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Chapter 1

Introduction

Phoneme recognition is very important part of automatiesperocessing. Phoneme strings can
transcribe words or sentences and the storage space ismaty dt can be applied in many ar-
eas of speech processing — in large vocabulary continuoceschprecognition, keyword spotting,
language identification, speaker identification, topiedeon, or in much easier tasks like voice ac-
tivity detection. N-grams of phonemes are easily indexatierefore phoneme recognition can be
a basic part of systems for search in voice archives. In ptadicdanguage identification, topic de-
tection or speaker identification, the language, topic @akpr can be represented by a phonotactic
"language” model modelling dependencies among phonemglsaneme strings. The accuracy of
phoneme recognizer is crucial for the accuracies of all tleatroned technology! Therefore it is
worth to investigate phoneme recognition and it is worthdgedop as accurate phoneme recognizer
as possible.

The thesis is focused on the main part of phoneme recognaioacoustic modelling techniques.
There are many other related issues, like channel norni@izachannel and speaker adaptation,
multilinguality, robustness in noise, but these issuesatenvestigated in detail

People recognize words from quite long temporal contextn&ones we realize what was said
even after few seconds, minutes or days. It depends on thiéycprad complexity of a model of the
world we have in our heads. We are still far away form such rhotleis work investigates a basic
model of phoneme and it tries to get as much as possible frencdhtextual information. Much
longer temporal context than usual is used.

The main effort is given to a hybrid Artificial Neural Netwofkidden Markov Model approach.

1.1 Motivation

The main motivation for this work is the wide range of applicas/tasks that the phoneme recogni-
tion affects. Improving phoneme recognition is not linkedust one particular problem but to wide
ranges of problems. Phoneme recognition is not a closed baan be seen as an application of
investigated acoustic modelling techniques. A better tstdading of these techniques can allow us
to better react to other needs in speech processing.

Another motivation was my study and then employment in Sip@del T speech processing group
at Brno University of technology and a stay at Oregon Graglirattitute. The groups were already
investigating speech modelling techniques and featurssdban a long temporal context. But that
time the techniques were used almost blindly. Deeper utatedsg helped to speed up the research
and motivated research in another areas.



1.2

Original claims

In my opinion, the original contributions — “claims of thisdsis” can be summarized as follows:

Extensive comparison of phoneme recognition systems basédferent structures of Artifi-
cial Neural Networks (ANN) and Gaussian Mixture Models (GYMM

Detailed study of Temporal Pattern (TRAP) based systemtargimplification.

Definition of a split temporal contexts (STC) system reaghiary good phoneme recognition
results.

Tuning of phoneme recognizers — applying and studying comspeech recognition tech-
niques that can decrease the phoneme error rate.

Studying of phoneme recognizers on different databases, wairying amounts of training
data, in noise and in cross-channel condition.

Application of the long temporal context based phonemegezer to language identification,
keyword spotting and voice activity detection.

Discussion about techniques that can help to accuratetyrieural networks in speech recog-
nition.



Chapter 2

Baseline systems

This chapter concentrates on the basic phoneme recogmtiperiments with HMM/GMM and
HMM/ANN systems and novel TRAP based techniques. In ord&etcomparable to state-of-the-
art, all results are reported on TIMIT.

2.1 What system as baseline?

The Temporal Pattern (TRAP) system was taken as baselins.system was known to give bet-
ter results than conventional techniques (HMM/GMM with MBXOn some cases [7] (mainly in
cross-channel conditions), and the ANN features (posterimbabilities of phonemes) were known
to be complementary features for MFCCs or PLPs [9]. But thveais no detailed understanding
of the whole approach, therefore the TRAP system is studiBlde TRAP system is compared
to some conventional systems based on MFCCs. There is adpgbstween the TRAP system
based on HMM/ANN hybrid and a HMM/GMM based on MFCCs, therefthe HMM/ANN and
HMM/GMM are compared on MFCC features at first and then the PR#stem is compared to a
HMM/ANN hybrid based on MFCCs.

2.1.1 HMM/GMM

All the GMM experiments are done with the HTK tookifThe features aré/ FCC'+ Cy+ A +AA
(together 39 coefficients). This feature set s referred BEM39. The HMM models were initialized
to global means and variances. Then the models were reastimall the Gaussians split to two
and re-estimated again. This was repeated up to 256 Gass3ia@ recognition was done using the
HVite decoder.

2.1.2 HMM/ANN

The HMM/ANN hybrid is based on the SVite decoder and the QN&tkANN softwaré. The SVite
decoder is a part of BUT STK toolRit The input features arg#/ FCC + Cy + A + AA or other
features derived from Mel-bank energies in later experitsieNeural networks are trained to map
input features to phoneme posteriors according to harddgbach feature vector is assigned to one
phoneme).

http://htk.eng.cam.ac.uk
2http://www.icsi.berkeley.edu/Speech/gn.html
3http://speech.fit.vutbr.cz/en/software/hmm-toolkit- stk-speech-fit



2.1.3 HMM/GMM and HMM/ANN based on MFCCs with one state model

This experiment compares HMM/GMM system and HMM/ANN hybrid@he input features are
MFCC39. The numbers of parameters in GMM or ANN were founchsuay that the decrease in
phoneme error rate caused by adding new parameters is idgligihis procedure was used also in
all following experiments. The final number of Gaussian miigs is 256 and final number of neurons
in the hidden layer is 500. The results are in Table 2.1. Tisesbmost no difference in PER (0.3 %),
so if the features are well adapted to the model and the trgiprocedure is optimal, it should be
possible to reach similar results with both HMM/GMM and HMAMNN systems. Table 2.2 shows
the number of parameters in both systems. The HMM/ANN sy&éfmparameters compared to the
HMM/GMM system.

| system| ins | sub | del | PER]|
GMM | 4.1 18.7| 15.2| 38.0
AMM | 47| 20.6| 12.4| 37.7

Table 2.1:Comparison of HMM/GMM and HMM/ANN based on MFCCs with omgestnodel.

system # parameters
(floating point numbers

GMM 788736

NN 39539

Table 2.2:Comparison of numbers of parameters in HMM/GMM and HMM/ANMens based on MFCCs.

2.2 Basic TRAP system

The TRAP system is shown in detail in Figure 2.1. Speech imseged into frames 25 ms long
and for each frame, mel-bank energies are calculated. Texh@amlution of energy for each band is
taken (101 values = 1 second), normalized to zero mean ahdamance across the temporal vec-
tor, windowed by Hamming window and then normalized to zeemans and unit variances across
all training vectors. This is beneficial for the ANN as it issemed that all inputs have the same dy-
namics. For testing, the later normalization coefficiemésret calculated but taken from the training
set. Such prepared temporal vectors are presented to baral networks. These neural networks
are trained to map temporal vectors to phonemes. A vectohoh@me posterior probabilities is
obtained at the output of each band neural network. The posfaobabilities from all bands are
concatenated together, the logarithm is taken and thi®rvecpresented to another neural network
(merger). The merger is trained to map the vectors to phoeesgain. The output is a vector
of phoneme posterior probabilities. Such vectors are tleenh ® the Viterbi decoder to generate
phoneme strings.

2.2.1 Effect of mean and variance normalization of temporalector

The mean and variance normalization of temporal vector make TRAP system more robust
against channel change. The normalizations works simyiks| cepstral mean and variance nor-
malizatiorf, commonly applied in MFCC.

“Cepstral coefficients are extracted from Mel-bank energjethe DCT transform. DCT is a linear transform.
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Figure 2.1:Block diagram of the TRAP system.

The mean normalization can be seen also as a temporal @feaiimilar to RASTA [5]. A change
in the length of temporal vector affects characteristictheffilter. There is no visible benefit from
tying the temporal vector length and the window length foamand variance normalization. Both
can be tuned separately. This normalization was disablpdriormed experiments. The main focus
of this thesis is on the acoustic modelling and if this norzaion is applied, it can influence other
parameters, mainly the optimal length of temporal context.

2.2.2 Windowing and normalization across the data set

The window used to select the trajectory out of the evolutiberitical band energy has no effect in
the TRAP system. The window is canceled out by the mean arnane& normalization across the
training data set:

g=X"H 2.1)
o

wherex is normalized vectorx is input vector. 4 and o are mean vector and vector of standard
deviations, both estimated from all vectors in the trairseg

p== > (2.2)
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F is the number of frames in the training set. When equatioAsad 2.3 are substituted into
equation 2.1, it can be easily seen that both vectors witlghtgig window applied and without
weighting window are equal after normalization.

wx-b5lwx _ x-iylx
2 2

F F F F
JESE e = (2 w)\[EDE - (22 )

w is weighting window vector.

(2.4)

2.2.3 Mean and variance normalization across the data set @nANN training

This normalization is related to the training of neural netké. The main benefit from it is a faster
training and reduced chance to get stuck in a local minimanduwriterial function optimization.
The effect of the normalization is illustrated in Figure 2L2t’s suppose just one neuron with two
inputs:

y = F(wiry + woxs + 1) (2.5)

wherey is the output of the neuroi; is a nonlinear output function (for example sigmoid),and
wo are weights (we want to train themy), andzx, are inputs and is a threshold (also trained). The
weights and the threshold are set randomly in certain dyaaamge at the beginning of the training.
The dashed line defining division of spadws the neuron is:

0= 1ﬁ1$1w—|2— WoT 2 j‘ t (26)

1 = —w—lxg — w_l

The threshold moves the discrimination line up and down. The points regresvo classes in fea-
ture space (for example phonemes). They can be far away frewenter of axes if no normalization
is applied. Itis necessary to run many training iteratiasbve the discrimination line closer to the
data clusters (Figure 2.2a). If only mean normalizatiorpslied, the dynamic range of weights and
threshold is not necessarily appropriate to the dynamigeaf data. The discrimination line can
be even out of the data points and again, the training willmaere iterations (Figure 2.2b). Figure
2.2c shows the data points after mean and variance norriatiza

2.2.4 Comparison to systems based on classical features

In this section the TRAP system is compared to two classigstesns: a hybrid system based on
MFCC39 and a hybrid system based on multiple frames of MFCOB8@ optimal number of con-
sequent frames for the multiframe system was experimgntalind to be 4. The TRAP system
reached slightly better PER than the MFCC39 multiframeesystut the improvement to the pure
MFCC39 system is significant. The results are in Table 2.3.

5In this case a 2D plane
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Figure 2.2: Effect of mean and variance normalization across data sete-dlass example: a) without
normalization, b) with mean normalization, c) with mean aadance normalization.

\ | ins | sub| del | PER]

MFCC39 471206 12.4| 37.7
MFCC39 -4 frameg| 5.5 | 19.0| 9.6 | 34.1
TRAPS —1second | 4.3 | 18.6| 10.9| 33.8

Table 2.3:Comparison of systems based on MFCC to the TRAP system.

2.2.5 Optimal length of temporal context

The one second long temporal context, usually used in titexd6], is not necessarily optimal.

Some weights of neural networks could be uselessly spentds pf temporal context with a
little relevant information. We may also not have enougimtrey data to extract this information.
Therefore the optimal length was found experimentally. [Emgth of TRAP is being increased from
100 ms to 1 second and the PER is evaluated.

It is very important not to use mean and variance normabnati temporal vector for this exper-
iment. These normalizations dramatically increase PERIiort contexts and bias the experiment.

Table 2.4 shows the results. The optimal length is about 386-00 ms. It means using
150 ms+ 200 ms to the future and 150 ms 200 ms to the past. The optimal temporal context
length is shorter than the 1 s used by other authors. Thetlfatshorter input is effective may have
positive implications in applications where minimal alglomic delay is required. During other
experiments not described here, the optimal length wasdaardepends on task (it is longer for
digit recognition), on the size of neural network and on theant of the training data. The PER is
already much better than for the MFCC39 multiframe systeritkwis a proof that longer temporal
context is usefull.

| length (ms)|| 110 | 210 | 310 | 410 [ 510 | 610 | 710 | 810 | 1010 |
[ PER(%) [ 33.6]31.3[31.3]31.3]31.6]32.0[32.2[32.6] 33.8]

Table 2.4:Effect of temporal context length in the TRAP system.

2.2.6 Discussion

The main motivation for the TRAP system presented in liteeats greater robustness against chan-
nel change and noise due to independent processing of fiegirand and ability to extract infor-

12



mation from a longer temporal context.

The later motivation was verified to be correct. The longergeral context brings new informa-
tion and moves data points representing different phonéonteer apart in feature space. Therefore
the system is more robust.

The former motivation was not verified yet. The greater robess can come from mean and
variance normalization of temporal vectors (not applieceheBut the normalization can be done
separately on in the structure of a classifier. The hieraathgtructure of neural networks can still
perform just a nonlinear mapping function. It is not able talfivhich information is incorrect and
selectively discard this information.

The purpose of band neural networks needs a deeper invastighe experiments indicate that
the purpose of these nets is not classification to phonemessimple decision in merger, but rather
a data preprocessing for merger. Otherwise the optimal éeahpontext length would be similar for
both the bands and the whole system.

2.3 Simplified system (one net system)

The TRAP system is complex and runs slowly. Even the expetisnare slow, therefore the TRAP
system is simplified. The simplification is necessary alscaftvetter understanding of the whole
system.

The band neural network represents a nonlinear mappingi@umd_et us replace this nonlinear
function with a linear one: a linear transform is estimatestéad of neural network weights and
biases. And let’s go further and omit the mapping to phoneriiég assumption is that the useful
information is characterized by a variance in data. Thedijsad Component Analysis (PCA) is used
to estimate the linear transform. One transform is estichéde each band. The base components
are very similar to Hamming window weighted Discrete Coslirensform (DCT) bases, therefore a
simplification to DCT was also tested. An experiment confairtteat the DCT degraded the results
negligibly, therefore the DCT transform is used in the faling experiments. A dimensionality
reduction follows the linear transform. Network trainingrcbe helped by optimal choice of the
dimensionality of input feature vector.

\ | ins | sub | del | PER]
simplified system| 3.7 | 16.6| 9.6 | 29.9
TRAP system 4.1|17.4| 9.8 | 31.3
TRAP + DCT 4.0 (17.3] 9.8 | 31.1

Table 2.5:Comparison of simplified system and the TRAP system.

Comparison of the simplified system to the TRAP system in $aoffPER can be seen in Table
2.5. The length of temporal vectors is 310 ms and 16 DCT caoefiis were kept. The experiment
showed that the linear transformation is enough. The siraglsystem gives even better results than
the complex TRAP system.

For investigation of the effect of nonlinear transforms nds, the DCT and dimensionality
reduction were applied also before band neural networkeeniRAP system. This was done pre-
viously by FrantiSek Grézl but without any explanatiof{23. This approach reached better result
than the TRAP system but worse than the simplified systens dduld mean that band neural net-
works do something similar as chain of windowing, DCT and elisionality reduction. This chain
is discussed thoroughly in the following subsections.

13



2.3.1 Weighting of temporal vectors and DCT

The weighting of temporal vectors has no effect in the TRABtay. It was canceled out by the
subsequent normalization. The situation changed in thplgied system, the weighting start to be
beneficial. Let us see an experiment. The simplified systestkaned with and without DCT and
with or without Hamming window. The results are in Table 2.6.

The first two rows indicate that it does not matter whethervivedow is applied or not if the
DCT is not applied. Precisely, the result with window is evarse, but this can be just a bad luck
as the training algorithm got stuck in a local optimum. If €T is applied (third row), the result
is significantly better. The improvement comes from smaligiterns (less parameters at the input
of the network). The dimensionality reduction implies tlaetfthat the temporal trajectory can be
down-sampled twice without any degradation in accuracys Tiad been already found in [8] and
[4]. The DCT with dimensionality reduction can be also seea &ind of temporal filtering, similar
to RASTA [5]. Here, smaller and smoother patterns imply leagable parameters in the neural
network and less chance to get stuck in local optimum dutwegraining. If the window is applied
together with DCT (last row), the result is even better. ThHeTDsaved the window and it was not
canceled out by the normalization! The window attenuatésegaat the edges of temporal context,
so the training algorithm can focus to the center of the cdrdaring the initial phase of training.

\ [ ins | sub | del | PER]
no window, no DCT|| 4.2 | 18.0| 10.4| 32.6
Hamming, no DCT || 4.0 | 18.5| 10.5| 33.0
no window, DCT 4.2|17.3| 9.2 | 30.7
Hamming and DCT|| 3.7 | 16.6| 9.6 | 29.9

Table 2.6:Effect of windowing of temporal vectors (PER).

Why is the attenuation important? The answer can be foundstodgrams of values at different

places of the temporal vector. The histogram is narrow ferdénter (the variance is low). Then
the width grows and it is the highest at the edges. The ti@jgach feature space representing a
phoneme is affected by neighboring phonemes. The DCT widgscribe the input pattern by first

few bases in such a way that the variance in the pattern iemmed. The DCT features must be
definitely focused to the edges if no window is applied. Thedew allows to describe the central
part of context with a better resolution.

2.3.2 The Discrete Cosine Transform as a frequency filter

The DCT applied to temporal vector can be seen as a moduliméquency band-pass filter. What
are the important frequencies that needed to be modelle@?|oiWer frequency limit is given by
the length of temporal vector. If the length is higher, loreguencies can be modelled. The upper
frequency limit is given by the number of used DCT coefficeenBut the number required DCT
coefficients to keep a constant upper frequency limit grolse avith the length of the temporal
vector. Is it better to keep the input for neural network ¢ansand model narrower frequency range
for longer context, or is it better to increase the input apdikthe frequency range constant? The
following experiment gives answers to these questions. dgtenal length of temporal context is
evaluated for fixed number of DCT coefficients (1%3) and then the number of DCT coefficients
is varied according to equation:

context_length

Npor = 5 +1 (27)

14



This equation ensures fixed upper frequency limit. The cdriength is in frames (10 ms units).

The results are in Table 2.7 and in Figure 2.3. Both lowerdestpy and upper frequency limits are
reported. The optimal length of temporal contexts is ab@® @s for both cases. This is similar as
for the TRAP system. It is definitely better to keep the uppegdiency limit constant (to increase
the number of DCT coefficients), as can be seen from the figure.possible to get an additional

information using a longer temporal context, but it is nesaeg to model the whole trajectory with

equal variance (detail) as before.

length (ms) 110 | 210 | 310 | 410 | 510 | 610 | 710 | 810 | 1010
lower f,, (Hz) | 46 | 24 | 16 | 1.2 | 10| 0.8 | 0.7 | 06 | 05
fixed | upperf,, (Hz) | 68.2| 35.7| 24.2| 18.3| 14.7| 12.3| 106| 9.3 | 7.4
#DCT | # DCT 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 16
PER (%) - - 129.9|30.2|30.8|32.4| 33.9|35.7| 39.6
varied | upperf,, (Hz) | 22.7| 23.8| 24.2| 24.4| 245| 24.6| 24.7| 24.7| 24.8
#DCT | #DCT 6 11 | 16 | 21 | 16 | 31 | 36 | 41 | 51
PER (%) 345|30.8/29.9| 30.4|30.6|30.8| 31.5|31.3| 324

Table 2.7: Effect of temporal context length for fixed and varying
modulation frequency).

nundfeDCT coefficients (the,, is

— fixed # DCT
— — varied # DCT
1 1 1 1 1 1 1 1 1

200 300 400 500 600 700 800 900 1000
context length (ms)

28
100

Figure 2.3:Dependency of PER on temporal context length for fixed anddaumber of DCT coefficients.

2.4 Study of amount of training data

The phonemes are represented by trajectories in the fegpaae. There is not one trajectory for
one phoneme, but many. The number grows with the length gbdeah context. Let us consider
one phoneme: this phoneme can be affected by 39 phonemes [@fttand by 39 phonemes on the
right. Each of these phonemes can be affected by 39 otheesndimber of trajectories will grow
exponentially.

Let’s study the amount of data we have in the database faindeingths of the temporal context.
The average phoneme length is a good unit for measuremeattatk can be simplified and the n-
grams statistics can be used

Table 2.8 shows the coverage of n-grams in the test part of Thtabase. The most important
columns are the third (numbers in brackets) — percentagegséms occurring in the test part but
not in the training part, and fourth — error which would be ®adi by a decoder if the unseen n-grams

5Note that we never use those n-grams in phoneme recogrittistjust a tool to show amounts of sequences of differergtlesi
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are not allowed. The error is calculated by sum of occurrsemmé@inseen n-grams divided by sum of
occurrences of all n-grams:

error = M (2.8)

ZieA ¢ (nl)
N is a set of unseen n-gram4,is a set of all n-grams and (n;) gives number of occurrences of
n-gramn; in the test part of database.

For bi-grams, there ar226 % of unseen cases but this amount causes almost no ertér%).
The situation is much worse for trigrams witl.83 of unseen cases causiig0 % of error. Itis
almost impossible to model four-grams duetto10 % of error. These errors can be expected to be
smaller in case of larger databases but still the maximursipleslength of context seems practically
to be three times or four times phoneme length due to exp@ignowth of error.

To conclude, the most limiting issue for a system based og temporal context is the amount
of training data because the demand for data grows expatgmiith the temporal context length.
This situation force us to look for a way around. One solut®to collect huge databases. Current
systems use more than 1000 hours of training data [1]. Thagesyjust 2.5 hours. The collecting
and annotation of new databases is very costly. But it is thstinused way today. Another solution
is the development of clever algorithms. This way is choserHis thesis.

n-gram || # different #notseenin | error
order n-grams the train part (%)
1 39 0(0.00%)| 0.00

2 1104 25(2.26%)| 0.13

3 8952 | 1686 (18.83%) 7.60

4 20681 | 11282 (54.55%) 44.10

Table 2.8: Numbers of occurrences of different n-grams in the test pathe TIMIT database, number of
different N-grams which were not seen in the training pad arror that would be caused by omitting unseen
N-grams in the decoder.

16



Chapter 3

System with split temporal context (LC-RC
system)

3.1 Motivation

The study of amount of data needed to train a long temporakegbibased system (section 2.4)
showed that very large databases are necessary. A devalophtechniques that need less data and
limit the cost spent on data collection and annotation wdaeadbeneficial. This chapter investigates
one such technique. This technique is inspired by the fanaf band neural networks in the TRAP
system and Table 2.8.

If we are not able to classify long trajectories in the featspace because there are simply many
of them and very big portion was not seen during training uketo split the trajectores into more
parts.

These parts can be modelled separately and then the resnlb®anerged together. An assump-
tion of independence is done. Obviously by the split, a phirtformation is lost.

Let us see what will happen if the trajectory is split into tyarts on n-gram statistics. All
trigrams were split into two bigrams. The error caused byeenstrigrams 7.60 % was replaced by
two times the error of bigrams which is only>2 0.13 % = 0.26 %. For four-grams, the error was
reduced from 44.10 % to just 15.2 %. The reduced errors arenguiped in Table 3.1.

n-gram || # different #notseenin | error | reducted error‘

order n-grams the train part (%) (%)
2 1104 25(2.26%)| 0.13 0.00
3 8952 | 1686 (18.83%) 7.60 0.26
4 20681| 11282 (54.55%) 44.10 15.2

Table 3.1:Effect of splitting trajectories into two parts — reducedags. All other columns are unchanged.

3.2 The system

The experimental system is derived from the simplified systiescribed in section 2.3. The Mel-
bank energies were extracted and the 310 ms long tempotaks¢81 values) of evolution of critical
bank energies were taken. Each temporal vector was sgitwu parts — left part (values 0 - 16) and
right part (values 16 - 31). Both parts were windowed by cgponding half of Hamming window
and projected to the DCT bases. 11 DCT coefficients were kepdch part. Such preprocessed
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vectors were concatenated together for each part of cosgpdrately and sent to two neural net-
works — these are trained to produce phoneme posteriorgasymas in the TRAP system. Output
posterior vectors are concatenated, transformed by litg@arand sent to another (merging) neural
network trained again to deliver phoneme posteriors. Kindde phoneme posteriors are decoded by
a Viterbi decoder and strings of phonemes are produced. Hodevprocess is illustrated in Figure
3.1. This system is called the Left context — Right contestem, or shortly LC-RC system.

extraction of
mel-bank energies

i — L0

trac ¢ linear mean and variance
extraction o windowing . normalization across context classifier
temporal vectors transformation train data set
1..23 band D CT
concatenation
i i | Left part ﬂ
- l L ‘ -l —
i L ‘I v! !
.#l ] | |:|
1..23 band \ DCT : i I @:
Right part
mean and variance
logarithm normalization across  merger classifier Viterbi decoder

train data set
<,
|| I_ﬁ@: || II | pauhhae
}7@ / N | ow pau
<D,

Figure 3.1:Block diagram of the Split Temporal Context system.

3.3 First result and comparison to the simplified system

The LC-RC system was compared to the simplified system. Theétseare in Table 3.2. The RC-
LC system reached significanlty better result. The motoratvas proven to be correct despite the
independence assumption.

| system | ins| sub | del | PER]
simplified || 3.7 | 16.6| 9.6 | 29.9
LC-RC 40|15.4]9.0| 284

Table 3.2:Comparison of the LC-RC and simplified systems.
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3.4 Modelled modulation frequencies

Where the improvement in the LC-RC systems comes from? Thewiog experiment tries to
answer the question. The optimal number of DCT coefficiersts fwund for the left context. Table
3.3 shows the results. It is the best to include 14 DCT coefiisi (almost all).

Now let us compare modulation frequencies modelled by ba¢hLiC-RC and the simplified
systems. The comparison is in Table 3.4. The upper limit fodelled frequencies is much higher
for the LC-RC system. The LC-RC system models the trajectattylower variance (higher details).
The two blocks also increase the temporal resolution. Theaneing question is the drawback of the
LC-RC system coming from not seeing frequencies bellow HB.7Removing’, in the simplified
system causes increment in PER as the information abouitaleshifts in different bands is lost and
is not seen by the network. However the lost in PER does n@&deRe %.

# coef 6 8 9 10 | 112 | 12 | 13 | 14 | 16
upperf, (Hz) || 16.7| 23.3| 26.7| 30.0| 33.3| 36.7 | 40.0| 43.3| 50.0
\ PER (%) H 36.9\ 36.0\ 35.7\ 35.7\ 35.4\ 35.5\ 35.4\ 35.2\ 35.4\

Table 3.3:Optimal number of DCT coefficients (includidg) for the left context in the LC-RC system and
corresponding modulation frequencies.

system context length| optimum # coefs lower f,,, | upperf.,
(ms) Q) (Hz) (H2)

simplified system 310 16 1.67 25.00

LC part 160 14 3.33 43.33

Table 3.4:Comparison of minimal and maximal modulation frequenadegHe left part in the LC-RC system
and the simplified system.

3.5 Optimal lengths of left and right contexts

The previous experiment showed that the upper limit of matioh frequency used by the LC-RC
is significantly higher than for the simplified system. If wavie a more capable classifier, is not
it worth to extend also the temporal context? At first, let ugleate the optimal temporal context
length for context networks. The results are in Table 3.5e mmber of DCT coefficients was set

according to equation:
21
n=int | 22 (3.1)
3 10
This equation ensures the upper limit of modulation frequeshconstant (about 33 Hz). The opera-
tor "int” is rounding to the first lower integer.

[len(ms) [ 100 | 120 | 140 [ 160 | 180 | 200 | 220 | 240 | 260 | 310 [ 360 | 410 |
LCPER (%) ] 36.5] 36.0| 36.3| 35.4] 35.8| 35.1| 35.2| 35.4| 35.8| 35.9] 35.8] 36.5
RC PER (%)|| 37.8| 38.0| 37.4| 37.7| 37.2| 37.1| 37.2| 37.5| 37.3| 37.4| 37.7| 38.1

Table 3.5:0ptimal length of left and right temporal contexts in the RC-system.

The minima for both contexts are at 200 ms. This is intergstiecause the full context is about
400 ms which is closer to the optimum for band neural netwarkise TRAP system seen in section
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[Ten (ms) [ 270 [ 310 [ 350 | 390 | 430 [ 470 [ 510 | 550 |
13DCTs|[ 285] 27.9| 27.8[ 27.8| 27.8| 27.6| 27.8| 27.9
16DCTs| - |28.3|28.0]27.8|27.9|27.6|27.8|278

Table 3.6:Optimal length of temporal context for the whole LC-RC system

??, where we know that useful information for classificatiorcantained. The beginning of both
graphs in Figur@? seems to be quite noisy. The peaks partially disappear ie@&T coefficients
are used. This suggests that the DCT transform is not thecheste to model higher modulation
frequencies. The PER is better for the left contexts. Thigciates that the signal at the beginning of
phoneme is more important.

3.6 Optimal length of temporal context for the whole LC-RC system

An optimistic result from the previous section does not eashat the whole system will use all the
400 ms given by sum of both optimal context lengths. Thesetbe same experiment was repeated
for the whole system. Both contexts have the same lengtls.tithe, the number of DCT coefficients
was fixed to ensure stability in the initial part of graph. Tesults are in Table 3.6. The optimal
length is even higher than the sum of optimal lengths for mmthtexts! The optimal lengths of
contexts for merging differ from the context lengths withnimal PER. The final part of the graph
(crossing lines) shows again that it is important not to ¢tthe upper modulation frequencies.

3.7 Discussion

This chapter proved that the information usable for recthigmiof a phoneme is spanned across
almost 500 ms. And we are actually able to extract the infeilon&This chapter also brought more
insight to the training of neural networks. It is beneficialimtroduce some reasonable constrains
coming from the task.

Although we see the optimal parameters, the later expetsrae done with a shorter temporal
context (310 ms) and less number of DCT coefficients (11 petestt). The reason is comparison
with the baseline systems, and also a faster turnover ofrempats.
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Chapter 4

Towards the best phoneme recognizer

The previous two chapters described the development of d gboneme recognizer. The next goal
described in this chapter was is to improve it as much as plesky adding techniques commonly
used in speech recognition.

4.1 More states

One of the most common techniques in speech recognitiontate sodels. The main purpose
of states is the selection of particular views at featurebe @lecoder proposes new direction of
trajectory and a model in a state verifies whether the dwads correct or not. It is similar as if
someone advices us a route. We can verify that we are stil®ndute according to some important
objects at different places of the route. The more impordptcts we see the more sure we are.

Features based on long temporal context and ANN can see mgortant objects from one
point. But the main benefit of states comes during the trginifhe training algorithm is focused
to certain parts of phonemes. We guide the training. Thededpatterns are easier and sharp.
The weights are associated with certain parts of phonemenacakse of increasing the number of
parameters of the network, we have a chance to decreaseadne er

The hierarchical structure of neural networks also ben&fiis states during recognition. The
lower network (band or context network) roughly estimatgdaee (state) where the recognition is
in the feature space. The position is more precise with ntates. The upper network (merger) uses
the knowledge about this place and it can focus on details.

Another benefit is minimum phoneme duration. If three statslets are used, the minimum
duration of phoneme is 30 ms. This is good to prevent the d&adoom switching of one phone to
another, although this can be also enforced by repetiti@xisting HMM states or setting appropri-
ate phoneme insertion penalty.

4.1.1 Implementation of states

The parametrization and neural network structure is ungédrior this approach. The neural net-
works were trained on force-aligned state transcriptiortse decoder was modified to force a pass
through the state sequences in phoneme models. The phonedetsmare left-to-right with no skip
states.
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Figure 4.1:Different time and/or frequency split architectures: a) THRgystem, b) LC-RC system, ¢) 2 x 2
system

4.1.2 Results

The realignment does not bring any improvement for oneestatdels. Three iterations were suf-
ficient for three-state models. Different one-state systamd three-state systems are compared in
Table 4.1.

| system | 1state| 3 states| difference]
MFCC,9 frames 39.9 35.6 4.3
MFCC39 37.7 32.8 4.9
MFCC39,4 frames 34.1 29.9 4.2
simplified system310 ms, 11 DCTs) | 29.9 28.7 1.2
3 band TRAPs 29.2 25.8 3.4
LC-RC system 28.5 24.4 4.1

Table 4.1:Comparison of 1-state and 3-state systems

The three state systems are able to significantly reducenitregme error rate. The LCRC system
profits about 4.1 % from the 3-state system. The simplifietesydas the smallest reduction.

4.2 Other architectures

All the previous experiments indicated that the clue todaigood recognizer based on HMM/ANN
is the ability to focus the training algorithm on well defineoherent segments with as descriptive
features as possible. Let us experiment with some morentariaf the TRAP and the LC-RC
systems.

4.2.1 How many bands in the TRAP multiband system are optim&l

If the number of joint bands is small, the band neural netvaar&s not have enough information for
classification, the error rate is higher and the input patter merger is very difficult. If the number
of joint bands is higher, the band neural network input pagistart to be difficult. A tradeoff must
be found. The optimal number of joint bands is evaluated ild4d.2. For wideband speech, the
optimal number is 5. Another experiment showed that 3 isnegltfor narrow band speech.

4.2.2 Split temporal context system (STC) with more blocks

The trajectory in feature space representing phoneme capliiento more than two parts and a
generalization of the LC-RC system can be done (see Figai®.4ln this experiment the optimal
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| #bandspernet 1 | 3 | 5 | 7 [ 13|
| PER (%) | 28.2] 25.8] 24.8] 24.9] 256 |

Table 4.2:0ptimal number of joint bands for band neural network in th&&@e multiband TRAPS system

|#blocks| 1 | 2 | 3 | 5 |
| PER (%) [ 26.8| 24.4] 24.2| 23.4]

Table 4.3:0ptimal number of blocks in 3-state split temporal contgsteam

number of parts is found. The input temporal vectors ard $plP, 3 and 5 parts. The Hamming
windows are applied to all parts followed by dimensionalégluction to 11, 8, and 5 bases by DCT.

The tradeoff must be found even here. If the number of padeeases, the input pattern for
merger also increases and starts to be difficult. The resaift®e seen in Table 4.3. The best number
of blocks is 5. It may be even more, but this was not evaluatdee-system starts to be slow and
impractical.

4.2.3 Combination of both — split in temporal and split in frequency domain

The system is called "2 x 2 system” — two temporal parts andfteguency parts (see Figure 4.1c).
The system contains 5 neural networks (4 blocks and 1 mergke) preprocessing is similar to the
preprocessing for the LC-RC system.

4.2.4 Comparison of the TRAP, STC and "2x2” architecture

The architectures are compared in Table 4.4. The lowest BBBtained by the 5 block STC system.
But the PERs for the 5 band TRAPs and the "2 x 2” systems areatesg. This proved that both
assumption — splitin time and split in frequency — are hdldtus not very important how the split
is done. It is more important that the obtained patterns asd\elearnable by the neural networks.
The STC (LC-RC) system is used in later experiments becauseds less computer resources.

4.3 Tuning to the best performance

The STC with 5 blocks was taken and tuned to the best perfazenarainly by improved NN train-
ing: The scheduler for neural network learning rate was gedrio use théraining set The sched-
uler halves the learning rate learning if the decrease irfrdmae error rate (FER) is less than 0.5%
(thecross-validation setas used before). The number of training epochs was fixed.at 20

Then, the numbers of hidden layer neurons in networks weneased from 500 to 800. | have
seen that it was almost impossible to overtrain neural nedsvavith 800 neurons in 20 epochs,

| system | 1 state| 3 states|

3 band TRAPs 29.2 25.9
5 band TRAPs - 24.8
STC - 2 blocks (LC-RC) 28.5 24.4
STC - 5 blocks - 23.4
2x2 - 24.1

Table 4.4.Comparison of different time and/or frequency split neunatiwork architectures.
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| system | PER (%) |

STC - 5 blocks 23.4
20 epochs in training 22.7
20 epochs in training + 800 neurons 22.1
+ CV part (18 minutes) 21.8
+ bigram LM 21.%

Table 4.5:Improvements to the 5-block STC system

therefore the CV set was added to the training one. At the leigam language modeéstimated
(without any smoothing) on phonetic transcriptions of tfaening part was included. All described
steps are summarized in Table 4.5.

4.4 Discussion

This chapter showed that the results can be significantlyonga by a few easy and cheap tricks —
finer representation of neural network outputs, introducf more independence assumption to the
neural network structure, more epochs in neural networkitrg and a language model.

Also, few other structures of neural networks were studigtlhough for example the tandem
structure seems to be very perspective, it is not used laterta its higher complexity and more
difficult training. It is rather a motivation for an investigon of different neural network structures.

!Known as phonotactic model in language recognition
2This correspond to the classification error rate 17.2%
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Chapter 5

Conclusions

This work showed that it is possible to develop highly actaighoneme recognizers on very low
amount of training data. The accuracy comes from modellfhgrm temporal contexts for phonemes
(few hundreds of milliseconds). The difficulty is the des@frmodels for such large phoneme pat-
terns. This thesis describes many techniques that allowato heural networks for this purpose.
The most important one is incorporation of some constraioising from the task to the neural net-
work structure. The possibility that the training algonthwill get stuck in local extreme is reduced.
A hierarchical structure of neural networks was proposedlits purpose. The other techniques
are dimensionality reduction of input patterns, windowofghe patterns or a finer representation
of neural network outputs. Such designed phoneme recagwniie the split temporal context was
integrated to a software package and it is now publicallylaike on our web pade

A reviewer of one of my articles argued that "the TIMIT was tezato dead by this work”. It
is impossible to study new promising techniques without iognto their limits and without having
well trained classifiers. Although the phoneme error ratelisady low (21.48 %), it is definitely
not the final number, and even not for this unadapted systeifferént normalization techniques,
better language model, duration modelling or other complatiary features can be applied. Then
the system can by improved by speaker adaptation, spea&ptiagltraining, channel compensation
and other techniques.

All the reported results here are phoneme recognition eat@s. But a lower phoneme recogni-
tion error rate does not automatically mean lower word redogn error rate. It is always necessary
to verify the advantage of new techniques on the final task.r€tation between phoneme error rate,
word error rate and language models will be studied in myriituork.

http://speech.fit.vutbr.cz/en/software/phoneme-reco gnizer-based-long-temporal-context
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Abstract

Techniques for automatic phoneme recognition from spokeech are investigated. The goal is to
extract as much information about phoneme from as long teahpontext as possible. The Hidden
Markov Model / Artificial Neural Network (HMM/ANN) hybrid sgtem is used. At first, the Tem-
poral Pattern (TRAP) system is implemented and compareth&r systems based on conventional
feature extraction techniques. The TRAP system is analgnddsimplified. Then a new Split Tem-
poral Context (STC) system is proposed. The system readtésy lpesults while the complexity
was reduced. Then the system was improved using commondl/tasbniques such as three-state
phoneme modelling and phonotactic language model. Thiesyseaches 21.48 % phoneme error
rate on the TIMIT database.
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