
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

STATIC ANALYSIS OF C PROGRAMS
STATICKÁ ANALÝZA PROGRAMŮ V JAZYCE C

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. VIKTOR MALÍK
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
ŠKOLITEL

BRNO 2023

Abstract
This thesis proposes several original contributions to the area of static analysis of software
with focus on low-level systems code written in C. The contributions are split into two parts,
each related to a different area of static analysis, namely formal verification of (low-level) C
code and static analysis of semantic equivalence of different versions of the same software.

The first part proposes new analyses suitable for verification engines that perform au-
tomatic invariant inference using an SMT solver. The proposed solution includes two ab-
stract template domains that use logical formulae over bit-vectors to encode the shape of
the program heap and the contents of the program arrays. The shape domain is based on
computing a points-to relation between pointers and symbolic addresses of abstract mem-
ory objects. The array domain is based on splitting the arrays into several non-overlapping
contiguous segments and computing a different invariant for each of them. Both domains
can be combined with value domains in a straightforward manner, which particularly allows
our approach to reason about shapes and contents of heap and array structures at the same
time. The information obtained from the analyses can be used to prove memory safety
and reachability properties, expressed by user assertions, of programs manipulating data
structures. All of the proposed solutions have been implemented in the 2LS framework
and compared against state-of-the-art tools that perform the best in the relevant categories
of the well-known Software Verification Competition (SV-COMP). Results show that 2LS
outperforms these tools on benchmarks requiring combined reasoning about unbounded
data structures and their numerical contents.

The second part of the thesis is motivated by existence of software projects that undergo
regular refactorings and modifications and yet need to ensure semantic stability of some of
their core parts. This part proposes a highly-scalable approach for automatically checking
semantic equivalence of different versions of large, real-world C projects, with a particular
focus on the Linux kernel. The proposed method uses a novel combination of pattern
matching with light-weight static analysis and control-flow transformations. The method
checks preservation of the semantics of functions forming the API of the project being
analyzed as well as of the semantics of its global variables, which typically hold various
control parameters. For the latter, a specialised slicing procedure is proposed to slice out
code influenced by these variables and concentrate the further analysis on that code only.
Although the method cannot prove equivalence on heavily refactored code, it can compare
thousands of functions in the order of minutes while producing a low number of false non-
equality verdicts as our experiments show. The method has been implemented over the
LLVM infrastructure in a tool called DiffKemp. Our results show that DiffKemp, unlike
other existing tools, gives practically useful results even on projects of the size of the Linux
kernel.

Keywords
static analysis, formal verification, formal methods, shape analysis, array abstract domain,
template-based invariant synthesis, abstract interpretation, abstract domains, SAT/SMT
solving, loop invariants semantic equivalence, refactoring, pattern matching, semantics-
preserving patterns, code change patterns, refactoring patterns, Linux kernel, program
slicing, LLVM IR

Abstrakt
Táto práca prináša niekoľko originálnych príspevkov do oblasti statickej analýzy programov
so zameraním na nízkoúrovňový softvér napísaný v jazyku C. Práca je rozdelená do dvoch
častí, z ktorých každá sa venuje inej oblasti statickej analýzy, konkrétne formálnej verifikácii
a statickej analýze sémantickej ekvivalencie rôznych verzií softvéru.

V prvej časti práce navrhujeme nové analýzy vhodné pre verifikačné nástroje založené
na automatickom odvodzovaní invariantov s využitím SMT solveru. Navrhnuté riešenie
zahŕňa dve nové abstraktné domény založené na šablónach, ktoré umožňujú popísať tvar
programovej haldy a obsahy polí pomocou logických formulí nad bit-vektormi. Doména pre
reprezentáciu tvaru haldy je založená na zachytení vzťahov medzi ukazovateľmi a symbol-
ickými adresami abstraktných objektov v pamäti. Doména pre reprezentáciu obsahov polí
je založená na rozdelení polí na niekoľko neprekrývajúcich sa spojitých segmentov a odvo-
dení samostatného invariantu pre každý segment. Obidve domény sú navrhnuté spôsobom,
ktorý umožňuje ich kombináciu s inými doménami, vďaka čomu je možné abstrahovať tvar
a obsah dátových štruktúr zároveň. Informácie získané z týchto analýz je možné použiť
na dokázanie bezpečnosti práce s pamäťou a nedosiahnuteľnosti chybových stavov v pro-
gramoch, ktoré pracujú s dynamickými dátovými štruktúrami. Všetky navrhnuté rozšírenia
boli implementované do nástroja 2LS a porovnané s nástrojmi, ktoré sa pravidelne umi-
estňujú na najvyšších priečkach v relevantných kategóriách v medzinárodnej súťaži vo ver-
ifikácii software SV-COMP. Výsledky experimentov ukazujú, že 2LS poráža tieto nástroje
na úlohách vyžadujúcich invarianty cyklov kombinujúce popis tvaru a obsahu dynamických
dátových štruktúr.

Druhá časť práce je motivovaná existenciou softvérových projektov, ktoré vyžadujú
zachovanie stability niektorých dôležitých častí, no zároveň sú podrobované pravidelným
zmenám. V rámci tejto časti navrhujeme nový prístup pre automatickú analýzu sémantickej
ekvivalencie rôznych verzí veľkého priemyselného softvéru napísaného v jazyku C, so špeciál-
nym zameraním na jadro operačného systému Linux. Navrhnutá metóda používa unikátnu
kombináciu vyhľadávania vzorov, rýchlej statickej analýzy a transformácií toku riadenia
programov. Tento prístup umožňuje kontrolu zachovania sémantiky funkcií, ktoré tvoria
rozhranie analyzovaného projektu ako aj globálnych premenných, ktoré typicky reprezen-
tujú hodnoty konfigurovateľných parametrov systému. Pre porovnávanie globálnych pre-
menných zároveň navrhnujeme špecializovanú procedúru pre prerezávanie programov, ktorá
je schopná odstrániť časti programov, ktoré nie sú závislé na hodnotách analyzovaných pre-
menných a obmedziť analýzu iba na závislé časti. Napriek tomu, že metóda nie je schopná
formálne dokázať sémantickú ekvivalenciu zásadne upraveného, no ekvivalentného kódu, je
schopná porovnať tisíce funkcií v rámci minút a zároveň poskytnúť relatívne malé množstvo
nesprávnych výsledkov. Metóda bola implementovaná v nástroji DiffKemp nad infraštruk-
túrou LLVM. Výsledky experimentov ukazujú, že DiffKemp, narozdiel od iných nástrojov
v oblasti, dáva prakticky použiteľné výsledky aj na projekte o veľkosti jadra Linuxu.

Kľúčové slová
statická analýza, formálna verifikácia, formálne metódy, analýza tvaru haldy, abstraktná
doména pre popis polí, syntéza invariantov založená na šablónach, abstraktná interpretá-
cia, SAT/SMT solving, invarianty cyklov sémantická ekvivalencia programov, refaktoring,
vyhľadávanie vzorov, vzory zachovávajúce sémantiku, vzory zmien v programoch, jadro
Linuxu, prerezávanie programov, LLVM IR

3

Static Analysis of C Programs

Declaration
I hereby declare that this PhD thesis was prepared as an original work by the author under
the supervision of prof. Tomáš Vojnar. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Viktor Malík

September 14, 2023

Acknowledgements
There is a lot of people whom I would like to thank and who made this work possible.
First of all, big thanks goes to my family—my parents, my brother, and especially my
wife. She has supported me throughout my entire PhD study and she has always been
patient with me, especially when I was finishing papers over those sunny weekends that
I’m sure she imagined we would have spent elsewhere. Another great thanks goes to my
supervisor, Tomáš Vojnar, who was always very supportive and contributed a great deal to
the ideas introduced in this thesis. Last, but not least, my colleagues and co-workers—Peter
Schrammel from DiffBlue who gave a lot of insights into 2LS and greatly helped with the
papers, Jan Zelený from Red Hat who made the very existence of DiffKemp possible, and all
people from the VeriFIT group at FIT BUT and at Red Hat whom I had the opportunity to
meet and work with. All these people have been a great source of inspiration and without
them, this thesis would never exist.

Reference
MALÍK, Viktor. Static Analysis of C Programs. Brno, 2023. PhD thesis. Brno Uni-
versity of Technology, Faculty of Information Technology. Supervisor prof. Ing. Tomáš
Vojnar, Ph.D.

Contents

1 Introduction 4
1.1 Verification of Programs with Data Structures 5
1.2 Static Analysis of Semantic Equivalence for C Projects 7

I Template-Based Verification of Programs with Data Structures 9

2 Template-Based Verification of Software 10
2.1 Internal Program Representation . 11

2.1.1 The Static Single Assignment Form 12
2.2 𝑘-induction and 𝑘-invariants . 13

2.2.1 Template-Based Predicate Inference 15
2.2.2 Abstract Domains in 2LS . 18
2.2.3 Incremental Bounded Model Checking 19
2.2.4 Incremental k-Induction . 19

2.3 Implementation and Architecture of the 2LS Framework 20
2.4 Running Example . 22

3 Verification of Heap-Manipulating Programs 24
3.1 Memory Model . 25

3.1.1 Static Memory Objects . 25
3.1.2 Dynamic Memory Objects . 25

3.2 Representation of Memory-Manipulating Operations 27
3.2.1 Dynamic Memory Allocation . 27
3.2.2 Reading through Dereferenced Pointers 27
3.2.3 Writing through Dereferenced Pointers 28

3.3 Abstract Domain for Heap Shape Analysis 29
3.4 Abstract Domain Combinations . 30

3.4.1 Product Templates . 31
3.4.2 Templates with Symbolic Paths . 31

3.5 Memory Safety Verification . 32
3.5.1 Safety from Dereferencing/Freeing a null Pointer 33
3.5.2 Safety from Dereferencing/Freeing a Freed Pointer 33
3.5.3 Memory Leaks Safety . 33

3.6 Related Work . 34
3.6.1 Logic-based Methods . 34
3.6.2 Methods Using Automata and Graphs 35
3.6.3 Methods Using Storeless Semantics 35

1

4 Verification of Array-Manipulating Programs 37
4.1 Array Domain Template . 38
4.2 Computing Array Segment Borders . 39
4.3 Array Domain Invariant Inference . 40
4.4 Running Example . 41
4.5 Related Work . 42

4.5.1 Methods Based on Array Segmentation 42
4.5.2 Methods Based on Analysis of Array-Manipulating Loops 43
4.5.3 Predicate Abstraction and Non-Automatic Methods 43

5 Experimental Evaluations 44
5.1 SV-COMP Organization and Rules . 44
5.2 Scores of 2LS in SV-COMP . 45

5.2.1 Heap-related Categories . 46
5.2.2 Array-related Categories . 46
5.2.3 Comparison to Other Tools . 47

5.3 Alternative Rankings . 47
5.3.1 Speed of Verification in 2LS . 47
5.3.2 Power Consumption and Correctness Rate 48

II Automatically Checking Semantic Equivalence between Versions of
Large-Scale C Projects 49

6 Static Analysis of Semantic Equivalence 50
6.1 Program Representation . 52
6.2 Function Equality . 53
6.3 Analysis of Function Equality . 54

7 Built-in Semantics-Preserving Change Patterns 58
7.1 Supported Semantics-Preserving Changes 59

7.1.1 Change Patterns in the Linux Kernel 59
7.2 Handling the Supported SPCPs . 61

7.2.1 Changes in Structure Data Types . 61
7.2.2 Moving Code into Functions . 64
7.2.3 Changes in Enumeration Values . 65
7.2.4 Changes in Source Code Location 65
7.2.5 Inverse Branch Conditions . 66
7.2.6 Code Relocations . 67

8 Custom Change Patterns 70
8.1 Representation of Custom Change Patterns 70

8.1.1 Formal Definition of Custom Change Patterns 70
8.1.2 Encoding Change Patterns with LLVM IR 71

8.2 Custom Change Pattern Matching . 71
8.2.1 Pattern Detection . 72
8.2.2 Determining Successor Synchronisation Points 75
8.2.3 Semantic Equality Detection . 75
8.2.4 Updating the Variable Mapping . 76

2

9 Comparing the Use of Global Variables 77
9.1 Comparing Functions w.r.t. a Variable . 78
9.2 Slicing Algorithm . 78

10 Implementation and Experiments 81
10.1 KABI Functions . 81
10.2 Refactoring Commits in the Linux Kernel 82
10.3 The musl Standard C Library . 83
10.4 A Comparison with Other Tools . 84
10.5 Effectiveness of Program Slicing . 85
10.6 Application of Custom Change Patterns . 85

10.6.1 The List of Used Patterns . 86
10.7 Efficiency of CCP Matching . 87

11 Related Work 89

12 Conclusion 92

Bibliography 94

3

Chapter 1

Introduction

Computer science and software engineering count among the youngest fields of human en-
deavour, yet they already influence practically every aspect of our lives. According to some
reports [68], there were 33.6 million active software developers in the world in 2022. With
every developer being able to produce thousands of lines of code per year, software grows
in size and complexity in a tremendous pace and often to an extent beyond understanding
of the authors themselves. With that, any useful technique and tool that helps developers
understand and maintain their programs is extremely valuable.

One of such techniques is automatic static program analysis, usually simply referred
to as static analysis. Generally, it is a category of algorithms designed to automatically
extract information from a program’s source code, without actually executing the program
(at least not under its original semantics)[117].

Static analysis is an opposed approach to dynamic analysis (which also includes, e.g.,
testing), which gathers facts about the program during its execution. Static analysis ap-
proaches have several advantages over the dynamic ones. Arguably, the most important
one is the fact that static analysers can reason about all possible branches of the program
while dynamic approaches can only access the program path that is executed. On the other
hand, the very same fact is a major disadvantage—while dynamic analysers have precise
information about the runtime of the program, such as the state and the layout of the
memory, static analysis methods must often deduce those, which creates space for errors.

There are various categories of static analysis algorithms and tools, depending on the
kind of information they strive to extract from the code. One of the most common use-cases
of static analysis is for discovering bugs, where the code is scanned for commonly known
errors and vulnerabilities. This category also features the widest portfolio of techniques,
varying from simple tools for detecting bad programming patterns that often lead to bugs
(so-called “code smells”) to very complex systems capable not only to discover bugs but also
to prove their absence. The latter are usually based on formal methods and consequently
the group of techniques is denoted as formal verification.

Besides bug finding and formal verification focused on so-called safety properties (i.e.,
discovering that the program “does not do anything bad”), static analysis can be used
to discover other properties of software. For instance, some formal verification tools are
able to determine if the program terminates or not or there exist specialized approaches to
deduce amortized program complexity. Another property often tackled with static analysis
is semantic equivalence of programs. Tools from this category are able to determine if
two programs, despite being written in a different manner, have the same semantics. Such

4

information can be valuable for multiple reasons—it can be used to prevent code duplication,
to detect stability breakage, or even to discover introduction of hidden bugs.

Even though static analysis techniques have a great potential of use, they naturally
come with a number of drawbacks. Perhaps one of the most important ones is their lim-
ited applicability within real-world software development, which has several causes. First,
many techniques, especially those based on formal methods, are too complicated and have
problems to scale on huge and complex contemporary systems. Second, due to their over-
approximative nature, many static analysis algorithms produce false defect reports, so-
called “false positives”. If the number of such results is high, users tend to start ignoring
all the issues reported by the tool, effectively mitigating the purpose of usage of such a
tool. Last but not least, a number of static analysis tools is rather narrowly focused and
therefore can be applied to a certain part or property of software only. This often creates a
necessity to use a combination or a portfolio of different techniques, which poses a technical
and maintenance burden on the users.

In this thesis, we introduce several novel techniques that approach the above issues
from various perspectives. Our interest lies in static analysis of low-level software, usually
written in C, therefore we mostly focus on program features that typically occur in such
programs. In particular, we propose (1) a technique for formal verification of programs
manipulating low-level data structures such as arrays and linked lists which we integrate into
an existing verification framework and (2) a novel method for light-weight static analysis
of semantic differences between versions of a project that is applicable to system code
containing hundreds of thousands of lines of code. Even though these two areas share
certain aspects, they are mostly distinct and therefore the thesis is split into two parts,
each dedicated to one of the above areas.

In the rest of this chapter, we briefly introduce each of our contributions. For a more
detailed general description, refer to the introduction of the first chapter of each part.

1.1 Verification of Programs with Data Structures
In the first part of this thesis, we focus on the area of formal verification of software. One of
the most challenging verification tasks is verification of programs dealing with dynamically
allocated data structures. There are multiple reasons for this: (1) the program heap is
practically unbounded, (2) the structures are allocated during program execution, hence
their shape is unknown in advance, and (3) the shape of the structures can be rather com-
plex. To deal with these challenges, verifiers typically introduce some kind of abstraction
to describe the program memory. A common problem of many of the existing approaches
is that they often struggle to combine their data structure abstractions with abstractions
of other parts of the programs such as values of numerical variables, contents of arrays,
etc., which makes verification of some kinds of programs (e.g., programs using a linked list
whose nodes contain arrays of pointers to integers) impossible.

In this thesis, we propose two new abstractions of data structures that allow to reason
about (1) pointer-based structures on the heap such as various linked lists and (2) contents
of arrays. To address the mentioned limitations of static analysis, we integrate our contri-
butions into a verification framework called 2LS which features a rather specific verification
approach allowing a seamless combination of various program abstractions. To be able
to achieve this, our proposed abstractions need to comply with the form required by the
framework.

5

The central idea of 2LS is that it combines several verification techniques together—
namely abstract interpretation, k-induction, and bounded model checking—in an elegant
algorithm. To allow for a seamless combination, 2LS translates the verified programs and
properties into first-order formulae and uses an off-the-shelf SMT solver to reason about
them. To exploit the true power of the algorithm, k-inductive invariants for program loops
must be computed. The problem of finding invariants is a second-order logic problem (not
efficiently solvable with the current solvers), hence 2LS reduces it to a first-order logic by
requiring invariants to be instances of fixed, parametrized, first-order formulae, so-called
templates (hence the approach is denoted as template-based verification).

The data structure abstractions that we propose must hence follow this requirement,
which comes with several challenges, especially due to the fact that we need to represent
potentially unbounded structures using a fixed first-order formula. On the other hand, our
abstractions can be easily combined with each other and with other abstractions present
in 2LS, which allows the verifier to reason about, e.g., numerical contents of linked lists or
pointers stored inside arrays.

Our abstraction of the shape of the program heap is based on tracking the points-to
relation between pointers and memory objects. Since the amount of memory objects is
possibly unbounded, as a part of our work, we developed a new memory model in which
we describe the entire memory using a finite number of so-called abstract dynamic objects.
This model allows us to encode typical memory-manipulating operations (allocation and
pointer (de)referencing) into first-order logic formulae. As for the abstraction of arrays, the
central idea is to split each array into multiple contiguous, non-overlapping segments and
to compute a different invariant for each of them.

Overall, we may summarize the contributions of this thesis part as follows:

1. We introduce a new memory model and an encoding of memory-manipulating opera-
tions into first-order logic which are suitable for the verification approach of the 2LS
framework.

2. We propose a novel abstract template domain for reasoning over heap-allocated data
structures such as singly and doubly linked lists using a template-based parameter
synthesis engine.

3. We propose a novel abstract template domain for reasoning about the structure of
arrays which is able to use an arbitrary abstract domain to describe values stored
inside the arrays.

4. We show how we can build product and power domain combinations of our heap and
array domains with structural domains (e.g., trace partitioning) and value domains
such as template polyhedra that capture the content of data structures.

5. We implement our abstract domains in the 2LS verification tool for C programs.
We demonstrate the power of the proposed domains on benchmarks which require
combined reasoning about the shape and content of data structures.

The contributions in this part are based on our paper published at FMCAD 2018 [85],
which introduced the shape domain, and several competition contribution papers from SV-
COMP published at TACAS 2018, 2020, and 2023 [87, 90, 89]. The text is also heavily
inspired by the chapter on 2LS in the Automated Software Verification book, which is to
be published in 2023/24 (the final submitted version is available from arXiv [69]).

6

1.2 Static Analysis of Semantic Equivalence for C Projects
In the second part of the thesis, we move from formal verification to the area of automatic
static analysis of semantic equivalence of programs. Similarly to verification of other prop-
erties, many tools in this area are based on formal methods, inherently sharing the same
drawbacks, particularly poor scalability on large-scale software. On the other hand, there
exist very lightweight tools for comparing programs based on simple text or abstract syntax
tree similarity (let us name the Unix diff tool from all examples) which can analyse huge
amount of code in a short time but they compare for syntactic similarity rather than the
semantic one. To the best of our knowledge, until our work in this area there was no ap-
proach that would be able to statically analyse semantic equivalence of programs containing
hundreds of thousands of lines of code in a reasonable amount of time. Such a tool would
have a lot of potential applications, for example checking semantic stability and backwards
compatibility of critical parts of industry-level software.

In order to fill the gap, we have proposed a novel approach for automatically analysing
semantic equivalence of large-scale C programs. To allow for a high scalability, we limit
ourselves to comparison of two versions of the same software where we expect that one
version is a refactoring of the other. Our work is mainly targeted at the Linux kernel
which is motivated by our cooperation with Red Hat, nevertheless, the proposed method is
generic and applicable to other C projects, too (as we demonstrate in our later presented
experiments).

Our method builds on several assumptions about the analysed programs. First, we
expect large parts of the compared versions to be identical and hence no complicated
method is necessary to compare those parts. Second, if the remaining parts contain a
refactoring (i.e., a change in the program that preserves semantics), it is very likely that it
will match a commonly known refactoring pattern that has already been described in the
literature or that has occurred in the history of the analysed project.

With respect to these assumptions, our proposed method is based on translating the
compared programs into an intermediate compiler representation (we use in particular
LLVM IR), followed by comparing individual instructions which is usually sufficient for
large parts of the compared versions. In addition, to make this more effective, we apply
light-weight static transformations (such as dead code elimination) to bring the compared
versions of the code closer to each other. Where instruction-by-instruction approach is not
sufficient, we check if the observed change corresponds to a pattern from our list of pre-
defined semantics-preserving change patterns. We obtain this list by taking the existing
lists of common refactorings from the literature and by analysing the history of the Linux
kernel. In addition, our method supports user-defined patterns to cover situations when
our list misses some types of changes.

Naturally, strict semantic stability is usually not required for the entire software, hence
we expect our method to be used for certain parts only. To this end, we support comparison
of individual functions and of global variables. Semantic comparison of global variables is
motivated by them often being used to represent adjustable system parameters (such as
the Linux kernel runtime parameters configurable using sysctl). To compare semantic
equivalence of a global variable, we compare all functions that use the given variable,
however, we note that the functions do not have to be compared in their entirety. Instead,
it is sufficient to compare parts of the functions that may be influenced by the value of the
variable. Therefore, we propose a specialized program slicing algorithm which is able to
remove parts of functions that do not depend on a global variable.

7

Overall, we may summarize contributions of this part of the thesis as follows:

1. We propose a light-weight approach for checking semantic equivalence of program
versions obtained by refactoring that is—to the best of our knowledge—much more
scalable than other existing approaches for checking semantic equivalence.

2. We propose a representation of custom patterns of code changes using parametrised
control-flow graphs and a method to match such patterns inside our approach.

3. We propose a novel algorithm for program slicing which is able to efficiently remove
all parts of a function which are not affected by the value of a certain global variable.

4. We have implemented the proposed methods in a new open-source tool DiffKemp
that is capable of checking preservation of semantics of refactored code compiled into
the LLVM intermediate representation.

5. We demonstrate the capabilities of the approach on several practical applications on
large-scale real-life projects including the Linux kernel (which has the size in millions
of LOC) and the musl C standard library.

The contributions in this part are based on a paper published at ICST 2021 [92], which
introduced the main method, and a paper published at NETYS 2022 [91], which expanded
the method with custom change patterns (the paper has received the best student paper
award at the conference). In addition, we have submitted an extended version of [92]
into the ACM Transactions on Software Engineering journal which features (among other
extensions) the described slicing algorithm. The core algorithm of DiffKemp is also subject
to U.S. Patent 11 449 317-B2 [93].

8

Part I

Template-Based Verification of
Programs with Data Structures

9

Chapter 2

Template-Based Verification of
Software

The first part of this thesis focuses on formal verification of low-level C programs. Despite
the fact that the research area of formal verification of software experiences great progress
every year, there still remain a lot of open challenges. One of the most common ones is a
limited applicability of the methods to real-world software. A traditional problem of many
techniques is that they are often focused on verification of a single kind of property. This,
in addition to the fact that different techniques have different strengths and weaknesses,
makes many tools suitable for a certain class of programs only. That is often confusing
to users as it requires them to have at least a basic knowledge of the methods that the
tool implements. To address this issue, approaches combining multiple techniques together
emerge in the recent years.

In this work, we focus on one of such methods which is implemented in a framework
called 2LS (“Tools”). In particular, 2LS tries to approach the above problem from two
different points of view. The first one addresses the traditional “soundness versus com-
pleteness” problem—verification approaches are usually either sound-but-incomplete, i.e.,
they are able to prove program correctness but have problems to distinguish actual errors
from the spurious ones, or they are precise-but-unsound, i.e., they do not report spurious
errors but but fail to prove error absence. 2LS tackles this problem by using multiple
verification techniques in a unique algorithm called 𝑘I𝑘I (which stands for k-invariants
and k-induction). The algorithm combines three well-known techniques, namely abstract
interpretation, bounded model checking (BMC), and k-induction.

BMC falls into the precise-but-unsound category when, given a sufficient amount of
resources, it is able to find any violation of a property but usually fails to prove programs
correct. On the other hand, k-induction is able to provide a correctness proof, but it requires
k-inductive invariants to do that. The invariants are often hard to compute, hence 2LS uses
abstract interpretation to express the invariants using abstract program semantics. This
comes with the traditional problem of abstract interpretation—it cannot distinguish real
counter-examples from the spurious ones (caused by the introduced over-approximation). If
such a situation happens, BMC can be used to validate the found potential counter-example.

The second part where 2LS employs combination of multiple techniques is on the level
of abstract domains used in the abstract interpretation part of the 𝑘I𝑘I algorithm. Typi-
cally, an abstract domain captures only selected parts of program semantics. This makes

10

individual domains suitable for certain programs only, but real-world programs are usually
complex and use many different data and control structures.

To overcome this problem, 2LS comes with a unique solution—it requires all the abstract
domains to have the same form of so-called templates (hence we denote the approach as
template-based verification). Templates are fixed, parametrised, first-order logic formulae,
which allows to use an SMT solver to reason about them. Additionally, the unified form of
the templates makes it easy to combine multiple abstract domains together (in the simplest
form by just taking a conjunction of their templates) since the heavy-lifting of abstract
operation combinators can be left to the underlying solver.

In this chapter, we present the most important concepts of 2LS that our work builds
upon. In order to use an SMT solver for verification, 2LS represents the program semantics
using a first-order logical formula. This is done by translating the program into a static
single assignment (SSA) form which, due to its nature, makes generation of the formula
straightforward. The SSA form used in 2LS has several specific features that cannot be
found in other verification approaches, hence we present it in detail in Section 2.1.

After that, we introduce the core algorithm of 2LS, 𝑘I𝑘I, in Section 2.2. We mainly
focus on the template-based invariant inference since that is the part the most related to
our contributions.

An integral part of this thesis is an implementation of all the proposed concepts into
the 2LS framework. Therefore, we present the overall architecture of 2LS in Section 2.3.

In the following chapters, we propose our original contributions for verification of pro-
grams manipulating data structures that are suitable for the verification approach of 2LS.
Since some of the introduced concepts are fairly complex, we illustrate them on examples.
To facilitate that, we introduce a running example at the end of this chapter (in Section 2.4)
that we will refer to throughout the entire part of the thesis.

2.1 Internal Program Representation
The 2LS framework is built upon the CPROVER infrastructure [30] and therefore uses the
same intermediate representation called GOTO programs. In this language, any non-linear
control flow, such as if- or switch-statements, loops, or jumps, is translated to equivalent
guarded goto statements. These statements are branch instructions that include (optional)
conditions. CPROVER generates one GOTO program per C function found in the parse
tree. Furthermore, it adds a new main function that first calls an initialisation function for
global variables and then calls the original program entry function.

After obtaining a GOTO representation of the analysed program from CPROVER,
2LS performs a light-weight static analysis to resolve function pointers to a case split over
all candidate functions, resulting in a static call graph. Furthermore, assertions guarding
against invalid pointer operations or memory leaks are inserted. These are described in
detail in Section 3.5. In addition, 2LS uses local constant propagation and expression
simplification to increase efficiency.

After running the mentioned transformations, 2LS performs a static analysis to derive
data flow equations for each function of the GOTO program. The result is a static single
assignment (SSA) form in which loops have been cut at the back edges to the loop head.
The effect of these cuts is havocking of the variables modified in the loop at the loop head.
This SSA is hence an over-approximation of the GOTO program. Subsequently, 2LS refines
this over-approximation by computing invariants.

11

2.1.1 The Static Single Assignment Form

Program verification in 2LS is based on generating program abstractions using a solver. In
order to simplify generation of a formula representing the program semantics, 2LS uses the
static single assignment form (SSA) to represent programs. SSA is a standard program
representation used in bounded model checking or symbolic execution tools. We use com-
mon concepts of SSA—introducing a fresh copy (version) 𝑥𝑖 of each variable 𝑥 at program
location 𝑖 in case 𝑥 is assigned to at 𝑖, using the last version of 𝑥 whenever 𝑥 is read, and
introducing a phi variable 𝑥phi𝑖 at a program join point 𝑖 in case different versions of 𝑥
come from the joined program branches. For an acyclic program, SSA is a formula that
represents exactly the post condition of running the code.

In 2LS, the traditional SSA is extended by two new concepts: (1) over-approximation of
loops in order to make the SSA acyclic and (2) a special encoding of the control-flow [19].
These concepts allow a straighforward transformation of the SSA form into a formula that
can be passed to an SMT solver. In addition, 2LS leverages so-called incremental solving
which means that it tries to reuse as large parts of the generated formulae as possible
for successive solver invocations. This is a great benefit to the verification perfomance,
however, it comes with several drawbacks. The main one is related to encoding of pointer
dereferencing operations since on-demand concretisation of heap objects is not possible
(as the formula representing the program cannot change). To overcome this limitation,
we propose a new memory model and a special representation of memory-manipulating
operations as one of the contributions of this thesis. These are introduced in Sections 3.1
and 3.2, respectively.

Over-Approximation of Loops

In order to be able to use a solver for reasoning about program abstractions, we extend the
SSA by over-approximating the effect of loops. As was said above, the value of a variable
𝑥 is represented at the loop head by a phi variable 𝑥phi𝑖 joining the value of 𝑥 from before
the loop and from the end of the loop body (here, we assume that all paths in the loop
join before its end, and the same holds for the paths before the loop). However, instead of
using the version of 𝑥 from the loop end, it is replaced by a free “loop-back” variable 𝑥lb .
This way, the SSA remains acyclic, and, since the value of 𝑥lb is initially unconstrained,
the effect of the loop is over-approximated. To improve precision, the value of 𝑥lb can be
later constrained using a loop invariant that will be inferred during the analysis. A loop
invariant is a property that holds at the end of the loop body, after any iteration and can
be therefore assumed to hold on the loop-back variable.

For a better illustration, we give an example of this SSA extension. Figure 2.1 shows a
simple loop in C and its corresponding SSA. Instead of using 𝑥5 in the phi variable, a fresh
variable 𝑥lb6 is introduced. Moreover, the join in the phi node is driven by a free Boolean
variable 𝑔ls6 (a so-called loop-select guard) modelling a non-deterministic choice between 𝑥lb6
and 𝑥0.

Encoding the Control-Flow

In 2LS, the program is represented by a single monolithic formula. It is therefore needed
that the formula encodes control-flow information. This is achieved using so-called guard
variables that track the reachability information for each program location. In particular,
for each program location 𝑖, we introduce a Boolean variable 𝑔𝑖 whose value encodes whether

12

1 unsigned x = 0;

2

3 while (x < 10)

4 {

5 ++x;

6 }

(a) A loop in C.

before the loop
𝑥0 = 0

1:

loop head3:

𝑥phi3 = 𝑔ls6 ? 𝑥lb6 : 𝑥0

loop body4:

𝑥5 = 𝑥phi3 + 15:

end of the loop body6:

after the loop

𝑥lb6

(b) Encoding of the loop in the SSA form.

Figure 2.1: Conversion of loops in the SSA form used in 2LS.

𝑖 is reachable. For example, in Figure 2.1, a guard 𝑔5 encoding reachability of the loop body
would have the value:

𝑔5 = 𝑥phi3 < 10. (2.1)

2.2 𝑘-induction and 𝑘-invariants
The core part of 2LS is the 𝑘I𝑘I algorithm (𝑘-induction and 𝑘-invariants) which we introduce
in this section. The goal of the algorithm is to connect widely-used verification techniques
with well-understood interaction. There techniques are namely:

Bounded Model Checking (BMC) Given sufficient time and resource, BMC [15] will
give counterexamples for all false safety properties, which are often of significant value
for understanding the fault. However, only a small proportion of true properties can
be proven by BMC.

k-Induction Generalising Hoare logic’s ideas of loop invariants, 𝑘-induction [116] can
prove true safety properties, and, in some cases, provide counterexamples to false
ones. However, it requires inductive invariants, which can be expensive (in terms of
user time, expertise, and maintenance).

Abstract Interpretation The use of over-approximation makes it easy to compute in-
variants which allow many true propositions to be proven [114, 110, 49]. However,
false properties and true-but-not-provable properties may be indistinguishable. Tools
implementing abstract interpretation may have limited support for a more complete
analysis.

The 𝑘I𝑘I algorithm draws together these techniques and combines them in a novel way so
that they strengthen and reinforce each other. The 𝑘-induction technique uses syntactically
restricted or simple invariants (such as those generated by abstract interpretation) to prove
safety. Bounded model checking allows to test 𝑘-induction failures to see if they are real

13

IBMC 𝑘-induction Abstract
Interpretation

Test ∃𝑥0.

Init(𝑥0) ∧ Err(𝑥0)

Find KInv ∈ T .∀𝑥0, . . . ,𝑥𝑘.

(Init(𝑥0) ∧ P [𝑘] ∧ T [𝑘 − 1] ⇒ I [𝑘])∧

(P [𝑘] ∧ I [𝑘] ∧ T [𝑘] ⇒ KInv(𝑥𝑘))

Test ∃𝑥𝑜, . . . ,𝑥𝑘.

P [𝑘] ∧ I [𝑘 + 1] ∧ T [𝑘] ∧ Err(𝑥𝑘)

Test ∃𝑥0, . . . ,𝑥𝑘.Init(𝑥0)∧

P [𝑘] ∧ I [𝑘 + 1] ∧ T [𝑘] ∧ Err(𝑥𝑘)

𝑘 ++

C/E ? Safe

𝑘 := 1

UNSAT

SAT

UNSAT

UNSATSAT

SAT

Figure 2.2: The 𝑘I𝑘I algorithm [19].

counterexamples or, if not, to build up a set of assumptions about system behaviour.
Template-based abstract interpretation is used for invariant inference with loop unrolling
producing progressively stronger invariants, allowing the techniques to strengthen each
other.

General flow of the k𝐼k𝐼 algorithm is shown in Figure 2.2. The main loop of k𝐼k𝐼 is
based on incremental unwinding of the transition relation (T [𝑘] stands for the transition
relation unwound up to the depth 𝑘). In the 𝑘-th iteration, the transition relation is
unwound up to depth 𝑘 and a 𝑘-inductive invariant is inferred (T is the set of predicates
that can be used as invariant). The invariant is then used to strengthen the program’s
safety property in order to find a proof for the program’s safety. In case that safety cannot
be proved, the algorithm checks whether the current unwinding is sufficient to generate
a counterexample. If this is not the case, the unwinding 𝑘 is incremented and another
iteration starts.

Incremental bounded model checking, 𝑘-induction, and classical over-approximating ab-
stract interpretation are shown to be restrictions of 𝑘I𝑘I. This is illustrated by the colored
partitioning in Figure 2.2. k𝐼k𝐼 can simulate 𝑘-induction by having T = {⊤} and in-
cremental BMC by over-approximating the first SAT check. Classical over-approximate
abstract interpretation can be simulated by having T = A for an abstract domain A and
terminating with the result “unknown” if the first SAT check finds a model.

Internally, 2LS reduces program analysis problems expressed in second order logic such
as invariant or ranking function inference to synthesis problems over templates. Therefore,
it reduces (an existential fragment of) 2nd order Logic Solving (hence the name “2LS”) to
quantifier elimination in first order logic. This is one of the most important steps of the

14

algorithm and we explain it in detail in Section 2.2.1. In the remaining parts of this section,
we present k𝐼k𝐼’s approach to bounded model checking (Section 2.2.3) and 𝑘-induction
(Section 2.2.4).

2.2.1 Template-Based Predicate Inference

A key phase of 𝑘I𝑘I is the generation of KInv , a k-inductive invariant. Perhaps the most
obvious approach is to use an off-the-shelf abstract interpreter. This works but will fail to
exploit the real power of 𝑘I𝑘I. In each iteration, 𝑘I𝑘I unrolls loops one more step (which can
improve the invariant given by an abstract interpreter) and adds assumptions that previous
unwindings do not give errors.

When directly using a solver, we would need to handle (the existential fragment of)
second-order logic. As such solvers with reasonable efficiency are not currently available,
we reduce to a problem that can be solved by iterative application of a first-order solver.
We restrict ourselves to finding k-inductive invariants KInv of the form 𝒯 (𝑥, 𝛿) where 𝒯 is
a fixed expression, a so-called template, over program variables 𝑥 and template parameters
𝛿. Fixing a template reduces the second-order search for an invariant to a first-order search
for template parameters:

∃𝛿.∀𝑥0 . . .𝑥𝑘. (Init(𝑥0) ∧ T [𝑘 − 1]⇒ 𝒯 [𝑘](𝛿))∧
(𝒯 [𝑘](𝛿) ∧ T [𝑘]⇒ 𝒯 (𝑥𝑘, 𝛿))

(2.2)

where T [𝑘] is the 𝑘-th unwinding of the transition relation and 𝒯 [𝑘] is a template for all
states along the unwinding except for the last state 𝑥𝑘:

T [𝑘] =
⋀︁

𝑖∈[0,𝑘−1]

Trans(𝑥𝑖,𝑥𝑖+1) (2.3)

𝒯 [𝑘](𝛿) =
⋀︁

𝑖∈[0,𝑘−1]

𝒯 (𝑥𝑖, 𝛿). (2.4)

We resolve the ∃∀ problem by an iterative solving of the negated formula, particularly
of the second conjunct of (2.2), for different choices of constants 𝑑 as the values of the
parameter 𝛿:

∃𝑥0 . . .𝑥𝑘.¬
(︀
𝒯 [𝑘](𝑑) ∧ T [𝑘]⇒ 𝒯 (𝑥𝑘,𝑑)

)︀
. (2.5)

The resulting formula can be expressed in quantifier-free logics and efficiently solved by
SMT solvers. Using this as a building block, one can solve the mentioned ∃∀ problem.

From the abstract interpretation point of view, 𝑑 is an abstract value, i.e., it represents
(concretises to) the set of all program states 𝑠—here, a state is a vector of values of variables
from 𝑥—that satisfy the formula 𝒯 (𝑠,𝑑). The abstract values representing the infimum ⊥
and supremum ⊤ of the abstract domain denote the empty set and the whole state space,
respectively: 𝒯 (𝑠,⊥) ≡ false and 𝒯 (𝑠,⊤) ≡ true [19].

Formally, the concretisation function 𝛾 is:

𝛾(𝑑) = {𝑠 | 𝒯 (𝑠,𝑑) ≡ true}. (2.6)

In the abstraction function, to get the most precise abstract value representing the given
concrete program state 𝑠, we let

𝛼(𝑠) = {min(𝑑) | 𝒯 (𝑠,𝑑) ≡ true}. (2.7)

15

If the abstract domain forms a complete lattice, existence of such a minimal value 𝑑 is
guaranteed.

The algorithm for the invariant inference takes an initial value of 𝑑 = ⊥ and iteratively
solves (2.5) using an SMT solver. If the formula is unsatisfiable, then an invariant has been
found, otherwise a model of satisfiability 𝑑′ is returned by the solver. The model represents
a counterexample to the current instantiation of the template being an invariant. The
value of the template parameter 𝑑 is then updated by combining the current value with the
obtained model of satisfiability using a domain-specific join operator [19].

For example, assume we have a program with a loop that counts from 0 to 10 in
variable 𝑥 (such as the one from Figure 2.1), and we have a template 𝑥 ≤ 𝑑. Let us assume
that the current value of the parameter 𝑑 is 3, and we get a new model 𝑑′ = 4. Then
we update the parameter to 4 by computing 𝑑 ⊔ 𝑑′ = max(𝑑, 𝑑′), because max is the join
operator for a domain that tracks numerical upper bounds.

In 2LS, we use a single template to compute all invariants of the analysed program.
Therefore, typically, a template is composed of multiple parts, each part describing an
invariant for a set of program variables. With respect to this, we expect a template 𝒯 (𝑥, 𝛿)
to be composed of so-called template rows 𝒯𝑟(𝑥𝑟, 𝛿𝑟), each row 𝑟 describing an invariant for
a subset 𝑥𝑟 of variables 𝑥 and having its own row parameter 𝛿𝑟. The overall invariant is
then a composition of individual template rows with computed values of the corresponding
row parameters. The kind of the composition (it can be, e.g., a simple conjunction) is
defined by each domain.

Guarded Templates

Since we use the SSA form rather than control flow graphs, we cannot use templates directly.
Instead we use guarded templates. As described above, a template is composed of multiple
template rows, each row describing an invariant for a subset of program variables. In a
guarded template, each row 𝑟 is of the form:

𝐺𝑟(𝑥𝑟)⇒ ̂︀𝒯𝑟(𝑥𝑟, 𝛿𝑟) (2.8)

for the 𝑟th row ̂︀𝒯𝑟 of the base template domain (e.g., template polyhedra). 𝐺𝑟 is the
conjunction of the SSA guards 𝑔𝑟 associated with the definition of variables 𝑥𝑟 occurring
in ̂︀𝒯𝑟. Since we intend to infer loop invariants, 𝐺𝑟(𝑥𝑟) denotes the guard associated to
variables 𝑥𝑟 appearing at the loop head. Hence, template rows for different loops have
different guards.

We illustrate the above on the example program in Figure 2.1 using a guarded interval
template. The template has the form:

𝒯 (𝑥lb6 , (𝛿1, 𝛿2)) =
𝑔3 ∧ 𝑔ls6 ⇒ 𝑥lb6 ≤ 𝛿1 ∧
𝑔3 ∧ 𝑔ls6 ⇒ −𝑥lb6 ≤ 𝛿2.

(2.9)

Here, 𝑔3 and 𝑔ls6 guard the definition of 𝑥lb6 —𝑔3 expresses the fact that the loop head is
reachable and 𝑔ls6 expresses that 𝑥lb6 is chosen as the value of 𝑥phi3 .

In case 𝑥 was a dynamically allocated object, the template row guard would also contain
guards associated with the allocation of the given object. These are in more details described
in Section 3.2

16

1: 𝑑←⊥
2: while 𝒯 [𝑘](𝑑) is not an invariant do
3: solver ← 𝒯 [𝑘](𝑑)
4: solver ← ¬𝒯 (𝑥𝑘,𝑑)
5: if solver.solve() = SAT then
6: for 𝒯𝑟(𝑥𝑟, 𝑑𝑟) ∈ 𝒯 (𝑥,𝑑) do
7: 𝑚𝑟 ← solver.model(𝑥𝑟)
8: find 𝑑𝑚 s.t. 𝒯𝑟(𝑚𝑟, 𝑑𝑚) holds
9: 𝑑𝑟 ← 𝑑𝑟 ⊔ 𝑑𝑚

10: end for
11: end if
12: end while

Figure 2.3: Generic strategy iteration algorithm for solving the ∃∀ problem.

Solving of the Exists-Forall Problem

As discussed above, it is necessary to solve an ∃∀ problem to find values for template
parameters 𝛿 to infer invariants. The well-known method [110, 20] for solving this problem,
expressed in (2.5), using an SMT solver is to repeatedly check satisfiability of the formula
for different abstract values 𝑑 (starting with the infimum 𝑑 = ⊥):

𝒯 [𝑘](𝑑) ∧ T [𝑘] ∧ ¬𝒯 (𝑥𝑘,𝑑). (2.10)

If it is unsatisfiable, then we have found an invariant; otherwise, we join the model
returned by the solver with the previous abstract value 𝑑 and repeat the process with the
new value of 𝑑 obtained from the join.

This method corresponds to performing a classical Kleene iteration on the abstract
lattice up to convergence. Convergence is guaranteed because the abstract domains in
2LS are finite. However, while this method might be sufficient for some abstract domains
(especially those with a low number of possible states), it is practically unusable for other
ones. For example, when dealing with integer variables, the height of the lattice is enormous
and even for a one-loop program incrementing an unconstrained 64-bit variable, the naïve
algorithm will not terminate within human life time. Hence, some abstract domains (e.g.,
the template polyhedra domain) use an optimised method [19].

In general, we refer to these methods as to domain strategy iteration methods. We ob-
serve that even though some domains require specialised approaches to assure convergence,
for most of the domains, the algorithms are to some extent similar. This is related to the
fact that abstract domain templates are typically composed of multiple template rows, as
described earlier in this section.

With respect to this, we developed a generic strategy iteration algorithm [95] paramet-
rised by an abstract domain having the form of a template. The algorithm is shown in
Figure 2.3.

The algorithm repeatedly solves (2.10) for the given abstract domain. If the formula
is satisfiable, then for each template row 𝑟, the algorithm gets the model of satisfiability
for the variables that 𝑟 describes. The obtained model (i.e., the values of the concerned
variables) is used to instantiate the template row formula (line 8) and the corresponding
value of the template parameter is joined with the previous value of the row parameter.

Since 2LS uses incremental solving, we assume that the transition relation (expressed
by the SSA form) is already a part of the solver clause set. Moreover, formulae added to the

17

solver clause set on lines 3 and 4 are removed after each iteration. This ensures efficiency
of the method since only the new formulae need to be re-solved every time.

In addition, as we mentioned in the previous section, an optimisation may be required
in order to assure scaling of the algorithm. In such a case, lines 7-9 are replaced by the
optimised method for determining values of template row parameters.

2.2.2 Abstract Domains in 2LS

2LS supports analysis of various program features such as reachability of assertions, termi-
nation, or memory safety. For most of these analyses, 2LS introduces abstract domains [31]
for invariant inference, which is one of the steps of the 𝑘I𝑘I algorithm.

There are numerous existing abstract domains in 2LS. The most extensively used do-
main is the template polyhedra domain which is used for tracking numerical values of
memory objects [19]. For analysing termination, 2LS uses domains for ranking functions
and recurrent sets [27]. In addition to these, as a part of this thesis, we develop two new
domains for analysing programs manipulating data structures: (1) a domain for the shape
of dynamic data structures [85] and (2) a domain for the contents of arrays. We describe
these two in detail in Chapters 3 and 4, respectively.

From the point of view of our contributions, the most important existing domain is the
template polyhedra domain, hence we briefly introduce it below. The reason is that both
heap structures and arrays often contain numerical values and we combine our new domains
with the template polyhedra domain to analyse contents of such structures.

Template Polyhedra Abstract Domain

Template polyhedra [114] are a class of templates for numerical variables which have the
form 𝒯 = (A𝑥 ≤ 𝛿) where A is a matrix with fixed coefficients. The 𝑟th row of the template
corresponds to the constraints generated by the 𝑟th row of the matrix A. Subclasses of such
templates include:

• Intervals which require constraints of the following form for each variable 𝑥𝑖:(︂
1
−1

)︂
𝑥𝑖 ≤

(︂
𝛿𝑖1
𝛿𝑖2

)︂
(2.11)

• Zones (differences) which extend the intervals by adding a constraint for each pair of
variables 𝑥𝑖 and 𝑦𝑖: (︂

1 −1
−1 1

)︂
(𝑥𝑖 𝑦𝑖) ≤

(︂
𝛿𝑖1
𝛿𝑖2

)︂
(2.12)

• Octagons [97] which extend the zones by adding additive constraints for each pair of
variables.

In this work, we use the interval and the zones templates. An example of a guarded interval
template used in 2LS can be found in Equation (2.9).

In template expressions used in 2LS, variables 𝑥 are bit-vectors representing signed or
unsigned integers. All such variables can be mixed in template constraints. Type promotion
rules are applied such that the bit-width of the types of the expressions are extended in
order to avoid arithmetic under- and overflows in the template expressions. ⊤ corresponds
to the respective maximum values in the promoted type, whereas ⊥ must be encoded as a
special symbol.

18

2.2.3 Incremental Bounded Model Checking

Bounded Model Checking (BMC) [15] focuses on refutation by picking an unwinding limit
𝑘 and solving the equation

∃𝑥0, . . . ,𝑥𝑘.Init(𝑥0) ∧ T [𝑘] ∧ ¬P [𝑘 + 1] (2.13)

where T [𝑘] is an unwound transition relation as defined by (2.3) and P [𝑘] is a predicate
stating that 𝑘 states are error-free:

P [𝑘] =
⋀︁

𝑖∈[0,𝑘−1]

¬Err(𝑥𝑖). (2.14)

Models of (2.13) correspond to concrete counterexamples of some length 𝑛 ⩽ 𝑘. The
unwinding limit gives an under-approximation of the set of reachable states and thus can
fail to find counterexamples that take a large number of transition steps. In practice, BMC
works well as the formula is existentially quantified and thus is in a fragment handled well
by SAT and SMT solvers.

Incremental bounded model checking is one of the core components of the 𝑘I𝑘I algo-
rithm. It corresponds to the red part in Figure 2.2. Incremental BMC (IBMC) (e.g. [39])
uses repeated BMC checks (often optimised by using the solver incrementally) with increas-
ing bounds to avoid the need for a fixed bound. If the bound starts at 0 (i.e., checking
∃𝑥0.Init(𝑥0)∧Err(𝑥0)) and is increased by one in each step (this is the common use-case),
then it can be assumed that there are no errors at previous states, giving a simpler test:

∃𝑥0, . . . ,𝑥𝑘.Init(𝑥0) ∧ T [𝑘] ∧ P [𝑘] ∧ Err(𝑥𝑘). (2.15)

2.2.4 Incremental k-Induction

Incremental 𝑘-induction [116] is the blue part of the 𝑘I𝑘I algorithm in Figure 2.2. It
can be viewed as an extension of IBMC that can show system safety as well as produce
counterexamples. It makes use of 𝑘-inductive invariants, which are predicates that have
the following property:

∀𝑥0 . . .𝑥𝑘.I [𝑘] ∧ T [𝑘]⇒ KInv(𝑥𝑘) (2.16)

where
I [𝑘] =

⋀︁
𝑖∈[0,𝑘−1]

KInv(𝑥𝑖).

𝑘-inductive invariants have the following useful properties:

• Any inductive invariant is a 1-inductive invariant and vice versa.

• Any 𝑘-inductive invariant is a (𝑘 + 1)-inductive invariant.

• A (finite) system is safe if and only if there is a 𝑘-inductive invariant KInv which
satisfies:

∀𝑥0 . . .𝑥𝑘. (Init(𝑥0) ∧ T [𝑘]⇒ I [𝑘])∧
(I [𝑘] ∧ T [𝑘]⇒ KInv(𝑥𝑘))∧
(KInv(𝑥𝑘)⇒ ¬Err(𝑥𝑘)) .

(2.17)

19

Showing that a 𝑘-inductive invariant exists is sufficient to show that an inductive invariant
exists but it does not imply that the 𝑘-inductive invariant is an inductive invariant. Often
the corresponding inductive invariant is significantly more complex. Thus 𝑘-induction can
be seen as a trade-off between invariant generation and checking as it is a means to benefit
as much as possible from simpler invariants by using a more complex property check.

However, finding a candidate 𝑘-inductive invariant is still hard, and so implementations
often use ¬Err(𝑥) as the candidate. Similarly to IBMC, linearly increasing 𝑘 can be used
to simplify the expression by assuming there are no errors at previous states:

∃𝑥0, . . . ,𝑥𝑘. (Init(𝑥0) ∧ T [𝑘] ∧ P [𝑘] ∧ Err(𝑥𝑘))∨
(T [𝑘] ∧ P [𝑘] ∧ Err(𝑥𝑘)).

(2.18)

A model of the first part of the disjunct is a concrete counterexample (𝑘-induction subsumes
IBMC) and if the whole formula has no models, then ¬Err(𝑥) is a 𝑘-inductive invariant
and the system is safe.

2.3 Implementation and Architecture of the 2LS Framework
2LS is based on the CPROVER framework1 which is the core part of another well-known
verification tool, CBMC [30]. It is implemented in C++ and currently has around 25 KLOC
(not counting CPROVER itself). The source code is available under the BSD license at
https://www.github.com/diffblue/2ls.

Similarly to other verification tools, 2LS follows the pipeline architecture of compilers,
consisting of a front-end for parsing and type checking the source code; middle-end passes
for transforming and analysing the code based on an intermediate representation (which in
2LS is the single static assignment form, SSA); and a back-end, which, however, instead of
code generation performs the analysis and verification. An overview of the 2LS architecture
is shown in Figure 2.4. In the rest of this chapter, we describe the individual components
in more detail.

Front-End

The verified program is first processed with an off-the-shelf C preprocessor (such as gcc -E)
and subsequently translated into a GOTO program using the goto-cc compiler from the
CPROVER framework. Afterwards, several analyses are performed to gather information
important for building the SSA form (e.g., the data-flow analysis used to create valid SSA
equations such as placement of phi nodes, etc.). As a part of this thesis, we introduce
two new analyses that facilitate dealing with memory objects: (1) dynamic object analysis
for determining the necessary numbers of abstract dynamic objects for each allocation site
(cf. Section 3.1) and (2) may-point-to analysis used for pre-materialization of the results of
memory-manipulating operations (cf. Section 3.2).

After all the analyses are done, the GOTO program is instrumented with new assertions
guarding, e.g., against invalid memory operations or arithmetic overflows. Finally, a GOTO
program is translated into the SSA form described in Section 2.1.1.

1https://www.cprover.org

20

https://www.github.com/diffblue/2ls
https://www.cprover.org

source program GOTO
generator

Analysis +
instrumentation

SSA generator

Unwinder
Template
generator

Invariant
inference

Shape domain

Interval domain

Array domain

...

SAT solver Property
checker

Spuriousness
checker

SSA

✗

?
Figure 2.4: 2LS architecture overview.

Middle-End

The middle-end analyses the generated SSA and implements several steps of the 𝑘I𝑘I al-
gorithm introduced in Section 2.2. The most important one is generation of k-inductive
invariants. Each iteration of 𝑘I𝑘I starts with creating a template for the chosen abstract
domain. Then, a solver is used to infer an invariant from the template using the algorithm
described in Section 2.2.1. After the invariant is obtained, it is passed to the backend which
uses it to check correctness of the program.

Another important transformation of the SSA form is loop unwinding. It is executed
at the end of each 𝑘I𝑘I iteration and is an essential step of the k-induction and BMC parts
of the algorithm. However, the concepts proposed and implemented within this thesis do
not deal with loop unwinding (they rather use it in the form that has been already present
in 2LS), hence we do not describe it in detail. For more information on the way loop
unwinding is implemented in 2LS, refer to [69].

Back-End

On its back-end, 2LS performs verification of the program with the help of the inferred
invariant. First, the invariant is checked whether it is sufficiently strong to prove necessary
properties and to claim the program safe. If that is not the case, i.e., the invariant includes
an error state, BMC is used to check if the error is reachable within the current unwinding,
which would efficiently prove the program incorrect. If the error is found to be spurious,
and the unwinding level has not reached the maximum value, the SSA form is unwound
and the algorithm continues.

21

1 struct node {

2 int data[1000];

3 int size;

4 struct node *next;

5 };

6

7 int main() {

8 struct node *list = NULL;

9 while (nondet()) {

10 struct node *n = malloc(sizeof(*n));

11 for (int i = 0; i < 1000; i++)

12 n->data[i] = 0;

13 n->size = 0;

14 n->next = list;

15 list = n;

16 }

17 int x = nondet();

18 assert(!list || list->data[x] == 0);

19 }

Figure 2.5: Running example for abstract domains

All steps of the backend require incremental solvers. Since support for incremental
solving in SMT solvers is still lagging behind in comparison to SAT solvers, 2LS uses
Glucose 4.02. Consequently, CPROVER is used to translate the SSA equation into a CNF
formula by bit-precise modelling of all expressions plus the Boolean guards. This formula
is incrementally extended to perform invariant generation, to add further loop unwindings,
and to add assertions for property checks. All this happens using a single solver instance
so that information learned by the solver is never discarded. This approach has a great
influence on the speed of verification in 2LS as we also show on our experiments.

2.4 Running Example
To facilitate understanding of concepts described in the following chapters, we introduce
an example program in Figure 2.5 which we will use to illustrate the proposed mechanisms.
The program features initialization of a data structure called unrolled linked list [115], which
is a linked list whose nodes contain arrays of values. To check correctness of operations
over such a data structure, the verification tool needs to be able to reason over linked heap
structures as well as the integer contents of arrays at the same time. We achieve this in 2LS
by introducing two new abstract domains and combining them with the existing template
polyhedra domain (cf. Chapters 3 and 4 for details).

Even though we give the example in C, 2LS will transform the program into the SSA
representation introduced in Section 2.1.1. Due to space reasons, we do not give the full
SSA, we just mention its parts important for understanding the examples presented later.

2https://github.com/mi-ki/glucose-syrup

22

https://github.com/mi-ki/glucose-syrup

Each variable assignment creates a new SSA variable indexed by the line number of the
definition. For instance, line 15 will be transformed into the equality 𝑙𝑖𝑠𝑡15 = 𝑛10 since 𝑙𝑖𝑠𝑡
is assigned on this line while the last assignment into 𝑛 happened on line 10. Data-flow
join points are represented using phi variables, e.g., the value of 𝑙𝑖𝑠𝑡 on line 9 is given by
the equation:

𝑙𝑖𝑠𝑡phi9 = 𝑔ls16 ? 𝑙𝑖𝑠𝑡8 : 𝑙𝑖𝑠𝑡
lb
16 (2.19)

where 𝑔ls16 is a free boolean variable representing a non-deterministic choice, and 𝑙𝑖𝑠𝑡lb16 is
an over-approximation of the value of 𝑙𝑖𝑠𝑡 coming from the end of the loop body (line 16),
which will be constrained by the computed invariant.

Operations over pointers and dynamic memory are encoded in a special way which we
introduce as a part of this thesis in Section 3.2. Hence, we defer presentation of the concrete
SSA equations for the relevant statements to that section.

Besides data-flow equations, the SSA form encodes the control flow using so-called guard
variables. For each location (line) 𝑖, the variable 𝑔𝑖 represents the boolean condition under
which the line is reachable from the beginning of the program. For example, 𝑔8 is true
while 𝑔10 is non-deterministic (i.e., left unconstrained) as the nondet function returns a
random integer value.

Prior to our work, 2LS would only be able to compute invariants over numerical variables
stored on the stack. In particular, an invariant in the intervals domain would be computed
for 𝑖lb12, which represents the value of the variable i returning from the end of the inner loop
body to the loop head. Since 2LS uses guarded templates, the computed invariant is:

𝑔11 ∧ 𝑔ls12 ⇒ 𝑖lb12 <= 1000 ∧
𝑔11 ∧ 𝑔ls12 ⇒ −𝑖lb12 <= 1.

(2.20)

The invariant states that if the loop head is reachable (𝑔11) and 𝑖lb12 is chosen as the result
of the corresponding phi expression (𝑔ls12), then, at the end of the loop, the value of i will
always be between 1 and 1000.

23

Chapter 3

Verification of Heap-Manipulating
Programs

The first contribution of this part of the thesis is a novel approach for verification of pro-
grams manipulating data structures on the program heap. The method that we propose is
suitable for the template-based verification approach of 2LS introduced in Chapter 2.

The most important contribution of this part is a new abstract domain for tracking the
points-to relation between pointers and memory objects. We refer to it as to the shape
domain and describe it in detail in Section 3.3.

Since 2LS comes with a rather specific program representation based on the SSA form,
we discovered that solely the new domain is not sufficient for sound verification of heap-
manipulating programs. The main problem lies in the fact that 2LS heavily relies on
incremental solving and hence it attempts to reuse as large parts of the formulae as pos-
sible for successive solver invocations. This typically means that the formula representing
the program semantics cannot change during the verification process, especially during the
invariant inference phase. This creates problems when it comes to representation of dy-
namic memory operations. Since dynamic memory is possibly unbounded, an abstraction
is necessary for sound verification. The traditional approach is to create an abstract rep-
resentation of the dynamic memory and concretise heap objects on demand during the
verification process. However, this is not possible in 2LS (since the formula representing
the program cannot change), hence a different approach is necessary.

To overcome this limitation of 2LS and ensure soundness, we introduce a new memory
model and a new representation of memory-manipulating operations. We present these in
Sections 3.1 and 3.2, respectively.

In addition, since we deal with complex data structures, it is usually not sufficient to
use a single domain to analyse a program. For instance, the shape domain may describe
pointer links among heap objects, but we also need a numerical domain to reason about
the contents of the objects to prove, e.g., correctness of an algorithm for finding a maximal
node in a linked list. To facilitate such analyses, we introduce domain combinations that
allow to compose abstract domains together. The domain combinations are presented in
Section 3.4.

Besides verification of reachability assertions, heap-manipulating programs are usually
verified for memory safety, too. To achieve this in 2LS, we introduce automatic instrumen-
tation of the analysed program that allows to check for the most typical memory safety
errors. Our approach is described in Section 3.5.

24

The rest of this chapter is heavily based on our FMCAD 2018 paper [85] and two
SV-COMP papers [87, 90].

3.1 Memory Model
We now describe a memory model that we use to represent all program memory [85]. Our
model is object-based, and we distinguish objects allocated statically (i.e., variables on the
stack and global variables) and dynamically (i.e., on the heap).

3.1.1 Static Memory Objects

In our approach, we work with non-recursive programs with all functions inlined. Therefore,
we do not need to consider the stack and the set Var of static memory objects corresponds
to the set of all program variables. Each variable is uniquely identified by its name.

For convenience, we define subsets of Var that correspond to sets of variables of a chosen
type:

• NVar is the set of all variables of a numeric type (integer or floating point).

• PVar is the set of all variables of a pointer type.

• AVar is the set of all variables of an array type. Each array has its element type
which we often refer to as the inner type.

• SVar is the set of all variables of a structure type. Each structure type defines a
set of named fields, each of them having its own type. We use Fld to denote the
set of all fields used in the analysed program. Similarly to the variables, we let
NFld ,PFld ,AFld ⊆ Fld be the sets of all fields of numerical, pointer, and array
types, respectively. In order to express access to individual fields of a structure-typed
variable, we use the “dot” notation as is common in C.

We assume NVar , PVar , AVar , and SVar are pairwise disjoint.

3.1.2 Dynamic Memory Objects

To represent dynamic memory objects (i.e., those allocated using malloc or some of its
variants), we use abstract dynamic objects. An abstract dynamic object represents a set of
concrete dynamic objects allocated by the same malloc call. We refer to a malloc call
at a program location 𝑖 as to an allocation site 𝑖.

Generally, a single abstract dynamic object is not sufficient to represent all concrete
objects allocated by a single malloc call. This is due to the fact that the analysed program
may use several concrete objects allocated at the same allocation site at the same time. If
such objects are, e.g., compared, our memory model must allow us to distinguish them.
This can be done either by concretisation on demand (as is common in many memory
models) or by pre-materialisation of a sufficient number of objects at the beginning of the
analysis. Since our approach uses a single formula to represent the analysed program and
leverages on small incremental changes of the formula during the analysis, we use the latter
approach.

Therefore, we use the set 𝐴𝑂𝑖 = {𝑎𝑜𝑘𝑖 | 1 ≤ 𝑘 ≤ 𝑛𝑖} of abstract objects to represent
all concrete objects allocated at the allocation site 𝑖. The number 𝑛𝑖 of necessary objects

25

is determined for each allocation site using an approach described later in this section.
The set of all dynamic objects of the analysed program is then defined as AO = ∪𝑖𝐴𝑂𝑖.
Together with the set of all static objects, we define Obj = Var ∪ AO to be the set of all
memory objects of our program abstraction. We require Var ∩AO = ∅ and 𝐴𝑂𝑖 ∩𝐴𝑂𝑗 = ∅
for 𝑖 ̸= 𝑗.

Similarly to static objects, we denote NAO , PAO , AAO , and SAO the sets of dynamic
objects of a numerical, pointer, array, and structure type, respectively. Fields of structure-
typed dynamic objects, i.e., elements of the set SAO × Fld , represent abstractions of the
appropriate field of all represented concrete objects. Using the above sets, we may define
the set Num of all numerical objects in the program as:

Num = NVar ∪NAO ∪ ((SVar ∪ SAO)×NFld). (3.1)

Analogically, we define the sets Ptr and Arr of all pointers and arrays, respectively, as
follows:

Ptr = PVar ∪ PAO ∪ ((SVar ∪ SAO)× PFld) (3.2)
Arr = AVar ∪AAO ∪ ((SVar ∪ SAO)×AFld). (3.3)

Pointers can be assigned addresses of objects. Since we do not support pointer arithmetic,
only symbolic addresses and a special address null are considered. We use the operator &
to get the address of both static and dynamic objects. For abstract dynamic objects, the
symbolic address is an abstraction of symbolic addresses of all represented concrete objects.
We define the set Addr of all addresses in the program as:

Addr = {&𝑜 | 𝑜 ∈ Obj} ∪ {null}. (3.4)

Dynamic Object Pre-Materialisation

Above, we mentioned that, for each allocation site 𝑖, we represent (a potentially infinite
number of) all objects allocated at 𝑖 by a finite number 𝑛𝑖 of abstract dynamic objects.
In order for this abstraction to be sound, it is sufficient that this number is equal to the
number of distinct concrete objects, allocated at 𝑖, that may be simultaneously pointed to
at any location of the analysed program.

In order to compute this number, we first perform a standard static may-alias analysis.
This analysis determines, for each program location 𝑗, the set 𝑃 𝑗

𝑖 of all pointer expressions
used in the program, that may point to some object allocated at 𝑖. Here, pointer expressions
may be one of the following:

• Pointer variables.

• Dereferences of pointers to pointers. These correspond to pointer-typed dynamic
objects.

• Pointer fields of structure-typed variables.

• Dereferences of pointers to structures followed by an access to a pointer-typed field.
These correspond to pointer-typed fields of dynamic objects. Here, we use the C
notation based on an arrow (e.g., 𝑝→𝑛 to express a dereference of 𝑝 followed by an
access to the field 𝑛 of the pointed object).

• Pointer-typed elements of arrays.

26

For simplicity, we assume that all chained dereferences of forms **𝑝 or 𝑝→𝑓1→𝑓2 are split
into multiple dereferences using an intermediate pointer variable which is added to PVar .

Next, we compute the must alias relation ∼𝑗 over the set of all pointer expressions. For
each pair of pointer expressions 𝑝 and 𝑞 and for each program location 𝑗, 𝑝 ∼𝑗 𝑞 iff 𝑝 and 𝑞
must point to the same concrete object (i.e., they must alias) at 𝑗.

Finally, we partition each computed 𝑃 𝑗
𝑖 into equivalence classes by ∼𝑗 , and the number

𝑛𝑖 is given by the maximal number of such classes for any 𝑗.

3.2 Representation of Memory-Manipulating Operations
One of the strengths of 2LS is its efficient usage of incremental SMT solving that contributes
to the great overall speed of the analysis. It is facilitated by representing the entire program
as a single monolithic formula which is only minimally changed during verification. This
approach, however, brings a number of obstacles, especially when it comes to representation
of operations over dynamically allocated memory. Typically, a pointer dereference of an
abstract object would be concretised on demand during analysis. In 2LS, that would require
an update of the formula representing the program (which is not desirable), hence we pre-
materialise results of all memory-manipulating operations at the beginning of the analysis.
In this section, we describe how this is done for the two most typical operations—dynamic
memory allocation and pointer dereferencing (where we use slightly different approaches
for read and write accesses).

3.2.1 Dynamic Memory Allocation

As said in Section 3.1, all concrete objects allocated by a single malloc call at a program
location 𝑖 are abstracted by a set of abstract dynamic objects 𝐴𝑂𝑖. In the SSA form, we
represent such a call by a non-deterministic choice among objects from 𝐴𝑂𝑖. A program
assignment p = malloc(...) is therefore transformed into the formula

𝑝𝑖 = 𝑔𝑜𝑠𝑖,1 ?&𝑎𝑜
1
𝑖 : (𝑔

𝑜𝑠
𝑖,2 ?&𝑎𝑜

2
𝑖 : (. . . (𝑔

𝑜𝑠
𝑖,𝑛𝑖−1 ?&𝑎𝑜

𝑛𝑖−1
𝑖 : &𝑎𝑜𝑛𝑖

𝑖))) (3.5)

where 𝑔𝑜𝑠𝑖,𝑗 , 1 ≤ 𝑗 < 𝑛𝑖, are free Boolean variables, so-called object-select guards.

Running Example

Let us illustrate memory allocation equations on the running example from Figure 2.5. The
program features one malloc call on line 10. At any point of the program, there may be at
most two distinct concrete objects allocated at this location pointed by some live pointers
(e.g., by pointers n and list on line 11). Therefore, the set of abstract dynamic objects
for line 10 is 𝐴𝑂10 = {𝑎𝑜110, 𝑎𝑜210} and the corresponding SSA equation is:

𝑛10 = 𝑔𝑜𝑠10 ?&𝑎𝑜
1
10 : &𝑎𝑜

2
10. (3.6)

We omit the second part of the subscript in the object-select guard for better legibility.

3.2.2 Reading through Dereferenced Pointers

We now describe encoding of a pointer dereference appearing on the right-hand side of
an assignment or in a condition (i.e., in an R-expression). Prior to generating the SSA,
we perform a static may-points-to analysis which over-approximates—for each program

27

location 𝑖 and for each pointer 𝑝 ∈ Ptr—the set of all objects from Obj that 𝑝 may point
to at 𝑖. A dereference of 𝑝 at 𝑖 is then represented by a choice among the pointed objects.

Moreover, to simplify the representation and to improve precision (for reasons explained
below), we also introduce so-called dereference variables. Let *𝑝 be an R-expression that
appears at a program location 𝑖 and let us assume that 𝑝 may point to a set of objects
𝑂 ⊆ Obj . We replace *𝑝 by a fresh variable 𝑑𝑟𝑓(𝑝)𝑖, and we define its value as follows:⋀︁

𝑜∈𝑂
𝑝𝑗 = &𝑜 =⇒ 𝑑𝑟𝑓(𝑝)𝑖 = 𝑜𝑘 ∧(︃⋀︁

𝑜∈𝑂
𝑝𝑗 ̸= &𝑜

)︃
=⇒ 𝑑𝑟𝑓(𝑝)𝑖 = 𝑜⊥

(3.7)

where 𝑝𝑗 and 𝑜𝑘 are the relevant versions of the variables 𝑝 and 𝑜, respectively, at the
program location 𝑖, and 𝑜⊥ is a special “unknown object” representing the result of a
dereference of an unknown or invalid (null) pointer.

Informally, Formula (3.7) expresses the fact that 𝑑𝑟𝑓(𝑝)𝑖 equals the value of 𝑜 at 𝑖 in
case that 𝑝 points to 𝑜 at 𝑖, and it equals the value of the unknown object otherwise.

Running Example

We again illustrate the equations on the running example from Figure 2.5. The program
features one read through a pointer in the assertion on line 18 (list->data[x]). The
dereferenced pointer is list, with its last valid SSA version coming from the loop head,
i.e., 𝑙𝑖𝑠𝑡phi9 . At this program location, list may point to one of the abstract dynamic
objects 𝑎𝑜110, 𝑎𝑜210 introduced in the previous section or to null. The variable x is defined
on line 17, hence its SSA expression is 𝑥17. With respect to the above definitions, the SSA
equation corresponding to the asserted property on line 18 is:

𝑙𝑖𝑠𝑡phi9 = null ∨ 𝑑𝑟𝑓(𝑙𝑖𝑠𝑡)18.𝑑𝑎𝑡𝑎[𝑥17] = 0 (3.8)

where we define the value of 𝑑𝑟𝑓(𝑙𝑖𝑠𝑡)18.𝑑𝑎𝑡𝑎 as:

𝑙𝑖𝑠𝑡phi9 = &𝑎𝑜110 =⇒ 𝑑𝑟𝑓(𝑙𝑖𝑠𝑡)18.𝑑𝑎𝑡𝑎 = 𝑎𝑜110.𝑑𝑎𝑡𝑎
phi
9 ∧

𝑙𝑖𝑠𝑡phi9 = &𝑎𝑜210 =⇒ 𝑑𝑟𝑓(𝑙𝑖𝑠𝑡)18.𝑑𝑎𝑡𝑎 = 𝑎𝑜210.𝑑𝑎𝑡𝑎
phi
9 ∧

𝑙𝑖𝑠𝑡phi9 ̸= &𝑎𝑜110 ∧ 𝑙𝑖𝑠𝑡
phi
9 ̸= &𝑎𝑜210 =⇒ 𝑑𝑟𝑓(𝑙𝑖𝑠𝑡)𝑖.𝑑𝑎𝑡𝑎 = 𝑜⊥.𝑑𝑎𝑡𝑎.

(3.9)

Note that we use 𝑑𝑟𝑓(𝑙𝑖𝑠𝑡)18.𝑑𝑎𝑡𝑎 rather than 𝑑𝑟𝑓(𝑙𝑖𝑠𝑡)18. The reason for this is that we
will compute different invariants for different members of the heap objects, hence we define
distinct SSA symbols for them (i.e., we compute separate invariants for 𝑎𝑜110.𝑑𝑎𝑡𝑎, 𝑎𝑜110.𝑠𝑖𝑧𝑒,
and 𝑎𝑜110.𝑛𝑒𝑥𝑡 rather than a single invariant for the entire dynamic object 𝑎𝑜110). Here, the
symbol 𝑎𝑜110.𝑑𝑎𝑡𝑎 represents abstraction of the data field of all objects allocated on line 10
and for line 18, its valid SSA definition comes from the loop head (i.e., 𝑎𝑜110.𝑑𝑎𝑡𝑎

phi
9). Same

applies for 𝑎𝑜210.𝑑𝑎𝑡𝑎. The expression 𝑜⊥.𝑑𝑎𝑡𝑎 represents an invalid object.

3.2.3 Writing through Dereferenced Pointers

Similarly to the operation of reading, we introduce an SSA encoding for the operation of
writing into memory using a pointer dereference. Again, we leverage on the may-points-to
analysis described above, and we again build on the special dereference variables. Let us

28

have an assignment *𝑝 = 𝑣 at program location 𝑖 and let us assume that 𝑝 may point to a
set of objects 𝑂 ⊆ Obj at the entry to 𝑖. This assignment is replaced by the equality:

𝑑𝑟𝑓(𝑝)𝑖 = 𝑣𝑙. (3.10)

where 𝑣𝑙 is the valid version of 𝑣 at 𝑖. The dereference variable 𝑑𝑟𝑓(𝑝)𝑖 is then used to
update the value of the referenced object. This is done using the formula:⋀︁

𝑜∈𝑂
𝑜𝑖 = (𝑝𝑗 = &𝑜) ? 𝑑𝑟𝑓(𝑝)𝑖 : 𝑜𝑘 (3.11)

where 𝑝𝑗 , 𝑜𝑘 are relevant versions of 𝑝 and 𝑜, respectively, at the program location 𝑖.
In other words, this formula expresses the fact that an object 𝑜 is assigned the value of 𝑣

in the case when 𝑝 points to 𝑜, and it keeps its original value otherwise. As mentioned above,
usage of dereference variables may improve precision of the representation. This happens
especially when we write into an abstract object through some pointer and afterwards read
through the same pointer without changing its value nor the value of the pointed object in
between. In such cases, we may reuse the same dereference variable which ensures that we
get the same value that was written, which needs not happen otherwise since we read from
an abstract object representing a number of concrete objects.

Running Example

Let us illustrate writing through pointers on the running example from Figure 2.5, in
particular on the memory write on line 13 (n->size = 0). The dereferenced pointer is n
which is previously assigned the return value of the malloc call, i.e., it may point to one
of the abstract dynamic objects 𝑎𝑜110, 𝑎𝑜210 introduced in Section 3.2.1. The last valid SSA
expression for n is 𝑛10.

With respect to the above definitions, the SSA equation corresponding to line 13 is:

𝑑𝑟𝑓(𝑛)13.𝑠𝑖𝑧𝑒 = 0 (3.12)

and the dereference variable 𝑑𝑟𝑓(𝑛)13.𝑠𝑖𝑧𝑒 is used to update the apropriate fields of the two
abstract dynamic objects:

𝑎𝑜110.𝑠𝑖𝑧𝑒13 = (𝑛10 = &𝑎𝑜110) ? 𝑑𝑟𝑓(𝑛)13.𝑠𝑖𝑧𝑒 : 𝑎𝑜
1
10.𝑠𝑖𝑧𝑒10 ∧

𝑎𝑜210.𝑠𝑖𝑧𝑒13 = (𝑛10 = &𝑎𝑜210) ? 𝑑𝑟𝑓(𝑛)13.𝑠𝑖𝑧𝑒 : 𝑎𝑜
2
10.𝑠𝑖𝑧𝑒10.

(3.13)

When combined with Eq. (3.6), the size field of exactly one of the abstract dynamic
objects is updated while the other one retains its original (unconstrained) value coming
from the allocation site on line 10.

3.3 Abstract Domain for Heap Shape Analysis
We now present our first abstract domain for analysing programs working with data struc-
tures—the heap shape domain. The shape of the heap is defined by pointer links among
memory objects. Therefore, our proposed shape domain is limited to the set Ptr of all
pointers as defined by Equation (3.2). More particularly, since the shape domain is used
to infer loop invariants, we limit it to the set Ptr 𝑙𝑏 of all loop-back pointers which in our
SSA representation abstract values of pointers returning from the ends of the loops that
the pointers are updated in.

29

The shape domain over-approximates the may-point-to relation between the set Ptr 𝑙𝑏

and the set of all symbolic addresses Addr . We define the form of the heap template to be
the formula

𝒯 𝑆 ≡
⋀︁

𝑝∈Ptr 𝑙𝑏
𝒯 𝑆
𝑝 (𝑑𝑝). (3.14)

The template is a conjunction of template rows 𝒯 𝑆
𝑝 where each row corresponds to a single

loop-back pointer 𝑝 and it describes the points-to relation of that pointer. The parameter
𝑑𝑝 ⊆ Addr of the row (i.e., the abstract value of the row) specifies the set of all addresses
from the set Addr that 𝑝 may point to at the end of the corresponding loop. The template
row can be therefore expressed as a disjunction of equalities between the loop-back pointer
and all possible addresses:

𝒯 𝑆
𝑝 (𝑑𝑝) ≡ (

⋁︁
𝑎∈𝑑𝑝

𝑝 = 𝑎) (3.15)

Computing an invariant in the given abstract domain allows 2LS to characterize the shape
of the program heap. For example, abstract values of template rows corresponding to
pointer fields of abstract dynamic objects describe linked paths in the heap, such as linked
segments.

Running Example

Let us illustrate usage of the shape domain on the example from Figure 2.5. The program
contains four pointers—two variables list and n, and the next fields of the two abstract
dynamic objects 𝑎𝑜110.𝑛𝑒𝑥𝑡 and 𝑎𝑜210.𝑛𝑒𝑥𝑡. The variable n is local to the loop, hence we do
not compute an invariant for it. The remaining three pointers are all updated in the outer
loop, therefore we compute invariants for their loop-back variants 𝑙𝑖𝑠𝑡lb16, 𝑎𝑜110.𝑛𝑒𝑥𝑡lb16, and
𝑎𝑜210.𝑛𝑒𝑥𝑡

lb
16. For simplicity, we present only the final invariants for 𝑙𝑖𝑠𝑡lb16 and 𝑎𝑜110.𝑛𝑒𝑥𝑡

lb
16:

𝑔9 ∧ 𝑔ls16 ⇒ 𝑙𝑖𝑠𝑡lb16 = &𝑎𝑜110 ∨ 𝑙𝑖𝑠𝑡lb16 = &𝑎𝑜210 ∧
𝑔9 ∧ 𝑔ls16 ∧ 𝑔𝑜𝑠10 ⇒ 𝑎𝑜110.𝑛𝑒𝑥𝑡

lb
16 = &𝑎𝑜110 ∨ 𝑎𝑜110.𝑛𝑒𝑥𝑡lb16 = &𝑎𝑜210 ∨ 𝑎𝑜110.𝑛𝑒𝑥𝑡lb16 = null.

(3.16)

The first conjunct (row) of the invariant states that, at the end of the outer loop, the list
variable points to one of the newly allocated dynamic objects. The second row states that
if 𝑎𝑜110 is allocated (𝑔𝑜𝑠10 holds), its 𝑛𝑒𝑥𝑡 field points either to one of the dynamic objects
or to null. The invariant for 𝑎𝑜210.𝑛𝑒𝑥𝑡lb16 is analogous to the second row of Eq. (3.16)
with 𝑎𝑜210.𝑛𝑒𝑥𝑡lb16 used on the left-hand side of equalities and ¬𝑔𝑜𝑠10 used instead of 𝑔𝑜𝑠10. The
overall invariant effectively describes a linked list pointed by the variable list, composed
of dynamic objects allocated on line 10, and terminated by null.

3.4 Abstract Domain Combinations
One of the main advantages of program verification implemented in 2LS is that all abstract
domains are required to have a common form of templates—quantifier-free first order for-
mulae. Thanks to this feature, it is quite straightforward to create various compositions of
different domains while relying on the solver to do the heavy-lifting on the domain operators
combination and on mutual reduction of the domain abstract values. In this section, we
introduce two approaches to domain combinations: product templates and power templates,

30

particularly their form called templates with symbolic paths [85]. In addition, our array do-
main introduced in the following chapter has also the form of a combination domain since
it contains an inner domain for describing properties of the array elements.

3.4.1 Product Templates

Product templates are one of the simplest forms of abstract domain combination in 2LS.
They are based on using a Cartesian product template that combines domains of various
kinds side-by-side. This can be achieved by simply taking a conjunction of their templates.

Product templates are particularly helpful for programs that require multiple different
domains for different objects. An example of such a combination is the combination of
the shape and polyhedra abstract domains. It allows 2LS to analyse values of variables of
pointer and numerical type at the same time. This helps not only for analysing programs
manipulating pointers and numbers at the same time but also opens a possibility to reason
about the contents of data structures on the program heap.

Running Example

Our running example from Figure 2.5 contains memory objects of integer, pointer, and
array types. Since 2LS requires a single template, we use the product domain composed
from multiple domains to analyse the entire program:

𝒯 = 𝒯 𝐼 × 𝒯 𝑆 × 𝒯 𝐴(𝒯 𝐼). (3.17)

𝒯 𝐼 denotes the template for the interval domain and it is used for the variable i as well as
for the size fields of the abstract dynamic objects. The template 𝒯 𝑆 for the shape domain
is used for the variable list and for the next fields of the abstract dynamic objects. Last,
the template 𝒯 𝐴 for the array domain is used for the data fields of the abstract dynamic
objects. The array domain is designed as a composition domain and it features an inner
domain which is used to describe values held by the array. In this case, since the values are
numerical, we use the interval domain template 𝒯 𝐼 . The array domain is described in more
detail in Chapter 4, cf. Section 4.4 to see what the array invariant for the running example
looks like.

Overall, using all these domains together will allow 2LS to reason about the unrolled
linked list—the shape domain will take care of the list node linkage on the heap, the array
domain will analyse the array contents of the nodes, and the interval domain will be used
to reason about the sizes of nodes and actual values stored inside the arrays. Since all
domains are represented using templates (i.e., first-order formulae), the underlying solver
will take care of the necessary domain combination operations.

3.4.2 Templates with Symbolic Paths

Using simple templates of invariants, such as the described polyhedra templates or the heap
shape template, may not be precise enough to analyse some programs, especially programs
working with abstract dynamic objects. In such programs, it is often required that an
invariant computed for a loop 𝑙 distinguishes which loops were or were not executed before
reaching 𝑙. When working with abstract dynamic objects allocated in loops, this allows one
to distinguish situations when an abstract dynamic object does not represent any really
allocated object, and therefore an invariant describing it is not valid.

31

Inv𝐿 ← true
for 𝜋 ∈ Π do

add assert(𝜋) to solver
Inv𝜋 ← compute invariant from 𝒯
remove assert(𝜋) from solver
if (𝜋 ∧ Inv𝜋) is satisfiable then
Inv𝐿 ← Inv𝐿 ∧ (𝜋 =⇒ Inv𝜋)

end if
end for

Figure 3.1: Algorithm for inferring an invariant from a symbolic paths template.

With respect to this, in order to improve precision, we have proposed in [85] the concept
of symbolic loop paths. A symbolic loop path expresses which loops in the program were
executed. Since 2LS uses loop-select guards to capture the control flow through the loops,
a symbolic path is simply a conjunction of loop-select guard literals.

Formally, let 𝐺𝑙𝑠 be the set of all loop-select guards in the analysed program. A symbolic
loop path 𝜋 is defined as

𝜋 =
⋀︁

𝑔∈𝐺𝑙𝑠

𝑙𝑔 (3.18)

where 𝑙𝑔 is a literal of 𝑔, i.e., 𝑔 or ¬𝑔. We denote the set of all symbolic paths by Π. We also
define a special path 𝜋⊥ containing negative literals only. For this path, no loop invariant
is computed since no loops were executed for this path.

Having some template 𝒯 expressing an abstract domain (e.g., the shape domain or even
a product domain), we define the corresponding template with symbolic paths as

𝒯 𝐿 ≡
⋀︁
𝜋∈Π

𝜋 =⇒ 𝒯 . (3.19)

This template can be viewed as a power template—in the sense of power domains—which
assigns to each element of the base domain an element of the exponent domain.

The algorithm for inference of an invariant Inv𝐿 from a symbolic path template is shown
in Figure 3.1. The algorithm computes a separate invariant Inv𝜋 in the inner domain (using
the template 𝒯) for each symbolic path 𝜋. To limit the invariant computation for 𝜋 only, we
assert that 𝜋 (a formula expressing which loops are executed) holds during the computation.
It may also happen that, after computing Inv𝜋, the symbolic path is in fact not reachable
in the analysed program. Therefore, we check its reachability by solving 𝜋 ∧ Inv𝜋 in the
context of the formula generated from the SSA of the analysed program. If 𝜋 is reachable,
then 𝜋 =⇒ Inv𝜋 is conjoined into the resulting invariant, otherwise Inv𝜋 is discarded.

3.5 Memory Safety Verification
When dealing with complex data structures stored in the memory, one of the most necessary
and challenging properties to verify is safety from memory errors. Such errors include
dereferencing a null or a freed pointer, free errors, and memory leaks. In order to
analyse memory safety, we introduce automatic instrumentation of the analysed program
by assertions to check for typical memory safety errors [85, 86]. Verification of such
assertions by using the abstract domain introduced in Section 3.3 allows 2LS to discover

32

occurrences of memory safety errors as well as to prove their absence. In the rest of this
chapter, we describe the structure of the given assertions.

3.5.1 Safety from Dereferencing/Freeing a null Pointer

To check for this kind of errors, 2LS adds an assertion 𝑝 ̸= null to each program location
where *𝑝 or free(p) occurs. Since the shape domain over-approximates the points-to
relation, it is possible to soundly prove absence of such errors. If an error is found, BMC
can be used to check whether it is spurious.

3.5.2 Safety from Dereferencing/Freeing a Freed Pointer

We introduce a special variable fr initialised to null that is used to track the possibly freed
objects. Every call to free(p) in a program location 𝑖 is replaced by a formula

fr 𝑖 = 𝑔fr𝑖 ?𝑝𝑗 : fr𝑘 (3.20)

where 𝑝𝑗 and fr𝑘 are relevant versions of 𝑝 and fr , respectively, valid at 𝑖, and 𝑔fr𝑖 is a free
Boolean variable. This formula represents a non-deterministic update of the value of fr by
the freed address.

The shape domain (cf. Section 3.3) is then used to over-approximate the set of all
addresses that fr may point to, which is essentially the set of all possibly freed memory
objects. Proving free safety is then done by adding an assertion 𝑝 ̸= fr at each program
location where *𝑝 or free(p) occurs.

The nature of the shape domain guarantees soundness of this approach, however, using
it for abstract dynamic objects is often very imprecise. This is because freeing one of
the concrete objects represented by the abstract one does not mean that the rest of the
represented objects cannot be safely dereferenced or freed. This problem is resolved by
modifying the representation of malloc calls described in Section 3.2.

In addition to the set 𝐴𝑂𝑖 of abstract dynamic objects used to represent all objects
allocated at 𝑖, we add one object 𝑎𝑜𝑐𝑜𝑖 to 𝐴𝑂𝑖. The object can be non-deterministically
chosen as the malloc result (just like any other 𝑎𝑜𝑘𝑖), however, it is guaranteed to represent
a concrete object (i.e., it can be allocated only once). This is achieved by an additional
condition asserting that 𝑎𝑜𝑐𝑜𝑖 cannot be allocated if there is a pointer pointing to it at the
entry to the allocation site 𝑖. Therefore, the malloc representation has the form

𝑝𝑖 = (𝑔𝑜𝑠𝑖,𝑐𝑜 ∧
⋀︁

𝑝∈Ptr
𝑝 ̸= &𝑎𝑜𝑐𝑜𝑖) ?&𝑎𝑜𝑐𝑜𝑖 : (𝑔𝑜𝑠𝑖,1 ?&𝑎𝑜

1
𝑖 : (. . .)) (3.21)

Afterwards, it is only allowed to assign the address of the concrete object 𝑎𝑜𝑐𝑜𝑖 to fr at
each allocation site 𝑖. Checks for the free safety are also done on concrete objects only,
which helps to avoid the described imprecision. This approach remains sound since 𝑎𝑜𝑐𝑜𝑖
represents an arbitrary object allocated at 𝑖, and if safety can be proven for it, it can be
assumed to hold for all objects allocated at 𝑖.

3.5.3 Memory Leaks Safety

Similarly to the previous section, the variable fr is used to check for safety from memory
leaks. At the end of the program, we check whether there is an object 𝑎𝑜𝑐𝑜𝑖 such that
fr ̸= &𝑎𝑜𝑐𝑜𝑖 . If such an object is found, a memory leak is present. However, proving absence

33

from memory leaks is only possible for loop-free programs (or for programs with all loops
fully unwound). This is because we do not track sequencing of abstract objects representing
concrete objects allocated at a single allocation site, and our analysis typically sees that
𝑎𝑜𝑐𝑜𝑖 can be skipped in deallocation loops, and hence remains inconclusive on the memory
leaks.

3.6 Related Work
Shape analysis is a technique of static analysis aimed at discovering shapes of data structures
dynamically allocated on the program heap. Such structures usually include various forms
of linked lists (singly or doubly linked, circular, nested, etc.), trees, or more complicated
structures such as skip-lists.

Unlike stack and static memory that can be abstracted by a finite set of named variables
occurring in the analysed program, heap data is potentially unbounded and seemingly
arbitrary. This poses a challenge in terms of used heap abstractions and makes shape
analysis a widely explored research topic. In this section, we give an overview of some of
the current approaches to shape analysis. For a more complete survey, we refer to [64].

We split the described methods into multiple groups based on the models they use
to abstract the shape of the heap. The first two groups, using namely various kinds of
logics, automata, and graphs are store-based, i.e., they describe the heap explicitely. On
the contrary, the approaches in last group are inspired by storeless semantics.

3.6.1 Logic-based Methods

One of the first approaches to shape analysis is based on a so-called three-value logic [113].
This logic introduces a new value unknown to the traditional boolean values true and
false. The approach is based on abstract interpretation and the value unknown is used to
express the fact that some elements may or may not be in a relation after an abstraction
is done. The method is rather generic but usually requires some manual intervention to be
sufficiently scalable.

Another approach uses a so-called Pointer Assertion Logic [98] to verify data structures
that can be described by graph types. The technique is highly modular, however, it is
semi-automated only—it requires explicit loop and function call invariants.

A different group of shape analysis techniques uses separation logic [111]. It is an exten-
sion of Hoare logic [53] developed specifically for reasoning about programs manipulating
heap. It builds on Hoare triples, which is a mechanism to describe how a program state
changes after execution of a piece of code. A triple has a form {𝑃}𝐶{𝑄}, where 𝑃,𝑄 are
predicates (often called a precondition and a postcondition) and 𝐶 is a command. The
predicate 𝑃 is assumed to hold before the execution of 𝐶, and 𝑄 is assumed to hold after-
wards. Separation logic extends the predicate logic by several new operators and symbols:
emp (a constant representing an empty heap), 𝑒 ↦→ 𝑒′ (an operator expressing the fact that
the heap contains a single cell at address 𝑒 which maps to the value 𝑒′), 𝑝 * 𝑞 (an operator
expressing that the heap can be separated into two parts where 𝑝 holds for one and 𝑞 holds
for the other), and 𝑝−* 𝑞 (an operator expressing that if the heap is extended by a disjoint
part in which 𝑝 holds, then 𝑞 will hold after the extension). There are many fully-automated
tools based on separation logic such as Space Invader [121] and SLAyer [7].

Separation logic is also applied in practice, e.g., in combination with bi-abduction [22]
in the Infer tool (https://fbinfer.com). However, the tool misses support for low-level

34

https://fbinfer.com

features such as block operations and advanced pointer arithmetic and handles simple data
structures only (mainly lists). To expand bi-abduction to more complicated structures,
second-order bi-abduction has been proposed [77, 33]. While it is able to learn recursive
heap predicates, finding a solution of the generated equations is hard and the authors
propose heuristics for certain shape of equations only. Bi-abduction has also been extended
to handle low-level features of code [55], however, combination with other analyses (e.g., for
analysing contents of linked lists) and scalability of the approach are so far quite limited.

Separation logic and bi-abduction are also among the main techniques used in the
Gillian framework [43, 84], which allows to develop custom compositional symbolic analysis
tools. Authors use the framework to create Gillian-C, a proof-of-concept tool for symbolic
testing of C programs which, compared to our approach, is aimed at finding bugs rather
than proving program correctness. The same is the case for some recent works which
introduce and apply so-called incorrectness separation logic [106, 78] to find bugs in real-
world programs.

Another verifier based on separation logic is S2td [79]. It implements a satisfiability
procedure for separation logic extended by user-defined inductive predicates. Although it
is able to handle very complex data structures (e.g., trees with linked leaves), it is rather
fragile and can fail on quite simple structures if they are not handled by the program in a
suitable way. Moreover, a support for combinations with other abstract domains is not very
advanced and the approach has a problem with reliable diagnostics of discovered errors.

Also, more recently, automation of separation logic using SMT solvers by reduction to
effectively propositional logic has been proposed by [104, 59, 60].

3.6.2 Methods Using Automata and Graphs

Another group of shape analysis tools describes the state of the heap using various forms
of automata and graphs. One of such tools is Predator [38] which uses symbolic memory
graphs (SMGs) [76]. These are designed as an abstract domain for the framework of ab-
stract interpretation. SMGs model the heap with byte-precision and use summary nodes
to represent abstractions of linked lists of unbounded length. They are designed to handle
low-level manipulation of dynamic data structures. The usability of the approach is con-
firmed by mutliple wins in the heap-related categories of the International Competition on
Software Verification (SV-COMP). However, the approach is missing a combination with
other abstract data domains.

A different approach based on graphs uses tree automata and regular tree model check-
ing [17] and is implemented, e.g., in the Forester tool [50]. The approach uses automata
over words and trees to describe the shape of the heap and a tree-automata-based abstrac-
tion to over-approxmate the set of reachable heap configurations. The abstraction can be
refined by counterexample-guided refinement. Combining these approaches with reasoning
about value properties is not easy as shown in the works [1, 54] that extended Forester with
reasoning about finite data and a specialised support for handling ordered list segments.

3.6.3 Methods Using Storeless Semantics

All of the above approaches are store-based, i.e. they explicitly describe the state of the heap
using some logic or graphs. On the contrary, methods based on storeless semantics [63] use
pointer access paths to describe reachable shapes on the heap [28, 112, 96, 18]. A pointer
access path does not concretely express the heap state, it only describes which dynamic
objects are reachable from a pointer. Using a set of access paths for each pointer, one can

35

efficiently describe the shape of (the reachable part of) the heap. These approaches usually
use abstract interpretation over control-flow graphs and their support for dealing with the
data content is limited [96]. However, pointer access paths proved the most suitable for our
purposes and our work is heavily inspired by them.

36

Chapter 4

Verification of Array-Manipulating
Programs

Arrays are one of the most widely used data structures in software in general. In this
section, we introduce our abstract domain for analysing the contents of arrays—we refer to
it as the array domain.

Similarly to all other domains in 2LS, the array domain has the form of a template. An
important property of arrays is that they may have an arbitrary element type. Therefore,
using a simple domain is not sufficient and our array domain is a so-called combination
domain where the domain itself describes only the form (the memory layout) of the array
and it delegates reasoning about the actual array element values to another abstract domain,
which we denote as the inner domain. Note that the inner domain may be any domain
present in 2LS, including the array domain itself, which can be used to analyse arrays with
multiple dimensions.

The domain is limited to the set Arr of array-typed variables. In particular, since we
deal with loop invariants, we concentrate on arrays that are updated inside loops. In our
SSA representation described in Section 2.1.1, such arrays are abstracted using so-called
loop-back array variables. We denote Arr 𝑙𝑏 the set of such variables, and our array domain
is then limited to this set.

The primary idea of our array domain is that each array 𝑎 ∈ Arr 𝑙𝑏 is split into several
segments, and an invariant is computed for each segment in the appropriate inner domain
(based on the element type of 𝑎). The set of segments is for each 𝑎 determined using so-
called segment borders that we infer at the beginning of the analysis (using the set of index
expressions that the analysed program uses to write into 𝑎—cf. Section 4.2 for details). A
segment border can be any valid SSA expression.

In the rest of this section, we describe different aspects of the array abstract domain
and invariant inference using it. First, we show in Section 4.1 how, given a set of borders,
an array is split into segments and what the array domain template looks like. Next, we
introduce the way we determine array segment borders in Section 4.2. Last, in Section 4.3,
we present how invariants are computed in the array domain and how they can be used
to verify program properties. To facilitate understanding of the presented concepts, we
illustrate all of them on our running example in Section 4.4.

In the rest of this chapter, let us assume that we compute a loop invariant for an array
𝑎 ∈ 𝑎𝑟𝑟𝑙𝑏 updated in a loop 𝑙. We use 𝑁𝑎 to denote the size (number of elements) of 𝑎.

37

4.1 Array Domain Template
We now describe the form of the array domain template. As outlined before, each array
is split into multiple segments and an invariant for each segment is computed in the array
inner domain. Hence, the form of the array template is given by array segmentation, i.e.,
the way that each array is split into segments.

Let us denote 𝐵𝑎 the set of segment borders for the array 𝑎. Prior to creating the
segments, we perform two pre-processing steps: (1) making the borders unique and (2)
ordering the borders.

Making the Borders Unique In order to decrease the number of segment borders and
avoid empty segments, we first remove duplicate borders. This is done using an SMT solver,
in particular, for each pair of segment borders 𝑏1, 𝑏2 ∈ 𝐵𝑎, we check if the formula:

𝑏1 ̸= 𝑏2 ∧ SSA (4.1)

is satisfiable. In Eq. (4.1), SSA denotes the formula created from the SSA form of the
analysed program and representing the (over-approximated) program semantics. If Eq. (4.1)
is unsatisfiable, then the values of the borders are always equal and hence one of them can
be removed from 𝐵𝑎. Repeating this process for each pair of borders, we obtain the set of
unique borders.

Ordering Borders After making 𝐵𝑎 contain unique indices only, we try to order them.
Again, we query the SMT solver, this time using two formulae:

¬(𝑏1 ≤ 𝑏2) ∧ SSA (4.2)
¬(𝑏2 ≤ 𝑏1) ∧ SSA. (4.3)

If exactly one of Equations (4.2) and (4.3) is unsatisfiable for each pair of 𝑏1, 𝑏2 ∈ 𝐵𝑎, then
a total ordering over 𝐵𝑎 can be found. Otherwise, 𝐵𝑎 is left unordered.

Array Segmentation Once the arrays are unique and possibly ordered, we create the
array segmentation. We distinguish two situations:

1. 𝐵𝑎 cannot be totally ordered. In such a case, we create multiple segmentations, one
for each 𝑏 ∈ 𝐵𝑎:

{0} 𝑆𝑏
1 {𝑏} 𝑆𝑏

2 {𝑏+ 1} 𝑆𝑏
3 {𝑁𝑎}. (4.4)

The idea here is that if 𝑎[𝑏] is written to in a loop with gradually incrementing
𝑏, for any iteration of the loop, 𝑆𝑏

1 will abstract all array elements that were already
traversed, 𝑆𝑏

2 will be the element accessed in the current iteration, and 𝑆𝑏
3 will abstract

elements to be traversed in the following iterations.

2. 𝐵𝑎 can be totally ordered s.t. 𝑏1 ≤ · · · ≤ 𝑏𝑛. In such a case, we create a single
segmentation for the entire array 𝑎:

{0} 𝑆1 {𝑏1} 𝑆2 {𝑏1 + 1} · · · {𝑏𝑛} 𝑆2𝑛 {𝑏𝑛 + 1} 𝑆2𝑛+1 {𝑁𝑎}. (4.5)

A single array segment 𝑆 denoted
{𝑏𝑙} 𝑆 {𝑏𝑢} (4.6)

38

is an abstraction of the elements of 𝑎 between the indices 𝑏𝑙 (inclusive) and 𝑏𝑢 (exclusive).
We refer to 𝑏𝑙 and 𝑏𝑢 as to the lower and upper segment bounds, respectively. In addition,
for each 𝑆, we define two special variables: (1) the segment element variable elem𝑆 being
an abstraction of the array elements contained in 𝑆 and (2) the segment index variable idx𝑆

being an abstraction of the indices of the array elements contained in 𝑆.

Template Form Having the set of loop-back arrays Arr 𝑙𝑏 and a set of segments 𝑆𝑎 for
each 𝑎 ∈ Arr 𝑙𝑏, we define the array domain template as:

𝒯 𝐴 ≡
⋀︁

𝑎∈Arr 𝑙𝑏

⋀︁
𝑆∈𝑆𝑎

(︀
𝐺𝑆 ⇒ 𝒯 𝑖𝑛(elem𝑆)

)︀
(4.7)

where 𝒯 𝑖𝑛 is the inner domain template and 𝐺𝑆 is the conjunction of guards associated
with the segment 𝑆.

The inner domain is typically chosen based on the data type of elem𝑆 (e.g., we usually
use the interval domain for numerical types and the shape domain for pointer types).

The purpose of 𝐺𝑆 is to make sure that the inner invariant is limited to the elements
of the given segment {𝑏𝑙} 𝑆 {𝑏𝑢}. In particular, 𝐺𝑆 is a conjunction of several guards:

𝑏𝑙 ≤ idx𝑆 < 𝑏𝑢 ∧ (4.8)
0 ≤ idx𝑆 < 𝑁𝑎 ∧ (4.9)
elem𝑆 = 𝑎[idx𝑆] (4.10)

where Eq. (4.8) makes sure that the segment index variable stays between the segment
borders, Eq. (4.9) makes sure that the segment index variable stays between the array
borders (since segment borders are generic expressions, they may lay outside of the array,
hence Eq. (4.8) is not sufficient), and Eq. (4.10) binds the segment element variable with
the segment index variable.

Using the above template, 2LS is able to compute a different invariant for each segment.
For example, for a typical array iteration loop, this would allow to infer a different invariant
for the part of the array that has already been traversed than for the part of the array that
is still to be visited.

4.2 Computing Array Segment Borders
In the previous section, we assumed that we already have the set of segment borders for
each array. In this section, we describe how this set is obtained. As we outlined earlier,
the verification approach of 2LS requires the domain template to be a fixed, parametrized,
first-order formula. To be able to fulfil the “fixed” property, we need to determine the set
of segments at the beginning of the analysis so that we are able to create a finite set of
array segments which will form the array domain template.

The main idea of our approach is that the segment borders should be closely related to
the expressions that are used to access array elements in the analysed program (we denote
these as array index expressions). Therefore, we perform a static array index analysis
which collects the set of all expressions occurring as array access indices (i.e., expressions
that appear inside the square bracket operators). In addition, we distinguish between read
accesses (occurring on the right-hand side of assignments and in conditions) and write
accesses (occurring on the left-hand side of assignments).

39

Once the array index analysis is complete, for each loop-back array 𝑎, we determine the
set of its segment borders by taking the set of all index expressions used to write into 𝑎 in
the corresponding loop. In addition, if some of those expressions contain a variable whose
value is updated inside the same loop, we also take the pre-loop value of the expression as
a segment border.

To illustrate, let us have a simple loop initializing the second half of an array:

1 for (int i = N / 2; i < N; i++)

2 a[i] = 0;

The set of index expressions used to write into the array is {i}, but we would also use N/2
(the initial value of i) as a segment border. Hence, the segmentation of a would be:

{0} · · · {N/2} · · · {N/2+ 1} · · · {i} · · · {i+ 1} · · · {N} (4.11)

Thanks to this segmentation, 2LS is able to differentiate three important parts of the
array: (1) the first half of the array (which is untouched in the loop), (2) the part between
N/2 and i which in any iteration represents the already initialized part, and (3) the part
from i to the array end which represents the part to be initialized in future iterations. In
particular, 2LS would be able to infer an invariant stating that all elements in Part (2) are
equal to 0, which would mean that the entire second half of the array is set to 0 after the
loop ends.

4.3 Array Domain Invariant Inference
Once the array domain template is created, the invariant inference algorithm of 2LS is
used to compute loop invariants for individual segments. As we already described, most
of the work is delegated to the inner domain, and the array domain is mainly responsible
for making sure that the segment element variables, for which the inner invariants are
computed, are properly constrained.

Additionally, there is one more necessary step after the array invariants are computed.
The problem is that the invariants describe properties of the segment element and in-
dex variables, however, these variables are not actually used inside the analysed program.
Therefore, in order for the invariant to properly constrain the program semantics, we bind
the computed invariants with all index expressions used to read from the arrays. We do not
need to constrain the array elements that are written by the program since their value gets
overridden, hence binding with read elements is sufficient. The set of expressions to bind
the invariant with is obtained using the array index analysis introduced in Section 4.2.

In particular, for each segment 𝑆 of each loop-back array 𝑎, we create a binding between
the segment element and index variables elem𝑆 and idx𝑆 and each index expression 𝑖𝑟 used
to read from 𝑎 as follows. We take the computed invariant for 𝑆 and replace all occurrences
of idx𝑆 by 𝑖𝑟 and all occurrences of elem𝑆 by 𝑎[𝑖𝑟]. Then, the obtained formula is passed to
the solver which constrains the values of 𝑎 for the given access through 𝑖𝑟. This process is
done for the final invariant as well as for each candidate invariant found during the analysis
to allow the invariant inference algorithm account with the already computed constraints.

40

4.4 Running Example
We now illustrate usage of the array domain on the running example from Figure 2.5. The
program features two array-typed objects—the data elements of the abstract dynamic
objects 𝑎𝑜110 and 𝑎𝑜210. Similarly to the shape domain example, we only use 𝑎𝑜110 throughout
the example as the invariant for 𝑎𝑜210 is analogous. We demonstrate inference of a loop
invariant for the inner loop of the program, hence the SSA object that we work with is
𝑎𝑜110.𝑑𝑎𝑡𝑎

lb
12.

First, 2LS runs the array index analysis to determine the set of indices used to access
the array. In this case, there is a single index used for writing (i on line 12) and one index
used for reading (x on line 18).

After the array index analysis is run, the analysed array must be segmented. There is
a single written index, hence there will be three segments in total. In addition, the index
is updated inside the same loop, hence we will use its loop-back variant (𝑖lb12) inside the
segmentation:

{0} 𝑆1 {𝑖lb12} 𝑆2 {𝑖lb12 + 1} 𝑆3 {1000}. (4.12)
For each segment 𝑆𝑖, we introduce a segment element variable elem𝑖 and a segment index
variable idx 𝑖.

Since the array is of integer type, we will use the interval abstract domain as the inner
domain. The interval domain has two template rows for each variable, hence our template
will contain 6 rows in total (two for each segment element variable). For the sake of legibility,
we only give the two rows for elem1:

𝑔11 ∧ 𝑔ls12 ∧ 𝑔𝑜𝑠10 ∧ 0 ≤ idx 1 < 𝑖lb12 ∧ 0 ≤ idx 1 < 1000 ∧ elem1 = 𝑎𝑜110.𝑑𝑎𝑡𝑎
lb
12[idx

1]

⇒ elem1 ≤ 𝑑1 ∧
𝑔11 ∧ 𝑔ls12 ∧ 𝑔𝑜𝑠10 ∧ 0 ≤ idx 1 < 𝑖lb12 ∧ 0 ≤ idx 1 < 1000 ∧ elem1 = 𝑎𝑜110.𝑑𝑎𝑡𝑎

lb
12[idx

1]

⇒ −elem1 ≤ 𝑑2.

(4.13)

Both rows have the same guard (the implication antecedent) consisting of multiple parts:

• The first three conjuncts (𝑔11∧𝑔ls12∧𝑔𝑜𝑠10) are standard row guards used in other domains
that guard the reachability of the loop, the definition of the loop-back variable, and
the allocation of the corresponding abstract dynamic object.

• The second part (0 ≤ idx 1 < 𝑖lb12) guards that the segment index variable stays within
the segment bounds.

• The third part (0 ≤ idx 1 < 1000) guards that the segment index variable stays within
the array bounds.

• The last part (elem1 = 𝑎𝑜110.𝑑𝑎𝑡𝑎
lb
12[idx

1]) binds the segment element variable with
the analysed array object and the segment index variable.

The actual properties to be computed (the implication consequences) are determined from
the inner domain, in this case the interval abstract domain.

Using the above template in the invariant inference algorithm of 2LS, we will obtain
values of 𝑑1 = 𝑑2 = 0 (i.e., values of all array elements in the segment 𝑆1 are equal to 0).
After the loop ends, the value of 𝑖lb12 will be 1000 (thanks to the invariant computed for 𝑖lb12
in Eq. (2.20)), which will effectively prove that all elements of the given array are equal to
0 at that moment.

41

The remaining part of the array domain usage is binding of the invariant onto in-
dices used to read from it. Our example program features one array read at line 18
(list->data[x]). At this point of the program, list may point to the dynamic object
𝑎𝑜110, hence an access to 𝑎𝑜110.𝑑𝑎𝑡𝑎 is possible in this expression. Therefore, we bind the
invariant computed from the template from Eq. (4.13) with the read index 𝑥17 as follows:

𝑔11 ∧ 𝑔ls12 ∧ 𝑔𝑜𝑠10 ∧ 0 ≤ 𝑥17 < 𝑖lb12 ∧ 0 ≤ 𝑥17 < 1000⇒ 𝑎𝑜110.𝑑𝑎𝑡𝑎
lb
12[𝑥17] ≤ 0 ∧

𝑔11 ∧ 𝑔ls12 ∧ 𝑔𝑜𝑠10 ∧ 0 ≤ 𝑥17 < 𝑖lb12 ∧ 0 ≤ 𝑥17 < 1000⇒ −𝑎𝑜110.𝑑𝑎𝑡𝑎lb12[𝑥17] ≤ 0.
(4.14)

The equation has been obtained from Eq. (4.13) by supplying the actual computed values
of 𝑑1 and 𝑑2 and by replacing occurrences of idx 1 by 𝑥17 and the occurrences of elem1 by
𝑎𝑜110.𝑑𝑎𝑡𝑎

lb
12[𝑥17]. We removed the last part of each row guard as elem1 is no longer used.

Also, note that we bind the invariant to 𝑎𝑜110.𝑑𝑎𝑡𝑎
lb
12 rather than to the SSA version of

𝑎𝑜110.𝑑𝑎𝑡𝑎 valid on line 18 (which is 𝑎𝑜110.𝑑𝑎𝑡𝑎
phi
9 , cf. Eq. (3.8) and Eq. (3.9) for exact formula

representing line 18) because we only want to constrain the value of the array coming from
the loop that the invariant is computed for. In other words, Eq. (4.14) effectively allows to
leverage the computed array invariant during further program analysis.

As we already mentioned, the last step would be done after each round of the invariant
inference algorithm, however, we omit that here for the sake of simplicity and give the
binding for the final invariant only.

4.5 Related Work
Similarly to shape analysis, there exists a vast body of works aimed at analysis of array
contents and verification of programs manipulating arrays. We describe the most important
works in this section. Many of the works are related and use a similar principle, hence we
divide the overview into three categories.

4.5.1 Methods Based on Array Segmentation

One of the first works in the area [16] introduced two basic techniques for reasoning about
the contents of arrays: (1) array expansion where each array element is represented using a
single abstract value and (2) array smashing (also presented in [46]) where all elements of
the array are abstracted using a single value. These approaches represent two extremes in
approaching the arrays—while the first one often does not scale due to unbounded nature
of the arrays, the second one abstracts away too much information that is often crucial for
proving the required array properties.

An approach to overcome these problems, which we also take in our work, is to split
arrays into multiple parts, usually called segments. This technique was first introduced
in [47] where it was combined with simple numerical domains and was mainly able to
reason about array initialization loops. This method was improved in [51] by extending
it to handle relational abstract properties and consequently in [32] which proposed to use
an arbitrary abstract domain for reasoning about array elements. Our approach is heavily
based on the latter work, mainly due to the fact that it is compatible with the verification
approach in 2LS. The proposed method uses automatic inference of segment bounds based
on semantic pre-analysis of the array usage in the program.

Compared to all of these works, which are mainly aimed at analysis of numerical contents
of arrays, we leverage other domains present in 2LS. In particular, the combination with

42

our newly introduced shape domain allows us to expand program verification to analysis of
structures combining arrays and linked structures on the heap. In addition, it was necessary
to formulate our approach in the very specific 2LS framework, hence the introduced domain
has several unique features that cannot be found in other approaches.

The segmentation-based approaches were further extended to non-contiguous and over-
lapping segments [80, 23] but these are much more difficult to be described using first-order
logic formulae, and therefore we did not consider them for our approach.

4.5.2 Methods Based on Analysis of Array-Manipulating Loops

A completely different approach to the typical array verification problems is taken by the
VeriAbs verification tool [2]. Instead of trying to describe the contents of (potentially
huge) arrays in an abstract way, the tool focuses on analysis of loops manipulating the
arrays. In particular, VeriAbs features two imporant techniques related to verification of
array contents: (1) loop shrinking [70] and (2) full-program induction [24].

The first technique automatically analyses loops that manipulate program arrays and
for each loop it determines the so-called shrink factor 𝑘—the sufficient number of iterations
that are necessary to prove the property being checked. After 𝑘 is obtained, the processed
array is reduced to the size 𝑘 and filled with 𝑘 non-deterministically chosen elements of the
original array. The reduced program is then verified using state-of-the-art BMC tools.

In some cases, the shrink factor is not sufficiently low for BMC to scale and prove or
refute program correctness. In such a case, VeriAbs transorms the arrays to be of symbolic
size 𝑁 and performs so-called full-program induction. This technique, given a program 𝑃𝑁

parametrized by the array size 𝑁 and pre- and post-conditions denoted 𝜙(𝑁) and 𝜓(𝑀),
respectively, is able to very efficiently check validity of the Hoare triple {𝜙(𝑁) 𝑃𝑁 𝜓(𝑁)}
for all values of 𝑁 > 0.

The above methods have proven very effective since VeriAbs has been the most sucess-
ful tool in the ReachSafety-Arrays sub-category of SV-COMP in the recent years [9, 10, 11].
On the other hand, VeriAbs does not compete in memory safety, so the effectiveness of
these methods on programs combining arrays and linked structures remains questionable.
Still, we may consider implementing modified versions of the proposed techniques in future
to improve efficiency of verification of array-manipulating programs in 2LS.

4.5.3 Predicate Abstraction and Non-Automatic Methods

In the last group of works, we present those that use completely different verification ap-
proaches than 2LS does and hence were not considered for our case.

First, there is a large group of works [73, 72] based on predicate abstraction [41], possibly
improved with counter-example guided refinement [14] and Craig interpolants [62]. These,
however, make use of the property to be proved while our approach aims at discovering
(previously unknown) existing properties.

Second, besides fully automated works, there exist approaches which require some user
intervention. For instance, [48] also specifies abstract domains using templates, but their
domains are universally quantified (as opposed to our quantifier-free templates). This
naturally makes the domains much stronger, however, the verification approach requires
all the abstract domains to be specified manually. In contrary, the verification approach of
2LS is fully automatic. Other techniques based on deductive methods [6, 25] suffer from a
similar issue when they require users to provide loop invariants (which our method is able
to infer automatically).

43

Chapter 5

Experimental Evaluations

We now present results of experimental evaluations of the 2LS framework with all extensions
presented in this thesis implemented. Since 2LS regularly competes in the International
Competition on Software Verification (SV-COMP)1, our evaluations are heavily based on
benchmarks taken from this competition.

SV-COMP is an annual competition in which verification tools compete against each
other. The goal is to verify as many programs as possible while providing the minumum
number of false results. In 2022, the C benchmark contained 15 648 tasks (programs) [11].
Since many tools are strong in some areas of verification only, the tasks are divided into sev-
eral categories and sub-categories which focus on verification of particular kinds of programs
and particular properties.

2LS competes in all categories, however, it does not support some kinds of programs
(e.g., programs containing recursion), hence it returns the “unknown” result for all bench-
marks in the unsupported categories. In order to highlight actual contributions of this
thesis, we present results from some categories only. We describe the chosen categories
along with the SV-COMP scoring scheme in Section 5.1.

For the selected categories, we present the evolution of scores across the recent years,
which demonstrates the effect of our contributions. These are presented in Section 5.2. In
addition to comparing 2LS with its previous versions, we highlight the areas in which it
is stronger than other verification tools, including those that specialize in verification of
programs manipulating data structures. We do this in Section 5.2.3.

While SV-COMP scores can demonstrate some qualities of a tool (e.g., soundness or
precision), they certainly do not capture all properties which are necessary for a verification
approach to be usable in practice. One of the most important features is the speed of
verification as tools often take too much time to verify even simple programs. This is not the
case for 2LS, which, thanks to its specific verification approach based on the 𝑘I𝑘I algorithm
and supported by incremental SAT solving, is generally quicker than its competitors. We
demonstrate this on several alternative rankings in Section 5.3.

5.1 SV-COMP Organization and Rules
SV-COMP is held annually since 2012 as a part of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). 2LS has been
competing since 2016, although during its first year, it has only participated in categories

1https://sv-comp.sosy-lab.org/

44

https://sv-comp.sosy-lab.org/

dealing with integer-only programs, hence we consider the results from 2017 onwards. In
total, our contributions are related to the following categories:

Reachability Safety (ReachSafety) In this category, the goal is to verify reachability
of assertions (i.e., whether a condition in a call to the assert function always holds,
once the program execution reaches the call). This category is divided into many sub-
categories, from which we are interested in ReachSafety-Arrays and ReachSafety-Heap
which feature programs whose verification in 2LS requires usage of our new abstract
array and shape domains, respectively.

Memory Safety (MemSafety) In this category, the goal is to verify memory safety prop-
erties, in particular validity of dereference operations, validity of free operations, and
absence from memory leaks. In 2LS, this is done by instrumentation with asser-
tions guarding against memory safety errors which we introduced in Section 3.5. The
category is also divided into several sub-categories based on the kinds of data struc-
tures used. We are mostly interested in the MemSafety-Heap and the MemSafety-
LinkedLists categories.

Each subcategory in SV-COMP features a number of verification tasks. Each task
consists of a single C program, a property to verify, and an expected result. The result claims
whether the property holds or not. For each task, the verification tool must provide a verdict
and a so-called verification witness. The witness is a program trace in special format [13, 12]
which contains either a path to the error (if the verifier claims that the property does not
hold) or a proof (including an invariant) that the property holds. Witnesses are then
checked by a special kind of tools called witness validators.

After the verifier analyses a task, it is awarded a score based on its answer. Since SV-
COMP aims at sound and precise approaches, the penalties for incorrect results are much
higher than awards for a successful verification. In particular, a tool is granted:

• 1 point if it founds the error in an incorrect program,

• 2 points if it proves that a program is correct,

• -16 points if it reports a spurious error in a correct program (a false positive), and

• -32 points if it fails to find an error (a false negative).

In the end, the scores are normalized across (sub)categories to obtain the final score. Since
we deal with sub-categories only, the normalization procedure (cf. [8] for details) is not
relevant for the upcoming presentation.

5.2 Scores of 2LS in SV-COMP
We now present evolution of scores of 2LS in SV-COMP between years 2017 and 2023. We
limit ourselves to the categories relevant for extensions proposed and implemented within
this thesis. Since we enhance 2LS with analysis of two kinds of data structures—arrays and
linked lists—we present results for the relevant categories separately.

45

2017 2018 2019 2020 2021 2022 2023

−300

−200

−100

0

100

200

Year

Sc
or

e

ReachSafety-Heap
MemSafety-Heap

MemSafety-LinkedLists

Figure 5.1: Results of 2LS in heap-related categories in SV-COMP 2017-2023

5.2.1 Heap-related Categories

Our proposed shape abstract domain, along with the new memory model and memory
safety instrumentation, allows to reason about programs manipulating pointers and data
allocated on the heap, especially in the form of linked lists. Programs of this kind occur
in SV-COMP in three categories: ReachSafety-Heap, MemSafety-Heap, and MemSafety-
LinkedLists. Figure 5.1 shows evolution of 2LS’ scores in these categories between years
2017 and 2023 of SV-COMP.

Most of the mentioned contributions were introduced in 2018 [88], where we can observe
a major improvement of the score. For 2019 and 2020, we improved our memory safety
instrumentation [90], which again raised the scores in memory safety categories. Unfortu-
nately, we can also observe some drops in the score in these categories (especially in 2022
and 2023) which were caused (1) by new false results that we were not able to fix in time
before the competition and (2) by last-minute removal of some tasks in 2023 which makes
comparison with this year less relevant. Nonetheless, the results show that our contribu-
tions heavily improve the capabilities of 2LS in terms of analysis of programs manipulating
heap-allocated structures.

5.2.2 Array-related Categories

Our second contribution, the array abstract domain, is naturally useful for programs ma-
nipulating arrays. Units of such programs occur in many (sub-)categories of SV-COMP,
however, the most relevant category for us is ReachSafety-Arrays which is entirely dedicated
to programs with arrays.

2LS has traditionally received negative score in this category (-28 in 2020–2022) which
has only changed in 2023 with the introduction of our proposed domain into 2LS [89].
Using the new array domain, 2LS was able to successfully verify 17 error-free tasks from
this category (as opposed to 2 from the previous year)2.While this is not a large number, it

2The given number is different from the official results of 2LS in SV-COMP 2023. The reason is that a
number of tasks was last-minute disqualified due to past-deadline changes which were often related to the
tasks being added to new categories (e.g., NoOverflows) rather than actual modifications of the tasks or

46

shows that our new domain is a good first step towards better analysis of array contents in
2LS. In addition, due to the nature of program analysis in 2LS, the domain may leverage
from combination with other abstract domains (e.g., the shape domain), however, SV-
COMP benchmarks do not yet feature tasks requiring such a combination.

5.2.3 Comparison to Other Tools

One of the greatest strengths of our approach is that the proposed domains are easy to
be combined with other abstract domains in 2LS, allowing to verify multiple program
properties at the same time. In SV-COMP results, this can be observed on a set of 10 tasks
which require a combined reasoning about the shape of linked lists of an unbounded length
and about the numerical values stored inside the list nodes. These tasks were contributed
by our team to the ReachSafety-Heap category in 2019 [85] since no such tasks were present
at the time.

As of 2023, 2LS remains one of the two tools (the other one being VeriAbs [2, 34])
capable of successfully verifying a majority of the tasks. All other tools, including the best
tools in the category, verify at most 1–2 tasks and timeout or report “unknown” on the
rest. This demonstrates that our contributions are truly unique and allow to reason about
program properties that are beyond capabilities of state-of-the-art verification tools.

5.3 Alternative Rankings
Besides the ability to soundly and correctly verify programs, there are other properties
that may support practical usefulness of a verification tool. In this section, we compare
2LS to other verifiers using some alternative metrics, in particular verification speed, energy
consumption, and correctness rate.

5.3.1 Speed of Verification in 2LS

One property that can be observed from the SV-COMP results is that 2LS verifies most
of the tasks in a very short time, compared to other tools. We support this claim by
an experiment where we set a small time limit and then observe how 2LS would compete
against other tools in SV-COMP 2022. Table 5.1 shows the position that 2LS would achieve
in some of the main categories if the time limit was set to 5 seconds.

Table 5.1: Position of 2LS (with the total number of participating tools) in selected cate-
gories of SV-COMP 2022 with a 5 s time limit.

ReachSafety MemSafety NoOverflows Termination Overall
5. (of 21) 5. (of 14) 1. (of 15) 1. (of 10) 2. (of 13)

The table shows that 2LS would achieve a high position in all of the mentioned cate-
gories. Even though not all categories are related to analysis of data structures, many of
the concepts proposed in this thesis (e.g., the memory model) are still used and contribute
to these results.
their verdicts. Hence, we present results from the entire benchmark instead of the competition benchmark
set as those results are more representative and can be better compared to the previous year results.

47

5.3.2 Power Consumption and Correctness Rate

In recent years, the competition report of SV-COMP [9] provides two alternative rankings
of verifiers that honor different aspects of the verification process. These are in particular:

• Correct Verifiers which ranks the verifiers by a so-called correctness rate, which is a
ratio of the number of incorrect results and the overall achieved score. 2LS finished
third in this ranking in 2020 with only 0.0016 errors per score point.

• Green Verifiers which ranks the verifiers by the amount of energy used to achieve a
single score point. In 2020 and 2021, 2LS finished second in this ranking by using
only 180 J per score point.

The results presented in this section show that for the tasks that 2LS is able to prove,
it does that very fast, mainly thanks to the specific approach using the incremental solving
with a single SAT instance. All of our proposed extensions are designed in a way to follow
this approach and hence contribute to the overall results.

48

Part II

Automatically Checking Semantic
Equivalence between Versions of

Large-Scale C Projects

49

Chapter 6

Static Analysis of Semantic
Equivalence

The problem of automatically checking semantic equivalence of programs is nowadays a
widely studied field of program analysis. Unfortunately, despite a lot of progress, existing
approaches for sound equivalence checking often rely on heavy-weight formal methods and
consequently have problems with scalability. This limits their usage in the industry despite
the fact that there exists a lot of space for their potential applications.

One of such applications is for systems that require some sort of stability and backwards
compatibility. These can be, e.g., various standard libraries or kernels of operating systems.
One of the best known commercial operating systems is Red Hat Enterprise Linux (RHEL),
whose kernel includes a list of functions, a so-called Kernel Application Binary Interface
(KABI), whose semantics should be stable across the lifetime of a single major release
(unless changes are dictated, e.g., by security issues). Ensuring this stability at presence
of constant refactoring changes is rather difficult, and any (even partial) automation of the
backwards compatibility checking has huge potential to save a lot of human effort and costs.

In this part of the thesis, we propose a novel automated method for verifying whether
two versions of a program that should have the same semantics—as one of them is expected
to be a refactoring of the other—do indeed have the same semantics (and hence that no
error has been done during the refactoring). We aim at applicability to large-scale industrial
code, where applicability of our approach to the Linux kernel is particularly important to
us, which is motivated by a concrete interest of Red Hat. Our approach is, however, more
general and applicable on other C projects too, which we demonstrate by experiments with
one of the existing implementations of the C standard library.

General Approach In order to cover all possible behaviours and program paths, we
build on static code analysis—more precisely, on analysing the LLVM intermediate code
representation. To achieve the needed scalability to hundreds of thousands of lines of code,
which—to the best of our knowledge—is beyond capabilities of current tools and approaches,
we propose to compare the different versions primarily per-instruction on the level of their
LLVM intermediate code representation. Of course, checking semantic equivalence on the
level of single instructions would normally lead to many false non-equivalence results. In
order to resolve this problem while retaining scalability, we pre-process the code to be
compared using various static analyses and code transformations (such as inlining, constant

50

propagation, redundant code elimination, or dead code elimination) to bring the code to a
form that can be compared instruction-by-instruction as often as possible.

Beyond checking per-instruction equivalence, we allow program versions under compar-
ison to differ in ways described by so-called semantics-preserving change patterns (SPCPs).
Our method is generic in the set of SPCPs to be applied provided they are described in
a particular way that we propose. We call such SPCPs as effective. In our current imple-
mentation of the approach, we support several built-in SPCPs that are inspired by existing
lists of refactorings (we particularly consider the list from [44]) and by our own extensive
study of refactorings commonly appearing in the Linux kernel code.

Custom Change Patterns Besides scalability, methods of semantic equivalence detec-
tion suffer from other problems, too. One of the common ones is that software projects
usually need to introduce semantic changes even to the parts which should remain stable.
This happens, for example, when fixing bugs and security issues. Such changes are desir-
able, however, they change the semantics and hence pollute the output of semantic equality
checks. Eliminating this problem is quite difficult as the changes are often project-specific:
a change that is considered safe for one project needs not to occur or, even worse, may be
considered unsafe in another one.

To address this issue, we generalize the notion of semantics-preserving patterns using
so-called custom change patterns (CCPs) and we introduce a highly scalable method to
detect such changes during analysis of semantic equivalence of real-world software. This
allows users of our analyser to specify which kinds of differences they wish to ignore (i.e.,
to consider safe). Our approach to handling CCPs is based on describing code changes
through parametrised control-flow graphs and on using a specific graph algorithm to match
occurrences of change patterns between a pair of software versions.

Comparing Semantics of Global Variables In addition to checking semantic equality
of functions that typically form the API of the project under analysis, our method is also
designated for comparing the semantics of global variables that appear in the code (more
precisely, of the way the global variables are used within the project). Our interest in the
global variables is motivated by them often being used to represent adjustable system pa-
rameters whose meaning should be preserved during project updates. To check for semantic
equivalence of global variables, we analyse all functions using the given variable, however,
we notice that, rather than comparing the entire functions, it is sufficient to compare only
those parts that are affected by the variable. To achieve this, we propose a custom algorithm
for program slicing which removes parts of the functions unaffected by the value of such
variables and, subsequently, we compare the remaining parts using our general comparison
method.

Plan of Part II of the Thesis In the rest of this chapter, we describe the elementary
concepts of our approach—the program representation that we use (based on LLVM IR)
and the proposed generic algorithm for efficient checking of semantic equivalence that is
prepared to handle built-in SPCPs as well as user-defined CCPs. We describe these two
kinds of patterns in Chapters 7 and 8, respectively. After that, Chapter 9 introduces our
specialized slicing algorithm for analysis of the semantics of global variables.

We have implemented all of the proposed concepts in a tool called DiffKemp. To
demonstrate usefulness of our approach, we perform multiple experiments with DiffKemp
and present the results in detail in Chapter 10.

51

6.1 Program Representation
We represent functions under comparison using control flow graphs (CFGs). In particular,
since our tool builds on the LLVM infrastructure, we translate the compared programs into
the LLVM intermediate representation (LLVM IR), in which each function can be viewed as
a single CFG. The following definition of CFGs is therefore heavily based on the particular
notion of CFGs defined by LLVM IR.

A CFG is composed of basic blocks connected by edges representing program branches.
A basic block is a list of instructions satisfying the property that all incoming edges are
directed to the first instruction and all outgoing edges are directed from the last instruction.

An instruction performs an operation over a (possibly empty) list of operands and
stores its result into a local variable (if it produces some result). An operand may be
a variable (global or local), a constant, or a function (this is the case, e.g., for call
instructions, in which the callee is represented as an operand, or for instructions that assign
to variables holding pointers to functions). Each CFG satisfies the static single assignment
(SSA) property requiring that each variable is assigned to at most once. Therefore, each
instruction 𝑖 assigns its result into a fresh local variable that we denote 𝑣𝑖. Assignments
into global variables are done using the store instruction. In the rest of this work, we use
the following notation to represent an instruction performing an operation 𝑜𝑝 over operands
𝑜1, . . . , 𝑜𝑛 and creating a variable 𝑣:

𝑣 = 𝑜𝑝(𝑜1, . . . , 𝑜𝑛). (6.1)

The CFGs are typed—each variable and each constant has a type. The type system is
defined by [75]. For convenience, we introduce the function typeof which returns the type
of any value. In parts of this work, we deal with user-defined structure types which may be
named, hence we introduce the function typename which for each named structured type
returns its name.

Furthermore, to simplify the following presentation, we introduce the function 𝑜𝑝 that
assigns an operation to each instruction. The set of all operations consists of the different
kinds of instructions in LLVM IR [75].

Each internal instruction of a basic block has exactly one successor: the instruction
immediately following it. A block ends by a so-called branch instruction that expresses
branching in the program or by a terminator instruction that terminates the function,
possibly returning a value. A branch instruction may have one or two successors, which are
always initial instructions of basic blocks. Branch instructions with one and two succeeding
instructions are called unconditional and conditional branches, respectively. For conditional
branches, the successor to be followed at runtime is chosen by evaluating a boolean condition
that is an operand of the instruction. To simplify the presentation, we introduce three
functions related to instruction successors:

• succ defines for each non-branching and each unconditional branching instruction its
only successor,

• succT and succF define for each conditional branching instruction the successor in-
structions which will be followed if the branching condition is evaluated to true and
false, respectively. We refer to these successors as to the true-case and the false-case
successors.

52

6.2 Function Equality
Before describing the main idea of our method for proving semantic equality, we first define
what we mean by two functions being semantically equal. The idea is to find so-called
synchronisation points in both functions and to check that the code between pairs of cor-
responding synchronisation points is semantically equal. As we shall see, synchronisation
points will typically but not always be at each instruction. Moreover, we will show that
multiple syntactical transformations must often be done in order to enable usage of the
typical per-instruction synchronisation points.

Intuitively, we consider two pieces of code to be semantically equal if they both terminate
and their execution produces the same output for the same inputs, or they both do not
terminate. Here, by output, we mean values of the output variables and the final state of
the memory; and by input, values of the input variables and the initial state of the memory.
The memory incorporates both the stack and the heap. The input and output variables
are subsets of all variables used in the given function. To reflect possible concurrency, we
check that both pieces of code being compared use the same synchronisation means (locks,
shared memory, etc.) in the same way. We assume that the used synchronisation assures
thread safety, and so we consider sequential executions only. Similarly, we check that both
compared pieces of code use the same library and system calls in the same way.

Formally, let us have two functions 𝑓1 and 𝑓2, and, for 𝑖 ∈ {1, 2}, let 𝐼𝑖 and 𝑉𝑖 denote
the sets of instructions and variables used in 𝑓𝑖, respectively. We view the problem of
checking semantic equality of 𝑓1 and 𝑓2 as the problem of finding two sets of synchronisation
points 𝑆1 ⊆ 𝐼1 and 𝑆2 ⊆ 𝐼2 and two synchronisation functions smap : 𝑆1 ↔ 𝑆2 and
varmap : 𝑉1 ↔ 𝑉2 that are bijections and that represent mappings of synchronisation points
and variables, respectively, between 𝑓1 and 𝑓2. We consider 𝑓1 and 𝑓2 to be semantically
equal iff, for any 𝑠1, 𝑠2 ∈ 𝑆1 and any 𝑠′1, 𝑠′2 ∈ 𝑆2, all of the following hold:

1. For each variable 𝑣 ∈ 𝑉1 that is used but not defined between 𝑠1 and 𝑠2 (a so-called
input variable of 𝑠1), the variable varmap(𝑣) is used but not defined between smap(𝑠1)
and smap(𝑠2), i.e., it is an input variable of smap(𝑠1). An analogical requirement must
hold for 𝑠′1, 𝑠′2 and every 𝑣′ ∈ 𝑉2, using smap−1 and varmap−1. This requirement
may seem quite strict since the functions may have some input variables that do not
influence the output (and that could thus be left out from the requirement), but we
will use CFG transformations to eliminate such variables beforehand.

2. For each variable 𝑣 ∈ 𝑉1 defined between 𝑠1 and 𝑠2 and used after 𝑠2 (a so-called output
variable of 𝑠2), the variable varmap(𝑣) is defined between smap(𝑠1) and smap(𝑠2) and
used after smap(𝑠2), i.e., it is an output variable of smap(𝑠2). Same for 𝑠′1, 𝑠′2 and
each 𝑣′ ∈ 𝑉2, using smap−1 and varmap−1.

3. If the value of each input variable 𝑣𝑖𝑛 at 𝑠1 equals that of varmap(𝑣𝑖𝑛) at smap(𝑠1)
and the state of the memory at 𝑠1 equals that at smap(𝑠1), then, if the code between
𝑠1 and 𝑠2 is executed and terminates, an execution of the code between smap(𝑠1)
and smap(𝑠2) terminates, too, and the value of each output variable 𝑣𝑜𝑢𝑡 at 𝑠2 equals
that of varmap(𝑣𝑜𝑢𝑡) at smap(𝑠2) and the state of the memory at 𝑠2 equals that at
smap(𝑠2). Likewise for 𝑠′1, 𝑠′2, using smap−1 and varmap−1.

53

6.3 Analysis of Function Equality
We now present the top level of our algorithm for checking semantic equality of two func-
tions. Using the notions introduced above, our goal is to find the sets 𝑆1 and 𝑆2 of syn-
chronisation points and the mapping functions smap and varmap such that blocks of code
between corresponding pairs of synchronisation points are semantically equal. Proving such
semantic equality is a rather difficult task, especially for large blocks of code. To cope with
this problem, as already indicated, we use the following two main ideas:

1. We transform the compared functions so that synchronisation points can be defined
as often as possible per instruction. Individual instructions are then quite simple to
compare—intuitively, they should perform the same operations on operands that are
the same or can be mapped to each other.

2. In case a per-instruction synchronisation cannot be achieved for a block of code, we
check whether the compared blocks match one of the supported semantics-preserving
change patterns (SPCPs)1. If so, we consider the blocks semantically equal too. The
check is based on the features of effective SPCPs which are in detail described in
Chapter 7 and whose usage is highlighted in the algorithm.

The main workflow of our semantic equivalence checking is shown in Algorithm 1. The
algorithm takes two functions 𝑓1 and 𝑓2 as the input. For 𝑖 ∈ {1, 2}, we let 𝑃𝑖 denote the
list of parameters of 𝑓𝑖, while 𝐺𝑖 and 𝐶𝑖 denote the sets of all global variables and constants
used in 𝑓𝑖, respectively.

First, a number of code transformations is applied (Line 1) to the compared functions
so that it is easier to define synchronisation points per instruction. These transformations
are such that they do not change the semantics of the functions. The most important
transformations that we use are constant propagation, redundant instructions elimination,
and dead code and dead parameter elimination (since changes in unreachable code do not
affect the semantics).

In addition, we run transformations of special calls that occur in LLVM IR, in particular
indirect function calls (i.e., calls via function pointers) and calls to assembly code. These
calls are replaced by calls to newly generated functions, so-called abstractions. Indirect call
abstractions are function declarations that have the same parameters as the original indirect
call and, in addition, a new parameter that represents the called pointer. Assembly code
abstractions are functions that enclose the called assembly code and promote its parameters
into the abstraction function parameters. The purpose of these generated abstractions will
be explained later in this section. Finally, some transformations (in particular, function
inlining and some related CFG simplifications) are run lazily during SPCP matching (see
Section 7.2.2 for more details).

Thanks to the applied transformations, the only left parameters are those whose in-
fluence on the output of the functions could not be excluded. Therefore, we consider the
functions semantically non-equal if they have a different number of parameters (Lines 2–3).

Afterwards, the algorithm starts building the sets of synchronisation points and the
mapping functions. Since one of our main goals is high scalability, these are built lazily.
Initially, for each function, the synchronisation set only contains the first instruction of the
entry basic block (denoted 𝑖1in and 𝑖2in for 𝑓1 and 𝑓2, respectively), and these two instructions

1Note that we also support user-supplied custom change patterns (CCPs) but to simplify the presentation,
we will only consider SPCPs in this chapter and extend them to CCPs later in Chapter 8.

54

Input: Functions 𝑓1, 𝑓2
Result: true if 𝑓1 is semantically equal to 𝑓2, false otherwise

1 run transformations of 𝑓1 and 𝑓2
2 if |𝑃1| ≠ |𝑃2| then
3 return false

// Initialisation of synchronisation maps
4 𝑆1 = {𝑖1in}, 𝑆2 = {𝑖2in}
5 smap(𝑖1in) = 𝑖2in
6 for 1 ≤ 𝑖 ≤ |𝑃1| do
7 varmap(𝑝1𝑖) = 𝑝2𝑖
8 for 𝑔1 ∈ 𝐺1 do
9 varmap(𝑔1) = 𝑔2 where 𝑔2 ∈ 𝐺2 has the same name as 𝑔1

// Main loop
10 𝑄 = {(𝑖1in , 𝑖2in)}
11 while 𝑄 is not empty do
12 take any (𝑠1, 𝑠2) from 𝑄
13 𝑝 = 𝑑𝑒𝑡𝑒𝑐𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑠1, 𝑠2)
14 for each pair (𝑠′1, 𝑠

′
2) ∈ 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟𝑝(𝑠1, 𝑠2) do

15 if (𝑠′1 ∈ 𝑆1 ∨ 𝑠′2 ∈ 𝑆2) then
16 if smap(𝑠′1) ̸= 𝑠′2 then return false
17 else continue
18 if 𝑝 is none then
19 𝑒𝑞𝑢𝑎𝑙 = 𝑐𝑚𝑝𝐼𝑛𝑠𝑡(𝑠1, 𝑠2)
20 else
21 𝑒𝑞𝑢𝑎𝑙 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑝((𝑠1, 𝑠

′
1), (𝑠2, 𝑠

′
2))

22 if ¬𝑒𝑞𝑢𝑎𝑙 then return false
// Update synchronisation sets and maps

23 𝑆1 = 𝑆1 ∪ {𝑠′1}, 𝑆2 = 𝑆2 ∪ {𝑠′2}, smap(𝑠′1) = 𝑠′2
24 update varmap according to 𝑝
25 insert (𝑠′1, 𝑠

′
2) to 𝑄

26 return true
Algorithm 1: Checking semantic equivalence of functions

are synchronised. The variable mapping is created between pairs of parameters (based on
their order—Lines 6–7) and pairs of global variables (based on their name—Lines 8–9).

The main loop of the algorithm works with a queue 𝑄 of pairs of synchronisation points.
In each iteration, a single pair (𝑠1, 𝑠2) is taken from the queue. The pair is analysed by the
function detectPattern that checks whether some pattern 𝑝 out of the supported SPCPs
seems applicable. A special value none is returned if no pattern is applicable (forcing a per-
instruction comparison). The algorithm can be easily generalised to iterate over multiple
patterns possibly applicable at the same time—we have not included this possibility for
brevity and also because the applicability of our current patterns is exclusive (i.e., no two
patterns may be applicable at the same time).

Then, the function 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟𝑝(𝑠1, 𝑠2) checks where the next synchronisation points will
be placed, i.e., it computes the successor synchronisation pairs of (𝑠1, 𝑠2). We require each
pattern to define the behaviour of 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟𝑝. Due to this, the top-level algorithm does not
have to search from where to continue the analysis after a successful detection of an instance
of a pattern. In our current implementation of the approach, for a majority of the SPCPs,
the successor points will simply be at the instructions immediately following (𝑠1, 𝑠2). The

55

1 succPair (𝑠1, 𝑠2):
2 if 𝑜𝑝(𝑠1) = 𝑜𝑝(𝑠2) = cond.branch then
3 return (𝑠𝑢𝑐𝑐𝑇 (𝑠1), 𝑠𝑢𝑐𝑐𝑇 (𝑠2)), (𝑠𝑢𝑐𝑐𝐹 (𝑠1), 𝑠𝑢𝑐𝑐𝐹 (𝑠2))
4 else if 𝑜𝑝(𝑠1) ̸=cond.branch ∧ 𝑜𝑝(𝑠2) ̸=cond.branch then
5 return (𝑠𝑢𝑐𝑐(𝑠1), 𝑠𝑢𝑐𝑐(𝑠2))
6 else yield error

Algorithm 2: Computing successor synchronisation points

procedure is, however, prepared to easily incorporate dealing with comparisons of other
larger code blocks too—should that be needed.

The default implementation of succPair is shown in Algorithm 2. It uses the successor
functions from Section 6.1 and returns either one or two pairs of synchronisation points
depending on whether a conditional branching follows the current synchronisation points.
If some conditional branching appears in one of the functions only, the function ends with
an error, causing the comparison to fail as the control flow is different (this case is not
included in Algorithm 1 for brevity).

In case the successor synchronisation points are at the instructions immediately follow-
ing (𝑠1, 𝑠2), we make use of the successor functions defined in the previous section. Namely,
if there is no branching after the current synchronisation point in any of the functions, a
single successor pair of synchronisation points is considered: namely, (𝑠𝑢𝑐𝑐(𝑠1), 𝑠𝑢𝑐𝑐(𝑠2)).
If some branching is encountered in both of the functions, two pairs of successor synchro-
nisation points will be considered: (𝑠𝑢𝑐𝑐𝑇 (𝑠1), 𝑠𝑢𝑐𝑐𝑇 (𝑠2)) and (𝑠𝑢𝑐𝑐𝐹 (𝑠1), 𝑠𝑢𝑐𝑐𝐹 (𝑠2)). If
some branching appears in one of the functions only, the comparison fails since the control
flow is different (this possibility is not included in Algorithm 1 for brevity).

After choosing the successor pair of synchronisation points, we first check whether we
have already visited one of the points. If so, we require that the synchronisation points are
already mapped to each other, otherwise the synchronisation of the control flow is broken,
and the functions are not semantically equal (Lines 15–17).

Subsequently, the blocks of code from the current to the next synchronisation point in
each function are checked to be indeed semantically equal. If no pattern is used, each of
the blocks contains a single instruction, and these are compared using the cmpInst function
defined in Algorithm 3. The function checks if the instructions perform the same operation
on the same or mapped operands.

Moreover, if the compared instructions use functions as operands, we run Algorithm 1
for the functions unless they were compared before. An exception to this are indirect
function calls and calls to assembly code. As already mentioned, we replace such calls
by calls to so-called abstraction functions. For an indirect call, only the arguments of the
indirect abstraction function call are compared, leading to a comparison of both the original
arguments and the function pointers through which the original call is done. A comparison
of the target functions is started when they are assigned to the function pointers (since
that is where the functions appear as operands). As for the assembly abstraction functions,
the blocks of assembly code inside them are compared for literal equality instead of using
Algorithm 1.

When a potentially applicable SPCP was detected, the comparison of blocks is done
using the pattern-specific compare𝑝 function. If the blocks are not compared as equal, the
algorithm ends, claiming the functions not to be semantically equal.

After the semantic comparison, the synchronisation sets and maps are updated in
Lines 23–24. If an SPCP was used, the variable mapping is updated using the way that

56

1 cmpInst (𝑖1, 𝑖2):
// Assume (𝑜11, . . . , 𝑜

1
𝑛1
) and (𝑜21, . . . , 𝑜

2
𝑛2
) be the operand lists of 𝑖1 and 𝑖2, respectively

2 if 𝑜𝑝(𝑖1) ̸= 𝑜𝑝(𝑖2) then // Check equality of opcodes
3 return false
4 for 1 ≤ 𝑘 ≤ 𝑛1 do

// Variables must be mapped
5 if 𝑜1𝑘 ∈ 𝑉1 ∧ varmap(𝑜1𝑘) ̸= 𝑜2𝑘 then
6 return false

// Constants must be equal
7 else if 𝑜1𝑘 ∈ 𝐶1 ∧ 𝑜1𝑘 ̸= 𝑜2𝑘 then
8 return false

// Functions must be recursively compared
9 else // 𝑜1𝑘 is a function

10 if Alg. 1 (𝑜1𝑘, 𝑜
2
𝑘) = false then

11 return false
12 return true

Algorithm 3: Comparing single instructions

is a part of the SPCP definition. If individual instructions were compared (which is of-
ten the case), the update is quite simple as instructions always have at most one output
value represented by the fresh local variable created by the instruction. Hence, when two
instructions 𝑖1 and 𝑖2 returning a value are compared, the mapping varmap(𝑣𝑖1) = 𝑣𝑖2 is
created where 𝑣𝑖1 and 𝑣𝑖2 are the fresh local variables introduced by the LLVM IR to hold
the result of 𝑖1 and 𝑖2, respectively.

Finally, if all reachable synchronisation points were visited and no inequality has been
found, the functions are considered semantically equal.

57

Chapter 7

Built-in Semantics-Preserving
Change Patterns

As we have already mentioned in Chapter 6, our main goal is to develop an as-precise-
as-possible but still highly-scalable method to automatically compare two versions of a
function, typically obtained through refactoring, and determine whether the semantics of
the function is preserved. The main complexity here lies in deciding whether a syntactic
change in a function causes a change in its semantics. For high scalability, we concentrate on
changes that can be handled on the level of particular instructions or that are instances of
several generic types of changes, which we denote as semantics-preserving change patterns
(SPCPs).

The algorithm for comparing semantics of versions of large-scale software introduced
in Chapter 6 supports so-called effective SPCPs, each of which must be specified through
defining four functions (highlighted in Algorithm 1) that provide:

1. a test indicating potential applicability of the SPCP at a given pair of starting code
locations of the compared program versions,

2. a way to compute code locations succeeding the given instance of the SPCP,

3. a condition under which the potential SPCP does indeed preserve semantics, and

4. a way to compute which program variables of the two program versions correspond
to each other after the SPCP.

The idea is that the initial test (Point 1) should be done by a quick and efficient analysis of
the compared program functions, which may be quite large. On the other hand, the method
for determining the actual semantic equality of the code potentially matching the detected
pattern (Point 3) may use a more complex algorithm since it is used on a substantially
smaller code bounded by the detected potential starting location and the location succeeding
the potential pattern instance (determined in Point 2).

In this chapter, we introduce the set of SPCPs that we support in our current imple-
mentation of the approach. First, in Section 7.1, we present the way we obtained this set
by combining an existing list of refactoring patterns known in the literature with our own
experimental study of change patterns commonly appearing in the history of the Linux
kernel. After that, in Section 7.2, we present details on how each of the supported patterns
is handled within our approach.

58

7.1 Supported Semantics-Preserving Changes
As we already outlined, the list of semantics-preserving change patterns that we concentrate
on is inspired by two sources: (1) the list of refactoring patterns from [44] and (2) our
own extensive study of frequent change patterns that we have performed on multiple past
versions of the Linux kernel.

Concerning the list of [44], we observe that our proposed approach implicitly allows us
to handle a number of patterns. This is mainly caused by three facts:

1. We use a CFG-based representation of programs, in which some constructions of
high-level languages that look different in source code are represented the same way.
This allows us to handle the consolidate-conditional (join adjacent cases in switch),
for-into-while, while-into-for, add-a-typedef, and replace-type patterns.

2. Our method is insensitive to naming of program entities, which allows it to handle
many renaming patterns, in particular, rename variable/constant/user-defined type/-
function.

3. The CFG transformations we use effectively “neutralize” the effect of some change
patterns. This is in particular the case for (i) dead-code elimination that allows
us to handle the remove-unused-variable/parameter/function patterns, (ii) constant
propagation that allows us to handle the replace-value-with-constant pattern, and (iii)
memory-to-register promotion that allows us to handle the add-variable and replace-
expression-with-variable patterns.

Hence, we observe that our algorithm in its basic form (without any explicit patterns)
allows us to handle 15 out of the 29 refactoring patterns mentioned in [44]. From the rest of
the patterns, we concentrate on those that occur the most often in real systems code. We
support this claim by a study of a number of versions of the Linux kernel that we present
below.

7.1.1 Change Patterns in the Linux Kernel

To derive SPCPs common in Linux, we started by analysing all versions of the RHEL 7
kernel from 2014–2018 (RHEL 7 was the major RHEL version until 2019). Newer RHEL
versions are then used for an experimental evaluation of our approach in Chapter 10.

In particular, for pairs of succeeding releases, we compared the semantics of functions
from the KABI list (cf. Chapter 6 for more information on KABI). We performed the
comparison using our proposed algorithm without any custom patterns and looked for
functions marked as non-equal. This way, the results contain patterns that our method is
not able to handle yet (in other words, our algorithm already filters out changes caused by
one of the 15 implicitly supported patterns described above). Note that the encountered
changes need not appear directly in the function code—they may be caused, e.g., by a
change in a type declaration too.

Subsequently, we manually analysed all the obtained differences and identified the most
common remaining kinds of changes not affecting the semantics. This way, we obtained the
following list of SPCPs. For each discovered SPCP, we enumerate all patterns from [44]
that it covers. In addition, we note that many of the SPCPs identified in this section
cover additional refactoring patterns that are not mentioned in [44] (e.g., because they are
kernel-specific or because they are rather complex).

59

Table 7.1: Numbers of SPCPs in KABI functions

RHEL
versions

KABI
funs

Non-dominated
changed
functions

Data
types

Function
splitting

Code
loc.

Enum
values

7.5/7.6 739 112 10 2 2 0
7.4/7.5 734 218 33 13 1 1
7.3/7.4 678 142 6 3 4 0
7.2/7.3 644 223 9 13 2 0
7.1/7.2 551 111 6 4 3 0
7.0/7.1 395 82 2 5 0 2

Sum 888 66 40 12 3

Changes in structure data types This pattern covers changes in user-defined struc-
tures and unions (typically additions, removals, or renamings of fields), which often
result in a situation when, e.g., an access to the same structure field yields a dif-
ferent memory-access offset. The pattern covers two patterns from [44] – namely the
add/rename-structure-field. We note that this pattern manifests in multiple different
ways in the code that works with the updated structure. To this end, we define three
variants of the pattern which cover changes in the field alignment (both in non-nested
and nested fields) and in the structure size. We discuss these variants in detail in
Section 7.2.1.

Splitting code into functions The code is refactored by moving parts of it into func-
tions called from where the original code was. This covers multiple patterns from [44] –
namely the extract/inline-function, and the add/reorder-function-parameters patterns.

Changes in a source code location In the Linux kernel, there are macros and built-in
functions that allow one to report the file name and the line number of the current
code location. In case such a function/macro is used and the location has changed,
the semantics stays the same.

Changes of enumeration values This situation may happen, e.g., when a new value is
added into the middle of an enumeration type. In such a case, the rest of the values
are shifted and get different numerical values.

Table 7.1 shows numbers of appearances of the mentioned SPCPs in the compared
RHEL kernel versions 1.

The first column states the versions of the RHEL kernel being compared. The second
column contains the number of functions on the KABI list. The third column contains
the number of functions, either from the KABI list or (directly or indirectly) called from
them, that contain a difference and that are not called solely by some function already
containing a difference (in other words, we do not descend into callees of functions that
contain a difference). Here, note that changes in macros or data types show up in the
code of functions in LLVM IR too. The remaining columns give numbers of those of the
discovered differences that are caused by the SPCPs described earlier.

1The RHEL kernel is the same (up to a few minor modifications) as that of the open-source distribution
CentOS, which can be retrieved from http://vault.centos.org/.

60

http://vault.centos.org/

Changes in about 13 % of the changed functions are fully covered by the above described
patterns, and the semantics of these functions did not change. (Usually, the change corre-
sponds to a single pattern, but a few functions were changed via multiple patterns—hence
the given percentage cannot be obtained directly from Table 7.1; we computed it sepa-
rately.) We also analysed the other changes and discovered that 99 % of them affect the
semantics. Changes in the remaining 1 % typically represent more complicated refactoring.

In addition to the above, we also inspected individual commits in the Git repository of
the Linux kernel upstream (https://github.com/torvalds/linux) created between
versions 5.10 and 5.17 and concentrated on the commits that are marked as “refactorings”
in their commit message (i.e., those that are expected not to change the semantics). We
analysed the changes introduced by these commits and identified two additional frequent
SPCPs:

Inverse branching conditions A branching condition is replaced by an inverse condition
with the branches swapped. This also applies to loop conditions, thus covering the
while-into-do-while pattern of [44].

Relocated code A piece of code is relocated into a different part of a function (e.g., from
the beginning of a loop iteration to before the loop). The relocated code is usually
independent from the code skipped by the relocation. From the patterns in [44], it
covers the contract/extend-variable-scope pattern.

In total, we have thus identified six SPCPs that we consider as important in the given
context. These SPCPs cover 9 patterns from [44] but are more general, covering some
semantics-preserving changes not covered by [44], yet showing up in the history of the
Linux kernel. In addition, we note that we do not cover 5 patterns from [44] as we have
never encountered them in our study of Linux. While it should be easy to handle some of
them using effective SPCPs (this is applies to 3 patterns related to converting a variable
into a pointer and vice-versa), some (in particular the patterns convert-global-variable-into-
parameter and group-set-of-variables-into-new-structure) would require analysing the global
state of the compared programs, which our algorithm currently does not do.

In the following chapter, we show that all the above identified six SPCPs can be formu-
lated as effective SPCPs and hence handled by our algorithm.

7.2 Handling the Supported SPCPs
Our method for comparing the semantics of two functions is generic in handling effective
SPCPs specified by providing the four functions listed in the beginning of this chapter. We
now define these functions for the SPCPs that we identified as frequent in the Linux kernel
through our empirical study presented in Section 7.1.1. Some of the patterns use default
implementations of some of the functions, which were presented in Section 6.3. In such
cases, we do not discuss the functions for the given pattern. We also propose a specific
treatment for the code-relocation SPCP that goes beyond our notion of effective SPCPs.

7.2.1 Changes in Structure Data Types

The most common change that we saw in the Linux kernel and that results in different
code produced by the compiler while maintaining the semantics is a change of the layout
of a user-defined structure type. In C, a structure type (i.e., a structure or union) consists

61

https://github.com/torvalds/linux

of a list of fields, each field having its name and data type. A programmer can then use
the “dot” operator to access individual fields of a variable of a structure data type. When
accessing a particular named field 𝑓 of a variable 𝑣, compilers translate the name of 𝑓 into
a numerical offset, which is a number that defines the relative offset of the address of 𝑓
from the starting address at which 𝑣 lies in the memory. In LLVM IR, this is done by
the getelementptr (GEP) instruction, which takes a pointer and an index of the field
(the first field has index 0, the second field has index 1, etc.) and returns a pointer to the
required element. In general, a GEP instruction can take multiple indices as it is able to
resolve multiple chained accesses from a single pointer at once.

If the layout of a structure type is changed, usage of the type may be affected in multiple
ways: e.g., if a field is added to or removed from the middle of the structure type, the indices
of all fields up to the end of the type change. As was outlined earlier, we consider three
different variants of this pattern, one for a simple change of a field offset, one for a change
of the structure size, and one for a more complicated change involving changes in nested
structures but leading to accessing the same memory offsets in the end.

Changed Offset of a Structure Field

When a new field is added into the middle of a structure type, the fields from the point
of addition to the end are shifted. Accessing such fields in C (by using the same field
name) results in different indices generated by the GEP instruction. Therefore, a special
semantic comparison of GEP instructions must be introduced into Algorithm 1 since two
GEP instructions with a different constant value of a corresponding parameter may have
the same semantics, which would result in a false non-equivalence result. In order to allow
for an improved GEP comparison, we exploit LLVM debugging information that contains
a mapping of field names to field indices. We then specify the pattern as follows (using the
implicit versions of computing successor pairs and updating maps of variables).

Detection condition: 𝑜𝑝(𝑠1) = 𝑜𝑝(𝑠2) = gep and both GEP instructions access a struc-
ture field.

Definition of compare𝑝: The comparison is done using a slightly modified version of the
function cmpInst from Algorithm 3. When comparing operands that are GEP indices in
Line 7, instead of comparing the numerical offsets 𝑜1𝑘, 𝑜2𝑘 for equality, we first retrieve the
corresponding field names 𝑛1𝑘, 𝑛2𝑘 from debugging information. Then, we distinguish four
possible situations:

• 𝑜1𝑘 = 𝑜2𝑘, 𝑛
1
𝑘 = 𝑛2𝑘—the operands are equal.

• 𝑜1𝑘 = 𝑜2𝑘, 𝑛
1
𝑘 ̸= 𝑛2𝑘—check if 𝑛2𝑘 occurs in the structure type that contains 𝑛1𝑘. If it

does not, then the operands are equal (the field has very probably been renamed),
otherwise we treat the operands as not equal.

• 𝑜1𝑘 ̸= 𝑜2𝑘, 𝑛
1
𝑘 = 𝑛2𝑘—the offset has been shifted, but the programmer still accessed the

same name. We check whether there is some pointer arithmetic performed on the
pointers computed as the results of the instructions 𝑠1 and 𝑠2. If so, the operands are
not equal (as the absolute value of 𝑜1𝑘 or 𝑜2𝑘 matters), otherwise they are equal.

• 𝑜1𝑘 ̸= 𝑜2𝑘, 𝑛
1
𝑘 ̸= 𝑛2𝑘—the operands are not equal.

62

Using Absolute Sizes of Structure Types

Some program constructions rely on the absolute size of a type, typically using the sizeof
operator. In case such a construction is used on a structure type and the layout of the type
changes, the resulting size may be different. However, for some program constructions, this
difference does not cause a difference in the semantics.

Within our experiments described in Section 7.1.1, we identified a set of such construc-
tions commonly appearing in the Linux kernel and the considered implementation of the
standard C library. These are calls to memory manipulating functions such as malloc,
memset, or memcpy. We denote the set of these functions as MemOps. We are aware that
the set needs not be complete, but it was sufficient in our experiments and it can be easily
extended.

Detection condition: 𝑜𝑝(𝑠1) = 𝑜𝑝(𝑠2) = call and the same function from MemOps is
called at both 𝑠1 and 𝑠2.

Definition of compare𝑝: The calls are compared almost as in cmpInst, but when compar-
ing operands corresponding to the size of a type where the type is a structure type, names
of the structures (retrieved from the debugging information) are compared instead of the
absolute sizes. The bodies of the called functions are not compared.

Different Ways to Access the Same Field

There may occur situations when the layout of a structure type is changed in a more
complicated way, and the same fields are accessed in a different manner. An example that
often happens in the Linux kernel is a replacement of a field 𝑓 by a field 𝑢 of a union
type that contains the original field 𝑓 and some other field 𝑔. When accessing the field 𝑓
through 𝑢, the final generated offset is (usually) exactly the same (since 𝑓 is stored at the
beginning of 𝑢), but the access is done using one more field (and one more GEP instruction
in LLVM IR).

In this case, the same semantics is achieved by a different number of instructions in each
of the compared functions. Thus, this pattern must compare larger blocks of instructions.

Detection condition: 𝑜𝑝(𝑠1) = 𝑜𝑝(𝑠2) = gep and there is a sequence of instructions
𝑖1, . . . , 𝑖𝑛 in the first version of the code where:

• 𝑖1 = 𝑠1, i.e., the sequence starts from 𝑠1,

• for all 1 ≤ 𝑘 < 𝑛, 𝑠𝑢𝑐𝑐(𝑖𝑘) = 𝑖𝑘+1 ∧ 𝑜𝑝(𝑖𝑘) = gep,

• the sequence has a single input variable—the source pointer accessed by 𝑖1,

• the sequence has a single output variable—the variable 𝑣𝑖𝑛 that is the final pointer
computed by the sequence, and

• for all 1 ≤ 𝑘 ≤ 𝑛, all index operands of 𝑖𝑘 are constant.

Moreover, an analogous sequence (possibly of a different length) of GEP instructions starts
from 𝑠2. We denote by 𝑠′1/𝑠′2 the last instructions of the sequences starting from 𝑠1/𝑠2,
respectively. At least one of the sequences has more than one instruction.

63

Definition of succPair𝑝: Returns a pair of synchronisation points (𝑠𝑢𝑐𝑐(𝑠′1), 𝑠𝑢𝑐𝑐(𝑠
′
2)).

Definition of compare𝑝: As all indices are constant, we can compute the exact memory
offset that each instruction would produce. Thus, compare𝑝 returns true iff (1) varmap
maps the input variable of 𝑠1 to the input variable of 𝑠2 and (2) the sum of all offsets of all
instructions is equal for both sequences.

Method for updating varmap: 𝑣𝑎𝑟𝑚𝑎𝑝(𝑣𝑠′1) = 𝑣𝑠′2 .

Let us note that, currently, we do not combine this pattern variant with the first variant
(Changed Offset of a Structure Field) presented earlier in this section. Thus, we allow for
changes of field names and layouts only when comparing a pair of single GEPs. When
comparing blocks of GEPs, the resulting offset must be exactly the same. This could be
improved by comparing the difference between the computed offsets to the difference of
offsets of changed fields, but we have never found a use-case for this construction, and so
we have not implemented it.

7.2.2 Moving Code into Functions

Another frequent change that preserves semantics is splitting a block of code into pieces
and moving (some of them) into some new (or existing) functions. Such functions are then
called with appropriate parameters from the location where the original code was. This is
a common refactoring process that usually improves readability and simplifies the code.

Handling such a situation in Algorithm 1 would require it to be able to compare a
possibly large block of code with the full body of a function. However, as our experiments
show, when some code is moved into a function, the function usually executes exactly the
same operations as the original code. Thus, to handle this kind of changes, it suffices to
find a correct synchronisation between instructions of the original code and those of the
called function.

In order to achieve this, we make use of multiple CFG transformations with the most
important being function inlining. It is a well-known process in which a function call is
replaced by the function’s body where the values of the call arguments are provided for
the values of formal parameters. If the called function performs exactly the same oper-
ations as the original code did, this transformation subsequently allows us to perform a
per-instruction synchronisation, which enables an efficient comparison of the semantics.
Moreover, since function inlining is widely used during compilation, the LLVM infrastruc-
ture provides highly optimised inlining routines.

Detection condition: 𝑜𝑝(𝑠1) = call ∨ 𝑜𝑝(𝑠2) = call.

Definition of compare𝑝: The implementation of compare𝑝 is shown in Algorithm 4. If the
compared instructions are not equal and at least one of them is a call, the call is inlined and
a new comparison of the current synchronisation pair is scheduled since the call instruction
is replaced by new code.

The above approach is, however, not always sufficient. Sometimes, the code is moved
into a function containing more behaviour than the original code, but that behaviour is not
executed for the particular call (e.g., by setting some parameter to false). The semantics

64

1 compare𝑝 (𝑠1, 𝑠2):
2 if ¬cmpInst(𝑠1, 𝑠2) then
3 if 𝑜𝑝(𝑠1) = call then inline 𝑠1 and simplify
4 if 𝑜𝑝(𝑠2) = call then inline 𝑠2 and simplify
5 insert (𝑠1, 𝑠2) to 𝑄 // Yield a new comparison of 𝑠1, 𝑠2
6 return true // The comparison will always continue

Algorithm 4: Handling function refactoring in Algorithm 1

is preserved, but the code produced by inlining contains more instructions than the original
code, and so a per-instruction synchronisation cannot be achieved.

Therefore, we perform additional semantics-preserving CFG transformations after the
inlining, namely constant propagation and dead code elimination. Constant propagation
may evaluate some conditions to false, and dead code elimination will then remove un-
reachable code, leaving only the code that can possibly be executed for the particular
function call. If that code performs the same operations as the original code, our method
is subsequently able to show this.

7.2.3 Changes in Enumeration Values

In C, the enum keyword allows one to create a list of (typically related) named constants.
Usually, the numerical values themselves are not important and when they are changed, it
is not considered a semantic change. Such changes often occur when a new value is inserted
into the middle of an enum. All identifiers after the added one then get assigned a different
value by the compiler. However, LLVM IR contains the resulting values only.

Detection condition: 𝑠1 and 𝑠2 are instructions containing a constant operand that cor-
responds to an enum identifier. To detect such a situation, the function analyses debugging
information and collects possible mappings of values to enum identifiers.

Definition of compare𝑝: Instructions are compared via cmpInst, but if a constant operand
corresponding to an enum identifier is checked, the identifier string is compared instead of
the value2.

7.2.4 Changes in Source Code Location

This semantics-preserving change is specific for the Linux kernel, in particular kernel warn-
ing functions. Calls to these functions contain two kinds of information that can be omitted
without changing the semantics. First, from the semantics point of view, the warning mes-
sage is not important. Second, calls to these functions often contain the line number and
absolute path to the C source file where the call occurs. Nonetheless, a change of such
information does not affect the semantics of the caller function. We handle this by the
following SPCP-specific functions.

Detection condition: 𝑜𝑝(𝑠1) = 𝑜𝑝(𝑠2) = call, calling same kernel warning function.
2Note that one can construct artificial programs that the described method would claim semantically

equal although they are not. This might happen if the programs compare enum identifiers with actual
constants that they represent. Such constructs, however, break the purpose of enumeration types, and we
have not seen them in any of the real code that we considered in our experiments.

65

Definition of compare𝑝: Compare the calls using cmpInst but do not compare operands
that represent a warning message, a line number, or a file name (we identified a list of such
operands by manually analysing all kernel warning functions).

7.2.5 Inverse Branch Conditions

A common pattern that we identified among kernel refactoring commits covers situations
when a branching condition (typically a condition in an if statement) is replaced by its
inverse condition (i.e., a condition that holds if and only if the original condition does not
hold). Such a change is semantics-preserving if the true- and false-case successors of the
concerned branching instruction are swapped.

In LLVM IR, this situation may occur in multiple ways: by using comparison instruc-
tions with inverse conditions, by using a boolean negation instruction, or by a combination
of both. Our detection condition handles all of these cases.

Detection condition: There exists a sequence 𝑖𝑡, [𝑖𝑛], 𝑖𝑏 of instructions in the first version
of code such that:

• 𝑖𝑡 (a test instruction) returns a boolean value denoted 𝑣𝑡,

• 𝑖𝑛 needs not be present but if it is, it returns a boolean negation of 𝑣𝑡, denoted 𝑣𝑛,
and

• 𝑖𝑏 is a conditional branching instruction where the condition is 𝑣𝑛 if 𝑖𝑛 is used. Oth-
erwise, the condition is 𝑣𝑡.

An analogous sequence 𝑖′𝑡, [𝑖′𝑛], 𝑖′𝑏 must exist in the second version of the program.

Definition of compare𝑝: The comparison starts by comparing 𝑖𝑡 and 𝑖′𝑡 in a way similar
to cmpInst. Three cases may occur:

1. 𝑖𝑡 and 𝑖′𝑡 are semantically equal,

2. 𝑖𝑡 and 𝑖′𝑡 are comparison instructions with semantically equivalent operands and an
inverse condition,

3. 𝑖𝑡 and 𝑖′𝑡 are not semantically equal.

For (3), we simply return false as the test instructions are incomparable. Otherwise, we
check if one of the following conditions is true:

• case (1) occurred and exactly one of 𝑖𝑛 and 𝑖′𝑛 is present or

• case (2) occurred and either both or none of 𝑖𝑛 and 𝑖′𝑛 is present.

In these cases, the branching instructions have logically inverse conditions, hence we return
true but swap the order of successors of 𝑖𝑛 to compare its original true-case successor with
the false-case successor of 𝑖′𝑛 and vice-versa.

For the rest of the cases, the branching instructions have equal conditions (although
one may have been negated twice), hence we return true and proceed with the default
comparison algorithm.

Note that it may occur that there is a number of chained negation instructions between
𝑖𝑡 and 𝑖𝑏, however, we assume that these are reduced to at most one instruction by our
pre-processing transformations.

66

7.2.6 Code Relocations

The last semantics-preserving change whose support we consider as crucial w.r.t. our study
from Section 7.1.1 is relocation of a piece of code into a different part of a function. For
the concerned functions to be semantically equal, it is necessary that the relocated code
is independent of the code that is skipped by the relocation. Currently, we require the
relocated code to be sequential (without branching), but it may be relocated into any
part of the same function. Based on our experiments with the Linux kernel presented in
Section 7.1.1, this is the most common case for code relocation.

Code relocation cannot be covered by our main algorithm via the notion of effective
SPCPs. The reason is that to handle it we need multiple interconnected phases as shown
below, and, moreover, we want to apply it with the lowest priority (i.e., only when no other
SPCP is applicable). The purpose of the latter point is that the detection of this pattern
is the most complex one, and hence, for the sake of scalability, we want to rule out other
patterns before we try to apply this one.

𝑓1 = 𝑓𝑟

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑖6

𝑓2

𝑖′4

𝑖′5

𝑖′1

𝑖′2

𝑖′3

𝑖′6

𝑅

Figure 7.1: An illustration of a relocation detection

Therefore, we handle it as shown in Algorithm 5 that replaces Line 22 in Algorithm 1.
The method works in three phases, namely relocation detection, relocation matching, and
relocation checking. We introduce these phases in detail in the rest of this section. To
make the presentation more understandable, we illustrate the algorithm on the example
from Figure 7.1. It shows two functions 𝑓1 and 𝑓2, each containing a single basic block with
six instructions (𝑖1, . . . , 𝑖6 for 𝑓1 and 𝑖′1, . . . , 𝑖′6 for 𝑓2). For 1 ≤ 𝑘 ≤ 6, let 𝑖𝑘 be semantically
equivalent to 𝑖′𝑘 (this is depicted with the arrows in the figure). The difference between the
functions is that the instructions 𝑖1, 𝑖2, 𝑖3 (highlighted with the box labeled 𝑅) have been
relocated to a later part of the function (highlighted with the dashed box).

Relocation Detection

It is run if the current pair of synchronisation points is compared as non-equal and no
potentially relocated block 𝑅 is being processed (in Figure 7.1, this would happen when
comparing the first pair of instructions 𝑖1 and 𝑖′4). Then, the function detectRel, described in
Algorithm 6, is called. It tries to advance in the code (first in one of the functions and then
in the other) with an aim of finding a synchronisation point in one of the functions under
comparison that would match the current synchronisation point in the other function. If
such a synchronisation point is found, the block of instructions that were skipped during
the search is marked as a potentially relocated block 𝑅, and 𝑠1 and 𝑠2 are moved such

67

22 if ¬equal then
23 if 𝑅 = [] then // Relocation detection
24 if (𝑅 = detectRel(𝑠1, 𝑠2, 𝑓1)) ̸= [] then 𝑓𝑟 = 𝑓1
25 else if (𝑅 = detectRel(𝑠1, 𝑠2, 𝑓2)) ̸= [] then 𝑓𝑟 = 𝑓2
26 else return false
27 continue // Go to Line 11 of Algorithm 1
28 else if 𝑠1 /∈ 𝑅 ∧ 𝑠2 /∈ 𝑅 then // Start relocation matching
29 if 𝑓𝑟 = 𝑓1 then
30 𝑠𝑐 = 𝑠1, 𝑠1 = 𝑅 [0]
31 else
32 𝑠𝑐 = 𝑠2, 𝑠2 = 𝑅 [0]
33 insert (𝑠1, 𝑠2) to 𝑄
34 continue // Go to Line 11 of Algorithm 1
35 else return false
36 else // Relocation checking
37 if 𝑓𝑟 = 𝑓1 ∧ 𝑠1 is the last instruction of 𝑅 then
38 if (𝑠𝑢𝑐𝑐(𝑠1), 𝑠𝑐) depends on 𝑅 then
39 return false
40 𝑠′1 = 𝑠𝑐, 𝑠′2 = 𝑠𝑢𝑐𝑐(𝑠2), 𝑅 = []

41 else if 𝑓𝑟 = 𝑓2 ∧ 𝑠2 is the last instruction of 𝑅 then
42 if the block of code between 𝑠𝑢𝑐𝑐(𝑠2) and 𝑠𝑐 depends on 𝑅 then
43 return false
44 𝑠′1 = 𝑠𝑢𝑐𝑐(𝑠1), 𝑠′2 = 𝑠𝑐, 𝑅 = []

// Go to Line 19 of Algorithm 1
Algorithm 5: Handling code relocations in Algorithm 1

that they are synchronised again. The function in which the relocated block was found is
remembered in 𝑓𝑟, and the computation proceeds to Line 11 of Algorithm 1. In the example
from Figure 7.1, detectRel would first traverse 𝑓1 by comparing 𝑖′4 (the currently processed
instruction of 𝑓2) with 𝑖1, 𝑖2, 𝑖3, and finally with 𝑖4 where it would find a match. Hence,
it would store 𝑓𝑟 = 𝑓1 and 𝑅 = [𝑖1, 𝑖2, 𝑖3]. The synchronisation points 𝑠1 and 𝑠2 would
be set to 𝑖4 and 𝑖′4, respectively. At this point, Algorithm 1 would normally continue (by
successfully comparing 𝑖4 to 𝑖′4 and 𝑖5 to 𝑖′5) up to the point where the next phase begins.

Relocation Matching

The second phase is run if (1) the current pair of synchronisation points is compared as
non-equal, (2) a potentially relocated block 𝑅 has been previously identified, and (3) the
comparison has not entered 𝑅, yet (i.e., the comparison of the two given functions has
arrived to the location where 𝑅 is assumed to be relocated). In this case, the current
synchronisation point of 𝑓𝑟 is remembered in 𝑠𝑐 and then moved back to the first instruction
of 𝑅, with the pair (𝑠1, 𝑠2) re-inserted into 𝑄 and the computation proceeding to Line 11
of Algorithm 1. This way, Algorithm 1 will take care of comparing the relocated code for
semantic equality. In Figure 7.1, this phase would start when comparing 𝑖6 with 𝑖′1. The
synchronisation point 𝑠1 = 𝑖6 would be stored in 𝑠𝑐 and then moved to 𝑖1, while 𝑠2 would
stay at 𝑖′1. The instructions inside 𝑅 would be then handled by Algorithm 1.

68

1 detectRel (𝑠1, 𝑠2, 𝑓𝑟):
2 backup 𝑠1 and 𝑠2, 𝑅 = []
3 while 𝑜𝑝(𝑠1) ̸= branch ∧ 𝑜𝑝(𝑠2) ̸= branch do
4 if cmpInst(𝑠1, 𝑠2) = equal then
5 return R
6 if 𝑓𝑟 = 𝑓1 then
7 append 𝑠1 to 𝑅, 𝑠1 = 𝑠𝑢𝑐𝑐(𝑠1)
8 else
9 append 𝑠2 to 𝑅, 𝑠2 = 𝑠𝑢𝑐𝑐(𝑠2)

10 restore 𝑠1 and 𝑠2
11 return []

Algorithm 6: Detection of code relocations

Relocation Checking

Finally, if the equality of the entire block is confirmed, this phase checks if the code that
has been skipped by the relocation (which is the code between the instruction following
the last instruction of 𝑅 and the instruction 𝑠𝑐 from which the comparison will continue)
is not data-dependent on the relocated block. Two blocks of code are data dependent if
one of the blocks reads a value that is written to by the other block. If the blocks are
independent, the relocation is semantically equal, and the comparison continues normally
from the remembered synchronisation point 𝑠𝑐 (by setting 𝑠′1 and 𝑠′2 to the appropriate
values and continuing with them on Line 23 of the original Algorithm 1). In Figure 7.1,
this phase would run once the entire relocated block has been successfully matched, i.e.,
right after 𝑖3 and 𝑖′3 have been compared as equal. Then, we would check if the relocated
code ([𝑖1, 𝑖2, 𝑖3]) depends on the skipped code ([𝑖4, 𝑖5]). If it does not, then the relocation
is confirmed as semantics-preserving, and the comparison would continue by setting 𝑠′1 =
𝑠𝑐 = 𝑖6 and 𝑠′2 = 𝑠𝑢𝑐𝑐(𝑖′3) = 𝑖′6 (which would be then compared as equal by Algorithm 1,
effectively showing semantic equality of 𝑓1 and 𝑓2).

We note here that the proposed method is the first step towards a more robust handling
of code relocations. It suffers from two issues: (1) it cannot handle relocations of blocks
containing branching, and (2) it is limited to detecting a single relocated block at a time.
Extending the method to blocks containing branching seems to be quite straightforward
as long as the relocated block has a single entry and a single exit point. Extending it
to simultaneously handling multiple relocated blocks is more difficult since the complexity
would increase with each detected block (for each non-equal synchronisation pair, one would
have to try to match all potentially relocated blocks), and the synchronisation sets and
maps would have to be reset if a block is not matched (to remove a potentially incorrect
synchronisation coming from an unsuccessful match). So far, we have not found enough use
cases to support such non-trivial extensions, but they might be a part of our future work
if a real need to support them appears in practice.

69

Chapter 8

Custom Change Patterns

Our method for checking semantic equivalence of versions of large-scale software that we
introduced in Chapter 6 has originally been developed to handle generic code change pat-
terns, with focus on semantics-preserving change patterns. In this chapter, we extend the
set of supported patterns beyond SPCPs to user-supplied custom change patterns (CCPs).

To achieve that, we first introduce a novel representation of CCPs suitable for our
method in Section 8.1. After that, we use this representation as a building block for the
algorithm for matching CCPs in the compared programs that we propose in Section 8.2.

8.1 Representation of Custom Change Patterns
In this section, we introduce a formal definition of CCPs. We require CCPs to be able to
describe arbitrary changes that may occur in programs supported by our method (i.e., any
programs compilable to LLVM IR). To this end, our pattern definition is inspired by and
based on the program representation that we use.

With respect to the way patterns are currently handled in Algorithm 1, we require our
CCP representation to allow for the following:

• describe a code change between two compared versions of a program,

• parametrise the pattern so that it can be matched to a larger set of changes, and

• express which memory locations should be synchronised after the pattern is success-
fully matched to an observed change.

8.1.1 Formal Definition of Custom Change Patterns

We represent our patterns with the help of parametrised control-flow graphs. A parametrised
CFG 𝑐 is a triple:

𝑐 = (𝑖𝑛, cfg , 𝑜𝑢𝑡). (8.1)
Here, cfg is a control-flow graph which can be parametrised using undefined local variables
and undefined structure types, representing the input values and types of the CFG, respec-
tively. The component 𝑖𝑛 of 𝑐 is the set of all input variables and types used in cfg . Last,
𝑜𝑢𝑡 denotes the set of “outputs” of the parametrised CFG, i.e., the set of local variables
which may be used outside of 𝑐.

With respect to this, we define a code change pattern as a tuple

𝑝 = (𝑐𝑜, 𝑐𝑛, imap, omap) (8.2)

70

where 𝑐𝑜 and 𝑐𝑛 are parametrised CFGs corresponding to the old and the new version of
the code change that is represented by 𝑝, respectively. Let

𝑐𝑜 = (𝑖𝑛𝑜, cfg𝑜, 𝑜𝑢𝑡𝑜) (8.3)
𝑐𝑛 = (𝑖𝑛𝑛, cfg𝑛, 𝑜𝑢𝑡𝑛). (8.4)

Then, imap : 𝑖𝑛𝑜 ↔ 𝑖𝑛𝑛 is a mapping between the inputs of the parametrised CFGs
𝑐𝑜, 𝑐𝑛 expressing which values and types in the compared programs must have the same
semantics in order to successfully match the pattern. Analogically, omap : 𝑜𝑢𝑡𝑜 ↔ 𝑜𝑢𝑡𝑛 is
a mapping between output variables of the parametrised CFGs expressing which variables
of the compared programs will be mapped (i.e., will have the same semantics) after the
pattern is successfully matched.

The above definition of CCPs allows us to seamlessly incorporate them into the current
comparison algorithm. We do this by defining generic implementations of the four pattern-
specific operations that were described in the beginning of Chapter 7.

8.1.2 Encoding Change Patterns with LLVM IR

To be able to use CCPs in practice, we need them to be encoded in a form that DiffKemp
is able to use. As patterns are represented by parametrised CFGs, LLVM IR is the natural
choice.

In particular, we encode each pattern using two LLVM IR functions, one for each
parametrised CFG of the pattern (𝑐𝑜 and 𝑐𝑛). The sets of input values from 𝑖𝑛𝑜 and
𝑖𝑛𝑛 are encoded using LLVM function parameters and their mapping (for imap) is deter-
mined based on the parameters’ order. For type parameters, the patterns contain a custom
type prefixed with diffkemp.type. This custom type is then used in both 𝑐𝑜 and 𝑐𝑛,
hence no explicit encoding of the mapping is necessary.

The sets of output variables (𝑜𝑢𝑡𝑜 and 𝑜𝑢𝑡𝑛) and their mapping omap are represented
by introducing a special function diffkemp.mapping which is called in each pattern
function just before its exit. The call contains a list of variables representing 𝑜𝑢𝑡𝑜 and 𝑜𝑢𝑡𝑛
and the mapping is determined automatically based on their order.

The pattern matching algorithm that we introduce in the following section requires our
patterns to encode some additional information. These are typically encoded in LLVM IR
using LLVM metadata. More details on LLVM metadata can be found in [75].

8.2 Custom Change Pattern Matching
We now propose a method to detect occurrences of custom change patterns in the compared
programs. Since our goal is to utilise this method in the comparison described in Section 6.3,
we use the same approach as is already used for the semantics-preserving change patterns.
In particular, we provide definitions for pattern-specific operations required by Algorithm 1.
These definitions are generic, which means that they can be used for any custom change
pattern having the form defined in the previous section.

To simplify the presentation in the rest of this section, we assume the following situation:

• two versions of a function 𝑓 , denoted 𝑓𝑜 and 𝑓𝑛 (the old and the new version, respec-
tively), are being compared using Algorithm 1,

• 𝑓𝑜 and 𝑓𝑛 are represented using CFGs as described in Section 6.1, and we refer to
them as to compared-function CFGs,

71

• Algorithm 1 is at the point of processing a pair of synchronisation points 𝑠𝑜, 𝑠𝑛, and

• the goal is to check if a custom change pattern 𝑝 = (𝑐𝑜, 𝑐𝑛, imap, omap) is applicable
and, if so, to apply it. We also let 𝑐𝑜 = (𝑖𝑛𝑜, cfg𝑜, 𝑜𝑢𝑡𝑜) and 𝑐𝑛 = (𝑖𝑛𝑛, cfg𝑛, 𝑜𝑢𝑡𝑛) and
we refer to cfg𝑜 and cfg𝑛 as to pattern CFGs.

In the following subsections, we propose definitions of functions required by the indi-
vidual steps of Algorithm 1.

8.2.1 Pattern Detection

The purpose of this step is to check if a pattern can be applied from the current pair of
synchronisation points. As the check may be executed for each pattern at each synchroni-
sation points pair, it is necessary that it is done in a very quick and efficient way. On the
other hand, custom change patterns may describe arbitrary changes, hence the largest part
of the matching must be done in this step.

For a custom change pattern 𝑝, we need to check that cfg𝑜 is a subgraph of 𝑓𝑜 and cfg𝑛
is a subgraph of 𝑓𝑛. Checking of subgraph isomorphism is generally expensive, however,
we are dealing with CFGs in a specific situation which allows us to use a rather efficient
approach. In particular, we build on assumptions that (1) each CFG has a single entry point
and (2) we only need to match the pattern CFG starting from the current synchronisation
point in the compared-function CFG. Hence, there is a unique point where the matching
must start, and we can use a straightforward control-flow traversal to check whether all
instructions of the pattern CFG match instructions in the compared-function CFG.

Even though the problem is now much reduced, two major issues remain:

1. We still need to perform the full CFG comparison from each pair of synchronisation
points for each pattern. Even though the matching algorithm is efficient, running it
so many times may cause problems with scalability, which is the main concern of our
approach.

2. The occurrence of a pattern CFG in the corresponding compared function CFG may
be interleaved with non-related instructions. This is a common situation as the LLVM
compiler often reorders non-conflicting instructions.

To address the first issue, we always start the CFG matching from the first pair of
instructions which differ between the pattern CFGs cfg𝑜 and cfg𝑛. These are required to be
marked explicitly in the pattern (we use LLVM metadata to do that) and we denote them
as the first differing instruction pair. Thanks to that, the pattern can only be matched if
𝑓𝑜 and 𝑓𝑛 contain a synchronised pair of differing instructions and, in addition, that pair
matches the first differing pair of the pattern. In practice, this heuristic quickly eliminates
most of the non-matching pattern candidates for most of the synchronisation points.

Note that the pattern CFGs may start with sequences of instructions which are the same
for both cfg𝑜 and cfg𝑛 and which will be not be initially compared. Such instructions denote
a context in which the pattern must be applied—they define how some of the variables used
inside the pattern must be created. We denote the sets of such variables 𝑐𝑡𝑥𝑜 and 𝑐𝑡𝑥𝑛 for
the old and the new version of the pattern CFG, respectively. Naturally, it is necessary to
check that the same context appears in the compared functions, i.e., that the variables of
the compared functions matched with the context variables were created using equivalent
instructions. This is done as the last step of our matching method.

72

Input: 𝑐𝑥 = (𝑖𝑛𝑥, cfg𝑥, 𝑜𝑢𝑡𝑥): pattern CFG
𝑓𝑥: compared function CFG
𝑠𝑥: current synchronisation point in 𝑓𝑥

Result: 𝑚𝑎𝑡𝑐ℎ𝑥: mapping between values and types of cfg𝑥 and 𝑓𝑥
1 𝑒𝑝 = first differing instruction of cfg𝑥
2 𝑒𝑓 = instruction immediately following 𝑠𝑥 in 𝑓𝑥
3 𝑄 = {(𝑒𝑝, 𝑒𝑓)}
4 𝑚𝑎𝑡𝑐ℎ𝑥 = {}
5 while 𝑄 is not empty do
6 take any (𝑖𝑝, 𝑖𝑓) from 𝑄
7 if ¬𝑚𝑎𝑡𝑐ℎ𝐼𝑛𝑠𝑡(𝑖𝑝, 𝑖𝑓 , 𝑖𝑛𝑥) then // updates 𝑚𝑎𝑡𝑐ℎ𝑥
8 if 𝑠𝑢𝑐𝑐(𝑖𝑓) is defined then
9 add (𝑖𝑝, 𝑠𝑢𝑐𝑐(𝑖𝑓)) to 𝑄 // instruction skipping

10 continue
11 else return ∅
12 if 𝑖𝑝 is conditional branch then
13 add (𝑠𝑢𝑐𝑐𝑇 (𝑖𝑝), 𝑠𝑢𝑐𝑐𝑇 (𝑖𝑓)) to 𝑄
14 add (𝑠𝑢𝑐𝑐𝐹 (𝑖𝑝), 𝑠𝑢𝑐𝑐𝐹 (𝑖𝑓)) to 𝑄
15 else add (𝑠𝑢𝑐𝑐(𝑖𝑝), 𝑠𝑢𝑐𝑐(𝑖𝑓)) to 𝑄
16 if ¬checkContext(𝑚𝑎𝑡𝑐ℎ𝑥, 𝑐𝑡𝑥𝑥, 𝑖𝑛𝑥) then
17 return ∅
18 return 𝑚𝑎𝑡𝑐ℎ𝑥

Algorithm 7: Matching pattern CFG to one of the compared functions

To address the second issue, we allow our matching algorithm to “skip” instructions
on the side of the compared-function CFGs. These instructions will need to be compared
using the default comparison, which is a problem that we address later in this section.

With respect to all the described mechanisms, our algorithm for detecting an occurrence
of a pattern is shown in Algorithm 7. This algorithm must be run separately for both
versions of the compared program and their corresponding pattern CFGs. Hence, we use
the subscript 𝑥 ∈ {𝑜, 𝑛} as a placeholder for either the old or the new version. If both
comparisons succeed, the pattern is considered as applicable.

The algorithm simply traverses the control-flow of cfg𝑥 and 𝑓𝑥, starting from the first
differing instruction in cfg𝑥 and from the instruction immediately following the current
synchronisation point 𝑠𝑥 in 𝑓𝑥. For each instruction pair, it uses the matchInst function to
check that the instructions match. If they do not, the algorithm allows to skip instructions in
𝑓𝑥 if they have a single successor which may be followed. We do not allow to skip conditional
branching instructions. If the algorithm succeeds, it performs the context validation step
and returns 𝑚𝑎𝑡𝑐ℎ𝑥, which is a map (a set of pairs) of semantically equivalent values and
types between cfg𝑥 and 𝑓𝑥.

The 𝑚𝑎𝑡𝑐ℎ𝑥 map is created by the matchInst function, whose definition is shown in
Algorithm 8. At its entry, the function takes two instructions (using the notation from
Eq. (6.1)) and the set of the corresponding pattern inputs. It checks whether the instruc-
tions perform the same operation over semantically equivalent operands. Operands are
considered semantically equivalent if both their types and values match. This matching is
checked in multiple steps:

1. If the type of the pattern instruction operand is a part of the pattern input, we create a
new matching with the type of the corresponding operand from the compared function
(Lines 3–4). In other words, this step marks which types of the compared funtion

73

Input: 𝑖𝑝 : 𝑣𝑝 = 𝑜𝑝𝑝(𝑜
1
𝑝, . . . , 𝑜

𝑚
𝑝) (pattern instruction),

𝑖𝑓 : 𝑣𝑓 = 𝑜𝑝𝑓 (𝑜
1
𝑓 , . . . , 𝑜

𝑛
𝑓) (compared-function instruction),

𝑖𝑛𝑥 (pattern inputs)
𝑐𝑡𝑥𝑥 (pattern context)

Output: true if 𝑖𝑝 matches 𝑖𝑓 , false otherwise
1 if 𝑜𝑝𝑝 ̸= 𝑜𝑝𝑓 then return false // ensures 𝑚 = 𝑛
2 for 1 ≤ 𝑖 ≤ 𝑛 do
3 if typeof (𝑜𝑖𝑝) ∈ 𝑖𝑛𝑥 then
4 add (typeof (𝑜𝑖𝑝), typeof (𝑜

𝑖
𝑓)) to 𝑚𝑎𝑡𝑐ℎ𝑥

5 else if typeof (𝑜𝑖𝑝) ̸= typeof (𝑜𝑖𝑓) then
6 return false
7 if 𝑜𝑖𝑝 ∈ 𝑖𝑛𝑥 ∨ 𝑜𝑖𝑝 ∈ 𝑐𝑡𝑥𝑥 then
8 add (𝑜𝑖𝑝, 𝑜

𝑖
𝑓) to 𝑚𝑎𝑡𝑐ℎ𝑥

9 else if ¬(𝑜𝑖𝑝 = 𝑜𝑖𝑓 ∨ 𝑛𝑎𝑚𝑒(𝑜𝑖𝑝) ≈ 𝑛𝑎𝑚𝑒(𝑜𝑖𝑓) ∨𝑚𝑎𝑡𝑐ℎ𝑥(𝑜𝑖𝑝) = 𝑜𝑖𝑓) then
10 return false
11 𝑚𝑎𝑡𝑐ℎ𝑥(𝑣𝑝) = 𝑣𝑓
12 return true

Algorithm 8: Definition of the matchInst function

are mapped to which input types of the pattern CFG. Later, during the semantic
equality detection step (Section 8.2.3), we check that the types of the old and the new
compared functions which were mapped to semantically equivalent pattern inputs are
also semantically equivalent.

2. If the types do not match (and one of them is not an input), operands are considered
as semantically different (Lines 5–6).

3. A check similar to point 1 is done for the operand values, except that they may also
be parts of the pattern context (Lines 7–8).

4. Last, a check similar to point 2 is done for the operand values (Lines 9–10). For
values, the equality check is more complex than for types and it depends on the
operand kind. For constants, we check for direct equality. For functions and global
variables, we check for name match. Besides pure name equality, we allow patterns to
specify renaming rules which describe how called function names may differ between
the versions (this is expressed by ≈ in the algorithm). Last, for local variables, we
check if the values have already been mapped via 𝑚𝑎𝑡𝑐ℎ𝑥. These checks are handled
by the individual disjuncts at line 9 of the algorithm.

If the comparison succeeds, matchInst accordingly updates the mapping 𝑚𝑎𝑡𝑐ℎ𝑥. The
mappings created by comparing the two given program versions against the different sides
of a change pattern (i.e., 𝑚𝑎𝑡𝑐ℎ𝑜 and 𝑚𝑎𝑡𝑐ℎ𝑛) will be used later during the semantic equality
detection step.

The last step of Algorithm 7 is context validation. As mentioned before, so-called pattern
context instructions are initially not matched for optimisation purposes. In this step, we
check that the values created by such instructions (the set of these values is denoted 𝑐𝑡𝑥𝑥)
are created in the same way in the pattern and in the compared function. This check is
performed by Algorithm 9.

The algorithm checks that variables created by context instructions which should have
the same semantics (as they are in 𝑚𝑎𝑡𝑐ℎ𝑥) are created by semantically equivalent instruc-

74

Input: 𝑚𝑎𝑡𝑐ℎ𝑥: matching of values between cfg𝑥 and 𝑓𝑥
𝑐𝑡𝑥𝑥: the set of pattern context variables
𝑖𝑛𝑥 (pattern inputs)

1 do
2 for (𝑣𝑝, 𝑣𝑓) ∈ 𝑚𝑎𝑡𝑐ℎ𝑥 do
3 if 𝑣𝑝 ∈ 𝑐𝑡𝑥𝑥 then

// Let 𝑖𝑝 and 𝑖𝑓 be instructions creating 𝑣𝑝 and 𝑣𝑓 , resp.
4 if ¬𝑚𝑎𝑡𝑐ℎ𝐼𝑛𝑠𝑡(𝑖𝑝, 𝑖𝑓 , 𝑖𝑛𝑥) then // may update 𝑚𝑎𝑡𝑐ℎ𝑥
5 return false
6 while 𝑚𝑎𝑡𝑐ℎ𝑥 is updated
7 return true
Algorithm 9: checkContext: matching context instructions between the pattern and the
compared function CFGs

tions. Running matchInst may again update 𝑚𝑎𝑡𝑐ℎ𝑥, hence the check must be run while
𝑚𝑎𝑡𝑐ℎ𝑥 changes.

8.2.2 Determining Successor Synchronisation Points

The purpose of this step is to determine where the analysis continues from, after the com-
parison of the current code chunks succeeds. For custom change patterns, we continue from
(i.e., place a successor synchronisation point to) each instruction 𝑖 of the compared function
which has not been matched to the pattern CFG but which is immediately following some
instruction matched to the pattern CFG. However, there may be several such instructions,
due to two reasons:

• the pattern CFG is not required to have a single exit point, hence matching may end
in multiple basic blocks and

• as explained in the previous section, we allow to skip instructions in the compared-
function CFG, and these must be compared after the pattern is successfully matched.

Due to these, there may be a large number of instructions to continue from, hence we in-
troduce an additional limitation. We only place a synchronisation point at each instruction
𝑖 if there is no other synchronisation point already placed at an instruction 𝑖′ such that 𝑖 is
reachable from 𝑖′. This is safe to do as if there is such an instruction 𝑖′, 𝑖 will be eventually
analysed using the default comparison method which follows the control flow.

During the subsequent comparison, we make the main algorithm ignore instructions
that were already matched by the pattern.

8.2.3 Semantic Equality Detection

Once the pattern is determined as applicable (i.e., a matching sub-CFG can be found in
the corresponding function), it is still necessary to check that it is applied on semantically
equivalent values and types of the compared-function CFGs. In other words, we need to
check that the values and the types that were matched to the inputs of the pattern CFGs
have the same semantics in both compared function versions.

To do this, we make use of several mapping functions, in particular imap which maps
semantically equivalent inputs of the pattern CFGs and 𝑚𝑎𝑡𝑐ℎ𝑜 and 𝑚𝑎𝑡𝑐ℎ𝑛 which map
variables and types of pattern CFGs to variables and types of the compared-function CFGs

75

as determined during pattern detection. Using these mappings, we check if the following
holds:

∀(𝑖𝑜, 𝑖𝑛) ∈ 𝑖𝑚𝑎𝑝 :
𝑚𝑎𝑡𝑐ℎ𝑜(𝑖𝑜) = 𝑚𝑎𝑡𝑐ℎ𝑛(𝑖𝑛) ∨ (covers constants) (8.5)
𝑣𝑎𝑟𝑚𝑎𝑝(𝑚𝑎𝑡𝑐ℎ𝑜(𝑖𝑜)) = 𝑚𝑎𝑡𝑐ℎ𝑛(𝑖𝑛) ∨ (covers variables) (8.6)
𝑡𝑦𝑝𝑒𝑛𝑎𝑚𝑒(𝑚𝑎𝑡𝑐ℎ𝑜(𝑖𝑜)) = 𝑡𝑦𝑝𝑒𝑛𝑎𝑚𝑒(𝑚𝑎𝑡𝑐ℎ𝑛(𝑖𝑛)) (covers struct types) (8.7)

That is, we check that pattern inputs which should be semantically equivalent (via 𝑖𝑚𝑎𝑝)
are matched to values and types in the compared functions which are also semantically
equivalent. Semantic equivalence in the compared functions is done based on the kind
of the compared value: constants are compared by value, variables are compared using
varmap, and structure types are compared by name.

8.2.4 Updating the Variable Mapping

The last step of handling change patterns in Algorithm 1 is to determine which variables
created by the pattern have the same semantics for the following comparison. This is
done by updating the varmap function. For our custom change patterns, we again use the
maps 𝑚𝑎𝑡𝑐ℎ𝑜 and 𝑚𝑎𝑡𝑐ℎ𝑛 created during the pattern detection step along with the pattern
outputs mapping 𝑜𝑚𝑎𝑝. In particular, we update 𝑣𝑎𝑟𝑚𝑎𝑝 so that:

∀(𝑜𝑜, 𝑜𝑛) ∈ 𝑜𝑚𝑎𝑝 : 𝑣𝑎𝑟𝑚𝑎𝑝(𝑚𝑎𝑡𝑐ℎ𝑜(𝑜𝑜)) = 𝑚𝑎𝑡𝑐ℎ𝑛(𝑜𝑛) (8.8)

That is, for each pair of semantically equivalent pattern outputs (determined via 𝑜𝑚𝑎𝑝),
we let the values matched in the compared functions to be also semantically equivalent (via
𝑣𝑎𝑟𝑚𝑎𝑝).

76

Chapter 9

Comparing the Use of Global
Variables

Until now, we always assumed that our method is used to compare two versions of a function.
However, it may also be useful for analysing differences in the semantics of global variables.
As we mentioned in the introduction of Chapter 6, global variables may represent, e.g.,
runtime or module parameters in the Linux kernel.

We view the semantics of a global variable as defined by the semantics of all the code that
is in any way influenced by it. Therefore, to compare the semantics of a global variable,
we compare the semantics of all functions using the variable with their counterparts in
the other version of the project (the functions are matched according to their names). If
the given variable is used in more functions in one version than in the other, we view its
semantics as not equal.

Although comparing entire functions using a given global variable is sufficient to show
the semantic equality of global variables, it may lead to some false non-equivalence verdicts.
The reason is that not necessarily all parts of a function are influenced by the given variable,
and if a change occurs in such an irrelevant part, it has no influence on the way the compared
variable influences the code.

1 extern int var;

2 void f(){

3 A1;

4 if (var) { B; }

5 C1;

6 }

1 extern int var;

2 void f(){

3 A2;

4 if (var) { B; }

5 C2;

6 }

Figure 9.1: Functions semantically equivalent with respect to the value of var

The above situation is illustrated in the two pieces of code shown in Figure 9.1. Here,
A1, A2, B, C1, C2 specify arbitrary blocks of code that do not use var. Also, we assume
that the code in A1, A2, C1, and C2 has no dependence on the code in B. Under these
assumptions, in both versions of the function, the only block of code affected by var is the
block B. Therefore, we may say that the functions are semantically equal with respect to the
global variable var because the code that the variable can influence has not changed. Below,

77

we use the notion of function equality w.r.t. a global variable to compare the semantics of
global variables in different project versions.

9.1 Comparing Functions w.r.t. a Variable
We now propose an extension of the algorithm presented in Chapter 6 that allows one to
compare functions w.r.t. a variable 𝑣. The extension is based on removing those parts of
the code that are not dependent on the value of 𝑣. By dependence, we mean both data
dependence (where the value of some expression depends on the value of 𝑣) and control
dependence (where the fact whether some code is executed depends on the value of 𝑣).

For removing the irrelevant parts of the code, we use the approach of program slic-
ing [119]. It is a well-known technique of reducing a program to the minimal form that
satisfies some given criterion. We, in particular, propose a specialised combination of for-
ward and backward slicing where the criterion is preservation of all statements influenced by
the given variable 𝑣. The algorithm first proceeds forward through the code and preserves
only those instructions that are (transitively) control- or data-dependent on the value of 𝑣.
Afterwards, the algorithm takes all such identified instructions and proceeds backwards to
preserve also parts of the program that may (in a control or data way) influence any of the
preserved instructions. We describe the method we use in detail in Section 9.2.

We then extend Algorithm 1 to read the global variables whose semantics is to be
compared as a part of its input and to slice both of the functions to be compared at the
beginning of the procedure.

9.2 Slicing Algorithm
We now propose a slicing algorithm suitable for our needs. Although there is a number of ex-
isting slicing algorithms [67, 26], they are mostly aimed at high precision at the cost of speed.
Typically, these algorithms are based on using a program dependence graph [40, 56], which
can be quite expensive to compute. Also, many of the slicing algorithms are quite general,
supporting various slicing criteria, backwards and forward slicing, inter-procedural slicing,
etc. On the other hand, our method only needs to perform a specific intra-procedural slicing
w.r.t. the value of a global variable and our top priority is very high scalability. Therefore,
we propose a simple specialised slicing method that computes dependence relations on the
fly and is able to slice a function w.r.t. the value of a global variable in a very efficient
way. Compared to existing works, ours is the most similar to [3], but the algorithm of [3]
computes a slice for all variables of the program simultaneously, which is inefficient for our
case. Also, the work [3] does not feature the reconstruction of the control flow, contained
in our algorithm and explained later on, which is crucial for a subsequent comparison of
semantic equality.

Our slicing algorithm takes a function 𝑓 and a global variable 𝑔 as inputs. The output is
the function 𝑓 ′ that is the minimal slice of 𝑓 containing all instructions that are dependent
on the value of 𝑔 in some way. The produced slice must be a valid CFG so that it can be
compared to another CFG for semantic equality using the method proposed in the previous
sections.

The method works in three main phases: (1) computing control- and data-dependent
instructions that are to be preserved, (2) restoring the data flow among the dependent

78

instructions, and (3) restoring the control flow among the dependent instructions and those
needed to preserve the data flow so that the produced CFG is valid.

Phase 1: computing dependent instructions In the first phase, the set of dependent
instructions is computed in a rather standard way. We define an instruction 𝑗 to be data-
dependent on an instruction 𝑖 if (1) it uses the local variable 𝑣𝑖 created by 𝑖 as an operand
or if (2) it reads from a pointer 𝑝 (or from any pointer aliased with it) that 𝑖 writes into.
For computing aliases, we use the LLVM’s Basic Alias Analysis 1, which is a cheap and
simple alias analysis. Optionally, a more precise alias analysis can be used.

Similarly, we define an instruction 𝑗 to be control-dependent on an instruction 𝑖 if the
fact whether 𝑗 is executed depends on the execution of 𝑖. In our LLVM-based program
representation, such a dependence may occur only if 𝑖 is a branching instruction. In such a
case, we define the set of all instructions control-dependent on 𝑖 as the set of instructions
that are reachable from 𝑖 via a single branch only (i.e., their execution is dependent on the
value of the branching condition).

With the relations for data- and control-dependence defined as above, we compute the
set of all dependent instructions as the transitive closure over the union of these relations,
starting from the set of all instructions that read the value or the address of the global
variable 𝑔. The computed instructions are to be preserved, the other instructions are
candidates for removal (but they may be preserved too due to the further phases).

The further phases of our slicing restore the data and control flow among the instructions
to be preserved, possibly adding further instructions, in order to produce a valid CFG that
can be compared with other CFGs. In a valid CFG, all used local variables must be
defined within the CFG. Also, the original control flow must be preserved in the sense that
instructions included in the slice must be reachable for the same values of input parameters
and the same state of the memory as they were in the original function. This is the main
difference of our algorithm from other slicing algorithms (e.g. [3]) that do not necessarily
produce a valid CFG.

Phase 2: restoring the data flow We extend the slice by all instructions that write into
some variable used by some instruction in the slice. In particular, we repeat the following
steps until a fixpoint is found:

• If an instruction in the slice uses a local variable 𝑣𝑗 , the instruction 𝑗 is included in
the slice.

• If an instruction in the slice reads data from a pointer 𝑝, all instructions writing into
𝑝 or into a pointer aliased with 𝑝 are included in the slice. This step can be optimised
by considering the last writing instruction(s) that reach the reading instruction only.

Phase 3: restoring the control flow Phase 3 defines, for each instruction 𝑖 of the
slice, its successor(s) within the slice. In other words, if the original successor of 𝑖 is not
included in the slice, a different successor must be chosen while preserving the control flow.
This is simple if all instructions not present in the slice have a single successor. Then,
the new successor of 𝑖 can be found by following the single successor of each non-included
instruction until an instruction of the slice is found. A problem arises with conditional
branching instructions that are not included in the slice. For each such instruction, we first

1https://llvm.org/docs/AliasAnalysis.html

79

compute the sets RT and RF denoting the set of instructions of the slice reachable via the
true-case and the false-case successor, respectively. Based on these sets, there are multiple
scenarios that may occur:

• 𝑅𝑇 ⊂ 𝑅𝐹 ∨ 𝑅𝐹 ⊂ 𝑅𝑇 : the sets are not equal and all instructions reachable by one
of the successors are reachable by the other successor. Then, only the successor that
reaches more instructions is followed.

• 𝑅𝑇 ̸= 𝑅𝐹 ∧ 𝑅𝑇 ⊈ 𝑅𝐹 ∧ 𝑅𝐹 ⊈ 𝑅𝑇 : there are instructions in the slice reachable ex-
clusively by each of the successors. In such a case, both successors must be preserved,
i.e., the corresponding branching instruction must be included in the slice.

• 𝑅𝑇 = 𝑅𝐹 : there are no instructions reachable exclusively by either of the successors.
In such a case, any successor could be followed; however, if one of them goes into a
loop that returns back to the current branching instruction, we need to follow the
other successor in order to reach the end of the function. Otherwise, any successor
can be chosen.

This method ensures that each non-included branching instruction has a single followed
successor, and therefore it is simple to restore the control-flow as explained above. Note,
however, that Phase 3 may add new instructions to the slice, which happens if a conditional
branch cannot be omitted from the slice. In that case, it is necessary to re-run Phases 2
and 3.

80

Chapter 10

Implementation and Experiments

We have implemented all of the proposed methods in a tool called DiffKemp. The tool
is able to automatically compile the Linux kernel as well as any other Makefile-based
project into LLVM IR and to compare the semantics of different versions of functions from
the project. In addition, when analysing the Linux kernel, DiffKemp can compare runtime
parameters (configurable via the sysctl command), too. Detailed usage information can
be found in README (see the GitHub repository stated below).

Moreover, for projects written in C (such as the Linux kernel), which are the primary
target of DiffKemp, it is able to precisely locate the C source symbol (a function, a macro,
or a type) that causes the detected semantic difference—provided that such a difference is
discovered. Currently, DiffKemp supports all versions of Clang/LLVM from 9 to 15. It is
distributed as source code1, an RPM package for Fedora2, or a container image3.

We performed several experiments with DiffKemp in order to demonstrate capabilities
of the proposed methods. All experiments were run on an 8 core, 3 GHz Intel Core i7-
1185G7 machine with 32 GB of RAM.

The experiments are presented in the following sections. In total, we performed 7 exper-
iments related to various parts of our work. The first four experiments (Sections 10.1–10.4)
evaluate the generic comparison method (Chapter 6) with built-in semantics-preserving
change patterns (Chapter 7). The following experiment (Section 10.5) evaluates our slic-
ing algorithm introduced in Chapter 9. Finally, the last two experiments (Sections 10.6
and 10.7) demonstrate usefulness of custom change patterns described in Chapter 8.

10.1 KABI Functions
As mentioned earlier, the ability of our tool to detect undesirable changes in a software
project may be particularly useful for developers of those Linux distributions that aim
at stability and compatibility. One of such distributions is the Red Hat Enterprise Linux
(RHEL) whose KABI functions, cf. Chapter 6, should be stable across minor RHEL releases.
A change of the semantics of a KABI function may lead into a compatibility breakage. To
show that DiffKemp can indeed be helpful to ensure that this does not happen, we used
it to check preservation of the semantics of KABI functions on versions of RHEL 8 up to
the version 8.5. Table 10.1 shows the obtained results.

1Available from https://github.com/viktormalik/diffkemp under the Apache 2.0 license.
2https://copr.fedorainfracloud.org/coprs/viktormalik/diffkemp/
3https://hub.docker.com/r/viktormalik/diffkemp

81

https://github.com/viktormalik/diffkemp
https://copr.fedorainfracloud.org/coprs/viktormalik/diffkemp/
https://hub.docker.com/r/viktormalik/diffkemp

Table 10.1: Checking semantic equivalence of KABI functions

RHEL
versions

KABI
functions

DiffKemp verdict:
equal/not equal/

unknown

Total
functions
compared

Total
LOC

compared

Runtime
(mm:ss)

8.0/8.1 471 362/84/25 3,460 36,066 05:58
8.1/8.2 521 334/161/26 3,601 36,474 05:06
8.2/8.3 628 420/180/28 4,103 44,017 12:15
8.3/8.4 631 447/156/28 3,625 38,130 11:02
8.4/8.5 640 443/169/28 4,025 43,136 10:45

For each pair of the considered successive kernel versions, Column 2 shows the number
of KABI symbols that were compared. Column 3 displays the number of functions that
are claimed by DiffKemp to be semantically equal, non-equal, as well as those whose
equality could not be determined. The last kind of result occurred typically in cases in
which DiffKemp was not able to find the function’s definition in the kernel source (some
functions are, e.g., generated during kernel compilation from macros). In all experiments,
not a single function comparison ended with a tool crash nor the tool timed out (with a
30 s timeout).

Furthermore, we manually inspected the functions claimed by DiffKemp to be non-
equal, and we have found at most units of (for some versions even zero) functions whose
semantics seems unchanged. As far as we can say, the changes were mostly security fixes or
bug fixes; they should not break anything in applications relying on KABI, but they indeed
change the semantics to some degree as correctly announced by DiffKemp. Checking the
potential impact of such semantic changes is left for the developers.

However, the results clearly demonstrate that DiffKemp heavily reduces the amount of
the human effort needed—while we were able to check the changed functions in a reasonable
amount of time (each pair of versions took a few hours, relying on the changes highlighted
by DiffKemp), this would be impossible if one had to inspect all functions potentially
reachable from some KABI symbol—their exact numbers are given in Column 4.

To further manifest the scope of the task performed in this experiment, Column 5 gives
the total number of compared lines of C code. The last column gives the execution time
(obtained as an average wall time of 5 runs) that DiffKemp spent on comparing the given
pair of versions compiled to LLVM IR (the compilation time is not included). It shows that
DiffKemp is able to check semantic equality on a large code base in the order of minutes,
which is sufficient, e.g., to integrate it into the continuous integration process.

10.2 Refactoring Commits in the Linux Kernel
In our second experiment, we apply DiffKemp on various refactorings of the Linux kernel
that produced code that is syntactically different but should have the same semantics. In
particular, we took all the commits between versions 5.10 and 5.17 of the upstream kernel
(https://github.com/torvalds/linux) containing the word “factor” or “refactor”
in the commit message. In total, we discovered 45 such commits and, for each of them, we
compared the semantics of the functions changed by the commit.

Prior to running the experiment, we manually investigated the commits and discovered
that, despite the commits are marked as refactorings, many of them actually contain a

82

https://github.com/torvalds/linux

semantic difference. These are caused, e.g., by added assertions, safety checks (such as a
check that a pointer is not NULL before dereferencing it), mutex locking, or by the fact that
the new version of the function covers more behaviour than the original version did. Out
of 24 such commits DiffKemp correctly identified all to be semantically not equal. The
remaining 21 changes do indeed preserve semantics. From them, DiffKemp was able to
confirm the semantic equality in 43 % of the cases. The rest of the commits contain more
complicated refactorings that are beyond the capabilities of the light-weight approach of
DiffKemp. Such changes seem to require a heavier-weight approach, perhaps relying on
more complex formal methods, where, however, the scalability is a problem (as indicated
also by an experiment presented in Section 10.4).

In addition, an interesting observation is that out of the 45 analysed commits, 3 commits
were “fixup” commits which fixed a bug introduced by some previous commit marked as
refactoring. We used DiffKemp on the bug-introducing commits, and it was capable to
identify a semantic difference in all 3 cases.

All in all, this experiment demonstrates another valuable use case of DiffKemp—it
can be used as a pre-processing tool when reviewing whether a change is truly semantics-
preserving. In such an application, DiffKemp is able to handle a significant number of
changes (in our case, 43 %) that do not need to be reviewed anymore (either manually or
by other, more costly, approaches). Moreover, if the commit is not semantics-preserving
(while it should be), DiffKemp is able to discover it, which may prevent introduction of
hidden bugs into the codebase.

10.3 The musl Standard C Library
Even though the main desired application of DiffKemp is on the Linux kernel, the meth-
ods it implements are generic and applicable on any project compiled into LLVM IR. We
demonstrate this in our third experiment where we check preservation of the semantics of
library functions from the C standard library. For simplicity, we chose the musl libc imple-
mentation since there exists a project that allows this library to be compiled into LLVM IR
(https://github.com/SRI-CSL/musllvm). We took the last 9 versions and compared
the semantics of all exported functions. Then, we compared the differences identified by
DiffKemp with the set of all syntactic differences obtained from the versioning system by
using the diff command (since we built the project for x86, we excluded the differences
for non-x86 architectures). Table 10.2 shows the results.

For each pair of versions, the table shows the total number of diff chunks obtained
from the versioning system as described above (Column 2). We use chunks since they give
a sufficient granularity (often, a single chunk represents a single change) while their number
is quite simple to obtain. The following two columns show the numbers of chunks that do
not change the semantics (as determined by a manual analysis) and that were marked by
DiffKemp as equal (Column 3) or as not equal (Column 4). The results in Column 4
represent false positives (FP) where a chunk was determined to be semantically different
although it is not. The number of such results is quite low for each pair of versions4.

The last two columns of Table 10.2 show numbers of semantically different chunks
(again, determined manually) that were marked by DiffKemp as equal (Column 5) and

4We admit that the last column of the table may include some (perhaps units of) complicated refactorings
for which, during our manual analysis, we could have failed to see that they preserve the semantics and we
classified them into non-equal results.

83

https://github.com/SRI-CSL/musllvm

Table 10.2: Analysis of the musl C standard library functions

musl libc
versions diff chunks

Semantically equal Semantically not equal
DiffKemp DiffKemp

equal not equal (FP) equal (FN) not equal

1.1.19/.20 199 77 6 0 116
1.1.20/.21 598 470 12 0 116
1.1.21/.22 118 33 1 0 84
1.1.22/.23 126 93 3 0 30
1.1.23/.24 93 42 0 0 51
1.2.0/.1 77 20 1 0 56
1.2.1/.2 165 56 0 0 113

not equal (Column 6). Column 5 represents false negative (FN) results, where a differing
chunk is not identified. We may observe that DiffKemp produced no such result.

Overall, this experiment shows that DiffKemp can successfully identify a large number
of syntactic differences to be semantics-preserving (for some versions, there is more than
80 % of such differences) in a large real-world project while providing a relatively small
number of false results.

10.4 A Comparison with Other Tools
To compare DiffKemp with some other existing tool for checking semantic equivalence,
we considered the tools mentioned in Chapter 11. As our first choice to compare with,
we took the LLReve tool [66] as it is rather recent and open-source. Moreover, it runs
on Linux and uses LLVM IR, which allowed us to use our tooling for compiling the Linux
kernel into LLVM IR. We chose 30 functions from our previous experiments, including
both functions where DiffKemp succeeds as well as fails to provide a correct result, and
compared their semantics using LLReve. Unfortunately, both the Linux kernel and the
musl C library use program constructions that LLReve does not support (such as calls via
function pointers, inline assembly code, or floating-point data types). Due to this, LLReve
crashed for a large number of programs. Using various tweaks, we were able to run it on
several examples; however, out of these, only a single comparison succeeded (here, LLReve
confirmed the result of DiffKemp)—the rest timed out (on a 30-seconds time-out). This
demonstrates that the complexity and the size of the comparison is too large for a tool
based on heavy-weight formal methods.

As the second tool, we chose SymDiff [71] as it is also quite recent and open-source.
However, SymDiff uses the so-called Boogie Verification Language as its internal repre-
sentation and the available compilers are not able to compile the Linux kernel. We tried to
use an LLVM-to-Boogie translation provided by the SMACK formal verification tool [108],
but, despite all our efforts, we were unable to get the considered programs into a form that
SymDiff could handle.

84

Table 10.3: Determining benefits of using slicing

RHEL
versions

Compared
functions

Differences
without slicing

Differences
with slicing

Eliminated
differences

Runtime
without slicing

Runtime
with slicing

8.0/8.1 275 56 39 17 (30 %) 11:07 05:09
8.1/8.2 274 90 55 35 (39 %) 06:33 04:05
8.2/8.3 271 84 52 32 (38 %) 04:25 03:09
8.3/8.4 273 84 60 24 (29 %) 04:06 03:06
8.4/8.5 287 86 50 36 (42 %) 05:05 03:09

10.5 Effectiveness of Program Slicing
One of the important parts of the proposed approach is the program slicing algorithm
introduced in Chapter 9. In particular, it is crucial for analysis of semantic differences
related to usage of global variables (often representing system parameters). Slicing of
functions using the global variables ensures that differences occurring in code not affected
by the compared variable are not taken into consideration.

In this experiment, we assess the effectiveness of this approach by determining how many
of such differences (which may be considered false positives) are removed by an application
of our slicing algorithm. We do this by comparing the number of differences reported
by DiffKemp with and without performing the slicing for a list of Linux kernel runtime
parameters (also known as sysctl parameters). In particular, we chose all parameters from
the kernel and the vm categories, making it 136–142 parameters in total, depending on
the kernel version. For each parameter, we identified the global variable controlled by the
parameter and compared the semantics of all functions that the variable is used in. We did
this for each pair of successive versions of RHEL 8.

The obtained results are shown in Table 10.3. We observe that the application of
our slicing algorithm has eliminated a rather large number of false positives, which form
approximately 36 % of all the differences. This clearly shows that slicing is a very important
component when analysing the semantics of global variables.

In addition, we may observe that the use of slicing reduced the overall runtime of
DiffKemp (taken as an average wall time of 5 runs), presumably due to the fact that less
code is compared. Slicing itself has very low overhead, taking less than 1 second in total
for each pair of versions.

10.6 Application of Custom Change Patterns
In our first experiment related to custom change patterns (CCPs), we demonstrate their
practical usability by applying several CCPs on the Linux kernel. We investigated changes
done between pairs of the recent releases of RHEL and we identified five patterns of changes
which repeat often across versions and although they alter the semantics, the changes are
safe to be done. These include, e.g., modifications of the compiler behaviour concerning
ordering or speculative execution of commands. A complete description of the used patterns
can be found at the end of this section. Then, for each pair of succeeding versions of
RHEL 8 (and the last pair of versions of RHEL 7), we performed a semantic comparison of
all functions from KABI. We performed each comparison twice—once without the proposed
patterns and once with them. A comparison of the obtained results is shown in Table 10.4.

85

Table 10.4: Results of KABI analysis with and without custom patterns

RHEL
versions

Differing functions Pattern occurrences

w/o
patterns

with
patterns P1 P2 P3 P4 P5

7.8/7.9 20 18 ✓ ✓
8.1/8.2 137 132 ✓ ✓ ✓ ✓
8.2/8.3 150 145 ✓ ✓ ✓
8.3/8.4 173 172 ✓
8.4/8.5 150 144 ✓ ✓

The table shows numbers of functions identified as semantically differing with and with-
out usage of patterns. Note that these are not necessarily KABI functions but may be called
by one of them. We may observe that using 5 patterns removed 19 detected differences,
i.e., each pattern was able to eliminate almost 4 differences on average. While this may not
seem a lot, note that every difference should be reviewed manually. Hence, removing even
a small number of differences may substantially reduce the amount of human work needed.
In this case, the removed functions were often called from multiple KABI symbols and the
overall output was shortened by 40 diff chunks comprised of 816 lines.

Another important part of this experiment is in the second part of the table, which
shows that each pattern was successfully applied in at least two different pairs of versions
(some were applied even across major releases). This demonstrates that the patterns are
generic enough to be defined just once and then reused within a project for its lifetime.

10.6.1 The List of Used Patterns

We now give the list of patterns used in the experiment. For each pattern, we give an
example of a real usage of the pattern within the RHEL kernel. Even though our patterns
are defined in LLVM IR, we give examples in C as it is much more readable. The LLVM
IR representations of the patterns can be found in the DiffKemp repository5. In our
experiment, we defined 5 patterns:

P1: Use READ_ONCE for a memory read
Usage of the READ_ONCE macro prevents the compiler from merging or refetching
memory reads. This pattern describes a situation when a simple memory read is
replaced by a memory read through the macro. For example:

p→cpu → READ_ONCE(p→cpu)

The pattern is parametrised by 3 inputs: (1) the pointer to read from, (2) the field
to read, and (3) the type of the pointer.

P2: Use WRITE_ONCE for a memory write
The WRITE_ONCE macro is analogical to READ_ONCE, except that it is suited for
memory writes. This pattern describes a situation when a simple memory write is
replaced by a write through the macro. For example:

p→cpu = cpu → WRITE_ONCE(p→cpu, cpu)

5https://github.com/viktormalik/diffkemp/tree/master/tests/regression/patterns

86

https://github.com/viktormalik/diffkemp/tree/master/tests/regression/patterns

Table 10.5: Comparison of runtime with and without pattern matching

RHEL
versions

Run time KABI
functions

Compared
functionsw/o patterns with 24 patterns

8.0/8.1 2m 43s 2m 41s 471 3446
8.1/8.2 3m 30s 3m 29s 521 3643
8.2/8.3 4m 36s 4m 24s 628 3978
8.3/8.4 5m 36s 5m 35s 631 3607
8.4/8.5 5m 24s 5m 24s 640 4002

This pattern is parametrised by 4 inputs: (1) the pointer and (2) the field to write
to, (3) the type of the pointer, and (4) the value to write.

P3: Use unlikely for a condition
Usage of the unlikely macro tells the compiler that certain condition will evaluate
to true only in a very small number of cases. The compiler can use this information
to, e.g., perform a more efficient ordering of instructions. This pattern reflects a
situation when the unlikely macro is added to a condition. For example:

if(sched_info_on()) → if(unlikely(sched_info_on()))

The boolean condition is the single input of the pattern.

P4: Replace spin_(un)lock by raw_spin_(un)lock
The Linux kernel provides multiple functions for locking. This pattern describes a
situation when usage of spin_lock is replaced by raw_spin_lock. For example:

spin_lock(&last_pool->lock) → raw_spin_lock(&last_pool->lock)

The same situation may happen with unlocking, hence we would normally need 2
patterns. Thanks to the possibility to specify renaming rules (see Section 8.2.1), our
approach allows to handle both locking and unlocking using a single pattern.

P5: Replace RECLAIM_DISTANCE by node_reclaim_distance
The RECLAIM_DISTANCE macro and the node_reclaim_distance global vari-
able are two ways of setting the maximum distance between CPU nodes used for load
balancing. This pattern describes a situation when the usage of the macro is replaced
by the usage of the global variable. Since this is just a simple replacement of one
identifier by another, we leave this pattern without an example.

10.7 Efficiency of CCP Matching
In our second experiment related to CCPs, we demonstrate high scalability of our pattern
matching algorithm. Scalability is one of the main properties of DiffKemp, allowing it to
be applied in practice. In this experiment, we again perform an analysis of KABI functions
of the recent RHEL versions, however, this time, we apply as many as 24 patterns (taken
from the first experiment and from our regression tests). Naturally, most of these will never
be matched, however, the algorithm must try to match every pattern for every difference

87

found. Hence, this experiment shows that even this larger number of patterns does not
affect scalability of the overall analysis. The results are displayed in Table 10.5.

We may observe that for all versions, the run time of the analysis is equal or even slightly
shorter when using patterns. This shows that our matching algorithm is truly efficient. Each
run time was obtained as an average wall time of 5 runs. The reason why times are shorter
with patterns is that patterns cause more functions to be compared as equal, eliminating
the necessity for further computations, such as precise difference localisation, which are a
part of DiffKemp. To highlight the performance of the overall comparison, we give the
number of KABI symbols and total unique functions compared for each pair of versions.

88

Chapter 11

Related Work

There is a number of existing works on static analysis of semantic equivalence—for an
overview, see, e.g., [74]. Some of the approaches were implemented in tools applied to
real-life code, such as RVT [45], SymDiff [71, 65], DiSE [103, 5], LLReve [66], or UC-
KLEE [109]. Many of these tools use a similar general approach—namely, equivalence of
functions under comparison is encoded using formulae and/or special program construc-
tions, and a suitable decision procedure or program verifier is used to prove equality. In
particular, SymDiff uses Z3 [35], RVT uses CBMC [30], UC-KLEE uses KLEE [21]. LL-
Reve represents function equality by a set of Horn clauses and uses a Horn solver, such
as Z3, to solve them. DiSE is slightly different in that it employs KLEE to generate
function summaries and then compares the summaries. These approaches build on heavy-
weight formal methods that, despite a lot of advances, do still not scale enough to allow
equivalence checking on large code. This applies even to one of the latest works in the
area [29], based on semantics-driven alignment of program traces, which scales on bench-
marks from vectorizing compilers up to tens of lines.

On the other hand, there exist light-weight and extremly fast tools based on text sim-
ilarity (such as the Unix diff tool) or on simple abstract-syntax-tree matching [99] that
are able to compare huge code bases in the order of seconds. These are, typically, able to
handle only the simplest semantics-preserving changes (such as, e.g., variable renaming).

Compared with the mentioned works, our approach lies in between the two areas. While
our method is not as fast as the simple approaches, it can show equality of much more
complicated refactorings in the order of minutes for a similarly large code. Also, since we
build on light-weight back-end approaches, our method scales far better than those using
formal methods, at the possible expense of not being able to show equality of some heavily
refactored functions.

There still exist other tools—based, e.g., on comparing dependence relations [61], ab-
stract semantic trees [107], or (similarly to our work) control-flow graphs [4]—that also
aim at practical usability on large projects. However, these tools primarily aim at finding
differences between programs and at describing the differences in the best way possible,
typically not being able to ignore semantics-preserving changes.

Another field of works in this area aims at identification of refactorings in software: cf.,
e.g., [105]. These works often introduce or make use of a pre-defined list of refactoring
patterns. The best known list is probably the Fowler’s catalogue [42], which describes
mostly structural refactorings occurring in object-oriented languages. Refactoring lists for
low-level procedural languages (such as C) are less common—the most exhaustive that
we are aware of is [44]. In our work, we concentrate on supporting a number of patterns

89

from [44], extended by several additional types of semantics-preserving changes occurring
in the Linux kernel that are discovered by our own in-depth study of a number of Linux
versions.

Principles of semantics-preserving code transformations and variable mapping were suc-
cessfully used in other works too, e.g., in [36] for so-called on-stack replacement. We,
however, combine these basic ideas with multiple further techniques (e.g., advanced pat-
tern matching), allowing us to show equivalence of real-life programs with more complex
refactorings.

Apart from comparing the semantics of programs, equivalence checking was successfully
applied in hardware (see [58] for an overview), and there exist several industry-level works
on translation validation of compilers [100, 118, 52] too. These are, however, far from the
problems considered here.

Another important part of our work is the method for matching custom change patterns
introduced in Chapter 8. The idea of using code pattern matching in static analysis is
not new and there exists a handful of successful applications. One of the areas is bug
finding represented by tools such as FindBugs and its successor SpotBugs [57] for Java
or Cppcheck [94] for C/C++. These tools analyse programs on the level of abstract syntax
trees or bytecode and try to identify pre-defined patterns which typically lead to incorrect
or malicious behaviour. Our patterns differ from these in a way that they always work with
a pair of programs (instead of a single one), since they have to describe a code change.

Pairs of program versions are also compared by works aimed at automatic extraction
of bugfix patterns [81, 83]. These works extract patterns of changes from software patches
using convolutional neural networks [81] or a patch generalization algorithm [83]. Especially
the latter work uses patterns similar to ours—while the authors propose to use parametrized
ASTs, we rely on parametrized control-flow graphs which better suit our use-case of checking
functional equivalence. The main difference is that our goal is to take an existing pattern
and detect its instance in a pair of versions, whereas these works take an existing set of
patches and infer a set of patterns. The inferred patterns are then used to introduce new
bug classes for FindBugs or for automatic program repair [82].

Similar to these are works aimed at summarizing differences between programs [4, 61,
107] which produce a description of differences done between two versions of a software.
The produced output in some way corresponds to our patterns, however, such descriptions
are typically not suited for further processing. This is also the case for a group of works
aimed at identification of structural and API refactorings [37, 105, 120]. These try to
analyse programs and find occurrences of refactorings from some pre-defined list, typically
the Fowler’s catalogue [42].

Perhaps the closest work to ours is the Coccinelle tool [102] whose original purpose is
to detect and apply collateral evolutions in Linux drivers. The tool uses a custom specific
language SmPL [101] to represent patterns of code changes. SmPL is based on semantic
patches which are translated to the CTL logic. These are then matched against a CFG of a
program (using model checking) to obtain a version of the code after the patch is applied.
Coccinelle deals with a slightly different problem than we do—it applies a single patch to
a single program version to obtain a new version, while we deal with two existing program
versions and have to match the observed changes with one of the existing patterns. In
addition, Coccinelle uses a more heavy-weight approach compared to our light-weight
and fast graph matching algorithm capable of matching a large number of patterns on huge
code-bases in the matter of minutes.

90

To the best of our knowledge, the work presented in this paper is the first one which
attempts to deal with arbitrary code change patterns in the context of semantic equal-
ity analysis. Other tools for static analysis of semantic equivalence presented earlier in
this section are able to deal with arbitrary code changes, however, the changes must be
semantics-preserving (which is not a requirement for our patterns).

91

Chapter 12

Conclusion

In this thesis, we contribute to the area of static analysis of software with several new
techniques targeting low-level system code written in C. The thesis is split into two parts,
each dealing with a different area of static analysis. Our contributions strive to address
typical problems of static analysers, especially their limited applicability to complex real-
world programs.

In the first part, we introduce new methods for formal verification of programs ma-
nipulating dynamically-allocated data structures and arrays. In particular, we introduce
two new abstract template domains capable of reasoning about the shape of linked struc-
tures on the heap and about the contents of arrays. Our domains are specialized for a
template-based invariant synthesis, and we integrated them into the 2LS framework which
implements this approach. The new domains are designed in a way that allows their seam-
less combination with other abstract domains present in 2LS (e.g., the template polyhedra
domain), which enables verification of programs using various complex data structures such
as unrolled linked lists. As a part of our efforts, we also developed a new memory model
allowing to encode memory-manipulating operations using fixed first-order formulae.

2LS regularly competes in the International Competition on Software Verification (SV-
COMP) and the results from the recent years show that our contribution heavily improved
verification capabilities of 2LS. In addition, thanks to the abstract domain combinations,
2LS is able to reason about contents of unbounded dynamic data structures, which allows it
to soundly verify programs that only one other verifier from the competition handles. Last
but not least, we observe that our new domains preserve the great speed of verification,
which is one of the assets of 2LS.

On the other hand, there still remains a lot of open challenges. Our heap shape domain
is not able to track ordering of the linked nodes which prevents it, e.g., to verify absence of
memory leaks in many cases. In addition, we do not properly support pointer arithmetic
and more complex data structures such as trees or skip-lists. Our array domain is still
rather simple and will require more sophisticated combination with other abstract domains
(e.g., the zones domain) to allow it handle more complex programs.

In the second part of the thesis, we have proposed a light-weight and highly scalable
approach to automatically checking semantic equivalence of functions and global variables
in large-scale industrial programs. Our method is aimed at showing equality of programs
containing semantics-preserving changes typically resulting from refactoring.

The proposed algorithm is based on a combination of light-weight techniques, namely
instruction-by-instruction comparison on the level of LLVM IR, various program transfor-

92

mations, pattern matching, and a specific slicing algorithm that we propose. This com-
bination allows to discover differences between two versions of a software while ignoring
semantics-preserving changes which correspond to one of the built-in or user-defined change
patterns. We also showed that our method handles 24 out of the 29 patterns from the list of
common C refactoring patterns introduced in [44] and, in addition, several other semantics-
preserving change patterns that the list does not state and that are common in the Linux
kernel. Additionally, thanks to our support of user-defined patterns, our method is able to
handle not only semantics-preserving changes, but also changes which break the semantics
but are known to be safe (and therefore can be omitted from the results of the semantic
comparison).

We have implemented the proposed approached in a tool called DiffKemp. Our ex-
periments with DiffKemp show that it is able to successfully analyse large projects, such
as the Linux kernel, reasonably fast and with not many false results. This is, to the best of
our knowledge, beyond capabilities of any other of the existing tools in the area.

Approaches based on heavier-weight formal roots can, in theory, show equality of more
functions, but their scalability is limited (as also our experiments showed). However, an
interesting direction of future work is to use results from DiffKemp to simplify the programs
under comparison to small fragments of code considered non-equal by DiffKemp and then
compare these fragments by some heavier-weight approach.

Another area for future research is related to custom change patterns which at the
moment must be specified manually. One of the possible future improvements could be
automatic inference of patterns which, when combined with our solution, could substantially
improve the area of scalable analysis of semantic equivalence of software.

93

Bibliography

[1] Abdulla, P. A., Holík, L., Jonsson, B., Lengál, O., Trinh, C. Q. et al.
Verification of Heap Manipulating Programs with Ordered Data by Extended Forest
Automata. In: Proceedings of the 11th Automated Technology for Verification and
Analysis. Springer, 2013, vol. 8172, p. 224–239. Lecture Notes in Computer Science.

[2] Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P. et al. VeriAbs:
Verification by Abstraction and Test Generation. In: Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
2019, p. 1138–1141. DOI: 10.1109/ASE.2019.00121.

[3] Alomari, H. W., Collard, M. L. and Maletic, J. I. A Very Efficient and
Scalable Forward Static Slicing Approach. In: Proc. of the 19th Working Conference
on Reverse Engineering. IEEE Computer Society, 2012, p. 425–434.

[4] Apiwattanapong, T., Orso, A. and Harrold, M. J. A Differencing Algorithm
for Object-Oriented Programs. In: IEEE. Proc. of the 19th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 2004, p. 2–13.

[5] Backes, J., Person, S., Rungta, N. and Tkachuk, O. Regression Verification
Using Impact Summaries. In: International SPIN workshop on Model Checking
Software. Springer, 2013, vol. 7976, p. 99–116. LNCS.

[6] Barnett, M., Leino, K. R. M. and Schulte, W. The Spec# Programming
System: An Overview. In: Proceedings of the 2004 International Conference on
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices. Berlin,
Heidelberg: Springer-Verlag, 2004, p. 49–69. CASSIS’04. DOI:
10.1007/978-3-540-30569-9_3. ISBN 3540242872.

[7] Berdine, J., Cook, B. and Ishtiaq, S. SLAyer: Memory Safety for Systems-Level
Code. In: Proceedings of the 23rd International Conference on Computer-Aided
Verification. Springer, 2011, vol. 6806, p. 178–183. Lecture Notes in Computer
Science.

[8] Beyer, D. Second competition on software verification. In: Proceedings of the 19th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2013, p. 594–609.

[9] Beyer, D. Advances in Automatic Software Verification: SV-COMP 2020. In:
Biere, A. and Parker, D., ed. Proceedings of the 26th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2020,
p. 347–367.

94

[10] Beyer, D. Software Verification: 10th Comparative Evaluation (SV-COMP 2021).
In: Proceedings of the 27th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2021, p. 401–422.

[11] Beyer, D. Progress on Software Verification: SV-COMP 2022. In: Proceedings of
the 28th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2022, p. 375–402.

[12] Beyer, D., Dangl, M., Dietsch, D. and Heizmann, M. Correctness Witnesses:
Exchanging Verification Results between Verifiers. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
New York, NY, USA: ACM, 2016, p. 326–337. FSE 2016. DOI:
10.1145/2950290.2950351.

[13] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M. and Stahlbauer, A.
Witness Validation and Stepwise Testification across Software Verifiers.
In: Proceedings of the 2015 10th Meeting on Foundations of Software Engineering.
New York, NY, USA: ACM, 2015, p. 721–733. ESEC/FSE 2015. DOI:
10.1145/2786805.2786867.

[14] Beyer, D., Henzinger, T. A., Majumdar, R. and Rybalchenko, A. Path
Invariants. In: Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation. New York, NY, USA: Association for
Computing Machinery, 2007, p. 300–309. PLDI ’07. DOI: 10.1145/1250734.1250769.
ISBN 9781595936332.

[15] Biere, A., Cimatti, A., Clarke, E. M. and Zhu, Y. Symbolic Model Checking
without BDDs. In: Proceedings of the 5th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 1999, vol. 1579,
p. 193–207. Lecture Notes in Computer Science.

[16] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L. et al. Design
and Implementation of a Special-Purpose Static Program Analyzer for
Safety-Critical Real-Time Embedded Software. In: Mogensen, T. Æ., Schmidt,
D. A. and Sudborough, I. H., ed. The Essence of Computation: Complexity,
Analysis, Transformation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
p. 85–108. DOI: 10.1007/3-540-36377-7_5. ISBN 978-3-540-36377-4.

[17] Bouajjani, A., Habermehl, P., Rogalewicz, A. and Vojnar, T. Abstract
Regular Tree Model Checking of Complex Dynamic Data Structures.
In: Proceedings of the 13th Static Analysis Symposium. Springer, 2006, vol. 4134,
p. 52–70. Lecture Notes in Computer Science.

[18] Brain, M., David, C., Kroening, D. and Schrammel, P. Model and Proof
Generation for Heap-Manipulating Programs. In: Proceedings of the 23rd European
Symposium on Programming. Springer, 2014, p. 432–452.

[19] Brain, M., Joshi, S., Kroening, D. and Schrammel, P. Safety Verification and
Refutation by 𝑘-Invariants and 𝑘-Induction. In: Proceedings of the 22nd Static
Analysis Symposium. Springer, 2015, vol. 9291, p. 145–161. Lecture Notes in
Computer Science.

95

[20] Brauer, J., King, A. and Kriener, J. Existential Quantification as Incremental
SAT. In: Proceedings of the 23rd International Conference on Computer-Aided
Verification. Springer, 2011, vol. 6806, p. 191–207. Lecture Notes in Computer
Science.

[21] Cadar, C., Dunbar, D. and Engler, D. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In: Proceedings
of the 8th USENIX Conference on Operating Systems Design and Implementation.
2008, p. 209–224.

[22] Calcagno, C., Distefano, D., O’Hearn, P. W. and Yang, H. Compositional
shape analysis by means of bi-abduction. In: Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,
2009, p. 289–300.

[23] Chakraborty, S., Gupta, A. and Unadkat, D. Verifying Array Manipulating
Programs by Tiling. In: Proceedings of the 24th Static Analysis Symposium. August
2017, p. 428–449. DOI: 10.1007/978-3-319-66706-5_21. ISBN 978-3-319-66705-8.

[24] Chakraborty, S., Gupta, A. and Unadkat, D. Verifying array manipulating
programs with full-program induction. In: Springer. Proceedings of the 26th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 2020, p. 22–39.

[25] Chalin, P., Kiniry, J. R., Leavens, G. T. and Poll, E. Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2. In: Proceedings
of the 4th International Conference on Formal Methods for Components and
Objects. Berlin, Heidelberg: Springer-Verlag, 2005, p. 342–363. FMCO’05. DOI:
10.1007/11804192_16. ISBN 3540367497.

[26] Chalupa, M., Jonáš, M., Slaby, J., Strejček, J. and Vitovská, M. Symbiotic
3: New Slicer and Error-witness Generation. In: Proceedings of the 22nd
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2016, vol. 9636. LNCS.

[27] Chen, H., David, C., Kroening, D., Schrammel, P. and Wachter, B.
Synthesising Interprocedural Bit-Precise Termination Proofs. In: Proceedings of the
30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). ACM, 2015, p. 53–64.

[28] Chong, S., and Rugina, R. Static Analysis of Accessed Regions in Recursive Data
Structures. In: Proceedings of the 10th Static Analysis Symposium. Springer, 2003,
p. 463–482.

[29] Churchill, B., Padon, O., Sharma, R. and Aiken, A. Semantic Program
Alignment for Equivalence Checking. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 2019,
p. 1027–1040.

[30] Clarke, E., Kroening, D. and Lerda, F. A Tool for Checking ANSI-C Programs.
In: Proceedings of the 10th International Conference on Tools and Algorithms for

96

the Construction and Analysis of Systems. Springer, 2004, vol. 2988, p. 168–176.
Lecture Notes in Computer Science.

[31] Cousot, P. and Cousot, R. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In: Proceedings of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 1977, p. 238–252.

[32] Cousot, P., Cousot, R. and Logozzo, F. A Parametric Segmentation Functor for
Fully Automatic and Scalable Array Content Analysis. In: Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
New York, NY, USA: Association for Computing Machinery, 2011, p. 105–118.
POPL ’11. DOI: 10.1145/1926385.1926399. ISBN 9781450304900.

[33] Curry, C., Le, Q. L. and Qin, S. Bi-abductive inference for shape and ordering
properties. In: IEEE. Proceedings of the 24th International Conference on
Engineering of Complex Computer Systems (ICECCS). 2019, p. 220–225.

[34] Darke, P., Agrawal, S. and Venkatesh, R. VeriAbs: A tool for scalable
verification by abstraction (competition contribution). In: Proceedings of the 27th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2021, p. 458–462.

[35] De Moura, L. and Bjørner, N. Z3: An Efficient SMT Solver. In: Proceedings of
the 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, vol. 4963, p. 337–340. LNCS.

[36] D’Elia, D. C. and Demetrescu, C. On-stack Replacement, Distilled.
In: Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 2018, p. 166–180.

[37] Dig, D., Comertoglu, C., Marinov, D. and Johnson, R. Automated detection
of refactorings in evolving components. In: Springer. Proceedings of the 20th
European Conference on Object-Oriented Programming. 2006, p. 404–428.

[38] Dudka, K., Peringer, P. and Vojnar, T. Byte-Precise Verification of Low-Level
List Manipulation. In: Proceedings of the 20th Static Analysis Symposium. Springer,
2013, p. 215–237.

[39] Eén, N. and Sörensson, N. Temporal induction by incremental SAT solving.
Electronical Notes in Theoretical Computer Science. 2003, 89:4, p. 543–560.

[40] Ferrante, J., Ottenstein, K. J. and Warren, J. D. The Program Dependence
Graph and Its Use in Optimization. ACM Transactions on Programming Languages
and Systems. ACM. 1987, vol. 9, no. 3.

[41] Flanagan, C. and Qadeer, S. Predicate Abstraction for Software Verification.
In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. New York, NY, USA: Association for Computing
Machinery, 2002, p. 191–202. POPL ’02. DOI: 10.1145/503272.503291. ISBN
1581134509.

97

[42] Fowler, M. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 2018.

[43] Fragoso Santos, J., Maksimović, P., Ayoun, S.-E. and Gardner, P. Gillian,
Part I: A Multi-Language Platform for Symbolic Execution. In: Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2020, p. 927–942.

[44] Garrido, A. Software Refactoring Applied to C Programming Language.
Urbana-Champaign, 2000. Dissertation. University of Illinois.

[45] Godlin, B. and Strichman, O. Regression Verification. In: Proceedings of the 46th
Design Automation Conference. ACM, 2009, p. 466–471.

[46] Gopan, D., DiMaio, F., Dor, N., Reps, T. and Sagiv, M. Numeric Domains with
Summarized Dimensions. In: Jensen, K. and Podelski, A., ed. Proceedings of the
10th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
p. 512–529. ISBN 978-3-540-24730-2.

[47] Gopan, D., Reps, T. and Sagiv, M. A Framework for Numeric Analysis of Array
Operations. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. New York, NY, USA: ACM, 2005,
p. 338–350.

[48] Gulwani, S., McCloskey, B. and Tiwari, A. Lifting Abstract Interpreters to
Quantified Logical Domains. In: Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. New York, NY, USA:
Association for Computing Machinery, 2008, p. 235–246. POPL ’08. DOI:
10.1145/1328438.1328468. ISBN 9781595936899.

[49] Gulwani, S., Srivastava, S. and Venkatesan, R. Program analysis as constraint
solving. In: Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2008, p. 281–292.

[50] Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J. and Vojnar, T. Forest
Automata for Verification of Heap Manipulation. In: Proceedings of the 23rd
International Conference on Computer-Aided Verification. Springer, 2011,
p. 424–440.

[51] Halbwachs, N. and Péron, M. Discovering Properties about Arrays in Simple
Programs. In: Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. New York, NY, USA: Association for
Computing Machinery, 2008, p. 339–348. PLDI ’08. DOI: 10.1145/1375581.1375623.
ISBN 9781595938602.

[52] Hawblitzel, C., Lahiri, S. K., Pawar, K., Hashmi, H., Gokbulut, S. et al. Will
You Still Compile Me Tomorrow? Static Cross-Version Compiler Validation.
In: Proceedings of the 9th. ACM, 2013, p. 191–201.

[53] Hoare, C. A. R. An Axiomatic Basis for Computer Programming.
Communications of the ACM. New York, NY, USA: ACM. oct 1969, vol. 12, no. 10,
p. 576–580. DOI: 10.1145/363235.363259. ISSN 0001-0782.

98

[54] Holík, L., Hruška, M., Lengál, O., Rogalewicz, A. and Vojnar, T.
Counterexample Validation and Interpolation-Based Refinement for Forest
Automata. In: Proceedings of the 18th International Conference on Verification,
Model Checking, and Abstract Interpretation. Springer, 2017, vol. 10145, p. 288–309.
Lecture Notes in Computer Science.

[55] Holík, L., Peringer, P., Rogalewicz, A., Šoková, V., Vojnar, T. et al.
Low-Level Bi-Abduction. In: Springer. Proceedings of the 36th European Conference
on Object-Oriented Programming. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022, p. 19:1–19:30.

[56] Horwitz, S., Reps, T. and Binkley, D. Interprocedural Slicing Using Dependence
Graphs. ACM Transactions on Programming Languages and Systems. ACM. 1990,
vol. 12, no. 1.

[57] Hovemeyer, D. and Pugh, W. Finding bugs is easy. ACM SIGPLAN Notices.
ACM New York, NY, USA. 2004, vol. 39, no. 12, p. 92–106.

[58] Huang, S.-Y. and Cheng, K.-T. Formal Equivalence Checking and Design
DeBugging. Kluwer Academic Publishers, 1998.

[59] Itzhaky, S., Banerjee, A., Immerman, N., Lahav, O., Nanevski, A. et al.
Modular reasoning about heap paths via effectively propositional formulas.
In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, 2014, p. 385–396.

[60] Itzhaky, S., Bjørner, N., Reps, T. W., Sagiv, M. and Thakur, A. V.
Property-Directed Shape Analysis. In: Proceedings of the 26th International
Conference on Computer-Aided Verification. Springer, 2014, vol. 8559, p. 35–51.
Lecture Notes in Computer Science.

[61] Jackson, D. and Ladd, D. A. Semantic Diff: A Tool for Summarizing the Effects
of Modifications. In: Proceedings of the 10th IEEE International Conference on
Software Maintenance. IEEE Computer Society, 1994, p. 234–252.

[62] Jhala, R. and McMillan, K. L. Array Abstractions from Proofs. In: Proceedings
of the 19th International Conference on Computer-Aided Verification. Berlin,
Heidelberg: Springer-Verlag, 2007, p. 193–206. CAV’07. ISBN 9783540733676.

[63] Jonkers, H. B. M. Abstract storage structures. In: Algorithmic Languages. IFIP,
1981, p. 321–343.

[64] Kanvar, V. and Khedker, U. P. Heap Abstractions for Static Analysis. ACM
Computing Surveys. 2016, vol. 49, no. 2, p. 29:1–29:47.

[65] Kawaguchi, M., Lahiri, S. and Rebelo, H. Conditional Equivalence.
MSR-TR-2010-119. 2010.

[66] Kiefer, M., Klebanov, V. and Ulbrich, M. Relational Program Reasoning Using
Compiler IR. In: Proceedings of the 8th Working Conference on Verified Software:
Theories, Tools, and Experiments. Springer, 2016, vol. 9971, p. 149–165. LNCS.

99

[67] Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J. and Yakobowski, B.
Frama-C: A software analysis perspective. Formal Aspects of Computing. Springer.
2015, vol. 27, no. 3, p. 573–609.

[68] Korakitis, K., Dodd, L., Muir, R., Solodkov, N. and Coates, S. State of the
Developer Nation, 23rd Edition. London, United Kingdom: SlashData, October
2022.

[69] Kroening, D., Malík, V., Schrammel, P. and Vojnar, T. 2LS for Program
Analysis. 2023. Available at: https://arxiv.org/abs/2302.02380.

[70] Kumar, S., Sanyal, A., Venkatesh, R. and Shah, P. Property checking array
programs using loop shrinking. In: Springer. Proceedings of the 24th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
2018, p. 213–231.

[71] Lahiri, S., Hawblitzel, C., Kawaguchi, M. and Rebelo, H. SymDiff: A
Language-Agnostic Semantic Diff Tool for Imperative Programs. In: Proceedings of
24th International Conference on Computer-Aided Verification. Springer, 2012, vol.
7358, p. 712–717. LNCS.

[72] Lahiri, S. K. and Bryant, R. E. Indexed Predicate Discovery for Unbounded
System Verification. In: Alur, R. and Peled, D. A., ed. Proceedings of the 16th
International Conference on Computer-Aided Verification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, p. 135–147. ISBN 978-3-540-27813-9.

[73] Lahiri, S. K., Bryant, R. E. and Cook, B. A Symbolic Approach to Predicate
Abstraction. In: Hunt, W. A. and Somenzi, F., ed. Proceedings of the 15th
International Conference on Computer-Aided Verification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, p. 141–153. ISBN 978-3-540-45069-6.

[74] Lahiri, S. K., Vaswani, K. and Hoare, C. A. R. Differential Static Analysis:
Opportunities, Applications, and Challenges. In: Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research. ACM, 2010, p. 201–204.

[75] Lattner, C. and Adve, V. LLVM Language Reference Manual. 2020. Available at:
https://llvm.org/docs/LangRef.html.

[76] Laviron, V., Chang, B. E. and Rival, X. Separating Shape Graphs.
In: Proceedings of the 10th European Symposium on Programming. Springer, 2010,
vol. 6012, p. 387–406. Lecture Notes in Computer Science.

[77] Le, Q. L., Gherghina, C., Qin, S. and Chin, W.-N. Shape analysis via
second-order bi-abduction. In: Springer. Proceedings of the 26th International
Conference on Computer-Aided Verification. 2014, p. 52–68.

[78] Le, Q. L., Raad, A., Villard, J., Berdine, J., Dreyer, D. et al. Finding real
bugs in big programs with incorrectness logic. Proceedings of the ACM on
Programming Languages. ACM New York, NY, USA. 2022, vol. 6, OOPSLA1,
p. 1–27.

100

https://arxiv.org/abs/2302.02380
https://llvm.org/docs/LangRef.html

[79] Le, Q. L., Sun, J. and Chin, W.-N. Satisfiability Modulo Heap-Based Programs.
In: Proceedings of the 28th International Conference on Computer-Aided
Verification. 2016, p. 382–404.

[80] Liu, J. and Rival, X. Abstraction of Arrays Based on Non Contiguous Partitions.
In: D’Souza, D., Lal, A. and Larsen, K. G., ed. Proceedings of the 16th
International Conference on Verification, Model Checking, and Abstract
Interpretation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, p. 282–299.
ISBN 978-3-662-46081-8.

[81] Liu, K., Kim, D., Bissyandé, T. F., Yoo, S. and Le Traon, Y. Mining fix
patterns for findbugs violations. IEEE Transactions on Software Engineering.
IEEE. 2018, vol. 47, no. 1, p. 165–188.

[82] Liu, K., Koyuncu, A., Kim, D. and Bissyandé, T. F. Avatar: Fixing semantic
bugs with fix patterns of static analysis violations. In: IEEE. Proceedings of the
26th International Conference on Software Analysis, Evolution and Reengineering.
2019, p. 1–12.

[83] Long, F., Amidon, P. and Rinard, M. Automatic inference of code transforms for
patch generation. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. 2017, p. 727–739.

[84] Maksimović, P., Ayoun, S.-E., Santos, J. F. and Gardner, P. Gillian, Part II:
Real-World Verification for JavaScript and C. In: Proceedings of the 33rd
International Conference on Computer-Aided Verification. Springer-Verlag, 2021,
p. 827–850.

[85] Malík, V., Hruška, M., Schrammel, P. and Vojnar, T. Template-based
verification of heap-manipulating programs. In: Proceedings of the 2018 Formal
Methods in Computer-Aided Design. 2018, p. 103–111.

[86] Malík, V., Hruška, M., Schrammel, P. and Vojnar, T. 2LS: Heap Analysis and
Memory Safety (Competition Contribution). 2019. Available at:
http://arxiv.org/abs/1903.00712.

[87] Malík, V., Martiček, Š., Schrammel, P., Srivas, M., Vojnar, T. et al. 2LS:
memory safety and non-termination. In: Springer. Proceedings of the 24th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 2018, p. 417–421.

[88] Malík, V., Martiček, Š., Schrammel, P., Srivas, M., Vojnar, T. et al. 2LS:
Memory Safety and Non-termination (Competition Contribution). In: Proceedings
of the 24th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2018, p. 417–421.

[89] Malík, V., Nečas, F., Schrammel, P. and Vojnar, T. 2LS: Arrays and Loop
Unwinding. In: Springer. Proceedings of the 29th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. 2023, p. to be
published.

101

http://arxiv.org/abs/1903.00712

[90] Malík, V., Schrammel, P. and Vojnar, T. 2LS: Heap Analysis and Memory
Safety. In: Proceedings of the 26th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 2020, p. 368–372.

[91] Malík, V., Šilling, P. and Vojnar, T. Applying Custom Patterns in Semantic
Equality Analysis. In: Springer. Proceedings of the 10th edition of the International
Conference on Networked Systems. 2022, p. 265–282.

[92] Malík, V. and Vojnar, T. Automatically Checking Semantic Equivalence between
Versions of Large-Scale C Projects. In: IEEE. Proceedings of the 14th International
Conference on Software Testing, Verification and Validation. 2021, p. 329–339.

[93] Malík, V. and Glozar, T. Detection of Semantic Equivalence of Program Source
Codes. U.S. Patent 11 449 317-B2, Sep. 20, 2022.

[94] Marjamäki, D. Cppcheck: a tool for static C/C++ code analysis. 2022. Available
at: https://cppcheck.sourceforge.io/.

[95] Marušák, M. Generic Template-Based Synthesis of Program Abstractions. Brno,
2019. Master’s thesis. Brno University of Technology.

[96] Matosevic, I. and Abdelrahman, T. S. Efficient Bottom-up Heap Analysis for
Symbolic Path-based Data Access Summaries. In: Proceedings of the 10th Annual
IEEE/ACM International Symposium on Code Generation and Optimization. ACM,
2012, p. 252–263.

[97] Miné, A. The Octagon Abstract Domain. In: Proceedings of the 8th Working
Conference on Reverse Engineering. IEEE Computer Society, 2001, p. 310–319.

[98] Møller, A. and Schwartzbach, M. I. The Pointer Assertion Logic Engine.
In: Proceedings of the 22th ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 2001, p. 221–231.

[99] Neamtiu, I., Foster, J. S. and Hicks, M. Understanding Source Code Evolution
Using Abstract Syntax Tree Matching. In: Proceedings of the 2005 International
Workshop on Mining Software Repositories. ACM, 2005, p. 1–5.

[100] Necula, G. C. Translation Validation for an Optimizing Compiler. In: Proceedings
of the 21th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2000, p. 83–94.

[101] Padioleau, Y., Hansen, R. R., Lawall, J. L. and Muller, G. Semantic patches
for documenting and automating collateral evolutions in Linux device drivers.
In: Proceedings of the 3rd workshop on Programming languages and Operating
Systems: Linguistic Support for Modern Operating Systems. 2006, p. 10–es.

[102] Padioleau, Y., Lawall, J. L. and Muller, G. Understanding collateral evolution
in Linux device drivers. In: Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006. 2006, p. 59–71.

[103] Person, S., Dwyer, M. B., Elbaum, S. and Pãsãreanu, C. S. Differential
Symbolic Execution. In: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2008, p. 226–237.

102

https://cppcheck.sourceforge.io/

[104] Piskac, R., Wies, T. and Zufferey, D. Automating Separation Logic Using
SMT. In: Proceedings of the 22th International Conference on Computer-Aided
Verification. Springer, 2013, vol. 8044, p. 773–789. Lecture Notes in Computer
Science.

[105] Prete, K., Rachatasumrit, N., Sudan, N. and Kim, M. Template-based
reconstruction of complex refactorings. In: Proceedings of the 26th IEEE
International Conference on Software Maintenance. 2010, p. 1–10.

[106] Raad, A., Berdine, J., Dang, H.-H., Dreyer, D., O’Hearn, P. et al. Local
reasoning about the presence of bugs: Incorrectness separation logic. In:
Springer. Proceedings of the 32nd International Conference on Computer-Aided
Verification. 2020, p. 225–252.

[107] Raghavan, S., Rohana, R., Leon, D., Podgurski, A. and Augustine, V. Dex:
A Semantic-graph Differencing Tool for Studying Changes in Large Code Bases.
In: Proceedings of the 20th IEEE International Conference on Software
Maintenance. IEEE Computer Society, 2004, p. 188–197.

[108] Rakamarić, Z. and Emmi, M. SMACK: Decoupling Source Language Details from
Verifier Implementations. In: Proceedings of the 26th International Conference on
Computer-Aided Verification. Springer, 2014, vol. 8559, p. 106–113. LNCS.

[109] Ramos, D. A. and Engler, D. R. Practical, Low-Effort Equivalence Verification of
Real Code. In: Proc. of the 23rd International Conference on Computer-Aided
Verification. Springer, 2011, vol. 6806, p. 669–685. LNCS.

[110] Reps, T. W., Sagiv, S. and Yorsh, G. Symbolic Implementation of the Best
Transformer. In: Proceedings of the 5th International Conference on Verification,
Model Checking, and Abstract Interpretation. Springer, 2004, vol. 2937, p. 252–266.
Lecture Notes in Computer Science.

[111] Reynolds, J. C. Separation Logic: A Logic for Shared Mutable Data Structures.
In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science.
IEEE Computer Society, 2002, p. 55–74.

[112] Rinetzky, N., Bauer, J., Reps, T., Sagiv, M. and Wilhelm, R. A semantics for
procedure local heaps and its abstractions. In: Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 2005,
p. 296–309.

[113] Sagiv, M., Reps, T. and Wilhelm, R. Parametric Shape Analysis via 3-valued
Logic. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM, 1999, p. 105–118.

[114] Sankaranarayanan, S., Sipma, H. B. and Manna, Z. Scalable Analysis of Linear
Systems Using Mathematical Programming. In: Proceedings of the 6th International
Conference on Verification, Model Checking, and Abstract Interpretation. Springer,
2005, vol. 3385, p. 25–41. Lecture Notes in Computer Science.

[115] Shao, Z., Reppy, J. H. and Appel, A. W. Unrolling Lists. In: Proceedings of the
1994 ACM Conference on LISP and Functional Programming. New York, NY, USA:

103

Association for Computing Machinery, 1994, p. 185–195. DOI:
10.1145/182409.182453. ISBN 0897916433.

[116] Sheeran, M., Singh, S. and Stålmarck, G. Checking Safety Properties Using
Induction and a SAT-Solver. In: Proceedings of the 2000 Formal Methods in
Computer-Aided Design. Springer, 2000, vol. 1954, p. 108–125. Lecture Notes in
Computer Science.

[117] Thomson, P. Static Analysis. Communications of ACM. New York, NY, USA:
ACM. December 2021, vol. 65, no. 1, p. 50–54. DOI: 10.1145/3486592. ISSN
0001-0782.

[118] Tristan, J.-B., Govereau, P. and Morrisett, G. Evaluating Value-Graph
Translation Validation for LLVM. In: Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 2011,
p. 195–205.

[119] Weiser, M. Program Slicing. IEEE Transactions on Software Engineering. IEEE
Computer Society. 1984, no. 4.

[120] Weißgerber, P. and Diehl, S. Identifying refactorings from source-code changes.
In: IEEE. Proceedings of the 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE). 2006, p. 231–240.

[121] Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B. et al. Scalable Shape
Analysis for Systems Code. In: Proceedings of the 20th International Conference on
Computer-Aided Verification. Springer, 2008, vol. 5123, p. 385–398. Lecture Notes
in Computer Science.

104

	Introduction
	Verification of Programs with Data Structures
	Static Analysis of Semantic Equivalence for C Projects

	I Template-Based Verification of Programs with Data Structures
	Template-Based Verification of Software
	Internal Program Representation
	The Static Single Assignment Form

	k-induction and k-invariants
	Template-Based Predicate Inference
	Abstract Domains in 2LS
	Incremental Bounded Model Checking
	Incremental k-Induction

	Implementation and Architecture of the 2LS Framework
	Running Example

	Verification of Heap-Manipulating Programs
	Memory Model
	Static Memory Objects
	Dynamic Memory Objects

	Representation of Memory-Manipulating Operations
	Dynamic Memory Allocation
	Reading through Dereferenced Pointers
	Writing through Dereferenced Pointers

	Abstract Domain for Heap Shape Analysis
	Abstract Domain Combinations
	Product Templates
	Templates with Symbolic Paths

	Memory Safety Verification
	Safety from Dereferencing/Freeing a null Pointer
	Safety from Dereferencing/Freeing a Freed Pointer
	Memory Leaks Safety

	Related Work
	Logic-based Methods
	Methods Using Automata and Graphs
	Methods Using Storeless Semantics

	Verification of Array-Manipulating Programs
	Array Domain Template
	Computing Array Segment Borders
	Array Domain Invariant Inference
	Running Example
	Related Work
	Methods Based on Array Segmentation
	Methods Based on Analysis of Array-Manipulating Loops
	Predicate Abstraction and Non-Automatic Methods

	Experimental Evaluations
	SV-COMP Organization and Rules
	Scores of 2LS in SV-COMP
	Heap-related Categories
	Array-related Categories
	Comparison to Other Tools

	Alternative Rankings
	Speed of Verification in 2LS
	Power Consumption and Correctness Rate

	II Automatically Checking Semantic Equivalence between Versions of Large-Scale C Projects
	Static Analysis of Semantic Equivalence
	Program Representation
	Function Equality
	Analysis of Function Equality

	Built-in Semantics-Preserving Change Patterns
	Supported Semantics-Preserving Changes
	Change Patterns in the Linux Kernel

	Handling the Supported SPCPs
	Changes in Structure Data Types
	Moving Code into Functions
	Changes in Enumeration Values
	Changes in Source Code Location
	Inverse Branch Conditions
	Code Relocations

	Custom Change Patterns
	Representation of Custom Change Patterns
	Formal Definition of Custom Change Patterns
	Encoding Change Patterns with LLVM IR

	Custom Change Pattern Matching
	Pattern Detection
	Determining Successor Synchronisation Points
	Semantic Equality Detection
	Updating the Variable Mapping

	Comparing the Use of Global Variables
	Comparing Functions w.r.t. a Variable
	Slicing Algorithm

	Implementation and Experiments
	KABI Functions
	Refactoring Commits in the Linux Kernel
	The musl Standard C Library
	A Comparison with Other Tools
	Effectiveness of Program Slicing
	Application of Custom Change Patterns
	The List of Used Patterns

	Efficiency of CCP Matching

	Related Work
	Conclusion
	Bibliography

