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Abstract
The main research topic of the future PhD thesis described in this report is a formal verifi-
cation of programs working with dynamically-allocated memory. We develop novel methods
for static analysis of reachable shapes of the program heap that can be incorporated into
formal verification methods based on SMT solving and invariant inference. Our solution is
designed to be easily combined with other verification techniques, which allows us to anal-
yse complex properties of programs. We explore and develop these combinations and also
work towards a better scalability of verification of heap-manipulating programs. This work
describes the theoretical background and the state-of-the-art of this research, summarizes
goals of the PhD thesis, and presents the results achieved so far.

Abstrakt
Hlavnou témou výzkumu v rámci budúcej dizertačnej práce popísanej v tejto správe je for-
málna verifikácia programov pracujúcich s dynamicky alokovanou pamäťou. Tento projekt
predkladá nové metódy statickej analýzy tvaru haldy programu, ktoré môžu byť začlenené
do existujúcich metód formálnej verifikácie založených na SMT solvingu a invariantoch
programov. Riešenie je navrhnuté tak, aby bolo jednoducho kombinovateľné s inými prís-
tupmi k verifikácii, čo umožňuje analýzu zložitých vlastností programov. V rámci práce tiež
skúmame a rozvíjame možnosti takýchto kombinácii a ďalej pracujeme na zlepšení škálo-
vateľnosti verifikácie programov pracujúcich s dynamickou pamäťou. Tento text popisuje
teoretické základy na ktorých výzkum stavia, definuje ciele dizertačnej práce a prezentuje
doterajšie výsledky.
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Chapter 1

Introduction

Nowadays, a large amount of new software is produced every day. Assuring its quality is
often more difficult and more time consuming than creating the software itself. However,
this task is important, especially in mission-critical software, where each bug can have
serious consequences.

Traditionally, software quality is assured by extensive testing. Even though testing
techniques are currently very advanced, they still lack an important characteristic—they
are generally not able to cover all paths through a program and therefore to assure complete
correctness of software. On the other hand, methods of formal verification based on static
analysis have this property since they inspect programs on the level of the source code.
Nonetheless, these are usually complicated and advanced techniques that struggle from
many problems and are still subject to extensive research.

Currently, there is a large number of tools for formal verification available, designed
to analyse various properties of programs. However, most of the tools are typically very
narrowly focused on a single area of analysis. They usually fail to analyse complex properties
of real-life programs (e.g. verifying termination of programs using numerical and pointer
variables at the same time) while still being able to scale for realistic programs. In order
to overcome these limitations, one needs to develop a technique that combines multiple
static analysis approaches together, allowing it to explore various different properties of
programs. One of the methods that seems promising from this point of view is the 𝑘I𝑘I
method proposed in [10]. This method is based on using an SMT solver to compute program
invariants and to reason about program properties. The method has been developed by
researchers at the University of Oxford and is implemented in a framework for formal
verification of C programs called 2LS.

When it comes to analysis of programs written in low-level programming languages
(such as C), one of the most challenging tasks for static analysers is analysis of the contents
of the program heap. This is because memory on the heap is dynamically allocated, it has
an unbounded size, and typically it is linked through pointers into complex graphs, which
makes it difficult to be analysed without executing the program. The task of analysing the
shape (and subsequently the properties) of the heap graphs is usually referred to as shape
analysis since its goal is to discover reachable shapes of dynamic data structures (such as
linked lists or trees) on the heap of the analysed program. Practical programs very often
work with dynamically allocated memory and hence supporting shape analysis is essential
for tools that are intended to be used on real-life software. As for the verification method
implemented in the 2LS framework, possibilities of integrating shape analysis into it have
not yet been explored.
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With respect to the above, the main research topic of my PhD thesis is integration of
shape analysis into the specific verification method used by the 2LS framework. It very
much differs from what is common in other tools that perform shape analysis. These are
usually based on some form of abstract interpretation that symbolically executes a given
program and uses widening/abstraction to avoid generation of infinitely many reachable
program configurations. On the other hand, the method in [10] differs in multiple aspects.
First, it represents programs by logical formulae, which allows it to use an SMT solver
to reason about program properties. Second, its computational loop combines multiple
analysis techniques, such as k-induction and a rather specific form of abstract interpretation,
with a notion of program invariants based on so-called templates. Integrating shape analysis
into this framework requires a specific solution.

This obstacle, however, brings an important advantage. The created shape analysis
needs to have a form similar to other analyses already present in the framework (or to any
analysis that will be integrated in the future). Thanks to this requirement, it is straightfor-
ward to compose various analyses together, which can enable reasoning about interesting
program properties that other, single-purpose methods are not able to handle well. From
the point of view of shape analysis, a particularly interesting one is its combination with
analysis of numerical values in the program, which could bring possibilities of analysing
properties of the program heap such as contents of dynamically-allocated structures, lengths
of lists, heights of trees, or offsets of pointers. Exploring and developing these combinations,
that could help overcoming limits of the current shape analysers, is an essential part of my
research.

Furthermore, the 2LS framework supports interprocedural analysis that allows one to
analyse each function of a program separately and hence to reduce the complexity of the
overall verification. This is particularly important for the method to scale on realistic
programs that often contain thousands or millions of lines of code. A combination of shape
analysis with interprocedural analysis is yet another interesting problem that will be a
target of the research within the PhD thesis described by this report. Analysing functions
separately is particularly difficult when dealing with heap-manipulating programs since one
needs to model an existing state of the heap at the beginning of each function.

This work is organised as follows. First, in Chapter 2, we introduce the approach
to formal verification of programs based on invariant inference using templates that we
intend to build on. Then, in Chapter 3, we give an overview of existing shape analysis
methods since shape analysis is the main topic of my PhD thesis. Goals of the thesis are
formulated in detail in Chapter 4. We have already proposed and published an initial
solution to integration of shape analysis into the underlying framework and we introduce it
in Chapter 5. The chapter also contains a description of the performed experiments whose
results show that our analysis can be combined with analysis of other program properties,
which allows 2LS to reason about, e.g., contents of dynamic data structures on the program
heap.
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Chapter 2

Program Verification using
Template-Based Invariant
Inference

In this chapter, we describe an automatic program verification framework called 2LS that
combines multiple analysis approaches together: namely abstract interpretation, bounded
model checking, and k-induction. The method approximates the program semantics using
logical formulae which allows it to use an SMT solver to reason about properties of pro-
grams. In order to approximate sets of all reachable program states, a well-known concept
of inductive invariants is used. To infer such invariants, 2LS introduces a novel algorithm
reducing the problem from the second-order logic to the first-order logic. Inductive invari-
ants can be used to describe invariants of loops and of functions in the analysed program
and subsequently to prove and to refute program properties.

The rest of this chapter is organised as follows. Section 2.1 presents basic principles
of the verification techniques used. Then, the core algorithm combining these techniques
is outlined in Section 2.2. After that, we describe in detail the most important parts
of the framework: a rather specific internal program representation based on the static
single assignment form (Section 2.3) and an algorithm for inference of inductive invariants
(Section 2.4).

2.1 Overview of the Used Techniques
The program verification approach that underlies 2LS is based on effectively combining
three different static analysis techniques together. These are namely abstract interpretation,
bounded model checking (BMC), and k-induction. They are all based on some form of
approximation of the set of all program states reachable by the analysed program. Two
basic forms of approximation are common, namely over- and under-approximation.

Over-approximating the set of all reachable program states allows the analysis to soundly
verify validity of program properties—if a property holds for a superset of all reachable
states, it must hold for all states of the program as well. On the other hand, under-
approximating reachable program configurations is typically used to discover violations of
program properties—if a property is violated in a subset of all reachable program states, it
must be violated in some reachable state, too.
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All of the mentioned techniques are well-established in program verification. However,
2LS uses rather specific forms of these methods, especially of the abstract interpretation.
This is caused by the fact that the analysed program is viewed as a logical formula and an
automatic SMT solver is used to compute program invariants and to reason about program
properties.

In this section, we formally define the standard approach to these techniques. To ease
formalisation, we view the analysed program as a transition system. We show how concrete
semantics of a program is defined within this representation and how individual techniques
approximate this semantics.

2.1.1 Concrete Semantics of Programs

The concrete semantics of a program formalises the set of all possible behaviours of the
program. For transition systems, this can be defined as a set of all states that the program
can get into during its execution [16].

A program state 𝑥 is the current value of all program variables (including the program
counter) and related memory (i.e. the stack and the heap). Let 𝑆 be a set of program
states, and let the transition relation 𝜏 ⊆ 𝑆 × 𝑆 define for each state a set of its possible
successors in the program execution.

Assume a sequence of sets of states 𝑆0𝑆1 . . . 𝑆𝑘 such that ∀0 ≤ 𝑖 < 𝑘 : (𝑆𝑖, 𝑆𝑖+1) ∈ 𝜏 .
We denote 𝑆𝑘 = 𝜏𝑘(𝑆0) the set of states reachable from 𝑆0 after 𝑘 execution steps. If 𝐼 is
the set of all possible initial states of a program, then the set of all reachable states 𝑆𝑟 is
the least fixed point of 𝜏 starting from 𝐼 defined as:

𝑆𝑟 =
⋃︁
𝑖∈N

𝜏 𝑖(𝐼). (2.1)

With respect to the above, 𝑆𝑟 defines the concrete semantics of the analysed program.

2.1.2 Programs As Logical Formulae

Since it is generally very hard to automatically analyse C programs directly, they are usually
translated into a so-called internal representation. This is typically a simpler form of the
program preserving the original concrete semantics that is easier to be used for further
analysis. A very common representation are e.g. control flow graphs (CFG) used by the
two most spread C compilers gcc [23] and clang [35].

However, another form of program representation that is recently getting more and
more popular in fields of program analysis and verification are logical formulae. The reason
for this is that there exist strong automatic SAT (e.g. [21, 6]) and SMT (e.g. [39]) solvers
and it is very advantageous to use them to automatically reason about programs. This
kind of representation is also used in the verification framework 2LS. Thus, we adapt the
formalisation from the previous section to use logical formulae.

A state of a program is described by a logical interpretation of logical variables corre-
sponding to each program variable. A set of states can be described using a formula—states
in the set are defined by models of the formula. Given a vector of variables 𝑥, a predicate
Init(𝑥) is the predicate describing the initial states. A transition relation is described as
a formula Trans(𝑥,𝑥′). From these, it is possible to determine the set of reachable states as
the least fixed-point of the transition relation starting from the states described by Init(𝑥)
as already shown in Formula 2.1. This is, however, difficult to compute, so instead an
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inductive invariant is used. A predicate Inv is an inductive invariant if it has the property:

∀𝑥,𝑥′.(Inv(𝑥) ∧ Trans(𝑥,𝑥′) =⇒ Inv(𝑥′)). (2.2)

An inductive invariant defined as above is a description of a fixed-point of the transition
relation. However, it is not guaranteed to be the least one, nor to include Init(𝑥). Moreover,
there are predicates which are inductive invariants, but are not sufficient to be used for
proving any properties of the source program (such as the predicate true, which describes
the complete state space) [10]. That is why it is useful to compute such invariants that
approach the least fixed-point, so that it is enough to use them to check a given property.

A verification task does often require showing that the set of all reachable states does
not intersect with the set of error states denoted Err(𝑥). Using the concept of inductive
invariants and existential second-order quantification (∃2), we can formalise it as:

∃2Inv . ∀𝑥,𝑥′. (Init(𝑥) =⇒ Inv(𝑥)) ∧
(Inv(𝑥) ∧ Trans(𝑥,𝑥′) =⇒ Inv(𝑥′)) ∧
(Inv(𝑥) ⇒ ¬Err(𝑥)).

(2.3)

2.1.3 Abstract Interpretation

Abstract interpretation is a static analysis technique that soundly approximates the con-
crete semantics of programs using a so-called abstract semantics. Generally, the set of all
reachable states is not computable. However, since it is usually needed to reason about
a certain program property only, to prove this property it is sufficient to approximate
program states as elements of a simpler domain, called the abstract domain.

Having the concrete domain 𝑃 of program states, we create an abstract domain 𝑄. An
element of the abstract domain, called an abstract value, corresponds to an element from
the concrete domain, which is typically a set of concrete program states. Along with the
abstract domain, we define two functions [17]:

∙ The concretisation function defines a mapping from an abstract value to a value of
the concrete domain. Formally 𝛾 : 𝑄 → 𝑃 and 𝛾(𝑞) is a concrete value represented
by 𝑞.

∙ The abstraction function defines a mapping from a concrete value to an abstract value
from the abstract domain. Formally 𝛼 : 𝑃 → 𝑄 and 𝛼(𝑝) is the most precise abstract
value in 𝑄 whose concretisation contains 𝑝.

An abstract interpretation 𝐼 of a program is then a tuple [18]:

𝐼 = (𝑄,⊔,⊑,⊤,⊥, 𝜏#) (2.4)

where

∙ 𝑄 is the abstract domain (along with well-defined abstraction and concretisation
functions),

∙ ⊤ ∈ 𝑄 is the supremum of 𝑄,

∙ ⊥∈ 𝑄 is the infimum of 𝑄,

∙ ⊔ : 𝑄×𝑄 → 𝑄 is the join operator, (𝑄,⊔,⊤) is a complete semilattice,
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∙ (⊑) ⊆ 𝑄×𝑄 is an ordering on (𝑄,⊔,⊤) defined as 𝑥 ⊑ 𝑦 ⇔ 𝑥 ⊔ 𝑦 = 𝑦,

∙ 𝜏# : Instr ×𝑄 → 𝑄 defines the interpretation of abstract transformers.

The framework of abstract interpretation allows to approximate the original program se-
mantics by computing the fixpoint of 𝜏# in the abstract domain. The result is one abstract
value (i.e. one abstract state) for each execution point of the source program. In case
multiple abstract values are obtained (because of multiple execution paths entering the
program location), these are accumulated into one using the join operator. The properties
of the analysed program are then checked in the computed abstract values.

In order to be sound in proving program properties, an abstract value must describe
at least (but not precisely) all concrete states that are reachable in the given program
location. This property is ensured using a Galois connection between the concrete and
abstract domains. We say that (𝑃,≤, 𝑄,⊑) is a Galois connection if and only if (𝑃,≤) and
(𝑄,⊑) are partially ordered sets, and there is the following relation between abstraction
and concretisation functions [18]:

∀𝑝 ∈ 𝑃 , 𝑞 ∈ 𝑄 :

𝑝 ≤ 𝛾(𝑞) ⇔ 𝛼(𝑝) ⊑ 𝑞.
(2.5)

Since the computed abstract value is an over-approximation of the set of all reachable con-
crete program states, abstract interpretation may generate a false positive. It is a situation
when a property does not hold for the computed abstract semantics, but it holds for the
set of all reachable program states. This incoherence is usually caused by the fact that an
abstract value represents multiple concrete program states and may represent also states
that are not reachable in the real program.

The analysis approach of 2LS uses inductive invariants instead of directly computing
the fixed point of the transition relation. Abstract interpretation is used here in such way
that the inductive invariant is computed in a chosen abstract domain. Hence, it describes
a property that holds for a superset of reachable program states. Such property (and any
other property logically implied by it) thus holds for the set of all reachable program states,
too.

2.1.4 Bounded Model Checking

Bounded Model Checking (BMC) [7] is a static analysis technique that is in a way com-
plementary to abstract interpretation. While the latter is based on an over-approximation
to soundly prove program properties, BMC relies on under-approximation to find (mainly)
property violations.

BMC is based on checking only program paths whose length is bounded by a certain
integer 𝑘. To this end, it uses an unwinding (unfolding) of the transition relation. For a con-
stant 𝑘 ∈ N, we introduce the 𝑘-th unwinding T [𝑘] representing 𝑘 steps of the transition
transition relation:

T [𝑘] =
𝑘−1⋀︁
𝑖=0

Trans(𝑥𝑖,𝑥𝑖+1) (2.6)

Using the unwound transition relation as defined in Formula 2.6, it is possible to under-
approximate the concrete program semantics by Init(𝑥0) ∧ T [𝑘]. This formula describes
a subset of all reachable program states since only prefixes of program paths are considered.
This makes BMC useful for finding property violations (i.e. bugs) in the original program.
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To formalise the BMC problem, we first introduce a predicate P [𝑘] in Formula 2.7
describing 𝑘 states being error-free.

P [𝑘] =

𝑘−1⋀︁
𝑖=0

¬Err(𝑥𝑖) (2.7)

Using T [𝑘] and P [𝑘], we formally define Bounded Model Checking as a problem of picking
a bound 𝑘 and solving Formula 2.8 [10].

∃𝑥0, . . . ,𝑥𝑘.Init(𝑥0) ∧ T [𝑘] ∧ ¬P [𝑘 + 1] (2.8)

If the formula is satisfiable, a property is violated in some state reachable after at most
𝑘 steps. Moreover, the model of the formula represents a concrete counterexample (a wit-
ness to the property violation). On the other hand, an unsatisfiability of the formula does
not necessarily imply that the property always holds since it might be violated after more
than 𝑘 steps. This means that BMC is generally unsound and it may produce so-called
false negatives. It is a situation complementary to the false positive described in the pre-
vious section—a property holds for the 𝑘-th unwinding, but it does not hold for some 𝑙-th
unwinding with 𝑙 > 𝑘.

Incremental Bounded Model Checking

One of the main limitations of BMC is a need to specify an unwinding bound. This is
often avoided by using a technique called incremental bounded model checking [24]. It uses
repeated BMC checks with bound starting at 0 and being increased in a linear manner.
In each step, this allows to assume that there are no errors in previous states and hence
simplifies the problem to solving Formula 2.9.

∃𝑥0, . . . ,𝑥𝑘.Init(𝑥0) ∧ T [𝑘] ∧ P [𝑘] ∧ ¬Err(𝑥𝑘) (2.9)

2.1.5 𝑘-Induction

The 𝑘-induction technique [46] can be viewed as an extension of incremental Bounded
Model Checking that is capable of proving program properties. Similarly to BMC, it uses
unwinding of the transition relation which allows it to find witnesses of property violations.
This approach is extended by computing a so-called 𝑘-inductive invariant. It is a gener-
alisation of the concept of inductive invariants introduced in Section 2.1.2. A 𝑘-inductive
invariant KInv is a predicate having the property:

∀𝑥0, . . . ,𝑥𝑘.K [𝑘] ∧ T [𝑘] ⇒ KInv(𝑥𝑘) (2.10)

where

K [𝑘] =

𝑘−1⋀︁
𝑖=0

KInv(𝑥𝑖) (2.11)

Similarly to the inductive invariant described in Section 2.1.2, if a 𝑘-inductive invariant
is implied by the 𝑘-th unwinding of the transition relation starting from the initial state,
it represents a fixed-point of the transition relation. Therefore, it can be used to soundly
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verify a program property. Formally, a system is safe if and only if there is a 𝑘-inductive
invariant KInv that satisfies the property:

∀𝑥0, . . . ,𝑥𝑘.(Init(𝑥0) ∧ T [𝑘] ⇒ K [𝑘])∧
(K [𝑘] ∧ T [𝑘] ⇒ KInv(𝑥𝑘))∧
(KInv(𝑥𝑘) ⇒ ¬Err(𝑥𝑘))

(2.12)

Moreover, 𝑘-inductive invariants have the following properties:

∙ Every inductive invariant is a 1-inductive invariant.

∙ Every 𝑘-inductive invariant is a (𝑘 + 1)-inductive invariant.

∙ Showing that 𝑘-inductive invariant exists implies that an inductive invariant exists.

∙ 𝑘-inductive invariant is not necessarily an inductive invariant, usually a corresponding
inductive invariant is much more complex.

Generally, finding a 𝑘-inductive invariant is simpler than finding an inductive invariant.
However, it increases the complexity of the formula being checked (since unwinding of the
transition relation significantly increases the formula size) [10]. In addition, it still remains
to be a hard problem and hence it is useful to combine 𝑘-induction with abstract interpre-
tation by computing 𝑘-inductive invariants in some abstract domain. Such combination is
implemented by the 𝑘I𝑘I algorithm described in the following section.

2.2 𝑘I𝑘I Algorithm
In Section 2.1, we presented three common techniques that are widely used for formal
analysis and verification of programs. Each of the approaches is suitable for a different
purpose and also has different limitations. Generally, advantages and disadvantages of
individual techniques can be summarized as follows:

Bounded Model Checking is suitable for finding violations of program properties, while
providing counterexamples. However, only a small part of true properties can be
proven since programs are explored up to a given bound only.

𝑘-induction is capable of proving true properties as well as providing counterexamples for
a part of property violations. However, it requires 𝑘-inductive invariants which are
typically expensive to be computed.

Abstract Interpretation is designed to prove true properties of programs by comput-
ing over-approximative invariants in some abstract domain. However it suffers from
a large number of false positives that cannot be distinguished from real violations of
properties.

In order to make use of each technique’s strengths and overcome their limitations in the
same time, 2LS combines them together in a special algorithm called 𝑘I𝑘I (𝑘-Invariants and
𝑘-Induction). The basic structure of the algorithm is illustrated by Figure 2.1 [10].

Initially, 𝑘 is set to 1. At the beginning, initial program states are checked whether
they contain errors. Then, k𝐼k𝐼 computes a 𝑘-invariant (KInv) in some chosen abstract
domain (i.e. using abstract interpretation). The computed invariant is checked whether it
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is sufficient to prove safety. In case a violation of the property is found, BMC is used to
check if the error state is truly reachable within 𝑘 steps in the original program. In case it
is not reachable, the counterexample can be spurious and hence the procedure is repeated
with an increased 𝑘. In each iteration, 𝑘I𝑘I adds assumptions that the checked property
holds for all previous states (this is expressed by the predicate P [𝑘]).

Even though k𝐼k𝐼 eliminates most of the limitations of the three approaches, there still
remains a need to specify some maximal 𝑘, otherwise it might not terminate. In case the
maximal 𝑘 is reached and the property was neither proved nor refuted, the algorithm ends
with an inconclusive result.

IBMC 𝑘-induction Abstract
Interpretation

Test ∃𝑥0�

Init(𝑥0) ∧ Err(𝑥0)

Find KInv � ∀𝑥0, . . . ,𝑥𝑘�

(Init(𝑥0) ∧ P [𝑘] ∧ T [𝑘] ⇒ K [𝑘])∧
(P [𝑘] ∧K [𝑘] ∧ T [𝑘] ⇒ KInv(𝑥𝑘))

Test ∃𝑥0, . . . ,𝑥𝑘�

P [𝑘] ∧K [𝑘 + 1] ∧ T [𝑘] ∧ Err(𝑥𝑘)

Test ∃𝑥0, . . . ,𝑥𝑘 � Init(𝑥0)∧
P [𝑘] ∧K [𝑘 + 1] ∧ T [𝑘] ∧ Err(𝑥𝑘)

𝑘 ++

C/E Safe

UNSAT

SAT

UNSAT

UNSATSAT

SAT

Figure 2.1: The 𝑘I𝑘I algorithm [10]

2.2.1 Incremental Solving

In order for 𝑘I𝑘I to be efficient, it is based on a so-called incremental solving [28]. This
technique aims at checking whether satisfiability of a problem is preserved when the clause
set is incremented with new clauses. Instead of re-solving the whole problem, the informa-
tion from the original problem is used to speed up the solution of the new one. The original
problem (before adding the clauses) is thus considered satisfiable, and only the impact of
the new clauses is checked.

In 𝑘I𝑘I , this concept is used as follows. Instead of giving the whole P [𝑘] to the solver
in each iteration of the algorithm, incremental solving allows to give only ¬Err(𝑥𝑘−1),
since P [𝑘 − 1] is already in the clause set of the solver from the previous iteration and
P [𝑘] = P [𝑘 − 1] ∧ ¬Err(𝑥𝑘−1). Analogously, Trans(𝑥𝑘−1,𝑥𝑘) can be given instead of the
whole T [𝑘] in each iteration.
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2.3 Representation of Programs Using Logical Formulae
In order to seamlessly combine various analysis techniques together, 2LS uses logical formu-
lae to represent analysed programs. In this section, we show how a program can be trans-
lated into a quantifier-free first-order formula that over-approximates its concrete semantics.
The transformation is based on static single assignment (SSA) form. It is a well-known
concept of an intermediary program representation that is usable in combination with an
automatic solver. We first define the general principles of the SSA form in Section 2.3.1
and then we present specific modifications adopted by 2LS in Section 2.3.2. At the end, in
Section 2.3.3, we give an example of a translation of a program into the SSA form.

2.3.1 Single Static Assignment Form

Generally, single static assignment form [2] is an intermediary program representation sat-
isfying the property that each variable is assigned at most once. A translation into the SSA
form thus involves separating each variable 𝑣 into several variables 𝑣𝑖. Every time some
program location 𝑖 of the original program contains an assignment to 𝑣, it is replaced by
an assignment to 𝑣𝑖. Every R-value usage of 𝑣 (i.e. every occurrence of 𝑣 at the right-hand
side of an assignment or in a condition) is replaced by the appropriate variable 𝑣𝑗 where 𝑗
is the last program location in which 𝑣 was assigned before the given use.

In order to fulfil the single assignment property, it is required that for each program
location 𝑗 and each variable 𝑣, there is a unique 𝑣𝑖 such that there are no assignments to 𝑣
between 𝑖 and 𝑗. This is achieved by introducing additional assignments at join points of
the translated program. These are called Φ (phi) nodes and have a form of an assignment
𝑥 = Φ(𝑦, 𝑧). This expression means that 𝑥 is assigned the value of 𝑦 if the control reaches
this program location via the first entering edge, and 𝑥 is assigned the value of 𝑧 if the
control reaches the node via the second entering edge. For simplicity, we may assume that
each join point joins exactly two program branches.

The logical formula corresponding to the original program is then a conjunction of SSA
formulae for all program statements. For an acyclic code, this formula represents exactly the
strongest post condition of running the code. In 2LS, the standard SSA form is made acyclic
even for programs containing loops by over-approximating their effect. Thanks to this,
the corresponding logical formula implicitly encodes the transition relation Trans(𝑥,𝑥′).
Moreover, when the formula is used in the abstract interpretation procedure, it removes
the need to explicitly define abstract transformers. Details of the loop approximation are
described in the following section.

2.3.2 SSA Form Used in 2LS

The SSA form used in 2LS extends the general concepts introduced in the previous section.
The most important extensions are a specific encoding of control-flow information, and an
over-approximation of loops and function calls.

Encoding of Control-Flow Information

A logical formula obtained from the standard SSA form, as described above, implicitly
encodes the data-flow among variables by enhancing the single assignment property. How-
ever, control-flow is lost after the transformation, and hence it must be encoded explicitly.
To this end, special variables called guards are introduced. In particular, for each program
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location 𝑖, a Boolean variable 𝑔𝑖 is introduced, and its value encodes whether the program
location is reachable.

Over-Approximation of Loops

In order to be able to use the generated formula in an SMT solver, the SSA form used by
2LS is made acyclic by cutting loops at the end of the loop body. Then, the value of each
variable 𝑥 at the loop head is represented using a Φ variable 𝑥phi whose value is defined by
a non-deterministic choice between the value coming from before the loop, and the value
coming from the end of the loop. The latter value is represented by a newly introduced
unconstrained loop-back variable 𝑥𝑙𝑏. An example of this conversion is given in Figure 2.2.

1 unsigned x = 0;

2

3 while (x < 10)

4 {

5 ++x;

6 }

(a) A loop in C

before the loop
𝑥0 = 0

1:

loop head3:

𝑥phi3 = 𝑔ls6 ? 𝑥lb6 : 𝑥0

loop body4:

𝑥5 = 𝑥phi3 + 15:

end of the loop body6:

after the loop

𝑥lb6

(b) Encoding of the loop in the SSA
form

Figure 2.2: Conversion of loops in the SSA form used in 2LS

The loop has been cut at the end of its body: instead of passing the version of 𝑥 from
the end of the loop body (𝑥5) back to the Φ node in the loop head, a free “loop-back”
variable 𝑥lb6 is passed. This way, the SSA form remains acyclic. The choice of the value of
𝑥 in the Φ node is made non-deterministically using the free Boolean “loop-select” variable
𝑔ls6 .

Since 𝑥lb6 and 𝑔ls6 are free variables, this representation is an over-approximation of the
actual program traces. The precision can be improved by constraining the value of 𝑥lb6 by
means of a loop invariant, which is then inferred during the analysis. A loop invariant for
the variable 𝑥 describes a property that holds for 𝑥 at the end of the loop body, after each
iteration of the loop. In the program in Figure 2.2, it describes a property that holds for
𝑥5 and hence can be assumed to hold for 𝑥lb6 as well.

For example, a common property that is computed when dealing with numerical vari-
ables are the lower and the upper bound of their value. For the given example, such
invariant for 𝑥lb6 could be:

𝑥lb6 ≥ 1 ∧ 𝑥lb6 ≤ 10. (2.13)
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Function Inputs and Outputs

When dealing with real-world programs, it is usually essential to perform inter-procedural
analysis (i.e. to analyse each function of the program separately). To facilitate such analysis,
2LS introduces special sets of variables in the SSA form of each function 𝑓 . These are in
particular:

∙ 𝑥𝑖𝑛
𝑓 denoting the set of input parameters of the function. The set includes all variables

entering 𝑓 from the caller function (i.e. formal parameters of the function and global
variables1). When analysing 𝑓 separately, their value is unconstrained.

∙ 𝑥𝑜𝑢𝑡
𝑓 denoting the set of output parameters of the function. The set includes all SSA

variables that are changed within 𝑓 and that can be used by the caller function (i.e.
the return value and the changed global variables).

Over-Approximation of Function Calls

To handle inter-procedural analysis correctly, function calls are over-approximated in the
SSA form used in 2LS. An invocation of a function 𝑓 in a program location 𝑖 is replaced
by a function placeholder predicate 𝑓𝑖(𝑥

𝑎_𝑖𝑛
𝑖,𝑥

𝑎_𝑜𝑢𝑡
𝑖) where 𝑥𝑎_𝑖𝑛

𝑖 and 𝑥𝑎_𝑜𝑢𝑡
𝑖 are sets

of input and output arguments of the call, respectively. These are analogous to 𝑥𝑖𝑛
𝑓 and

𝑥𝑜𝑢𝑡
𝑓 described in the previous section and describe same variables from the view of the

caller function:

∙ 𝑥𝑎_𝑖𝑛
𝑖 denotes the set of input arguments of the call. The set includes all SSA variables

that are passed to the function (i.e. the actual arguments of the call and the SSA
instances of global variables in the program location 𝑖).

∙ 𝑥𝑎_𝑜𝑢𝑡
𝑖 denotes the set of output arguments of the call. The set includes fresh SSA

variables that represent values changed by the called function. Their value is initially
unconstrained and thus the function placeholder represents an over-approximation
of the actual function effect. Its value can be later constrained with means of an
invariant which is usually denoted as a function summary.

2.3.3 Example of a Program Transformation into the SSA Form

To better understand conversion of a C program, we give an example in Figure 2.3. Line 2
is the entry location of the program. It is always reachable, therefore the guard 𝑔2 is set to
true. The definition of 𝑥 is done at line 3. The head of the loop contains a Φ node (line 6)
and since it is directly reachable from the beginning of the main function, its guard 𝑔5 is
the same as the guard of the entry point (𝑔2). The guard 𝑔7 at line 7 expresses that the
loop body is only reachable if the loop head is reachable (𝑔5) and if the loop condition is
true (𝑥phi6 < 10). line 8 sets the new value of 𝑥. The guard 𝑔10 at line 10 captures the
fact that the location after the loop is reachable when the loop condition is false. Finally,
line 11 requires 𝑥 to be equal to 10 once the assertion is reachable (i.e. once 𝑔10 is true).

1Currently, 2LS does not support dealing with dynamically allocated memory, which is why we do not
consider objects on the heap.
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1 void main()

2 {

3 unsigned x = 0;

4

5

6 while (x < 10)

7 {

8 ++x;

9 }

10

11 assert(x == 10);

12 }

(a) The C program

1

2 𝑔2 = true

3 𝑥3 = 0

4

5 𝑔5 = 𝑔2
6 𝑥phi

6 = (𝑔ls9 ?𝑥lb
9 : 𝑥3)

7 𝑔7 = (𝑥phi
6 < 10) ∧ 𝑔5

8 𝑥8 = 1 + 𝑥phi
6

9

10 𝑔10 = ¬(𝑥phi
6 < 10) ∧ 𝑔5

11 𝑥phi
6 = 10 ∨ ¬𝑔10

12

(b) The corresponding SSA

Figure 2.3: Conversion from a C program to SSA

2.4 Template-Based Program Verification
The most important phase of the presented k𝐼k𝐼 algorithm is inference of a 𝑘-inductive
invariant KInv using the abstract interpretation approach. This problem, which can be
expressed in (existential fragment) of second-order logic, is reduced to a problem expressible
in quantifier-free first-order logic using so-called templates. This reduction enables 2LS to
use an SMT solver for automated inference of loop invariants and function summaries.
These are then used to check various properties of the analysed program. The whole concept
is focused on finite state systems since 2LS uses bit-vectors to analyse software [10].

2.4.1 Invariant Inference via Templates

In order to exploit the power of the 𝑘I𝑘I algorithm, 2LS uses a solver-based approach to
computing inductive invariants. Formally, search for a 1-inductive invariant is expressed
by Formula 2.3. This is extended to a 𝑘-inductive invariant in Formula 2.12. For simplifi-
cation purposes, the following explanation will refer to 1-inductive invariants, however, the
presented concepts can be easily applied to 𝑘-inductive invariants as well, by using T [𝑘]
instead of Trans and K [𝑘] instead of Inv .

To directly handle Formula 2.3 by a solver, 2LS would need to handle second-order logic
quantification. Since a suitably general and efficient second order solver is not currently
available, the problem is reduced to one that can be solved by an iterative application of
a first-order solver. This reduction is done by restricting the form of the inductive invariant
Inv to 𝒯 (𝑥, 𝛿) where 𝒯 is a fixed expression (a so-called template) over program variables
𝑥 and template parameters 𝛿. This restriction corresponds to the choice of an abstract
domain in abstract interpretation—a template only captures the properties of the program
state space that are relevant for the analysis. This reduces the second-order search for an
invariant to a first-order search for the template parameters:

∃𝛿. ∀𝑥,𝑥′. (Init(𝑥) =⇒ 𝒯 (𝑥, 𝛿)) ∧
(𝒯 (𝑥, 𝛿) ∧ Trans(𝑥,𝑥′) =⇒ 𝒯 (𝑥′, 𝛿)).

(2.14)

Although the problem is now expressible in first-order logic, the formula contains quantifier
alternation, which poses a problem for current SMT solvers. This is solved by iteratively
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checking the negated formula (to turn ∀ into ∃) for different choices of constants 𝑑 as
candidates for template parameters 𝛿 (to remove ∃𝛿). For a value 𝑑, the template formula
𝒯 (𝑥,𝑑) is an invariant if and only if Formula 2.15 is unsatisfiable.

∃𝑥,𝑥′. ¬(Init(𝑥) =⇒ 𝒯 (𝑥,𝑑)) ∨
¬(𝒯 (𝑥,𝑑) ∧ Trans(𝑥,𝑥′) =⇒ 𝒯 (𝑥′,𝑑))

(2.15)

From the abstract interpretation point of view, 𝑑 is an abstract value, i.e. it represents
(concretises to) the set of all program states 𝑥 that satisfy the formula 𝒯 (𝑥,𝑑). The abstract
values representing the infimum ⊥ and supremum ⊤ of the abstract domain denote the
empty set and the whole state space, respectively: 𝒯 (𝑥,⊥) ≡ false and 𝒯 (𝑥,⊤) ≡ true [10].

Formally, the concretisation function 𝛾 is same for each abstract domain:

𝛾(𝑑) = {𝑥 | 𝒯 (𝑥,𝑑) ≡ true}. (2.16)

As for the abstraction function, it is essential to find the most precise abstract value repre-
senting a concrete program state. Thus:

𝛼(𝑥) = min(𝑑) such that 𝒯 (𝑥,𝑑) ≡ true. (2.17)

Since the abstract domain forms a partially ordered set with ordering ⊑ and 𝒯 (𝑥,⊤) ≡ true,
existence of such a minimal value 𝑑 is guaranteed.

The algorithm for the invariant inference takes an initial value of 𝑑 =⊥ and itera-
tively solves the below quantifier-free formula (corresponding to the second disjunct in
Formula 2.15) using an SMT solver:

𝒯 (𝑥,𝑑) ∧ Trans(𝑥,𝑥′) ∧ ¬(𝒯 (𝑥′,𝑑)). (2.18)

If the formula is unsatisfiable, then an invariant has been found, otherwise the model of
satisfiability is returned by the solver. The model represents a counterexample to the
current instance of the template being an invariant. The value of the template parameter
𝑑 is though refined by joining with the obtained model of satisfiability using the domain-
specific join operator [10].

Incremental Solving Similarly to the 𝑘I𝑘I algorithm itself, invariant inference makes
use of the incremental solving technique, described in Section 2.2.1. Here, since Trans(𝑥,𝑥′)
does not change, it is sufficient to provide current instances of the template formula (i.e.
𝒯 (𝑥,𝑑) ∧ ¬𝒯 (𝑥′,𝑑)) in each iteration of solving of Formula 2.18.

2.4.2 Guarded Templates

Traditionally, analyses based on abstract interpretation use forms of control-flow graphs
(CFG) to represent the analysed programs. In a CFG, a computed invariant can be directly
bound to certain program state in which it is computed and for which it holds. Since 2LS
uses logical formulae generated from the SSA form, invariants cannot be used directly.
Instead, so-called guarded templates are used.

A guarded template has a form 𝐺 ⇒ 𝒯 (𝑥,𝑑) where 𝐺 is a conjunction of SSA guards
that are associated with the definition of variables whose values the invariant constrains.
This guarantees that the invariant can be applied for some program run if and only if the
variables that it describes are defined in the given run.

In case an invariant describes multiple different variables defined in different program
locations, it can be split into multiple parts where each part has its own guard defined.
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2.4.3 Loop Invariants

Loop invariants are used to constrain values of loop-back variables defined in Section 2.3.2.
These variables represent abstractions of values of program variables returning from the
end of the loop body to the loop head. Hence, a loop invariant must describe a property of
a variable that holds at the end of the loop body, after each iteration of the loop.

Formally, let 𝐿 be the set of all loops in a program and let 𝑥𝑙 be the set of all loop-back
variables of some loop 𝑙 ∈ 𝐿. A loop invariant Inv 𝑙 is a projection of an inductive invariant
Inv (describing the set of all states reachable in a program) onto the set of variables 𝑥𝑙.
The loop invariant is expressed in the form of a guarded template. A guarded template for
Inv 𝑙 has the form:

(𝑔𝑙ℎ ∧ 𝑔ls𝑙ℎ) ⇒ 𝒯 (𝑥𝑙, 𝛿) (2.19)

where 𝑙ℎ is the program location of the head of the loop 𝑙. The guard 𝑔𝑙ℎ expresses that 𝑙 is
reachable from the beginning of the program and the guard 𝑔ls𝑙ℎ is a free loop-select variable
driving the choice between values of variables coming from the loop head and from the end
of the loop body (for details see Section 2.3.2). If (𝑔𝑙ℎ ∧ 𝑔ls𝑙ℎ) is equal to true, the loop 𝑙
is reached, and the loop-back variables of 𝑙 are defined and hence the loop invariant Inv 𝑙

constraining their value can be used.

Example

We now illustrate the procedure of computing a loop invariant of the program given in
Figure 2.3. Here, the set of all loop-back variables 𝑥𝑙 = {𝑥lb9 }. We use the template
polyhedra domain [44], particularly its subclass for the interval abstract domain [17]. Using
this domain, we compute for each variable 𝑥 an interval in which all possible values of 𝑥
lie. Hence, the template has the form:

𝒯 ({𝑥lb9 }, (𝑑1, 𝑑2)) ≡ 𝑥lb9 ≥ 𝑑1 ∧ 𝑥lb9 ≤ 𝑑2 (2.20)

where 𝑑1 and 𝑑2 are template parameters whose values are to be inferred during the analysis.
The template form expresses the fact that all values of 𝑥lb9 lie in the interval [𝑑1, 𝑑2].

We now show how iterative solving of Formula 2.18 allows 2LS to infer values of 𝑑1 and
of 𝑑2. The transition relation Trans(𝑥,𝑥′) is expressed by the SSA form given in Figure 2.3.
Formula 2.18 is repeatedly solved until it is unsatisfiable. We assume that Trans(𝑥,𝑥′) is
already proven by the solver to be satisfiable (since it describes an acyclic program) and
that in every iteration we only solve current instances of the invariant (since an incremental
solver is used).

In Formula 2.18, two instances of a template are used. The instance 𝒯 (𝑥,𝑑) describes
a loop invariant and hence we define its guarded form to be:

(𝑔5 ∧ 𝑔ls9 ) ⇒ 𝒯 ({𝑥lb9 }, (𝑑1, 𝑑2)) (2.21)

where 𝑔5 guards the reachability of the loop and 𝑔ls9 is the loop-select variable corresponding
to 𝑥lb9 .

The second instance of the template 𝒯 (𝑥′,𝑑) describes the same loop invariant for the
program state 𝑥′ obtained after execution of the transition relation from the state 𝑥. For
the variable 𝑥 in the analysed loop, this corresponds to the SSA variable 𝑥8 (i.e. the state
of 𝑥 at the end of the loop body). Its guarded form is hence:

(𝑔5 ∧ 𝑔7) ⇒ 𝒯 ({𝑥8}, (𝑑1, 𝑑2)) (2.22)
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where 𝑔7 guards the reachability of the definition of 𝑥8.

We now describe particular iterations of solving of Formula 2.18.

1. As stated in Section 2.4.1, the initial value of the template parameter is 𝑑 =⊥ and
𝒯 (𝑥,⊥) ≡ false. The formula to solve is hence:

(𝑔5 ∧ 𝑔ls9 ) ⇒ false ∧ ¬((𝑔5 ∧ 𝑔7) ⇒ false). (2.23)

The only possibility to satisfy the formula is that (𝑔5∧𝑔ls9 ) is evaluated to false. Since
𝑔5 = true, 𝑔ls9 must be equal to false.

In such case, 𝑥3 = 0 is chosen as the value of 𝑥phi6 and subsequently 𝑥8 = 1. This
value represents the value of 𝑥 at the end of the loop body and thus it is used to refine
the current invariant. Both 𝑑1 and 𝑑2 are updated to 1 and the current invariant is:

𝑥lb9 ≥ 1 ∧ 𝑥lb9 ≤ 1. (2.24)

2. In the second iteration, we use the previously computed invariant in Formula 2.18.
The formula to solve is:

(𝑔5 ∧ 𝑔ls9 ) ⇒ (𝑥lb9 ≥ 1 ∧ 𝑥lb9 ≤ 1) ∧
¬((𝑔5 ∧ 𝑔7) ⇒ (𝑥8 ≥ 1 ∧ 𝑥8 ≤ 1)).

(2.25)

In order to satisfy this formula, the solver must choose 1 as the value of 𝑥lb9 and hence
the value of 𝑥8 = 2. Using this value to refine the template invariant causes the
template parameter 𝑑2 to be updated to 2. The current instance of the invariant is:

𝑥lb9 ≥ 1 ∧ 𝑥lb9 ≤ 2. (2.26)

3. Analogously to the previous step, values 3, 4, 5, . . . are consecutively found as models
of satisfiability and they are used to update the value of 𝑑2. This continues until the
guard 𝑔7 is false and the second conjunct of the solved formula cannot be evaluated
to true (and Formula 2.18 is unsatisfiable).

Since 𝑔7 = (𝑥phi6 < 10) ∧ 𝑔5, such situation occurs for the first time when 𝑥lb9 = 10.
Hence, this is last iteration and the final computed invariant is:

𝑥lb9 ≥ 1 ∧ 𝑥lb9 ≤ 10. (2.27)

The invariant can be then used to prove that the assertion 𝑥phi6 = 10 ∨ ¬𝑔10 always
holds and that the analysed program is correct.

2.4.4 Function Summaries

Even though loop invariants are sufficient for intra-procedural analysis, additional concepts
must be used when analysing functions of the original program separately. In 2LS function
placeholders and function summaries are used.

A function placeholder 𝑓𝑖(𝑥
𝑎_𝑖𝑛,𝑥𝑎_𝑜𝑢𝑡), as described in Section 2.3.2, over-approximates

the effect of a call to function 𝑓 in a program location 𝑖 (since 2LS does not handle recursive
programs, we assume that 𝑖 is in function other that 𝑓). It is a predicate parametrised by
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two sets of variables 𝑥𝑎_𝑖𝑛 and 𝑥𝑎_𝑜𝑢𝑡 denoting the input and the output arguments of
the call, respectively. Values of output arguments are initially unconstrained and can be
constrained with means of a function summary.

A function summary abstracts the behaviour of a function. In other words, it describes
how a function 𝑓 transforms its formal inputs (𝑥𝑖𝑛

𝑓 ) into outputs (𝑥𝑜𝑢𝑡
𝑓 ). In 2LS, a function

summary is described by an inductive invariant over the sets of variables 𝑥𝑖𝑛
𝑓 and 𝑥𝑜𝑢𝑡

𝑓 .
Formally, given a computed inductive invariant Inv approximating the set of all states
reachable by a function 𝑓 , input and output variables 𝑥𝑖𝑛

𝑓 and 𝑥𝑜𝑢𝑡
𝑓 , and a predicate

Init𝑓 (𝑥) describing the initial states of the function 𝑓 , a summary of 𝑓 is a predicate Sum𝑓

such that:

∀𝑥,𝑥′ : (𝑥𝑖𝑛
𝑓 ⊆ 𝑥 ∧ Init(𝑥) ∧

Inv(𝑥′) ∧ 𝑥𝑜𝑢𝑡
𝑓 ⊆ 𝑥′) =⇒ Sum𝑓 (𝑥

𝑖𝑛
𝑓 ,𝑥

𝑜𝑢𝑡
𝑓 ).

(2.28)

The first line of the implication antecedent expresses the fact that the initial states of the
function depend on the set of input parameters 𝑥𝑖𝑛

𝑓 . Using the computed invariant for
the output variables (second line), we define a summary Sum(𝑥𝑖𝑛

𝑓 ,𝑥
𝑜𝑢𝑡

𝑓 ) of the function.
The summary can be then used to constrain a function call placeholder 𝑓𝑖(𝑥

𝑎_𝑖𝑛
𝑖,𝑥

𝑎_𝑜𝑢𝑡
𝑖)

by replacing formal input and output variables 𝑥𝑖𝑛 and 𝑥𝑜𝑢𝑡 in 𝑆𝑢𝑚(𝑥𝑖𝑛,𝑥𝑜𝑢𝑡) by actual
values of inputs and outputs 𝑥𝑎_𝑖𝑛

𝑖 and 𝑥𝑎_𝑜𝑢𝑡
𝑖, respectively [13].

Example

To better illustrate inter-procedural analysis, we show an example of analysis of a program
containing a function call. The source of the program and SSA forms of both present
functions are given in Figure 2.4.

1 int inc(int x)

2 {

3 int y = x + 1;

4 return y;

5 }

6

7 void main()

8 {

9 int a = 0;

10 int b = inc(a);

11 assert(b == 1);

12 }

(a) The C program

1

2 𝑔2 = true

3 𝑦3 = 𝑥1 + 1

4 𝑟𝑣4 = 𝑦3
5

(b) The SSA form of inc

7

8 𝑔8 = true

9 𝑎9 = 0

10 𝑖𝑛𝑐10({𝑎9}, {𝑏10})
11 𝑏10 = 1

(c) The SSA form of main

Figure 2.4: Example of a program containing a function call

The SSA form of the function inc contains a variable 𝑥1 that corresponds to the input
value of the function parameter 𝑥. Also, a special variable 𝑟𝑣4 denoting the return value of
the function is introduced. The sets of input and output variables of the function can be
defined as follows:

𝑥𝑖𝑛
𝑓 = {𝑥1}

𝑥𝑜𝑢𝑡
𝑓 = {𝑟𝑣4}

(2.29)
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The SSA form of main contains a function call placeholder 𝑖𝑛𝑐10({𝑎9}, {𝑏10}) that
approximates the effect of the function call. During the analysis, we first compute summary
of inc and then we use it to constrain the function placeholder and to prove that the
assertion holds.

Computing Summary We compute the summary predicate Sum𝑖𝑛𝑐({𝑥1}, {𝑟𝑣4}) using
the template-based synthesis of inductive invariants. Similarly to the previous example,
we use the abstract template polyhedra domain [44] but now we use its subclass for the
zones abstract domain. Here, instead of computing an interval for each individual variable,
we compute for each pair of variables an interval in which their difference lies. In case of
the function inc, important variables are 𝑥1 and 𝑟𝑣4 and hence we specify the form of the
template as follows:

𝒯 ({𝑥1, 𝑟𝑣4}, (𝑑1, 𝑑2)) ≡ (𝑟𝑣4 − 𝑥1) ≥ 𝑑1 ∧ (𝑟𝑣4 − 𝑥1) ≤ 𝑑2 (2.30)

Using the algorithm for invariant inference, we compute 𝑑1 = 𝑑2 = 1. Hence, the summary
Sum𝑖𝑛𝑐({𝑥1}, {𝑟𝑣4}) is as follows:

Sum𝑖𝑛𝑐({𝑥1}, {𝑟𝑣4}) = (𝑟𝑣4 − 𝑥1) ≥ 1 ∧ (𝑟𝑣4 − 𝑥1) ≤ 1 (2.31)

Constraining Function Call Placeholder After the summary is computed, it can be
used to constrain the value of the function call placeholder 𝑖𝑛𝑐10({𝑎9}, {𝑏10}). This is done
by replacing input and output parameters of the function by input and output arguments
of the call. In the example, 𝑥1 and 𝑟𝑣4 are replaced by 𝑎9 and 𝑏10, respectively:

𝑖𝑛𝑐10({𝑎9}, {𝑏10}) = (𝑏10 − 𝑎9) ≥ 1 ∧ (𝑏10 − 𝑎9) ≤ 1. (2.32)

Using the constraint given in Formula 2.32, 2LS can prove that the assertion 𝑏10 = 1 always
holds and that the program is thus correct.

20



Chapter 3

Existing Methods for Shape
Analysis

Shape analysis is a technique of static analysis aimed at discovering shapes of data structures
dynamically allocated on the program heap. Such structures usually include various forms
of linked lists (singly or doubly linked, circular, nested, etc.), trees, or more complicated
structures such as skip-lists.

Unlike stack and static memory that can be abstracted by a finite set of named variables
occuring in the analysed program, heap data is potentially unbounded and seemingly arbi-
trary. This poses a challenge in terms of used heap abstractions and makes shape analysis
an interesting and widely explored research topic. In this chapter, we give an overview of
some of the current approaches to shape analysis. For a more complete survey, we refer
to [32].

We split the described methods into multiple groups based on the models they use
to abstract the shape of the heap. The first two groups, using namely various kinds of
logics, automata, and graphs are store-based, i.e., they describe the heap explicitely. On
the contrary, the approaches in last group are inspired by storeless semantics.

3.1 Logic-based Methods
One of the first approaches to shape analysis is based on a so-called three-value logic [43].
This logic introduces a new value unknown to the traditional boolean values true and
false. The approach is based on abstract interpretation and the value unknown is used to
express the fact that some elements may or may not be in a relation after an abstraction
is done. The method is rather generic but usually requires some manual intervention to be
sufficiently scalable.

Another approach uses a so-called Pointer Assertion Logic [38] to verify data structures
that can be described by graph types. The technique is highly modular, however, it is
semi-automated only—it requires explicit loop and function call invariants.

A different group of shape analysis techniques uses separation logic [41]. It is an exten-
sion of Hoare logic developed specifically for reasoning about programs manipulating heap.
It builds on Hoare triples, which is a mechanism to describe how a program state changes
after execution of a piece of code. A triple has a form {𝑃}𝐶{𝑄}, where 𝑃,𝑄 are predicates
(often called a precondition and a postcondition) and 𝐶 is a command. The predicate 𝑃 is
assumed to hold before the execution of 𝐶, and 𝑄 is assumed to hold afterwards. Separation
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logic extends the predicate logic by several new operators and symbols: emp (a constant
representing an empty heap), 𝑒 ↦→ 𝑒′ (an operator expressing the fact that the heap contains
a single cell at address 𝑒 which maps to the value 𝑒′), 𝑝 * 𝑞 (an operator expressing that
the heap can be separated into two parts where 𝑝 holds for one and 𝑞 holds for the other),
and 𝑝−* 𝑞 (an operator expressing that if the heap is extended by a disjoint part in which
𝑝 holds, then 𝑞 will hold after the extension).

There are many fully-automated tools based on separation logic such as Space In-
vader [48] and SLAyer [3]. Separation logic is also applied in practice, e.g. in combination
with bi-abduction [11] in the Facebook Infer tool [22]. However, the tool misses support for
low-level features such as block operations and advanced pointer arithmetics and handles
simple data structures only (mainly lists).

Another verifier based on separation logic is S2td [34]. It implements a satisfiability
procedure for separation logic extended by user-defined inductive predicates. Although is
is able to handle very complex data structures (e.g. trees with linked leaves), it is rather
fragile and can fail on quite simple structures if they are not handled by the program in a
suitable way. Moreover, a support for combinations with other abstract domains is not very
advanced and the approach has a problem with reliable diagnostics of discovered possible
errors.

Also, more recently, automation of separation logic using SMT solvers by reduction to
effectively propositional logic has been proposed by [40, 29, 30].

3.2 Methods Using Automata and Graphs
Another group of shape analysis tools describes the state of the heap using various forms
of automata and graphs. One of such tools is Predator [20] which uses symbolic memory
graphs (SMGs) [33]. These are designed as an abstract domain for the framework of ab-
stract interpretation. SMGs model the heap with byte-precision and use summary nodes
to represent abstractions of linked lists of unbounded length. They are designed to handle
low-level manipulation of dynamic data structures. The usability of the approach is con-
firmed by mutliple wins in the heap-related categories of the International Competition on
Software Verification (SV-COMP). However, the approach has not yet been extended to
tree-like structures and it is missing a combination with other abstract data domains.

A different approach based on graphs uses tree automata and regular tree model check-
ing [8] and is implemented, e.g., in the Forester tool [25]. The approach uses automata
over words and trees to describe the shape of the heap and a tree-automata-based abstrac-
tion to over-approxmate the set of reachable heap configurations. The abstraction can be
refined by counterexample-guided refinement. Combining these approaches with reasoning
about value properties is not easy as shown in the works [1, 27] that extended Forester with
reasoning about finite data and a specialised support for handling ordered list segments.

3.3 Methods Using Storeless Semantics
All of the above approaches are store-based, i.e. they explicitly describe the state of the
heap using some logic or graphs. On the contrary, methods based on storeless semantics [31]
use pointer access paths to describe reachable shapes on the heap [14, 42, 37, 9]. A pointer
access path does not concretely express the heap state, it only describes which dynamic
objects are reachable from a pointer. Using a set of access paths for each pointer, one can
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efficiently describe the shape of (the reachable part of) the heap. These approaches usually
use abstract interpretation over control-flow graphs and their support of dealing with the
data content is limited [37]. However, pointer access paths proved the most suitable for our
purposes and our work is heavily inspired by them.
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Chapter 4

Thesis Goals

The main topic of my PhD thesis is research of shape analysis in the context of program
verification using template-based invariant inference. During my work, I intend to build
on rich expertise in the fields of shape analysis that we have in the VeriFIT research group
(e.g. two of the tools mentioned in Chapter 3, namely Predator [20] and Forester [25], were
developed within our group). I want to develop an approach of integrating shape analysis
into the 2LS framework and then explore possibilities that will open. Since the framework
allows for simple combination of multiple verification approaches together, we could be
able to analyse complex properties of real-world programs that use (among other features)
dynamically allocated memory. Overall, we may summarize the goals for this thesis as
follows:

1. Development of a new abstract shape domain. One of the main problems of
the current shape analysers is the difficulty of their combination with analyses of
other program properties. We address this problem by proposing a novel abstract
shape domain suitable for verification approaches using invariant inference based on
templates, such as the one implemented in the 2LS framework. Since all domains in
2LS share the common form of templates, a combination with other analyses already
present in the framework is then straightforward. Currently, we are not aware of any
abstract shape domain having the required form of templates, therefore its design
and implementation is the first goal of my thesis. It will be inspired by existing ap-
proaches to shape analysis—we have found the methods based on storeless semantics
(Section 3.3) the most suitable. The domain should be able to describe dynamic
structures of various shapes, with the main focus on the linked lists.

2. Combination of the shape domain with other abstract domains. After im-
plementing the novel abstract shape domain for the 2LS framework, we focus on
possibilities of its combination with other abstract domains. Here, the most inter-
esting is a combination with abstract domains for analysis of numerical values. This
could allow us to analyse complex properties of programs, such as contents of dynamic
data structures, length and sortedness of linked lists, or even complicated low-level
heap manipulations using pointer arithmetic and structure offsets (i.e. using a numer-
ical domain not on data stored in dynamically linked structures but on the low-level
features of pointers themselves).

3. Introduction of methods for interprocedural shape analysis. Another com-
mon problem of software verification approaches in general is a limited scalability.
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The methods being used are often very advanced and have a high computational
complexity and therefore struggle to scale on large real-world programs. For ex-
ample, the method used by 2LS is exponential in the number of commands of the
analysed program, since it relies on solving the satisfiability (SAT) problem, which is
generally NP-complete. One of the possible solutions to this problem is interproce-
dural analysis, i.e. analysing each function of the program separately. This is often
done using a concept of summaries—a summary describes how a function transforms
its inputs into outputs. In the 2LS framework, summaries are supported for programs
without side-effects (i.e. programs not manipulating heap) in the way described in
Section 2.4.4. Due to this, the next goal of my thesis is to adapt the proposed shape
analysis for using summaries. This is, however, a rather difficult task since we will
need to come with a way to describe changes to parts of the existing heap that are
reachable from the function parameters. There are, basically, two suitable approaches
to this problem. The first one is computing a calling context for every function call.
The calling context describes the shape of the heap in time of the function call and can
be used to simplify analysis of the called function. However, the problem is that when
the function is called in a different context, it must be re-analysed, which partially
eliminates the benefits of using interprocedural analysis. The other possible approach
is to analyse each function individually, without being sensitive to its calling context.
Here, we could build on the principle of bi-abduction [11], which is based on inferring
assumptions about the state of the heap at the function beginning.

4. Application of shape analysis outside of safety verification. The proposed
shape domain could be used not only to verify safety, but also to analyse different
properties of programs working with dynamic data structures. These may include
(non)termination of programs (there is already a support for termination and non-
termination analysis in 2LS), inference of resource bounds, or combination with con-
currency.
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Chapter 5

Template-Based Verification of
Heap Manipulating Programs

We propose a novel technique of shape analysis suitable for analysis engines that perform
automatic invariant inference using an SMT solver such as the one described in Chapter 2.
We have published this work at the 2018 Formal Methods in Computer Science (FMCAD)
conference and the following text is based on this paper [36]. The author of this report has
contributed most of the main ideas of the paper as well as did most of the implementation
and experimental work and contributed also a significant part of the writing.

One of the main advantages of the template-based verification is that it uses a unified
form of abstract domains (templates) and delegates semantic reasoning to an SMT solver.
This makes it straightforward to compute invariants describing both shape and value prop-
erties of data structures, which is more difficult when combining domains that are based
on different principles.

The described approach assumes non-recursive programs with all function calls inlined.

Contributions The contributions of the work described in [36], which form the contents
of Sections 5.1–5.5, are as follows:

1. We propose a novel abstract template domain for reasoning over heap-allocated data
structures such as singly- and doubly-linked lists using a template-based parameter
synthesis engine.

2. We show how we can build product and power domain combinations of our heap
domain with structural domains (e.g. trace partitioning) and value domains such as
template polyhedra that capture the contents of data structures.

3. We implement our abstract heap domain in the 2LS verification tool for C programs.
We demonstrate the power of the proposed domain on benchmarks, which require
combined reasoning about the shape and contents of data structures, showing that
other tools, which performed well in SV-COMP, cannot handle these examples.

These contributions represent a contribution to the first two points of the thesis goals
described in Chapter 4. A further research in these areas is, however, needed.

Running example To better illustrate the concepts and methods described in the follow-
ing text, we use the program in Listing 5.1 as a running example. It creates a singly-linked
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1 typedef struct node {
2 int val;
3 struct node *next;
4 } Node;
5

6 int main() {
7 Node *p, *list = malloc(sizeof(Node));
8 Node *tail = list;
9 *list = {.next = NULL, .val = 10};

10 while (__VERIFIER_nondet_int()) {
11 int x = __VERIFIER_nondet_int();
12 if (x < 10 || x > 20) continue;
13 p = malloc(sizeof(Node));
14 *p = {.next = NULL, .val = x};
15 tail→next = p; tail = p;
16 }
17 while (1) {
18 for (p = list; p!= NULL; p = p→next) {
19 assert(p→val <= 20 && p→val >= 10);
20 if (p→val < 20) p→val++;
21 else p→val /= 2;
22 }
23 }
24 }

Listing 5.1: A running example

list, each node containing a value between 10 and 20 (Lines 7–15). The list is afterwards tra-
versed repeatedly and the value of each node is either incremented by 1 or halved (Lines 16–
22). We add an assertion that, in every iteration, the value of each node stays between 10
and 20. The goal of the analysis is to prove that the assertion always holds. This requires
an analysis capable of reasoning about unbounded linked data structures and numerical
content of their nodes at the same time.

To prove this property we have to infer that the value of the val field of the dynamic
objects allocated in Line 7 and 13 is always in the range [10, 20]. With the help of our
technique, we will infer an invariant for the loop on Line 10 that states the following:

1. tail may point to the sets of Node objects created in Line 7 and 13. We denote
these sets 𝑎𝑜7 and 𝑎𝑜13, respectively.

2. The next field of 𝑎𝑜7 may point to 𝑎𝑜13 or to null. Its val field has a value in the
interval [10,10].

3. The next field of 𝑎𝑜13 may point to 𝑎𝑜13 or null. However, its val field has a value
in the interval [10,20]. This means that 𝑎𝑜13 abstracts a set of Node objects whose
val fields have values in the interval [10,20].

For the loop in Line 18, we infer the invariant that the val fields of 𝑎𝑜7 and 𝑎𝑜13 must
both be in the interval [10,20], which implies that the property holds.

5.1 Abstract Memory Operations in the SSA form
We now propose a representation of heap memory and operations over it, designed to be
used within the approach laid out in Chapter 2. The proposal respects the fact that the
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considered SSA form is an acyclic program representation, over-approximating reachable
values of variables used in loops.

5.1.1 Abstract Memory Representation

Under our assumption of fully inlined, non-recursive programs, static memory objects corre-
spond simply to a finite set Var of program variables: we do not need to consider the stack.
We let PVar ,SVar ⊆ Var , PVar ∩ SVar = ∅, be the sets of variables of pointer and struc-
ture type, respectively. A linked data structure in C is typically defined using a struct
type, which groups together named fields for the payload data and the link pointers (see
Lines 1–4 in Listing 5.1). We use Fld to denote the finite set of fields used in the given
program. Let PFld ⊆ Fld be the set of all pointer-typed fields.

Abstract Dynamic Objects

We use abstract dynamic objects to represent dynamic memory objects, i.e. those that are
allocated using malloc (or some of its variants) on the heap. An abstract dynamic object
represents a set of concrete dynamic objects allocated at the same allocation site 𝑖, e.g.
by the same malloc call located at Line 𝑖 in Listing 5.1. However, a single abstract
dynamic object is not sufficient to represent all concrete dynamic objects allocated by
a given malloc. The reason for this is that the program may use several independent
objects created at an allocation site at the same time. Typically, this issue is solved by the
analysis algorithm materialising dynamic objects on-demand. We take a different approach
and statically over-approximate the maximum number 𝑛𝑖 of concrete objects required (see
the next section below). Hence, we use a set 𝐴𝑂𝑖 = {𝑎𝑜𝑘𝑖 | 1 ≤ 𝑘 ≤ 𝑛𝑖} of abstract dynamic
objects for that purpose. We let AO = ∪𝑖𝐴𝑂𝑖 and require Var∩AO = ∅ and 𝐴𝑂𝑖∩𝐴𝑂𝑗 = ∅
for 𝑖 ̸= 𝑗. The set of all objects of our program abstraction is then Obj = AO ∪Var .

Pairs consisting of an abstract dynamic object and a field, i.e. elements of the set
AO ×Fld , represent an abstraction of the appropriate fields of all the represented concrete
objects. We use the “dot” notation to represent such pairs: e.g. 𝑎𝑜𝑖.𝑛𝑒𝑥𝑡 denotes the
abstraction of the next field of all the concrete dynamic objects represented by 𝑎𝑜𝑖.

We define Ptr = PVar ∪ ((SVar ∪AO)×PFld) to be the set of all pointers of the given
program abstraction. Pointers can be assigned addresses of objects. Since we currently do
not support pointer arithmetic, the only addresses that we consider are symbolic addresses
of static and dynamic objects together with the special address null. The symbolic address
of an abstract dynamic object 𝑎𝑜𝑖 is an abstraction of the symbolic addresses of the concrete
dynamic objects represented by 𝑎𝑜𝑖. To get the address of both static and dynamic objects,
we use the &-operator. Hence, the set Addr of addresses that we consider is defined as
Addr = {&𝑜 | 𝑜 ∈ Obj} ∪ {null}.1

Pre-Materialisation

As mentioned above, instead of materialising dynamic objects on-demand, we pre-materialise
a sufficient number 𝑛𝑖 of them for each allocation site 𝑖 and encode them into our SSA rep-

1We currently assume that addresses of newly allocated objects are fresh. Hence, we can miss behaviours
where some memory space is recycled while some pointers are still pointing to it, which is undefined according
to the C standard, but sometimes used in practice. If that was a problem, we could, e.g., extend our
preliminary static analysis to detect objects that can possibly be in that form and add them among possible
returns from the allocation.
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resentation. In order for this abstraction to be sound, it is sufficient that the number 𝑛𝑖

equals the maximal number of distinct concrete objects allocated at 𝑖 that are simultane-
ously pointed to by some pointer at any location of the analysed program.

For each allocation site 𝑖, we compute the number 𝑛𝑖 as follows. First, using a standard
static may-alias analysis, we over-approximate, for each program location 𝑗, the set 𝑃 𝑖

𝑗

of all pointer expressions of the source program that may point to some object allocated
at 𝑖. These might be pointer variables from PVar , pointer-typed fields of static objects
from SVar×PFld , or pointer-typed fields of dynamic objects accessed through dereferences
of pointers—i.e. elements of PVar × PFld . For simplicity, we assume that all chained
dereferences of the form 𝑝 → 𝑓1 → 𝑓2 with 𝑓1, 𝑓2 ∈ PFld are broken into two expressions
using an intermediate variable. Overall, 𝑃 𝑖

𝑗 ⊆ PVar ∪ ((SVar ∪ PVar) × PFld). Next, we
compute the must-alias relation ∼𝑗 . For each pair of pointers 𝑝 and 𝑞 and for each program
location 𝑗, 𝑝 ∼𝑗 𝑞 iff 𝑝 and 𝑞 must point to the same concrete dynamic object at 𝑗. Finally,
we partition the set 𝑃 𝑖

𝑗 into equivalence classes by ∼𝑗 , and 𝑛𝑖 is given by the maximal
number of such classes at any 𝑗.

5.1.2 Operations over the Abstract Memory Representation

After defining the abstract representation of dynamic memory, we describe the way we
encode typical heap-manipulating operations. These include allocation, reading, writing,
and deallocation of dynamic memory.

Dynamic Memory Allocation

We represent a call to malloc at program location 𝑖 by a non-deterministic choice among
the addresses of objects from the set 𝐴𝑂𝑖. Hence, a statement 𝑝 = malloc(. . .) at 𝑖 is
translated to the formula

𝑝𝑖 = 𝑔𝑜𝑠𝑖,1 ?&𝑎𝑜1𝑖 : (𝑔
𝑜𝑠
𝑖,2 ?&𝑎𝑜2𝑖 : (. . . (𝑔

𝑜𝑠
𝑖,𝑛𝑖−1 ?&𝑎𝑜𝑛𝑖−1

𝑖 : &𝑎𝑜𝑛𝑖
𝑖 ))) (5.1)

where 𝑔𝑜𝑠𝑖,𝑗 , 1 ≤ 𝑗 < 𝑛𝑖 are free Boolean variables, so-called object-select guards.

Example In Listing 5.1, two calls of malloc occur on Lines 7 and 13. For Line 7, a single
abstract dynamic object 𝑎𝑜7 is created as there is just one concrete object allocated.2 The
malloc on Line 13 must be represented by two objects 𝑎𝑜113 and 𝑎𝑜213 as, e.g. on Line 14,
variables tail and p may point to different concrete objects allocated by this malloc
call. Specifically, the statement on Line 13 will be translated into the equality 𝑝13 =
𝑔𝑜𝑠13 ?&𝑎𝑜113 : &𝑎𝑜213. Abstract dynamic objects 𝑎𝑜113 and 𝑎𝑜213 then collectively represent all
concrete dynamic objects allocated in the loop.

Reading through Dereferenced Pointers

We handle expressions of the form 𝑝 → 𝑓 for 𝑝 ∈ PVar , 𝑓 ∈ Fld appearing on the right-hand
side of assignments or in conditions as follows. We first perform a may-points-to analysis,
which over-approximates for each pointer 𝑝 ∈ Ptr and each program location 𝑖 the set of
objects from Obj that 𝑝 may point to at 𝑖. Using the result of the analysis, we can replace

2In fact, we should write 𝑎𝑜17, but we omit the superscript when a single abstract object suffices for the
given malloc. Likewise for the object-select guards below.
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the pointer dereference 𝑝 → 𝑓 by a choice among the values of the field 𝑓 of the objects
possibly pointed to by 𝑝.

To facilitate the replacement, we introduce purely logical dereference variables. Assume
that at program location 𝑖 there appears an R-expression 𝑝 → 𝑓 and that the pointer 𝑝
may point to a set of objects 𝑂 ⊆ Obj at 𝑖. We replace the use of 𝑝 → 𝑓 by using a fresh
variable 𝑑𝑟𝑓(𝑝).𝑓𝑖 whose value is defined by the formula⋀︁

𝑜∈𝑂

(︀
𝑝𝑗 = &𝑜 =⇒ 𝑑𝑟𝑓(𝑝).𝑓𝑖 = 𝑜.𝑓𝑘

)︀
∧(︁ ⋀︁

𝑜∈𝑂
𝑝𝑗 ̸= &𝑜

)︁
=⇒ 𝑑𝑟𝑓(𝑝).𝑓𝑖 = 𝑜⊥

(5.2)

where 𝑝𝑗 , 𝑜.𝑓𝑘 are the relevant versions of the concerned variables at program location 𝑖 and
𝑜⊥ denotes a special “unknown object” (a result of a dereference of an unknown or invalid
(null) address).3

Example We give the translation of the assignment 𝑝 = 𝑝 → 𝑛𝑒𝑥𝑡 from Line 18 in
Listing 5.1. Since the assignment is executed at the end of each loop iteration, we define its
program location to be Line 22. At this program location, 𝑝 may point to the set of objects
{𝑎𝑜7, 𝑎𝑜113, 𝑎𝑜213}. Hence, the assignment will be represented by the following formula:

𝑝22 = 𝑑𝑟𝑓(𝑝).𝑛𝑒𝑥𝑡22 ∧

𝑝phi18 = &𝑎𝑜7 ⇒ 𝑑𝑟𝑓(𝑝).𝑛𝑒𝑥𝑡22 = 𝑎𝑜7.𝑛𝑒𝑥𝑡
phi
18 ∧⋀︁

𝑙=1,2

(︁
𝑝phi18 = &𝑎𝑜𝑙13 ⇒ 𝑑𝑟𝑓(𝑝).𝑛𝑒𝑥𝑡22 = 𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡

phi
18

)︁
∧

(︁
𝑝phi18 ̸= &𝑎𝑜7 ∧

⋀︁
𝑙=1,2

𝑝phi18 ̸=&𝑎𝑜𝑙13

)︁
⇒ 𝑑𝑟𝑓(𝑝).𝑛𝑒𝑥𝑡22 = 𝑜⊥.

(5.3)

The first conjunct represents the transformed assignment, and the following conjuncts define
the value of the dereference variable. The value of 𝑝 entering program location 22 is the
value from the loop head 𝑝phi18 . If it equals the address of 𝑎𝑜7, 𝑎𝑜113, or 𝑎𝑜213, the value of
𝑑𝑟𝑓(𝑝).𝑛𝑒𝑥𝑡22 is 𝑎𝑜7.𝑛𝑒𝑥𝑡

phi
18 , 𝑎𝑜113.𝑛𝑒𝑥𝑡

phi
18 , or 𝑎𝑜213.𝑛𝑒𝑥𝑡

phi
18 , otherwise, it equals 𝑜⊥.

As an optimisation, if the dereference variable is once created and the value of the
concerned expression does not change, we reuse the existing dereference variable. Second,
when dealing with a statement like 𝑣 = 𝑝 → 𝑓 , the use of the dereference variable may seem
unnecessary as one can plug 𝑣𝑖 instead of 𝑑𝑟𝑓(𝑝).𝑓𝑖 into the formula defining the value of
𝑑𝑟𝑓(𝑝).𝑓𝑖. This can be done, but, as explained below, the use of dereference variables can
give us more precision when dealing with sequences of reading and writing operations.

Writing through a Dereference

When writing into an abstract dynamic object 𝑎𝑜𝑖, we need to respect the fact that only one
concrete object abstracted by 𝑎𝑜𝑖 is actually written to, and the others keep the original
value. Hence, we need to make a join of the original and the new value. We again use
dereference variables to facilitate the transformation.

3A dereference of the form *𝑝 for a non-structured object can be handled analogously, just without the
field 𝑓 in the above formula.
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Assume that at program location 𝑖, we have an assignment 𝑝 → 𝑓 = 𝑣, 𝑝 ∈ PVar ,
𝑓 ∈ Fld , 𝑣 ∈ Var , and that 𝑝 may point to a set of objects 𝑂 ⊆ Obj at the entry to 𝑖.4 We
replace the L-expression 𝑝 → 𝑓 by a fresh variable 𝑑𝑟𝑓(𝑝).𝑓𝑖 whose value is defined by the
value of 𝑣, i.e. we assert that 𝑑𝑟𝑓(𝑝).𝑓𝑖 = 𝑣𝑙 where 𝑣𝑙 is the version of 𝑣 valid at program
location 𝑖. We then use 𝑑𝑟𝑓(𝑝).𝑓𝑖 to update the value of the field 𝑓 of the referenced object,
using the formula ⋀︁

𝑜∈𝑂

(︀
𝑜.𝑓𝑖 = (𝑝𝑗 = &𝑜 ∧ 𝑔𝑜𝑠𝑖 ) ? 𝑑𝑟𝑓(𝑝).𝑓𝑖 : 𝑜.𝑓𝑘

)︀
(5.4)

where 𝑝𝑗 , 𝑜.𝑓𝑘 are the relevant versions of the variables 𝑝 and 𝑜.𝑓 at program location 𝑖.5
The formula expresses the fact that 𝑜.𝑓𝑖 gets updated if 𝑝 equals the address of 𝑜, otherwise
its value remains unchanged; 𝑘 is the last program location before 𝑖 where the value of 𝑜.𝑓
was changed. The object-select guard 𝑔𝑜𝑠𝑖 , which is a freshly introduced unconstrained
Boolean variable, enforces that the value of field 𝑓 is changed in only one of the concrete
objects abstracted by 𝑜 while it remains unchanged in the other objects abstracted by 𝑜. If
𝑜 is not allocated in a loop (and hence representing a single instance), 𝑔𝑜𝑠𝑖 may be omitted.

Example For illustration, the assignment tail->next=p from Line 15 of Listing 5.1
will be translated into the following formula:

(𝑑𝑟𝑓(𝑙𝑖𝑠𝑡).𝑛𝑒𝑥𝑡15 = 𝑝13) ∧

𝑎𝑜7.𝑛𝑒𝑥𝑡15 =(𝑙𝑖𝑠𝑡phi10 = &𝑎𝑜7) ?

𝑑𝑟𝑓(𝑙𝑖𝑠𝑡).𝑛𝑒𝑥𝑡15 : 𝑎𝑜7.𝑛𝑒𝑥𝑡
phi
10 ∧⋀︁

𝑙=1,2

(𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡15 =(𝑙𝑖𝑠𝑡phi10 = &𝑎𝑜𝑙13 ∧ 𝑔𝑜𝑠15) ?

𝑑𝑟𝑓(𝑙𝑖𝑠𝑡).𝑛𝑒𝑥𝑡15 : 𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡
phi
10 ).

(5.5)

As mentioned above, the use of dereference variables may increase the precision of our
analysis. This happens in particular when we write into an abstract object through some
pointer and later read the written value back through the same pointer (or a pointer aliased
with it) without any change of the pointers and the concerned value in between. Then, we
get back exactly the value that we wrote, which would otherwise not happen due to the
joins involved.

Memory Free

Since the free operation has no effect on the heap reachability itself, we defer its discussion
to Section 5.3 devoted to checking memory safety.

5.2 An Abstract Domain for Heap Analysis
We will now work towards our template-based abstract domain suitable for reasoning about
properties of heap-manipulating programs, starting from a base shape domain and refining
it. We will show that, due to the fact that all domains in the considered approach are based
on templates, the new domain can be easily combined with other domains, e.g. for inferring
properties about numerical data of data structures.

4More complex assignments can be transformed into this form.
5A write to a dereference of the form *𝑝 to a non-structured object can be handled analogously, omitting

field 𝑓 from the formula.
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5.2.1 Base Abstract Shape Domain

In the considered approach, an abstract domain needs to have the form of a template—a
fixed, parametrised, quantifier-free first-order logic formula describing the desired property
of a program. As described in Section 2.4, templates are used to efficiently compute loop
invariants of the analysed program. These are used to constrain values of the loop-back
variables that are used in the SSA-based program encoding to over-approximate values
returning from the end of the loop to the loop head. Hence, a loop invariant describes
a property that holds for some program variables at the end of the loop body after any
iteration of the loop. Hence, we limit our shape domain to the set Ptr 𝑙𝑏 of all loop-back
pointers. Let 𝐿 be the set of all loops in the program. Since there is one loop-back pointer
variable for each pointer variable and each loop, we define Ptr 𝑙𝑏 = Ptr × 𝐿. We denote
elements (𝑝, 𝑙) ∈ Ptr 𝑙𝑏 by 𝑝lb𝑖 where 𝑖 is the program location of the end of the loop 𝑙.
Intuitively, the value of 𝑝lb𝑖 is an abstraction of the value of the pointer 𝑝 coming from the
end of the body of the loop 𝑙. The property that our base shape domain describes is the
may-point-to relation between the set Ptr 𝑙𝑏 and the set Addr .6

The template of our base shape domain has the form:

𝒯 𝑆 ≡
⋀︁

𝑝lb𝑖 ∈Ptr 𝑙𝑏
𝒯 𝑆
𝑝lb𝑖
(𝑑𝑝lb𝑖

). (5.6)

It is a conjunction of so-called template rows 𝒯 𝑆
𝑝lb𝑖

, each row corresponding to one loop-back
pointer from the set Ptr 𝑙𝑏. A template row 𝒯 𝑆

𝑝lb𝑖
(𝑑𝑝lb𝑖

) describes the may-point-to relation
for the loop-back pointer 𝑝lb𝑖 . The parameter 𝑑𝑝lb𝑖

⊆ Addr of the row (a so-called abstract
value of the row) specifies the set of all addresses from the set Addr that 𝑝 may point to at
the location 𝑖. The template row can thus be expressed as the quantifier-free formula

𝒯 𝑆
𝑝lb𝑖
(𝑑𝑝lb𝑖

) ≡
⋁︁

𝑎∈𝑑
𝑝lb
𝑖

𝑝lb𝑖 = 𝑎. (5.7)

Abstract values of template rows corresponding to pointer fields of abstract dynamic objects
allow the domain to describe unbounded linked paths in the heap, such as list segments.

Example In Listing 5.1, a list segment is created by the first loop. Objects in the segment
are linked through the pointer field next, and they are represented by the abstract dynamic
objects 𝑎𝑜113 and 𝑎𝑜213. In our base shape domain, the shape of this segment will be described
by an invariant for the first loop, specifically by the two template rows for 𝑎𝑜113.𝑛𝑒𝑥𝑡

lb
16 and

𝑎𝑜213.𝑛𝑒𝑥𝑡
lb
16. They will give us the formula⋀︁

𝑙=1,2

𝒯 𝑆
𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡

lb
16

(︀
{&𝑎𝑜113,&𝑎𝑜213, null}

)︀
(5.8)

where the rows 𝒯 𝑆
𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡

lb
16

are the formulae

𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡
lb
16 = &𝑎𝑜113∨

𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡
lb
16 = &𝑎𝑜213∨

𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡
lb
16 = null.

(5.9)

6Note that unlike the previously mentioned point-to relations, this relation is computed not just syntac-
tically but using the considered abstract semantics.
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These formulae say that the next fields of both 𝑎𝑜113 and 𝑎𝑜213 may either point to one of
the objects themselves or to null. This describes an unbounded linked path in the heap
composed of objects abstracted by 𝑎𝑜113 or 𝑎𝑜213 and terminated by null.

5.2.2 Shape Domain with Symbolic Loop Paths

Unfortunately, base shape templates are not precise enough for many heap-manipulating
programs. One often needs to allow the invariant of a loop to be able to distinguish which
loops were or were not executed while reaching the given loop. This can, e.g. distinguish
which objects were allocated and can hence be processed in the given loop.

To deal with the above problem, we introduce the concept of symbolic loop paths and
compute different invariants for different paths. Since we use loop-select guards to express
the control flow through the loops (see Section 2.3.2), a symbolic loop path is simply
a conjunction of loop-select guards.7 Let 𝐺𝑙𝑠 be the set of all loop-select guards of all loops
in a program. A symbolic loop path 𝜋 is then formally defined as 𝜋 =

⋀︀
𝑔∈𝐺𝑙𝑠 𝑙𝑔 where 𝑙𝑔

is a literal of the variable 𝑔, i.e. either 𝑔 or ¬𝑔. We use Π to denote the set of all symbolic
loop paths of a given program. A shape template extended with symbolic loop paths is then
given by the formula

𝒯 𝐿 ≡
⋀︁
𝜋∈Π

𝜋 =⇒ 𝒯 𝐺
𝜋 (5.10)

where the 𝒯 𝐺
𝜋 formulae are base shape templates as defined in Section 5.2.1. Here, 𝜋⊥

is a special path containing negative literals only. On that path no loop invariants are
computed since it corresponds to a program path where no loops were executed.

Example We now show invariants for the pointer 𝑝 for the second loop of the program
in Listing 5.1. Using our (trace-insensitive) shape domain, the corresponding template row
would be

𝒯 𝐺
𝑝lb22

(︀
{&𝑎𝑜113,&𝑎𝑜213, null}

)︀
. (5.11)

In other words, 𝑝 would be understood as possibly pointing to 𝑎𝑜113 or 𝑎𝑜213 even on paths
where they were not allocated. However, symbolic loop paths allow us to obtain two different
invariants depending on the execution of the first loop (for simplicity, we only provide the
appropriate template row).

𝑔ls16 ∧ 𝑔ls22 ⇒ 𝒯 𝐺
𝑝lb22

({&𝑎𝑜113,&𝑎𝑜213, null}) (5.12)

𝑔ls16 ∧ 𝑔ls22 ⇒ 𝒯 𝐺
𝑝lb22

({null}) (5.13)

Invariant 5.12 corresponds to the case when the body of the first loop is executed and
invariant 5.13 corresponds to the case when the body of the first loop is not executed.

5.2.3 Combinations of Domains

The true power of the template-based verification approach lies in the simplicity of domain
combinations. Since templates are general logical formulae, they can be easily composed,
forming abstract domains capable of describing more complex properties of programs while
relying on the solver to do the heavy-lifting on the combination of the domain operations
and the mutual reduction of their abstract values.

7The notion of symbolic loop paths can be easily generalised to program path sensitivity by including
branches of conditional statements too.
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Power Templates

The definition of shape templates with symbolic loop paths shows one way how a complex
template can be formed from a simpler one. In this case, the template parameter, i.e. the
abstract value, maps particular symbolic loop paths to sets of parameters of the original
shape template. In fact, the shape domain could be replaced by any other abstract domain.
The symbolic paths template can hence be viewed as a power template—in the sense of
power domains [19]—which assigns to each element of the base domain an element of the
exponent domain.

Product Templates

From the perspective of program analysis, a very interesting possibility is the combination
of the shape domain with an abstract domain capable of describing values of variables
of non-pointer types, e.g. numerical variables (such as the well-known interval or octagon
domains). The simplest way to achieve such a combination is to use a Cartesian product
template that combines templates of different kinds to be used independently side-by-side.
The proposed shape template with loop-back guards 𝒯 𝐺 from Section 5.2.2 can be combined
with a template for analysis of numerical values 𝒯 𝑉 by simply taking their conjunction,
i.e. 𝒯 𝐺 ∧ 𝒯 𝑉 . This not only allows us to analyse programs that use pointer and numerical
variables simultaneously, but also to reason about the contents of data structures on the
heap. We achieve this by analysing numerical fields of abstract dynamic objects using the
value part of the template.

In addition, we use this product template as the inner template of the template with
symbolic loop paths, forming an even stronger abstract domain: 𝒯 𝐿𝑉 ≡

⋀︀
𝜋∈Π 𝜋 =⇒ 𝒯 𝐺

𝜋 ∧
𝒯 𝑉
𝜋 . Using this domain for the running example allows us to analyse the shape and the

contents of the linked list at the same time, obtaining the invariants described in the
Chapter 5 introduction that enable us to prove the given property of interest.

5.3 Memory Safety Analysis
Apart from checking user-defined assertions, we can also verify memory safety. This includes
a number of properties: (1) pointer dereferencing safety, (2) free safety, and (3) absence
of memory leaks.

5.3.1 Dereferencing a null Pointer

Since our invariants are over-approximating the reachable program states, we can soundly
verify may (or better called must-not) properties. To check dereferences of null, for each
expression *𝑝 occurring in a program location 𝑖, we verify the assertion 𝑝𝑗 ̸= null where 𝑝𝑗
is the version of 𝑝 valid at 𝑖.

5.3.2 Free Safety

Free safety includes the absence of dereferencing a freed pointer and freeing an already
freed pointer (a so-called “double free”). To prove absence from these errors, we introduce
a new special variable fr initialised to null, which is then non-deterministically set to the
address of the object to be freed in a free call. We replace each call of the form free(p)
at program location 𝑖 by a formula fr 𝑖=𝑔𝑓𝑟𝑖 ?𝑝𝑗 : fr𝑘, where 𝑝𝑗 and fr𝑘 are the versions of 𝑝
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Table 5.1: Comparison of 2LS using the proposed method with the previous version of the tool over
the SV-COMP benchmark.

RS-Control RS-Heap MS-Heap MS-Linked MS-Other
cpu (s) score cpu (s) score cpu (s) score cpu (s) score cpu (s) score

2LS 252 64 41 106 17.5 59 107 7 29 46
2LS-old 1400 45 53 -161 190 -194 96 -182 23 46

and fr , respectively, valid in 𝑖, and 𝑔𝑓𝑟𝑖 is a free Boolean variable (a so-called free guard).
Treating fr as a standard pointer-typed variable allows us to over-approximate the set of
all freed addresses with the help of our shape domain. Then, in each program location 𝑖
where either *𝑝 or free(p) occurs, we can check for the assertion 𝑝𝑗 ̸= fr𝑘 to prove free
safety (here, 𝑝𝑗 and fr𝑘 are again versions of 𝑝 and fr , respectively, valid at 𝑖).

Even though this approach is sound, it is often too imprecise. Freeing one of the
concrete objects represented by an abstract objec does not mean that all the represented
objects were freed and that it is not safe any more to dereference/free the abstract object.
To improve precision, we modify the representation of malloc calls. At each allocation
site 𝑖, we add one more object 𝑎𝑜𝑐𝑜𝑖 to the set {𝑎𝑜𝑘𝑖 }. The object can be chosen as the
result of the allocation non-deterministically like any other 𝑎𝑜𝑘𝑖 , but it is guaranteed to
be allocated only once (by an additional condition checking that, upon its allocation, no
loop-back pointer can point to it). Hence, 𝑎𝑜𝑐𝑜𝑖 represents a concrete object. Then, for
each allocation site 𝑖, we only allow &𝑎𝑜𝑐𝑜𝑖 to be assigned to fr . The checks for free safety
described above are done on concrete objects only, avoiding possible imprecision stemming
from dealing with multiple objects represented by a single abstract object which would join
the possibly different values of these objects. Also, as 𝑎𝑜𝑐𝑜𝑖 represents an arbitrary concrete
object allocated at 𝑖, if safety can be proven for it, it can be assumed to hold for any other
object allocated at 𝑖.

5.3.3 Memory Leaks

Using fr , we then check whether some 𝑎𝑜𝑐𝑜𝑖 object may be not freed at the end of the
program. This allows us to discover memory leaks—if there is a leak, it must be possible
to show it on some concrete object. Unfortunately, as we do not track the sequencing of
abstract objects representing a set of objects allocated at an allocation site (even when they
form a list segment), our analysis typically sees that 𝑎𝑜𝑐𝑜𝑖 may be skipped in the deallocation
loops. Because of this, absence of memory leaks can only be proven for programs without
loops (or with loops that can be fully unwound).

5.4 Implementation
We implemented8 the proposed shape domain within the 2LS framework [45] that uses
the template-based verification method described in Chapter 2. We extended the SSA
form generated by the framework to handle dynamic memory allocation. 2LS is based
on the CPROVER framework [15], which includes an SMT solver based on reduction to
propositional logic. We used Glucose 4.0 as the back-end solver in our experiments. We
let 2LS inline all functions before running our analysis. For combination with numerical

8Available at https://github.com/diffblue/2ls/releases/tag/2ls-0.7.
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Table 5.2: Comparison of 2LS with other tools on examples combining unbounded data structures
and their stored data.

2LS CPA-Seq Predator Forester Symbiotic UAutomizer
Calendar 2.88 timeout false unknown timeout timeout
Cart 23.70 timeout false unknown timeout timeout
Hash Function 3.65 8.51 unknown unknown unknown timeout
MinMax 5.14 timeout false unknown timeout timeout
Packet Filter 431.00 timeout timeout unknown unknown timeout
Process Queue 6.62 7.68 timeout unknown timeout timeout
Quick Sort 18.20 3.50 timeout unknown unknown 5.75
Running Ex. 1.24 timeout timeout unknown timeout unknown
SM1 0.53 timeout 0.31 false timeout timeout
SM2 0.55 5.41 false false timeout 14.50

domains described in Section 5.2.3, we use the template polyhedra domain that is already
a part of 2LS. Our approach handles any sequential C program, however, invariants are not
inferred for array contents and memory manipulation using pointer arithmetic.

5.5 Experiments
We performed the experiments to show how our approach improves the performance of 2LS
and also how it compares to other state-of-the-art software verification tools.9 We used
BenchExec [5] to run the experiments with time limit set to 900 s and memory limit to
15GB. The first comparison was done on the subcategories of the SV-COMP benchmarks
[47] related to memory safety, particularly ReachSafety-ControlFlow, ReachSafety-Heap,
MemSafety-Heap, MemSafety-LinkedLists, MemSafety-Others. Tasks in ReachSafety are
checked for reachability of an error condition, tasks in MemSafety for absence of invalid
pointer dereference, invalid free, and memory leaks. We compared our implementation to
the version of 2LS from SV-COMP’17 without the proposed shape analysis.

The results are shown in Table 5.1. The proposed method significantly improves the
performance of the tool. Due to missing heap analysis support, the old version of 2LS often
reported wrong results and therefore it had a negative score in three subcategories. 2LS
with our analysis obtained a positive score in all subcategories and it is also faster in some
of them.

Although the results show an improvement, we are still unable to compete with the best
tools of SV-COMP’18 in the heap categories. This is mainly because our analysis does not
yet support pointer arithmetic and is not yet expressive enough to handle various kinds of
trees or nested lists.

However, the main purpose of our work was to extend possibilities of analysing com-
bined shape and value properties of programs. To evaluate, we performed an experiment
comparing our tool with the leaders of SV-COMP’18 in the heap-related categories, on
tasks combining manipulation of unbounded data structures with a need to reason about
the data stored in these structures. All these tasks10 are correct programs created by our

9All tools, benchmarks, and results are available here: https://pschrammel.bitbucket.io/
schrammel-it/research/2ls/fmcad18_exp.tar.xz.

10See https://github.com/diffblue/2ls/tree/2ls-0.7/regression/heap-data.
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team, since no such programs are part of the SV-COMP benchmarks yet. For each task, we
verify that no error state is reachable. The results of the evaluation are shown in Table 5.2.
Numbers in the table represent CPU time in seconds needed for the analysis of the example.
The value unknown means that the tool was not able to analyse the task.

On these benchmarks, 2LS outperforms the other tools significantly. Even tools spe-
cialised in shape analysis, Forester [25] and Predator [20], often report unknown, timeout or
even find a false error. This is probably caused by their inability to reason about the data
stored in the lists. More general tools such as Symbiotic [12] or Ultimate Automizer [26]
often time out since they probably lack an efficient abstraction for combination of shape
and value properties. CPAChecker [4] (in the CPA-Seq configuration from SV-COMP’18)
solved four tasks but times out on the rest.
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Chapter 6

Future Work

This work describes the research topic of the PhD thesis of the author which is a develop-
ment of a new shape analysis method suitable for the context of program verification using
template-based invariant inference, such as the one implemented in the 2LS framework.
The first part of the text presents theoretical concepts of the underlying approach, outlines
the current state-of-the-art of the shape analysis, and defines goals of the thesis.

The second part of the text presents the first results of our research. We have proposed
a simple shape abstract domain capable of describing the state of the heap that can be
easily combined with other analyses present in the 2LS framework. Experiments show that
this combination allows us to analyse properties of programs that other analysers are not
able to handle. However, this work still has a lot of limitations (e.g. see Section 5.3.3).

In the following work, we intend to extend the proposed domain so that it is able to
better describe properties of various shapes on the heap, with main focus on the linked lists.
Moreover, we want to explore further possibilities of domain combinations that could allow
us to analyse complex properties of heap structures, such as pointer offsets, list sortedness,
or relations between contents of dynamic data structures. Even though the main focus of our
work will be on programs with various kinds of lists, we will also consider its generalisation
to the much more complex case of trees and their various extensions.

To go even further, we intend to examine combination of shape analysis with less tra-
ditional analyses, e.g. with termination analysis or with resource bounds analyses or to ex-
plore verification of concurrent heap-manipulating programs which in the context of analysis
in 2LS is a completely new area.
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