Gbps networks it will be
only 1.25 ns. In order to achieve high-speed network traffic
processing, it is necessary to use an appropriate hardware
acceleration method.

Moreover network administrators need more flexible tools.
Many different network devices from different vendors need
to work within one network. These devices have to be con-
figured and since they can have different implementations
and different target architectures this might be pretty time
comsuming task. Bosshart et al. [1] suggested a flexible
mechanism for describing packet processing. The P4 language
has been specified at Stanford University to enable high-
level definition of packet processing. The main goals of the
language are to be reconfigurable, protocol independent and
target independent. Therefore a network administrator does not
have to understand the target technology. This is especially
beneficial when ASICs and FPGAs are used. Last but not
least adding support for new protocols simply means slightly
altering the P4 program.

Packet classification is one of the crucial functionalities
that is often carried out in HW. Therefore, we have analysed
properties of the DCFL algorithm [4] to design new hardware
architecture, which is highly memory efficient and is able
to scale the throughput even up to 100 Gbps at the cost
of additional hardware resources.

The rest of the paper is structured as follows. Problem defi-
nition and objectives of PHD thesis are outlined in Section II.
Current state of the work and some results are in Section III.
The paper is concluded by mentioning plans for future work
in Section IV.

II. RELATED WORK

P4 language [1] defines 3 main processing parts. First
of all every packet needs to be parsed. Values of parsed
header fields are then used in Match Action Tables (MAT)
to determine actions applied to the packet. These actions can
modify selected header fields, add or delete headers and drop
or forward the packet. Finaly the packet needs to be assembled
back together from the modified and possibly new headers.

We mainly focus on transforming Match Action Tables.
MATs are part of the P4 language that represent packet
classification. These tables can classify based on different
header fields, each with different type of match applied (exact,
ternary, prefixes or LPM). Additionaly each table can be
applied only when certain conditions are met.

Different state-of-the-art approaches to packet classification
have different advantages and disadvantages. Hash based ap-
proaches such as Cuckoo Hashing [9] can be utilized to im-
plement classifications that use only exact matches. However,
they are unable to deal with any other type of match. For
longest prefix match, trie [10] structures seem to give the best
results. Alternatively more general solutions like TCAMs need
to be deployed. TCAMs can deal even with ternary type of
match but take up way too much logic resources, which means
their capacity is limited. Many other research papers suggest
hardware architectures that use the geometric representation
of the classification problem, where packet header fields are
dimensions and the classification is the searching in the n-
dimensional space. Algorithms such as HyperSplit [2] and
decision forest [3] use pipelined hardware architecture, where
finding the rule is split among multiple pipeline stages. How-
ever, considerable amount of memory resources has to be used.

Before designing the actual mapping of MATs to FPGA
we first chose to focus on designing and implementing
new flexible hardware architecture for classifying packets.
The proposed design leverages different single dimensional
approaches for exact and prefix based matching to create
architecture that supports multiple dimensions and can be
scaled well even for higher throughputs.

III. ARCHITECTURE

Architecture we propose is flexible, supports multiple di-
mensions and can be used as the most general one that
implements every table for which no better approch was

Fig. 1. Proposed architecture for DCFL with memory duplication and
additional TCAM.

found. This mainly means big tables with multiple different
dimensions and different types of matches.

We utilize DCFL algorithm [4] to design new scalable hard-
ware architecture, which is able to balance processing speed
and available hardware resources. Architecture, illustrated in
Figure 1, works in a pipeline-like fashion, which leverages the
fact that packet classification is split into single dimensions
and series of aggregations of the results from those single
dimensions. Memory requirements of aggregation nodes are
extremely low since probabilistic approches such as Bloom
filters [5] can be used.

Bottleneck of the original architecture are the aggregation
nodes. To optimize the original DCFL architecture we propose
two main techniques. First of which is memory duplication,
the second being TCAM offload. Memory duplication exploits
the fact that agreggation node have extremely low memory
requirements. It is possible to simply duplicate memories
used in aggregation nodes. By duplicating memories we
gain the ability to essentially do more than one memory access
per clock cycle. This can further be amplified by using dual
port block memories. Obviously, to do more than one memory
access per cycle the control logic also needs to be more
complex, so the number of on-chip resources needed (LUTs,
FFs ...) also increases. TCAM offload introduces small TCAM
to the architecture. It is then possible to identify rules that are
causing the DCFL algorithm to not perform efficiently and
classify those rules in the TCAM instead.

Graph in figure 2, show scaling of block RAMs needed
for increasing throughput of the architecture. It also shows
comparison to other approaches (decision forest [3], BV-
TCAM [6] and HyperCuts [8]). The architecture runs at 200
MHz and throughput was computed for worst-case scenario
of shortest possible packets (64B). We can see that the number

 1

 10

 100

 1000

 0.1 1 10 100

B
R

A
M

Throughput [Gbps]

our approach
decision forest

BV-TCAM
HyperCuts

Fig. 2. Graph showing number of BRAMs needed and throughput of proposed
architecture compared to other approaches.

of BRAMs scales linearly with the throughput. It also means
that the memory requirements stay manageable even for higher
throughputs. Note that the results shown for our architecture
are for capacity of around 5500 rules, whereas results of other
architectures may have different rule capacities.

IV. CONCLUSIONS AND FUTURE WORKS

The paper presented new scalable hardware architecture for
packet classification based on DCFL algorithm. The proposed
architecture is memory efficient and is able to balance hard-
ware resource and processing speed. It means that networking
applications and devices can fully utilize available resources
to achieve maximal throughput. Moreover, the architecture is
not limited in the number or types of supported dimensions.

In the future main focus will be around automatization of
the actual mapping of P4 MATs to FPGA. A new compiler
will be implemented. It should be able to decide which imple-
mentation is best to be used for MAT based on information
that can be obtained from a P4 program.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese and D. Walker, P4:
Programming Protocol-Independent Packet Processors, CRC, July 2014.

[2] Q. Yaxuan, X. Lianghong, Y. Baohua, X. Yibo and L. Ji, Packet Classifi-
cation Algorithms: From Theory to Practice, In Proc. IEEE INFOCOM,
2009.

[3] W. Jiang and V. K. Prasanna, Scalable Packet Classification on FPGA,
IEEE Trans. on VLSI, vol. 20, no. 9, 2012.

[4] D. E. Taylor and J. S. Turner, Scalable Packet Classification using
Distributed Crossproducting of Field Labels, in IEEE INFOCOM, 2005.

[5] S. Dharmapurikar, H. Song, J. S. Turner, and J. W. Lockwood, Fast Packet
Classification Using Bloom Filters, in Proc. ANCS, 2006.

[6] H. Song and J. W. Lockwood, Efficient packet classification for network
intrusion detection using FPGA, in Proc. FPGA, 2005.

[7] OpenFlow Switch Specification,, ver. 1.4.0, 2013.
[8] Y. Luo, K. Xiang, and S. Li, Acceleration of decision tree searching for

IP traffic classification, in Proc. ANCS, 2008.
[9] R. Pagh and F. Rodler, Cuckoo Hashing, Algorithms - ESA, 2001.
[10] R. Briandais, File searching using variable length keys, in Proc. Western

J. Computer Conf, 1959.

A.2 Paper 2
Packet Classification with Limited Memory Resources

49

Packet Classification with Limited Memory
Resources

Michal Kekely
Faculty of Information Technology

Brno University of Technology
Brno, Czech republic

Email: ikekelym@fit.vutbr.cz

Jan Korenek
Faculty of Information Technology

Brno University of Technology
Brno, Czech republic

Email: korenek@fit.vutbr.cz

Abstract—Network security and monitoring devices use packet
classification to match packet header fields in a set of rules. Many
hardware architectures have been designed to accelerate packet
classification and achieve wire-speed throughput for 100 Gbps
networks. The architectures are designed for high throughput
even for the shortest packets. However, FPGA SoC and Intel
Xeon with FPGA have limited resources for multiple accelerators.
Usually, it is necessary to balance between available resources
and the level of acceleration. Therefore, we have designed
new hardware architecture for packet classification, which can
balance between the processing speed and hardware resources. To
achieve 10 Gbps average throughput the architecture need only
20 BlockRAMs for 5500 rules. Moreover, the architecture can
scale the processing speed to wire-speed throughput on 100 Gbps
line at the cost of additional memory resources.

I. INTRODUCTION

In recent years, the capacity of network links has grown
steadily. Network traffic processing need flexible and faster
algorithms. The time to process one packet is shortened.
For current 100 Gbps networks it is necessary to process
one packet in 6.7 ns, for the 400 Gbps networks it will be
only 1.6 ns. In order to achieve high-speed network traffic
processing, it is necessary to use an appropriate hardware
acceleration method.

Packet filters are widely used to ensure the security of com-
puter networks. The filters are configured by a set of rules,
which are defined on selected packet header fields. The packet
filter finds a rule for every input packet and applies the appro-
priate action. Finding a rule for an input packet is defined by
an operation called packet classification. Packet classification
is used not only in packet filters but also in other security
devices such as IDS/IPS systems, network traffic shaping or
gathering statistical information. In P4 language [1], packet
classification is the key operation to implement match/action
tables.

Many research papers deals with the acceleration
of the packet classification in order to achieve high
throughput in tens or hundreds of gigabits. First algorithms
and hardware architectures HiCuts [3] and HyperCuts [2]
use the geometric representation of the classification
problem, where packet header fields are dimensions and
the classification is the searching in the n-dimensional space.
Many other algorithms such as HyperSplit [4] and decision

forest [5] use pipelined hardware architecture, where finding
the rule is split among multiple pipeline stages. The ruleset
is usually transformed to the tree, which is split to multiple
pipeline stages and stored in the on-chip memory. It is thus
possible to achieve high throughput. However, the whole
ruleset is stored in the on-chip memory and considerable
amount of memory resources has to be used.

Effective utilization of the on-chip memory was demon-
strated by the DCFL [6] algorithm, but only at the cost of time
complexity, which can be significantly increased for some
types of rules. the original DCFL algorithm doesn’t provide
any idea how to deal with these types of rules to increase
processing speed.

The new Xilinx Zynq and Intel Xeon with FPGA provide
wide scope for the acceleration of network functions. Usu-
ally, networking applications and devices need to accelerate
at the same time multiple operations (packet classification,
pattern matching, encryption, etc.). It means that it is not
possible to allocate the entire FPGA only for one function.
Instead, every function has limited hardware resources and
has to adjust the throughput to available resources. However,
current hardware architectures are primarily trying to achieve
high throughput without possibility to scale throughput with
respect to available on-chip resources.

Therefore we have analysed properties of the DCFL algo-
rithm to design new hardware architecture, which is highly
memory efficient and is able to scale the throughput at the cost
of additional hardware resources. As can be seen in the results,
the architecture utilizes only 20 BlockRAMs to store 5500
rules to achieve 10 Gbps average throughput. Moreover, we
were able to scale the performance of proposed hardware ar-
chitecture up to the wire-speed 100 Gbps throughput at the cost
of reasonable hardware resources.

The rest of the paper is structured as follows. Related
work is surveyed in Section II. We propose the classification
architecture in Section III and the evaluation and experimental
results are in Section IV. the paper is concluded in Section V.

II. RELATED WORK

Current approaches to packet classification focus mainly
on throughput and number of rules supported. To achieve

2017 Euromicro Conference on Digital System Design

978-1-5386-2146-2/17 $31.00 © 2017 IEEE

DOI 10.1109/DSD.2017.61

179

maximal throughput and high number of rules these algo-
rithms sacrifice flexibility in terms of supporting different
number of dimensions and different types of matches in each
of the dimensions. Moreover the architectures used often use
great amount of resources with limited options of scaling it
down.

Packet classification based on bit-parallelism (or bit vec-
tors, BV), proposed by Lakshman et al. [9], is a practi-
cal implementation that leverages the fact that rule updates
are infrequent compared to search operations. The algorithm
works in two stages. In the first stage parallel searches are
carried out within each of the dimensions, resulting in bit
vectors. Each bit of the vectors corresponds to one rule
of classification, therefore their width is given by the number
of rules used for classification. A bit is set if corresponding
rule is matched in given dimension and is reset otherwise.
After first stage every bit vector represents the set of all
the rules matched in one dimension. Then the second stage
has to find intersection of the sets matched within single
dimensions. Since these sets are represented as bit vectors
finding the intersection is reduced to bitwise AND operation
among the bit vectors. The main problem of this approach is
the width of bit vectors which increases with number of rules.
Song et al. [10] presented architecture that combines bit vector
approach with TCAMs. The architecture uses TCAMs for
lookups within dimensions that require exact or prefix matches
and tree-bitmap implementation of BV algorithm for source
and destination port lookups. This architecture is optimized
for classification based on network flow 5-tuples (source IP
address, destination IP address, source port, destination port
and L4 protocol) and therefore is not very flexible and was not
shown to have the ability to scale to support different header
fields.

With OpenFlow and other new emerging standards there
is an increasing need to support more than the standard 5
dimensions. First specification of OpenFlow supports up to 12
dimensions with newer 1.4.0 version [11] supporting 42 differ-
ent header fields. Therefore algorithms need to be able to scale
to more dimensions, that might have different characteristics.
Several of the possible approaches to support multiple dimen-
sions are described in [12]. Grid of tries extends standard trie
structure to two dimensions, however it is not easily extendable
to more than two. General solution using crossproducting is
more promising, but with no further optimizations uses up
way too much memory and resulting cross-products are quite
big. Other trie-based algorithms scale poorly with increasing
number of dimensions. Additionally these algorithms need
great amounts of memory and cannot be easily scaled to higher
throughputs. McKeown et al. [13] proposed using recursive
flow classification (RFC). They suggest that packet classifica-
tion can be viewed as mapping of N bits (given by the header
fields) to M bits representing rule or action matching given
packet. Obviously M is expected to be way lower than N.
Directly implementing such a mapping would require 2N̂ en-
tries in memory, therefore RFC algorithm splits this mapping
into multiple stages that recursively map one set of values

to a smaller set of values. Once again the downfall of this
approach is memory needed. Especially when the number
of phases is low the memory requirements are very high.

Different approaches try to utilize architectures based on
building decision trees. Many of those algorithms were not
designed with FPGA implementation in mind, however some
of them can be bent to run efficiently on FPGAs. Hi-
Cuts [3] and HyperCuts [2] are examples of such algorithms.
The main idea is to progressively cut the whole searched
space represented by classification dimensions into small
enough parts (usually representing 1 or several rules). Dif-
ferent heuristics can be used to decide how to cut the space.
Resulting trees tend to have many nodes. Additionally adding
or removing rules leads to need of rebuilding the whole tree.
A way to increase throughput of HyperCuts was introduced
by Luo et al. [14]. Their method called explicit range search
uses new methods to cut ranges in dimensions and then
search within the ranges. This leads to increased throughput
for the price of needing to store explicit marks in memory.
Kennedy et al. [15] implemented simplified version of Hyper-
Cuts algorithm with the goal of reducing power consumption
and increase power efficiency. They were able to lower the fre-
quency to only 32 MHz which however means a throughput
of only 0.47 Gbps.

Prasanna et al. [5] pushed the idea of building decision
tree even further. They have observed that HyperCuts and
similar decision-tree-based algorithms do not efficiently deal
with rules that have too much overlap with each other. In
such cases many rules need to be duplicated and the resulting
tree (and required memory) can explode exponentially with
number of dimensions. To combat this a decision forest is
introduced. Ruleset is split into subsets and smaller decision
trees are built for each subset. Rules within the subset are
chosen so that they have as little overlap as possible and they
specify nearly the same dimensions. Additionally two other
techniques are used to optimize HyperCuts algorithm. Rule
overlap reduction stores rules that should be replicated in a list
in each internal node instead of actually replicating it into all
the child nodes. Precise range cutting is used to determine
cutting points which will result in the least number of rule
duplications instead of deciding number of cuts for a field.

Taylor et al. [6] introduced Distributed Crossproducting
of Field Labels (DCFL). This algorithm decomposes classifi-
cation into single dimensions and can be easily parallelized.
Moreover it uses Bloom Filters [7] and labeling technique
which leads to low memory and logic requirements. Because
of this several parts of the architecture can be duplicated
to increase throughput while still maintaining reasonable usage
of on-chip memories and logic.

III. ARCHITECTURE

Our goal was to design an architecture that would be flex-
ible. The architecture should scale well both with increasing
number of dimensions as well as with required throughput.
Because of this we needed an approach that starts with low

180

Fig. 1. Top level architecture of original DCFL algorithm.

memory requirements and low throughput and can also be
scaled up.

We utilize DCFL algorithm to design new scalable hardware
architecture, which is able to balance processing speed and
available hardware resources. Original DCFL based architec-
ture is illustrated for 4-dimensional classification by figure 1.
Architecture works in a pipeline-like fashion, which leverages
the fact that packet classification is split into single dimensions
and series of aggregations of the results from those single
dimensions. First stage of pipeline consists of blocks D1,
D2, D3 and D4. These are responsible for classifying incom-
ing packets within first, second, third and fourth dimension
of classification respectively. Implementation of these blocks
is dependant on the type of matching that needs to be done
in each of the dimensions. This could mean using cuckoo-
hash based approach [16] in case of exact match or trie based
solutions [17] and TCAMs for matching prefixes. Additionally
each dimension can be classified independently.

Results of single dimension classifications are stored
in distributed memory buffers. Main function of these
buffers is to act as synchronization between different stages
of the pipeline as the number of cycles needed for different
blocks of the architecture to process a single packet may vary
based on matched rules. Capacity of the buffers does not need
to be large, because the number of results that can match
one packet in a single dimension is with high probability
lower than 5 (as shown in [6]). To save even more distributed
memory every unique value in each dimension is represented
by unique label. This label has lower bit width than the value it
represents. For example, if we know that the number of unique
IPv4 addresses (or prefixes) is lower than 1024, we can use
10 bit wide labels instead of working with 32 bit wide IPv4
address values.

Every other pipeline stage aggregates two sets of results R1
and R2 from previous stages into one new result set R. First
of all cross-product R1xR2 of the two input sets is computed.

Fig. 2. Proposed architecture for DCFL with memory duplication and
additional TCAM.

Afterwards the new result set R needs to be found such that R
is subset of the cross-product R1xR2 and every element of R
is part of some rule from ruleset of classification. Bloom
filter arrays and Meta-label indexing are used to represent
sets of every element that is part of some rule from ruleset
of classification. Finding set R then simply means deciding
set membership for every element of R1xR2.

Bottleneck of the architecture are the aggregation nodes.
Each set membership query needs at least one memory access.
Even though number of unique prefixes in each dimension,
that match a packet, are quite low the resulting cross-product
can in worst case consist of around 40 or even more elements.
This means that to classify a single packet in worst-case
scenario we need 40 memory accesses, which means 40 clock
cycles. The throughput can be therefore severely impacted,
especially on short packets.

To optimize the original DCFL architecture we propose
two main techniques. First of which is memory duplication,
the second being TCAM offload. Resulting architecture is
illustrated by figure 2.

Memory duplication exploits the fact that using labels
to represent unique prefixes (or values) in individual dimen-
sions with addition of using Bloom filter arrays leads to
extremely low memory requirements. It is possible to simply
duplicate memories used in aggregation nodes. By duplicating
memories we gain the ability to essentially do more than
one memory access per clock cycle. This can further be
amplified by using dual port block memories. It is also possible
to duplicate some memories multiple times increasing memory
requirements and throughput even more. Obviously, to do
more than one memory access per cycle the control logic also
needs to be more complex, so the number of on chip resources
needed (LUTs, FFs ...) also increases. All of this allows us
to tailor architectures throughput and memory requirements
to our needs, which can be especially useful when we need
to guarantee certain throughput while maintaining memory
requirements as low as possible or when we want to get
highest possible throughput with limited memory resources.

181

The technique of memory duplication can be most efficiently
used when the actual ruleset of the classification or at least its
core is known beforehand (in time of generating the architec-
ture). Analyzing the ruleset can determine which aggregation
nodes are critical (meaning they have to process cross-products
of biggest sizes therefore need most cycles per packet). Mem-
ories within critical aggregation nodes can then be duplicated
more times than memories within other aggregation nodes.
Generally, lets assume that aggregation node A1 has to in
worst-case process cross-product of size S1 while aggregation
node A2 has to in worst-case process a cross-product of size
S2. Memories of A1 should be duplicated (S1/S2)-times as
much as memories of A2 to achieve the best possible trade-
off between throughput and memory requirements.

Analysis of ruleset can not only help determine how much
duplication should occur in each stage of DCFL but can
also serve to identify rules that are interfering mostly with
others. These are the rules that are part of the worst case
matches (meaning they have a packet that matches them along
with maximal number of other rules). Once we identified
such rules we can offload them into parallel TCAM - hence
the name TCAM offloading. To identify those rules a simple
algorithm can be used. Let us assume we want to optimize
worst case scenario for first aggregation node. To do so we
want to decrease the maximal number of prefixes that can
match a packet in either the first or the second (or both)
dimension. We can build one dimensional tries for first and
second dimension. While building those tries we also compute
and store some additional information.

First of all for each node v we store a list R(v) of all the rules
corresponding to the prefix that this node represents. For
example if we have rules R1=(192.168.*.*, 10.10.10.*) and
R2=(192.168.*.*, 192.168.1.1), both rules need to be stored
at the node representing 192.168.*.* prefix in the first dimen-
sion. Secondly for each node v we compute I(v) - the maximal
number of relevant nodes (nodes which correspond to at least
one rule) contained within any path that starts at root, goes
through said node v and ends in any leaf and G(v) - the number
of relevant nodes on the path from root to node v (since we
work with a tree there is only one such path). This numbers
basically gives us how many other prefixes can be matched
along with prefix represented by node v and number of more
general prefixes. Next we pool nodes with the same G and
I values together into pools. For each pool p we store also
a new list R(p) which is union of all the R(v) lists, where v is
any node from pool p. Finally to decrease number of prefixes
that can match a packet by one we simply have to choose any
pool p with maximal value of I and remove all the rules R(p).
Then we can update all the values and do this again.

Figure 3 illustrates why we need also the G values. Bold
circles represent nodes with non-empty R. This example shows
a situation where the worst-case scenario are 7 nested prefixes.
Additionally there are 2 parallel branches both with 7 nested
prefixes in them. Node x represents the most general prefix.
We can reduce the worst-case nesting (maximal I value) by
removing all the rules associated with this node (R(x)). This

Fig. 3. Example of part of the trie built while analyzing ruleset.

TABLE I
CHARECTERISTICS OF RULESETS USED.

Name Dimensions Number of rules Overlap

acl1 4 2406 high

fw1 05 05 5 733 medium

fw2 05 05 4 941 low

however might not be possible as the number of removed rules
might be higher than capacity of TCAM. Alternatively we can
remove all the rules associated with some of the other nodes
representing nested prefixes. In the illustrated case this means
removing both R(y) and R(z). If we removed only R(y) the
I(x) and I(z) values would not change (as they are in a parallel
branch). This whole algorithm can be extended to also work
with hierarchical tries for the aggregation nodes beyond the
first one. Once again to utilize this technique fully a ruleset
should be known before classification starts.

IV. RESULTS

In order to analyze how effective our solution is we
implemented it using high-level synthesis. We used chip
from Kintex-7 family of FPGAs. To demonstrate variety
of rulesets we chose 3 sets of classification rules. These
sets were generated by ClassBench [18] tool and are part
of NetBench [19] framework. Table I shows the characteristics
of the sets, main one being level of overlap between ranges or
prefixes within rules. acl1 is an example of ruleset with many
overlapping ranges of port values, therefore many different
rules can match the same packet within single dimension,
which leads to DCFL not being very effective. fw2 05 05 on
the other hand has little overlap between rules and prefixes
thus DCFL shows much better results. Finally fw1 05 05
represents a middle ground.

Graphs in figures 4, 5 and 6 show scaling of block
RAMs needed for increasing throughput of the architecture
for rulesets acl1, fw1 05 05 and fw2 05 05. The architecture
runs at 200 MHz and throughput was computed for worst-
case scenario of shortest possible packets (64B). We can see
that the number of BRAMs scales linearly with the throughput.
It also means that the memory requirements stay manageable
even for higher throughputs. Note that the results shown
for our architecture are for capacity of around 5500 rules,
whereas results of other architectures may have different rule
capacities (mainly decision forest has capacity of 10 000
rules). Additionally our architecture used quite small TCAMs

182

Fig. 4. Graph showing number of BRAMs needed and throughput of proposed
architecture for ruleset acl1 compared to other approaches.

Fig. 5. Graph showing number of BRAMs needed and throughput of proposed
architecture for ruleset fw1 05 05 compared to other approaches.

Fig. 6. Graph showing number of BRAMs needed and throughput of proposed
architecture for ruleset fw2 05 05 compared to other approaches.

(since number of unique values in single dimensions are a lot
lower than number of rules) as engines for searching in single
dimensions. We estimate that the number of BRAMs would be
twice or thrice as big if other single-dimensional algorithms
(Cuckoo Hash, Tries, etc.) were used. However even if we take
into account previously mentioned information our approach
still has around the same (or even better) memory requirements
while having the ability to be scaled to various throughputs.

V. CONCLUSION

The paper presented new scalable hardware architecture for
packet classification based on DCFL algorithm. The proposed
architecture is memory efficient and is able to balance hard-
ware resource and processing speed. It means that networking
applications and devices can fully utilize available resources
to achieve maximal throughput. Moreover, the architecture is
not limited in the number or types of supported dimensions.

We introduced two techniques to lower the memory require-
ments and increase processing speed. High memory efficiency
has been achieved. Our architecture can fit thousands of rules
into memory available on current FPGA chips while maintain-
ing high throughput. Furthermore the architecture scales very
well and versions that use less memory and logic resources
can be used if high throughput is not needed.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese and D. Walker, P4:
Programming Protocol-Independent Packet Processors, CRC, July 2014.

[2] S. Singh, F. Baboescu, G. Varghese and J. Wang, Packet Classification
Using Multidimensional Cutting, in Proc. SIGCOMMM, 2003.

[3] P. Gupta and N. McKeown, Classifying Packets with Hierarchical Intel-
ligent Cuttings, IEEE Micro, vol. 20, no. 1, 2000.

[4] Q. Yaxuan, X. Lianghong, Y. Baohua, X. Yibo and L. Ji, Packet Classifi-
cation Algorithms: From Theory to Practice, In Proc. IEEE INFOCOM,
2009.

[5] W. Jiang and V. K. Prasanna, Scalable Packet Classification on FPGA,
IEEE Trans. on VLSI, vol. 20, no. 9, 2012.

[6] D. E. Taylor and J. S. Turner, Scalable Packet Classification using
Distributed Crossproducting of Field Labels, in IEEE INFOCOM, 2005.

[7] S. Dharmapurikar, H. Song, J. S. Turner, and J. W. Lockwood, Fast Packet
Classification Using Bloom Filters, in Proc. ANCS, 2006.

[8] V. Pus, Fast and Scalable Packet Classification Using Perfect Hash
Functions, in Proc. ACM/SIGDA International Synopsium on Field Pro-
grammable Gate Arrays, 2009.

[9] T. V. Lakshman and D. Stiliadis, High-speed policy-based packet for-
warding using efficient multi-dimensional range matching, in Proc. SIG-
COMM, 1998.

[10] H. Song and J. W. Lockwood, Efficient packet classification for network
intrusion detection using FPGA, in Proc. FPGA, 2005.

[11] OpenFlow Switch Specification,, ver. 1.4.0, 2013.
[12] V. Srinivasan, G. Varghese, S. Suri and M. Waldvogel, Fast and Scalable

Layer Four Switching, in Proc. SIGGCOM, 1998.
[13] P. Gupta and N. McKeown, Packet Classification on Multiple Fields,

in Proc. SIGGCOM, 1999.
[14] Y. Luo, K. Xiang, and S. Li, Acceleration of decision tree searching for

IP traffic classification, in Proc. ANCS, 2008.
[15] A. Kennedy, X. Wang, Z. Liu, and B. Liu, Low power architecture for

high speed packet classification, in Proc. ANCS 2008.
[16] R. Pagh and F. Rodler, Cuckoo Hashing, Algorithms - ESA, 2001.
[17] R. Briandais, File searching using variable length keys, in Proc. Western

J. Computer Conf, 1959.
[18] D. E. Taylor and J. S. Turner, ClassBench: a Packet Classification

Benchmark, in IEEE/ACM Transactions on Networking, vol. 15, no. 3,
2007.

[19] Pus, V., Tobola, J. and Kosar, V. Netbench: Framework for Evaluation
of Packet Processing Algorithms, Symposium On Architecture For Net-
working And Communications Systems, 2011.

183

A.3 Paper 3
Memory Aware Packet Matching Architecture for High-Speed Networks

55

Memory Aware Packet Matching Architecture for
High-Speed Networks

Michal Kekely
FIT BUT

Božetěchova 2, 612 66 Brno
Czech Republic

ikekelym@fit.vutbr.cz

Lukáš Kekely
CESNET, a. l. e.

Zikova 4, 160 00 Prague 6
Czech Republic

kekely@cesnet.cz

Jan Kořenek
IT4Innovations Centre of

Excellence, FIT BUT
Božetěchova 2, 612 66 Brno

Czech Republic
korenek@fit.vutbr.cz

Abstract—Packet classification is a crucial operation for many
different networking tasks ranging from switching or routing to
monitoring and security devices like firewall or IDS. Generally,
accelerated architectures implementing packet classification must
be used to satisfy ever-growing demands of current high-speed
networks. Furthermore, to keep up with the rising network
throughputs, the accelerated architectures for FPGAs must be
able to classify more than one packet in each clock cycle. This can
be mainly achieved by utilization of multiple processing pipelines
in parallel, what brings replication of FPGA logic and more
importantly scarce on-chip memory resources.

Therefore in this paper, we propose a novel parallel hardware
architecture for hash-based exact match classification of multiple
packets per clock cycle with reduced memory replication require-
ments. The basic idea is to leverage the fact that modern FPGAs
offer hundreds of BlockRAM tiles that can be accessed (ad-
dressed) independently to maintain high throughput of matching
even without fully replicated memory architecture. Our results
show that the proposed approach can use memory very efficiently
and scales exceptionally well with increased record capacities. For
example, the designed architecture is able to achieve throughput
of more than 2 Tbps (over 3 000 Mpps) with an effective capacity
of more than 40 000 IPv4 flow records for the cost of only
366 BlockRAM tiles and around 57 000 LUTs.

I. INTRODUCTION

With the increasing capacity of network links, all network
devices and systems need to speed up their packet processing.
Current processors are not able to cope with network traf-
fic even on 100 Gbps links. In order to achieve wire-speed
processing with a throughput of 100 Gbps and more, network
systems have to utilize FPGA or ASIC technology. The
FPGA acceleration provides high performance and is highly
configurable (flexible) as well. The flexibility is essential
for any practical network system because traffic processing
is changing with the introduction of every new protocol,
application or service. Therefore, 40 Gbps network interface
cards with FPGAs started to be deployed to data centers
as hardware platforms for the acceleration [1] and will be
probably more and more frequently used in the future.

Network traffic processing architecture can be easily de-
scribed in the P4 high-level language [2] and then automati-
cally mapped directly to an FPGA hardware accelerator [3],
[4]. The P4 language has been designed at Stanford University
in order to enable protocol, vendor and target independent
definitions of packet processing. An integral part of the P4

language is the utilization of match/action tables as a basis to
control processing of each input packet.

The match/action tables perform various forms of packet
classification. During the classification, packets are matched
against a set of rules, which are usually defined by values,
ranges or prefixes of a few selected packet header fields.
Generally, the classification is a mathematical problem of a
multidimensional range search. Due to the ruleset size and
complexity of rules, it is very difficult to perform matching
at sufficient rate for wire-speed processing. Therefore, many
hardware architectures have been designed to accelerate packet
classification [5], [6], [7], [8], [9], [10], [11].

For 100 Gb network links, wire-speed throughput can be
achieved only if a new packet is processed every 6.7 ns, which
is only one clock cycle for 150 MHz clock. It means that
multiple packets have to be processed within each clock cycle
to achieve wire-speed 400 Gbps or 1 Tbps packet processing in
FPGAs. Usually, the processing speed is increased by utiliza-
tion of multiple parallel pipelines [12], [13], which require
multi-port memories or memory replication. Unfortunately,
both approaches significantly reduce throughput scalability at
400 Gbps or 1 Tbps speeds.

Therefore, we focus on the design of a new hardware
acceleration technique for packet classification with efficient
utilization of memory resources to achieve high-speed packet
processing. We introduce novel hardware architecture that is
able to scale the throughput of P4 match/action tables to
more than 2 Tbps (over 3 000 Mpps) on current FPGAs while
memory replication is significantly reduced compared to other
approaches. The proposed concept is compared with simple
pipeline/memory replication scheme and several possible op-
timizations are introduced.

II. RELATED WORK

Currently, there are many different approaches to packet
classification. Some of them focus on being as general as
possible, supporting packet classification in multiple differ-
ent dimensions and different types of match strength, such
as range lookups, ternary matching or longest prefix match
(LPM). However, the only way how to scale most of those
approaches for higher throughputs is to utilize multiple copies
of the same architecture operating in parallel.

1

2018 21st Euromicro Conference on Digital System Design

978-1-5386-7377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/DSD.2018.00017

Packet classification based on bit-parallelism (or bit vec-
tors, BV), proposed by Lakshman et al. [14], is a practi-
cal implementation that leverages the fact that rule updates
are infrequent compared to search operations. The algorithm
works in two stages. In the first stage, parallel searches are
carried out within each of the dimensions, resulting in bit
vectors. Each bit of these vectors corresponds to one record
in classification ruleset, therefore their width is given by the
number of rules used. A bit is set to one if a corresponding rule
is matched in given dimension and is reset to zero otherwise.
After the first stage, every bit vector represents the set of
all the rules matched in one dimension. Then the second
stage has to find an intersection of the sets matched within
single dimensions. Since these sets are represented as bit
vectors finding the intersection is reduced to bitwise AND
operation among the bit vectors. The main problem with this
approach is the width of bit vectors which increases with the
number of rules. Song et al. [15] presented architecture that
combines bit vector approach with TCAMs. The architecture
uses TCAMs for lookups within dimensions that require exact
or prefix matches and tree-bitmap implementation of the
BV algorithm for source and destination port lookups. This
architecture is optimized for classification based on network
flow 5-tuples (source IP address, destination IP address, source
port, destination port and L4 protocol), therefore it is not very
flexible and was not shown to have the ability to scale to
support different header fields.

Several of different approaches to supporting multiple di-
mensions are described in [16]. A grid of Tries extends
standard Trie structure to two dimensions however, it is
not easily extendable to more than two. General solution
using cross-products is more promising, but with no further
optimizations uses up way too much memory and resulting
cross-products are quite big. Other trie-based algorithms scale
poorly with increasing number of dimensions. Additionally,
these algorithms need great amounts of memory and cannot
be easily scaled to higher throughputs.

Another group of approaches to classification tries to utilize
architectures based on the construction of decision trees.
Many of these algorithms are not designed with FPGA im-
plementation in mind, however, some of them can be bent
to be efficiently mapped into FPGA structure. HiCuts [6] and
HyperCuts [7] are examples of such algorithms. The main idea
is to progressively cut the whole searched space represented
by classification dimensions into small enough parts (usually
representing 1 or several rules). Different heuristics can be
used to decide how to cut the space. But, resulting trees tend
to have many nodes. Additionally adding or removing rules
leads to the need of rebuilding the whole tree.

Prasanna et al. [17] pushed the idea of constructing decision
trees even further. They have observed that HyperCuts and
similar algorithms do not efficiently deal with rules that have
too much overlap with each other. In such cases, many rules
need to be duplicated and the resulting tree (and required
memory) can explode exponentially with the number of dimen-
sions. To combat this, a decision forest is introduced. Ruleset

is split into subsets and smaller decision trees are built for
each subset. Rules within each subset are chosen so that they
have as little overlap as possible and that they specify nearly
the same dimensions. Additionally, two other techniques are
used to optimize HyperCuts algorithm. Rule overlap reduction
stores rules that should be replicated in a list in each internal
node instead of actually replicating it into all the child nodes.
Precise range cutting is used to determine cutting points which
will result in the least number of rule duplications instead of
deciding number of cuts for a field.

Taylor et al. [5] introduced Distributed Crossproducting of
Field Labels (DCFL). This algorithm decomposes classifica-
tion into single dimensions and can be easily parallelized.
Moreover, it uses Bloom Filters [9] and labeling technique to
lower memory and logic requirements. The architecture was
shown to be scalable even to higher throughputs [18], but only
by using multiple copies of the memories. Because of this
key features, the architecture can be duplicated to increase
throughput while still maintaining reasonable usage of on-chip
memories and logic. This idea was pushed further to build
scalable architecture through memory duplication in [18].

In many cases, exact match packet classification is suffi-
cient. This is prevalent mainly when IP flows are concerned.
Effective approaches to exact match packet classification are
usually based on hash tables. A sophisticated way of imple-
menting hash tables is cuckoo hashing principle [19]. The
main idea of cuckoo hashing is to increase the efficiency
of memory utilization in the hash table by multiple parallel
hash functions/tables. Each table uses one of the different
hash functions for indexing. This means that if a new element
cannot be inserted into the first table because of a conflict with
an already existing item, it can still be inserted into one of the
other tables through a different hash function. Even when the
element cannot be inserted into any of the tables it can still be
inserted by force, pushing out one of the previous occupants.
The previous occupant can then be reinserted into the tables
in the same manner. Using more tables and reinsertions allows
the cuckoo hashing to keep the high lookup speed while
decreasing the number of unresolvable conflicts and therefore
increasing the effective capacity.

The cuckoo hashing approach is well suited for hardware
because each hash table can work in parallel [20], [21]. These
published implementations offer throughputs up to around only
100 Gbps, while in this paper we aim at achieving over 1 Tbps.
Cuckoo hashing based packet classification is also effectively
used to monitor or analyze network traffic in the idea of
Software Defined Monitoring (SDM) [22]. Here, an external
memory is utilized and achieved throughput is again shown to
be sufficient only for up to 100 Gbps.

III. ARCHITECTURE

Our main goal is to design an architecture for exact match
packet classification that can accommodate high throughputs
of multiple terabits per second. One way to achieve this
would be to increase the clock frequency of basic cuckoo
hashing architecture. This is possible to do only until a certain

2

Fig. 1. The memory architecture of simple replication approach.

point, after which the frequency cannot be further increased
due to the limitations of used FPGA technology. The other
way to increased throughput is through a design of the new
architecture of cuckoo hashing that can carry out more than
one rule lookup per each clock cycle. This translates to more
than one memory access per clock cycle to each utilized hash
table. Current Xilinx FPGAs use BlockRAM tiles as the main
type of on-chip memories. These have 2 independent ports,
therefore we can easily perform 2 memory accesses per clock
cycle with no additional cost.

In order to enable more than 2 accesses per clock cycle,
we can simply replicate the memories. This is illustrated
for 4 accesses in the figure 1. Two of the accesses are
mapped to one copy of the memory and two are mapped
to the other copy. This approach is not particularly efficient
because we need to double the memory in order to achieve
doubled throughput. However, we can leverage the internal
structure of FPGAs and their memory tiles. A single copy
of a larger memory is internally usually composed of more
than one BlockRAM tile (B blocks). Each BlockRAM on
current Xilinx chips [23] can be used as 36 b wide dual port
memory with 1 024 entries. Larger memories are constructed
utilizing multiple BlockRAMs organized into several rows and
columns. For example, figure 1 corresponds to data width of
up to 108 b and 4 048 entries.

A. Proposed Approach

If we already have more than one row of BlockRAMs
in each table we should be able to do more than just two
memory accesses per clock cycle. We can, in fact, ideally
do two accesses per cycle independently to each of the
individual rows. This fact can be leveraged to optimize the
previously mentioned simple replication approach. We propose
an FPGA architecture of cuckoo hashing shown in figure 2.
The proposed approach is also applicable to any other kinds
of hash tables, but we choose cuckoo hashing as it is the most
effective existing hashing scheme.

The figure shows the architecture able to carry out up to
2 parallel lookups per cycle with cuckoo hashing using 3
different hash functions/tables. The memory blocks used here
are similar to the blocks from figure 1 – meaning that they in-
ternally consist of multiple independent rows of BlockRAMs.

Fig. 2. The top-level architecture of the proposed optimization.

Hash functions are computed for each lookup key (H blocks)
and are connected to a distribution logic (D blocks). There
is one distributor block for each hash function/table of the
cuckoo hashing. The distributor consists primarily of logic that
maps the requested memory accesses into corresponding table
rows given by a few most significant bits of their hash values
and distributes them onto available BlockRAM ports for each
of these rows. On the other side, it correctly forwards read
data from each memory row and port to the corresponding
comparison logic (= and OR blocks). The basic idea is to
replicate memory fewer times than in the case of a simple
approach (fewer replicas than required parallel packet lookups)
as we can perform multiple accesses per clock cycle simply
by hash functions that are pointing into different table rows.
Additionally, memory can also be replicated here to enable
more than two parallel access ports for each row.

So, the distributor blocks determine which row of the
BlockRAMs is accessed by each lookup and sets the control
logic in a way to carry out all the lookups that are not in
conflict with each other. Conflicts, in this case, mean that
there are more lookups wanting to access the same row of one
table than there are available access ports in this row. Note
that since the memories can still be replicated the number
of available access ports might be higher than two. All the
lookups that could not be carried out in the first cycle will
be carried out in consecutive cycles until all of the requested
lookups are finished. This means that the lookup of all of the
inputs might take more than one cycle. However, the basic
idea is that the relative number of occurring conflicts (or
rather number of additional cycles needed) is pretty low for
higher numbers of memory rows, thus reducing throughput
only slightly. Compared to that, the saved memory resources
thanks to no or weaker memory replication are considerable.

For example, consider a case where four lookups each clock
cycle are needed and there are four rows of BlockRAMs
with only two ports each (meaning no memory replication).
There are no conflicts unless at least three of the four lookups
need to access the same row. In case of the conflict, two
of the conflicting accesses can still be carried out together
with all others that are not in conflict. The last one or two

3

accesses from the conflicting group has to be carried out in
the next cycle. Even if there is a conflict every time, we
still achieve the same throughput as the simple architecture
with the same memory requirements (replication factor). In
the example without replication, we would do four lookups in
two clock cycles which is the same as the simple approach
with two lookups each cycle. This shows that at worst the
proposed solution is on par with the simple solution in terms
of both memory and throughput. However, the key idea is that
the conflicts do not occur each time and are actually pretty
infrequent (20 % conflict chance in this example), therefore
the effective achieved throughput is considerably better.

It is also important to note that we can easily achieve inde-
pendence in the conflict handling for each parallel hash table
used in the cuckoo hashing. The distributor corresponding to
a single hash table does not need to wait until all the other
distributors carried out all their lookups. Instead, there are
small input and output buffers that are used to synchronize the
results (denoted by squares on corresponding connections in
figure 2). This makes the architecture a lot more efficient as the
throughput is not governed by the probability of no conflicts
in all of the tables together but rather by the probability that
there are no conflicts in every single table independently. This
independent probability is a lot lower especially when a higher
number of parallel hash tables are used.

Of course, the described buffers consume some additional
FPGA resources. Also, the distributors themselves introduce
some logic overhead compared to simple replication approach.
In the simple approach, there is a dedicated port for each
parallel lookup, therefore hash functions (inputs) and compar-
ison logic (outputs) can be directly connected to appropriate
memories without the distributors. The core of each distributor
is a planner, that can evaluate and resolve access conflicts –
basically a group of encoders and decoders to select a valid
access plan for each cycle. The planner controls two columns
of multiplexers: the first to route planed access requests to cor-
rect memory rows/ports and the second to pair read data with
their corresponding requests. Additional registers are used to
thoroughly pipeline the distributors for better frequency and to
correctly synchronize all operations together. The total FPGA
logic overhead of the distributors and buffers is expected to be
manageable compared to complex hashing blocks which are
usually considerably large and contain critical paths.

The described architecture can be optimized for better
throughput even further as during conflicts the available access
ports of memories are currently not fully utilized in the added
clock cycles. For example, if only one lookup cannot be
carried out in the first cycle it has to be carried out in the
second (additional) one. Reserving one full clock cycle just for
one extra lookup is inefficient. A more reasonable approach
would be to combine the extra lookup cycles with some of the
lookups needed for the next inputs. While this cycle sharing
increases the throughput by a small percentage it requires a
lot more complex distributor and buffer architectures. Because
of this the rest of the paper deals with the architecture without
such optimization.

B. Analysis of Conflicts

It is possible to mathematically analyze the probability of
conflict occurrence and derive the achievable throughput of
the proposed architecture with given parameters. There are
3 main parameters of the architecture when it comes to the
probability of conflicts: the number of rows of BlockRAMs in
each table r, the number of parallel lookups per clock cycle
l corresponding to the number of inputs, and the number of
available access ports for each table row p.

The probability that a single lookup needs to access one
specific selected row and the probability that it needs to access
any other row are complementary:

ps(r) =
1

r
(1)

pns(r) =
r − 1

r
(2)

First of all, for any given n the probability that exactly n
lookups out of total l in one cycle need to access one selected
row out of r rows can be computed as a product of: the
probability that selected n lookups access selected row, the
probability that all the other l − n lookups do not access this
row, and the number of combinations by which it is possible to
position those n lookups into all l. The appropriate equation:

ps(n, l, r) = (ps(r))
n ∗ (pns(r))l−n ∗

(
l

n

)

=

(
1

r

)n

∗
(
r − 1

r

)l−n

∗
(
l

n

) (3)

To get the probability that any of the rows will have exactly
n lookups mapped onto it we simply multiply the previous
probability from equation 3 by the number of rows:

pa(n, l, r) = ps(n, l, r) ∗ r

=

(
1

r

)n−1

∗
(
r − 1

r

)l−n

∗
(
l

n

) (4)

Now to approximate the probability that more than n
lookups out of all l in one cycle need to access the same row
out of r we can simply sum the probabilities from equation 4
for all values higher than given n:

pc,a(n, l, r) =
l∑

i=n+1

pa(i, l, r)

=
l∑

i=n+1

(
1

r

)i−1

∗
(
r − 1

r

)l−i

∗
(
l

i

) (5)

This sum does not account for the fact that solution spaces
described by some of the summed probabilities have non-
empty intersections with one another (some conflict variants
are counted multiple times). To counter this fact we would
have to compute probabilities that exactly n lookups will be
mapped onto the same row while there is no other row with n
or more lookups mapped onto it. This leads to exponentially
more complex nested sums. However, the approximate results
achieved by the equation 5 are always higher than the actual

4

results, which means they would actually give us more pes-
simistic results for the throughput. Additionally this approx-
imation is very precise for results under configurations that
are the most interesting for us. For example, it is absolutely
precise if p is higher or equal to l/2, since in this case, it is
impossible for two different rows to have more than p accesses
mapped at the same time.

The equation 5 essentially approximates the probability that
there will be a conflict for architecture with l lookups, r rows
of BlockRAMs and p=n ports for each row. However, not
all conflicts are equal when it comes to their effect on the
achieved throughput. For example, if p = 2 and 6 lookups
need to access the same row it takes 3 cycles to carry out all
of all them, while when 4 lookups need to access the same
row only 2 cycles are needed. To extend our equations and
reflect this we use a weighted sum:

cw,c(n, l, r) =
l∑

i=n+1

w(i, n) ∗ pa(i, l, r) (6)

The weight w here represents the number of cycles needed to
resolve the conflict in each case:

w(i, n) =

⌈
i

n

⌉
(7)

Finally we can do one last thing to get how many times more
cycles (on average) are needed compared to the case without
any conflicts. The equation 6 sums only weighted probabilities
of conflicts. We need to add also the probability that there
will be no conflict. Weight corresponding to no conflict is
obviously 1 since even when there is no conflict we still need
one clock cycle to carry out all the lookups. So the coefficient
that gives us the relation between needed cycles (achieved
throughputs) is computed as follows:

c(n, l, r) = cw,c(n, l, r) + (1− pc,a(n, l, r)) (8)

In conclusion, the proposed optimized architecture with l
lookups, r BlockRAM rows, and p ports can achieve through-
put equivalent to an average of m lookups per cycle, where:

m =
l

c(p, l, r)
(9)

Thanks to the previously mentioned buffers there is no need
to include number of hash functions (parallel hash tables) into
our computations. Logic and memories corresponding to each
hash operate independently of one another and their results
are only synchronized afterward via buffers. This means that
if there is a collision in memory tied to one hash another hash
with no collision does not have to wait.

IV. RESULTS

The results in this section are obtained through the pre-
viously mentioned mathematical analysis and are confirmed
through experiments with implemented architecture. Measure-
ments are based on design synthesis for the Xilinx UltraScale+
XCVU9P FPGA [23] using Vivado 2017.4 tool. The archi-
tecture is able to achieve working frequency (Fmax) of more

Hash functions Rows of BRAMs Total capacity Effective capacity

3 1 3 072 2 765

3 2 6 144 5 530

3 4 12 288 11 059

3 8 24 576 22 118

3 16 49 152 44 236

4 1 4 096 3 891

4 2 8 192 7 782

4 4 16 384 15 565

4 8 32 768 31 130

4 16 65 536 62 260

TABLE I
CAPACITIES OF CUCKOO HASHING FOR DIFFERENT PARAMETERS.

than 400 MHz for every evaluated configuration. Therefore, the
following throughput results are all shown for 400 MHz clock
frequency. All the cases used 104 b wide key that is sufficient
for the classification of standard IPv4 flows (5-tuple) and 32 b
wide arbitrary data (action). There are 3 main parameters
that are worth exploring in the results – resource requirements
(BRAMs, LUTs), achievable throughput (lookups per cycle,
Mpps, Gbps), and effective rule capacity.

Table I shows different capacities of cuckoo hashing ar-
chitecture based on the number of hash functions and the
number of BlockRAM rows for each table (each row has 1 024
items). Total (theoretical) capacity and achievable effective
(mean) capacity are shown. For three functions the efficiency
of capacity utilization is around 90 %, for four it is around
95 %. This is consistent with similar measurements in [21].
Table I is primarily used to illustrate cuckoo hashing capacities
that are considered in the evaluation.

Figure 3 captures the relation between throughput and mem-
ory requirements of architectures with three hash functions in
different configurations. Lines in the graph represent through-
put and memory requirements of simple memory replication
approach for a different number of BlockRAM rows used.
Again, the number of rows is directly tied to the capacity
of the architecture as shown in table I. These results form a
baseline for evaluation of the designed optimization.

Each point in the graph shows results for a different configu-
ration of the proposed memory optimized approach. The color
of a point represents the number of BlockRAM rows used
(the capacity of the architecture) and its shape represents how
many lookups (number of inputs l) the architecture supports.
Our approach is clearly better in terms of used memory for
each given throughput achieved as all points are below lines
of appropriate color. Obviously, when there is only one row of
BlockRAMs (black line) there is no possibility to employ our
optimization and gain something. However, even when there
are only 2 rows of BlockRAMs (light blue) we can already
achieve better results. For example, using an architecture with
10 lookups (full circles) we can achieve 48.5 % increase in
throughput without any memory duplication.

The results tend to get even better when using more rows of
BlockRAMs. This is expected behavior since more rows mean

5

 0

 200

 400

 600

 800

 1000

 2 3 4 5 6 7 8 9 10

B
R

A
M

Throughput [lookups per cycle]

1 row
2 rows
4 rows

8 rows
16 rows

 0

 200

 400

 600

 800

 1000

 2 3 4 5 6 7 8 9 10

B
R

A
M

Throughput [lookups per cycle]

4 lookups
8 lookups

10 lookups

Fig. 3. The relation between memory and throughput for 3 hash functions.

more chance for the lookups to be better spread out between
different rows, thus the probability of conflicts decreases. In
case of 16 BlockRAM rows (pink), it is possible to achieve
nearly twice the throughput without any memory duplication
even when using the architecture with only 4 lookups (cross).
If we use architectures with 8 (star) or 10 (full circle) lookups
the speedup is even further amplified and nearly 7 or 7.5 times
higher throughput can be achieved with no additional memory
requirements. Additionally, with two times replicated memory,
we can achieve nearly the full throughput of 10 lookups per
cycle. This means that we can achieve 99.7 % of throughput
with only 40 % of used memory.

The number of hash functions has no effect on the efficiency
of the proposed optimization approach (only on the efficiency
of cuckoo hashing itself). This can be clearly seen by com-
paring figure 3 with figure 4. Figure 4 shows the relation of
utilized memory and achieved throughput for different archi-
tecture configurations with 4 hash functions. Graphs shown
by figures 3 and 4 are pretty much the same only shifted
slightly along the y-axis. The increase in memory requirements
is offset by the higher capacity of the architectures (see table I).

Figures 3 and 4 might suggest that architectures with more
lookups (inputs) are always better. However, this is not the case
when it comes to utilized on-chip logic resources. Architecture
with more lookups needs more hash function computations,
more buffers, and larger distributors. The relation between on-
chip logic, more specifically required LUTs, and throughput
for 3 hash functions is illustrated by figure 5. The graph
shows that if we use an architecture with for example 10
lookups (pink) the logic requirements go up together with
the level of memory duplication and the achieved throughput.
Memory-optimized architecture with 10 lookups, 16 rows and
4 memory ports (two memory replicas) achieves 99.7 % of
throughput requiring only 40 % of memory at a cost of 466 %
of LUTs compared to the simple approach with 10 lookups

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7 8 9 10

B
R

A
M

Throughput [lookups per cycle]

1 row
2 rows
4 rows

8 rows
16 rows

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7 8 9 10

B
R

A
M

Throughput [lookups per cycle]

4 lookups
8 lookups

10 lookups

Fig. 4. The relation between memory and throughput for 4 hash functions.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 3 4 5 6 7 8 9 10

LU
T

Throughput [lookups per cycle]

1 row
2 rows
4 rows

8 rows
16 rows

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 3 4 5 6 7 8 9 10

LU
T

Throughput [lookups per cycle]

4 lookups
8 lookups

10 lookups

Fig. 5. The relation between used logic and throughput for 3 hash functions.

and 16 rows. From a different point of view, the optimized
architecture with 10 lookups, 2 rows and 2 memory ports (no
replication) achieves 48.5 % increased throughput requiring the
same memory at a cost of 244 % increase in LUTs compared
to the simple approach with 2 lookups and 2 rows. However,
we argue that the decreased memory requirements or increased
throughput, depending on the way we look at it, is a favorable
trade-off for the increase in on-chip logic. In many cases,
even the increased logic requirements are still feasible for
current FPGAs (only a few percents of the total available),
while increasing the throughput without the need to replicate
memories can prove to be more critical.

In order to better illustrate the impact of the proposed
memory optimization on the achieved results, we analyze them
from different views. First of all, let’s take a look at the best
results that we can achieve if we want to reach a given minimal

6

 0

 100

 200

 300

 400

 500

 600

 700

2 4 8 16

B
R

A
M

Rows of BlockRAMs

simple
best proposed

adjusted simple

Fig. 6. Memory requirements comparison when achieving at least 800 Gbps.

throughput. Figures 6, 7, 8 illustrate the memory requirements
of the best configurations of the proposed approach (green)
compared to the baseline given by the simple memory replica-
tion (red) when we want a throughput of 800 Gbps, 1.6 Tbps
or 2.4 Tbps. The best configuration is the one that requires
the least memory while still satisfying the minimal through-
put threshold. This obviously means that actually achievable
throughputs of compared simple and optimized configurations
are not the same. For better comparison, we can leverage the
fact that memory of the simple approach scales linearly with
throughput and adjust the required memory to the point where
the simple approach has exactly the same throughput as the
optimized (blue). We can see that our approach is more and
more effective as the total capacity of the cuckoo hash table
rises. For 2 rows it is possible to achieve the same throughput
as simple replication with somewhere between 67 % and 80 %
of required memory (after adjustment), while for 16 rows only
between 25 % and 40 % of memory is needed. To be more
precise the most significant factor that governs how much
memory can be saved is the ratio between the number of
rows (capacity) and required throughput (parallel lookups).
The higher the capacity the better the results become as the
lookups can be spread among more rows.

On the other hand, we can analyze the achievable through-
put for a given number of BlockRAMs (e.g. 200) that we have
available. The best cases of the proposed optimized approach
are obtained when using architectures with 32 lookups. This
is chosen mainly because for 2 rows of BlockRAMs the
memories can be duplicated up to 8 times in the simple solu-
tion, which means 16 lookups. Therefore to obtain reasonable
results we chose architectures with at least twice as much
lookups. The results are shown in figure 9. An interesting thing
can be observed: even as the number of rows (and therefore
capacity) increases and the duplication factor decreases the
throughput of the proposed approach stays relatively the same.

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 8 16

B
R

A
M

Rows of BlockRAMs

simple
best proposed

adjusted simple

Fig. 7. Memory requirements comparison when achieving at least 1.6 Tbps.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

2 4 8 16

B
R

A
M

Rows of BlockRAMs

simple
best proposed

adjusted simple

Fig. 8. Memory requirements comparison when achieving at least 2.4 Tbps.

This is caused by the fact that while the number of copies
of memories (memory access ports) decreases it is balanced
by a better spreading of all the lookups between more rows
of independently operating BlockRAMs. If we choose other
numbers of BlockRAMs the observed trend is pretty similar.

V. CONCLUSION

The paper presents novel memory efficient hardware ar-
chitecture for exact match packet classification at very high
speeds (400 Gbps and beyond) using the cuckoo hashing algo-
rithm. The proposed architecture offers an easily configurable
tradeoff between achieved throughput, required memory, uti-
lized logic, and rule capacity. With the proposed optimization,
it is possible to implement exact match packet classification
for large rulesets operating at very high throughputs with
efficient utilization of available memory. There are several

7

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

2 4 8 16

Th
ro

ug
hp

ut
 (G

bp
s)

Rows of BlockRAMs

simple best proposed

Fig. 9. Maximal throughputs of evaluated approaches for 200 BlockRAMs.

ways in which the architecture can be used – either to max-
imize throughput and rule capacity on devices with limited
memory resources or to minimize memory requirements while
satisfying needed rule capacity and throughput.

Experimental results with the proposed simple and opti-
mized architectures of cuckoo hashing show few interesting
facts. First of all the optimized architecture is considerably
more memory efficient than a simple replication approach.
With correct configuration, we are able to achieve 99.7 %
of throughput for only 40 % of required memory compared
to the simple approach. If the required rule capacity of
the architecture is high enough our optimized approach is
generally able to retain the same throughputs with only 25-
40% of memory utilized compared to the simple solution. This
way we can achieve an unprecedented throughput of 2.4 Tbps
and effective capacity of over 44 000 IPv4 5-tuple (flow) rules
for the cost of only 366 BRAMs. The only downside of the
proposed optimized architecture is increased requirement of
on-chip logic. However, we argue that the benefits of decreased
memory requirements and increased throughput outweigh this
issue in most practical cases.

ACKNOWLEDGMENTS

This research is supported by the project Reg. No.
CZ.02.1.01/0.0/0.0/16 013/0001797 by the MEYS of the
Czech Republic; the IT4Innovations excellence in science
project IT4I XS – LQ1602; and by the Ministry of the In-
terior of the Czech Republic projects VI20172020064 and
VI20152019001.

REFERENCES

[1] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in Proceedings of
the 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture. IEEE Computer Society, October 2016.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[3] P. Benáček, V. Puš, and H. Kubátová, “P4-to-VHDL: Automatic gen-
eration of 100 Gbps packet parsers,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2016, pp. 148–155.

[4] P. Benáček, V. Puš, H. Kubátová, and T. Čejka, “P4-to-VHDL: Au-
tomatic generation of high-speed input and output network blocks,”
Microprocessors and Microsystems, vol. 56, pp. 22 – 33, 2018.

[5] D. Taylor and J. Turner, “Scalable packet classification using distributed
crossproducing of field labels,” in 24th Annual Joint Conference of the
IEEE Computer and Communications Societies, 2005, pp. 269–280.

[6] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in Proc. Hot Interconnects, 1999.

[7] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classifica-
tion using multidimensional cutting,” in Conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM, 2003, pp. 213–224.

[8] H. Lee, W. Jiang, and V. K. Prasanna, “Scalable High-Throughput
SRAM-Based Architecture for IP Lookup Using FPGA,” in Interna-
tional Conference on Field Programmable Logic and Applications, 2008.

[9] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast packet
classification using Bloom filters,” in ANCS ’06: Proceedings of the
2006 ACM/IEEE symposium on Architecture for networking and com-
munications systems. New York, NY, USA: ACM, 2006, pp. 61–70.

[10] V. Puš and J. Kořenek, “Fast and scalable packet classification using
perfect hash functions,” in FPGA ’09: Proceedings of the 17th inter-
national ACM/SIGDA symposium on Field programmable gate arrays.
New York, NY, USA: ACM, 2009.

[11] J. Kořenek, V. Puš, and J. Blaho, “Memory optimization for packet
classification algorithms,” in Proceedings of the 5th ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems,
ser. Association for Computing Machinery. Association for Computing
Machinery, 2009, pp. 165–166.

[12] H. Le and V. K. Prasanna, “Scalable Tree-based Architectures for
IPv4/v6 Lookup Using Prefix Partitioning,” IEEE Trans. Comput.,
vol. 61, no. 7, pp. 1026–1039, Jul. 2012, ISSN 0018-9340.

[13] Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, and V. Prasanna, “Multi-
dimensional packet classification on fpga: 100 gbps and beyond,” in
2010 International Conference on Field-Programmable Technology.

[14] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet for-
warding using efficient multi-dimensional range matching,” SIGCOMM
Comput. Commun. Rev., vol. 28, no. 4, pp. 203–214, 1998.

[15] H. Song and J. W. Lockwood, “Efficient packet classification for network
intrusion detection using FPGA,” in FPGA ’05: Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate
arrays. New York, NY, USA: ACM, 2005, pp. 238–245.

[16] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” SIGCOMM Comput. Commun. Rev.,
vol. 28, no. 4, pp. 191–202, 1998.

[17] W. Jiang and V. K. Prasanna, “Scalable packet classification on FPGA,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 20, 2012.

[18] M. Kekely and J. Korenek, “Packet classification with limited memory
resources,” in 2017 Euromicro Conference on Digital System Design.
Institute of Electrical and Electronics Engineers, 2017, pp. 179–183.

[19] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms - ESA 2001,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2001, vol. 2161, pp. 121–133.

[20] A. Kirsch, M. Mitzenmacher, Y. Baohua, X. Yibo, and L. Jun,
“Using a queue to de-amortize cuckoo hashing in hardware,”
2007. [Online]. Available: http://www.eecs.harvard.edu/∼michaelm/
postscripts/aller2007.pdf

[21] L. Kekely, M. Žádnı́k, J. Matoušek, and J. Kořenek, “Fast lookup for
dynamic packet filtering in FPGA,” in 17th IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems. Warszaw, Poland:
IEEE Computer Society, 2014, pp. 219–222, iSBN: 978-1-4799-4558-0.

[22] L. Kekely, J. Kucera, V. Pus, J. Korenek, and A. V. Vasilakos, “Software
defined monitoring of application protocols,” IEEE Trans. Comput.,
vol. 65, no. 2, pp. 615–626, Feb. 2016.

[23] Xilinx, UltraScale and UltraScale+ FPGAs Packaging and Pinouts,
Xilinx Inc., 2016, UG575.

8

A.4 Paper 4
Pipelined ALU for Effective External Memory Access in FPGA

64

Pipelined ALU for effective external memory
access in FPGA

Tomáš Beneš
Faculty of Information Technology

Czech Technical University
Prague, Czech Republic
benesto3@fit.cvut.cz

Michal Kekely
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
ikekelym@fit.vutbr.cz

Karel Hynek
Faculty of Information Technology

Czech Technical University
Prague, Czech Republic
hynekkar@fit.cvut.cz

Tomáš Čejka
CESNET, a.l.e.

Prague, Czech Republic
cejkat@cesnet.cz

Abstract—The external memories in digital design are closely
related to high response time. The most common approach to
mitigate latency is adding a caching mechanism into the memory
subsystem. This solution might be sufficient in CPU architecture,
where we can reschedule operations when a cache miss occurs.
However, the FPGA architectures are usually accelerators with
simple functionality, where it is not possible to postpone work.
The cache miss often leads to whole pipeline stall or even to
data loss. The architecture we present in this paper reduces
this problem by aggregating arithmetic operations into the
memory subsystem itself. Fast data processing is achieved because
arithmetic operations working with external data are offloaded.
Our architecture reaches a speed of 200 Mp/s (operations carried
out). It is designed to be used in systems with link speeds of
100 Gb/s. It outperforms other implementations by a factor of at
least 3. The additional benefit of our architecture is reducing the
number of memory transactions by a factor of two on real-world
datasets.

Index Terms—cache, external memory, FPGA, network mon-
itoring

I. INTRODUCTION
With the rise of high-speed networks, video processing, and

high-speed storage systems, the FPGA systems are becoming
more widespread due to their variability and their computa-
tional performance. Specialized implementations inside FPGA
outclasses the general-purpose CPUs in orders of magnitude.
These systems are processing a massive amount of data, which
usually needs to be temporally stored for the processing to
take place. FPGAs have internal memories such as BRAMS,
URAM, or distributed memories. However, these have sizes
in the order of MB, which is not enough when tables tracking
flows are used. Therefore, the designers have to use external
memory like static random access memory (SRAM) or dy-
namic random access memory (DRAM).
The massive amount of storage space provided by the

external memories comes with the cost of high access time and
usually non-constant access time [1]. This disadvantage is the
main reason why most of the designs using these memories
tend to be very complicated and poorly maintainable.
The main principle which is used to handle access time

is called pipelining. It is a well-known, efficient, and effective
way of increasing the throughput and overlapping the different

access times. The pipelining is usually sufficient for access-
ing data inside the external memory. However, it does not
apply when Read-Modify-Write operations take place. These
operations introduce various hazards such as read after write
(RAW), write after read (WAR) and write after write (WAW).
These hazards always need to be addressed when designing a
processing pipeline accessing shared memory resources. While
the design is trivial for low latency memories it becomes more
complicated with introduction of external memories.
The P4 language is an elegant way of describing packet

processing, which can be implemented on multiple platforms,
e.g., CPU [2], FPGA [3], [4] or ASIC [5]. Having a P4
compiler for FPGA provides a combination of flexibility and
speed. The P4 program can be easily uploaded to the FPGA
chip, which is capable of processing high-speed backbone
network traffic with up to 100Gb/s speed.
One of the problems is that many application which can be

implemented in P4, such as Network monitoring, or Virtual
switching is the previously mentioned lack of high capacity
memories on todays FPGA chips [6], [7]. This requirement
for the FPGA architectures leads to use of external memories.
The memory needs to be used for classification rules and also
for storing stateful and statistical information (byte and packet
counters) which introduces Read Modify Write operations.
Basic caching mechanisms are in this case insufficient since

they are based on the locality principle and work best only
when the subsequent memory accesses are using the same
small regions of the memory. Žádnı́k et al. [8] showed that
network flows are usually distributed pretty randomly, and
the locality principle falls apart. Therefore, we need a unit
that optimizes memory accesses in such a way that the Read
Modify Write operations ideally do not require pipeline stalls
even when memory accesses are randomly distributed over the
whole external memory.
In this paper, we propose an architecture for the implemen-

tation of pipelined designs using external memories. The main
focus of this architecture is to simplify the design process,
reduce utilization of the external memories by aggregating

97

2020 23rd Euromicro Conference on Digital System Design (DSD)

978-1-7281-9535-3/20/$31.00 ©2020 IEEE
DOI 10.1109/DSD51259.2020.00026

operations per memory transaction, and solve memory hazards
present in standard designs.

II. STATE OF THE ART
The basic idea of caching has been well known for decades

and widely researched for use with processors. Different
hierarchies of caches are used in today’s processors, but as
we previously mentioned these cache hierarchies relay on
the locality of reference principle. The lower the locality of
memory accesses the bigger cache is needed. One of the
approaches trying to solve this problem is to keep only a small
number of distinct tags of cached data (Caching Address Tags
or CAT cache [9]). This lowers the resources needed by the
cache, while not hurting the performance in any significant
way. However, the locality principle still needs to be satisfied
in order for this approach to be efficient.
A whole other area of caching is used when it comes to the

World Wide Web [10]. There are some interesting ideas that
can be leveraged such as keeping the entries that were accessed
the most in the most recent time window (and therefore are
most likely to be accessed again). This helps alleviate some
of the problems with the reference locality.
New development of in-memory computation or in-memory

processing [11] [12] [13] aims to deviate from the standard
architectures where the memory (storage) and processing are
separate. Separate memory and processing require a lot of
data to be transferred back and forth between processing and
storage units. This new approach tries to decrease the amount
of this data by moving some (or all) of the functionality
directly to the memory or storage units. These ideas can be
applied to FPGA and external memories by pushing a lot of
the functionality that modifies the memory entries as close to
the memory as possible.
All of the current approaches either still rely on the locality

of the data to be efficient or are not feasible for an FPGA im-
plementation. A new approach is therefore needed to address
all of the issues outlined previously.

III. ARCHITECTURE
The main principle of the proposed architecture is to sepa-

rate the design into two parts The first part is the control logic
which represents the series of operations that need to be exe-
cuted on the data inside the external memory. The second part
is the operational logic (ALU), which handles the operations
or commands on the external memory (such as Read, Write,
Add, Sub, XOR). The ALU tries to aggregate the operations
by their associativity, which reduces the number of memory
accesses needed compared to a standard implementation. The
proposed architecture also minimizes the access time of the
external memory by placing the ALU as close as possible to
the external memory.
The architecture of the proposed solution is shown in

Figure 1. It has two main interfaces. Both of the interfaces are
a basic request/response interfaces, one towards the external
memory (this interface request reads/writes on the external
memory) and one towards the Control Logic (reads or different
operations are requested via this interface). The architecture

Operation
Request

Operation
Response

SearchInsert/Update
Memory

Read/Write
Request

If Insert
read

Memory
Read

Response

Operation
Request

FIFO

Operation
Execution

For Each
Operation

Memory
Write

Request

IF last Op.
Delete

IF Operation
has Response

Transaction Table

Fig. 1. Diagram of the ALU functionality

expects the requests to the memory to be carried out in order.
The basic idea is that whenever request from the Control Logic
arrives an appropriate entry in the Transaction Table is looked-
up. If such entry does not exist, it is created. Every operation
and request that matches this entry is then carried out on top
of this entry. If all of the pending operations on entry have
been executed, the entry can be deleted (freed), and a different
entry can take its place.

A. Principle of the operation aggregation

The core of our proposed architecture is the Transaction
Table. It is very similar to tables found in traditional caches.
However, Transaction Table in our approach can contain
multiple entries with the same address. Each entry in the
Transaction Table consists of multiple fields. This is illustrated
by Table I. The Flags field signalizes if the entry is empty
and if it is deprecated, Address holds the index to the memory
that this entry represents (this value is used for look-ups),
Operation count indicates the number of reads requested from
this memory index and is also an index into the array of
accumulators, Array of accumulators holds multiple accumu-
lator values, each accumulator holds and aggregated value of
possibly multiple operations. Finally, the Memory value field
holds the value read from the memory (once its read).

TABLE I
DESCRIPTION OF TRANSACTION TABLE ENTRY

Flags Addr. Op. Count Acc0 ... Accn Memory Value

The aggregation uses the associativity property of the op-
erations. For example, lets assume this example of operations
carried out on the data inside external memory on the same
memory address: o1, o2, r1

rx represents read operation, and ox represents operand in
the operation � which should be performed. After the applica-
tion of these operations the outputs of the reads are represented
by r1 where m represents the value in the memory before any
of these operations were applied. Leveraging the associativity
property and the ability to store values in accumulator fields
we can rearrange the values as follows:

r1 = m� o1 � o2 r1 = m� (o1 � o2)

acc0 = (o1 � o2) r1 = m� acc0

Using this approach allows us to aggregate multiple opera-
tions requested on the same memory location into a single

98

memory transaction which allows us to execute multiple
operations before the actual value from the memory is read.
This separates the actual memory accesses from the operations.
The operations can then be carried out in the entries of the
Transaction table (partial updates inside accx).

B. Behaviour

Different operations (or requests or responses that arrive)
need to be handled, for simplicity let’s call these events. Each
event has to be handled in a way that keeps the state of the
memory consistent. The main events that can occur are request
from the Control Logic to carry out operation � on address A
with operand V (�(A, V)), request from the Control Logic
to read data from address A (read(A)), request from the
Control Logic to write data V to address A (write(A, V))
and response from the memory with the data V from address
A (mem resp(A, V)).
An abstract behavior of responding to event �(A, V) is to

find a corresponding entry based on address A (if one exits)
or create a new one (and possibly wait and stall the pipeline
if no free entries are available). When an entry is created it is
initialized and a read from the memory is also issued. Once
we have an entry we simply update the last accumulator value
(pointed to by operation count) with the �V .
In a similar fashion a reaction to event read(A) is to

find the appropriate entry (or create one), possibly wait if the
found entry has no accumulators left (operation count cannot
be incremented) and then just increment the operation count
and set the next accumulator (pointed to by the incremented
value of operation count) the the value of the previous one
(accnew op count = accnew op count−1).
When event write(A, V) occurs we simply find a corre-

sponding entry and deprecate it. Deprecated entry is not being
matched anymore because the write reset the value associated
with this memory index. However, we do not free the entry yet
since it can have some of the reads still pending (these reads
were issued before the write and therefore they should still
use the old value from the memory). Finally a write request
to the memory is issued (with value V to address A).
When an memory response arrives (event

mem resp(A, V)) we choose the entry tied to this
memory read (for example via FIFO of identifiers of memory
reads). Within this entry the memory value field is set to
V and for each valid accumulator (given by the operation
count) send a response to Control Logic - ri = m � acci.
Also if the entry was not yet deprecated we issue a write
into the memory updating it with the last accumulator value
- mnew = m� accop count. After this the entry is freed.

C. Parameter analysis

The main parameters of the architecture are the number
of entries in the Transaction Table and the number of accu-
mulators within each entry. Setting the parameters too low
leads to decreased throughput (more likely stalls due to no
available entry), setting them too high leads to increased
resource utilization.

TABLE II
RESOURCE UTILIZATION AND FREQUENCY OF THE PROPOSED

ARCHITECTURE.

Size LUTs Registers Frequency
4 2849 1439 +350MHz
8 4151 2484 +350MHz
16 7862 4573 285MHz
32 16241 8750 225MHz
64 31491 17103 188MHz

The optimal number of entries and accumulators should be
set based on multiple criteria - latency of the memory, required
throughput, properties of the memory operations. However,
the latency of the memory gives us how many requests can
arrive before any of the requests was actually carried out and
therefore the required number of entries and accumulators.
Either all of the events used different addresses which means
we need separate entry for each, or they used the same address
and we need one entry with possibly one accumulator for each.

IV. RESULTS

The architecture described in the previous sections was
implemented and the results presented in this section were
obtained. Measurements of FPGA resources requirements for
Xilinx are based on design implementations for the Ultra-
Scale+ XCVU7P chip [6] using Vivado 2019.1 tool.
Basic resource utilization of the architecture for the different

number of entries and accumulators is shown in Table II.
The configuration that was used worked with the 64b wide
memory words. As expected the resource utilization goes
up pretty linearly and is still manageable even for tens of
entries. However, the maximal frequency slowly decreases.
Our results in Table III shows aggregation 16 or 32 entries
should be sufficient, which still satisfies at least the frequency
of 200 MHz which means possibly up to 200Mp/s (or in
this case 200 million operations carried out). This is more
than enough for packet processing at the line rate of at least
100Gb/s.
Real network traces used for this evaluation were obtained

from the high-speed backbone network managed by CESNET.
CESNET is the Czech National Research and Educational
Network operator with an infrastructure consisting of multiple
optical links with bandwidth up to 100Gb/s. This optical
network serves around 200 000 users and routes mainly IP
traffic. Data traces were captured at different points of the
network. The captured traces contain both IPv4 and IPv6
flows, with IPv4 dominating. In the following evaluations,
we used two traces: meter1 and meter4. Both traces contain
1,000,000 packets captured during different periods of day.
We evaluated the architecture under multiple cases, where

the memory addresses accessed were based on different iden-
tifiers from the network data. There are 2 main parameters
that are worth exploring in the obtained results — number of
memory accesses and number of operations carried out.
We compared our approach to three other possible imple-

mentations designed to fulfill the same functionality. First of
all a Trivial implementation using sequential automaton. It
issues a memory transaction for each requested operation and

99

waits for the result to update it a write it back. The second
approach is Trivial Cache using the same sequential automa-
ton as the Trivial implementation extended with traditional
memory cache. The final approach is Trivial Pipelined design
with sufficient stages to cover the memory latency. However, it
stalls when a collision occurs (2 accesses to the same memory
address) to prevent data hazards.
The comparison of the architectures consists of two results.

First is the time (clock cycles) needed for processing the whole
input dataset. This is shown as a ratio between a theoretical
limit of a number of clock cycles for processing (based on
number of samples in the dataset) and the actual number of
the clock cycles it took each implementation. The second is
the number of memory transactions needed for processing the
whole input dataset. This is represented in the same way as
the first result.
The Table III shows both results of the compared imple-

mentations. It is shown that the Trivial solution is not affected
by the diversity of the datasets as expected. It also shows the
upper bound for the clock cycles needed to process the whole
dataset.
The Trivial Cache implementation using traditional memory

cache is showing a very promising result on non-randomized
datasets. It also shows a significant reduction of memory
transactions with non-randomized datasets.
The Trivial Pipeline implementation has minimal stalling

issues when it comes to randomized data, however, its perfor-
mance suffers, when it comes to non-randomized datasets.
Our architecture out-performers all of the compared im-

plementations and reaches almost our theoretical limits for
almost every dataset, which translates to full throughput for
a given frequency. Only the results for the random dataset
are close to equal with the Trivial Pipeline implementation
because our architecture uses a limited transaction table. When
the transaction table is saturated our design begins to stall and
is downgraded to the trivial pipelined implementation. For
datasets from real-world application our architecture outper-
forms every other implementation at least by a factor of 3 when
it comes to throughput. Another benefit of our architecture is
the memory transactions reduction which is on our real-world
datasets by a factor of 2.

TABLE III
COMPARISON OF RESULT FOR MODELS

Test Trivial T. Cache T. Pipeline Our arch.
rnd count 0.125-1 0.138-0.936 0.501-1 0.500-1.000
dst IP 0.125-1 0.391-0.546 0.221-1 1.000-0.432
src dst IP 0.125-1 0.358-0.565 0.221-1 1.000-0.433
full flow 0.125-1 0.342-0.576 0.223-1 1.000-0.438

V. CONCLUSION
This paper presents and examines the design of a novel

caching FPGA architecture for aggregating associative oper-
ations. The proposed architecture offers a trade-off between
increased resource utilization and increased number and speed
of operations that are carried out. We are able to update
monitoring statistics (counting of the number of packets or
bytes in a flow) for network traffic at the line rate of 100Gb/s
even for a big number (millions) of different flows thanks

to optimal usage of external memories that the proposed
architecture enables. Compared to trivial approaches, we are
able to increase the throughput by a factor of 3 and reduces
the number of memory transactions by a factor of 2 at a cost
of between 2,849 and 16,241 LUTs.

ACKNOWLEDGMENT
This work was supported by the Grant Agency of the CTU

in Prague, grant No. SGS20/210/OHK3/3T/18 funded by the
MEYS of the Czech Republic and the project Reg. No.
CZ.02.1.01/0.0/0.0/16 013/0001797 co-funded by the MEYS
and ERDF

REFERENCES
[1] UltraScale Architecture-Based FPGAs Memory IP

v1.4, Xilinx, Inc., [cit. 2020-02-01]. [Online].
Available: https://www.xilinx.com/support/documentation
/ip documentation/ultrascale memory ip/v1 4/pg150-ultrascale-
memory-ip.pdf

[2] “P416 portable switch architecture (psa),” https://p4.org/p4-
spec/docs/PSA.html, accessed: 2020-02-05.

[3] P. Benáček, V. Puš, and H. Kubátová, “P4-to-VHDL: Automatic Gen-
eration of 100 Gbps Packet Parsers,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2016, pp. 148–155.

[4] M. Kekely and J. Korenek, “Mapping of P4 match action tables to
FPGA,” in 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), Sep. 2017, pp. 1–2.

[5] “Barefoot networks unveils tofino™ 2, the next generation of the world’s
first fully p4-programmable network switch asics: Barefoot,” Dec
2018. [Online]. Available: https://www.barefootnetworks.com/press-
releases/barefoot-networks-unveils-tofino-2-the-next-generation-of-the-
worlds-first-fully-p4-programmable-network-switch-asics/

[6] Ultrascale+ FPGAs, Product Tables and Product Se-
lection Guide, Xilinx, Inc., [cit. 2020-02-01]. [Online].
Available: https://www.xilinx.com/support/documentation/selection-
guides/ultrascale-plus-fpga-product-selection-guide.pdf

[7] Intel Arria 10 Product Table, Intel,
Inc., [cit. 2020-02-01]. [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/pt/arria-10-product-table.pdf

[8] M. Žádnı́k, “Optimization of network flow monitoring,”
Information Sciences and Technologies Bulletin of the ACM
Slovakia, vol. 5, no. 1, p. 6, 2013. [Online]. Available:
https://www.fit.vut.cz/research/publication/10255

[9] H. Wang, T. Sun, and Q. Yang, “Minimizing area cost of on-chip
cache memories by caching address tags,” IEEE Trans. Comput.,
vol. 46, no. 11, p. 1187–1201, Nov. 1997. [Online]. Available:
https://doi.org/10.1109/12.644293

[10] G. Barish and K. Obraczke, “World wide web caching: trends and
techniques,” EEE Communications Magazine, vol. 38, no. 5, pp. 178–
184, 2000.

[11] K. R. S. Jain, A. Ranjan and A. Raghunathan, “Computing in memory
with spin-transfer torque magnetic ram,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 470–483,
2018.

[12] D. Ielmini and H. Wong, “In-memory computing with resistive switching
devices,” Nat Electron, vol. 1, p. 333–343, 2018.

[13] M. L. Gallo and R. M. A. Sebastian, “Mixed-precision in-memory
computing,” Nat Electron, vol. 1, p. 246–253, 2018.

100

A.5 Paper 5
General Memory Efficient Packet Matching FPGA Architecture for Future
High-Speed Networks

69

Microprocessors and Microsystems 73 (2020) 102950

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

General memory efficient packet matching FPGA architecture for

future high-speed networks

Michal Kekely

a , Lukáš Kekely

b , ∗, Jan Ko ̌renek

c

a Faculty of Information Technology, Brno University of Technology Božet ̌echova 2, Brno 612 66, Czech Republic
b CESNET a. l. e. Zikova 4, Prague 160 00, Czech Republic
c IT4Innovations Centre of Excellence Faculty of Information Technology, Brno University of Technology Božet ̌echova 2, Brno 612 66, Czech Republic

a r t i c l e i n f o

Article history:

Received 21 March 2019

Revised 3 September 2019

Accepted 6 December 2019

Available online 14 December 2019

Keywords:

FPGA

Packet matching

Packet filtering

High-speed networks

Exact match

Cuckoo hashing

a b s t r a c t

Packet classification (matching) is one of the critical operations in networking widely used in many dif-

ferent devices and tasks ranging from switching or routing to a variety of monitoring and security appli-

cations like firewall or IDS. To satisfy the ever-growing performance demands of current and future high-

speed networks, specially designed hardware accelerated architectures implementing packet classification

are necessary. These demands are now growing to such an extent, that in order to keep up with the ris-

ing throughputs of network links, the FPGA accelerated architectures are required to perform matching of

multiple packets in every single clock cycle. To meet this requirement a simple replication approach can

be utilized – instantiate multiple copies of a processing pipeline matching incoming packets in parallel.

However, simple replication of pipelines inseparably brings a significant increase in utilization of FPGA

resources of all types, which is especially costly for rather scarce on-chip memories used in matching

tables.

We propose and examine a unique parallel hardware architecture for hash-based exact match classifica-

tion of multiple packets in each clock cycle that offers a reduction of memory replication requirements.

The core idea of the proposed architecture is to exploit the basic memory organization structure present

in all modern FPGAs, where hundreds of individual block or distributed memory tiles are available and

can be accessed (addressed) independently. This way, we are able to maintain a rather high throughput

of matching multiple packets per clock cycle even without fully replicated memory resources in matching

tables. Our results show that the designed approach can use on-chip memory resources very efficiently

and even scales exceptionally well with increased capacities of match tables. For example, the proposed

architecture is able to achieve a throughput of more than 2 Tbps (over 3 0 0 0 Mpps) with an effective

capacity of more than 40 0 0 0 IPv4 flow records at the cost of only a few hundred block memory tiles

(366 BlockRAM for Xilinx or 672 M20K for Intel FPGAs) utilizing only a small fraction of available logic

resources (around 68 0 0 0 LUTs for Xilinx or 95 0 0 0 ALMs for Intel).

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Computer networks and their infrastructure are required to be

constantly faster and faster as users want to transfer more data.

The ever-increasing capacity of network links leads to a need for

all network devices and systems to speed up their packet process-

ing. Even the most powerful current processors are not able to rea-

sonably cope with network traffic on 100 Gbps links. In order to

achieve wire-speed processing with a throughput of 100 Gbps and

∗ Corresponding author.

E-mail addresses: ikekelym@fit.vutbr.cz (M. Kekely), kekely@cesnet.cz (L. Kekely),

korenek@fit.vutbr.cz (J. Ko ̌renek).

more, network systems have to utilize hardware accelerated FPGA

or ASIC technology. The FPGA acceleration provides high perfor-

mance and is highly configurable (flexible) as well. The flexibility

is essential for any practical network system because traffic pro-

cessing is changing with the introduction of every new protocol,

application or service. Therefore, 40 Gbps and 100 Gbps network

interface cards with FPGAs (also known as Smart NICs) started to

be recently deployed to data centers as hardware platforms for the

acceleration [1] and will be probably more and more frequently

used in the future.

Flexible network traffic processing can be easily described in

the P4 high-level language [2] . Furthermore, this description can

be automatically mapped directly to a high-throughput packet pro-

cessing architecture for an FPGA hardware accelerator [3,4] . The P4

https://doi.org/10.1016/j.micpro.2019.102950

0141-9331/© 2020 Elsevier B.V. All rights reserved.

2 M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950

language has been originally designed at Stanford University in or-

der to enable protocol, vendor and target independent definitions

of packet processing. One of the integral parts of the P4 language

specification [5,6] is the utilization of match/action tables as a ba-

sis to control processing of each input packet.

The core functionality performed by the match/action tables is

packet classification in various forms. During the classification pro-

cess, packets are matched against a set of rules, which are usu-

ally defined by exact values, ranges or prefixes of a few selected

packet header fields. Generally, the performed classification is a

mathematical problem of a multidimensional range search. Due to

the large ruleset size and complexity of rules, it is rather difficult

to perform matching at such rate that is sufficient for wire-speed

processing of high-speed network data. Therefore, many different

hardware architectures have been designed to accelerate packet

classification [7–13] .

To achieve wire-speed 100 Gbps throughput, it is necessary to

process every incoming packet only in 6.7 ns, because the short-

est 64 B Ethernet packets can arrive within such small time inter-

vals. The time to process a packet corresponds to a 150 MHz clock.

It consequently means that multiple packets have to be processed

within each clock cycle to achieve wire-speed 400 Gbps or 1 Tbps

packet processing if the frequency can not scale over 500 MHz.

FPGAs are not ready for such high frequency, especially if large

data widths are used to transfer packet data. Therefore, the pro-

cessing throughput is usually increased simply by the utilization

of multiple processing pipelines in parallel [14,15] , which require

multi-port memories or memory replication. Unfortunately, both

approaches significantly reduce throughput scalability at 400 Gbps

or 1 Tbps fast links.

Therefore, in this article, we focus on the feasible design of a

new hardware acceleration technique for packet classification with

efficient utilization of on-chip memory resources to achieve high-

speed network traffic processing. We introduce a general novel

hardware architecture that is able to scale the throughput of P4

match/action tables to more than 2 Tbps (over 3 0 0 0 Mpps) on

current FPGAs from both major vendors (Xilinx as well as In-

tel), while memory replication is significantly reduced compared

to other approaches. The proposed concept is compared with

a simple pipeline/memory replication scheme and several pos-

sible optimizations are introduced. The proposed architecture is

further evaluated using various backbone network traffic traces

and shown to maintain its high performance even in realistic

deployment.

2. Related work

There is a lot of published research in the area of packet clas-

sification with many completely different approaches described in

individual papers. Some of them focus on being as general as pos-

sible, supporting packet classification in multiple different dimen-

sions or supporting different types of match strength such as range

lookups, ternary matching or longest prefix match (LPM). However,

the only way how to scale most of the published approaches for

higher throughputs is to utilize multiple copies of the same archi-

tecture operating in parallel. The problem of effective scaling to

multiple matches per clock cycle is not properly addressed.

Packet classification based on bit-parallelism (or bit vectors,

BV), proposed by Lakshman et al. [16] , is a practical implementa-

tion that leverages the fact that rule updates are infrequent com-

pared to search operations. The algorithm works in two stages. In

the first stage, multiple parallel searches are carried out, each of

them limited to only a single (different) dimension of the clas-

sification. Each of these parallel searches results in a bit vector

that represents which rules were matched (in the given dimen-

sion). This means that each bit of these vectors corresponds to

one record in classification ruleset, therefore their width is given

by the number of rules used. A bit is set to logical one if a cor-

responding rule is matched in a given dimension and is reset to

logical zero otherwise. After this stage, each bit vector represents

a subset of rules that were matched in a given dimension. Then

the second stage has to find an intersection of the sets matched

within single dimensions. Since these sets are represented as bit

vectors finding the intersection is reduced to bitwise AND opera-

tion among the bit vectors. The main problem with this approach

is the width of bit vectors which increases with the number of

rules. Song et al. [17] presented architecture that combines bit vec-

tor approach with TCAMs. The architecture uses TCAMs for lookups

within dimensions that require exact or prefix matches and tree-

bitmap implementation of the BV algorithm for source and desti-

nation port lookups. This architecture is optimized for classification

based on network flow 5-tuples (source IP address, destination IP

address, source port, destination port, and L4 protocol), therefore it

is not very flexible and was not shown to have the ability to scale

to support different header fields.

Several different approaches supporting multiple dimensions

are described in [18] . A grid of Tries extends standard Trie to

two dimensions however, it is not easily extensible for more di-

mensions than two. General solution using cross-products is more

promising, but with no further optimization uses up way too much

memory and resulting cross-products are quite large. Other trie-

based algorithms scale poorly with the increasing number of di-

mensions. Additionally, these algorithms need great amounts of

memory and cannot be easily scaled to higher throughputs.

Another group of approaches to classification tries to utilize ar-

chitectures based on the construction of decision trees. Many of

these algorithms are not designed with FPGA implementation in

mind, however, some of them can be bent to be efficiently mapped

into FPGA structure. HiCuts [8] and HyperCuts [9] are examples of

such algorithms. The main idea is to progressively cut the whole

searched space represented by classification dimensions into small

enough parts (usually representing 1 or only a few rules). Different

heuristics can be used to decide how to cut the space efficiently

but, resulting trees tend to have many nodes. Additionally adding

or removing rules leads to the need for rebuilding of the whole

tree.

Prasanna et al. [19] pushed the idea of constructing decision

trees even further. They have observed that HyperCuts and similar

algorithms do not efficiently deal with rules that have too much

overlap with each other. In such cases, many rules need to be du-

plicated and the resulting tree (hence required memory) can ex-

plode exponentially with the number of dimensions. To mitigate

this issue, a decision forest is introduced. A ruleset is split into

subsets and smaller decision trees are built for each of these sub-

sets. Rules within each subset are chosen so that they have as little

overlap as possible and that they specify nearly the same dimen-

sions. Additionally, two other techniques are used to optimize Hy-

perCuts algorithm. Rule overlap reduction stores rules that should

be replicated in a list in each internal node instead of actually

replicating it into all the child nodes. Precise range cutting is used

to determine cutting points which will result in the least number

of rule duplications instead of deciding the number of cuts for a

field.

Taylor et al. [7] introduced Distributed Crossproducting of Field

Labels (DCFL). This algorithm decomposes classification into single

dimensions and can be easily parallelized. Moreover, it uses Bloom

Filters [11] and labeling technique to lower memory and logic re-

quirements. The architecture was shown to be scalable even to

higher throughputs [20] , but only by using multiple copies of the

memories. Because of these key features, the architecture can be

duplicated to increase throughput while still maintaining reason-

able usage of on-chip memories and logic. This idea was pushed

M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950 3

further to build scalable architecture through memory duplication

in [20] .

In many cases, exact match packet classification is sufficient.

This is prevalent mainly when IP flows are concerned. Effective

approaches to exact match packet classification are usually based

on some form of hash tables. A sophisticated way of implement-

ing hash tables is cuckoo hashing principle [21] . The main idea of

cuckoo hashing is to increase the efficiency of memory utilization

in the hash table by multiple hash functions/tables utilized in par-

allel. Each table uses one of the different hash functions for in-

dexing its elements. Thanks to this, if a new element cannot be

inserted into the first hash table because of a conflict with an al-

ready existing item, it can still be inserted into one of the other

tables through a different hash function (into a different position).

Even when the element cannot be inserted into the correct posi-

tion in any of the tables it can still be inserted by force, pushing

one of the previous occupants out of the tables. The previous oc-

cupant can then be reinserted into the tables using the same ap-

proach – either finding an empty position in one of the tables or

swapping place with another item, which then must be reinserted.

The reinsertion process can have multiple iterations with different

items. Using more parallel tables and mainly the described rein-

sertion mechanism allow the cuckoo hashing to keep high lookup

speed while decreasing the number of unresolvable conflicts and

therefore increasing the effective capacity.

The cuckoo hashing approach is well suited for hardware be-

cause each hash table can work in parallel [22,23] . These published

implementations offer throughputs up to around only 100 Gbps,

while in this paper we aim at achieving over 1 Tbps. Cuckoo hash-

ing based packet classification is also effectively used to monitor

or analyze network traffic in the idea of Software Defined Monitor-

ing (SDM) [24] . Here, an external memory is utilized and achieved

throughput is again shown to be sufficient only for up to 100 Gbps.

3. Architecture

We aim to design an architecture for exact match packet clas-

sification with the main goal being to accommodate very high

throughputs in the magnitude of multiple terabits per second. One

of the ways to achieve this performance would be to increase the

clock frequency of basic cuckoo hashing architectures described at

the end of the previous section. However, this is possible to do

only until a certain point, after which the frequency cannot be fur-

ther increased due to the limitations of current FPGA technology.

The better way to increased throughput is through the design of a

new architecture of cuckoo hashing that can carry out more than

one rule lookup per each clock cycle. This would naturally require

more than one memory access per clock cycle to each utilized hash

table during the matching process. Current FPGAs from both ma-

jor vendors (Xilinx and Intel) have on-chip tiles of distributed (in

logic) and block memories. Block memory tiles are the main type,

so we are going to focus on them in the following descriptions and

evaluations. However, all of the proposed approaches are general

enough to apply to distributed memories as well.

In cases of both vendors, the block memory tiles have two in-

dependent read ports, therefore we can easily perform two mem-

ory accesses per clock cycle with no replication, and therefore, no

additional cost. If we want to enable more than 2 accesses per

clock cycle to further increase the throughput, we can simply repli-

cate the memories. An example with 4 accesses is illustrated in

Fig. 1 . Two of the four accesses are mapped into the first copy

of the memory and the remaining two are mapped to the other

copy. This approach is not particularly efficient and do not scale

well because we need to double the on-chip memory utilization

in order to achieve doubled throughput. However, we can lever-

age the internal structure of FPGAs and their organization of block

Fig. 1. The memory architecture of simple replication approach using memory tiles

on FPGA.

memory into independent tiles. A single copy of a larger mem-

ory is internally usually composed of more than one block mem-

ory tile (B blocks). More specifically, on current Xilinx FPGA chips

each BlockRAM tile [25] can be used as 36 b wide dual port mem-

ory with 1 024 entries and on current Intel FPGAs each M20K tile

[26] can be similarly used as 20 b wide dual port memory with

1 024 entries. Larger memories are then constructed utilizing mul-

tiple BlockRAM or M20K tiles organized into several rows (more

entries) and columns (wider data). For example, Fig. 1 corresponds

to three columns wide (up to 108 b on Xilinx or 60 b on Intel) and

four rows high (up to 4 048 entries) memory.

3.1. Proposed approach

Because there already are multiple rows of memory tiles in

each hash table we should be able to perform more than just two

memory accesses per clock cycle. In an ideal case, we can, in fact,

do two accesses per cycle independently to each of the individ-

ual rows of the table. This fact can be leveraged as a key feature

to optimize the previously mentioned simple replication approach.

Therefore, we propose an FPGA matching architecture of cuckoo

hashing shown in Fig. 2 . The proposed approach is also easily ap-

plicable to any other kinds of hash tables, but we choose cuckoo

hashing as it is the most effective existing hashing scheme to date.

An architecture able to carry out up to 2 parallel lookups per

cycle with cuckoo hashing using 3 different hash functions/tables

is shown in the Fig. 2 . The memory blocks used here are similar

to the blocks from Fig. 1 – meaning that they internally consist

of multiple independent rows of block memory tiles. Hash func-

tions are computed individually for each lookup key (H blocks)

and are connected to a distribution logic (D blocks). There is one

distributor block for each hash function/table of the cuckoo hash-

ing. The distributor consists primarily of logic that maps the re-

quested memory accesses into corresponding table rows given by

a few most significant bits of their hash values (memory address)

Fig. 2. The top-level architecture of the proposed optimization approach.

4 M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950

and distributes them onto available block memory ports for each of

these rows. On the other side of the memory, it correctly forwards

data read from each memory row and port to the corresponding

comparator logic (= and OR blocks). The basic idea in this con-

cept is to replicate memory fewer times than in the case of a sim-

ple approach (fewer replicas than required parallel packet lookups)

as we can perform multiple accesses per clock cycle into the ta-

ble as long as the hash functions are pointing into different rows

of memories. Additionally, memory can also be replicated here to

enable more than two parallel access ports for each row.

The main function of distributor blocks is to determine which

row of the block memory tiles is accessed by which lookup and

set the corresponding control logic in a correct way to carry out

all the parallel lookups that are not in conflict with one another.

Access conflicts, in this case, mean that there are more lookups

wanting to access the same row of one table than there are avail-

able read ports in this row. Note that since the memories can still

be replicated the number of available access ports might be higher

than two. All the lookups that could not be carried out in the first

cycle will be carried out in consecutive cycles until all of the re-

quested lookups are finished. This means that when access con-

flicts occur, the lookup of all of the inputs will take more than one

cycle. However, the basic idea is that the relative number of occur-

ring conflicts (or rather the number of additional cycles needed) is

pretty low, especially for higher numbers of memory rows (larger

tables), thus reducing total throughput only very slightly. Com-

pared to that, the saved memory resources thanks to no or weaker

replication are considerable.

As an example, let us consider a case where four packet lookups

each clock cycle are needed, there are four rows of block memory

tiles, and only two access ports per memory (meaning no memory

replication). No access conflicts will occur unless at least three of

the four parallel lookups need to access the same memory row. In

the case of the conflict, two of the conflicting accesses can still be

carried out together with all of the others that are not in conflict.

The last one or two accesses from the conflicting group has to be

carried out in the next clock cycle. Even if there is a conflict every

time, we still achieve the same throughput as the simple archi-

tecture with the same memory requirements (replication factor).

In the example without replication, we would do four lookups in

two clock cycles which is the same as the simple approach with

two lookups each cycle. This shows that at worst the proposed

approach is on par with the simple replication scheme in terms

of both memory and throughput. However, the key idea is that

the conflicts do not occur each time and are actually pretty infre-

quent (20% conflict chance in this example), therefore the actually

achieved effective throughput is considerably better.

Another important feature of the proposed architecture is that

we can easily achieve independence in the access conflict handling

for each parallel hash table used in the cuckoo hashing scheme. A

distributor corresponding to a single hash table does not need to

wait until all the other distributors carried out all their lookups.

Instead, there are small input and output buffers that are used to

synchronize the access requests and their results (denoted by small

squares on corresponding connections in Fig. 2). This makes the ar-

chitecture a lot more efficient as the throughput is not governed

by the probability of no conflicts in all of the tables together but

rather by the probability that there are no conflicts in every single

table independently. This independent probability is a lot lower es-

pecially when a higher number of parallel hash tables are used.

Indeed, the described buffers require some additional FPGA re-

sources. Moreover, the distributors themselves introduce some ad-

ditional logic overhead compared to simple replication approach.

In the simple approach, there is a dedicated memory port for each

parallel lookup, therefore hash functions (inputs) and comparison

logic (outputs) can be directly connected to appropriate memories

without any distributors. The core of each distributor is a simple

planner, that can evaluate and resolve access conflicts – basically

a group of encoders and decoders to select a valid access plan for

each clock cycle. The planner controls two columns of multiplex-

ers: the first to route planed access requests to correct memory

rows/ports on the input and the second to pair read data with

their corresponding requests on the output. Additional registers

are also used to thoroughly pipeline the distributors for better fre-

quency and to correctly synchronize all operations together. The

total FPGA logic overhead of the distributors and buffers around

them is expected to be manageable compared to complex hash-

ing blocks which are usually considerably large and contain critical

paths.

During the resolution of access conflicts, the available access

ports of memories are currently not fully utilized in the added

clock cycles. For example, if only one lookup cannot be carried out

in the first cycle it has to be carried out in the second (additional)

one. Reserving one full clock cycle just for one extra lookup is in-

efficient. A more reasonable approach would be to already com-

bine the extra lookup cycles with some of the lookups needed for

the next set of input keys. This approach requires the buffer ar-

chitecture to be much more complex as it needs to be able to ef-

ficiently plan the memory accesses across multiple lookup cycles.

This operation is not trivial and would require considerable addi-

tional resources and create long critical paths. Furthermore, the re-

source increase is not exculpable as after our initial experiments

we concluded that for the most interesting cases (the ones where

the benefits of the proposed architecture are the best) the change

would increase the throughput by only a minuscule margin. There-

fore the rest of this article does not use architecture with this kind

of optimization.

3.2. Analysis of access conflicts occurances

Using some basic probabilities and statistics, it is possible to

theoretically analyze the expected probability of access conflict oc-

currences and thus derive the achievable throughput of the pro-

posed architecture with any given parameters. There are three

main parameters of the architecture that influence the probability

of conflicts:

1. r as the number of rows of block memory tiles in each table,

2. l as the number of parallel lookups per clock cycle corre-

sponding to the number of inputs,

3. and p as the number of available access ports for each table

row.

Using these three parameters we can now examine the conflict

probabilities and their effect on the achieved throughput.

The situations when a single lookup needs to access one spe-

cific selected row of memory tiles and that it needs to access any

other row have mutually complementary probabilities:

P s (r) =

1

r
(1)

P ns (r) =

r − 1

r
(2)

Now for any given number n , the probability that exactly n

lookups out of total l in one cycle need to access one selected row

out of r rows can be computed as a product of: the probability

that selected n lookups access selected row, the probability that all

the other l − n lookups do not access this row, and the number of

combinations by which it is possible to position those n colliding

M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950 5

lookups into all l inputs. The corresponding equation is therefore:

P s (n, l, r) = (P s (r)) n ∗ (P ns (r)) l−n ∗
(

l

n

)

=

(
1

r

)n

∗
(

r − 1

r

)l−n

∗
(

l

n

)
(3)

To get the probability that any of the memory rows will have ex-

actly n lookups mapped onto it we simply multiply the previous

probability from Eq. (3) by the total number of rows:

P a (n, l, r) = P s (n, l, r) ∗ r =

(
1

r

)n −1

∗
(

r − 1

r

)l−n

∗
(

l

n

)
(4)

Finally, the probability that more than n lookups out of all l in

one cycle need to access the same row out of r can be approx-

imated simply as a sum of the probabilities from Eq. (4) for all

values higher than given n :

P c,a (n, l, r) =

l ∑

i = n +1

P a (i, l, r) =

l ∑

i = n +1

(
1

r

)i −1

∗
(

r − 1

r

)l−i

∗
(

l

i

)
(5)

However, this sum does not account for the fact that solution

spaces described by some of the summed probabilities can have

non-empty intersections with one another (some conflict variants

are counted multiple times). To counter this fact we would have to

compute probabilities that exactly n lookups will be mapped onto

the same row while there is no other row with n or more lookups

mapped onto it. This would lead to exponentially more complex

nested sums. However, the approximate results achieved by the

Eq. (5) are always higher than the actual correct results, which in

turn means that they would actually give us more pessimistic re-

sults for the throughput. Additionally, this approximation is very

precise for results under configurations that are the most interest-

ing for us. For example, it is absolutely precise if p is higher or

equal to l /2, since in this case, it is impossible for two different

rows to have more than p accesses mapped at the same time.

The probability approximated by the Eq. (5) essentially gives

the chance that there will be a conflict for a matching architecture

with l parallel lookups, r rows of block memory tiles and p = n

ports for each row. However, not all occurring access conflicts are

equal when it comes to their resolving and thus effect on the to-

tal achieved throughput. For example, if p = 2 and 6 lookups need

to access the same row it takes 3 cycles to carry out all of them,

while when only 4 lookups need to access the same row only 2

cycles are needed. To extend our equations and reflect this we in-

troduce weights into the sum:

c w,c (n, l, r) =

l ∑

i = n +1

w (i, n) ∗ P a (i, l, r) (6)

The weight w here represents the number of cycles needed to

resolve the conflict in each case and can be easily computed as:

w (i, n) =

⌈
i

n

⌉
(7)

Finally, we need to do one last thing in order to get how many

times more cycles (on average) are needed compared to the case

without any conflicts. The Eq. (6) sums only weighted probabilities

of conflicts. We need to also add the probability that there will be

no conflict at all. Weight corresponding to no conflict is obviously

1 since even when there is no conflict we still need one clock cy-

cle to carry out all the lookups. So the coefficient that gives us the

ration between needed cycles (achieved throughputs) between our

architecture and ideal case without conflicts is computed as fol-

lows:

c(n, l, r) = c w,c (n, l, r) + (1 − P c,a (n, l, r)) (8)

In conclusion, the proposed optimized architecture with l

lookups, r block memory rows, and p ports can achieve through-

put equivalent to an average of m lookups per cycle, where:

m =

l

c(p, l, r)
(9)

Thanks to the previously mentioned buffers there is no need

to include number of parallel hash functions (hash tables) in the

cuckoo hashing scheme into our computations. Lookup processing

and memory accesses corresponding to each hash operate inde-

pendently of one another and their results are only synchronized

afterward via buffers. This means that if there is a collision in

memory tied to one hash another hash with no collision does not

have to wait.

4. Results

Based on the previously described mathematical analysis, the

expected throughput results in this section are obtained. Then

they are confirmed through extensive experiments with the de-

signed architecture using real network traffic traces. The architec-

ture is implemented in VHDL with configurable parameters like

the number of hash tables, their sizes, level of memory replica-

tions, and the number of lookups per clock cycle. Measurements

of FPGA resources requirements for Xilinx are based on implemen-

tations for the UltraScale+ XCVU9P chip [25] using Vivado 2018.2

tool and for Intel are based on implementations for the Stratix10

1SG280HU2F50E1VG chip [27] using Quartus Prime 18.1 Pro. The

architecture is able to achieve working frequency (F max) of more

than 400 MHz for every evaluated configuration on both chips.

Therefore, all throughput results in the following part of this sec-

tion are shown for 400 MHz clock frequency. We evaluated the ar-

chitecture for 32 b wide arbitrary data (action) and in two differ-

ent settings of key width: a 104 b wide key that is sufficient for

the classification of standard IPv4 flows (5-tuple), and 296 b wide

key for simmilar IPv6 flow matching. There are 3 main parameters

that are worth exploring in the obtained results – effective rule ca-

pacity, resource requirements (block memory tiles, logic cells), and

achievable throughput (lookups per cycle, Mpps, Gbps).

We start the evaluation with achievable capacity analysis of the

proposed extended cuckoo hashing scheme. Then continue with

resource utilization and scaling for different configurations of the

designed atchitecture. And finally, take a closer look at achievable

throughputs in real network deployment.

4.1. Effective rule capacity

To examine the effective capacity of the proposed architecture,

measurements in several configurations are performed with ran-

domly generated keys. Different key widths (104 b IPv4 and 296 b

IPv6 5-tuple), numbers of block memory rows (2, 8, and 16), and

numbers of hash functions (2, 3, and 4) are tested. For each con-

figuration, results from 1 0 0 0 0 0 0 independent runs are obtained,

where each run consists of inserting new rules one by one into

the cuckoo hash tables until the first unsuccessful attempt occurs.

Fig. 3 illustrates the aggregated results of these measurements. The

graph shows the probability of achieving at least given rule capac-

ity utilization, e.g. in around 85% of performed tests with two ta-

bles (solid line) the achieved utilization is at least 50% of total ca-

pacity. More specifically, the depicted results are for IPv4 5-tuples

and 8 memory rows (8 192 items) per table. However, changing

the key width has no effect on the results at all and changing the

number of rows (items) per table has only a negligible effect. The

only parameter significantly influencing the effective capacity of

the architecture is the number of parallel hash functions – with

6 M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950

Fig. 3. Achieved memory capacity utilization for a different number of hash tables

(functions).

99% probability 40% utilization is achieved with 2 functions, 90%

utilization with 3 functions and even 97% with 4 functions.

These results are consistent with similar measurements pre-

sented for general cuckoo hashing scheme in published papers

like [23] . Therefore, we can conclude that the proposed optimized

memory replication scheme has no negative effects on the achiev-

able rule capacity compared to standard cuckoo hashing. Table 1

shows different capacities of the proposed architecture based on

the number of hash functions and the number of block mem-

ory rows for each table. Total (theoretical) capacity and achiev-

able effective capacity based on the measured results are shown.

Table 1 is primarily used to illustrate the capacities of the config-

urations that are considered in the following evaluation. Note that

configurations with two tables are not considered because of the

poor achieved utilization.

4.2. Achievable throughput and required resources

The main goal of the proposed approach is to save FPGA mem-

ory resources while maintaining high throughput. Therefore, we

start the evaluation with Fig. 4 that captures the relations between

throughputs and memory tiles utilizations for the designed archi-

tecture with three hash functions in different configurations. Each

graph shows results for different FPGA vendor (Xilinx in the top

half, Intel in the bottom half) and different matching key width

(IPv4 5-tuple on the left and IPv6 5-tuple on the right). Outer

shape of points (square, circle, triangle) is used to distinguish dif-

ferent numbers of memory rows (last 3 entries in the legend),

while different inner shapes of points (middle 3 entries in the

legend) are used to represent how many lookups per clock cycle

(number of inputs l) the proposed architecture supports. Finally,

individual lines in the graphs represent throughput and memory

requirements of the simple memory replication approach for a dif-

ferent number of block memory rows used (distinguished by line

type from the first 3 entries in the legend). The number of rows is

Table 1

Capacities of the proposed architecture for different parameters.

Hash functions Memory rows Total capacity Effective capacity

3 1 3 072 2 765

3 2 6 144 5 530

3 4 12 288 11 059

3 8 24 576 22 118

3 16 49 152 44 236

4 1 4 096 3 973

4 2 8 192 7 946

4 4 16 384 15 892

4 8 32 768 31 784

4 16 65 536 63 569

directly tied to the capacity of the architecture as shown in Table 1 .

These results of the simple replication scheme (lines) form a base-

line for evaluation of the designed optimization approach.

Results of the proposed memory-optimized architecture are

shown as individual points in the graphs. The parameters of each

evaluated architecture are given by outer and inner shape of the

point according to shown legend (e.g. ‘x’ in a square means 4 rows

and 8 lookups). The proposed approach is clearly better in terms of

used memory for each given throughput achieved as in each graph

all points are below lines that correspond the appropriate number

of rows. Obviously, when there is only one row of block memories

it is impossible to employ our optimization and gain something.

The results for one and two rows of block memories are not shown

in the figure for the sake of better clarity. However, even when

only two rows of block memories are used we can already achieve

better results. For example, using the optimized architecture with

10 lookups we achieve up to 48.5% increase in throughput com-

pared to the simple approach with the same memory requirements

(nearly 3 lookups per cycle versus only 2).

When more than two block memory rows per table are used

the gains from the proposed approach become even better. With

16 rows (dotted line and triangle points) it is possible to achieve

nearly twice the throughput without any memory duplication even

when using the proposed architecture with only 4 lookups (cross).

If we use versions with 8 (‘x’) or 10 (star) lookups per cycle the

speedup is even further amplified and nearly 7 or 7.5 times higher

throughput is reached with no additional memory requirements.

Additionally, when utilizing two replicas of memory, the proposed

approach can achieve nearly the full throughput of 10 lookups per

cycle. In other words, we achieve 99.7% of throughput with only

40% of used memory compared to simple replication. The observed

increase of speedup for architectures with more rows in their ta-

bles is expected. Because more rows mean a higher chance for the

lookups to be better spread out between different rows and thus

the probability of access conflicts occurring during matching de-

creases.

Comparing individual graphs in Fig. 4 to one another, we notice

that they all look very similar. The only real difference is the scale

of their y-axes (memory requirements), while all the general char-

acteristics described above remain the same. Therefore, the mem-

ory savings offered by the proposed architecture scale comparably

well regardless of key width and FPGA vendor. Furthermore, the

total required memory seems to scale linearly with configured key

width as 2.5 × increase in memory utilization is evident between

architectures with 104 b wide IPv4 flow identifier (left half) and

296 b wide IPv6 flow identifier (right half). Finally, visible nearly

2 × increase in the number of utilized memory tiles between In-

tel (bottom) and Xilinx (top) is due to different sizes of one tile

between the two FPGAs – Intel M20K tile is smaller at 20 Kb

(20 b × 1024 items) while Xilinx BlockRAM tile has 36 Kb (36 b

× 1024 items). The actual size of the utilized memory in bytes is,

therefore indeed, comparable on both devices.

The efficiency of the proposed memory optimization approach

is not affected by the number of used hash functions, they only

affect the effective rule capacity. This can be clearly seen by com-

paring Fig. 5 with the appropriate graph from Fig. 4 . Fig. 5 shows

the relation of utilized memory and achieved throughput for dif-

ferent architecture configurations with 4 hash functions on Xilinx

FPGAs using IPv4 flow identifiers. Graphs for Intel FPGAs and IPv6

flow identifiers are now omitted as they are again nearly identical

to one another. Graphs shown by Figs. 4 and 5 are pretty much the

same only shifted slightly along the y-axis. This increase in mem-

ory requirements is offset by the higher capacity of the architec-

tures with 4 hash functions (see Table 1).

Results about memory requirements presented so far might

suggest that architectures with more lookups per cycle (inputs) are

M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950 7

Fig. 4. The relations between utilized memory tiles and achieved throughput for different FPGAs and key widths when using 3 hash functions.

Fig. 5. The relation between utilized memory and achieved throughput for Xilinx

FPGAs and IPv4 flows when using 4 hash functions.

always better. However, this is not the case when it comes to uti-

lized on-chip logic resources. Each additional lookup port needs its

own hash function implementation, independent buffers, and gen-

erally leads to larger distributors. The relation between utilized on-

chip logic, more specifically required LUTs or ALMs, and through-

put for 3 hash functions is illustrated in Fig. 6 . Each graph shows

the results for different FPGA vendor and different matching key

width and the relations are again similar. We can see that if we

use an architecture with for example 10 lookups (star) the logic

requirements go up together with the level of memory duplica-

tion and the achieved throughput. Memory-optimized architecture

with 10 lookups, 16 rows and 4 memory ports (two memory repli-

cas) achieves 99.7% of throughput requiring only 40% of memory

at a cost of around 466% of LUTs compared to the simple approach

with 10 lookups and 16 rows regardless of device and key width.

From a different point of view, the optimized architecture with

10 lookups, 2 rows and 2 memory ports (no replication) achieves

48.5% increased throughput requiring the same memory at a cost

of at most 244% increase in LUTs/ALMs compared to the simple ap-

proach with 2 lookups and 2 rows. However, we argue that the de-

creased memory requirements or increased throughput, depending

on the way we look at it, is a favorable trade-off for the increase

in on-chip logic. In many cases, even the increased logic require-

ments are still feasible for current FPGAs (only a few percents of

the total available), while increasing the throughput without the

need to replicate memories can prove to be more critical.

Finally, let’s analyze the proposed memory optimized architec-

ture from a different point of view. What is the best achievable

result if we want to reach a given throughput goal? Figs. 7 and

8 illustrate memory requirements of the best configurations of

the proposed approach (best proposed) compared to the baseline

given by the simple memory replication (simple) when reaching a

throughput of at least 800 Gbps or 2.4 Tbps respectively. The best

configuration is the one that requires the least memory while still

satisfying the minimal throughput threshold. This obviously means

that actually achieved throughputs of compared simple and opti-

mized configurations are not the same. For better comparison, we

can leverage the fact that memory of the simple approach scales

linearly with throughput and adjust the required memory to the

point where the simple approach has exactly the same throughput

as the optimized (adjusted simple). We can see that the proposed

approach becomes more and more effective as the total capacity

of the cuckoo hash table (number of rows) rises. For 2 rows it

is possible to achieve the same throughput as simple replication

with somewhere between 67% and 80% of required memory (af-

ter adjustment), while for 16 rows only between 25% and 40% of

8 M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950

Fig. 6. The relation between utilized logic and achieved throughput for different FPGAs and key widths when using 3 hash functions.

Fig. 7. Memory requirements comparison when achieving at least 800 Gbps.

M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950 9

Fig. 8. Memory requirements comparison when achieving at least 2.4 Tbps.

memory is needed. To be more precise the most significant fac-

tor that governs memory savings is the ratio between the number

of rows (capacity) and required throughput (parallel lookups). The

higher the capacity the better the results become as the lookups

can be spread among more rows. This is true regardless of key

width and FPGA vendor.

4.3. Evaluation on real network traffic

The previous results are obtained under a premise that the net-

work traffic, or more specifically packets and their identifiers used

in the matching, have random and evenly distributed values. How-

ever, this is not always the case in real networks. Most likely there

is a multitude of ongoing sessions between different devices each

composed of multiple packets that are transferred in short bursts.

The burstiness of the traffic from the same flow means that the

probability of multiple packets accessing the same row of block

memories might be higher than what we obtained through math-

ematical analysis. To better understand performance limits of the

proposed approach we, therefore, analyze achieved throughput on

real network traces. We mainly focus on two scenarios.

The first examined scenario uses only packet identifiers ex-

tracted from the network traces and assumes that each packet has

the shortest possible length of 64 B. Here, only the distribution of

the matching identifier is taken into account and therefore, only

basic patterns found in the real network traces are demonstrated.

For the matching architecture, this is the worst-case scenario un-

der the full network load, because the maximal possible amount of

packets needs to be classified in each and every clock cycle. In the

second scenario, we also take into account another characteristic

of the network traffic – actual packet length. Longer packets mean

that within the same time window (one clock cycle) fewer packets

need to be actually classified and therefore there is a lower chance

of access conflict occurring. This represents the average-case on a

Fig. 9. Illustrations of examined scenarios with worst-case packet window and

average-case byte window.

real network more closely. However, the exact timing of packet ar-

rivals is still ignored to simulate full network load.

Both scenarios are better illustrated by Fig. 9 . In the worst-case

scenario (top part), there is a window of l packets processed in

every clock cycle because we assume each packet to be of a mini-

mal length of 64 B. Where l is the number of parallel lookups sup-

ported by the architecture. In the average-case scenario (bottom

part), we instead have a window of l ∗64 bytes as the amount of

data received for processing in each clock cycle. If a packet does

not fully fit into a single window and is spread among multiple, it

will be classified in the last window it occupies. The architecture

still needs to classify all of the packets ending in a single window

each clock cycle or add additional cycles if access conflicts occur.

For example in the worst-case scenario, packets 1 to 4 arrive in

the first window (first clock cycle), packets 5 to 8 in the second,

10 M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950

Table 2

Basic characteristics of capture traffic traces from CESNET network.

Trace name Packets Bytes Time period Capture time

meter1 1 000 000 1 081 259 293 1.033 s 11:00

meter4 1 000 000 791 590 133 1.489 s 15:00

Fig. 10. Throughput results on real network traces for architecture with 10 lookups

and 2 × memory replication.

and so on. In the average-case scenario, packets 1 to 2 arrive in

the first window, packets 3 to 5 in the second, no packets in the

third window, and packets 6 to 8 in the last window.

Real network traces used for this evaluation were obtained from

the high-speed backbone network managed by CESNET. CESNET is

Czech National Research and Educational Network which has op-

tical links operating at speeds of up to 100 Gbps. This optical

network serves around 20 0 0 0 0 users and routes mainly IP traf-

fic. Data traces were captured at different points of the network

and at different times of the day. The captured traces contain both

IPv4 and IPv6 flows, with IPv4 dominating. To support matching of

both IP versions, results for architectures supporting IPv6 5-tuples

are shown and IPv4 addresses in rules are extended to apropriate

width. In the following evaluations two traces are used: meter1 and

meter4 . Their basic characteristics are shown in Table 2 .

Basic look at the achievable throughput under realistic deploy-

ment is provided in Fig. 10 . It shows achieved throughput for dif-

ferent numbers of block memory rows on captured network traces.

A reference throughput for packets with random uniformly dis-

tributed identifiers (results from Section 4.2) is shown as well as

measured results using packet and byte windows. On both network

traces, the architecture shows similar behavior. The main things we

can observe is that for the worst-case scenario (packet window)

the throughput is overall lower than in random case and for the

more realistic average-case (byte window) it is always higher than

expected. The interesting fact to notice about the worst-case sce-

nario is that its throughput falls behind the expected values more

and more with the rising number of block memory rows. This be-

havior would suggest a more prevalent occurrence of access col-

lisions than expected. However, if we take into account realistic

packet lengths (byte window) the observed decrease in throughput

is far outweighed by the lower arrival rate of matching requests

into the architecture.

Fig. 11 shows that the same trends of achieved worst-case and

average-case throughputs can be observed even when we decrease

the level of memory replication. This graph shows a comparison

between the same 2 × replication as used in Fig. 10 and archi-

tecture with no memory replication at all. With decreased replica-

Fig. 11. Throughput results on real network trace meter4 for architecture with 10

lookups and different levels of memory replication.

Fig. 12. Throughput results on real network trace meter4 for architecture with dif-

ferent numbers of lookups.

tion levels the results just get shifted a bit towards lower through-

puts, but the observed trends remain the same. Furthermore, if

we change the number of lookups that the architecture can at

most perform per clock cycle similar trends in the graph arise

again. Fig. 12 shows a comparison of measured throughputs for

two architectures that differ only in the number of lookups per

clock cycle. Once again the random data measurement has a higher

throughput than the worst-case scenario, but average-case still

beats the expectations. Finally, a somehow different picture arises

if we try to classify the captured packets based only on source IP

address and not the whole IP 5-tuple. The measured results are

provided in Fig. 13 . We can see, that the decrease in throughput

for the worst-case scenario is slightly bigger for IP address only

matching than for IP flows matching. This, in turn, would suggest

a higher probability of access conflicts occurrence for less specific

packet identification.

The above-described reduction of throughput in the worst-case

scenario can be easily explained after further analysis of the oc-

curring access conflicts. In the real network data, the majority of

the conflicts are caused by multiple subsequent packets with ex-

actly the same identifiers. In evaluated cases belonging to the same

flow or originating from the same network device. The probabil-

ity of this special type of collision does not decrease when we in-

crease the number of block memory rows, because these packets

M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950 11

Fig. 13. Throughput results for architecture with 8 lookups and no memory repli-

cation with different keys.

need to access not only the same row but exactly the same item

(entry) in each table. However, this special case does not actually

have to cause an access conflict and stall the pipeline. Although

multiple lookups need to access the same row, they require ex-

actly the same entry from the memory. Therefore, this entry needs

to be only read out once and then distributed as a result for all of

the lookups that needed it. This leads to a possible optimization,

where additional logic (simple address comparators) can be added

into each distributor that handles these types of parallel lookups

and aggregates them into only one memory access. With this opti-

mization even the worst-case scenario throughput exactly matches

the expected results from Sections 3.2 and 4.2 . This change does

not pose any significant increase in overall resources and bene-

fits the throughput only under a very specific traffic pattern in

the worst-case scenario. Therefore the actual results for logic con-

sumption are left out of this article.

5. Conclusion

The article presents and examines the design of a novel mem-

ory optimized FPGA architecture for general exact match packet

classification at very high speeds (400 Gbps and beyond) based on

the cuckoo hashing algorithm. The proposed architecture offers an

easily configurable tradeoff between total achieved throughput, re-

quired on-chip memory, utilized logic resources, and effective rule

capacity with equally favorable scaling on FPGAs from both ma-

jor vendors. Thanks to the designed unique memory optimization

scheme, it is possible to implement exact match packet classifi-

cation at very high throughputs even for large rulesets operat-

ing with efficient utilization of available memory. There are sev-

eral ways in which the architecture can be effectively used – ei-

ther to maximize throughput and rule capacity on devices with

limited memory resources or to minimize memory requirements

while satisfying needed rule capacity and throughput.

Thorough experimental measurements of the proposed simple

and optimized architectures of cuckoo hashing presented in the ar-

ticle show several interesting facts. First of all the proposed mem-

ory optimized architecture is considerably more efficient than a

simple replication approach presented in the related works while it

still retains exactly the same effective rule capacity as the original

cuckoo hashing approach. For appropriate configurations, we are

able to achieve up to 99.7% of the original throughput for only 25

to 40% of utilized memory resources compared to the simple repli-

cation. The achieved memory savings gets higher when hash tables

with larger capacities are used. Thanks to this favorable scaling we

can achieve an unprecedented throughput of 2.4 Tbps with an ef-

fective capacity of over 44 0 0 0 IPv4 5-tuple (flows) rules when

using on-chip block memories for the cost of only 366 BlockRAM

tiles on Xilinx FPGAs or 672 M20K tiles on Intel FPGAs. Similarly,

even a feasible IPv6 5-tuple matching can be implemented with

the same throughput and capacity at the cost of 882 BlockRAMs

or 1 584 M20Ks. The only downside of the proposed memory op-

timized architecture is the increased requirement of on-chip logic

resources. However, the increase is well within manageable mar-

gins and we argue that the benefits of decreased memory require-

ments and increased throughput outweigh this issue in most prac-

tical cases. Finally, the performance of the architecture is proven

to hold (after the proposed same item access optimization) when

processing real network traffic even in the worst-case scenario

when flooded by the shortest packets and for the average-case, the

total throughput is even higher than expected.

Declaration of Competing Interest

We are not aware of any existing conflicts of interest.

Acknowledgments

This research is supported by the project Reg. No.

CZ.02.1.01/0.0/0.0/16_013/0 0 01797 by the MEYS of the Czech

Republic; the IT4Innovations excellence in science project IT4I

XS – LQ1602; and by the Ministry of the Interior of the Czech

Republic projects VI20172020064 and VI20152019001.

References

[1] A. Caulfield , E. Chung , A. Putnam , H. Angepat , J. Fowers , M. Haselman , S. Heil ,

M. Humphrey , P. Kaur , J.-Y. Kim , D. Lo , T. Massengill , K. Ovtcharov , M. Pa-

pamichael , L. Woods , S. Lanka , D. Chiou , D. Burger , A cloud-scale acceleration
architecture, in: Proceedings of the 49th Annual IEEE/ACM International Sym-

posium on Microarchitecture, IEEE Computer Society, 2016 .
[2] P. Bosshart , D. Daly , G. Gibb , M. Izzard , N. McKeown , J. Rexford , C. Schlesinger ,

D. Talayco , A. Vahdat , G. Varghese , D. Walker , P4: programming protocol-in-
dependent packet processors, SIGCOMM Comput. Commun. Rev. 44 (3) (2014)

87–95 .

[3] P. Benáček , V. Puš, H. Kubátová, P4-to-VHDL: automatic generation of 100 Gbps
packet parsers, in: Proceedings of the IEEE 24th Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM), 2016,
pp. 148–155 .

[4] P. Benáček , V. Puš, H. Kubátová, T. Čejka , P4-To-VHDL: automatic generation of
high-speed input and output network blocks, Microprocessors and Microsys-

tems 56 (2018) 22–33 .

[5] The P4 Language Consortium, The P4 Language Specification: Version 1.0.5,
2018.

[6] The P4 Language Consortium, P4 16 Language Specification: Version 1.1.0, 2018.
[7] D. Taylor , J. Turner , Scalable packet classification using distributed crosspro-

ducing of field labels, in: Proceedings of the 24th Annual Joint Conference of
the IEEE Computer and Communications Societies, 2005, pp. 269–280 .

[8] P. Gupta , N. McKeown , Packet classification using hierarchical intelligent cut-

tings, in: Proceedings of the Hot Interconnects, 1999 .
[9] S. Singh , F. Baboescu , G. Varghese , J. Wang , Packet classification using multidi-

mensional cutting, in: Proceedings of the Conference on Applications, Tech-
nologies, architectures, and Protocols for Computer Communications, ACM,

New York, NY, USA, 2003, pp. 213–224 .
[10] H. Lee , W. Jiang , V.K. Prasanna , Scalable high-throughput SRAM-based architec-

ture for IP lookup using FPGA, in: Proceedings of the International Conference

on Field Programmable Logic and Applications, 2008 .
[11] S. Dharmapurikar , H. Song , J. Turner , J. Lockwood , Fast packet classification us-

ing Bloom filters, in: Proceedings of the 2006 ACM/IEEE symposium on Archi-
tecture for Networking and Communications Systems, ANCS, ACM, New York,

NY, USA, 2006, pp. 61–70 .
[12] V. Puš, J. Ko ̌renek , Fast and scalable packet classification using perfect hash

functions, in: Proceedings of the 17th International ACM/SIGDA Symposium on
Field Programmable Gate Arrays, FPGA, ACM, New York, NY, USA, 2009 .

[13] J. Ko ̌renek , V. Puš, J. Blaho , Memory optimization for packet classification al-

gorithms, in: Proceedings of the 5th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, in: Association for Computing

Machinery, Association for Computing Machinery, 2009, pp. 165–166 .
[14] H. Le , V.K. Prasanna , Scalable Tree-based Architectures for IPv4/v6 Lookup Us-

ing Prefix Partitioning 61 (7) (2012) 1026–1039 . ISSN 0018-9340

12 M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950

[15] Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, V. Prasanna, Multi-dimensional packet clas-
sification on FPGA: 100 GBPS and beyond, in: Proceedings of the International

Conference on Field-Programmable Technology
[16] T.V. Lakshman , D. Stiliadis , High-speed policy-based packet forwarding using

efficient multi-dimensional range matching, SIGCOMM Comput. Commun. Rev.
28 (4) (1998) 203–214 .

[17] H. Song , J.W. Lockwood , Efficient packet classification for network intrusion
detection using FPGA, in: Proceedings of the 2005 ACM/SIGDA 13th Interna-

tional Symposium on Field-Programmable Gate Arrays, FPGA, ACM, New York,

NY, USA, 2005, pp. 238–245 .
[18] V. Srinivasan , G. Varghese , S. Suri , M. Waldvogel , Fast and scalable layer four

switching, SIGCOMM Comput. Commun. Rev. 28 (4) (1998) 191–202 .
[19] W. Jiang , V.K. Prasanna , Scalable packet classification on FPGA, IEEE Trans. Very

Large Scale Integr. (VLSI) Syst. 20 (2012) .
[20] M. Kekely , J. Korenek , Packet classification with limited memory resources, in:

Proceedings of the Euromicro Conference on Digital System Design, Institute

of Electrical and Electronics Engineers, 2017, pp. 179–183 .
[21] R. Pagh , F.F. Rodler , Cuckoo hashing, in: Algorithms - ESA 2001, volume

2161 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2001,
pp. 121–133 .

[22] A. Kirsch, M. Mitzenmacher, Y. Baohua, X. Yibo, L. Jun, Using a queue to de-
amortize cuckoo hashing in hardware, http://www.eecs.harvard.edu/michaelm/

postscripts/aller20 07.pdf 20 07.

[23] L. Kekely , M. Žádník , J. Matoušek , J. Ko ̌renek , Fast lookup for dynamic packet
filtering in FPGA, in: Proceedings of the 17th IEEE Symposium on Design

and Diagnostics of Electronic Circuits and Systems, IEEE Computer Society,
Warszaw, Poland, 2014, pp. 219–222 . ISBN: 978-1-4799-4558-0.

[24] L. Kekely , J. Kucera , V. Pus , J. Korenek , A.V. Vasilakos , Software defined moni-
toring of application protocols, IEEE Trans. Comput. 65 (2) (2016) 615–626 .

[25] Xilinx, UltraScale and UltraScale + FPGAs Packaging and Pinouts, Xilinx Inc.,

2016. UG575.
[26] Intel, Intel Stratix 10 Embedded Memory User Guide, Intel Corporation, 2018.

UG-S10MEMORY 2018.12.24.
[27] Intel, Intel Stratix 10 GX/SX Device Overview, Intel Corporation, 2019. S10-

OVERVIEW 2019.02.15.

Michal Kekely is a Ph.D. student at Faculty of Informa-

tion Technology, Brno University of Technology since 2016
and also an FPGA firmware developer at the Research and

development department of Netcope Technologies since

2016. Michal’s research is focused mainly on hardware ac-
celerated solutions for high-speed networks, particularly

in the area of network monitoring and security. So far,
he is an author of several research papers published at

renowned international conferences.

Lukáš Kekely received his Ph.D. degree from Faculty of

Information Technology, Brno University of Technology in
2017. Lukáš is a researcher and a project manager at the

hardware department of Liberouter project which is a
part of CESNET (Czech National Research and Educational

Network). The main focus of his research is the hardware

acceleration of time-critical networking operations using
FPGAs, particularly in the area of high-speed network se-

curity and monitoring. He is an author of many research
papers published at renowned international conferences.

Jan Ko řenek received his Ph.D. degree from Faculty of
Information Technology, Brno University of Technology

in 2010 and recently finished his inaugural dissertation
there. He is an assistant professor at the Brno University

of Technology and a head of the Security and administra-

tion tools department (Liberouter project) of CESNET. He
has substantial experiences in the hardware acceleration

of network applications which was obtained especially by
working on a number of European and locally funded re-

search projects. He is an author of many conference pa-
pers, journal articles, and novel hardware architectures.

In May 2007, he co-founded INVEA-TECH (now separated

into Netcope Technologies and Flowmon Networks) which
is an internationally successful spin-off focused on high-speed network monitoring

and security applications. In 2009, he also formed Accelerated Network Technolo-
gies (ANT) research group at Brno University of Technology.

A.6 Paper 6
Optimizing Packet Classification on FPGA

82

Optimizing Packet Classification on FPGA
Michal Kekely

FIT BUT
Božetěchova 2, 612 66 Brno

Czech Republic
ikekelym@fit.vutbr.cz

Jan Kořenek
FIT BUT

Božetěchova 2, 612 66 Brno
Czech Republic

korenek@fit.vutbr.cz

Abstract—Packet classification is a crucial time-critical opera-
tion for many different networking tasks ranging from switching
or routing to monitoring and security devices like firewalls or
IDS. Accelerated architectures implementing packet classification
must satisfy the ever-growing demand for current high-speed net-
works. However, packet classification is generally used together
with other packet processing algorithms, which decreases the
available hardware resources on the FPGA chip. The introduction
of the P4 language requires the packet classification to be even
more flexible while maintaining a high throughput with limited
resources. Thus, we need flexible and high-performance architec-
tures to balance processing speed and hardware resources for spe-
cific types of rules. DCFL algorithm provides high performance
and flexibility. Therefore, we propose optimizations to the DCFL
algorithm and overall packet processing hardware architecture.
The goal is to maximize the throughput and minimize the re-
source strain. The main idea of the approach is to analyze
the ruleset, identify some conflicting rules and offload these
rules to other hardware modules. This approach allows us
to process packets faster, even in the worst-case scenarios.
Moreover, we can fit more packet processing into the FPGA and
fine-tune the packet processing architecture to meet a specific
network application’s throughput and resource demands. With
the proposed optimizations we can achieve up to a 76 % increase
in the throughput of the packet classification. Alternatively, we
can achieve up to a 37 % decrease in resources needed.

I. INTRODUCTION

The capacity and throughput of network links are steadily
growing. Network traffic processing needs to keep up with this
growth, which leads to the need for faster packet processing
algorithms. For 400 Gbps networks, it is necessary to process
one packet in 1.25 ns. We need to have appropriate hardware
acceleration methods to achieve these processing speeds.

Using FPGA and ASIC provides high performance that
helps achieving the speeds required by today’s networks.
However, flexibility is also essential for any practical network
system because traffic processing changes with the introduc-
tion of every new protocol, application or service. Therefore,
network interface cards with FPGAs are being deployed
to data centres as hardware platforms for the acceleration [1].

Moreover, flexibility is required by introducing high-level
languages for packet processing, such as the P4 language [2].
The P4 language has been designed to enable protocol, vendor
and target independent definitions of packet processing. Due
to protocol independence, the language has widespread use
in different network applications. These applications also

introduce a wide spread of requirements on throughput, rule
capacity and even the types of matches and their complexity.
An integral part of the P4 language is utilizing Match/Action
tables (packet classification) to control processing of each
input packet. The system described in P4 language can be di-
rectly mapped into FPGA [3], [4].

The rulesets used can be big and complex, which intro-
duces even more strain on the resources and performance
of the packet classification algorithms and architectures. Ad-
ditionally, real use-cases consist of multiple different lookups
that need to be carried out for each packet (for example
L2 filtering followed by L3 forwarding and so on). Therefore,
making the packet classification as efficient as possible is
crucial.

The main goal of this paper is to optimize packet classi-
fication based on the DCFL algorithm [5] to achieve higher
throughputs and lower resource consumption. While DCFL
is a flexible and fast approach, its throughput relies on the com-
plexity of the ruleset. Therefore, the throughput is decreased
for specific complex rulesets. We propose new optimiza-
tion techniques which provide decomposition of the ruleset
to separate modules based on the offline or online analysis.
The analysis aims to determine the most interfering and
complex rules that decrease the performance of the DCFL
algorithm. These rules are then removed from the ruleset and
handeled separately. This optimization can increase throughput
of the standard 5-tuple packet classification by up to 76 %
or can decrease hardware resources by up to 37 %.

The paper outlines related work in section II. Afterwards,
the theory behind the optimizations is shown in section III.
Results achieved by the optimizations for different rulesets
are compared to the baseline DCFL and other approaches
in section IV.

II. RELATED WORK

The most general and flexible approach to packet classifi-
cation is to use ternary content-addressable memory (TCAM).
Data stored in these memories can contain don’t care or
wildcard bits, whose values are ignored during the lookup.
Therefore, the approach can be used to match direct values
as well as prefixes, masked values, and ranges. During lookup,
every entry in the TCAM is checked in parallel to achieve high
throughput. However, this means that TCAM does not scale

979-8-3503-3277-3/23/$31.00 ©2023 IEEE

2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)

7

7

well when increasing its capacity. The complexity of the mem-
ory goes up exponentially.

A more efficient way of scaling is to use algorithmic TCAM.
These approaches use smaller TCAMs combined with different
approaches or with some additional logic that efficiently uses
available FPGA resources - for example, slice registers [6],
SRAMs [7], or LUTRAMs [8]. Song et al. [9] presented an
architecture that combines bit vector approach with TCAMs.
This architecture is optimized for classification based on net-
work flow 5-tuples, therefore it is not very flexible and was
not shown to have the ability to scale to support different
header fields.

Another group of approaches to classification tries to utilize
architectures based on the construction of decision trees. Many
of these algorithms are not designed with FPGA implementa-
tion in mind, but, some of them can be bent to be efficiently
mapped into FPGA structure. HiCuts [10] and HyperCuts
[11] are typical examples. The main idea is to cut the whole
searched space represented by classification dimensions into
small enough parts (usually representing 1 or several rules).
Different heuristics can be used to decide how to cut the space.
But, resulting trees tend to have many nodes. Additionally,
adding or removing rules leads to the need of rebuilding
the whole tree. Several different approaches to support mul-
tiple dimensions (matching on multiple packet header fields)
are described in [12]. A grid of tries extends standard trie
structure to two dimensions, but it is not easily extendable
to more than two. Other trie-based algorithms scale poorly
with increasing number of dimensions. Additionally, these
algorithms need large amounts of memory and cannot be easily
scaled to higher throughputs.

Prasanna et al. [13] pushed the idea of constructing decision
trees even further. The authors have observed that HyperCuts
and similar algorithms do not efficiently deal with rules
that have too much overlap with each other. In such cases,
many rules need to be duplicated and the resulting tree (and
required memory) can explode exponentially with the number
of dimensions. To reduce the exponential growth, a decision
forest is introduced. Ruleset is split into subsets and smaller
decision trees are built for each subset.

In many cases, exact match packet classification is suffi-
cient. This is prevalent mainly when IP flows are concerned,
for example, to filter network traffic (blacklisting specific
communications). Effective approaches to exact match packet
classification are usually based on hash tables. One way
of implementing hash tables is cuckoo hashing principle [14].
The main idea of cuckoo hashing is to increase the efficiency
of memory utilization in the hash table by multiple parallel
hash functions and tables. Each table uses one of the different
hash functions for indexing. Even when the element cannot
be inserted into any of the tables it can still be inserted by
force, pushing out one of the previous occupants which is then
reinserted. This allows the cuckoo hashing to keep the high
lookup speed while decreasing the number of unresolvable
conflicts and therefore increasing the effective capacity. The
cuckoo hashing approach is also well suited for hardware

implementation as each hash table can work in parallel [15],
[16]. The approach was also shown to be scalable to higher
throughputs [17].

Taylor et al. [5] introduced Distributed Crossproducting
of Field Labels (DCFL). This algorithm decomposes classi-
fication into single dimensions and can be easily parallelized.
Moreover, it uses Bloom Filters [18] and labeling technique
to lower memory and logic requirements. The architecture was
shown to be scalable even to higher throughputs [19], but only
by using multiple copies of the memories which increases
the memory consumption and might decrease rule capac-
ity. The architecture is fast, flexible, scalable and has good
hardware implementation and therefore is suitable for many
different network applications running in FPGA. However,
throughput of the approach is given by the size of cross-
products between different dimensions when combining them
and as such is highly dependent on the actual ruleset. For larger
and more complex rulesets the algorithm might struggle
to meet the throughput requirements without duplicating large
amounts of memory. Therefore, in this paper, we focus on alle-
viating this downside of the DCFL algorithm by decomposing
the rulesets.

III. DCFL ANALYSIS

This paper aims to optimize DCFL architecture for map-
ping the description in the P4 language to the FPGA. All
of the optimizations are focused on flexibility and scalability.
We want to achieve desired throughputs by using as few
hardware resources as possible.

An example of DCFL-based architecture is illustrated for 4-
dimensional classification in figure 1. The architecture works
as a pipeline. First of all single-dimensional lookups are
carried out in units D1, D2, D3 and D4 (this can be done
using any single-dimensional algorithm, based on the type
of match required in the given dimension). Afterwards, the re-
sults from each dimension are aggregated through a series
of aggregation units. First unit aggragates two sets of results
(R1 and R2) from two dimensions (D1 and D2) into one
new set of possible results R1,2 by doing a crossproduct
of R1xR2 and then finding a subset of the combinations
that are actually contained within an existing rule. Following
units then aggregate this submatch for a combination of
dimensions R1,...,i with the match for another dimension Ri+1

into a new submatch R1,...,i+1. Bloom filter arrays and meta-
label indexing is used to do this. Essentially for each member
of the crossproduct a membership to the resulting set needs
to be determined.

DCFL uses decomposition to increase processing speed and
provide more flexibility and scalability. However, two possible
bottlenecks of this architecture are the single-dimensional
lookups and the aggregation units, which have their throughput
tied to the sizes of the crossproducts that are created. For larger
and more complex rulesets the sizes of the crosspruducts
increase and the aggregation units need to be duplicated
to achieve desired throughput.

8

8

Fig. 1. Top-level architecture of DCFL algorithm.

A. Single-dimensional lookups

Implementation of the single-dimensional lookups is depen-
dent on the type of matching that needs to be done in each di-
mension. For exact match the most efficient approach is to use
hashes, more specifically cuckoo-hash-based approach [16].
For more complex matching (ternary, longest prefix match)
trie-based solutions [10] and TCAMs can be used. Most of
these single-dimensional approaches have already been shown
to be scalable and optimized - Cuckoo hashing by clever
duplication of memories [17], trie approaches by splitting the
rulesets [13].

B. Aggregation

To increase the throughput of the aggregation we want
to minimize the sizes of the crossproducts that DCFL pro-
duces. We want to remove rules that contribute the most
to the crossproducts. Those are usually the most general rules,
as those match every packet and need to be accounted for. We
can determine these most interfering rules by analyzing the
rulesets. Once we find which rules are the most interfering we
can offload those rules into a small TCAM that runs in parallel
with the DCFL.

The sizes of crosspruducts are given by the sizes of the
partial matches Ri+1 and R1,...,i. To optimize the approach,
we want to determine which rules should be removed to
decrease these values. First, we build tries T i that represent
the rules in the ruleset for each dimension i. Each trie is
essentially a binary tree where paths via edges represent
prefixes that are being matched in the given dimension (each
edge has a value of 0 or 1 assigned to it). Afterwards, we
can also build tries T i,j,... for multiple dimensions. These are
constructed by building a trie for the dimension i and for each
rule from this trie adding an empty transition to a trie built
for dimension j, but only from rules in dimension j that are

Fig. 2. Multidimensional trie for ruleset analysis.

ever combined with the original rule from the dimension i.
Figure 2 illustrates this. For example, the highlighted nodes
and edges represent the rule (10*,11*).

Based on these tries we can compute some inference
value Ii(r) for every rule r. This inference value represents
how many other rules can be matched along with this rule
in the given dimension i and as such represents the size
of possible partial result Ri that this rule can be involved
in. The value can be computed by analyzing the tree as
it corresponds to the maximal number of rules encountered
on any path that starts from the root and goes through the node
that represents the rule r. In the same fashion, we can also
define and compute Ii,j,...(r) from T i,j,.... Value Ii,j,...(r)
gives us the possible maximal size of the set of results that can
match a packet in dimensions i,j,.... Additionally, we can define
interference with descendants only as Iides(r) and Ii,j,...des (r).
The value corresponds to the maximal number of (more
specific) rules encountered after encountering the node rep-
resenting rule r on any path that starts from the root and goes
through the node that represents the rule r.

Building and analyzing multidimensional tries becomes
exponentially harder with the number of dimensions used. If
we want to traverse any sub-tree of a node in first dimension i
it can potentially have |R| ∗wi nodes, where |R| is the ruleset
size and wi is the bit width of that dimension. Each of these
nodes can then be linked with a tree in the second dimension j
that might again have |R| ∗ wj nodes that are all linked
with a tree in another dimension and so on. Building the whole
trie from R rules can then take up to O(|R|d+1 ∗ wd

m).
To analyze a ruleset using the built tries we use algorithm 1.

We start by building one-dimensional tries T i for each dimen-
sion. Then we also build multi-dimensional tries T 1,...,i.

Now we can find the maximal sizes of sets of partial
matches that can enter each aggregation unit (V i represents all
nodes of T i), and based on those also find the maximal size
of crossproduct (lookups of the aggregation unit) that DCFL
needs to check and a dimension in which this happens (prime
candidate for optimization):

Ri
max = maxv∈V i(Ii(v))

R1,...,i
max = maxv∈V 1,...,i(I1,..,i(v))

c = maxi=1,...,D−1(R
1,...,i
max ×Ri+1

max)

io = argmaxi=1,...,D−1(R
1,...,i
max ×Ri+1

max)

(1)

If we want to decrease c we want to decrease either
R1,...,io

max or Rio+1
max . To decrease the value of Rio+1

max we sort

9

9

Algorithm 1 Algorithm for analyzing rulesets using D dimen-
sions.

while TCAM not full do
for i = 1 to D do

Build T i

Compute Ii and Iides
Find max. size of partial match Ri

max

end for
for i = 2 to D − 1 do

Build T 1,...,i

Compute I1,...,i and I1,...,ides

Find max. size of partial match R1,...,i
max

end for
Find io with max. value of R1,...,io

max ×Rio+1
max

if Better to decrease Rio+1
max then

Sort nodes of T io+1 based on (Iio+1, Iio+1
des)

Offload all of the rules corresponding to nodes with
highest (Iio+1, Iio+1

des)
else

Sort nodes of T 1,...,io based on (I1,...,io , I1,...,iodes)
Offload all of the rules corresponding to nodes with
highest (I1,...,io , I1,...,iodes)

end if
end while

all of the nodes of trie T io+1 in descending order based
on primarily values of Iio and secondarily on values of Iiodes.
Then we can find all of the nodes, or rather their corresponding
rules, that have the highest value of Iio . Each of those nodes
is on some critical path. Note that there can be multiple
different critical paths within the trie. If we want to decrease
Rio+1

max we have to remove at least one rule from every critical
path. To determine if two nodes are part of the same critical
path we can simply look at the value of Iiodes - if the value
is the same for both then they have to be part of different
critical path. If they were part of the same path then one would
have to be a prefix (generalization) of the other and as such
the other would show up in its Iiodes and this value would be
higher by at least one. Now we just remove all of the rules
corresponding to nodes with the highest value of Iio that also
have the highest value of Iiodes. By doing this we lowered
the length of each critical path (and also Rio+1

max) by 1. Note
that each node in the trie might correspond to multiple rules
Decreasing the value of R1,...,io

max works the same, but we use
T 1,...,io , I1,...,io and I1,...,iodes .

After offloading these rules we can recompute all of the tries
and interferences and repeat the process to decrease c fur-
ther. Trying to offload rules for the most general node (one
with the highest Ides) might not always be the best solu-
tion. The length of the critical path might be decreased by
offloading rules corresponding to any other node along this
path. However, in general, it can be assumed that removing
the most general rules can lead to better results when doing
the following iteration.

Since the entire process of computing full interference

Name Dimensions Number of rules Overlap

acl1 4 2406 high

fw1 05 05 5 733 medium

fw2 05 05 4 941 low

TABLE I
CHARACTERISTICS OF RULESETS USED.

for every dimension and possible multidimensional combi-
nation needs to be done multiple times, the entire analysis
becomes even more complex and slow. To decrease the com-
putational complexity one of the following can be used -
analyzing only single-dimensional tries in O(d ∗ |R| ∗ wm)
(since we don’t build any multidimensional tries) or using
generality (for example, number of masked bits) of the rule
instead of interference in O(|R|).

Finally, one additional optimization could be to account
for the frequency of each rule being hit and optimize mainly
the rules or rather paths that are hit the most. This introduces
even more complexity and a requirement to keep stateful
information about rules being hit.

IV. RESULTS

To analyze the effectiveness of our optimizations we used
3 main sets of classification rules. These sets were generated
by ClassBench [20] tool and are part of NetBench [21] frame-
work. Table I shows the characteristics of the sets, main one
being level of overlap between ranges or prefixes within rules.
acl1 is an example of ruleset with many overlapping ranges
of port values, therefore many different rules can match
the same packet within single dimension, which leads to DCFL
not being very effective. fw2 05 05 on the other hand has little
overlap between rules and prefixes thus DCFL shows much
better results. Additionally, fw1 05 05 represents a middle
ground.

Computation of the full rule analysis might not be feasible
on the fly as previously mentioned in section III-B. Therefore
we consider 3 different approaches to rule offloading. For each
approach a TCAM with 32 entries is used.

First approach is to ignore interference altogether and sim-
ply approximate it by generality (the length of prefix or num-
ber of masked bits) of the rule. The approach works on the fly
and waits until a certain number of rules were added and then
offloads rules that are more general than the ones seen
before. This is essentially a secretary problem, therefore
the best results are achieved when the number of initial rules
is |R|/e [22]. To make results even better, we can ignore
and immediately offload some of the outliers (rules that are too
general) as things like default rules are usually added first. The
second approach works on-the-fly in the same way, but uses
the interference described in section III-B instead of simple
generality. Finally, the last approach knows the entire ruleset
in advance and does full interference analysis on the full
ruleset.

Figure 3 shows the results achieved by the different ap-
proaches in the worst-case scenario. For every approach, we

10

10

 0

 20

 40

 60

 80

 100

 120

 140

 160

ac
l1

fw
1_

05
_0

5

fw
2_

05
_0

5

c

Ruleset

no offload
on-the-fly generality

on-the-fly interference
offline interference

Fig. 3. Optimizations achieved for DCFL for worst-case.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

ac
l1

fw
1_

05
_0

5

fw
2_

05
_0

5

c

Ruleset

no offload
on-the-fly generality

on-the-fly interference
offline interference

Fig. 4. Optimizations achieved for DCFL for mean-case.

can see the worst value of c which represents the maximal
crossproduct size and therefore basically the number of clock
cycles needed to classify the packet. To illustrate throughput
increase even better, figure 5 shows the percentage increase
in the throughput of an optimized DCFL architecture. We
can see that the full analysis fares the best with interference
analysis being close behind. However, even simple generality-
based offloading provides considerable results. For less com-
plex rulesets with smaller overlap (fw1 05 05 and fw2 05 05)
the decrease is around 20 % which corresponds to an increase
in throughput of around 25 %. As expected the highest benefit
is seen when a more complex ruleset is analyzed (acl). In
this case, a decrease of 43 % can be observed which leads
to an increase in throughput of 76 %.

A similar situation can be seen for the mean-case scenario
shown in figure 4. Full analysis still outperforms the other
approaches. In this case the benefits are not as high, since
removing the most interfering rules breaks the critical paths
which are not necessarily hit by every single packet. However,
the speedup can still be up to 33 %.

The increase in throughput can be converted into a decrease
in needed resources. Any aggregation node of the DCFL archi-
tecture can be duplicated to increase throughput. Combining
the optimizations presented in this paper with aggregation
node duplication can lead to fewer units being duplicated.
Table II shows the crossproduct size for each aggregation unit
in the worst-case scenario for ruleset acl. Assuming that we
want to process one packet every 50 clock cycles we would
need a total of 8 aggregation units if no optimization was used.

 0

 10

 20

 30

 40

 50

 60

 70

 80

ac
l1

fw
1_

05
_0

5

fw
2_

05
_0

5

%
 t
h
ro

u
g
h
p
u
t
in

cr
e
a
se

Ruleset

on-the-fly generality (worst)
on-the-fly interference (worst)

offline interference (worst)
on-the-fly generality (mean)

on-the-fly interference (mean)
offline interference (mean)

Fig. 5. Throughput increase achieved for different configurations.

Optimization c1max c2max c3max

no offload 54 148 148

on-the-fly generality 49 132 102

on-the-fly interference 46 90 90

offline interference 45 84 81

TABLE II
WORST-CASE CROSSPRODUCT SIZES FOR AGGREGATION UNITS WHEN

RULESET acl IS USED.

Using even on-the-fly interference approach only requires 5
total aggregation units We can therefore use the 64 % increase
in throughput to achieve 37 % decrease in resources needed
to carry out the aggregation.

Figures 6 and 7 show scaling of block RAMs and logic
needed for increasing throughput of the optimized architecture
in the mean-case for rulesets fw1 05 05 and acl compared
to other approaches. The results were obtained on Kintex-
7 family chip and the architecture runs at 200 MHz and
throughput is converted from cycles needed to gigabits per
second for the shortest possible packets (64B). Note that the ar-
chitecture has capacity of around 5500 rules, whereas other
architectures may have different rule capacities (mainly de-
cision forest has capacity of 10 000 rules). Additionally, our
architecture used quite small TCAMs (since number of unique
values in single dimensions is a lot lower than number of rules)
as engines for searching in some dimensions. We can see
that the resource requirements stay manageable even for high
throughputs. The optimized approach is comparable to or even
better than other approaches in terms of block RAMs needed,
while being also comparable in logic required. The main
benefit is good scalability and flexibility. Optimized DCFL
can be efficiently used for different use cases and be scaled
based on the required throughput and available resources to fit
the specific use case as best as possible, leaving more FPGA
resources for other network functionality.

V. CONCLUSION

The paper presents several optimizations for packet clas-
sification on FPGAs. We have shown that the proposed opti-
mizations increase throughput and decrease memory and logic
requirements. Due to the flexibility of optimized DCFL archi-
tecture, we can provide more efficient mapping of multiple

11

11

 1

 10

 100

 1000

 0.1 1 10 100

B
R

A
M

Throughput [Gbps]

optimized DCFL (fw1_05_05)
optimized DCFL (acl1)

decision forest
BV-TCAM

HyperCuts

Fig. 6. BRAMs used by optimized DCFL compared to other approaches for
mean-case.

 0

 5000

 10000

 15000

 20000

 25000

 0.1 1 10 100

L
U

T

Throughput [Gbps]

optimized DCFL (fw1_05_05)
optimized DCFL (acl1)

decision forest

Fig. 7. Scaling of LUTs used by optimized DCFL for mean-case.

Match/Action tables and other packet processing from P4 lan-
guage to FPGA without affecting throughput or rule capacity.

The proposed optimizations can increase packet classifica-
tion throughput by up to 76 % compared to the standard 5-
tuple based DCFL algorithm. When combined with memory
duplication, we can also decrease memory requirements. For
the same throughput and table capacity, the proposed opti-
mization decreases the hardware resources by up to 37 %.
All these improvements are at the cost of more complex rule
adding and one additional small TCAM memory. Nevertheless,
the benefits significantly outweigh these downsides. They pro-
vide an efficient way to tailor packet classification for specific
applications and make this task less resource-intensive. More
chip area remains for other packet processing or network
functionality.

ACKNOWLEDGMENTS

This work was supported by Brno University of Technology
under project number FIT-S-23-8141.

REFERENCES

[1] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in Proceedings of
the 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture. IEEE Computer Society, October 2016.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[3] P. Benáček, V. Puš, and H. Kubátová, “P4-to-VHDL: Automatic gen-
eration of 100 Gbps packet parsers,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2016, pp. 148–155.

[4] P. Benáček, V. Puš, H. Kubátová, and T. Čejka, “P4-to-VHDL: Au-
tomatic generation of high-speed input and output network blocks,”
Microprocessors and Microsystems, vol. 56, pp. 22 – 33, 2018.

[5] D. Taylor and J. Turner, “Scalable packet classification using distributed
crossproducing of field labels,” in 24th Annual Joint Conference of the
IEEE Computer and Communications Societies, 2005, pp. 269–280.

[6] H. Mahmood, Z. Ullah, O. Mujahid, I. Ullah, and A. Hafeez, “Beyond
the limits of typical strategies: Resources efficient fpga-based tcam,”
IEEE Embedded Systems Letters, vol. 11, no. 3, pp. 89–92, 2019.

[7] F. Syed, Z. Ullah, and M. K. Jaiswal, “Fast content updating algorithm
for an sram-based tcam on fpga,” IEEE Embedded Systems Letters,
vol. 10, no. 3, pp. 73–76, 2018.

[8] I. Ullah, Z. Ullah, U. Afzaal, and J.-A. Lee, “Dure: An energy- and
resource-efficient tcam architecture for fpgas with dynamic updates,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 27, no. 6, pp. 1298–1307, 2019.

[9] H. Song and J. W. Lockwood, “Efficient packet classification for network
intrusion detection using FPGA,” in FPGA ’05: Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate
arrays. New York, NY, USA: ACM, 2005, pp. 238–245.

[10] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in Proc. Hot Interconnects, 1999.

[11] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classifica-
tion using multidimensional cutting,” in Conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM, 2003, pp. 213–224.

[12] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” SIGCOMM Comput. Commun. Rev.,
vol. 28, no. 4, pp. 191–202, 1998.

[13] W. Jiang and V. K. Prasanna, “Scalable packet classification on FPGA,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 20, 2012.

[14] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms - ESA 2001,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2001, vol. 2161, pp. 121–133.

[15] A. Kirsch, M. Mitzenmacher, Y. Baohua, X. Yibo, and L. Jun,
“Using a queue to de-amortize cuckoo hashing in hardware,”
2007. [Online]. Available: http://www.eecs.harvard.edu/∼michaelm/
postscripts/aller2007.pdf

[16] L. Kekely, M. Žádnı́k, J. Matoušek, and J. Kořenek, “Fast lookup for
dynamic packet filtering in FPGA,” in 17th IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems. Warszaw, Poland:
IEEE Computer Society, 2014, pp. 219–222, iSBN: 978-1-4799-4558-0.

[17] M. Kekely, L. Kekely, and J. Kořenek, “General memory efficient
packet matching fpga architecture for future high-speed networks,”
Microprocessors and Microsystems, vol. 73, no. 3, pp. 1–12, 2020.

[18] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast packet
classification using Bloom filters,” in ANCS ’06: Proceedings of the
2006 ACM/IEEE symposium on Architecture for networking and com-
munications systems. New York, NY, USA: ACM, 2006, pp. 61–70.

[19] M. Kekely and J. Korenek, “Packet classification with limited memory
resources,” in 2017 Euromicro Conference on Digital System Design.
Institute of Electrical and Electronics Engineers, 2017, pp. 179–183.

[20] D. Taylor and J. Turner, “Classbench: a packet classification bench-
mark,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies., vol. 3, 2005, pp. 2068–2079
vol. 3.

[21] V. Pus, J. Tobola, V. Kosar, J. Kastil, and J. Korenek, “Netbench:
Framework for evaluation of packet processing algorithms,” in 2011
ACM/IEEE Seventh Symposium on Architectures for Networking and
Communications Systems, 2011, pp. 95–96.

[22] E. B. Dynkin, “Optimal choice of the stopping moment of a markov
process,” Dokl. Akad. Nauk SSSR, vol. 150, no. 2, pp. 238–240, 1963.

12

12

	Introduction
	Objectives
	Outline

	Current State of the Art
	P4 Language
	Abstract Switch Forwarding Model
	Match/Action Tables

	Packet Classification
	Related Work

	Research Summary
	Research Process and Contributions
	Papers
	Included Papers
	Included Papers
	Other Relevant Papers

	List of Publications

	Disscussion and Conclusions
	Results
	Conclusions
	Deployment and Future Work

	Bibliography
	Included Papers
	Paper 1
	Paper 2
	Paper 3
	Paper 4
	Paper 5
	Paper 6

