
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

EFFICIENT AUTOMATA TECHNIQUES AND THEIR
APPLICATIONS
EFEKTIVNÍ AUTOMATOVÉ TECHNIKY A JEJICH APLIKACE

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. VOJTĚCH HAVLENA
AUTOR PRÁCE

SUPERVISORS prof. Ing. TOMÁŠ VOJNAR, Ph.D.
ŠKOLITEL

CO-SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
ŠKOLITEL SPECIALISTA

BRNO 2021

Abstract
This thesis develops efficient techniques for finite automata and their applications. In
particular, we focus on finite automata in network intrusion detection and automata in
decision procedures and verification. In the first part of the thesis, we propose techniques
of approximate reduction of nondeterministic automata decreasing consumption of resources
of hardware-accelerated deep packet inspection. The second part is devoted to automata
in decision procedures, in particular, to weak monadic second-order logic of k successors
(WSkS) and the theory of strings. We propose a novel decision procedure for WS2S based
on automata terms allowing one to effectively prune the state space. Further, we study
techniques of WSkS formulae preprocessing intended to reduce the sizes of constructed
intermediate automata. Moreover, we employ automata in a decision procedure of the
theory of strings for efficient handling of the proof graph. The last part of the thesis
then proposes optimizations in rank-based Büchi automata complementation reducing the
number of generated states during the construction.

Abstrakt
Tato práce se zabývá vývojem efektivních technik pro konečné automaty a jejich aplikace.
Zejména se věnujeme konečným automatům použitých pří detekci útoků v síťovém provozu
a automatům v rozhodovacíh procedurách a verifikaci. V první části práce navrhujeme
techniky přibližné redukce nedeterministických automatů, které snižují spotřebu zdrojů v
hardwarově akcelerovaném zkoumání obsahu paketů. Druhá část práce je je věnována au-
tomatům v rozhodovacích procedurách, zejména slabé monadické logice druhého řádů k
následníků (WSkS) a teorie nad řetězci. Navrhujeme novou rozhodovací proceduru pro
WS2S založenou na automatových termech, umožňující efektivně prořezávat stavový pros-
tor. Dále studujeme techniky předzpracování WSkS formulí za účelem snížení velikosti
konstruovaných automatů. Automaty jsme také aplikovali v rozhodovací proceduře teorie
nad řetězci pro efektivní reprezentaci důkazového stromu. V poslední části práce potom
navrhujeme optimalizace rank-based komplementace Büchiho automatů, které snižuje počet
generovaných stavů během konstrukce komplementu.

Keywords
Finite automata, approximate reduction, minimization, tree automata, decision procedures,
WSkS, automata terms, antiprenexing, theory of strings, quadratic word equations, Büchi
automata complementation, rank-based complementation

Klíčová slova
Konečné automaty, přibližná redukce, minimalizace, stromové automaty, rozhodovací pro-
cedury, WSkS, automatové termy, antiprenexní forma, teorie řetězců, kvadratické rovnice
nad slovy, komplementace Büchiho automatů, rank-based komplementace

Reference
HAVLENA, Vojtěch. Efficient Automata Techniques and Their Applications . Brno, 2021.
PhD thesis. Brno University of Technology, Faculty of Information Technology. Supervisors
prof. Ing. Tomáš Vojnar, Ph.D., Ing. Ondřej Lengál, Ph.D.

Efficient Automata Techniques and Their
Applications

Declaration
I hereby declare that this PhD thesis was prepared as an original work by the author under
the supervision of prof. Ing. Tomáš Vojnar, Ph.D. and Ing. Ondřej Lengál, Ph.D. I have
listed all the literary sources, publications and other sources, which were used during the
preparation of this thesis.

. .
Vojtěch Havlena

June 28, 2021

Acknowledgements
First of all, I want to thank my supervisors Tomáš Vojnar and Ondra Lengál for their
support, patience, and help during my studies. It was a great ride. Special thanks belong
to Ondra Lengál. He taught me a lot not just about science, but also about life. I feel I
was pretty lucky to have such supervisors. Also, I would like to thank my co-authors (listed
in the alphabetical order), in particular, Milan Češka, Yu-Fang Chen, Lukáš Holík, Jakub
Semrič, Andrea Turrini, Ondřej Valeš, and the guys from ANT@FIT for their collaboration.
I thank also all people from the VeriFIT group for making the study more pleasant. I thank
Yu-Fang Chen for hosting me in Academia Sinica. Last but not least I want to thank my
family and friends for their neverending support.

The work presented in this thesis was supported by the Ministry of Education, Youth and
Sports Czech Republic (under the projects LL1908, LQ1602), the Czech Science Founda-
tion (under the projects GA16-17538S, GJ16-24707Y, GA17-12465S, GA19-24397S, GA20-
07487S, GJ20-02328Y), the internal BUT FIT projects FIT-S-17-4014, FIT-S-20-6427.

Contents

1 Introduction 5
1.1 Goals of the Thesis . 7
1.2 Overview of the Achieved Results . 7
1.3 Plan of the Thesis . 9

2 Preliminaries 10
2.1 Languages . 10
2.2 Finite Automata . 11
2.3 Operations on Finite Automata . 12

Part I: Approximate Reduction of Finite Automata for NIDS 13

3 Finite Automata in Network Intrusion Detection 14
3.1 Network Intrusion Detection Systems . 15
3.2 Hardware-Accelerated Pattern Matching . 16
3.3 Reduction of Finite Automata . 17

3.3.1 Reduction of DFAs . 18
3.3.2 Reduction of NFAs . 18
3.3.3 Language Non-preserving Reduction 20

4 Approximate Reduction of NFAs with Formal Guarantees 22
4.1 Probabilistic Automata . 25
4.2 Probabilistic Distance . 26
4.3 Automata Reduction using Probabilistic Distance 30
4.4 A Heuristic Approach to Approximate Reduction 31

4.4.1 A General Algorithm for Size-Driven Reduction 31
4.4.2 A General Algorithm for Error-Driven Reduction 32
4.4.3 Pruning Reduction . 33
4.4.4 Self-loop Reduction . 36

4.5 Experimental Evaluation . 40
4.5.1 Network Traffic Model . 40
4.5.2 Evaluation . 41
4.5.3 The Real Impact in an FPGA-Accelerated NIDS 44

4.6 Conclusion . 45

5 Lightweight Approximate Reduction of NFAs 46
5.1 The FPGA Architecture . 48

1

5.2 Samples Driven Approximate Reduction of NFAs 49
5.2.1 Border-pruning Reduction . 49
5.2.2 Merging Reduction . 51

5.3 Experimental Evaluation . 52
5.3.1 Reduction Trade-offs . 53
5.3.2 The Real Impact in an FPGA-Accelerated NIDS 55

5.4 Conclusion . 57

Part II: Automata in Decision Procedures 58

6 Automata in Decision Procedures 59
6.1 Preliminaries . 60
6.2 Weak Monadic Second-order Logic of k Successors 60

6.2.1 Syntax and Semantics . 60
6.2.2 Representing Models as Trees . 61
6.2.3 Decision Procedure for WSkS . 62
6.2.4 Applications . 64

6.3 Presburger Arithmetic . 65
6.3.1 Syntax and Semantics . 65
6.3.2 Representing Models as Words . 66
6.3.3 Decision Procedure for Presburger Arithmetic 66
6.3.4 Applications . 67

6.4 Complexity, SkS, and Expressivity . 68

7 Automata Terms in a Lazy WSkS Decision Procedure 70
7.1 The Explicit Decision Procedure . 72
7.2 Automata Terms . 73

7.2.1 Syntax of Automata Terms. 73
7.2.2 Semantics of Terms. 74
7.2.3 Properties of Terms. 75
7.2.4 Terms of Formulae. 80

7.3 An Efficient Decision Procedure . 82
7.3.1 Memoization . 82
7.3.2 Lazy Evaluation . 83
7.3.3 Subsumption . 84
7.3.4 Product Flattening . 84
7.3.5 Nondeterministic Union . 85

7.4 Experimental Evaluation . 91
7.5 Conclusion . 93

8 Antiprenexing for WSkS 94
8.1 The Decision Procedure for WSkS in Mona 95
8.2 Formula Transformations . 96

8.2.1 Cost of Deciding a Formula . 97
8.2.2 Quantifier Distribution and Scope Narrowing 97
8.2.3 Supporting Rules . 98
8.2.4 Top-level Algorithm . 101

8.3 Automata Size Estimation . 102

2

8.4 Experimental Evaluation . 103
8.5 Conclusion . 107

9 Automata in String Constraint Solving 108
9.1 Preliminaries . 110

9.1.1 Monadic Second-Order Logic on Strings 111
9.1.2 Nielsen Transformation . 112
9.1.3 Regular Model Checking . 113

9.2 Solving Word Equations using RMC . 113
9.2.1 Issues of Nielsen Transformation . 114
9.2.2 Nielsen Transformation as Word Operations 114
9.2.3 Symbolic Algorithm for Word Equations 115
9.2.4 Towards Symbolic Encoding . 116
9.2.5 Symbolic Encoding of Quadratic Equations into RMC 117

9.3 Solving a System of Word Equations using RMC 121
9.3.1 Quadratic Case . 121
9.3.2 General Case . 122

9.4 Handling a Boolean Combination of String Constraints 124
9.5 Extensions . 125

9.5.1 Length Constraints . 125
9.5.2 Regular Constraints . 127

9.6 Implementation . 129
9.7 Experimental Evaluation . 130
9.8 Conclusion . 132

Part III: Büchi Automata Complementation 133

10 Büchi Automata Complementation 134
10.1 Preliminaries . 135
10.2 Overview of the Complementation Techniques 135
10.3 Rank-based Complementation . 137

10.3.1 Run DAGs . 137
10.3.2 Basic Rank-Based Complementation 138
10.3.3 Complementation with Tight Rankings 139
10.3.4 An Optimal Algorithm . 140

11 Simulations in Rank-Based Büchi Automata Complementation 142
11.1 Simulations . 144
11.2 Purging Macrostates with Incompatible Rankings 144

11.2.1 Proofs of Lemmas 11.2.1, 11.2.2, and 11.2.3 146
11.3 Use after Simulation Quotienting . 149
11.4 Experimental Evaluation . 150
11.5 Conclusion . 150

12 Efficient Rank-based Complementation 152
12.1 Super-tight Runs . 153
12.2 Optimized Complement Construction . 154

12.2.1 Delaying the Transition from Waiting to Tight 154

3

12.2.2 Successor Rankings . 156
12.2.3 Rank Simulation . 158
12.2.4 Ranking Restriction . 160
12.2.5 Maximum Rank Construction . 161
12.2.6 Backing Off . 165

12.3 Experimental Evaluation . 165
12.3.1 Comparison of Rank-Based Procedures 166
12.3.2 Comparison with Other Approaches 167
12.3.3 Experimental Results for BAs from LTL formulae 170

12.4 Conclusion . 172

13 Conclusion and Further Directions 174
13.1 Further Directions . 175
13.2 Publications Related to This Thesis . 176

Bibliography 177

4

Chapter 1

Introduction

The finite automaton is a simple and powerful model of computation. Since its inception
in the 40s, when a notion similar to a finite automaton was proposed in the context of
neurophysiology [209], through the works of Mealy, Moore, Rabin, Scott [236, 216, 210],
and others in the 50s to this date, it constantly attracts the attention of researchers and
gained a position of tremendous importance in computer science. During the years there
emerged different automata models extending the original model, such as automata with
counters, registers, probabilities, or automata over finite/infinite trees, pushing the scope
of finite automata even further. The ingenuity of the simple model of finite automata has
been witnessed by long series of real-world applications across computer science. Since
a lot of systems have a finite state nature, finite automata are an important tool for their
description and reasoning about them. Finite automata touch almost every field of com-
puter science, in particular software/hardware verification, bug hunting, parsing (lexical
analysis within compilers), decision procedures for various logics, regular expression match-
ing, bioinformatics, or speech recognition. Efficient handling of finite automata is hence
a crucial task. However, many problems related to finite automata are inherently hard. For
instance, inclusion checking of two nondeterministic finite automata (NFAs) is a PSPACE-
complete problem, the same as for their state-based minimization. Heuristics and efficient
techniques for problems involving finite automata are hence desirable. In this thesis, we
focus on efficient techniques concerning finite automata in a couple of current applications
mentioned below, in particular, hardware-accelerated intrusion detection, decision proce-
dures for various logics, and verification.

The first studied topic covers reduction of NFAs in hardware-accelerated intrusion de-
tection. The ever-increasing speed of computer networks brings new security challenges as
well as opportunities for malicious users. In order to identify malicious traffic, network
intrusion detection systems monitoring incoming packets are often deployed. Suspicious
packets, i.e., packets that may belong to an attack or other malicious activity, can be
specified not only by IP addresses or ports, but also by regular expressions describing po-
tentially dangerous packet content. Intrusion detection systems then perform matching of
payloads of incoming packets, also called the deep packet inspection, against the regular
expressions of interest. A problem arises especially when the deep packet inspection is
applied on high-speed networks (i.e., networks with the speed of 100 Gbps and beyond). In
such a case, a single-box software solution cannot achieve sufficient throughput and hence
either clusters of many computers and/or specialized hardware units accelerating regular
expression matching are necessary. Hardware matching engines can directly implement
nondeterministic finite automata obtained from regular expressions [254]. The hardware

5

resources required for storage of these finite automata are, however, very restricted (on top
of that, pattern matching on high-speed networks may need to implement multiple copies
of the matching unit containing the finite automaton [202]). Therefore, efficient techniques
to reduce NFAs in the context of deep packet inspection, which we address in the first part
of the thesis, are much welcome.

The second topic this thesis focus on involves finite automata in decision procedures
and verification. Due to a massive spread and a rapid development of computer programs,
still more demands on performance, reliability, security, and correctness are put on them.
Errors in critical systems, as well as security vulnerabilities, can, in the worst case, cause
severe damages, including deaths, injuries, financial losses, or security data leaks. In 1996,
the Ariane 5 rocket exploded because of a bug in its control system [124]. More recently,
the discovery of software flaws of grounded Boeing 737 MAX prevented it from the return
to flight [220]. In 2016 a problematic regular expression caused an outage of the Stack
Overflow web service [263]. For these reasons, techniques of automated verification, testing,
analysis, and optimization of systems became a hot topic in computer science. Some of these
techniques are based on finite automata, so efficient algorithms for handling finite automata
are necessary for their scalability.

In software verification, such as approaches based on symbolic execution, correctness
of a system is sometimes specified by invariants and assertions that need to hold at given
control locations. Invariants and assertions are may be specified by formulae in a suit-
able decidable logic/theory (or their combination). For instance, for string manipulating
programs, a suitable logic can be the first-order theory of strings, for integer programs
Presburger arithmetic, and for heap manipulating programs it can be the weak monadic
second order logic of k successors (WSkS). The verification process then checks, in coop-
eration with a logic/theory solver, if all paths in the system (or at least all paths up to
some bound) satisfy the assertions and invariants. A combination of suitable logics/theories
and efficient solvers may find critical vulnerabilities in various applications, e.g., cross-side-
scripting (XSS) vulnerabilities in the context of web applications. Logic/theory solvers are
currently bottlenecks of the verification process. In order to verify large scale systems it is
hence important to have efficient solvers.

However, decision procedures for many logics/theories suffer from a high worst-case
complexity. The currently best known algorithm for satisfiability checking of word equa-
tions, which is a fundamental stone for a decision procedure for the existential fragment
of the theory of strings, runs in a polynomial space [229]. Also notice that the full theory
of strings (with unrestricted quantifiers) is undecidable. Moreover, the WSkS logic lies
at the edge of decidability, since this logic is decidable with the NONELEMENTARY
complexity. Efficient decision procedures and heuristics for these logics/theories are hence
highly desirable. A promising way for improvements is offered by an efficient employment
of finite automata in decision procedures of these logics, which is also a topic of this thesis.

In a more heavyweight approach to formal verification, such as model checking, tem-
poral specifications of the systems being checked may be considered. Such a specification
could be provided as a formula in a suitable logic or directly as a finite automaton spec-
ifying a correct behavior. If both a model of a system and the specification are given as
finite automata B and A, respectively, the correctness of the system is being checked as
L (B) ⊆ L (A), which is equivalent to checking whether L (B) ∩ L (A) = ∅. The automaton
B represents the behavior of the system and the automaton A describes all correct be-
haviors (directly constructed or obtained, e.g., from a specification provided in some logic,
such as LTL, QPTL, or S1S). In the case of verification of reactive systems, both A and

6

B can be encoded by finite automata over infinite words (e.g., Büchi automata). A fun-
damental stone and bottleneck of efficient language inclusion checking is complementation.
Complementation for nondeterminitistic automata, particularly, over infinite words, is still
a challenging problem despite its intensive study. The existing complementation algorithms
still provide a lot of space for improvements because they often suffer from state explosion
caused by generating unnecessary states.

1.1 Goals of the Thesis
The main goal of this thesis is to improve the state-of-the-art techniques for efficient au-
tomata handling in the context of formal verification and optimization of systems. In
particular, we identified three subgoals. In the first subgoal, we aim at an extension of
the state-of-the-art approaches for reduction of nondeterministic finite automata over fi-
nite words in the context of hardware-accelerated network intrusion detection. Our goal is
to propose suitable language-nonpreserving reductions that will be used in addition to the
current precise (language preserving) reductions. The second subgoal is to improve decision
procedures for the WSkS logic and for fragments of the theory of strings. In particular, we
aim at an efficient employment of finite (word/tree) automata in these procedures in order
to reduce the size of the generated state space. The third subgoal concerns optimization
techniques for Büchi automata complementation, with the focus on rank-based complemen-
tation. Despite the fact that currently the best algorithm of rank-based complementation
is worst-case optimal, it can still generate a lot of unnecessary states. Therefore, techniques
of state space reduction during the construction could improve its practical efficiency.

1.2 Overview of the Achieved Results
In this section, we briefly summarize the main results achieved in this thesis. According
to the goals stated above, this thesis is divided into three parts. The first part covers
reduction of NFAs in the context of network intrusion detection. The second part is devoted
to automata in decision procedures, and the third part deals with optimization of Büchi
automata complementation.

Approximate reduction of NFAs. Concerning the first subgoal, we introduce several
novel language-nonpreserving (approximate) reductions of NFAs in the context of hardware-
accelerated network intrusion detection. In order to squeeze NFAs representing regular
expressions of interest into a hardware unit, the proposed reductions allow one to specify
the maximum number of states of the target automaton. The reductions are steered either
by a probabilistic model of traffic or directly by a multiset of packets representing the input
traffic. For the first case, we introduced approximate reductions with formal guarantees
w.r.t. the traffic model. The reduction is then driven by a metric capturing the error of
reduction as the probability that a randomly chosen string (w.r.t. the probabilistic model)
is misaccepted. According to this metric, we identify less significant parts of the automaton
and then we apply a reduction on these parts (a modification and/or removal of states
and transitions of the automaton in order to underapproximate or overapproximate the
language). Although the optimal approximate reduction is PSPACE-complete, we propose
heuristics suitable for NFAs occurring in network intrusion detection systems (NIDSes). The

7

proposed methods allow to increase the throughput of hardware-accelerated deep packet
inspection.

For the case of traffic-sample-driven reduction, we propose lightweight approximate re-
ductions allowing to identify the less significant parts of the automaton, where reductions
are then applied, directly from the traffic sample. The advantage is the complexity—the
reduction of an NFA can be performed in a polynomial time (w.r.t. the size of the NFA and
the size of the sample). Using our approaches, we were able to obtain hardware-accelerated
NIDSes suitable for high-speed networks, i.e., 100 Gbps and even 400 Gbps networks.

Automata in decision procedures. Concerning the second subgoal, we employ efficient
automata techniques in decision procedures of WSkS and the theory of strings. First, we
generalize the results of [111] and propose automata terms in the WS2S decision procedure
(note that WSkS for k > 2 can be encoded into WS2S). Automata terms implicitly represent
tree automata and they allow us to construct parts of an automaton corresponding to
a formula on-demand, only if it is necessary. Our decision procedure based on automata
terms reduces the size of the generated state space using techniques such as subsumption
pruning, lazy evaluation, eager-termination, or memoization. We show that our approach
can outperform the state-of-the-art Mona tool on certain families of formulae.

Second, we optimize the automata-based decision procedure for WSkS using a static
preprocessing of an input formula. Our approach introduces several rewriting rules that
are applied on the input formula in order to reduce sizes of the constructed intermediate
automata. Our rules include pushing quantifiers deeper into the formula (antiprenexing),
distribution of conjunctions, or restructuring conjunctions together with a few of support-
ing rules. Moreover, we parameterize some of our rules by an estimation of automata
sizes corresponding to subformulae occurring within the rules. We obtain a model estimat-
ing automata sizes by machine learning techniques (particularly using linear regression).
The proposed approach can significantly improve the automata-based decision procedure
implemented in Mona.

As a third result, we employ finite automata in deciding a fragment of the theory of
strings. We express solving of word equations using Nielsen transformation within the
regular model checking framework. We propose an efficient regular representation of the
proof graph allowing it to be efficiently handled and to avoid redundancies in it. In order to
obtain an efficient decision procedure, we use eager minimization of automata representing
proof graphs together with symbolic register transducers representing the transformations.
Moreover, we extend the approach also to the theory of strings with length and regular
constraints. Our experimental evaluation shows that we are able to outperform state-of-
the-art solvers on a set of difficult formulae.

Büchi automata complementation. Results related to the third subgoal concern op-
timizations of rank-based Büchi automata complementation. We start from Schewe’s rank-
based construction and propose techniques allowing to remove states and transitions which
do not alter the language during the construction of the complemented automaton. In par-
ticular, we suggest an approach omitting macrostates with “incompatible” rankings based
on direct and delayed simulation, which can be cheaply (compared to the complementation
itself) computed from an input BA. Further, we use a notion of super-tight runs to keep
only macrostates having an as small rank as possible. We propose methods computing the
upper bound for the rank of a macrostate from a deterministic support of the input BA.
Our optimizations omitting “unnecessary” macrostates are then combined with a technique

8

allowing to represent multiple runs with a single representative run. Our experimental
evaluation shows that using our techniques we can obtain a competitive complementation
algorithm with other state-of-the-art approaches of BA complementation, often performing
better than the other approaches.

1.3 Plan of the Thesis
According to the above-stated goals, the thesis is organized into three parts with Chapter 2
serving as preliminaries to the following parts. The first part is devoted to approximate
reduction of finite automata for network intrusion detection systems. Chapter 3 serves
as an introduction to handling of finite automata in the context of NIDSes. Chapter 4
proposes our approximate reduction of NFAs with formal guarantees and Chapter 5 deals
with a lightweight approximate reduction of NFAs. The second part of the thesis deals
with automata in decision procedures. Chapter 6 introduces Presburger arithmetic and the
WSkS logic with a focus on automata-based decision procedures. In Chapter 7, we propose
a novel decision procedure for WS2S based on the notion of automata terms. Chapter 8
deals with preprocessing of WSkS formulae. In Chapter 9, we employ finite automata within
a decision procedure for a fragment of the theory of strings. In the last part, we optimize
Büchi automata complementation. Chapter 10 serves as a brief introduction to Büchi
automata complementation with focus on rank-based complementation. In Chapter 11, we
employ simulations to reduce the number of generated states during the complementation
and Chapter 12 proposes techniques for removing unnecessary states and a reduction of the
maximum rank in order to obtain an as small complement as possible. Finally, Chapter 13
concludes the thesis.

9

Chapter 2

Preliminaries

In this chapter, we give basic definitions related to formal languages, word/tree automata,
and operations over them as they are used in the rest of the thesis. In particular, in
Section 2.1, we introduce definitions concerning finite/infinite words, trees, and their lan-
guages, in Section 2.2, we define finite automata over finite/infinite words and trees, and
in Section 2.3, we give basic Boolean operations for automata over finite words and trees.

2.1 Languages
Sets, relations, functions. We use ω to denote the set {0, 1, 2, . . . }. An alphabet Σ is
a finite nonempty set of symbols. Given a pair of sets X1 and X2, we use X14X2 to denote
their symmetric difference, i.e., the set {x | ∃!i ∈ {1, 2} : x ∈ Xi}.

Given two binary relations R1, R2, we define their composition R1 ◦R2 = {(x, z) | ∃y :
(x, y) ∈ R2 ∧ (y, z) ∈ R1}. Let u ⊆ X ×X be an equivalence on X. We use [x]u to denote
the equivalence class of x ∈ X w.r.t u and X/u to denote the set {[x]u | x ∈ X}. The
domain of a partial function f : X → Y is the set dom(f) = {x ∈ X | ∃y : x 7→ y ∈ f},
its image is the set img(f) = {y ∈ Y | ∃x : x 7→ y ∈ f}, and its restriction to a set Z is
the function f|Z = f ∩ (Z × Y). Furthermore, for a total function f : X → Y and a partial
function h : X → Y , we use f C h to denote the total function g : X → Y defined as
g(x) = h(x) when h(x) is defined and g(x) = f(x) otherwise.

Finite words. A (finite) word (string) over Σ is a sequence w = a1 . . . an of symbols from
Σ, with ε denoting the empty word. Given a word w = a1 . . . an, we use |w| to denote the
length n of w. We use w1.w2 (and often just w1w2) to denote the concatenation of words
w1 and w2. Σ∗ is the set of all words over Σ, Σ+ = Σ∗ \ {ε}, and Σ≤` denotes the set of
all words of length at most `. We abbreviate {a}∗ as a∗ for a ∈ Σ. A language of (finite)
words over Σ is a subset L of Σ∗. A concatenation of two languages L1 and L2, denoted
as L1.L2, is defined as L1.L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}. To simplify the notation, we
sometimes mix concatenation of words and languages with obvious semantics, e.g., w.L for
a word w and a language L to denote {wu | u ∈ L}.

Ordered trees. In this thesis, we will consider ordered k-ary trees. We call a word
p ∈ {1, . . . , k}∗ a tree position, and, for each i ∈ {1, . . . , k}, we call p.i its i-th child. Given
an alphabet Σ s.t. ⊥ /∈ Σ, a tree over Σ is a finite partial function τ : {1, . . . , k}∗ → (Σ∪{⊥})
such that (i) dom(τ) is non-empty and prefix-closed, and (ii) for all positions p ∈ dom(τ),

10

either τ(p) ∈ Σ and p has all k children, or τ(p) = ⊥ and p has no children, in which case
it is called a leaf. The position ε is called the root. We write Σ to denote the set of all
trees over Σ. We abbreviate {a} as a for a ∈ Σ. A language of trees over Σ is a subset L
of Σ .

Infinite words. Let Σ be an alphabet. An (infinite) word α is represented as a function
α : ω → Σ where the i-th symbol is denoted as αi. We abuse notation and sometimes
also represent α as an infinite sequence α = α0α1 . . . The suffix αiαi+1 . . . of α is denoted
by αi:ω. We use Σω to denote the set of all infinite words over Σ. A language of (infinite)
words over Σ is a subset L of Σω. If it is clear from the context, we do not explicitly specify
finiteness/infiniteness of words and we speak simply about languages.

2.2 Finite Automata
Finite word automata. A nondeterministic finite automaton (NFA) is a quadruple
A = (Q,Σ, δ, I, F) where Q is a finite set of states, Σ is an alphabet, δ : Q × Σ → 2Q

is a transition function, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of accepting
states. We use Q[A], δ[A], I[A], and F [A] to denote Q, δ, I, and F , respectively, and q a−→ q′

to denote that q′ ∈ δ(q, a). We extend δ to a set of states S as δ(S, a) =
⋃
q∈S δ(q, a).

Sometimes, we abuse notation and treat δ as a subset of Q× Σ×Q. A sequence of states
ρ = q0 · · · qn is a run of A over a word w = a1 · · · an ∈ Σ∗ from a state q to a state q′,
denoted as q w,ρ q′, if ∀1 ≤ i ≤ n : qi−1

ai−→ qi, q0 = q, and qn = q′. Sometimes, we use ρ in
set operations where it behaves as the set of states it contains. We also use q w

 q′ to denote
that ∃ρ ∈ Q∗ : q w,ρ q′ and q q′ to denote that ∃w : q

w
 q′. The language of a state q is

defined as LA(q) = {w | ∃qF ∈ F : q
w
 qF }. Moreover, we define LA(p, q) = {w | p w

 q}.
The banguage (backward language) of a state q is defined as L[A(q) = {w | ∃qI ∈ I : qI

w
 q}.

Both the language of a state and the banguage can be naturally extended to a set S ⊆ Q
as LA(S) =

⋃
q∈S LA(q) and L[A(S) =

⋃
q∈S L[A(q), respectively. We drop the subscript A

when the context is obvious. A accepts the language L (A) defined as L (A) = LA(I). A is
called deterministic (DFA) if |I| = 1 and ∀q ∈ Q and ∀a ∈ Σ : |δ(q, a)| ≤ 1 and complete
if ∀q ∈ Q and ∀a ∈ Σ : |δ(q, a)| ≥ 1. A language L is called regular if it is accepted by an
NFA.

Finite tree automata. A k-ary finite tree automaton (TA) over an alphabet Σ is a quad-
ruple A = (Q,Σ, δ, I, R) where Q is a finite set of states, δ : Qk × Σ → 2Q is a transition
function, I ⊆ Q is a set of leaf states, and R ⊆ Q is a set of root states. We use (q1, . . . , qk)

a−→
s to denote that s ∈ δ((q1, . . . , qk), a). For a better readability, we often use a notation
δa(q1, . . . , qk) instead of δ((q1, . . . , qk), a). A run of A on a tree τ is a total map ρ :
dom(τ) → Q such that if τ(p) = ⊥, then ρ(p) ∈ I, else (ρ(p.1), . . . , ρ(p.k))

a−→ ρ(p) with
a = τ(p). The run ρ is accepting if ρ(ε) ∈ R, and the language L (A) of A is the set of
all trees on which A has an accepting run. A is a (bottom-up) deterministic TA (DTA)
if |I| = 1 and ∀q1, . . . , qk ∈ Q, a ∈ Σ : |δ((q1, . . . , qk), a)| ≤ 1, and complete if I ≥ 1 and
∀q1, . . . , qk ∈ Q, a ∈ Σ : |δ((q1, . . . , qk), a)| ≥ 1. A language L is called tree regular if it is
accepted by a TA.

Büchi automata. A (nondeterministic) Büchi automaton (BA) over Σ is a quadruple
A = (Q,Σ, δ, I, F) where Q is a finite set of states, δ is a transition function δ : Q×Σ→ 2Q,

11

and I, F ⊆ Q are the sets of initial and accepting states, respectively. We sometimes treat δ
as a set of transitions p a−→ q, for instance, we use p a−→ q ∈ δ to denote that q ∈ δ(p, a).
Moreover, we extend δ to sets of states P ⊆ Q as δ(P, a) =

⋃
p∈P δ(p, a). A run of A

from q ∈ Q on an input word α is an infinite sequence ρ : ω → Q that starts in q and
respects δ, i.e., ρ0 = q and ∀i ≥ 0: ρi

αi−→ ρi+1 ∈ δ. Let inf(ρ) denote the states occurring
in ρ infinitely often. We say that ρ is accepting iff inf(ρ) ∩ F 6= ∅. A word α is accepted
by A from a state q ∈ Q if there is an accepting run ρ of A from q, i.e., ρ0 = q. The set
LA(q) = {α ∈ Σω | A accepts α from q} is called the language of q (in A). Given a set
of states R ⊆ Q, we define the language of R as LA(R) =

⋃
q∈R LA(q) and the language

of A as L (A) = LA(I). We drop the superscript when the context is obvious. A is called
deterministic if |I| = 1 and ∀q ∈ Q and ∀a ∈ Σ : |δ(q, a)| ≤ 1 and A is called complete if
for every state q and symbol a, it holds that |δ(q, a)| ≥ 1.

For all types of automata, we sometimes fix the alphabet and omit it from the definition.
For an NFA/TA/BA A, we also use |A| to denote the number of states of A.

2.3 Operations on Finite Automata
Finite word automata. Let A = (Q,Σ, δ, I, F) be a NFA. Further, let u be an equiv-
alence on Q. The quotient of A w.r.t u is the automaton A/u = (Q/u,Σ, δu, Iu, Fu)
with the transition function δu([q]u, a) = {[r]u | r ∈ δ([q]u, a)} and the set of initial and
accepting states Iu = {[q]u ∈ Q/u | q ∈ I} and Fu = {[q]u ∈ Q/u | q ∈ F}, respectively.

The reverse automaton of A is defined as rev(A) = (Q,Σ, δ−1, F, I) where δ−1(q, a) =
{p | p a−→ q ∈ δ}. Further, a deterministic automaton of A created by a subset construction
is defined as det(A) = (2Q,Σ, det(δ), {I}, det(F)) where det(δ)(S, a) =

⋃
q∈S δ(q, a) and

det(F) = {S ⊆ Q | S ∩ F 6= ∅}. For a complete DFA A = (Q,Σ, δ, I, F), the complement
returns A{ = (Q,Σ, δ, I,Q \F). The binary operators ◦ ∈ {∪,∩} are implemented through
a product construction as follows: given an NFA A = (Q,Σ, δ, I, F) and another NFA
A′ = (Q′,Σ, δ′, I ′, F ′) (for the case of ∪ complete ones) the product construction returns
the automaton A◦A′ = (Q×Q′,Σ, δ×, I×I ′, F ◦) where δ×((q1, r1), a) = δ(q1, a)×δ′(r1, a),
and for (q, r) ∈ Q × Q′, (q, r) ∈ F∩ ⇔ q ∈ F ∧ r ∈ F ′ and (q, r) ∈ F∪ ⇔ q ∈ F ∨ r ∈ F ′.
The disjoint union of A and A′ is defined as A]A′ = (Q]Q′,Σ, δ] δ′, I] I ′, F] F ′).

Finite tree automata. For a complete TA A = (Q,Σ, δ, I, R), the complement assumes
that A is deterministic and returns A{ = (Q,Σ, δ, I,Q \ R), and the subset construction
returns the deterministic and complete automaton det(A) = (2Q, det(δ), {I}, det(R)) where
det(δa)(S1, . . . , Sk) =

⋃
q1∈S1,...,qk∈Sk δa(q1, . . . , qk) and det(R) = {S ⊆ Q | S ∩R 6= ∅}. The

binary operators ◦ ∈ {∪,∩} are implemented (as in the case of NFAs) through a product
construction, which—given a TA A = (Q,Σ, δ, I, R) and another TA A′ = (Q′,Σ, δ′, I ′, R′)
(for the case of ∪ complete ones)—returns the automaton A◦A′ = (Q×Q′,Σ, δ×, I×I ′, R◦)
where δ×a ((q1, r1), . . . , (qk, rk)) = δa(q1, . . . , qk) × δ′a(r1, . . . , rk), and for (q, r) ∈ Q × Q′,
(q, r) ∈ R∩ ⇔ q ∈ R ∧ r ∈ R′ and (q, r) ∈ R∪ ⇔ q ∈ R ∨ r ∈ R′.

12

Part I:
Approximate Reduction of Finite

Automata for NIDS

13

Chapter 3

Finite Automata in Network
Intrusion Detection

Computer networks came a long way from their beginnings in 1960s. A connection of several
computers across the U.S. universities at that time have become an inseparable part of our
everyday lives. A trend of these days is an increasing number of communication devices
in computer networks (and particularly the Internet). The connected devices are currently
not only general-purpose computers but also specialized smart devices such as autonomous
cars, thermostats, or emergency notification systems. The later mentioned smart devices
are covered by the term Internet of Things, which has a great merit on the growing number
of connected devices. The Cisco company estimates that by 2023 there will be 29.3 billion
networked devices (raising from 18.4 billion in 2018) [2].

A dark side of this development is security. The more networked devices communicate
over various protocols, the more opportunities a malicious user has to intrude the systems.
The malicious activities vary from e-mail hacking, DoS (denial of service) attacks to cyber
espionage and attacks on a critical infrastructure. Consequences of such threats may be
disastrous. For example, in 2016 a massive attack against the Ukrainian power grid caused
a widespread blackout [19]. In 2020 a cyberattack on computer systems of Universal Health
Service in the U.S. caused two days of service outage [81]. The security of computer networks
and, consequently, the security of network traffic is hence a crucial task.

The network threats (and their economical and/or political consequences) have led to
an enormous effort that has been put into network security in recent years. Defense against
the threats includes various techniques with different use-cases ranging from communication
encryption through firewall deployment to (network) intrusion detection systems (NIDSes).
A prominent approach to malicious traffic detection, which is also used within NIDSes, is
gathering of high-level information about transmitted packets with a detection based on
reasoning about the gathered information. For example, a detection system builds a golden
communication profile corresponding to valid traffic and compares this profile with the
traffic under inspection [27]. Or, and this is the case that is the most interesting for us,
the content of a packet is matched against a series of patterns occurring within the already
known attacks [269, 17]. Efficient network pattern matching is usually implemented using
finite automata. Therefore, it is necessary to handle the automata in an efficient way. In
this chapter, we briefly discuss the use of automata for NIDS, especially for hardware-
accelerated pattern matching, including problems that the acceleration involves.

14

/^Attached\s+through\s+port\x3a/smi
/^DmInf\^[^\r\n]*\^\d+\x2E\d+\x2E\d+\x2E\d+\^/smi
/\x5BDRIVE\s+LIST\x5D/smi

Figure 3.1: An example of regular expressions in the PCRE format used in Snort to
describe malicious traffic.

Chapter outline. This chapter serves as a brief introduction to an application of finite
automata in network intrusion detection systems. Section 3.1 discusses approaches to detec-
tion of malicious traffic using finite automata. Section 3.2 deals with hardware-accelerated
pattern matching based on finite automata. Finally, Section 3.3 presents state-of-the-art
methods of automata reduction.

3.1 Network Intrusion Detection Systems
The blossom of computer networks brought new demands to secure users, data, and in-
frastructure. At the beginning, network administrators were detecting intrusion or other
malicious activities manually by checking the audit logs [212]. Since then, the networks grew
up substantially and the malicious activities became much frequent. It is hence impossible
to manually detect these activities nowadays, and so it is necessary to have a specialized
automatic system tailored for this task. This is the job for a NIDS.

Based on a permission policy, NIDSes are divided into anomaly-based systems and
signature-based systems. Anomaly-based systems (sometimes denoted as NIPS) allow only
those communications corresponding to normal behavior. Every unusual activity that is not
considered as normal is declined. A model of normal communication is stored to the NIDS.
Contrary, signature-based systems contain a description of patterns of malicious traffic and
every communication that matches a pattern is blocked and an administrator is alerted (see,
e.g., [212] for more details). NIDSes involve various techniques and approaches to detect
malicious traffic (e.g., genetic algorithms [27], machine learning [252, 160], or signature
matching [269, 17, 260]). In this thesis, we will focus on signature-based systems (and
simply use NIDSes to refer to those).

Despite the fact that a lot of network traffic is currently encrypted, which narrows down
possibilities of deep packet inspection, NIDSes are still widely used (e.g., at the entry points
of private networks, after the communication is decrypted). Snort [269], Bro [284], or
Suricata [205] are the most popular NIDSes. The patterns describing malicious traffic are
usually defined in the form of rules. The rules specify, among others, IP addresses, ports,
or contents of packets representing a malicious communication [269, 15].

A prominent way of deep packet inspection is a description of attacks using rules contain-
ing regular expressions (REs). These REs are then matched against the content (payload)
of a packet under inspection. If a match is found, a malicious activity is detected. An
example of such REs used in Snort are shown in Figure 3.1. In order to cover large
portion of threats that can occur, a lot of REs are necessary. With an increasing trans-
mission speed of networks, RE matching is a bottleneck of intrusion detection. Currently,
high-speed 100 Gbps networks have become more available [28]. On top of that, 200 Gbps
and 400 Gbps Ethernet standards were recently approved [1]. In order to examine traffic
in 100 Gbps networks in software, it is necessary to build a special distributed NIDS clus-
ter [278]. Existing single-box software NIDSes alone are not capable to handle 100 Gbps
(and faster) traffic. Their throughput ranges from below 1 Gbps [38] up to 33 Gbps employ-

15

q1 q2

a b

match

input input

q1 q2
a

b

Figure 3.2: An NFA accepting the language ab∗ and its corresponding high-level hardware
implementation [254]. The states are realized by flip-flops q1 and q2. An input symbol is
selected in a decoder (output is high if input corresponds to a or b, respectively). The
transition function is then represented by and/or logical gates.

ing a combination of hi-tech multicore CPUs and manycore GPUs [156]. To tackle packet
inspection in high-speed networks, hardware-accelerated solutions were introduced to speed
up RE matching of packet payloads [254, 204, 177].

3.2 Hardware-Accelerated Pattern Matching
As we outlined in the previous section, a specialized hardware solution performing RE
matching is necessary for high-speed networks. The idea of hardware acceleration is to
offload the difficult task of pattern matching from SW to HW. In this section, we briefly
discuss approaches for HW-accelerated pattern matching of network traffic.

From a high-level point of view, the REs describing suspicious traffic are first translated
into a deterministic/nondeterministic automaton A. The HW unit then employs A for
pattern matching. In particular, the pattern matching unit checks, an incoming packet
if its payload belongs to L (A). If a match is found, the suspicious packet may be send
for further inspection to software (the HW unit can be hence seen as a traffic pre-filter).
According to the background automaton model we recognize DFA-based and NFA-based
acceleration.

The matching units are often based on the Field Programmable Gate Array (FPGA)
technology (especially for the NFA-based acceleration) [254, 79, 204]. The FPGA technology
allows users to specify their own behavior of a logical circuit. The functionality is described
using specialized languages (e.g., VHDL or Verilog). A logical circuit is then synthesized
into an FPGA unit according to the description. An FPGA unit may be reprogrammed
multiple times. Note that although FPGAs are widely used, it is not the only possible
platform. Pattern matching acceleration approaches aim also, e.g., on GPUs [72, 287].

DFA-based acceleration. DFA-based acceleration of RE matching employs determin-
istic finite automata representing the regular expressions. The used deterministic model
allows to check an input string w for a match in time O(|w|). The transition function of the
DFA is stored in a memory, which allows to dynamically and quickly update/change the
used DFA. On the other hand, the HW unit realizing pattern matching of the input string
w requires a memory with a low latency. Access to the memory is not the only issue. An-
other issue is that a DFA can be exponentially larger than its nondeterministic counterpart.
DFA-based acceleration is hence memory intensive. A lot of effort has been put into reduc-
tion of this memory bottleneck. The amount of used memory can be reduced by adjusting
the deterministic automaton model allowing higher rate of compression, such as optimized

16

DFAs with default transitions [180, 181], δDFAs with efficient transition storage [110],
hybrid DFAs [35], automata with a scratch memory [257], automata with counting con-
straints [37], or multi-stride automata [36]. Other approaches aiming at this issue include
leveraging properties of common REs [179], rewriting and grouping of REs [299] and/or
uses specialized architectures with perfect hashing [164, 165, 166], pipelined automata [62],
or efficient architectures consuming more symbols per clock cycle [295].

NFA-based acceleration. DFA-based acceleration suffers from state explosion during
the determinization of NFAs corresponding to REs as well as from memory access latency.
These issues limit DFA-based approach from use in high-speed networks with a huge set
of REs. A straightforward generalization of the DFA matching unit to NFAs with transi-
tion function stored in the memory does not solve the problems, because the complexity
of a string matching would be O(n|w|) where n is the number of NFA states. The NFA-
based acceleration alleviates these issues by a direct synthesis of the transition function
into a reconfigurable HW unit (usually an FPGA unit). Such a construction, introduced
in [254], allows to check an input string for a match in time O(|w|). The states of the
NFA are represented by flip-flops and the transitions between them are composed by logi-
cal gates. An example of an NFA implementation is shown in Figure 3.2. A disadvantage
of the direct synthesis is impossibility of a quick change of the used REs and also consid-
erable restrictions of FPGA resources. The construction of [254] was further optimized by
a shared character decoder [79], RE subexpressions sharing [261, 192] or an efficient state
encoding [301]. These methods alone are, however, insufficient for high-speed networks
(100 Gbps and beyond). In order to achieve a better throughput, various techniques have
been introduced, including multicharacter matching using spatial stacking [296] or multi-
stride architecture [36]. However, as shown in [204], the multi-striding does not scale well
and hence it is not sufficient for 100 Gbps throughputs. To achieve 100 Gbps throughputs,
an FPGA-based architecture with pipelined automata was proposed in the work [204]. Nev-
ertheless, such a speed requires massive parallelization, which reduces the FPGA resources.
It is, therefore, a matter of uttermost importance to keep the NFA obtained from the REs
as small as possible.

For both DFA-based and NFA-based acceleration, it is apparent that the smaller the
automata we obtain from the REs, the higher throughput we can achieve (due to a possibil-
ity of parallelization). And, consequently, we use less memory and/or less FPGA resources.
Efficient automata reduction is hence important particularly for high-speed HW-accelerated
pattern matching. In the following section, we, therefore, discuss techniques for reduction
of DFAs and NFAs.

3.3 Reduction of Finite Automata
Reduction of automata size is a crucial task for many applications dealing with this com-
putational model, not only for monitoring of network traffic, where automata are used to
represent attacks and protocols but also for verification of parametric and infinite-state
systems [55, 54], software regular expression matching [271, 262], or in various automata
decision procedures [65, 143, 100]. When talking about a reduction of finite automata, we
can distinguish between a transition-based reduction and a state-based reduction. In this
thesis, we are interested in the state-based reduction, i.e., reduction of the number of states.
In this section, we discuss basic approaches for reduction of finite automata.

17

3.3.1 Reduction of DFAs

First, we focus on reduction of deterministic automata. In contrast to general NFAs, it
is a practically feasible operation to find an equivalent DFA with a minimum number of
states for a given DFA. The existence of such a minimal (and, on top of that, canonical)
automaton follows from Myhill-Nerode theorem. A DFA A = (Q,Σ, δ, I, F) is the minimal
DFA representing the regular language L (A) if no two states p, q ∈ Q are indistinguishable,
in other words, there are no two states that “behave the same” on each word. Note that we
assume that the automaton is trimmed, i.e., all states are reachable from an initial state and
all states can reach a final state. Formally, states p, q ∈ Q are indistinguishable, denoted
as p ≡u q, iff for each x ∈ Σ∗ and p

x
 p′, q x

 q′ we have p′ ∈ F ⇐⇒ q′ ∈ F [150].
The indistinguishability relation is an equivalence on Q and, moreover, quotienting of A
w.r.t. ≡u preserves the language of A, i.e., L (A) = L (A/≡u). Therefore, for a DFA A, the
minimal equivalent DFA can be constructed as A/≡u.

It remains to discuss a computation of the indistinguishability relation to make the
picture of minimization complete. Hopcroft’s algorithm and Moore’s algorithm are two
widely used algorithms to compute the indistinguishability relation [63, 216]. Both these
algorithms work by an iterative refinement of an approximation of ≡u. The worst-case
time complexity of Hopcroft’s algorithm is O(n log n). The worst-case time complexity of
Moore’s algorithm, originally presented for Moore’s automata, is O(n2). The average time
complexity of both algorithms is O(n log logn) [92] where n is the number of states of an
input DFA.

A slightly different approach to DFA minimization (than computing the indistinguisha-
bility relation) was proposed by Brzozowski [63]. Brzozowski’s algorithm uses properties
of reverse automata. In particular, for a DFA A accepting the language L, the trimmed
automaton det(rev(A)) is the minimal DFA for the reverse of language L1. If we then apply
det and rev once again we obtain the minimal DFA for L. Note that this approach works
as well if A is nondeterministic. Although the worst-case time complexity is exponential,
it is efficient in some cases [43]. Except the general aforementioned approaches, there are
minimization techniques for special cases of deterministic automata [43, 243, 34].

3.3.2 Reduction of NFAs

In the second part, we focus on the reduction of general nondeterministic finite automata,
where the situation is more involved. It is, of course, possible to first determinize and
minimize the input NFA. The determinization may, however, cause an exponential blowup,
which is limiting for many huge NFAs used in practice. Moreover, even this minimal DFA
can be in the worst case exponentially larger than a minimal NFA (and hence also exponen-
tially larger than the input NFA). On the other side, minimization of NFAs is a PSPACE-
complete problem with, up to our knowledge, no known good heuristics, making it infeasible
to apply in real-world applications [159].

Nevertheless, there are feasible approaches for NFA reduction based on the concept
of (bi)simulation. These reductions use structural properties of NFAs, so they cannot
guarantee obtaining a minimal NFA, but in many practical situations significantly reduce
the input automata. Intuitively, (bi)simulations capture the structural similarity between
various parts of automata. In the following text, we fix an NFA A = (Q,Σ, δ, I, F) having n
states and m transitions. Formally, for the NFA A a bisimulation is a relation ≡b ⊆ Q×Q

1The reverse of language of L contains reversed words from L.

18

q0 q1 q2

p0

p1

p2

p3

p4

a
b

c

a

a

b

c

(a)

s0 s1

r0

r1

r2

a

b, c

a

a

b

b, c

(b)

{s0, r0}

{r1}

{s1, r2}

a

a

b

b, c

(c)

Figure 3.3: An example of two NFAs over {a, b, c} and a reduced NFA with merged states.

s.t. p ≡b q iff (i) p ∈ F ⇐⇒ q ∈ F (ii) ∀a ∈ Σ : q
a−→ q′ =⇒ ∃p′ ∈ Q : p

a−→ p′ ∧ q′ ≡b p
′

(iii) ∀a ∈ Σ : p
a−→ p′ =⇒ ∃q′ ∈ Q : q

a−→ q′∧q′ ≡b p
′ [25]. The bisimulation is an equivalence

relation implying language equivalence of states and, moreover, the quotient of A w.r.t. ≡b

preserves the language, i.e., L (A) = L (A/≡b). For deterministic automata the maximum
bisimulation coincides with the indistinguishability relation. Bisimulation is also a sound
technique for language equivalence checking of two NFAs (completeness requires at least
a partial determinization [149, 52]). Bisimulation can be computed using an algorithm of
iteratively refining partitions until the fixpoint is reached. The partition at the fixpoint
corresponds to the bisimulation. The time complexity of the algorithm is O(m log n) [25].

Although bisimulation equivalence is a cheap technique for reduction of NFAs, the
relation is, however, often quite coarse and, therefore, the reduction is small. In order
to obtain a greater reduction, we can use a simulation relation, which is weaker than
bisimulation. For an NFA A a forward simulation is a relation vfw⊆ Q × Q s.t. p vfw q
if (i) p ∈ F =⇒ q ∈ F and (ii) ∀a ∈ Σ : p

a−→ p′ =⇒ ∃q′ ∈ Q : q
a−→ q′ ∧ p′ vfw q′.

Intuitively, forward simulation between two states p vfw q expresses that for each word w
a (forward) run from p over w can be mimicked by a run from q over w. For an NFA there
is a unique maximal forward simulation called the forward simulation preorder denoted as
4fw. Forward simulation between two states implies inclusion of their languages (but not
vice versa as shown in Example 3.3.1) and hence it can be used in optimizations of inclusion
checking of two NFAs [14].

Example 3.3.1. Consider the NFA in Figure 3.3a. In this automaton we have L (q0) =
L (p0), however, q0 64fw p0. This is because at the time of choosing a transition over a from
q0 we do not know if the following transition will be over b or c. Therefore, we cannot
ensure a correct choice of a transition from p0.

A dual notion to forward simulation is a backward simulation. For an NFA A a backward
simulation, denoted as vbw, is a forward simulation on rev(A). A backward simulation
between two states implies inclusion of their backward languages. For an NFA there is
a unique maximal backward simulation called the backward simulation preorder denoted
as 4bw. The forward/backward simulation equivalence for a forward/backward preorder 4
is then the maximal symmetric fragment of 4, i.e., it is given as 4 ∩ 4−1. The quotient of A
w.r.t. a simulation equivalence does not affect the language of A and hence it can be used
to reduce the automata. Moreover, the simulation reduction provides greater reduction
compared to the bisimulation reduction since two simulation equivalent states need not be
bisimulation equivalent as shown in Example 3.3.2.

19

Example 3.3.2. Consider an NFA in Figure 3.3b. States s0 and r0 forward-simulate each
other in forward manner, i.e., s0 4fw r0 and r0 4fw s0. However, since r1 6≡b s1, it also
holds that r0 6≡b s0. The quotient of this automaton w.r.t. ≡b does not bring any reduction.
The quotient w.r.t. the forward simulation equivalence merges state s0 with r0 and state s1
with r2 yielding the NFA in Figure 3.3c having 3 states only.

There are several approaches to compute the simulation preorder, based on a stepwise
refinement of the preorder approximation [144], or on a refinement of the complementary
simulation relation [153]. The time complexity of these algorithms is O(mn). Moreover
there are algorithms improving upon [144] with slightly better time and space complex-
ity [88, 238].

The simulation reduction described above can be further tuned in order to obtain better
reduction results. Merging of states can be steered not by the (bi)simulation equivalence,
but directly by the simulation preorders [153, 154]. In particular, two states p, q can be
merged if any of these conditions is met: (i) p 4fw q and q 4fw p (ii) p 4fw q and q 4bw p

(iii) p 4fw q, p 4bw q, and ¬∃w ∈ Σ+ : p
w
 p [154]. Unlike the equivalence-based

reduction, in this case the preorders 4fw and 4bw must be updated after each merge to
reflect the changes. Another approach, combining the simulation preorders into a mediated
preorder was studied in [5, 4]. The mediated preorder M is the maximal preorder s.t.
4bw⊆M ⊆4−1fw ◦ 4bw. An equivalent reduced NFA can be then constructed by quotient of
A w.r.t. M ∩M−1.

Simulation relation can be further extended with an additional information about future
moves of a simulation smaller state. The bigger state sees some bounded future and it may
hence adjust a choice of a transition accordingly (or possibly choose more transitions).
Simulation relation can then be, according to the type of information, generalized to step
simulation, lookahead simulation, or multipebble simulation [206, 108]. Yet, in order to
achieve better reduction results, (generalized) simulation-based reduction can be further
combined with techniques for adding or removing transitions [206, 68].

3.3.3 Language Non-preserving Reduction

So far, we were dealing only with language preserving reductions, i.e., the reduced NFA has
the same language as the original one. For some applications even a minimal NFA may,
however, be too large (e.g., when the number of states is limited by hardware resources)
or the automata themselves approximate languages that need not be regular at all (e.g., in
verification of infinite state systems). In the context of such applications, it makes sense to
talk about language non-preserving (approximate) reductions.

A problem of an approximation of finite languages was studied in [69, 176, 225]. A finite
language L is approximated by a DFA A s.t. L (A) ∩ Σ≤` = L where ` is the length of
the longest string from L. A DFA A satisfying this criterion is called the cover automaton
of L. The target is to obtain a minimal cover automaton. This problem can be efficiently
solved in polynomial time [176].

Another problem involving approximate reduction is called hyperminimization [122, 198,
24]. For a given DFA A, the aim of hyperminimization is to find a minimal DFA A′ s.t.
L (A′)4L (A) is a finite set. Since L (A′) can differ from L (A) on a finite number of strings,
there is a space for a more aggressive reduction, which can lead to smaller automata. In
particular, there is an efficient polynomial algorithm constructing a minimal A′ satisfying
the symmetric difference constraint [122].

20

Approximation of deterministic automata in a slightly different setting was studied
in [120]. The task is, for a given DFA A, to find a DFA A′ with at most k states ap-
proximating A. The approximated DFA A′ is constructed by collapsing states of A. The
quality of the approximation is measured by (i) the number of misclassified prefixes (up
to some length), or (ii) the sum of probabilities of misclassified words (w.r.t. Exponential
distribution). The automata approximation w.r.t. an error measure is then formulated as
an optimization problem solved with proposed incomplete greedy approaches.

Apart from the aforementioned general approaches for approximate (language non-
preserving) reductions, there appeared techniques involving approximate reduction tailored
for a concrete application. In [194] an approximation of DFAs is used to create a tree
of approximated DFAs accelerating software-based regular expression pattern matching of
attacks in a network traffic. Finally, in the context of software verification, approximation
of automata representing configurations of a system is used as an abstraction technique for
regular model checking [55, 54].

21

Chapter 4

Approximate Reduction of NFAs
with Formal Guarantees

Recall from Chapter 3 that RE matching is the most computationally demanding task of
traffic inspection as its cost grows with the speed of the network traffic as well as with the
number and complexity of the REs being matched. The current single-box software-based
NIDSes cannot perform the RE matching on high-speed networks beyond 100 Gbps. We
also mentioned that a promising approach to speed up NIDSes is to offload RE matching
into hardware. The hardware then serves as a pre-filter of the network traffic, discarding
the majority of the packets from further processing.

Since DFA-based acceleration (see Section 3.2) suffers from the state space explosion
during the determinization (causing subsequent memory issues), we focus at NFA-based
acceleration using FPGAs. Due to their inherent parallelism, FPGAs provide an efficient
way of implementing NFAs, which naturally arise from the input REs. Although the amount
of available resources in FPGAs is continually increasing, the speed of networks grows even
faster. Working with multi-gigabit networks requires the hardware to use many parallel
packet processing branches in a single FPGA (we assume the architecture of [204]); each
of them implementing a separate copy of the concerned NFA, and so reducing the size
of the NFAs is of utmost importance. Various language-preserving automata reduction
approaches exist, mainly based on computing (bi)simulation relations on automata states
(cf. Section 3.3.2). The reductions they offer, however, do not satisfy the needs of high-
speed hardware-accelerated NIDSes.

Our answer to the problem, that we propose in this chapter, is approximate reduction of
NFAs with formal guarantees, allowing for a trade-off between the achieved reduction and
the precision of the RE matching. To formalize the intuitive notion of precision, we propose
a novel concept of probabilistic distance of automata. Probabilistic distance captures the
probability that a packet of the input network traffic is incorrectly accepted or rejected
by the approximated NFA. The distance assumes a probabilistic model of the network
traffic. Based on the notion of precision, we propose language-nonpreserving reductions
(i) minimizing the NFA size w.r.t. the given maximum distance from the original NFA, or
(ii) minimizing the distance w.r.t. the given maximum number of NFA states. Since the
exact proposed reductions are computationally demanding, we propose greedy algorithms
utilizing the usual structure of NFAs obtained from REs.

22

Overview of the proposed approach. In the first part we deal with the probabilistic
distance of two NFAs measuring error (precision) of approximate reduction. The probabilis-
tic distance is expressed as the probability of words that belong to the symmetric difference
of the languages of given NFAs.

Having formalized the notion of precision, we specify, as already mentioned, the target
of our reductions as two variants of an optimization problem: (i) minimizing the NFA size
given the maximum allowed error (distance from the original), or (ii) minimizing the error
given the maximum allowed NFA size. Finding such optimal approximations is, however,
computationally hard (PSPACE-complete, the same as precise NFA minimization).

Consequently, we sacrifice the optimality and, motivated by the typical structure of
NFAs that emerge from a set of REs used by NIDSes (a union of many long “tentacles” with
occasional small strongly-connected components), we limit the space of possible reductions
by restricting the set of operations they can apply to the original automaton. Namely,
we consider two reduction operations: (i) collapsing the future of a state into a self-loop
(this reduction over-approximates the language), or (ii) removing states (such a reduction
is under-approximating).

The problem of identifying the optimal sets of states on which these operations should
be applied is still PSPACE-complete. The restricted problem is, however, more amenable
to an approximation by a greedy algorithm. The algorithm applies the reductions state-by-
state in an order determined by a precomputed error labelling of the states. The process
is stopped once the given optimization goal in terms of the size or error is reached. The
labelling is based on the probability of packets that may be accepted through a given state
and hence over-approximates the error that may be caused by applying the reduction at
a given state. As our experiments show, this approach can give us high-quality reductions
while ensuring formal error bounds.

Finally, it turns out that even the pre-computation of the error labelling of the states
is costly (again PSPACE-complete). Therefore, we propose several ways to cheaply over-
approximate it such that the strong error bound guarantees are still preserved. In particular,
we are able to exploit the typical structure of the “union of tentacles” of hardware NFAs
in an algorithm that is exponential in the size of the largest “tentacle” only, which gives us
a method that is indeed much faster in practice.

We have implemented our approach and evaluated it on REs used to classify malicious
traffic in Snort. We obtain quite encouraging experimental results demonstrating that
our approach provides a much better reduction than language-preserving techniques with
an almost negligible error. In particular, our experiments, going down to the level of an
actual implementation of NFAs in FPGAs, confirm that we can squeeze into an FPGA chip
real-life REs encoding malicious traffic, allowing them to be used with a negligible error for
filtering at speeds of 100 Gbps (and even 400 Gbps).

Related work. Hardware acceleration for RE matching at the line rate is an intensively
studied technology that uses general-purpose hardware as well as FPGAs (see Section 3.2).
A lot of works focus on DFA implementation and optimization techniques (see Section 3.2,
paragraph related to DFA-based acceleration). NFAs can be exponentially smaller than
DFAs but need, in the worst case, O(n) memory accesses to process each byte of the
payload where n is the number of states. In most cases, this incurs an unacceptable slow-
down. Several works alleviate this disadvantage of NFAs by exploiting reconfigurability
and fine-grained parallelism of FPGAs, allowing one to process one character per clock

23

cycle. Therefore, FPGAs combined with NFA-based acceleration is suitable for high-speed
networks (see Section 3.2 the part related to NFA-based acceleration).

In [194], which is probably the work closest to ours, the authors consider a set of REs
describing network attacks. They replace a potentially prohibitively large DFA by a tree
of smaller DFAs, an alternative to using NFAs that minimizes the latency occurring in
a non-FPGA-based implementation. The language of every DFA-node in the tree over-
approximates the languages of its children. Packets are filtered through the tree from the
root downwards until they belong to the language of the encountered nodes, and may be
finally accepted at the leaves, or are rejected otherwise. The over-approximating DFAs
are constructed using a similar notion of probability of an occurrence of a state as in our
approach. The main differences from our work are that (i) the approach targets approxi-
mation of DFAs (not NFAs), (ii) the over-approximation is based on a given traffic sample
only (it cannot benefit from a probabilistic model), and (iii) no probabilistic guarantees on
the approximation error are provided.

Language-nonpreserving reduction of DFAs, in particular hyperminimization and the
DFA approximation of [120], was discussed in Section 3.3.3. Neither of these approaches,
however, considers reduction of NFAs nor allows to control the expected error with respect
to the real traffic.

In addition to the metrics discussed in the context of language-nonpreserving reduction
in Section 3.3.3, the following metrics should also be mentioned. The Cesaro-Jaccard dis-
tance studied in [224] is, in spirit, similar to [120] and also does not reflect the probability
of individual words. The edit distance of weighted automata from [213] depends on the
minimum edit distance between pairs of words from the two compared languages, again re-
gardless of their statistical significance. One might also consider using the error metric on
a pair of automata introduced by Angluin in the setting of PAC (probably approximately
correct) learning of DFAs [18], where n words are sampled from a given distribution and
their (non-)acceptance tested in the two automata. If the outputs of both automata agree
on all n words, one can say that with confidence δ the distance between the two automata
is at most ε, where δ and ε can be determined from n. None of these notions is suitable for
our needs.

Although, language-preserving minimization of a given NFA is a PSPACE-complete
problem, there are more feasible (polynomial-time) size reductions of NFAs based on (bi)si-
mulations (but not only), which do not aim for a truly minimal NFA (see Section 3.3.2 for
more details). The practical efficiency of these techniques is, however, often insufficient to
allow them to handle the large NFAs that occur in practice and/or they do not manage to
reduce the NFAs enough. Finally, even a minimal NFA for the given set of REs is often too
big to be implemented in the given FPGA operating on the required speed (as shown even
in our experiments). Our approach is capable of a much better reduction for the price of
a small change of the accepted language.

Chapter outline. This chapter is structured as follows. Section 4.1 contains necessary
definitions used in the rest of the chapter. Section 4.2 deals with probabilistic distance
of two NFAs. Section 4.3 formalizes the proposed approximate reductions and Section 4.4
focuses on a heuristic approach to approximate reduction. Finally, Section 4.5 contains
experimental evaluation and Section 4.6 concludes the chapter.

24

4.1 Probabilistic Automata
In this section, we give definitions used in the rest of the chapter. We assume the definitions
presented in Chapter 2 and we extend them to fit our needs.

Sets, vectors, and matrices. We use 〈a, b〉 to denote the set {x ∈ R | a ≤ x ≤ b}. We
use A to denote a matrix, and A> for its transpose, and I for the identity matrix. We
use the notation [v1, . . . , vn] to denote a row vector of n elements, 1 to denote the all 1’s
(column) vector [1, . . . , 1]> (the dimension of 1 is always clear from the context).

Finite automata. In this chapter we fix an alphabet Σ. Let A = (Q, δ, I, F) be an NFA
over Σ. A is called unambiguous (UFA) if ∀w ∈ L (A) : ∃!qI ∈ I, ρ ∈ Q∗, qF ∈ F : qI

w,ρ
 qF .

The restriction of A to S ⊆ Q is an NFA A|S given as A|S = (S, δ∩(S×Σ×2S), I∩S, F ∩S).
We define the trim operation as trim(A) = A|C where C = {q | ∃qI ∈ I, qF ∈ F : qI
q qF }. For a set of states R ⊆ Q, we use reach(R) to denote the set of states reachable
from R, reach(R) = {r′ | ∃r ∈ R : r r′}.

Probabilistic automata. A (discrete probability) distribution over a countable set X is
a mapping Pr : X → 〈0, 1〉 such that

∑
x∈X Pr(x) = 1. An n-state probabilistic automaton

(PA) over Σ is a triple P = (α,γ, {Δa}a∈Σ) where α ∈ 〈0, 1〉n is a vector of initial weights,
γ ∈ 〈0, 1〉n is a vector of final weights, and for every a ∈ Σ, Δa ∈ 〈0, 1〉n×n is a transition
matrix for symbol a. We abuse notation and use Q[P] to denote the set of states Q[P] =
{1, . . . , n}. Moreover, the following two properties need to hold: (i)

∑{α[i] | i ∈ Q[P]} = 1
(the initial probability is 1) and (ii) for every state i ∈ Q[P] it holds that

∑{Δa[i, j] | j ∈
Q[P], a ∈ Σ}+ γ[i] = 1 (the probability of accepting or leaving a state is 1). We define the
support of P as the NFA supp(P) = (Q[P], δ[P], I[P], F [P]) s.t.

δ[P] = {(i, a, j) |Δa[i, j] > 0}, I[P] = {i | α[i] > 0}, F [P] = {i | γ[i] > 0}.

Let us assume that every PA P is such that supp(P) = trim(supp(P)). For a word w =
a1 . . . ak ∈ Σ∗, we use Δw to denote the matrix Δa1 · · ·Δak . For the empty word ε, we
define Δε = I. It can be easily shown that P represents a distribution over words w ∈ Σ∗

defined as PrP(w) = α> ·Δw ·γ. We call PrP(w) the probability of w in P. Given a language
L ⊆ Σ∗, we define the probability of L in P as PrP(L) =

∑
w∈L PrP(w).

In some of the proofs later, we use the PA PExp defined as PExp =
(
1, [µ], {[µ]a}a∈Σ

)

where µ = 1
|Σ|+1 . PExp models a distribution over the words from Σ∗ using a combination of

an exponential distribution (for selecting the length l of a word) and the uniform distribution
(for selecting symbols in a word of the length l). In particular, the purpose of PExp in the
proofs is to assign every word w ∈ Σ∗ the (non-zero) probability PrPExp

(w) = µ|w|+1; any
other PA assigning non-zero probabilities to all words would work as well.

If conditions (i) and (ii) from the definition of PAs are dropped, we speak about a pseudo-
probabilistic automaton (PPA), which may assign a word from its support a quantity that
is not necessarily in the range 〈0, 1〉, denoted as the significance of the word below. PPAs
may arise during some of our operations performed on PAs. Note that PPAs can be seen
as instantiations of multiplicity or weighted automata [253].

25

4.2 Probabilistic Distance
In this section, we first introduce the key notion of our approach: a probabilistic distance of
a pair of finite automata w.r.t. a given probabilistic automaton that, intuitively, represents
the significance of particular words. We discuss the complexity of computing the proba-
bilistic distance. Finally, we formulate two problems of approximate automata reduction
via probabilistic distance.

We start by defining our notion of a probabilistic distance of two NFAs. Assume NFAs
A1 and A2 and a probabilistic automaton P specifying the distribution PrP : Σ∗ → 〈0, 1〉.
The probabilistic distance dP(A1,A2) between A1 and A2 w.r.t. PrP is defined as

dP(A1,A2) = PrP(L (A1)4L (A2)).

Intuitively, the distance captures the significance of the words accepted by one of the au-
tomata only. We use the distance to drive the reduction process towards automata with
small errors and to assess the quality of the result. (The distance is sometimes called the
symmetric difference semi-metric [94].)

The value of PrP(L (A1)4L (A2)) can be computed as follows. Using the fact that (i)
L14L2 = (L1 \ L2)](L2 \ L1) and (ii) L1 \ L2 = L1 \ (L1 ∩ L2), we get

dP(A1,A2) = PrP(L (A1) \ L (A2)) + PrP(L (A2) \ L (A1))

= PrP(L (A1) \ (L (A1) ∩ L (A2))) + PrP(L (A2) \ (L (A2) ∩ L (A1)))

= PrP(L (A1))+PrP(L (A2))− 2 · PrP(L (A1) ∩ L (A2)).

Hence, the key step is to compute PrP(L (A)) for an NFA A and a PA P. Problems similar
to computing such a probability have been extensively studied in several contexts including
verification of probabilistic systems [280, 26, 39].

In our approach, we apply the method of [39] and compute PrP(L (A)) in the following
way. We first check whether the NFA A is unambiguous. This can be done by using the
product construction for computing the intersection of the NFA A with itself and trimming
the result, formally B = trim(A ∩ A), followed by a check whether there is some state
(p, q) ∈ Q[B] s.t. p 6= q [214]. If A is ambiguous, we either determinize it or disambiguate
it [214], leading to a DFA/UFA A′, respectively.1 Then, we construct the trimmed product
of A′ and P (this can be seen as computing A′ ∩ supp(P) while keeping the probabilities
from P on the edges of the result), yielding a PPA R = (αR,γR, {ΔRa }a∈Σ).2 Intuitively,
R represents not only the words of L (A) but also their probability in P (we give the
formal definition of R inside the proof of Lemma 4.2.2). Now, let Δ =

∑
a∈ΣΔa be the

matrix that expresses, for any p, q ∈ Q[R], the significance of getting from p to q via any
a ∈ Σ. Further, it can be shown (cf. the proof of Lemma 4.2.1) that the matrix Δ∗,
representing the significance of going from p to q via any w ∈ Σ∗, can be computed as
(I −Δ)−1. Then, to get PrP(L (A)), it suffices to take α> ·Δ∗ · γ. Note that, due to the
determinization/disambiguation step, the obtained value indeed is PrP(L (A)) despite R
being a PPA. The following example shows a computation of the probabilistic distance.

Example 4.2.1. Consider NFAs and a PA over Σ = {a, b, c} given in Figure 4.1. To com-
pute the value of dP(A1,A2) we first need to compute the values PrP(L (A1)), PrP(L (A2)),

1In theory, disambiguation can produce smaller automata, but, in our experiments, determinization
proved to work better.

2R is not necessarily a PA since there might be transitions in P that are either removed or copied several
times in the product construction.

26

q0 q1

a

b

c

(a) NFA A1

p0 b

c

(b) NFA A2

r0 r1
b

c

(c) NFA A1 ∩A2

0.21.0

a : 0.3

b : 0.1

c : 0.4

(d) PA P

Figure 4.1: An example of NFAs and a PA over {a, b, c}. Transition probabilities of P are
of the form symbol:probability. The number in a state denotes the accepting probability.

and PrP(L (A1 ∩ A2)). Since automata A1 and A2 are both deterministic, we can use the
procedure described in the previous paragraph.

We first compute the value PrP(L (A1)). The product of A1 and P leads to a PPA
R1 = (α1,γ1, {Δ1

a}a∈Σ) where

Δ1 =
∑

a∈Σ
Δ1
a =

[
0.3 0.1
0 0.4

]
, α1 =

[
1
0

]
, γ1 =

[
0
0.2

]
.

Then the probability of L (A1) can be computed as

PrP(L (A1)) = α
>
1 · (I −Δ1)

−1 · γ1 = [1, 0] ·
[
0.7 −0.1
0 0.6

]−1
·
[
0
0.2

]
=

1

21
.

In a similar way we can compute PrP(L (A2)) =
2
3 and PrP(L (A1 ∩ A2)) =

1
30 . Based

on these values the probabilistic distance of A1 and A2 w.r.t. P is given as dP(A1,A2) =
68
105 ≈ 0.647.

The two lemmas below summarize the complexity of the computation of PrP(L (A)) for
NFAs and UFAs, respectively.

Lemma 4.2.1. Let P be a PA and A an NFA. The problem of computing PrP(L (A)) is
PSPACE-complete.

Proof. The membership in PSPACE can be shown as follows. The computation de-
scribed above corresponds to solving a linear equation system. The system has an ex-
ponential size because of the blowup caused by the determinization/disambiguation of A
required by the product construction. The equation system can, however, be constructed
by a PSPACE transducerMeq . Moreover, as solving linear equation systems can be done
using a polylogarithmic-space transducer MSysLin , one can combine these two transducers
to obtain a PSPACE algorithm. Details of the construction follow:

First, we construct a transducer Meq that, given an NFA A = (QA, δA, IA, FA) and
a PA P = (α,γ, {Δa}a∈Σ) on its input, constructs a system of m = 2|QA| · |Q[P]| linear
equations S(A,P) of m unknowns ξ[R,p] for R ⊆ QA and p ∈ Q[P] representing the product
of A′ and P, where A′ is a deterministic automaton obtained from A, i.e., A′ = det(A).
The system of equations S(A,P) is defined as follows (cf. [39]):

ξ[R,p] =

0 if LA(R) ∩ LP ′(p) = ∅,∑
a∈Σ

∑
p′∈Q[P]

(Δa[p, p
′] · ξ[δA(R,a),p′]) + γ[p] if R ∩ FA 6= ∅,

∑
a∈Σ

∑
p′∈Q[P]

Δa[p, p
′] · ξ[δA(R,a),p′] otherwise,

27

such that P ′ = supp(P) and δA(R, a) =
⋃
r∈R δ(r, a). The test LA(R) ∩ LP ′(p) = ∅ can be

performed by checking ∃r ∈ R : LA(r)∩LP ′(p) = ∅, which can be done in polynomial time.
It holds that PrP(L (A)) =

∑
p∈Q[P]α[p] ·ξ[IA,p]. Although the size of S(A,P) (which is

the output ofMeq) is exponential in the size of the input ofMeq , the internal configuration
of Meq only needs to be of polynomial size, i.e., Meq works in PSPACE. Note that the
size of each equation is at most polynomial.

Given a system S of m linear equations with m unknowns, solving S can be done in
the time O(log2m) using O(mk) processors for a fixed k [87, Corollary 2] (i.e., it is in the
class NC).3 According to [114, Lemma 1b], an O(log2m) time-bounded parallel machine
can be simulated by an O(log4m) space-bounded Turing machine. Therefore, there exists
an O(log4m) space-bounded Turing machine MSysLin that solves a system of m linear
equations with m unknowns. As a consequence,MSysLin can solve S(A,P) using the space

O(log4(2|QA| · |Q[P]|)) = O(log4 2|QA| + log4 |Q[P]|))
= O(|QA|4 + log4 |Q[P]|)).

The missing part is how to combine Meq and MSysLin to avoid using the exponential-
size output tape of Meq . For this, we use the following standard technique for combining
reductions [223, Proposition 8.2].

We take turns in simulating MSysLin and Meq . We start with simulating MSysLin .
When MSysLin moves its head right, we pause it and simulate Meq until it outputs the
corresponding bit, which is fed into the input ofMSysLin . Then we pauseMeq and resume
the run of MSysLin . On the other hand, when MSysLin moves its head left (from the k-th
position on the tape), we pause it, restart Meq from its initial state, and simulate it until
it outputs the (k− 1)-st bit of its output tape, and then pauseMeq and return the control
toMSysLin . In order to keep track of the position k of the head ofMSysLin on its tape, we
use a binary counter.

The internal configuration of both Meq and MSysLin is of a polynomial size and the
overhead of keeping track of the position of the head ofMSysLin also requires only polyno-
mial space. Therefore, the whole transducer runs in a polynomially-bounded space.

The PSPACE-hardness is obtained by a reduction from the (PSPACE-complete)
universality of NFAs: using the PA PExp defined in Section 4.1, which assigns every word
a non-zero probability. it holds that

L (A) = Σ∗ iff PrPExp
(L (A)) = 1.

Lemma 4.2.2. Let P be a PA and A a UFA. The problem of computing PrP(L (A)) is in
PTIME.

Proof. We modify the proof from [39] into our setting. First, we give a formal definition of
the product of a PA P = (α,γ, {Δa}a∈Σ) and an NFA A = (Q, δ, I, F) as the (|Q[P]| · |Q|)-
state PPA R = (αR,γR, {ΔRa }a∈Σ) where4

αR[(qP , qA)] = αR[qP] · |{qA} ∩ I|,
γR[(qP , qA)] = γR[qP] · |{qA} ∩ F |,

ΔRa [(qP , qA), (q
′
P , q

′
A)] = Δa[qP , q

′
P] · |{q′A} ∩ δ(qA, a)|.

3We use log k to denote the base-2 logarithm of k.
4We assume an implicit bijection between states of the product R and {1, . . . , |Q[R]|}.

28

Note that R is not necessarily a PA any more because for w ∈ Σ∗ such that PrP(w) > 0,
(i) if w /∈ L (A), then PrR(w) = 0 and (ii) if w ∈ L (A) and A can accept w using n different
runs, then PrR(w) = n·PrP(w). As a consequence, the probabilities of all words from Σ∗ are
no longer guaranteed to add up to 1. If A is unambiguous, the second issue is avoided and
R preserves the probabilities of words from L (A), i.e., PrR(w) = PrP(w) for all w ∈ L (A),
so R can be seen as the restriction of PrP to L (A). In the following, we assume R is
trimmed.

In order to compute PrP(L (A)), we construct a matrix E defined as E =
∑

a∈ΣΔRa .
Because R is trimmed, the spectral radius of E, denoted as ρ(E), is less than one, i.e.,
ρ(E) < 1 (the proof of this fact can be found, e.g., in [39]). Intuitively, ρ(E) < 1 holds
because we trimmed the redundant states from the product of P and A. We further use
the following standard result in linear algebra: if ρ(E) < 1, then (i) the matrix I − E
is invertible and (ii) the sum of powers of E, denoted as E∗, can be computed as E∗ =∑∞

i=0E
i = (I−E)−1 [146]. Moreover, note that matrix inversion can be done in polynomial

time [258].
E∗ represents the reachability between nodes of R, i.e., E∗[r, r′] is the sum of signifi-

cances of all (possibly infinitely many) paths from r to r′ in R. When related to P and A,
the matrix E∗ represents the reachability in P w.r.t. L (A), i.e.,

E∗[(qP , qA), (q
′
P , q

′
A)] =

∑{
Δw[qP , q

′
P]
∣∣∣ qA w

 q′A, w ∈ Σ∗
}
. (4.1)

We prove Equation (4.1) using the following reasoning. First, we show that

En[(qP , qA), (q
′
P , q

′
A)] =

∑{
Δw[qP , q

′
P]
∣∣∣ qA w

 q′A, w ∈ Σn
}
, (4.2)

i.e., En represents the reachability in P w.r.t. L (A) for words of length n. We prove
Equation (4.2) by induction on n: For n = 0, the equation follows from the fact that
E0 = I. For n = 1, the equation follows directly from the definition of R and Δ. Next,
suppose that Equation (4.2) holds for n > 1; we show that it holds also for n+1. We start
with the following reasoning:

En+1[(qP , qA), (q
′
P , q

′
A)] = (EnE)[(qP , qA), (q

′
P , q

′
A)]

=
∑{

En[(qP , qA), (q
′′
P , q

′′
A)] ·E[(q′′P , q

′′
A), (q

′
P , q

′
A)]

∣∣∣ (q′′P , q′′A) ∈ Q[R]
}
.

The last line is obtained via the definition of matrix multiplication. Further, using the
induction hypothesis, we get

29

En+1[(qP , qA), (q
′
P , q

′
A)]

=
∑{∑{

Δw[qP , q
′′
P]
∣∣∣ qA w

 q′′A, w ∈ Σn
}
·
∑{

Δa[q
′′
P , q

′
P]
∣∣∣ q′′A

a−→ q′A, a ∈ Σ
} ∣∣∣∣∣

(q′′P , q
′′
A) ∈ Q[R]

}

=
∑{∑{

Δw[qP , q
′′
P] ·Δa[q

′′
P , q

′
P]
∣∣∣ qA w

 q′′A,

q′′A
a−→ q′A, a ∈ Σ, w ∈ Σn

} ∣∣∣∣∣ (q
′′
P , q

′′
A) ∈ Q[R]

}

=
∑{

Δw′ [qP , q
′
P]
∣∣∣ qA w′

 q′A, w
′ ∈ Σn+1

}
.

Since E∗ =
∑∞

i=0E
i, Equation (4.1) follows. Using the matrix E∗, it remains to compute

PrP(L (A)) as

PrP(L (A)) = α>R ·E∗ · γR.

4.3 Automata Reduction using Probabilistic Distance
We now exploit the probabilistic distance introduced above to formulate the task of ap-
proximate reduction of NFAs as two optimization problems. Given an NFA A and a PA P
specifying the distribution PrP : Σ∗ → 〈0, 1〉, we define

• size-driven reduction: for n ∈ ω, find an NFA A′ such that |A′| ≤ n and the
distance dP(A,A′) is minimal,

• error-driven reduction: for ε ∈ 〈0, 1〉, find an NFA A′ such that dP(A,A′) ≤ ε and
the size |A′| is minimal.

The following lemma shows that the natural decision problem underlying both of the above
optimization problems is PSPACE-complete, which matches the complexity of computing
the probabilistic distance as well as that of the exact reduction of NFAs [159].

Lemma 4.3.1. Consider an NFA A, a PA P, a bound on the number of states n ∈ ω,
and an error bound ε ∈ 〈0, 1〉. It is PSPACE-complete to determine whether there exists
an NFA A′ with n states s.t. dP(A,A′) ≤ ε.

Proof. Membership in PSPACE: We non-deterministically generate an automaton A′ with
n states and test (in PSPACE, as shown in Lemma 4.2.1) that dP(A,A′) ≤ ε. This shows
the problem is in NPSPACE = PSPACE.

PSPACE-hardness: We use a reduction from the problem of checking universality
of an NFA A = (Q, δ, I, F) over Σ, i.e., from checking whether L (A) = Σ∗, which is
PSPACE-complete. First, for a reason that will become clear later, we test if A accepts
all words over Σ of length 0 and 1, which can be done in polynomial time. It holds
that L (A) = Σ∗ iff there is a 1-state NFA A′ s.t. dPExp

(A,A′) ≤ 0 (PExp is defined

30

Algorithm 1: A greedy size-driven reduction
Input : NFA A = (Q, δ, I, F), PA P, n ≥ 1
Output: NFA A′, ε ∈ R s.t. |A′| ≤ n and dP(A,A′) ≤ ε

1 V := ∅;
2 for q ∈ Q in the order �A,label(A,P) do
3 V := V ∪ {q}; A′ := reduce(A, V);
4 if |A′| ≤ n then break ;
5 return A′, ε = error(A, V, label(A,P));

in Section 4.1). The implication from left to right is clear: A′ can be constructed as
A′ = ({q}, {q a−→ q | a ∈ Σ}, {q}, {q})). To show the reverse implication, we note that we
have tested that {ε} ∪ Σ ⊆ L (A). Since the probability of any word from {ε} ∪ Σ ⊆ L (A)
in PExp is non-zero, the only 1-state NFA that processes those words with zero error is
the NFA A′ defined above. Because the language of A′ is L (A′) = Σ∗, it holds that
dPExp

(A,A′) ≤ 0 iff L (A) = Σ∗.

The notions defined above do not distinguish between introducing a false positive (A′ ac-
cepts a word w /∈ L (A)) or a false negative (A′ rejects a word w ∈ L (A)) answers. To
this end, we define over-approximating and under-approximating reductions as reductions
for which the conditions L (A) ⊆ L (A′) and L (A) ⊇ L (A′) hold.

A naïve solution to the reductions would enumerate all NFAs A′ of sizes from 0 up
to k (resp. |A|), for each of them compute dP(A,A′), and take an automaton with the
smallest probabilistic distance (resp. a smallest one satisfying the restriction on dP(A,A′)).
Obviously, this approach is computationally infeasible.

4.4 A Heuristic Approach to Approximate Reduction
In this section, we introduce two techniques for approximate reduction of NFAs that avoid
the need to iterate over all automata of a certain size. The first approach is based on under-
approximating the automata by removing states—we call it the pruning reduction—while
the second approach is based on over-approximating the automata by adding self-loops to
states and removing redundant states—we call it the self-loop reduction. Finding an opti-
mal automaton using these reductions is also PSPACE-complete, but more amenable to
heuristics like greedy algorithms. We start with introducing two high-level greedy algo-
rithms, one for the size- and one for the error-driven reduction, and follow by showing their
instantiations for the pruning and the self-loop reduction. A crucial role in the algorithms
is played by a function that labels states of the automata by an estimate of the error that
will be caused when some of the reductions is applied at a given state.

4.4.1 A General Algorithm for Size-Driven Reduction

Algorithm 1 shows a general greedy method for performing the size-driven reduction. In
order to use the same high-level algorithm in both directions of reduction (over/under-
approximating), it is parameterized with the functions: label , reduce, and error . The real
intricacy of the procedure is hidden inside these three functions. Intuitively, label(A,P)
assigns every state of an NFA A an approximation of the error that will be caused w.r.t. the
PA P when a reduction is applied at this state, while the purpose of reduce(A, V) is to

31

create a new NFA A′ obtained from A by introducing some error at states from V .5 Further,
error(A, V, label(A,P)) estimates the error introduced by the application of reduce(A, V),
possibly in a more precise (and costly) way than by just summing the concerned error
labels: Such a computation is possible outside of the main computation loop. We show
instantiations of these functions later, when discussing the reductions used. Moreover, the
algorithm is also parameterized with a total order �A,label(A,P) that defines which states of
A are processed first and which are processed later. The ordering may take into account
the precomputed labelling. The algorithm accepts an NFA A, a PA P, and n ∈ ω and
outputs a pair consisting of an NFA A′ of the size |A′| ≤ n and an error bound ε such that
dP(A,A′) ≤ ε.

The main idea of the algorithm is that it creates a set V of states where an error is to
be introduced. V is constructed by starting from an empty set and adding states to it in
the order given by �A,label(A,P), until the size of the result of reduce(A, V) has reached the
desired bound n (in our setting, reduce is always antitone, i.e., for V ⊆ V ′, it holds that
|reduce(A, V)| ≥ |reduce(A, V ′)|). We now define the necessary condition for label , reduce,
and error that makes Algorithm 1 correct.

Condition C1 holds if for every NFA A, PA P, and a set V ⊆ Q[A], we have that

(a) error(A, V, label(A,P)) ≥ dP(A, reduce(A, V)),

(b) |reduce(A, Q[A])| ≤ 1, and

(c) reduce(A, ∅) = A.

C1(a) ensures that the error computed by the reduction algorithm indeed over-appro-
ximates the exact probabilistic distance, C1(b) is a boundary condition for the case when
the reduction is applied at every state of A, and C1(c) ensures that when no error is to be
introduced at any state, we obtain the original automaton.

Lemma 4.4.1. Algorithm 1 is correct if C1 holds.

Proof. Follows straightforwardly from Condition C1.

4.4.2 A General Algorithm for Error-Driven Reduction

In Algorithm 2, we provide a high-level method of computing the error-driven reduc-
tion. The algorithm is in many ways similar to Algorithm 1; it also computes a set of
states V where an error is to be introduced, but an important difference is that we compute
an approximation of the error in each step and only add q to V if it does not raise the
error over the threshold ε. Note that the error does not need to be monotone, so it may
be advantageous to traverse all states from Q and not terminate as soon as the threshold
is reached. The correctness of Algorithm 2 also depends on C1.

Lemma 4.4.2. Algorithm 2 is correct if C1 holds.

Proof. Follows straightforwardly from Condition C1.

5We emphasize that this does not mean that states from V will be simply removed from A—the performed
operation depends on the particular reduction.

32

Algorithm 2: A greedy error-driven reduction.
Input : NFA A = (Q, δ, I, F), PA P, ε ∈ 〈0, 1〉
Output: NFA A′ s.t. dP(A,A′) ≤ ε

1 ` := label(A,P);
2 V := ∅;
3 for q ∈ Q in the order �A,label(A,P) do
4 e := error(A, V ∪ {q}, `);
5 if e ≤ ε then V := V ∪ {q} ;
6 return A′ = reduce(A, V);

4.4.3 Pruning Reduction

The pruning reduction is based on identifying a set of states to be removed from an NFA A,
under-approximating the language of A. In particular, for A = (Q, δ, I, F), the pruning
reduction finds a set R ⊆ Q and restricts A to Q\R, followed by removing useless states, to
construct a reduced automaton A′ = trim(A|Q\R). Note that the natural decision problem
corresponding to this reduction is also PSPACE-complete.

Lemma 4.4.3. Consider an NFA A, a PA P, a bound on the number of states n ∈ ω,
and an error bound ε ∈ 〈0, 1〉. It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that dP(A,A|R) ≤ ε.

Proof. Membership in PSPACE: We non-deterministically generate a subset R of Q[A]
having n states and test (in PSPACE, as shown in Lemma 4.2.1) that dP(A,A|R) ≤ ε.
This shows the problem is in NPSPACE = PSPACE.

PSPACE-hardness: We use a reduction from the PSPACE-complete problem of
checking universality of an NFA A = (Q, δ, I, F) over Σ. Consider a symbol x /∈ Σ.
Let us construct an NFA A′ over Σ ∪ {x} s.t. L (A′) = x∗.L (A). A′ is constructed by
adding a fresh state qnew to A that can loop over x and make a transition to any initial
state of A over x: A′ = (Q]{qnew}, δ ∪ {qnew x−→ q | q ∈ I ∪ {qnew}}, I ∪ {qnew}, F).
We set n = |A′| + 1. Further, we also construct an (n + 1)-state NFA B accepting the
language xn.Σ∗ defined as B = (QB, δB, {q1}, {qn+1}) where QB = {q1, . . . , qn+1} and
δB = {qi x−→ qi+1 | 1 ≤ i ≤ n} ∪ {qn+1

a−→ qn+1 | a ∈ Σ}. Moreover, let P be a PA
representing a distribution PrP that is defined for each w ∈ (Σ ∪ {x})∗ as

PrP(w) =

{
µ|w

′|+1 for w = xn.w′, w′ ∈ Σ∗, and µ = 1
|Σ|+1 ,

0 otherwise.
(4.3)

Note that PrP(x
n.w) = PrPExp

(w) for w ∈ Σ∗, and PrP(u) = 0 for u /∈ xn.Σ∗ (P can be
easily constructed from PExp). Also note that B accepts exactly those words w such that
PrP(w) 6= 0 and that PrP(L (B)) = 1. Using the automata defined above, we construct an
NFA C = A′]B. NFA C has 2n states, the language of C is L (C) = x∗.L (A) ∪ xn.Σ∗ and
its probability is PrP(L (C)) = 1.

The important property of C is that if there exists a set R ⊆ Q[C] of the size |R| = n
s.t. dP(C, C|R) ≤ 0, then L (A) = Σ∗. The property holds because since |Q[A′]| = n − 1,
when we remove n states from C, at least one state from Q[B] is removed, making the
whole subautomaton of C corresponding to B useless, and, therefore, L

(
C|R
)
⊆ x∗.L (A).

Because dP(C, C|R) ≤ 0, we know that PrP(L
(
C|R
)
) = 1, so xn.Σ∗ ⊆ x∗.L (A) = L

(
C|R
)

33

and, therefore, L (A) = Σ∗. For the other direction, if L (A) = Σ∗, then there exists a set
R ⊆ Q[A′] ∪Q[B] of the size |R| = n s.t. dP(C, C|R) ≤ 0 (in particular, R can be such that
R ⊆ Q[B]).

Although Lemma 4.4.3 shows that the pruning reduction is as hard as a general re-
duction (cf. Lemma 4.3.1), the pruning reduction is more amenable to using heuristics like
the greedy algorithms from Section 4.4.1 and Section 4.4.2. We instantiate reduce, error ,
and label in these high-level algorithms in the following way (the subscript p stands for
pruning):

reducep(A, V) = trim(A|Q\V),
errorp(A, V, `) = min

V ′∈bV cp

∑{
`(q) | q ∈ V ′

}
,

where bV cp is defined in the rest of this paragraph: Because of the use of trim in reducep,
for a pair of sets V, V ′ s.t. V ⊂ V ′, it holds that reducep(A, V) may, in general, yield the
same automaton as reducep(A, V ′). Therefore, in order to obtain a tight approximation, we
wish to compute the least error that is obtained when removing the states in V . We define
a partial order vp on 2Q as V1 vp V2 iff reducep(A, V1) = reducep(A, V2) and V1 ⊆ V2, and
use bV cp to denote the set of minimal elements of the set of elements that are smaller than V
(w.r.t. vp). The value of the approximation errorp(A, V, `) is therefore the minimum of the
sum of errors over all sets from bV cp.

Note that the size of bV cp can again be exponential, and thus we employ a greedy ap-
proach for guessing an optimal V ′. Clearly, this cannot affect the soundness of the algorithm,
but only decreases the precision of the bound on the distance. Our experiments indicate
that for automata appearing in NIDSes, this simplification has typically only a negligible
impact on the precision of the bounds.

For computing the state labelling, we provide the following three functions, which differ
in the precision they provide and the difficulty of their computation (naturally, more precise
labellings are harder to compute): label1p, label

2
p, and label3p. Given an NFA A and a PA P,

they generate the labellings `1p, `2p, and `3p, respectively, defined as

`1p(q) =
∑{

PrP(L[A(q′))
∣∣∣ q′ ∈ reach({q}) ∩ F

}
,

`2p(q) = PrP

(
L[A(F ∩ reach(q))

)
,

`3p(q) = PrP

(
L[A(q).LA(q)

)
.

A state label `(q) approximates the error of the words removed from L (A) when q is
removed. More concretely, `1p(q) is a rough estimate saying that the error can be bounded
by the sum of probabilities of the banguages of all final states reachable from q (in the
worst case, all those final states might become unreachable). Note that `1p(q) (i) counts
the error of a word accepted in two different final states of reach(q) twice and (ii) it also
considers words that are accepted in some final state in reach(q) without going through q.
The labelling `2p deals with (i) by computing the total probability of the banguage of the
set of all final states reachable from q, and the labelling `3p in addition also deals with (ii)
by only considering words that traverse through q (they can, however, be accepted in some
final state not in reach(q) by a run completely disjoint from q and reach(q)∩ F , so even `3p
can still be imprecise). Note that if A is unambiguous, then `1p = `2p.

Each state labelling is given as the probability (or the sum of probabilities in the case
of `1p) of the language related to q. Therefore, when computing the particular label of

34

q0

q1 q2

q3

q4

q5

a

a

a

b

a

b

a

a

b

(a) NFA A

0.31.0

a : 0.4

b : 0.3

(b) PA P

q0 q1 q2
a

a

b

a

(c) NFA A′

Figure 4.2: An example of an NFA A and a PA P over {a, b} as an input for the pruning
reduction with a resulting NFA A′.

q, we first modify A to obtain A′ accepting the language related to the labelling. Then,
we compute the value of PrP(L (A′)) using the algorithm from Section 4.2. Recall that
this step is in general costly, due to the determinization/disambiguation of A′. The key
property of the labelling computation resides in the fact that if A is composed of several
disjoint sub-automata, the automaton A′ is typically much smaller than A and thus the
computation of the label is considerably less demanding. Since the automata appearing in
RE matching for NIDS are composed of the union of “tentacles”, the particular A′s are very
small, which enables an efficient component-wise computation of the labels. The following
example shows the pruning reduction of a simple NFA.

Example 4.4.1. Consider NFA A and PA P from Figures 4.2a and 4.2b, respectively.
State labels are given as

q0 q1 q2 q3 q4 q5
`1p 0.2285 0.1 0.1 0.1285 0.06 0.0685
`2p 0.1805 0.1 0.1 0.1285 0.06 0.0685
`3p 0.1805 0.1 0.1 0.1285 0.06 0.0685

Let us look more deeply for instance on labels of q0. The value of `1p(q0) is given by `1p(q0) =
PrP(L[A(q2))+PrP(L[A(q4))+PrP(L[A(q5)) ≈ 0.1+0.06+0.0685 = 0.2285. Since L[A(q5)∩
L[A(q2) = {aa}, we have `2p(q0) = `3p(q0) = `1p(q0)− PrP({aa}) ≈ 0.1805.

Based on the state labels, the pruning reduction of A with the error bound ε = 0.15
and the state order given by values of `3p leads to the NFA in Figure 4.2c. The set V in
Algorithm 2 after the for loop contains states V = {q3, q4, q5} with the corresponding error
estimation errorp(A, V, `1p) = 0.1285 (in this case a choice of a state label does not affect
the result). The part of A corresponding to states V was removed because it is less probable
to reach a final state in this part than in the part corresponding to states {q0, q1, q2}.

The following lemma states the correctness of using the pruning reduction as an instan-
tiation of Algorithms 1 and 2 and also the relation among `1p, `2p, and `3p.

Lemma 4.4.4. For every x ∈ {1, 2, 3}, the functions reducep, errorp, and labelxp satisfy C1.
Moreover, consider an NFA A, a PA P, and let `xp = labelxp(A,P) for x ∈ {1, 2, 3}. Then,
for each q ∈ Q[A], we have `1p(q) ≥ `2p(q) ≥ `3p(q).

Proof. We start by proving the inequalities `1p(q) ≥ `2p(q) ≥ `3p(q) for each q ∈ Q[A], which
will then help us prove the first part of the lemma. The first inequality follows from the
fact that if the banguages of reachable final states are not disjoint, in the case of `1p, we may

35

sum probabilities of the same words multiple times. The second inequality follows from the
inclusion L[A(q).LA(q) ⊆ L[A(F ∩ reach(q)).

Second, we prove that the functions reducep, errorp, and labelxp satisfy the properties
of C1:

• C1(a): In order to show the inequality

errorp(A, V, labelxp(A,P)) ≥ dP(A, reducep(A, V)),

we prove it for `3p = label3p(A,P); the rest follows from `1p(q) ≥ `2p(q) ≥ `3p(q), which is
proved above.
Consider some set of states V ⊆ Q[A] and a set V ′ ∈ bV cp s.t. for any V ′′ ∈ bV cp, it
holds that

∑{`3p(q) | q ∈ V ′} ≤
∑{`3p(q) | q ∈ V ′′}. We have

L (A) 4L (reducep(A, V)) = L (A)4L
(
reducep(A, V ′)

)
Hdef. of vpI

= L (A) \ L
(
reducep(A, V ′)

)
HL (A) ⊇ L (reducep(A, V ′))I

⊆
⋃

q∈V ′
L[A(q).LA(q). Hdef. of reducepI

(4.4)
Finally, using (4.4), we obtain

dP(A, reducep(A, V)) = PrP(L (A)4L
(
reducep(A, V ′)

)
) Hdef. of dPI

≤
∑

q∈V ′
PrP(L[A(q).LA(q)) H(4.4)I

=
∑
{`3p(q) | q ∈ V ′} Hdef. of `3pI

= min
V ′′∈bV cp

∑
{`3p(q) | q ∈ V ′′} Hdef. of V ′I

= errorp(A, V, `3p). Hdef. of errorpI

• C1(b): |reducep(A, Q[A])| ≤ 1 because

|reducep(A, Q[A])| = |trim(A|∅)| = 0.

• C1(c): reducep(A, ∅) = A since

reducep(A, ∅) = trim(A|Q[A]) = A

(we assume that A is trimmed at the input).

4.4.4 Self-loop Reduction

The main idea of the self-loop reduction is to over-approximate the language of A by adding
self-loops over every symbol at selected states. This makes some states of A redundant,
allowing them to be removed without introducing any more error. Given an NFA A =
(Q, δ, I, F), the self-loop reduction searches for a set of states R ⊆ Q, which will have self-
loops added, and removes other transitions leading out of these states, making some states
unreachable. The unreachable states are then removed.

Formally, let sl(A, R) be the NFA (Q∪{s}, δ′, I, F ∪{s}) where s /∈ Q and the transition
function δ′ is defined such that δ′(s, a) = {s} and, for all states p ∈ Q and symbols a ∈ Σ,

36

δ′(p, a) = (δ(p, a)\R)∪{s} if δ(p, a)∩R 6= ∅ and δ′(p, a) = δ(p, a) otherwise. Similarly to the
pruning reduction, the natural decision problem corresponding to the self-loop reduction is
also PSPACE-complete.

Lemma 4.4.5. Consider an NFA A, a PA P, a bound on the number of states n ∈ ω,
and an error bound ε ∈ 〈0, 1〉. It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that dP(A, sl(A, R)) ≤ ε.

Proof. Membership in PSPACE can be proved in the same way as we did in the proof of
Lemma 4.4.3.

PSPACE-hardness: We reduce from the PSPACE-complete problem of checking uni-
versality of an NFA A = (Q, δ, I, F). First, we check whether I[A] 6= ∅. We have
that L (A) = Σ∗ iff there exists a set of states R ⊆ Q of the size |R| = |Q| such that
dPExp

(A, sl(A, R)) ≤ 0 (note that this means that a self-loop is added to every state
of A).

The required functions in the error- and size-driven reduction algorithms are instantiated
in the following way (the subscript sl stands for self-loop):

reducesl (A, V) = trim(sl(A, V)),

error sl (A, V, `) =
∑
{`(q) | q ∈ min (bV csl)} ,

where bV csl is defined in a similar manner as bV cp in the previous section (using a partial
order vsl defined similarly to vp; the difference is that in this case, the order vsl has
a single minimal element, though).

The functions label1sl , label
2
sl , and label3sl compute the state labellings `1sl , `2sl , and `3sl for

an NFA A and a PA P, which are defined as follows:

`1sl (q) = weightP(L[A(q)),
`2sl (q) = PrP

(
L[A(q).Σ∗

)
,

`3sl (q) = `2sl (q)− PrP

(
L[A(q).LA(q)

)
.

In the definitions above, the function weightP(w) for a PA P = (α,γ, {Δa}a∈Σ) and
a word w ∈ Σ∗ is defined as weightP(w) = α> · Δw · 1 (i.e., similarly as PrP(w) but
with the final weights γ discarded), and weightP(L) for L ⊆ Σ∗ is defined as weightP(L) =∑

w∈L weightP(w).
Intuitively, the state labelling `1sl (q) computes the probability that q is reached from

an initial state, so if q is pumped up with all possible word endings, this is the maximum
possible error introduced by the added word endings. This has the following sources of
imprecision: (i) the probability of some words may be included twice, e.g., when L[A(q) =
{a, ab}, the probabilities of all words from {ab}.Σ∗ are included twice in `1sl (q) because
{ab}.Σ∗ ⊆ {a}.Σ∗, and (ii) `1sl (q) can also contain probabilities of words already accepted
on a run traversing q. The state labelling `2sl deals with (i) by considering the probability
of the language L[A(q).Σ∗, and `3sl deals also with (ii) by subtracting from the result of `2sl
the probabilities of the words that pass through q and are accepted.

Example 4.4.2. Consider NFA A and PA P from Figures 4.2a and 4.2b, respectively.
State labels are given as

37

q0

q1 q2

q3

a

a

a

b

Σ

Σ

Figure 4.3: A resulting NFA after the self-loop reduction.

q0 q1 q2 q3 q4 q5
`1sl 1 0.5 0.33 0.4 0.2 0.2285
`2sl 1 0.4 0.16 0.4 0.12 0.16
`3sl 0.8195 0.3 0.06 0.2715 0.06 0.0915

Let us look more profoundly for instance on labels of q1. The value of `1sl (q1) is given by
`1sl (q1) = weightP(L[A(q1)) = 0.5. The value of `2sl (q1) is given by `2sl (q1) = PrP

(
L[A(q1).Σ∗

)
=

PrP (a.Σ
∗) = 0.4. Finally, `3sl (q1) = 0.4− PrP

(
L[A(q1).LA(q1)

)
= 0.3.

Based on the state labels `3sl , the self-loop reduction of A with the size bound n = 4
and the state order given by values of `3sl leads to the NFA in Figure 4.3. The set V
in Algorithm 1 after the for loop contains states V = {q2, q3, q4, q5} with the corresponding
error estimation error sl (A, V, `3sl) = 0.3315. Note that this automaton can be further reduced
by language-preserving reductions.

The computation of the state labellings for the self-loop reduction is done in a similar
way as the computation of the state labellings for the pruning reduction (cf. Section 4.4.3).
For a computation of weightP(L) one can use the same algorithm as for PrP(L), only the
final vector for PA P is set to 1. The correctness of Algorithms 1 and 2 when instantiated
using the self-loop reduction is stated in the following lemma.
Lemma 4.4.6. For every x ∈ {1, 2, 3}, the functions reducesl , error sl , and labelxsl satisfy
C1. Moreover, consider an NFA A, a PA P, and let `xsl = labelxsl (A,P) for x ∈ {1, 2, 3}.
Then, for each q ∈ Q[A], we have `1sl (q) ≥ `2sl (q) ≥ `3sl (q).
Proof. First, we prove the inequalities `1sl (q) ≥ `2sl (q) ≥ `3sl (q) for each q ∈ Q[A], which we
then use to prove the first part of the lemma. We start with the equality weightP(w) =
PrP(w.Σ

∗), which follows from the fact that for each state p of P the sum of probabilities
of all words, when considering p as the only initial state of P, is 1. Then, we obtain the
equality ∑

w∈L[A(q)

weightP(w) =
∑

w∈L[A(q)

PrP(w.Σ
∗),

which, in turn, implies

`1sl (q) = weightP(L[A(q)) =
∑

w∈L[A(q)

PrP (w.Σ
∗) ≥ PrP

(
L[A(q).Σ∗

)
= `2sl (q). (4.5)

For example, for L[A(q) = {w,wa} where w ∈ Σ∗ and a ∈ Σ, we have

weightP(L[A(q)) = weightP({w,wa}) = weightP(w) + weightP(wa)

= PrP(w.Σ
∗) + PrP(wa.Σ

∗),
(4.6)

while
PrP

(
L[A(q).Σ∗

)
= PrP ({w,wa}.Σ∗) = PrP (w.Σ

∗) .

38

The inequality `2sl ≥ `3sl holds trivially.
Second, we prove that the functions reducesl , error sl , and labelxsl satisfy the properties

of C1:

• C1(a): To show that error sl (A, V, labelxsl (A,P)) ≥ dP(A, reducesl (A, V)), we prove
that the inequality holds for `3sl = label3sl (A,P); the rest follows from `1sl (q) ≥ `2sl (q) ≥
`3sl (q) proved above.
Consider some set of states V ⊆ Q[A] and the set V ′ = min(bV csl). We can estimate
the symmetric difference of the languages of the original and the reduced automaton
as

L (A)4L (reducesl (A, V))

= L (A)4L
(
reducesl (A, V ′)

)
Hdef. of vslI

= L
(
reducesl (A, V ′)

)
\ L (A) HL (A) ⊆ L (reducesl (A, V ′))I

⊆
⋃

q∈V ′
L[A(q).Σ∗ \

⋃

q∈V ′
L[A(q).LA(q). Hdef. of reduceslI

(4.7)

The last inclusion holds because sl(A, V) adds self-loops to the states in V , so the
newly accepted words are for sure those that traverse through V , and they are for
sure not those that could be accepted by going through V before the reduction (but
they could be accepted without touching V , hence the inclusion). We can estimate
the probabilistic distance of A and reducesl (A, V) as

dP(A,reducesl (A, V))

≤ PrP

(⋃

q∈V ′
L[A(q).Σ∗ \

⋃

q∈V ′
L[A(q).LA(q)

)
H(4.7)I

≤ PrP

(⋃

q∈V ′

(
L[A(q).Σ∗ \ L[A(q).LA(q)

))

Hproperties of union and set differenceI
≤
∑

q∈V ′
PrP

(
L[A(q).Σ∗ \ L[A(q).LA(q)

)
Hunion boundI

=
∑

q∈V ′

(
PrP

(
L[A(q).Σ∗

)
− PrP

(
L[A(q).LA(q)

))

Hprop. of Pr and the fact that L[A(q).LA(q) ⊆ L[A(q).Σ∗I
=
∑
{`3sl (q) | q ∈ min(bV csl)} Hdef. of `3sl and V ′I

= error sl (A, V, `3sl).

• C1(b): |reducesl (A, Q[A])| ≤ 1 because, from the definition, |reducesl (A, Q[A])| =
|trim(sl(A, Q[A]))| ≤ 1.

• C1(c): reducesl (A, ∅) = A since

reducesl (A, ∅) = trim(sl(A, ∅)) = A

(we assume that A is trimmed at the input).

39

4.5 Experimental Evaluation
We have implemented our approach in a Python prototype named Appreal (APProximate
REduction of Automata and Languages)6 and evaluated it on the use case of network in-
trusion detection using Snort [269], a popular open source NIDS. The version of Appreal
used for the evaluation in this chapter is available as an artifact [282] for the TACAS’18
artifact virtual machine [136].

4.5.1 Network Traffic Model

The reduction we describe in this chapter is driven by a probabilistic model representing
a distribution over the words from Σ∗, and the formal guarantees are also w.r.t. this model.
We use learning to obtain a model of network traffic over the 8-bit ASCII alphabet at
a given network point. Our model is created from several gigabytes of network traffic from
a measuring point of the CESNET Internet provider connected to a 100 Gbps backbone link
(unfortunately, we cannot provide the traffic dump since it may contain sensitive data).

Learning a PA representing the network traffic faithfully is hard. The PA cannot
be too specific—although the number of different packets that can occur is finite, it is
still extremely large (a conservative estimate assuming the most common scenario Ether-
net/IPv4/TCP would still yield a number over 210,000). If we assigned non-zero probabilities
only to the packets from the dump (which are less than 220), the obtained model would
completely ignore virtually all packets that might appear on the network, and, moreover,
the model would also be very large (millions of states), making it difficult to use in our
algorithms. A generalization of the obtained traffic is therefore needed.

A natural solution is to exploit results from the area of PA learning, such as [71, 270].
Indeed, we experimented with the use of Alergia [71], a learning algorithm that constructs
a PA from a prefix tree (where edges are labelled with multiplicities) by merging nodes that
are “similar.” The automata that we obtained were, however, too general. In particular,
the constructed automata destroyed the structure of network protocols—the merging was
too permissive and the generalization merged distant states, which introduced loops over
a very large substructure in the automaton (such a case usually does not correspond to the
design of network protocols). As a result, the obtained PA more or less represented the
Poisson distribution, having essentially no value for us.

In Section 4.5.2, we focus on the detection of malicious traffic transmitted over HTTP.
We take advantage of this fact and create a PA representing the traffic while taking into
account the structure of HTTP. We start by manually creating a DFA that represents the
high-level structure of HTTP. Then, we proceed by feeding 34,191 HTTP packets from our
sample into the DFA, at the same time taking notes about how many times every state
is reached and how many times every transition is taken. The resulting PA PHTTP (of 52
states) is then constructed from the DFA and the labels in the obvious way.

The described method yields automata that are much better than those obtained us-
ing Alergia in our experiments. A disadvantage of the method is that it is only semi-
automatic—the basic DFA needed to be provided by an expert. We have yet to find
an algorithm that would suit our needs for learning more general network traffic.

6https://github.com/vhavlena/appreal/tree/tacas18

40

https://github.com/vhavlena/appreal/tree/tacas18

Table 4.1: Results for the http-malicious RE, |Amal| = 249, |ARed
mal | = 98,

time(Reduce) = 3.5 s, time(label2sl) = 38.7 s, time(Exact) = 3.8–6.5 s, and LUTs(ARed
mal) =

382.

(a) size-driven reduction

Error Exact Traffic
k |AApp

mal | |A′
mal| bound error error LUTs

0.1 9 (0.65 s) 9 (0.4 s) 0.0704 0.0704 0.0685 —
0.2 19 (0.66 s) 19 (0.5 s) 0.0677 0.0677 0.0648 —
0.3 29 (0.69 s) 26 (0.9 s) 0.0279 0.0278 0.0598 154
0.4 39 (0.68 s) 36 (1.1 s) 0.0032 0.0032 0.0008 —
0.5 49 (0.68 s) 44 (1.4 s) 2.8e-05 2.8e-05 4.1e-06 —
0.6 58 (0.69 s) 49 (1.7 s) 8.7e-08 8.7e-08 0.0 224
0.8 78 (0.69 s) 75 (2.7 s) 2.4e-17 2.4e-17 0.0 297

(b) error-driven reduction

Error Exact Traffic
ε |AApp

mal | |A′
mal| bound error error

0.08 3 3 0.0724 0.0724 0.0720
0.07 4 4 0.0700 0.0700 0.0683
0.04 35 32 0.0267 0.0212 0.0036
0.02 36 33 0.0105 0.0096 0.0032
0.001 41 38 0.0005 0.0005 0.0003
1e-04 47 41 7.7e-05 7.7e-05 1.2e-05
1e-05 51 47 6.6e-06 6.6e-06 0.0

4.5.2 Evaluation

We start this section by introducing the experimental setting, namely, the integration of our
reduction techniques into the tool chain implementing efficient RE matching, the concrete
settings of Appreal, and the evaluation environment. Afterwards, we discuss the results
evaluating the quality of the obtained approximate reductions as well as of the provided
error bounds. Finally, we present the performance of our approach and discuss its key
aspects. We selected the most interesting results demonstrating the potential as well as the
limitations of our approach.

General setting. Snort detects malicious network traffic based on rules that contain
conditions. The conditions take into consideration, among others, network addresses, ports,
or Perl compatible regular expressions (PCREs) that the packet payload should match.
In our evaluation, we select a subset of Snort rules, extract the PCREs from them, and
use Netbench [234] to transform them into a single NFA A. Before applying Appreal, we
use the state-of-the-art NFA reduction tool Reduce [208] to reduce A. Reduce performs
a language-preserving reduction of A using advanced variants of simulation [206] (in the
experiment reported in Table 4.3, we skip the use of Reduce at this step as discussed later
in the performance evaluation). The automaton ARed obtained as the result of Reduce is
the input of Appreal, which performs one of the approximate reductions from Section 4.4
w.r.t. the traffic model PHTTP , yielding AApp. After the approximate reduction, we, one
more time, use Reduce and obtain the result A′.

Settings of Appreal. In the use case of NIDS pre-filtering, it may be important to
never introduce a false negative, i.e., to never drop a malicious packet. Therefore, we
focus our evaluation on the self-loop reduction (Section 4.4.4). In particular, we use the
state labelling function label2sl , since it provides a good trade-off between the precision
and the computational demands (recall that the computation of label2sl can exploit the
“tentacle” structure of the NFAs we work with). We give more attention to the size-
driven reduction (Section 4.4.1) since, in our setting, a bound on the available FPGA
resources is typically given and the task is to create an NFA with the smallest error that
fits inside. The order �A,`2sl over states used in Section 4.4.1 and Section 4.4.2 is defined as
s �A,`2sl s

′ ⇔ `2sl (s) ≤ `2sl (s′).

41

Evaluation environment. All experiments ran on a 64-bit Linux Debian workstation
with the Intel Core(TM) i5-661 CPU running at 3.33 GHz with 16 GiB of RAM.

Description of tables. In the caption of every table, we provide the name of the input
file (in the directory regexps/tacas18/ of the repository of Appreal) with the selection
of Snort REs used in the particular experiment, together with the type of the reduction
(size- or error-driven). All reductions are over-approximating (self-loop reduction). We
further provide the size of the input automaton |A|, the size after the initial processing
by Reduce (|ARed|), and the time of this reduction (time(Reduce)). Finally, we list the
times of computing the state labelling label2sl on ARed (time(label2sl)), the exact probabilistic
distance (time(Exact)), and also the number of look-up tables (LUTs(ARed)) consumed on
the targeted FPGA (Xilinx Virtex 7 H580T) when ARed was synthesized (more on this in
Section 4.5.3). The meaning of the columns in the tables is the following:

k/ε is the parameter of the reduction. In particular, k is used for the size-driven reduction
and denotes the desired reduction ratio k = n

|ARed| for an input NFA ARed and the
desired size of the output n. On the other hand, ε is the desired maximum error on
the output for the error-driven reduction.

|AApp| shows the number of states of the automaton AApp after the reduction by Appreal
and the time the reduction took (we omit it when it is not interesting).

|A′| contains the number of states of the NFA A′ obtained after applying Reduce on AApp

and the time used by Reduce at this step (omitted when not interesting).

Error bound shows the estimation of the error of A′ as determined by the reduction
itself, i.e., it is the probabilistic distance computed by the corresponding function
error from Section 4.4.

Exact error contains the values of dPHTTP
(A,A′) that we computed after the reduction in

order to evaluate the precision of the result given in Error bound. The computation
of this value is very expensive (time(Exact)) since it inherently requires determiniza-
tion of the whole automaton A. We do not provide it in Table 4.3 (presenting the
results for the automaton Abd with 1,352 states) because the determinization ran out
of memory (the step is not required in the reduction process).

Traffic error shows the error that we obtained when compared A′ with A on an HTTP
traffic sample, in particular the ratio of packets misclassified by A′ to the total number
of packets in the sample (242,468). Comparing Exact error with Traffic error gives
us a feedback about the fidelity of the traffic model PHTTP . We note that there are
no guarantees on the relationship between Exact error and Traffic error.

LUTs is the number of LUTs consumed by A′ when synthesized into the target FPGA.
Hardware synthesis is a costly step, therefore we provide this value only for selected
interesting NFAs.

Approximation errors

Table 4.1 presents the results of the self-loop reduction for the NFA Amal describing REs
from http-malicious. We can observe that the differences between the upper bounds on

42

Table 4.2: Results for the http-attacks RE, size-driven reduction, |Aatt| = 142, |ARed
att | =

112, time(Reduce) = 7.9 s, time(label2sl) = 28.3min, time(Exact) = 14.0–16.4 min.

Error Exact Traffic
k |AApp

att | |A′
att| bound error error

0.1 11 (1.1s) 5 (0.4s) 1.0 0.9972 0.9957
0.2 22 (1.1s) 14 (0.6s) 1.0 0.8341 0.2313
0.3 33 (1.1s) 24 (0.7s) 0.081 0.0770 0.0067
0.4 44 (1.1s) 37 (1.6s) 0.0005 0.0005 0.0010
0.5 56 (1.1s) 49 (1.2s) 3.3e-06 3.3e-06 0.0010
0.6 67 (1.1s) 61 (1.9s) 1.2e-09 1.2e-09 8.7e-05
0.7 78 (1.1s) 72 (2.4s) 4.8e-12 4.8e-12 1.2e-05
0.9 100 (1.1s) 93 (4.7s) 3.7e-16 1.1e-15 0.0

the probabilistic distance and its real value are negligible (typically in the order of 10−4

or less). We can also see that the probabilistic distance agrees with the traffic error. This
indicates a good quality of the traffic model employed in the reduction process. Further, we
can see that our approach can provide useful trade-offs between the reduction error and the
reduction factor. Finally, Table 4.1b shows that a significant reduction is obtained when
the error threshold ε is increased from 0.04 to 0.07.

Table 4.2 presents the results of the size-driven self-loop reduction for NFA Aatt de-
scribing http-attacks REs. We can observe that the error bounds provide again a very
good approximation of the real probabilistic distance. On the other hand, the difference
between the probabilistic distance and the traffic error is larger than that for Amal. Since all
experiments use the same probabilistic automaton and the same traffic, this discrepancy is
accounted to the different set of packets that are incorrectly accepted by ARed

att . If the prob-
ability of these packets is adequately captured in the traffic model, the difference between
the distance and the traffic error is small and vice versa. This also explains an even larger
difference in Table 4.3 (presenting the results for Abd constructed from http-backdoor
REs) for k ∈ 〈0.2, 0.4〉. Here, the traffic error is very small and caused by a small set
of packets (approx. 70), whose probability is not correctly captured in the traffic model.
Despite this problem, the results clearly show that our approach still provides significant
reductions while keeping the traffic error small: about a 5-fold reduction is obtained for
the traffic error 0.03 % and a 10-fold reduction is obtained for the traffic error 6.3 %. We
discuss the practical impact of such a reduction in Section 4.5.3.

Performance of the approximate reduction

In all our experiments (Tables 4.1 and 4.2), we can observe that the most time-consuming
step of the reduction process is the computation of state labellings (it takes at least 90 %
of the total time). The crucial observation is that the structure of the NFAs fundamentally
affects the performance of this step. Although after Reduce, the size of Amal is very
similar to the size of Aatt, computing label2sl takes more time (28.3 min vs. 38.7 s). The
key reason behind this slowdown is the determinization (or alternatively disambiguation)
process required by the product construction underlying the state labelling computation
(cf. Section 4.4.4). For Aatt, the process results in a significantly larger product when
compared to the product for Amal. The size of the product directly determines the time
and space complexity of solving the linear equation system required for computing the state
labelling.

43

Table 4.3: Results for http-backdoor, size-driven reduction, |Abd| = 1, 352,
time(label2sl) = 19.9min, LUTs(ARed

bd) = 2, 266.

Error Traffic
k |AApp

bd | |A′
bd| bound error LUTs

0.1 135 (1.2 m) 8 (2.6 s) 1.0 0.997 202
0.2 270 (1.2 m) 111 (5.2 s) 0.0012 0.0631 579
0.3 405 (1.2 m) 233 (9.8 s) 3.4e-08 0.0003 894
0.4 540 (1.3 m) 351 (21.7 s) 1.0e-12 0.0003 1063
0.5 676 (1.3 m) 473 (41.8 s) 1.2e-17 0.0 1249
0.7 946 (1.4 m) 739 (2.1 m) 8.3e-30 0.0 1735
0.9 1216 (1.5 m) 983 (5.6 m) 1.3e-52 0.0 2033

As explained in Section 4.4, the computation of the state labelling label2sl can exploit the
“tentacle” structure of the NFAs appearing in NIDSes and thus can be done component-
wise. On the other hand, our experiments reveal that the use of Reduce typically breaks
this structure and thus the component-wise computation cannot be effectively used. For
the NFA Amal, this behavior does not have any major performance impact as the deter-
minization leads to a moderate-sized automaton and the state labelling computation takes
less than 40 s. On the other hand, this behavior has a dramatic effect for the NFA Aatt.
By disabling the initial application of Reduce and thus preserving the original structure
of Aatt, we were able to speed up the state label computation from 28.3 min to 1.5 min.
Note that other steps of the approximate reduction took a similar time as before disabling
Reduce and also that the trade-offs between the error and the reduction factor were simi-
lar. Surprisingly, disabling Reduce caused that the computation of the exact probabilistic
distance became computationally infeasible because the determinization ran out of memory.

Due to the size of the NFA Abd, the impact of disabling the initial application of
Reduce is even more fundamental. In particular, computing the state labelling took only
19.9 min, in contrast to running out of memory when the Reduce is applied in the first step
(therefore, the input automaton is not processed by Reduce in Table 4.3; we still give the
number of LUTs of its reduced version for comparison, though). Note that the size of
Abd also slows down other reduction steps (the greedy algorithm and the final Reduce
reduction). We can, however, clearly see that computing the state labelling is still the most
time-consuming step of the process.

4.5.3 The Real Impact in an FPGA-Accelerated NIDS

To demonstrate the practical usefulness and impact of the proposed approximation tech-
niques, we employ the reduced automata in a real use case from the area of HW-accelerated
deep packet inspection. We consider the framework of [204] implementing a high-speed
NIDS pre-filter in an FPGA. The crucial challenge is to obtain a pre-filter that has suf-
ficiently small false positive rate (and no false negative) while it can handle the traffic of
current networks operating on 100 Gbps and beyond. The implementation of NFAs per-
forming the RE matching in FPGAs uses two types of HW resources: LUTs which are use
to build the combinational circuit representing the NFA transition function and flip-flops
representing the NFA states. In our use case, we omit the analysis of flip-flop consumption
because it is always dominated by the LUT consumption.

In our setting, the amount of resources available for the FPGA-based RE matching
engine is 15,000 LUTs and the frequency of the engine is 200 MHz using a 32-bit-wide
data path. As explained in [204], the engine containing a single unit (i.e. the single NFA

44

implementation) can achieve the throughput of 6.4 Gbps (200 MHz × 32 b). Therefore,
16 units are required for the desired link speed of 100 Gbp and 63 units are needed to
handle 400 Gbps. With the given amount of LUTs, the size of a single NFA is thus bounded
by 937 LUTs (15000/16) for 100 Gbps and 238 LUTs for 400 Gbps, respectively. These
bounds directly limit the complexity of regular expressions the engine can handle.

We now analyze the resource consumption of the matching engine for two automata,
http-backdoor (ARed

bd) and http-malicious (ARed
mal), and evaluate the impact of the re-

duction techniques. Recall that the automata represent two important sets of know network
attacks from Snort [269].

• 100 Gbps: For this speed, ARed
mal can be used without any approximate reduction as

it is small enough (it has 382 LUTs) to fit in the available space. On the other hand,
ARed

bd without the approximate reduction is way too large to fit (it has 2,266 LUTs
and thus at most 6 units fit inside the available space, yielding the throughput of
only 38.4 Gbps, which is unacceptable). The column LUTs in Table 4.3 shows that
using our framework, we are able to reduce ARed

bd such that it uses 894 LUTs (for k =
0.3), and so all the needed 16 units fit into the FPGA, yielding the throughput over
100 Gbps and the theoretical error bound of a false positive ≤ 3.4 × 10−8 w.r.t. the
network traffic model PHTTP .

• 400 Gbps: RE matching at this speed is extremely challenging. In the case of ARed
bd ,

the reduction k = 0.1 is required to fit 63 units in the available space. As such reduc-
tion has error bound almost 1, this solution is not very useful due to a prohibitively
high false positive rate. The situation is better for ARed

mal . In the exact version, at
most 39 units can fit inside the FPGA with the maximum throughput of 249.6 Gbps.
On the other hand, when using our reduced automata, we are able to place 63 units
into the FPGA, each of the size 224 LUTs (k = 0.6), and achieve throughput over
400 Gbps with the theoretical error bound of a false positive ≤ 8.7× 10−8 w.r.t. the
model PHTTP .

4.6 Conclusion
In this chapter, we have proposed a novel approach for approximate reduction of NFAs
used in network traffic filtering. Our approach is based on a proposal of a probabilistic
distance of the original and reduced automaton using a probabilistic model of the input
network traffic, which characterizes the significance of particular packets. We characterized
the computational complexity of approximate reductions based on the described distance
and proposed a sequence of heuristics allowing one to perform the approximate reduction
in an efficient way. Our experimental results are quite encouraging and show that we can
often achieve a significant reduction for a negligible loss of precision. We showed that using
our approach, FPGA-accelerated network filtering on large traffic speeds can be applied on
REs of malicious traffic where it could not be applied before. This chapter is based on the
work published in the proceedings of TACAS’18 [283] and in the STTT journal [307].

One direction of a further research could include development of better (automatic)
ways of learning of a sufficiently precise and concise probabilistic model of the input traffic.
Another direction could focus on other possible reductions of NFAs, for instance reductions
based on merging of states maintaining the proposed formal guarantees.

45

Chapter 5

Lightweight Approximate
Reduction of NFAs

As we said in Chapters 3 and 4, NFA-based RE pattern matching in high-speed networks
is a demanding task for which hardware acceleration is a suitable solution. Recall also that
a HW unit is usually based on the FPGA technology and that it serves as a pre-filter of
input traffic sending suspicious packets for further inspection to software. The resources of
FPGAs are restricted and, therefore, the automata representing REs of interest need to be
as small as possible.

In this chapter, we build upon the results from Chapter 4 where we proposed approx-
imate reduction of NFAs with formal guarantees. The disadvantages of that approach are
(i) its complexity (recall that even the computation of the state labelling is PSPACE-
complete), and (ii) the requirement on a model of the network traffic. In particular, (i) is
a serious issue when dealing with large automata that occur in RE matching of network
traffic. For this reason, we propose lightweight approximate reduction, over-approximating
the language, suitable for a reduction of large NFAs. In contrast to the approaches from
Chapter 4, the approximate reductions presented in this chapter are steered not by a prob-
abilistic model of the traffic but directly by a multiset of packets representing a typical
traffic. The price we pay for this lightweightness is a sacrifice of guarantees that we can
no longer provide (we do not work with a model of the network traffic anymore). We can
just measure the number of misclassified packets from the sample. Recall that the reduc-
tions from the previous chapter can provide formal guarantees w.r.t. a probabilistic traffic
model. Since Chapter 4 is closer to a theoretical proof-of-concept, we, in this chapter,
focus on more practical aspects of the problem including a more detailed evaluation of the
synthesized architectures for high-speed pattern matching.

Overview of the proposed approach. Our approximate NFA reduction takes an ad-
vantage of particularities of standard network traffic. Namely, given an NFA constructed
from the REs of interest, we label its states with their significance—the likelihood that
they will be used during processing a packet—, and then simplify the least significant parts
of the automaton. The simplification is implemented by pruning and merging of the in-
significant states. The significance of a state is determined using training traffic, a finite
sample of “standard” traffic from the network node where the NIDS is to be deployed (it
may be necessary to generate a new design once in a while). The reduction scales well—
the worst-case time complexity of the most expensive step, computing the state labelling,

46

is O(n2k) where n is the number of states of the NFA and k is the size of the training traffic
(since the automata are usually sparse, the quadratic factor is rarely an issue on real-world
examples).

We implemented the proposed approach and evaluated it on REs taken from the NIDS
Snort and other resources. We were able to obtain a substantial reduction of the size
of the NFAs while keeping the number of false positives low. Based on our approximate
reduction we were able to perform RE matching at 100 and 400 Gbps on sets of large REs.

Related work. Many different architectures for resource-efficient mapping of NFAs for
fast RE matching into FPGAs have been designed (see Section 3.2, paragraph related to
NFA-based acceleration) as well as techniques for reduction of automata (see Section 3.3).

We mention only the most relevant works related to high-speed pattern matching. To
increase the RE matching speed, some architectures make the NFAs process multiple bytes
of the input per clock cycle [254]. Achieving the 100 Gbps throughput, which requires more
than 64 bytes to be processed at once is, however, not possible because of frequency issues.
In [36] a multi-striding technique, which is widely used to increase the throughput of many
NFA-based RE matching architectures, was introduced. Multi-striding alone, however,
cannot increase the processing speed to 100 Gbps because with the length of the stride, the
NFA grows rapidly, and the frequency drops dramatically [204].

In this chapter, we use the architecture of [204] introducing parallel pipelined automata,
which can scale the throughput of NFA-based RE matching to over 100 Gbps. In a recent
work, a novel FPGA architecture that significantly improved the throughput of DFA-based
RE matching was introduced [295]. The architecture achieves a throughput of 140 Gbps on
a single FPGA chip for NIDS modules where the underlying DFAs have up to 10k states
(corresponding to 34 REs of Snort). We can achieve, on a similar chip, a throughput
beyond 200 Gbps for much more complicated sets of REs (e.g., Snort’s spyware mod-
ule with 461 REs where the underlying NFA has ∼10k states and the corresponding DFA
is prohibitively large—our attempt of its determinization depleted the available memory
(32 GiB) after reaching 616k states).

The work closest to our NFA reduction techniques is [194]. In [194], the authors address
the issue of software-based acceleration of matching REs describing network attacks in
Snort. To reduce the number k of membership tests needed for matching a packet against
k distinct DFAs, [194] builds a “search tree” with the k DFAs in its leaves and with the
inner nodes occupied by, preferably, small DFAs that over-approximate the union of their
children (the precise DFA accepting the union is prohibitively large). Matching a packet
then means to propagate it down the tree as long as it belongs to languages of the DFA
nodes. The over-approximating DFAs are constructed using a similar notion of significance
of states as in our approach. The differences from our work are the following: (i) [194]
needs several membership tests per packet, (ii) it targets only software and its hardware
implementation would be too complex, (iii) it does not consider reduction of NFAs, and
(iv) it uses only a pruning-based reduction (we also employ merging and simulation-based
reductions).

Finally, we compare our approach to RE-matching techniques that use modern general-
purpose GPUs. As in FPGAs, we can distinguish architectures leveraging both DFAs
and NFAs. Prominent GPU architectures based on DFAs include Gregex [287], hierar-
chical parallel machines [193], and a recent work employing algorithm/implementation
co-optimization based on a GPU performance model [151]. These architectures are able
to perform RE matching at the theoretical throughput of 100–150 Gbps. Their practical

47

performance is, however, limited by the packet transfer throughput (e.g., the throughput
of [287] was 25 Gbps on NVIDIA GTX260), and, indeed, the complexity of RE modules
they can handle due to determinization.

An RE matching architecture for GPUs based on NFAs was proposed in iNFAnt [72]
and further improved in [20]. In contrast to the aforementioned DFA-based solutions,
this architecture can handle complex RE modules where the underlying NFAs have over
10 thousand states. The performance of this work is, however, significantly inferior to
our considered FPGA-based architecture. For example, for a category of Snort modules
where the underlying NFAs have 3–18 thousand states, [20] reports an overall throughput
of 1–2 Gbps on NVIDIA Tesla c2050. Our experiments in Section 5.3 show that, on Snort
modules with similar sizes, our approach is able to achieve a throughput of over 100 Gbps.

More recently, there emerged approaches, complementary to our techniques, increasing
throughput of NIDSes based on acceleration of exact string matching (as in [303], where,
however, RE-matching itself is performed in SW). Another recent technique focuses on
increasing the throughput of RE matching by a pre-filter of strings that are guaranteed to
occur in a text matched by the REs [117].

Chapter outline. In Section 5.1, we briefly describe the considered HW-accelerated RE
matching architecture based on FPGAs. In Section 5.2, we propose our lightweight ap-
proximation techniques. Finally, Section 5.3 deals with the experimental evaluation of the
proposed approach and Section 5.4 concludes the chapter.

5.1 The FPGA Architecture
In this chapter, we use an architecture proposed in [204] involving pipelined automata. We
use the NFA-based acceleration because, as already mentioned in Section 3.2, NFAs are
much more succinct than DFAs and they can also be mapped into FPGAs more efficiently
than DFAs.

The architecture based on pipelined automata uses k connected copies of automata
A0, . . . ,Ak−1 to achieve parallel processing of input packets. The automata are arranged in
a ring topology and each automaton can send a current configuration (active states) of the
matching to the next automaton in the ring. The automata read an input from a shared
packet buffer (each NFA has its own row in the shared buffer where it reads input data).
Symbols of an incoming packet payload are distributed across the buffer such that no data
conflicts occur and, on the other hand, maximal parallel processing is achieved. Each copy
of the NFA Ai computes successors based on the read data and the configuration obtained
by the previous NFA A(i−1 mod k). If the reading of a packet is finished, the automata
publish matched final states. Consider, for instance, a packet consisting of two parts p1, p2.
In the first clock cycle, p1 is processed by A0 and the configuration is passed to A1. In
the second clock cycle, A1 processes p2 but A0 can start reading the first part of the next
packet. Using such pipelined automata, we can theoretically achieve parallel processing of
k packets.

In order to achieve a throughput necessary for high-speed networks, a lot of copies of
NFAs need to be synthesized in the FPGA chip. For instance, processing 100 Gbps input
network traffic requires 64 concurrently functioning RE matching units (of 8-bit input
width operating at 200 MHz) and 400 Gbps requires 256 matching units. Such a massive
replication costs a lot of FPGA resources, which becomes the major bottleneck of the

48

q0 q1 q3

q2 q4

a

a b

b

a
b

(a)

q0 q1 q3
a

Σ

a
b

(b)

q0 q1
a

Σ

(c)

Figure 5.1: An example of the border-pruning reduction: the original NFA (a), after
border-pruning (b), and after a subsequent simulation reduction (c).

approach. It is hence crucial to keep the NFAs as small as possible and for this reason, we
propose lightweight approximate reductions of NFAs.

5.2 Samples Driven Approximate Reduction of NFAs
In this section, we propose two approaches for lightweight approximate reduction of NFAs.
The border-pruning reduction is based on removing certain states from the NFA (and intro-
ducing self-loops), the merging reduction collapses similar parts of the NFA. Both reductions
are steered by information about a typical traffic. In this section, we assume definitions
from Chapter 2.

5.2.1 Border-pruning Reduction

Our first NFA reduction is the so-called border-pruning reduction. Do not confuse it with
the pruning reduction in Chapter 4. Here we use pruning in a slightly different context.
The reduction removes from the automaton a set R of states considered insignificant, to-
gether with all their adjacent transitions. At the same time, in order to overapproximate
the original language, all states that are not removed and that have transitions going to
a removed state are made final. Below, we call such states border states, forming a set B.

More precisely, let A = (Q, δ, I, F) be an NFA over a fixed alphabet Σ, and let R ⊆ Q,
such that I ∩ R 6= ∅, be a set of states to be removed (we will later discuss how to find
such a set). Let B = {q ∈ Q \ R | ∃a ∈ Σ : δ(q, a) ∩ R 6= ∅} be the set of border states
corresponding to R. The operation of border-pruning from A the states in R produces the
NFA AR = (Q′ = Q \ R, δ′, I, F ′) where δ′ = (δ ∩ (Q′ × Σ×Q′)) ∪ {q a−→ q | q ∈ B, a ∈ Σ}
and F ′ = (F ∩Q′) ∪B.

The border-pruning reduction over-approximates the original language, i.e., L (A) ⊆
L (AR). The obtained NFA can, of course, be potentially further reduced by exact, simu-
lation-based reductions [208].

The trade-off between reduction and accuracy that the border-pruning reduction offers
depends on the choice of the set R of the states to be removed. We therefore try to compose
R from such states of A that have the least influence on the acceptance/rejection of packets
in typical traffic. For that, we use a representative sample S of the network traffic in
the form of a multiset of packets. We label each state q ∈ Q of the input NFA A by its
significance: the number `(q) of packets from S over which the state q can be reached in A
(if there are multiple ways of reaching q over the same packet, we do not distinguish them).
Formally, `(q) =

∑{S(w) | w ∈ {u.v ∈ S | qI u
 q, qI ∈ I}} where S(w) is the number of

occurrences of the packet w in the multiset S.

49

Figure 5.2: A heat map illustrating significance of states in a typical NFA.

The error caused by the border-pruning reduction based on a set of states R w.r.t. a sam-
ple S can be bounded in terms of significance of the border states B corresponding to R.
Indeed, only the packets accepted at some border state can get wrongly accepted. Formally,
errorac(S,A,AR) ≤

∑
q∈B `(q) where errorac(S,A,AR) =

∑{S(w) | w ∈ L (AR) \ L (A)}
is the exact error caused by the reduction on the sample S.

To specify the desired reduction, we use a target reduction ratio θ ∈ (0, 1〉 meaning
that the automaton should be reduced to m = dθ · |Q|e states. To obtain m states while
minimizing the error, we fill R with |Q|−m least significant states1. The following example
shows the pruning reduction of a simple NFA.

Example 5.2.1. Consider an NFA from Figure 5.1a and let the reduction ratio be θ = 0.6.
Further assume that the significance of the states q2 and q4 is smaller than that of q0, q1,
and q3. Intuitively, this means that seeing b after the initial a symbols is rare. Hence,
even if we allow the automaton to accept a string with the initial a symbols followed by
a b symbol that is not followed by the second required b, no big error will be caused. Indeed
the border-pruning reduction applied on the NFA chooses R = {q2, q4} and hence B = {q1}.
The reduced automaton is shown in Figure 5.1b.

The fact that scenarios, such as of Example 5.2.1, are common for NFAs obtained
from real-world REs over real-world traffic is illustrated by our successful experiments
(Section 5.3). As an additional illustration, Figure 5.2 shows a heat map of the states of
an NFA obtained from one simplified RE (the sprobe PCRE mentioned in Section 5.3),
having a typical structure of many of the NFAs that one obtains from real-world PCREs,
which was labelled over a sample of real-world traffic. The “cold” states (blue, green) have
low significance and are good candidates for border-pruning.

The significance of all states is computed efficiently in time O(kn2) where n = |Q| and
k =

∑
w∈S |w| ·S(w) is the overall length of S. For that, we can use the subset construction

known from determinization of NFAs, just run on particular packets w ∈ S. Namely, each
state’s significance is initially set to zero. Then, we run A over every w = a1 . . . al ∈ S,
computing consecutive sets of states Qi that are possibly reached after processing the prefix
a1 . . . ai, and, at the end of the run, we increment by one the significance of each of the
states encountered on the way. Formally, for each w ∈ S, we start with Q0 = I, and,

1This strategy can cause a larger error when an originally non-accepting border state of a high significance
is forced to become accepting by some insignificant accepting successor state. This could be avoided, e.g.,
by preferring border-pruning final states without a significant successor border state. In our experiments,
we, however, sufficed with the simple strategy.

50

subsequently, compute Qi+1 = δ(Qi1, ai+1) for all 1 < i < l. The significance of all states in
the set

⋃l
i=0Q

i is then incremented by one.

5.2.2 Merging Reduction

Our second reduction, called a merging reduction, is motivated by an observation that, in
typical traffic, packets that start with a prefix of a certain kind (i.e., they are from some
language L) almost always continue by an infix w that follows a predetermined pattern
(a concrete word or a sequence of characters from predetermined character classes). We say
that, in a sample S, the pattern of w is predetermined by L. The part of the automaton that,
after reading the prefix from L, tests whether the infix fits the pattern can be significantly
simplified by collapsing it into a single state with a self-loop over all the symbols that label
the original transitions while causing a small error only: Indeed, it is unlikely that a packet
with an infix other than the predetermined one will appear after the given prefix. Note
that the border-pruning reduction discussed previously is not suitable for simplifying the
states that test the pattern as they may be of an arbitrarily high significance.

The operation of merging a sub-automaton based on a set S of states means to (i) redi-
rect the targets of transitions entering S to a new state s, (ii) reconnect all transitions
leaving S to start from s instead, (iii) make s final iff any of the states in S is final, and
(iv) remove the states of S. Note that, like border-pruning, merging also over-approximates
the language by allowing any permutation of the infix pattern.

Our detection of the parts of automata to be merged—typically, sequences of states—
is based on a notion of distance defined for a pair of states q and r as dist(q, r) =

max
{
`(r)
`(q) ,

`(q)
`(r)

}
if they are neighbors (i.e., q a−→ r or r a−→ q for some a) and as dist(q, r) =∞

otherwise. Intuitively, a small dist(q, r) means that `(q) and `(r) are similar, which typi-
cally happens if most of the packets reaching q continue to r or vice versa.2 Symbols on
transitions from q to r hence form a predetermined pattern of length 1. Therefore, merging
q and r, and thus over-approximating the pattern, should cause a small error only. Merging
of longer patterns is then achieved by merging multiple patterns of length 1.

The merging reduction is parameterized by a distance ceiling τ—we merge states with
distance below τ . Formally, the sets of states to be merged are defined as the equivalence
classes of the smallest equivalence ∼τ ⊆ Q×Q that contains all pairs (q, r) with dist(q, r) ≤
τ (in other words, ∼τ is the reflexive transitive closure of {(q, r) | dist(q, r) ≤ τ}).

The merging reduction does not provide theoretical guarantees, and it is to a large
degree based on empirical experience, in which its parameterization with τ allows one to
control the ratio between reduction and error well. There are, however, cases in which
merging leads to an undesirable loss of precision even with a small τ . To limit such ef-
fects, we restrict merging by an additional parameter, the frequency ceiling γ ∈ (0, 1]. We
prohibit merging of states with freq(q) = `(q)

|S| > γ, that is, those whose frequency in S
is larger than the ceiling. Formally, given τ and γ, we merge the equivalence classes of
∼τ ∩ {(q, r) | freq(q) ≤ γ ∧ freq(r) ≤ γ}. The following example shows the merging reduc-
tion in action.

Example 5.2.2. An example of the merging reduction is shown in Figure 5.3, assuming
dist(q2, q3) < D, dist(q3, q4) < D, and that all other distances are greater than D. To make
the states q2, q3, and q4 less critical, we further assume that freq(q2) < γ, freq(q3) < γ,

2In theory, it does not have to be the case, as dist(q, r) may be polluted by packets reaching and leaving
q and r from and to other states, but it is mostly the case in practice.

51

q0

q1

q2 q3 q4

q5 q6

q7

a

b

c d

a

c

b

(a)

q0

q1

q2

q5 q6

q7

a

b
c, d

a

b

c

(b)

Figure 5.3: An input NFA (a) and an NFA obtained by merging (b).

Table 5.1: Sizes of the considered NFAs.

NFA States Transitions
backdoor 3,898 100,301
l7-all 7,280 2,647,620
pop3 923 209,467
sprobe 168 5,108
spyware 12,809 279,334

freq(q4) < γ. Intuitively, this means that only some packets continue over b from q0 to q2.
Roughly all of those packets then continue until they reach q4, where another important split
of the acceptance happens. The prefix b, however, predetermines the subsequent occurrence
of cd. By simplifying the automaton and allowing any string from {c, d}∗ to appear after b,
no significant error arises since most packets will anyway contain cd after b only.

5.3 Experimental Evaluation
In this section, we present an experimental evaluation of the proposed approach on real
RE-matching instances.

Considered REs. We experimented with a set of REs describing protocols and attacks
obtained from the L7 classifier for the Linux Netfilter [246] framework and from the
Snort tool [269]. From the L7 classifier describing L7 protocols, we used all rules, giving
us a set of REs denoted as l7-all below. From the Snort tool, we used the following
set of REs: backdoor, pop3, and spyware-put (abbreviated as spyware below), describ-
ing attacks on selected protocols. We also used nine rules, denoted as sprobe, proposed
for lawful interception in cooperation with our national police. We used the Netbench
tool [234] for (i) translating REs to NFAs and (ii) the synthesis of reduced NFAs to VHDL.
The sizes of the NFAs obtained by translating the considered REs are shown in Table 5.1.

Evaluation data. The sample of network traffic that we used for our experiments was ob-
tained from two measuring points of a nation-wide Internet provider connected to a 100 Gbps
backbone link. The training data used for labelling the automata contained ∼1M packets
sampled from the captured traffic during the time of 19.5 min containing 509M packets.
The testing data used for the subsequent evaluation consisted of ∼21M packets sampled
from the captured traffic containing ∼210M packets. The testing data was sampled over
the time of 105 hours (over 4 days) such that every hour 1M packets were captured.

52

Evaluation environment. We implemented the proposed techniques in a Python pro-
totype3. In the experiments, we ran merging with the frequency ceiling γ = 0.1 and the
distance ceiling τ = 1.005. FPGA synthesis was done using Xilinx Vivado v.2018.1.

Running time. Our reduction techniques are light-weight, and, in contrast to the ap-
proaches presented in Chapter 4, they are capable of reducing very large NFAs appearing
in real-world RE matching problems for real network scenarios. (Recall that the largest
automata we consider have over 12k states or over 2.5M transitions.) Using the training
data containing 1M packets, we needed about 15 min to derive the state labelling function
` for the largest considered NFAs. The runtime of the other parts of the reduction process
was then negligible. Also note that, for a given NFA, the labelling can be performed only
once for various values of the reduction ratio θ.

Research questions. We are interested in the following two key research questions re-
lated to the proposed approach:

(i) Are our reduction techniques able to provide useful trade-offs between the reduction
error and the reduction ratio?

(ii) Can the reduced NFAs be compiled into an architecture with throughput of 100 Gbps
and beyond?

5.3.1 Reduction Trade-offs

In our experiments with the reduction techniques, we consider both the border-pruning
and merging reductions. The merging reduction is, however, always combined with a sub-
sequent border-pruning reduction as a standalone use of merging turned out not to be
effective. Moreover, as a baseline, we also consider a so-called bfs-reduction. It does not
use any training traffic and works by simply border-pruning of states that are far from the
initial state. All of the approximate reductions are followed by the exact simulation-based
reduction [206] whenever the tool Reduce [208] implementing this reduction is capable of
handling the approximate NFA.

We consider two metrics characterizing the reduced automata. The first metric is the
acceptance precision AP = ATP

AFP+ATP
where ATP denotes acceptance true positives (the

packet is accepted and should have been accepted) and AFP denotes acceptance false pos-
itives (the packet is accepted and should not have been accepted). Note that since our
hardware architecture uses NFAs to accept packets based on their prefixes, we use adjusted
condition of a string acceptance by a NFA in the experiments. A string w is accepted if
arbitrary prefix of w is accepted according to the standard definition.

This metric expresses the ratio of correctly accepted packets to all accepted packets from
the testing traffic sample and hence characterizes the error caused by the approximation.
Our second metric is the acceptance probability Prob = ATP+AFP

|S| (where |S| denotes the
size of the input network traffic sample) that captures what fraction of the input traffic is
accepted by the reduced NFA and passed to the subsequent software NIDS, i.e., how much
the NFA reduces the flow of packets to be further processed. Our last metric, similarly to
Section 4.5, is the traffic error TE = AFP

|S| capturing a ratio of misclassified packets from
the testing sample.

3https://github.com/jsemric/ahofa

53

https://github.com/jsemric/ahofa

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6

A
c
c
e
p
ta

n
c
e
 p

re
c
is

io
n

Reduction ratio

bfs
merge+prune

prune

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6

A
c
c
e
p
ta

n
c
e
 p

ro
b
a
b
ili

ty

Reduction ratio

bfs
merge+prune

prune

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 0.2 0.3 0.4 0.5 0.6

T
ra

ff
ic

 e
rr

o
r

Reduction ratio

bfs
merge+prune

prune

(a) From left: AP , Prob, and TE for l7-all.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
c
c
e
p
ta

n
c
e
 p

re
c
is

io
n

Reduction ratio

bfs
merge+prune

prune

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
c
c
e
p
ta

n
c
e
 p

ro
b
a
b
ili

ty

Reduction ratio

bfs
merge+prune

prune

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
ra

ff
ic

 e
rr

o
r

Reduction ratio

bfs
merge+prune

prune

(b) From left: AP , Prob, and TE for backdoor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
c
c
e
p
ta

n
c
e
 p

re
c
is

io
n

Reduction ratio

bfs
merge+prune

prune

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
c
c
e
p
ta

n
c
e
 p

ro
b
a
b
ili

ty

Reduction ratio

bfs
merge+prune

prune

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
ra

ff
ic

 e
rr

o
r

Reduction ratio

bfs
merge+prune

prune

(c) From left: AP , Prob, and TE for spyware.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6

A
c
c
e
p
ta

n
c
e
 p

re
c
is

io
n

bfs
merge+prune

prune

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.1 0.2 0.3 0.4 0.5 0.6

A
c
c
e
p
ta

n
c
e
 p

ro
b
a
b
ili

ty

Reduction ratio

bfs
merge+prune

prune

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.1 0.2 0.3 0.4 0.5 0.6

T
ra

ff
ic

 e
rr

o
r

Reduction ratio

bfs
merge+prune

prune

(d) From left: AP , Prob, and TE for pop3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
c
c
e
p
ta

n
c
e
 p

re
c
is

io
n

Reduction ratio

bfs
merge+prune

prune

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
c
c
e
p
ta

n
c
e
 p

ro
b
a
b
ili

ty

Reduction ratio

bfs
merge+prune

prune

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T
ra

ff
ic

 e
rr

o
r

Reduction ratio

bfs
merge+prune

prune

(e) From left: AP , Prob, and TE for sprobe.

Figure 5.4: Results for l7-all, backdoor, spyware, pop3, and sprobe.

54

Figures 5.4 show the trade-offs achieved by our different reduction strategies on chal-
lenging RE matching problems. In particular, bfs, border-prune (denoted as “prune”), and
the combination of merging and border-pruning (denoted as “merge-prune”).

Figure 5.4a shows results for the NFA describing l7-all. We observe that the particular
reduction techniques provide a different quality of the trade-offs. In particular, bfs is not
capable of producing any useful approximation. Further, we can observe that merge-prune
dominates for reduction ratios lower than 0.3, but it is significantly outperformed by prune
for higher ratios. The figures show that these trends are preserved for all our metrics. Note
that, in this case, the original NFA accepts around 17% of the traffic, and using the prune
technique, we obtain a reduced NFA having only a half of the states with almost the same
acceptance probability Prob.

The reduction trade-offs that we obtain for the NFA of the backdoor attack are plotted
in Figure 5.4b. The bfs reduction is again significantly outperformed by both the prune
and merge-prune methods when AP is considered. Note that these two techniques provide
reductions that achieve almost a 100 % AP with negligible traffic error using only 35 %
of the states of the original NFA. As the NFA accepts only 0.2 % of the traffic, we can
obtain the accepting probability Prob that is close to this value using only 22 % of its states
regardless of the reduction used.

We observed similar trends also for the smallest automata pop3 and sprobe (see Fig-
ures 5.4d and 5.4e) where almost a 0 % Prob and TE was achieved using only 20 % and
25 % states, respectively. In the case of sprobe, AP for reduction ratios between 0.55 and
0.65 the bfs reduction outperforms both the prune and the merge-prune reductions.

Finally, we report the results for spyware REs in Figure 5.4c. We can see that, w.r.t. AP ,
prune lags behind the other two techniques for reduction ratios between 0.15 and 0.35 (sim-
ilar trend as for sprobe). For higher reductions, all techniques provide AP close to 100 %.
Similar trends can be observed also for the Prob metric. Note that the original NFA accepts
about 3.5 % of the input traffic only.

The experiments conducted in this subsection clearly demonstrate that the proposed
reduction techniques are able to provide high-quality trade-offs between the precision and
the reduction factors. They also show that our techniques can outperform the baseline
bfs-reduction and can handle very complex NFAs (having more than 10k states), where
existing methods (such as those presented in Chapter 4) fail.

5.3.2 The Real Impact in an FPGA-Accelerated NIDS

We will use the reduced NFAs from the previous section to obtain instances of NFAs that
can be used in FPGA-based NIDSes to effectively decrease the amount of traffic that the
software part of the NIDS needs to process. We synthesize our designs for a card with the
Xilinx Virtex UltraScale+ VU9P FPGA chip, which contains 1,182k LUTs (other resources
are in our case always dominated by the number of LUTs). From our experience, it is
possible to use up to 70 % of the LUTs available on the FPGA and successfully route
designs at the considered frequency (200 MHz), which leaves us with 827k LUTs that we
can use. Moreover, the components that we use for receiving packets and transferring
them to the CPU consume around 90k LUTs, we are therefore left with 737k LUTs for RE
matching. In the RE matching unit, we use the pipelined NFA architecture described in
Section 5.1 instantiated with 8-bit data-width of the NFAs, which gave us the best results.

Our goal is to obtain single-box NIDSes using a combination of hardware preprocessing
and a software NIDS. This means that the task of the hardware accelerator is to decrease

55

Table 5.2: FPGA resources of the architectures based on reduced NFAs. Settings exceed-
ing FPGA resources are highlighted.

Speed backdoor spyware l7-all
Precise 2 % of tr. Precise 4 % of tr. 5 % of tr. Precise 43 % of tr.

100 236k 149k 5M 227k 131k 1.8M 512k
200 473k 299k 10M 453k 262k – –
400 946k 597k 20M 907k 524k – –

the amount of the traffic entering the software part as much as possible while keeping all
suspicious packets. Below, we provide results of our experiments for some of the considered
sets of REs. We tried to compile architectures based on reduced NFAs for the speeds 100,
200, and 400 Gbps.

backdoor. In the first part of Table 5.2, we present consumption of FPGA resources for
the Snort’s backdoor module. The architecture with the original NFA (column Precise),
can process traffic up to 200 Gbps only (the precise NFA consumes 3,695 LUTs). In order
to process 400 Gbps, it is necessary to use a reduced NFA. The architecture based on the
reduced NFA takes ∼597k LUTs. The reduced NFA decreased the amount of traffic sent to
the CPU to 2 % (i.e., 8 Gbps). We stress that the reduced NFA has AP more than 93 %
and TE around 0.01 % (Figure 5.4b) and therefore only a small fraction of packets are
misclassified.

spyware. Our results for the Snort’s spyware module are shown in the second part of
Table 5.2. This module is much more complex than backdoor, since its precise NFA takes
∼78k LUTs (spyware has about 3 times more states than backdoor). Therefore, to obtain
throughput of 100 Gbps and above, reduced NFAs are needed. For 100 Gbps and 200 Gbps
we used a reduced NFA decreasing the amount of traffic sent to the CPU to 4 % (i.e.,
4 Gbps for 100 Gbps and 8 Gbps for 200 Gbps). As in the previous case, the reduced NFA
has a high precision (98 %) with the traffic error 0.04 % (Figure 5.4c). For 400 Gbps, more
drastic reduction is needed. For this throughput we used a reduced NFA decreasing the
amount of traffic sent to software below 5 % (i.e., 18.8 Gbps). Although 18.8 Gbps is on
the edge of capabilities of current SW-based NIDSes we were still able to get quite high
precision (∼72 %) with the traffic error 1.3 %.

l7-all. Our most challenging example is from the l7-all RE set. Although the size of
the precise automaton is not as large as for spyware (the precise NFA for l7-all consumes
27,650 LUTs), it is less amenable for approximate reduction because, in contrast to Snort
modules, it contains REs that are matched by many packets. The results for the l7-all
RE set are shown in the third part of Table 5.2. Our best solution reduces the input traffic
from 100 Gbps to 42.8 Gbps and uses ∼512k LUTs. The reduced NFA has a precision of
39 % with the traffic error 26 %.

sprobe and pop3. The sets of REs for sprobe and pop3 are, on the other hand, quite
less challenging. The precise NFAs consume only 195 and 1,721 LUTs, respectively, so we
can easily obtain a precise design at 400 Gbps using ∼50k and ∼440k LUTs, respectively.

56

The experiments conducted in this section clearly demonstrate the practical potential of
our approach. The key observation is that the resource reductions provided by the reduced
NFAs directly depend on the characteristics of the underlying NFAs (both the precise NFA
and the reduced variants) and the typical traffic. Apart from the size of the precise NFA,
there are two crucial characteristics: (i) whether the number of packets accepted by the
precise NFA is low and (ii) whether the reduction can compress the NFA while not increasing
the number of accepted packets too much. If both these conditions are met (as for backdoor
and spyware), we observe drastic resource savings allowing us to achieve throughput of the
resulting NIDSes going beyond 100 Gbps, which is encouraging for REs of such size and
complexity. On the other hand, if the original NFA is large, accepts many packets, and
highly precise reductions achieve only moderate reductions (as for l7-all), our approach
provides only moderate savings and ensuring 100 Gbps remains beyond the edge of what
we can achieve.

5.4 Conclusion
In this chapter, we have leveraged techniques for lightweight approximate reduction of NFAs
steered by a multiset of strings representing a typical network traffic. Our approximate re-
ductions can handle large NFAs used in network traffic filtering. Moreover, these reductions
allow RE matching of a set of Snort modules on speeds significantly beyond the capabil-
ities of state-of-the-art single-box solutions, namely 100, 200, and even 400 Gbps, which
proves a practical impact of our approach. The use of the approximate reduction allowed
us to significantly decrease the size of the NFAs while keeping the number of false positives
low (e.g., for Snort’s spyware module, we obtained a reduction to 28 % of the original size
while keeping the error below 2 %). The work on which this chapter is based was published
in the proceedings of FCCM’19 [306] (the original paper [306] contains, moreover, a novel
multi-stage architecture—not mentioned in this chapter—pushing the practical usability of
this approach even further).

A possible direction of a further research can include a refinement of the border-pruning
reduction with additional information about the significance of border states or a position
of states in the automaton.

57

Part II:
Automata in Decision Procedures

58

Chapter 6

Automata in Decision Procedures

Mathematical logic, from its beginning in ancient Greece, is a strong tool for a precise
description of facts, and forms a basis for exact reasoning. In the context of computer
science, (formal) logic is often used to express properties of systems in a precise and concise
way. For instance in formal verification, in particular model-checking, a formula in a suitable
logic encodes the desired behavior of a system and it is then checked whether the system
satisfies the formula.

Logic has attracted great interest of researchers from the beginning of 20th century when
Hilbert formulated a program of axiomatization of mathematics to avoid inconsistencies and
paradoxes. However, a few years later Gödel proved, in his famous incompleteness theorems,
that this program is hard to achieve (basically by proving that even Peano arithmetic is
incomplete and that it is not possible to prove consistency within the theory).

This result, together with the pioneering work of Turing and the blossom of computers
launched a haunt for decidable logics/theories and their efficient decision procedures. Even
though validity checking of first-order (FO) logic is undecidable, there are expressible the-
ories/logics that are decidable, such as Presburger arithmetic [231], quantifier-free theory
of strings [197], theory of real-closed ordered fields [266], or even various monadic second-
order logics [66, 237]. A cricial requirement put on decision procedures is nowadays their
efficiency, because the decision procedures form a fundamental stone in many applications
ranging from software and/or hardware verification across synthesis of systems to artificial
intelligence.

In this thesis, we, in particular, deal with automata in decision procedures. The con-
nection between finite automata and logics was already proposed in seminal works [66, 65,
237, 97] relating monadic second-order logics (MSO) with finite automata. The decision
procedures we propose, like the multiple classical decision procedures, use automata to
represent (at least partially) all models of a given formula. However, note that the use of
automata is not limited to represent models only, e.g., in Chapter 9, we use automata as
an efficient representation of a proof graph in the context of the theory of strings. In this
chapter, we focus on a brief introduction to automata-based decision procedures for the
weak monadic second-order logic of k successors (WSkS) and for Presburger arithmetic as
they are the basis for the following chapters.

Chapter outline. This chapter serves as an introduction to WSkS and Presburger arith-
metic for the following chapters. Section 6.1 introduces necessary definitions related to fi-
nite tree and word automata. Section 6.2 focuses on the definition of syntax and semantics
of WSkS, its decision procedures (as presented in [138, 141]), and applications of WSkS.

59

Section 6.3 then deals with Presburger arithmetic, its definition, decision procedures, and
applications. Finally, Section 6.4 touches upon the complexity results, expressivity, and the
SkS logic.

6.1 Preliminaries
In this chapter, we assume the definitions related to functions, trees, tree automata, and
word automata from Chapter 2. We extend them with definitions used in the rest of the
chapter.

Tree automata. Let A = (Q,Σ, δ, I, R) be a TA. We extend δ to a set of symbols
Γ ⊆ Σ as δΓ =

⋃{δa(q1, . . . , qk) | a ∈ Γ}. Let Σ′ be an alphabet and π : Σ′ → 2Σ be
a function. Then the projection of A w.r.t. π is defined as π(A) = (Q,Σ′, δ′, I, R) where
δ′a(q1, . . . , qk) = δπ(a)(q1, . . . , qk). The set reachδ(S) of states reachable from a set S ⊆ Q
through δ-transitions is computed as the least fixpoint

reachδ(S) = µZ. S ∪
⋃

q1,...,qk∈Z
δ(q1, . . . , qk). (6.1)

The reachability is used to compute the derivative with respect to a for some a ∈ Σ as
A−a = (Q,Σ, δ, reachδa(I), R): the new leaf states are all those reachable from I through
a-transitions.

Word automata. Although word automata can be seen as 1-ary tree automata where
unary trees are read in the top-down manner (not bottom-up), for the sake of simplicity
we use the formalism of NFAs in the decision procedure of Presburger arithmetic. For
this reason, we adjust the operations defined for TAs in the previous paragraph also to
NFAs. Let A = (Q,Σ, δ, I, F) be an NFA, Σ′ be an alphabet, and π : Σ′ → 2Σ be a
function. Then the projection of A w.r.t. π is defined as π(A) = (Q,Σ′, δ′, I, F) where
δ′(q, a) =

⋃
b∈π(a) δ(q, b). Similarly to the case of TAs, the derivative of A with respect to

a∗ for some a ∈ Σ is defined as A− a∗ = (Q,Σ, δ, I, reachδ−1(·,a)(F)).

6.2 Weak Monadic Second-order Logic of k Successors
Weak monadic second-order logic of k successors allows reasoning about regular properties
of k-ary trees. As the name suggests it is a logic that allows quantification over second-order
variables, which we denote by upper-case letters X,Y, . . . and range over finite sets of tree
positions in {1, . . . , k}∗. The weak in the name reflects finiteness of variable assignments
and k denotes the number of successors. In this section, we describe syntax and semantics
of WSkS, its decision procedures, and in the last part also applications of WSkS. This
section is based on definitions and notations used in [138, 141].

6.2.1 Syntax and Semantics

Atomic formulae (atoms) of WSkS are of the form (i) X ⊆ Y and (ii) X = Si(Y) for
i ∈ {1, . . . , k}. Formulae are constructed from atoms using the logical connectives ∧,¬,
and the quantifier ∃X where X is a finite set of variables (we write ∃X when X is the singleton
set {X}). Other connectives (such as→ or ∀) and predicates (such as the predicate Sing(X)

60

1

11 12 21

(a) Positions assigned to Y

0 0ε

1 11

0 111

⊥ ⊥
0 112

⊥ ⊥

1 02

0 121

⊥
1 0212

⊥ ⊥

⊥

(b) The minimal encoding of κ

0 0ε

1 11

0 111

0 0111

⊥ ⊥

⊥
0 112

0 0121

⊥ ⊥

⊥

1 02

0 121

⊥
1 0212

⊥ ⊥

⊥

(c) A non-minimal encoding of κ

Figure 6.1: Consider a set of variables X = {X,Y } and an assignment κ = {X 7→
{1, 2, 212}, Y 7→ {1, 11, 12, 21}} in WS2S. In (a), we show positions assigned to variable Y .
The minimal encoding of κ into a binary tree is shown in (b), and an encoding that is not
minimal is shown in (c).

for the singleton set X) can be obtained as syntactic sugar (e.g., we can define the emptiness
predicate X = ∅ as ∀Y. X ⊆ Y and the singleton predicate Sing(X) as ¬(X = ∅)∧∀Y. Y ⊆
X → ((Y ⊆ X ∧ X ⊆ Y) ∨ Y = ∅)). Despite it is not a basic connective, we use the
disjunction in optimizations presented in the following chapters, so we mention it below
too.

A model of a WSkS formula ϕ(X) with the set of free variables X is an assignment
ν : X → 2{1,...,k}

∗ of the free variables of ϕ to finite subsets of {1, . . . , k}∗ for which the
formula is satisfied, written ν |= ϕ. Satisfaction of WSkS formulae is defined as follows:

(i) ν |= X ⊆ Y iff ν(X) is subset of ν(Y),

(ii) ν |= X = Si(Y) iff ν(X) = {p.i | p ∈ ν(Y)} for i ∈ {1, . . . , k},

(iii) ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2,

(iv) ν |= ϕ1 ∨ ϕ2 iff ν |= ϕ1 or ν |= ϕ2,

(v) ν |= ¬ϕ iff not ν |= ϕ, and

(vi) ν |= ∃X. ϕ iff there is a finite M ⊆ {1, . . . , k}∗ s.t. ν / {X 7→M} |= ϕ.

Informally, the Si(Y) function returns all positions from Y shifted to their i-th child.
Satisfaction of formulae built using Boolean connectives and the quantifier is defined as
usual. A formula ϕ is valid, written |= ϕ, iff all assignments of its free variables are
its models, and satisfiable iff it has a model. W.l.o.g., we assume that each variable in
a formula either has only free occurrences or is quantified exactly once.

6.2.2 Representing Models as Trees

Let X be a finite set of variables. A symbol ξ over X is a (total) function ξ : X → {0, 1};
e.g., ξ = {X 7→ 0, Y 7→ 1} is a symbol over X = {X,Y }. We use ΣX to denote the set
of all symbols over X and ~0 to denote the symbol mapping all variables in X to 0, i.e.,
~0 = {X 7→ 0 | X ∈ X}.

A finite assignment ν : X→ 2{1,...,k}
∗ of the free variables of a formula ϕ can be encoded

as a finite tree τν of symbols over X where every position p ∈ {1, . . . , k}∗ satisfies the
following conditions: (a) if p ∈ ν(X), then τν(p) contains {X 7→ 1}, and (b) if p /∈ ν(X),

61

then either τν(p) contains {X 7→ 0} or τν(p′) = ⊥ for some prefix p′ of p (note that
the occurrences of ⊥ in τ are limited since τ still needs to be a tree). Observe that ν
can have multiple encodings: the unique minimal encoding τmin

ν and (infinitely many)
extensions of τmin

ν with ~0-only trees. See Figure 6.1 for an example of an assignment
and its encodings. The language of ϕ is defined as the set of all encodings of its models
L (ϕ) = {τν ∈ ΣX | ν |= ϕ and τν is an encoding of ν}.

Let ξ be a symbol over X. For a set of variables Y ⊆ X, we define the projection of ξ
with respect to Y as the set of symbols πY(ξ) = {ξ′ ∈ ΣX | ξ|X\Y ⊆ ξ′}. Intuitively, the
projection removes the original assignments of variables from Y and allows them to be
substituted by any possible value. We define πY(⊥) = ⊥ and write πY if Y is the singleton
set {Y }. As an example, for X = {X,Y } the projection of ~0 with respect to {X} is
given as πX(~0) = {{X 7→ 0, Y 7→ 0}, {X 7→ 1, Y 7→ 0}}. Further, we define the inverse
projection of ξ with respect to Y as π[Y(ξ) = {ξ|Y}. Intuitively, the inverse projection
keeps only those assignments of variables that belong to Y. Consider for example the
symbol ξ = {X 7→ 1, Y 7→ 0, Z 7→ 1} over X = {X,Y, Z}. The inverse projection of ξ
w.r.t. Y = {Y, Z} is given as π[Y(ξ) =

{
{Y 7→ 0, Z 7→ 1}

}
. The definition of projection can

be extended to trees τ over ΣX so that πY(τ) is the set of trees {τ ′ ∈ ΣX | ∀p ∈ dom(τ) :
if τ(p) = ⊥, then τ ′(p) = ⊥, else τ ′(p) ∈ πY(τ(p))} and subsequently to languages L so
that πY(L) =

⋃{πY(τ) | τ ∈ L}. All these definitions can be naturally extended also to the
inverse projection.

6.2.3 Decision Procedure for WSkS

In this section, we focus on decision procedures for WSkS. The first part is devoted to
the decision procedure based on the (tree) automata-logic connection as introduced in [66,
268, 98]. The second part then deals with various approaches to deciding WSkS and
optimizations of the classical decision procedure as well as with decision procedures of
closely related logics.

The classical decision procedure for WSkS. The classical decision procedure for the
WSkS logic goes through a direct construction of a TA Aϕ = (Q,Σ, δ, I, R) having the same
language as a given formula ϕ (see [82] for more detailed description). The satisfiability
checking of ϕ is then equivalent to the emptiness test of Aϕ, which can be implemented
through the equivalence L (Aϕ) 6= ∅ if and only if reachδ(I) ∩R 6= ∅.

The automaton Aϕ is constructed by induction to the structure of ϕ. Namely, if ϕ is an
atomic formula with free variables X, then Aϕ is a pre-defined base TA over ΣX (we show
those TAs for WS2S in Figure 6.2). Otherwise, if ϕ is not atomic, then Aϕ is built from
the automata corresponding to subformulae of ϕ as follows.

(i) If ϕ = ψ1 ∧ ψ2 then, for Aψ1 over alphabet ΣX and Aψ2 over alphabet ΣY the Aϕ
over alphabet ΣX∪Y is given as Aϕ = π[X(Aψ1) ∩ π[Y(Aψ2). The π[-transformation of
automata Aψ1 and Aψ2 , respectively, into automata with compatible alphabets over
variables X ∪ Y is called the cylindrification.

(ii) If ϕ = ψ1∨ψ2 then, for Aψ1 over alphabet ΣX and Aψ2 over alphabet ΣY, analogically
to the previous case, Aϕ = π[X(Aψ1) ∪ π[Y(Aψ2).

(iii) If ϕ = ¬ψ, then Aϕ = A{ψ.

62

a b
{
X 7→7→a
Y 7→7→b

}
=

r0

2

1

1 1
2

1

0 1

1 2

0 0

(a) AX⊆Y

k0

k1
1

2

0 1

1

2

1 1

21

0 0

2 1
1 0

(b) AX=S1(Y)

`0

`1
2

1

0 1

2

1

1 1

21

0 0

2 1
1 0

(c) AX=S2(Y)

Figure 6.2: Tree automata for atomic WS2S formulae. Transitions are represented using
multiple-source hyper-edges. For instance, the transition (k0, k1)

1 1−−→ k1 in AX=S1(Y) is
represented by the hyper-edge with sources k0 and k1 over the symbol 1 1 = {X 7→ 1, Y 7→
1} that joins just before entering k1. The 1 and 2 labels on the “legs” of the hyper-edge
going to k0 and k1 denote the position in the left-hand side of the transition (1 and 2 stand
for “first” and “second”).

0ε

11

111

⊥ ⊥
112

⊥ ⊥

02

121

⊥ ⊥
⊥

Figure 6.3: The minimal encoding of a model after the projection

(iv) If ϕ = ∃X. ψ, then the automaton Aϕ is constructed as det(πX(Aψ))−~0 . The projec-
tion implements the quantification by forgetting the values of the X component of all
symbols. Since this yields non-determinism, projection is followed by determinization
by the subset construction and saturation of leaf states.

Points (i)–(iii) are self-explanatory. In the case of point (iv), saturating the set of leaf
states is needed to ensure that every encoding of every model is accepted. Indeed, if some
were not accepted, the inductive construction could produce a wrong result. For instance,
language complementation would not complement the set of encoded models since some of
the encoded models could possibly belong to the original language and its complement.

Consider, for example, a formula ψ having the language L (ψ) given by the tree τν in
Figure 6.1b and all its ~0-extensions. To obtain L (∃X.ψ), it is not sufficient to forget the
values of the X component because the projected language does not contain the minimal
encoding shown in Figure 6.3, only its extensions (the minimal one would hence be present
in the complement of the language). The saturation of the set of the leaf states includes
the minimal encoding into the language. See [82] for more details.

Related decision procedures and optimizations. The classical automata-based pro-
cedure for WS1S/WS2S is implemented in the Mona tool [143, 105]. Mona uses deter-
ministic TAs, represented by multiterminal BDDs, with a procedure based on eager mini-
mization [173, 172]. On top of that Mona employs various heuristics, e.g., automata with
“don’t care” states or optimized handling of first-order variables [171]. Observations and

63

heuristics related to the implementation of WS1S decision procedure were also summarized
in [125].

Although Mona achieves a good overall performance, there are still formulae that are
too difficult for Mona, such as formulae with quantifier alternations requiring series of
determinization and complementation steps. The works [111, 112] overcome this issue in
the context of WS1S by a symbolic representation of NFAs with an on-demand evaluation
of the expensive automata operations. A similar decision procedure of WS1S based on an
idea of Brzozowski’s derivative was studied in [273].

Regarding the logics closely related to WSkS the monadic second-order logic of strings
(MSO(Str)) can be implemented using a similar automaton-based decision procedure (e.g.,
Mona implements MSO(Str) on the top of the WS1S decision procedure). The classical
automata-based decision procedure of MSO(Str) is implemented (except of Mona), e.g.,
within the jMosel tool [272]. In particular, jMosel uses second-order value numbering
reducing the amount of redundancy during the automata construction [199]. Another ap-
proach to the MSO(Str) decision procedure employs symbolic finite automata (automata
with transitions labelled with predicates over some effective Boolean algebra) [90].

As we mentioned at the beginning, WSkS can express regular properties of trees. The
work [121] brings a decision procedure, based on Shelah’s composition method, for a MSO
over inductive structures, allowing reasoning about more general structures (structures with
bounded clique width).

The mentioned decision procedures for WSkS were more model-based approaches. In
the end, we mention a complete axiomatization of MSO over finite trees [123] that could
open doors to decision procedures of WSkS based on automated theorem proving.

6.2.4 Applications

The WSkS logic, and in particular the solver Mona, found a various range of applications.
The first application field covers the verification of pointer programs with dynamic liked
data structures. In [157] the authors proposed the verification of restricted Pascal-based
pointer programs using MSO(Str). Later on, the verification of pointer programs with
complex data structures using encoding the partial specifications into WSkS was consid-
ered [215]. Verification of pointer programs using separation logic extended with arithmetic
and set constraints was studied in [78]. Combination of constraints allows to express reach-
ability properties (e.g., capturing all nodes of a list to prove preservation of elements during
sorting). The arithmetic and set constraints are expressed in Presburger arithmetic/WS1S
and solved by Mona. The verification based on separation logic is not the only considered
direction. In [195, 196] the authors present the Strand logic allowing to express a combina-
tion of properties of heaps with properties of the heap nodes. Strand is then used to reason
about the correctness of pointer programs. The decision procedure is based on a translation
into WSkS. A slightly different approach was proposed in [302] where the verification of
linked data structures is performed by verifying specifications written in higher-order logic
(HOL). Formulas in HOL are splitted and approximated to obtain formulas of decidable
fragments of various logics including WSkS.

Applications of WSkS are not limited only to verification of pointer programs but in-
clude also verification of string transformation programs via encoding the programs in
MSO(Str) [267] or verification of programs with arrays [305]. In the later, the authors
propose an expressive FO theory of arrays of bounded elements with a decision procedure

64

based on a reduction to WS1S. Other related topics include verification of protocols [256]
or reactive systems [174, 170].

To conclude the applications in verification, we give a brief overview related to verifica-
tion of parametric systems and hardware verification. The work [33] focuses on verification
of parametric networks of finite-state processes. Their approach is based on a representa-
tion of networks by a WS1S transition system (system with transitions described in WS1S),
which is further abstracted into a finite state system and then analyzed by model-checking
techniques. Another approach was proposed in [58] where the authors propose a technique
for the verification of safety properties of parametric systems using the automata-logic
connection of WS1S. A tool support for the verification of parametric was proposed in [48]
where the authors bring a high level interface for Mona used to express parametric systems,
their abstraction, and the validation of safety properties. Regarding hardware verification
we mention verification of sequential circuits based on their description in MSO(Str) [32].

Finally, applications of WSkS in synthesis include synthesis of sequential systems [22],
synthesis of safety controllers for web services [249], synthesis of a control program based on
specification in MSO(Str) [152], or synthesis of functions from regular specifications [135].
As a concluding remark we mention an application of WSkS in linguistics [217], or the
work [155] dealing with the satisfiability checking of a fragment of separation logic using
translation of a formula into MSO over structures with bounded tree-width.

6.3 Presburger Arithmetic
Presburger arithmetic is a first-order theory allowing reasoning about linear expressions
over natural numbers. Presburger arithmetic contains the addition operation with the
relation of comparison ≤ (in the literature Presburger arithmetic used to be defined with
equality instead of ≤ but for the purposes of the automata based approach we use ≤). Note
that multiplication is not included as it leads to the undecidable Peano arithmetic. In this
section, we give a brief description of syntax and semantics of Presburger arithmetic, its
decision procedures, and in the last part we list also some of the applications.

6.3.1 Syntax and Semantics

Regarding the syntax, we start with the definition of terms. Terms are constructed using
the following grammar:

t ::= x | 0 | 1 | t+ t, (6.2)

where x is a first-order variable, which we denote by lower-case letters, ranging over numbers
from ω. Atomic formulae (atoms) are built from terms using the only predicate symbol ≤.
Formulae are constructed from atoms using the connectives ∨, ¬, and the quantifier ∃x.
Other terms (e.g., n = 1 + · · ·+ 1︸ ︷︷ ︸

n−times

or nx = x+ · · ·+ x︸ ︷︷ ︸
n−times

where x is a variable and n ∈ ω),

predicates (e.g., <, =), and connectives (e.g., ∧,∀) can be obtained as syntactic sugar.
A model of a Presburger formula ϕ(X) with free variables X is a mapping σ : X → ω

assigning natural numbers to free variables of ϕ. Satisfaction of a formula ϕ under σ,
denoted as σ |= ϕ, is defined as follows:

(i) σ |= t1 ≤ t2 iff [t1]σ ≤ [t2]σ,

(ii) σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2,

65

(iii) σ |= ¬ϕ iff not σ |= ϕ, and

(iv) σ |= ∃x. ϕ iff there is a ∈ ω s.t. σ / {x 7→ a} |= ϕ,

and the valuation [·]σ of a term t w.r.t. σ is inductively defined as (i) [0]σ = 0, [1]σ = 1,
(ii) [x]σ = σ(x), and (iii) [t1 + t2]σ = [t1]σ + [t2]σ. Validity and satisfiability of a formula ϕ
are defined as usual.

6.3.2 Representing Models as Words

In this section we, using the notions of Section 6.2.2, encode models of a Presburger formula
ϕ(X) as finite words of symbols over X. For that, we first define the function bin : ω →
{0, 1}∗ s.t. for a number n ∈ ω, bin(n) is the least-significant-bit-first binary encoding of
n. For example, bin(12) = 0011. An assignment σ : X→ ω of the free variables of formula
ϕ is then encoded by a finite word wσ over ΣX as follows: (a) if bin(σ(x))i = v then wσ
contains {x 7→ v} at position i, and (b) if |wσ| > |bin(σ(x))| then wσ contains {x 7→ 0} at all
positions |bin(σ(x))| ≤ i < |wσ|. Intuitively, wσ encodes the value of σ(x) for each x ∈ X as
a binary number. As in the case of WSkS, an assignment σ can be encoded using multiple
words; the unique minimal encoding wmin

σ and encodings extending wmin
σ with a suffix from

~0∗. The language of ϕ is then defined as a set of words encoding models of ϕ. In particular,
L (ϕ) = {wσ ∈ ΣX | σ |= ϕ and wσ is an encoding of σ}. For example, consider a formula
ψ , x = 2 ∧ y = 0. The language of ψ is given as L (ψ) = 0 0 . 1 0 .

{
0 0

}∗ where a b
denotes the symbol {x 7→ a, y 7→ b}.

6.3.3 Decision Procedure for Presburger Arithmetic

This section is devoted to decision procedures for Presburger arithmetic. In the first part, we
describe the automata-based procedure based on translation of a formula into an automaton
having the same language. The automata-based decision procedure is based on an idea
of [65] and was further studied, e.g., in [57, 290]. In the second part, we give a brief
overview of other decision procedures for Presburger arithmetic.

The automata-based decision procedure. The automata-based decision procedure
constructs (as in the case of WSkS) for a Presburger formula ϕ the NFA Aϕ s.t. L (ϕ) =
L (Aϕ). Satisfiability checking of ϕ is implemented through checking emptiness of Aϕ. The
emptiness checking for NFAs is realized via checking of reachability of a final state. The
automaton Aϕ is then constructed inductively w.r.t. the structure of ϕ as follows:

(i) For an atomic formula of the form ϕ = a · x ≤ b with free variables X where a ∈ Zn,
b ∈ Z, and x ∈ Xn, the automaton Aϕ is constructed iteratively in a way that the
languages of its states q ∈ Z encode all β ∈ ωn s.t. a · β ≤ q. See [106] for more
details. An example of an atomic formula with the corresponding NFA is shown in
Figure 6.4.

(ii) If ϕ = ψ1 ∨ ψ2 then, for Aψ1 over alphabet ΣX and Aψ2 over alphabet ΣY, the
automaton Aϕ is constructed as Aϕ = π[X(Aψ1) ∪ π[Y(Aψ2).

(iii) If ϕ = ¬ψ, then Aϕ = A{ψ.

(iv) If ϕ = ∃x. ψ, then the automaton Aϕ is constructed as det(πx(Aψ))−~0∗.

66

a b
{
x7→7→a
y7→7→b

}
=

1 0 −1

0 1

0 1

0 0 1 0

0 0 1 1

1 0

0 1 1 1

0 0 1 0

Figure 6.4: NFA Aψ for the atomic formula ψ , x− 2y ≤ 1.

The points (ii)–(iv) directly corresponds to the WSkS decision procedure (with a different
kind of automata though). The main difference is in the construction of the NFAs for
atomic formulae.

Other decision procedures for presburger arithmetic. The automata-based deci-
sion procedure of Presburger arithmetic is implemented, e.g., within the tools Lash [49] or
Mona. The automata-based approach is not the only way to decide Presburger arithmetic.
The original argument of decidability of Presburger arithmetic, given by Presburger himself,
was based on quantifier elimination [231]. A variant of quantifier elimination was further
given by Cooper [84]. Note that Presburger arithmetic itself does not support quantifier
elimination–the theory needs to be augmented with the divisibility predicate.

Except of the aforementioned approaches for solving full Presburger arithmetic (i.e.,
including quantifiers), there are techniques aiming at fragments of Presburger arithmetic,
in particular the quantifier-free fragment. In this case, the satisfiability of an atomic formula
can be checked using the Branch-and-bound method (or its variations, for instance [103])
and a conjunction of atoms can be checked using the Omega test (see e.g., [178] for more
details). Some of these techniques are implemented within state-of-the-art SMT solvers,
such as Z3 [218] or CVC4 [31].

6.3.4 Applications

Presburger arithmetic found its applications in various fields of computer science. In this
section, we pick up just a few results relating applications of Presburger arithmetic in formal
verification, in particular in verification of programs with integer variables.

Linear relation analysis (LRA) [86], as an application of abstract interpretation, repre-
sents control points of a program by a system of linear inequalities expressing possible values
of variables at that point in order to approximate the reachable configurations. In some
cases, it is possible to give even a precise representation of reachable configurations (such
a technique is called acceleration). The goal of this approach is to represent a transition
closure of program loops (in other words the set of reachable configurations) in a precise
way, e.g., using a Presburger formula [51, 83, 59, 30]. A combination of acceleration with
different approaches was further used to refine verification of integer programs. In par-
ticular, model-checking based on predicate abstraction with interpolation combined with
acceleration [70, 147], or abstract acceleration in LRA (if it is possible compute the precise
closure using acceleration, otherwise use widening) [128, 129].

Slightly different approaches to verification using Presburger arithmetic include veri-
fication of concurrent systems with integer variables using a symbolic encoding of tran-
sition systems by Presburger formulae [67], or interpolation procedure for quantifier-free

67

Presburger arithmetic with uninterpreted predicates for the verification of programs with
arrays [61].

Outside the field of verification, we mention the application in data array dependence
analysis, where Presburger arithmetic is used to describe the flow of values [232]. The
tool for dependence analysis is included in the Omega library containing also support for
manipulating Presburger formulae [233].

6.4 Complexity, SkS, and Expressivity
In Section 6.2, we defined the WSkS logic in the way to be suitable for the underlying
automata decision procedure. However, from a more logic-theoretic point of view, the
WSkS logic can be also seen as weak monadic second-order logic over the structure of
({1, . . . , k}∗, .1, . . . , .k) where the function symbol .i for 1 ≤ i ≤ k is defined as the con-
catenation of the symbol i at the end of a string. More specifically if we consider unary
encoding of natural numbers, WS1S can be seen as the weak monadic second-order logic
over the structure (ω,+1). Similarly, Presburger arithmetic, defined in Section 6.3, can be
seen as the first-order logic over the structure (ω,+).

Complexity. Intuitively, the automata-based decision procedure for WSkS can suffer
from series of exponential blowups caused by determinization of automata. Indeed, in [264]
a NONELEMENTARY upper bound already for WS1S was given. If we take into
account the automata-based decision procedure, there is a NONELEMENTARY lower
bound for a translation of WS1S formulae to automata. On top of that, the theory of
WS1S is complete for a NONELEMENTARY complexity class meaning that there is no
principally better method for deciding WS1S [242].

In the case of Presburger arithmetic, the situation is slightly more intricate. In [113]
2-NEXP lower bound and in [41] 2-EXPSPACE upper bound for Presburger arithmetic
was given. Regarding the decision procedures, the worst-case complexity of Cooper’s quan-
tifier elimination was proven to be 3-EXP [221]. Although the automata-based decision
procedure is similar to the WSkS decision procedure, which has a NONELEMENTARY
complexity, the complexity is not the case for Presburger arithmetic. As a matter of fact,
the number of states of the minimal DFA for a formula is at most triple exponential in
the size of the formula [169]. Moreover in [100] the authors proved the 3-EXP worst-case
complexity of an automata-based decision procedure based on an analysis of the structure
of the automata obtained during the construction.

The SkS logic. The assumption of quantification over finite sets is sufficient for many
applications. If we relax this assumption we obtain SkS (monadic second-order logic with
k successors). The classical decision procedure for SkS is based, as in the case of WSkS,
on the direct translation of formulae into automata [65, 237]. Models of an SkS formula
are encoded as infinite k-ary trees (the encoding described in Section 6.2.2 can be naturally
generalized also to infinite trees). For this reason, an automaton model accepting infinite
trees is used. The background automaton model for SkS is usually Muller tree (top-down)
automaton1. An infinite tree is accepted by this type of automaton if on each infinite path of
the corresponding infinite run tree, the Muller accepting condition is met (see Section 10.1

1Rabin and Strett tree automata can be used as well. Büchi tree automata have strictly less accepting
power (even the nondeterministic variant). Nondeterministic Büchi automata can be used only for S1S.

68

a{X 7→7→a} =

q1 q2

0

1

1

Figure 6.5: Muller automaton with the accepting condition {{q1}, {q2}} corresponding to
an S1S formula ϕ(X) , ∃Y. Y = S(X) ∧ Y ⊆ X expressing the fact that X contains all
consecutive numbers from some n ∈ ω (or X is the empty set).

Table 6.1: (W)SkS expressiveness results.

Language L Equivalence

Infinite words L is WS1S-definable ⇐⇒ L is S1S-definable

⇐⇒ L is ω-regular

Finite words L is WS1S-definable ⇐⇒ L is regular

Infinite binary trees L is SkS-definable ⇐⇒ L is accepted by a Muller tree automaton

Finite binary trees L is WSkS-definable ⇐⇒ L is a regular tree language

for the definition of Muller accepting condition). An example of an S1S formula with
a corresponding automaton is shown in Figure 6.5.

Expressivity power. Although (W)SkS may seem from the definition of semantics as
a weak logic (regarding its descriptional power), the opposite is true. In fact, it can be
shown that a language of infinite words is ω-regular if and only if is (W)S1S-definable [65]2.
Moreover, for finite words, WS1S defines the class of regular languages and, for finite trees,
WSkS defines the class of regular tree languages [66, 98, 268]. On top of that, every formula
of Presburger arithmetic is equivalently expressible in WS1S. We mentioned that each ω-
regular language can be defined using WS1S. This follows from the effective equivalence of
nondeterministic and deterministic Muller automata and from the fact that an accepting
run of a deterministic Muller automaton can be described using WS1S [242]. However, this
is not possible for WS2S, because deterministic Muller tree automata are strictly weaker
than their nondeterministic variants. An overview of the expressiveness results is shown in
Table 6.1 (see [242] for more details).

2If we want to speak about equivalence of automata and logics, we need to extend (W)SkS by predicates
representing symbols.

69

Chapter 7

Automata Terms in a Lazy WSkS
Decision Procedure

In Chapter 6, we introduced WSkS and its decision procedures. WSkS offers extreme
succinctness for the price of NONELEMENTARY worst-case complexity. However, as
already described in Section 6.2.4, the trade-off between complexity and succinctness may
be turned significantly favourable in many practical cases through a use of clever implemen-
tation techniques and heuristics improving the basic automata-based decision procedure.
Such techniques, as already mentioned in the previous chapter, were then elaborated in the
tool Mona, the best-known implementation of decision procedures for WS1S and WS2S.
Despite the extensive research and engineering effort invested into Mona, it is, however,
easy to reach its scalability limits. Particularly, Mona implements the classical automata-
based decision procedure that builds a tree automaton representing models of the given
formula and then checks emptiness of the automaton’s language (see Section 6.2.3 for more
details). The NONELEMENTARY complexity manifests in that the size of the au-
tomaton is prone to explode, which is caused mainly by repeated determinization (needed
to handle negation and alternation of quantifiers) and synchronous product construction
(used to handle conjunctions and disjunctions). Users of WSkS are then forced to either
find workarounds, such as in [196], or, often restricting the input of their approach, give up
using WSkS altogether [289].

In this chapter, we propose a decision procedure for WS2S. Note that, the restrictions
of two successors does not change the expressive power of the logic since k-ary trees, for
k > 2, can be easily encoded into binary ones. We revisit the use of tree automata in the
WS2S decision procedure and obtain a new decision procedure that is much more efficient
in certain cases. It is inspired by works on antichain algorithms for efficient testing of
universality and language inclusion of finite automata [99, 292, 53, 14], which implement
the operations of testing emptiness of a complement (universality) or emptiness of a product
of one automaton with the complement of the other one (language inclusion) via an on-the-
fly determinization and product construction. The on-the-fly approach allows one to achieve
significant savings by pruning the state space that is irrelevant for the language emptiness
test. The pruning is achieved by early termination when detecting non-emptiness (which
represents a simple form of lazy evaluation), and subsumption (which basically allows one
to disregard proof obligations that are implied by other ones). Our decision procedure
described in this chapter extends and generalizes the approaches of on-the-fly automata
construction, subsumption, and lazy evaluation for the needs of deciding WS2S.

70

Overview of the proposed approach. In our procedure, the TAs that are constructed
explicitly by the classical procedure are represented symbolically by the so-called automata
terms. More precisely, we build automata terms for subformulae that start with a quantifier
(and for the top-level formula) only—unlike the classical procedure, which builds a TA
for every subformula. Intuitively, automata terms specify the set of leaf states of the
TAs of the appropriate (sub)formulae. The leaf states themselves are then represented by
state terms, whose structure records the automata constructions (corresponding to Boolean
operations and quantification on the formula level) used to create the given TAs from base
TAs corresponding to atomic formulae. The leaves of the terms correspond to states of the
base automata. Automata terms may be used as state terms over which further automata
terms of an even higher level are built. Non-leaf states, the transition relation, and root
states are then given implicitly by the transition relations of the base automata and the
structure of the state terms.

Unlike the classical decision procedure, which builds a TA corresponding to a formula
bottom-up, i.e. from the atomic formulae, we build automata terms top-down, i.e., from
the top-level formula. This approach offers a lot of space for various optimizations. Most
importantly, we test non-emptiness of the terms on the fly during their construction and
construct the terms lazily. In particular, we use short-circuiting for dealing with the ∧
and ∨ connectives and early termination with possible continuation when implementing
the fixpoint computations needed when dealing with quantifiers. That is, we terminate
the fixpoint computation whenever the emptiness can be decided in the given computation
context and continue with the computation when such a need appears once the context is
changed on some higher-level term. Further, we define a notion of subsumption of terms,
which, intuitively, compares the terms with respect to the sets of trees they represent, and
allows us to discard terms that are subsumed by others.

We have implemented our approach in a prototype tool. When experimenting with it,
we have identified multiple parametric families of WS2S formulae where our implemen-
tation can—despite its prototypical form—significantly outperform Mona. We find this
encouraging since there is a lot of space for further optimizations and, moreover, our imple-
mentation can be easily combined with Mona by treating automata constructed by Mona
in the same way as if they were obtained from atomic predicates.

Related work. The related decision procedures aiming at WSkS (and not only) are
mentioned in Section 6.2.3. Applications of WSkS are discussed in Section 6.2.4. We
recall here the most relevant works for the contents of this chapter. The tool Mona [143,
105] implements the classical decision procedures for both WS1S and WS2S. It is still the
standard tool of choice for deciding WS1S/WS2S formulae due to its all-around most robust
performance. The efficiency of Mona stems from many optimizations, both higher-level
(such as automata minimization, the encoding of first-order variables used in models, or the
use of multi-terminal BDDs to encode the transition function of the automaton) as well as
lower-level (e.g. optimizations of hash tables, etc.) [173, 171]. The decision procedure for the
MSO(Str) logic was implemented within, e.g., jMosel [272] or within the symbolic finite
automata framework of [90]. In particular, jMosel implements several optimizations allow
it to outperform Mona on some benchmarks. A new decision procedure for the weak mon-
adic second-order logic on inductive structures was developed in [121] within the tool Toss.
The presented approach completely avoids automata; instead, it is based on the Shelah’s
composition method. The paper reports that the Toss tool could outperform Mona on
two families of WS1S formulae, one derived from Presburger arithmetic and one formula of

71

the form that we mention in our experiments as problematic for Mona but solvable easily
by Mona with antiprenexing (an optimization properly discussed in Chapter 8).

The original inspiration for this work are the antichain techniques for checking universal-
ity and inclusion of finite automata [99, 292, 53, 14] and language emptiness of alternating
automata [99], which use symbolic computation together with subsumption to prune large
state spaces arising from subset construction. Antichain algorithms and their generaliza-
tions have shown great efficiency improvements in applications such as abstract regular
model checking [53], shape analysis [134], LTL model checking [293], or game solving [291].

Our approach is a generalization of the works [112] and especially [111] on WS1S.
Although the term structure and the generalized algorithm may seem close to [111], the
reasoning behind it is significantly more involved. Particularly, [111] is based on defining
the semantics (language) of terms as a function of the semantics of their sub-terms. For
instance, the semantics of the term {q1, . . . , qn} is defined as the union of languages of the
state terms q1, . . . , qn, where the language of a state of the base automaton consists of the
words accepted at that state. With TAs, it is, however, not meaningful to talk about trees
accepted from a leaf state, instead, we need to talk about a given state and its context,
i.e., other states that could be obtained via a bottom-up traversal over the given set of
symbols. Indeed, trees have multiple leafs, which may be accepted by a number of different
states, and so a tree is accepted from a set of states, not from any single one of them alone.
We therefore cannot define the semantics of a state term as a tree language, and so we
cannot define the semantics of an automata term as the union of the languages of its state
sub-terms. This problem seems critical at first because without a sensible notion of the
meaning of terms, a straightforward generalization of the algorithm of [111] to trees is not
possible. The solution we present here is based on defining the semantics of terms not as
functions of languages of their sub-terms, but, instead, via the automata constructions they
represent.

Chapter outline. This chapter is organized as follows. Section 7.1 describes an automata-
based decision procedure. Section 7.2 introduces the notion of automata terms and a de-
cision procedure of WS2S based on them. Section 7.3 then presents various optimizations
in the decision procedure. Section 7.4 deals with an experimental evaluation and finally
Section 7.5 concludes the chapter.

7.1 The Explicit Decision Procedure
In this section, we extend the definitions related to trees from Chapters 2 and 6. We
also present a variant of the WS2S automata-based decision procedure considered in this
chapter.

Basics and trees. In this chapter, for a binary operator •, we write A [•]B to denote
the augmented product {a • b | (a, b) ∈ A × B} of A and B. Since we deal with WS2S
in this chapter, we will consider ordered binary trees and binary tree automata. We let
leaf (τ) be the set of all leaves of τ . The sub-tree of τ rooted at a position p ∈ dom(τ)
is the tree τ ′ = {p′ 7→ τ(p.p′) | p.p′ ∈ dom(τ)}. A prefix of τ is a tree τ ′ such that
τ ′|dom(τ ′)\leaf (τ ′) ⊆ τ|dom(τ)\leaf (τ). The derivative of a tree τ with respect to a set of trees
S ⊆ Σ is the set τ − S of all prefixes τ ′ of τ such that, for each position p ∈ leaf (τ ′), the
sub-tree of τ at p either belongs to S or it is a leaf of τ . Intuitively, τ − S are all prefixes

72

aε

b1

c11

⊥ ⊥
c12

⊥ ⊥

c2

a21

⊥ ⊥
⊥

(a) A tree τ over Σ

bε

c1

⊥ ⊥
c2

⊥ ⊥
(b) A tree µ used for the derivative

aε

⊥
c2

a21

⊥ ⊥
⊥

(c) A tree τ ′ from the deriva-
tive of τ with respect to {µ}

Figure 7.1: An example of the derivative. Consider trees τ and µ over the alphabet
Σ = {a, b, c} given in (a) and (b), respectively. The derivative of τ with respect to {µ} is
the set {τ, τ ′} where τ ′ is given in (c).

of τ obtained from τ by removing some of the sub-trees in S. The derivative of a set of
trees T ⊆ Σ with respect to S is the set

⋃
τ∈T (τ − S). See Figure 7.1 for an example of

the derivative.

The explicit decision procedure for WS2S. In this chapter, we use adjusted decision
procedure from Section 6.2.3. In particular, we fix a formula ϕ over variables X. The
decision procedure then again constructs the automaton Aϕ inductively to the structure
of ϕ, as follows (note that we abuse the notation of Aϕ from Section 6.2.3): (i) If ϕ is an
atomic formula, then Aϕ is a pre-defined base TA over whole ΣX. (ii) If ϕ = ϕ1 ∧ ϕ2, then
Aϕ = Aϕ1 ∩Aϕ2 . (iii) If ϕ = ϕ1∨ϕ2, then Aϕ = Aϕ1 ∪Aϕ2 . (iv) If ϕ = ¬ψ, then Aϕ = A{ψ.
(v) Finally, if ϕ = ∃X. ψ, then Aϕ = det(πX(Aψ))− ~0 . Since the base TAs are extended
to symbols over X, it is not necessary to perform cylindrification in the case of ∧ and ∨.
We further implicitly assume that the top-level automaton Aϕ is π[-projected to obtain
alphabet containing only symbols over free variables of ϕ.

7.2 Automata Terms
Our algorithm for deciding WS2S may be seen as an alternative implementation of the
classical procedure from Section 7.1. The main innovation is the data structure of au-
tomata terms, which implicitly represent the automata constructed by the automata op-
erations. Unlike the classical procedure—which proceeds by a bottom-up traversal on the
formula structure, building an automaton for each sub-formula before proceeding upwards—
automata terms allow for constructing parts of automata at higher levels from parts of au-
tomata on the lower levels even though the construction of the lower level automata has not
yet finished. This allows one to test the language emptiness on the fly and use techniques
of state space pruning, which will be discussed later in Section 7.3.

7.2.1 Syntax of Automata Terms.

Terms are created according to the grammar

A ::= S | D (automata term)
S ::= {t, . . . , t} (set term)
D ::= S −~0 (derivative term)
t ::= q | t+ t | t& t | t | πX(t) | S | D (state term)

73

a{X 7→7→a} =

q0

q1

1

2

0

2

1

0

21

0

2 11

(a) ASing(X)

p0

p1

21

0

2 11

(b) AX={ε}

Figure 7.2: Tree automata for the predicates used in Example 7.2.1

starting from states q ∈ Qi, denoted as atomic states, of a given finite set of base automata
Bi = (Qi, δi, Ii, Ri) with pairwise disjoint sets of states. For simplicity, we assume that the
base automata are complete, and we denote by B = (QB, δB, IB, RB) their component-wise
union. Automata terms A specify the set of leaf states of an automaton. Set terms S
list a finite number of the leaf states explicitly, while derivative terms D specify them
symbolically as states reachable from a set of states S via ~0’s. The states themselves
are represented by state terms t. (Notice that set terms S and derivate terms D can be
both automata terms and state terms.) Intuitively, the structure of state terms records
the automata constructions used to create the top-level automaton from states of the base
automata. Non-leaf state terms, the state terms’ transition function, and root state terms
are then defined inductively from base automata as described below in detail. We will
normally use t, u to denote terms of all types (unless the type of the term needs to be
emphasized).

Example 7.2.1. Consider a formula ϕ , ¬∃X. Sing(X) ∧ X = {ε} and its correspond-
ing automata term tϕ =

{
{πX({q0}&{p0})} −~0

}
(we will show how tϕ was obtained

from ϕ later). For the sake of presentation, we will consider the base automata given in
Figure 7.2 for the predicates Sing(X) and X = {ε}. The term tϕ above denotes the TA(
det(πX(ASing(X) ∩ AX={ε}))−~0

){ constructed using the automata operations of intersec-
tion, projection, subset construction, derivative, and complement.

7.2.2 Semantics of Terms.

We will define the denotation of an automata term t as the automaton At = (Q,Δ, I, R).
For a set automata term t = S, we define I = S, Q = reachΔ(S) (i.e., Q is the set of state
terms reachable from the leaf state terms), and Δ and R are defined inductively to the
structure of t. Particularly, R contains the terms of Q that satisfy the predicate R defined
in Figure 7.3a, and Δ is defined in Figure 7.3b, with the addition that whenever the rules in
Figure 7.3b do not apply, then we let Δa(t, t

′) = {∅}. The ∅ here is used as a universal sink
state in order to maintain Δ complete, which is needed for automata terms representing
complements to yield the expected language. In Figures 7.3a and 7.3b, the terms t, t′, u, u′
are arbitrary terms, S, S′ are set terms, and q, r ∈ QB.

The transitions of Δ for terms of the type +, &, πX , · , and S are built from the
transition function of their sub-terms analogously to how the automata operations of the

74

R(t+u)⇔ R(t) ∨R(u) (7.1)
R(t&u)⇔ R(t) ∧R(u) (7.2)

R(πX(t))⇔ R(t) (7.3)
R(t)⇔ ¬R(t) (7.4)

R(S)⇔ ∃t ∈ S.R(t) (7.5)

R(q)⇔ q ∈ RB (7.6)

(a) Root term states

Δa(t+u, t′+u′) = Δa(t, t
′) [+]Δa(u, u

′) (7.7)
Δa(t&u, t′ &u′) = Δa(t, t

′) [&] Δa(u, u
′) (7.8)

Δa(πX(t), πX(t
′)) = {πX(u) | u ∈ ΔπX(a)(t, t

′)} (7.9)
Δa(t, t′) =

{
u | u ∈ Δa(t, t

′)
}

(7.10)

Δa(S, S
′) =

{ ⋃

t∈S,t′∈S′
Δa(t, t

′)

}
(7.11)

Δa(q, r) = δBa (q, r) (7.12)

(b) Transitions among compatible state terms

Figure 7.3: Semantics of terms

product union, product intersection, projection, complement, and subset construction, re-
spectively, build the transition function from the transition functions of their arguments
(cf. Section 12.1). The only difference is that the state terms stay annotated with the par-
ticular operation by which they were made (the annotation of the set state terms are the
set brackets). The root states are also defined analogously as in the classical constructions.

Finally, we complete the definition of the term semantics by adding the definition of
semantics for the derivative term S −~0 . This term is a symbolic representation of the set
term that contains all state terms upward-reachable from S in AS over ~0. Formally, we
first define the so-called saturation of AS as

(S −~0)s = reachΔ~0
(S) (7.13)

(with reachΔ~0
(S) defined as the fixpoint (6.1)), and we complete the definition of Δ and R

in Figures 7.3a and 7.3b with three new rules to be used with a derivative term D:

Δa(D,u) = Δa(D
s, u) (7.14)

Δa(u,D) = Δa(u,D
s) (7.15)

R(D)⇔ R(Ds) (7.16)

The automaton AD then equals ADs , i.e., the semantics of a derivative term is defined by
its saturation.

Example 7.2.2. Let us consider a derivative term t = {πX({q0}&{p0})}−~0 , which occurs
within the nested automata term tϕ of Example 7.2.1. The set term representing all terms
reachable upward from t is then the term

ts = {πX({q0}&{p0}), πX({q1}&{p1}), πX({qs}&{ps}),
πX({q1}&{ps}), πX({q0}&{ps})}.

The semantics of t is then the automaton At with the set of states given by ts.

7.2.3 Properties of Terms.

In this section, we establish properties of automata terms that we will use later when
establishing the correctness of our decision procedure. An implication of the definitions
in the previous section, essential for termination of our algorithm in Section 7.3, is that
the automata represented by terms indeed have finitely many states. This is a direct
consequence of the following lemma.

75

Lemma 7.2.1. The size of reachΔ(t) is finite for any automata term t.

Proof. (Idea) First, we define the depth of a term t, denoted as d(t), inductively as follows:
(i) d(q) = 1 for q ∈ QB, (ii) d(t1 ◦ t2) = 1 +max(d(t1), d(t2)) for ◦ ∈ {&,+}, (iii) d(�t1) =
1 + d(t1) for � ∈ {πX , ·}, (iv) d(S) = 1 + maxt∈S(d(t)), and (v) d(S − Γ) = 1 + d(S).
Then, since the number of reachable states in base automata is finite, for a given n there
is a finite number of terms of depth at most n. By induction on the depth of terms, we
can show that for a pair of terms t1 and t2, it holds that for each t ∈ Δa(t1, t2) we have
d(t) ≤ max(d(t1), d(t2)). Therefore, for an automata term S it holds that reachΔ(S) is
finite.

Let us denote by L (t) the language L (At) of the automaton induced by a term t. In the
following, we often use the notions of a term expansion and an expanded term. An expanded
term is a term that does not contain a derivative term as a subterm. Term expansion is
then defined recursively as follows: (i) te = t if t is expanded and (ii) te = (t[u/us])e where
u is a derivative term of the form S − Γ for an expanded term S. Intuitively, the term
expansion saturates derivative subterms in a bottom-up manner. Note that the expansion
of any automata term A is a set term, i.e., Ae = {t1, . . . , tn}.
Lemma 7.2.2. Given an automata term t and its expanded term te, it holds that

(i) te is of a finite size and

(ii) L (te) = L (t).
Proof. (Idea) (i): This can be easily seen from the fact that term expansion is performed
by a bottom-up traversal on the structure of t while substituting derivative terms with their
saturations. From the definition of saturation in (7.13) and Lemma 7.2.1, it follows that
each such saturation is finite.

(ii): First, note that saturation preserves language, i.e., it holds that

L
(
(S −~0)

)
= L

(
(S −~0)s

)
. (7.17)

The previous fact follows from the definition of derivative automaton in Section 7.1. In
particular, given AS = (Q,Δ, S,R), we have that

AS −~0 = (Q,Δ, reachΔ~0
(S), R), (7.18)

which matches the definition of saturation in (7.13). The lemma follows from the fact that
the expansion substitutes terms for saturated terms with equal languages.

Lemma 7.2.3 below shows that languages of terms can be defined from the languages
of their sub-terms if the sub-terms are set terms of derivative terms. The terms on the
left-hand sides are implicit representations of the automata operations of the respective
language operators on the right-hand sides. The main reason why the lemma cannot be
extended to all types of sub-terms and yield an inductive definition of term languages is
that it is not meaningful to talk about the bottom-up language of an isolated state term
that is neither a set term nor a derivative term (which both are also automata terms).
This is also one of the main differences from [111], where every term has its own language,
which makes the reasoning and the correctness proofs in the current work significantly more
involved.

Lemma 7.2.3. For automata terms A1, A2 and a set term S, the following equalities hold:

76

L({A1}) = L(A1) (a)
L({A1+A2}) = L(A1) ∪ L(A2) (b)
L({A1 &A2}) = L(A1) ∩ L(A2) (c)

L({A1}) = L(A1) (d)
L({πX(A1)}) = πX(L(A1)) (e)
L(S −~0) = L(S)−~0 (f)

Proof. (a): We prove the following more general form of (a):

L ({A1, . . . , An}) = L

 ⋃

1≤i≤n
Ae
i

 . (7.19)

(Note that A1, . . . , An are automata terms—i.e., either set terms or derivative terms—so
their expanded terms will be set terms.) Intuitively, in this proof we show that determiniza-
tion does not change the language of a term. Let us use A⋃

Ae
i

to denote the TA represented
by the term

⋃
1≤i≤nA

e
i .

(⊆) Let τ be a tree. It holds that τ ∈ L ({A1, . . . , An}) if and only if τ ∈ L ({Ae
1, . . . , A

e
n}),

i.e., if there is an accepting run ρ on τ in A{Ae
1,...,A

e
n}. Note that ρ maps all leaves of τ to the

terms from {Ae
1, . . . , A

e
n}, i.e., each leaf of τ is labelled by some Ae

i , which is a set of terms
of a lower level (such a set term can be seen as a macrostate—i.e., a set of states—from
determinization of TAs). Moreover, for all non-leaf positions w ∈ dom(τ) \ leaf (τ), let
ρ(w) = U, ρ(w.1) = U1, and ρ(w.2) = U2. Then, from (7.11), we have that if u ∈ U , then
there exist u1 ∈ U1 and u2 ∈ U2 such that u ∈ Δτ(w)(u1, u2). Let us define an auxiliary
function µ(w, u) = (u1, u2) that we will use later. Since ρ is accepting, there is a term
r ∈ ρ(ε) such that R(r).

We will now use ρ to construct a run ρ′ of A⋃
Ae
i

on τ . The run ρ′ will now map
positions to a single term as follows: For the root position, we set ρ′(ε) = r. Then,
given w ∈ dom(τ) \ leaf (τ), the labels of children of w are defined as ρ′(w.1) = u1 and
ρ′(w.2) = u2 where (u1, u2) = µ(w, ρ′(w)). As a consequence, we have that ∀w ∈ leaf (τ) :
ρ′(w) ∈ ⋃1≤i≤nA

e
i . Then, for each w ∈ dom(τ), it holds that ρ′(w) ∈ reachΔ(

⋃
1≤i≤nA

e
i)

where Δ is the transition function of A⋃
Ae
i
. Therefore, ρ′ is a run of A⋃

Ae
i

on τ and is
accepting, so τ ∈ L

(⋃
1≤i≤nA

e
i

)
.

(⊇) Consider a tree τ ∈ L
(⋃

1≤i≤nA
e
i

)
. Then there is an accepting run ρ on τ in A⋃

Ae
i
.

We can then use ρ to construct the run ρ′ on dom(τ) defined as follows: For u ∈ leaf (τ),
if ρ(u) ∈ Ae

i , we set ρ′(u) = Ae
i . For w ∈ dom(τ) \ leaf (τ), we set ρ′(w) = r such

that {r} = Δτ(w)(ρ
′(w.1), ρ′(w.2)) (we know that Δτ(w)(ρ

′(w.1), ρ′(w.2)) is a singleton set
due to (7.11)). For the constructed run ρ′, it now holds that ∀w ∈ dom(τ) : ρ(w) ∈ ρ′(w),
therefore ρ′ is an accepting run on τ in A{Ae

1,...,A
e
n}, i.e., τ ∈ L ({A1, . . . , An}).

(b): (⊆) Let τ ∈ L ({A1+A2}). Then there is an accepting run ρ on τ in A{Ae
1 +Ae

2}.
Since ρ is accepting, we can define mappings ρ1, ρ2 on dom(τ) such that for all w ∈ dom(τ)
we have ρ1(w) = l(ρ(w)) and ρ2(w) = r(ρ(w)) where l(S1+S2) = S1 and r(S1+S2) = S2.
The mappings ρ1 and ρ2 are runs of A{Ae

1} and A{Ae
2} on τ , respectively. Moreover, since

R(ρ(ε)), we have that R(ρ1(ε))∨R(ρ2(ε)). To conclude, τ ∈ L
(
A{Ae

1}

)
or τ ∈ L

(
A{Ae

2}

)
,

so τ ∈ L ({A1}) ∪ L ({A2}) and from (a) we get τ ∈ L (A1) ∪ L (A2).
(⊇) Consider τ ∈ L (A1)∪L (A2). From (a) we get τ ∈ L ({A1})∪L ({A2}). Then there

are runs ρ1 in A{Ae
1} and ρ2 in A{Ae

2} on τ such that at least one of them is accepting. We
can define a mapping ρ on dom(τ) such that ∀w ∈ dom(τ) : ρ(w) = ρ1(w)+ ρ2(w), which
is an accepting run on τ in A{Ae

1 +Ae
2}. Therefore τ ∈ L ({A1+A2}).

77

(c): Dual to (b).

(d): Let τ be a tree. We will consider runs ρ and ρ of A{Ae
1} and A{Ae

1}
on τ , respectively.

First, note that both runs exist, which is guaranteed by the presence of the universal sink
state ∅, cf. Section 7.2.2. Second, note that the two runs are unique, since there is a single
leaf state and the transition function is deterministic by (7.11). Further, from (7.10), it holds
that ∀w ∈ dom(τ) : ρ(w) = ρ(w). From the definition of R we have R(ρ(ε))⇔ ¬R(ρ(ε)),
therefore, ρ is not accepting inA{Ae

1} if and only if ρ is accepting inA{Ae
1}

. As a consequence,
τ ∈ L({Ae

1}) if and only if τ /∈ L({Ae
1}). From (a), we know that L({Ae

1}) = L(Ae
1).

(e): (⊆) Let τ ∈ L ({πX(A1)}) and ρ be an accepting run of A{πX(Ae
1)} on τ . From the

definition of the transition function in (7.9) and (7.3), we get that there is an accepting run
ρ′ on some τ ′ in A{Ae

1} where τ ∈ πX(τ ′) and ∀w ∈ dom(τ) : ρ(w) = πX(ρ
′(w)). Therefore,

τ ∈ πX(L ({A1})) = πX(L (A1)).
(⊇) Let τ ∈ πX(L (A1)). From the definition of projection, there is τ ′ ∈ L (A1) such

that τ ∈ πX(τ ′). According to (a), there is an accepting run ρ on τ ′ in A{Ae
1}. Then there

is also an accepting run ρ′ on τ in A{πX(Ae
1)} where ∀w ∈ dom(τ) : ρ′(w) = πX(ρ(w)).

(f): We prove the following more general equality: L (S) − Γ = L
(
S − Γ

)
, for a set of

symbols Γ (note that S is a set term). In the following text, given a set term U , we define
U 	Γ = U e ∪⋃{ΔΓ(t1, t2) | t1, t2 ∈ U e}. Note that reachΔ(U

e) = reachΔ(U 	Γ). Further,
we use Γ≤n to denote the set of trees over Γ of height at most n, i.e., Γ≤n = {t ∈ Γ | ∀w ∈
dom(t) : |w| ≤ n}. We first prove the following two claims.

Claim 1: Let U be a set term. Then L (U 	 Γ) = L (U)− Γ≤1.
Proof (⊆) Let τ ∈ L (U 	 Γ) and ρ be an accepting run of AU	Γ on τ . The run ρ maps
leaves of τ to the leaf states in U 	 Γ. Moreover, for each w ∈ leaf (τ) such that ρ(w) /∈ U e

(i.e., ρ maps w to a newly added leaf state) there exist tw1 , tw2 ∈ U e such that ρ(w) ∈
ΔΓ(t

w
1 , t

w
2). We can therefore extend ρ to the run ρ′ defined such that ρ′|dom(τ) = ρ and for

all w ∈ leaf (τ) such that ρ(w) /∈ U e, we define ρ′(w.1) = tw1 and ρ′(w.2) = tw2 . The run ρ′

is accepting in AU e on a tree τ ′ ∈ L (U) such that τ ∈ τ ′ − Γ≤1, and so τ ∈ L (U)− Γ≤1.
(⊇) Let τ ∈ L (U)− Γ≤1 and τ ′ ∈ L (U) be a tree such that τ ∈ τ ′ − Γ≤1. Hence there

is an accepting run ρ′ of AU e on τ ′. Consider the set Θ = {w ∈ leaf (τ) | ρ′(w) /∈ U e}
of positions mapped by ρ′ to newly added states. Since τ ∈ τ ′ − Γ≤1, it holds that ∀w ∈
Θ : ρ′(w.1) ∈ U e ∧ ρ′(w.2) ∈ U e ∧ τ ′(w) ∈ Γ. Therefore, ρ = ρ′|dom(τ) is an accepting run
of AU	Γ on τ , i.e., τ ∈ L (U 	 Γ). �

Claim 2: Let U be a set term, U0 = U , and Ui+1 = Ui 	 Γ for i ≥ 0. Then L (Um) =
L (U)− Γ≤m.
Proof We prove the claim by induction on m.

• Base case m = 0: L (U0) = L (U) = L (U)− Γ≤0.

• Inductive case: We assume that the claim holds for 0, . . . ,m. We prove that it holds
also for m+ 1. From Claim 1 we have

L (Um+1) = L (Um 	 Γ) = L (Um)− Γ≤1. (7.20)

By the induction hypothesis we further have

L (Um+1) = (L (U)− Γ≤m)− Γ≤1. (7.21)

78

Finally, from the definition of the derivative we obtain

(L (U)− Γ≤m)− Γ≤1 = L (U)− Γ≤m+1, (7.22)

which concludes the proof. �

We now prove the main part of the lemma. Consider the sequence of automata terms
S0, S1, . . . where S0 = Se and Si+1 = Si	Γ. From the monotonicity of 	 and Lemma 7.2.1,
there is an n such that Sn 6= Sn−1 and Sn = Sn+i for all i ≥ 0. From Claim 2 we have
L (Si) = L (S) − Γ≤i and, consequently, L (Sn) = L (S) − Γ≤n. Because Sn is the fixpoint
of the sequence of automata terms S0, S1, . . ., it holds that L (Sn) = L (S) − Γ . Finally,
we have Sn = reachΔΓ

(Se) = S − Γ (by (7.13)), so we conclude that L (S) − Γ =
L
(
S − Γ

)
.

Lemma 7.2.3 shows fundamental properties of terms. Based on it we further focus on
flattening of terms, whose properties are described by the following lemma.

Lemma 7.2.4. For sets of terms S and S′ such that S 6= ∅ and S′ 6= ∅, we have:

L
(
{S+S′}

)
= L

(
{S [+]S′}

)
, (a)

L
(
{S &S′}

)
= L

(
{S [&]S′}

)
, (b)

L ({πX(S)}) = L ({πX(t) | t ∈ S}) . (c)

Proof. (a): (⊆) Let τ ∈ L ({S+S′}). From Lemma 7.2.3b we have L ({S+S′}) = L (S) ∪
L (S′). Hence there are runs ρ1 in ASe and ρ2 in AS′e on τ and, moreover, at least one of
them is accepting (both runs exist since the transition function Δ is complete). Then, we
can construct a mapping ρ from τ defined such that for all w ∈ dom(τ), we set ρ(w) =
ρ1(w)+ρ2(w). Note that ρ is a run of A{te1 + te2|t1∈S,t2∈S′} on τ , i.e., it maps leaves of dom(τ)
to terms of the form te1+ te2 for t1 ∈ S and t2 ∈ S′. Moreover, ρ is accepting since at least
one of the runs ρ1 and ρ2 is accepting. Therefore, τ ∈ L ({t1+ t2 | t1 ∈ S, t2 ∈ S′}). From
the definition of the augmented product, it follows that τ ∈ L (S [+]S′) and, finally, from
Lemma 7.2.3a, we have τ ∈ L ({S [+]S′}).

(⊇) Let τ ∈ L ({S [+]S′}). From Lemma 7.2.3a, we get τ ∈ L (S [+]S′), and from
the definition of the augmented product, we obtain that τ ∈ L ({t1+ t2 | t1 ∈ S, t2 ∈ S′}).
Therefore, there is an accepting run ρ on τ in A{te1 + te2|t1∈S,t2∈S′}. Furthermore, let us
consider the run ρ′ of A{S+S′} on τ (note that, due to (7.11) and the completeness of the
transition function, there is exactly one). By induction on the structure of τ , we can easily
show that for all w ∈ dom(τ), if ρ(w) = t1 + t2, then ρ′(w) = S1 + S2 such that t1 ∈ S1
and t2 ∈ S2 (the property clearly holds at leaves and is also preserved by the transition
function). Let ρ(ε) = tε1 + tε2 and ρ′(ε) = Sε1 + Sε2. Since R(tε1 + tε2), it also holds that
R(Sε1 + Sε2). Therefore, ρ′ is accepting, so τ ∈ L ({S+S′}).

(b): Dual to (a).
(c): From Lemma 7.2.3e we have that L ({πX(S)}) = πX(L (S)). Therefore, it is

sufficient to prove the following identity: πX(L (S)) = L ({πX(t) | t ∈ S}).
(⊆) Let τ ∈ πX(L (S)). Then, there is a tree τ ′ ∈ L (S) such that τ ∈ πX(τ ′). Let ρ be

an accepting run of ASe on τ ′. We will construct a run ρ′ of A{πX(t)|t∈Se} on τ ′ such that
for all w ∈ dom(τ), we set ρ′(w) = πX(ρ(w)). It follows that τ ∈ L ({πX(t) | t ∈ S}).

(⊇) Let τ ∈ L ({πX(t) | t ∈ S}) and ρ be an accepting run of A{πX(t)|t∈Se} on τ . We will
now construct a mapping ρ′ from dom(τ) such that for all w ∈ dom(τ), we set ρ′(w) = t

79

where ρ(w) = πX(t). It follows that ρ′ is an accepting run of ASe on τ ′, and so τ ∈
πX(L (S)).

7.2.4 Terms of Formulae.

Our algorithm in Section 7.3 will translate a WS2S formula ϕ into the automata term
tϕ = {〈ϕ〉} representing a deterministic automaton with its only leaf state represented by
the state term 〈ϕ〉. The base automata of tϕ include the automaton Aϕ0 for each atomic
predicate ϕ0 used in ϕ. The state term 〈ϕ〉 is then defined inductively to the structure of
ϕ as follows:

〈ϕ0〉 = Iϕ0 (7.23)
〈ϕ ∧ ψ〉 = 〈ϕ〉&〈ψ〉 (7.24)
〈ϕ ∨ ψ〉 = 〈ϕ〉+〈ψ〉 (7.25)
〈¬ϕ〉 = 〈ϕ〉 (7.26)

〈∃X. ϕ〉 = {πX(〈ϕ〉)} −~0 (7.27)

In the definition, ϕ0 is an atomic predicate, Iϕ0 is the set of leaf states of Aϕ0 , and ϕ and ψ
denote arbitrary WS2S formulae. We note that the translation rules may create sub-terms of
the form {{t}}, i.e., with nested set brackets. Since {·} semantically means determinization
by subset construction, such double determinization terms can be always simplified to {t}
(cf. Lemma 7.2.3a). See Example 7.2.1 for a formula ϕ and its corresponding term tϕ.
Theorem 7.2.1 establishes the correctness of the formula-to-term translation.

Theorem 7.2.1. Let ϕ be a WS2S formula. Then L (ϕ) = L(tϕ).

Proof. To simplify the proof, we restrict the definition of terms to deterministic terms U
constructed using the following grammar:

U ::= {u, . . . , u} | {πX(u), . . . , πX(u)} (7.28)
u ::= q | u+u | u&u | u | U | U − Γ (7.29)

where q is a state of an automaton. It is easy to see that deterministic terms form
a proper subset of all terms constructed using the definition in Section 7.2.1 (e.g., the
term πX(t1)&πX(t2) is not deterministic). They are, however, sufficient to capture the
terms that emerge from the translation presented above. Note that for two expanded de-
terministic terms t1 and t2 we have |Δa(t1, t2)| = 1. Further note that for a WS2S formula ϕ,
〈ϕ〉 is a deterministic term.

Now, we prove L (ϕ) = L ({〈ϕ〉}) by induction on the structure of ϕ. In the proof, we
use properties of the classical decision procedure from Section 7.1.

– ϕ = ϕ0 where ϕ0 is an atomic formula: Let Iϕ0 be the set of leaf states of Aϕ0 .

L ({〈ϕ0〉}) = L ({Iϕ0}) H(7.23)I
= L (Iϕ0) HLemma 7.2.3a I
= L (Aϕ0) Hterm semanticsI

80

– ϕ = ψ1 ∧ ψ2: We use the following equational reasoning:

L ({〈ψ1 ∧ ψ2〉}) = L ({〈ψ1〉& 〈ψ2〉}) H(7.24)I
= L ({{〈ψ1〉& 〈ψ2〉}}) HLemma 7.2.3a I
= L ({{〈ψ1〉}& {〈ψ2〉}}) HLemma 7.2.4bI
= L ({〈ψ1〉}) ∩ L ({〈ψ2〉}) . HLemma 7.2.3c I
= L (Aψ1) ∩ L (Aψ2) Hinduction hypothesisI
= L (Aϕ) . Hclassical procedureI

– ϕ = ψ1 ∨ ψ2: We use the following equational reasoning:

L ({〈ψ1 ∨ ψ2〉}) = L ({〈ψ1〉+ 〈ψ2〉}) H(7.25)I
= L ({{〈ψ1〉+ 〈ψ2〉}}) HLemma 7.2.3a I
= L ({{〈ψ1〉}+ {〈ψ2〉}}) HLemma 7.2.4aI
= L ({〈ψ1〉}) ∪ L ({〈ψ2〉}) . HLemma 7.2.3b I
= L (Aψ1) ∪ L (Aψ2) Hinduction hypothesisI
= L (Aϕ) . Hclassical procedureI

– ϕ = ¬ψ: First, we prove the following claim:

Claim 3: Let t be a deterministic term, then L
({
{t}
})

= L
({
t
})

.

Proof First, consider two expanded deterministic terms t1 and t2. Since t1 and t2 are
deterministic, from (7.11) we have Δa(t1, t2) = {t′} for some deterministic term t′ and
any symbol a. Therefore (from (7.10)), Δa(t1, t2) = {t′} and Δa({t1}, {t2}) = {{t′}}.
Hence, there is an accepting run ρ on a tree τ in A{{t}} if and only if there is an
accepting run ρ′ on τ in A{t} where for all w ∈ dom(τ) it holds that ρ(w) = s ⇔
ρ′(w) = {s}. �

We proceed to the main part of the proof.

L ({〈¬ψ〉}) = L
({
〈ψ〉
})

H(7.26)I

= L
({
{〈ψ〉}

})
HClaim 3I

= L ({〈ψ〉}) HLemma 7.2.3d I

= L (Aψ) Hinduction hypothesisI
= L (Aϕ) . Hclassical procedureI

– ϕ = ∃X. ψ: We start by proving the following claim:

Claim 4: Let t be a deterministic term, then L ({πX({t})}) = L ({πX(t)}).
Proof First, consider two expanded deterministic terms t1 and t2. Since t1 and t2 are
both deterministic, we have Δa(t1, t2) = {ta} for some deterministic term ta and any
symbol a. Therefore, according to (7.9), Δa(πX(t1), πX(t2)) = {πX(tb) | b ∈ πX(a)}

81

and Δa(πX({t1}), πX({t2})) = {πX({tb}) | b ∈ πX(a)}. Hence, there is an accepting
run ρ on a tree τ inA{πX({t})} if and only if there is an accepting run ρ′ on τ inA{πX(t)},
where for all w ∈ dom(τ) it holds that ρ(w) = πX(s)⇔ ρ′(w) = πX({s}). �

We proceed to the main part of the proof.

L ({〈∃X. ψ〉}) = L
(
{πX(〈ψ〉)} −~0

)
H(7.27)I

= L ({πX(〈ψ〉)})−~0 HLemma 7.2.3f I
= L ({πX({〈ψ〉})})−~0 HClaim 4I

= πX (L ({〈ψ〉}))−~0 HLemma 7.2.3e I

= πX (L (Aψ))−~0 Hinduction hypothesisI
= L (Aϕ) . Hclassical procedureI

7.3 An Efficient Decision Procedure
The development in Section 7.2 already implies a naive automata term-based satisfiability
check. Namely, by Theorem 7.2.1, we know that a formula ϕ is satisfiable if and only if
L(Atϕ) 6= ∅. After translating ϕ into tϕ using rules (7.23)–(7.27), we may use the definitions
of the transition function and root states of Atϕ = (Q,Δ, I, F) in Section 7.2 to decide the
language emptiness through evaluating the root state test R(reachΔ(I)). The equalities
and equivalences (7.7)–(7.16) can be implemented as recursive functions. We will further
refer to this algorithm as the simple recursion. The evaluation of reachΔ(I) induces nested
evaluations of the fixpoint (7.13): the one on the top level of the language emptiness test
and another one for every expansion of a derivative sub-term. The termination of these
fixpoint computations is guaranteed due to Lemma 7.2.1.

Such a naive implementation is, however, inefficient and has only disadvantages in
comparison to the classical decision procedure. In this section, we will discuss how it can be
optimized. Besides an essential memoization needed to implement the recursion efficiently,
we will show that the automata term representation is amenable to optimizations that
cannot be used in the classical construction. These are techniques of state space pruning:
the fact that the emptiness can be tested on the fly during the automata construction allows
one to avoid exploration of state space irrelevant to the test. The pruning is done through
the techniques of lazy evaluation and subsumption. We will also discuss optimizations of the
transition function of Section 7.2 through product flattening and nondeterministic union,
which are analogous to standard implementations of automata intersection and union.

7.3.1 Memoization

The simple recursion repeats the fixpoint computations that saturate derivative terms from
scratch at every call of the transition function or root test. This is easily countered through
memoization, known, e.g., from compilers of functional languages, which caches results of
function calls in order to avoid their re-evaluation. Namely, after saturating a derivative
sub-term t = S − ~0 of tϕ for the first time, we simply replace t in tϕ by the saturation
ts = reachΔ~0

(S). Since a derivative is a symbolic representation of its saturated version

82

(cf. (7.13)), the replacement does not change the language of tϕ. Using memoization, every
fixpoint computation is then carried out only once.

7.3.2 Lazy Evaluation

The lazy variant of the procedure uses short-circuiting to optimize connectives ∧ and ∨,
and early termination to optimize fixpoint computation in derivative saturations. Namely,
assume that we have a term t1+ t2 and that we test whether R(t1+ t2). Suppose that
we establish that R(t1); we can short circuit the evaluation and immediately return true,
completely avoiding touching the potentially complex term t2. Similarly for a term of the
form t1 & t2, where we can short circuit the evaluation when one branch is false.

Furthermore, early termination is used to optimize fixpoint computations used to satu-
rate derivatives within testsR(S−~0) (obtained from sub-formulae such as ∃X. ψ). Namely,
instead of first unfolding the whole fixpoint into a set {t1, . . . , tn} and only then testing
whether R(ti) is true for some ti, the terms ti can be tested as soon as they are computed,
and the fixpoint computation can be stopped early, immediately when the test succeeds
on one of them. Then, instead of replacing the derivative sub-term by its full saturation,
we replace it by the partial result {t1, . . . , ti} − ~0 for i ≤ n. Finishing the evaluation of
the fixpoint computation might later be required in order to compute a transition from the
derivative. We note that this corresponds to the concept of continuations from functional
programming, used to represent a paused computation that may be required to continue
later.

Example 7.3.1. Let us now illustrate the lazy decision procedure on our running ex-
ample formula ϕ , ¬∃X. Sing(X) ∧ X = {ε} and the corresponding automata term
tϕ =

{
{πX({q0}&{p0})} −~0

}
from Example 7.2.1. The task of the procedure is to com-

pute the value of R(reachΔ(tϕ)), i.e., whether there is a root state reachable from the
leaf state 〈ϕ〉 of Atϕ. The fact that ϕ is ground allows us to slightly simplify the prob-
lem because any ground formula ψ is satisfiable if and only if ⊥ ∈ L (ψ), i.e., if and
only if the leaf state 〈ψ〉 of Atψ is also a root. It is thus enough to test R(〈ϕ〉) where
〈ϕ〉 = {πX({q0}&{p0})} −~0 .

The computation proceeds as follows. First, we use (7.4) from Figure 7.3a to propa-
gate the root test towards the derivative, i.e., to obtain that R(〈ϕ〉) holds if and only if
¬R({πX({q0}&{p0})} − ~0). Since the R-test cannot be directly evaluated on a derivative
term, we need to start saturating it into a set term, evaluating R on the fly, hoping for early
termination. We begin with evaluating the R-test on the initial element t0 = πX({q0}&{p0})
of the set. The test propagates through the projection πX due to (7.3) and evaluates as false
on the left conjunct (through, in order, (7.2), (7.5), and (7.6)) since the state q0 is not
a root state. As a trivial example of short circuiting, we can skip evaluating R on the right
conjunct {p0} and conclude that R(t0) is false.

The fixpoint computation then continues with the first iteration, computing the ~0-success-
ors of the set {t0}. We will obtain the set Δ~0(t0, t0) = {t0, t1} with t1 = πX({q1}&{p1}).
The test R(t1) now returns true because both q1 and p1 are root states. With that, the
fixpoint computation may terminate early, with the R-test on the derivative sub-term re-
turning true. Memoization then replaces the derivative sub-term in 〈ϕ〉 by the partially
evaluated version {t0, t1} −~0 , and R(〈ϕ〉) is evaluated as false due to (7.4). We therefore
conclude that ϕ is unsatisfiable (and invalid since it is ground).

83

7.3.3 Subsumption

The next technique we use is based on pruning out parts of a search space that are subsumed
by other parts. In particular, we generalize (in a similar way as it is done for WS1S in
the work [111]) the concept used in antichain algorithms for efficiently deciding language
inclusion and universality of finite word and tree automata [99, 292, 53, 14]. Although the
problems are in general computationally infeasible (they are PSPACE-complete for finite
word automata and EXPTIME-complete for finite tree automata), antichain algorithms
can solve them efficiently in many practical cases.

We apply the technique by keeping set terms in the form of antichains of simulation-
maximal elements and prune out any other simulation-smaller elements. Intuitively, the
notion of a term t being simulation-smaller than t′ implies that trees that might be generated
from the leaf states T ∪{t} can be generated from T ∪{t′} too, hence discarding t does not
hurt. Formally, we introduce the following rewriting rule:

{t1, t2, . . . , tn} {t2, . . . , tn} for t1 v t2, (7.30)

which may be used to simplify set sub-terms of automata terms. The rule (7.30) is applied
after every iteration of the fixpoint computation on the current partial result. Hence the
sequence of partial results is monotone, which, together with the finiteness of reachΔ(t),
guarantees termination. The subsumption relation v used in the rule is defined as

S v S′ ⇔ S ⊆ S′ ∨ S v∀∃ S′ (7.31)
t&u v t′ &u′ ⇔ t v t′ ∧ u v u′ (7.32)
t+u v t′+u′ ⇔ t v t′ ∧ u v u′ (7.33)

t v t′ ⇔ t′ v t (7.34)
πX(t) v πX(t′) ⇔ t v t′ (7.35)

where S v∀∃ S′ denotes ∀t ∈ S ∃t′ ∈ S′ : t v t′. Intuitively, on base TAs, subsumption
corresponds to inclusion of the set terms (the left disjunct of (7.31)). This clearly has the
intended outcome: a larger set of states can always simulate a smaller set in accepting
a tree. The rest of the definition is an inductive extension of the base case. It can be
shown that v for any automata term t is an upward simulation on At in the sense of [14].
Consequently, rewriting sub-terms in an automata term according to the new rule (7.30)
does not change its language.

7.3.4 Product Flattening

Product flattening is a technique that we use to reduce the size of fixpoint saturations
that generate conjunctions and disjunctions of sets as their elements. Consider a term
of the form D = {πX(S0 &S′0)} − ~0 for a pair of sets of terms S0 and S′0 where the
TAs AS0 and AS′0 have sets of states Q and Q′, respectively. The saturation generates the
set {πX(S0 &S′0), . . . , πX(Sn &S′n)} with Si ⊆ Q,S′i ⊆ Q′ for all 0 ≤ i ≤ n. The size of
this set is 2|Q|+|Q

′| in the worst case. In terms of the automata operations, this fixpoint
expansion corresponds to first determinizing both AS0 and AS′0 and only then using the
product construction (cf. Section 7.1). The automata intersection, however, works for
nondeterministic automata too—the determinization is not needed. Implementing this
standard product construction on terms would mean transforming the original fixpoint
above into the following fixpoint with a flattened product: D = {πX(S0 [&]S′0)} −~0 where

84

[&] is the augmented product for conjunction. This way, we can decrease the worst-case size
of the fixpoint to |Q| · |Q′|. A similar reasoning holds for terms of the form {πX(S0+S′0)}−
~0 . Formally, the technique can be implemented by the following pair of sub-term rewriting
rules where S and S′ are non-empty sets of terms:

S+S′ S [+]S′, (7.36) S &S′ S [&]S′. (7.37)

Observe that for terms obtained from WS2S formulae using the translation from Sec-
tion 7.2, the rules are not helpful in their given form. Consider, for instance, the term
{πX({r}&{q})} − ~0 obtained from a formula ∃X.ϕ ∧ ψ with ϕ and ψ being atoms. The
term would be, using rule (7.37), rewritten into the term {πX({r & q})} − ~0 . Then, dur-
ing a subsequent fixpoint computation, we might obtain a fixpoint of the following form:
{πX({r & q}), πX({r & q, r1 & q1}), πX({r1 & q1, r2 & q2})}, where the occurrences of the pro-
jection πX disallow one to perform the desired union of the inner sets, and so the application
of rule (7.37) did not help. We therefore need to equip our procedure with a rewriting rule
that can be used to push the projection inside a set term S:

πX(S) {πX(t) | t ∈ S}. (7.38)

In the example above, using rule (7.38) we would now obtain the term {πX(r & q)} −
~0 (note that we rewrote {{·}} to {·} as mentioned in Section 7.2) and the fixpoint
{πX(r & q), πX(r1 & q1), πX(r2 & q2)}. The correctness of the rules is given by Lemma 7.2.4.

We, however, still have to note that there is a danger related with the rules (7.36)–
(7.38). Namely, if they are applied to some terms in a partially evaluated fixpoint but not
to all, the form of these terms might get different (cf. πX({r & q}) and πX(r & q)), and it will
not be possible to combine them as source states of TA transitions when computing Δa,
leading thus to an incorrect result. We resolve the situation in such a way that we apply the
rules as a pre-processing step only before we start evaluating the top-level fixpoint, which
ensures that all terms will subsequently be generated in a compatible form.

7.3.5 Nondeterministic Union

Optimization of the product term saturations from the previous section can be pushed one
step further for terms of the form {πX(S+S′)}−~0 . The idea is to use the nondeterministic
(disjoint) TA union to implement the union operation instead of the product construction.
The TA union is implemented as the component-wise union of the two TAs. Its size is
hence linear to the size of the input instead of quadratic as in the case of the product
(i.e., |Q|+ |Q′| instead of |Q| · |Q′|). To work correctly, the nondeterministic union requires
disjoint input sets of states (otherwise, the combination of the two transition functions
could generate runs that are not possible in either of the input TAs). We implement the
nondeterministic union through the following rewriting rule:

S+S′ S ∪ S′ for S 6./ S′ (7.39)

where S and S′ are sets of terms (similarly to Section 7.3.4, in order to successfully reduce
the fixpoint state space on terms obtained from WS2S formulae, we also need to apply
rule (7.38) to push projection inside set terms). The relation 6./ used in the rule is the
non-interference of terms, which generalizes the state space disjointness requirement of the

85

nondeterministic union of TAs. Its complement, the interference of terms ./, is defined
using the following equivalences:

S ./ S′ ⇔ S = S′ ∨ ∃t ∈ S, t′ ∈ S′ : t ./ t′ (7.40)
t&u ./ t′ &u′ ⇔ t ./ t′ ∨ u ./ u′ (7.41)
t+u ./ t′+u′ ⇔ t ./ t′ ∨ u ./ u′ (7.42)

t ./ t′ ⇔ t ./ t′ (7.43)
πX(t) ./ πX(t

′) ⇔ t ./ t′ (7.44)
D ./ t ⇔ Ds ./ t (7.45)
t ./ D ⇔ t ./ Ds (7.46)
q ./ r ⇔ ∃1 ≤ k ≤ n : q, r ∈ Qk (7.47)

For terms t and u that are not matched by any rule above, we define t 6./ u (for instance,
t1 & t2 6./ u1+u2). Interference between terms tells us when we cannot perform the rewrit-
ing. Intuitively, this happens when we obtain a term {S+S′} where S and S′ contain
states from the same base automaton Bk with the set of states Qk.

In order to avoid interference in the terms obtained from WS2S formulae, we can perform
the following pre-processing step: When translating a WS2S formula ϕ into a term tϕ, we
create a special version of a base TA for every occurrence of an atomic formula in ϕ.
This way, we can never mix up terms that emerged from different subformulae to enable
a transition that would otherwise stay disabled.

To use rule (7.39), it is necessary to modify treatment of the sink state ∅ in the definition
of Δ of Section 7.2. The technical difficulty we need to circumvent is that (unlike for finite
word automata) the nondeterministic union of two (even complete) TAs is not complete.

This can cause situations such as the following: let D = {πX({t} + {r})} − ~0 such
that Δ~0(t, t) = {t}, Δ~0(r, r) = {r}, and R(t) and R(r) are both true, i.e., both t and r can
accept any ~0-tree, which also means that the union of their complements should not accept
any ~0-tree. Indeed, the saturation of D is the set term Ds = reachΔ~0

({πX({t} + {r})}) =
{πX({t}+ {r})} where it holds that ¬R(πX({t}+ {r})), i.e., it does not accept any ~0-tree.
On the other hand, if we use the new rule (7.39) together with rule (7.38), we obtain the
term {πX(t), πX(r)} − ~0 . When computing its saturation, we will obtain a new element
Δ~0(πX(t), πX(r)) = πX(∅). The term πX(∅) was constructed using the implicit rule of
Section 7.2 that sends the otherwise undefined successors of a pair of terms to {∅}. Note
that R(πX(∅)) is true, yielding that the fixpoint approximation {πX(t), πX(r), πX(∅)} is
a root state, so a ~0-tree is accepted. Therefore, the application of the new rule (7.39)
changed the language.

Although the previous situation cannot happen with terms obtained from WS2S formu-
lae using the translation rules from Section 7.2, in order to formulate a correctness claim
for any terms constructed using our grammar, we remedy the issue by modifying the defi-
nition of implicit transitions of Δ to {∅} from Section 7.2. We give the modified transition
function Δ] in Figure 7.4.

Note that in the previous example, when using the modified transition function Δ] for
computing the saturation of the term {πX(t), πX(r)} − ~0 , we would from t 6./ r deduce
that πX(t) 6./ πX(r). As a consequence, Δ]

~0
(πX(t), πX(r)) = {∅}, which is not accepting.

We will denote the semantics of a term t obtained using Δ] instead of Δ as L] (t). First,
we show that the properties of terms from Section 7.2 under the original semantics hold
also for the modified semantics.

86

Δ]
a(t, t

′) =

{
Δ•a(t, t

′) if t ./ t′

{∅} otherwise
(7.48)

Δ•a(t+u, t′+u′) = Δ]
a(t, t

′) [+]Δ]
a(u, u

′) (7.49)
Δ•a(t&u, t′ &u′) = Δ]

a(t, t
′) [&] Δ]

a(u, u
′) (7.50)

Δ•a(πX(t), πX(t
′)) =

{
πX(u)

∣∣∣ u ∈ Δ]
πX(a)(t, t

′)
}

(7.51)

Δ•a(t, t
′) =

{
u
∣∣∣ u ∈ Δ]

a(t, t
′)
}

(7.52)

Δ•a(S, S
′) =

{ ⋃

t∈S,t′∈S′
Δ]
a(t, t

′)

}
(7.53)

Δ•a(q, r) = δBa (q, r) (7.54)

Figure 7.4: Modified transition function

Lemma 7.3.1. For automata terms A1, A2 and a set term S, the following equalities hold:

L] ({A1}) = L] (A1) (a)
L] ({A1+A2}) = L] (A1) ∪ L] (A2) (b)
L] ({A1 &A2}) = L] (A1) ∩ L] (A2) (c)

L]
(
{A1}

)
= L] (A1) (d)

L] ({πX(A1)}) = πX(L] (A1)) (e)

L]
(
S −~0

)
= L] (S)−~0 (f)

Proof. In the following proofs we abuse notation and denote by AS the automaton of the
term S with the altered transition function Δ].

(a): We prove the following more general form of (a):

L] ({A1, . . . , An}) = L]

 ⋃

1≤i≤n
Ae
i

 (7.55)

(Again, note that all expanded terms are set terms.) Intuitively, in this proof we show
that determinization does not change the modified language of a term. Let us use A⋃

Ae
i

to
denote the TA represented by the term

⋃
1≤i≤nA

e
i . Recall that we are using the modified

semantics with the altered term transition function Δ].
(⊆) Let τ be a tree. It holds that τ ∈ L] ({A1, . . . , An}) if and only if holds τ ∈

L] ({Ae
1, . . . , A

e
n}), i.e., if there is an accepting run ρ on τ in A{Ae

1,...,A
e
n}. Note that ρ maps

all leaves of τ to the terms from {Ae
1, . . . , A

e
n}, i.e., each leaf of τ is labelled by some Ae

i ,
which is a set of terms of a lower level (such a set term can be seen as a macrostate—i.e.,
a set of states—from determinization of TAs). Since ρ is accepting, there is a term r ∈ ρ(ε)
such that R(r). Note that because R(r), it follows that r 6= ∅.

We will now use ρ to construct a run ρ′ of A⋃
Ae
i

on τ . The run ρ′ will now map every
position of τ to a single term. For the root position, we set ρ′(ε) = r. We proceed by
induction as follows: For all non-leaf positions w ∈ dom(τ) \ leaf (τ) such that ρ′(w) = u,
assume that in the original run it holds that ρ(w.1) = U1 and ρ(w.2) = U2. Then, let
u1 ∈ U1 and u2 ∈ U2 be terms such that u ∈ Δ](u1, u2) (the presence of such terms is
guaranteed by (7.53)). The following inductive invariant holds: If u 6= ∅, then u1 6= ∅

87

and u2 6= ∅ (the invariant follows from (7.53), the fact that r 6= ∅, and (7.40)). We set
ρ′(w.1) = u1 and ρ′(w.2) = u2.

As a consequence, we have that ∀w ∈ leaf (τ) : ρ′(w) ∈ ⋃1≤i≤nA
e
i . Then, for each

w ∈ dom(τ), it holds that ρ′(w) ∈ reachΔ](
⋃

1≤i≤nA
e
i) where Δ] is the (modified) transition

function of A⋃
Ae
i
. This follows from the definition of modified transition function for set

terms (7.53). Therefore, ρ′ is a run of A⋃
Ae
i

on τ and is accepting, so τ ∈ L]
(⋃

1≤i≤nA
e
i

)
.

(⊇) Consider a tree τ ∈ L]
(⋃

1≤i≤nA
e
i

)
. Then there is an accepting run ρ on τ

in A⋃
Ae
i
. We can then use ρ to construct the run ρ′ on dom(τ) defined as follows: For

u ∈ leaf (τ), if ρ(u) ∈ Ae
i , we set ρ′(u) = Ae

i . For w ∈ dom(τ)\ leaf (τ), we set ρ′(w) = r such
that {r} = Δ]

τ(w)(ρ
′(w.1), ρ′(w.2)) (we know that Δ]

τ(w)(ρ
′(w.1), ρ′(w.2)) is a singleton set

due to (7.53)). For the constructed run ρ′, it now holds that ∀w ∈ dom(τ) : ρ(w) ∈ ρ′(w),
therefore ρ′ is an accepting run on τ in A{Ae

1,...,A
e
n}, i.e., τ ∈ L] ({A1, . . . , An}).

(b)–(e): The proof is identical to the proof of corresponding variant in Lemma 7.2.3
(with altered term transition function).

(f): The proof is similar to the proof of Lemma 7.2.3f with one exception. In particular,
in the proof of (the modified version of) Claim 1, we need to make use of the fact that
interference is preserved along transition relation, which is formalized in the following claim.

Claim 5: For two terms t1, t2 such that t1 ./ t2, symbol a, and for each t ∈ Δ]
a(t1, t2) it

holds that t ./ t1 and t ./ t2.
Proof By induction on the structure of terms:

• Base case: Let t1 and t2 be states of some base automata. From t1 ./ t2 and (7.47), we
can deduce that t1 and t2 are both states of some base automaton Bk, i.e., t1, t2 ∈ Qk.
Then it also holds that Δ]

a(t1, t2) ⊆ Qk, so for every t ∈ Δ]
a(t1, t2), we have that

t ./ t1 and t ./ t2.

Let us now continue with inductive cases.

• Let t1 = u1 & v1 and t2 = u2 & v2. From (7.41), it follows that either u1 ./ u2 or
v1 ./ v2.

Δ]
a(t1, t2) = Δ]

a(u1 & v1, u2 & v2)

= Δ•a(u1 & v1, u2 & v2) H(7.48)I
= Δ]

a(u1, u2) [&] Δ
]
a(v1, v2) H(7.50)I

= {u& v | u ∈ Δ]
a(u1, u2) ∧ v ∈ Δ]

a(v1, v2)} Hdef. of [&]I

Therefore, for all t = u& v ∈ Δ]
a(t1, t2):

– if u1 ./ u2, then u ./ u1 and u ./ u2, so, from (7.41), it also holds that t ./ t1
and t ./ t2; and

– if v1 ./ v2, then v ./ v1 and v ./ v2, so, from (7.41), it also holds that t ./ t1 and
t ./ t2.

• The proofs for other inductive cases are similar. �

The other parts of the proof are similar.

88

Lemma 7.3.2. For sets of terms S and S′ such that S 6= ∅ and S′ 6= ∅, we have:

L]
(
{S+S′}

)
= L]

(
{S [+]S′}

)
, (a)

L]
(
{S &S′}

)
= L]

(
{S [&]S′}

)
, (b)

L] ({πX(S)}) = L] ({πX(t) | t ∈ S}) . (c)

Proof. (a): (⊆) Let τ ∈ L] ({S+S′}). From Lemma 7.3.1b we have L] ({S+S′}) = L] (S)∪
L] (S′). Hence there are runs ρ1 in ASe and ρ2 in AS′e on τ such that for all w ∈ dom(τ),
ρ1(w) 6= ∅ ∧ ρ2(w) 6= ∅, and, moreover, at least one of them is accepting. Note that both
runs exist since the transition function Δ] is complete (for a pair of terms t1 and t2, (i) if
t1 6./ t2, then trivially Δ](t1, t2) = {∅} 6= ∅ and (ii) if t1 ./ t2, then, from the definition of
modified transition function we have Δ](t1, t2) = Δ•(t1, t2) 6= ∅). Then, we can construct
a mapping ρ from τ defined such that for all w ∈ dom(τ), we set ρ(w) = ρ1(w) + ρ2(w).
Note that ρ is a run of A{te1 + te2|t1∈S,t2∈S′} on τ , i.e., it maps leaves of dom(τ) to terms of the
form te1+ te2 for t1 ∈ S and t2 ∈ S′. Moreover, ρ is accepting since at least one of the runs ρ1
and ρ2 is accepting. Therefore, τ ∈ L] ({t1+ t2 | t1 ∈ S, t2 ∈ S′}). From the definition of
the augmented product, it follows that τ ∈ L] (S [+]S′) and, finally, from Lemma 7.3.1a,
we have τ ∈ L] ({S [+]S′}).

(⊇) Let τ ∈ L] ({S [+]S′}). From Lemma 7.3.1a, we get τ ∈ L] (S [+]S′), and from
the definition of the augmented product, we obtain that τ ∈ L] ({t1+ t2 | t1 ∈ S, t2 ∈ S′}).
Therefore, there is an accepting run ρ on τ in A{te1 + te2|t1∈S,t2∈S′}. Furthermore, let us
consider the run ρ′ of A{S+S′} on τ (note that, due to (7.11), the definition of interference,
and the completeness of the transition function, there is exactly one). By induction on
the structure of τ , we can easily show that for all w ∈ dom(τ), if ρ(w) = t1 + t2, then
ρ′(w) = S1 + S2 such that t1 ∈ S1 and t2 ∈ S2 (the property clearly holds at leaves and is
also preserved by the transition function). Let ρ(ε) = tε1 + tε2 and ρ′(ε) = Sε1 + Sε2. Since
R(tε1 + tε2), it also holds that R(Sε1 + Sε2). Therefore, ρ′ is accepting, so τ ∈ L] ({S+S′}).

(b): Dual to (a).

(c): Identical to the proof of Lemma 7.2.4c (with the altered transition function).

The following theorem shows that formula-to-term translation is correct even for the
modified semantics.

Theorem 7.3.1. Let ϕ be a WS2S formula. Then, L] (tϕ) = L (ϕ).

Proof. In the proof we use the notion of expanded terms. By te,Δ we denote that a term t
is expanded using term transition function Δ from Section 7.2.2. In the first step we prove
L] (tψ) = L (tψ) by showing that 〈ψ〉e,Δ = 〈ψ〉e,Δ] for each subformula ψ of ϕ by induction
on the structure of ϕ:

– ϕ = ϕ0 where ϕ0 is an atomic formula: Let Iϕ0 be the set of leaf states and Qϕ0 set
of states of a unique Aϕ0 . For each q1, q2 ∈ Qϕ0 we have q1 ./ q2. Since Iϕ0 is already
expanded, 〈ϕ0〉e,Δ = 〈ϕ0〉e,Δ] .

89

– ϕ = ψ1 ∧ ψ2: We use the following equational reasoning.

〈ϕ〉e,Δ = 〈ψ1 ∧ ψ2〉e,Δ = (〈ψ1〉& 〈ψ2〉)e,Δ H(7.24)I
= 〈ψ1〉e,Δ & 〈ψ2〉e,Δ Hexpansion propagationI

= 〈ψ1〉e,Δ
]

& 〈ψ2〉e,Δ
]

Hinduction hypothesisI

= (〈ψ1〉& 〈ψ2〉)e,Δ
]

Hexpansion propagationI

= 〈ϕ〉e,Δ] H(7.24)I

– ϕ = ψ1 ∨ ψ2: Dual to ψ1 ∧ ψ2.

– ϕ = ¬ψ: We use the following equational reasoning.

〈ϕ〉e,Δ = (〈ψ〉)e,Δ H(7.26)I

= 〈ψ〉e,Δ Hexpansion propagationI

= 〈ψ〉e,Δ
]

Hinduction hypothesisI

= (〈ψ〉)e,Δ] Hexpansion propagationI

= 〈ϕ〉e,Δ] H(7.26)I

– ϕ = ∃X. ψ: We use the following equational reasoning.

〈∃X. ψ〉e,Δ = ({πX(〈ψ〉)} −~0)e,Δ H(7.27)I

=
(
reachΔ~0

({πX(〈ψ〉)})
)e,Δ H(7.13)I

= reachΔ~0

({
πX(〈ψ〉e,Δ)

})
Hexpansion propagationI

= reachΔ~0

({
πX(〈ψ〉e,Δ

]
)
})

Hinduction hypothesisI

From the inductive construction of 〈ϕ〉 let us now observe that for every t1, t2 ∈
reachΔ~0

({
πX(〈ψ〉e,Δ

]
)
})

we have t1 ./ t2. This follows from the definition of in-
terference and from the fact that for every set term S occurring in 〈ψ〉 and every
t1, t2 ∈ S it holds that t1 ./ t2. Based on the previous, we have

〈∃X. ψ〉e,Δ = reachΔ~0

({
πX(〈ψ〉e,Δ

]
)
})

= reach
Δ]
~0

({
πX(〈ψ〉e,Δ

]
)
})

Hprevious reasoningI

= 〈∃X. ψ〉e,Δ] Hexpansion prop. and (7.27)I

Since te,Δϕ = te,Δ
]

ϕ and the fact that for each a ∈ Σ and t1, t2 ∈ te,Δϕ : Δa(t1, t2) = Δ]
a(t1, t2),

we have L (tϕ) = L] (tϕ). Finally, from Theorem 7.2.1 we have L (tϕ) = L (ϕ), which
concludes the proof.

Based on Lemma 7.3.1, Lemma 7.3.2, and Theorem 7.3.1 we can show correctness of
the nondeterministic union rule (7.39):

Lemma 7.3.3. Let S and S′ be sets of terms such that S 6./ S′. Then

L]
(
{S+S′}

)
= L]

(
S ∪ S′

)
.

90

Proof. (⊆) From Lemma 7.3.1b, we have L] ({S+S′}) = L] (S)∪L] (S′). Let τ ∈ L] (S)∪
L] (S′) and ρ be an accepting run on τ of either ASe or AS′e . Therefore, ρ is an accepting
run on τ also in ASe∪S′e .

(⊇) Let τ ∈ L] (S ∪ S′). For each t1 ∈ Se and t2 ∈ S′e it holds that t1 6./ t2, so we
have that if t ∈ Δ]

a(t1, t2), then t = ∅. Therefore, if ρ is an accepting run of ASe∪S′e on τ ,
then ρ is an accepting run on τ in either ASe or AS′e . Without loss of generality, suppose
that ρ is an accepting run on τ of ASe and let ρ′ be the run of A{S+S′} on τ (note that
A{S+S′} is deterministic and complete, so ρ′ is unique). By induction on the structure of τ ,
we can easily show that for all w ∈ dom(τ), if ρ(w) = t1, then ρ′(w) = S1 + S2 such that
t1 ∈ S1 (the property clearly holds at leaves and is also preserved by the modified transition
function). Let ρ(ε) = tε1 and ρ′(ε) = Sε1 + Sε2. Since R(tε1), it also holds that R(Sε1 + Sε2).
Therefore, ρ′ is accepting, so τ ∈ L] ({S+S′}).

Note that although the optimization presented in this section can improve the worst-
case number of reached terms, its use comes with a cost. In order to guarantee that
rule (7.39) can be performed, we need to use a different base automaton for each atomic
formula. A different base automaton can be obtained, e.g., by instantiating the automaton
for a given formula every time with different names of states. The use of different base
automata makes it, however, less likely that memoization avoids evaluating some function
call (even though a similar one might have already been evaluated), which may significantly
impact the overall performance of the decision procedure.

7.4 Experimental Evaluation
We have implemented the above introduced techniques (with the exception of Section 7.3.5
for the reasons described therein) in a prototype Haskell tool.1 The base automata, hard-
coded into the tool, were the TAs for the basic predicates from Section 12.1, together with
automata for predicates Sing(X) and X = {p} for a variable X and a fixed tree position p.
As an additional optimization, our tool uses the so-called antiprenexing (proposed already
in [111]), which pushes quantifiers down the formula tree using the standard logical equiv-
alences. Intuitively, antiprenexing reduces the complexity of elements within fixpoints by
removing irrelevant parts outside the fixpoint.

We have performed experiments with our tool on various formulae and compared its
performance with that of Mona. We applied Mona both on the original form of the
considered formulae as well as on their versions obtained by antiprenexing (which is built
into our tool and which—as we realized—can significantly help Mona too). Our preliminary
implementation of product flattening (cf. Section 7.3.4) is restricted to parts below the
lowest fixpoint, and our experiments showed that it does not work well when applied on
this level, where the complexity is not too high, so we turned it off for the experiments.
We ran all experiments on a 64-bit Linux Debian workstation with the Intel(R) Core(TM)
i7-2600 CPU running at 3.40 GHz with 16 GiB of RAM. The timeout was set to 100 s.

We first considered various WS2S formulae on which Mona was successfully applied
previously in the literature. On them, our tool is quite slower than Mona, which is not
much surprising given the amount of optimizations built into Mona (for instance, for
the benchmarks from [195], Mona on average took 0.1 s, while we timeouted). Next,
we identified several parametric families of formulae (adapted from [111]), such as, e.g.,

1The implementation is available at https://github.com/vhavlena/lazy-wsks.

91

https://github.com/vhavlena/lazy-wsks

Table 7.1: Experimental results over the following parametric families of formulae:
1. ϕpt

n , ∀Z1, Z2. ∃X1, . . . , Xn. edge(Z1, X1)∧
∧n
i=1 edge(Xi, Xi+1)∧edge(Xn, Z2) where

– edge(X,Y) , edge1(X,Y) ∨ edge2(X,Y) and
– edge1/2(X,Y) , ∃Z. Z = S1/2(X) ∧ Z ⊆ Y

2. ϕcnst
n , ∃X. X = {(12)4} ∧X = {(12)n}

3. ϕsub
n , ∀X1, . . . , Xn ∃X.

∧n−1
i=1 Xi ⊆ X → (Xi+1 = S1(X) ∨Xi+1 = S2(X))

ϕ n
running time (sec) # of subterms/states

Lazy Mona Mona+AP Lazy Mona Mona+AP

ϕpt
n

1 0.02 0.16 0.15 149 216 216
2 0.50 – – 937 – –
3 0.83 – – 2,487 – –
4 34.95 – – 8,391 – –
5 60.94 – – 23,827 – –

ϕcnst
n

80 14.60 40.07 40.05 1,146 27,913 27,913
90 21.03 64.26 64.20 1,286 32,308 32,308
100 28.57 98.42 98.91 1,426 36,258 36,258
110 38.10 – – 1,566 – –
120 49.82 – – 1,706 – –

ϕsub
n

3 0.01 0.00 0.00 140 92 92
4 0.04 34.39 34.47 386 170 170
5 0.24 – – 981 – –
6 2.01 – – 2,376 – –

92

ϕhorn
n , ∃X. ∀X1. ∃X2, . . . Xn. ((X1 ⊆ X ∧ X1 6= X2) → X2 ⊆ X) ∧ . . . ∧ ((Xn−1 ⊆

X ∧ Xn−1 6= Xn) → Xn ⊆ X), where our approach finished within 10 ms, while the time
of Mona was increasing when increasing the parameter n, going up to 32 s for n = 14
and timeouting for k ≥ 15. It turned out that Mona could, however, easily handle these
formulae after antiprenexing, again (slightly) outperforming our tool. Finally, we also
identified several parametric families of formulae that Mona could handle only very badly
or not at all, even with antiprenexing, while our tool can handle them much better. These
formulae are mentioned in the caption of Table 7.1, which give detailed results of the
experiments.

Particularly, the columns under “running time (sec)” give the running times (in
seconds) of our tool (denoted Lazy), Mona, and Mona with antiprenexing (Mona+AP).
The columns under “# of subterms/states” characterize the size of the generated terms
and automata. Namely, for our approach, we give the number of nodes in the final term tree
(with the leaves being states of the base TAs). For Mona, we give the sum of the numbers
of states of all the minimal deterministic TAs constructed by Mona when evaluating the
formula. The “–” sign means a timeout or that the tool ran out of memory.

The formulae considered in Table 7.1 speak about various paths in trees. We were
originally inspired by formulae kindly provided by Josh Berdine, which arose from attempts
to translate separation logic formulae to WS2S (and use Mona to discharge them), which
are beyond the capabilities of Mona (even with antiprenexing). We were also unable to
handle them with our tool, but our experimental results on the tree path formulae indicate
(despite the prototypical implementation) that our techniques can help one to handle some
complex graph formulae that are out of the capabilities of Mona. Thus, they provide
a new line of attack on deciding hard WS2S formulae, complementary to the heuristics
used in Mona. Improving the techniques and combining them with the classical approach
of Mona is a challenging subject for our future work.

7.5 Conclusion
In this chapter, we introduced a novel decision procedure for WS2S based on on-demand
evaluation of automata terms. We proposed several optimizations reducing the amount
of generated state space. Our experimental evaluation shows a potential of our approach.
Further improvements can include more performance-oriented implementation of the tool
and more precise investigation of the combination of bottom-up (i.e., classical automata-
based) and top-down (i.e., based on the automata terms) approach yielding a procedure
that could push the results even further. This chapter was published in the proceedings
of CADE-27 [138] and an extended version of this paper was accepted to appear in the
Journal of Automated Reasoning [137].

93

Chapter 8

Antiprenexing for WSkS

As we already mentioned in Chapters 6 and 7, the WSkS logic provides a concise expres-
sion of regular tree properties. Despite the NONELEMENTARY complexity, WSkS
found numerous applications across computer science also due to the tool Mona imple-
menting the automata-based decision procedure. Although there have appeared several
newer approaches and prototype tools that may beat Mona on restricted sets of formulae
[272, 199, 273, 121, 111, 112], including the approach presented in Chapter 7 based on
automata terms, Mona is still the most robust tool and handles by far the largest class of
practical formulae. In this chapter, we focus on further improving the efficiency of Mona.
Namely, we elaborate on the preprocessing technique known as antiprenexing, which pushes
quantifiers deeper into a formula, narrowing their scope. We develop a formula preprocess-
ing technique tuned specifically for Mona (although the approach is, in principle, applicable
to all automata-based WSkS solvers).

Antiprenexing is advantageous for the satisfiability test of Mona for the following rea-
son. Recall that Mona builds an automaton representing all models of the formula and then
tests emptiness of its language. An automaton is built for every sub-formula, inductively
to the structure of the formula, starting from predefined atomic automata for atomic for-
mulae and using automata operations that model logical connectives to combine automata
for sub-formulae to automata for larger formulae (see Section 6.2.3 for more details). The
bottleneck is the size of the automata built during the process, which may grow with every
automata operation, leading, in the worst case, to a tower of exponentials. For Mona, the
logical connective with the most expensive automata counterpart is quantification, which
involves determinization and is, therefore, exponential in the worst case. Antiprenexing
pushes quantifiers deeper in the formula, and this causes that the costly quantification is
applied on formulae with (hopefully) smaller automata that appear closer to atoms.

Overview of the proposed approach. Our formula preprocessing is implemented as
a set of syntactic rewriting rules, most of which are well-known rules (or variants of rules)
from transformations to the negation normal form, prenex normal form, or disjunctive
normal form. The rules may, however, be applied in different ways and extent, and, if
used in an unsuitable way, they may cause an explosion in the size of the formula and the
automata built while deciding it. This can happen, e.g., due to unrestricted distribution
of disjunctions over conjunctions, which may lead to an exponential growth of the formula,
which would outweigh all potential benefits. To resolve the issue, we use informed rules that
allow us to control the transformations based on how they change the cost of deciding the
formula, which is given by the size of all automata to be constructed during the decision

94

procedure. Since we, of course, cannot construct the automata beforehand to get their
precise size, we estimate their sizes using a linear model trained from runs of the decision
procedure on various formulae using linear regression.

We have identified parameters of our preprocessing technique that control the balance
of certain trade-offs. Although we have identified several settings of these parameters that
appear to be generally advantageous, they are by no means the universal best. Different
classes of formulae tend to have different optimal settings. Searching through the space of
parameter settings thus gives a good opportunity to solve otherwise unsolvable formulae,
or to increase the efficiency of Mona for specific classes of similar formulae.

We demonstrate on a quite comprehensive benchmark that our formula preprocessing
significantly improves the overall efficiency of Mona. Indeed, it allows Mona to solve
several formulae of practical interest that, prior to our work, were beyond capabilities of
any WSkS solver (including Mona).

Related work. The works related to various decision procedures of WSkS and its applica-
tions were properly discussed in Chapter 7 and Section 6.2. Although there are alternative
methods outperform Mona on certain classes of formulae, we focus to improve Mona
as it is still substantially most robust by a large margin (partially owing to the relative
immaturity of the alternative tools).

Variants of our antiprenexing techniques presented in this chapter would certainly be
relevant for the approaches [111, 112, 273] including the approach in Chapter 7. In [111,
112], a simple variant of antiprenexing was used (namely the quantifier distribution rule
(QuantDistr)). Our more advanced techniques that use other rules according to a cost
estimate cannot, however, be used directly. One would have to come up with different
strategies and cost estimation techniques specific to these algorithms. For this reason, and
also because most of the formulae from our benchmark are beyond the reach of other tools
than Mona, we do not consider them in our experimental evaluation.

Basic principles of the transformation to antiprenex (or miniscope) form are a well-
known folklore in theorem proving, QBF, and SMT solving. Its values were recognized, for
instance, in [104, 44], and its origins reach at least to [285].

Chapter outline. This chapter is organized as follows. In Section 8.1, we describe the
decision procedure implemented in Mona in more details. Then in Section 8.2, we present
the proposed formula transformations in order to obtain smaller intermediate automata.
Section 8.3 deals with an estimation of sizes of automata corresponding to WSkS formulae.
In Section 8.4, we deal with the experimental evaluation and Section 8.5 concludes the
chapter.

8.1 The Decision Procedure for WSkS in Mona
In this section, we briefly describe the WSkS decision procedure as implemented in the tool
Mona. In the rest of this chapter, we further denote the set of free variables of a WSkS
formula ϕ by fv(ϕ) and the set of all sub-formulae of ϕ (including ϕ) by sf (ϕ).

We now recall the variant of the classical decision procedure for WSkS implemented in
Mona. Compared to the decision procedure described in Section 6.2.3, Mona is specific
mainly in that it works with complete deterministic automata only and uses DTA mini-
mization extensively. A DTA is minimal if it is complete and there is no complete DTA

95

with strictly less states that accepts the same language. To obtain the (canonical) minimal
DTA it is possible to use straightforward generalizations of DFA minimization described in
Section 3.3.1. We denote the minimal automaton equivalent to A by min(A). We note that
Mona uses a number of other crucial optimizations, such as a symbolic, BDD-based rep-
resentation of the transition relation or the so-called three-valued semantics for automata
with “don’t care” states [173], but these are not directly relevant to the contribution of this
chapter, and so we will not discuss them in this text.

When testing satisfiability of a formula ϕ, Mona constructs the minimal DTA Aϕ over
the alphabet Σfv(ϕ) with L (Aϕ) = L (ϕ) and then tests whether L (Aϕ) = ∅. Recall that the
emptiness test is implemented using the reachability analysis mentioned in Section 6.2.3.

The automaton Aϕ is constructed by induction to the structure of ϕ. Note that we
abuse the notation of Aϕ from Section 6.2.3. Namely, if ϕ is an atomic formula with free
variables X, then Aϕ is a pre-defined base minimal complete DTA over ΣX (see Section 6.2.3
for more details). Otherwise, if ϕ is not atomic, then Aϕ = min(A∂ϕ), i.e., it is obtained
by minimizing the DTA A∂ϕ, which is created from the automata for ϕ’s sub-formulae by
the automata operation corresponding to the top-level logical operator of ϕ in the following
way (the automata operations preserve determinism and completeness):

(i) If ϕ = ψ1 ∧ ψ2 then, for Aψ1 over the alphabet ΣX and Aψ2 over the alphabet ΣY,
the automaton A∂ϕ over the alphabet ΣX∪Y is given as A∂ϕ = π[X(Aψ1) ∩ π[Y(Aψ2).

(ii) If ϕ = ψ1 ∨ ψ2 then A∂ϕ is constructed analogically to ∧ (in particular, ∪ is used
instead of ∩).

(iii) If ϕ = ¬ψ, then A∂ϕ = A{ψ. The operation preserves determinism, minimality, and
completeness of the transition relation, hence Aϕ is taken directly as A∂ϕ, without
calling the minimization.

(iv) If ϕ = ∃X. ψ, then the automaton A∂ϕ is constructed as det(πX(Aψ)−~0).

8.2 Formula Transformations
In this section, we describe our formula transformation algorithm. It is based on well-known
rules for transformation of formulae to the negation normal form (NNF) and the antiprenex
form (APF) [104], together with distributive laws. Recall that, during transformation into
NNF, negations are pushed deeper into the formula so that they occur only in front of
atoms, and during transformation into APF, quantifiers are pushed deeper into the formula
in order to minimize their scopes (APF can be viewed as the opposite of the prenex normal
form). In the following, we assume that the processed formula contains only existential
quantifiers ∃ and Boolean connectives ∧,∨, and ¬.

We will discuss heuristics for choosing which formula transformation rules to apply
and when to apply them so that the resulting formula is as easy as possible for the au-
tomata solver. We fine-tune the heuristics particularly for the algorithm of Mona and
with respect to the specific way it processes individual logical connectives (cf. Section 8.1).
Namely, Mona always works with complete DTAs (its data structures cannot even directly
represent nondeterminism). Negation is implemented as complementation of such DTAs,
which is cheap (it is sufficient to just invert the acceptance condition). The ∧ and ∨ connec-
tives are implemented through an automata product construction, which is quadratic (the

96

two constructions differ only in their treatment of the acceptance condition). Although the
potential quadratic blow-up is not the source of the worst-case NONELEMENTARY
complexity of WSkS, a sequence of product constructions is still exponential and in prac-
tice is often the main cause of a state explosion. Projection performed while processing the
∃ connective is the only operation that introduces nondeterminism, and is therefore done
together with determinization, which is, in the worst case, exponential. The NONELE-
MENTARY worst-case complexity of the procedure stems from here.

An important factor in Mona’s performance is that it minimizes automata after every
operation. Without minimization, the results of operations would often be many times
larger than the operands, and the construction would quickly explode. Minimization is
usually able to keep automata sizes at bay. Its effect is particularly well visible after exis-
tential quantification (which includes determinization) after which the result might explode
significantly, but the minimized automaton is in many cases smaller than the original.

8.2.1 Cost of Deciding a Formula

Some of the rewriting rules that will be discussed below are driven by heuristic estimates
of the cost of building the DTA representing the transformed formula. The cost of deciding
a formula in automata-based decision procedures is essentially proportional to the sum
of the sizes of all automata that are built while the formula is being decided. Recall
that Mona builds two automata for every non-atomic sub-formula ϕ: the automaton A∂ϕ,
resulting directly from applying the root operator of the sub-formula, and its minimized
version Aϕ = min(A∂ϕ). On the other hand, the base automata Aϕ for atomic formulae are
directly generated minimal, without an intermediate A∂ϕ. The cost of deciding the formula
is hence proportional to the sum

‖ϕ‖ =
∑

ψ∈sf (ϕ)

|Aψ|+ |A∂ψ| (8.1)

where sf (ϕ) is the set of all sub-formulae of ϕ and |A∂ψ| = 0 if ψ is an atomic formula.
Computing the cost of a formula ‖ϕ‖ precisely would require one to actually run through

the entire decision procedure for ϕ and build all the TAs, which is clearly impractical as
a means of optimizing the very same computation. We therefore use a cheap estimate ‖ϕ‖∼.
The means of obtaining the estimate, by linear regression from a sample set of formulae,
are discussed in the next section. In this section, we focus on how the estimates are used
to drive the rewriting.

8.2.2 Quantifier Distribution and Scope Narrowing

The core of our formula rewriting are rules for narrowing the scope of quantifiers by moving
them towards literals. The most important rule is quantifier distribution over disjunction:

∃X. ϕ ∨ ψ (∃X. ϕ) ∨ (∃X. ψ) (QuantDistr)

Using this rule is generally beneficial for the following reasons. Disjunction is expensive,
often quadratic, and the result is often significantly more complex than the arguments, even
after the result’s minimization. The arguments of the quantifications on the right-hand side
of the rule, Aϕ and Aψ, are hence likely to be substantially smaller than the argument of
quantification on the left-hand side of the rule, Aϕ∨ψ. This is desirable since quantification

97

is often the most expensive operation, exponential in the worst case. Moreover, minimiza-
tion often reduces the size of the result of quantification to even smaller than the size of
the automaton before quantification, in which case the product construction is applied on
smaller arguments after the transformation than before it. We therefore use quantifier
distribution whenever applicable.

Quantifier scope narrowing is another way of moving a quantifier towards literals, this
time through a conjunction:

∃X. ϕ ∧ ψ ϕ ∧ (∃X. ψ) provided X are not free in ϕ. (ScopeNarrow)

The rule is justified in a similar way as (QuantDistr): Aψ is probably smaller than Aϕ∧ψ
and applying quantification on a smaller operand is preferable. Secondly, the automaton
A∃X.ψ may be smaller than Aψ, making the product construction cheaper after the trans-
formation too.

8.2.3 Supporting Rules

Further rewriting rules we use push negation deeper into the formula, distribute ∧ over
∨, or restructure ∧. These rules only have a supporting role; their purpose is to enable
(QuantDistr) and (ScopeNarrow).

Pushing negation. First, the following rules, standard in the transformation into NNF,
are used essentially whenever applicable for pushing negation inwards by De Morgan’s laws
and for eliminating double negation:

¬(ϕ ∧ ψ) ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ¬ϕ ∧ ¬ψ
¬¬ϕ ϕ

(PushNeg)

Negation has a negligible cost with DTAs, hence an application of these rules alone does
not normally change the running time of Mona much. Their purpose is to enable applica-
bility of all other rules. The rules in (PushNeg) ultimately push negations to atoms or to
quantifiers. Negations at atoms can be completely eliminated by DTA complementation.
Negations in front of the ∃ quantifier cannot be pushed inside unless the quantifier itself is
first pushed inwards by (QuantDistr) or (ScopeNarrow) after which the negation can also
follow.

Distribution of conjunction. Second, we use distribution of conjunction (over disjunc-
tion under quantification):

∃X. ϕ ∧ (ψ ∨ χ) ∃X. (ϕ ∧ ψ) ∨ (ϕ ∧ χ) (8.2)

Applying the rule enables quantifier distribution (rule (QuantDistr)). Its application may,
however, result in a formula that is more difficult to decide due to the following reasons:

(i) The threefold product on the right of the rule might be larger and more expensive
than the twofold product on the left, even after quantifier distribution, especially
if Aϕ is large.

98

∃X∃Y

∧

∧

ψ1(Y) ψ2(X)

∧

ψ3(X) ψ4(Y)

(a)

∃X∃Y

∧

∧

ψ2(X) ψ3(X)

∧

ψ1(Y) ψ4(Y)

(b)

∧

∃X

∧

ψ2(X) ψ3(X)

∃Y

∧

ψ1(Y) ψ4(Y)

(c)

Figure 8.1: An example of how conjunction restructuring can help antiprenexing. The
tree in (a) represents the formula χ1 : ∃X∃Y. (ψ1 ∧ψ2)∧ (ψ3 ∧ψ4) where Y is the only free
variable of ψ1 and ψ4 and X is the only free variable of ψ2 and ψ3. Notice that none of the
quantifiers can be pushed inside. The tree in (b) represents a formula obtained from χ1 by
applying the associative and commutative laws to gather sub-formulae with the same free
variables together, enabling the use of the (ScopeNarrow) rule. The tree in (c) is obtained
from (b) by applying the rule twice.

(ii) Even though Mona represents a formula as a DAG of its sub-formulae in which
all occurrences of the same sub-formula ϕ correspond to a single node, an iterated
application of distribution that duplicates larger and larger ϕ, might ultimately lead
to an exponential explosion in the size of the formula and its DAG (the formula might
be ultimately turned to the exponentially larger disjunctive normal form).

Therefore, we make the question of whether to apply the distribution of conjunction subject
to a heuristic decision based on the estimated cost of ϕ. Namely, the rule is used in the
form

∃X. ϕ ∧ (ψ ∨ χ) ∃X. (ϕ ∧ ψ) ∨ (ϕ ∧ χ) if ‖ϕ‖∼ ≤ DistrThres (∧-Distr)

where DistrThres is a parameter specifying the maximum estimated cost of the formula
for which we allow application of the rule.

Restructuring conjunctions. Our last transformation rule is used to facilitate quanti-
fier scope narrowing (rule (ScopeNarrow)). It is the rule of restructuring of conjunctions,
denoted as (Restr&Narrow). Consider a formula ∃X1 . . . ∃Xm. ϕ where ϕ is a (possibly
large and nested) conjunction. The rule can be seen as performing the following three
actions: (i) reordering the sequence of quantifiers ∃X1 . . . ∃Xm into the from most suitable
for the next step, (ii) using the laws of associativity and commutativity for ∧ to restructure
the top-most conjunctions of ϕ so that the scope narrowing (w.r.t. the order induced in the
previous step) can have the greatest possible effect, and (iii) performing (ScopeNarrow) to
push quantifiers as deep as possible.

We will start by describing how the restructuring itself is performed. Let p be a per-
mutation of the set {1, . . . ,m}, which induces the following reordering of the quantifiers
in the transformed formula: ∃Xp(1) . . . ∃Xp(m) (we will describe how we obtain p later).
Consider a sequence of quantifiers ρ = ∃Xp(1) . . . ∃Xp(m) and a formula χ. Further, let χ′
be a formula obtained from ρ. χ by applying (ScopeNarrow) on the top-most conjunctions
as long as possible. We then say that χ is optimal for narrowing w.r.t. ρ if no sequence of
applications of the commutativity and associativity laws on the top-most conjunctions of χ′
enables any more application of (ScopeNarrow). We use ϕp to denote a formula obtained by
restructuring ϕ’s top-most conjunctions using associativity and commutativity laws that is

99

Function RestrAndNarrowP(p)

1 Function Restr&Narrow(p):
2 Ψ := {ψi}ni=1;
3 for j := m downto 1 do
4 Φj := {ψi ∈ Ψ | Xp(j) ∈ fv(ψi)};
5 Ψ := (Ψ \ Φj) ∪ {∃Xp(j).

∧
Φj};

6 return (
∧
Ψ);

optimal for narrowing w.r.t. ∃Xp(1) . . . ∃Xp(m) (there might be more such formulae; picking
any of them works for us). See Figure 8.1 for an example of how ∧-restructuring enables
using the (ScopeNarrow) rule.
Constructing ϕp for a given permutation p is implemented as a call to the function
Restr&Narrow(p), given above. The function not only creates ϕp, but also performs, on
the fly, quantifier scope narrowing (so that it is not necessary to apply (ScopeNarrow) on
the result), producing a formula denoted as ϕsnp . Assume that ϕ can be written modulo
commutativity and associativity of conjunction as

∧
1≤i≤n ψi where no ψi is itself a conjunc-

tion. The function maintains the set Ψ of the leaves of the current conjunction, initialized
as the set {ψi}ni=1. It then iterates through numbers j from m to 1, and, in each itera-
tion, collects into Φj all formulae in Ψ that contain Xp(j) as a free variable, and replaces
them in Ψ by the formula ∃Xp(j).

∧
Φj . After the m-th iteration, Ψ contains the formula

∃Xp(1). Φ1, and also the original formulae ψi that contain no variable from X1, . . . , Xm.
Restr&Narrow(p) then returns the conjunction of all those formulae. (We note that the
function works with the generalized n-ary conjunction; when implemented, the returned
formula uses only binary conjunctions.)

Note that in the previous, we were using a permutation p of the quantifiers as a pa-
rameter of the restructuring. The way how quantifiers are ordered is important because it
determines how well the restructuring can be done (see Figure 8.2 for an example).

(Restr&Narrow) then works as follows: it searches through all permutations p of the
set {1, . . . ,m}. For each p, it constructs the formula ϕsnp using Restr&Narrow(p) and
computes its estimated cost ‖ϕsnp ‖∼. Finally, the formula ϕsnp with the smallest estimated
cost is returned.

The basic version of (Restr&Narrow) described above enumerates all permutations p
of the set {1, . . . ,m} and for each constructs the formula ϕsnp and computes an estimate
of its cost. Performing this computation for a larger number of quantifiers is obviously
infeasible (there are m! permutations over them). We therefore propose the following three
heuristics: First, we do not distinguish permutations that induce formulae whose cost is
obviously the same. In particular, we group together variables that (i) always or (ii) never
occur free together in a formula ψi from {ψi}ni=1. We then treat each such group as a single
variable when generating the permutations (when later generating the final formula, we fix
an arbitrary permutation of the variables within each group). For example, in the formula
∃X∃Y ∃Z. ψ1(X,Z)∧ψ2(Y,Z), the variables X and Y never appear together, so we consider
only the following two orderings of quantifiers: (i) ∃{X,Y }∃Z. ψ1(X,Z) ∧ ψ2(Y, Z) and
(ii) ∃Z∃{X,Y }. ψ1(X,Z) ∧ ψ2(Y, Z).

The second heuristic works as follows. If the number of possible orderings is still too
high, we split the sequence of quantifiers ∃X1 . . . ∃Xm into subsequences of the length h (ex-
cept the last one which can be shorter), i.e., ∃X1 . . . ∃Xh; ∃Xh+1 . . . ∃X2h; . . . ; ∃Xjh . . . ∃Xm,

100

∃Y ∃X

∧

∧

ψ1(X,Y) ψ2(X)

ψ3(X,Y)

(a)

∃X∃Y

∧

∧

ψ1(X,Y) ψ2(X)

ψ3(X,Y)

(b)

∃X∃Y

∧

∧

ψ1(X,Y) ψ3(X,Y)

ψ2(X)

(c)

∃X

∧

∃Y

∧

ψ1(X,Y) ψ3(X,Y)

ψ2(X)

(d)

Figure 8.2: An example of how reordering quantifiers can help with quantifier scope
narrowing. The tree in (a) represents the formula χ2 : ∃Y ∃X. (ψ1(X,Y)∧ψ2(X))∧ψ3(X,Y).
Notice that for the order of quantifiers ∃Y ∃X, the ∧-tree is optimal for narrowing. In (b),
we changed the order of quantifiers to ∃X∃Y . This change enables restructuring the ∧-tree
into a more suitable form (the tree in (c)), which, in turn, allows quantifier scope narrowing
(the tree in (d)).

for some j, and try to find the best ordering for every such subsequence independently.
The constant h is controlled by the parameter R&NSeqMax. The third heuristic addresses
the situation when, despite the optimizations above, the application of (Restr&Narrow) may
still be too costly. We therefore use the parameter R&NThres to bound the maximum
size of the conjunction {ψi}ni=1 for which (Restr&Narrow) can be applied.

8.2.4 Top-level Algorithm

The top-level algorithm executing formula transformations works as follows. It runs in
iterations, the number of which is controlled by the parameter Iters. In each iteration,
the rules are applied in one of the following two sequences Full and Simple:

Full = (PushNeg)↓;
(
(Restr&Narrow) + (QuantDistr)

)↓
; (∧-Distr)↑ and

Simple = (PushNeg)↓;
(
(ScopeNarrow) + (QuantDistr)

)↓
.

where “;” denotes sequential composition of operations and “+” denotes interleaved ap-
plication of operations; “↓” denotes that the rewriting rule is applied using a pre-order
traversal of the syntax tree of a formula (i.e., top-down), while “↑” applies the rules in
a post-order traversal (i.e., bottom-up). The majority of the rules are applied top-down;
this corresponds with the fact that the rules are pushing quantifiers inside the formula. The
only rule applied bottom-up is (∧-Distr); the reason for this is that if we applied it top-
down, the distribution would be done on larger formulae, while when applied bottom-up,
the formulae it is applied on are smaller (since this rule does not push quantifiers inside, but
only enables the pushing, we perform an additional (QuantDistr)↓ after the last iteration).

In both sequences, each iteration is started by pushing negations deeper into a formula
using (PushNeg). Then, in Full, the rule (Restr&Narrow) is interleaved with (QuantDistr)
to push quantifiers into conjunctions and distribute ∃ over ∨. Finally, (∧-Distr) is used
to distribute ∧ over ∨. On the other hand, in Simple, (PushNeg) is followed just by
interleaving quantifier scope narrowing with distributing ∃ over ∨. (Note that it may seem
that (ScopeNarrow) is only used by Simple and not by Full; in fact, the rule is used
in Full internally within (Restr&Narrow).) The particular sequence of operations (Full

101

or Simple) to be used is determined by the size of the input formula ϕ. In particular, if
|sf (ϕ)| ≤ SimpleThres, we pick the more expensive Full, otherwise we pick the cheaper
Simple, where SimpleThres is a parameter whose value specifies the threshold.

Predicate inlining. The last preprocessing step we use is inlining of user-defined pred-
icates, a specific syntactic feature of Mona. User-defined predicates are named formulae
with free variables that can be used (non-recursively) in other formulae. Their use improves
the readability of formulae in Mona, but, on the other hand, restricts applications of our
transformation rules (e.g., we cannot push quantifiers beyond a predicate boundary). We
therefore introduce a Boolean parameter Inline that, when set to true, enables inlining all
user-defined predicates.

8.3 Automata Size Estimation
We will now discuss how to cheaply compute the estimate ‖ϕ‖∼ of the formula cost ‖ϕ‖,
which is a parameter of the rules in the previous section (in particular, the rules perform-
ing informed distribution and conjunction restructuring). Computing the precise number
would be as difficult as deciding the formula itself, hence we seek an inexpensive, yet good
approximation. The approximation we use is based on the estimates |Aψ|∼ and |A∂ψ|∼ of
the sizes of the DTAs Aψ and A∂ψ, respectively, for each sub-formula ψ of ϕ. Namely, we
compute ‖ϕ‖∼ in the form

‖ϕ‖∼ =
∑

ψ∈sf (ϕ)

|Aψ|∼ + |A∂ψ|∼ . (8.3)

We propose an approach that learns a function estimating automata sizes based on the
following: (i) the estimates of the sizes of automata resulting from the direct sub-formulae
of ϕ, and (ii) the type of the top-level logical connective of ϕ. Moreover, if ϕ is a conjunction
or disjunction, we include as the third parameter of the estimation function the number of
shared variables between the conjuncts/disjuncts. In our experience, this number tends to
strongly correlate with the size of the resulting TA. Formally, we learn estimation functions `
and `∂ , indexed by the formula top-level operator, which are then used to estimate automata
sizes as follows:

ϕ = ψ ∧ ψ′ : |Aϕ|∼ = `∧(|Aψ|∼, |Aψ′ |∼, n) |A∂ϕ|∼ = `∂∧(|Aψ|∼, |Aψ′ |∼, n)
ϕ = ψ ∨ ψ′ : |Aϕ|∼ = `∨(|Aψ|∼, |Aψ′ |∼, n) |A∂ϕ|∼ = `∂∨(|Aψ|∼, |Aψ′ |∼, n)
ϕ = ∃X.ψ : |Aϕ|∼ = `∃(|Aψ|∼) |A∂ϕ|∼ = `∂∃(|Aψ|∼)
ϕ = ¬ψ : |Aϕ|∼ = |Aψ|∼ |A∂ϕ|∼ = 0

ϕ = ψa : |Aϕ|∼ = |Aψa | |A∂ϕ|∼ = 0

Above, n = |fv(ψ) ∩ fv(ψ′)| and ψa is an atomic formula. Since Mona uses minimal
DTAs, the automaton for ¬ψ is the same as Aψ except the set of root states, hence no
intermediate DTA is generated. Similarly, base automata are generated directly minimal
and deterministic, hence there is no intermediate automaton A∂ψa .

The first obvious choice for the functions ` and `∂ would be to use the worst-case size of
the automata, i.e., `∂?(|Aψ|∼, |Aψ′ |∼, n) = |Aψ|∼ · |Aψ′ |∼ for ? ∈ {∧,∨}, `∂∃(|Aψ|∼) = 2|Aψ |

∼ ,
and `• = `∂• for • ∈ {∧,∨, ∃} (in the worst case, minimization is performed, but has no

102

effect). When analyzing the sizes of automata produced by Mona, we, however, noticed
that the worst case happens only exceptionally, and in reality, the sizes are much smaller.
In particular, the size of A∂∃X.ψ (resp. A∃X.ψ) is usually linear to the size of Aψ rather
than exponential (with a few outliers where the explosion happened). Furthermore, we also
noticed that there is a linear correlation between the size of A∂ϕ?ψ (resp. Aϕ?ψ) and the
value ‖Aϕ‖ · ‖Aψ‖.

Therefore, we chose to use linear functions for `• and `∂• . In particular, the functions `?
and `∃ are represented as the lines (the lines for `∂ are similar with different parameters)

`?(|Aψ|∼, |Aψ′ |∼, n) = a?n · (|Aψ|∼ · |Aψ′ |∼) + b?n and
`∃(|Aψ|∼) = a∃ · (|Aψ|∼) + b∃.

(8.4)

We obtain the particular parameters a∃, b∃ and a?n, b?n for every n (and their variants for `∂)
by learning from runs of Mona. As the learning algorithm, we used linear regression (its
particular version is discussed in Section 8.4), which is an optimization technique based
on fitting input data (points in a Euclidean space) with a hyperplane such that the least
square error is minimized [240]. We chose this method for its simplicity and well-predictable
behavior.

8.4 Experimental Evaluation
We have implemented the antiprenexing transformations for WSkS formulae introduced
in Section 8.2 as a Haskell/Python prototype tool named AntiMona (Antiprenexing
for Mona)1. The tool works as a preprocessor for Mona; it reads a file in the Mona
format, applies the transformations, and produces a new file in the same format, which
can then be passed to Mona. Our goal is to evaluate the impact of our optimization
on Mona. Although there have recently appeared new techniques for deciding WSkS,
e.g., [112, 111, 91, 273, 121], or the approach in Chapter 7, we do not focus on comparing
with them, because the alternative tools are far less mature than Mona. Although they
can win over Mona on limited classes of formulae, Mona performs better overall and, up
to our knowledge, can still be considered the only robust and practically usable tool.

We implemented only a light-weight estimation of the costs of formulae (cf. Section 8.3).
In particular, our implementation does not consider Mona’s DAGification optimization,
which first transforms a formula into a DAG where nodes corresponding to similar sub-
formulae2 are merged into one, and then constructs automata only for the nodes in the
DAG (see [173] for more details). Instead, we work with the syntax tree of a formula
and therefore return an over-approximation of the formula’s cost estimate (some nodes are
counted multiple times) .

Experimental settings. We have evaluated our technique on formulae we were able to
find in the literature or obtain by personal communication (in cases where the appropriate
research was not published due to problems with the scalability of Mona) and which our
tool could parse. Particularly, our benchmark includes formulae from the Strand bench-
mark [196], formulae from the authors of Mona [173], benchmarks for synthesis of regular
specifications [135], families of parametric WS1S formulae [112], LTL formulae from [293]

1The tool is available at https://github.com/vhavlena/lazy-wsks.
2Two sub-formulae ϕ and ϕ′ are similar if there is an order-preserving renaming of variables of ϕ such

that after the renaming ϕ becomes identical to ϕ′ [173].

103

https://github.com/vhavlena/lazy-wsks

Table 8.1: Parameters of the selected settings of AntiMona.

Name Iters DistrThres SimpleThres Inline R&NSeqMax R&NThres

AntiPrxInl 5 5,000 3,000 true 5 5
AntiPrxPr1 5 5,000 3,000 false 5 5
AntiPrxPr2 3 5,000 2,000 false 5 ∞

Table 8.2: Results of learning

op n a a∂

∃ — 0.899 0.900
∧ 0 0.666 0.667
∧ 1 0.056 0.275
∧ 2 0.086 0.087
∨ 3 0.066 0.073

translated to the MSO(Str) logic [89], and an experimental translation of separation logic
formulae into MSO(Str) [40]. In total, our benchmark set has 103 formulae (95 WS1S
and 8 WS2S).

The experiments were run on a 64-bit Debian GNU/Linux workstation with Intel(R)
Xeon(R) E5-2630 v2 CPU running at 2.60 GHz with 32 GiB of RAM, using Mona v1.4-17.

Learning formula’s cost estimate. The function performing size estimates of automata
constructed from formulae is learned from runs of Mona on all sub-formulae obtained from
of a set of selected WS1S formulae (in total, this gave us 7,112 formulae).

We used the functions lm and rlm from R [3] to learn the linear estimation model. The
lm function is a basic library function that infers a linear model using the method of least
squares. On the other hand, rlm (from the R’s MASS package) implements robust fitting of
linear models, which uses a modification of the method of least squares that can deal with
outliers (see the documentation of rlm for more information). We use the output from rlm
whenever it is available; in some cases (e.g., when the number of data points was too small),
the computation of rlm did not produce a result, and so we used the output of lm (this
can happen due to the fact that rlm works in iterations with giving data points different
weights; if the computation does not converge in a set number of iterations, the function
produces no output). Moreover, we analyzed the learned models (in particular using the R2

statistical measure [240]) and discarded those with a low fidelity—this affected models of `∧
and `∨ with the number of shared variables n for which we did not have enough training
data. The discarded models were substituted by a model for a number closest to n that
had a high-fidelity. In some cases, we obtained linear models ax+ b with a large value of b,
which caused a large bias in the computed values, especially for smaller formulae; in those
cases, we modified the model by setting b = 0. In Table 8.2, we provide learned values of
the parameters a (for `op) and a∂ (for `∂op) for some cases.

104

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

0.01 0.10 1.00 10.00 100.00
Mona

A
nt

iP
rx

P
r 1

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

0.01 0.10 1.00 10.00 100.00
AntiPrxInl

A
nt

iP
rx

P
r 1

Figure 8.3: (left) A comparison of the runtime of Mona on unprocessed formulae and on
formulae after AntiPrxPr1, (right) a comparison of our two settings of the antiprenexing
procedure. The axes are logarithmic and the dashed lines represent the cases where Mona
ran out of memory or our antiprenexing did not finish (the timeout for antiprenexing was
300 s).

Parameters of antiprenexing. We experimented with different settings of parameters
of our antiprenexing procedure from Section 8.2 and chose three that give the best overall
performance on our benchmark set; their overview is in Section 8.1.

Results of experiments. For each formula ϕ in our benchmark set, we compared the
runtime of Mona on ϕ (denoted as Mona) with the runtime of Mona on the formulae
obtained after the antiprenexing transformations (denoted by the corresponding transfor-
mation). We do not mention the timeout for Mona because when Mona failed to decide
a formula, it was always because it ran out of memory (note that Mona is optimized for
32 bits, therefore it could not use all the available memory). The timeout for antiprenexing
was set to 300 s.

In the left-hand plot of Figure 8.3, we give a comparison of Mona and AntiPrxPr1.
Note that there are many cases where antiprenexing significantly shortens the time to decide
a formula (the data points at the bottom of the plot) and also many formulae that can be
decided only after antiprenexing (the vertical dashed line).

In the right-hand plot of Figure 8.3, we compared AntiPrxInl with AntiPrxPr1.
The plot shows that AntiPrxPr1 more often behaves better. There are, however, two
interesting cases of formulae that can only be decided by one of the settings. These are
the formulae sl (which can be decided by AntiPrxInl in 18.43 s; AntiPrxPr1 and
AntiPrxPr2 timeout) and von-neumann-add (which can be decided by AntiPrxPr1 in
7.83 s, by AntiPrxPr2 in 5.36 s and by Mona in 6.87 s; AntiPrxInl timeouted). The
formula sl comes from an experimental translation of separation logic into MSO(Str) [40]
(in particular of the property of the existence of a path in a symbolic heap) and the for-
mula von-neumann-add encodes the fact that an 8-bit von Neumann adder is equivalent to
a standard carry-chain adder [173].

In Table 8.3, we give a selection of interesting benchmarks where the first half of the
table contains formulae from practical scenarios and the second half contains artificially

105

Table 8.3: A selection of interesting benchmarks; “–” denotes that Mona ran out of
memory (OOM) or that our antiprenexing did not finish (the timeout for antiprenexing
was 300 s). The column |DAG| gives a measure of the size of the input formula.

Formula |DAG| Mona AntiPrxInl AntiPrxPr1 AntiPrxPr2 Source

four-weights 145 0.77 0.03 0.01 0.02 [135]
smoothing 221 17.94 5.30 5.38 0.46 [135]
tree-weights-min 153 12.00 10.83 10.83 10.50 [135]
von-neumann-add 267 6.87 – 7.83 5.36 [173]
sl 77 – 18.43 – – [40]
lift_8.ltl0 255 – 0.35 0.3 – [293]
lift_b_7.ltl0 380 – 0.10 0.13 – [293]
horn_sub17 39 2.10 0.02 0.01 0.01 [112]
horn_sub18 41 5.42 0.01 0.01 0.01 [112]
horn_sub19 43 – 0.02 0.02 0.01 [112]
Total OOM 18 1 1 5

constructed (parameterized) formulae. The column |DAG| denotes the size of the DAG
obtained by Mona from the input formula before further reductions and is used as a mea-
sure of the size of the input formula. Notice that antiprenexing can significantly decrease the
runtime of Mona (smoothing) or be necessary for deciding a formula at all (e.g., the for-
mula sl cannot be, to the best of our knowledge, solved by any current automatic tool other
than AntiMona). In the second half of the table, observe the horn_subN family of formu-
lae, which denotes formulae of the form ∃X. ∀Y1 . . . ∀YN. (Y1 ⊆ X → Y2 ⊆ X)∧ . . .∧(YN−1 ⊆
X → YN ⊆ X). Note that the increase of N makes the formula significantly harder for Mona
(for N = 19, Mona cannot handle the formula at all). Antiprenexing seems to mitigate this
exponential behavior of Mona.

We note that our benchmark set does not contain two benchmarks that were available
to us, lift_b_8.ltl0 and lift_b_9.ltl0 from [89], because Mona and all of the three
settings of AntiMona presented above timeouted on them (AntiMona already during
antiprenexing). Nonetheless, by slightly tuning the parameters of AntiPrxInl2 (changing
SimpleThres to 5,000), we obtained a setting under which AntiMona quickly produced
a formula that could be easily decided by Mona.

Discussion. The experimental results obtained from our prototype implementation show
that our antiprenexing techniques can significantly reduce the time for deciding WSkS
formulae—or allow the formula to be decided at all. The settings we have provided in
Table 8.1 were selected for their ability to give good overall performance on the whole
benchmark set, which mixes formulae of varying character. These settings are, however,
not universally the best, the optimal settings for particular formulae may vary significantly.
Hard formulae may be decided through tailoring the parameters to fit, as is indeed witnessed
by the two last formulae mentioned above. Our parametric framework also makes it possible
to fine-tune the parameters for a specific class of similar formulae, which typically come
from specific application domains (such as verification conditions of programs of a certain
kind or by translation from some given logic).

106

8.5 Conclusion
In this chapter, we proposed static transformations of WSkS formulae to a more suitable
form allowing to speed up the automata-based decision procedure implemented in Mona.
In particular, we leverage on transforming formulae into the antiprenex form. Our exper-
imental evaluation shows that the preprocessing techniques can have a significant impact
on the time for deciding formulae. As a part of our future work, we wish to automate
the process of tuning the parameters of our formula transformation procedure for a given
class of WSkS formulae (possibly using some machine learning approach again) and also
we would like to integrate our methods directly into Mona. The content of this chapter
was published in the proceedings of LPAR’20 [141].

107

Chapter 9

Automata in String Constraint
Solving

In the previous chapters, we used automata to represent models of formulae (WSkS or
Presburger arithmetic). In this chapter, we employ automata in the context of the the-
ory of strings (string constraints solving). In particular, we use automata for an efficient
representation of a proof graph and proof rules. Constraint solving is a technique used as
an enabling technology in many areas of formal verification and analysis, such as symbolic
execution [127, 168], static analysis [288, 131], or synthesis [130, 222]. For instance, in
symbolic execution, feasibility of a path in a program is tested by creating a constraint
that encodes the evolution of values of variables on the given path and checking if it is
satisfiable. Due to the features used in the analyzed programs, checking satisfiability of
the constraint can be a complex task. For instance, the solver has to deal with a com-
bination of different first-order theories, such as theory of integers, reals, or strings. The
theory of strings uses variables ranging over strings combined with symbol constants and
concatenation (and possibly with length and/or regular constraints). Theories (or their
fragments) for the integers (see, e.g., Section 6.3) and reals are well known, widely devel-
oped, and implemented in tools, while the theory of strings has started to be investigated
only recently [9, 304, 45, 74, 73, 148, 191, 189, 286, 298, 7, 10, 167, 190], despite having
been considered already by A. A. Markov in the late 1960s in connection with Hilbert’s
10th problem [201, 102].

Although the full FO theory of strings (i.e., including quantifiers) is undecidable [235],
the existential fragment is decidable (e.g., using Makanin’s algorithm [197]). Most of the
works dealing with string solving hence focus on interesting classes of the existential frag-
ment and so do we in this chapter. Most current decision procedures for string constraints
involve the so-called case-split rule. This rule performs a case split w.r.t. the possible
alignment of the variables. The case-split rule is used in most, if not all, (semi-)decision
procedures for string constraints, including Makanin’s algorithm [197], Nielsen transforma-
tion [219] (a.k.a. Levi’s lemma [185]), and the procedures implemented in most state-of-
the-art solvers such as Z3 [45] or CVC4 [189]. In this chapter, we will explain the general
idea of our symbolic approach using Nielsen transformation, which is the simplest of the
approaches; nonetheless, we believe that the approach is applicable also to other procedures.

Overview of the proposed approach. Our work brings a novel approach to an efficient
symbolic handling of Nielsen transformation, a proof technique for the satisfiability checking

108

of word equations. Nielsen transformation is based on case-splitting rules generating a proof
graph whose nodes are transformed string equations.

Consider the word equation xz = yw, where x, z, y, and w are string variables. When
establishing satisfiability of the word equation, Nielsen transformation [219] proceeds by
first performing a case split based on the possible alignments of the variables x and y, the
first symbol of the left and right-hand sides of the equation, respectively. More precisely,
it reduces the satisfiability problem for xz = yw into satisfiability of (at least) one of the
following four (non-disjoint) cases (i) y is a prefix of x, (ii) x is a prefix of y, (iii) x is
an empty string, and (iv) y is an empty string. For these cases, Nielsen transformation
generates new equations. If xz = yw has a solution, then at least one of the generated
equations has a solution, too. Nielsen transformation keeps applying the transformation
rules on the obtained equations, building a proof graph and searching for a tautology of
the form ε = ε.

During the application of Nielsen transformation, there may emerge a lot of equations
that are similar and/or have common parts with other generated equations. The case split
can be hence performed more efficiently if we process the common part of the proof graph
together using a symbolic encoding. In this work, we use an encoding of a set of equations
as a regular language, which is represented by an NFA.

Further, we show that the transformations can be encoded as rational relations, rep-
resented using finite transducers, and the whole satisfiability checking problem, including
word equations with Presburger and regular constraints, can be encoded within the frame-
work of regular model checking (RMC). In the past, RMC has already been considered for
solving string constraints (cf. [298, 297, 300, 21]). In those approaches, the languages of
the automata are, however, “models of the formula”, so the approaches can be considered
“model-theoretic”. In our approach, the automata languages are the derived constraints.
Hence the approach is closer to “proof-theoretic”. We believe this novel aspect has a great
potential for further investigation and can bring new ideas to the field of string constraints
solving.

We implemented our approach in a prototype Python tool called Retro and evaluated
its performance on two benchmark sets: Kepler22 obtained from [184] and PyEx-Hard
obtained by running the PyEx symbolic execution engine on Python programs [244] and
collecting examples on which CVC4 or Z3 fail. Retro solved most of the problems in
Kepler22 (on which CVC4 and Z3 do not perform well). Moreover, it solved over 50 % of
the benchmarks in PyEx-Hard that could be solved by neither CVC4 nor Z3.

Related work. The study of solving string constraint goes back to 1946, when Quine [235]
showed that the first-order theory of word equations is undecidable. Makanin achieved
a milestone result in [197], where he showed that the class of quantifier-free word equa-
tion is decidable. Since then, several works, e.g., [229, 230, 200, 245, 251, 119, 118, 9,
29, 190, 73, 74, 11], consider the decidability and complexity of different classes of string
constraints. Efficient solving of satisfiability of string constraints is a challenging problem.
Moreover, decidability of the problem of satisfiability of word equations combined with
length constraints of the form |x| = |y| has already been open for over 20 years [64].

The strong practical motivation led to the rise of several string constraint solvers that
concentrate on solving practical problem instances. The typical procedure implemented
within DPLL(T)-based string solvers [304, 304, 31, 274, 275, 10, 8, 148, 74] is to split the
constraints into simpler sub-cases based on how the solutions are aligned, combining with
powerful techniques for Boolean reasoning to efficiently explore the resulting exponentially-

109

sized search space. The case-split rule is usually performed explicitly. In contrast, our
approach performs case-splits symbolically.

A related topic is about automata-based string solvers for analyzing string-manipu-
lating programs. ABC [21] and Stranger [297] soundly over-approximate string constraints
using transducers [300]. The main difference of these approaches to ours is that they use
transducers to encode possible models (solutions) to the string constraints, while we use
automata and transducers to encode the string constraint transformations.

Chapter outline. This chapter is organized as follows. Section 9.1 deals with prelim-
inary definitions. In Section 9.2, we describe our symbolic approach for a simpler case
where the input is a quadratic word equation, i.e., a word equation with at most two oc-
currences of every variable. In this case, Nielsen transformation is sound and complete. In
Section 9.3, we extend the technique to support conjunctions of non-quadratic word equa-
tions. In Section 9.4, we extend our approach to support arbitrary Boolean combinations
of string constraints. In Section 9.5, we extend our approach also to Presburger and reg-
ular constraints. Sections 9.6 and 9.7 deal with implementation details and experimental
evaluation and, finally, Section 9.8 concludes the chapter.

9.1 Preliminaries
In this section, we introduce preliminaries related to finite transducers, string constraints,
MSO(Str), Nielsen transformation, and regular model checking, as they are necessary for
the rest of the chapter. This section extends the definitions introduced in Chapters 2 and 6.

Words and alphabets. Let Σ be an alphabet. We define Σε = Σ∪{ε}. Given a word w =
a1 . . . an, we use |w|a to denote the number of occurrences of the character a ∈ Σ in w.
Further, we use w[i] to denote ai, the i-th character of w, and w[i :] to denote the word
ai . . . an. When i > n, the value of w[i] and w[i :] is in both cases ⊥, a special undefined
value, which is different from all other values and also from itself (i.e., ⊥ 6= ⊥).

Finite word transducers and relations. A (nondeterministic) finite k-tape transducer
is a tuple T = (Q,Σ,Δ, I, F) where Q is a finite set of states, Σ is an alphabet, Δ ⊆
Q × Σkε × Q is a set of transitions, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of
final states. A run π of T over a k-tuple of words (w1, . . . , wk) is a sequence of transitions
(q0, a

1
1, . . . , a

k
1, q1), (q1, a

1
2, . . . , a

k
2, q2), . . . , (qn−1, a1n, . . . , akn, qn) ∈ Δ such that ∀i : wi =

ai1a
i
2 . . . a

i
n (note that aim can be ε, so wi and wj may be of a different length, for i 6= j).

The run π is accepting if q0 ∈ I and qn ∈ F , and a k-tuple (w1, . . . , wk) is accepted by T if
there exists an accepting run of T over (w1, . . . , wk). The language L (T) of T is defined
as the k-ary relation L (T) = { (w1, . . . , wk) ∈ (Σ∗)k | (w1, . . . , wk) is accepted by T }. We
call the class of relations accepted by transducers rational relations. T is length-preserving
if no transition in Δ contains ε. We call the class of relations accepted by length-preserving
transducers regular relations. Note that a nondeterministic finite automaton from the
definition in Chapter 2 is a 1-tape finite length-preserving transducer. Given two k-ary
relations R1, R2, we define their concatenation R1.R2 = { (u1v1, . . . , ukvk) | (u1, . . . , uk) ∈
R1 ∧ (v1, . . . , vk) ∈ R2 } and given two binary relations R1, R2, we define their composition
R1 ◦R2 = { (x, z) | ∃y : (x, y) ∈ R2 ∧ (y, z) ∈ R1 }. Given a k-ary relation R we define
R0 = {ε}k, Ri+1 = R.Ri for i ≥ 0. Iteration of R is then defined as R∗ =

⋃
i≥0R

i. Given

110

σ |= P ⊆ R iff σ(P) is a subset of σ(R)
σ |= P = R+ 1 iff σ(P) = {r + 1 | r ∈ σ(R) and r + 1 ≤ |σ|}
σ |= w[P] = a iff for all p ∈ P it holds that σ(w)[p] is a
σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff not σ |= ϕ
σ |= ∀PP (ϕ) iff for all v ⊆ {1, . . . , |σ|} it holds that σ[P 7→ v] |= ϕ
σ |= ∀Ww(ϕ) iff for all v ∈ Σn for n = |σ| it holds that σ[w 7→ v] |= ϕ

Figure 9.1: Semantics of MSO(Str)

a language L and a binary relation R, we define the R-image of L as R(L) = { y | ∃x ∈ L :
(x, y) ∈ R }.

Proposition 9.1.1 ([42]). (i) The class of binary rational relations is closed under union,
composition, concatenation, and iteration and is not closed under intersection and comple-
ment. (ii) For a binary rational relation R and a regular language L, the language R(L)
is also effectively regular (i.e., it can be computed). (iii) The class of regular relations is
closed under Boolean operations.

String constraints. Let Σ be an alphabet and X be a set of string variables ranging
over Σ∗ s.t. X ∩ Σ = ∅. We use XΣ to denote the extended alphabet Σ ∪ X (do not
confuse with ΣX defined in Section 6.2.2). An assignment of X is a mapping I : X → Σ∗.
A word term is a string over the alphabet XΣ. We lift an assignment I to word terms by
defining I(ε) = ε, I(a) = a, and I(x.w) = I(x).I(w), for a ∈ Σ, x ∈ XΣ, and w ∈ X∗Σ.
A word equation ϕe is of the form t1 = t2 where t1 and t2 are word terms. I is a model
of ϕe if I(t1) = I(t2). We call a word equation an atomic string constraint. A string
constraint is obtained from atomic string constraints using Boolean connectives (∧,∨,¬),
with the semantics defined in the standard manner. A string constraint is satisfiable if it
has a model. Given a word term t ∈ X∗Σ, a variable x ∈ X, and a word term u ∈ X∗Σ, we use
t[x 7→ u] to denote the word term obtained from t by replacing all occurrences of x by u,
e.g., (abxcxy)[x 7→ cy] = abcyccyy. We call a string constraint quadratic if each variable
has at most two occurrences, and cubic if each variable has at most three occurrences.

9.1.1 Monadic Second-Order Logic on Strings

In this section, we give a brief introduction to MSO(Str), first mentioned in Chapter 6 in
the context of automata-based decision procedures, as it is a fundamental stone for proofs
presented in the following sections. We define monadic second-order logic on strings over
the alphabet Σ as follows. Let W be a countable set of word variables whose values range
over Σ∗ and P be a countable set of set (second-order) position variables whose values range
over finite subsets of ω such that W ∩ P = ∅. A formula ϕ of MSO(Str) is defined as

ϕ ::= P ⊆ R | P = R+ 1 | w[P] = a | ϕ1 ∧ ϕ2 | ¬ϕ | ∀PP (ϕ) | ∀Ww(ϕ)

where P,R ∈ P, w ∈W, and a ∈ Σ. We use ϕ(w1, . . . , wk) to denote that the free variables
of ϕ are contained in {w1, . . . , wk}.

The semantics of MSO(Str) is defined in Figure 9.1. An MSO(Str) variable assign-
ment is an assignment σ : W ∪ P → (Σ∗ ∪ 2ω) that respects the types of variables with
the additional requirement that for every u, v ∈ W we have |σ(u)| = |σ(v)|. (We often

111

∃PP (ϕ) , ¬∀PP (¬ϕ)
ϕ ∨ ψ , ¬(ϕ ∧ ψ)
P = R , P ⊆ R ∧R ⊆ P
∃Ww(ϕ) , ¬∀Ww(¬ϕ)
p ∈ R , Sing(p) ∧ p ⊆ R
p < r , p ≤ r ∧ ¬(p = r)

P = ∅ , ∀PR(P ⊆ R)

Sing(P) , ¬(P = ∅) ∧ ∀PR(R ⊆ P → (R = ∅ ∨R = P))

p ≤ r , ∀PT ((p ∈ T ∧ ∀Pu(u ∈ T
→ ∃Pv(v = u+ 1 ∧ v ∈ T)))→ r ∈ T)

x = 0 , ∀Pu(u ≤ x→ u = x)

x = $, ∀Pu(x ≤ u→ u = x)

w1[P] = w2[R] ,
∨

a∈Σ
(w1[P] = a ∧ w2[R] = a)

Figure 9.2: Syntactic sugar for MSO(Str)

αu = αv

u = v
(trim) xu = v

u[x 7→ ε] = v[x 7→ ε]
(x ↪→ ε) xu = αv

x(u[x 7→ αx]) = v[x 7→ αx]
(x ↪→ αx)

Figure 9.3: Rules of Nielsen transformation, for x ∈ X, α ∈ XΣ, and u, v ∈ X∗Σ.
Symmetric rules are omitted.

omit unused variables in σ.) We use |σ| to denote the value |σ(w)| for any w ∈ W. The
notation σ[x 7→ v] denotes a variant of σ where the assignment of variable x is changed to
the value v.

We call an MSO(Str) formula a string formula if it contains no free position variables.
Such a formula (with k free word variables) denotes a k-ary relation over Σ∗. In particular,
given an MSO(Str) string formula ϕ(w1, . . . , wk) with k free word variables w1, . . . , wk,
we use L (ϕ) to denote the relation { (x1, . . . , xk) ∈ (Σ∗)k | {w1 7→ x1, . . . , wk 7→ xk} |= ϕ }.
In the special case of k = 1, ϕ denotes a language L (ϕ) ⊆ Σ∗.

Proposition 9.1.2 ([268]). The class of languages denoted by MSO(Str) string formulae
with 1 free word variable is exactly the class of regular languages. Furthermore, the class
of relations denoted by MSO(Str) string formulae with k free word variables, for k > 1,
is exactly the class of regular relations.

Syntactic sugar for MSO(Str). In Figure 9.2, we define the standard syntactic sugar
to allow us to write more concise MSO(Str) formulae. We also extend our syntax to
allow first-order variables (we abuse notation and use the same quantifier notation as for
second-order variables, but denote the first-order variable with a lowercase letter):

∀Pp(ϕ) , ∀PP (Sing(P)→ ϕ[p 7→ P])

∃Pp(ϕ) , ∃PP (Sing(P) ∧ ϕ[p 7→ P])

where ϕ[p 7→ P] denotes the substitution of all free occurrences of p in ϕ by P .

9.1.2 Nielsen Transformation

As already briefly mentioned in the introduction, Nielsen transformation can be used to
check satisfiability of a conjunction of word equations. We use the three rules shown in
Figure 9.3; besides the rules x ↪→ αx and x ↪→ ε there is also the (trim) rule, used to remove
a shared prefix from both sides of the equation.

112

xy = ax y = a

ε = a

y = ε ε = ε

x ↪→ ax

x ↪→ ε

y ↪→ ε

y ↪→ ay y ↪→ ε

Figure 9.4: Proof graph of the equation xy = ax generated by Nielsen transformation.

Given a system of word equations, multiple Nielsen transformations might be applicable
to it, resulting in different transformed equations on which other Nielsen transformations
can be performed. Trying all possible transformations generates a proof tree (or a graph in
general) whose nodes contain conjunctions of word equations and whose edges are labelled
with the applied transformation. The conjunction of word equations in the root of the tree
is satisfiable if and only if at least one of the leaves in the graph is a tautology, i.e., it
contains a conjunction ε = ε ∧ · · · ∧ ε = ε. As an example, consider the satisfiable equation
xy = ax where x, y are string variables and a is a symbol with the proof graph in Figure 9.4.

Proposition 9.1.3 ([197, 95]). Nielsen transformation is sound. Moreover, it is complete
when the systems of word equations is quadratic.

Proposition 9.1.3 is correct even if we construct the proof tree using the following strat-
egy: every application of x ↪→ αx or x ↪→ ε is followed by as many applications of the (trim)
rule as possible. We use x�αx to denote the application of one x ↪→ αx rule followed by as
many applications of (trim) as possible, and x� ε for the application of x ↪→ ε repeatedly
followed by (trim).

9.1.3 Regular Model Checking

Regular model checking (RMC) [56, 6, 54] is a framework for verifying infinite state systems.
In RMC, each system configuration is represented as a word over an alphabet Σ. The set of
initial configurations I and destination configurations D are captured as regular languages
over Σ. The transition relation T is captured as a binary rational relation over Σ∗. A regular
model checking reachability problem is represented by the triple (I, T ,D) and asks whether
T rt(I) ∩ D 6= ∅, where T rt represents the reflexive and transitive closure of T . One way
how to solve the problem is to start computing the sequence T (0)(I), T (1)(I), T (2)(I), . . .
where T (0)(I) = I and T (n+1)(I) = T (T (n)(I)). During computation of the sequence,
we can check if we find T (i)(I) that overlaps with D, and if yes, we can deduce that D is
reachable. On the other hand, if we obtain a sequence such that

⋃
0≤i<n T i(I) ⊇ T n(I),

we know that we have explored all possible system configurations without reaching D, so
D is unreachable.

9.2 Solving Word Equations using RMC
In this section, we first focus on an inefficiency of Nielsen transformation caused by the
occurrence of similar nodes in the proof graphs. Further, we describe a symbolic RMC-
based framework for solving string constraints aiming at this issue. The framework is
based on efficiently encoding a string constraint into a regular language and encoding steps
of Nielsen transformation as a rational relation. Satisfiability of a string constraint is then
reduced to a reachability problem of RMC.

113

xz = ab ∧
waby x = awb zv

xz = b ∧
waby ax = awb zv

z = ab ∧
waby = awb zv

xz = ε ∧
waby abx = awb zv

z = b ∧
waby a = awb zv

ε = ε ∧
waby ab = awb v

ε = ε ∧
waby a = awb bv ∧

ε = ε ∧
waby = awb abv ∧

x ↪→ ax

x ↪→ ε

x ↪→ bx

x ↪→ ε

z ↪→ az; z ↪→ bz; z ↪→ ε

z ↪→ ε;x ↪→ ε

z ↪→ bz; z ↪→ ε

Figure 9.5: A partial proof tree of applying Nielsen transformation on xz = ab∧wabyx =
awbzv. The leaves are the outcome of processing the first word equation xz = ab. Branches
leading to contradictions are omitted.

9.2.1 Issues of Nielsen Transformation

Let us assume a conjunction of word equations solved by Nielsen transformation. Treating
each of the obtained equations separately can cause some redundancy. Let us consider the
example in Figure 9.5, where we apply Nielsen transformation to solve the string constraint
xz = ab ∧ wabyx = awbzv, where v, w, x, y, and z are string variables and a and b are
constant symbols. After processing the first word equation xz = ab, we obtain a proof
tree with three similar leaf nodes wabyab = awbv, wabya = awbbv, and waby = awbabv,
which share the prefixes waby and awb on the left and right-hand side of the equations,
respectively. If we continue applying Nielsen transformation on the three leaf nodes, we will
create three similar subtrees, with almost identical operations. In particular, the nodes near
the root of such subtrees, which transform waby . . . = awb . . . , are going to be essentially
the same. The resulting proof trees will therefore start to differ only after processing such
a common part. Therefore, handling those equations separately will cause some operations
to be performed multiple times. In this case, the proof tree of each word equation has
n leaves and the string constraint is a conjunction of k word equations, we might need
to create nk similar subtrees. To avoid these redundancies we, in the following sections,
propose an efficient representation and handling of the proof graph.

9.2.2 Nielsen Transformation as Word Operations

In the following, we describe how Nielsen transformation of a single word equation can be
expressed as operations on words. We view a word equation eq : t` = tr as a pair of word
terms eeq = (t`, tr) corresponding to the two sides of the equation; therefore eeq ∈ X∗Σ×X∗Σ.
Without loss of generality we assume that t`[1] 6= tr[1]; if this is not the case, we pre-
process the equation by applying the (trim) Nielsen transformation (cf. Figure 9.3) to trim
the common prefix of t` and tr.

Example 9.2.1. The word equation eq1 : xay = yx is represented by the pair of word terms
e1 = (xay, yx).

A rule of Nielsen transformation (cf. Section 9.1.2) is represented using a (partial) func-
tion τ : (X∗Σ×X∗Σ)→ (X∗Σ×X∗Σ). Given a pair of word terms (t`, tr) of a word equation eq ,
the function τ transforms it into a pair of word terms of a word equation eq ′ that would

114

be obtained by performing the corresponding step of Nielsen transformation on eq . Be-
fore we express the rules of Nielsen transformation, we define functions performing the
corresponding substitution. For x ∈ X and α ∈ XΣ, we define

τx 7→αx = { (t`, tr) 7→ (t′`, t
′
r) | t′` = t`[x 7→ αx] ∧ t′r = tr[x 7→ αx] } and

τx 7→ε = { (t`, tr) 7→ (t′`, t
′
r) | t′` = t`[x 7→ ε] ∧ t′r = tr[x 7→ ε] }. (9.1)

The function τx 7→αx performs a substitution x 7→ αx while the function τx 7→ε performs
a substitution x 7→ ε.

Example 9.2.2. Consider the pair of word terms e1 from Example 9.2.1. The application
τx 7→yx(e1) would produce the pair e2 = (yxay, yyx) while the application τx 7→ε(e1) would
produce the pair e3 = (ay, y).

The functions introduced above do not take into account the first symbols of each side
and do not remove a common prefix of the two sides of the equation, which is a necessary
operation for Nielsen transformation to terminate. Let us, therefore, define the following
function, which trims (the longest) matching prefix of word terms of the two sides of an
equation:

τtrim = { (t`, tr) 7→ (t′`, t
′
r) | ∃i(t`[i] 6= tr[i] ∧ ∀j(j < i→ t`[j] = tr[j])

∧ t′` = t`[i :] ∧ t′r = tr[i :]) }.
(9.2)

Example 9.2.3. Continuing in our running example, the application τtrim(e2) produces the
pair e′2 = (xay, yx) while τtrim(e3) produces the pair e′3 = (ay, y).

Now we are ready to define functions corresponding to the rules of Nielsen transfor-
mation. In particular, the rule x�αx for x ∈ X and α ∈ XΣ (cf. Section 9.1.2) can be
expressed using the function

τx�αx = τtrim ◦ { (t`, tr) 7→ τx 7→αx(t`, tr) | (t`[1] = α ∧ tr[1] = x) ∨
(tr[1] = α ∧ t`[1] = x) } (9.3)

while the rule x� ε for x ∈ X can be expressed as the function

τx� ε = τtrim ◦ { (t`, tr) 7→ τx 7→ε(t`, tr) | t`[1] = x ∨ tr[1] = x}. (9.4)

If we keep applying the functions defined above on individual pairs of word terms, while
searching for the pair (ε, ε)—which represents the case when a solution to the original
equation eq exists—, we would obtain the graph of Nielsen transformation. In the following,
we show how to perform the steps symbolically on a representation of a whole set of word
equations at once.

9.2.3 Symbolic Algorithm for Word Equations

In this section, we describe the main idea of our symbolic algorithm for solving word
equations. We first focus on the case of a single word equation and in subsequent sections
extend the algorithm to a richer class.

Our algorithm is based on applying the transformation rules not on a single equation,
but on a whole set of equations at once. Given a set of equations, the transformation
rules are applied atomically, i.e., a single transformation rule is applied on the whole set

115

of equations without interleaving with other transformation rules. For this, we define the
relations Tx�αx and Tx� ε that aggregate the versions of τx�αx and τx� ε for all possible
x ∈ X and α ∈ XΣ. The signature of these relations is (X∗Σ × X∗Σ) × (X∗Σ × X∗Σ) and they
are defined as follows

Tx�αx =
⋃

x∈X,α∈XΣ

τx�αx,

Tx� ε =
⋃

x∈X
τx� ε.

Note the following two properties of the relations: (i) they produce outputs of all possible
Nielsen transformation steps applicable with the first symbols on the two sides of the
equations and (ii) they include the trimming operation.

We compose the introduced relations into a single one, denoted as Tstep and defined as
Tstep = Tx�αx∪Tx� ε. The relation Tstep can then be used to compute all successors of a set
of word terms of equations in one step. For a set of word terms S, we can compute the Tstep-
image of S to obtain all successors of pairs of word terms in S. The initial configuration,
given a word equation eq : t` = tr, is the set Eeq = {(t`, tr)}.
Example 9.2.4. Lifting our running example to the introduced notions over sets, we start
with the set Eeq = {e1 = (xay, yx)}. After applying Tstep on Eeq , we obtain the set S1 =
{e′2 = (xay, yx), e′3 = (ay, y), (axy, yx), (a, ε)}. The pairs e′2 and e′3 were described earlier,
the pair (axy, yx) is obtained by the transformation τy�xy, and the pair (a, ε) is obtained
by the transformation τy� ε. If we continue by computing Tstep(S1), we obtain the set
S2 = S1∪{(ax, x)}, with the pair (ax, x) obtained from (axy, yx) by using the transformation
τy� ε.

Using the symbolic representation, we can formulate the problem of checking satisfi-
ability of a word equation eq as the task of (i) either testing whether (ε, ε) ∈ T rtstep(Eeq);
this means that eq is satisfiable, or (ii) finding a set (called unsat-invariant) Einv such that
Eeq ⊆ Einv , (ε, ε) /∈ Einv , and Tstep(Einv) ⊆ Einv , implying that eq is unsatisfiable. In the
following sections, we show how to encode the problem into the RMC framework.

Example 9.2.5. To proceed in our running example, when we apply Tstep on S2, we get
Tstep(S2) ⊆ S2. Since e1 ∈ S2 and (ε, ε) /∈ S2, the set S2 is our unsat-invariant, which
means eq1 is unsatisfiable.

9.2.4 Towards Symbolic Encoding

Let us now discuss some possible encodings of the word equations satisfiability problem
into RMC. Recall that our task is to find an encoding such that the encoded equation
(corresponding to initial configurations in RMC) and satisfiability condition (corresponding
to destination configurations) are regular languages and transformation (transition) relation
is a rational relation. We start by describing two possible methods of encodings that do
not work and then describe the one that we use.

The first idea about how to encode a set of word equations as a regular language is
to encode a pair eeq = (t`, tr) as a word t`.=.tr, where = /∈ XΣ. One immediately finds
out that although the transformations τx�αx and τx� ε are rational (i.e., expressible using
a transducer), the transformation τtrim , which removes the longest matching prefix from
both sides, is not (a transducer with an unbounded memory to remember the prefix would
be required).

116

(
w
a

) (
a
w

) (
b
b

)
(
y
v

)
(
y
b

)

(
y
a

)

(
a
�

) (
b
�

)

(
a
v

)

(�
b

) (�
v

)

(�
�

)

(�
�

)

(�
�

)

Figure 9.6: A finite automaton encoding the three equations wabyab = awbv, wabya =
awbbv, and waby = awbabv.

Another attempt of an encoding may be encoding eeq = (t`, tr) as a rational binary
relation, represented, e.g., by a (non-length-preserving) 2-tape transducer (with a tape for
t` and a tape for tr) and use 4-tape transducers to represent the transformations (with
two input tapes for t`, tr and two output tapes for t′`, t′r). The transducers implementing
τx� yx and τx� ε can be constructed easily and so can be the transducer implementing τtrim ,
so this solution looks appealing. One, however, quickly realizes an issue with computing
Tstep(Eeq). In particular, since Eeq and Tstep are both represented as rational relations, the
intersection (Eeq ×X∗Σ×X∗Σ)∩Tstep , which needs to be computed first, may not be rational.
Why? Consider Eeq = { (ambn, cm) | m,n ≥ 0 } and Tstep = { (ambn, cn, ε, ε) | m,n ≥ 0 }.
The intersection (Eeq ×X∗Σ ×X∗Σ)∩ Tstep = { (anbn, cn, ε, ε) | n ≥ 0 } is clearly not rational.

9.2.5 Symbolic Encoding of Quadratic Equations into RMC

We, therefore, converge on the following method of representing word equations by a reg-
ular language. A set of pairs of word terms is represented as a regular language over
a 2-track alphabet with padding X2

Σ,�, where XΣ,� = XΣ ∪ {�}, using an NFA. For in-
stance, e1 = (xay, yx) would be represented by the regular language

(
x
y

)(
a
x

)(
y
�

)(�
�

)∗. For-
mally, we first define the equation encoding function eqencode : (X∗Σ)2 → (X2

Σ,�)
∗ such

that for t` = a1 . . . an and tr = b1 . . . bm (without loss of generality we assume that
|t`| ≥ |tr|), we have eqencode(t`, tr) =

(
a1
b1

)(
a2
b2

)
. . .
(
am
bm

)(
am+1

�

)
. . .
(
an
�

)
. We lift eqencode

to sets in the usual way and to relations on pairs of word terms τ as eqencode(τ) =
{ (eqencode(t`, tr), eqencode(t′`, t′r)) | ((t`, tr), (t′`, t′r)) ∈ τ }.

Let σ be a symbol. We define the padding of a k-tuple of words (w1, . . . , wk) with
respect to σ as the set padσ(w1, . . . , wk) = {(w′1, . . . , w′k) | w′i ∈ wi.{σ}∗}}, i.e., it is a set of
k-tuples obtained from (w1, . . . , wk) by extending some of the words by an arbitrary number
of σ’s. We lift padσ to a k-ary relation R as padσ(R) =

⋃
x∈R padσ(x). Finally, we define

the function encode, which we use for encoding word equations into regular languages and
word operations into rational relations, as encode = pad(�

�

) ◦ eqencode.

Example 9.2.6. Consider the equations wabyab = awbv, wabya = awbbv, and waby =
awbabv considered in Section 9.2.1. These equations are encoded into the regular language
represented by an NFA in Figure 9.6.

Properties of encode are given by the following lemmas.

Lemma 9.2.1. If T is a binary regular relation on pairs of word terms, then encode (T) is
rational. If T is a unary regular relation on pairs of word terms, then encode (T) is regular.

117

Proof. We show an idea how to construct a transducer T ′ for eqencode(T). Since T is
a regular relation, we can modify the transducer recognizing T to obtain a transducer T ′
recognizing eqencode(T) (by a modification of the transition relation and handling of the
padding symbol �).

If T is unary, we directly have that encode(T) = L (T ′) .
(�
�

)∗, which is a regular language.
Further, let us assume that T is a binary relation on pairs of word terms. In the next
step, consider the relations τ+pad =

{
(w,w′) | w ∈ (X2

Σ,�)
∗, w′ ∈ w.

(�
�

)∗} and τ−pad ={
(w,w′) | w′ ∈ (X2

Σ,�)
∗, w ∈ w′.

(�
�

)∗} adding and removing padding, respectively. These
relations are rational. Then, observe that encode (T) = τ+pad ◦L (T ′) ◦ τ−pad. Finally, from
Proposition 9.1.1, we obtain the rationality of encode (T).

Lemma 9.2.2. Given a word equation eq : t` = tr for t`, t` ∈ X∗Σ, the set encode (eq) is
regular.

Proof. Without loss of generality we assume that |t`| ≤ |tr|. We give the following MSO(Str)
formula that encodes eq :

ϕeq(w,w
′) ,

∧

1≤k≤|t`|

w[k] = t`[k] ∧
∧

|t`|<k≤|tr|

w[k] = � ∧

∧

1≤k≤|tr|

w′[k] = tr[k] ∧

∀Pp((p > |tr|)→ (w[p] = � ∧ w′[p] = �))

(9.5)

From Proposition 9.1.2, it follows that L (ϕeq) is regular. Since L (ϕeq) is a unary relation
on pairs of word terms, from Lemma 9.2.1 we have that encode (L (ϕeq)) is regular.

Observe that because of the padding part, which introduces an unbounded number of
padding symbols at the end of an encoded relation, even if T is finite, encode (T) is infinite.
Using the presented encoding, when trying to express the τx�αx and τx� ε transformations,
we, however, encounter an issue with the need of an unbounded memory. For instance, for
the language L =

(
x
y

)∗, the transducer implementing τx� yx would need to remember how
many times it has seen x on the first track of its input (indeed, the image { encode (u, v) |
∃n : u = (yx)n ∧ v = yn�n } is no longer regular).

We address this issue in several steps: first, we give a rational relation that correctly
represents the transformation rules for cases when the equation eq is quadratic, and further
extend our algorithm to equations with more occurrences of variables in Section 9.3. Let
us define the following, more general, restriction of τx�αx to equations with at most i ∈ ω
occurrences of variable x as τ≤ix�αx = τx�αx ∩{ ((t`, tr), (w,w′)) | w,w′ ∈ X∗Σ, |t`.tr|x ≤ i }.
We define τ≤ix� ε, τ≤ix 7→αx, and τ≤ix 7→ε similarly.

Lemma 9.2.3. Given i ∈ ω, the relations encode
(
τ≤ix�αx

)
and encode

(
τ≤ix� ε

)
are ratio-

nal.

Proof. We begin with a definition of some useful predicates:

ordered(k1, . . . , km) ,
∧

1≤i<m
ki < ki+1 (9.6)

alleqwx (k1, . . . , km) ,
∧

1≤i≤m
w[ki] = x (9.7)

118

We use the following MSO(Str) formula to define the transformation x� ε for n occur-
rences of x in a single string.

ψnx� ε(w,w
′) , ∃i1, . . . , in

(
ordered(i1, . . . , in) ∧ alleqwx (i1, . . . , in) ∧

∀j(j < i1 → w′[j] = w[j]) ∧
∧

1≤k<n
∀j((ik < j < ik+1)→ w′[j − k] = w[j]) ∧

∀j(in < j → w′[j − n] = w[j]) ∧
∧

1≤k≤n
w′[$− k] = �

)

(9.8)

We extend it to describe the relation on pairs of strings:

ϕnx� ε(t`, tr, t
′
`, t
′
r) , (t`[0] = x ∨ tr[0] = x)

∧
∨

0≤k≤n
ψkx� ε(t`, t

′
`) ∧ ψn−kx� ε(tr, t

′
r)

(9.9)

ϕ≤nx� ε(t`, tr, t
′
`, t
′
r) ,

∨

0≤k≤n
ϕkx� ε(t`, tr, t

′
`, t
′
r) (9.10)

Next, we define the transformation x�αx for n occurrences of x on a single string.

ψnx�αx(w,w
′) , ∃i1, . . . , in

(
ordered(i1, . . . , in) ∧ alleqwx (i1, . . . , in) ∧

∀j(j ≤ i1 → w′[j] = w[j]) ∧
∧

1≤k<n
w′[ik + k] = α ∧ ∀j((ik < j ≤ ik+1)→ w′[j + k] = w[j]) ∧

w′[in + n] = α ∧ ∀j(in < j → w′[j − n] = w[j]) ∧
∧

1≤k≤n
w[$− k] = �

)

(9.11)

We extend it to describe the relation on pairs of strings:

ϕnx�αx(t`, tr, t
′
`, t
′
r) , (t`[0] = x ∧ tr[0] = α)

∨ (tr[0] = x ∧ t`[0] = α)

∧
∨

0≤k≤n
ψkx�αx(t`, t

′
`) ∧ ψn−kx�αx(tr, t

′
r)

(9.12)

ϕ≤nx�αx(t`, tr, t
′
`, t
′
r) ,

∨

0≤k≤n
ϕkx�αx(t`, tr, t

′
`, t
′
r) (9.13)

Let us consider a relation τ eqentrim = eqencode ◦ τtrim removing common prefix of encoded
equations. This relation can be implemented using a simple transducer replacing from the
prefix symbols of the form

(
x
x

)
with ε. We also consider relations τ+pad =

{
(w,w′) | w ∈

(X2
Σ,�)

∗, w′ ∈ w.
(�
�

)∗} and τ−pad =
{
(w,w′) | w′ ∈ (X2

Σ,�)
∗, w ∈ w′.

(�
�

)∗} adding and remov-
ing padding, respectively. These relations are rational. We need them because L

(
ϕ≤nx�αx

)

is length-preserving and hence we need to remove padding to obtain the “unpadded” pairs.
Now observe that encode

(
τ≤nx�αx

)
= τ eqentrim ◦ τ+pad ◦ τ−pad ◦ encode

(
L
(
ϕ≤nx�αx

))
◦ τ+pad.

Finally, from Proposition 9.1.1 and Lemma 9.2.1, we have that encode
(
τ≤nx�αx

)
is rational.

Similarly, we can show that encode
(
τ≤nx� ε

)
is rational.

119

Algorithm 3: Solving a string constraint ϕ using RMC
Input: Encoding I of a formula ϕ (the initial set), transformers Tx�αx, Tx� ε, and

the destination set D
Output: A model of ϕ if ϕ is satisfiable, false otherwise

1 reach0 := ∅;
2 reach1 := I;
3 processed := reach0;
4 T := Tx�αx ∪ Tx� ε;
5 i := 1;
6 while reachi 6⊆ processed do
7 if D ∩ reachi 6= ∅ then
8 return ExtractModel(reach1, . . . , reachi);
9 processed := processed ∪ reachi;

10 reachi+1 := T (reachi);
11 i++;
12 return false;

Ieq = encode (t`, tr) Deq =
{(�

�

)}∗

T eq
x�αx =

⋃

x∈X,α∈XΣ

encode
(
τ≤2x�αx

)
T eq
x� ε =

⋃

x∈X
encode

(
τ≤2x� ε

)

Figure 9.7: RMC instantiation for a quadratic equation

In Algorithm 3, we give a high-level algorithm for solving string constraints using RMC.
The algorithm is parameterized by the following inputs: a regular language I encoding
a formula ϕ (the initial set), rational relations Tx�αx and Tx� ε, and the destination
set D (also given as a regular language). The algorithm tries to solve the RMC problem
(I, Tx�αx ∪ Tx� ε,D) by an iterative unfolding of the transition relation T computed in
Line 4, looking for an element wi from D. If such an element is found in reachi, we extract
a model of the original word equation by starting a backward run from wi, computing
pre-images wi−1, . . . , w1 over transformers Tx�αx and Tx� ε (restricting them to reachj for
every wj), while updating values of the variables according to the transformation that was
performed.

Our first instantiation of the algorithm is for checking satisfiability of a single quadratic
word equation eq : t` = tr. We instantiate the RMC problem with (Ieq , T eq

x�αx∪T eq
x� ε,Deq)

defined in Figure 9.7.
Lemma 9.2.4. The relations T eq

x�αx and T eq
x� ε are rational.

Proof. See that T eq
x�αx =

⋃
x∈X,α∈XΣ

encode
(
τ≤2x�αx

)
and T eq

x� ε =
⋃
x∈X encode

(
τ≤2x� ε

)
.

From Proposition 9.1.1 and Lemma 9.2.3, we have that T eq
x�αx and T eq

x� ε are rational.

Lemma 9.2.5. If eq : t` = tr is quadratic then Section 3 instantiated with (Ieq , T eq
x�αx ∪

T eq
x� ε,Deq) is sound and complete.

Proof. (Sketch) We encode the nodes of a Nielsen proof graph as strings. The initial node
t` = tr corresponds to Ieq . Since we use padding, the final node ε = ε corresponds to

120

the set Deq . The relations T eq
x�αx and T eq

x� ε encode the Nielsen rules x�αx and x� ε.
Soundness and completeness then follows from Proposition 9.1.3.

9.3 Solving a System of Word Equations using RMC
In the previous section, we described how to solve a single quadratic word equation in the
RMC framework. In this section, we focus on an extension of this approach to handle
a system of word equations Φ : t1` = t1r ∧ t2` = t2r ∧ . . . ∧ tn` = tnr . In the first step, we need
to encode the system Φ as a regular language. For this, we extend the encode function to
a system of word equations by defining

encode(Φ) = encode(t1` , t
1
r).
{(

#
#

)}
.

{(
#
#

)}
.encode(tn` , t

n
r), (9.14)

where # is a delimiter symbol, # /∈ XΣ. From Lemma 9.2.2 we know that encode(ti`, t
i
r) is

regular for all 1 ≤ i ≤ n. Moreover, since regular languages are closed under concatena-
tion (Proposition 9.1.1), the set encode(Φ) is also regular. Because each equation is now
separated by a delimiter, we need to extend the destination set to

{(�
�

)
,
(
#
#

)}∗.
For the transition relation, we need to extend τ≤ix�αx and τ≤ix� ε from Section 9.2 to

support delimiters. An application of a rule x�αx on a system of equations can be
described as follows: the rule x�αx is applied on the first non-empty equation and the
rest of the equations are modified according to the substitution x 7→ αx. The substitution
on the other equations is performed regardless of their first symbols. The procedure is
analogous for the rule x� ε. A series of applications of the rules can reduce the number
of equations, which then leads to a string in our encoding with a prefix from

{(�
�

)
,
(
#
#

)}∗.
The relation implementing x�αx or x� ε on an encoded system of equations skips this
prefix. Formally, the rule x�αx for a system of equations where every equation has at
most i occurrences of every variable is given by the following relation:

T eqs,i
x�αx = Tskip .encode

(
τ≤ix�αx

)
.
({(

#
#

)
7→
(
#
#

)}
.encode

(
τtrim ◦ τ≤ix 7→αx

))∗
, (9.15)

where Tskip =
{(�

�

)
7→
(�
�

)
,
(
#
#

)
7→
(
#
#

)}∗. The relation T eqs,i
x� ε is defined similarly.

Lemma 9.3.1. The relations T eqs,i
x�αx and T eqs,i

x� ε are rational.

Proof. We prove only rationality of T eqs,i
x�αx; rationality of T eqs,i

x� ε can be proved analogously.
We can prove encode

(
τtrim ◦ τ≤ix 7→αx

)
is rational using a similar proof to Lemma 9.2.3, where

we proved that encode
(
τ≤ix�αx

)
is rational. Further, it is easy to see that Tskip is ratio-

nal. The lemma then follows from Proposition 9.1.1 (rational relations are closed under
concatenation and iteration).

9.3.1 Quadratic Case

When the system Φ is quadratic, its satisfiability problem can be reduced to an RMC prob-
lem (Iq-eqs

Φ , T q-eqs
x�αx∪T q-eqs

x� ε ,Dq-eqs) where the items are defined in Figure 9.8. Rationality of
T q-eqs
x�αx and T q-eqs

x� ε follows directly from Proposition 9.1.1. The soundness and completeness
of our procedure for a system of quadratic word equations is summarized by the following
lemma.

121

Iq-eqs
Φ = encode(Φ) Dq-eqs =

{(�
�

)
,
(
#
#

)}∗

T q-eqs
x�αx =

⋃

x∈X,α∈XΣ

T eqs,2
x�αx T q-eqs

x� ε =
⋃

x∈X
T eqs,2
x� ε

Figure 9.8: RMC instantiation for a system of quadratic equations

Algorithm 4: Transformation to a cubic system of equations
Input: System of word equations Φ
Output: Equisatisfiable cubic system of word equations Ψ

1 Ψ := Φ;
2 while There is a word variable x that occurs more than three times in Ψ do
3 Replace two occurrences of x in Φ by a fresh string variable x′ to obtain a new

system Ψ′;
4 Ψ := Ψ′ ∧ x = x′;
5 return Ψ;

Lemma 9.3.2. If Φ is quadratic then Algorithm 3 instantiated with (Iq-eqs
Φ , T q-eqs

x�αx ∪
T q-eqs
x� ε ,Dq-eqs) is sound and complete.

Proof. (Sketch) We can see nodes of the Nielsen proof graph as sets of word equations.
The set of equations denotes conjunction of equations in the set (see Section 9.1.2). The
transformation rules are generalized to take into account the set of equations. For instance
consider a rule x�αx applied on a set S. Then, x�αx is applied on an equation eq ∈ S
(if possible) and to the remaining equations in S the substitution x 7→ αx is applied. The
initial node is a set corresponding to a system Φ and the final node is {ε = ε}. The
soundness and completeness is not affected by the choice of equation from a set. Therefore
we can consider ordered sets and use the first equation for a transformation.

The soundness and correctness of our algorithm follows from the fact that the initial
node corresponds to Iq-eqs

Φ , the final node corresponding to language Dq-eqs (the delimiters
are not removed from strings) and the transformations x�αx and x� ε correspond to
T q-eqs
x�αx and T q-eqs

x� ε , respectively.

9.3.2 General Case

Let us now consider the general case when the system Φ is not quadratic. In this section,
we show that this general case is also reducible to an extended version of RMC.

We first apply Algorithm 4 to a general system of string constraints Φ to get an eq-
uisatisfiable cubic system of word equations Φ′. Then, we can use the transition relations
T eqs,3
x�αx and T eqs,3

x� ε to construct transformations of the encoded system Φ′.

Lemma 9.3.3. Any system of word equations can be transformed by Algorithm 4 to an
equisatisfiable cubic system of word equations.

Proof. Let Φ be the input system of word equations. Observe that in every iteration of
Algorithm 4, the number of occurrences of a variable x is decreased by one and a new
variable x′ with three occurrences is introduced.

122

IeqsΦ = encode(Φ′) Deqs =
{(�

�

)
,
(
#
#

)}∗

T vi,eqsx�αx = TCvi ◦
⋃

x∈X,α∈XΣ

T eqs,3
x�αx T vi,eqsx� ε = TCvi ◦

⋃

x∈X
T eqs,3
x� ε

Figure 9.9: RMC instantiation for a system of cubic equations

One more issue we need to solve is to make sure that we work with a cubic system of
word equations in every step of our algorithm. It may happen that a transformation of the
type x� yx increases the number of occurrences of the variable y by one, so if there had
already been three occurrence of y before the transformation, the result will not be cubic
any more. More specifically, assume a cubic system of word equations x.t` = y.tr∧Φ, where
x and y are string variables and t` and tr are word terms. If we apply the transformation
x� yx, we will obtain x(t`[x 7→ yx]) = tr[x 7→ yx] ∧ Φ[x 7→ yx]. Observe that (i) the
number of occurrences of y is first reduced by one because the first y on the right-hand
side of x.t` = y.tr is removed and (ii) then the number of occurrences of y can be at
most increased by two because there exist at most two occurrences of x in t`, tr, and Φ.
Therefore, after the transformation x� yx, a cubic system of word equations might become
(y-)quartic system of word equations (at most four occurrences of the variable y and at most
three occurrences of any other variable). For this reason, we need to apply the conversion
to the cubic system after each transformation.

Given a fresh variable v, we use Cv to denote the transformation from a single-quartic
system of word equations to a cubic system of equations using the fresh variable v.

Lemma 9.3.4. The relation TCv performing the transformation Cv on an encoded single-
quartic system of equations is rational.

Proof. (Sketch) We show how we can create a transducer for the transformation from
a single-quartic system of word equations to a cubic system of word equations.

In the first step, we create the transducer T sqx,xi that accepts only input that is an
encoding of a x-quartic system of word equations. This can be done by using states to
trace the number of occurrences of variables (only need to count up to four). For an
encoding of a x-quartic system of word equations, the transducer T sqx,xi returns an encoding
that is obtained by replacing first two occurrences of x from the input to xi and at the end
appending language

(
#
#

)(
x
xi

)(�
�

)∗.
In the second step, we create the transducer Tcub that accepts only encodings of a cubic

system of word equation and returns the same encodings. Now we have

TCv = L (Tcub) ∪
⋃

x∈X
L
(
T sqx,v

)
. (9.16)

The lemma then follows by Proposition 9.1.1.

To express solving a system of string constraints Φ in the terms of a (modified) RMC, we
first convert Φ (using Algorithm 4) to an equisatisfiable cubic system Φ′. The satisfiability
of a system of word equations Φ can be reduced to a modified RMC problem (IeqsΦ , T vi,eqsx�αx∪
T vi,eqsx� ε ,Deqs) instantiating Algorithm 3 with components given in Figure 9.9.

For the modified RMC algorithm, we need to assume vi /∈ XΣ. We also need to update
Line 4 of Algorithm 3 to T vi := T vix�αx∪T vix� ε and Line 10 to reachi+1 := T vi(reachi); X :=

123

X∪{vi}; to allow using a new variable vi in every iteration. Rationality of T vi,eqsx�αx and T vi,eqsx� ε

follows directly from Proposition 9.1.1.
Lemma 9.3.5. The modified Algorithm 3 instantiated with (IeqsΦ , T vi,eqsx�αx ∪ T vi,eqsx� ε ,Deqs) is
sound if Φ is cubic.
Proof. (Sketch) Consider the generalized proof graph from the proof of Lemma 9.3.2. For
an arbitrary system of word equations this graph may be infinite. However, since our
algorithm implements BFS strategy, our algorithm is sound in proving Φ is satisfiable.

Completeness. Since Nielsen transformation does not guarantee termination for the gen-
eral case, neither does our algorithm. Investigation of possible symbolic encodings of com-
plete algorithms, e.g., Makanin’s algorithm [197], is our future work.

9.4 Handling a Boolean Combination of String Constraints
In this section, we will extend the procedure from handling a conjunction of word equations
into a procedure that handles their arbitrary Boolean combination. The negation of word
equations can be handled in the standard way. For instance, we can use the approach in [9]
to convert a negated word equation t` 6= tr to the string constraint

∨

c∈Σ
(t` = tr.cx ∨ t`.cx = tr) ∨

∨

c1,c2∈Σ,c1 6=c2

(t` = x3c1x1 ∧ tr = x3c2x2). (9.17)

The first part of the constraint says that either t` is a strict prefix of tr or the other way
around. The second part says that t` and tr have a common prefix x3 and start to differ
in the next symbols c1 and c2. For word equations connected using ∧ and ∨, we apply
distributive laws to obtain an equivalent formula in the conjunctive normal form (CNF)
whose size is at worst exponential to the size of the original formula. Note that we cannot
use the Tseytin transformation as it may introduce new negations.

Let us now focus on how to express solving a string constraint Φ composed of arbitrary
Boolean combination of word equations using a (modified) RMC. We start by removing
inequalities in Φ using (9.17), then we convert the system without inequalities into CNF,
and, finally, apply the Algorithm 4 to convert the CNF formula to an equisatisfiable and
cubic CNF Φ′. For deciding satisfiability of Φ′ in the terms of RMC, both the transition
relations and the destination set remain the same as in Section 9.3.2. The only difference
is the initial configuration because the system is not a conjunction of terms any more but
rather a general formula in CNF. For this, we extend the definition of encode to a clause
c = (t1` = t1r ∨ . . . ∨ tn` = tnr) as encode (c) =

⋃
1≤j≤n encode

(
tj` , t

j
r

)
. Then, the initial

configuration for Φ′ is given as

IscΦ′ = encode(c1).
{(

#
#

)}
.

{(
#
#

)}
.encode(cm), (9.18)

where Φ′ is of the form Φ′ : c1 ∧ . . . ∧ cm and each clause ci is of the form ci = (t1` =
t1r ∨ . . . ∨ tni` = tnir). We obtain the following lemma directly from Proposition 9.1.1.
Lemma 9.4.1. The initial set IscΦ′ is regular.

The transition relation and the destination set are the same as the ones in the previous
section, i.e., T vi,scx�αx = T vi,eqsx�αx, T vi,scx� ε = T vi,eqsx� ε , and Dsc = Deqs . The soundness of our
algorithm for a Boolean combination of word equations is summarized by the following
lemma.

124

Lemma 9.4.2. Given a Boolean combination of word equations Φ, modified Algorithm 3
instantiated with (IscΦ′ , T

vi,sc
x�αx ∪ T vi,scx� ε,Dsc) is sound.

Proof. (Sketch) A system of full word equations can be converted according to steps de-
scribed above to an equisatisfiable system in CNF Ψ :

∧n
i=1 ci where ci contains only equal-

ities. Then, Ψ is satisfiable if there is some φ :
∧n
i=1 t

i
` = tir where ti` = tir ∈ ci. Moreover,

we have encode (φ) ∈ IscΦ . From Lemma 9.3.5 (and from BFS strategy of RMC), we get
that our algorithm is sound in proving Φ is satisfiable.

9.5 Extensions
In this section, we discuss how to extend the RMC-based framework to support the following
two types of atomic string constraints:

(i) A length constraint ϕi is a formula of Presburger arithmetic over the values of |x| for
x ∈ X, where | · | : X→ ω is the word length function (to simplify the notation we use
a formula of Presburger arithmetic with free variables X and we keep in mind that
the value assigned to x ∈ X corresponds in fact to |x|).

(ii) A regular constraint ϕr is a conjunction of atoms of the form x ∈ L (A) (or their
negation) where x is a word variable and A is an NFA representing a regular language.

9.5.1 Length Constraints

In order to extend our framework to solve word equations with length constraints, we encode
them as regular languages. See Section 6.3 for all necessary details. Recall that a model
σ : X→ ω of a Presburger formula ϕi(X) is encoded as a word wσ over ΣX expressing each
assigned integer value in the binary form (note that there are multiple encodings). Regular
language encoding both string constraints over X and length constraints ϕi(X) contains
all possible encodings of models of ϕi. The adjusted transformation relation then needs
to reflect the effect of each transformation rule on the encoded length constraints. In the
following paragraphs, we provide the details about our approach.

Consider a word wσ encoding an assignment σ. The transformation x� yx for x, y ∈ X
applied on wσ produces a word wσ′ encoding the assignment σ′ = σ / {x 7→ σ(x) − σ(y)}
if σ(x) ≥ σ(y). The transformation x� ax, for a ∈ Σ produces a word wσ′ encoding the
assignment σ′ = σ / {x 7→ σ(x)− 1} if σ(x) ≥ 1. Finally, the transformation x� ε does not
change the word wσ, but imposes the restriction σ(x) = 0. Formally, the transformations
are given as

T len
x� yx = { (wσ, wσ′) | σ(x) ≥ σ(y) ∧ σ′ = σ / {x 7→ σ(x)− σ(y)}},
T len
x� ax = { (wσ, wσ′) | σ(x) ≥ 1 ∧ σ′ = σ / {x 7→ σ(x)− 1}}, and
T len
x� ε = { (wσ, wσ) | σ(x) = 0 }.

(9.19)

Lemma 9.5.1 shows that the transformations are regular. The proof is based on constructing
MSO(Str) formulae with free variables `, `′ implementing the transformations.

Lemma 9.5.1. The relations T len
x� yx, T len

x� ax, and T len
x� ε are regular.

125

I lenϕi = Ieq .{#len}.Iϕi Dlen
ϕi = Deq .{#len}.Σ∗X

T len
x�αx =

⋃

x∈X,y∈X
encode

(
τ≤2x� yx

)
.{#len 7→ #len}.T len

x� yx ∪

⋃

x∈X,a∈Σ
encode

(
τ≤2x� ax

)
.{#len 7→ #len}.T len

x� ax

T len
x� ε =

⋃

x∈X
encode

(
τ≤2x� ε

)
.{#len 7→ #len}.T len

x� ε

Figure 9.10: RMC instantiation for a quadratic equation with a length constraint.

Proof. (Sketch) The transducer for T len
x� yx can be straightforwardly constructed from the

automaton Aψ representing the Presburger formula ψ , x′ = x−y (see Section 6.3.3). The
remaining relations T len

x� ax, and T len
x� ε can be constructed analogically.

Let us now focus on how to adjust the initial and destination sets for an equation with
a length constraint ϕi(X), represented as a Presburger formula with free variables X. The
initial set is extended by all encoded models of ϕi. Formally, a part of the initial set
related to the length constraint is given as Iϕi = L (ϕi) and a part of the destination set
as Dlen = Σ∗X. Moreover, from Section 6.3.3 we have that Iϕi is regular.

Satisfiability of a quadratic equation eq : t` = tr with the length constraint ϕi can be
then expressed as the RMC problem (I lenϕi , T len

x�αx ∪ T len
x� ε,Dlen

ϕi) instantiating Algorithm 3
with items given in Figure 9.10. Note the use of a fresh delimiter #len . Rationality of
T len
x�αx and T len

x� ε follows directly from Proposition 9.1.1. The soundness of our algorithm
is summarized by Lemma 9.5.2.

Lemma 9.5.2. Given a quadratic word equation eq : t` = tr with the length constraint ϕi,
Algorithm 3 instantiated with (I lenϕi , T len

x�αx ∪ T len
x� ε,Dlen

ϕi) is sound.

Proof. (Sketch) We can generalize nodes of the Nielsen proof graph to pairs of the form
(t′` = t′r, f) where f is a mapping assigning lengths to variables from X (see, e.g., [191]).
The transformation rules can be straightforwardly generalized to take into account also the
lengths. The initial nodes are pairs (t` = tr, f) where f is a model of ϕi. The final nodes
are nodes (ε = ε, g) where g is arbitrary. Note that the generalized graph is not necessarily
finite even for quadratic equations. Nevertheless, if the equation is satisfiable then there is
a finite path from an initial node to a final node.

Directly from the definition of I lenϕi we have that the initial nodes of the generalized proof
graph are encoded strings from I lenϕi and the final nodes corresponds to Dlen

ϕi . You can also
see that the transformation rules corresponds to the encoded relations T len

x�αx and T len
x� ε.

Since the search in Algorithm 3 implements BFS strategy, we get that our (semi-)algorithm
is sound in proving satisfiability.

The satisfiability of a word equation eq with length constraints can be straightforwardly
generalized to a system of equations Φ with length constraints. The languages/relations
corresponding to eq are replaced by languages/relations corresponding to Φ. Note that
Lemma 9.5.2 holds also for a system of equations.

126

9.5.2 Regular Constraints

Our second extension of the framework is the support of regular constraints as a conjunction
of atoms of the form x ∈ L (A) for an NFA A (note that the negation of an atom x /∈ L (A)
can be converted to the positive atom x ∈ L(A{). In particular, we assume that regular
constraints are represented by a conjunction ϕr of ` atoms of the form

ϕr ,
∧̀

i=1

xi ∈ L (Ai) , (9.20)

where Ai is an NFA for each 1 ≤ i ≤ `. Without loss of generality, we assume that the
automata occurring in ϕr have pairwise disjoint sets of states and further we use Ar =
(Q,Σ, δ, I, F) to denote the disjoint union of all automata occurring in regular constraints.

We encode regular constraints as words over symbols of the form 〈x, p, q〉 where x ∈ X
and p, q ∈ Q. We denote the set of all symbols as XΣ,Ar . Moreover, we treat the words
as sets of symbols and hence we assume a fixed linear order 4 over symbols to allow
a unique representation. In particular, for a word w ∈ X∗Σ,Ar we use w4 to denote the string
containing symbols sorted by 4 with no repetitions of symbols. A single atom x ∈ L (A)
can be encoded as a set of words encode(x ∈ L (A)) = {〈x, p, q〉 | p ∈ I[A], q ∈ F [A]}. The
set represents all possible accepting paths in A. The initial set Iϕr is then defined as

Iϕr = {w4 | w ∈ encode(x1 ∈ L (A1)) . . . encode(x` ∈ L (A`))}. (9.21)

Note that Iϕr is finite for finite X, therefore it is a regular language.
Let us now describe the effect of Nielsen transformation on the regular constraint part.

Consider a word w encoding a set of symbols from XΣ,Ar . Then, the transformation x� yx
for x, y ∈ X applied on w produces words w′ encoding sets where each occurrence of a symbol
〈x, p, q〉 is replaced with all possible pairs of symbols 〈y, p, r〉 and 〈x, r, q〉 where p r
and r q in Ar. Similarly, the transformation x� ax for x ∈ X, a ∈ Σ applied on w
produces words w′ encoding sets where each occurrence of a symbol 〈x, p, q〉 is replaced
with all possible symbols 〈x, r, q〉 where p a−→ r in Ar. Finally, by the transformation x� ε
we obtain a string w′ = w only if all symbols of w related to the variable x are of the
form 〈x, q, q〉 for q ∈ Q. Formally, we first define the function expanding a single symbol for
variables x and y as expx,y(σ) = { 〈y, p, r〉.〈x, r, q〉 | r ∈ Q, p r q in Ar } if σ = 〈x, p, q〉,
and expx,y(σ) = {σ} otherwise. Similarly, we define the expansion expx,a(σ) = { 〈x, r, q〉 |
r ∈ Q, p

a−→ r q in Ar } if σ = 〈x, p, q〉, and expx,a(σ) = {σ} otherwise. Then, the
transformations x� yx, x� ax and x� ε can be described by the following relations

T reg
x� yx = { (w, u4) | u ∈ expx,y(w[1]) . . . expx,y(w[|w|]) },
T reg
x� ax = { (w, u4) | u ∈ expx,a(w[1]) . . . expx,a(w[|w|]) }, and

T reg
x� ε =

{
(w,w) | ∀1 ≤ i ≤ |w| : ∀p, q ∈ Q : w[i] = 〈x, p, q〉 ⇒ p = q

}
.

(9.22)

The following lemma shows that the transformations are rational. In the proof, we first
construct MSO(Str) formulae realizing necessary set operations on strings and the effect
of the expanding function. Based on them, we construct formulae realizing the transforma-
tions.

Lemma 9.5.3. The relations pad�(T
reg
x� yx), pad�(T

reg
x� ax), and pad�(T

reg
x� ε) are rational.

127

Proof. In this proof, we extend the total order 4 on XΣ,Ar to a total order XΣ,Ar ∪ {�}
s.t. ∀σ ∈ XΣ,Ar : σ 4 �. We define the relations T reg

x� yx and T reg
x� ε using MSO(Str). The

relation T reg
x� ax can be defined analogically to T reg

x� yx.

ψreg
x� yx(w,w

′) , ∃Wu1, u2, u3(filterx(u1, u2, w)
∧ expandyx(u1, u3) ∧ union(u2, u3, w

′) ∧ ordSet(w′))
(9.23)

ψreg
x� ε(w,w

′) , ∀Pi
(
w[i] = w′[i] ∧

∨

ξ∈(X\{x})Σ,Ar∪
{(x,q,q) | q∈Q}

w′[i] = ξ
)

(9.24)

where filterx(u, v, w) partitions symbols of w to u and v s.t. u contains symbols that are of
the form 〈x,−,−〉 and v contains the remaining ones, expandyx(u, v) replaces each symbol
〈x, p, q〉 in u with 〈y, p, r〉 and 〈x, r, q〉, and union is a set-like union. These predicates are
defined as

σ ∈ w , ∃Pi(w[i] = σ) (9.25)

set(u) ,
∧

ξ∈XΣ,Ar

∀Pi, j(i 6= j → (u[i] 6= ξ ∨ u[j] 6= ξ)) (9.26)

ordSet(u) , set(u) ∧ ∀Pi, j(i < j → u[i] 4 u[j]) (9.27)

filterx(u, v, w) , ∀Pi
(∧

q,r∈Q
ξ=〈x,q,r〉

(w[i] = ξ → (u[i] = ξ ∧ v[i] = �))

∧
∧

z∈XΣ,q,r∈Q
z 6=x,ξ=〈z,q,r〉

(w[i] = ξ → (u[i] = � ∧ v[i] = ξ))

) (9.28)

expandyx(u, v) ,
∧

r,q∈Q,r q
ξ′=〈x,r,q〉

(
ξ′ ∈ v →

∨

p∈Q,p r
ξ=〈x,p,q〉
ξ′′=〈y,p,r〉

ξ ∈ u ∧ ξ′′ ∈ v
)

∧
∧

p,r∈Q,p r
ξ′′=〈y,p,r〉

(
ξ′′ ∈ v →

∨

q∈Q,r q
ξ=〈x,p,q〉
ξ′=〈x,r,q〉

ξ ∈ u ∧ ξ′ ∈ v
)

∧
∧

p,q∈Q
ξ=〈x,p,q〉

(
ξ ∈ u→

∨

r∈Q,p r q
ξ′′=〈y,p,r〉
ξ′=〈x,r,q〉

ξ′′ ∈ u ∧ ξ′ ∈ v
)

(9.29)

union(u, v, w) ,
∧

ξ∈XΣ,Ar

ξ ∈ w ↔ (ξ ∈ u ∨ ξ ∈ v) (9.30)

We further consider the relations τ+pad = {(w,w′) | w ∈ (XΣ,Ar ∪ {�})∗, w′ ∈ w.{�}∗} and
τ−pad = {(w,w′) | w′ ∈ (XΣ,Ar ∪ {�})∗, w ∈ w′.{�}∗} appending and removing padding,
respectively. These relations are rational. Then, observe that pad�(T

reg
x� yx) = τ+pad ◦

τ−pad ◦ L
(
ψreg
x� yx

)
◦ τ+pad. From Propositions 9.1.1 and 9.1.2, we have that pad�(T

reg
x� yx)

is rational (the same for pad�(T
reg
x� ε)).

128

Iregϕr = Ieq .{#reg}.pad�(Iϕr) Dreg
ϕr = Deq .{#reg}.pad�(Dreg)

T reg
x�αx =

⋃

x∈X,y∈X
encode

(
τ≤2x� yx

)
.{#reg 7→ #reg}.pad�(T

reg
x� yx) ∪

⋃

x∈X,a∈Σ
encode

(
τ≤2x� ax

)
.{#reg 7→ #reg}.pad�(T

reg
x� ax)

T reg
x� ε =

⋃

x∈X
encode

(
τ≤2x� ε

)
.{#reg 7→ #reg}.pad�(T

reg
x� ε)

Figure 9.11: RMC instantiation for a quadratic equation with a regular constraint.

The last missing piece is a definition of the destination set containing all satisfiable
regular constraints. For a variable x ∈ X, we define the set of satisfiable x-constraints
as Lx = {w4 | w = 〈x, q1, r1〉 · · · 〈x, qn, rn〉 ∈ X∗Σ,Ar ,

⋂n
i=1 LAr(qi, ri) 6= ∅ }. Then, the

destination set for a set of variables X = {x1, . . . , xk} is given as Dreg = {w4 | w ∈
Lx1 · · ·Lxk }. As in the case of Iϕr , the set Dreg is finite and hence regular as well.

Satisfiability of a quadratic word equation eq : t` = tr with a regular constraint ϕr can
be expressed in the RMC framework (Iregϕr , T reg

x�αx ∪ T reg
x� ε,Dreg

ϕr) instantiating Algorithm 3
with items given in Figure 9.11. Note that we use a fresh delimiter #reg . The rationality of
T reg
x�αx and T reg

x� ε follows directly from Proposition 9.1.1. The soundness and completeness
of our procedure is summarized by the following lemma.

Lemma 9.5.4. Given a quadratic word equation eq : t` = tr with a regular constraint ϕr,
Algorithm 3 instantiated with (Iregϕr , T reg

x�αx ∪ T reg
x� ε,Dreg

ϕr) is sound and complete.

Proof. (Sketch) Similarly to proof of Lemma 9.5.2, we can generalize nodes of the Nielsen
proof graph to pairs of the form (t′` = t′r, S) where S ⊆ XΣ,Ar . The transformation rules
can be straightforwardly generalized to take into account also the regular constraints repre-
sented by a subset of XΣ,Ar . Since XΣ,Ar is finite and eq is quadratic, the generalized proof
graph is finite (see, e.g., [191]). The initial nodes of the generalized proof graph are exactly
encoded strings from Iregϕr , the final nodes corresponds to Dreg

ϕr , and the transformation rules
correspond to the encoded relations T reg

x�αx and T reg
x� ε. Since our RMC framework imple-

ments BFS strategy, from the previous we get that our procedure is sound and complete in
proving satisfiability.

As in the case of length constraints, the satisfiability of a word equation eq with regular
constraints can be generalized to a system of equations Φ with regular constraints. The
languages/relations corresponding to eq are replaced by languages/relations corresponding
to Φ. For a system of string equations with regular constraints our algorithm is still sound.

9.6 Implementation
We created a prototype Python tool called Retro, where we implemented the symbolic
procedure for solving systems of word equations. Retro implements a modification of
the RMC loop from Algorithm 3. In particular, instead of standard transducers defined
in Section 9.1, it uses the so-called finite-alphabet register transducers (FRTs), which allow
a more concise representation of a rational relation.

129

〈〉 〈a〉 〈b〉

(�
�

)
/
(�
�

) (
b
a

)
/
(
b
a

) (
y
b

)
/
(
y
b

)

(
x
a

)
/ε

(
y
b

)
/
(
y
a

)

(�
�

)
/
(�
b

)

(a)

〈〉 〈r1〉

(�
�

)
/
(�
�

)
;>; noop

(
α
β

)
/
(
α
r1

)
;>; r1 ← β

(
α
β

)
/ε;α = x; r1 ← β

(
α
β

)
/
(�
r1

)
;α = β = �; noop

(b)

Figure 9.12: A partial (explicit) transducer (a) and FRT (b) implementing the encoded
relation τ≤1x 7→ε. In the case of FRT, α, β are variable representing an input symbol, r1 is
a register, and the transitions are of the form action;condition;register update.

Informally, an FRT is a register automaton (in the sense of [162]) where the alphabet is
finite. The finiteness of the alphabet implies that the expressive power of FRTs coincides
with the class of rational languages, but the advantage of using FRTs is that they allow
a more concise representation than ordinary transducers.

In particular, transducers (without registers) corresponding to the transformers Tx�αx

and Tx� ε contain branching at the beginning for each choice of x and α. Especially in
the case of huge alphabets, this yields huge transducers (consider for instance the Unicode
alphabet with over 1 million symbols). The use of FRTs yields much smaller automata
because the choice of x and α is stored into registers and then processed symbolically. To
illustrate the effect of using registers, consider an incomplete transducer in Figure 9.12a im-
plementing a part of the encoded relation τ≤1x 7→ε. The full transducer would require branching
for each

(
u
v

)
and a lot of states to store concrete shifted symbols. On the other hand the

partial FRT in Figure 9.12b stores the shifted symbols in the register r1, the branching is
replaced by a symbolic transition, and hence it requires less states and transitions (the full
FRT would require another register to store the variable to replace).

As another feature, Retro uses deterministic finite automata to represent configura-
tions in Algorithm 3. It also uses eager automata minimization, since it has a big impact on
the performance, especially on checking the termination condition of the RMC algorithm,
which is done by testing language inclusion between the current configuration and all so-far
processed configurations.

9.7 Experimental Evaluation
We compared the performance of our approach (implemented in Retro) with two current
state-of-the-art SMT solvers that support the string theory: Z3 4.8.7 [218] and CVC4 1.7 [31].

The first set of benchmarks is Kepler22, obtained from [184]. Kepler22 contains 600
hand-crafted string constraints composed of quadratic word equations with length con-
straints. In Figure 9.13, we give a cactus plot of the results of the solvers on the Kepler22
benchmark set with the timeout of 20 s. The total numbers of solved benchmarks within the
timeout were: 119 for Z3, 266 for CVC4, and 443 for Retro (out of which 179 could not be
solved by CVC4). On this benchmark set, Retro can solve significantly more benchmarks
than both Z3 and CVC4.

The other set of benchmarks that we tried is PyEx-Hard. Here we want to see the
potential of integrating Retro with DPLL(T)-based string solvers, like Z3 or CVC4, as
a specific string theory solver. The input of this component is a conjunction of atomic string

130

0

5

10

15

0 100 200 300 400
Benchmarks

T
im

e
[s] CVC4

Retro
Z3

Figure 9.13: A cactus plot comparing Retro, CVC4, and Z3 on the Kepler22 benchmark

0

5

10

15

20

19500 19600 19700 19800 19900 20000
Benchmarks

T
im

e
[s]

VBS(Z3, CVC4, Retro)

VBS(Z3, CVC4)

Figure 9.14: A cactus plot comparing the Virtual Best Solver with and without Retro
on the PyEx-Hard benchmark. We show ∼500 most difficult benchmarks (from 20,020).

formulae (e.g., xy = zb ∧ z = ax) that is a model of the Boolean structure of the top-level
formula. The conjunction of atomic string formulae is then, in several layers, processed
by various string theory solvers, which either add more conflict clauses or return a model.
To evaluate whether Retro is suitable to be used as “one of the layers” of Z3 or CVC4’s
string solver, we analyzed the PyEx benchmarks [244] and extracted from it 967 difficult
instances that neither CVC4 nor Z3 could solve in 10 seconds. From those instances, we
obtained 20,020 conjunctions of word equations that Z3’s DPLL(T) algorithm sent to its
string theory solver when trying to solve them. We call those 20,020 conjunctions of word
equations PyEx-Hard. We then evaluated the three solvers on PyEx-Hard with the
timeout of 20 s. Out of these, Z3 could not solve 3,232, CVC4 could not solve 188, and
Retro could not solve 3,099 instances.

Let us now closely look at the hard instances in the PyEx-Hard benchmark set, in
particular, on the instances that either CVC4 or Z3 could not solve. These benchmarks
cannot be handled by the (several layers of) fast heuristics implemented in CVC4 and Z3,
which are sufficient to solve many benchmarks without the need to start applying the

131

case-split rule.1 The set contains the 3,232 benchmarks that Z3 could not solve within
20 seconds. Out of these, CVC4 could not solve 188 benchmarks (CVC4 could solve every
constraint that Z3 could solve), and Retro could not solve 568 benchmarks. When we
compared the solvers on the examples that Z3 and CVC4 failed to solve, Retro could solve
2,664 examples (82.4 %) out of those where Z3 failed and 111 examples (59.04 %) of those
where CVC4 failed. In Figure 9.14, we give a cactus plot of the Virtual Best Solver on the
benchmarks with and without Retro. Given a set of solvers S, we use VBS (S) to denote
the solver that would be obtained by taking, for each benchmark, the solver that is the
fastest on the given benchmark. The graph shows that our approach can significantly help
solvers deal with hard equations.

Discussion. From the obtained results, we see that our approach works well in hard
cases, where the fast heuristics implemented in state-of-the-art solvers are not sufficient to
quickly discharge a formula, in particular when the (un)satisfiability proof is complex. Our
approach can exploit the symbolic representation of the proof tree and use it to reduce
the redundancy of performing transformations. Note that we can still beat the heavily
optimized Z3 and CVC4 written in C++ by a Python tool in those cases. We believe that
implementing our symbolic algorithm as a part of a state-of-the-art SMT solver would push
the applicability of string solving even further, especially for cases of string constraints with
a complex structure, which need to solve multiple DPLL(T) queries in order to establish
the (un)satisfiability of a string formula.

9.8 Conclusion
In this chapter, we presented an encoding of Nielsen transformation into the RMC frame-
work. We proposed an efficient encoding of a proof graph using finite automata with
the transition rules expressed by finite transducers. The experimental evaluation, based
on a prototype tool implementing register transducers with eager minimization of NFAs,
shows a potential of the approach. A direction of a further research may include encod-
ing of a complete procedure for solving string equations into the RMC framework (e.g.,
Makanin’s algorithm [197]). The content of this chapter was published in the proceedings
of APLAS’20 [76] and it was extended by encoding of regular a length constraints.

1For instance, when Z3 receives the word equation xy = yax, it infers the length constraint |x| + |y| =
|y| + 1 + |x|, which implies unsatisfiability of the word equation without the need to start applying the
case-split rule at all.

132

Part III:
Büchi Automata Complementation

133

Chapter 10

Büchi Automata Complementation

Complementation of Büchi automata is an important and challenging problem since the
time Büchi introduced his automaton model over infinite words in the context of a decision
procedure for S1S [65] (see Section 6.4 for more details). Thenceforth, efficient complemen-
tation of BAs became a topic of great interest from both theoretical and practical angles.
Büchi automata complementation is crucial for language inclusion checking of BAs, which
can be used for model checking where both the system and the property of interest are rep-
resented by automata. Further, termination checking of programs as implemented within,
e.g., the Ultimate Automizer tool, uses complementation to remove a set of traces whose
termination has been established from the set of traces whose termination is yet to be es-
tablished [142, 77]. Last but not least, complementation is a crucial operation for decision
procedures of various logics, such as the aforementioned S1S or the temporal logics ETL
and QPTL [255].

Büchi with his double-exponential complementation procedure launched a haunt for
efficient complementation techniques. In 1988 Safra proposed a complementation approach
based on intermediate deterministic Rabin automata with the upper bound nO(n) [248].
Simultaneously to the efforts put into finding more efficient techniques, there appeared
works aiming at establishing the lower bound of BA complementation. In contrast to the
complementation of NFAs, where for an NFA having n states, an automaton accepting the
complementary language has at most 2n states, the situation is much more involved for
Büchi automata. First, Michel [211] showed that there are BAs for which the lower bound
of complementation is n! = 2Ω(n logn) (approximately (0.36n)n). This result was later
refined by Yan to (0.76n)n [294]. Since the construction of Safra asymptotically matches
the lower bound, the problem seemed solved. On the other hand, the factor in the exponent
plays a crucial role because a higher factor apparently affects the size of a complemented
automaton. As a consequence, it may be limiting in real-world applications. Reducing this
complexity gap became a subject of many works [182, 115, 281, 161, 294]. The efforts lead
to the improved rank-based construction of Schewe [250] matching the lower bound of BA
complementation modulo a O(n2) polynomial factor.

In this chapter, we give a brief introduction to complementation techniques with focus on
the rank-based complementation as we deal with its optimizations in the following chapters.
The content of this chapter is partially based on [75, 139].

Chapter outline. This chapter serves as a brief introduction to BA complementation
approaches, in particular to the rank-based complementation. In Section 10.1, we give
definitions used in the following sections/chapters. In Section 10.2, we describe existing

134

complementation techniques and finally, in Section 10.3, we provide details about the rank-
based complementation.

10.1 Preliminaries
In this section, we assume definitions related to functions, languages, and Büchi automata
from Chapter 2. In this chapter, we, by [n], denote the set {0, . . . , n} (do not confuse with
the denotation of equivalence classes, which are specified by an equivalence relation, e.g.,
[·]≡). Further, let A = (Q,Σ, δ, I, F) be a BA. For a pair of states p and q, and a word
w ∈ Σ∗ we use p w

 q to denote that q is reachable from p over the word w (we use the
same notation as for NFAs); if a path from p to q over w contains an accepting state, we
can write p w

F
q.

Variants of ω-automata. In Chapter 2, we defined an accepting run of a BA over some
infinite word to be a run with infinitely many accepting states. However, this accepting
condition is not the only possible one. We can distinguish different automata models over
infinite words (called ω-automata) based on various accepting conditions. We provide
a couple of them. In particular, an ω-automaton A = (Q,Σ, δ, I,Acc) is called

• a Generalized Büchi automaton if Acc = F ⊆ 2Q. A run ρ of A on a word α ∈ Σω is
called accepting iff ∀F ∈ F : inf(ρ) ∩ F 6= ∅.

• a Muller automaton if Acc = F ⊆ 2Q. A run ρ of A on a word α ∈ Σω is called
accepting iff inf(ρ) ∈ F .

• a Rabin automaton if Acc = F ⊆ 2Q × 2Q. A run ρ of A on a word α ∈ Σω is called
accepting iff ∃(E,F) ∈ F : inf(ρ) ∩ E = ∅ ∧ inf(ρ) ∩ F 6= ∅.

• a Streett automaton if Acc = F ⊆ 2Q × 2Q. A run ρ of A on a word α ∈ Σω is called
accepting iff ∀(E,F) ∈ F : inf(ρ) ∩ E 6= ∅ ∨ inf(ρ) ∩ F = ∅.

Note that for Acc = F we get BAs defined in Chapter 2. Further, all the mentioned
nondeterministic automata models (except the classical BAs) have the same expressive
power [109].

10.2 Overview of the Complementation Techniques
As we already said in the introduction, complementation of Büchi automata is still an
intensively studied problem. Currently, there are several branches of approaches based on
slightly different way of reasoning. Although several of them are asymptotically optimal,
their practical efficiency may differ [276]. In this section, we give a brief overview of the
complementation techniques. For that, we assume a BA A = (Q,Σ, δ, I, F).

Ramsey-based complementation. A complementation technique based on the infinite
Ramsey theorem with double-exponential upper bound was proposed already by Büchi [65].
The algorithm was later improved in [255]. We briefly describe the construction based on
this work. The complemented automaton is constructed based on equivalences on Σω using

135

generalized subset construction. For that, we first define the equivalence relation ≡ on
Σ∗ as

x ≡ y def≡ ∀q, q′ ∈ Q : (q
x
 q′ ⇔ q

y
 q′) ∧ (q

x

F
q′ ⇔ q

y

F
q′). (10.1)

Intuitively, if x ≡ y then we can modify a word α ∈ Σω by replacing occurrences of x by
y without affecting the acceptance/rejection of α in A. Each equivalence class [x]≡ can
be represented by a finite automaton with the size bounded by O(4n2

). The index of ≡ is
bounded by 4n

2 . Further, for each x, y ∈ Σ∗ the language Lxy = [x]≡.[y]
ω
≡ is ω-regular, and

moreover it holds that Lxy ⊆ L (A) or Lxy∩L (A) = ∅. One can even restrict the languages
to proper ones, i.e., languages Lxy s.t. [x]≡.[y]≡ ⊆ [x]≡ and [y]≡.[y]≡ ⊆ [y]≡. Using the
infinite Ramsey theorem or results concerning monoids [227], it can be shown that each
α ∈ Σω belongs to some proper Lxy. Putting it all together, we obtain

L (A) =
⋃
{Lxy | x, y ∈ Σ∗, Lxy is proper, Lxy ∩ L (A) = ∅}, (10.2)

giving the way for a construction of the complemented automaton with the upper bound
on the size 2O(n

2) [255]. This upper bound can be further improved by a preorder merging
optimization yielding the size upper bound 2O(n logn) [60].

Determinization-based complementation. Another approach for Büchi automata
complementation is based on determinization. Bad news are that deterministic Büchi au-
tomata are strictly weaker that the nondeterministic ones, e.g., the language represented
by the ω-regular expression (a+ b)∗bω cannot be accepted by any deterministic Büchi au-
tomaton. However, nondeterministic BAs can be converted into an equivalent different ω-
automaton model allowing determinization, e.g., Rabin, Muller, or Streett automata whose
accepting power (even for deterministic variants) coincides with the family of ω-regular
languages [109, 247]. The determinization-based complementation uses an equivalent inter-
mediate deterministic automaton, which can be easily complemented, and then with some
overhead translated back to a BA. In particular, the construction proposed by Safra [248]
allows to construct a deterministic Rabin automaton A′ equivalent to A having 2O(n logn)

states and O(n) accepting pairs. If we see A′ by the optics of deterministic Streett au-
tomaton we have L (A′) = L (A). Moreover, every Streett automaton with m states and
r accepting pairs can be converted into an equivalent BA with O(m·2r) states [247]. The
upper bound of the complementation is hence 2O(n logn). The construction of Safra was
later improved by Piterman [228] using intermediate deterministic parity automata with
the n2n upper bound.

Rank-based complementation. Rank-based complementation, introduced in [182] and
later studied in [250, 115, 133, 163], tracks information about all runs over a word using
generalized subset construction assigning numbers (ranks) to each state in a macrostate.
The ranks allow to distinguish accepting and nonaccepting runs in the original BA. The
improved construction of Schewe [250] matches the lower bound (0.76)n [294] of BA com-
plementation modulo a polynomial factor of O(n2). Heuristics and optimizations of the
procedure were further studied in [133, 163]. Since the rank-based complementation is
a fundamental stone for the following chapters, we provide a detailed explanation later in
Section 10.3.

136

r s t

a

b

b

b

a

Figure 10.1: The BA Aex

Slice-based complementation. Slice-based complementation [281, 161] uses properties
of reduced run trees. A run tree over a word α is a (possibly infinite) binary tree whose
vertices are sets of states with I being the root. The left successor of a vertex v on a level
i contains all final successor states over αi of v, i.e., δ(v, αi) ∩ F . The right successor of v
is then δ(v, αi) \ F . The run trees may have unbounded width, therefore, the construction
uses reduced run trees instead. A vertex v in a reduced tree contains only those states that
do not occur in vertices on the left side of v on the same level.

The construction then simulates building of levels (slices) of a reduced run tree—states
of the complemented automaton are (decorated) slices. In order to accept a word, it guesses
at some point a slice s.t. all infinite paths in the reduced tree starting at this slice take right
successors only. To verify the guess, vertices in a slice are decorated by flags to track the
information about paths in a reduced run tree. For a BA having n states, the construction
yields a BA having at most (3n)n states.

Other complementation techniques. In addition to techniques for complementation
of general BAs, there are approaches for complementation of special variants of BAs. In
particular, deterministic [183], semideterministic [47]—i.e., automata whose parts reachable
from final states are deterministic, or unambiguous [188], i.e., for each word α ∈ Σω there
is at most one accepting run.

From the other approaches for complementation of general BAs we mention an optimal
algorithm by Allred and Utes-Nitsche [16] or a learning-based approach [187, 186] aiming at
learning small BAs for a complementary language. Complementation of semideterministic
automata is also used together with a combination of semideterminization (conversion of
a BA into a semideterministic one) [85] for the complementation of general BAs [46].

10.3 Rank-based Complementation
Rank-based complementation is the main topic of Chapters 11 and 12. For this reason,
in this section, we provide details about the construction. In the first part, we focus on
the original rank-based construction. Then, we deal with the improved tight-ranking-based
construction. In the last part, we recall the optimal construction of Schewe. We fix a BA
A = (Q,Σ, δ, I, F).

10.3.1 Run DAGs

Before we move to the rank-based construction, we recall the terminology from [250] (which
is a minor modification of the terminology from [182]), which we use heavily in the following
sections and chapters. We fix the definition of the run DAG of A over a word α to be a DAG
(directed acyclic graph) Gα = (V,E) of vertices V and edges E where

• V ⊆ Q× ω s.t. (q, i) ∈ V iff there is a run ρ of A from I over α with ρi = q,

137

r, 0 s, 0

s, 1 t, 1

s, 2 t, 2

s, 3 t, 3

s, 4 t, 4
... . . .

b

b

b

b

...

rank 2 rank 1

rank 0

(a)

(
{r:4, s:4}, ∅

)

(
{s:4, t:4}, {s, t}

)

(
{s:3, t:4}, {t}

)

(
{s:3, t:2}, ∅

)

(
{s:3, t:2}, {t}

)

b

b b

b

bb

(b)

{r, s}

{r}

{s, t}

{s}

{t}

∅

(
{s:1, t:0}, ∅

)

(
{s:1, t:0}, {t}

)

(
{s:1}, ∅

)

a

b

b
b

b

a

a

b

a
a

a, b

b
b

b

b

b

b

b

waiting tight

(c)

Figure 10.2: The run DAG of Aex over bω (a). A part of KV(Aex) (b). FKV(Aex); the
waiting and the tight parts are highlighted (c).

• E ⊆ V × V s.t. ((q, i), (q′, i′)) ∈ E iff i′ = i+ 1 and q′ ∈ δ(q, αi).
Given Gα as above, we will write (p, i) ∈ Gα to denote that (p, i) ∈ V . We call (p, i)
accepting if p is an accepting state. Gα is rejecting if it contains no path with infinitely
many accepting vertices. A vertex v ∈ Gα is finite if the set of vertices reachable from v is
finite, infinite if it is not finite, and endangered if v cannot reach an accepting vertex.

We assign ranks to vertices of run DAGs as follows: Let G0α = Gα and j = 0. Repeat
the following steps until the fixpoint or for at most 2n+ 1 steps, where n is the number of
states of A.

• Set rankα(v) := j for all finite vertices v of Gjα and let Gj+1
α be Gjα minus the vertices

with the rank j.

• Set rankα(v) := j+1 for all endangered vertices v of Gj+1
α and let Gj+2

α be Gj+1
α minus

the vertices with the rank j + 1.

• Set j := j + 2.

For all vertices v that have not been assigned a rank yet, we assign rankα(v) := ω. See
Figure 10.1 for an example BA Aex and Figure 10.2a for the run DAG of Aex over bω. The
properties of run DAGs are summarized by the following lemma.

Lemma 10.3.1 ([182]). If α /∈ L (A), then 0 ≤ rankα(v) ≤ 2n for all v ∈ Gα. Moreover,
if α ∈ L (A), then there is a vertex (p, 0) ∈ Gα s.t. rankα(p, 0) = ω.

10.3.2 Basic Rank-Based Complementation

The intuition behind rank-based complementation algorithms is that states in the comple-
mented automaton C track all runs of the original automaton A on the given word and the
possible ranks of each of the runs. Loosely speaking, an accepting run of a complement
automaton C on a word α /∈ L (A) represents the run DAG of A over α (in the complement,
each state in a macrostate is assigned a rank)1.

1This is not entirely true since there may be more accepting runs of C over α, with ranks assigned to
states of A that are higher than the ranks in the run DAG.

138

Rank-based complementation procedures work with the notion of level rankings of states
of A, originally proposed in [182, 115]. For n = |Q|, a (level) ranking is a function f : Q→
[2n] such that {f(qf) | qf ∈ F} ⊆ {0, 2, . . . , 2n}, i.e., f assigns even ranks to accepting
states of A. We use R to denote the set of all rankings and odd(f) to denote the set of
states given an odd ranking by f , i.e. odd(f) = {q ∈ Q | f(q) is odd}. For a ranking f ,
the rank of f is defined as rank(f) = max{f(q) | q ∈ Q}. We use f ≤ f ′ iff for every
state q ∈ Q we have f(q) ≤ f ′(q) and f < f ′ iff f ≤ f ′ and there is a state p ∈ Q with
f(p) < f ′(p).

The basic rank-based procedure, called KV, constructs the BA KV(A) = (Q′,Σ, δ′, I ′, F ′)
whose components are defined as follows [182]:

• Q′ = 2Q × 2Q ×R is a set of macrostates denoted as (S,O, f),

• I ′ = {I} × {∅} ×R,

• (S′, O′, f ′) ∈ δ′((S,O, f), a) iff

– S′ = δ(S, a),
– for every q ∈ S and q′ ∈ δ(q, a) it holds that f ′(q′) ≤ f(q), and

– O′ =

{
δ(S, a) \ odd(f ′) if O = ∅,
δ(O, a) \ odd(f ′) otherwise, and

• F ′ = 2Q × {∅} ×R.

The macrostates (S,O, f) of KV(A) are composed of three components. The S com-
ponent tracks all runs of A over the input word in the same way as determinization of an
NFA. The O component, on the other hand, tracks all runs whose rank has been even since
the last cut-point (a point where O = ∅). The last component, f , assigns every state in S
a rank. Note that the f component is responsible for the nondeterminism of the comple-
ment (and also for the content of the O component). A run of KV(A) is accepting if it
manages to empty the O component of states occurring on the run infinitely often. In the
worst case, KV constructs a BA with approximately (6n)n states [182].

For a better readability, in the examples we often merge S and f components and use,
e.g., ({r:4, s:4}, ∅) to denote the macrostate ({r, s}, ∅, {r 7→ 4, s 7→ 4}) (we also omit ranks
of states not in S). See Figure 10.2b for a part of KV(Aex) that starts at ({r:4, s:4}, ∅) and
keeps ranks as high as possible (the whole automaton is prohibitively large to be shown
here—the implementation of KV in GOAL [277] outputs a BA with 98 states). Note that
in order to accept the word bω, the accepting run needs to nondeterministically decrease
the rank of the successor of s (the transition ({s:4, t:4}, {s, t}) b−→ ({s:3, t:4}, {t})).

10.3.3 Complementation with Tight Rankings

Friedgut, Kupferman, and Vardi observed in [115] that the KV construction generates
macrostates with many rankings that are not strictly necessary in the loop part of the lasso
for an accepting run on a word. Their optimization, denoted as FKV, is based on composing
the complement automaton from two parts: the first part (called by us the waiting part)
just tracks all runs of A over the input word (in a similar manner as in a determinized NFA)
and the second part (the tight part) in addition tracks the rank of each run in a similar
manner as the KV construction, with the difference that the rankings are tight.

139

For a set of states S ⊆ Q, we call f to be S-tight if (i) it has an odd rank r, (ii) {f(s) |
s ∈ S} ⊇ {1, 3, . . . , r}, and (iii) {f(q) | q /∈ S} = {0}. A ranking is tight if it is Q-
tight; we use T to denote the set of all tight rankings. The FKV procedure constructs the
BA FKV(A) = (Q′,Σ, δ′, I ′, F ′) whose components are defined as follows:

• Q′ = Q1 ∪Q2 where

– Q1 = 2Q and
– Q2 = {(S,O, f) ∈ 2Q × 2Q × T | f is S-tight, O ⊆ S},

• I ′ = {I},

• δ′ = τ1 ∪ τ2 ∪ τ3 where

– τ1 : Q1 × Σ→ 2Q1 such that τ1(S, a) = {δ(S, a)},
– τ2 : Q1 × Σ→ 2Q2 such that τ2(S, a) = {(S′, ∅, f) ∈ Q2 | S′ = δ(S, a),
f is S′-tight}, and

– τ3 : Q2 × Σ→ 2Q2 such that (S′, O′, f ′) ∈ τ3((S,O, f), a) iff
∗ S′ = δ(S, a),
∗ for every q ∈ S and q′ ∈ δ(q, a) it holds that f ′(q′) ≤ f(q),
∗ rank(f) = rank(f ′), and

∗ O′ =

{
δ(S, a) \ odd(f ′) if O = ∅,
δ(O, a) \ odd(f ′) otherwise, and

• F ′ = {∅} ∪ ((2Q × {∅} × T) ∩Q2).

We call the part of FKV(A) with the states in Q1 the waiting part and the part with
the states in Q2 the tight part (an accepting run in FKV(A) simulates the run DAG of
A over a word w by waiting in Q1 until it can generate tight rankings only; then it moves
to Q2). See Figure 10.2c for FKV(Aex). Note that FKV(Aex) is significantly smaller than
KV(Aex) (which had 98 states). In the worst case, FKV constructs a BA with O((0.96n)n)
states [115].

10.3.4 An Optimal Algorithm

An optimal complementation algorithm whose space complexity matches the theoretical
lower bound O((0.76n)n) was given by Schewe in [250]. We denote this algorithm as
Schewe. The difference from FKV is that in Schewe, macrostates contain one addi-
tional component, i.e., a macrostate has the form (S,O, f, i), where the last component
i ∈ {0, 2, . . . , 2n − 2}, for n = |Q|, denotes the rank of states that are in O. Then, at
a cut-point (when O is being reset), O is not filled with all states having an even rank (as
in FKV), but only those whose rank is i (at every cut-point, i changes to i+2 modulo the
rank of f).

The procedure of [250], denoted as Schewe, constructs the BA Schewe(A) = (Q′,Σ, δ′,
I ′, F ′) whose components are defined as follows:

• Q′ = Q1 ∪Q2 where

– Q1 = 2Q and

140

– Q2 = {(S,O, f, i) ∈ 2Q × 2Q × T × {0, 2, . . . , 2n− 2} | f is S-tight,
O ⊆ S ∩ f−1(i)},

• I ′ = {I},

• δ′ = δ1 ∪ δ2 ∪ δ3 where

– δ1 : Q1 × Σ→ 2Q1 such that δ1(S, a) = {δ(S, a)},
– δ2 : Q1 ×Σ→ 2Q2 such that δ2(S, a) = {(S′, ∅, f, 0) | S′ = δ(S, a), f is S′-tight},

and
– δ3 : Q2 × Σ→ 2Q2 such that (S′, O′, f ′, i′) ∈ δ3((S,O, f, i), a) iff

∗ S′ = δ(S, a),
∗ for every q ∈ S and q′ ∈ δ(q, a) it holds that f ′(q′) ≤ f(q),
∗ rank(f) = rank(f ′),
∗ and
◦ i′ = (i+ 2) mod (rank(f ′) + 1) and O′ = f ′−1(i′) if O = ∅ or
◦ i′ = i and O′ = δ(O, a) ∩ f ′−1(i) if O 6= ∅, and

• F ′ = {∅} ∪ ((2Q × {∅} × T × ω) ∩Q2).

Schewe(Aex) would look almost the same as FKV(Aex) (see Figure 10.2c) with the dif-
ference that the macrostates in the tight part would have an additional i = 0 component
(Aex is too small to see any real effect). The correctness of the construction is then given
by the following proposition.

Proposition 10.3.1. ([250]) Let B = Schewe(A). Then L (B) = L (A).

In the following chapters, we propose optimizations aiming at a reduction of the number of
states or transitions in Schewe’s construction.

141

Chapter 11

Simulations in Rank-Based Büchi
Automata Complementation

As we already mentioned in Chapter 10, Büchi automata complementation is a fundamental
problem in program analysis and formal verification. We also gave an overview of the
existing techniques for BA complementation, such as Ramsey-based, determinization-based,
or rank-based. Moreover, we focused our attention on the optimal (modulo a factor of
O(n2)) rank-based construction of Schewe [250]. Although the algorithm of Schewe is
worst-case optimal, it often generates unnecessarily large complements.

The standard approach to alleviate this problem is to decrease the size of the input
BA before the complementation starts. Since minimization of (nondeterministic) BAs is
a PSPACE-complete problem, more lightweight reduction methods are necessary. The
most prevalent approaches are those based on various notions of simulation-based reduction,
such as reductions based on direct simulation [68, 259], the richer delayed simulation [107],
or their multi-pebble variants [108]. These approaches first compute a simulation relation
over the input BA—which can be done with the time complexity O(mn) [144, 153, 238,
239, 88] and O(mn3) [107] for direct and delayed simulation, respectively, with the number
of states n and transitions m—and then construct a quotient BA by merging simulation-
equivalent states, while preserving the language of the input BA. The other approach is
a reduction based on fair simulation [132]. The fair simulation cannot, however, be used for
quotienting, but still it can be used for merging certain states and removing transitions. The
reduced BA is used as the input of the complementation, which often significantly reduces
the size of the result. In this chapter, we propose a way of how to exploit the direct and
delayed simulations in BA complementation even further to obtain smaller complements
and shorter running times.

Overview of the proposed approach. In this chapter, we focus, in particular, on
a simulation-based optimization in the rank-based complementation procedure, denoted as
Schewe (see Section 10.3.4). Assume that for an input BA A the output of the rank-based
complementation procedure is the BA B. The main contribution of this chapter is to use
simulation relations to remove some useless macrostates during the construction of B. In
particular, if a state p is simulated by q in A, this puts a restriction on the relation between
the ranks of runs from p and from q. As a consequence, macrostates that assign ranks
violating this restriction can be purged from B.

142

The proposed optimization is orthogonal to simulation-based size reduction mentioned
above. Since the quotienting methods are based on taking only the symmetric fragment of
the simulation, i.e., they merge states that simulate each other, after the quotienting, there
might still be many pairs where the simulation holds in only one way and can therefore be
exploited by our technique. Since the considered notions of simulation-based quotienting
preserve the respective simulations, our techniques can be used to optimize the complemen-
tation at no additional cost. Our experimental evaluation of the optimization showed that,
in many cases, they indeed significantly reduce the size of the complemented BA.

Related work. Techniques for complementation of BAs are discussed in Chapter 10. In
addition to that, we mention works aiming at optimizations in rank-based complementation.
In particular, the work [133] contains optimizations of a rank-based construction from [182]
that uses intermediate alternating Büchi automata (the construction itself is not optimal).
Further, the work [163] proposes an optimization and a modification of Schewe. Although
it can sometimes provide a smaller automaton, the construction is, however, not compatible
with the optimization presented in this chapter.

Because of the high computational complexity of complementing a BA, and, conse-
quently, also checking BA inclusion and universality (which use complementation as their
component), there has been some effort to develop heuristics that help to reduce the number
of explored states in practical cases. The most prominent ones are heuristics that leverage
various notions of simulation relations, which often provide a good compromise between
the overhead they impose and the achieved state space reduction. Direct [68, 259], de-
layed [107], fair [107], their variants for alternating Büchi automata [116], and multi-pebble
simulations [108] are the best-studied relations of this kind. Some of the relations can
be used for quotienting, but also for pruning transitions entering simulation-smaller states
(which may cause some parts of the BA to become inaccessible). A series of results in this
direction were recently developed by Clemente and Mayr [80, 206, 207].

Not only can the relations be used for reducing the size of the input BA, they can also
be used for under-approximating inclusion of languages of states. For instance, during a BA
inclusion test L (AS)⊆?L (AB), if every initial state of AS is simulated by an initial state
of AB, the inclusion holds and no complementation needs to be performed. But simulations
can also be used to reduce the explored state space within, e.g., the inclusion check itself,
for instance in the context of Ramsey-based algorithms [12, 13]. The way simulations are
applied in the Ramsey-based approach is fundamentally different from the current work,
which is based on rank-based construction. Taking universality checking as an example,
the algorithm checks if the language of the complement automaton is empty. They run the
complementation algorithm and the emptiness check together, on the fly, and during the
construction check if a macrostate with a larger language has been produced before; if yes,
then they can stop the search from the language-smaller macrostate. Note that, in contrast
to our approach, their algorithm does not produce the complement automaton.

Chapter outline. This chapter is structure as follows. Section 11.1 deals with pre-
liminary definitions and results related to simulation relations for BAs. In Section 11.2,
we propose our optimization based on removing states with incompatible rankings. Sec-
tion 11.3 discusses the use of our optimization after simulation-based reductions. Finally,
Section 11.4 presents experimental evaluation and Section 11.5 concludes the chapter.

143

11.1 Simulations
In this chapter, we assume definitions from Chapters 2 and 10. We extend them for the
need of this chapter. Let A = (Q,Σ, δ, I, F) be a BA. For a pair of states p and q in A, we
use p ⊆L q to denote LA(p) ⊆ LA(q). A trace over a word α ∈ Σω is an infinite sequence
π = q0

α0−→ q1
α1−→ · · · such that ρ = q0q1 . . . is a run of A over α from q0. We say π is fair

if it contains infinitely many accepting states. For the sake of proofs, we assume A to be
complete. In this chapter, we fix a complete BA A = (Q,Σ, δ, I, F).

Simulations. In this paragraph, we introduce simulation relations between states of a BA
A = (Q,Σ, δ, I, F) using the game semantics in a similar manner as in the extensive study of
Clemente and Mayr [206]. In particular, in a simulation game between two players (called
Spoiler and Duplicator) in A from a pair of states (p0, r0), for any (infinite) trace over
a word α that Spoiler takes starting from p0, Duplicator tries to mimic the trace starting
from r0. On the other hand, Spoiler tries to find a trace that Duplicator cannot mimic.
The game starts in the configuration (p0, r0) and every i-th round proceeds by, first, Spoiler
choosing a transition pi

αi−→ pi+1 and, second, Duplicator mimicking Spoiler by choosing
a matching transition ri

αi−→ ri+1 over the same symbol αi. The next game configuration
is (pi+1, ri+1). Suppose that πp = p0

α0−→ p1
α1−→ · · · and πr = r0

α0−→ r1
α1−→ · · · are the

two (infinite) traces constructed during the game. Duplicator wins the simulation game if
Cx(πp, πr) holds, where Cx(πp, πr) is a condition that depends on the particular simulation.
In this chapter and in Chapter 12, we consider especially the following simulation relations:

• direct simulation [96]: Cdi(πp, πr)
def≡ ∀i : pi ∈ F ⇒ ri ∈ F,

• delayed simulation [107]: Cde(πp, πr)
def≡ ∀i : pi ∈ F ⇒ ∃k ≥ i : rk ∈ F, and

• fair simulation [145]: Cf (πp, πr)
def≡ if πp is fair, then πr is fair.

A maximal x-simulation relation �x ⊆ Q ×Q, for x ∈ {di , de, f}, is defined such that
p �x r iff Duplicator has a winning strategy in the simulation game with the winning
condition Cx starting from (p, r). Formally, we define a strategy to be a (partial) mapping
σ : Q × (Q × Σ ×Q) → Q such that σ(r, p a−→ p′) ∈ δ(r, a) if δ(r, a) 6= ∅, i.e., if Duplicator
is in state r and Spoiler selects a transition p

a−→ p′, the strategy picks a state r′ such that
r
a−→ r′ ∈ δ. Note that Duplicator cannot look ahead at Spoiler’s future moves. We use σx

to denote any winning strategy of Duplicator in the Cx simulation game. Let σx and σ′x be
a pair of winning strategies in the Cx simulation game. Strategies are also lifted to traces
as follows: let πp be as above, then σ(r0, πp) = r0

α0−→ r1
α1−→ · · · if for all i ≤ 0 it holds that

σ(ri, pi
αi−→ pi+1) = ri+1, otherwise it is undefined. The considered simulation relations form

the following hierarchy: �di ⊆ �de ⊆ �f ⊆ ⊆L . Note that every maximal simulation
relation is a preorder, i.e., reflexive and transitive. Also note that direct simulation for BAs
corresponds to forward simulation for NFAs described in Section 3.3.2.

11.2 Purging Macrostates with Incompatible Rankings
Our optimization is based on removing from Schewe(A) macrostates (S,O, f, i) ∈ Q2

whose level ranking f assigns some states of S an unnecessarily high rank. Intuitively,
when S contains a state p and a state q such that p is (directly) simulated by q, i.e. p �di q,

144

then f(p) needs to be at most f(q). This is because in any word α and its run DAG Gα in A,
if p and q are at the same level i of Gα, then the ranks of their vertices vp and vq at the given
level are either both ω (when α ∈ L (A)), or such that rankα(vp) ≤ rankα(vq) otherwise.
This is because, intuitively, the DAG rooted in vp in Gα is isomorphic to a subgraph of
the DAG rooted in vq.

Formally, consider the following predicate on macrostates of Schewe(A):

Pdi(S,O, f, i)
def≡ ∃p, q ∈ S : p �di q ∧ f(p) > f(q). (11.1)

We modify Schewe to purge macrostates that satisfy Pdi . That is, we create a new
procedure Prgdi obtained from Schewe by modifying the definition of Schewe(A) such
that all occurrences of Q2 are substituted by Qdi

2 and

Qdi
2 = Q2 \ {(S,O, f, i) ∈ Q2 | Pdi(S,O, f, i)}. (11.2)

The following lemma, proved in Section 11.2.1 states the correctness of this construction.

Lemma 11.2.1. L (Prgdi(A)) = L (Schewe(A))

The following natural question arises: Is it possible to extend the purging technique from
direct simulation to other notions of simulation? For fair simulation, this cannot be done.
The reason is that, for a pair of states p and q s.t. p �f q, it can happen that for a word β ∈
Σω, there can be a trace from p over β that finitely many times touches an accepting state
(i.e., a vertex of p in the corresponding run DAG can have any rank between 0 and 2n),
while all traces from q over β can completely avoid touching any accepting state. From the
point of view of fair simulation, these are both unfair traces, and, therefore, disregarded.

On the other hand, delayed simulation—which is often much richer than direct simu-
lation—can be used, with a small change. Intuitively, the delayed simulation can be used
because p �de q guarantees that on every level of trees in Gα rooted in vp and in vq,
respectively, the rank of the vertex vp is at most by one larger than the rank of vertex vq
(or by any number smaller). Formally, let Pde be the following predicate on macrostates
of Schewe(A):

Pde(S,O, f, i)
def≡ ∃p, q ∈ S : p �de q ∧ f(p) > ddf(q)ee, (11.3)

where ddxee for x ∈ ω denotes the smallest even number greater or equal to x and ddωee =
ω. Similarly as above, we create a new procedure, called Prgde , which is obtained from
Schewe by modifying the definition of Schewe(A) such that all occurrences of Q2 are
substituted by Qde

2 and

Qde
2 = Q2 \ {(S,O, f, i) ∈ Q2 | Pde(S,O, f, i)}. (11.4)

As an example, consider the BA in Figure 11.1a. Prgde optimization removes the
macrostate ({p:1, q:2, r:3}, ∅, 0) because r �de p and f(r) > ddf(p)ee. The following lemma,
proved in Section 11.2.1 states the correctness of this construction.

Lemma 11.2.2. L (Prgde(A)) = L (Schewe(A))

The use of ddf(q)ee in Pde results in the fact that the two purging techniques are incompa-
rable. For instance, consider a macrostate ({p:2, q:1}, ∅, 0) such that p �di q and p �de q.
Then the macrostate will be purged in Prgdi , but not in Prgde .

145

p q r

a

a a

a

(a)

a

a

a
a

a

{p}

{p, q}

{p, q, r}
(
{p:1, q:2, r:3}, ∅, 0

)

(
{p:3, q:2, r:1}, ∅, 0

)
a

a

a

a

a

(b)

Figure 11.1: Illustration of Prgde optimization (b) applied on a BA given in (a).

The two techniques can, however, be easily combined into a third procedure Prgdi+de ,
when Q2 is substituted in Schewe with Qdi+de

2 defined as

Qdi+de
2 = Q2 \ {(S,O, f, i) ∈ Q2 | Pdi(S,O, f, i) ∨ Pde(S,O, f, i)}. (11.5)

As in the previous cases, the following lemma, proved in Section 11.2.1 states the correctness
of this construction.

Lemma 11.2.3. L (Prgdi+de(A)) = L (Schewe(A))

11.2.1 Proofs of Lemmas 11.2.1, 11.2.2, and 11.2.3

We first give a lemma that an x-strategy σx preserves an x-simulation �x.

Lemma 11.2.4. Let �x be an x-simulation (for x ∈ {di , de, f }). Then, the following holds:
∀p, q ∈ Q : p �x q ∧ p a−→ p′ ∈ δ ⇒ ∃q′ ∈ Q : q

a−→ q′ ∈ δ ∧ p′ �x q′.

Proof. Let p, q ∈ Q such that p �x q and p
a−→ p′ ∈ δ, and let πp be a trace starting from p

with the first transition p
a−→ p′. From the definition of x-simulation, there is a winning

Duplicator strategy σx; let πq = σx(q
′, πp) and let q a−→ q′ be the first transition of πq. Let

πp′ and πr′ be traces obtained from πp and πr by removing their first transitions. It is easy
to see that if Cx(πp, πr) then also Cx(πp′ , πr′) for any x ∈ {di , de, f }. It follows that σx is
also a winning Duplicator strategy from (p′, r′).

Next, we focus on delayed simulation and the proof of Lemma 11.2.2. In the next lemma,
we show that if there is a pair of vertices on some level of the run DAG where one vertex
delay-simulates the other one, there exists a relation between their rankings. This will be
used to purge some useless rankings from the complemented BA.

Lemma 11.2.5. Let p, q ∈ Q such that p �de q and Gα = (V,E) be the run DAG of A
over α. For all i ≥ 0, it holds that (p, i) ∈ V ∧ (q, i) ∈ V ⇒ rankα(p, i) ≤ ddrankα(q, i)ee.

Proof. Consider some (p, i) ∈ V and (q, i) ∈ V . First, suppose that rankα(q, i) = ω. Since
the rank can be at most ω, it will always hold that rankα(p, i) ≤ ddrankα(q, i)ee.

On the other hand, suppose that rankα(q, i) is finite, i.e., αi:ω is not accepted by q.
Then, due to Lemma 10.3.1, 0 ≤ rankα(q, i) ≤ 2n. Because p �de q, it holds that αi:ω is
also not accepted by p, and therefore also 0 ≤ rankα(p, i) ≤ 2n. We now need to show that
0 ≤ rankα(p, i) ≤ ddrankα(q, i)ee ≤ 2n.

146

Let {Gkα}2n+1
k=0 be the sequence of run DAGs obtained from Gα in the ranking procedure

from Section 10.3.1. In the following text we use the abbreviation v ∈ Gmα \ Gnα for v ∈
Gmα ∧ v /∈ Gnα. Since the rank of a node (r, j) is given as the number l s.t. (r, j) ∈ Glα \ Gl+1

α ,
we will finish the proof of this lemma by proving the following claim:
Claim 6: Let k and l be s.t. (p, i) ∈ Gkα \ Gk+1

α and (q, i) ∈ Glα \ Gl+1
α . Then k ≤ ddlee.

Proof We prove the claim by induction on l.

• Base case: (l = 0) Since we assume A is complete, no vertex in G0α is finite.
(l = 1) We prove that if (q, i) is endangered in G1α, then (p, i) is endangered in G1α
as well (so both would be removed in G2α). For the sake of contradiction, assume
that (q, i) is endangered in G1α and (p, i) is not. Therefore, since G1α contains no finite
vertices, there is an infinite path π from (p, i) s.t. π contains at least one accepting
state. In the following, we abuse notation and, given a strategy σde and a state
s ∈ Q, use σde((s, i), π) to denote the path (s0, i)(s1, i + 1)(s2, i + 2) . . . such that
s0 = s and ∀j ≥ 0, it holds that sj+1 = σde(sj , ri+j

αi+j−−−→ ri+j+1) where πx = (rx, x)
for every x ≥ 0. Since p �de q, there is a corresponding infinite path π′ = σde((q, i), π)
that also contains at least one accepting state. Therefore, (q, i) is not endangered,
a contradiction to the assumption, so we conclude that l = 1⇒ k = 1.

• Inductive step: We assume the claim holds for all l < 2j and prove the inductive step
for even and odd steps independently.
(l = 2j) We prove that if (q, i) is finite in Glα (and therefore would be removed in Gl+1

α),
then either (p, i) /∈ Glα, or (p, i) is also finite in Glα. For the sake of contradiction, we
assume that (q, i) is finite in Glα and that (p, i) is in Glα, but is not finite there (and,
therefore, k > l). Since (p, i) is not finite in Glα, there is an infinite path π from (p, i)
in Glα. Because p �de q, it follows that there is an infinite path π′ = σde((q, i), π)
in G0α (π′ is not in Glα because (q, i) is finite there). Using Lemma 11.2.4 (possibly
multiple times) and the fact that (q, i) is finite, we can find vertices (p′, x) in π and
(q′, x) in π′ s.t. p′ �de q

′ and (q′, x) is not in Glα, therefore, (q′, x) ∈ Geα \ Ge+1
α for

some e < l. Because (p′, x) ∈ Glα and it is not finite (π is infinite), it follows that
(p′, x) ∈ Gfα \ Gf+1

α for some f > l, and since e < l < f , we have that f 6≤ e + 1,
implying f 6≤ ddeee, which is in contradiction to the induction hypothesis.
(l = 2j+1) We prove that if (q, i) is endangered in Glα (and therefore would be removed
in Gl+1

α), then either (p, i) /∈ Glα, or (p, i) is removed at the latest in Gl+1
α . For the

sake of contradiction, assume that (q, i) is endangered in Glα while (p, i) is removed
later than in Gl+1

α . Therefore, since Glα contains no finite vertices (they were removed
in the (l − 1)-th step), there is an infinite path π from (p, i) s.t. π contains at least
one accepting state. Because p �de q, there is a corresponding path π′ = σde((q, i), π)
from (q, i) in G0α that also contains at least one accepting state and moreover π′ /∈ Glα.
Since π′ has an infinite number of states (and at least one accepting), not all states
from π′ were removed in Gl−1α , i.e., there is at least one node with rank less or equal
to l − 2. Using Lemma 11.2.4 (also possibly multiple times) we can hence find states
(p′, x) in π and (q′, x) in π′ s.t. p′ �de q

′ and (q′, x) is not in Glα and has a rank less or
equal to l − 2, therefore, (q′, x) ∈ Geα \ Ge+1

α for some e < l − 1. Because (p′, x) ∈ Glα,
it follows that (p′, x) ∈ Gfα \ Gf+1

α for some f ≥ l, and, therefore, f 6≤ e+ 1, which is
in contradiction to the induction hypothesis. �

This concludes the proof.

147

Lemma 11.2.6. Let p, q ∈ Q such that p �di q and Gα = (V,E) be the run DAG of A
over α. For all i ≥ 0, it holds that (p, i) ∈ V ∧ (q, i) ∈ V ⇒ rankα(p, i) ≤ rankα(q, i).

Proof. Can be obtained as a simplified version of the proof of Lemma 11.2.5.

We are now ready to prove Lemma 11.2.2.

Lemma 11.2.2. L (Prgde(A)) = L (Schewe(A))

Proof. (⊆) Follows directly from the fact that Prgde(A) is obtained by removing states
from Schewe(A).
(⊇) Let α ∈ L (Schewe(A)). As shown in the proof of Lemma 3.2 in [250], there are two
cases. The first case is when all vertices of Gα are finite, which we do not need to consider,
since we assume complete automata. The other case is when Gα contains an infinite vertex.
In this case, Schewe(A) contains an accepting run

ρ = S0S1 . . . Sp(Sp+1, Op+1, fp+1, ip+1)(Sp+2, Op+2, fp+2, ip+2) . . .

with

• S0 = I,Op+1 = ∅, and ip+1 = 0,

• Sj+1 = δ(Sj , αj) for all j ∈ ω,

and, for all j > p,

• Oj+1 = f−1j+1(ij+1) if Oj = ∅ or
Oj+1 = δ(Oj , αj) ∩ f−1j+1(ij+1) if Oj 6= ∅, respectively,

• fj is the Sj-tight level ranking that maps each q ∈ Sj to the rank of (q, j) ∈ Gα,

• ij+1 = ij if Oj 6= ∅ or
ij+1 = (ij + 2) mod (rank(f) + 1) if Oj = ∅, respectively.

The ranks assigned by fj to states of Sj match the ranks of the corresponding vertices
in Gα.
~ Using Lemma 11.2.5, we conclude that ρ contains no macrostate (S,O, f, j) where

f(p) > ddf(q)ee and p �de q for p, q ∈ S. Therefore, ρ is also an accepting run in Prgde(A).
(We use ~ to refer to this paragraph later.)

Lemma 11.2.1. L (Prgdi(A)) = L (Schewe(A))

Proof. The same as for Lemma 11.2.2 with ~ substituted by the following:
~ Using Lemma 11.2.6, we conclude that ρ contains no macrostate (S,O, f, j) where f(p) >
f(q) and p �di q for p, q ∈ S. So ρ is also an accepting run in Prgdi(A).

Lemma 11.2.3. L (Prgdi+de(A)) = L (Schewe(A))

Proof. The same as for Lemma 11.2.2 with ~ substituted by the following:
~ Using Lemmas 11.2.6 and 11.2.5, we conclude that ρ contains no macrostate (S,O, f, j)
where either f(p) > f(q) and p �di q, or f(p) > ddf(q)ee and p �de q for p, q ∈ S. Therefore,
ρ is also an accepting run in Prgdi+de(A).

148

11.3 Use after Simulation Quotienting
In this short section, we establish that our optimization introduced in Section 11.2 can
be applied with no additional cost in the setting when BA complementation is preceded
with simulation-based reduction of the input BA (which is usually helpful), i.e., when the
simulation is already computed beforehand for another purpose. In particular, we show
that simulation-based reduction preserves the simulation (when naturally extended to the
quotient automaton).

Given an x-simulation �x for x ∈ {di , de}, we use ≈x to denote the x-similarity relation
(i.e., the symmetric fragment) ≈x = �x ∩ �−1x . Note that since �x is a preorder, it holds
that ≈x is an equivalence. The quotient of a BA A = (Q,Σ, δ, I, F) w.r.t. ≈x is defined in
the same way as for NFAs (see Section 2.3).

Theorem 11.3.1 ([68], [107]). If x ∈ {di , de}, then L (A/≈x) = L (A).

Remark 11.3.1 ([107]). L (A/≈f) 6= L (A)

Finally, the following lemma shows that quotienting preserves direct and delayed simula-
tions, therefore, when complementing A, it is possible to first quotient A w.r.t. a direc-
t/delayed simulation and then use the same simulation (lifted to the states of the quotient
automaton) to optimize the complementation.

Lemma 11.3.1. Let �x be the x-simulation on A for x ∈ {di , de}. Then the relation �≈x
defined as [q]x �≈x [r]x iff q �x r is the x-simulation on A/≈x.

Proof. First, we show that �≈x is well defined, i.e., if q �x r, then for all q′ ∈ [q]x and
r′ ∈ [r]x, it holds that q′ �x r′. Indeed, this holds because q′ ≈x q and r ≈x r, and
therefore q′ �x q �x r �x r′; the transitivity of simulation yields q′ �x r′.

Next, let σx be a strategy that gives �x. Consider a trace defined as [πq]x = [q0]x
α0−→

[q1]x
α1−→ · · · over a word α ∈ Σω in A/≈x. Then,

(i) for x = di there is a trace πq = q′0
α0−→ q′1

α1−→ · · · in A s.t. q′0 ∈ [q0]x and qi �x q′i for
i ≥ 0. Therefore, if [qi]x is accepting then so is q′i;

(ii) for x = de there is a trace πq = q′0
α0−→ q′1

α1−→ · · · in A s.t. q′0 ∈ [q0]x, qi �x q′i for
i ≥ 0 and, moreover, if [qi]x is accepting then there is q′k for k ≥ i s.t. q′k ∈ F .

Further, let [q0]x �≈x [r0]x. Then there is a trace πr = σx(r, πq) = (r = r0)
α0−→ r1

α1−→ · · ·
simulating πq in A from r. Further, consider its projection [πr]x = [r0]x

α0−→ [r1]x
α1−→

· · · into A/≈x. For all i ≥ 0, we have that qi �x ri, and therefore also [qi]x �≈x [ri]x.
Since Cx(πq, πr), then also Cx([πq]x, [πr]x).

Finally, we show that �≈x is maximal. For the sake of contradiction, suppose that
[r]x is x-simulating [q]x for some q, r ∈ Q s.t. q 6�x r. Consider a word α ∈ Σω and
a trace πq = (q = q0)

α0−→ q1
α1−→ · · · over α in A. Then there is a trace [πq]x = [q =

q0]x
α0−→ [q1]x

α1−→ · · · over α in A/≈x. According to the assumption, there is also a trace
[πr]x = [r = r0]x

α0−→ [r1]x
α1−→ · · · such that [πr]x is x-simulating [πq]x. But then there will

also exist a trace πr = (r = r0)
α0−→ r′1

α1−→ r′1
α2−→ · · · such that ri �x r′i for all i ∈ ω and

Cx(πq, πr) (see the previous part of the proof). Therefore, since �x is maximal, we have
that q �x r, which is in contradiction with the assumption.

149

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500

P
R

G
d
i+

d
e

Schewe

Figure 11.2: Prgdi+de vs. Schewe

Figure 11.3: Comparison of the number of states of complement BAs generated by
Schewe and our optimizations (lower is better).

11.4 Experimental Evaluation
We implemented our optimization in a prototype tool1 written in Haskell and performed
preliminary experimental evaluation on a set of 124 random BAs with a non-trivial lan-
guage over a two-symbol alphabet generated using Tabakov and Vardi’s model [265]. The
parameters of input automata were set to the following bounds: number of states: 6–7, tran-
sition density: 1.2–1.3, and acceptance density: 0.35–0.5. Before complementing, the BAs
were quotiented w.r.t. the direct simulation for experiments with Prgdi and the delayed
simulation for experiments with Prgde and Prgdi+de . The timeout was set to 300 s.

We present the results for our strongest optimization for outputs of the size up to 500
states in Figure 11.2. As can be seen in this figure, purging often significantly reduces the
size of the output. For outputs of a larger size (we had 11 of them), the results follow
a similar trend. For some concrete results, for one BA, the size of the output BA decreased
from 4065 (Schewe) to 985 (Prgdi+de), which yields a reduction to 24 %! Further, we
observed that all Prgx methods usually give similar results, with the difference of only
a few states (when Prgdi and Prgde differ, Prgdi usually wins over Prgde).

11.5 Conclusion
We developed a novel optimization of the rank-based complementation algorithm for Büchi
automata that is based on leveraging direct and delayed simulation relations to reduce the
number of states of the complemented automaton. The optimization is directly usable in
rank-based BA inclusion and universality checking. We conjecture that the decision prob-
lem of checking BA language inclusion might also bring another opportunities for exploiting
simulation, such as in a similar manner as in [14]. Another, orthogonal, directions of fu-
ture work are (i) applying simulation in other than the rank-based approach (in addition
to the particular use within [12, 13]), e.g., complementation based on Safra’s construc-
tion [248], which, according to our experience, often produces smaller complements than
the rank-based procedure, (ii) applying our ideas within determinization constructions for
BAs, and (iii) generalizing our techniques for richer simulations, such as the multi-pebble

1https://github.com/vhavlena/ba-complement

150

https://github.com/vhavlena/ba-complement

simulation [108] or various look-ahead simulations [206, 207]. Since the richer simulations
are usually harder to compute, it would be interesting to find the sweet spot between the
overhead of simulation computation and the achieved state space reduction. The content
of this chapter was published in the proceedings of APLAS’19 [75].

151

Chapter 12

Efficient Rank-based
Complementation

In Chapter 11, we focused on optimizations of Schewe’s construction. We employed di-
rect and delay simulation between states of the original automaton to remove states from
Schewe’s complement that are not necessary for accepting a word. In this chapter, we build
upon these results and develop novel optimizations for reducing the size of the complement
that push the rank-based approach by a significant step further.

Recall that Schewe’s construction stores in a macrostate partial information about
all runs over some word in an input BA. In order to track information about all runs,
a macrostate contains a set of states representing a single level in a run DAG of some word
with a number assigned to each state representing its rank. The number of macrostates
(and hence the size of the complemented automaton) is combinatorially related to the max-
imum rank that occurs in macrostates (see Section 10.3 for an introduction to rank-based
complementation including Schewe’s construction).

The theoretical upper bound of the maximal rank for a given macrostate is often too
coarse and hence a lot of unnecessary states are generated during the complementation
construction. In this chapter, we propose novel optimizations that (among others) reduce
this maximum considered rank. We build on a novel notion of a super-tight run, i.e.,
a run in the complement that uses as small ranks as possible. Based on the notion of
super-tight runs, we propose a series of optimizations reducing the number of generated
states/transitions in Schewe’s construction of a complemented automaton with promising
experimental results.

Overview of the proposed approach. Our optimizations reason about super-tight
runs allowing us to remove states not occurring in any super-tight run from the automaton
without affecting its language. Further, based on super-tight runs, we can reduce the
maximum rank within a macrostate. In particular, we reduce the maximum considered
rank by reasoning about the deterministic support of an input automaton or by a relation
based on direct simulation that imply rank ordering computed a priori from the input
automaton. We introduce also an optimization keeping in the complemented automaton
only significant runs. The developed optimizations give, to the best of our knowledge, a very
competitive BA complementation procedure as witnessed by our experimental evaluation.

These optimizations require some additional computational cost, but from the perspec-
tive of BA complementation, their cost is still negligible and, as we show in our experimental

152

evaluation, their effect on the size of the output is often profound, in many cases by one
or more orders of magnitude. Rank-based complementation with our optimizations is now
competitive with other complementation approaches. On the considered benchmark of hard
instances, in a large number of cases (21 %) we obtained a strictly smaller complement than
any other existing tool and in the majority of cases (63 %) we obtained an automaton at
least as small as the smallest automaton provided by any other tool.

Related work. The problem of BA complementation was discussed in Chapter 10. We
recall only the most relevant works to this chapter (mentioned also in Chapter 11). The
work in [133] contains optimizations of an alternative (sub-optimal) rank-based construction
from [182] that goes through alternating Büchi automata. Furthermore, the work in [163]
proposes an optimization of Schewe that in some cases produces smaller automata (the
construction is not compatible with our optimizations).

Chapter outline. This chapter is organized as follows. Section 12.1 introduces super-
tight runs. In Section 12.2, we propose our optimizations reducing the generated state
space. Section 12.3 then focuses on experimental evaluation of the implementation. Finally,
Section 12.4 concludes the chapter.

12.1 Super-tight Runs
Before we move to the proposed optimizations, we introduce a notion of super-tight runs,
which is a fundamental stone of our improved construction presented later. In this chapter,
we assume definitions from Chapters 2, 10, and 11. We extend them with definitions
used in this chapter. Let A = (Q,Σ, δ, I, F) be a BA. We use δ−1(q, a) to denote the set
{s ∈ Q | s a−→ q ∈ δ}. For a set of states S, we define reachability from S as reachδ(S) =
µZ. S ∪⋃a∈Σ δ(Z, a). In this chapter, we fix a BA A = (Q,Σ, δ, I, F).

In the following, we assume that Schewe(A) (see Section 10.3.4) contains only the
states and transitions reachable from I ′. We begin our optimizations with a notion of
super-tight runs. We use Schewe as the basis for further optimizations in the rest of the
chapter. Let B = Schewe(A). Each accepting run of B on α ∈ L (B) is tight, i.e., the
rankings of macrostates it traverses in Q2 are tight (this follows from the definition of Q2).
In this section, we show that there exists a super-tight run of B on α, which is, intuitively,
a run that uses as little ranks as possible. Our optimizations in Section 12.2 are based on
preserving super-tight runs of B.

Let ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1)(Sm+2, Om+2, fm+2, im+2) . . . be an accept-
ing run of B over a word α ∈ Σω. Given a macrostate (Sk, Ok, fk, ik) for k > m, we define
its rank as rank((Sk, Ok, fk, ik)) = rank(fk). Further, we define the rank of the run ρ as
rank(ρ) = min{rank((Sk, Ok, fk, ik)) | k > m}.

Let Gα be the run DAG of A over α and rankα be the ranking of vertices in Gα. We say
that the run ρ is super-tight if for all k > m and all q ∈ Sk, it holds that fk(q) = rankα(q, k).
Intuitively, super-tight runs correspond to runs whose ranking faithfully copies the ranks
assigned in Gα (from some position m corresponding to the transition from the waiting to
the tight part of B).

Lemma 12.1.1. Let α ∈ L (B). Then there is a super-tight accepting run ρ of B on α.

153

{r, s}

{r}

{s, t}

{s}

{t}

∅

(
{s:1, t:0}, ∅, 0

)

(
{s:1, t:0}, {t}, 0

)

(
{s:1}, ∅, 0

)

a

b

b
b

b

a

a

b

a
a

a, b

b
b

b

b

b

b

b

waiting tight

Figure 12.1: Illustration of Delay.

Proof. This follows directly from the definition of a super-tight run and the Schewe con-
struction.

Let ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1)(Sm+2, Om+2, fm+2, im+2) . . . be a run and
consider a macrostate (Sk, Ok, fk, ik) for k > m. We call a set Ck ⊆ Sk a tight core of a rank-
ing fk if fk(Ck) = {1, 3, . . . , rank(fk)} and fk|Ck is injective (i.e., every state in the tight
core has a unique odd rank). Moreover, Ck is a tight core of a macrostate (Sk, Ok, fk, ik) if it
is a tight core of fk. We say that an infinite sequence τ = Cm+1Cm+2 . . . is a trunk of run ρ
if for all k > m it holds that Ck is a tight core of ρ(k) and there is a bijection θ : Ck → Ck+1

s.t. if θ(qk) = qk+1 then qk+1 ∈ δ(qk, αk). We will, in particular, be interested in trunks
of super-tight runs. In these runs, a trunk (there can be several) represents runs of A that
keep the super-tight ranks of ρ. The following lemma shows that every state in any tight
core in a trunk of such a run has at least one successor with the same rank.

Lemma 12.1.2. Let ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1) . . . be an accepting super-tight
run of B on α. Then there is a trunk τ = Cm+1Cm+2 . . . of ρ and, moreover, for every k > m
and all states qk ∈ Ck, it holds that there is a state qk+1 ∈ Ck+1 such that fk(qk) =
fk+1(qk+1).

Proof. First we show how to inductively construct a trunk τ = Cm+1Cm+2 . . . (i) As the
base case, let Cm+1 be an arbitrary tight core of fm+1. (ii) As the inductive step, consider
a tight core Ck from the trunk and let us construct Ck+1. Since ρ is a super-tight run, for
each q ∈ Ck there is a state q′ ∈ Sk+1 s.t. fk(q) = fk+1(q

′). This follows from the run DAG
ranking procedure. We put q′ ∈ Ck+1. Such a constructed set is a tight core of fk+1 and
from the construction we have the property stated in the lemma.

12.2 Optimized Complement Construction
In this section, we introduce our optimizations of Schewe that are key to producing small
complement automata in practice.

12.2.1 Delaying the Transition from Waiting to Tight

Our first optimization of the construction of the complement automaton reduces the number
of nondeterministic transitions between the waiting and the tight part. This optimization

154

Algorithm 5: The Delay construction
Input: A Büchi automaton A = (Q,Σ, I, δ, F)
Output: A Büchi automaton C s.t. L (C) = L (A)

1 S ← {I}, Q1 ← {I}, θ2 ← ∅, (·,Σ, δ1 ∪ δ2 ∪ δ3, I ′, F ′)← Schewe(A);
2 while S 6= ∅ do
3 Take a waiting-part macrostate R ⊆ Q from S;
4 foreach a ∈ Σ do
5 if ∃T ∈ δ1(R, a) s.t. R a−→ T closes a cycle in Q1 then
6 θ2 ← θ2 ∪ {R a−→ U | U ∈ δ2(R, a)};
7 foreach T ∈ δ1(R, a) s.t. T /∈ Q1 do
8 S ← S ∪ {T};
9 Q1 ← Q∪ {T};

10 Q2 ← reachδ3(img(θ2));
11 return C = (Q1 ∪Q2,Σ, δ1 ∪ θ2 ∪ δ3, I ′, F ′ ∩Q2);

is inspired by the idea of partial order reduction in model checking [126, 279, 226]. In
particular, since in each state of the waiting part, it is possible to move to the tight part,
we can arbitrarily delay such a transition (but need to take it eventually) and, therefore,
significantly reduce the number of transitions (and, as our experiments later show, also
significantly reduce the number of reachable states in Q2).

Speaking in the terms of partial order reduction, when constructing the waiting part of
the complement BA, given a macrostate S ∈ Q1 and a symbol a ∈ Σ, we can set θ2 ⊆ δ2
such that θ2(S, a) := ∅ if the cycle closing condition holds and θ2(S, a) := δ2(S, a) otherwise.
Informally, the cycle closing condition (often denoted as C3) holds for S and a if the suc-
cessor of S over a in the waiting part does not close a cycle where the transition to the tight
part would be infinitely often delayed. Practically, it means that when constructing Q1, we
need to check whether successors of a macrostate close a cycle in the so-far generated part
of Q1. We give the construction in Algorithm 5 and we refer to it as Delay. Using this
optimization on the example in Figure 12.1, we would remove the b-transitions from {r, s}
and {s} to the macrostate ({s:1, t:0}, ∅, 0) and also the macrostate ({s:1}, ∅, 0) (including
the transitions incident with it).

Lemma 12.2.1. Let A be a BA. Then L (Delay(A)) = L (Schewe(A)). Moreover, for
every accepting super-tight run of Schewe(A) on α, there is an accepting super-tight run
of Delay(A) on α.

Proof. Showing L (Delay(A)) ⊆ L (Schewe(A)) is trivial. In order to show the re-
verse direction, consider some α ∈ L (Schewe(A)). Then, there is an accepting run
ρm = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1) . . . on α in Schewe(A). For each ` > m there is,
however, also an accepting run ρ` = S0 . . . S`(S`+1, O`+1, f`+1, i`+1) . . . on α in Schewe(A).
Note that each ρ` differs from ρm on the point where the run switched from the waiting
part to the tight part of Schewe(A). Therefore, since the run ρm managed to empty O
infinitely often, ρ` will also be able to do so and, therefore, it will also be accepting.

From the properties of Delay construction, we have that at least one macrostate
(Sk+1, Ok+1, fk+1, ik+1) where k > m is in Q2. If this were not true, there would be
a closed cycle with no state in Q2, which is a contradiction. From the previous reasoning
we have that the run ρk = S1 . . . Sk(Sk+1, Ok+1, fk+1, i

′
k+1) . . . on α is present in Delay(A).

155

q r s t
a a a

{q, s}

{r, t}

{r}

(
{r:3, t:1}, ∅, 0

) (
{r:1, t:3}, ∅, 0

)

(
{r:1, t:1}, ∅, 0

)

(
{r:1, t:0}, ∅, 0

)

(
{r:0, t:1}, ∅, 0

)

(
{r:1}, ∅, 0

)

a

a

a

a
a

a

a

a

a

a

(a)

q

r

s

ta

a

a

a

a

a

a

a
a

{q}

{r, s}

{r, s, t}

(
{r:1, s:5, t:3}, ∅, 0

)
a

a

a

a

(b)

Figure 12.2: Illustration of SuccRank reduction (ϕcoarse), focusing on the transitions
from the waiting to the tight part (a), and SuccRank reduction (ϕfine), focusing on one
particular macrostate (b).

Moreover, this run is accepting both in Schewe(A) and Delay(A), which concludes the
proof.

Since Delay does not affect the rankings in the macrostates and only delays the tran-
sition from the waiting to the tight part, we can freely use it as the base algorithm instead
of Schewe in all following optimizations.

12.2.2 Successor Rankings

Our next optimization is used to reduce the maximum considered ranking of a macrostate
in the tight part of B = Schewe(A). For a given macrostate, the number of tight rankings
that can occur within the macrostate rises combinatorially with the macrostate’s maximum
rank (in particular, the number of tight rankings for a given set of states corresponds to
the Stirling number of the second kind of the maximum rank [115]). It is hence desirable
to reduce the maximum considered rank as much as possible.

The idea of our optimization called SuccRank is the following. Suppose we have
a macrostate (S,O, f, i) from the tight part of B. Further, assume that the maximum
number of non-accepting states in the S-component of a macrostate that is infinitely often
reachable from (S,O, f, i) is dSe. Then, we know that a super-tight accepting run that goes
through (S,O, f, i) will never need a rank higher than 2dSe − 1 (any accepting state will
be assigned an even rank, so we can omit them). Therefore, if the rank of f is higher than
2dSe − 1, we can safely discard (S,O, f, i) (since there will be a super-tight accepting run
that goes over (S,O′, f ′, i′) with f ′ < f). This part of the optimization is called coarse.

Moreover, let q ∈ S and let b{q}c be the smallest size of a set of states (again without
accepting states) reachable from q over some (infinite) word infinitely often. Then, we know
that those states will have a rank bounded by the rank of f(q), so there are only (at most)
dSe − b{q}c states whose rank can be higher than f(q). Therefore, the rank of f , which is
tight, can be at most f(q) + 2(dSe − b{q}c). We call this part of the optimization fine.

We now formalize the intuition. Let us fix a BA A = (Q,Σ, δ, I, F). Then, let us
consider a BA RA = (2Q,Σ, δR, ∅, ∅), with δR = {R a−→ S | S = δ(R, a)}, which is tracking
reachability between set of all states of A (we only focus on its structure and not the

156

language). Note that RA is deterministic and complete. Further, given S ⊆ Q, let us use
SCC (S) ⊆ 22

Q to denote the set of all strongly connected components reachable from S
in RA. We will use inf-reach(S) to denote the set of states

⋃
SCC (S), i.e., the set of states

such that there is an infinite path in RA starting in S that passes through a given state
infinitely many times.

For S ⊆ Q, we define the maximum and minimum sizes of macrostates reachable in-
finitely often from S:

dSe = max{|R \ F | | R ∈ inf-reach(S)} and (12.1)
bSc = min{|R \ F | | R ∈ inf-reach(S)}. (12.2)

Given a macrostate (S,O, f, i), we define the condition

ϕcoarse((S,O, f, i))
def≡ rank(f) ≤ 2dSe − 1. (12.3)

If the macrostate (S,O, f, i) does not satisfy ϕcoarse , we do not need to include it in the
output of Schewe(A) (as allowed by Lemma 12.2.2). See Figure 12.2a for an example of
macrostates not satisfying ϕcoarse . For instance, macrostate ({r:3, t:1}, ∅, 0) can be removed
since its rank is 3 and d{r, t}e = 1, so 3 6≤ 2d{r, t}e − 1.

Moreover, we also define the condition

ϕfine((S,O, f, i))
def≡ rank(f) ≤ min{f(q) + 2(dSe − b{q}c) | q ∈ S}. (12.4)

Again, if (S,O, f, i) does not satisfy ϕfine , it does not need to be in the result. See Fig-
ure 12.2b for an example of such a macrostate. Note that the rank of ({r:1, s:5, t:3}, ∅, 0)
is 5, d{r, s, t}e = 3 and b{r}c = 2, b{s}c = 1, b{t}c = 0. Then, min{f(r) + 2(3− 2), f(s) +
2(3− 1), f(t) + 2(3− 0)} = min{1 + 2, 5 + 4, 3 + 6} = 3, so 5 6≤ 3 and the macrostate does
not satisfy ϕfine and can be removed.

We emphasize that ϕcoarse and ϕfine are incomparable. For example, the macrostates
removed due to ϕcoarse in Figure 12.2a satisfy ϕfine (since, e.g., 3 ≤ min{3 + 2(1 − 1), 1 +
2(1− 0)}) and the macrostate removed due to ϕfine in Figure 12.2b satisfies ϕcoarse (since
5 ≤ 2 · 3− 1).

Putting the conditions together, we define the predicate

SuccRank((S,O, f, i)) def≡ ϕcoarse((S,O, f, i)) ∧ ϕfine((S,O, f, i)). (12.5)

We abuse notation and use SuccRank(A) to denote the output of Schewe(A) where the
states from the tight part of Schewe(A) are restricted to those that satisfy SuccRank.

Lemma 12.2.2. Let A be a BA. Then L (SuccRank(A)) = L (Schewe(A)).

Proof. The inclusion L (SuccRank(A)) ⊆ L (Schewe(A)) is clear. Now we look at the
other direction. Consider some α ∈ L (Schewe(A)). Then, there is an accepting super-
tight run ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1) . . . of Schewe(A) over α. Consider k > m
and a macrostate (Sk, Ok, fk, ik). The maximum rank of this macrostate is bounded by
2dSke − 1 because dSke is the largest size of the S-component (without final states) of
a macrostate reachable from Sk and, therefore, removing macrostates that do not sat-
isfy ϕcoarse from Schewe(A) will not affect this run.

Next, we prove the correctness of removing states from Schewe(A) using ϕfine . Con-
sider a set of states T ⊆ Q; we will use ρT to denote the run ρT = T0T1T2 . . . of RA from T

157

q0 q1

q2

q3

q4a
a

a

a
a

a

r0 r1 r2 r3
aa a

a

{q0, r0}

{q1, r1}

{q2, q3, r2}

{q3, q4, r3}

(
{q1:1, r1:3}, ∅, 0

)

(
{q1:3, r1:1}, ∅, 0

)

(
{q1:1, r1:1}, ∅, 0

)
a

a

a

a

a

a

a

(a)

q r

a a

{q, r}

(
{q:3, r:1}, ∅, 0

)

(
{q:1, r:1}, ∅, 0

)

a

a

a

a

(b)

Figure 12.3: Illustration of RankSim′ (a) and RankRestr (b).

(= T0) over the word αk:ω. Since RA is deterministic and complete, there is exactly one
such run. Given a state q ∈ Sk, let a be the smallest size of a set of states (without final
states) that occurs infinitely often in ρ{q} and b be the largest size of a set of states that
occurs infinitely often in ρSk (again without final states). From the definition of b·c and d·e,
it holds that

b{q}c ≤ a ≤ b ≤ dSke. (12.6)

Since we can reach a different states from q, the ranks of these states need to be less
or equal to fk(q) (no successor of q can be given a rank higher than fk(q)). Further,
since we can reach at most b different states from Sk, there are at some infinitely often
occurring macrostate of ρ in the worst case only b − a states that can have and odd rank
greater than fk(q). Due to the tightness of all macrostates in the tight part of ρ, we can
conclude that the maximal rank of fk can be bounded by fk(q)+2(dSke−b{q}c). Therefore,
a macrostate where ϕfine does not hold will not be in a super-tight run, so removing those
macrostates does not affect the language of Schewe(A).

12.2.3 Rank Simulation

The next optimization is a modification of optimization Prgdi from Chapter 11. Intuitively,
Prgdi is based on the fact that if a state p is directly simulated by a state r, i.e., p �di r, then
any macrostate (S,O, f, i) where f(p) > f(r) can be safely removed (intuitively, any run
from p can be simulated by a run from r, where the run from r may contain more accepting
states and, therefore, needs to decrease its rank more times). Prgdi is compatible with
Schewe but, unfortunately, it is incompatible with the MaxRank construction (one of
our further optimizations introduced in Section 12.2.5) since in MaxRank, several runs
are represented by one maximal run (w.r.t. the ranks) and removing such a run would
also remove the smaller runs (see Section 12.2.5 for details). We, however, change the

158

condition and obtain a new reduction, which is incomparable with Prgdi but compatible
with MaxRank. We call this reduction RankSim.

Consider the following relation of odd-rank simulation on p, r ∈ Q:

p �ors r
def≡ ∀α ∈ Σω,∀i ≥ 0 : (rankα(p, i) is odd ∧ rankα(r, i) is odd)
⇒ rankα(p, i) ≤ rankα(r, i).

(12.7)

Intuitively, if p �ors r holds, then we know that in any super-tight run and a macrostate
(S,O, f, i) in such a run, if p, r ∈ S and both f(p) and f(r) are odd, then it needs to hold
that f(p) ≤ f(r). Furthermore, such a reasoning can also be applied transitively (�ors is
by itself not transitive): if, in addition, t ∈ S, the rank f(t) is odd, and r �ors t, then it
also needs to hold that f(p) ≤ f(t).

Formally, given a ranking f , let �fors be a modification of �ors defined as

p �fors r
def≡ f(p) is odd ∧ f(r) is odd ∧ p �ors r (12.8)

and �fTors be its transitive closure. We use �fTors to define the following condition:

RankSim((S,O, f, i))
def≡ ∀p, r ∈ S : p �fTors r ⇒ f(p) ≤ f(r). (12.9)

Abusing the notation, we use RankSim(A) to denote the output of Schewe(A) where
states from the tight part of Schewe(A) are restricted to those that satisfy RankSim.

Lemma 12.2.3. Let A be a BA. Then L (RankSim(A)) = L (Schewe(A)).

Proof. The inclusion L (RankSim(A)) ⊆ L (Schewe(A)) is clear. For the reverse di-
rection, consider some α ∈ L (Schewe(A)). Then, for α there is a super-tight run
ρ = S1 . . . Sm(Sm+1, Om+1, fm+1, im+1) . . . , i.e., for each k > m and each q ∈ Sk we have
fk(q) = rankα(q, k). Clearly, each macrostate of ρ satisfies RankSim.

From the definition of �ors , it is not immediate how to compute it, since it is defined over
all infinite runs of A over all infinite words. The computation of a rich under-approximation
of �ors will be the topic of the rest of this section. We first note that �di ⊆ �ors , which
is a consequence of Lemma 11.2.6 (Section 11.2). We will extend �di into a relation �R,
which is computed statically on A, and then show that �R ⊆ �ors . The relation �R is
defined recursively as the smallest binary relation over Q such that

(i) �di ⊆ �R and

(ii) for p, r ∈ Q, if ∀a ∈ Σ : (δ(p, a) \ F) �∀∀R (δ(r, a) \ F), then p �R r.

Above, S1 �∀∀R S2 holds iff ∀x ∈ S1,∀y ∈ S2 : x �R y. The relation �R can then be
computed using a standard worklist algorithm, starting from �di and adding pairs of states
for which condition 2 holds until a fixpoint is reached.

Lemma 12.2.4. We have �R ⊆ �ors .

Proof. The base case �di ⊆ �ors follows directly from Lemma 11.2.6. For the induction
step, let p, r ∈ Q be such that ∀a ∈ Σ : (δ(p, a) \ F) �∀∀R (δ(r, a) \ F). Our induction
hypothesis is that for every a ∈ Σ, x ∈ (δ(p, a) \ F), and y ∈ (δ(r, a) \ F), it holds that for
all α ∈ Σω and for all i ≥ 0, if rankα(p, i) is odd and rankα(r, i) is odd, then rankα(p, i) ≤

159

rankα(r, i). Let us fix an a ∈ Σ and a word α ∈ Σω that has a at its i-th position. If
rankα(p, i) or rankα(r, i) are even, the condition holds trivially.

Assume now that rankα(p, i) and rankα(r, i) are odd. From the construction of the run
DAG Gα in Section 10.3.1, it follows that there exist infinite paths from (p, i) and (r, i) in Gα
such that all vertices on these paths are assigned the same (odd) ranks as (p, i) and (r, i),
respectively. In particular, there are direct successors (p′, i + 1) of (p, i) and (r′, i + 1) of
(r, i) whose ranks match the ranks of their predecessors. From the induction hypothesis, it
holds that rankα(p′, i+1) ≤ rankα(r

′, i+1) and so rankα(p, i) ≤ rankα(r, i) and the lemma
follows. (Note that in the previous reasoning, it is essential that (p, i) and (r, i) have an
odd ranking; if a node has an even ranking in Gα, then the condition that there needs to
be a successor with the same ranking does not hold in general.)

Putting it all together, we modify (12.9) by substituting �fTors with �fTR , which denotes
the transitive closure of �fR, where �fR is a relation defined (by modifying (12.8)) as

p �fR r
def≡ f(p) is odd ∧ f(r) is odd ∧ p �R r. (12.10)

Because �R ⊆ �ors , Lemma 12.2.3 still holds. We denote the modification of RankSim
that uses �fTR instead of �fTors as RankSim′.

Example 12.2.1. Consider the BA A (top) and the part of Schewe(A) (bottom) in Fig-
ure 12.3a. Note that r2 �di q2 and q2 �di r2 so r2 �R q2 and q2 �R r2. From the
definition of �R, we can deduce that r1 �R q1 (since {r2} �∀∀R {q2}) and q1 �R r1 (since
{q2} �∀∀R {r2}). Note that q1 6�di r1). As a consequence and due to the odd ranks of q1
and r1, we can eliminate the macrostates ({q1:1, r1:3}, ∅, 0) and ({q1:3, r1:1}, ∅, 0).

12.2.4 Ranking Restriction

Another optimization, called RankRestr, restricts ranks of successors of states with an
odd rank. In particular, in a super-tight run, every odd-ranked state has a successor with
the same rank (this follows from the construction of the run DAG). Let A be a BA and
B = Schewe(A) = (Q,Σ, δ1 ∪ δ2 ∪ δ3, I, F). Then, we define the following restriction on
transitions:

RankRestr((S,O, f, i) a−→ (S′, O′, f ′, i′))
def≡

∀q ∈ S : f(q) is odd ⇒ (∃q′ ∈ δ(q, a) : f ′(q′) = f(q)).
(12.11)

We abuse notation and use RankRestr(A) to denote B with transitions from δ3 restricted
to those that satisfy RankRestr. See Figure 12.3b for an example of a transition (and
a newly unreachable macrostate) removed using RankRestr.

Lemma 12.2.5. Let A be a BA. Then L (RankRestr(A)) = L (Schewe(A)).

Proof. The inclusion L (RankRestr(A)) ⊆ L (Schewe(A)) is clear. We now focus on
the reverse direction. For that, consider a word α ∈ L (Schewe(A)). Further, let ρ =
S0 . . . Sm(Sm+1, Om+1, fm+1, im+1) . . . be an accepting super-tight run on α. Now consider
a macrostate (Sj , Oj , fj , ij) where j > m and some state q ∈ Sj . Since ρ is super-tight,
i.e., represents the run DAG of A over α, it holds that if fj(q) is odd, then there is a state
q′ ∈ Sj+1 s.t. fj+1(q

′) = fj(q), which satisfies RankRestr.

160

12.2.5 Maximum Rank Construction

Our next optimization, named MaxRank, is the one with the biggest practical effect. We
introduce it as the last one because it depends on our previous optimizations (in particular
SuccRank and RankSim′). It is a modified version of Schewe’s “Reduced Average Outde-
gree” construction [250, Section 4], named ScheweRedAvgOut, which may omit some runs,
the so-called max-rank runs, that are essential for our other optimizations.1

The main idea of MaxRank is that a set of runs of B = Schewe(A) (including super-
tight runs) that assign different ranks to non-trunk states is represented by a single, “max-
imal,” not necessarily super-tight (but having the same rank), run in C = MaxRank(A).
We call such runs max-rank runs. More concretely, when moving from the waiting to the
tight part, C needs to correctly guess a rank that is needed on an accepting run and the
first tight core of a trunk of the run. The ranks of the rest of states are made maximal.
Then, the tight part of C contains for each macrostate and symbol at most two successors:
one via η3 and one via η4. Loosely speaking, the η3-successor keeps all ranks as high as
possible, while the η4-successor decreases the rankings of all non-accepting states in O (and
can therefore help emptying O, which is necessary for an accepting run).

Before we give the construction, let us first provide some needed notation. We further
use (S,O, f, i) ≤ (S,O, g, i) to denote that f ≤ g and similarly for < (note that non-
ranking components of the macrostates need to match). In the definitions, given a set
of macrostates R from Q2, we use maxf{(S,O, f, i) ∈ R} to denote the set of maximal
elements of the partial order ≤ on macrostates in R.

The construction is then formally defined as MaxRank(A) = (Q1 ∪ Q2,Σ, η, I
′, F ′)

with η = δ1 ∪ η2 ∪ η3 ∪ η4 such that Q1, Q2, I
′, F ′, δ1 are the same as in Schewe. Let

B = Delay(A) = (·,Σ, δ1 ∪ θ2 ∪ δ3, ·, ·) where δ1, θ2, and δ3 are defined as in Delay.
We define an auxiliary transition function that keeps macrostates satisfying conditions
RankSim′ and SuccRank as follows:

Δ•(q, a) = {q′ | q′ ∈ θ2(q, a) ∧RankSim′(q′) ∧ SuccRank(q′))}. (12.12)

(We note that q is from the waiting and q′ is from the tight part of B.) Given a macrostate
(S,O, f, i) and a symbol a ∈ Σ, we define the maximal successor ranking, denoted by f ′max =
max-rank((S,O, f, i), a), as follows. Consider q′ ∈ δ(S, a) and the rank r = min{f(s) | s ∈
δ−1(q′, a) ∩ S}. Then

• f ′max (q
′) := r − 1 if r is odd and q′ ∈ F and

• f ′max (q
′) := r otherwise.

Let δ3 be the transition function of the tight part of Schewe(A). We can now proceed
to the definition of the missing components of MaxRank(A):

• η2(S, a) := maxf ′{(S′, ∅, f ′, 0) ∈ Δ•(S, a)}.

• η3((S,O, f, i), a): Let f ′max = max-rank((S,O, f, i), a). Then, we set

– η3((S,O, f, i), a) := {(S′, O′, f ′max , i
′)} when (S′, O′, f ′max , i

′) ∈ δ3((S,O, f, i), a)
(i.e., if f ′max is tight) and

1We believe that this property was not originally intended by the author, since it is not addressed in the
proof. As far as we can tell, the construction is correct, although the original argument of the proof in [250]
needs to be corrected.

161

– η3((S,O, f, i), a) := ∅ otherwise.

• η4((S,O, f, i), a): Let η3((S,O, f, i), a) = {(S′, P ′, h′, i′)} and let

– f ′ = h′ C {u 7→ h′(u)− 1 | u ∈ P ′ \ F} and
– O′ = P ′ ∩ f ′−1(i′).

Then, if i′ 6= 0, we set η4((S,O, f, i), a) := {(S′, O′, f ′, i′)}. Otherwise, we set
η4((S,O, f, i), a) := ∅.

Note that η3 and η4 are deterministic (though not complete), so we will sometimes use the
notation (S′, O′, f ′, i′) = η3((S,O, f, i), a).

MaxRank differs from ScheweRedAvgOut in the definition of η2 and η4. In particular,
in the η4 of ScheweRedAvgOut (named γ4 therein), the condition that only non-accepting
states (u ∈ P ′ \ F) decrease rank is omitted. Instead, the rank of all states in P ′ is
decreased by one, which might create a “ranking” that is actually not a ranking according
to the definition (since an accepting state is given an odd rank), so the target macrostate is
omitted from the complement. Due to this, some max-rank runs may also be removed. Our
construction preserves max-rank runs, which makes the proof of the theorem significantly
more involved.

Theorem 12.2.1. Let A be a BA and C = MaxRank(A). Then L (C) = L (A).

Proof. W.l.o.g. assume that A is complete. Let B = Schewe(A). Showing L (C) ⊆ L (B)
is easy (the transitions of C are contained in the transitions of B). Next, we show that
L (C) ⊇ L (B).

Let α ∈ L (B) and ρ be a super-tight run (from Lemma 12.1.1, we know that a super-
tight run exists) of B over α = α0α1α2 . . . s.t.

ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1)(Sm+2, Om+2, fm+2, im+2) . . .

Let τ = Cm+1Cm+2 . . . be a trunk of ρ. We will construct the run

ρ′ = S0 . . . Sm(Sm+1, O
′
m+1, f

′
m+1, i

′
m+1)(Sm+2, O

′
m+2, f

′
m+2, i

′
m+2) . . .

of C on α in the following way (note that the S-components of the macrostates traversed
by ρ and ρ′ are the same):

(i) For the transition from the waiting to the tight part, we set O′m+1 := ∅ and i′m+1 := 0.
The ranking f ′m+1 is set as follows. Let r be the rank of ρ (remember that ρ is super-
tight). We first construct an auxiliary (tight) ranking

g = fm+1 C {u 7→ max{r − 1, fm+1(u)} | u ∈ Sm+1 \ Cm+1}. (12.13)

Note that Cm+1 is also a tight core of g. There are now two possible cases:

(a) (Sm+1, ∅, g, 0) ∈ η2(Sm, αm): If this holds, we set f ′m+1 := g.
(b) Otherwise, η2(Sm, αm) contains at least one macrostate with a ranking h s.t. g <

h. We pick an arbitrary such ranking h from η2(Sm, αm) and set f ′m+1 := h. Note
that Cm+1 is also a tight core of h.

162

Note that η2(Sm, αm) contains at least one macrostate (Sm+1, ∅, h, 0) with the rank r
such that g ≤ h. This follows from the fact that the reductions SuccRank and
RankSim only remove macrostates that do not occur on super-tight runs and that
(Sm+1, ∅, g, 0) is not removed using the reductions. The latter follows from (12.5)
and (12.9).

(ii) Let k > m and i∗ be such that (·, ·, f∗, i∗) = η4((Sk, O
′
k, f
′
k, i
′
k), αk). Then,

• we set (Sk+1, O
′
k+1, f

′
k+1, i

′
k+1) := η4((Sk, O

′
k, f
′
k, i
′
k), αk) if Ok+1 = ∅, i∗ = ik+1,

and f∗ ≥ fk+1,
• otherwise, we set (Sk+1, O

′
k+1, f

′
k+1, i

′
k+1) := η3((Sk, O

′
k, f
′
k, i
′
k), αk).

Intuitively, ρ′ simulates the super-tight run ρ of B with the difference that (i) the transition
from the waiting to the tight part sets the ranks of all non-core states to r − 1, (ii) in
the tight part, ρ′ keeps taking the maximizing η3 transitions until it happens that ρ′ is
stuck with emptying some O, in which case, the ranks of all non-accepting states in O are
decreased (the η4 transition).

First, we prove that the run ρ′ constructed according to the procedure above is infi-
nite. Intuitively, there are two possibilities how the construction of ρ′ can break: (i) the
macrostate (Sm+1, ∅, f ′m+1, 0) is not in η2(Sm, αm), (ii) η3((Sm, Om, fm, im), αm) = ∅, or
(iii) η4((Sm, Om, fm, im), αm) = ∅.
Claim 7: For every k > m the following conditions hold:

(i) the macrostate ρ′(k) is well defined,

(ii) f ′k ≥ fk, and

(iii) Ck is a tight core of ρ′(k).

Proof By induction on the position k > m in ρ′.

k = m+ 1:

(i) Proving (Sm+1, ∅, f ′m+1, 0) ∈ η2(Sm, αm): This easily follows from the construction of
(Sm+1, Om+1, fm+1, im+1) given above.

(ii) Proving f ′m+1 ≥ fm+1: This, again, easily follows from the construction of the
macrostate (Sm+1, Om+1, fm+1, im+1). In particular, the g constructed in (12.13)
satisfied the property g ≥ fm+1 and the f ′m+1 constructed from it satisfies f ′m+1 ≥ g.

(iii) We have that Cm+1 is a tight core of (Sm+1, Om+1, fm+1, im+1). From the definition
of f ′m+1 we directly obtain that Cm+1 is also a tight core of (Sm+1, O

′
m+1, f

′
m+1, i

′
m+1).

k + 1: Suppose the claim holds for k.

(i) (and (iii)) For proving ρ′(k + 1) is well-defined, from the construction, we need to
prove the following:

• If ρ′(k+1) is the η3-successor of ρ′(k), we need to show that η3((Sk, O′k, f ′k, i′k), αk)
6= ∅.
This condition can be proved by showing that the ranking given as f ′max =
max-rank((Sk, O′k, f ′k, i′k), αk) is tight. From the induction hypotheses (“f ′k ≥ fk”

163

and “Ck is a tight core of f ′k”), we know that fk and f ′k coincide on states from Ck.
Further, from Lemma 12.1.2, it holds that for every state qk ∈ Ck there is a state
qk+1 ∈ Ck+1 such that fk(qk) = fk+1(qk+1). From the construction of f ′max , we
can conclude that it also holds that f ′k(qk) = f ′max (qk+1) (which proves (iii)).
Using induction hypothesis one more time (“f ′k is tight”), we can conclude that
f ′max is also tight.

• If Ok+1 = ∅, ik+1 = i′k+1, and f ′k+1 ≥ fk+1 hold at the same time (i.e., ρ′(k+1)
is the η4-successor of ρ′(k)), we need to show that η4((Sk, O′k, f ′k, i′k), αk) 6= ∅.
Above, we have already shown that η3((Sk, O′k, f ′k, i′k), αk) 6= ∅. From the defini-
tion, in order for η4((Sk, O′k, f ′k, i′k), αk) = ∅, it would need to hold that i′k+1 = 0.
Since our assumption is that A is complete and we know that ρ is accepting, it
needs to hold that at every position j > m, we have fj(q) > 0 for any state q ∈ Sj
(otherwise, if q appeared in the O-component of some macrostate in ρ, it would
never disappear and so ρ could not be accepting).
The proof of (iii) easily follows from the previous step for η3, since the ranking
function of the result of η4 differs from the one for η3 only on states from the
O-component, which are even and therefore, by definition, not in a tight core.

(ii) Proving f ′k+1 ≥ fk+1 assuming the induction hypothesis f ′k ≥ fk:

• If ρ′(k + 1) is the η3-successor of ρ′(k), f ′k+1 ≥ fk+1 follows immediately from
the fact that the η3 transition function yields the maximal successor ranking.

• If Ok+1 = ∅, ik+1 = i′k+1, and f ′k+1 ≥ fk+1 hold at the same time (i.e., ρ′(k+1)
is the η4-successor of ρ′(k)), f ′k+1 ≥ fk+1 is already a condition for η4 to be
taken. �

Next, we will show that ρ′ is accepting, i.e., that O-component of macrostates in ρ′ is
emptied infinitely many times. For the sake of contradiction, assume that ρ′ is not accepting,
i.e., for some ` > m, it happens that for all k ≥ ` it holds that O′k 6= ∅ and i′k = i′` (the run
is “stuck” at some i′ and cannot empty O′). We will show that if ρ′ is “stuck” at some i′, it
will contain infinitely many macrostates obtained using an η4 transition. An η4 transition
decreases ranks of all non-final states in O′ and, as a consequence, removes such tracked
runs from O′. Therefore, if the rank of some run in O′ is infinitely often not decreased
by η4, there needs to be a corresponding run of A with infinitely many occurrences of an
accepting state, so it would need to hold that α ∈ A, leading to a contradiction.

Let us now prove the previous reasoning more formally. First, we show that ρ′ needs
to contain infinitely many occurrences of η4-obtained macrostates. Since ρ is accepting, it
satisfies infinitely often the condition that O is empty and i = i′`. To satisfy the condition
for executing an η4 transition, we need to show that for infinitely many k it in addition
holds that f ′k = f ′max C {q 7→ f ′max (q) − 1 | u ∈ O′k \ F} ≥ fk where f ′max is as in the
definition of η3. In particular, we will show that for infinitely many k, we will have ik = i′`,
Ok = ∅, and ∀q ∈ O′k \F : f ′max (q) > f(q) (from Claim 7 we already know that f ′max ≥ fk).

Let p > ` be a position such that ip−1 6= i′`, Op−1 = ∅, and ip = i′`, i.e., a position at
which run ρ started emptying runs with rank i′`. Because ρ is accepting, there is a position
k ≥ p such that ρ(k) = (Sk, ∅, fk, i′`), therefore, the ranks of all runs tracked in Op were
decreased (otherwise, Ok could not be empty). Consider the following claim.

Claim 8: ∀q ∈ O′k : fk(q) < f ′k(q)

164

Proof The weaker property fk ≤ f ′k follows from Claim 7. We prove the strict inequality
for states in O′k by contradiction. Assume that fk(q) = f ′k(q) for some q ∈ O′k. Then there
needs to be a predecessor s of q in Sp such that fp(s) = i′` and so s ∈ Op. But since q /∈ Ok,
then somewhere between p and k, the rank of the run in A must have been decreased.
Therefore, fk(q) < f ′k(q). �

From Claim 8 and the fact that f ′k(q) ≤ f ′max it follows that ∀q ∈ O′k\F : f ′max (q) > f(q),
so an η4 transition was taken infinitely often in ρ′.

The last thing to show is that when η4 is taken infinitely often, O′ will be eventually
empty. The condition does not hold only in the case when the rank of a run of A tracked
in O′ is infinitely often not decreased because it is represented in O′ by a final state q ∈
O′ ∩ F . But then A contains a run over α that touches an accepting state infinitely often,
so α ∈ L (A), which is a contradiction.

Note that MaxRank is incompatible with RankRestr since RankRestr optimizes
the transitions in the tight part of the complement BA, and these transitions are abstracted
in MaxRank.

12.2.6 Backing Off

Our final optimization, called BackOff, is a strategy for guessing when our optimized
rank-based construction is likely (despite the optimizations) to generate too many states and
when it might be helpful to give up and use a different complementation procedure instead.
We evaluate this after the initial phase of Schewe, constructing δ2 (η2 in MaxRank,
θ2 in Delay; we will just use δ2 now) finishes. In particular, we provide a set of pairs
{(StateSizei,RankMax i)}i∈I for an index set I. We then check (after δ2 is constructed)
that for all (S,O, f, i) ∈ img(δ2) and all i ∈ I it holds that either |S| < StateSizei or
rank(f) < RankMax i. If for some (S,O, f, i) and i the condition does not hold, we terminate
the construction and execute a different, surrogate, procedure.

12.3 Experimental Evaluation
Used tools and evaluation environment. We implemented the optimizations de-
scribed in the previous sections in a tool called Ranker2 in C++ (we tested the correctness
of our implementation using Spot’s autcross on all BAs in our benchmark; in many cases
it did not finish, but for those it finished, it never reported an error). We compared our
complementation approach with other state-of-the-art tools, namely, GOAL [277] (includ-
ing the Fribourg plugin [16]), Spot 2.9.3 [101], ROLL [186], Seminator 2 [46] and
LTL2dstar 0.5.4 [175]. All tools were set to the mode where they output an automaton
with the standard state-based Büchi acceptance condition. We note that some of the tools
are aimed at complementing more general flavors of ω-automata, such as Seminator 2 fo-
cusing on generalized transition-based Büchi automata. The experimental evaluation was
performed on a 64-bit GNU/Linux Debian workstation with an Intel(R) Xeon(R) CPU
E5-2620 running at 2.40 GHz with 32 GiB of RAM. The timeout was set to 5 minutes.

Dataset. As the source of our main benchmark, we took the 11,000 BAs used in [276],
which were randomly generated using the Tabakov-Vardi approach [265] over a two letter

2Ranker is available at https://github.com/vhavlena/ba-inclusion

165

https://github.com/vhavlena/ba-inclusion

alphabet, starting with 15 states, with various different parameters (see [276] for more de-
tails). In preprocessing, the automata were reduced using a combination of Rabit [206]
and Spot’s autfilt (using the –high simplification level) and converted to the HOA for-
mat [23]. From this set, we removed automata that are (i) semi-deterministic, (ii) inherently
weak, or (iii) unambiguous, since for these kinds of automata there exist more efficient com-
plementation procedures than for unrestricted BAs [47, 46, 50, 188]. Moreover, we removed
BAs with an empty language or empty language of complement (since the complement has
1 state only). We were left with 2,393 hard automata. (In Section 12.3.3, we also present
additional results on a less challenging benchmark used in [46], containing BAs obtained
by translation from LTL formulae.)

Selection of optimizations. We use two settings of Ranker with different optimiza-
tions turned on. Since the RankRestr and MaxRank optimizations are incompatible,
the main difference between the settings is which one of those two they use. The particular
optimizations used in the settings are the following:

RankerMaxR = Delay + SuccRank + RankSim′ + MaxRank
RankerRRestr = Delay + SuccRank + RankSim′ + RankRestr + Prgdi

(The Prgdi optimization is taken from Chapter 11.) Note that the two settings include all
respective compatible optimizations. Due to space constraints, we cannot give a detailed
analysis of the effect of individual optimizations on the size of the obtained complement
automaton. Let us, at least, give a bird’s-eye view. The biggest effect has MaxRank,
followed by Delay—their use is key to obtaining a small state space. The rest of the
optimizations are less effective, but they still remove a significant number of states.

12.3.1 Comparison of Rank-Based Procedures

First, we evaluated how our optimizations reduce the generated state space, i.e., we com-
pared the sizes of generated complements without any postprocessing. Such a use case
represents applications like testing inclusion, equivalence, or universality of BAs, where
postprocessing the output is irrelevant.

More precisely, we first compared the sizes of automata produced by our settings
RankerMaxR and RankerRRestr to see which of them behaves better (cf. Figure 12.4a)
and then we compared RankerMaxR, which had better results, with the ScheweRedAvgOut
procedure implemented in GOAL (parameters -m rank -tr -ro). Scatter plots of the re-
sults are given in Figure 12.4b and summarizing statistics in the upper part of Table 12.2.

We note that although RankerMaxR produces in the vast majority of cases (1,810)
smaller automata than RankerRRestr, there are still a few cases (109) where RankerRRestr
outputs a smaller result (in 1 case this is due to the timeout of RankerMaxR). The com-
parison with ScheweRedAvgOut shows that our optimizations indeed have a profound effect
on the size of the generated state space. Note that although the mean and maximum size
of complements produced by RankerMaxR and RankerRRestr are larger than those of
ScheweRedAvgOut, this is because for cases where the complement would be large, the run
of ScheweRedAvgOut in GOAL timeouted before it could produce a result. Therefore, the
median is a more meaningful indicator, and it is significantly (three to four times) lower for
both RankerMaxR and RankerRRestr.

166

10 1000 100000
Ranker-MaxR

10

1000

100000

Ra
nk

er
-R

Re
st

r

(a) RankerMaxR vs RankerRRestr

10 1000 100000
Ranker-MaxR

10

1000

100000

Sc
he

we
-R

ed
Av

gO
ut

(b) RankerMaxR vs ScheweRedAvgOut

Figure 12.4: Evaluation of the effectiveness of our optimizations on the generated state
space (axes are logarithmic). The horizontal and vertical dashed lines represent timeouts.

Table 12.1: Run times of the tools in seconds

method mean med. std. dev
RankerMaxR 10.21 0.84 28.43
RankerMaxR+BO 9.40 3.03 16.00
Piterman 7.47 6.03 8.46
Safra 15.49 7.03 35.59
Spot 1.07 0.02 8.94
Fribourg 19.43 10.01 32.76
LTL2dstar 4.17 0.06 22.19
Seminator 2 11.41 0.37 34.97
ROLL 42.63 14.92 67.31

12.3.2 Comparison with Other Approaches

Further, we evaluated the complements produced by RankerMaxR and other approaches.
In this setting, we focused the evaluation on the size of the output BA after postprocessing
(we, again, used autfilt with simplification level –high; we denote this using “+PP”).
We evaluated the following algorithms: Safra [248] implemented in GOAL (parameter -m
safra), its optimization Piterman [228] implemented in GOAL (parameter -m piterman)
and the optimization implemented in LTL2dstar [175], Fribourg [16] implemented as
a plugin of GOAL, the determinization-based complementation implemented in Spot (op-
timized construction of Redziejowski [241]), a learning-based algorithm [187] implemented
in ROLL, and a semideterminization-based algorithm [47] in Seminator 2.

In Figure 12.5, we give scatter plots of selected comparisons. In particular, due to space
constraints, we omitted the results for Safra, Spot, and LTL2dstar, which on average
performed slightly worse than Piterman. We give summarizing statistics in the lower part
of Table 12.2 and the run times in Table 12.1.

Let us now discuss the data in the lower part of the table. In the left-hand side, we
can see that the mean and median size of BAs obtained by RankerMaxR are both the
lowest with the exception of ROLL. ROLL implements a learning-based approach, which
means that it works on the level of the language of the input BA instead of the structure.
Therefore, it can often find a much smaller automaton than other approaches. Its practical

167

Table 12.2: Statistics for our experiments. The upper part compares different opti-
mizations of the rank-based procedure (no postprocessing). The lower part compares our
approach with other methods (with postprocessing). “BO” denotes the BackOff opti-
mization. In the left-hand side of the table, the column “med.” contains the median,
“std. dev” contains the standard deviation, and “TO” contains the number of timeouts
(5 mins). In the right-hand side of the table, we provide the number of cases where our
tool (RankerMaxR without postprocessing in the upper part and with postprocessing in
the lower part) was strictly better (“wins”) or worse (“loses”). The “(TO)” column gives
the number of times this was because of the timeout of the loser.

method max mean med. std. dev TO wins (TO) loses (TO)
RankerMaxR 319 119 8 051.58 185 28 891.4 360 — — — —
RankerRRestr 330 608 9 652.67 222 32 072.6 854 1810 (495) 109 (1)
ScheweRedAvgOut 67 780 5 227.3 723 10 493.8 844 2030 (486) 3 (2)
RankerMaxR 1 239 61.83 32 103.18 360 — — — —
RankerMaxR+BO 1 706 73.65 33 126.8 17 — — — —
Piterman 1 322 88.30 40 142.19 12 1 069 (3) 469 (351)
Safra 1 648 99.22 42 170.18 158 1 171 (117) 440 (319)
Spot 2 028 91.95 38 158.13 13 907 (6) 585 (353)
Fribourg 2 779 113.03 36 221.91 78 996 (51) 472 (333)
LTL2dstar 1 850 88.76 41 144.09 128 1 156 (99) 475 (331)
Seminator 2 1 772 98.63 33 191.56 345 1 081 (226) 428 (241)
ROLL 1 313 21.50 11 57.67 1 106 1 781 (1 041) 522 (295)

time complexity, however, seems to grow much faster with the number of states of the output
BA than other approaches (ROLL had by far the largest mean and median run time, as
shown in Table 12.1). RankerMaxR by itself had more timeouts than other approaches,
but when used with the BackOff strategy, is on par with Piterman and Spot.

In the right-hand side of the table, we give the numbers of times where RankerMaxR
gave strictly smaller and strictly larger outputs, respectively. Here, we can see that the
output of RankerMaxR is often at least as small as the output of the other method (this
is not in the table, but can be computed as 2, 393− loses; the loses were caused mostly by
timeouts; results with the BackOff strategy would increase the number even more) and of-
ten a strictly smaller one (the wins column). When comparing RankerMaxR with the best
result of any other tool, it obtained a strictly smaller BA in 539 cases (22.5 %) and a BA at
least as small as the best result of any other tool in 1,518 cases (63.4 %). Lastly, we note that
there were four BAs in the benchmark that no tool could complement and one BA that only
RankerMaxR was able to complement (namely, new-s-15-r-1.00-f-0.30–72-of-100.ba-
red.hoa with a 919-state-large complement). There was no such a case for any other tool.

Let us now focus on the run times of the tools given in Table 12.1. GOAL-based
approaches and ROLL are implemented in Java, which adds a significant overhead to the
run time (e.g., the fastest run time of GOAL was 3.15 s; it is hard to predict how their
performance would change if they were reimplemented in a faster language), while the other
approaches are implemented in C++.

BackOff. Our BackOff setting in the experiments used the set of constraints

{(StateSize1 = 9,RankMax 1 = 5), (StateSize2 = 8,RankMax 2 = 6)}

168

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Se
m

in
at

or
 2

+P
P

(a) RankerMaxR vs Seminator 2

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Pi
te

rm
an

+P
P

(b) RankerMaxR vs Piterman

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Fr
ib

ou
rg

+P
P

(c) RankerMaxR vs Fribourg

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

RO
LL

+P
P

(d) RankerMaxR vs ROLL

Figure 12.5: Comparison of the sizes of the BAs constructed using our optimized rank-
based construction and other approaches. Timeouts are on the dashed lines.

and Piterman as the surrogate algorithm. The BackOff strategy was executed 873
times and managed to decrease the number of timeouts of RankerMaxR from 360 to 17
(row RankerMaxR+BO in Table 12.2).

Discussion. The results of our experiments show that our optimizations are key to mak-
ing rank-based complementation competitive to other approaches in practice. Furthermore,
with the optimizations, the obtained procedure in the majority of cases produces a BA at
least as small as a BA produced by any other approach, and in a large number of cases the
smallest BA produced by any existing approach. We emphasize the usefulness of the Back-
Off heuristic: as there is no clear “best” complementation algorithm—different techniques
having different strengths and weaknesses—knowing which technique to use for an input
automaton is important in practice. In Table 12.3, we give a modification of the right-
hand side of Table 12.2 giving wins and loses for RankerMaxR+BO. It seems that the
combination of these two completely different algorithms yields a quite strong competitor.

169

Table 12.3: Wins and loses for RankerMaxR+BO

method wins (TO) loses (TO)
Piterman 1 160 (4) 112 (9)
Safra 1 255 (147) 222 (6)
Spot 985 (8) 328 (12)
Fribourg 1 076 (71) 287 (10)
LTL2dstar 1 208 (118) 272 (7)
Seminator 2 1 236 (333) 253 (5)
ROLL 1 923 (1 096) 360 (7)

Table 12.4: Statistics for our experiments on the LTL benchmark (see the explanation of
the columns in the description of Table 12.2).

method max mean med. std. dev TO wins (TO) loses (TO)
RankerMaxR 43 527 357.71 29 2 510.31 5 — — — —
RankerRRestr 214 946 1 948.26 33 13 928 17 281 (12) 35 (0)
ScheweRedAvgOut 33 345 665.27 35 3 081.89 9 292 (5) 83 (1)
RankerMaxR 330 20.07 10 32.86 5 — — — —
RankerMaxR+BO 440 21.09 11 38.28 2 — — — —
Piterman 436 21.98 14.5 30.66 2 287 (1) 76 (4)
Safra 361 30.39 17 44.24 14 330 (10) 56 (1)
Spot 151 14.52 10 17.71 0 138 (0) 195 (5)
Fribourg 212 12.85 9 16.22 1 56 (1) 238 (5)
LTL2dstar 223 21.05 13 24.17 6 249 (5) 111 (4)
Seminator 2 233 14.62 10 19.97 1 121 (1) 218 (5)
ROLL 96 13.81 11 10.62 3 243 (3) 150 (5)

12.3.3 Experimental Results for BAs from LTL formulae

In this part, we give also experimental evaluation of our optimizations on the benchmark
from [46]. The benchmark contains automata obtained from LTL formulae (i) from litera-
ture (221) and (ii) randomly generated (1500). (We are not aware of the motivation behind
complementing BAs obtained from LTL formulae—it is a well known fact negating the
formula and constructing a BA directly for the negation only increases the size of the BA
linearly instead of exponentially). From the benchmark, we selected only 414 hard BAs (in
the same way as in the previous). Note that although we selected only 414 hard instances,
their structure is still simpler than the structure of the BAs considered at the beginning of
Section 12.3, since LTL does not have the full power of ω-regular languages (this difference
in the difficulty can be seen from the summary statistics in Table 12.4). The timeout was
again set to 5 minutes.

In Table 12.4, we can see that the average sizes of the complements produced by
RankerMaxR, compared to the other tools, are larger than in our main benchmark, the
median is, however, comparable. We believe that the larger average size is due to the
two following facts: (i) that BAs from LTL formulae have a simpler structure than gen-
eral BAs that is more suitable for the other approaches and (ii) our implementation does
not take advantage of the symbolic alphabets present in the benchmark (we immediately
translate the alphabet to an explicit alphabet, neglecting any relations among the sym-
bols). Moreover, note that RankerMaxR is no longer a clear winner here. In particular,

170

Table 12.5: Run times of the tools on the LTL benchmark (in seconds)

method mean med. std. dev
RankerMaxR 1.99 0.04 16.51
RankerMaxR+BO 1.27 0.05 8.62
Piterman 6.65 5.62 3.73
Safra 8.37 5.80 13.45
Spot 0.06 0.02 0.71
Fribourg 7.22 5.48 13.22
LTL2dstar 0.11 0.02 0.89
Seminator 2 0.08 0.02 0.83
ROLL 7.28 2.74 16.06

10 1000 100000
Ranker-MaxR

10

1000

100000

Ra
nk

er
-R

Re
st

r

(a) RankerMaxR vs RankerRRestr

10 1000 100000
Ranker-MaxR

10

1000

100000

Sc
he

we
-R

ed
Av

gO
ut

(b) RankerMaxR vs ScheweRedAvgOut

Figure 12.6: Evaluation of the effectiveness of our optimizations on the generated state
space for the LTL benchmark. Both axes are logarithmic. A point on the horizontal or
vertical dashed lines represents a timeout.

it is now comparable to Spot and Seminator 2 (both provide smaller automata slightly
more often); Fribourg is the clear winner on this benchmark. It is also interesting to see
that the results for Piterman are significantly worse when compared to the other tools
than in our main experiments in the previous part. One possible explanation might be
that the benchmarks from LTL formulae contain symbolic alphabets; as far as we know,
the implementation of Piterman in GOAL turns such an alphabet into an explicit one,
so it cannot exploit the internal structure of symbols on transitions). Scatter plots com-
paring rank-based approaches are in Figure 12.6. Furthermore, scatter plots comparing
RankerMaxR with other approaches are in Figure 12.7. Compared with the scatter plots
in Figure 12.5, we substituted Piterman with Spot, which had better results than both
Piterman and Safra.

In Table 12.5, we provide the times needed by the tools. We note that Seminator 2
performs much better on this benchmark, the performance of Piterman goes down, and
also that ROLL does not perform as bad as in our main benchmark (we believe that this
is due to the lower difficulty of this benchmark).

171

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Se
m

in
at

or
 2

+P
P

(a) RankerMaxR vs Seminator 2

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Sp
ot

+P
P

(b) RankerMaxR vs Spot

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Fr
ib

ou
rg

+P
P

(c) RankerMaxR vs Fribourg

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

RO
LL

+P
P

(d) RankerMaxR vs ROLL

Figure 12.7: Comparison of the size of the BAs constructed using our optimized rank-
based construction and other approaches on the LTL benchmark. Timeouts (5 mins) are
on the edges.

12.4 Conclusion
We developed a series of optimizations reducing the state space generated in the rank-
based complementation of Büchi automata. Our experimental evaluation shows that our
approach is competitive with other state-of-the-art complementation techniques and often
outperforms them.

There are several possible directions for future work. There are still ways to improve
our procedure. In particular, we have ideas about refining RankSim to obtain an even
larger reduction. Furthermore, Delay can be further refined by a smarter choice of when
to perform the transition from the waiting to the tight part of the BA. Currently, this
is done when a cycle in the waiting part is closed, which does not need to be the best
choice—we could utilize information about the number of successors of selected states to
choose a better point.

In this chapter, in order to keep the presentation easier to follow, we focused on BAs
with one state-based acceptance condition. Our optimizations can, however, be extended to
generalized BAs in a straightforward way and to transition-based generalized BAs (TGBAs)
with a modification of SuccRank (final states cannot be considered any more). It is

172

an open question whether the richer structure of TGBAs brings other opportunities for
reductions. We also plan to extend our approach to efficient (TG)BA language inclusion
checking, where even more reduction (in the style of [14]) of the state space is possible.
The contents of this chapter was published as a technical report [139] and was submitted
to CONCUR’21 [140].

173

Chapter 13

Conclusion and Further Directions

The aim of this thesis was the development of efficient techniques for handling finite au-
tomata. In particular, we focused on handling of automata in the context of network intru-
sion detection, automata in decision procedures, and complementation of Büchi automata.
The first part of the thesis was devoted to approximate reduction of NFAs in the context
of network intrusion detection. We proposed novel approximate reductions of NFAs that
are used in order to reduce consumed resources of HW-accelerated RE pattern matchers.
First, we introduced approximate reductions with formal guarantees w.r.t. a probabilistic
model. The procedure selects less significant states where the reduction is applied. The
choice of states is steered by the error expressed as a probability that an incoming packet is
misclassified. Since the optimal approximate reduction is PSPACE-complete, we proposed
greedy algorithms alleviating the impact of the complexity on NFAs used in the context
of intrusion detection. Secondly, we introduced lightweight approximate reductions where
a model of the traffic is not required and the reduction is steered directly by a multiset of
strings (captured packets). Using our approximate reductions, we were able to obtain the
throughput of 100 Gbps and even 400 Gbps on REs obtained from existing NIDSes, which
shows a practical impact of our work.

The second part of the thesis focused on efficient handling of finite automata in de-
cision procedures. First, we proposed a symbolic decision procedure for WS2S based on
automata terms that implicitly represent tree automata. Our approach allows to construct
the terms lazily in order to generate as small state space as an possible. On top of that, we
extended our basic decision procedure with optimizations, such as subsumption pruning,
continuation, or early termination. We outperform Mona on multiple parametric families
of formulae. Second, we investigated the impact of formula preprocessing (e.g., antiprenex-
ing) on the size of intermediate automata obtained during the automata-based decision
procedure of WSkS in Mona. The preprocessing is implemented in the form of syntactic
rules. In order to increase the precision, we parameterize the rules by an estimation of
the automata size obtained using machine learning techniques. Our formula preprocessing
significantly improves the overall performance of Mona. Third, we employed automata
in string constraint solving. We expressed solving of quadratic equations within the reg-
ular model checking framework. Our approach reduces redundancies in the Nielsen proof
graph. On top of that, we employed symbolic register transducers in order to obtain an
efficient procedure. We obtained promising results showing that our approach is orthogonal
to techniques implemented in state-of-the-art solvers.

The third part of the thesis deals with optimizations in rank-based Büchi automata
complementation. First, we proposed the optimization removing states with incompatible

174

rankings w.r.t. direct and delayed simulation computed on the original BA. Then, we took
a step further and proposed optimizations aiming (not only) at reducing the maximum
rank of a macrostate (and hence removing states and transitions that are not necessary for
acceptance of a word). Our experiments show that our techniques significantly improve
the original Schewe’s algorithm and that they are competitive with other state-of-the-art
approaches.

13.1 Further Directions
There are many possible directions for future work in the concerned areas. Note that we
already discussed some of these areas at the end of the corresponding chapters. Here, we
make just a brief summary.

Regarding the approximate reduction of NFAs, one option is to extend the set of consid-
ered reduction operations with a general quotienting of a given NFA w.r.t. an equivalence
taking into account the probabilistic model and/or the sample of string. This could lead
to some kind of model-driven approximate simulation (e.g., a variation of [93] proposed
for probabilistic processes). As another option we mention development of techniques for
learning probabilistic automata representing the input network traffic. Note that obtain-
ing a suitable probabilistic automaton for some network traffic is important not only in
our application but also, e.g., in detection of anomalies in the context of industrial control
systems, as shown, e.g., in [203], which the author of this thesis co-authored but which is
already not included into this thesis. This direction is, therefore, interesting from multiple
angles.

Concerning WSkS, unlike the classical automata-based procedure, which can be seen
as a bottom-up procedure (automata for a given formula are constructed inductively from
leaves), our decision procedure based on automata terms can be seen as a top-down pro-
cedure. Therefore, a natural question of a combination of these two approaches arises.
In particular, we could construct certain subformulae using the bottom-up approach and
then use the top-down approach. Future work could focus on the question when to switch
from the bottom-up to the top-down approach in order to obtain the best of both worlds.
Another direction could also be to investigate automata minimization in the context of our
automata-terms-based procedure. Regarding the preprocessing of WSkS formulae, there
is still a lot of space in obtaining more accurate models estimating the sizes of automata,
e.g., using neural networks instead of the currently used linear regression. Another direc-
tion consists in automated tuning of parameters for our preprocessing techniques, possibly
based on features of an input formula. In the case of string constraint solving, we could, as
a future work, consider encoding of a complete procedure, e.g., Makanin’s algorithm [197]
or the recompression algorithm [158] into the RMC framework.

Finally, we briefly discuss further directions related to our optimizations of Büchi au-
tomata complementation. One option is to extend our approach to other types of ω-
automata, e.g., transition-based generalized BAs (our preliminary considerations confirm
that it is possible). Further, we could consider a refinement of our techniques for the re-
duction of the maximum rank in order to obtain a procedure matching the upper bound
of complementation algorithms for various subclasses of BAs (e.g., semideterministic BAs).
Another direction could cover an extension of our techniques to language inclusion check-
ing. We could adjust the on-the-fly algorithm for language inclusion checking with pruning
techniques based on relations taking into account the structure of macrostates. Recall that
the on-the-fly language inclusion constructs a product of the first BA with a complement of

175

the second one while testing emptiness on-the-fly. One could also use simulation between
input BAs (direct, delay, fair) to remove macrostates with empty languages (without the
construction of reachable parts of the product automaton).

13.2 Publications Related to This Thesis
The results related to this thesis were published in the following papers. The approximate
reduction of NFAs with formal guarantees was published in the proceedings of TACAS’18
(Core A) [283] and later the extended version of this paper appeared in the STTT jour-
nal [307]. The lightweight approximate reduction appeared in the proceedings of FCCM’19
(Core A) [306]. The decision procedure for WS2S was published in the proceedings of
CADE-27 (Core A) [138] and the extended version of this paper was accepted to appear
in the Journal of Automated Reasoning [137]. The preprocessing techniques for WSkS were
presented in the proceedings of LPAR’20 (Core A) [141]. Our approach to string constraint
solving appeared in the proceedings of APLAS’20 (Core B) [76]. Simulations in rank-based
Büchi automata complementation were published in the proceedings of APLAS’19 (Core
B) [75] and further optimizations leading to an efficient rank-based complementation ap-
peared as a technical report [139] and it was submitted to CONCUR’21 [140]. The author’s
contribution to the publications is summarized below.

• TACAS’18 [283], STTT journal [307]: development of the main ideas related to ap-
proximate reduction and formal guarantees (including formulation of theorems and
proofs), implementation, experimental evaluation, a part of writing.

• FCCM’19 [306]: proposal of the topic, development of ideas related to approximate
reduction of NFAs, evaluation of the reduction, a part of implementation and writing.

• CADE-27 [138], JAR [137]: development of the main ideas related to automata terms
for WS2S (including formulation of theorems and proofs), implementation, experi-
mental evaluation, a part of writing.

• APLAS’19 [75]: development of the main ideas of use of simulations in rank-based
complementation (including formulation of theorems and proofs), implementation,
experimental evaluation, a part of writing.

• LPAR’20 [141]: development of the main ideas related to static modifications of WSkS
formulae, implementation, experimental evaluation, a part of writing.

• APLAS’20 [76]: development of ideas related to string solving using RMC (includ-
ing formulation of theorems and proofs), implementation, experimental evaluation,
a significant part of writing.

• Technical report [139], CONCUR’21 submission [140]: development of the main ideas
concerning ranking restrictions (including formulation of theorems and proofs), im-
plementation, a significant part of writing.

176

Bibliography

[1] IEEE standard for ethernet – amendment 10: Media access control parameters,
physical layers, and management parameters for 200 Gb/s and 400 Gb/s operation.
IEEE std 802.3bs-2017 (2017)

[2] Cisco annual internet report (2018–2023) white paper. Report, Cisco Systems
(2020), https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.pdf

[3] The R project for statistical computing (2020), https://www.r-project.org/

[4] Abdulla, P.A., Bouajjani, A., Holík, L., Kaati, L., Vojnar, T.: Computing
simulations over tree automata. In: Proceedings of TACAS’08. LNCS, vol. 4963, pp.
93–108. Springer (2008)

[5] Abdulla, P.A., Holík, L., Kaati, L., Vojnar, T.: A uniform (bi-)simulation-based
framework for reducing tree automata. Electronic Notes in Theoretical Computer
Science 251, 27–48 (2009)

[6] Abdulla, P.A.: Regular model checking. International Journal on Software Tools for
Technology Transfer 14(2), 109–118 (2012)

[7] Abdulla, P.A., Atig, M.F., Chen, Y.F., Diep, B.P., Holík, L., Rezine, A., Rümmer,
P.: Flatten and conquer: a framework for efficient analysis of string constraints. In:
Proceedings of PLDI’17. pp. 602–617. ACM (2017)

[8] Abdulla, P.A., Atig, M.F., Chen, Y.F., Diep, B.P., Holík, L., Rezine, A., Rümmer,
P.: Trau: SMT solver for string constraints. In: Proceedings of FMCAD’18. pp. 1–5.
IEEE (2018)

[9] Abdulla, P.A., Atig, M.F., Chen, Y.F., Holík, L., Rezine, A., Rümmer, P., Stenman,
J.: String constraints for verification. In: Proceedings of CAV’14. LNCS, vol. 8559,
pp. 150–166 (2014)

[10] Abdulla, P.A., Atig, M.F., Chen, Y.F., Holík, L., Rezine, A., Rümmer, P., Stenman,
J.: Norn: An SMT solver for string constraints. In: Proceedings of CAV’15. LNCS,
vol. 9206, pp. 462–469 (2015)

[11] Abdulla, P.A., Atig, M.F., Diep, B.P., Holík, L., Janků, P.: Chain-free string
constraints. In: Proceedings of ATVA’19. LNCS, vol. 11781, pp. 277–293 (2019)

[12] Abdulla, P.A., Chen, Y.F., Clemente, L., Holík, L., Hong, C.D., Mayr, R., Vojnar,
T.: Simulation subsumption in Ramsey-based Büchi automata universality and

177

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.r-project.org/

inclusion testing. In: Proceedings of CAV’10. LNCS, vol. 6174, pp. 132–147.
Springer (2010)

[13] Abdulla, P.A., Chen, Y.F., Clemente, L., Holík, L., Hong, C., Mayr, R., Vojnar, T.:
Advanced Ramsey-based Büchi automata inclusion testing. In: Proceedings of
CONCUR’11. LNCS, vol. 6901, pp. 187–202. Springer (2011)

[14] Abdulla, P.A., Chen, Y.F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets
antichains. In: Proceedings of TACAS’10. LNCS, vol. 6015, pp. 158–174. Springer
(2010)

[15] Aickelin, U., Twycross, J., Hesketh-Roberts, T.: Rule generalisation in intrusion
detection systems using Snort. International Journal of Electronic Security and
Digital Forensics 1, 101–116 (2008)

[16] Allred, J.D., Ultes-Nitsche, U.: A simple and optimal complementation algorithm
for Büchi automata. In: Proceedings of LICS’18. pp. 46–55. ACM (2018)

[17] Almutairi, A.H., Abdelmajeed, N.T.: Innovative signature based intrusion detection
system: Parallel processing and minimized database. In: Proceedings of FADS’17.
pp. 114–119. IEEE (2017)

[18] Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

[19] Assante, M.J., Lee, R.M., Conway, T.: Modular ICS malware. Technical report,
Electricity Information Sharing and Analysis Center (E-ISAC) (2017)

[20] Avalle, M., Risso, F., Sisto, R.: Scalable algorithms for NFA multi-striding and
NFA-based deep packet inspection on GPUs. IEEE/ACM Transactions on
Networking 24(3), 1704–1717 (2016)

[21] Aydin, A., Eiers, W., Bang, L., Brennan, T., Gavrilov, M., Bultan, T., Yu, F.:
Parameterized model counting for string and numeric constraints. In: Proceedings
of ESEC/FSE’18. pp. 400–410. ACM (2018)

[22] Aziz, A., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.: Sequential
synthesis using S1S. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 19(10), 1149–1162 (2000)

[23] Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křetínský, J., Müller, D.,
Parker, D., Strejček, J.: The Hanoi omega-automata format. In: Proceedings of
CAV’15. LNCS, vol. 9206, pp. 479–486. Springer (2015)

[24] Badr, A.: Hyper-minimization in O(n2). In: Proceedings of CIAA’08. LNCS,
vol. 5148, pp. 223–231. Springer (2008)

[25] Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

[26] Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov
chains and unambiguous Büchi automata. In: Proceedings of CAV’16. LNCS,
vol. 9779, pp. 23–42. Springer (2016)

178

[27] Balajinath, B., Raghavan, S.: Intrusion detection through learning behavior model.
Computer Communications 24(12), 1202–1212 (2001)

[28] Balman, M., Pouyoul, E., Yao, Y., Bethel, E.W., Loring, B., Prabhat, M., Shalf, J.,
Sim, A., Tierney, B.: Experiences with 100Gbps network applications. In:
Proceedings of DIDC’12. pp. 33–42. ACM (2012)

[29] Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. Logical
Methods in Computer Science 9(3), 1–44 (2013)

[30] Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: fast acceleration of symbolic
transition systems. In: Proceedings of CAV’03. LNCS, vol. 2725, pp. 118–121.
Springer (2003)

[31] Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of CAV’11. LNCS, vol. 6806, pp.
171–177. Springer (2011)

[32] Basin, D., Klarlund, N.: Automata based symbolic reasoning in hardware
verification. In: Proceedings of CAV’95. LNCS, vol. 939, pp. 349–361. Springer
(1995)

[33] Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S systems to
verify parameterized networks. In: Proceedings of TACAS’00. LNCS, vol. 1785, pp.
188–203. Springer (2000)

[34] Beal, M., Crochemore, M.: Minimizing local automata. In: Proceedings of ISIT’07.
pp. 1376–1380. IEEE (2007)

[35] Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet
inspection. In: Proceedings of CoNEXT’07. pp. 1–12. ACM (2007)

[36] Becchi, M., Crowley, P.: Efficient regular expression evaluation: Theory to practice.
In: Proceedings of ANCS’08. pp. 50–59. ACM (2008)

[37] Becchi, M., Crowley, P.: Extending finite automata to efficiently match
perl-compatible regular expressions. In: Proceedings of CoNEXT’08. pp. 1–12. ACM
(2008)

[38] Becchi, M., Wiseman, C., Crowley, P.: Evaluating regular expression matching
engines on network and general purpose processors. In: Proceedings of ANCS’09.
pp. 30–39. ACM (2009)

[39] Benedikt, M., Lenhardt, R., Worrell, J.: Model checking Markov chains against
unambiguous Büchi automata. CoRR abs/1405.4560v2 (2016)

[40] Berdine, J.: Private communication (2015)

[41] Berman, L.: The complexity of logical theories. Theoretical Computer Science
11(1), 71–77 (1980)

[42] Berstel, J.: Transductions and context-free languages. Vieweg+Teubner Verlag
(1979)

179

[43] Berstel, J., Boasson, L., Carton, O., Fagnot, I.: Minimization of automata. CoRR
abs/1010.5318 (2010)

[44] Bibel, W.: An approach to a systematic theorem proving procedure in first-order
logic. Computing 12(1), 43–55 (1974)

[45] Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for
string-manipulating programs. In: Proceedings of TACAS’09. LNCS, vol. 5505, pp.
307–321 (2009)

[46] Blahoudek, F., Duret-Lutz, A., Strejček, J.: Seminator 2 can complement
generalized Büchi automata via improved semi-determinization. In: Proceedings of
CAV’20. LNCS, vol. 12225, pp. 15–27. Springer (2020)

[47] Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.: Complementing
semi-deterministic Büchi automata. In: Proceedings of TACAS’16. LNCS, vol. 9636,
pp. 770–787. Springer (2016)

[48] Bodeveix, J., Filali, M.: FMona: a tool for expressing validation techniques over
infinite state systems. In: Proceedings of TACAS’00. LNCS, vol. 1785, pp. 204–219.
Springer (2000)

[49] Boigelot, B.: Lash: Liège automata-based symbolic handler.
https://people.montefiore.uliege.be/boigelot/research/lash/index.html,
[Online; accessed 2021-02-03]

[50] Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding
linear arithmetic with integer and real variables. In: Proceedings of IJCAR’01.
LNCS, vol. 2083, pp. 611–625. Springer (2001)

[51] Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Proceedings of
CAV’94. LNCS, vol. 818, pp. 55–67. Springer (1994)

[52] Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to
congruence. In: Proceedings of POPL’13. pp. 457–468. ACM (2013)

[53] Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-based
universality and inclusion testing over nondeterministic finite tree automata. In:
Proceedings of CIAA’08. LNCS, vol. 5148, pp. 57–67. Springer (2008)

[54] Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. International Journal on Software Tools for Technology Transfer
14(2), 167–191 (2012)

[55] Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Proceedings of CAV’04. LNCS, vol. 3114, pp. 372–386. Springer (2004)

[56] Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Proceedings of CAV’00. LNCS, vol. 1855, pp. 403–418 (2000)

[57] Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and finite
automata. In: Proceedings of CAAP’96. LNCS, vol. 1059, pp. 30–43. Springer (1996)

180

https://people.montefiore.uliege.be/boigelot/research/lash/index.html

[58] Bozga, M., Iosif, R., Sifakis, J.: Structural invariants for parametric verification of
systems with almost linear architectures. CoRR abs/1902.02696 (2019)

[59] Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Proceedings of CAV’10. LNCS, vol. 6174, pp. 227–242. Springer (2010)

[60] Breuers, S., Löding, C., Olschewski, J.: Improved Ramsey-based Büchi
complementation. In: Proceedings of FOSSACS’12. LNCS, vol. 7213, pp. 150–164.
Springer (2012)

[61] Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Program verification via Craig
interpolation for Presburger arithmetic with arrays. In: Proceedings of VERIFY’10.
EPiC Series in Computing, vol. 3, pp. 31–46. EasyChair (2012)

[62] Brodie, B.C., Taylor, D.E., Cytron, R.K.: A scalable architecture for
high-throughput regular-expression pattern matching. In: Proceedings of ISCA’06.
pp. 191–202. IEEE (2006)

[63] Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for
definite events. In: Mathematical theory of Automata, MRI Symposia Series,
vol. 12, pp. 529–561. Polytechnic Press, N.Y. (1962)

[64] Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and
undecidable extensions of this theory. In: The Collected Works of J. Richard Büchi,
pp. 671–683 (1990)

[65] Buchi, J.R.: On a decision method in restricted second-order arithmetic. In:
International Congress on Logic, Methodology, and Philosophy of Science. pp. 1–11.
Stanford University Press (1962)

[66] Büchi, J.R.: Weak second-order arithmetic and finite automata. Technical report,
The University of Michigan (1959), http://hdl.handle.net/2027.42/3930

[67] Bultan, T., Gerber, R., Pugh, W.: Model-checking concurrent systems with
unbounded integer variables: Symbolic representations, approximations, and
experimental results. ACM Transactions on Programming Languages and Systems
21(4), 747–789 (1999)

[68] Bustan, D., Grumberg, O.: Simulation based minimization. In: Proceedings of
CADE-17. LNCS, vol. 1831, pp. 255–270. Springer (2000)

[69] Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
In: Proceedings of WIA’98. LNCS, vol. 1660, pp. 43–56. Springer (1999)

[70] Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating interpolation-based
model-checking. In: Proceedings of TACAS’08. LNCS, vol. 4963, pp. 428–442.
Springer (2008)

[71] Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Proceedings of ICGI’94. LNCS, vol. 862, pp. 139–152.
Springer (1994)

181

http://hdl.handle.net/2027.42/3930

[72] Cascarano, N., Rolando, P., Risso, F., Sisto, R.: INFAnt: NFA pattern matching on
GPU devices. SIGCOMM Computer Communication Review 40(5), 20–26 (2010)

[73] Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string
constraints with the ReplaceAll function. In: Proceedings of POPL’17. pp. 1–29.
ACM (2018)

[74] Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. Proceedings of
POPL’19 pp. 1–30 (2019)

[75] Chen, Y.F., Havlena, V., Lengál, O.: Simulations in rank-based Büchi automata
complementation. In: Proceedings of APLAS’19. LNCS, vol. 11893, pp. 447–467.
Springer (2019)

[76] Chen, Y.F., Havlena, V., Lengál, O., Turrini, A.: A symbolic algorithm for the
case-split rule in string constraint solving. In: Proceedings of APLAS’20. LNCS, vol.
12470, pp. 343–363. Springer (2020)

[77] Chen, Y.F., Heizmann, M., Lengál, O., Li, Y., Tsai, M., Turrini, A., Zhang, L.:
Advanced automata-based algorithms for program termination checking. In:
Proceedings of PLDI’18. pp. 135–150. ACM (2018)

[78] Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Science of
Computer Programming 77(9), 1006–1036 (2012)

[79] Clark, C.R., Schimmel, D.E.: Efficient reconfigurable logic circuits for matching
complex network intrusion detection patterns. In: Proceedings of FPL’03. LNCS,
vol. 2778, pp. 956–959. Springer (2003)

[80] Clemente, L.: Büchi automata can have smaller quotients. In: Proceedings of
ICALP’11. LNCS, vol. 6756, pp. 258–270. Springer (2011)

[81] Collier, K.: Major hospital system hit with cyberattack, potentially largest in u.s.
history (2020), https://www.nbcnews.com/tech/security/cyberattack-hits-
major-u-s-hospital-system-n1241254, [Online; Accessed: 2021-02-17]

[82] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2008)

[83] Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger
arithmetic. In: Proceedings of CAV’98. LNCS, vol. 1427, pp. 268–279. Springer
(1998)

[84] Cooper, D.C.: Theorem proving in arithmetic without multiplication. Machine
intelligence 7, 91–100 (1972)

[85] Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state
probabilistic programs. In: Proceedings of SFCS’88. pp. 338–345. IEEE (1988)

[86] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL’78. pp. 84–96. ACM (1978)

182

https://www.nbcnews.com/tech/security/cyberattack-hits-major-u-s-hospital-system-n1241254
https://www.nbcnews.com/tech/security/cyberattack-hits-major-u-s-hospital-system-n1241254

[87] Csanky, L.: Fast parallel matrix inversion algorithms. In: Proceedings of SFCS’75.
pp. 11–12 (1975)

[88] Cécé, G.: Foundation for a series of efficient simulation algorithms. In: Proceedings
of LICS’17. pp. 1–12. IEEE (2017)

[89] D’Antoni, L., et al: AutomatArk: LTL-finite (M2L-Str) (2018), https:
//github.com/lorisdanto/automatark/tree/master/m2l-str/LTL-finite

[90] D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: Proceedings of
POPL’14. pp. 541–554. ACM (2014)

[91] D’Antoni, L., Veanes, M.: Monadic second-order logic on finite sequences. In:
Proceedings of POPL’17. pp. 232–245. ACM (2017)

[92] David, J.: Average complexity of Moore’s and Hopcroft’s algorithms. Theoretical
Computer Science 417, 50–65 (2012)

[93] Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic
processes: Logic, simulation and games. In: Proceedings of QEST’18. pp. 264–273.
IEEE (2008)

[94] Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer (2009)

[95] Diekert, V.: Makanin’s Algorithm, pp. 387–442 (2002)

[96] Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simulation
preorders. In: Proceedings of CAV’92. LNCS, vol. 575, pp. 255–265. Springer (1992)

[97] Doner, J.E.: Decidability of the weak second-order theory of two successors. Notices
of the American Mathematical Society 12 (1965)

[98] Doner, J.: Tree acceptors and some of their applications. Journal of Computer and
System Sciences 4(5), 406–451 (1970)

[99] Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In: Proceedings
of TACAS’10. LNCS, vol. 6015, pp. 2–22. Springer (2010)

[100] Durand-Gasselin, A., Habermehl, P.: On the use of non-deterministic automata for
Presburger arithmetic. In: Proceedings of CONCUR’10. LNCS, vol. 6269, pp.
373–387. Springer (2010)

[101] Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Proceedings of
ATVA’16. LNCS, vol. 9938, pp. 122–129. Springer (2016)

[102] Durnev, V.G., Zetkina, O.V.: On equations in free semigroups with certain
constraints on their solutions. Journal of Mathematical Sciences 158(5), 671–676
(2009)

[103] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In:
Proceedings of CAV’06. LNCS, vol. 4144, pp. 81–94. Springer (2006)

[104] Egly, U.: On the value of antiprenexing. In: Proceedings of LPAR’94. LNCS,
vol. 822, pp. 69–83. Springer (1994)

183

https://github.com/lorisdanto/automatark/tree/master/m2l-str/LTL-finite
https://github.com/lorisdanto/automatark/tree/master/m2l-str/LTL-finite

[105] Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: New techniques for WS1S and
WS2S. In: Proceedings of CAV’98. LNCS, vol. 1427, pp. 516–520. Springer (1998)

[106] Esparza, J.: Automata Theory: An algorithmic approach (2017)

[107] Etessami, K., Wilke, T., Schuller, R.: Fair simulation relations, parity games, and
state space reduction for Büchi automata. SIAM Journal on Computing 34(5),
1159–1175 (2005)

[108] Etessami, K.: A hierarchy of polynomial-time computable simulations for automata.
In: Proceedings of CONCUR’02. LNCS, vol. 2421, pp. 131–144. Springer (2002)

[109] Farwer, B.: omega-automata. In: Automata, Logics, and Infinite Games: A Guide
to Current Research. pp. 3–20 (2001)

[110] Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., Di Pietro, A.: An
improved DFA for fast regular expression matching. SIGCOMM Computer
Communication Review 38(5), 29–40 (2008)

[111] Fiedor, T., Holík, L., Janků, P., Lengál, O., Vojnar, T.: Lazy automata techniques
for WS1S. In: Proceedings of TACAS’17. LNCS, vol. 10205, pp. 407–425. Springer
(2017)

[112] Fiedor, T., Holík, L., Lengál, O., Vojnar, T.: Nested antichains for WS1S. Acta
Informatica 56(3), 205–228 (2019)

[113] Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Presburger arithmetic.
In: Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 122–135.
Springer (1998)

[114] Fortune, S., Wyllie, J.: Parallelism in random access machines. In: Proceedings of
STOC’78. pp. 114–118. ACM (1978)

[115] Friedgut, E., Kupferman, O., Vardi, M.: Büchi complementation made tighter.
International Journal of Foundations of Computer Science 17, 851–868 (2006)

[116] Fritz, C., Wilke, T.: Simulation relations for alternating Büchi automata.
Theoretical Computer Science 338(1), 275–314 (2005)

[117] Fukač, T., Košař, V., Kořenek, J., Matoušek, J.: Increasing throughput of intrusion
detection systems by hash-based short string pre-filter. In: Proceedings of LCN’20.
pp. 509–514. IEEE (2020)

[118] Ganesh, V., Berzish, M.: Undecidability of a theory of strings, linear arithmetic over
length, and string-number conversion. CoRR abs/1605.09442 (2016)

[119] Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Proceedings of HVC’12. LNCS, vol. 7857, pp.
209–226 (2012)

[120] Gange, G., Ganty, P., Stuckey, P.J.: Fixing the state budget: Approximation of
regular languages with small DFAs. In: Proceedings of ATVA’17. LNCS, vol. 10482,
pp. 67–83. Springer (2017)

184

[121] Ganzow, T., Kaiser, L.: New algorithm for weak monadic second-order logic on
inductive structures. In: Proceedings of CSL’10. LNCS, vol. 6247, pp. 366–380.
Springer (2010)

[122] Gawrychowski, P., Jeż, A.: Hyper-minimisation made efficient. In: Proceedings of
MFCS’09. LNCS, vol. 5734, pp. 356–368. Springer (2009)

[123] Gheerbrant, A., Cate, B.t.: Complete axiomatizations of fragments of monadic
second-order logic on finite trees. Logical Methods in Computer Science 8(4) (2012)

[124] Gleick, J.: A bug and a crash: Sometimes a bug is more then a nuisance.
https://around.com/ariane.html (1996), [Online; Accessed: 2021-04-20]

[125] Glenn, J., Gasarch, W.: Implementing WS1S via finite automata. In: Proceedings of
WIA’96. LNCS, vol. 1260, pp. 50–63. Springer (1996)

[126] Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Proceedings of CAV’90. LNCS, vol. 531, pp. 176–185. Springer (1990)

[127] Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Proceedings of PLDI’05. pp. 213–223. ACM (2005)

[128] Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation
analysis. In: Proceedings of SAS’06. LNCS, vol. 4134, pp. 144–160. Springer (2006)

[129] Gonnord, L., Schrammel, P.: Abstract acceleration in linear relation analysis.
Science of Computer Programming 93, 125–153 (2014)

[130] Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Proceedings of PLDI’11. pp. 62–73. ACM (2011)

[131] Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: Proceedings of PLDI’08. pp. 281–292. ACM (2008)

[132] Gurumurthy, S., Bloem, R., Somenzi, F.: Fair simulation minimization. In:
Proceedings of CAV’02. LNCS, vol. 2404, pp. 610–623. Springer (2002)

[133] Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing
nondeterministic Büchi automata. In: Proceedings of CHARME’03. LNCS,
vol. 2860, pp. 96–110. Springer (2003)

[134] Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. Formal Methods in System Design 41(1),
83–106 (2012)

[135] Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over
unbounded domains. In: Proceedings of FMCAD’10. pp. 101–109. IEEE (2010)

[136] Hartmanns, A., Wendler, P.: TACAS 2018 artifact evaluation VM. In: Figshare
(2018), https://doi.org/10.6084/m9.figshare.5896615

[137] Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Automata terms in a lazy WSkS
decision procedure. Journal of Automated Reasoning (To Appear)

185

https://around.com/ariane.html
https://doi.org/10.6084/m9.figshare.5896615

[138] Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Automata terms in a lazy WSkS
decision procedure. In: Proceedings of CADE-27. LNCS, vol. 11716, pp. 300–318.
Springer (2019)

[139] Havlena, V., Lengál, O.: Reducing (to) the ranks: Efficient rank-based Büchi
automata complementation (technical report). CoRR abs/2010.07834 (2020)

[140] Havlena, V., Lengál, O.: Reducing (to) the ranks: Efficient rank-based Büchi
automata complementation. Submitted to CONCUR’21 (2021)

[141] Havlena, V., Holík, L., Lengál, O., Valeš, O., Vojnar, T.: Antiprenexing for WSkS:
A little goes a long way. In: Proceedings of LPAR’20. pp. 298–316. EasyChair (2020)

[142] Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning
terminating programs. In: Proceedings of CAV’14. LNCS, vol. 8559, pp. 797–813.
Springer (2014)

[143] Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T.,
Sandholm, A.: Mona: Monadic second-order logic in practice. In: Proceedings of
TACAS’95. LNCS, vol. 1019, pp. 89–110. Springer (1995)

[144] Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: Proceedings of FOCS’95. pp. 453–462. IEEE (1995)

[145] Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Information and
Computation 173(1), 64–81 (2002)

[146] Hogben, L.: Handbook of Linear Algebra. CRC Press, 2nd edn. (2013)

[147] Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating
interpolants. In: Proceedings of ATVA’12. LNCS, vol. 7561, pp. 187–202. Springer
(2012)

[148] Holík, L., Janků, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. In: Proceedings of POPL’18. pp.
1–32. ACM (2018)

[149] Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Technical report (1971)

[150] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (2006)

[151] Hsieh, C.L., Vespa, L., Weng, N.: A high-throughput DPI engine on GPU via
algorithm/implementation co-optimization. Journal of Parallel and Distributed
Computing 88, 46–56 (2016)

[152] Hune, T., Sandholm, A.: A case study on using automata in control synthesis. In:
Proceedings of FASE’00. LNCS, vol. 1783, pp. 349–362. Springer (2000)

[153] Ilie, L., Navarro, G., Yu, S.: On NFA Reductions. In: Theory is Forever, LNCS,
vol. 3113, pp. 112–124. Springer (2004)

186

[154] Ilie, L., Solis-Oba, R., Yu, S.: Reducing the size of NFAs by using equivalences and
preorders. In: Proceedings of CPM’05. LNCS, vol. 3537, pp. 310–321. Springer
(2005)

[155] Iosif, R., Rogalewicz, A., Šimáček, J.: The tree width of separation logic with
recursive definitions. In: Proceedings of CADE-24. LNCS, vol. 7898, pp. 21–38.
Springer (2013)

[156] Jamshed, M.A., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y., Park, K.:
Kargus: A highly-scalable software-based intrusion detection system. In:
Proceedings of CCS’12. pp. 317–328. ACM (2012)

[157] Jensen, J.L., Jørgensen, M.E., Klarlund, N., Schwartzbach, M.I.: Automatic
verification of pointer programs using monadic second-order logic. SIGPLAN
Notices 32(5), 226–234 (1997)

[158] Jeundefined, A.: Recompression: A simple and powerful technique for word
equations. Journal of the ACM 63(1) (2016)

[159] Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on
Computing 22(6), 1117–1141 (1993)

[160] Jin Kim, Nara Shin, Jo, S.Y., Sang Hyun Kim: Method of intrusion detection using
deep neural network. In: Proceedings of BIGCOMP’17. pp. 313–316. IEEE (2017)

[161] Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of
Büchi automata unified. In: Proceedings of ICALP’08. LNCS, vol. 5125, pp.
724–735. Springer (2008)

[162] Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science
134(2), 329–363 (1994)

[163] Karmarkar, H., Chakraborty, S.: On minimal odd rankings for Büchi
complementation. In: Proceedings of ATVA’09. LNCS, vol. 5799, pp. 228–243.
Springer (2009)

[164] Kaštil, J., Kořenek, J.: Hardware accelerated pattern matching based on
deterministic finite automata with perfect hashing. In: Proceedings of DDECS’10.
pp. 149–152. IEEE (2010)

[165] Kaštil, J., Kořenek, J.: High speed pattern matching algorithm based on
deterministic finite automata with faulty transition table. In: Proceedings of
ANCS’10. pp. 1–2. IEEE (2010)

[166] Kaštil, J., Kořenek, J., Lengál, O.: Methodology for fast pattern matching by
deterministic finite automaton with perfect hashing. In: Proceedings of DSD’09. pp.
823–829 (2009)

[167] Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
A solver for word equations over strings, regular expressions, and context-free
grammars. ACM Transactions on Software Engineering and Methodology 21(4),
25:1–25:28 (2012)

187

[168] King, J.C.: Symbolic execution and program testing. Communications of the ACM
19(7), 385–394 (1976)

[169] Klaedtke, F.: Bounds on the automata size for Presburger arithmetic. ACM
Transactions on Computational Logic 9(2) (2008)

[170] Klarlund, N., Nielsen, M., Sunesen, K.: A case study in automated verification
based on trace abstractions. In: Formal System Specification, LNCS, vol. 1169, pp.
341–373. Springer (1996)

[171] Klarlund, N.: A theory of restrictions for logics and automata. In: Proceedings of
CAV’99. LNCS, vol. 1633, pp. 406–417. Springer (1999)

[172] Klarlund, N., Møller, A.: MONA Version 1.4 User Manual (2001),
http://www.brics.dk/mona/, revision of BRICS NS-98-3

[173] Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets.
International Journal of Foundations of Computer Science 13(4), 571–586 (2002)

[174] Klarlund, N., Nielsen, M., Sunesen, K.: Automated logical verification based on
trace abstractions. In: Proceedings of PODC’96. pp. 101–110. ACM (1996)

[175] Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic
ω-automata. In: Proceedings of CIAA’07. LNCS, vol. 4783, pp. 51–61. Springer
(2007)

[176] Körner, H.: On minimizing cover automata for finite languages in O(n log n) time.
In: Proceedings of CIAA’02. LNCS, vol. 2608, pp. 117–127. Springer (2002)

[177] Kořenek, J., Kobierský, P.: Intrusion detection system intended for multigigabit
networks. In: Proceedings of DDECS’07. pp. 1–4. IEEE (2007)

[178] Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer, 1st edn. (2008)

[179] Kumar, S., Chandrasekaran, B., Turner, J., Varghese, G.: Curing regular
expressions matching algorithms from insomnia, amnesia, and acalculia. In:
Proceedings of ANCS’07. pp. 155–164. ACM, New York, NY, USA (2007)

[180] Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. In:
Proceedings of SIGCOMM’06. pp. 339–350. ACM (2006)

[181] Kumar, S., Turner, J.S., Williams, J.: Advanced algorithms for fast and scalable
deep packet inspection. In: Proceedings of ANCS’06. pp. 81–92. ACM (2006)

[182] Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(3), 408–429 (2001)

[183] Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time.
Journal of Computer and System Sciences 35(1), 59–71 (1987)

[184] Le, Q.L., He, M.: A decision procedure for string logic with quadratic equations,
regular expressions and length constraints. In: Proceedings of APLAS’18. LNCS,
vol. 11275, pp. 350–372 (2018)

188

http://www.brics.dk/mona/

[185] Levi, F.W.: On semigroups. Bulletin of the Calcutta Mathematical Society 36,
141–146 (1944)

[186] Li, Y., Sun, X., Turrini, A., Chen, Y.F., Xu, J.: ROLL 1.0: ω-regular language
learning library. In: Proceedings of TACAS’19. LNCS, vol. 11427, pp. 365–371.
Springer (2019)

[187] Li, Y., Turrini, A., Zhang, L., Schewe, S.: Learning to complement Büchi automata.
In: Proceedings of VMCAI’18. LNCS, vol. 10747, pp. 313–335. Springer (2018)

[188] Li, Y., Vardi, M.Y., Zhang, L.: On the power of unambiguity in Büchi
complementation. In: Proceedings of GandALF’20. EPTCS, vol. 326, pp. 182–198.
Open Publishing Association (2020)

[189] Liang, T., Reynolds, A., Tinelli, C., Barrett, C.W., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Proceedings of CAV’14.
LNCS, vol. 8559, pp. 646–662 (2014)

[190] Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: Proceedings of POPL’16. pp.
123–136. ACM (2016)

[191] Lin, A.W., Majumdar, R.: Quadratic word equations with length constraints,
counter systems, and Presburger arithmetic with divisibility. In: Proceedings of
ATVA’18. LNCS, vol. 11138, pp. 352–369 (2018)

[192] Lin, C., Huang, C., Jiang, C., Chang, S.: Optimization of pattern matching circuits
for regular expression on FPGA. IEEE Transactions on Very Large Scale
Integration Systems 15(12), 1303–1310 (2007)

[193] Lin, C., Liu, C., Chang, S.: Accelerating regular expression matching using
hierarchical parallel machines on GPU. In: Proceedings of GLOBECOM’11.
pp. 1–5. IEEE (2011)

[194] Luchaup, D., De Carli, L., Jha, S., Bach, E.: Deep packet inspection with DFA-trees
and parametrized language overapproximation. In: Proceedings of INFOCOM’14.
pp. 531–539. IEEE (2014)

[195] Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures
and data. In: Proceedings of POPL’11. pp. 611–622. ACM (2011)

[196] Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND.
In: Proceedings of SAS’11. LNCS, vol. 6887, pp. 43–59. Springer (2011)

[197] Makanin, G.S.: The problem of solvability of equations in a free semigroup.
Matematicheskii Sbornik 145(2), 147–236 (1977)

[198] Maletti, A., Quernheim, D.: Optimal hyper-minimization. International Journal of
Foundations of Computer Science 22(8), 1877–1891 (2011)

[199] Margaria, T., Steffen, B., Topnik, C.: Second-order value numbering. In:
Proceedings of GraMoT’10. ECEASST, vol. 30, pp. 1–15. EASST (2010)

189

[200] Matiyasevich, Y.: Computation paradigms in light of Hilbert’s tenth problem. In:
New computational paradigms, pp. 59–85. Springer (2008)

[201] Matiyasevich, Y.V.: A connection between systems of word and length equations
and Hilbert’s tenth problem. Zapiski Nauchnykh Seminarov POMI 8, 132–144
(1968)

[202] Matoušek, D., Kořenek, J., Puš, V.: High-speed regular expression matching with
pipelined automata. In: Proceedings of FPT’16. pp. 93–100. IEEE (2016)

[203] Matoušek, P., Ryšavý, O., Havlena, V., Grégr, M.: Flow based monitoring of ICS
communication in the smart grid. Journal of Information Security and Applications
2020(54), 1–16 (2020)

[204] Matoušek, D., Kořenek, J., Puš, V.: High-speed regular expression matching with
pipelined automata. In: Proceedings of FPT’16. pp. 93–100. IEEE (2016)

[205] Matt Jonkman et al.: Suricata (2017), http://suricata-ids.org

[206] Mayr, R., Clemente, L.: Advanced automata minimization. In: Proceedings of
POPL’13. pp. 63–74. ACM (2013)

[207] Mayr, R., Clemente, L.: Efficient reduction of nondeterministic automata with
application to language inclusion testing. Logical Methods in Computer Science 15,
1–73 (2019)

[208] Mayr, R., et al.: Reduce 2.4.5: A tool for minimizing nondeterministic finite-word
and Büchi automata. http://languageinclusion.org/doku.php?id=tools,
[Online; accessed 2017-09-30]

[209] McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

[210] Mealy, G.H.: A method for synthesizing sequential circuits. Bell System Technical
Journal 34(5), 1045–1079 (1955)

[211] Michel, M.: Complementation is more difficult with automata on infinite words.
CNET, Paris 15 (1988)

[212] Mohamed, A.B., Idris, N.B., Shanmugum, B.: A brief introduction to intrusion
detection system. In: Proceedings of IRAM’12. CCIC, vol. 330, pp. 263–271.
Springer (2012)

[213] Mohri, M.: Edit-distance of weighted automata. In: Proceedings of CIAA’02.
LNCS, vol. 2608, pp. 1–23. Springer (2002)

[214] Mohri, M.: A disambiguation algorithm for finite automata and functional
transducers. In: Proceedings of CIAA’12, LNCS, vol. 7381, pp. 265–277. Springer
(2012)

[215] Møller, A., Schwartzbach, M.: The pointer assertion logic engine. In: Proceedings of
PLDI’01. pp. 221–231. ACM (2001)

190

http://suricata-ids.org
http://languageinclusion.org/doku.php?id=tools

[216] Moore, F.E.: Gedanken-experiments on sequential machines. Annals of Mathematics
studies 34, 129–153 (1956)

[217] Morawietz, F., Cornell, T.: The MSO logic-automaton connection in linguistics. In:
Proceedings of LACL’97, LNAI, vol. 1582, pp. 112–131. Springer (1997)

[218] de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of
TACAS’08. LNCS, vol. 4963, pp. 337–340. Springer (2008)

[219] Nielsen, J.: Die isomorphismen der allgemeinen, unendlichen Gruppe mit zwei
Erzeugenden. Mathematische Annalen 78(1), 385–397 (1917)

[220] O’Kane, S.: Boeing finds another software problem on the 737 Max.
https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-
glitch-flaw-problem (2020), [Online; Accessed: 2021-04-20]

[221] Oppen, D.C.: A 22
2pn upper bound on the complexity of Presburger arithmetic.

Journal of Computer and System Sciences 16(3), 323–332 (1978)

[222] Osera, P.M.: Constraint-based type-directed program synthesis. In: Proceedings of
TyDe’19. pp. 64–76. ACM (2019)

[223] Papadimitriou, C.M.: Computational complexity. Addison-Wesley (1994)

[224] Parker, A.J., Yancey, K.B., Yancey, M.P.: Regular language distance and entropy.
CoRR abs/1602.07715 (2016)

[225] Păun, A., Sântean, N., Yu, S.: An O(n2) algorithm for constructing minimal cover
automata for finite languages. In: Proceedings of CIAA’00. LNCS, vol. 2088, pp.
243–251. Springer (2001)

[226] Peled, D.A.: All from one, one for all: on model checking using representatives. In:
Proceedings of CAV’93. LNCS, vol. 697, pp. 409–423. Springer (1993)

[227] Perrin, D., Pin, J.: Infinite words: Automata, Semigroups, Logic and Games. Pure
and Applied Mathematics, Elsevier (2004)

[228] Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proceedings of LICS’06. pp. 255–264. IEEE (2006)

[229] Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In:
Proceedings of FOCS’99. pp. 495–500. IEEE (1999)

[230] Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings
of STOC’06. pp. 467–476. ACM (2006)

[231] Presburger, M.: Über die vollständigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchem die addition als einzige operation hervortritt. In: Comptes
Rendus du I congres de Mathe- maticiens des Pays Slaves. pp. 92–101 (1929)

[232] Pugh, W., Wonnacott, D.: Constraint-based array dependence analysis. ACM
Transactions on Programming Languages and Systems 20(3), 635–678 (1998)

191

https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem
https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem

[233] Pugh, W., et al.: The omega project: Frameworks and algorithms for the analysis
and transformation of scientific programs.
http://www.cs.umd.edu/projects/omega/, [Online; accessed 2021-02-04]

[234] Puš, V., Tobola, J., Košař, V., Kaštil, J., Kořenek, J.: Netbench: Framework for
evaluation of packet processing algorithms. Proceedings of ANCS’11 pp. 95–96
(2011)

[235] Quine, W.V.: Concatenation as a basis for arithmetic. The Journal of Symbolic
Logic 11(4), 105–114 (1946)

[236] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3(2), 114–125 (1959)

[237] Rabin, M.O.: Decidability of second order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

[238] Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In:
Proceedings of LICS’07. pp. 171–180. IEEE (2007)

[239] Ranzato, F., Tapparo, F.: An efficient simulation algorithm based on abstract
interpretation. Information and Computation 208(1), 1–22 (2010)

[240] Rawlings, J.O., Pantula, S.G., Dickey, D.A.: Applied Regression Analysis: A
Research Tool. Springer, New York, 2nd edn. (1998)

[241] Redziejowski, R.: An improved construction of deterministic omega-automaton
using derivatives. Fundamenta Informaticae 119, 393–406 (2012)

[242] Reinhardt, K.: The Complexity of Translating Logic to Finite Automata, pp.
231–238. Springer (2002)

[243] Revuz, D.: Minimisation of acyclic deterministic automata in linear time.
Theoretical Computer Science 92(1), 181–189 (1992)

[244] Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling up
DPLL(T) string solvers using context-dependent simplification. In: Proceedings of
CAV’17. LNCS, vol. 10427, pp. 453–474 (2017)

[245] Robson, J.M., Diekert, V.: On quadratic word equations. In: Proceedings of
STACS’99. LNCS, vol. 1563, pp. 217–226. Springer (1999)

[246] Russel, R., et al.: Netfilter. http://netfilter.org

[247] Sadegh, G.: Complementing Büchi automata. Technical report, Laboratoire de
Recherche et Développement de l’Epita (2009)

[248] Safra, S.: On the complexity of ω-automata. In: Proceedings of FOCS’88. pp.
319–327. IEEE (1988)

[249] Sandholm, A., Schwartzbach, M.I.: Distributed safety controllers for web services.
In: Proceedings of FASE’98. LNCS, vol. 1382, pp. 270–284. Springer (1998)

[250] Schewe, S.: Büchi complementation made tight. In: Proceedings of STACS’09. pp.
661–672. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2009)

192

http://www.cs.umd.edu/projects/omega/
http://netfilter.org

[251] Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Proceedings of IWWERT’90. LNCS, vol. 572, pp. 85–150.
Springer (1990)

[252] Shashank, K., Balachandra, M.: Review on network intrusion detection techniques
using machine learning. In: Proceedings of DISCOVER’18. pp. 104–109. IEEE
(2018)

[253] Shützenberger, M.: On the definition of a family of automata. Information and
Control 4(2), 245–270 (1961)

[254] Sidhu, R., Prasanna, V.K.: Fast regular expression matching using FPGAs. In:
Proceedings of FCCM’01. pp. 227–238. IEEE (2001)

[255] Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science
49(2-3), 217–237 (1987)

[256] Smith, M.A., Klarlund, N.: Verification of a sliding window protocol using IOA and
MONA. In: Proceedings of FORTE/PSTV’00. IFIP, vol. 183, pp. 19–34. Kluwer
(2000)

[257] Smith, R., Estan, C., Jha, S.: XFA: Faster signature matching with extended
automata. In: Proceedings of SP’08. pp. 187–201. IEEE (2008)

[258] Solodovnikov, V.I.: Upper bounds on the complexity of solving systems of linear
equations. Journal of Soviet Mathematics 29(4), 1482–1501 (1985)

[259] Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In:
Proceedings of CAV’00. LNCS, vol. 1855, pp. 248–263. Springer (2000)

[260] Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection
signatures with context. In: Proceedings of CCS’03. pp. 262–271. ACM (2003)

[261] Sourdis, I., Bispo, J., Cardoso, J., Vassiliadis, S.: Regular expression matching in
reconfigurable hardware. Signal Processing Systems 51, 99–121 (2008)

[262] Spencer, H.: A Regular-Expression Matcher, pp. 35–71. Academic Press
Professional, Inc., USA (1994)

[263] StackStatus: Outage postmortem - july 20, 2016. https:
//stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
(2016), [Online; Accessed: 2021-04-20]

[264] Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time
(preliminary report). In: Fifth Annual ACM Symposium on Theory of Computing.
pp. 1–9. Proceedings of STOC’73, ACM (1973)

[265] Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata
constructions. In: Proceedings of LPAR’05. LNCS, vol. 3835, pp. 396–411. Springer
(2005)

[266] Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of
California Press (1951)

193

https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

[267] Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Transactions on Software Engineering and
Methodology 22(4), 33:1–33:33 (2013)

[268] Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical systems
theory 2(1), 57–81 (1968)

[269] The Snort Team: Snort, http://www.snort.org

[270] Thollard, F., Clark, A.: Learning stochastic deterministic regular languages. In:
Proceedings of ICGI’04. LNCS, vol. 3264, pp. 248–259. Springer (2004)

[271] Thompson, K.: Programming techniques: Regular expression search algorithm.
Communications of the ACM 11(6), 419–422 (1968)

[272] Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: a stand-alone tool and
jabc plugin for M2L(Str). In: Proceedings of SPIN’06. LNCS, vol. 3925, pp.
293–298. Springer (2006)

[273] Traytel, D.: A coalgebraic decision procedure for WS1S. In: Proceedings of CSL’15.
LIPIcs, vol. 41, pp. 487–503. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
(2015)

[274] Trinh, M.T., Chu, D.H., Jaffar, J.: S3: A symbolic string solver for vulnerability
detection in web applications. In: Proceedings of CCS’14. pp. 1232–1243. ACM
(2014)

[275] Trinh, M.T., Chu, D.H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Proceedings of CAV’16. LNCS, vol. 9779, pp. 218–240. Springer (2016)

[276] Tsai, M.H., Fogarty, S., Vardi, M.Y., Tsay, Y.K.: State of Büchi complementation.
In: Proceedings of CIAA’10. LNCS, vol. 6482, pp. 261–271. Springer (2011)

[277] Tsai, M.H., Tsay, Y.K., Hwang, Y.S.: GOAL for games, omega-automata, and
logics. In: Proceedings of CAV’13. LNCS, vol. 8044, pp. 883–889. Springer (2013)

[278] Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., Tierney, B.: The NIDS
cluster: Scalable, stateful network intrusion detection on commodity hardware. In:
Proceedings of RAID’07. LNCS, vol. 4637, pp. 107–126 (2007)

[279] Valmari, A.: Stubborn sets for reduced state space generation. In: Proceedings of
ICATPN’89. LNCS, vol. 483, pp. 491–515. Springer (1991)

[280] Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state
programs. pp. 327–338. Proceedings of SFCS’85, IEEE (1985)

[281] Vardi, M.Y., Wilke, T.: Automata: From logics to algorithms. Logic and Automata
2, 629–736 (2008)

[282] Češka, M., Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Approximate reduction of
finite automata for high-speed network intrusion detection. In: Figshare (2018),
https://doi.org/10.6084/m9.figshare.5907055

194

http://www.snort.org
https://doi.org/10.6084/m9.figshare.5907055

[283] Češka, M., Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Approximate reduction of
finite automata for high-speed network intrusion detection. In: Proceedings of
TACAS’18. LNCS, vol. 10806, pp. 155–175. Springer (2018)

[284] Vern Paxson et al.: The Bro Network Security Monitor (2018), http://www.bro.org

[285] Wang, H.: Toward mechanical mathematics. IBM Journal of Research and
Development 4(1), 2–22 (1960)

[286] Wang, H., Tsai, T., Lin, C., Yu, F., Jiang, J.R.: String analysis via automata
manipulation with logic circuit representation. In: Proceedings of CAV’16. LNCS,
vol. 9779, pp. 241–260. Springer (2016)

[287] Wang, L., Chen, S., Tang, Y., Su, J.: Gregex: GPU based high speed regular
expression matching engine. In: Proceedings of IMIS’11. pp. 366–370. IEEE (2011)

[288] Wang, Y., Zhou, M., Jiang, Y., Song, X., Gu, M., Sun, J.: A static analysis tool
with optimizations for reachability determination. In: Proceedings of ASE’17. pp.
925–930. IEEE (2017)

[289] Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative
tree data structures. In: Proceedings of CADE-23. LNCS, vol. 6803, pp. 476–491.
Springer (2011)

[290] Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger arithmetic
constraints. In: Proceedings of SAS’95. LNCS, vol. 983, pp. 21–32. Springer (1995)

[291] Wulf, M.D., Doyen, L., Raskin, J.F.: A lattice theory for solving games of imperfect
information. In: Proceedings of HSCC’06, LNCS, vol. 3927, pp. 153–168. Springer
(2006)

[292] Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algorithm
for checking universality of finite automata. In: Proceedings of CAV’06. LNCS,
vol. 4144, pp. 17–30. Springer (2006)

[293] Wulf, M.D., Doyen, L., Maquet, N., Raskin, J.: Antichains: Alternative algorithms
for LTL satisfiability and model-checking. In: Proceedings of TACAS’08. LNCS,
vol. 4963, pp. 63–77 (2008)

[294] Yan, Q.: Lower bounds for complementation of ω-automata via the full automata
technique. In: Proceedings of ICALP’06. LNCS, vol. 4052, pp. 589–600. Springer
(2006)

[295] Yang, J., Jiang, L., Bai, X., Peng, H., Dai, Q.: A high-performance round-robin
regular expression matching architecture based on FPGA. In: Proceedings of
ISCC’18. pp. 1–7. IEEE (2018)

[296] Yang, Y., Prasanna, V.: High-performance and compact architecture for regular
expression matching on FPGA. IEEE Transactions on Computers 61(7), 1013–1025
(2012)

[297] Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis tool
for PHP. In: Proceedings of TACAS’10. LNCS, vol. 6015, pp. 154–157. Springer
(2010)

195

http://www.bro.org

[298] Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Formal Methods in System Design 44(1), 44–70
(2014)

[299] Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and memory-efficient
regular expression matching for deep packet inspection. In: Proceedings of
ANCS’06. pp. 93–102. ACM (2006)

[300] Yu, F., Shueh, C.Y., Lin, C.H., Chen, Y.F., Wang, B.Y., Bultan, T.: Optimal
sanitization synthesis for web application vulnerability repair. In: Proceedings of
ISSTA’16. pp. 189–200. ACM (2016)

[301] Yun, S., Lee, K.: Optimization of regular expression pattern matching circuit using
at-most two-hot encoding on FPGA. In: Proceedings of FLP’10. pp. 40–43. IEEE
(2010)

[302] Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data
structures. In: Proceedings of POPL’08. pp. 349–361. ACM (2008)

[303] Zhao, Z., Sadok, H., Atre, N., Hoe, J.C., Sekar, V., Sherry, J.: Achieving 100Gbps
intrusion prevention on a single server. In: Proceedings of OSDI’20. pp. 1083–1100.
USENIX Association (2020)

[304] Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Berzish, M., Dolby, J., Zhang,
X.: Z3str2: an efficient solver for strings, regular expressions, and length
constraints. Formal Methods in System Design 50(2-3), 249–288 (2017)

[305] Zhou, M., He, F., Wang, B., Gu, M., Sun, J.: Array theory of bounded elements and
its applications. Journal of Automated Reasoning 52(4), 379–405 (2014)

[306] Češka, M., Havlena, V., Holík, L., Kořenek, J., Lengál, O., Matoušek, D., Matoušek,
J., Semrič, J., Vojnar, T.: Deep packet inspection in FPGAs via approximate
nondeterministic automata. In: Proceedings of FCCM’19. pp. 109–117. IEEE (2019)

[307] Češka, M., Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Approximate reduction of
finite automata for high-speed network intrusion detection. International Journal on
Software Tools for Technology Transfer (22), 523–539 (2019)

196

	Introduction
	Goals of the Thesis
	Overview of the Achieved Results
	Plan of the Thesis

	Preliminaries
	Languages
	Finite Automata
	Operations on Finite Automata

	Part I: Approximate Reduction of Finite Automata for NIDS
	Finite Automata in Network Intrusion Detection
	Network Intrusion Detection Systems
	Hardware-Accelerated Pattern Matching
	Reduction of Finite Automata
	Reduction of DFAs
	Reduction of NFAs
	Language Non-preserving Reduction

	Approximate Reduction of NFAs with Formal Guarantees
	Probabilistic Automata
	Probabilistic Distance
	Automata Reduction using Probabilistic Distance
	A Heuristic Approach to Approximate Reduction
	A General Algorithm for Size-Driven Reduction
	A General Algorithm for Error-Driven Reduction
	Pruning Reduction
	Self-loop Reduction

	Experimental Evaluation
	Network Traffic Model
	Evaluation
	The Real Impact in an FPGA-Accelerated NIDS

	Conclusion

	Lightweight Approximate Reduction of NFAs
	The FPGA Architecture
	Samples Driven Approximate Reduction of NFAs
	Border-pruning Reduction
	Merging Reduction

	Experimental Evaluation
	Reduction Trade-offs
	The Real Impact in an FPGA-Accelerated NIDS

	Conclusion
	Part II: Automata in Decision Procedures
	Automata in Decision Procedures
	Preliminaries
	Weak Monadic Second-order Logic of k Successors
	Syntax and Semantics
	Representing Models as Trees
	Decision Procedure for WSkS
	Applications

	Presburger Arithmetic
	Syntax and Semantics
	Representing Models as Words
	Decision Procedure for Presburger Arithmetic
	Applications

	Complexity, SkS, and Expressivity

	Automata Terms in a Lazy WSkS Decision Procedure
	The Explicit Decision Procedure
	Automata Terms
	Syntax of Automata Terms.
	Semantics of Terms.
	Properties of Terms.
	Terms of Formulae.

	An Efficient Decision Procedure
	Memoization
	Lazy Evaluation
	Subsumption
	Product Flattening
	Nondeterministic Union

	Experimental Evaluation
	Conclusion

	Antiprenexing for WSkS
	The Decision Procedure for WSkS in Mona
	Formula Transformations
	Cost of Deciding a Formula
	Quantifier Distribution and Scope Narrowing
	Supporting Rules
	Top-level Algorithm

	Automata Size Estimation
	Experimental Evaluation
	Conclusion

	Automata in String Constraint Solving
	Preliminaries
	Monadic Second-Order Logic on Strings
	Nielsen Transformation
	Regular Model Checking

	Solving Word Equations using RMC
	Issues of Nielsen Transformation
	Nielsen Transformation as Word Operations
	Symbolic Algorithm for Word Equations
	Towards Symbolic Encoding
	Symbolic Encoding of Quadratic Equations into RMC

	Solving a System of Word Equations using RMC
	Quadratic Case
	General Case

	Handling a Boolean Combination of String Constraints
	Extensions
	Length Constraints
	Regular Constraints

	Implementation
	Experimental Evaluation
	Conclusion
	Part III: Büchi Automata Complementation
	Büchi Automata Complementation
	Preliminaries
	Overview of the Complementation Techniques
	Rank-based Complementation
	Run DAGs
	Basic Rank-Based Complementation
	Complementation with Tight Rankings
	An Optimal Algorithm

	Simulations in Rank-Based Büchi Automata Complementation
	Simulations
	Purging Macrostates with Incompatible Rankings
	Proofs of Lemmas 11.2.1, 11.2.2, and 11.2.3

	Use after Simulation Quotienting
	Experimental Evaluation
	Conclusion

	Efficient Rank-based Complementation
	Super-tight Runs
	Optimized Complement Construction
	Delaying the Transition from Waiting to Tight
	Successor Rankings
	Rank Simulation
	Ranking Restriction
	Maximum Rank Construction
	Backing Off

	Experimental Evaluation
	Comparison of Rank-Based Procedures
	Comparison with Other Approaches
	Experimental Results for BAs from LTL formulae

	Conclusion

	Conclusion and Further Directions
	Further Directions
	Publications Related to This Thesis

	Bibliography

