
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

IMPROVINGROBUSTNESSOF SPEAKER RECOGNITION

USING DISCRIMINATIVE TECHNIQUES
ZVYŠOVÁNÍ ROBUSTNOSTI SYSTÉMŮ PRO ROZPOZNÁVÁNÍ MLUVČÍCH POMOCÍ

DISKRIMINATIVNÍCH TECHNIK

PHD THESIS

DISERTAČNÍ PRÁCE

AUTHOR Ing. ONDŘEJ NOVOTNÝ

AUTOR PRÁCE

SUPERVISOR doc. Dr. Ing. JAN ČERNOCKÝ

ŠKOLITEL

BRNO 2021

Abstract
This work deals with discriminative techniques in speaker verification systems to improve
robustness of the systems against factors that negatively affect their performance. These
factors include noise, reverberation, or the transmission channel.

The thesis consists of two main parts. In the first part, it deals with a theoretical intro-
duction to current state-of-the-art speaker verification systems. The recognition system’s
steps are described, starting from the extraction of acoustic features, the extraction of vector
representations of recordings, and the final recognition score computation. Particular em-
phasis is paid to the techniques of extraction of a vector representation of a recording, where
we describe two different paradigms: the i-vectors and the x-vectors. The second part of the
work focuses more on discriminative techniques to increase robustness. Their description
is organized to match the gradual passage of the recording through the verification system.
First, attention is paid to signal pre-processing using a neural network for noise reduction
and speech enhancement. This pre-processing is a universal technique independent of the
verification system. The work follows by focusing on the use of a discriminative approach
in the extraction of features and the extraction of vector representations of recordings.

Furthermore, this work sheds light on the transition from generative systems to dis-
criminative systems. In order to give a fuller context, the work also describes techniques
that had historically preceded this transition. All presented techniques are always exper-
imentally verified and their advantages evaluated. We are proposing several techniques
that have proved successful in both the generative approach in the form of i-vectors and
discriminative x-vectors, and thanks to them, considerable improvement has been achieved.
For completeness, in the field of robustness, other techniques are included in the work, such
as normalization of scores or multi-condition training. Finally, the work deals with the
robustness of discriminative systems in terms of data used in their training.

Keywords
Speaker verification, generative training, discriminative training, speech enhancement, i-
vector, x-vector, robustness, noise, reverberation, neural networks.

Bibliographic citation
NOVOTNÝ, Ondřej. Improving Robustness of Speaker Recognition using Discriminative
Techniques. Brno, 2021. PhD thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor doc. Dr. Ing. Jan Černocký

ii

Abstrakt
Tato práce pojednává o využití diskriminativních technik v oblasti rozpoznávání mluvčích
za účelem získání větší robustnosti těchto systémů vůči vlivům negativně ovlivňující jejich
výkonnost. Mezi tyto vlivy řadíme šum, reverberaci nebo přenosový kanál.

Práce je rozdělena do dvou hlavních částí. V první části se věnujeme teoretickému úvodu
do problematiky rozpoznávání mluvčích. Popsány jsou jednotlivé kroky rozpoznávacího sys-
tému od extrakce akustických příznaků, extrakce vektorových reprezentací nahrávek, až po
tvorbu finálního rozpoznávacího skóre. Zvláštní důraz je věnován technikám extrakce vek-
torové reprezentace nahrávky, kdy popisujeme dvě rozdílná paradigmata možného přístupu,
i-vektory a x-vektory.

Druhá část práce se již více věnuje diskriminativním technikám pro zvýšení robustnosti.
Techniky jsou organizovány tak, aby odpovídaly postupnému průchodu nahrávky rozpozná-
vacím systémem. Nejdříve je věnována pozornost předzpracování signálu pomocí neuronové
sítě pro odšumění a obohacení signálu řeči jako univerzální technice, která je nezávislá na
následně použitém rozpoznávacím systému. Dále se zameřujeme na využití diskrimina-
tivního přístupu při extrakci příznaků a extrakci vektorových reprezentací nahrávek.

Práce rovněž pokrývá přechod od generativního paradigmatu k plně diskriminativnímu
přístupu v systémech pro rozpoznávání mluvčích. Veškeré techniky jsou následně vždy
experimentálně ověřeny a zhodnocen jejich přínos. V práci je navrženo několik přístupů,
které se osvědčily jak u generativního přístupu v podobě i-vektorů, tak i u diskriminativních
x-vektorů, a díky nim bylo dosaženo významného zlepšení.

Pro úplnost jsou, v oblasti problematiky robustnosti, do práce zařazeny i další techniky,
jako je normalizace skóre, či více-scénářové trénování systémů. Závěrem se práce zabývá
problematikou robustnosti diskriminativních systému z pohledu dat využitých při jejich
trénování.

Klíčová slova
Rozpoznávání mluvčího, generativní trénování, diskriminativní trénování, obohacování řečového
signálu, i-vektor, x-vektor, robustnost, šum, reverberace, neuronové sítě.

Bibliografická citace
NOVOTNÝ, Ondřej. Zvyšování robustnosti systémů pro rozpoznávání mluvčích pomocí
diskriminativních technik. Brno, 2021. Disertační práce. Vysoké učení technické v Brně,
Fakulta informačních technologií. Školitel doc. Dr. Ing. Jan Černocký

iii

Improving Robustness of Speaker Recognition using
Discriminative Techniques

Declaration
I hereby declare that this thesis and the work reported herein was composed by and origi-
nated entirely from me. The work has been supervised by Jan Černocký, Lukáš Burget, and
Ondřich Plchot. Information derived from the published and unpublished work of others
has been acknowledged in the text, and references are given in the list of sources. Some
reported systems were created by the members of the BUT Speech@FIT research group.

. .
Ondřej Novotný

May 2, 2021

iv

Acknowledgements
I would like to thank Honza Černocký and Lukáš Burget for their excellent leadership
during my studies. I was honored to study and work under the supervision of such great
personalities. Honza’s leadership allowed me to make significant progress in education and
participate in prestigious conferences and projects.

I would also like to thank all the BUT Speech@FIT research group members for their
help and support. Especially the team dealing with speaker recognition: Pavel Matějka,
Anna Silnova, Johan Rohdin, Ladislav Mošner, Alicia Lozano Díez, and Hosein Zeinali.
Special thanks belong to Oldřich Plchot and Onřej Glembek, who were both very willing
to help with any problem, always taking the time to consult on any topic or article. I wish
to thank all co-authors of underlying publications for their support and consent to the use
some texts.

Very special thanks go to my parents for their support and guidance that brought me
and allowed me to study at such a prestigious school. To conclude, one special thank goes
to my wife, Anežka. She supported me and always patiently helped me in life during all
the difficulties of this work.

v

Contents

1 Introduction 1
1.1 Speaker Verification System . 2
1.2 Features . 3

1.2.1 Mel-Frequency Cepstral Coefficients 3
1.2.2 Feature Derivatives . 4
1.2.3 Feature Normalization . 4

1.3 Voice Activity Detection . 5
1.4 Score Normalization . 6

1.4.1 Z-norm . 7
1.4.2 T-norm . 7
1.4.3 ZT-norm . 7
1.4.4 S-norm . 7
1.4.5 Adaptive Normalization . 8

1.5 Calibration . 9
1.6 Motivation and Contribution . 9

1.6.1 Claims . 10
1.6.2 Structure of the Thesis . 10

2 Factors Influencing SV Performance 12
2.1 Transmission Channel . 13
2.2 Language . 13
2.3 Acoustic Environment . 13

2.3.1 Additive Noise . 14
2.3.2 Reverberation . 14

2.4 Recording System . 15

3 SRE Datasets and Evaluation Metrics 17
3.1 Speaker Verification Evaluation . 17

3.1.1 Detection Error Tradeoff Plot . 18
3.1.2 Equal Error Rate . 19
3.1.3 Detection Cost Function . 20

3.2 Datasets . 21
3.2.1 NIST . 21
3.2.2 Fisher English . 23
3.2.3 Switchboard . 23
3.2.4 PRISM . 24
3.2.5 SITW . 24
3.2.6 BUT Retransmitted Data . 25

vi

3.3 Data Augmentation Design . 25
3.3.1 Noise . 25
3.3.2 Reverberation . 26
3.3.3 Composition of the Training Set . 27
3.3.4 Kaldi Data Augmentation Recipe . 27
3.3.5 Selected Benchmark Scenarios . 28

4 Embedding-Based Speaker Verification 31
4.1 Generatively Trained Embedding — i-vector 31

4.1.1 Gaussian Mixture Modeling of Acoustic Features 31
4.1.2 i-vectors . 37

4.2 Discriminatively Trained Embedding — x-vector 41
4.2.1 Time Delayed Neural Network . 42
4.2.2 Original x-vector Network . 43
4.2.3 Variants of x-vector Network . 44

4.3 x-vectors vs. i-vectors . 46

5 Scoring 47
5.1 Cosine Similarity Scoring . 47
5.2 Linear Discriminant Analysis . 47
5.3 Probabilistic Linear Discriminant Analysis 48

5.3.1 General PLDA . 49
5.3.2 Two Covariance PLDA . 50
5.3.3 Trial Scoring . 50

6 Multi-Conditional Training 52
6.1 Experimental Setup . 53

6.1.1 Evaluation Set . 53
6.1.2 System Description . 54
6.1.3 Results . 54

7 Speech Enhancement 56
7.1 Signal Enhancement Autoencoder . 57
7.2 Multi-Conditional Training vs. Speech Enhancement 58

7.2.1 Experimental Setup . 59
7.3 Speech Enhancement and Other Discriminative Approach in SV 64

7.3.1 MFCC i-vector System . 64
7.3.2 SBN-MFCC i-vector System . 64
7.3.3 x-vector Systems . 64
7.3.4 Results . 65
7.3.5 Analysis over the Range of Operating Points 72

8 Discriminative Techniques in Generative SV 74
8.1 Stack Bottle-neck Features . 74
8.2 DNN Aligment . 75

8.2.1 Experimental Setup . 76
8.2.2 System Definition . 77
8.2.3 Results . 77

8.3 Discriminatively Re-trained i-vector Extractor 81

vii

8.3.1 T-matrix Re-estimation . 81
8.3.2 T-matrix Factorization . 86

9 Impact of Normalization on Language Robustness 90
9.1 Experimental Setup . 90

9.1.1 Evaluation Sets . 90
9.1.2 System Description . 91
9.1.3 Normalization Cohorts . 91

9.2 Results . 91
9.3 Summary . 94

10 Impact of Data on the Robustness of Discriminative Systems 96
10.1 Experimental Setup . 96

10.1.1 x-vectors System . 96
10.1.2 PLDA Augmentation Sets . 97
10.1.3 Embedding Extractor Augmentation Sets 97

10.2 Results . 97

11 Conclusions 100
11.1 Summary . 100
11.2 Future Work . 101

11.2.1 Possible Improvement of x-vectors 101
11.2.2 Possible Improvement of i-vectors . 102

Bibliography 104

viii

Nomenclature

ANN Artificial Neural Network

ASR Automatic Speech Recognition

BN Bottleneck

DCF Detection Cost Function

DCT Discrete Cosine Transformation

DET Detection Error Tradeoff

DFT Discrete Fourier Transformation

DNN Deep Neural Network

EER Equal Error Rate

EM Expectation-Maximization

GMM Gaussian mixture model

HMM Hidden Markov Model

HTPLDA Heavy-Tailed Probabilistic Linear Discriminant Analysis

LDA Linear Discriminant Analysis

LDC Linguistic Data Consortium

LLR Log-Likelihood Ratio

LVCSR Large Vocabulary Continuous Speech Recognition

MAP Maximum a Posteriori

MFCC Mel-Frequency Cepstral Coefficients

ML Maximum-Likelihood

NIST National Institute of Standards and Technology

NN Neural Network

PCA Principal Component Analysis

ix

PLDA Probabilistic Linear Discriminant Analysis

PRISM Promoting Robustness in Speaker Modeling

SAD Speech Activity Detection

SBN Stacked Bottleneck features

SNR Signal to Noise Ratio

SRE Speaker Recognition

SRR Speech to Reverberation Ratio

SSNR Segmental Signal to Noise Ratio

TDNN Time Delay Neural Network

UBM Universal Background Model

VAD Voice Activity Detection

x

Chapter 1

Introduction

Speech is the most natural and common way of human communication. Humans are able
to process the information contained in speech very quickly and efficiently. However, to this
day, automatic processing of information contained in speech is still very challenging. Auto-
matic speech processing consist of various techniques that usually focus on one specific appli-
cation, such as automatic speech recognition (ASR), keyword spotting (KWS), Language
recognition (LRE), gender identification (GID), or emotions detection. This work deals
with speaker recognition (SRE), whose principle lies in extracting speaker-characterizing
information from the input speech signal.. Nevertheless, speech conveys a wide range of
information. Primarily, it carries linguistic information (a message content), it is also de-
termines the language of the utterance, but it also carries information about the speaker’s
vocal tract (this is also related to his or her gender or age), it carries information about the
speaker’s emotional and health condition, or its geographical specifications, which indicate,
in addition to the language, a dialect. All of the above mentioned types of information
contribute to the identity of the speaker.

From the point of view of recorded speech, information about the acoustic environment,
the recording hardware, or speech codding is also carried. All the mentioned aspects of
speech and its recordings then affect the performance of the application. In most cases, this
variability can be expected to have a negative effect. It is desirable that automatic speech
processing systems be robust to the above mentioned phenomena, i.e. system performance
stays unaffected by them.

The automatic speaker recognition represents the main topic of this work. Speaker
recognition is the process of classifying a recording based on relevant information about
the identity of the speaker in the recording. This task can be divided into two categories:
speaker identification and speaker verification.

Speaker identification is a multi-class classification problem in which the speech is as-
signed to one of N classes (in the set of N speakers). It is necessary to distinguish between
an open and a closed set of speakers identification. In the case of a closed set identification,
we are sure that the given speech always belongs to one speaker from the given set. In the
case of an open set identification, this condition no longer applies, and in this case, the
system needs to assign the speech to one of N classes or say that it is none of the N knows
speakers. Speaker verification, on the other hand, is a two-class (or detection) problem.
The goal of the application is to decide whether the pair of (or more general two sets of)
recordings come from the same speaker or not.

In both speaker identification and speaker verification, we can divide the task into two
categories based on the awareness of the content of the utterance. The first category is a

1

text-dependent system, in which the system knows the content of the utterance (content
is part of verification; phrases have to match). An example of such an application can
be found, for example, in the banking sector, where a client can be asked in a phone
conversation to enter a specific phrase or to enter a selected password. The second category
is text-independent system, in which the system does not know or ignores the content of
the speech itself. This approach finds its application e.g. in law enforcement, in which the
content of speech is not known a-priori.

In this work, we focus on text-independent speaker verification and its robustness to
the above-mentioned aspects of speech and recording (language, acoustic environment, or
recording system) using discriminative techniques. Furthermore, this work sheds light on
the transition from generative systems to discriminative systems. In order to give a fuller
context, the work also describes techniques that had historically preceded this transition.

1.1 Speaker Verification System
Discrete waveform of speech is the raw input of an automatic speaker recognition system.
The continuous form of the speech signal is processed by sampling (the sampling theorem
must be observed) and quantization to obtain a digital form of speech. The sampling is
usually performed at frequency of 8 kHz (narrow-band) or 16 kHz (wide-band).

In [Reynolds, 2002], the author presents that we can consider several types of informa-
tion, which can be extracted from the speech signal (ordered from the closest to the raw
audio signal):

∙ Acoustic: Spectral representation of speech that conveys vocal tract information.

∙ Prosodic: Features derived from prosody (pitch, energy, syllable length, tracks, etc.)
(for a thorough overview, see [Kockmann, 2012]).

∙ Phonetic: Sequence of speaker-specific phonemes.

∙ Idiolect: Sequence of words.

∙ Linguistic: Linguistic pattern, charateristic for speaker’s conversations.

It can be deduced that with a higher layer, the demands on the amount of training
data for collection of relevant information increase. In this work, we focus mainly on the
acoustic level of information.

As already mentioned, speaker verification (SV) is a two-class problem. The SV system
evaluates a trial. The trial consists of two sets of utterances, called enrollment and test,
where we decide on the accordance of the speaker and produce a score for the trial at hand.
The problematics of computing a score for a verification trial is later described in Section 3.1.
It represents a comparison of two hypotheses: whether the utterances come from the same
speaker or not. In a modern SV, system for each utterance, an embedding (fixed-length
vector) is extracted and subsequently used for comparison of speakers. A general scheme
of such a system is outlined in Figure 1.1. For each speech signal, acoustic features are first
extracted and silence is removed using voice activity detection (VAD)1. After the extraction
of features, the embeddings are extracted and subsequently compared to produce scores.

1We describe this topic in detail together with score normalization and calibration in the following
sections of this chapter.

2

Feature
extraction VAD Embedding

extractor Scoring

Enrollment
audio

FEA EMBFEA

Score
normalization

Score
calibration

Score
thresholding Trial decision

SCR

SCR SCR

Embedding
extractorVADFeature

extraction
FEA FEA EMB

Test
audio

Frame level Utterance level

Figure 1.1: The generic speaker verification system pipeline divided into basic steps. The
input is a pair of utterances (trial). The output of the system is a trial decision, whether it
is a target trial (utterances come from the same speaker) or an impostor trial (utterances
come from different speakers).

Separate chapters (4 and 5) are dedicated to the theory behind embeddings and their
comparison as these constitute key parts of the system. The raw score obtained from the
comparison of the embeddings is then calibrated (and normalized, but the normalization is
not mandatory) and the final result is a decision whether the utterances on both sides of
the verification trial come from the same speaker or not.

1.2 Features

1.2.1 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCCs) have been introduced in [Davis and Mermelstein, 1980,
Rabiner and Juang, 1993]. For SV, the MFCCs have been consistently among the best fea-
tures for a very long time, and that is why they represent a baseline for every newly proposed
feature extraction method. Figures 1.3 and 1.2 show the extraction pipeline and intermedi-
ate results before obtaining the MFCC feature vector for a single signal frame of speech. In
the first step, the absolute value of short-term Discrete Fourier Transform (DFT) is used to
acquire the amplitude of the spectrum. The spectrum is then divided into frequency bands
using the Mel-filters [Rabiner and Juang, 1993].

Filter banks are an array of sub-band filters (see Figure 1.4), usually in some non-linear
scale, such as Mel- or Bark-scale [Stevens et al., 1937, Zwicker, 1961], which separate signal
into multiple components. The purpose of the Mel-scales is to mimic non-linearity of human
hearing by being more discriminative at lower frequencies and less discriminative at higher
frequencies.

The vector of band energies is computed as the weighted sum of squared values of the
magnitude spectrum. The overall energy is computed as a sum of squared samples (usually
used as 0th coefficient). Then a logarithm of the energies is taken to compensate for the
dynamic range of the values and to emulate human perception of the sound loudness. In
the last step, Discrete Cosine Transformation (DCT) is used to de-correlate and reduce the
dimensionality of the vector to acquire the final vector of the MFCC coefficients.

3

0 5 10 15 20 25
−1

−0.5

0

0.5

1
a) Segment of speech signal for vowel ’iy’

time [ms]
0 5 10 15 20 25

−0.5

0

0.5
b) Speech segment after preemphasis and windowing

time [ms]

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

c) Fourier spectrum of speech segment

frequency [Hz]
1 3 5 7 9 11 13 15 17 19 21 23

0

5

10

15

20

d) Filter bank energies − smoothed spectrum

band number

1 3 5 7 9 11 13 15 17 19 21 23
−4

−3

−2

−1

0

1

2

3

4

e) Log of filter bank energies

band number
2 4 6 8 10 12

−5

0

5

f) Mel frequency cepstral coefficients

mel quefrency

Figure 1.2: Outputs of individual steps of MFCC computation. (Source: [Burget, 2004])

1.2.2 Feature Derivatives

MFCC features are usually referred to as static features since they contain information only
from a single frame. We can provide extra additional information to the feature vectors by
extending them with feature derivative approximation [Furui, 1986]. Usually, first-, second-,
and/or third-order derivative approximations are used (higher orders are rarely used), com-
monly referred to as delta (providing information about speech rate, also referred to as veloc-
ity), double-delta (or acceleration), and triple-delta coefficients [Mason and Zhang, 1991].
The commonly used formula for the first order derivation for a feature vector c in the frame
𝑘 is a linear combination of the ±𝑁 surrounding feature vectors:

△ c(𝑘) =
𝑁∑︁

𝑗=−𝑁

𝑗c(𝑘 − 𝑗) (1.1)

where 𝑁 is set to 2. Higher order-derivatives can be obtained by a recursive application
of the formula 1.1 on the lower-order derivatives. The i-vector-based system (generative
embedding, described in Chapter 4) usually achieved better results with first- and second-
order derivatives.

1.2.3 Feature Normalization

Speech signals and their features contain distinct characteristics, which vary with recording
conditions (noise, reverberation, type of microphone). It was observed that additive noise
decreases the variance; and convolutive noise shifts the mean values of MFCC coefficients.
To deal with this unwanted inter-session variability of features, a simple mean and variance
normalization has been proposed [Boll, 1979, Openshaw and Masan, 1994]. The normaliza-
tion is performed on the entire utterance with the assumption that the unwanted variability

4

Figure 1.3: Block diagram showing steps of MFCC computation. (Source: [Burget, 2004])

m1 mP

freq

1

mj... ...
Energy in
Each Band

MELSPEC

Figure 1.4: Mel-Scale Filter Bank. (Source: [Young et al., 2006])

is constant over the entire utterance. For the 𝑘 − 𝑡ℎ frame in utterance 𝑑, the normalized
𝑖− 𝑡ℎ coefficient is computed in the following way:

𝑐𝑑,𝑖(𝑘) =
𝑐𝑑,𝑖(𝑘)− 𝜇𝑑,𝑖

𝜎𝑑,𝑖
, (1.2)

where the normalization parameters mean 𝜇𝑑 and standard deviation 𝜎𝑑 are estimated from
the given utterance 𝑑.

Short-Time Normalization

In SV, it is also common for the normalization to be performed on short segments and
applied locally. The feature vector being normalized is always in the center of the sliding
window—this approach proved to be effective in some SV systems and it can cope with
intersession variability. Usually, the size of the sliding window is set to 3-5s.

1.3 Voice Activity Detection
Voice Activity Detection (VAD), also known as Speech Activity Detection (SAD), is an
important pre-processing step in most of the speech-processing applications. The task is

5

to find the presence of speech in a mixed signal of speech, noise, and silence. The output
of this step is segmenting containing voice activity. Let us mention typical approaches to
voice activity detection:

∙ Energy Thresholding as in [Kirill et al., 2009], in which the voice activity is clas-
sified on the basis of frame energy and adaptive threshold.

∙ Gaussian Mixer Model classification presented in [Ying et al., 2011], in which the
model consists of two Gaussian components, which respectively describe the speech
and non-speech log-power distributions.

∙ Hidden Markov Models as described in [Tatarinov and Pollák, 2004] in which the
detector consists of 3-state HMM and thresholding of log-likelihood comparing two
hypotheses for a frame with or without voice activity.

∙ Artificial Neural Network discriminator from [Arslan and Engin, 2019].

The output of the detector itself is usually binary (0 for silence, 1 for speech), but the
output can differ based on the specific application of the system, i.e. distinguishing several
classes based on the combination of speech, noise, and silence [Silovský, 2011].

In this work, we used VAD based on a hybrid of Artificial Neural Network and Hidden
Markov Models. It is used as a phoneme recognizer trained on the SPEECHDAT Hungarian
database [Matějka et al., 2006]. Strings of phonemes, re-labeled by two classes – silence (all
models of silence) and speech (all valid phonemes) represent the output of the recognizer.

1.4 Score Normalization
The goal of the score normalization is to reduce unwanted log-likelihood ratio score vari-
ability. It leads to improved performance and calibration and a more reliable threshold
setting (the setting is described in Section 3.1). Typically, the normalization step shifts
and scales the score distributions for the individual models and/or benchmarks to allow for
a single detection threshold setting. The shifts and scales are usually estimated using a set
of utterances referred to as a normalization cohort, which usually consists only of impostor
speakers. The scale and shift are applied as below:

𝑠norm =
𝑠− 𝜇

𝜎
, (1.3)

where score 𝑠 is normalized by scale 𝜎 and shift 𝜇 estimated from the cohort.
We provide the reader with a quick overview of several types of normalization techniques,

especially those used in this work (based on [Matějka et al., 2017]). However, the range of
normalization techniques is wide. We could achieve significantly better accuracy with score
normalization, such as Z-norm [Reynolds et al., 2000], T-norm [Auckenthaler et al., 2000],
combinations of both (TZ-norm and ZT-norm) [Aronowitz et al., 2005] or other variants
such as H-norm [Reynolds, 1997], D-norm [Ben et al., 2002], KL-T-norm [Ramos-Castro et al., 2007],
S-norm [Kenny, 2010], normalized cosine similarity [Shum et al., 2010], speaker clusters
[Apsingekar and Leon, 2011] and many others [Fortuna et al., 2004, Zigel and Cohen, 2003,
Aronowitz and Aronowitz, 2010].

6

1.4.1 Z-norm

Zero score normalization employs impostor score distribution for enrollment file. It uses a
cohort ℰ = {𝜀𝑖}𝑁𝑖=1 with 𝑁 speakers which we assume to be different from the speakers in
enrolment utterances 𝑒 and test utterances 𝑡. The cohort scores are

𝑆𝑒 = {𝑠(𝑒, 𝜀𝑖)}𝑁𝑖=1 (1.4)

and are formed by scoring enrollment utterance 𝑒 with all files from cohort ℰ . The normal-
ized score is then:

𝑠(𝑒, 𝑡)𝑧-𝑛𝑜𝑟𝑚 =
𝑠(𝑒, 𝑡)− 𝜇(𝑆𝑒)

𝜎(𝑆𝑒)
, (1.5)

where 𝜇(𝑆𝑒) and 𝜎(𝑆𝑒) are mean and standard deviation of 𝑆𝑒. It compensates for the
bias and scale between the enrollment model scores evaluated against the test data. This
procedure is presented in Figure 1.5 as STEP 1. The advantage of Z-norm is the possibility
to pre-compute the normalization statistics offline.

1.4.2 T-norm

Test score normalization is similar to Z-norm with the difference that it normalizes the
impostor score distribution for the test utterance. T-norm can be expressed by:

𝑆𝑡 = {𝑠(𝑡, 𝜀𝑖)}𝑁𝑖=1 (1.6)

𝑠(𝑒, 𝑡)𝑡-𝑛𝑜𝑟𝑚 =
𝑠(𝑒, 𝑡)− 𝜇(𝑆𝑡)

𝜎(𝑆𝑡)
, (1.7)

where 𝜇(𝑆𝑡) and 𝜎(𝑆𝑡) are mean and standard deviation of 𝑆𝑡. The method is marked as
STEP 3 in Figure 1.5. The normalization parameters must be estimated online when scoring
a test utterances 𝑡. It compensates for intersession variability between the tested utterance
𝑡 and a set of speaker models.

1.4.3 ZT-norm

ZT-norm or TZ-norm use Z- and T-norm in series, and might use different cohorts for each
step. By doing this, the scores are normalized with respect to both enrollment and test
utterances. The procedure consists of performing STEPS 1-3 in Figure 1.5.

1.4.4 S-norm

The symmetric normalization (S-norm) computes an average of normalized scores from
Z-norm and T-norm. S-norm is symmetrical as 𝑠(𝑒, 𝑡) = 𝑠(𝑡, 𝑒), while the previously men-
tioned normalizations depend on the order of 𝑒 and 𝑡.

𝑠(𝑒, 𝑡)𝑠-𝑛𝑜𝑟𝑚 =
1

2
· (𝑠(𝑒, 𝑡)𝑧-𝑛𝑜𝑟𝑚 + 𝑠(𝑒, 𝑡)𝑡-𝑛𝑜𝑟𝑚)

=
1

2
·
(︂
𝑠(𝑒, 𝑡)− 𝜇(𝑆𝑒)

𝜎(𝑆𝑒)
+

𝑠(𝑒, 𝑡)− 𝜇(𝑆𝑡)

𝜎(𝑆𝑡)

)︂ (1.8)

7

Z−norm utterancestest utterances

e
n
ro

ll
e
d
 m

o
d
e
ls

m
o
d
e
ls

T
−

n
o
rm T−norm

x
Z−normtest

x
T−norm

x
enroll

test

enroll
x

Z−norm

STEP 1

STEP 3

STEP 2

A B

C D

Figure 1.5: Application of ZT-norm. The boxes denote matrices of complete scores, i.e. all
models against all scored utterances. (Source: [Glembek, 2012])

1.4.5 Adaptive Normalization

In adaptive T-norm [Sturim and Reynolds, 2005] or Top-norm [Zigel and Wasserblat, 2006],
only part of the cohort is selected2 to compute mean and variance for normalization. We call
this selection adaptive, as the selected cohort might change for every speaker or utterance.

Two variants of adaptive cohort selection can be found in the literature: the adaptive
cohort can be either selected to be 𝑋 closest (most positive scores) files to the enrollment file
ℰ 𝑡𝑜𝑝𝑒 , or, as in [Cumani et al., 2011], to the test file ℰ 𝑡𝑜𝑝𝑡 . We have to take into consideration
that such cohorts differ for each enrollment utterance 𝑒 or test utterance 𝑡 respectively. The
cohort scores based on such selections for the enrollment utterance are then:

𝑆𝑒(ℰ 𝑡𝑜𝑝𝑒) = {𝑠(𝑒, 𝜀)}∀𝜀∈ℰ𝑡𝑜𝑝
𝑒

(1.9)

and correspondingly for the test utterance 𝑡:

𝑆𝑡(ℰ 𝑡𝑜𝑝𝑡) = {𝑠(𝑡, 𝜀)}∀𝜀∈ℰ𝑡𝑜𝑝
𝑡

(1.10)

Later in this work, we investigate two variants of S-norm: the normalized score for the
first one called adaptive S-norm1 is

𝑠(𝑒, 𝑡)𝑎𝑠-𝑛𝑜𝑟𝑚1 =
1

2
·

(︃
𝑠(𝑒, 𝑡)− 𝜇(𝑆𝑒(ℰ 𝑡𝑜𝑝𝑒))

𝜎(𝑆𝑒(ℰ 𝑡𝑜𝑝𝑒))
+

𝑠(𝑒, 𝑡)− 𝜇(𝑆𝑡(ℰ 𝑡𝑜𝑝𝑡))

𝜎(𝑆𝑡(ℰ 𝑡𝑜𝑝𝑡))

)︃
(1.11)

2Usually 𝑋 top scoring or most similar files.

8

and the second variant, adaptive S-norm2, is defined as

𝑠(𝑒, 𝑡)𝑎𝑠-𝑛𝑜𝑟𝑚2 =
1

2
·

(︃
𝑠(𝑒, 𝑡)− 𝜇(𝑆𝑒(ℰ 𝑡𝑜𝑝𝑡))

𝜎(𝑆𝑒(ℰ 𝑡𝑜𝑝𝑡))
+

𝑠(𝑒, 𝑡)− 𝜇(𝑆𝑡(ℰ 𝑡𝑜𝑝𝑒))

𝜎(𝑆𝑡(ℰ 𝑡𝑜𝑝𝑒))

)︃
(1.12)

1.5 Calibration
The term calibration stands for properties of scores provided by the system that can be
interpreted as log-likelihood ratios, but also for the process of learning the score transfor-
mation function to obtain proper log-likelihood ratio. We expect the system to provide
proper log-likelihood ratios; in practice, it is often not the case for many systems and their
outputs have to be transformed into log-likelihood ratios.

The process of calibration is described in [Brümmer and du Preez, 2006]. It is typically
realized with a monotonically increasing transformation function, usually a linear function:

𝑓(𝑠) = 𝑎𝑠 + 𝑏, (1.13)
where 𝑠 is the recognition score, 𝑎 and 𝑏 are the parameters of the transformation function,
and 𝑓(𝑠) is the calibrated score in the proper form of a log-likelihood ratio. As 𝑓() is
monotonous, it will not change order of scores and discriminability of the detector. The
function parameters are usually found by optimizing a cross-entropy objective function of
a logistic regression on a supervised development set. The objective function is defined
as [Brümmer et al., 2007]:

𝑄(𝑎, 𝑏, 𝑃𝑡𝑎𝑟) =
𝑃𝑡𝑎𝑟

𝑁𝑡𝑎𝑟

∑︁
𝑡∈𝑡𝑎𝑟

log2

(︁
1 + exp(−𝑓(𝑠𝑡)−logit𝑃𝑡𝑎𝑟)

)︁
+

(1− 𝑃𝑡𝑎𝑟)

𝑁𝑛𝑜𝑛

∑︁
𝑡∈𝑛𝑜𝑛

log2

(︁
1 + exp(𝑓(𝑠𝑡)+logit𝑃𝑡𝑎𝑟)

)︁
,

(1.14)

where 𝑃𝑡𝑎𝑟 represents the parameter of the objective function and allows us to tune opti-
mization to the target operating point independently on 𝑃𝑡𝑎𝑟 in the calibration development
set. This action is equivalent to the threshold selection described later in Section 3.1. If
the operating point of the application is unknown, usually, the value 𝑃𝑡𝑎𝑟 = 0.5 is used.

The calibration process does not consider the currently processed data (in contrast
to some normalization techniques such as t-norm or s-norm). The statistic distribution
of development data can differ from the distribution of evaluation data. In this case,
incorrect calibration function parameters may be found; such parameters can lead to a
wrong calibration (setting a threshold far from an ideal value).

1.6 Motivation and Contribution
The work on this thesis began during the summer SV workshop at Royal Turin Poly-
technic in 2015, which focused on short-duration speaker recognition and the use of dis-
criminative techniques in SV, such as DNN alignment or speech enhancement. Inspired
by [Plchot et al., 2016a], my focus was set on data augmentation and its impact on speech
enhancement performance and robustness [Novotný et al., 2018a].

With the transition of SV systems from generative to discriminative ([Snyder et al., 2017]),
it was expected that speech enhancement would become unnecessary (because of the sig-
nificantly higher robustness of the discriminative systems). This hypothesis was explored

9

in [Novotný et al., 2019c], where we showed various scenarios in which the speech enhance-
ment did actually significantly improve the SV results of the new systems.

Subsequently, I focused on the general robustness of the SV systems, especially against
noise and reverberation, which was studied in [Novotný et al., 2018b], and on robustness
to language, which was studied in [Novotný et al., 2016]. In [Matějka et al., 2017], we ex-
plored the robustness to language from the perspective of normalization. However, the
discriminative systems proved to be very demanding in terms of the training data. This
property motivated us for an attempt to combine the generative and discriminative ap-
proaches, and subsequently exploit the advantages of both methods [Novotný et al., 2019b,
Novotný et al., 2019a].

My work analyzes the individual steps of a SV system and suggests the techniques on
how to increase the robustness in the given step.

1.6.1 Claims

The goal of this work is to investigate a state-of-the-art text-independent speaker verifica-
tion system and to improve its individual parts using a discriminative approach. The main
contributions of this work are summarized in the following points:

∙ Analysis of Speech Enhancement with Neural Networks (NN): We have
systematically investigated an NN speech enhancement and its effect on performance
as a pre-processing step in case of generative and discriminative speaker verification
systems (Chapter 7).

∙ Including discriminative techniques in generative SV: We have designed and
plugged discriminative techniques into generatives SV systems (Chapter 8).

∙ Discriminative training of an i-vector extractor: We propose to use a discrim-
inative approach to the i-vector extractor generative model re-training as a way of
improvement of the original generative model (Section 8.3).

∙ Extension of the discriminative training of the i-vector extractor with fac-
torization: The proposed extension of the discriminative i-vector model training
takes memory requirements into account, which significantly decreases the number of
model parameters (Section 8.3.2).

∙ Analysis of data and its impact on the robustness: We have analyzed the
performance of discriminative speaker verification systems as a function of amount of
training data (Chapter 10).

1.6.2 Structure of the Thesis

∙ Chapter 2 describes the factors influencing the performance of SV, which we consider
in setups improving its robustness.

∙ Chapter 3 introduces the used evaluation data and the evaluation metrics of SV
performance. Secondly, this chapter contains a description of the data augmentation
process.

∙ Chapter 4 outlines the basic concept of acoustic modeling and embeddings as fea-
tures for speaker modeling.

10

∙ Chapter 5 presents (a possible approach to) embedding scoring.

∙ Chapter 6 introduces the concept of multi-conditional training as the primary ap-
proach used in improving the robustness of a system.

∙ Chapter 7 presents the speech enhancement based on NN as a pre-processing step
on a signal level.

∙ Chapter 8 studies the discriminative technique used to improve the formerly gener-
ative SV system.

∙ Chapter 9 discusses the score normalization techniques and their impact on the SV
robustness.

∙ Chapter 10 provides an analysis of the SV system performance and robustness based
on the training data composition.

∙ Chapter 11 concludes this thesis.

11

Chapter 2

Factors Influencing SV
Performance

SV systems have to deal with various factors that decrease the final system performance.
Three main factors determine the performance of each SV system:

∙ system topology: used acoustic feature, type of embedding (including embedding
model itself), or the verification backend.

∙ training data: total amount of speakers in the training set, number of utterances
per speaker, or the quality of audio records.

∙ operating environment (test data): known/unknown target environment, also
referred to as in-domain and out-of-domain, respectively.

In an ideal case, we have a well-selected system topology trained on data from the target
source without any other unwanted variability. In reality, we have to settle for a compromise:
the topology is subjected to computational capacity, the training dataset is based on the
available data, and test data are usually unknown.

As the training data usually differ from application (test) data, a phenomenon called
domain-mismatch can occur. The term domain stands for a wide range of attributes of
the data, such as:

∙ Transmission channel (related to a codec and a sampling frequency)

∙ Language

∙ Utterance length

∙ Acoustic environment (i.e. noise, reverberation)

∙ Recording system (i.e. recording hardware, recording setup)

The long-term goal of the research in the field of speaker recognition is to design a system
invariant to a domain, and to achieve optimal performance even in an unknown environ-
ment.

Usually, the application domain is at least partially known (i.e. we know the language,
the sampling frequency, or a codec). When designing a training set, we aim at approxi-
mating the application domain. This can be achieved by an appropriate selection of the
available data, and/or their simulation (more details about simulation in Section 3.3).

12

Next, we focus on each attribute of the domain and its effect on the speaker recognition
pipeline.

2.1 Transmission Channel
A transmission channel has a subset of inseparable properties:

∙ The transmission channel itself (landline, cellular, radio, type of microphone)

∙ A codec, which usually tries to balance the quality of the audio and the bit-rate.

∙ A sampling frequency, which indicates the frequency range of the recording (given by
the sampling theorem).

The sampling frequency is a necessary key attribute that we have to know for the system
design. For a long time, the SV systems were dominated by a sampling frequency of
8000 Hz. This frequency is given by the transmission channel, and for many years the SV
was dominated by the telephone channel. The landline telephone band typically operates
in the range of 300–3400 Hz, a standard based on Bell Labs studies of the requirements for
intelligible speech dating back to the 1920s.

At the time of writing of this work, the interest in 8000 Hz audios is declining and
recordings with the sampling frequency of 16000 Hz are used more and more often.

This transformation was caused by technological progress. Because of innovative trans-
mission technologies, the capacity of the transmission band has expanded as well as the
increased computing capability, which can process larger amounts of data.

The codec determines the coding of the signal itself for the purpose of storage or trans-
mission. The codec affects the signal with its assumptions about the input. It can be either
lossy or lossless. It can expect speech, music, or general signals.

We deal with the issue of robustness to the transmission channel in almost all ex-
periments presented in Chapters 6–10. The evaluation benchmarks are divided into the
following groups: telephone channel, interview, and simulated data.

2.2 Language
The next variability we have to deal with is language variability. In the best case, the
language variability is contained in within-speaker variability. For this case to apply, each
speaker must speak multiple languages in the training set. Unfortunately, this is very rare
and most speakers usually know just a single language. This results in language variability
leaking to between-speaker variability. However, there are methods to compensate for this
(i.e. [Glembek et al., 2014]). Robustness to the language is discussed mainly in Chapters 8
and 9.

2.3 Acoustic Environment
The acoustic environment provides an infinite variety of signal degradations. It is the main
type of signal degradation which we focus on in this work. We can approximate an acoustic
environment by two types of signal degradation: noise and reverberation. Usually, in liter-
ature, the term ”noise“ represents all types of signal degradation (including reverberation).
In this work, we distinguish between noise and reverberation. The term noise stands for the

13

unwanted additive signal. The term reverberation represents the convolutional distortion
(i.e. the acoustic effect of a room). The issue of noise and reverberation is mainly discussed
in Chapter 7.

2.3.1 Additive Noise

The additive noise is a basic and elementary model of distortion of a wanted signal 𝑥(𝑡)
with an unwanted signal 𝑛(𝑡) using an additive operation:

𝑠(𝑡) = 𝑥(𝑡) + 𝑛(𝑡) (2.1)

In the case of additive noise, we can measure the degree of distortion of the original signal
as a signal-to-noise ratio (SNR):

𝑆𝑁𝑅 = 10 log10

(︂
𝑃𝑠

𝑃𝑛

)︂
, (2.2)

where 𝑃𝑠 is the power of signal, 𝑃𝑛 is the power of noise. The calculation above is overly
general and not very suitable for our use. As mentioned earlier, we can divide the signal
into speech and silence segments (non-speech in general). We are primarily interested in
the speech part of the recording. If we measure SNR on the entire recording, including
segments of silence, these silence segments distort the resulting measurement.

Therefore, when we mention SNR in this work, we refer to the segmental-signal-to-noise
ratio (SSNR) variant:

𝑆𝑁𝑅 = 10 log10

𝑁∑︁
𝑖=1

𝑒𝑠[𝑖] · 𝑣𝑎𝑑[𝑖]

𝑁∑︁
𝑖=1

𝑒𝑛[𝑖] · 𝑣𝑎𝑑[𝑖]

, (2.3)

in which 𝑒𝑠 and 𝑒𝑛 are the energy of the signal and the noise in 𝑖-th frame), in which the
segments are weighted according to VAD. As a result, we only get the SNR between the
noise and the speech, and we have an accurate indication of the distortion that enters the
system (frames classified as silent are discarded from further processing).

2.3.2 Reverberation

The reverberation effect occurs under conditions where the speaker or other signal source
is far from the recording microphone. Sound waves propagate through the environment,
bounce off of obstacles and walls, and reach the microphone slightly later than a wave flying
straight to the microphone. The reflections are cumulatively repeated until the waves lose
all energy and are absorbed.

Reverberation can be seen as a convolutional model, in which the convolutional kernel
is determined by the room impulse response (RIR):

𝑠(𝑡) = ℎ(𝑡) ⋆ 𝑥(𝑡), (2.4)

where ℎ(𝑡) is the RIR and 𝑥(𝑡) is the wanted signal. An example of a room impulse response
and its parts are shown in Figure 2.2.

If the microphone is placed close to the source, mostly direct signal with a tiny portion
of reverberation is recorded. In the case of a close-talk microphone, we can consider the

14

Figure 2.1: Example of additive noise. From the top, the spectrogram of the original clean
signal and the spectrogram of the signal with noise with signal-to-noise ratio 10 dB.

reverberation effect to be negligible. In the case of increasing distance between the micro-
phone and the sound source, the energy of the direct signal decreases and the energy of the
reflected waves returning to the microphone remains the same. Reverberation and signal
distortion are also determined by the used microphone and its orientation in relation to the
source. For example, a hypercardioid microphones is less affected by reverberation when
pointed at a source because its direct polar pattern does not capture signals reflected from
other directions (see Figure 2.3).

2.4 Recording System
The term recording system stands primarily for the hardware that was used to make the
recording. As mentioned above, in the past, we worked mainly with telephone data. How-
ever, advances in technology and the proliferation of mobile devices have greatly expanded
this variability. Different recording devices are equipped with various types of microphones
(carbon microphones, electrodynamic microphones). Microphones vary in their polar pat-
tern and in their frequency characteristics. Differences concerning the devices themselves
can include different location, count, or orientation. It is also possible to estimate the
position of the speaker relative to the recording system. As mentioned above, close-talk
microphones can significantly reduce some of the negative effects of acoustic environments.
Problems generally arise as the distance between the speaker and the microphone increases.
In this work, we focus on single-channel recordings. It is beyond the scope of this work to
analyze recordings from multiple microphones or their impact on SV robustness.

15

(a)
Direct path

Early reflections

Reverberation
tail

t

h(t)

(b)

Figure 2.2: (a) Example of real room impulse response in time domain. (b) Description of
the main parts of the room impulse responses.

Figure 2.3: An example of hypercardioid microphone’s polar pattern. Polar pattern refers
to the sensitivity of a given microphone to sounds arriving from different angles to its central
axis. (Source: www.teachmeaudio.com)

16

www.teachmeaudio.com

Chapter 3

SRE Datasets and Evaluation
Metrics

Let us now get acquainted with the data and evaluation metrics that are used in this work.
We also introduce the reader to the types of errors in SV systems and data augmentation,
which represents a key attribute to building of robust systems.

3.1 Speaker Verification Evaluation
SV is a two-class problem. We present SV trials 𝑡 to the SV systems. In general, a trial
𝑡 consists of two sets of utterances, but for simplicity, we use two utterances 𝑡 = (𝑑1, 𝑑2),
enrollment, and test. The classes represent two possible situations:

∙ If the enrollment and the test utterances come from the same speaker, we refer to
such a situation as a target trial.

∙ If the enrollment and the test utterances do not come from the same speaker, we
refer to such a situation as a non-target trial or an impostor trial.

To evaluate the system, a labelled set of trials 𝒯 is required. For each trial, we need to
have target/non-target label. The goal of the system is to assign the correct label to the
trial. During this process, two types of errors can occur:

∙ False-alarm: A non-target trial is incorrectly classified as a target trial.

∙ Miss-detection: A target trial is incorrectly classified as a non-target trial (usually
simply referred to as Miss).

We can estimate the miss and false-alarm rates as probabilities 𝑝(𝑚𝑖𝑠𝑠|𝒯) and 𝑝(𝑓𝑎|𝒯):

𝑝(𝑚𝑖𝑠𝑠|𝒯) =
𝑁𝑚𝑖𝑠𝑠

|𝒯𝑡𝑎𝑟|
, (3.1)

𝑝(𝑓𝑎|𝒯) =
𝑁𝑓𝑎

|𝒯𝑛𝑜𝑛|
, (3.2)

where |𝒯𝑡𝑎𝑟| and |𝒯𝑛𝑜𝑛| are the numbers of target and non-target trials, and 𝑁𝑚𝑖𝑠𝑠 and 𝑁𝑓𝑎

are the numbers of missed and false alarm detections made by the SV system.

17

−20 −10 0 10 20 30
score

0.00

0.02

0.04

0.06

0.08

0.10

de
ns

ity

target trials
impostor trials
threshold γ
miss rejection
false acceptance

Figure 3.1: Distribution of scores for target and non-target trials. The red area on the left
of the decision threshold represents measure 𝑃𝑚𝑖𝑠𝑠, and the blue area represents measure
𝑃𝑓𝑎.

The raw output of the verification system is usually a score. The score should reflect
the confidence of the system in the decision, having a higher value for a target trial and
vice-versa for a non-target trial, preferably as log-likelihood ratio of these two hypotheses:
ℋ𝑠 for same speakers, ℋ𝑑 for different speakers. The score 𝑠 for trial 𝑡 is given as:

𝑠 = log
𝑝(𝑡|ℋ𝑠)

𝑝(𝑡|ℋ𝑑)
. (3.3)

The score can be converted into a hard decision by thresholding. By moving the thresh-
old 𝜏 , the balance between two types of errors (see Figure 3.1) changes and allows the user
to choose the operating point of the system. The motivation to choose different operating
points depends on the system application. For example, a bank has an incentive to keep
the number of False-alarms low, as this error has a much higher cost than a Miss.

3.1.1 Detection Error Tradeoff Plot

It is always desirable to know the individual systems’ performance across a wide range of
operation points (thresholds). In the SRE community, the Detection Error Tradeoff (DET)
plot is commonly used [Martin et al., 1997]. It is an alternative graph to the commonly
used Receiver Operation Characteristic (ROC) curve. The DET curve represents the miss
detection probability as a function of a false alarm probability. DET plot (example shown
in Figure 3.2) has both axis transformed by probit function:

𝑝𝑟𝑜𝑏𝑖𝑡(𝑝) =
√

2 erf−1(2𝑝− 1), (3.4)

where 𝑝 is a value of the 𝑃𝑓𝑎 or 𝑃𝑚𝑖𝑠𝑠 and erf−1 is the inverse function to the error function
erf. Therefore, the DET plot represents the dependency of 𝑝𝑟𝑜𝑏𝑖𝑡(𝑃𝑚𝑖𝑠𝑠) on 𝑝𝑟𝑜𝑏𝑖𝑡(𝑃𝑓𝑎).

18

0.001 0.01 0.1 0.2 0.5 1 2 5 10 20
 5

 10

 20

 40

 80

 90

 95

False Alarm probability (in %)

M
is

s
 p

ro
b
a

b
ili

ty
 (

in
 %

)

 System 1

 old min DCF

 new min DCF

 EER

 System 2

 old min DCF

 new min DCF

EER

Figure 3.2: Example of the DET curve comparing two systems. The markers (in each DET)
correspond to DCFmin

new(F), DCFmin
old (�), and EER (/). (Source: [Glembek, 2012])

Based on the values 𝑃𝑓𝑎 and 𝑃𝑚𝑖𝑠𝑠 for a selected operating point, we can plot the indi-
vidual operating point of interest and the region of statistical significance. The statistical
significance is often determined by Doddington’s rule of 30 (for detailed interpretation,
see [Doddington et al., 2000]), stating that for a meaningful evaluation, it is necessary to
have at least 30 misses and at least 30 false alarms.

The DET plot is not dependent on calibration because it depends only on score order
and not on actual values. Assuming the distribution of score for target and non-target trials
are Gaussian, the DET curve will be approximately linear. The curve located closer to the
origin reflects better performance of the system.

3.1.2 Equal Error Rate

Comparing systems by DET curves can be inconvenient. Sometimes, a single scalar sum-
marizing system performance can be desirable. Equal Error Rate (EER) is a single number
evaluation of the performance of a biometric system. EER is defined as a location on the
DET curve in which 𝑃𝑚𝑖𝑠𝑠 and 𝑃𝑓𝑎 are equal. The EER value is independent on calibration
and it can be shown [Brümmer, 2010] that this point acts as a scalar summary of the whole
DET curve. Its value indicates how close is the DET curve to the origin.

EER can give an approximate comparison between systems. Although EER might
seem an attractive option, it is not very practical in real-world applications. A real-world
application usually operates in the region of low false alarm or low miss rate.

19

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

logit P tar

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 D

C
F

new DCF
old DCF
System 1 min dcf
System 1 FA DR30
System 2 min dcf
System 2 FA DR30

Figure 3.3: Plot of DCFminas a function of effective prior. Intersection of DCFmincurves
with vertical dashed violet lines correspond (from left to right) to the DCFmin

newand DCFmin
old .

3.1.3 Detection Cost Function

NIST introduced Detection Cost Function (DCF) as a metric for evaluation of verification
systems, that focuses on a particular operating point of interest. It is the primary metric
in NIST’s Speaker Recognition Challenge series (Section 3.2.1).

It is designed to consider the overall cost based on the two types of error. It is defined
as a weighted sum of the false-alarm probability and the miss-detection probability:

𝐶Det = 𝐶miss𝑃 (miss|𝒯 , 𝜏)𝑃𝑡𝑎𝑟 + 𝐶fa𝑃 (fa|𝒯 , 𝜏)𝑃𝑛𝑜𝑛 (3.5)

with
𝑃𝑛𝑜𝑛 = 1− 𝑃𝑡𝑎𝑟 (3.6)

where 𝐶miss and 𝐶fa are the relative costs of the detection errors, and 𝑃𝑡𝑎𝑟 and 𝑃𝑛𝑜𝑛 are
the prior probabilities for the trial coming from the same speaker and coming from differ-
ent speakers, respectively. The triplet ⟨𝐶miss, 𝐶fa, 𝑃𝑡𝑎𝑟⟩ defines the target operating point
considering the desire an application for which the system is evaluated.

To make the DCF measurement more intuitive, 𝐶Det is further normalized by 𝐶Default

to allow the comparison of difficulty of various evaluation sets. 𝐶Default is the best a-priori
cost that could be obtained without processing the input data and setting all trials to either
same speaker or different speakers, whichever is smaller:

𝐶Default = min

{︃
𝐶miss𝑃𝑡𝑎𝑟

𝐶fa𝑃𝑛𝑜𝑛

(3.7)

and
𝐶Norm = 𝐶Det/𝐶Default. (3.8)

20

Table 3.1: NIST DCF parameters for SRE08 and SRE10.

𝐶fa 𝐶miss 𝑃𝑡𝑎𝑟

DCFold 10 1 0.01
DCFnew 1 1 0.001

Table 3.2: NIST DCF parameters for SRE16.

ID 𝐶fa 𝐶miss 𝑃𝑡𝑎𝑟

1 1 1 0.01
2 1 1 0.005

The cost is computed from hard decisions independently of the threshold selection. The
threshold should be selected in such way as to minimize the cost computed on the de-
velopment set. Minimum possible DCF, referred to as min-DCF (see Figure 3.3), can be
computed by setting the optimal threshold for the given test set:

min𝐶Det = min
𝜏

[︀
𝐶miss𝑃 (miss|𝒯 , 𝜏)𝑃𝑡𝑎𝑟 + 𝐶fa𝑃 (fa|𝒯 , 𝜏)𝑃𝑛𝑜𝑛

]︀
. (3.9)

The cost computed from the actual hard decision is referred to as act-DCF. The differ-
ence between the act-DCF and min-DCF it referred to as a calibration loss, and it reflects
how well the system is calibrated. The calibration was discussed in Section 1.5.

Until 2008, NIST used a metric referred to as “old-DCF”. In 2010, NIST introduced a
new metric referred to as “new-DCF”. Parameters for these metrics are shown in Table 3.1.
In 2016, NIST redefined the primary metric again. Final 𝐶𝑝𝑟𝑖𝑚𝑎𝑟𝑦 is computed as an average
of two operating points (defined in Table 3.2):

C𝑝𝑟𝑖𝑚𝑎𝑟𝑦 =
𝐶Det1 + 𝐶Det2

2
(3.10)

3.2 Datasets
When designing an SV system, it is always necessary to consider the target application
and adapt the training and test data accordingly. Usually, we can divide the data used
in the development of the SV system into three parts: training (on which the system is
trained), development (to monitor performance and allow the potential adjustment of
parameters), and evaluation/test set (final evaluation). The evaluation set can usually
be divided into several benchmarks, focusing in detail on selected aspects of the evaluation
(such as cross-language trials and noisy environment trials). Evaluation sets also carry
evaluation metrics, and metrics can differ between sets. We have selected several metrics
to evaluate the performance of later presented systems.

3.2.1 NIST

The NIST (US National Institute of Standards and Technology) has been organizing speaker
recognition evaluations since 1996. The NIST has the following objective goals for evalua-
tions series:

21

∙ Effective measuring of system-calibrated performance of the current state of technol-
ogy.

∙ Provide a standard test benchmark that helps the research community to explore the
new ideas in speaker recognition.

∙ Support community in their development of advanced technologies.

The evaluations are intended to be of interest to all researchers working on the general
problem of text-independent speaker recognition.

NIST databases released for each evaluation have gradually become a standard bench-
mark in the field of text-independent speaker recognition. Each evaluation consists of a
different set of common evaluation conditions designed to explore the performance of the
system under specific constraints. The constraints are usually designed to group the data
according to some characteristics, such as language, dialect, channel, nominal length, num-
ber of utterances per trial side, speaking style, or the number of speakers in the test side
of the trial.

In this part of the thesis, we describe in more detail the evaluations from years 2010 and
2016, which are used in this work. For a detailed summary of other years, we recommend
reading e.g. [Plchot, 2014].

NIST SRE 2010

NIST SRE 2010 (NIST Speaker Recognition Evaluation [NIST, 2010]) has long been con-
sidered one of the most popular sets of benchmarks. The evaluation in NIST SRE 2010
focuses on a more severe penalization of false alarms, which was achieved by decreasing the
cost of miss and target trial ratio. The ratio of the cost of false alarm to miss is 1000:1,
i.e. a false alarm is 1000 times more serious than a miss. In order to obtain statistically
significant results in case of a low false-alarm rate, the number of trials was significantly
increased. The detection cost function (discussed in Section 3.1.3) serves as a primary
metric.

In evaluation plan [NIST, 2010], NIST defined nine benchmark scenarios with the fol-
lowing characteristics:

1. All trials involving interview speech from the same microphone in training and test

2. All trials involving interview speech from different microphones in training and test

3. All trials involving interview training speech and normal vocal effort conversational
telephone test speech

4. All trials involving interview training speech and normal vocal effort conversational
telephone test speech recorded over a room microphone channel

5. All different number trials involving normal vocal effort conversational telephone
speech in training and test

6. All telephone channel trials involving normal vocal effort conversational telephone
speech in training and high vocal effort conversational telephone speech in test

7. All room microphone channel trials involving normal vocal effort conversational tele-
phone speech in training and high vocal effort conversational telephone speech in
test

22

8. All telephone channel trials involving normal vocal effort conversational telephone
speech in training and low vocal effort conversational telephone speech in test

9. All room microphone channel trials involving normal vocal effort conversational tele-
phone speech in training and low vocal effort conversational telephone speech in test

NIST SRE 2016

NIST SRE 2016 (SRE16, [NIST, 2016]) is focused on telephone conversations. Unlike in
previous years, data were collected outside of the North America. The organizers have once
again introduced two training scenarios: A fixed training scenario with a strictly defined
training set, which allows better cross-system comparison, and an open training scenario, in
which all limits from the fixed scenarios are removed. Languages used in the evaluation are
Tagalog and Cantonese (referred to as the major languages) and Cebuano and Mandarin
(referred to as the minor languages). The available development set was composed of both
major and minor languages, while the test set only contained data from the two major
languages. In SRE16, NIST defines only same-sex and same-language trials. However, on
the contrary to the previous SREs, gender labels were not provided. SRE16 benchmark
contains both single-enrollment and multiple-enrollment (three segments) trials, in which
approximately 60 secs of speech segments are provided to build the model of the target
speaker.

3.2.2 Fisher English

Fisher English [Cieri et al., 2004] is a collection of telephone speech collected by LDC in
2003. The dataset was created to address a need to build robust Automatic Speech Recog-
nition (ASR) systems. Many participants made a few short calls speaking to other par-
ticipants, where called participants typically did not know about assigned topics. This
approach maximizes inter-speaker variability, vocabulary breadth, and it also increases for-
mality. The dataset contains 11,699 telephone conversations, each lasting up to ten minutes.

3.2.3 Switchboard

Switchboard 2 Phase II [Graff et al., 1999] was released in 1999. It consists of 4,472 tele-
phone conversations involving 679 participants. Participants were recruited from US mid-
western college campuses. Each recruit was asked to participate in at least ten five-minute
phone calls.

Switchboard 2 Phase III [Graff et al., 2002] was collected between 1997 and 1998 (re-
leased in 2002). The collection was focused primarily in the American South, and it consists
of 2,728 calls from 640 participants (292 Male, 348 Female), all native English speakers.
Both of these corpora consist of landline calls only.

Switchboard Cellular Part 1 [Graff et al., 2001] was collected between 1999 and 2000
(released in 2001), mainly focusing on GSM cell phone technology. The dataset consists
of 1,309 five- to six-minute calls, or 2,618 sides (1,957 GSM), from 254 participants (129
Male, 125 Female), under varied environmental conditions.

Switchboard Cellular Part 2 [Graff et al., 2004] was collected by LDC in 2000 and re-
leased in 2004. The dataset consists of 2,020 five-six minute conversations on cellular
phones, or 4,040 sides (2,950 cellular, 2,405 female, 1,635 male), from 419 participants.

23

3.2.4 PRISM

The PRISM (Promoting Robustness in Speaker Modeling) is a large speaker recogni-
tion evaluation set based on NIST SRE data from 2005 to 2010. The set was presented
in [Ferrer et al., 2011b] and [Ferrer et al., 2011a]. Compared to NIST SRE data, the PRISM
set is extended with additional types of variations, namely noise, reverberation, language,
channel type, speech style, and vocal efforts.

The evaluation set was created using data from NIST SRE from 2005 to 2010 (specif-
ically SRE 2005, 2006, 2008, and 2010). NIST SRE 2004, together with Fisher English
and Switchboard, is also included in the dataset, but for training purposes only. The set
is divided into several subsets designed to evaluate the performance of a SV system under
different conditions: language, noise, reverberation, speech style, channel, and vocal efforts.
Even though PRISM is designed as a separate set, NIST SRE 2010 for 1-side and 8-side
training is included.

The noise and reverberation subsets are created by adding real noise and reverberation
to the data from NIST 2010 and 2008. To minimize negative effects of tracks other than
noise and reverberation, only clean microphone data were selected from telephone and
interview benchmarks. Also, a mixture of 15 noise samples (from bars, cafeterias, offices,
and airports) from Freesound.org was collected to be used as noise. The samples were
selected as free of from single-speaker foreground speech and sound artifacts. Afterwards,
the noise samples were mixed with the clean segments at 8, 15, and 20 dB SNR using the
FaNT Tool [Hirsch, 2005]. To prevent overly positive scenarios, different noises were added
to training, enrollment, and test samples. The reverberation using different reverberation
times of 0.3, 0.5, and 0.7 seconds is added to the clean signals. In the case of reverberation, a
set of candidate rooms was generated using the RIR tool [McGovern, 2009]. The tool allows
modeling of room impulse response based on different aspects such as room size, speaker and
microphone location, wall, floor and ceiling reflection coefficients, speed of sound, etc. The
rooms were modeled to cover the usual configuration of size, speaker-microphone location
and reflectivity. Only the configurations resulting in reverberation time close to 0.3, 0.5
and 0.7 seconds were used. In total, twelve rooms (four for each reverberation time) were
modeled for training, three for enrolment, and three for test (one for each reverberation
time for each case). The fconv tool1 was used to convolve room impulse response with the
original audio signals.

The language subset is based on data from multiple corpora designed for NIST SRE
evaluations and focusing on evaluating speaker recognition performance in multiple lan-
guages, including same-language and cross-language trials. It was crafted from the NIST
SRE 2005–2008 datasets by selecting 500 speakers for whom there exists at least one session
in a language other than English. Additional 300 speakers (that appear only in English
conversations) were added from the NIST SRE 2010. The trials were created as a Cartesian
product of all sessions, resulting in 3590/130880 male, and 6304/297683 female target/non-
target trials, respectively. Note that a half of the trials is still in English.

3.2.5 SITW

The SITW [McLaren et al., 2016] dataset is a large collection of realistic speech from in-
dividuals across a wide array of challenging acoustic and environmental conditions. These
audio recordings do not contain any artificially added noise, reverberation or other arti-

1https://www.mathworks.com/matlabcentral/fileexchange/5110-fast-convolution

24

https://www.mathworks.com/matlabcentral/fileexchange/5110-fast-convolution

facts. This database was collected from open-source media. The sitw-core-core benchmark
comprises audio files, each of them containing a continuous speech segment from a single
speaker. The enrollment and test segments contain between 6 and 180 seconds of speech
each. SITW also introduced other evaluation benchmarks called sitw-assist-core/multi,
sitw-assistclean-core/multi and sitw-assist/core-multi, in which the participants are mo-
tivated to focus on speaker diarization. In sitw-assist-core/multi, the Person of Interest
(POI) segment is partially in the enrollment part of the trial, participants can use it to
find the other POI segments in the enrolment audio. In sitw-assist/core-multi, the infor-
mation about multiple speakers in test audio is known. For our purposes, we are using
sitw-core-core only.

3.2.6 BUT Retransmitted Data

To evaluate the impact of room acoustics on the accuracy of speaker verification, a proper
dataset of reverberant audio is needed. An alternative that fills a qualitative gap between
unsatisfying simulation (despite the improvement of realism reported in [Ravanelli et al., 2016])
and costly and demanding real speaker recording, is retransmission. To our advantage, we
can also use the fact that a known dataset can be retransmitted so that the performances
are readily comparable with known benchmarks. Hence, this was our method to obtain a
new dataset.

The retransmission took place in a room with floor plan displayed in Figure 3.4. The
configuration fits several purposes: the loudspeaker–microphone distance rises steadily for
microphones 1–6 to study deterioration as a function of distance, microphones 7–12 form a
large microphone array mainly focused to explore beamforming (beyond the scope of this
paper but studied in [Mošner et al., 2018]).

For this work, a subset of NIST SRE 2010 data was retransmitted. The dataset consists
of 459 female recordings2 with nominal durations of three and eight minutes. The total
number of female speakers is 150. The files were played in sequence and recorded simulta-
neously by a multi-channel acquisition card that ensured sample precision synchronization.

We denote the retransmitted data as benchmark BUT-RET, where BUT-RET-orig
represents the original (not retransmitted) data and BUT-RET-merge stands for data from
14 benchmarks: trials for all 14 microphones were pooled to a single benchmark.

3.3 Data Augmentation Design
For training of the discriminative techniques, we needed a fairly large amount of clean
utterances from which we formed a parallel dataset of clean and augmented (noisy, rever-
berated or both) utterances. We chose Fisher English database Parts 1 and 2 as they span
a large number of speakers (11971) and the audio is relatively clean and without rever-
beration. These databases combined contain over 20,000 telephone conversational sides or
approximately 1800 hours of audio.

3.3.1 Noise

We prepared a noise dataset that consists of three sources of different types of noise:
2NIST SRE 2010 female recordings are known to be more challenging for SV systems; therefore, they

were our choice for retransmission.

25

1 2 3 4 5 6

7

8

9

10

11

12

13

14

spkr

1: [4.40 1.30 0.90] 7: [0.00 0.70 2.20] 13: [4.90 4.40 0.75]
2: [5.40 1.30 1.10] 8: [0.10 4.63 1.67] 14: [3.60 1.80 0.75]
3: [6.40 1.30 0.90] 9: [3.40 0.07 2.25] spkr: [3.40 1.30 1.00]
4: [7.40 1.30 0.90] 10: [3.40 4.63 1.67] pillar
5: [8.40 1.30 0.95] 11: [6.20 0.07 1.40]
6: [9.40 1.30 0.90] 12: [6.20 4.63 1.67]

16.20 m

11.60 m

6 m

Figure 3.4: Floor plan of the room in which the retransmission took place. Coordinates are
in meters and lower left corner is the origin. (Source: [Mošner et al., 2018])

∙ 272 samples (4 minutes long) taken from the Freesound library3 (real fan, heating/ven-
tilation/air conditioning systems, street, city, shop, crowd, library, office and work-
shop).

∙ 7 samples (4 minutes long) of artificially generated noises: various spectral modifica-
tions of white noise + 50 and 100 Hz hum.

∙ 25 samples (4 minutes long) of babbling noises by merging speech from 100 random
speakers from Fisher database selected using speech activity detector.

Noises were divided into three disjoint groups for training (223 files), development (40 files)
and test (41 files).

3.3.2 Reverberation

We prepared two sets with room impulse responses (RIRs). The first set consists of real
room impulse responses from several databases: AIR4, C4DM5 [Stewart and Sandler, 2010],
MARDY6, OPENAIR7, RVB 20148, and RWCP9. Together, they form a set with all types
of rooms (small rooms, big rooms, lecture room, restrooms, halls, stairs, etc.). All room
models have more than one impulse response per room (different RIR was used for source

3http://www.freesound.org
4http://www.iks.rwth-aachen.de/en/research/tools-downloads/databases/aachen-impulse-

response-database/
5http://isophonics.net/content/room-impulse-response-data-set
6http://www.commsp.ee.ic.ac.uk/~sap/resources/mardy-multichannel-acoustic-reverberation-

database-at-york-database/
7http://www.openairlib.net/auralizationdb
8http://reverb2014.dereverberation.com/index.html
9http://www.openslr.org/13/

26

http://www.freesound.org
http://www.iks.rwth-aachen.de/en/research/tools-downloads/databases/aachen-impulse-response-database/
http://www.iks.rwth-aachen.de/en/research/tools-downloads/databases/aachen-impulse-response-database/
http://isophonics.net/content/room-impulse-response-data-set
http://www.commsp.ee.ic.ac.uk/~sap/resources/mardy-multichannel-acoustic-reverberation-database-at-york-database/
http://www.commsp.ee.ic.ac.uk/~sap/resources/mardy-multichannel-acoustic-reverberation-database-at-york-database/
http://www.openairlib.net/auralizationdb
http://reverb2014.dereverberation.com/index.html
http://www.openslr.org/13/

of the signal and source of the noise to simulate different locations of their sources). Rooms
were split into two disjoint sets, with 396 rooms for training, 40 rooms for test.

The second set consists of artificially generated RIRs using “Room Impulse Response
Generator” tool from E. Habets [Habets, 2006]. The tool can model the size of room (3 di-
mensions), reflectivity of each wall, type of microphone, position of source and microphone,
orientation of microphone towards the audio source, and number of bounces (reflections)
of the signal. We generated a pair of RIRs for each room model (one used for source of the
sound, one for source of the noise). Again, we generated two disjoint sets, with 1594 RIRs
for training and 250 RIRs for test.

For some techniques presented in this work, it is necessary to have paired data, in which
each pair is composed of a clean and an augmented recording. If reverberation is applied,
the recording may shift in time depending on the distance of the microphone and the signal
source used to calculate the RIR. In order to preserve the time alignment between the
original and the augmented recording, it is necessary to pre-process all RIRs: shift them to
the left by the delay of the direct path, as shown in Figure 2.2b.

3.3.3 Composition of the Training Set

To mix the reverberation, noise and signal at a given SNR, we followed the procedure
showed in Figure 3.6. The pipeline begins with two branches, where speech and noise are
reverberated separately. Different RIRs from the same room are used for signal and noise,
to simulate different positions of sources.

In the following step, we set a ratio of noise and signal energies to obtain the required
SNR. Energies of the signal and noise are computed from A-weighted frames given by
original signal’s voice activity detection (VAD). It means the computed SNR is really present
in speech frames which are important for SV (frames without voice activity are removed
during processing). A-weighting (Figure 3.5) helps adjusting the ratio so that the human
ear can also correctly estimate the SNR. That is, the SNR corresponds primarily to the
energy of noise at human-audible frequencies.

The useful signal and noise are then summed at desired SNR, followed by optional
filtering by telephone channel (see page 9 in [ITU, 1994]) or codec application. In case we
want to add only noise or reverberation, only the appropriate part of the algorithm is used.

3.3.4 Kaldi Data Augmentation Recipe

In specific experiments, we also use the Kaldi repository and its recipes10. These recipes
serve as a certain standard for the presented system and data preparation. In these cases,
we use the augmentation defined by Kaldi. The method of adding noise and reverberation
is similar to the one described above. The difference lies in mixing clean and augmented
data. A different database of noise and RIRs is also used.

In the original Kaldi recipe, the training data were augmented with reverberation, noise,
music, and babble noise and combined with the original clean data. The package of all
noises and room impulse responses can be downloaded from OpenSLR11 [Ko et al., 2017],
and includes MUSAN noise corpus with 843 noises [Snyder et al., 2015].

For data augmentation with reverberation, the total amount of RIRs is divided into two
equally distributed lists for medium and small rooms.

10https://github.com/kaldi-asr/kaldi
11http://www.openslr.org/resources/28/rirs_noises.zip

27

https://github.com/kaldi-asr/kaldi
http://www.openslr.org/resources/28/rirs_noises.zip

Figure 3.5: Several weighting curves used for measurement of sound level for the loudness
perceived by human hearing. In this work, we use A-weighting. (Source: www.lindos.co.uk)

For augmentation with noise, we created three replicas of the original data. The first
replica was modified by adding MUSAN12 noises at SNR levels in the range of 0–15 dB. In
this case, the noise was added as a foreground noise (that means several non-overlapping
noises can be added to the input audio). The second replica was mixed with music at SNRs
ranging from 5 to 15 dB as background noise (one noise per audio with the given SNR). The
last noisy replica of training data was created by mixing in the babble noise. SNR levels
were at 13–20 dB and we used 3–7 noises per audio. The augmented data were pooled and
a random subset of 200k audios was selected and combined with clean data. The process
of data augmentation is also described in [Snyder et al., 2018].

Apart from the original recipe, as described in the previous paragraph, we also added
our own processing: real room impulse responses and stationary noises described above.
The original RIR list was extended by our list of real RIRs and we kept one reverberated
replica. Our stationary noises were used to create another replica of data with SNR levels
in range 0–20 dB. We combined all replicas and selected a subset of 200k files. As a result,
after performing all augmentations, we obtain 5 replicas for each original utterance. The
whole process of creating the augmented training set is depicted in Figure 3.7.

3.3.5 Selected Benchmark Scenarios

Below, we list short descriptions and names of the benchmarks used to evaluate our systems:
12Musan was introduced in [Snyder et al., 2015] for training of models for voice activity detection (VAD)

and for music/speech discrimination. The corpus consists of approximately 109 hours of audio consisting of
60.5 hours of speech, 42.5 hours of music, and 6 hours of noise.

28

www.lindos.co.uk

RIR1 RIR2

A-weighting A-weighting

VAD-SNR

combination

telephone channel / codec

Signal Noise

Output

SNR

signal+noise*ratio

Figure 3.6: The process of data augmentation for autoencoder training, generating addi-
tional data for PLDA training, or system testing. The last step—filtering with the telephone
channel—is used only when creating the denoising autoencoder training data.

∙ tel-tel: SRE 2010 extended telephone benchmark involving normal vocal effort con-
versational telephone speech in enrollment and test (known as “condition 5”).

∙ int-int: SRE 2010 extended interview benchmark involving interview speech from
different microphones in enrollment and test (known as “condition 2”).

∙ int-mic: SRE 2010 extended interview-microphone benchmark involving interview en-
rollment speech and normal vocal effort conversational telephone test speech recorded
over a room microphone channel (known as “condition 4”).

∙ sre16-all: SRE 2016 non-English telephone benchmark, consist of Tagalog and Can-
tonese language

∙ sre16-tgl: The subset of sre16-all with Tagalog speakers only

∙ sre16-yue: The subset of sre16-all with Cantonese speakers only

∙ prism,noi: Clean and artificially noised waveforms from both interview and telephone
conversations recorded over lavalier microphones. Noise was added at different SNR
levels and recordings are tested against each other.

∙ prism,rev: Clean and artificially reverberated waveforms from both interview and
telephone conversations recorded over lavalier microphones. Reverberation was added
with different reverberation times (RTs) and recordings are tested against each other.

29

PRISM
dataset

Reverberation

MUSAN
noise

MUSAN
music

Babble
noise

Static
noise

POOL Avg. Subset
200k

POOL Filtering
 >= 6 utt/spk

> 0.5s

Final training
dataset

Figure 3.7: Preparation of the x-vector extractor training dataset.

∙ prism,chn: English telephone conversation with normal vocal effort recorded over
different microphones from both SRE 2008 and 2010. Recordings are tested against
each other.

∙ prism,lan: The language-language benchmark defined in the PRISM set, which com-
prises data from previous NIST evaluations in five different languges.

∙ prism,chin: Chinese subset of prism,lan.

∙ sitw-core-core: Interview conversation with an adequate vocal effort to the real en-
vironment during audio recording. Enrollment and test segments contain between 6
and 180 seconds of continuous speech from a single speaker.

∙ BUT-RET-orig: Original (non-retransmitted) subset of NIST SRE 2010 data.

∙ BUT-RET-merge: Retransmitted version subset of NIST SRE 2010 data, with trials
from all 14 microphones pooled.

In the research community focusing on the SV field, we usually refer to the benchmarks
as conditions, but to avoid misunderstanding and confusion with the acoustic conditions,
we refer to them as “benchmarks”.

30

Chapter 4

Embedding-Based Speaker
Verification

In the field of speaker verification, it has always been necessary to deal with the prob-
lem of different utterance lengths. Finding a good representation of a recording inde-
pendent of its length is one of the critical features of SV systems. One of the first
solutions addressing this problem were systems based on GMM and likelihood compari-
son [Reynolds et al., 2000]. Compared to today’s systems, these systems were in the order
of magnitude worse [Matějka et al., 2020]. Also, the subsequent usage of the systems with
different types of classifiers was problematic, because of absence of fixed-length vector rep-
resentation.

Demand for an utterance representation that is easier to model results in a fixed-length
vector (usually referred to as embedding) representation. A fixed-length vector representa-
tion was found useful also in other speech processing fields, such as language recognition,
automatic speech recognition and a wide range of natural language processing (NLP) tasks.

As it was mentioned in Section 1.1, the embedding-based system (Figure 1.1) became a
dominant approach in SV. In this chapter, we present two strong concepts of embeddings:
i-vectors and x-vectors. Both differ in the primary paradigm, since i-vectors are based on a
generative model and x-vectors on a discriminative one. A detailed overview of their history
and architecture is given in the relevant sections.

4.1 Generatively Trained Embedding — i-vector
Before presenting the i-vectors, it is necessary to describe the essential prerequisites of
Gaussian Mixture Models and their purpose in this concept of generative embedding ex-
traction.

4.1.1 Gaussian Mixture Modeling of Acoustic Features

Gaussian Mixture Models (GMMs) represent a popular approach to acoustic feature space
modeling. Due to the nature of the speech signal and its properties, it is necessary to
consider their distribution multimodal. This assumption leads us to the use of a mixture
of Gaussian distributions. The mixture is given by the weighted sum of 𝐶 Gaussian distri-
bution components, and we assume that each sample was generated by one component.

In the past, GMMs have proven to be a very effective method of modeling in all areas of
general speech processing, such as speech transcription [Young et al., 2006], speaker recog-

31

nition [Reynolds et al., 2000], and language recognition [Torres-Carrasquillo et al., 2002].
The GMMs have also found their application in other areas of biometrics, such as facial
recognition [Bredin et al., 2006] and signature recognition [Tolosana et al., 2015].

To formally describe GMM, let us define a speech segment as a set of F-dimensional
features O = [o1,o2, . . . ,o𝑁]. The probability density function of feature vector o𝑖 given
the GMM [Bishop, 2006]:

𝒢(o𝑖;𝜃) =
𝐶∑︁
𝑐=1

𝑤(𝑐)𝒩 (o𝑖;𝜇
(𝑐),Σ(𝑐)), (4.1)

where 𝒢(o𝑖;𝜃) is likelihood of feature vector o𝑖, 𝜃 is a vector of all model parameters,
𝜇(𝑐) represents mean vector of a component 𝑐, Σ(𝑐) is covariance matrix of component 𝑐.
Component weights 𝑤(𝑐) must meet the conditions 𝑤(𝑐) ≥ 0 and

∑︀𝐶
𝑐=1𝑤

(𝑐) = 1.
For 𝐹 -dimensional feature vector o𝑖, single Gaussian model 𝒩 (o𝑖,𝜇

(𝑐),Σ(𝑐)) is given by:

𝒩 (o𝑖;𝜇
(𝑐),Σ(𝑐)) =

1

(2𝜋)𝐹/2|Σ(𝑐)|1/2
𝑒−

1
2
(o𝑖−𝜇(𝑐))𝑇Σ(𝑐)−1

(o𝑖−𝜇(𝑐)). (4.2)

The whole GMM is represented by parameters 𝜃:

𝜃 =
⟨︀
𝑤(𝑐),𝜇(𝑐),Σ(𝑐)

⟩︀
with 𝑐 = 1 . . . 𝐶 (4.3)

or more conveniently as super vectors and the matrix of stacked parameters:

𝜃 =
⟨︀
𝑤,𝜇,Σ

⟩︀
, (4.4)

where 𝑤 is the vector of component weights for the corresponding components, 𝜇 is a
super-vector of concatenated component mean vectors 𝜇(𝑐):

𝑤 =

⎡⎢⎣w
(1)

...
w (𝐶)

⎤⎥⎦ , (4.5)

𝜇 =

⎡⎢⎣𝜇
(1)

...
𝜇(𝐶)

⎤⎥⎦ , (4.6)

and Σ is generally a block-matrix of component covariance matrices:

Σ =

⎡⎢⎢⎢⎣
Σ(1) 0 · · · 0

0 Σ(2) · · · 0
...

...
0 0 · · · Σ(𝐶).

⎤⎥⎥⎥⎦ (4.7)

It should be mentioned that in practice, a simplified model with a diagonal covari-
ance matrix is generally used. Furthermore, for computational and numerical reasons, the
logarithm of likelihood is used, and (4.1) can be written as:

log𝒩 (o𝑖;𝜇
(𝑐),Σ(𝑐)) = −1

2
𝐹 log(2𝜋)− 1

2
log |Σ(𝑐)| − 1

2
𝜇(𝑐)𝑇Σ(𝑐)−1

𝜇(𝑐)

− 1

2
o𝑖

𝑇Σ(𝑐)−1
o𝑖 − o𝑖

𝑇Σ(𝑐)−1
𝜇(𝑐)

(4.8)

32

Data Alignment and Suffcient Statistic

The assignment of the feature vector 𝑜𝑖 to component 𝑐 is unknown and forms a hidden
variable. However, for each feature vector 𝑜𝑖 we can determine the degree of attribution of
this vector 𝑜𝑖 to component 𝑐 from the GMM model, based on the posterior distribution.
The posterior probability of the feature vector 𝑜𝑖 (also referred to as occupation probability,
shortly denoted as 𝛾𝑖) can be computed using Bayes rule [Bishop, 2006]:

𝛾
(𝑐)
𝑖 =

𝑤(𝑐)𝒩 (𝑜𝑖;𝜇
(𝑐),Σ(𝑐))∑︀𝐶

𝑗=1𝑤
(𝑗)𝒩 (𝑜𝑖;𝜇(𝑗),Σ(𝑗))

. (4.9)

The configuration of the posterior probabilities for each feature vector 𝑜𝑖 is referred to as
the alignment of the data to the mixture components. In practice, it is advantageous to
define Sufficient statistics:

𝑁 (𝑐) =
𝑁∑︁
𝑖=1

𝛾
(𝑐)
𝑖 (4.10)

f (𝑐) =

𝑁∑︁
𝑖=1

𝛾
(𝑐)
𝑖 o𝑖 (4.11)

S(𝑐) =

𝑁∑︁
𝑖=1

𝛾
(𝑐)
𝑖 o𝑖o

𝑇
𝑖 (4.12)

We refer to these as the zero-, first- and second-order statistics for a sequence of 𝐹 -
dimensional features O = [o1,o2, . . . ,o𝑁] , where 𝑁 is a number of feature vectors. For
simplicity, we define normalized statistics as:

f̃ (𝑐) = f (𝑐) −𝑁 (𝑐)𝜇(𝑐) (4.13)

S̃(𝑐) = S(𝑐) − f (𝑐)𝜇(𝑐)𝑇 − 𝜇(𝑐)f (𝑐)
𝑇

+ 𝑁 (𝑐)𝜇(𝑐)𝜇(𝑐)𝑇 (4.14)

For further simplification, the statistics can be expanded into the form of super-vector and
a super-matrix as:

N =

⎡⎢⎢⎢⎣
𝑁 (1)I 0 · · · 0

0 𝑁 (2)I · · · 0
...

...
0 0 · · · 𝑁 (𝐶)I

⎤⎥⎥⎥⎦ , (4.15)

f =

⎡⎢⎣ f
(1)

...
f (𝐶)

⎤⎥⎦ , (4.16)

S =

⎡⎢⎢⎢⎣
S(1) 0 · · · 0

0 S(2) · · · 0
...

...
0 0 · · · S(𝐶)

⎤⎥⎥⎥⎦ . (4.17)

33

Stacked centered statistic super vector f̃ and super-matrix S̃, can be produced in the same
fashion as f and S but from centered variants f̃ (𝑐) and S̃(𝑐).

Likelihood Function

Let us focus on the likelihood function and its different variants, which is used later in this
text. Assume we have a set of statistically independent input data (feature vectors/frames)
O = [o1,o2, . . . ,o𝑁 ,]. The likelihood of the data is represented as:

𝑝(O|𝜃) =
𝑁∏︁
𝑖=1

𝒢(o𝑖;𝜃) (4.18)

We usually do not work with the likelihood of this form but instead use the logarithm:

log 𝑝(O|𝜃) =
𝑁∑︁
𝑖=1

log
𝐶∑︁
𝑐=1

𝑤(𝑐)𝒩 (o𝑖;𝜇
(𝑐),Σ(𝑐)) (4.19)

For further usage, we modify the likelihood function into a slightly more complicated form.
This modification allows us to get the logarithm out of the sum in front of the mixture model
components. For any distribution 𝑞(𝑐) we can re-write the likelihood function log 𝑝(O|𝜃)
as:

log 𝑝(O|𝜃) =

𝑁∑︁
𝑖=1

log 𝑝(o𝑖|𝜃) =

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑞𝑖(𝑐)⏟ ⏞
1

log
𝑝(o𝑖, 𝑐|𝜃)

𝑝(𝑐|o𝑖, 𝜃)

𝑞𝑖(𝑐)

𝑞𝑖(𝑐)

=
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑞𝑖(𝑐) log
(︁
𝒩
(︀
o𝑖;𝜇

(𝑐),Σ(𝑐)
)︀)︁

−
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑞𝑖(𝑐) log
𝑞𝑖(𝑐)

𝑤(𝑐)

+

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑞𝑖(𝑐) log
𝑞𝑖(𝑐)

𝛾
(𝑐)
𝑖⏟ ⏞

DKL(𝑞𝑖(𝑐)||𝛾𝑖)

.

(4.20)

DKL(𝑞𝑖(𝑐)||𝛾(𝑐)𝑖) is Kullback-Leibler (KL) divergence, between 𝑞𝑖(𝑐) and the distribution
𝛾
(𝑐)
𝑖 = 𝑝(𝑐|o𝑖,𝜃). If we set 𝑞(𝑐) to the true posterior probability 𝛾𝑖, DKL(𝑞𝑖(𝑐)||𝛾(𝑐)𝑖) vanishes

and the likelihood function in (4.20) can be reformulated as:

log 𝑝(O|𝜃) =
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝛾
(𝑐)
𝑖 log𝒩 (o𝑖;𝜇

(𝑐),Σ(𝑐))−
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝛾
(𝑐)
𝑖 log

𝛾
(𝑐)
𝑖

𝑤(𝑐)
(4.21)

34

Using sufficient statistic in (4.15), (4.16), and (4.17), we can then rewrite the likelihood
function as follows:

log 𝑝(O|𝜃) =
𝐶∑︁
𝑐=1

𝑁 (𝑐) 1

(2𝜋)𝐹/2|Σ(𝑐)|1/2

− 1

2
tr(Σ−1𝑆)

+ 𝜇𝑇Σ−1f − 1

2
𝜇𝑇NΣ−1𝜇

−
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝛾
(𝑐)
𝑖 log

𝛾
(𝑐)
𝑖

𝑤(𝑐)

(4.22)

Maximum Likelihood Estimation of Parameters

When searching for the parameters 𝜃 of GMM model, we maximize the expected likelihood
𝑝(O,𝜃) over a given training set O:

𝜃𝑀𝐿 = arg max
𝜃

𝑝(O, 𝜃) (4.23)

Usually, parameters can be found by solving d 𝑝(O,𝜃)
d 𝜃 = 0.

For a unimodal Gaussian model, the ML estimation of the parameters can be expressed
directly as a closed-form solution. Unfortunately, there is no closed-form solution for GMM,
because the assigment of training samples to the components of the model is not known.
Probably the most used way to find the parameters of the GMM model is the Expectation-
Maximization algorithm [Dempster et al., 1977] — an iterative procedure performing two
steps in each iteration:

∙ E-step: We obtain posterior probabilities 𝛾
(𝑐)
𝜃0

by fixing the alignment of the data O

using current model 𝜃0 and collect statistic {𝑁 (𝑐)
𝜃0

, f
(𝑐)
𝜃0

,S
(𝑐)
𝜃0
}.

∙ M-step: The new ML estimate of the parameters is computed to maximize 𝑄GMM:

𝜃𝑀𝐿 = arg max
𝜃

𝑄GMM(𝜃,𝜃0) (4.24)

For E-step, we need to construct auxiliary function 𝑄GMM. The true alignment is not
available and is provided via a different model 𝜃0, then 𝑞(𝑐) = 𝑝(𝑐|o,𝜃0). KL-divergence
in (4.20) requires true alignment; therefore, the computation is impossible. If we assume
𝑄GMM only as an approximate of the true likelihood, we can omit KL-divergence. Then,
𝑄GMM can be constructed as:

𝑄GMM(𝜃,𝜃0) =

𝐶∑︁
𝑐=1

𝑁
(𝑐)
𝜃0

1

(2𝜋)𝐹/2|Σ(𝑐)|1/2

− 1

2
tr(Σ−1𝑆𝜃0)

+ 𝜇𝑇Σ−1f𝜃0 −
1

2
𝜇𝑇N𝜃0Σ

−1𝜇

−
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝛾
(𝑐)
𝑖𝜃0

log
𝛾
(𝑐)
𝑖𝜃0

𝑤(𝑐)

(4.25)

35

This approximation is a lower-bound of the correct likelihood function since the omitted
KL-divergence is always non-negative. For M-step (4.24), a closed-form solution exists and
update formulas of model parameters are given as:

𝑤(𝑐) =
𝑁 (𝑐)

𝑁
,

𝜇
(𝑐)
𝑀𝐿 =

1

𝑁 (𝑐)
f (𝑐),

Σ
(𝑐)
𝑀𝐿 =

1

𝑁 (𝑐)
S(𝑐) − 𝜇

(𝑐)
𝑀𝐿𝜇

(𝑐)
𝑀𝐿

𝑇
.

(4.26)

Repeating the E- and M-steps guarantees not to decrease the likelihood. The algorithm
stops when the likelihood increase between two consecutive iterations is under a selected
threshold.

Universal Background Model

In the SV, GMM is mainly used to train the Universal Background Model (UBM). The
UBM serves as a representation of a space of acoustic features independent of the speaker.
For a proper training of a UBM, we need large amounts of data [Burget et al., 2007], ideally
from the target domain. If the domain is not known, it is desirable to provide the highest
possible variability in the training data: speakers of different genders, different acoustic
environments, different types of microphones. The amount of available training data then
usually affects the number of model components. Improperly selected number of compo-
nents or small amount of training data can lead to overtraining of the model. Initialization
forms an integral part of GMM training. There are several ways to initialize the training
and an excellent type of initialization is to use a K-means algorithm [Bishop, 2006], then
the 𝜇 and Σ parameters can be set on the basis of the data assigned to each cluster. Pro-
gressive Gaussian splitting represents another approach (used in this work and including
diagonal covariance matrices). The model starts as a single Gaussian model. After a se-
lected number of training iterations, each component is duplicated. The two components
are shifted in the highest variability directions. This algorithm is described in more detail
in [Glembek, 2012].

MAP Adaptation

Another approach of how to estimate parameters of the GMM model is the maximum a-
posteriori criterium (MAP). In the ML approach, we consider model parameters as unknown
but fixed. In MAP, model parameters are random variables. Generally, the parameters are
computed as:

𝜃𝑀𝐴𝑃 = arg max
𝜃

𝑝(𝜃|Ô), (4.27)

where 𝑝(𝜃|Ô) is the posterior probability for the parameter 𝜃, given by input data Ô:

𝑝(𝜃|Ô) =
𝑝(Ô|𝜃)𝑝(𝜃)

𝑝(Ô)
. (4.28)

𝑝(Ô) does not depend on 𝜃, therefore it can be omitted:

𝑝(𝜃|Ô) ∝ 𝑝(Ô|𝜃)𝑝(𝜃). (4.29)

36

Equation (4.27) can be transformed into:

𝜃𝑀𝐴𝑃 = arg max
𝜃

𝑝(Ô|𝜃)𝑝(𝜃). (4.30)

We can notice that ML is a particular case of MAP, where 𝑝(𝜃) is flat. MAP approach is
very advantageous in moments when we have a small amount of training data that would
not lead to a robust estimate of model parameters by the ML method. However, the
prerequisite is the presence of a good a-priori distribution of parameters 𝑝(𝜃).

In SV, the UBM model, previously trained on a larger amount of data, usually serves as
a source of prior information. In the MAP approach, usually, only part of the parameters
are trained (mean 𝜇); the rest of the parameters remain shared with the UBM. We often
call this process MAP adaptation. A smaller amount of data would not lead to a robust
estimates of covariance matrices Σ.

MAP mean adaptation can be expressed as:

𝜇
(𝑐)
𝑀𝐴𝑃 = 𝛽(𝑐)𝜇

(𝑐)
𝑀𝐿 + (1− 𝛽(𝑐))𝜇

(𝑐)
𝑈𝐵𝑀 , (4.31)

with
𝛽(𝑐) =

𝑁 (𝑐)

𝑁 (𝑐) + 𝜏
, (4.32)

where 𝜇
(𝑐)
𝑈𝐵𝑀 is original UBM mean, 𝜇

(𝑐)
𝑀𝐿 is ML estimation of mean by given data and

𝑁 (𝑐) are zero-order statistics. The 𝜏 constant is usually referred to as a relevance fac-
tor [Reynolds et al., 2000]. It controls the trade-off between the original UBM model and
ML estimation. With decreasing value of 𝜏 , 𝛽(𝑐) increases, which means that more emphasis
is put on 𝜇

(𝑐)
𝑀𝐿 than 𝜇

(𝑐)
𝑈𝐵𝑀 . With the increasing amount of adaptation data, 𝛽(𝑐) increases,

leading to more weight being put on 𝜇
(𝑐)
𝑀𝐿.

4.1.2 i-vectors

Super-vectors are the first concept of utilizing a generative model and representing variable-
length utterance by a fixed-length vector. The term super-vector usually refers to a vector
of concatenated mean values of GMM model components. The super-vector then repre-
sents an arbitrarily long recording with a fixed-length vector [Kinnunen and Li, 2010]. The
disadvantage of the super-vector lies in its relatively large dimensionality. Assuming the
𝐶-components of the GMM model modeling the 𝐹 -dimensional features, we obtain a 𝐶𝐹 -
dimensional super vector for each utterance, see (4.6). GMM uses unsupervised training,
and speaker labels are not necessary during the training. Regarding this fact, the super-
vector does not represent only the desired information about the speaker. It also carries
information about the entire domain (channel, language, etc.) in the recording. Consider-
ing that MAP adaptation is a method of extracting a super-vector, another problem arises
in the case of short recordings. The short utterance may not cover all the components of
the GMM model of acoustic space. Some sub-vectors 𝜇

(𝑐)
𝑠𝑝𝑘 from the speaker super vector

𝜇𝑠𝑝𝑘 could remain unchanged in comparison to 𝜇
(𝑐)
𝑈𝐵𝑀 . So, in case of the super-vector

approach, we have some high-dimensional space, in which only subspace brings us some in-
teresting variability. This fact gave rise to a considerable amount of work dealing with sub-
space modeling as eigen-voices in SV [Thyes et al., 2000, Kenny et al., 2003], eigen-channel
adaptation [Brümmer, 2004], Joint Factor Analysis [Kenny, 2005], Within-Class Covariance

37

Normalization [Hatch et al., 2006], i-vectors [Dehak et al., 2010] or multinomial sub-space
models in prosodic SV [Kockmann, 2012].

The i-vector approach has become a prevalent technique in speaker recognition. Over
time, it has found a place in other fields of speech processing as well: ASR [Saon et al., 2013],
LID [Martínez et al., 2011], or age estimation [Silnova et al., 2015].

For many years, the i-vectors have been the state-of-the-art technique in the speaker
verification field. The beginning of i-vectors is dated to the John Hopkins University summer
workshop on Robust Speaker Recognition in 2008 [Burget et al., 2008]. At the time, Joint
Factor Analysis (JFA, for more details see [Kenny, 2005, Kenny et al., 2007]) was the state-
of-the-art technology, and it was one of the topics to be investigated at the workshop.
One of the research directions was to use the JFA as a feature extraction. Experiments
were conducted with the speaker factors from JFA being used as low-dimensional features
for SVM classifier. A similar experiment with channel factors of JFA also demonstrated
acceptable performance, suggesting that even channel factors contained a fair amount of
information about the speaker.

On the basis of this finding, [Dehak et al., 2010] proposed a reduction of JFA to a
model with a single subspace that would represent a total variability information. Later,
this system was simplified and optimized [Glembek et al., 2011b, Cumani and Laface, 2013,
Cumani and Laface, 2014].

Theoretical Background

The main idea behind the i-vector model lies in a transformation of a high-dimensional
super-vector 𝜇 into a low-dimensional subspace while retaining significant variability of the
original space. Speaker- and channel-dependent super vector 𝜇 can be modeled as:

𝜇 = m + T𝜑, (4.33)

where m represents mean super-vector of UBM GMM, T is a low-rank matrix representing
𝑀 bases spanning important variability in mean super vector space, and 𝜑 is a random
𝑀 -dimensional vector with a standard normal prior distribution:

𝑝(𝜑) = 𝒩 (0, I). (4.34)

Prior distribution of 𝜇 is given as

𝑝(𝜇) = 𝒩 (m,TT𝑇). (4.35)

Likelihood Definition

In case of parameter estimation, we begin with a general log-likelihood function as defined in
Section 4.1.1. For simplification, we consider a fixed alignment [Kenny, 2005] and sufficient
statistics collected by UBM as defined in Section 4.1.1. With this assumption, the log-
likelihood acts as the lower-bound to the real log-likelihood.

38

For all observations, 𝑂𝑖 = [o1,o2, . . . ,o𝑁] from utterance 𝑖, the log-likelihood can be
decomposed as:

log 𝑝(O𝑖|𝜑𝑖,T) = 𝐻(𝜑𝑖) + 𝐺

𝐻(𝜑𝑖) = 𝜇𝑖Σ
−1f𝑖 −

1

2
𝜇𝑇
𝑖 N𝑖Σ

−1𝜇𝑖

𝐺 =

𝐶∑︁
𝑐=1

𝑁 (𝑐) 1

(2𝜋)𝐹/2|Σ(𝑐)|1/2
− 1

2
tr(Σ−1S𝑖)−

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝛾
(𝑐)
𝑖 log

𝛾
(𝑐)
𝑖

𝑤(𝑐)
,

(4.36)

where N𝑖, f𝑖, S𝑖 are stacked zero-, first-, and second-order statistic collected by the UBM.
Σ is block diagonal covariance matrix, composed as in (4.7). The term 𝐺 is independent
of 𝜇𝑖, and it is set to constant. By substituting 𝜇𝑖 with (4.33), 𝐻(𝜑𝑖) can be re-written as:

𝐻(𝜑𝑖) = m𝑇Σ−1f̃𝑖⏟ ⏞
0

+𝜑𝑇
𝑖 T

𝑇Σ−1f̃𝑖

− 1

2
m𝑇N𝑖Σ

−1m⏟ ⏞
0

−1

2
𝜑𝑇
𝑖 T

𝑇N𝑖Σ
−1T𝜑𝑖 −m𝑇N𝑖Σ

−1T𝜑𝑖⏟ ⏞
0

.
(4.37)

With first-order statistics centered around UBM means:

f̃
(𝑐)
𝑖 = f

(𝑐)
𝑖 −𝑁

(𝑐)
𝑖 m(𝑐)

m(𝑐) ← 0.
(4.38)

This allows us to effectively treat the UBM means m as a vector of zeros, leading us to
another simplification:

𝐻(𝜑𝑖) = 𝜑𝑇
𝑖 T

𝑇Σ−1f̃𝑖 −
1

2
𝜑𝑇
𝑖 T

𝑇N𝑖Σ
−1T𝜑𝑖. (4.39)

The joint log-likelihood of hidden variable 𝜑𝑖 and oservation O𝑖 is given as:

𝑝(O𝑖,𝜑𝑖|T) = log 𝑝(O𝑖|𝜑𝑖,T) + log 𝑝(𝜑𝑖)

log 𝑝(𝜑𝑖) = log𝒩 (𝜑𝑖;0, I) = −1

2
𝜑𝑇
𝑖 𝜑𝑖 + 𝐾

𝑝(O𝑖,𝜑𝑖|T) = 𝜑𝑇
𝑖 T

𝑇Σ−1f̃𝑖 −
1

2
𝜑𝑇
𝑖 T

𝑇N𝑖Σ
−1T𝜑𝑖 −

1

2
𝜑𝑇
𝑖 𝜑𝑖 + 𝐾,

(4.40)

where 𝐾 is a constant, independent of 𝜇 and T. Omitting 𝐾, the posterior distribution of
the hidden variable 𝜑𝑖, given observation O𝑖 for utterance 𝑖, is given as:

𝑝(𝜑𝑖|O𝑖) ∝ log 𝑝(O𝑖,𝜑𝑖) ∝ 𝜑𝑇
𝑖 T

𝑇Σ−1f̃𝑖 −
1

2
𝜑𝑇
𝑖 (T𝑇N𝑖Σ

−1T− I)𝜑𝑖. (4.41)

Using completion of squares, the posterior distribution 𝑝(𝜑𝑖|O𝑖) is also Gaussian, for each
set of input features O𝑖 = [o1,o2, . . . ,o𝑁]:

𝑝(𝜑𝑖|O𝑖) = 𝒩 (𝜑𝑖;𝜑𝑖,L
−1
𝑖), (4.42)

where “i-vector” is the MAP point estimate of the variable 𝜑𝑖, with mean vector 𝜑𝑖 and
precision matrix L𝑖):

39

𝜑𝑖 = L−1
𝑖 T𝑇Σ−1f𝑖 (4.43)

L𝑖 = I +
𝐶∑︁
𝑐=1

𝑁
(𝑐)
𝑖 T(𝑐)𝑇Σ(𝑐)−1

T(𝑐). (4.44)

The input data representing an observation 𝑂 are zero- and first-order statistics (as defined
in Section 4.1.1). T(𝑐) represents sub-matrix of T corresponding to mixture component 𝑐:

T =

⎡⎢⎢⎢⎣
T(1)

T(2)

...
T(𝐶)

⎤⎥⎥⎥⎦ . (4.45)

Projection Matrix Estimation

When estimating T, the objective is to maximize the likelihood 𝑝(O𝑖|𝜑𝑖,T) over the training
data. Similar to GMM, we use the EM algorithm for T-matrix estimation. It comprises two
steps that are repeated iteratively. Again, for E-step, we compose the auxiliary function
[Brümmer, 2009] (to simplify writing, ⟨. . . ⟩ represent expectation E[. . .]):

𝑄(T,T0) =
∑︁
𝑖

⟨
log 𝑝(𝑂𝑖,𝜑𝑖|T0)

⟩
(4.46)

log 𝑝(O𝑖,𝜑𝑖|T0) = log 𝑝(𝑂𝑖|𝜑𝑖,T0) + log 𝑝(𝜑𝑖), (4.47)

log 𝑝(𝜑𝑖) is set to the standard normal distribution and kept fixed. There is no need to
re-estimate parameters of 𝑝(𝜑𝑖) as any change in prior distribution can be equivalently
accomplished by appropriately changing 𝜇 and T. We can simplify the auxiliary function:

𝑄(T,T0) =
∑︁
𝑖

⟨
log 𝑝(𝑂𝑖|𝜑𝑖,T0)

⟩
𝒩 (𝜑;𝜑𝑖,L

−1
𝑖)

=
∑︁
𝑖

⟨
𝜑𝑇
𝑖 T

𝑇Σ−1f̃𝑖 −
1

2
𝜑𝑇
𝑖 T

𝑇N𝑖Σ
−1T𝜑𝑖

⟩

=
∑︁
𝑖

[︂
tr
(︁
⟨𝜑𝑖⟩𝑇T𝑇Σ−1f̃𝑖

)︁
− 1

2
tr
(︁
⟨𝜑𝑖𝜑

𝑇
𝑖 ⟩T𝑇N𝑖Σ

−1T
)︁]︂

.

(4.48)

In this section, we defined the normalized statistics around the GMM mean (4.38). This
operation allows us to treat GMM mean super-vector m as a vector of zeros. Next, we can
normalize first-order statistic f𝑖 and T matrix by GMM covariance:

f̄
(𝑐)
𝑖 = Σ(𝑐)−

1
2 f

(𝑐)
𝑖 (4.49)

T̄(𝑐) = Σ(𝑐)−
1
2 T(𝑐), (4.50)

40

where Σ(𝑐)−
1
2 is a symmetrical decomposition (such as Cholesky) of an inverse of the GMM

UBM covariance matrix Σ(𝑐). As a result, GMM covariance is equal to an identity matrix:
Σ(𝑐) = I. This leads to further simplification:

𝑄(T,T0) =
∑︁
𝑖

[︂
tr
(︁
f̃𝑖⟨𝜑𝑖⟩𝑇T𝑇

)︁
− 1

2
tr
(︁
⟨𝜑𝑖𝜑

𝑇
𝑖 ⟩T𝑇N𝑖T

)︁]︂
=
∑︁
𝑖

[︂
tr
(︁
C𝑖T

𝑇
)︁
− 1

2
tr
(︁
A𝑖T

𝑇N𝑖T
)︁]︂

,

(4.51)

where
C𝑖 = f̃𝑖⟨𝜑𝑖⟩𝑇 ,
A𝑖 = ⟨𝜑𝑖𝜑

𝑇
𝑖 ⟩ = ⟨𝜑𝑖⟩⟨𝜑𝑇

𝑖 ⟩+ L−1
𝑖 .

(4.52)

Setting the derivation to zero, we can get a closed-form solution for estimation of hyperpa-
rameters:

d𝑄(T,T0)

dT(𝑐)
=
∑︁
𝑖

[︂
C

(𝑐)
𝑖 −

(︁
𝑛
(𝑐)
𝑖 A𝑖T

(𝑐)
)︁]︂

= 0, (4.53)

with accumulators, collected during the E-step:

T(𝑐) =
∑︁
𝑖

C
(𝑐)𝑇

𝑖

(︁
𝑛
(𝑐)
𝑖 A𝑖

)︁−1
. (4.54)

The presented framework allows for different settings of dimensionalities for T. Note
that training of T does not require any speaker labels, i.e. it is trained in an unsupervised
way. As a consequence, the i-vector contains both wanted and unwanted variability of the
target classification task.

4.2 Discriminatively Trained Embedding — x-vector
The x-vectors represent an evolutionary step in the extraction of fixed-length feature vectors
from recordings of any length. In Section 4.1, we described this issue from the point of
view of generative models that resulted in the i-vector approach. With the impending
mass deployment of neural networks, efforts to use this technology have intensified. The
first experiments have originated in the GMM and i-vectors approach, in which the NN
replaced or improved a single individual component in the i-vector extractor pipeline. This
gave rise to techniques such as bottleneck features [Song et al., 2013, Yaman et al., 2012],
DNN alignment [Lei et al., 2014], or Discriminatively Trained PLDA (DPLDA, described
in [Burget et al., 2011]).

The individual parts were always trained for their given sub-task and they were not fully
optimized for SV. The work of NN-based End-to-End SV by [Rohdin et al., 2018] was one of
the attempts addressing this shortcoming. In this work, the authors proposed to replicate
each component of the i-vector system with feed-forward NN. Each NN component was
individually trained to mimic the original i-vector component. After the initial component-
by-component training, the connected sub-networks were re-trained together. This resulted
in a relatively large NN with a binary output for target/non-target trials.

The logical step was to experiment with discarding of the original concept of i-vectors
and using NN independently of the original topology. Several works dealing with the

41

issue were published, such as Sequence summarizing neural network (SSNN) for speaker
adaptation in ASR [Veselý et al., 2016], SSNN for LID [Pešán et al., 2016] or End-to-End
SV by [Snyder et al., 2016], which came up with a new approach based purely on NNs.

Again, the systems have to deal with different lengths of utterance (sequences of input
feature vectors). Most of the NNs in the mentioned works can be represented by the general
model in Figure 4.2, in which the NN can be divided into three key parts:

The first part comprises processing of the feature vectors or their contexts and still
generating a sequence of internal representations of variable length. This sequence rep-
resents the input to the next part of the network; we refer to it as the pooling layer, in
which the sequence is reduced to a vector of a fixed length. Various methods can be used:
In [Pešán et al., 2016], this was achieved by a calculation of mean over temporal dimension.
In [Snyder et al., 2016], mean and standard deviation were used. This is followed by the
part of the network with an embedding extractor. In [Pešán et al., 2016], mean val-
ues were used without any change and in [Snyder et al., 2016], several hidden dense layers
were used. The last part of the network is the classifier, defined by the target task. For
example, in [Pešán et al., 2016], the authors used multi-class logistic regression (directly
targeting the task of language classification), on the other hand, [Snyder et al., 2016] used
discriminative Probabilistic Linear Discriminant Analysis (PLDA)-like classifier.

Snyder’s approach was an exciting concept, in which a neural network with a fraction
of parameters compared to the i-vector model was able to achieve very competitive results.
The disadvantage of neural nets lies in the need for in-domain data to make the system
efficient (because of DPLDA). The binary output also requires paying more attention to
batch creation for proper training.

Later, this system was modified in [Snyder et al., 2017]. The concept of the essential
parts of NN was retained, but the classifier was replaced with a multi-class logistic regression
with a class for each speaker in the training set, which deviates from the original end-to-end
concept. The new concept does not allow direct use in speaker verification. The NN only
serves as an embedding extractor. For the comparison itself, other techniques are used,
usually Heavy-tailed PLDA (HPLDA) or cosine-similarity scoring (described in Section 5).

The research community has quickly adopted this approach and called the output em-
bedding x-vector. Later, the term “x-vectors” has been widely adopted to describe any
embedding that had been extracted using a NN, regardless of its exact topology.

4.2.1 Time Delayed Neural Network

Before we describe the x-vector topology itself, let us take a closer look at the type of network
that handles the context of input features. Time Delay Neural Network (TDNN) is a type
of multi-layer feed-forward deep neural network. First introduced in [Waibel et al., 1989],
it was subsequently improved for better training efficiency in [Peddinti et al., 2015].

The motivation for using TDNN was to replace the Recurrent Neural Networks (RNN)
in learning of long-term time dependencies. The training time of RNN is higher than feed-
forward networks because of the sequential nature of the learning algorithm. TDNN is
used to learn long-term time dependencies from longer contexts of standard features and it
achieves similar learning speed to other forward networks [Peddinti et al., 2015].

An example of a TDNN scheme is shown in Figure 4.2. A standard DNN learns an affine
transformation of the whole input context during processing of a wide time context in the
first layer of the DNN. On contrary, TDNNs are learning to transform narrow context only
in the first layer. Deeper layers process hidden activations from a broader temporal context,

42

Figure 4.1: Original TDNN used for ASR. (Source: [Peddinti et al., 2015])

hence the ability of the higher layers to learn broader temporal relationships. Since each
layer works with a different width of context, the layers have varying temporal resolution,
which further increases with every deeper layer.

The transformations in the TDNN architecture are tied across time steps, therefore,
during back-propagation, the lower layers of the network are updated by a gradient accu-
mulated over all the time steps of the input temporal context. The TDNN is defined by
the context of each layer that it uses to calculate its activation.

4.2.2 Original x-vector Network

An x-vector extractor is a feed-forward neural network that can compute a speaker embed-
ding from variable-length series of input features. Let us now mainly focus on the original
network design, published in [Snyder et al., 2017]. The topology of the neural network is
depicted in Figure 4.2. As mentioned earlier, the network can be divided into three essential
parts:

∙ Frame-level layers

∙ Statistics pooling layer

∙ Additional layers with classifiers

The frame-level part operates on speech (feature) frames. The primary purpose of
this part of the network is to collect frame context information into frame-level network
representation. A statistics pooling layer then aggregates over the frame-level representa-
tions into a segment representation. Additional layers then operate at the segment-level,
and finally a soft-max output layer provides the means for training the whole network via
multi-class cross-entropy. Throughout the whole network, Rectified linear units (ReLUs)
are used as activation functions.

The original x-vector network consists of five frame-level TDNN-layers. Let us suppose 𝑡
is the current time step. At the input, we splice together frames at {𝑡−2, 𝑡−1, 𝑡, 𝑡+1, 𝑡+2}.

43

Statistic pooling

frame-level

segment-level

o1,o2,o3,...,oT

P(spkri |o1,o2,o3,...,oT)

embedding a

embedding b

Figure 4.2: Diagram of an x-vector NN with two variants of embeddings (embedding a and
embedding b) extracted from the network layers after the statistics pooling layer.

The next two layers splice the output of the previous layer together at times {𝑡− 2, 𝑡, 𝑡+ 2}
and {𝑡− 3, 𝑡, 𝑡 + 3}, respectively. The following two layers also operate on the frame-level,
but without any added temporal context. The size of the layers varies from 512 to 1536
based on the used splicing context. Overall, the frame-level part of the network prepares
frame-level representation from the time context of 𝑡− 8 to 𝑡 + 8.

The statistics pooling layer receives the output of the final frame-level layer as an input,
aggregates input segments over the time, and computes their mean and standard deviation.

These segment-level statistics are concatenated and forwarded to two additional hidden
layers with dimension of 512. The two layers may be used to compute the embedding
(x-vector). The last layer consists of a soft-max output. Initially, there were two variants
of embeddings based on the layer used for extraction, embedding-a, and embedding-b (as
depicted in Figure 4.2). Later, embedding-b became the standard.

The network is trained to classify training speakers using a multiclass cross-entropy
objective function:

𝐸 = −
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑑𝑛𝑘 log𝑃 (𝑠𝑝𝑘𝑘|o𝑛𝑇), (4.55)

where 𝑃 (𝑠𝑝𝑘𝑘|o𝑛𝑇) is the probability of speaker 𝑘 given 𝑇 input frames o𝑇 . The quantity
𝑑𝑛𝑘 is 1 if the speaker label for segment is 𝑘, otherwise it is 0. We assume there are 𝑁
training segments with 𝐾 speakers.

4.2.3 Variants of x-vector Network

For the sake of completeness, let us mention further development. Since the conception of
x-vectors, there have been numerous variants; let us mention a few. The original topology

44

Table 4.1: Example of ETDNN variant of x-vector architecture.

Layer Layer Type Context Size

1 TDNN-ReLu t-2:t+2 512
2 Dense-ReLu t 512
3 TDNN-ReLu t-2,t,t+2 512
4 Dense-ReLu t 512
5 TDNN-ReLu t-3,t,t+3 512
6 Dense-ReLu t 512
7 TDNN-ReLu t-4,t,t+4 512
8 Dense-ReLu t 512
9 Dense-ReLu t 1500
10 Pooling (mean + std) 1:T 2 × 1500
11 Dense(Embedding)-ReLu - 512
12 Dense-ReLu - 512
13 Dense-Softmax - K

from [Snyder et al., 2017] was extended into multiple variants. In [Snyder et al., 2019], the
authors introduce a variant, in which the frame-level part of the network is modified. Each
TDNN-layer is followed with a single dense layer (also referred to as ETDNN). The final
topology is summarized in Table 4.1.

Later, TDNN frame-level part of the network was replaced with a factorized TDNN
with skip connections [Povey et al., 2018]. The FTDNN reduces the number of parameters
of the network. The idea is to factor the weight matrix of each TDNN layer into a product
of two low-rank matrices. The first of these factors is constrained to be semi-orthogonal.
Semi-orthogonal constraints are expected to ensure that we do not lose information when
projecting to a low-rank dimension. The final topology is summarized in Table 4.2.

In another variant, TDNN frame-level part is replaced with a residual network with
2D convolutions (ResNet) introduced in [He et al., 2016]. This topology was also used in
a modified variant, in which the pooling layer was replaced with a learnable dictionary
encoding (LDE) layer [Cai et al., 2018]. The LDE pooling assumes that frame-level rep-
resentations are distributed in 𝐶 clusters. The network learns a dictionary with cluster
centers. This brings to mind the GMM i-vector paradigm.

There has also been a development in the objective function. Studies were concluded
using Large Margin Cosine Loss [Deng et al., 2019]: this objective function was proven to
be very successful, especially when using cosine similarity as a method of calculating the
score (as described in Section 5.1). Formally, we define the Large Margin Cosine Loss as:

𝐿 =
1

𝑁

𝑁∑︁
𝑖=1

𝑒𝑠(cos(𝜃𝑦𝑖,𝑖)−𝑚)

𝑒𝑠(cos(𝜃𝑦𝑖,𝑖)−𝑚) +
∑︀

𝑗 ̸=𝑦𝑖
𝑒𝑠 cos(𝜃𝑗,𝑖)

(4.56)

subject to
W =

W*

‖W*‖
,

x =
x*

‖x*‖
,

cos(𝜃𝑗,𝑖) = W𝑇
𝑗 x𝑖,

(4.57)

45

Table 4.2: Example of F-TDNN variant of x-vector architecture.

Layer Layer Type Context
factor 1

Context
factor 2

Skip conn.
from layer Size Inner

size

1 TDNN-ReLu t-2:t+2 512
2 FTDNN-ReLu t-2,t t, t+2 725 180
3 FTDNN-ReLu t t 725 180
4 FTDNN-ReLu t-3,t t, t+3 725 180
5 FTDNN-ReLu t t 3 725 180
6 FTDNN-ReLu t-3,t t, t+3 725 180
7 FTDNN-ReLu t-3,t t, t+3 2,4 725 180
8 FTDNN-ReLu t-3,t t, t+3 725 180
9 FTDNN-ReLu t t 4,6,8 725 180
10 Dense-ReLu t 1500
11 Pooling (mean + std) 1:T 2 × 1500
12 Dense(Embedding)-ReLu - 512
13 Dense-ReLu - 512
14 Dense-Softmax - K

where 𝑁 is the number of training samples, x𝑖 is the i-th feature vector corresponding to
the class label of 𝑦𝑖, W𝑗 is the weight vector of the class 𝑗 and 𝜃𝑗,𝑖 is the angle between W𝑗

and x𝑖.

4.3 x-vectors vs. i-vectors
Let us briefly look at the fundamental difference between i-vectors and x-vectors. It lies
in the principle of training. I-vector training is unsupervised with the goal to be the best
possible low-dimensional representation of the original acoustic space (more precisely, rep-
resentation of the GMM means hyperparameter subspace). As a result, i-vectors carry
information not only about the speaker, but about all acoustic and linguistic conditions
influencing the recording. From the speaker verification point of view, this represents an
unwanted variability. From a broader data mining point of view, this is relatively advan-
tageous — i-vectors represent a universal embedding, and one i-vector extractor system
can also be used for other applications (e.g. language recognition, gender recognition). In
contrast, x-vectors are trained to discriminate speakers. During their training, labels of
speaker’s identities in the training data are needed. Therefore, x-vector training is super-
vised. During the training, the x-vectors are forced to represent the speaker as best as
possible, and, ideally, to eliminate any unwanted variability from the representation. This
can result in a higher accuracy of speaker verification. However, they can be less suitable
in other areas (language recognition) if trained for SV.

46

Chapter 5

Scoring

In this section, we describe the techniques used for comparison of two embeddings. We
do this w.r.t. i-vectors due to historical context, however, the techniques are general and
suitable for use with any type of embedding described in this work.

5.1 Cosine Similarity Scoring
In one of the first ways using i-vectors for speaker verification [Dehak et al., 2010], the
authors used the Support Vector Machine (SVM) classifier. They used cosine distance as
the kernel function for this classifier, for two i-vectors 𝜑1 and 𝜑2, given as:

𝑠(𝜑1,𝜑2) =
𝜑𝑇
1 𝜑2

‖𝜑1‖‖𝜑2‖
, (5.1)

where 𝜑𝑇
1 𝜑2 is an inner-product (dot product) of i-vectors, and ‖ · ‖ is an Euclidean length.

However, better results were obtained by using the cosine distance directly as a scoring
method. Note that such a score cannot be interpreted as a log-likelihood ratio (LLR) and
must be calibrated [Brümmer, 2010] if needed. The advantage of the cosine scoring lies in
low computational complexity. Note that the scores obtained in this way are symmetric
and independent of possible swapping of enrollement and test i-vectors.

In the case of raw i-vectors, this method cannot be expected to be very accurate as it does
not take into account the inter-session variability. PLDA explicitly models this variability
(as discussed in Section 5.3). Experiments have been performed with several techniques that
try to solve this modeling-related problem, such as Linear Discriminant Analysis (LDA),
followed by Within-class Covariance Normalization (WCCN). Later, we discuss the use of
cosine scoring in more detail for systems based on discriminative embeddings.

5.2 Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) has found its place as a commonly performed step in
the i-vector scoring pipeline. LDA aims at finding a linear subspace of the embedding space
in which the classes (speakers) are best linearly separable.

We are looking for a linear transformation, where the original vector x from the 𝑚−dimensional
space is transformed into the 𝑛−dimensional space using the 𝑛×𝑚 dimensional projection
matrix A:

47

y𝑖 = Ax𝑖. (5.2)

The best class separability can be achieved by a transformation that maximizes variance
between classes while minimizing variance within classes (see Figure 5.1). This can be
achieved using the Fisher discriminant ratio optimization criterion—a ratio between across-
class and within-class variability [Bishop, 2006]:

𝐽(A) = tr{(AΣ𝑤𝑐A
𝑇)−1(AΣ𝑎𝑐A

𝑇)}, (5.3)

where Σ𝑎𝑐 and Σ𝑤𝑐 are across-class and within-class covariance matrices, defined as:

Σ𝑎𝑐 =
𝐾∑︁
𝑘=1

𝑁𝑘(𝜇𝑘 − 𝜇)(𝜇𝑘 − 𝜇)𝑇 (5.4)

Σ𝑤𝑐 =
𝐾∑︁
𝑘=1

∑︁
𝑛∈𝐶𝑘

(x𝑛 − 𝜇𝑘)(x𝑛 − 𝜇𝑘)𝑇 , (5.5)

with class-dependent mean vectors

𝜇𝑘 =
1

𝑁𝑘

∑︁
𝑛∈𝐶𝑘

x𝑛 (5.6)

(5.7)

and global mean vector

𝜇 =
1

𝑁

𝐾∑︁
𝑘=1

𝑁𝑘𝜇𝑘. (5.8)

The solution for A is given by 𝑚 eigenvectors of Σ−1
𝑤𝑐Σ𝑎𝑐 corresponding to the 𝑚 largest

eigenvalues. For 𝑚-dimensional subspace, the data must contain at least 𝑚 + 1 classes; in
other words, 𝑚 ≤ 𝑘 − 1.

5.3 Probabilistic Linear Discriminant Analysis
Initially, this technique was introduced for the purpose of face recognition [Prince and Elder, 2007].
In recent years, PLDA has become a state-of-the-art technique for comparison of embed-
dings in verification tasks.

In the PLDA model, i-vector 𝜑 is considered to be a realization of a random variable,
whose generation process can be described in terms of hidden variables. A number of various
related models exist. Some of these models use different number of hidden variables, some
use different priors. The two most popular variants are Gaussian PLDA, which assumes
Gaussian priors, and Heavy-tailed PLDA, in which Student t-distribution is imposed on the
priors. This heavy-tailed model can provide an improvement in terms of accuracy, but it is
computationally more demanding [Kenny, 2010]. However, there is no close-form solution
for the posterior probability. The advantage of the Heavy-tailed PLDA lies in the ability
of the model to cope with raw i-vectors without previous normalization. It was shown
that length-normalization helps Gaussian PLDA to achieve results comparable to Heavy-
tailed PLDA [Garcia-Romero and Espy-Wilson, 2011]. This improvement is caused by the

48

LDA projection
plane

Speaker A
Speaker B

Speaker C

Speaker D

𝚺wc

𝚺tot

𝚺ac

Figure 5.1: Demonstration of LDA (and also PLDA) assumptions about data. The bold
dots correspond to the speaker means in the embedding space. The conditional distribution
of embeddings around the speaker means sharing within the covariance matrix Σwc. The
distribution of all speaker means is then shown as a Gaussian with a covariance matrix Σac.

concentration of the probability mass of the Gaussian distribution in high-dimensional
space. The length-normalization forces the i-vector to lie on a unit sphere, which brings
them to the mass concentration in the Gaussian distribution shell.

5.3.1 General PLDA

The original PLDA model [Prince and Elder, 2007] assumes hat the i-vector 𝜑 is decom-
posed as:

𝜑 = 𝜇 + 𝑉 𝑦 + 𝑈𝑥 + 𝜖, (5.9)

where 𝜇 is i-vector mean value, 𝑉 represents the speaker subspace, 𝑈 represents channel
subspace, 𝑦 and 𝑥 are hidden variables representing speaker and channel. 𝑈 , 𝑉 are typically
low-rank matrices, representing speaker- and channel-subspace, respectively. 𝜖 is a random
variable representing a residual noise in data (𝜖 can be calculated once 𝑦 and 𝑥 are known).
Aforementioned across- and within- class covariance matrix would be given as Σ𝑎𝑐 = 𝑉 𝑉 𝑇

and Σ𝑤𝑐 = 𝑈𝑈𝑇 . For hidden variables, we assume a-priori normal distributions:

𝑝(𝑦) = 𝒩 (𝑦;0, 𝐼)

𝑝(𝑥) = 𝒩 (𝑥;0, 𝐼)

𝑝(𝜖) = 𝒩
(︀
𝜖;0,𝐷−1

)︀
,

(5.10)

49

where 𝐷 is 𝑀 ×𝑀 diagonal covariance matrix of residual data variability.

5.3.2 Two Covariance PLDA

Another special kind of PLDA is two-covariance model, presented in [Brümmer and Villiers, 2010].
In this PLDA model, we assume that speaker- and channel-variability can be modeled by
two Gaussians, with covariance matrices Σ𝑎𝑐 (sometimes called as across class covariance
matrix) and Σ𝑤𝑐 (sometimes called as within class covariance matrix).

In the two covariance model, speaker identity is represented as a hidden variable 𝑦 with
normal distribution:

𝑝(𝑦) = 𝒩 (𝑦;𝜇,Σ𝑎𝑐) , (5.11)

where 𝜇 is global mean vector and Σ𝑎𝑐 is the across-class covariance matrix. I-vector
distribution of a known speaker represented by vector 𝑦̂ is given as:

𝑝(𝜑|𝑦̂) = 𝒩 (𝜑; 𝑦̂,Σ𝑤𝑐) . (5.12)

Visualization is similar to LDA presented in Figure 5.1.

5.3.3 Trial Scoring

In speaker recognition tasks, we usually assume a pair of sets of recordings O1 = {𝜑O1
1 ,𝜑O1

2 , · · · ,𝜑O1
𝑁 }

and O2 = {𝜑O2
1 ,𝜑O2

2 , · · · ,𝜑O2
𝑀 } referred to as a trial (as described in Section 3.1). We al-

ways know that the recordings within a given set come from a single speaker. The goal
is to decide whether the speaker is identical in both sets. The evaluation is symmetrical.
There is no difference between enrollment and test set. Let us consider two hypotheses, the
first hypothesis ℋ1 states that both sets of recordings come from the same speaker, and the
second hypothesis ℋ2 represents a situation in which the speakers are different. The trial
score 𝑠(O1,O2) is then defined as a log of a ratio of joint conditional probabilities (also
referred as log-likelihood ratio or LLR) given the two respective hypotheses:

𝑠(O1,O2) = log
𝑝(O1,O2|ℋ1)

𝑝(O1,O2|ℋ2)
. (5.13)

Since the hidden variables in ℋ2 associated with the speaker identity (speaker factors) 𝑦̂1

and 𝑦̂2 are independent, we can break down the likelihood of the data and rewrite (5.13)
as:

𝑠(O1,O2) = log
𝑝(O1,O2|ℋ1)

𝑝(O1|ℋ2)𝑝(O2|ℋ2)
. (5.14)

In the case of hypothesis ℋ1, both sets O1 and O2 are from the same speaker. So they
share the same speaker factor 𝑦̂. Therefore, both O1 and O2 are generated with a 𝑝(𝑂|𝑦̂)
distribution. The product of likelihoods for O1 and O2 gives the joint likelihood that the
speaker 𝑝(𝑂|𝑦̂) generates two independent sets of i-vectors:

𝑝(O1,O2|𝑦̂) = 𝑝(O1|𝑦̂)𝑝(O2|𝑦̂). (5.15)

The likelihood that both sets come from single speaker 𝑦 is calculated by marginalization
across all possible speakers:

50

𝑝(O1,O2|ℋ1) =

∫︁
𝑝(O1,O2|𝑦)𝑝(𝑦) d𝑦

=

∫︁
𝑝(O1|𝑦)𝑝(O2|𝑦)𝑝(𝑦) d𝑦

=

∫︁ [︁ 𝑁∏︁
𝑛=1

𝑝(𝜑O1
𝑛 |𝑦)

]︁[︁ 𝑀∏︁
𝑚=1

𝑝(𝜑O2
𝑚 |𝑦)

]︁
𝑝(𝑦) d𝑦.

(5.16)

In the case of hypothesis ℋ2, both set O1 and O2 in the trial are generated from two
different speakers, with two speaker factors 𝑦1 and 𝑦2. Sets O1 and O2 are thus generated
with distributions 𝑝(O1|𝑦1) and 𝑝(O2|𝑦2). As the hidden speaker factors are independent,
the combined likelihood for both sets can be written as:

𝑝(O1,O2|𝑦̂1, 𝑦̂2) = 𝑝(O1|𝑦̂1)𝑝(O2|𝑦̂2). (5.17)

The likelihood for both sets being individually generated by any two different speakers 𝑦1

and 𝑦2 is calculated by marginalization across all possible speakers:

𝑝(O1,O2|ℋ2) =

∫︁∫︁
𝑝(O1,O2|𝑦1,𝑦2) d𝑦1d𝑦2

=

∫︁
𝑝(O1|𝑦1)𝑝(𝑦1) d𝑦1

∫︁
𝑝(O2|𝑦2)𝑝(𝑦2) d𝑦2

=

∫︁ [︁ 𝑁∏︁
𝑛=1

𝑝(𝜑O1
𝑛 |𝑦1)

]︁
𝑝(𝑦1) d𝑦1

∫︁ [︁ 𝑁∏︁
𝑛=1

𝑝(𝜑O1
𝑛 |𝑦2)

]︁
𝑝(𝑦2) d𝑦2.

(5.18)

By substitution of the conditional likelihoods (5.16) and (5.18) into (5.13), we get:

𝑠(O1,O2) = log

∫︀ [︁∏︀𝑁
𝑛=1 𝑝(𝜑O1

𝑛 |𝑦)
]︁[︁∏︀𝑀

𝑚=1 𝑝(𝜑O2
𝑚 |𝑦)

]︁
𝑝(𝑦) d𝑦∫︀ [︁∏︀𝑁

𝑛=1 𝑝(𝜑O1
𝑛 |𝑦1)

]︁
𝑝(𝑦1) d𝑦1

∫︀ [︁∏︀𝑁
𝑛=1 𝑝(𝜑O1

𝑛 |𝑦2)
]︁
𝑝(𝑦2) d𝑦2

. (5.19)

For simplification, let us assume a single-session trial, i.e. a single i-vector in both datasets
O1 = {𝜑1} and O2 = {𝜑2}. In this case, we can rewrite the log-likelihood ratio as:

𝑠(𝜑1,𝜑2) = log

∫︀
𝑝(𝜑1|𝑦)𝑝(𝜑2|𝑦)𝑝(𝑦) d𝑦

𝑝(𝜑1)𝑝(𝜑2)
. (5.20)

More detailed description can be found in [Kenny, 2010], [Villalba and Brummer, 2011]
and [Rajan et al., 2014].

51

Chapter 6

Multi-Conditional Training

Very often, models achieve high recognition accuracies on clean (or controlled) audio data
in laboratory conditions, while their performance degrades when used in real-world ap-
plications, where the audio may come from a different channel and be affected by the
environment noise and reverberation. In theory, optimal recognition performance would be
obtained in matched conditions, i.e., for system training data coming from the same domain
as the test data. Unfortunately, test conditions are often unknown or unpredictable.

Generally, when we speak about multi-conditional training — especially in connection
to generative frameworks, such as i-vectors or PLDA — we often refer to a set of techniques
rather than a single specific one. Typically, this term refers to training one or more parts
of a generative framework on multi-conditional data to improve system robustness against
some conditions. In this case, “condition” usually indicates the acoustic environment under
which the test recording was made (channel, ambient noise, reverberation, etc.), usually
unknown. Sometimes, this way of increasing the robustness of the system is also referred
to as multi-style training.

The effect of noise and reverberation on an SV system based on i-vectors is described
in [Mandasari et al., 2012] and [Ferrer et al., 2011b]. In [Mandasari et al., 2012], the au-
thors discuss the effect of babble and car noise on i-vector based SV system with cosine and
PLDA scoring. Among other things, they try to apply a Wiener filter [Wiener, 1964] to
suppress the effect of noise. Wiener filtering has the ability to reduce the perceived noise in
a signal by removing the spectral average of the noise. However, this requires having some
knowledge of the models of the signal and noise.

In [Garcia-Romero et al., 2012], the authors focus on a wider range of noises. They
propose an extension in which the final verification score is a soft mixture of scores produced
by a collection of 𝐾 subsystems. Each of these subsystems is trained according to a multi-
condition training scheme. Each subsystem consists of a separate PLDA model for one
of the 𝐾 conditions. The rest of the i-vector framework is shared by all 𝐾 subsystems.
However, this method has a major disadvantage — the requirement to know the probable
K-conditions occurring in the test. This also increases the memory and computational
demands during scoring by the factor of 𝐾.

A simplification of this techniques was described in [Rajan et al., 2013]. The authors
consider multi-conditional PLDA training or even multi-conditional trial scoring with more
multi-conditional recordings on the enrolment side. Their system assumes 𝐾-training en-
rollment of recordings representing different conditions in the test. The authors achieved
the best results when the multi-condition approach was used both during enrollment and
PLDA training. However, it is also necessary to take into account single-session trials, in

52

which we have only one i-vector on the enrollment and test side. In such a case, it may
be inappropriate to reproduce the enrollment i-vector with an artificial augmentation, es-
pecially if it already contains degradation in the form of other noise from the time of its
acquisition.

The idea of multi-conditional training is very interesting. However, it is necessary to
think about the correct implementation of such training. Otherwise, an incorrectly chosen
procedure could lead to a degradation of the whole system. Let us assume more training
recordings per speaker, with some form of degradation (noise, reverberation, channel).
When each speaker in training is degraded with a different type of degradation, we face
the risk that even unwanted noise information is used to distinguish between speakers and
ends up in across-class variability during training. We need to determine the restriction
that it is necessary to suppress this variability or ensure that this variability is included in
the within-class variability of speakers.

In [McLaren and van Leeuwen, 2012], the authors studied different ways of estimating
and averaging the between-class and within-class covariance matrices. In [Lei et al., 2012],
the PLDA model is trained using pooled clean and noisy speech.

In short, the multi-condition training deals with the issue of training the system on a
dataset that includes as diverse conditions as possible, such as different speaking styles
[Lippmann et al., 1987], languages [Ghoshal et al., 2013] and others. This training ap-
proach generally contributes to an improvement in performance, even if the exact test
conditions have never been observed before [Benesty et al., 2008].

The previously cited works have focused more on the multi-conditional training of mostly
a single component throughout the pipeline — mostly PLDA. In [Ribas et al., 2015], the
authors extend the idea of multi-conditional training to the entire pipeline of the i-vector
and PLDA framework. Hence, it consists not only of re-training PLDA hyperparame-
ters but also of the UBM model and i-vector extractor T matrix. Finally, the study
in [Martínez et al., 2014] has assessed single-channel feature-domain noise compensation
methods in combination with multi-conditional training.

In the following experiments, we try to evaluate the multi-conditional training and the
scope of its effectiveness (also presented in [Novotný et al., 2019c]).

6.1 Experimental Setup
In this section, we experiment with multi-conditional training. We focus mainly on training
an i-vector extractor and a PLDA (multi-conditional training of discriminative x-vectors
is discussed later in this work). Our goal is to show that multi-conditional training is a
technique that can increase the robustness of the system against the negative influences
mentioned in Chapter 2. However, we try to answer the question of whether this technique
makes sense in all steps of the generative SV system based on i-vectors. In the experiments,
we focus mainly on noise and reverberation, because these are the two most common factors
that significantly contribute to recognition performance degradation.

6.1.1 Evaluation Set

The results of our experiments are reported on a subset of benchmarks listed in Section 3.3.5.
The evaluation metric is EER presented in Section 3.1.2.

53

6.1.2 System Description

In this system, we used MFCCs features, extracted using a 25 ms Hamming window. We
used 24 Mel-filters and we limited the bandwidth to the 120–3800 Hz range. 19 MFCCs
together with zero-th coefficient were calculated every 10 ms. This 20-dimensional feature
vector was subjected to short time mean- and variance-normalization using a 3 s sliding
window. Delta and double delta coefficients were then calculated using a five-frame window,
resulting in a 60-dimensional feature vector.

The modelling in this system is based on i-vectors. To train the i-vector extractor,
we use 2048-component diagonal-covariance Universal Background Model (GMM-UBM),
and we set the dimensionality of i-vectors to 600. We then apply LDA to reduce the
dimensionality to 200. Such i-vectors are then centered around a global mean followed by
length normalization [Dehak et al., 2010, Garcia-Romero and Espy-Wilson, 2011].

For augmenting the PLDA training set, we created new artificially corrupted training
sets from the PRISM training data. We used noises and RIRs described in Section 3.3. To
mix the reverberation, noise and signal at given SNR, we followed the procedure outlined
in Figure 3.6, but omitting the last step of applying the telephone channel. We trained the
four PLDAs with the following abbreviations used further in the text:

∙ Clean: PLDA was trained on original PRISM data, without augmentation.

∙ N: PLDA was trained on i) original PRISM data, and ii) portion (24k segments) of
the original training data corrupted by noise.

∙ RR: PLDA was trained on i) original PRISM data, and ii) portion of the original
training data corrupted by reverberation using real room impulse responses.

∙ RR+N: PLDA was trained on i) original PRISM data, ii) noisy augmented data,
and iii) reverberated data.

Note that the sizes of all 3 augmentation sets are the same. The RR+N augmentation set
was also used to train the augmented variant of the i-vector extractor T matrix.

6.1.3 Results

The comparison of our MFCC i-vector extractor trained on the original clean data and aug-
mented data is shown in Table 6.1. We see some improvement in some of the benchmarks,
but mostly a degradation. For each benchmark, the best results are highlighted in bold.
Based on highlighted resutls, we can see that multi-conditional training of only PLDA dom-
inates compared to multi-conditional training of T matrix or T matrix and PLDA. A closer
look at the best results in the case of multi-conditional training of T matrix shows that the
gain compared to T matrix trained on original data is minimal. I-vector extractor trained
on original data with multi-condition training of PLDA provides more stable and better
performance over most test benchmarks.

We believe that the reason for such a behavior is that i-vector extraction training is
unsupervised (w.r.t. speaker labels). When we add augmented data to the training list,
i-vector extractor training is forced to reserve a portion of the parameters to represent
the variability of noise and reverberation, limiting parameters for speaker variability. In
the supervised discriminative x-vector approach, we are forcing the x-vector extractor to
do the opposite: it is forced to distinguish among the speakers, and data augmentation
in training can be beneficial as we will see in Chapter 10. In PLDA, multi-conditional

54

Table 6.1: Results (EER [%]) of i-vector extractor trained on clean data (iX ORIG)
compared to i-vector extractor trained on augmented data (iX AUG). Blocks are divided
into columns corresponding to systems trained in multi-condition fashion (with noised and
reverberated data in PLDA). Each column corresponds to a different PLDA multi-condition
training set: “—” - clean condition, N - noise, RR - real reverberation, RR+N - real
reverberation + noise. Each value set in bold is the minimum in the particular benchmark.

iX ORIG iX AUG

Benchmark — N RR RR+N — N RR RR+N

tel-tel 1.99 2.39 1.99 2.74 1.98 2.44 1.96 2.86
sre16-tgl-f 21.85 21.37 21.84 21.88 22.33 21.95 22.06 22.62
sre16-yue-f 11.20 10.52 11.15 11.53 11.32 10.59 11.26 11.20

int-int 4.57 4.70 4.49 4.55 4.52 4.88 4.44 4.71
int-mic 1.85 2.09 1.86 2.00 2.11 2.17 2.04 2.02
prism,chn 1.03 1.29 0.99 0.97 0.92 1.20 0.95 1.04
sitw-core-core 10.11 10.13 10.06 10.32 10.28 10.38 10.17 10.34

prism,noi 3.72 3.02 3.65 3.42 3.79 3.03 3.73 3.26
prism,rev 2.51 2.67 2.40 2.23 2.74 2.80 2.55 2.22

BUT-RET-orig 2.29 2.56 2.30 2.33 2.56 2.68 2.47 2.64
BUT-RET-merge 14.43 14.33 13.79 11.22 11.16 11.08 10.80 9.06

training supposedly has the benefit that channel subspace is trained in such a manner that
it captures the variability provided by the condition variety, therefore it has the ability to
compensate for the channels from different conditions.

Multi-condition training of an x-vector extractor system is a more complex problem. For
generative models, such as i-vector systems, there are looser requirements on the number of
recordings in a dataset, the number of speakers in the dataset, or the number of recordings
per single speaker. X-vector systems are significantly more sensitive to these properties,
and the data-set composition must be taken into account in routine training. For this
reason, dedicated Chapter 10 is devoted to the influence of data on x-vector training.

55

Chapter 7

Speech Enhancement

Speech signals can be contaminated with many factors, e.g. noise or reverberation (as in
Section 2). By the term “speech enhancement” we generally refer to all techniques leading
to improved perceived quality of the captured speech signal.

One of the most important properties of a robust system is the ability to cope with
the distortions caused by noise, reverberation and the transmission channel itself. In
Chapter 6, we described one solution on how to tackle this problem in the last stage
of SV, where we used multi-condition training [Martínez et al., 2014, Lei et al., 2012] of
PLDA, which introduced artificial noise and reverberation variability into the within-class
variability of speakers. This approach can be further combined with a domain adapta-
tion [Glembek et al., 2014] or variability compensation [Aronowitz, 2014], which requires
having a certain amount of usually unlabelled target data. In the very last stage of
the system, SV outputs can be adjusted via various kinds of adaptive score normaliza-
tion [Sturim and Reynolds, 2005, Matějka et al., 2017, Swart and Brümmer, 2017].

Another way to increase the robustness is to focus on the quality of the input acoustic sig-
nal/features and to enhance it before it enters the SV system. Several techniques were intro-
duced in the field of microphone arrays, such as active noise canceling, beamforming, and fil-
tering [Kumatani et al., 2012]. For single microphone systems, front-ends utilize signal pre-
processing methods, for example, weighted prediction error (WPE) [Nakatani et al., 2010],
Wiener filtering, adaptive voice activity detection (VAD), gain control, etc. [ETSI, 2007].
Various designs of robust features [Plchot et al., 2013] can also be used in combination with
normalization techniques such as cepstral mean and variance normalization or short-time
Gaussianization [Pelecanos and Sridharan, 2006].

At the same time, when the NNs were finding their way into basic components of the
SV systems, the interest in the NNs has also increased in the field of signal pre-processing
and speech enhancement. An example of a classical approach to remove a room impulse
response is proposed in [Dufera and Shimamura, 2009], in which the RIR filter is estimated
by an NN. NNs have also been used for speech separation in [Yanhui et al., 2014]. A
NN-based autoencoder for speech enhancement was proposed in [Xu et al., 2014a] with
optimization in [Xu et al., 2014b] and finally, reverberated speech recognition with a sig-
nal enhancement by a deep autoencoder was tested in Chime Challenge and presented
in [Mimura et al., 2014].

In this chapter, we focus on improving the robustness of SV via DNN autoencoder as an
audio pre-processing front-end. The autoencoder is trained to learn how to map a noisy and
reverberated speech to a clean speech. The advantage of Speech enhancement as a signal-
preprocessing step can be used in various tasks, such as ASR, LID, or SV, independently on

56

le
ft-

co
nt

ex
t +

 fr
am

e
+

rig
ht

-c
on

te
xt

fr
am

e

1500 15001500

129

3999

129

Figure 7.1: Topology of the autoencoder: three hidden layers each with 1500 neurons and
hyperbolic tangent activation functions, output layer with 129 neurons and linear activation
functions representing a single frame of dennoised (cleaned) log-magnitude spectrum. The
input of the network are 31 concatenated frames of the 129-dimensional log-magnitude
spectrum.

the used feature extraction pipeline. No interventions are necessary in the original system.
This chapter is based on [Novotný et al., 2018a, Novotný et al., 2019c].

7.1 Signal Enhancement Autoencoder
Our autoencoder, introduced in [Plchot et al., 2016a] and in [Novotný et al., 2018a], con-
sists of three hidden layers with 1500 neurons in each layer. The input of the autoencoder
is a 129-dimensional log-magnitude spectrum with a context of +/- 15 frames (in total
31 × 129 = 3999-dimensional input). The output is a 129-dimensional enhanced central
frame log-magnitude spectrum, see the topology in Figure 7.1.

It was necessary to perform feature normalization during the training and then repeat a
similar process during actual denoising. We used the mean and variance normalization with
mean and variance estimated per input utterance. At the output layer, de-normalization
with parameters estimated on a clean variant of the file was used during training while
during denoising, the mean and variance were global and estimated on the cross-validation
set. Using log on top of the magnitude spectrum decreases the dynamic range of the features
and leads to a faster convergence.

As an objective function for training the autoencoder, we used the Mean Square Error
(MSE) between the autoencoder outputs from training utterances x𝑛

𝑖 and spectra of their
clean variants x𝑐

𝑖 :

𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

(x𝑛
𝑖 − x𝑐

𝑖)
2 (7.1)

57

Figure 7.2: From top to bottom: spectrogram of original clean signal, spectrogram of signal
with street noise with noise added at 10dB SNR, spectrum of enhanced corrupted signal.
The last spectrogram is from enhanced original clean signal.

We were using both clean and augmented (noisy) recordings during the training as we
wanted the autoencoder to be both robust and producing good results on relatively clean
data. An example of autoencoder input and output is shown in Figure 7.2.

7.2 Multi-Conditional Training vs. Speech Enhancement
Let us now present an experiment that focuses on the comparison of speech enhancement
using an NN autoencoder and multi-conditional training of PLDA, presented in Chapter 6,
where it was already shown that performing multi-conditional training with added noisy
and reverberated data helps significantly in SV based on i-vectors. We also discuss the
influence of quantity and type of autoencoder training data on the performance of the
analyzed SV system.

58

7.2.1 Experimental Setup

Evaluation Set

We evaluated our systems on the female portions of NIST SRE 2010 and PRISM bench-
marks listed in Section 3.3.5.

Additionally, we created new artificially corrupted evaluation sets from the NIST 2010
tel-tel benchmark. The process was the same as described in Section 3.3.3 while using the
tests portion of our noise and reverberation sets. We created seven new benchmarks:

∙ rev-tel-tel: SRE 2010 tel-tel benchmark corrupted by real room impulse responses
(reverberation).

∙ noi-*-tel-tel: SRE 2010 tel-tel benchmark corrupted by noise. We used three ranges
of noise: 0-7dB, 7-14dB, 14-21dB (range is writen on position of *, e.g. noi-0-7-tel-tel).

∙ rev-noi-*-tel-tel: SRE 2010 tel-tel benchmark corrupted by noise and real room
impulse responses. Again, we used three ranges of noise: 0-7dB, 7-14dB, 14-21dB.

The difference between these new benchmarks and the benchmarks based on the PRISM
set is in more realistic reverberation. Benchmark prism,rev is created from clean micro-
phone data corrupted with artificially generated RIRs. The new benchmarks focus on
adding a real reverberation to the telephone data. Similarly, while the prism,noi bench-
mark is created from microphone data by adding the noise at three levels of SNR (8dB,
15dB, 20dB), the new benchmarks use telephone data and randomly chosen SNR levels
from the given intervals. Additionally, the selected telephone data tend to be more difficult
than the microphone data used in the PRISM benchmarks. The recognition performance
is evaluated in terms of the EER.

System Setup

In our experiments, we used cepstral features, extracted using a 25 ms Hamming window.
We used 24 Mel-filters and we limited the bandwidth to the 120–3800 Hz range. 19 MFCCs
together with zero-th coefficient were calculated every 10 ms. This 20-dimensional feature
vector was subjected to short time mean- and variance-normalization using a 3 s sliding
window. Delta and double delta coefficients were then calculated using a five-frame window
giving a 60-dimensional feature vector. After feature extraction, voice activity detection
(VAD) was performed by VAD described in Section 1.3.

To train i-vector extractors, we always use 2048-component diagonal-covariance Uni-
versal Background Model (GMM-UBM) and we set the dimensionality of i-vectors to 600.
We apply LDA to reduce the dimensionality to 200. Such processed i-vectors are then
transformed by global mean normalization and length-normalization.

We used the PRISM training dataset definition (in Section 3.2.4) without added noise
or reverb to train UBM and i-vector extractor. Five variants of gender-independent PLDA
were trained: one only on the clean training data, the rest included also artificially added
different mixtures of noises and reverb. Artificially added noise and reverb segments totaled
approximately twenty-four thousand segments or 30 % of total number of clean segments
for PLDA training.

59

Autoencoder Variants

Fisher English database parts 1 and 2 were used for training the autoencoder. We trained
five different autoencoders for signal enhancement. Two were trained only for dereverber-
ation. The first was trained with artificially generated reverberation (AR) and the second
used real reverberation (RR). The third autoencoder was trained only for denoising (N).
The last two autoencoders were trained for both denoising and dereverberation. Again, one
of them used artificially generated RIRs (N+AR) and the second one used the real ones
(N+RR). Data and algorithm used for augmentation was described in Section 3.3.

PLDA Variants

Similarly, we created five different multi-condition training sets for PLDA. This approach
is the same as in the autoencoder training. We used exactly the same noises and reverber-
ation for segment corruption as in autoencoder training, which allowed us to compare the
performance when using the autoencoder or multi-condition training.

Results

We provide a set of results for answering two questions: (i) How does the speaker recognition
performance depend on the type of the enhancement (denoising, dereverberation, both) and
amount or type (real, artificial) of the autoencoder training data? (ii) How does using the
autoencoder compare to using the multi-condition data for SRE system training? In the
end we also combine the autoencoder with the multi-condition training and find the best
performing combination.

Our results are listed in Table 7.1. They are separated into two main blocks: PLDA
trained on the clean data and PLDA trained on the multi-condition data. Each block is
additionally separated to highlight whether the autoencoder enhancement is used or not.

In the first block, the baseline corresponds to the system where the PLDA was trained
only on the clean data without any enhancement. The next five columns represent re-
sults when using different autoencoders: N - autoencoder trained only on the noised data,
AR - autoencoder trained on the data corrupted with artificially generated RIRs, RR- au-
toencoder trained on the data corrupted with the real RIRs. N+(A/R)R - autoencoder
simultaneously trained on the data with both types of distortion (noise and reverberation).

In the second block, we list the results for multi-condition training. We trained five
different PLDAs, every time using a different mix of corrupted data added to the training
list. PLDA or autoencoder on its own cannot fully profit from the added corrupted data.
Autoencoder is able to partially remove the noise and reverberation from the data, while
PLDA can learn the effect these data have for within- and across- speaker variability.
Combining both techniques naturally brings the most improvement as we can see from the
last block in Table 7.1. In these experiments, we were again modifying the data for the
multi-condition PLDA training, but all of this data was previously processed by a single
autoencoder. We decided to use the autoencoder simultaneously trained on the noisy and
reverberated data (using real RIRs). This autoencoder was chosen based on its good and
consistent performance in various benchmarks and we believe that it could represent a
universal preprocessing step as there is only a negligible drop in performance on clean data
(see for example the performance on tel-tel benchmark of baseline system versus the N+RR
column in the first block in Table 7.1).

60

Now, let us focus on comparing the baseline system and the system trained on enhanced
data (PLDA is trained only on clean and enhanced data). In these experiments, we study
which autoencoder training dataset is the best for given benchmark. If we look at these
results globally, we can see that for most of the reverberation benchmarks (prism,rev, int-
int, int-mic and rev-tel-tel, with exception of prism,chn), the autoencoder trained on the
real reverberation provides the best results. Similar situation occurs for noisy benchmarks
(prism,noi, noise-*-tel-tel) and noisy end reverberated benchmarks (rev-noise-*-tel-tel).
These results confirm our intuition, that it is best to use the autoencoder trained on the
matching distortion to remove its effect from the data. We can also observe that to remove
the reverberation, it is best to train on data reverberated by real RIRs instead of those
artificially generated. This holds even for the benchmark containing only artificial rever-
beration (prism,rev). In general, when looking at the first block in Table 7.1, all of the
autoencoders trained using reverberation with real RIRs (columns RR, N+RR) are better
than those trained using artificial RIRs (AR, N+AR). We can also see, that the difference
in performance between the RR-autoencoder and the N+RR autoencoder is rather small
more in favor of the latter, both in reverberation and noisy benchmarks. This indicates
that using the N+RR autoencoder is a good universal choice and justifies its selection for
the experiments when combining the audio enhancing with multi-condition training.

When focusing on the multi-condition training (first part of the second block in Ta-
ble 7.1) and taking the global view, we can observe similar trends as in the pure enhance-
ment task. If we want to remove some type of distortion, it is best to add the matching
distortion type into the PLDA training. If we look more closely, we can see the difference
in reverberation benchmarks based on the PRISM set, where (as opposed to the enhance-
ment) the multi-condition system using artificially generated RIRs has better results. This
can indicate that it is easy for the PLDA to capture the channel variability caused by
reverberating with the artificial RIRs which results in better performance in this matched-
condition scenario. This hypothesis is further strengthened when comparing the AR with
RR on rev-tel-tel benchmark: training on the matched-condition RR data almost halves
the error rate.

If we analyze the difference in performance between the pure signal enhancement and
the multi-condition training, we see that the multi-condition training has slightly better
results, especially in the hardest benchmarks rev-*-tel-tel. In the clean tel-tel benchmark,
we can see that using autoencoder harms the performance less than multi-condition train-
ing. Additionally, in some PRISM-based benchmarks (prism,rev, int-int, prism,chn), the
autoencoder is also better than multi-condition training.

Finally, we look at the combination of both techniques (the very last block in Table 7.1).
Here, we are still having the same training lists for multi-condition PLDA training, but ad-
ditionally, all data are enhanced by autoencoder trained on noised and reverberated data
with real RIRs. We can see that in most benchmarks, we improve results compared to the
pure multi-condition training. We suffer a significant degradation in clean tel-tel bench-
mark with respect to baseline for N+AR and N+RR training, but especially in the case of
the latter, this degradation is compensated by excellent performance in other benchmarks,
especially the most difficult rev-noise-*-tel-tel where we gain more than 70 % relative im-
provement over the baseline.

The combination of both techniques can also eliminate the big difference between artifi-
cially generated reverberation and real reverberation as can be seen by comparing results of
N+AR and N+RR systems. As we already saw for pure multi-condition training, the best
results are again achieved by using the matched distortion for PLDA training, but the differ-

61

ence between the best possible results and multi-condition training with N+RR autoencoder
are small. This justifies our recommendation to use the combination of multi-condition
training with N+RR data that were preprocessed by the N+RR autoencoder
as a universal and robust system, especially when expecting reverberated and/or noisy test
data.

62

Ta
bl

e
7.

1:
R

es
ul

ts
(E

ER
[%

])
ob

ta
in

ed
in

fo
ur

sc
en

ar
io

s.
T

he
fir

st
tw

o
bl

oc
ks

co
rr

es
po

nd
to

th
e

sy
st

em
tr

ai
ne

d
on

ly
w

ith
cl

ea
n

da
ta

(P
LD

A
tr

ai
ne

d
on

cl
ea

n
da

ta
).

In
th

e
le

ft
bl

oc
k,

sc
or

es
of

ba
se

lin
e

sy
st

em
ar

e
di

sp
la

ye
d.

In
th

e
rig

ht
bl

oc
k,

th
e

sc
or

e
of

th
e

cl
ea

n
sy

st
em

w
ith

au
to

en
co

de
r

sig
na

l
en

ha
nc

em
en

t
is

di
sp

la
ye

d.
R

es
ul

ts
of

fiv
e

au
to

en
co

de
rs

tr
ai

ne
d

on
:

N
-

no
ise

,
(A

/R
)R

-
ar

tifi
ci

al
/r

ea
l

re
ve

rb
er

at
io

n,
or

bo
th

(+
)

ar
e

pr
es

en
te

d
in

ea
ch

co
lu

m
n.

T
he

la
st

tw
o

bl
oc

ks
co

rr
es

po
nd

to
sy

st
em

s
tr

ai
ne

d
in

m
ul

ti-
co

nd
iti

on
fa

sh
io

n
(w

ith
no

ise
d

an
d

re
ve

rb
er

at
ed

da
ta

in
PL

D
A

).
R

es
ul

ts
in

ea
ch

co
lu

m
n

co
rr

es
po

nd
to

di
ffe

re
nt

PL
D

A
m

ul
ti-

co
nd

iti
on

tr
ai

ni
ng

se
t:

N
-

no
ise

,(
A

/R
)R

-a
rt

ifi
ci

al
/r

ea
lr

ev
er

be
ra

tio
n,

or
bo

th
(+

).
T

he
ve

ry
la

st
bl

oc
k

pr
es

en
t

re
su

lts
of

th
e

co
m

bi
na

tio
n

of
bo

th
te

ch
ni

qu
es

.
Fo

r
co

m
bi

na
tio

n,
w

e
se

le
ct

au
to

en
co

de
r

tr
ai

ne
d

on
no

ise
d

an
d

re
ve

rb
er

at
ed

da
ta

w
ith

re
al

re
ve

rb
er

at
io

n
(N

+
R

R
).

Ea
ch

va
lu

e
se

t
in

bo
ld

is
th

e
m

in
im

um
in

th
e

pa
rt

ic
ul

ar
be

nc
hm

ar
k

fo
r

co
m

bi
ni

ng
th

e
PL

D
A

sy
st

em
an

d
th

e
be

st
au

to
en

co
de

r.

PL
D

A
tr

ai
ne

d
on

cl
ea

n
da

ta
PL

D
A

tr
ai

ne
d

on
m

ul
ti

-c
on

di
ti

on
da

ta

ba
se

lin
e

A
ut

oe
nc

od
er

tr
ai

ni
ng

PL
D

A
ex

te
ns

io
n

da
ta

A
ut

oe
nc

od
er

(N
+

R
R

)
+

PL
D

A
ex

te
ns

io
n

da
ta

B
en

ch
m

ar
k

N
A

R
N

+
A

R
R

R
N

+
R

R
N

A
R

N
+

A
R

R
R

N
+

R
R

N
A

R
N

+
A

R
R

R
N

+
R

R

te
l-t

el
2.

06
2.

06
2.

09
2.

07
1
.9
9

2
.0

6
2.

46
2.

07
2.

7
3

2
.0
4

2.
7
9

2.
4
8

2.
0
7

2.
6
8

2.
1
4

2.
7
5

pr
ism

,n
oi

2.
95

2
.1
2

2
.5

0
2.

26
2.

47
2.

19
2
.2
7

3
.0

8
2.

5
2

2.
9
3

2.
4
6

1
.9
7

2
.2

4
2.

0
4

2.
2
4

2.
0
6

pr
ism

,re
v

2.
07

1.
75

1.
62

1.
61

1
.5
1

1
.5

6
2.

22
1
.5
4

1.
6
2

1.
6
1

1.
6
3

1.
5
8

1
.4
2

1.
3
9

1.
4
2

1
.4
2

in
t-

in
t

1.
76

1.
79

1.
69

1.
77

1
.6
3

1
.7

9
1.

8
6

1
.6
8

1
.7

6
1.

6
7

1.
7
1

1.
8
1

1
.6
9

1.
7
1

1.
7
1

1.
7
6

in
t-

m
ic

1
.0

9
1.

14
1.

09
1.

15
1
.0
1

1
.1

1
1.

23
0
.7
7

0
.9

2
0.

9
6

1.
0
4

0.
9
8

1.
0
0

0
.8
4

0
.9

8
0.

9
4

pr
ism

,c
hn

0
.7

9
0.

52
0.

60
0
.4
0

0.
60

0.
43

1.
00

0
.5
4

0
.6

7
0.

6
3

0.
7
6

0.
4
6

0.
3
4

0.
3
7

0
.2
7

0
.4

0
re

v-
te

l-t
el

19
.3

7
14
.7

6
11
.1

8
13
.4

5
9
.1
4

9
.3

7
1
7.

84
9.

4
6

10
.1

5
5
.2
4

6
.6

0
8.

2
9

6.
1
4

5.
8
5

4
.0
6

4
.7

6
no

i-1
4-

21
-t

el
-t

el
4
.9

6
3
.3
0

4.
01

3.
94

3.
72

3.
70

2
.9
0

4.
61

3.
5
3

4.
3
2

3.
3
9

2
.6
8

3.
2
1

2.
9
6

3.
0
2

2.
9
8

no
i-7

-1
4-

te
l-t

el
8
.2

9
5
.1
2

6.
81

5.
71

6.
6
6

5.
75

3
.9
4

8.
0
3

4.
9
2

7.
5
4

4.
7
2

3.
5
3

5.
0
8

3.
7
2

4.
6
0

3
.5
2

no
i-0

-7
-t

el
-t

el
18
.9

5
1
0
.6
8

15
.5

2
11
.2

8
1
5.

87
1
2.

28
8
.8
3

18
.7

8
9.

5
5

1
8.

1
2

9.
5
8

6
.0
8

1
1.

4
0

6.
2
5

1
0.

0
1

6.
3
8

re
v-

no
i-1

4-
21

-t
el

-t
el

16
.5

2
15
.1

0
11
.0

4
11
.3

6
9.

40
7
.6
3

16
.1

3
1
1.

08
8.

3
4

8.
9
4

6
.3
9

6.
3
8

6.
1
0

4.
8
0

4.
9
5

4
.1
4

re
v-

no
i-7

-1
4-

te
l-t

el
19
.5

4
19
.9

0
13
.9

9
15
.6

2
1
2.

35
9
.6
1

17
.1

7
16
.5

2
1
0.

2
5

1
4.

2
0

8
.3
1

7.
1
7

8.
1
8

5.
6
3

7.
0
3

5
.1
2

re
v-

no
i-0

-7
-t

el
-t

el
27
.8

3
28
.1

5
22
.1

9
24
.5

2
21
.4

4
1
6
.8
4

21
.5

6
2
6.

68
15
.6

3
2
5.

5
3

1
4
.6
6

1
0.

5
3

1
5.

6
1

8.
7
7

1
4.

3
7

8
.1
5

63

7.3 Speech Enhancement and Other Discriminative Approach
in SV

In previous Section, we explored the benefits of DNN-based audio pre-processing with
standard generative SV systems based on i-vectors and PLDA in the previous Section 7.2.
In this section, we propose an additional improvement over a system, in which the SV is
already improved by DNN (during embedding or feature extraction).

We use the x-vector architecture (described in Section 4.2), which already presents the
x-vector (the embedding) as a robust feature for PLDA modeling, and provides state-of-
the-art results across various acoustic conditions [Novotný et al., 2018b].

We experiment with the use of the signal enhancement autoencoder as a pre-processing
step during training of the x-vector extractor or just during the embedding extraction. For
further comparison with the best i-vector system, we also experiment with Stack Bottle-
neck (SBN, as described in Chapter 8) features concatenated with MFCCs to train our
x-vector and i-vector extractor. A standard i-vector system with MFCC features is kept as
the primary baseline.

We have mentioned systems trained with SBN. SBNs represent another way of integrat-
ing the discriminative approach in the originally generative model. This issue is discussed
in more detail later in Chapter 8. Now we look at it merely as another, more robust feature
extraction method.

We compare four SV systems, which combine two essential feature extraction techniques—
MFCC, and Stack Bottle-neck features (SBNs) concatenated with MFCCs—and two front-
end modelling techniques—the i-vectors and the x-vectors. Please note that each of the
modeling techniques uses a slightly different MFCC extraction. All systems use the same
voice activity detection from Section 1.3.

7.3.1 MFCC i-vector System

This system is the same as the system described in Section 7.2.1. We used 60-dimensional
cepstral features, delta and double delta coefficients. To train the i-vector extractor, we
use 2048-component diagonal-covariance GMM-UBM, and we set the dimensionality of i-
vectors to 600, with LDA reduction to 200. Such i-vectors are then centered around a global
mean and length-normalized

7.3.2 SBN-MFCC i-vector System

SBN is a type of features extracted from the internal state of NN. A detailed description of
SBNs, their extraction, properties, and NN topology is discussed in Section 8.1 in Chapter 8
focused on discriminative approaches in generative SV.

The 30-dimensional SBN were concatenated with MFCC features (as used in the pre-
vious system) and used as an input to the conventional GMM-UBM i-vector system, with
2048 components in the UBM and 600-dimensional i-vectors.

To train the UBM and the i-vector extractor, we used the PRISM training dataset
definition without added noise or reverberation.

7.3.3 x-vector Systems

These systems are based on the DNN architecture for the extraction of embeddings as de-
scribed in Section 7.3.3. Specifically, we use the original Kaldi recipe [Snyder, 2017] and 512-

64

dimensional embeddings extracted from the first layer after the pooling layer (embedding-a),
which is consistent with [Snyder et al., 2018].

Input features to the DNN were MFCCs, extracted using a 25 ms Hamming window.
We used 23 Mel-filters and we limited the bandwidth to 20–3700 Hz range. 23 MFCCs
were calculated every 10 ms. This 20-dimensional feature vector was subjected to short
time mean- and variance-normalization using a 3 s sliding window. Note the differences to
the MFCC features for i-vector system described above (mainly the number of Mel-filters,
bandwidth, no delta/double delta coefficients).

In addition, we also trained an x-vector extractor on MFCC features concatenated with
SBN from Section 7.3.2. Apart from changing the input features, we kept the architecture
of the embedding DNN the same as for the MFCC system. Data used for NN training were
described in Section 3.3.4.

7.3.4 Results

We provide a set of results, where we study the influence of DNN autoencoder signal
enhancement on a variety of systems. Our autoencoder approach is also compared to the
multi-condition training of PLDA, which can also improve the performance in corrupted
acoustic environment. We also evaluate this approach with new features and embeddings.
At the end, we combine the autoencoder with the multi-condition training, and we find the
best performing combination.

We trained autoencoder for signal enhancement simultaneously for denoising and dere-
verberation, which provides better robustness towards an unknown form of signal cor-
ruption, compared to autoencoder trained on noise or reverberation only (as shown in
[Novotný et al., 2018a] and in Section 7.2 of this thesis). The autoencoder we used corre-
sponds to variant N+RR.

We also created different multi-condition training sets for PLDA (as described in Sec-
tion 6.1.2). We used exactly the same noises and reverberation for segment corruption as
in the autoencoder training, allowing to compare the performance of systems using the
autoencoder and systems based on multi-condition training.

Our results are listed in Table 7.2 for the i-vector-based systems, and in Table 7.3 for
the x-vector based ones. The results in each table are separated into four main blocks
based on a combination of features and signal augmentation: i) system trained with MFCC
without signal enhancement, ii) system trained with MFCC with signal enhancement, iii)
system trained with SBN-MFCC without enhancement, iv) and system trained with SBN-
MFCC and signal enhancement. In each block, the first column corresponds to the system
where PLDA was trained only on clean data. The next three columns represent results
with different multi-condition training: N, RR or N+RR (as described in Section 6.1.2).

Finally, the rows of the table are also divided into blocks based on the type of the bench-
mark, representing telephone channel, microphone and artificially created benchmarks. The
last row denoted as avg gives the average EER over all benchmarks and each value set in
bold is the minimum EER in the particular benchmark.

65

Ta
bl

e
7.

2:
R

es
ul

ts
(E

ER
[%

])
ob

ta
in

ed
in

fo
ur

sc
en

ar
io

s.
Ea

ch
bl

oc
k

co
rr

es
po

nd
s

to
an

i-
ve

ct
or

sy
st

em
tr

ai
ne

d
w

ith
ei

th
er

M
FC

C
or

SB
N

-M
FC

C
fe

at
ur

es
an

d
w

ith
or

w
ith

ou
t

sig
na

l
en

ha
nc

em
en

t
ap

pl
ie

d
du

rin
g

i-v
ec

to
r

ex
tr

ac
tio

n.
B

lo
ck

s
ar

e
di

vi
de

d
in

to
co

lu
m

ns
co

rr
es

po
nd

in
g

to
sy

st
em

s
tr

ai
ne

d
in

m
ul

ti-
co

nd
iti

on
fa

sh
io

n
(w

ith
no

ise
d

an
d

re
ve

rb
er

at
ed

da
ta

in
PL

D
A

).
Ea

ch
co

lu
m

n
co

rr
es

po
nd

s
to

a
di

ffe
re

nt
PL

D
A

m
ul

ti-
co

nd
iti

on
tr

ai
ni

ng
se

t:
“—

”
-

cl
ea

n
co

nd
iti

on
,N

-
no

ise
,R

R
-

re
al

re
ve

rb
er

at
io

n,
R

R
+

N
-

re
al

re
ve

rb
er

at
io

n
+

no
ise

.
T

he
la

st
ro

w
de

no
te

d
as

av
g

gi
ve

s
th

e
av

er
ag

e
EE

R
ov

er
al

lb
en

ch
m

ar
ks

an
d

ea
ch

va
lu

e
se

t
in

bo
ld

is
th

e
m

in
im

um
EE

R
in

th
e

pa
rt

ic
ul

ar
be

nc
hm

ar
k.

M
FC

C
O

R
IG

M
FC

C
D

EN
O

IS
ED

SB
N

-M
FC

C
O

R
IG

SB
N

-M
FC

C
D

EN
O

IS
ED

B
en

ch
m

ar
k

—
N

R
R

R
R

+
N

—
N

R
R

R
R

+
N

—
N

R
R

R
R

+
N

—
N

R
R

R
R

+
N

te
l-t

el
1
.9

9
2.

39
1.

99
2
.7

4
2.

06
2.

48
2.

01
2.

09
0.

94
1.

04
0.

9
3

0
.9

3
0.

96
0
.9

7
0.

9
4

0
.9
1

sr
e1

6-
tg

l-f
21
.8

5
21
.3

7
21
.8

4
21

.8
8

23
.3

8
22
.9

6
23
.2

5
23
.1

4
21
.8

8
2
1
.2
4

2
1
.8

2
21
.9

3
2
2.

62
21

.9
3

22
.6

0
2
2
.7

0
sr

e1
6-

yu
e-

f
11
.2

0
1
0
.5
2

11
.1

5
11

.5
3

11
.7

6
11
.4

7
11
.7

6
11

.7
9

13
.4

5
13
.0

2
13
.4

5
1
3
.4

4
1
4.

6
0

13
.6

9
14
.5

4
1
4.

52

in
t-

in
t

4
.5

7
4.

70
4.

49
4
.5

5
4.

34
4.

59
4.

21
4.

00
3.

88
4.

07
3.

7
7

3
.7

3
3.

44
3
.6

9
3
.4
0

3
.4
0

in
t-

m
ic

1
.8

5
2.

09
1.

86
2
.0

0
2.

51
2.

33
2.

40
2.

32
1.

85
1
.6
9

1
.7

6
1
.7

8
1.

87
1
.7

9
1.

8
4

1.
7
7

pr
ism

,c
hn

1.
03

1.
29

0.
99

0
.9

7
0.

59
0.

67
0.

59
0
.5

7
0.

40
0.

46
0.

39
0
.3
6

0
.6

6
0
.7

8
0.

72
0.

6
6

sit
w

-c
or

e-
co

re
10
.1

1
10
.1

3
10
.0

6
10

.3
2

9.
41

9.
60

9.
45

9
.4

5
8.

09
7.

85
8.

02
8
.0

3
7.

7
1

7
.5
9

7
.7

0
7.

7
0

pr
ism

,n
oi

3
.7

2
3.

02
3.

65
3
.4

2
2.

51
2.

38
2.

46
2.

38
2.

43
1.

98
2.

4
5

2
.2

0
1.

84
1
.7
3

1
.8

1
1
.7

6
pr

ism
,re

v
2
.5

1
2.

67
2.

40
2
.2

3
1.

94
2.

09
1.

89
1.

92
1.

42
1.

39
1.

3
0

1
.3

1
1.

12
1
.2

3
1
.0
7

1
.0

9

B
U

T
-R

ET
-o

rig
2
.2

9
2.

56
2.

30
2
.3

3
2.

19
2.

48
2.

20
2.

19
1.

45
1.

58
1.

4
7

1
.4
3

1
.8

2
1
.7

8
1.

81
1
.8

0
B

U
T

-R
ET

-m
er

ge
14
.4

3
14
.3

3
13
.7

9
11

.2
2

11
.7

3
11
.5

1
10
.8

3
10
.8

8
15
.2

7
15
.0

0
1
5.

1
0

13
.3

2
9.

97
1
0
.7

2
9
.3
8

9
.4

7

av
g

6
.8

7
6.

82
6.

77
6
.6

5
6.

58
6.

60
6.

46
6.

43
6.

46
6.

30
6.

4
1

6
.2

2
6.

06
5
.9

9
5
.9
8

5
.9
8

66

i-vector Systems Results

We have already partially performed this analysis in the previous section, due to the added
features and for the sake of completeness, we repeat some results here again.

Let us begin with comparing systems with and without signal enhancement. In this
case, we focus on PLDA trained on clean data only. In the first case, the i-vector system
was trained using the MFCC features. We see mixed results. In the first set of benchmarks
representing a telephone channel, we see degradation. When we consider that this is a
reasonably clean benchmark, this enhancement was expected not to be very effective.

In the second block of results (interview speech), the situation is better, except int-mic
benchmark. We can notice an improvement in the system with signal enhancement. An
interesting result can be spotted in benchmark prism,chn, where, with signal enhancement,
we obtain more than 40 % relative improvement.

The next block of artificially corrupted benchmarks from PRISM also reports improve-
ments and the last set of results with our retransmitted data too, in addition we can see
that there is no degradation in original benchmark BUT-RET-orig.

Let us now focus on the i-vector system based on the SBN-MFCC features. In the past,
the SBN-MFCC features provided good robustness in noisy benchmarks. We verify this
statement comparing columns MFFC-ORIG and SBN-MFCC-ORIG in Table 7.2 (systems
without signal enhancement). We see that except for the SRE 2016 and BUT-RET-merge
benchmarks, the system trained with stacked bottle-neck features yields better performance
compared to the original MFCC system. When comparing systems with and without sig-
nal enhancement, the situation is similar to the MFCC case. We see degradation on the
telephone channels and a portion of the interview speech benchmarks. We obtain 30 %
relative improvement in BUT-RET-merge where the system without enhancement is even
worse than the previous i-vector system. This could indicate that the bottle-neck features
provide better robustness to noise than to reverberation.

67

Ta
bl

e
7.

3:
R

es
ul

ts
(E

ER
[%

])
ob

ta
in

ed
in

fo
ur

sc
en

ar
io

s.
Ea

ch
bl

oc
k

co
rr

es
po

nd
s

to
an

x-
ve

ct
or

sy
st

em
tr

ai
ne

d
w

ith
di

ffe
re

nt
ty

pe
of

fe
at

ur
es

w
ith

or
w

ith
ou

t
sig

na
le

nh
an

ce
m

en
t.

B
lo

ck
s

ar
e

di
vi

de
d

in
to

co
lu

m
ns

co
rr

es
po

nd
in

g
to

sy
st

em
s

tr
ai

ne
d

in
m

ul
ti-

co
nd

iti
on

fa
sh

io
n

(w
ith

no
ise

d
an

d
re

ve
rb

er
at

ed
da

ta
in

PL
D

A
).

Ea
ch

co
lu

m
n

co
rr

es
po

nd
s

to
di

ffe
re

nt
PL

D
A

m
ul

ti-
co

nd
iti

on
tr

ai
ni

ng
se

t:
“—

”
-

cl
ea

n
co

nd
iti

on
,N

-
no

ise
,R

R
-

re
al

re
ve

rb
er

at
io

n,
R

R
+

N
-

re
al

re
ve

rb
er

at
io

n
+

no
ise

.
T

he
la

st
ro

w
de

no
te

d
as

av
g

gi
ve

s
th

e
av

er
ag

e
EE

R
ov

er
al

lb
en

ch
m

ar
ks

an
d

ea
ch

va
lu

e
se

t
in

bo
ld

is
th

e
m

in
im

um
EE

R
in

th
e

pa
rt

ic
ul

ar
be

nc
hm

ar
k.

M
FC

C
O

R
IG

M
FC

C
D

EN
O

IS
ED

SB
N

-M
FC

C
O

R
IG

SB
N

-M
FC

C
D

EN
O

IS
ED

B
en

ch
m

ar
k

—
N

R
R

R
R

+
N

—
N

R
R

R
R

+
N

—
N

R
R

R
R

+
N

—
N

R
R

R
R

+
N

te
l-t

el
1
.3

0
1.

43
1.

27
1.

29
1.

21
1
.4

4
1
.1
8

1
.2

0
1.

30
1.

4
9

1.
2
9

1
.2

7
1.

35
1.

4
5

1.
30

1
.3

0
sr

e1
6-

tg
l-f

22
.7

3
22
.5

2
22
.8

7
22
.5

6
21
.5

2
21

.4
1

21
.2

9
21
.3

1
22
.3

3
21
.2

1
2
2.

1
5

2
2
.3

3
2
1.

1
7

2
0
.7
4

2
0.

88
20
.9

5
sr

e1
6-

yu
e-

f
10
.3

6
9.

61
10
.4

5
10

.6
1

8.
86

8
.2
3

8
.7

5
8.

66
9.

60
8.

71
9.

5
6

9
.8

8
8.

8
9

8.
3
8

8.
6
7

8
.6

4

in
t-

in
t

3
.3

6
3.

72
3.

29
3.

22
2.

92
3
.3

4
2
.9

0
2
.8
6

3.
24

3.
6
6

3.
1
6

3
.2

0
3.

16
3.

4
2

3.
08

2
.9

7
in

t-
m

ic
1.

33
1.

43
1.

3
1
.2

2
1.

47
1
.3

7
1
.4

1
1.

37
1.

07
1.

1
7

1.
0
4

1
.0
3

1
.3

7
1.

3
9

1.
29

1
.2

7
pr

ism
,c

hn
0.

62
0.

81
0.

61
0
.6

1
0.

37
0
.2
7

0
.3

6
0.

41
0.

69
0.

6
7

0.
6
7

0
.5

9
0.

36
0.

4
1

0.
3
6

0
.3

6
sit

w
-c

or
e-

co
re

7.
87

7.
30

7.
72

7
.4

1
6.

81
6
.5

4
6
.7

3
6.

70
7.

57
7.

4
2

7.
5
7

7
.3

8
6.

8
1

6
.4
0

6
.7

1
6
.6

6

pr
ism

,n
oi

2
.7

6
1.

90
2.

63
2.

11
1.

84
1
.5
0

1
.8

0
1.

73
2.

72
1.

9
7

2.
63

2
.2

2
1.

8
4

1.
57

1.
81

1
.6

8
pr

ism
,re

v
2.

08
2.

02
1.

79
1.

60
1.

16
1
.1

3
1
.1
0

1
.1

2
1.

98
2.

0
6

1.
7
1

1
.5

9
1.

2
4

1.
2
7

1.
15

1
.1

5

B
U

T
-R

ET
-o

rig
1
.7

3
1.

73
1.

69
1.

63
1.

81
1
.8

2
1
.7

2
1.

74
1.

50
1.

6
3

1.
4
6

1
.4
3

1
.7

7
1.

86
1.

74
1
.7

5
B

U
T

-R
ET

-m
er

ge
15
.4

8
13
.9

4
13
.9

6
13
.1

2
11
.8

3
12

.8
1

1
0
.0
7

10
.4

6
17
.2

0
14
.0

9
15
.9

0
13
.7

4
1
3.

2
6

1
2.

7
0

1
1.

03
10
.1

2

av
g

6
.3

3
6.

04
6.

14
5.

94
5.

44
5
.4

4
5
.2

1
5.

23
6.

29
5.

8
3

6.
1
0

5
.8

8
5.

57
5.

4
2

5.
27

5
.1
7

68

x-vector Systems Results

We evaluated our speech enhancement autoencoder also with the system based on x-vectors,
which is currently considered as state-of-the-art. In our experiments and system design,
we have deviated from the original Kaldi recipe [Snyder et al., 2018]. For training the x-
vector extractor, we extended the number of speakers and we also created more variants
of augmented data. We extended the original data augmentation recipe by adding real
room impulse responses and an additional set of stationary noises (the extension process is
also described in [Novotný et al., 2018b], the x-vector network used here is labeled as Aug
III. in the paper). In the PLDA backend training, we also added the augmented data for
multi-condition training (see Section 6.1.2).

Let us point out, that the denoising autoencoder was trained on a subset of augmented
data for training the x-vector DNN. The set of noises and real room impulse responses are
therefore the same as in our extended set for training the x-vector extractor (as described in
Section 3.3) and there is no advantage in autoencoder possibly seeing additional augmenta-
tions. It is also useful to refer the interested reader to our analysis in [Novotný et al., 2018b],
where we show the benefit of having such a large augmentation set for x-vector extractor
training.

Let us first compare the x-vector network trained with original MFCC and with SBN-
MFCC features. In systems based on i-vectors, bottle-neck features mostly provided very
significant improvement, but for x-vector-based systems, the gains are much lower, the per-
formance stays the same, or even degrades for benchmark BUR-RET-merge. This degrada-
tion, however, completely disappears after using denoising in x-vector training and subse-
quently multi-condition training in PLDA. For the telephone data with low reverberation,
we can observe either steady performance on tel-tel or slightly better performance on more
challenging and non-English data in SRE’16 benchmarks. This is in contrast with i-vectors,
where we only see either steady performance on easy tel-tel or degradation on more chal-
lenging SRE’16. In general, the positive effect of SBN-MFCC features on x-vector system
is small, but more stable than in i-vector system.

When we focus on the effect of signal enhancement in the x-vector-based system, we see
much higher improvement compared to i-vectors. There are still several cases where the
enhancement causes mostly degradation (MFCC: int-mic, BUT-RET-orig; SBN-MFCC:
tel-tel, int-mic, BUT-RET-orig—mostly clean benchmarks). Otherwise, the enhancement
provides nice improvement across rest of the benchmarks and features used for system
training. At this point, it is useful to point out that unlike with i-vectors, where denoising
is applied only for i-vector extraction, we actually apply enhancement already on top of
x-vector training data. The effect of applying enhancement only during x-vector extraction
like with i-vectors can be seen in Table 7.4. We can observe that also here, we gain some
improvements, but they are generally smaller than with enhancement deployed already
during x-vector training (Table 7.3).

X-vector systems generally provide greater robustness across different signal corruptions.
It was natural for us to expect, that x-vector systems should not need signal enhancement,
and that they would implicitly learn it themselves, especially in the first part of DNN
described in Section 7.3.3. To our belief, a reason why enhancement helped in our case is
that denoising is not the target task of the x-vector DNN. Even though we did have multiple
corrupted samples per speaker in the DNN training set, it may be possible that we simply
didn’t have enough. And since the x-vector training is generally known to be data-hungry,

69

Table 7.4: Results (EER [%]) of SV system with x-vector extractor trained on clean data
and with signal enhancement used only for x-vector extraction. Blocks are divided into
columns corresponding to systems trained in multi-condition fashion (with noised and re-
verberated data in PLDA). Each column corresponds to a different PLDA multi-condition
training set: “—” - clean condition, N - noise, RR - real reverberation, RR+N - real rever-
beration + noise. The last row denoted as avg gives the average EER over all benchmarks
and each value set in bold is the minimum EER in the particular benchmark.

MFCC SBN-MFCC

Benchmark — N RR RR+N — N RR RR+N

tel-tel 1.38 1.51 1.34 1.39 1.27 1.40 1.21 1.25
sre16-tgl-f 21.12 21.48 21.08 20.94 21.73 21.46 21.5 21.63
sre16-yue-f 9.76 9.01 9.7 9.69 9.38 9.07 9.41 9.16

int-int 3.15 3.32 3.12 2.99 3.19 3.40 3.14 3.05
int-mic 1.61 1.67 1.59 1.58 1.63 1.58 1.51 1.39
prism,chn 0.54 0.47 0.55 0.54 0.40 0.41 0.40 0.40
sitw-core-core 7.22 6.76 7.17 6.84 6.96 6.52 6.97 6.76

prism,noi 2.14 1.64 2.15 2.05 2.33 1.67 2.36 2.15
prism,rev 1.24 1.22 1.18 1.20 1.33 1.45 1.28 1.24

BUT-RET-orig 1.87 2.07 1.90 1.88 2.09 2.03 2.08 2.07
BUT-RET-merge 12.76 11.76 10.71 11.83 15.08 14.32 12.62 12.66

avg 5.71 5.54 5.50 5.54 5.94 5.76 5.68 5.61

it is therefore likely that if we had more corrupted samples per speaker, it would be in the
DNN’s natural capabilities to learn the task of de-noising.

Let us also point out that if a single type of noise (or channel in general) appears
systematically with a concrete speaker, the noise becomes a part of the speaker identity
and therefore the NN does not compensate for it.

So far, we have compared results on systems, where PLDA was trained on clean data
only and we study possible improvements of enhancement across several systems. Multi-
condition training of PLDA, where we add a portion of augmented data into PLDA training
is another possible approach on how to improve system performance and its robustness.

From the results, we can see that multi-condition training, can provide improvement
across all benchmarks and systems without signal enhancement. We can see that the ideal
combination of the augmented data for multi-condition training of PLDA depends on a
benchmark. In noisy benchmarks (prism,noi), it is more effective to use noise augmentation
only. For reverberated benchmarks (prism,rev, BUT-RET-merge) we can see more benefits
in using reverberated augmentation set compared to others.

70

5e
-4

5e
-3

0.
05

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

F
al

se
 A

la
rm

 p
ro

ba
bi

lit
y

(in
 %

)

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

Miss probability (in %)

 o
rig

 p
rio

r
0.

00
1

 p
rio

r
0.

00
5

 p
rio

r
0.

01
0

 d
en

oi
se

d

5e
-4

5e
-3

0.
05

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

F
al

se
 A

la
rm

 p
ro

ba
bi

lit
y

(in
 %

)

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

 9
6

 9
9

Miss probability (in %)

 o
rig

 p
rio

r
0.

00
1

 p
rio

r
0.

00
5

 p
rio

r
0.

01
0

 d
en

oi
se

d

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
gi

t P
ta

r

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

normalized DCF

D
C

F
 .0

01
D

C
F

 .0
05

D
C

F
 .0

1
or

ig
 m

in
 d

cf
or

ig
 F

A
 D

R
30

de
no

is
ed

 m
in

 d
cf

de
no

is
ed

 F
A

 D
R

30

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
gi

t P
ta

r

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

normalized DCF

D
C

F
 .0

01
D

C
F

 .0
05

D
C

F
 .0

1
or

ig
 m

in
 d

cf
or

ig
 F

A
 D

R
30

de
no

is
ed

 m
in

 d
cf

de
no

is
ed

 F
A

 D
R

30

(a
)I

-v
ec

to
rb

as
ed

sy
st

em
s:

le
ft

co
lu

m
n

–
M

FC
C

fe
at

ur
es

,r
ig

ht
co

lu
m

n
–

SB
N

-M
FC

C
fe

at
ur

es
.

5e
-4

5e
-3

0.
05

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

F
al

se
 A

la
rm

 p
ro

ba
bi

lit
y

(in
 %

)

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

 9
6

 9
9

Miss probability (in %)

 o
rig

 p
rio

r
0.

00
1

 p
rio

r
0.

00
5

 p
rio

r
0.

01
0

 d
en

oi
se

d

5e
-4

5e
-3

0.
05

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

F
al

se
 A

la
rm

 p
ro

ba
bi

lit
y

(in
 %

)

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

 9
6

 9
9

Miss probability (in %)

 o
rig

 p
rio

r
0.

00
1

 p
rio

r
0.

00
5

 p
rio

r
0.

01
0

 d
en

oi
se

d

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
gi

t P
ta

r

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

normalized DCF

D
C

F
 .0

01
D

C
F

 .0
05

D
C

F
 .0

1
or

ig
 m

in
 d

cf
or

ig
 F

A
 D

R
30

de
no

is
ed

 m
in

 d
cf

de
no

is
ed

 F
A

 D
R

30

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
gi

t P
ta

r

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

normalized DCF

D
C

F
 .0

01
D

C
F

 .0
05

D
C

F
 .0

1
or

ig
 m

in
 d

cf
or

ig
 F

A
 D

R
30

de
no

is
ed

 m
in

 d
cf

de
no

is
ed

 F
A

 D
R

30

(b
)

X
-v

ec
to

r
ba

se
d

sy
st

em
s:

le
ft

co
lu

m
n

–
M

FC
C

fe
at

ur
es

,r
ig

ht
co

l-
um

n
–

SB
N

-M
FC

C
fe

at
ur

es
.

Fi
gu

re
7.

3:
D

et
ec

tio
n

Er
ro

r
Tr

ad
e-

off
(D

ET
)

pl
ot

s
(t

op
ro

w
)

an
d

m
in

D
FC

as
a

fu
nc

tio
n

of
eff

ec
tiv

e
pr

io
r

(b
ot

to
m

ro
w

)
of

al
l

te
st

ed
sc

en
ar

io
s

fo
r

sr
e1

6-
yu

e-
f

be
nc

hm
ar

k.
In

te
rs

ec
tio

n
of

m
in

D
C

F
cu

rv
es

w
ith

ve
rt

ic
al

da
sh

ed
vi

ol
et

lin
es

co
rr

es
po

nd
fr

om
th

e
le

ft
to

th
e

m
in

D
C

F
fr

om
N

IS
T

SR
E

20
10

an
d

to
th

e
tw

o
op

er
at

in
g

po
in

ts
of

D
C

F
fr

om
N

IS
T

SR
E2

01
6.

Si
m

ila
rly

,t
he

vi
ol

et
st

ar
in

th
e

D
ET

pl
ot

s
co

rr
es

po
nd

s
to

th
e

m
in

D
C

F
fr

om
N

IS
T

SR
E2

01
0

an
d

re
d

an
d

bl
ac

k
st

ar
s

co
rr

es
po

nd
to

th
e

tw
o

op
er

at
in

g
po

in
ts

of
N

IS
T

SR
E

20
16

.

71

7.3.5 Analysis over the Range of Operating Points

Although EER (described in Section 3.1.2) is a common metric summarizing performance,
it does not cover all operating points. In this section, we present the performance of various
systems via DET (Section 3.1.1) and DCF (Section 3.1.3) curves as to see a more complete
picture of systems’ behavioral.

In order to summarize our observation without overwhelming the reader with too many
plots, we have chosen two representative benchmarks, that are closest to the real-world
scenario—sre16-yue-f (Figure 7.3) and BUT-RET-merge (see Figure 7.4). More specifically,
the sre16-yue-f benchmark was chosen because a) it contains original noisy audio, and b)
compared to the rest of the conditions, there is a high channel mismatch between the
training and the evaluation data. The BUT-RET-merge benchmark was chosen because it
realistically reflects real reverberation.

The graphs reveal that the benefit from using the studied techniques can be substantial.
It is worth noting that according to the tables above, denoising may not be effective w.r.t.
EER, however, when looking at the DET curves, we see that there are operating points
that do benefit from denoising in a fairly large extent.

Apart from i-vector system on the sre16-yue-f benchmark, the DET or DCF curves
corresponding to the denoised system are generally better than those using the original
noisy data over the whole range of operating points.

72

5e
-4

5e
-3

0.
05

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

F
al

se
 A

la
rm

 p
ro

ba
bi

lit
y

(in
 %

)

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

 9
6

 9
9

Miss probability (in %)

 o
rig

 p
rio

r
0.

00
1

 p
rio

r
0.

00
5

 p
rio

r
0.

01
0

 d
en

oi
se

d

5e
-4

5e
-3

0.
05

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

F
al

se
 A

la
rm

 p
ro

ba
bi

lit
y

(in
 %

)

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

 9
6

 9
9

Miss probability (in %)

 o
rig

 p
rio

r
0.

00
1

 p
rio

r
0.

00
5

 p
rio

r
0.

01
0

 d
en

oi
se

d

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
gi

t P
ta

r

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

normalized DCF

D
C

F
 .0

01
D

C
F

 .0
05

D
C

F
 .0

1
or

ig
 m

in
 d

cf
or

ig
 F

A
 D

R
30

de
no

is
ed

 m
in

 d
cf

de
no

is
ed

 F
A

 D
R

30

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
gi

t P
ta

r

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

normalized DCF

D
C

F
 .0

01
D

C
F

 .0
05

D
C

F
 .0

1
or

ig
 m

in
 d

cf
or

ig
 F

A
 D

R
30

de
no

is
ed

 m
in

 d
cf

de
no

is
ed

 F
A

 D
R

30

(a
)I

-v
ec

to
rb

as
ed

sy
st

em
s:

le
ft

co
lu

m
n

–
M

FC
C

fe
at

ur
es

,r
ig

ht
co

lu
m

n
–

SB
N

-M
FC

C
fe

at
ur

es
.

5e
-4

5e
-3

0.
05

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

F
al

se
 A

la
rm

 p
ro

ba
bi

lit
y

(in
 %

)

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

 9
6

 9
9

Miss probability (in %)

 o
rig

 p
rio

r
0.

00
1

 p
rio

r
0.

00
5

 p
rio

r
0.

01
0

 d
en

oi
se

d

5e
-4

5e
-3

0.
05

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

F
al

se
 A

la
rm

 p
ro

ba
bi

lit
y

(in
 %

)

0.
5

2.
5

 1
0

 2
5

 5
0

 7
2

 8
8

 9
6

 9
9

Miss probability (in %)

 o
rig

 p
rio

r
0.

00
1

 p
rio

r
0.

00
5

 p
rio

r
0.

01
0

 d
en

oi
se

d

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
gi

t P
ta

r

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

normalized DCF

D
C

F
 .0

01
D

C
F

 .0
05

D
C

F
 .0

1
or

ig
 m

in
 d

cf
or

ig
 F

A
 D

R
30

de
no

is
ed

 m
in

 d
cf

de
no

is
ed

 F
A

 D
R

30

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

lo
gi

t P
ta

r

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

normalized DCF

D
C

F
 .0

01
D

C
F

 .0
05

D
C

F
 .0

1
or

ig
 m

in
 d

cf
or

ig
 F

A
 D

R
30

de
no

is
ed

 m
in

 d
cf

de
no

is
ed

 F
A

 D
R

30

(b
)

X
-v

ec
to

r
ba

se
d

sy
st

em
s:

le
ft

co
lu

m
n

–
M

FC
C

fe
at

ur
es

,r
ig

ht
co

l-
um

n
–

SB
N

-M
FC

C
fe

at
ur

es
.

Fi
gu

re
7.

4:
D

et
ec

tio
n

Er
ro

r
Tr

ad
e-

off
(D

ET
)

pl
ot

s
(t

op
ro

w
)

an
d

m
in

D
FC

as
a

fu
nc

tio
n

of
eff

ec
tiv

e
pr

io
r

(b
ot

to
m

ro
w

)
of

al
l

te
st

ed
sc

en
ar

io
s

fo
r

B
U

T
-R

ET
-m

er
ge

be
nc

hm
ar

k.
In

te
rs

ec
tio

n
of

m
in

D
C

F
cu

rv
es

w
ith

ve
rt

ic
al

da
sh

ed
vi

ol
et

lin
es

co
rr

es
po

nd
fr

om
th

e
le

ft
to

th
e

m
in

D
C

F
fr

om
N

IS
T

SR
E

20
10

an
d

to
th

e
tw

o
op

er
at

in
g

po
in

ts
of

D
C

F
fr

om
N

IS
T

SR
E2

01
6.

Si
m

ila
rly

th
e

vi
ol

et
st

ar
in

th
e

D
ET

pl
ot

s
co

rr
es

po
nd

s
to

th
e

m
in

D
C

F
fr

om
N

IS
T

SR
E2

01
0

an
d

re
d

an
d

bl
ac

k
st

ar
s

co
rr

es
po

nd
to

th
e

tw
o

op
er

at
in

g
po

in
ts

of
N

IS
T

SR
E

20
16

.

73

Chapter 8

Discriminative Techniques
in Generative SV

In previous chapters, we mentioned SBN features, which led to increased robustness and
better performance of the i-vector system. In this chapter, we take a closer look at these
features. We also look at other techniques (such as DNN UBM alignment) that have helped
to improve the original fully generative i-vector paradigm. These techniques can also be
seen as developments that have led to the transition to fully discriminative embeddings
x-vectors.

8.1 Stack Bottle-neck Features
Bottleneck Neural-Network (BN-NN) refers to such a topology of a NN, where one of the
hidden layers has significantly lower dimensionality than the surrounding ones. A bottleneck
feature vector is generally understood as a by-product of forwarding a primary input feature
vector through the BN-NN and reading off the vector of values at the bottleneck layer. We
have used a cascade of two such NNs for our experiments. The output of the first network
is stacked in time, defining context-dependent input features for the second NN, hence the
term Stacked Bottleneck features (SBN, [Grézl et al., 2007], Figure 8.1).

The NN input features are 24 log Mel-scale filter bank outputs augmented with fun-
damental frequency features from 4 different 𝑓0 estimators (Kaldi, Snack1, and other two
according to [Laskowski and Edlund, 2010] and [Talkin, 1995]). Together, we have 13 𝑓0
related features, see [Karafiát et al., 2014] for more details. Conversation-side based mean
subtraction is applied on the whole feature vector, then 11 frames of log filter bank outputs
and fundamental frequency features are stacked. Hamming window and DCT projection
(0𝑡ℎ to 5𝑡ℎ DCT base) are applied on the time trajectory of each parameter resulting in
(24 + 13)× 6 = 222 coefficients on the first stage NN input.

The configuration of the first NN is 222×𝐷𝐻 ×𝐷𝐻 ×𝐷𝐵𝑁 ×𝐷𝐻 ×𝐾, where 𝐾 = 9824
is the number of target triphones. The dimensionality of the bottleneck layer, 𝐷𝐵𝑁 was
set to 30. The dimensionality of other hidden layers 𝐷𝐻 was set to 1500. The bottleneck
outputs from the first NN are sampled at times 𝑡−10, 𝑡−5, 𝑡, 𝑡+5 and 𝑡+10, where 𝑡 is the
index of the current frame. The resulting 150-dimensional features are inputs to the second
stage NN with the same topology as the first stage. The network was trained on the Fisher
English corpus, and data were augmented with two noisy copies.

1http://kaldi.sourceforge.net, http://www.speech.kth.se/snack/

74

http://kaldi.sourceforge.net
http://www.speech.kth.se/snack/

����
����

����
����

����

����
����

������������

����
����

������������

����

����
����

����
����
����

��
��
��

��

��
��

��
��
��

��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��

��
��
��

��
��
��

−10

−5

0

5

v
ar

ia
n

ce
 n

o
rm

al
iz

at
io

n
g

lo
b

al
 m

ea
n
 a

n
d

v
ar

ia
n

ce
 n

o
rm

al
iz

at
io

n
g

lo
b

al
 m

ea
n
 a

n
d

10

context +/−5
first stage network

}

second stage network

Hamming

each parameter

DCT 0−5

context

+/−10

}

b
o
tt

le
−

n
ec

k

 o

u
tp

u
ts

Figure 8.1: Block diagram of Stacked Bottle-Neck (SBN) feature extraction. The blue parts
of neural networks are used only during the training. The green frames in context gathering
between the two stages are skipped. Only frames with shift -10, -5, 0, 5, 10 form the input
to the second stage NN. (Source: [Karafiát et al., 2014])

Finally, the 30-dimensional bottleneck outputs from the second NN (referred to as SBN),
are used, usually concatenated with MFCC features.

8.2 DNN Aligment
GMM is a traditional part of the i-vector framework. The great advantage of GMMs is
that no data annotations are needed and the training is fully unsupervised. The limitation
of the GMM can be caused by a sub-optimal choice of the number of components (usually,
1024, 2048, or 4096 components). The number of components is chosen mostly regarding
the available amount of training data, which is typically much lower than what is needed
for training the discriminative systems.

The GMM can be seen as a model of acoustic units (or clusters) in the feature space.
We intentionally talk about acoustic units in general, because the division of features into
individual components of GMM is not optimized for any classification such as phonemes or
senones. The generative SV system is therefore not forced to learn this information when
trying to compare two speakers.

In the case of DNN-alignment [Hinton et al., 2012, Dahl et al., 2012], features are not
grouped without supervision on the basis of position in feature space but based on their
content and on the information they carry. DNN-alignment clusters features based on
speech content in acoustic units such as senones. This can result in a partition of GMM
components, as shown in Figure 8.2. In this example, Senone A is represented by several
components, but at the same time, one component represents two senones.

The SBN (ASR NN, mentioned in Section 8.1) is most often used to obtain posterior
probabilities used as component occupation 𝛾

(𝑐)
𝑡 .

This operation results in entering an a-priori information about what was said in a
given recording into a text-independent speaker embedding (i-vector). Therefore, this can
be considered a paradigm shift, in which the speakers are not compared blindly on the basis
of voice, but the system is forced to compare them on the basis of the speech content as
well.

Note the following possibility of DNN-alignment compared to GMM model. In GMM,
the feature vectors o𝑡 are expected to be generated by the GMM model with occupation
probabilities 𝛾

(𝑐)
𝑡 (as described in Section 4.1.1):

o𝑡 ∼
𝐶∑︁
𝑐=1

𝛾
(𝑐)
𝑡 𝒩 (𝜇𝑐,Σ𝑐), (8.1)

75

Senone A

Senone B

Figure 8.2: Example of GMM, where several components represent Senone A, but at the
same time, one component represents two senones.

𝛾
(𝑐)
𝑡 = 𝑝(𝑐|o𝑡). (8.2)

Using the DNN-alignment, we can use the different features to determine occupation prob-
ability 𝛾

(𝑐)
𝑡 (8.2) and sufficient statistics:

𝑁 (𝑐) =
∑︁
𝑡

𝛾
(𝑐)
𝑡 , (8.3)

f (𝑐) =
∑︁
𝑡

𝛾
(𝑐)
𝑡 o𝑡, (8.4)

S(𝑐) =
∑︁
𝑡

𝛾
(𝑐)
𝑡 o𝑡o

𝑇
𝑡 . (8.5)

8.2.1 Experimental Setup

In this experiment, we focus on the comparison of both mentioned approaches (using SBN
features and DNN-alignment) and their influence on the robustness of SV with respect to
language variability (based on [Novotný et al., 2016]).

We experimented with monolingual (English and Mandarin) and multilingual BN fea-
tures. In the case of multilingual training, we adopted a training scheme with block-softmax,
which divided the output layer into parts according to individual languages. During train-
ing, the only part of the output layer that corresponds to the language the given target
belongs to is activated. See [Veselý et al., 2012, Fér et al., 2015] for detailed description.

Evaluation Set

We report our results on the “Language Set” pack of the PRISM set, referred to as
prism,lan. Moreover, results on the Chinese subset of the prism,lan benchmark, referred

76

to as prism,chin are reported. To provide a contrastive view, we also report the results on
the NIST SRE 2010 data extended core benchmark (telephone-telephone, “condition-5”),
referred to as tel-tel, which is English.

8.2.2 System Definition

For training the Multilingual neural networks, the IARPA Babel Program data2 were mainly
used. This data set simulates the scenario of what one could collect in a limited time from
a completely new language. It consists mainly of conversational telephone speech (CTS),
but scripted recordings, as well as far field recordings, are present. We used 11 languages
to train our multilingual SBN feature extractor. The language list (as referred to later
in this paragraph) consists of Cantonese, Assamese, Bengali, Pashtu, Turkish, Tagalog,
Vietnamese, Haiti, Lao, Tamil, and Zulu. More details about the characteristics of the
languages can be found in [Harper, 2013]. The phone-state target labels were obtained
using forced-alignment with our BABEL ASR system [Karafiát et al., 2013], with 471 +
141 + 147 + 216 + 126 + 252 + 303 + 99 + 411 + 102 + 219 = 2487 phone states, respectfully
to the language list.

For the monolingual English DNN variant, we have used a selection of 250 hours of data
derived from the Fisher English Part 1 and 2 with 2423 tied tri-phone states.

For the monolingual Mandaring DNN, we have used total of 153 hours from the Man-
darin HKUST, and the Mandarin CallHome/CallFriend collections [Karafiát et al., 2016],
with 4941 tied tri-phone states.

As the baseline features, we used 19 MFCC coefficients + energy augmented with their
delta and double delta coefficients, resulting in 60-dimensional feature vectors. The analysis
window was 20 ms long with the shift of 10 ms. First, we removed silence frames according to
our standard VAD (described in Section 1.3), after which we applied short-time (300 frames)
cepstral mean and variance normalization.

The PRISM set was chosen as the training dataset. A gender-independent UBM was
represented as a full or diagonal covariance 2048-component GMM. It was trained on a
subset of the PRISM training set: 15602 files equally distributed between telephone and
microphone benchmarks and male and female portions. The variance flooring was used
in each iteration of the EM algorithm during the UBM training. Gender-independent i-
vector extractor was trained using the entire PRISM set. The results are reported with
600-dimensional i-vectors. Gender-independent LDA and PLDA were trained on the same
data as the i-vector extractor.

8.2.3 Results

Table 8.1 shows the overall results of all systems in terms of (calibration insensitive) DCFmin
old ,

DCFmin
new, and EER. For the tel-tel test, the best performing system is the DNN-alignment

with the DNN trained on the Fisher English data, as expected. However, when looking
at the prism,lan benchmark, there is no gain from switching from the Baseline system to
English DNN (and only a negligible gain in switching to English SBN).

Our hypothesis was that this behavior would be fixed by using a more general DNN,
such as the Multilingual DNN (only in the SBN variant, as explained in Section 8.2), since
the test comprises of numerous languages. However, it turned out that Mandarin SBN
suited this benchmark the best.

2Collected by Appen, http://www.appenbutlerhill.com

77

http://www.appenbutlerhill.com

Looking at the prism,chin benchmark, we again expected the Mandarin DNN (or SBN)
to significantly outperform the English and Multilang DNN’s, which turned out not to be
the case.

Our initial hypothesis was that the English training corpus is the largest, and there-
fore had to provide the best phone accuracy and thus a better acoustic space clustering.
However, it was observed in many cases (e.g. in [Lozano-Diez et al., 2016]) that better
phone accuracy does not necessarily imply better SV performance. Therefore, we leave this
question open for future research.

Let us also note that the UBM/i-vector/PLDA training data are identical—i.e., mainly
English—across the different systems. Our hypothesis is that even if the DNN matches the
target language, the acoustic space clustering does not fit well to the observed data. There-
fore, the first-order statistics (4.11) for the i-vector extractor computation are “warped”,
and the i-vector extractor captures a different “total” variability than is in fact used for the
test. One of the possible indications for this hypothesis is the fact that the performance on
the tel-tel benchmark does not vary dramatically across different systems. Similar hypoth-
esis holds for the PLDA/LDA modeling, where the within/across variabilities are modeled
using these “warped” i-vectors.

Table 8.3 shows the overall performance in terms of the actual vs. the minimum DCF
values, i.e., it directly shows the calibration loss. We see that the tel-tel benchmark is well
calibrated, i.e., the actual values are close enough to the minimum counterparts. However,
looking at the prism,chin and prism,lan tests, and especially at the DCFnew metric, the
calibration losses are extremely high. This effect is even more pronounced for the female
part of the tests.

In Table 8.2, we show the effect of a linear calibration on the English SBN system.
Because of the lack of an independent held-out set, we performed a cheating (gender-
independent) calibration trained using the prism,lan trial set, which contains both English
and Chinese trials.

We see that although not perfect, the DCFnew of the prism,lan and prism,chin remained
almost constant across tasks, especially in the female case (which could be explained by
having twice as many female trials compared to the male portion). It seems that even
though English trials were in majority in the prism,lan set, the calibration still helped
the non-English trials. The prism,chin calibration loss reduction was the most noticeable.
The tel-tel benchmark got de-calibrated, as expected. All this behavior indicates a heavy
language-dependent score modality.

78

Table 8.1: Comparison of the systems under the PRISM prism,lan and prism,chin, and the
NIST tel-tel benchmarks. We expected (without result) the Multilang SBN to perform best
in the prism,lan benchmark, and a variant of Mandarin to perform best in the prism,chin
benchmark.

Test set System DCFmin
new DCFmin

old EER [%]

male female male female male female

prism,chin Baseline 0.1834 0.3019 0.0621 0.0894 1.44 2.27

English SBN 0.1491 0.2251 0.0418 0.0838 1.00 1.99
Mandarin SBN 0.1480 0.2368 0.0511 0.0755 1.45 2.47
Multilang SBN 0.2121 0.1907 0.0439 0.0670 1.16 1.93
English DNN 0.1373 0.3621 0.0616 0.1192 1.29 3.05
Mandarin DNN 0.1688 0.2574 0.0516 0.1018 1.17 2.70

prism,lan Baseline 0.2979 0.9836 0.1021 0.2007 2.60 5.05

English SBN 0.2963 0.9848 0.0979 0.2305 2.45 4.93
Mandarin SBN 0.2734 0.9787 0.0685 0.2282 1.69 4.11
Multilang SBN 0.4008 0.9854 0.0898 0.2997 2.16 5.03

English DNN 0.2963 0.9463 0.0914 0.2228 2.70 5.68
Mandarin DNN 0.3705 0.9234 0.1450 0.3255 3.57 7.14

tel-tel Baseline 0.3577 0.3387 0.0967 0.1013 1.84 1.94

English SBN 0.1295 0.1679 0.0387 0.0471 1.17 1.11
Mandarin SBN 0.1459 0.2087 0.0440 0.0604 1.20 1.11
Multilang SBN 0.1280 0.1696 0.0416 0.0544 1.21 1.16

English DNN 0.1200 0.2212 0.0352 0.0449 0.71 0.93
Mandarin DNN 0.2732 0.3356 0.0702 0.0856 1.60 1.83

Table 8.2: The effect of calibration on the actual DCF’s under the PRISM prism,lan and
prism,chin, and the NIST tel-tel tests for the English SBN system.

Test System DCFact
new DCFact

old

male female male female

prism,chin Uncal 1.5201 10.4024 0.0515 0.1857
Cal 0.5278 0.5080 0.0642 0.0859

prism,lan Uncal 2.1503 24.4566 0.0702 0.3476
Cal 0.5519 1.2460 0.0950 0.2311

tel-tel Uncal 0.1472 0.1750 0.0976 0.1098
Cal 0.8349 0.8604 0.2087 0.2487

79

Table 8.3: Analysis of the actual DCF’s under the PRISM prism,lan and prism,chin,
and the NIST tel-tel benchmark. Note the system de-calibration on the prism,lan and
prism,chin benchmarks. Also note that de-calibration is more emphasized for the female
benchmarks. (Due to the dynamic range of the values, we prefer to report a table of
numbers rather than a graph plot.)

Test System
DCFnew DCFold

actual min actual min

male female male female male female male female

prism,chin Baseline 5.7461 16.0798 0.1834 0.3019 0.1206 0.2785 0.0621 0.0894

English SBN 1.5201 10.4024 0.1491 0.2251 0.0515 0.1857 0.0418 0.0838
Mandarin SBN 8.4710 25.2394 0.1480 0.2368 0.1536 0.4003 0.0511 0.0755
Multilang SBN 3.9156 12.3843 0.2121 0.1907 0.0863 0.2189 0.0439 0.0670

English DNN 10.2419 46.4058 0.1373 0.3621 0.1856 0.6857 0.0616 0.1192
Mandarin DNN 30.4309 75.9809 0.1688 0.2574 0.4683 0.9842 0.0516 0.1018

prism,lan Baseline 3.5369 14.0482 0.2979 0.9836 0.1142 0.2812 0.1021 0.2007

English SBN 2.1503 24.4566 0.2963 0.9848 0.0702 0.3476 0.0979 0.2305
Mandarin SBN 5.8890 30.2647 0.2734 0.9787 0.1333 0.4363 0.0685 0.2282
Multilang SBN 5.2089 38.1320 0.4008 0.9854 0.1121 0.4855 0.0898 0.2997

English DNN 6.6261 36.8887 0.2963 0.9463 0.1427 0.5451 0.0914 0.2228
Mandarin DNN 16.0119 58.9831 0.3705 0.9234 0.2856 0.7746 0.1450 0.3255

tel-tel Baseline 0.4323 0.3442 0.3577 0.3387 0.1587 0.2171 0.0967 0.1013

English SBN 0.1472 0.1750 0.1295 0.1679 0.0976 0.1098 0.0387 0.0471
Mandarin SBN 0.1815 0.2139 0.1459 0.2087 0.1264 0.1428 0.0440 0.0604
Multilang SBN 0.1530 0.1921 0.1280 0.1696 0.1171 0.1339 0.0416 0.0544

English DNN 0.1234 0.2286 0.1200 0.2212 0.0800 0.1204 0.0352 0.0449
Mandarin DNN 0.3320 0.3539 0.2732 0.3356 0.1231 0.1865 0.0702 0.0856

80

SPK
[3493]

Lo
gi

st
ic

 R
eg

re
ss

io
n

UBM
2048

iXtractor
400

n,f

[2048],
[122880]

MFCC

[60,t]

i-vec

[400]

1st phase2nd phase

Figure 8.3: Training pipeline of i-vector extractor parameters re-estimation. During the
initial phase of training, only the logistic regression is trained. During the second phase,
the parameters of the logistic regression and the i-vector extractor (T-matrix) are updated.

8.3 Discriminatively Re-trained i-vector Extractor
In this set of experiments, we keep the large parameter space from the generative i-vector
extractor and we focus on discriminative retraining of such a model that still uses a fairly
complex GMM-UBM to provide the training examples (sufficient statistics). I-vector model
is generally very robust, which is a property that we want to retain, but at the same time
we want the model to focus on important features with respect to the task at hand—
discrimination between speakers. We do not want the model to waste parameters to repre-
sent the redundant variability in the data.

To obtain a standalone discriminative i-vector extractor, we used the same strategy as
in the x-vector framework and we retrained the hyper-parameters of the original i-vector
model to optimize the multi-class cross-entropy over a set of training speakers (4.55). This
is in contrast with our previous research [Glembek et al., 2011a], where we optimized the
binary cross-entropy over verification trials formed by pairs of i-vectors. We show that with
such an approach we can achieve a signifficant improvement in performance.

8.3.1 T-matrix Re-estimation

Traditionally, matrix T is trained in a generative fashion using the EM algorithm. In
this work, however, we focus on the i-vector extractor parameter re-estimation to better
discriminate between speakers. Our experimental pipeline is plotted in Figure 8.3.

Multi-class logistic regression was used as a classifier, where the posterior probability
of class (speaker) 𝑘 given i-vector 𝜑𝒳𝑛

(as defined in (4.43)) is computed as:

𝑝W(𝐶𝑘 | 𝜑𝒳𝑛
) =

exp(w𝑇
𝑘 𝜑𝒳𝑛

)∑︀
𝑗 exp(w𝑇

𝑗 𝜑𝒳𝑛
)
, (8.6)

where W = [w1, . . . ,w𝐾] are the parameters of logistic regression. Multi-class cross-entropy
was used as the objective function:

𝐸(W,T) = −
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑠𝑛𝑘 log 𝑝W(𝐶𝑘 | 𝜑𝒳𝑛
), (8.7)

where, 𝑠𝑛𝑘 is 𝑘-th element of the target variable in 1-of-K coding, 𝐾 is number of speakers
(classes), and 𝑁 is number of training samples. For the purpose of this work, let us treat
the i-vector 𝜑𝒳𝑛

as a function of T.

81

Table 8.4: Comparison of the different approaches of classifier initialization presented on
multi-class cross-entropy loss (𝐸(W)) and EER of selected benchmarks.

EER [%]

Init 𝐸(W) tel-tel sitw-core-core

RAND 0.0821 1.97 9.89

ΣPLDA
𝑤𝑐 0.2516 2.17 10.38

COS 0.9470 3.56 11.70

Model Initialization

The proposed technique does not aim to be a replacement for the EM training algorithm.
The aim is to push the resolution of i-vectors more towards the SV task, having speakers
as classes in mind. For this purpose, the T matrix was not randomly initialized, but a T
pre-trained by the classical EM algorithm was used to initialize it T0 = TEM.

Classifier Initialization

In the case of the classifier, there is no straightforward way of initializing its parameters (as
defined by (8.6)), as in the case of the T-matrix, but we also need to initialize the classifier
for effective model retraining. The simplest method is random initialization. However, it
is possible to use two-covariance PLDA (as described in Section 5.3.2), where we use its
within-class covariance matrix Σwc (5.12) to define the new classifier:

w𝑘 = Σ−1
wc𝜇𝑘

𝑤𝑘0 =
1

2
𝜇𝑘Σ

−1
wc𝜇𝑘 + ln 𝑝(𝐶𝑘),

(8.8)

where 𝜇𝑘 is mean value of set of speaker i-vectors 𝜑𝒳𝑘
and 𝑝(𝐶𝑘) is probability of speaker

𝑘 in training set. Another initialization option is to use cosine similarity scoring (described
in Section 5.1). The only condition is to ensure the unit length of the i-vectors entering to
the classifier:

𝜇𝑘 =
1

𝑁𝑘

∑︁
𝑖∈𝑘

𝜑𝑖 (8.9)

𝑤𝑘 =
𝜇𝑘

‖𝜇𝑘‖
. (8.10)

Experiments with Classifier Initialization

In the sections above, we suggested three ways to initialize the classifier. Before the analysis
of the T re-training, let us focus on the best initialization selection. For this purpose, we
only use the tel-tel benchmark (as a representative of clean data) and sitw-core-core (as a
representative of very noisy data). We propose a two-phased training (see Figure 8.3). In
phase-1, we only trained the classifier (parameters W). After several epochs, when the loss
stopped improving, we initiated phase-2, in which the trained classifier and T were jointly
trained. A stochastic gradient descent algorithm was used as an optimizer.

In Table 8.4, let us observe the objective loss (multi-class cross-entropy) 𝐸(W) at the
end of phase-1. We can clearly see that the random initialization dominates in the loss

82

values. In the table, we also present EER result for tel-tel and sitw-core-core benchmark
at the end of phase-2. Again, we can see that the random initialization of the classifier led
to the best improvement after phase-2. For this reason, the random initialization of the
classifier is selected for further experiments.

Experiments with T-matrix Re-estimation

We conducted a set of experiments, all with three different approaches in i-vector extractor
training, denoted with letters B, G, D further on:

B — In the first set of experiments, we trained a baseline i-vector extractor in the tradi-
tional generative way, using the original PRISM training corpus.

G — In the second variant, we still used generative training, but we augmented the training
data with noise, reverberation, and cuts as described in Section 3.3.

D — In the last variant, we used the pre-trained generative i-vector extractor from G and
we retrained it discriminatively. The training pipeline is shown in Figure 8.3.

For discriminative training, careful data preparation was necessary to avoid classifier
overtraining. We used speakers with at least 5 utterances in original data only. This step
limits the training data to 3493 speakers with 59112 utterances (177336 utterances including
augmentation).

For all experiments, we kept the same PLDA configuration. The i-vectors are pre-
processed with mean normalization, LDA (i-vectors are transformed into 200-dimensions)
and finally they are length-normalized.

Our results (EER) are presented in Table 8.5, for 400- and 600-dimensional i-vectors.
They are also divided based on PLDA, where we distinguish PLDA trained on clean data
and multi-condition training. Finally, the table is also divided based on the type of the
benchmark, for the telephone channel, microphone and artificially created benchmarks. We
did not use any type of adaptation.

When we compare baseline systems (B column in the table) with discriminatively re-
trained variant (D column in the table), we can see that except two cases (sre16-yue-f in
400-dimensional variant with “clean” PLDA and int-mic in 600-dimensional variant with
“clean” PLDA) the discriminative training is better. The discriminative approach is also
better compared to the generative approach with augmented data in the training, where it
can be seen see that augmentation in generative training caused mostly degradation.

In tel-tel benchmark, we can see significant improvement with discriminative training,
where 400-dimensional system has almost 12 % relative improvement compared to baseline
and it also outperforms 600-dimensional baseline. Similarly, in the prism,ch benchmark,
we have 22 % relative improvement in 400-dimensional variant, here we also outperform
600-dimensional discriminative variant of training.

The general improvement can be observed also when doing multi-condition training of
the PLDA, but we can also see that it harmed the clean benchmark and helped more on
the noisy one, which is an expected behavior.

Generative i-vector extraction training is unsupervised. When we add augmented data
to the training list, i-vector extraction is forced to reserve a portion of parameters for
representation of variability of noise, reverberation and so it limits parameters for speaker
variability. In our supervised discriminative approach, we are pushing i-vector extractor to
do the opposite. The extractor is forced to distinguish the speakers, so it should decrease

83

the unwanted variability and keep as many parameters of the T-matrix to the speaker
variability. It can also help to limit usage GMM components which are not useful for
speaker separation.

84

Ta
bl

e
8.

5:
C

om
pa

ris
on

of
th

e
i-v

ec
to

r
ba

se
lin

e
w

ith
di

ffe
re

nt
ap

pr
oa

ch
es

us
ed

fo
r

i-v
ec

to
r

ex
tr

ac
to

r
tr

ai
ni

ng
.

B
ot

h
bl

oc
ks

ar
e

di
vi

de
d

in
to

co
lu

m
ns

co
rr

es
po

nd
in

g
to

th
e

di
m

en
sio

na
lit

y
of

i-v
ec

to
rs

(4
00

-a
nd

60
0-

di
m

en
sio

ns
).

R
es

ul
ts

ar
e

al
so

di
vi

de
d

ba
se

d
on

th
e

tr
ai

ni
ng

se
t

of
PL

D
A

,w
he

re
w

e
us

ed
cl

ea
n

an
d

m
ul

ti-
co

nd
iti

on
fa

sh
io

n
(w

ith
no

ise
d

an
d

re
ve

rb
er

at
ed

da
ta

).
R

es
ul

ts
(E

ER
[%

])
in

ea
ch

co
lu

m
n

co
rr

es
po

nd
to

th
e

di
ffe

re
nt

i-v
ec

to
r

ex
tr

ac
to

r
tr

ai
ni

ng
se

tu
p:

B
-g

en
er

at
iv

e
ba

se
lin

e
w

ith
ou

ta
ug

m
en

te
d

da
ta

,G
-g

en
er

at
iv

e
tr

ai
ni

ng
w

ith
au

gm
en

te
d

da
ta

an
d

D
-a

ug
m

en
te

d
da

ta
us

ed
fo

r
di

sc
rim

in
at

iv
e

re
tr

ai
ni

ng
.

T
he

la
st

ro
w

de
no

te
d

as
av

g
gi

ve
s

th
e

av
er

ag
e

EE
R

ov
er

al
l

be
nc

hm
ar

ks
an

d
ea

ch
va

lu
e

se
t

in
bo

ld
is

th
e

m
in

im
um

EE
R

in
th

e
pa

rt
ic

ul
ar

be
nc

hm
ar

k.

40
0-

di
m

60
0-

di
m

PL
D

A
cl

ea
n

PL
D

A
ex

te
ns

io
n

da
ta

PL
D

A
cl

ea
n

PL
D

A
ex

te
ns

io
n

da
ta

B
en

ch
m

ar
k

B
G

D
B

G
D

B
G

D
B

G
D

te
l-t

el
2
.2

3
2.

43
1
.9

7
3
.3

6
3.

73
3
.2

5
1.

99
1
.9

8
1
.8
4

2.
7
4

2.
8
6

2
.7

0
sr

e1
6-

yu
e-

f
10

.9
0

11
.2

5
10

.9
7

11
.3

2
11
.2

0
1
0
.8
7

11
.2

0
11

.3
2

11
.1

0
1
1
.5

3
1
1.

2
0

1
1
.1

7

in
t-

in
t

4
.7

2
4.

75
4
.3
7

4.
83

4.
88

4
.5

6
4.

57
4
.5

2
4
.4

7
4
.5

5
4.

7
1

4
.5

2
in

t-
m

ic
2
.1

5
2.

24
2
.1

1
2
.0

2
2.

28
1
.9

1
1
.8
5

2.
11

1
.9

1
2
.0

0
2.

0
2

1
.9

4
pr

ism
,c

hn
1
.1

3
1.

48
0
.8
8

1.
14

1.
40

1
.1

4
1.

03
0
.9

2
0
.9

5
0
.9

7
1.

0
4

0
.9

4
sit

w
-c

or
e-

co
re

10
.5

1
10
.7

5
10

.2
9

10
.5

7
10
.6

2
10

.2
1

10
.1

1
10

.2
8

9
.8
2

1
0.

3
2

1
0.

3
4

1
0
.1

7

pr
ism

,n
oi

4
.4

3
4.

51
3
.9

7
3
.6

6
3.

90
3
.4

4
3.

72
3
.7

9
3
.5

8
3
.4

2
3.

2
6

3
.2
5

pr
ism

,re
v

2.
81

3.
06

2
.5

4
2
.4

5
2.

47
2
.3

4
2.

51
2
.7

4
2
.3

5
2
.2

3
2.

2
2

2
.1
5

av
g

4
.8

6
5.

06
4
.6

4
4
.9

2
5.

06
4
.7

2
4.

62
4
.7

1
4
.5
0

4.
7
2

4.
7
1

4
.6

1

85

Experiment with T-matrix: Additional Observations

We found out, that robust classifier was necessary for proper T-matrix retraining. We have
conducted experiments with different depth of NN multi-class classifier until we settled on
a topology with no hidden layer, which effectively equals to logistic regression. With this
setup, we avoid problems with overtraining (especially in the early stage of our endeavor,
where we did not use augmented data), there are fewer parameters to train, and time and
memory requirements are within reasonable limits, yielding an overall robust classifier.

For effective i-vector extractor re-training, a well-trained classifier was crucial. In stage-
2 of the training (where classifier was jointly retrained with the T-matrix), a poorly trained
classifier resulted in either negligible or even harmful update of the T-matrix.

Because of its size, matrix T was prone to overtraining, therefore, regularization was
necessary. We have chosen L2 regularization centered around the initial ML matrix TEM.
This limits the estimate of T from moving too far from the initial (already well-estimated)
state.

After several unsuccessful experiments, where the change of T was too rapid, we set
learning rate during the full pipeline training to 10−3 (so far, 10−1 was used). After this
change, the regularization was not necessary anymore, and we received stable training.

Fixing the parameters of the classifier during stage-2 (and retraining only T) led to
minor effect on the system, compared to the joint training.

Retraining T from randomly initialized matrix rather than from a ML estimate did not
lead to convergence.

8.3.2 T-matrix Factorization

We continue with our previous research, in which we kept the large parameter space away
from the generative i-vector extractor and in which we focused on discriminative retraining
of such a model. We were able to retain the model robustness and even increase the SV
performance by optimizing the model for discrimination between speakers—a task closely
related to the final speaker verification. However, memory requirements and sizeable com-
putational cost during training have not only limited us in running experiments effectively,
but more importantly, they prevent possible usage in a larger DNN scheme that would be
closer to an end-to-end system.

To solve our problem, we had to drastically decrease the number of trainable model pa-
rameters, but, of course, without a major decrease in performance. In the past, researchers
have dealt with the same issue and experimented with factorization of similar or even the
same models as ours. In 2003, Subspace Precision and Mean model (SPAM) for acoustic
modeling in speech recognition was introduced in [Axelrod et al., 2003] and later optimized
by Daniel Povey in [Povey, 2006]. SPAM models are Gaussian mixture models with a
subspace constraint, in which each covariance matrix is represented as a weighted sum of
globally shared full-rank matrices. In 2014, Sandro Cumani proposed an i-vector extractor
factorization [Cumani and Laface, 2014] for faster i-vector extraction and smaller memory
footprint. Each row of the i-vector extractor matrix is represented as a linear combination
of atoms from a common dictionary with the assumption that it is not necessary to store
all rows of this matrix to perform i–vector extraction.

In our approach to factorization, we were inspired by [Cumani and Laface, 2014], but
instead of factorizing each row, we perform factorization on the level of submatrices of the
i-vector extractor that represent individual GMM-UBM components:

86

T̄(𝑐) =

𝑄∑︁
𝑞=1

𝑎(𝑐)𝑞 U𝑞, (8.11)

where 𝑄 is number of factors, U𝑞 are the base matrices, 𝑎
(𝑐)
𝑞 are scalar weights for each

component T(𝑐) (see (4.45)). Note that bases U𝑞 are shared across all components 𝑐. 𝐶
represents number of all components, 𝐹 feature dimensionality and 𝐷 i-vector dimension-
ality. The number of parameters in this new model representation is 𝑄𝐶 +𝑄𝐹𝐷, while the
number parameters in the original i-vector extractor was 𝐶𝐹𝐷. Since individual matrices
T(𝑐) in the original i-vector concept are theoretically linearly independent, the size of 𝑄
would have to be equal to 𝐶 in order for the factorized model to fully describe the original
subspace T. However, our assumption is that there is, in fact, some level of linear depen-
dency and therefore, 𝑄 can be chosen significantly smaller than 𝐶, therefore reducing the
original model parameter space.

To finally obtain a discriminative i-vector extractor, we still use the same strategy as in
Section 8.3.1 and we retrain the NN representation of our factorized generative model to
optimize the multi-class cross-entropy (8.7) over a set of training speakers.

Generatively trained i-vector extractor was used as an initialization. The logical step
would be to use this initialization here as well. To find a solution with respect to U𝑞, the
derivative in (4.53) can be extended using a chain rule to:

d𝑄(T,T0)

dU𝑞
=

d𝑄(T,T0)

dT(𝑐)

dT(𝑐)

dU𝑞
= 0. (8.12)

Training and Initialization of Factorised T-matrix

There is no closed-form solution for U𝑞 of (8.12). Therefore, we generalize the optimization
objective by adding an 𝐿2 regularizer:

𝐸reg(W,T) = 𝐸(W,T) + 𝜆||T,TEM||, (8.13)

where ||T,TEM|| is Euclidian distance between our factorized matrix T, and the original
generatively trained matrix TEM.

We used two training strategies which differ in initialization and in the 𝜆 regularizing
factor.

In scheme-1 initialization, we select 𝑄 eigen-vectors (based on 𝑄 largest eigen-values)
of covariance matrix of the vectorized T(𝑐)’s (C vectors of 𝐹𝐷-dimensionality). Parameters
𝑎
(𝑐)
𝑞 are computed as a solution of system of 𝑄 equations:

T̄(𝑐) =

𝑄∑︁
𝑞=1

𝑎(𝑐)𝑞 U𝑞. (8.14)

For this scheme, we globally set 𝜆 = 0. In scheme-2, we started with random initialization,
and for the first epoch (phase-0), 𝜆 was set to a large number. The rest of the training
is two-stage training as described in Section 8.3.1. In general, we used stochastic gradient
descent algorithm for parameter optimization.

87

Experiments with Factorized T-matrix

One of the issues we had to solve to even begin experimenting with the factorized model
was its proper initialization. We present two different strategies for initialization and then
we experiment with subsequent discriminative retraining of such models. We also provide
comparisons with the generative baseline and with discriminative retraining of its full repre-
sentation. In our experiments with factorization, we set the number of bases 𝑄 to 250. This
means that the matrix T is represented by 7.5 times less parameters compared to the original
model TEM, and when compared to the i-vector extractor block from [Rohdin et al., 2018],
the number of parameters is almost half. In all of our experiments, we set the i-vector
subspace dimensionality to 400.

For clarity, we denote different ways of obtaining the i-vector extractor by capital letter
B, C, R and D:

B — We trained a baseline i-vector extractor in the traditional generative way, using the
original PRISM training corpus without any augmentations.

C0 — We initialized the bases U𝑏 for factorized model by eigen-vectors.

C — We initialized the bases U𝑏 for factorized model by eigen-vectors as in C0 and then
we continued training with the loss function from (8.7) and the two-phase training
described in Section 8.3.1.

R0 — We initialized the bases U𝑏 randomly and then we ran a single epoch of training
with the loss function in (8.13).

R — We initialized the bases U𝑏 randomly and then we ran a single epoch of training with
the loss function in (8.13) as in R0, then we continued training with the loss function
from (8.7) and the two-phase training described in Section 8.3.1.

D — We driscriminatively re-trained a full representation of the baseline generative i-vector
extractor [Novotný et al., 2019b].

For training, we used augmented PRISM set (based on our recipe in Section 3.3). To avoid
over-fitting of the classifier during discriminative training, it was necessary to filter the
training data. From the original data, we selected speakers with at least 5 utterances. This
step limits the training data to 3493 speakers with 59112 utterances (177336 utterances
including augmentation).

For all experiments, we kept the same PLDA configuration. The i-vectors were pre-
processed with mean normalization, LDA (i-vectors are transformed into 200-dimensions)
and finally, they were length normalized.

Our results in terms of EER are presented in Table 8.6 which is divided into two ver-
tical blocks to provide a comparison between PLDA trained on the clean data and multi-
condition PLDA training, where we trained the PLDA also on augmented copies of its
training data. Now we are interested in the general robustness of our methods and there-
fore we focus on overall performance across all conditions rather than looking closely into
individual cases.

The table is also divided into three horizontal blocks based on the type of the benchmark:
into telephone channel (tel-tel, sre16-yue-f), microphone (int-int, int-mic, prism,ch, sitw-
core-core) and artificially created benchmarks (prism,noi, prism,rev). For systems C and
R, we also present results for initialization, before U𝑏 were retrained (in R after the first
epoch with 𝜆||T,Torig|| penalty).

88

Table 8.6: Results in terms of EER [%] for different i-vector extractors: B - generative
baseline without augmented data, C0 and R0 are mere initialized factorized models while C
and R are their re-trained variants. D stands for a full representation of the original i-vector
extractor that has been discriminatively re-trained. The table is also verticaly divided into
two blocks which correspond to the training set of PLDA, where we used either only clean
data or multi-condition style of training (with noised and reverberated data added to the
training of PLDA). The last row denoted as avg gives the average EER over all benchmarks
and each value set in bold is the minimum EER in the particular benchmark.

PLDA clean PLDA extension data

Benchmark B C0 C R0 R D B C0 C R0 R D

tel-tel 2.23 8.39 3.90 2.47 2.20 1.97 3.36 9.72 4.91 3.52 3.30 3.25
sre16-yue-f 10.90 17.39 12.79 11.29 10.96 10.97 11.32 17.18 12.18 11.42 11.11 10.87

int-int 4.72 9.56 5.57 4.74 4.51 4.37 4.83 10.18 5.94 4.96 4.67 4.56
int-mic 2.15 5.27 2.69 2.23 2.18 2.11 2.02 5.67 2.65 2.28 2.10 1.91
prism,chn 1.13 5.63 2.25 0.92 0.83 0.88 1.14 5.95 1.98 1.11 1.12 1.14
sitw-core-core 10.51 17.97 12.35 10.92 10.40 10.29 10.57 17.54 12.33 10.84 10.47 10.21

prism,noi 4.34 11.74 6.15 4.60 4.29 3.97 3.66 10.73 5.27 4.04 3.73 3.44
prism,rev 2.81 8.59 3.67 2.84 2.49 2.54 2.45 7.25 3.17 2.49 2.30 2.34

avg 4.85 10.57 6.17 5.00 4.73 4.64 4.92 10.53 6.05 5.08 4.85 4.72

When we compare baseline systems (columns B in the table) with the results obtained
with initialized models for discriminative training (columns C0 and R0), we can see that
C0 is always significantly worse than the baseline. Initialization R0 is much better — the
results as they are only slightly degraded compared to the baseline indicating that we were
able to represent the original i-vector model well.

We can see, that starting from C0, we reach significant improvements with discriminative
re-estimation of parameters. Unfortunately, these results indicate, that the model got stuck
in a local minimum and it was not able to improve to the level of the baseline.

Initialization variant R0 proved to be a significantly better starting point. After dis-
criminative parameter re-estimation, model R was able to obtain slight improvement across
all benchmarks w.r.t. R0. Model R has also achieved a slight improvement over the baseline
B or almost reached its performance.

Observing results in columns D, we can compare with discriminative retraining of the
full i-vector representation from previous Section 8.3.1 (or with [Novotný et al., 2019b]).
With model D we achieve the best overall performance (slightly better than R), but the
architecture with factorization offers approximately 4 times faster training with 7.5 times
less parameters.

89

Chapter 9

Impact of Normalization on
Language Robustness

In Section 1.4, we introduced normalization techniques from a theoretical perspective. Let
us now focus on their practical application and impact on system performance. The score
normalization is the last step, where it is possible to cope with unwanted variability caused
by factors mentioned in Chapter 2. We focus on language variability as we did in Section 8.2,
but now in the score space.

This chapter is based on research and publication from [Matějka et al., 2017], on which
we worked closely with Pavel Matějka, Oldřich Plchot, Lukáš Burget, Mireia Diez Sánchez,
and Jan Černocký, and included in this thesis with the kind permission of the first author.

For speaker verification systems, score normalization is one of the standard steps in
producing well-calibrated speaker verification scores. Different distributions of target and
non-target scores can be obtained for two different enrollment speaker models without
normalization. This makes it impossible to set a single detection threshold for the different
speaker models’ scores. Similarly, for the same speaker model, the score distributions can
vary depending on the test utterance condition (recording channel, acoustic conditions, or
the utterance language), which calls for a condition-dependent threshold.

Typically, the normalization step shifts and scales the distributions for the individual
models and/or conditions to allow for a single detection threshold. The shifts and scales
are usually estimated using a set of utterances called normalization cohort.

In this chapter, we analyze several score normalization techniques (from Section 1.4)
for evaluation benchmarks with multiple languages.

9.1 Experimental Setup

9.1.1 Evaluation Sets

For system evaluation, we used the sre16-all, tel-tel and prism,lan benchmarks. In addition
to the original PRISM set files, we generated short cuts from these files, resembling the
histogram of durations of the sre16-all set. The motivation for evaluating on this set is
that it contains multiple languages and a channel similar to the training data.

90

9.1.2 System Description

Our system employs gender-independent i-vector extraction and PLDA scoring. The front-
end operates on standard 19 Mel-Frequency Cepstrum Coefficients (MFCC) with C0, delta
and double deltas, which are short-term mean- and variance-normalized over a 3 s sliding
window. The universal background model (UBM) has 2048 diagonal-covariance Gaussians
and the i-vector extractor produces 600-dimensional vectors. UBM was trained on approx-
imately 8500 telephone files (313 hours of speech after VAD), i-vector extractor on 75000
files (3650 hours) and PLDA on 121000 files (5300 hours) defined by PRISM set. Addi-
tionally, we generated utterances with artificially added noise, reverberation (Section 3.3)
and short cuts from non-English files which were added to PLDA training to simulate the
properties of the data in NIST SRE 20161. Results are reported as in terms of DCFmin as
defined for NIST SRE 2016 (Section 3.1.3).

9.1.3 Normalization Cohorts

∙ NIST — contains one utterance per speaker from NIST SRE training data. It comes
from different channels and contains only limited amount of data with the same lan-
guages as sre16evl. We experimented with different selection methods not to include
many utterances of each speaker to the cohort, but there was no significant change in
the results.

∙ LID — contains files in many languages from our development and evaluation data
from the NIST Language Recognition Evaluation [Jančík et al., 2010, Plchot et al., 2016b].
This set was chosen to address the language mismatch problem. In total, there are
75k files from 57 languages with nominal durations longer than 30 s of speech.

∙ SRE16 unlabeled — provided as development data for NIST SRE 2016 as matched
channel and language data. This set should be ideal for score normalization for sre16-
all.

∙ SRE16 minor — this set mimics the scenario of similar recording channels but different
languages.

9.2 Results
This section presents primarily results on the sre16-all benchmark (test set), as it introduced
new variabilities which were not present in previous evaluations. Later, we complete the
analysis on the well known tel-tel benchmark and also on the prism,lan benchmarks from
PRISM set.

Figure 9.1 and Table 9.1 show the results on all pooled NIST SRE16 trials with different
score normalization techniques and with three different cohort sets for normalization. NIST
cohort set contain different languages and different channel than evaluation data, SRE16
unlabeled contains the same languages and channel as evaluation data and the last one is a
pool of these two. The results without any score normalization are marked as “baseline”. For
all experiments with adaptive score normalization, we used the top 200 files. By inspecting
Figure 9.1, we can make several conclusions:

1The numbers of files and hours of speech above already include these additional noisy and reverberated
files.

91

Figure 9.1: Comparison of different score normalization techniques - DCFmin on all pooled
trials from NIST SRE 2016.

∙ S-norm produces the best results with 30 % relative improvement, T-norm is behind
and Z-norm is worse. ZT-norm produces the worst results in this setup.

∙ if matched data are present in the cohort, the results are much better, if they are not
present, there is only a slight improvement over the baseline.

∙ if matched data are present in the cohort then the adaptive score normalization is
always better than using all data, because it selects the “correct” cohort.

∙ adaptive S-norm2 used in [Cumani et al., 2011] performs about the same as adap-
tive S-norm1. We also tried to apply adaptive Z-norm on the top of adaptive S-
norm2 [Cumani et al., 2011], but our results did not show any improvement.

Figure 9.2 shows DCFmin as a function of the size of selected cohort in adaptive S-
norm1. As before, there are three different cohort sets. All curves have nice flat minima
between 200–500, we prefer 200 for practical reasons. The same trend was observed also on
other benchmarks. It is also clear that using all data from the cohort yields worse results.

There are few tricks learned during these experiments to eliminate outliers from the
cohort. The cohort set has an assumption to contain only one file per speaker, which
might be hard to ensure in reality. When designing the cohort set on data without speaker
labels, it is better to run unsupervised speaker clustering [Shum et al., 2014] and take only
one file from each cluster. When selecting the cohort scores, it is also advantageous to
eliminate/reject outlier scores by setting a “safe” interval from minus to plus 4–5 times
standard deviation around the mean, and reject all cohort data outside.

Figure 9.3 compares adaptive S-norm1 with top 200 files in the cohort for different
benchmarks and different cohorts. By examining all benchmarks and cohorts we conclude
that:

∙ The cohort should contain the same languages as the evaluation set - channel match
is not enough. This can be seen on the sre16-all benchmark with SRE16 unlabeled

92

Table 9.1: DCFmin for different score normalization techniques for pooled NIST SRE 2016
with different datasets in cohort.

norm. / cohort NIST NIST& SRE16unlab
SRE16unlab

baseline (no-norm) 0.9539 0.9538 0.9538
z-norm 0.8811 0.8661 0.7926
t-norm 0.8996 0.8366 0.7514
zt-norm 0.9814 0.8270 0.8029
s-norm 0.8790 0.8294 0.7483
az-norm1 0.9131 0.7335 0.7362
at-norm1 0.9124 0.6998 0.7026
azt-norm1 0.9584 0.7214 0.7365
as-norm1 0.8922 0.6771 0.6797
as-norm2 0.8999 0.6806 0.6797
as-norm2+az 0.9293 0.6954 0.7010

Table 9.2: Results for all pooled NIST SRE 2016 trials for different cohorts, and adaptive
s-norm with top 200 selected files.

Cohort Set DCFmin

Baseline (no norm) 0.9538
NIST 0.8922
LID 0.7712
NIST + LID 0.7739
NIST + SRE16unlabeled 0.6771
NIST + LID + SRE16unlabeled 0.6733
SRE16 unlabeled 0.6797
SRE16 minor 0.7418

(contains the same languages as the evaluation set) and SRE16 minor (similar channel
as the evaluation data, but different languages).

∙ if the cohort is too different, the performance can even degrade (see tel-tel benchmarks
and SRE16 unlabeled and SRE16 minor cohort sets).

∙ big set of LID data in the cohort is generally helpful especially in multilingual bench-
marks.

Table 9.2 presents the details of DCFmin for SRE 2016 all trials.
The following step was to analyze which files were selected to form the cohort during the

adaptive S-norm1 process. We ran this analysis with the top 50 files with NIST+SRE16
unlabeled cohort set. The first part of Table 9.3 shows the results on sre16-all and the
languages with the largest coverage in the selected cohorts. SRE16 unlabeled is present in
the cohorts with 51 % and 64 % for male and female trials respectively which is obvious
because it contains matched languages (Cantonese and Tagalog) and channel data. The
second is Cantonese which is the target language (in this case from NIST data). English is
the third most probable because it has a lot of files in the cohorts under various benchmarks.

93

Figure 9.2: Numbers of files selected to the cohort in adaptive S-norm — results are in
DCFmin on all pooled trials from NIST SRE 2016.

The following Mandarin, Vietnamese, Thai and Tagalog are languages quite close to target
ones, with Tagalog being one of the target languages.

The sre16-all set contains 63.9 % of Cantonese and 36.1 % Tagalog data for male speak-
ers. The selected cohort sets contain data with the same language from SRE16 unlabeled2

(51 %), Cantonese (10.2 %) and Tagalog (0.3 %), the total evaluation language match is
therefore 61.5 %. For females, this number is 74.5 %.

The second part of Table 9.3 describes PRISM prism,lan benchmark with true distri-
bution of languages given in brackets. There is again a strong agreement between what
language is selected to cohorts and the true percentage. The same is valid also for the last
English benchmark tel-tel where more than 90 % of data selected to cohorts comes from
English.

Globally, for all test data and all languages, we obtain in average 68 % agreement
between the language of enrollment and test files and language selected to the cohorts.
There is also strong agreement in gender – the files in selected cohorts match in 92 % cases
the gender of the evaluation benchmark.

9.3 Summary
The analysis shows that using adaptive symmetric score normalization (s-norm) performs
the best with 30 % relative improvement over baseline without any normalization. The best
results were achieved by selecting 200 to 500 top scoring files to create a speaker-dependent
cohort. Further analysis shows that the selected cohorts match in 68 % the language and
in 92 % the gender of the enrollment and test recordings. Our experimental results also
suggest that the general score normalization cohort should be a pool of several languages
and channels, and, if possible, its subset should contain the data from the target domain
(language and channel).

2Contains Cantonse and Tagalog data, but there are no labels for this data, and we do not know precise
numbers.

94

Figure 9.3: Comparison of adaptive s-norm with different cohort sets with top 200 selected
files.

Table 9.3: Per-language analysis of files selected to the cohorts in adaptive score normal-
ization. The numbers in brackets show real percentage distribution of languages in the
set.

Benchmark Language Male Female
DCFmin DCFmin

sre16-all SRE16unlab 51.1 64.3
Cantonese 10.2 (63.9) 9.0 (43.7)
English 7.7 4.6
Mandarin 5.8 2.9
Vietnamese 2.4 4.8
Arabic 5.2 2.9
Thai 1.0 3.3
Tagalog 0.3 (36.1) 1.2 (56.3)

prism,lan English 61.7 (72.3) 55.4 (71.9)
Mandarin 11.1 (17.2) 14.5 (25.1)
Arabic 6.3 (3.6) 2.4 (2.8)
Russian 1.6 (2.6) 5.5 (9.4)
Thai 1.0 (4.4) 6.0 (13.0)

tel-tel English 91.0 (100) 93.8 (100)
other <1.0 <1.0

95

Chapter 10

Impact of Data on the Robustness
of Discriminative Systems

In Chapter 6, we described a system training paradigm referred to as multi-conditional that
addresses acoustic conditions such as noise and reverberation. We presented the techniques
mainly in a context of generative models. If used correctly, multi-conditional training
helped introduce unwanted variability into the model and increase its robustness. In the
case of discriminative models, multi-conditional training is usually an intrinsic part of the
training procedure. It is necessary not only for robustness of the systems but also for
their generalization, especially on unseen data domains. Multi-condition data can also act
as a regularization element during training. Discriminative models are significantly more
sensitive to data selection. The data itself can affect the model’s topology; for example, the
number of speakers determines the size of the output layer of the x-vector NN. Generative
models were less demanding in this respect, due to their simplicity and parameter sharing,
for example, (P)LDA within-speaker variability represented by a single Gaussian shared by
all speakers within the training set.

In this chapter, we use the x-vector model and extend the analysis from Section 7.3,
which already presents the x-vector as a robust feature for PLDA modeling. We experiment
with training data, separately analyzing the effect of augmentation and the number of
training speakers. The analysis helps us identify the training data’s critical attributes
for the subsequent proper training of discriminative systems. Experiments are based on
[Novotný et al., 2018b].

10.1 Experimental Setup

10.1.1 x-vectors System

As the x-vector embedding system, we used the original DNN topology presented in Sec-
tion 4.2. Input features to the DNN were 20 MFCCs, extracted using a 25 ms Hamming
window with 10 ms overlap. We used 23 Mel-filters, and we limited the bandwidth to 20–
3700 Hz range. Resulting 20-dimensional feature vectors were subjected to short time mean-
and variance-normalization using a 3 s sliding window. We used default energy-based VAD
from the Kaldi recipe [Snyder, 2017].

96

10.1.2 PLDA Augmentation Sets

We prepared four variants of PLDA training sets with clean and augmented data, exactly
as described in Section 7.2.

10.1.3 Embedding Extractor Augmentation Sets

We experimented with four sets of DNN training data. We kept most of the parameters
from the original recipe. Every speaker had to have at least 6 utterances (set to 8 in the
original recipe) and every utterance had to be at least 500 frames long. The consequence
of this constraint was having fewer speakers, especially in training on clean data, because
there, utterances had not been duplicated duplicated by the augmentation. It is worth
noting that increasing the number of training speakers also increases the model size due to
the larger output layer.

The statistics of the training data for all four models are listed in Table 10.1. Our first
model was trained only on the “clean” original data without any augmentation. The second
model (Aug I.) was trained on augmented data, but the number of speakers was limited to
be the same as in the first model. The third model (Aug II.) was similar to the second but
without any limitation.

In the original Kaldi recipe, training data were augmented with reverberation, noise,
music, and babble and combined with original clean data. The package of all noises and
room impulse responses can be downloaded from OpenSLR1 [Ko et al., 2017], and includes
MUSAN noise corpus (details in Section 3.3).

For augmentation with reverberation data, the total amount of Room Impulse Responses
(RIRs) is divided into two lists for medium and small rooms. The probability of selecting
a small or medium room is equal. We add reverberation to obtain a single replica of the
original training data.

For augmentation with noise, we created three replicas of the original data. The first
replica was augmented by adding the MUSAN noises at SNR levels in the range of 0–15 dB.
In this case, the noise was added as a foreground noise (that means several non-overlapping
noises can be added to the input audio). The second replica was augmented by music at
SNRs from 5 to 15dB as background noise (one noise per audio with the given SNR). The
last noisy replica of training data was created by augmentation with babble noise. SNR
levels were at 13–20 dB and we used 3–7 noises per audio. All augmented data were pooled
and a random subset of 128k audio recordings was selected and combined with clean data.
The process of data augmentation is also described in [Snyder et al., 2018].

For the last model (Aug III.), we add our augmentation: real room impulse responses
and stationary noises described in Section 3.3. The original RIR list was extended by our
list of real RIRs and we kept one reverberated replica. Our stationary noises were used to
create another replica of data with SNR levels in range 0-20 dB. We combined all replicas
and selected a subset of 150k files. As a result, we obtained 11383 speakers after filtering.

10.2 Results
We conducted a set of experiments with embeddings to analyze their robustness in different
data domains. We also performed an analysis with embedding DNN extractors aimed at

1http://www.openslr.org/resources/28/rirs_noises.zip

97

http://www.openslr.org/resources/28/rirs_noises.zip

Table 10.1: Numbers of speakers, utterances and amounts of speech used for training the
embedding DNN. (E=embedding)

Parameter E-clean E-Aug I. E-Aug II. E-Aug III.

speakers 3359 3359 9544 11383
utterances 58965 72371 211906 268219
speech duration [h] 2488 3494 10289 13288

answering the following question: How does the system performance depend on the amount
and type of the training data for the embedding DNN?

We focused on the analysis with training of the embedding system. We varied the
amount of training data (and also training speakers) by the means of augmentation. Results
from all four embedding networks are listed in Table 10.2. The first block represents the
system trained only on original (“clean”) data, without any augmentation. Next blocks
represent systems with increasing number of training utterances, speakers and types of
noise in the augmentation (see Table 10.1).

The first two blocks represent the same network. The difference is in augmentation:
while Embedding-clean was trained only on clean, Embedding-Aug I., was trained with aug-
mented data, but we kept the number of speakers identical for both. We can clearly see that
just adding additional hours of training data consistently improved the performance and
also that the trend of contribution of the multi-condition PLDA training to the performance
is consistent.

The second and the third blocks represent the comparison of different numbers of speak-
ers in training and therefore also change in the model size (size of the output layer of the
network). Embedding-Aug I. has 3359 speakers as the output, while Embedding-Aug II.
has seen 9544 speakers. Again, we can see the same trend as in the previous paragraph
and additional improvements in performance. The exception is the Tagalog benchmark of
SRE16, which seems to be different and possibly too much out-of-domain.

The last block represents the largest network (Embedding-Aug III.). We extended the
number of speakers and we also added more augmented data to the training. We increased
also the augmentation data for the PLDA multi-condition training (see Section 3.3 and
Chapter 6): we added real room impulse responses and additional set of stationary noises.
This brought more improvements on the tel-tel and sitw-core-core benchmarks. On sre16-
yue-f, we can also see overall improvement, with the exception of the outstanding result
achieved by the Embedding-Aug II. with PLDA+N. On the remaining benchmarks, the
largest network has kept its robustness and similar performance.

We can conclude that the analyzed embedding architecture shows a robust performance
under various benchmarks. We have verified that this architecture is indeed data-hungry
— by extending the original recipe with our collection of augmentation data and, at the
same time, further improving the performance. Based on Table 10.2, we see that Aug III.,
a variant of the training set, provides the best results on PLDA without multi-conditional
training across almost all evaluation benchmarks. This suggests it is a good starting point
for future experiments and tuning of score estimation and normalization.

98

Ta
bl

e
10

.2
:

R
es

ul
ts

(E
ER

[%
])

ob
ta

in
ed

in
fo

ur
sc

en
ar

io
s.

Ea
ch

bl
oc

k
co

rr
es

po
nd

s
to

a
sy

st
em

tr
ai

ne
d

on
di

ffe
re

nt
da

ta
(s

ee
Ta

bl
e

10
.1

).
B

lo
ck

s
ar

e
di

vi
de

d
in

to
co

lu
m

ns
co

rr
es

po
nd

in
g

to
th

e
sy

st
em

s
tr

ai
ne

d
in

m
ul

ti-
co

nd
iti

on
fa

sh
io

n
(w

ith
no

ise
d

an
d

re
ve

rb
er

at
ed

da
ta

in
PL

D
A

).
Ea

ch
co

lu
m

n
co

rr
es

po
nd

to
di

ffe
re

nt
PL

D
A

m
ul

ti-
co

nd
iti

on
tr

ai
ni

ng
se

t:
N

-n
oi

se
,R

R
-r

ea
lr

ev
er

be
ra

tio
n,

or
bo

th
(+

).
Ea

ch
va

lu
e

se
t

in
bo

ld
is

th
e

m
in

im
um

in
th

e
pa

rt
ic

ul
ar

be
nc

hm
ar

k.

Em
be

dd
in

g-
cl

ea
n

Em
be

dd
in

g-
A

ug
I.

Em
be

dd
in

g-
A

ug
II

.
Em

be
dd

in
g-

A
ug

II
I.

PL
D

A
cl

ea
n

PL
D

A
ex

te
ns

io
n

da
ta

PL
D

A
cl

ea
n

PL
D

A
ex

te
ns

io
n

da
ta

PL
D

A
cl

ea
n

PL
D

A
ex

te
ns

io
n

da
ta

PL
D

A
cl

ea
n

PL
D

A
ex

te
ns

io
n

da
ta

B
en

ch
m

ar
k

—
N

R
R

R
R

+
N

—
N

R
R

R
R

+
N

—
N

R
R

R
R

+
N

—
N

R
R

R
R

+
N

te
l-t

el
1.

38
1.

73
1.

36
1
.3

9
1.

18
1.

46
1.

1
5

1.
1
6

1.
0
4

1
.2

8
1.

0
5

1
.0

8
0.

9
4

1.
0
9

0
.8
8

0.
9
4

sr
e1

6-
tg

l-f
24
.4

5
24
.2

0
24
.5

3
24

.0
7

2
2.

08
21
.8

4
21
.7

1
2
1
.6
8

2
3.

1
6

2
1
.8

3
2
3.

2
2
2
.9

4
2
2.

8
9

2
1.

9
2

2
2
.8

4
2
2
.4

8
sr

e1
6-

yu
e-

f
12
.4

6
12
.1

8
12
.6

4
12

.4
1

11
.5

3
1
1.

11
11
.2

5
11
.2

3
1
0.

0
7

8
.6
1

9.
9
8

9
.8

6
9.

6
6

9.
4
3

9
.5

9
9
.5

4
in

t-
in

t
4.

19
4.

58
4.

06
3
.9

3
3.

60
4.

07
3.

57
3
.5

4
3.

2
8

3
.6

1
3
.2
2

3
.2

3
3.

4
0

3.
6
4

3
.3

8
3
.3

4
in

t-
m

ic
1.

49
1.

62
1.

54
1
.4

4
1.

4
1

1.
39

1.
34

1
.3

0
1.

0
8

1
.2

4
1.

0
9

1
.0
1

1.
1
7

1.
3
0

1
.1

4
1
.0

7
sit

w
-c

or
e-

co
re

10
.3

3
10
.4

1
10
.2

5
9.

76
8.

62
8.

35
8.

37
8
.2

2
8.

1
8

8
.1

5
8.

1
2

7
.9

5
7.

8
7

7.
7
1

7
.6

2
7
.3
8

99

Chapter 11

Conclusions

11.1 Summary
The field of speech recognition has undergone an unprecedented development in the re-
cent years. The main driver for this development is the dramatic increase in the available
computing power, especially in graphics cards, which have supported the possibilities of
research in the area of discriminative training. This significant development has also been
supported by the regular organization of international competitions (NIST evaluations),
which allow for an objective comparison of the developed systems and techniques. In this
work, we focused primarily on speaker verification systems, which are currently experienc-
ing mass expansion in many fields, such as law enforcement, security, but also in various
private-sector applications, such as banking authentication. Such systems achieve excellent
results in laboratory conditions, but face many issues in practical use. In the first part
of the work, we focused on a theoretical introduction of the state-of-the-art in SV and on
the description of the factors that are responsible for performance degradation in various
acoustic conditions. These factors include background noise, reverberation, or the speaker’s
language. We refer to these properties and factors as “domains”.

After the presentation of evaluation datasets, we immersed ourselves in the evaluation
metrics. We outlined some of the reasons for using multiple evaluation metrics and the
problems of operating points of deployed systems.

In the subsequent chapters 4 and 5, we summarized the origins and history of two
contemporary approaches to the extraction of an embedding from an audio recording—
generative and discriminative—both of which have dominated the last decade, and which
are still considered to be state-of-the-art. We tried to capture the fundamental differences
between the two approaches and their use and comparison.

The work can be seen as a traverse through the subsequent blocks of speaker verifi-
cation systems and offering or studying a solution of making each block more robust to
the selected factors. We began with a presentation of speech enhancement as speech sig-
nal preprocessing. The fact that it is a signal preprocessing allows a wide deployment of
this approach without a need to change the subsequently used system. This technique
proved to be very useful in the presented experiments, regardless of the embeddings used;
generative i-vectors or discriminative x-vectors. We also investigated what data should be
used in speech enhancement training to achieve maximum improvement in terms of real
deployment. We have presented that with speech enhancement, it is possible to achieve an
average 12 % relative improvement of a (already robust) system based on x-vectors when
tested in noisy or reverberated conditions or different communication channels.

100

In the next part of the work, we presented gradual arrival of discriminative techniques
into generative systems. The primary motivation for these approaches lied again in the
increase of the performance and robustness of these systems, especially the robustness of
the extracted i-vectors as vector representations of speech recordings. In the first part
of Chapter 8, we presented SBN features, i.e. features generated from a neural network.
This approach was compared to the DNN alignment, in which the UBM was replaced with
a neural network classifying the input feature into content-related acoustic units. Both
approaches were then subjected to a test of robustness to the spoken language, and an
almost 20 % relative improvement on the language-based benchmark was achieved. In this
chapter, we also presented a hybrid approach to training of an i-vector extractor with the
aim to combine the benefits of the generative and discriminative approaches to training. We
also showed that it is possible to drastically reduce the memory requirements of an i-vector
extractor without reducing its performance. The presented techniques can also be seen as
parts of a paradigm shift, in which the generative elements of the system are gradually
replaced, up to the actual transition to a purely discriminative embedding extractor in the
form of an x-vector.

The presentation of the possibilities of score normalization then closes the passage of the
speech signal through the system and shows the last step, where we can increase robustness.
Again, we focused on language robustness, and in case of the SRE16 benchmark, we achieved
almost 30 % relative improvement.

Throughout the work, we compared generative and discriminative approaches to em-
bedding extraction. From a fundamental point of view, the discriminative x-vector can then
be described as very sensitive to the quantitative but also qualitative use of training data.
Wrong choice of data can result in a significantly more serious system degradation than one
that would occur in case of a generative approach. In the last chapter, we show the depen-
dence not only on the variety of recording conditions but also on the number of speakers in
the training data. Discriminative SV proved that they can benefit from extensive training
data sets with augmentation and a high number of speakers.

11.2 Future Work

11.2.1 Possible Improvement of x-vectors

Current trends in SV research are clearly focused on the discriminative approach. There is
still a large number of unexplored aspects in this field, which gives room for further progress.
However, it should be noted that current efforts are largely focused on the embedding ex-
tractor. X-vectors come with a fully discriminative approach to embedding extraction,
but the generative PLDA is still very often used for the trial score estimator. Discrimina-
tive PLDA has been already presented [Burget et al., 2011], but it still has not been fully
deployed. This indicates a possible direction for further research. Discriminative PLDA
could be involved in the training pipeline in order to form an end-to-end system allowing
the application of new strategies in training and batch creation compared to the current
situation. However, the possibilities are broader, and one can expect a future duel of the
N-class classification approach when training the x-vector extractor, with the 2-class one,
addressing directly the SV objective.

Another possibility lies in a significant disadvantage of x-vectors, specifically in the
absence of information about the quality or uncertainty of their estimation. In the case of
i-vectors, it was possible to predict this information from its precision matrix, which could

101

then be used, for example, in full-posterior PLDA. In the case of x-vectors, this information
is missing, although there are already attempts to achieve it [Silnova et al., 2020]; so far,
this area is still open to further progress.

11.2.2 Possible Improvement of i-vectors

Here we need to ask the question: do i-vectors have a chance to compete with better and
more robust x-vectors in the future? In their original generative form, most likely not. The
hybrid approach presented in this work could provide hope. However, it would mean an
even more significant transfer from generative to discriminative training. The motivation
for this effort “not to leave the i-vector approach” is the already mentioned uncertainty
estimation, which is missing in the case of x-vectors. However, as it has already been
shown, the simple discriminative overtraining of the i-vector extractor will most likely not
bring a sufficient increase in recognition accuracy. The solution could lie in introducing the
concept of i-vectors into the x-vector network, for example, as a kind of pooling layer using
attention mechanism instead of UBM.

102

103

Bibliography

[Apsingekar and Leon, 2011] Apsingekar, V. R. and Leon, P. L. D. (2011). Speaker
verification score normalization using speaker model clusters. Speech Communications,
53(1):110–118.

[Aronowitz, 2014] Aronowitz, H. (2014). Compensating Inter-Dataset Variability in
PLDA Hyper-Parameters for Robust Speaker Recognition. In Proceedings of Odyssey
2014.

[Aronowitz and Aronowitz, 2010] Aronowitz, H. and Aronowitz, V. (2010). Efficient score
normalization for speaker recognition. In Proceedings of ICASSP 2010.

[Aronowitz et al., 2005] Aronowitz, H., Irony, D., and Burshtein, D. (2005). Modeling
intra-speaker variability for speaker recognition. In Proceedings of Interspeech 2005.

[Arslan and Engin, 2019] Arslan, Ö. and Engin, E. Z. (2019). Noise robust voice activity
detection based on multi-layer feed-forward neural network.

[Auckenthaler et al., 2000] Auckenthaler, R., Carey, M., and Lloyd-Thomas, H. (2000).
Score normalization for text-independent speaker verification systems. Digital Signal
Processing, 10(1):42 – 54.

[Axelrod et al., 2003] Axelrod, S., Goel, V., Kingsbury, B., Visweswariah, K., and
Gopinath, R. A. (2003). Large vocabulary conversational speech recognition with a
subspace constraint on inverse covariance matrices. In Proceedings of Interspeech 2003.

[Ben et al., 2002] Ben, M., Blouet, R., and Bimbot, F. (2002). A Monte-Carlo method for
score normalization in automatic speaker verification using kullback-leibler distances.
In Proceedings of ICASSP 2002, pages 689–692.

[Benesty et al., 2008] Benesty, J., Sondhi, M. M., and Huang, Y., editors (2008). Springer
Handbook of Speech Processing. Springer Handbooks. Springer, Berlin.

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

[Boll, 1979] Boll, S. (1979). Suppression of acoustic noise in speech using spectral
subtraction. Acoustics, Speech and Signal Processing, IEEE Transactions on, 27(2):113
– 120.

[Bredin et al., 2006] Bredin, H., Dehak, N., and Chollet, G. (2006). GMM-based SVM for
face recognition. volume 3, pages 1111–1114.

104

[Brümmer, 2004] Brümmer, N. (2004). Spescom DataVoice NIST 2004 system
description. In Proc. NIST Speaker Recognition Evaluation 2004, Toledo, Spain.

[Brümmer, 2009] Brümmer, N. (2009). EM for JFA (EM4JFA). Technical report, Agnitio
Research, Sount Africa.

[Brümmer, 2010] Brümmer, N. (2010). Measuring, Refining and Calibrating Speaker and
Language Information Extracted from Speech. PhD thesis, University of Stellenbosch.

[Brümmer et al., 2007] Brümmer, N., Burget, L., Černocký, J., Glembek, O., Grézl, F.,
Karafiát, M., van Leeuwen, D., Matějka, P., Schwarz, P., and Strasheim, A. (2007).
Fusion of heterogeneous speaker recognition systems in the STBU submission for the
NIST speaker recognition evaluation 2006. IEEE Transactions on Audio, Speech and
Language Processing, 15(7):2072–2084.

[Brümmer and du Preez, 2006] Brümmer, N. and du Preez, J. (2006).
Application-independent evaluation of speaker detection. Computer Speech &
Language, 20(2-3):230–275.

[Brümmer and Villiers, 2010] Brümmer, N. and Villiers, E. D. (2010). The speaker
partitioning problem. In Proceedings of Odyssey 2010.

[Burget, 2004] Burget, L. (2004). Complementarity of Speech Recognition Systems and
System Combination. PhD thesis, Brno University of Technology.

[Burget et al., 2008] Burget, L., Brummer, N., Reynolds, D., Kenny, P., Pelecanos, J.,
Vogt, R., Castaldo, F., Dehak, N., Dehak, R., Glembek, O., Karam, Z., Noecker, J. J.,
Na, Y. H., Costin, C. C., Hubeika, V., Kajarekar, S., Scheffer, N., and Černocký, J.
(2008). Robust speaker recognition over varying channels. Technical report, Johns
Hopkins University.

[Burget et al., 2007] Burget, L., Matejka, P., Schwarz, P., Glembek, O., and Cernocky,
J. H. (2007). Analysis of Feature Extraction and Channel Compensation in a GMM
Speaker Recognition System. IEEE Transactions on Audio, Speech, and Language
Processing, 15(7):1979–1986.

[Burget et al., 2011] Burget, L., Plchot, O., Cumani, S., Glembek, O., Matějka, P., and
Brümmer, N. (2011). Discriminatively Trained Probabilistic Linear Discriminant
Analysis for Speaker Verification. In Proceedings of ICASSP 2011, pages 4832–4835.
IEEE Signal Processing Society.

[Cai et al., 2018] Cai, W., Cai, Z., Zhang, X., Wang, X., and Li, M. (2018). A novel
learnable dictionary encoding layer for end-to-end language identification. pages
5189–5193.

[Cieri et al., 2004] Cieri, C., Miller, D., and Walker, K. (2004). The fisher corpus: A
resource for the next generations of speech-to-text.

[Cumani et al., 2011] Cumani, S., Batzu, P. D., Colibro, D., Vair, C., Laface, P., and
Vasilakakis, V. (2011). Comparison of speaker recognition approaches for real
applications. In Proceedings of Interspeech 2011, Florence, Italy.

105

[Cumani and Laface, 2013] Cumani, S. and Laface, P. (2013). Memory and computation
trade-offs for efficient i-vector extraction. IEEE/ACM Transactions on Audio, Speech
and Language Processing, 21(5):934–944.

[Cumani and Laface, 2014] Cumani, S. and Laface, P. (2014). Factorized Sub-Space
Estimation for Fast and Memory Effective I-vector Extraction. IEEE/ACM
Transactions on Audio, Speech and Language Processing, 22(1):248–259.

[Dahl et al., 2012] Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012).
Context-dependent pre-trained deep neural networks for large-vocabulary speech
recognition. IEEE Transactions on Audio, Speech, and Language Processing,
20(1):30–42.

[Davis and Mermelstein, 1980] Davis, S. B. and Mermelstein, P. (1980). Comparison of
parametric representations for monosyllabic word recognition in continuously spoken
sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4).

[Dehak et al., 2010] Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., and Ouellet, P.
(2010). Front-End Factor Analysis For Speaker Verification. IEEE Transactions on
Audio, Speech and Language Processing, pages 1 –1.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, Series B, 39(1):1–38.

[Deng et al., 2019] Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). Arcface: Additive
angular margin loss for deep face recognition. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4685–4694.

[Doddington et al., 2000] Doddington, G. R., Przybocki, M. A., Martin, A. F., and
Reynolds, D. A. (2000). The NIST speaker recognition evaluation – Overview,
methodology, systems, results, perspective. Speech Communication, 31(2):225–254.

[Dufera and Shimamura, 2009] Dufera, B. and Shimamura, T. (2009). Reverberated
speech enhancement using neural networks. In Proc. International Symposium on
Intelligent Signal Processing and Communication Systems, ISPACS 2009., pages
441–444.

[ETSI, 2007] ETSI (2007). Speech Processing, Transmission and Quality Aspects (STQ).
Technical Report ETSI ES 202 050, European Telecommunications Standards Institute
(ETSI).

[Fér et al., 2015] Fér, R., Matějka, P., Grézl, F., Plchot, O., and Černocký, J. (2015).
Multilingual Bottleneck Features for Language Recognition. Interspeech 2015.

[Ferrer et al., 2011a] Ferrer, L., Bratt, H., Burget, L., Cernocky, H., Glembek, O.,
Graciarena, M., Lawson, A., Lei, Y., Matejka, P., Plchot, O., and Scheffer, N. (2011a).
The PRISM set. https://code.google.com/p/prism-set/.

[Ferrer et al., 2011b] Ferrer, L., Bratt, H., Burget, L., Cernocky, H., Glembek, O.,
Graciarena, M., Lawson, A., Lei, Y., Matejka, P., Plchot, O., and Scheffer, N. (2011b).
Promoting robustness for speaker modeling in the community: the PRISM evaluation
set. In Proceedings of SRE11 analysis workshop, Atlanta.

106

https://code.google.com/p/prism-set/

[Fortuna et al., 2004] Fortuna, J., Sivakumaran, P., Ariyaeeinia, A. M., and Malegaonkar,
A. (2004). Relative effectiveness of score normalization methods in open-set speaker
identification. In Proceedings of Odyssey 2004, Toledo, Spain.

[Furui, 1986] Furui, S. (1986). Speaker-independent isolated word recognition using
dynamic features of speech spectrum. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 34:52–59.

[Garcia-Romero and Espy-Wilson, 2011] Garcia-Romero, D. and Espy-Wilson, C. Y.
(2011). Analysis of i-vector length normalization in Gaussian-PLDA speaker
recognition systems. In Proceedings of Interspeech 2011.

[Garcia-Romero et al., 2012] Garcia-Romero, D., Zhou, X., and Espy-Wilson, C. Y.
(2012). Multicondition training of Gaussian PLDA models in i-vector space for noise
and reverberation robust speaker recognition. In Proceedings of ICASSP 2012, pages
4257–4260.

[Ghoshal et al., 2013] Ghoshal, A., Swietojanski, P., and Renals, S. (2013). Multilingual
training of deep neural networks. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 7319–7323.

[Glembek, 2012] Glembek, O. (2012). Optimization of Gaussian Mixture Subspace Models
and Related Scoring Algorithms in Speaker Verification. Ph.D. thesis, Brno University
of Technology, Faculty of Information Technology.

[Glembek et al., 2011a] Glembek, O., Burget, L., Brümmer, N., Plchot, O., and Matějka,
P. (2011a). Discriminatively Trained i-vector Extractor for Speaker Verification. In
Proceedings of Interspeech 2011, number 8, pages 137–140. International Speech
Communication Association.

[Glembek et al., 2014] Glembek, O., Ma, J., Matějka, P., Zhang, B., Plchot, O., Burget,
L., and Matsoukas, S. (2014). Domain Adaptation via Within-class Covariance
Correction in I-Vector Based Speaker Recognition Systerms. In Proceedings of ICASSP
2014, pages 4060–4064.

[Glembek et al., 2011b] Glembek, O., Matějka, P., and Burget, L. (2011b). Simplification
and optimization of i-vector extraction. In Proceedings of ICASSP 2011, Prague, CZ.

[Graff et al., 2001] Graff, D., Miller, D., and Walker, K. (2001). Switchboard cellular part
1 audio. Linguistic Data Consortium, Philadelphia.

[Graff et al., 2002] Graff, D., Miller, D., and Walker, K. (2002). Switchboard-2 phase III.
Linguistic Data Consortium, Philadelphia.

[Graff et al., 2004] Graff, D., Miller, D., and Walker, K. (2004). Switchboard cellular part
2 audio. Linguistic Data Consortium, Philadelphia.

[Graff et al., 1999] Graff, D., Walker, K., and Canavan, A. (1999). Switchboard-2 phase
II. Linguistic Data Consortium, Philadelphia.

[Grézl et al., 2007] Grézl, F., Karafiát, M., Kontár, S., and Černocký, J. (2007).
Probabilistic and bottle-neck features for LVCSR of meetings. In Proceedings of
ICASSP 2007, pages 757–760.

107

[Habets, 2006] Habets, E. A. (2006). Room impulse response generator. Technical report.
https://www.researchgate.net/profile/Emanuel-Habets/publication/
259991276_Room_Impulse_Response_Generator/links/5800ea5808ae1d2d72eae2a0/
Room-Impulse-Response-Generator.pdf.

[Harper, 2013] Harper, M. (2013). The BABEL program and low resource speech
technology. In ASRU 2013.

[Hatch et al., 2006] Hatch, A. O., Kajarekar, S., and Stolcke, A. (2006). Within-Class
Covariance Normalization for SVM-based speaker recognition. In Proc. ICSLP,
Pittsburgh, USA, pages 1471–1474.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778.

[Hinton et al., 2012] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly,
N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6):82–97.

[Hirsch, 2005] Hirsch, H. G. (2005). Fant-filtering and noise adding tool. Niederrhein
University of Applied Sciences. http://dnt.-kr.hsnr.de/download.html.

[ITU, 1994] ITU (1994). ITU-T Recommendation O.41. International Telecommunication
Union. https://www.itu.int/rec/dologin_pub.asp?lang=e&id=
T-REC-O.41-199410-I!!PDF-E&type=items.

[Jančík et al., 2010] Jančík, Z., Plchot, O., Brummer, N., Burget, L., Glembek, O.,
Hubeika, V., Karafiát, M., Matějka, P., Mikolov, T., Strasheim, A., and Černocký, J.
(2010). Data selection and calibration issues in automatic language recognition -
investigation with BUT-AGNITIO NIST LRE 2009 system. In Proceedings of Odyssey
2010, pages 215–221.

[Karafiát et al., 2016] Karafiát, M., Baskar, M. K., Grézl, F., Veselý, K., and Černocký,
J. H. (2016). Multilingual BLSTM and SSNN adaptation in Babel. In submitted to SLT.

[Karafiát et al., 2013] Karafiát, M., Grézl, F., Hannemann, M., Veselý, K., and Černocký,
J. H. (2013). BUT BABEL System for Spontaneous Cantonese. In Proceedings of
Interspeech 2013, pages 2589–2593, Lyon, France.

[Karafiát et al., 2014] Karafiát, M., Grézl, F., Veselý, K., Hannemann, M., Szőke, I., and
Černocký, J. (2014). BUT 2014 Babel system: Analysis of adaptation in NN based
systems. In Proceedings of Interspeech 2014, pages 3002–3006.

[Kenny, 2005] Kenny, P. (2005). Joint factor analysis of speaker and session variability:
Theory and algorithms - technical report CRIM-06/08-13. Montreal, CRIM, 2005.
https://www.crim.ca/perso/patrick.kenny/FAtheory.pdf.

[Kenny, 2010] Kenny, P. (2010). Bayesian speaker verification with heavy–tailed priors.
keynote presentation, Proceedings of Odyssey 2010.

108

https://www.researchgate.net/profile/Emanuel-Habets/publication/259991276_Room_Impulse_Response_Generator/links/5800ea5808ae1d2d72eae2a0/Room-Impulse-Response-Generator.pdf
https://www.researchgate.net/profile/Emanuel-Habets/publication/259991276_Room_Impulse_Response_Generator/links/5800ea5808ae1d2d72eae2a0/Room-Impulse-Response-Generator.pdf
https://www.researchgate.net/profile/Emanuel-Habets/publication/259991276_Room_Impulse_Response_Generator/links/5800ea5808ae1d2d72eae2a0/Room-Impulse-Response-Generator.pdf
http://dnt.-kr.hsnr.de/download.html
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-O.41-199410-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-O.41-199410-I!!PDF-E&type=items
https://www.crim.ca/perso/patrick.kenny/FAtheory.pdf

[Kenny et al., 2007] Kenny, P., Boulianne, G., Ouellet, P., and Dumouchel, P. (2007).
Joint factor analysis versus eigenchannels in speaker recognition. IEEE Transactions on
Audio, Speech, and Language Processing, 15(4):1435–1447.

[Kenny et al., 2003] Kenny, P., Mihoubi, M., and Dumouchel, P. (2003). New map
estimators for speaker recognition. In Proceedings of Interspeech 2003.

[Kinnunen and Li, 2010] Kinnunen, T. and Li, H. (2010). An overview of
text-independent speaker recognition: from features to supervectors. Speech
Communication, 52:12–40.

[Kirill et al., 2009] Kirill, S., Ekaterina, V., and Simak, B. (2009). Approach for
energy-based voice detector with adaptive scaling factor. IAENG International Journal
of Computer Science, 36.

[Ko et al., 2017] Ko, T., Peddinti, V., Povey, D., Seltzer, M. L., and Khudanpur, S.
(2017). A study on data augmentation of reverberant speech for robust speech
recognition. In Proceedings of ICASSP 2017, pages 5220–5224.

[Kockmann, 2012] Kockmann, M. (2012). Subspace Modeling of Prosodic Features for
Speaker Verification. PhD thesis, Brno University of Technology.

[Kumatani et al., 2012] Kumatani, K., Arakawa, T., Yamamoto, K., McDonough, J., Raj,
B., Singh, R., and Tashev, I. (2012). Microphone Array Processing for Distant Speech
Recognition: Towards Real-World Deployment. In APSIPA Annual Summit and
Conference, Hollywood, CA, USA.

[Laskowski and Edlund, 2010] Laskowski, K. and Edlund, J. (2010). A Snack
implementation and Tcl/Tk Interface to the Fundamental Frequency Variation
Spectrum Algorithm. In Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), Valletta, Malta.

[Lei et al., 2012] Lei, Y., Burget, L., Ferrer, L., Graciarena, M., and Scheffer, N. (2012).
Towards noise-robust speaker recognition using probabilistic linear discriminant
analysis. In Proceedings of ICASSP 2012, Kyoto, JP.

[Lei et al., 2014] Lei, Y., Scheffer, N., Ferrer, L., and McLaren, M. (2014). A novel
scheme for speaker recognition using a phonetically-aware deep neural network. In
Proceedings of ICASSP 2014.

[Lippmann et al., 1987] Lippmann, R., Martin, E., and Paul, D. (1987). Multi-style
training for robust isolated-word speech recognition. In Proceedings of ICASSP 1987,
volume 12, pages 705–708.

[Lozano-Diez et al., 2016] Lozano-Diez, A., Silnova, A., Matejka, P., Glembek, O., Plchot,
O., Pesan, J., Burget, L., and Gonzalez-Rodriguez, J. (2016). Analysis and
Optimization of Bottleneck Features for Speaker Recognition. In Proceedings of
Odyssey 2016, pages 352–357, Bilbao, Spain.

[Mandasari et al., 2012] Mandasari, M. I., McLaren, M., and van Leeuwen, D. A. (2012).
The effect of noise on modern automatic speaker recognition systems. In Proceedings of
ICASSP 2012, pages 4249–4252.

109

[Martin et al., 1997] Martin, A. F., Doddington, G. R., Kamm, T., Ordowski, M., and
Przybocki, M. A. (1997). The DET curve in assessment of detection task performance.
In Proceedings of Eurospeech.

[Martínez et al., 2014] Martínez, D. G., Burget, L., Stafylakis, T., Lei, Y., Kenny, P., and
LLeida, E. (2014). Unscented Transform For Ivector-based Noisy Speaker Recognition.
In Proceedings of ICASSP 2014, Florencie, IT.

[Martínez et al., 2011] Martínez, D. G., Plchot, O., Burget, L., Glembek, O., and
Matějka, P. (2011). Language Recognition in iVectors Space. In Proceedings of
Interspeech 2011, volume 2011, pages 861–864, Florence, IT.

[Mason and Zhang, 1991] Mason, J. S. and Zhang, X. (1991). Velocity and acceleration
features in speaker recognition. In Proceedings of ICASSP 1991, pages 3673–3676 vol.5.

[Matějka et al., 2017] Matějka, P., Novotný, O., Plchot, O., Burget, L., Diez, M. S., and
Černocký, J. (2017). Analysis of Score Normalization in Multilingual Speaker
Recognition. In Proceedings of Interspeech 2017, volume 2017, pages 1567–1571.

[Matějka et al., 2006] Matějka, P., Burget, L., Schwarz, P., and Černocký, J. (2006). Brno
University of Technology system for NIST 2005 language recognition evaluation. In
Proceedings of Odyssey 2006: The Speaker and Language Recognition Workshop, pages
57–64.

[Matějka et al., 2020] Matějka, P., Plchot, O., Glembek, O., Burget, L., Rohdin, A. J.,
Zeinali, H., Mošner, L., Silnova, A., Novotný, O., Diez, M. S., and Černocký, J. (2020).
13 years of speaker recognition research at BUT, with longitudinal analysis of NIST
SRE. Computer Speech and Language, 63:1–15.

[McGovern, 2009] McGovern, S. G. (2009). Fast image method for impulse response
calculations of box-shaped rooms. Applied Acoustics, 70(1):182–189.

[McLaren et al., 2016] McLaren, M., Ferrer, L., Castan, D., and Lawson, A. (2016). The
Speakers in the Wild (SITW) Speaker Recognition Database. In Proceedings of
Interspeech 2016, pages 818–822.

[McLaren and van Leeuwen, 2012] McLaren, M. and van Leeuwen, D. (2012).
Source-Normalized LDA for Robust Speaker Recognition Using i-Vectors From
Multiple Speech Sources. IEEE Transactions on Audio, Speech, and Language
Processing, 20(3):755–766.

[Mimura et al., 2014] Mimura, M., Sakai, S., and Kawahara, T. (2014). Reverberant
speech recognition combining deep neural networks and deep autoencoders. In Proc.
Reverb Challenge Workshop, Florence, Italy.

[Mošner et al., 2018] Mošner, L., Matějka, P., Novotný, O., and Černocký, J. (2018).
Dereverberation and beamforming in far-field speaker recognition. In Proceedings of
ICASSP 2018.

[Nakatani et al., 2010] Nakatani, T., Yoshioka, T., Kinoshita, K., Miyoshi, M., and
Juang, B. (2010). Speech dereverberation based on variance-normalized delayed linear
prediction. IEEE Transactions on Audio, Speech, and Language Processing,
18(7):1717–1731.

110

[NIST, 2010] NIST (2010). The NIST year 2010 Speaker Recognition Evaluation Plan.
https://www.nist.gov/system/files/documents/itl/iad/mig/
NIST_SRE10_evalplan-r6.pdf.

[NIST, 2016] NIST (2016). The NIST year 2016 Speaker Recognition Evaluation Plan.
https://www.nist.gov/sites/default/files/documents/2016/10/∖07/
sre16_eval_plan_v1.3.pdf.

[Novotný et al., 2018a] Novotný, O., Matějka, P., Plchot, O., and Glembek, O. (2018a).
On the use of DNN Autoencoder for Robust Speaker Recognition. Technical report.
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11855.

[Novotný et al., 2016] Novotný, O., Matějka, P., Glembek, O., Plchot, O., Grézl, F.,
Burget, L., and Černocký, J. (2016). Analysis of the DNN-Based SRE Systems in
Multi-language Conditions. In Proceedings of SLT 2016, pages 199–204.

[Novotný et al., 2019a] Novotný, O., Plchot, O., Glembek, O., and Burget, L. (2019a).
Factorization of Discriminatively Trained i-Vector Extractor for Speaker Recognition.
In Proceedings of Interspeech 2019, pages 4330–4334.

[Novotný et al., 2019b] Novotný, O., Plchot, O., Glembek, O., Burget, L., and Matějka,
P. (2019b). Discriminatively Re-trained i-Vector Extractor For Speaker Recognition. In
Proceedings of ICASSP 2019, pages 6031–6035.

[Novotný et al., 2019c] Novotný, O., Plchot, O., Glembek, O., Černocký, J., and Burget,
L. (2019c). Analysis of DNN Speech Signal Enhancement for Robust Speaker
Recognition. Computer Speech and Language, 2019(58):403–421.

[Novotný et al., 2018b] Novotný, O., Plchot, O., Matějka, P., Mošner, L., and Glembek,
O. (2018b). On the use of X-vectors for Robust Speaker Recognition. In Proceedings of
Odyssey 2018, number 6, pages 168–175.

[Openshaw and Masan, 1994] Openshaw, J. and Masan, J. (1994). On the limitations of
cepstral features in noise. In Proceedings of ICASSP 1994, Adelaide, SA, Australia.

[Peddinti et al., 2015] Peddinti, V., Povey, D., and Khudanpur, S. (2015). A time delay
neural network architecture for efficient modeling of long temporal contexts. In
Proceedings of Interspeech 2015.

[Pelecanos and Sridharan, 2006] Pelecanos, J. and Sridharan, S. (2006). Feature Warping
for Robust Speaker Verification. In Proceedings of Odyssey 2006, Crete, Greece.

[Pešán et al., 2016] Pešán, J., Burget, L., and Černocký, J. (2016). Sequence
Summarizing Neural Networks for Spoken Language Recognition. In Proceedings of
Interspeech 2016, pages 3285–3289.

[Plchot, 2014] Plchot, O. (2014). Extensions to Probabilistic Linear Discriminant
Analysis for Speaker Recognition. Ph.D. thesis, Brno University of Technology.

[Plchot et al., 2016a] Plchot, O., Burget, L., Aronowitz, H., and Matějka, P. (2016a).
Audio Enhancing With DNN Autoencoder For Speaker Recognition. In Proceedings of
ICASSP 2016, pages 5090–5094.

111

 https://www.nist.gov/system/files/documents/itl/iad/mig/NIST_SRE10_evalplan-r6.pdf
 https://www.nist.gov/system/files/documents/itl/iad/mig/NIST_SRE10_evalplan-r6.pdf
 https://www.nist.gov/sites/default/files/documents/2016/10/\07/sre16_eval_plan_v1.3.pdf
 https://www.nist.gov/sites/default/files/documents/2016/10/\07/sre16_eval_plan_v1.3.pdf
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11855

[Plchot et al., 2016b] Plchot, O., Matějka, P., Fér, R., Glembek, O., Novotný, O., Pešán,
J., Veselý, K., Ondel, L., Karafiát, M., Grézl, F., Kesiraju, S., Burget, L., Brummer, N.,
du Albert Swart, P., Cumani, S., Mallidi, H. S., and Li, R. (2016b). BAT System
Description for NIST LRE 2015. In Proceedings of Odyssey 2016, volume 2016, pages
166–173.

[Plchot et al., 2013] Plchot, O., Matsoukas, S., Matějka, P., Dehak, N., Ma, J., Cumani,
S., Glembek, O., Heřmanský, H., Mesgarani, N., Soufifar, M. M., Thomas, S., Zhang,
B., and Zhou, X. (2013). Developing a Speaker Identification System for the DARPA
RATS Project. In Proceedings of ICASSP 2013, Vancouver, CA.

[Povey, 2006] Povey, D. (2006). SPAM and full covariance for speech recognition. In
INTERSPEECH 2006 - ICSLP, Ninth International Conference on Spoken Language
Processing, Pittsburgh, PA, USA, September 17-21, 2006.

[Povey et al., 2018] Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H., Yarmohammadi, M.,
and Khudanpur, S. (2018). Semi-Orthogonal Low-Rank Matrix Factorization for Deep
Neural Networks. In Proceedings of Interspeech 2018, pages 3743–3747.

[Prince and Elder, 2007] Prince, S. and Elder, J. (2007). Probabilistic Linear
Discriminant Analysis for Inferences About Identity. In 2007 IEEE 11th International
Conference on Computer Vision, pages 1–8.

[Rabiner and Juang, 1993] Rabiner, L. and Juang, B.-H. (1993). Fundamentals of speech
recognition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Rajan et al., 2014] Rajan, P., Afanasyev, A., Hautamäki, V., and Kinnunen, T. (2014).
From single to multiple enrollment i-vectors: Practical PLDA scoring variants for
speaker verification. Digital Signal Processing, 31:93 – 101.

[Rajan et al., 2013] Rajan, P., Kinnunen, T., and Hautamäki, V. (2013). Effect of
multicondition training on i-vector PLDA configurations for speaker recognition. In
Proceedings of Interspeech 2013, pages 3694–3697.

[Ramos-Castro et al., 2007] Ramos-Castro, D., Fierrez-Aguilar, J., Gonzalez-Rodriguez,
J., and Ortega-Garcia, J. (2007). Speaker verification using speaker- and
test-dependent fast score normalization. Pattern Recognition Letters, 28:90 – 98.

[Ravanelli et al., 2016] Ravanelli, M., Svaizer, P., and Omologo, M. (2016). Realistic
Multi-Microphone Data Simulation for Distant Speech Recognition. In Proceedings of
Interspeech 2016, pages 2786–2790.

[Reynolds, 2002] Reynolds, D. (2002). Automatic Speaker Recognition, Acoustics and
Beyond. In SuperSID project at JHU Summer Workshop.

[Reynolds, 1997] Reynolds, D. A. (1997). Comparison of background normalization
methods for text-independent speaker verification. In Proceedings of Eurospeech.

[Reynolds et al., 2000] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. (2000). Speaker
Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing,
10(1):19 – 41.

112

[Ribas et al., 2015] Ribas, D., Vincent, E., and Calvo, J. R. (2015). Full multicondition
training for robust i-vector based speaker recognition. In Proceedings of Interspeech
2015, Dresden, Germany.

[Rohdin et al., 2018] Rohdin, J., Silnova, A., Diez, M., Plchot, O., Matějka, P., and
Burget, L. (2018). End-to-end DNN based speaker recognition inspired by i-vector and
PLDA. In Proceedings of ICASSP 2018.

[Saon et al., 2013] Saon, G., Soltau, H., Nahamoo, D., and Picheny, M. (2013). Speaker
adaptation of neural network acoustic models using i-vectors. In 2013 IEEE Workshop
on Automatic Speech Recognition and Understanding, pages 55–59.

[Shum et al., 2010] Shum, S., Dehak, N., Dehak, R., and Glass, J. R. (2010).
Unsupervised Speaker Adaptation based on the Cosine Similarity for Text-Independent
Speaker Verification. In Proceedings of Odyssey 2010, Brno, Czech Republic.

[Shum et al., 2014] Shum, S., Reynolds, D., Garcia-Romero, D., and McCree, A. (2014).
Unsupervised clustering approaches for domain adaptation in speaker recognition
systems. In Proceedings of Odyssey 2014, Joensuu, Finlan.

[Silnova et al., 2020] Silnova, A., Brummer, N., Rohdin, A. J., Stafylakis, T., and Burget,
L. (2020). Probabilistic embeddings for speaker diarization. In Proceedings of Odyssey
2020, volume 2020, pages 24–31.

[Silnova et al., 2015] Silnova, A., Glembek, O., Kinnunen, T., and Matějka, P. (2015).
Exploring ANN Back-Ends for i-Vector Based Speaker Age Estimation. In Proceedings
of Interspeech 2015, pages 3036–3040.

[Silovský, 2011] Silovský, J. (2011). Generativní a diskriminativní klasifikátory v úlohách
textově nezávislého rozpoznávání a diarizace mluvčích. PhD thesis, Technical University
of Liberec.

[Snyder, 2017] Snyder, D. (2017). NIST SRE 2016 Xvector Recipe.
https://david-ryan-snyder.github.io/2017/10/04/model_sre16_v2.html.

[Snyder et al., 2015] Snyder, D., Chen, G., and Povey, D. (2015). MUSAN: A Music,
Speech, and Noise Corpus. arXiv:1510.08484v1.

[Snyder et al., 2017] Snyder, D., Garcia-Romero, D., Povey, D., and Khudanpur, S.
(2017). Deep Neural Network Embeddings for Text-Independent Speaker Verification.
Proceedings of Interspeech 2017, pages 999–1003.

[Snyder et al., 2019] Snyder, D., Garcia-Romero, D., Sell, G., McCree, A., Povey, D., and
Khudanpur, S. (2019). Speaker Recognition for Multi-speaker Conversations Using
X-vectors. In Proceedings of ICASSP 2019, pages 5796–5800.

[Snyder et al., 2018] Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., and Khudanpur,
S. (2018). X-Vectors: Robust DNN Embeddings for Speaker Recognition. In
Proceedings of ICASSP 2018.

[Snyder et al., 2016] Snyder, D., Ghahremani, P., Povey, D., Garcia-Romero, D., Carmiel,
Y., and Khudanpur, S. (2016). Deep neural network-based speaker embeddings for
end-to-end speaker verification. 2016 IEEE Spoken Language Technology Workshop
(SLT), pages 165–170.

113

https://david-ryan-snyder.github.io/2017/10/04/model_sre16_v2.html

[Song et al., 2013] Song, Y., Jiang, B., Bao, Y., Wei, S., and Dai, L.-R. (2013). I-vector
representation based on bottleneck features for language identification. Electronics
Letters, 49(24):1569–1570.

[Stevens et al., 1937] Stevens, S. S., Volkmann, J., and Newman, E. B. (1937). A Scale
for the Measurement of the Psychological Magnitude Pitch. The Journal of the
Acoustical Society of America, 8(3):185–190.

[Stewart and Sandler, 2010] Stewart, R. and Sandler, M. (2010). Database of
omnidirectional and b-format room impulse responses. In 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 165–168.

[Sturim and Reynolds, 2005] Sturim, D. E. and Reynolds, D. A. (2005). Speaker adaptive
cohort selection for Tnorm in text-independent speaker verification. In Proceedings of
ICASSP 2005, volume 1, pages I/741–I/744 Vol. 1.

[Swart and Brümmer, 2017] Swart, A. and Brümmer, N. (2017). A Generative Model for
Score Normalization in Speaker Recognition. In Proceedings of Interspeech 2017, pages
1477–1481.

[Talkin, 1995] Talkin, D. (1995). A Robust Algorithm for Pitch Tracking (RAPT). In
Kleijn, W. B. and Paliwal, K., editors, Speech Coding and Synthesis, New York.
Elsevier.

[Tatarinov and Pollák, 2004] Tatarinov, J. and Pollák, P. (2004). Hidden Markov Models
in voice activity detection. In COST278 and ISCA Tutorial and Research Workshop
(ITRW) on Robustness Issues in Conversational Interaction.

[Thyes et al., 2000] Thyes, O., Kuhn, R., Nguyen, P., and Junqua, J.-C. (2000). Speaker
identification and verification using eigenvoices. In Proceedings of Interspeech 2000,
pages 242–245.

[Tolosana et al., 2015] Tolosana, R., Vera-Rodriguez, R., Ortega-Garcia, J., and Fierrez,
J. (2015). Update Strategies for HMM-Based Dynamic Signature Biometric Systems.
In 2015 IEEE International Workshop on Information Forensics and Security (WIFS).

[Torres-Carrasquillo et al., 2002] Torres-Carrasquillo, P. A., Singer, E., Kohler, M. A.,
and Deller, J. R. (2002). Approaches to language identification using Gaussian mixture
models and shifted delta cepstral features. In Proc. ICSLP 2002, pages 89–92.

[Veselý et al., 2012] Veselý, K., Karafiát, M., Grézl, F., Janda, M., and Egorova, E.
(2012). The Language-Independent Bottleneck Features. In Proceedings of IEEE 2012
Workshop on Spoken Language Technology, pages 336–341.

[Veselý et al., 2016] Veselý, K., Watanabe, S., Žmolíková, K., Karafiát, M., Burget, L.,
and Černocký, J. H. (2016). Sequence summarizing neural network for speaker
adaptation. In Proceedings of ICASSP 2016, pages 5315–5319.

[Villalba and Brummer, 2011] Villalba, J. and Brummer, N. (2011). Towards Fully
Bayesian Speaker Recognition: Integrating Out the Between-speaker Covariance. In
Proceedings of Interspeech 2011, pages 505–508.

114

[Waibel et al., 1989] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J.
(1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37(3):328–339.

[Wiener, 1964] Wiener, N. (1964). Extrapolation, Interpolation, and Smoothing of
Stationary Time Series. The MIT Press.

[Xu et al., 2014a] Xu, Y., Du, J., Dai, L.-R., and Lee, C.-H. (2014a). An Experimental
Study on Speech Enhancement Based on Deep Neural Networks. IEEE Signal
processing letters, 21(1).

[Xu et al., 2014b] Xu, Y., Du, J., Dai, L.-R., and Lee, C.-H. (2014b). Global variance
equalization for improving deep neural network based speech enhancement. In Proc.
IEEE China Summit & International Conference on Signal and Information Processing
(ChinaSIP), pages 71 – 75.

[Yaman et al., 2012] Yaman, S., Pelecanos, J., and Sarikaya, R. (2012). Bottleneck
Features for Speaker Recognition. In Proceedings of Odyssey 2012.

[Yanhui et al., 2014] Yanhui, T., Jun, D., Yong, X., Lirong, D., and Chin-Hui, L. (2014).
Deep Neural Network Based Speech Separation for Robust Speech Recognition. In
Proceedings of ICSP2014, pages 532–536.

[Ying et al., 2011] Ying, D., Li, J., Fu, Q., Yan, Y., and Dang, J. (2011). Voice activity
detection based on a sequential Gaussian Mixture Model. APSIPA ASC 2011 -
Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference 2011, pages 861–866.

[Young et al., 2006] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu,
X. A., Moore, G., ulian Odell, Ollason, D., Povey, D., Valtchev, V., and Woodland, P.
(2006). The HTK Book. Cambridge University Engineering Department.

[Zigel and Cohen, 2003] Zigel, Y. and Cohen, A. (2003). On cohort selection for speaker
verification. In Proceedings of Eurospeech.

[Zigel and Wasserblat, 2006] Zigel, Y. and Wasserblat, M. (2006). How to deal with
multiple-targets in speaker identification systems? In Proceedings of Odyssey 2006, San
Juan, Puerto Rico.

[Zwicker, 1961] Zwicker, E. (1961). Subdivision of the Audible Frequency Range into
Critical Bands (Frequenzgruppen). The Journal of the Acoustical Society of America,
33(2):248–248.

115

	Introduction
	Speaker Verification System
	Features
	Mel-Frequency Cepstral Coefficients
	Feature Derivatives
	Feature Normalization

	Voice Activity Detection
	Score Normalization
	Z-norm
	T-norm
	ZT-norm
	S-norm
	Adaptive Normalization

	Calibration
	Motivation and Contribution
	Claims
	Structure of the Thesis

	Factors Influencing SV Performance
	Transmission Channel
	Language
	Acoustic Environment
	Additive Noise
	Reverberation

	Recording System

	SRE Datasets and Evaluation Metrics
	Speaker Verification Evaluation
	Detection Error Tradeoff Plot
	Equal Error Rate
	Detection Cost Function

	Datasets
	NIST
	Fisher English
	Switchboard
	PRISM
	SITW
	BUT Retransmitted Data

	Data Augmentation Design
	Noise
	Reverberation
	Composition of the Training Set
	Kaldi Data Augmentation Recipe
	Selected Benchmark Scenarios

	Embedding-Based Speaker Verification
	Generatively Trained Embedding — i-vector
	Gaussian Mixture Modeling of Acoustic Features
	i-vectors

	Discriminatively Trained Embedding — x-vector
	Time Delayed Neural Network
	Original x-vector Network
	Variants of x-vector Network

	x-vectors vs. i-vectors

	Scoring
	Cosine Similarity Scoring
	Linear Discriminant Analysis
	Probabilistic Linear Discriminant Analysis
	General PLDA
	Two Covariance PLDA
	Trial Scoring

	Multi-Conditional Training
	Experimental Setup
	Evaluation Set
	System Description
	Results

	Speech Enhancement
	Signal Enhancement Autoencoder
	Multi-Conditional Training vs. Speech Enhancement
	Experimental Setup

	Speech Enhancement and Other Discriminative Approach in SV
	MFCC i-vector System
	SBN-MFCC i-vector System
	x-vector Systems
	Results
	Analysis over the Range of Operating Points

	Discriminative Techniques in Generative SV
	Stack Bottle-neck Features
	DNN Aligment
	Experimental Setup
	System Definition
	Results

	Discriminatively Re-trained i-vector Extractor
	T-matrix Re-estimation
	T-matrix Factorization

	Impact of Normalization on Language Robustness
	Experimental Setup
	Evaluation Sets
	System Description
	Normalization Cohorts

	Results
	Summary

	Impact of Data on the Robustness of Discriminative Systems
	Experimental Setup
	x-vectors System
	PLDA Augmentation Sets
	Embedding Extractor Augmentation Sets

	Results

	Conclusions
	Summary
	Future Work
	Possible Improvement of x-vectors
	Possible Improvement of i-vectors

	Bibliography

