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Ústav počı́tačové grafiky a multimédiı́
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Chapter 1

Introduction

Phoneme recognition is very important part of automatic speech processing. Phoneme strings can
transcribe words or sentences and the storage space is very small. It can be applied in many ar-
eas of speech processing – in large vocabulary continuous speech recognition, keyword spotting,
language identification, speaker identification, topic detection, or in much easier tasks like voice ac-
tivity detection. N-grams of phonemes are easily indexable, therefore phoneme recognition can be
a basic part of systems for search in voice archives. In phonotatic language identification, topic de-
tection or speaker identification, the language, topic or speaker can be represented by a phonotactic
”language” model modelling dependencies among phonemes inphoneme strings. The accuracy of
phoneme recognizer is crucial for the accuracies of all the mentioned technology! Therefore it is
worth to investigate phoneme recognition and it is worth to develop as accurate phoneme recognizer
as possible.

The thesis is focused on the main part of phoneme recognition, on acoustic modelling techniques.
There are many other related issues, like channel normalization, channel and speaker adaptation,
multilinguality, robustness in noise, but these issues arenot investigated in detail

People recognize words from quite long temporal context. Sometimes we realize what was said
even after few seconds, minutes or days. It depends on the quality and complexity of a model of the
world we have in our heads. We are still far away form such model. This work investigates a basic
model of phoneme and it tries to get as much as possible from the contextual information. Much
longer temporal context than usual is used.

The main effort is given to a hybrid Artificial Neural Network/ Hidden Markov Model approach.

1.1 Motivation

The main motivation for this work is the wide range of applications/tasks that the phoneme recogni-
tion affects. Improving phoneme recognition is not linked to just one particular problem but to wide
ranges of problems. Phoneme recognition is not a closed box.It can be seen as an application of
investigated acoustic modelling techniques. A better understanding of these techniques can allow us
to better react to other needs in speech processing.

Another motivation was my study and then employment in Speech@FIT speech processing group
at Brno University of technology and a stay at Oregon Graduate Institute. The groups were already
investigating speech modelling techniques and features based on a long temporal context. But that
time the techniques were used almost blindly. Deeper understanding helped to speed up the research
and motivated research in another areas.
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1.2 Original claims

In my opinion, the original contributions – “claims of this thesis” can be summarized as follows:

• Extensive comparison of phoneme recognition systems basedon different structures of Artifi-
cial Neural Networks (ANN) and Gaussian Mixture Models (GMM).

• Detailed study of Temporal Pattern (TRAP) based system and its simplification.

• Definition of a split temporal contexts (STC) system reaching very good phoneme recognition
results.

• Tuning of phoneme recognizers – applying and studying common speech recognition tech-
niques that can decrease the phoneme error rate.

• Studying of phoneme recognizers on different databases, with varying amounts of training
data, in noise and in cross-channel condition.

• Application of the long temporal context based phoneme recognizer to language identification,
keyword spotting and voice activity detection.

• Discussion about techniques that can help to accurately train neural networks in speech recog-
nition.
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Chapter 2

Baseline systems

This chapter concentrates on the basic phoneme recognitionexperiments with HMM/GMM and
HMM/ANN systems and novel TRAP based techniques. In order tobe comparable to state-of-the-
art, all results are reported on TIMIT.

2.1 What system as baseline?

The Temporal Pattern (TRAP) system was taken as baseline. This system was known to give bet-
ter results than conventional techniques (HMM/GMM with MFCC) in some cases [7] (mainly in
cross-channel conditions), and the ANN features (posterior probabilities of phonemes) were known
to be complementary features for MFCCs or PLPs [9]. But therewas no detailed understanding
of the whole approach, therefore the TRAP system is studied.The TRAP system is compared
to some conventional systems based on MFCCs. There is a big step between the TRAP system
based on HMM/ANN hybrid and a HMM/GMM based on MFCCs, therefore the HMM/ANN and
HMM/GMM are compared on MFCC features at first and then the TRAP system is compared to a
HMM/ANN hybrid based on MFCCs.

2.1.1 HMM/GMM

All the GMM experiments are done with the HTK toolkit1. The features areMFCC+C0+∆+∆∆
(together 39 coefficients). This feature set is referred as MFCC39. The HMM models were initialized
to global means and variances. Then the models were re-estimated, all the Gaussians split to two
and re-estimated again. This was repeated up to 256 Gaussians. The recognition was done using the
HVite decoder.

2.1.2 HMM/ANN

The HMM/ANN hybrid is based on the SVite decoder and the QuickNet ANN software2. The SVite
decoder is a part of BUT STK toolkit3. The input features areMFCC + C0 + ∆ + ∆∆ or other
features derived from Mel-bank energies in later experiments. Neural networks are trained to map
input features to phoneme posteriors according to hard labels (each feature vector is assigned to one
phoneme).

1http://htk.eng.cam.ac.uk
2http://www.icsi.berkeley.edu/Speech/qn.html
3http://speech.fit.vutbr.cz/en/software/hmm-toolkit- stk-speech-fit
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2.1.3 HMM/GMM and HMM/ANN based on MFCCs with one state model

This experiment compares HMM/GMM system and HMM/ANN hybrid. The input features are
MFCC39. The numbers of parameters in GMM or ANN were found such way that the decrease in
phoneme error rate caused by adding new parameters is negligible. This procedure was used also in
all following experiments. The final number of Gaussian mixtures is 256 and final number of neurons
in the hidden layer is 500. The results are in Table 2.1. Thereis almost no difference in PER (0.3 %),
so if the features are well adapted to the model and the training procedure is optimal, it should be
possible to reach similar results with both HMM/GMM and HMM/ANN systems. Table 2.2 shows
the number of parameters in both systems. The HMM/ANN system5 % parameters compared to the
HMM/GMM system.

system ins sub del PER

GMM 4.1 18.7 15.2 38.0
AMM 4.7 20.6 12.4 37.7

Table 2.1:Comparison of HMM/GMM and HMM/ANN based on MFCCs with one-state model.

system # parameters
(floating point numbers)

GMM 788736
NN 39539

Table 2.2:Comparison of numbers of parameters in HMM/GMM and HMM/ANN systems based on MFCCs.

2.2 Basic TRAP system

The TRAP system is shown in detail in Figure 2.1. Speech is segmented into frames 25 ms long
and for each frame, mel-bank energies are calculated. Temporal evolution of energy for each band is
taken (101 values = 1 second), normalized to zero mean and unit variance across the temporal vec-
tor, windowed by Hamming window and then normalized to zero means and unit variances across
all training vectors. This is beneficial for the ANN as it is ensured that all inputs have the same dy-
namics. For testing, the later normalization coefficients are not calculated but taken from the training
set. Such prepared temporal vectors are presented to band neural networks. These neural networks
are trained to map temporal vectors to phonemes. A vector of phoneme posterior probabilities is
obtained at the output of each band neural network. The posterior probabilities from all bands are
concatenated together, the logarithm is taken and this vector is presented to another neural network
(merger). The merger is trained to map the vectors to phonemes again. The output is a vector
of phoneme posterior probabilities. Such vectors are then sent to the Viterbi decoder to generate
phoneme strings.

2.2.1 Effect of mean and variance normalization of temporalvector

The mean and variance normalization of temporal vector makes the TRAP system more robust
against channel change. The normalizations works similarly as cepstral mean and variance nor-
malization4, commonly applied in MFCC.

4Cepstral coefficients are extracted from Mel-bank energiesby the DCT transform. DCT is a linear transform.
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Figure 2.1:Block diagram of the TRAP system.

The mean normalization can be seen also as a temporal filtering, similar to RASTA [5]. A change
in the length of temporal vector affects characteristics ofthe filter. There is no visible benefit from
tying the temporal vector length and the window length for mean and variance normalization. Both
can be tuned separately. This normalization was disabled inperformed experiments. The main focus
of this thesis is on the acoustic modelling and if this normalization is applied, it can influence other
parameters, mainly the optimal length of temporal context.

2.2.2 Windowing and normalization across the data set

The window used to select the trajectory out of the evolutionof critical band energy has no effect in
the TRAP system. The window is canceled out by the mean and variance normalization across the
training data set:

x̃ =
x − µ

σ
(2.1)

wherex̃ is normalized vector,x is input vector.µ andσ are mean vector and vector of standard
deviations, both estimated from all vectors in the trainingset:

µ =
1

F

F
∑

i=1

xi (2.2)
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F is the number of frames in the training set. When equations 2.2 and 2.3 are substituted into
equation 2.1, it can be easily seen that both vectors with weighting window applied and without
weighting window are equal after normalization.
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w is weighting window vector.

2.2.3 Mean and variance normalization across the data set and ANN training

This normalization is related to the training of neural networks. The main benefit from it is a faster
training and reduced chance to get stuck in a local minima during criterial function optimization.
The effect of the normalization is illustrated in Figure 2.2. Let’s suppose just one neuron with two
inputs:

y = F(w1x1 + w2x2 + t) (2.5)

wherey is the output of the neuron,F is a nonlinear output function (for example sigmoid),w1 and
w2 are weights (we want to train them),x1 andx2 are inputs andt is a threshold (also trained). The
weights and the threshold are set randomly in certain dynamic range at the beginning of the training.
The dashed line defining division of space5 by the neuron is:

0 = w1x1 + w2x2 + t

x1 = −w2

w1

x2 −
t

w1

(2.6)

The thresholdt moves the discrimination line up and down. The points represent two classes in fea-
ture space (for example phonemes). They can be far away from the center of axes if no normalization
is applied. It is necessary to run many training iterations to move the discrimination line closer to the
data clusters (Figure 2.2a). If only mean normalization is applied, the dynamic range of weights and
threshold is not necessarily appropriate to the dynamic range of data. The discrimination line can
be even out of the data points and again, the training will need more iterations (Figure 2.2b). Figure
2.2c shows the data points after mean and variance normalization.

2.2.4 Comparison to systems based on classical features

In this section the TRAP system is compared to two classical systems: a hybrid system based on
MFCC39 and a hybrid system based on multiple frames of MFCC39. The optimal number of con-
sequent frames for the multiframe system was experimentally found to be 4. The TRAP system
reached slightly better PER than the MFCC39 multiframe system, but the improvement to the pure
MFCC39 system is significant. The results are in Table 2.3.

5In this case a 2D plane
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Figure 2.2: Effect of mean and variance normalization across data set – two class example: a) without
normalization, b) with mean normalization, c) with mean andvariance normalization.

ins sub del PER

MFCC39 4.7 20.6 12.4 37.7
MFCC39 – 4 frames 5.5 19.0 9.6 34.1
TRAPS – 1 second 4.3 18.6 10.9 33.8

Table 2.3:Comparison of systems based on MFCC to the TRAP system.

2.2.5 Optimal length of temporal context

The one second long temporal context, usually used in literature [6], is not necessarily optimal.
Some weights of neural networks could be uselessly spent on parts of temporal context with a

little relevant information. We may also not have enough training data to extract this information.
Therefore the optimal length was found experimentally. Thelength of TRAP is being increased from
100 ms to 1 second and the PER is evaluated.

It is very important not to use mean and variance normalization of temporal vector for this exper-
iment. These normalizations dramatically increase PER forshort contexts and bias the experiment.

Table 2.4 shows the results. The optimal length is about 300 ms ÷ 400 ms. It means using
150 ms÷ 200 ms to the future and 150 ms÷ 200 ms to the past. The optimal temporal context
length is shorter than the 1 s used by other authors. The fact that shorter input is effective may have
positive implications in applications where minimal algorithmic delay is required. During other
experiments not described here, the optimal length was found to depends on task (it is longer for
digit recognition), on the size of neural network and on the amount of the training data. The PER is
already much better than for the MFCC39 multiframe system which is a proof that longer temporal
context is usefull.

length (ms) 110 210 310 410 510 610 710 810 1010

PER (%) 33.6 31.3 31.3 31.3 31.6 32.0 32.2 32.6 33.8

Table 2.4:Effect of temporal context length in the TRAP system.

2.2.6 Discussion

The main motivation for the TRAP system presented in literature is greater robustness against chan-
nel change and noise due to independent processing of frequency band and ability to extract infor-
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mation from a longer temporal context.
The later motivation was verified to be correct. The longer temporal context brings new informa-

tion and moves data points representing different phonemesfurther apart in feature space. Therefore
the system is more robust.

The former motivation was not verified yet. The greater robustness can come from mean and
variance normalization of temporal vectors (not applied here). But the normalization can be done
separately on in the structure of a classifier. The hierarchical structure of neural networks can still
perform just a nonlinear mapping function. It is not able to find which information is incorrect and
selectively discard this information.

The purpose of band neural networks needs a deeper investigation. The experiments indicate that
the purpose of these nets is not classification to phonemes for a simple decision in merger, but rather
a data preprocessing for merger. Otherwise the optimal temporal context length would be similar for
both the bands and the whole system.

2.3 Simplified system (one net system)

The TRAP system is complex and runs slowly. Even the experiments are slow, therefore the TRAP
system is simplified. The simplification is necessary also for a better understanding of the whole
system.

The band neural network represents a nonlinear mapping function. Let us replace this nonlinear
function with a linear one: a linear transform is estimated instead of neural network weights and
biases. And let’s go further and omit the mapping to phonemes. The assumption is that the useful
information is characterized by a variance in data. The Principal Component Analysis (PCA) is used
to estimate the linear transform. One transform is estimated for each band. The base components
are very similar to Hamming window weighted Discrete CosineTransform (DCT) bases, therefore a
simplification to DCT was also tested. An experiment confirmed that the DCT degraded the results
negligibly, therefore the DCT transform is used in the following experiments. A dimensionality
reduction follows the linear transform. Network training can be helped by optimal choice of the
dimensionality of input feature vector.

ins sub del PER

simplified system 3.7 16.6 9.6 29.9
TRAP system 4.1 17.4 9.8 31.3
TRAP + DCT 4.0 17.3 9.8 31.1

Table 2.5:Comparison of simplified system and the TRAP system.

Comparison of the simplified system to the TRAP system in terms of PER can be seen in Table
2.5. The length of temporal vectors is 310 ms and 16 DCT coefficients were kept. The experiment
showed that the linear transformation is enough. The simplified system gives even better results than
the complex TRAP system.

For investigation of the effect of nonlinear transforms in bands, the DCT and dimensionality
reduction were applied also before band neural networks in the TRAP system. This was done pre-
viously by František Grézl but without any explanation [3][2]. This approach reached better result
than the TRAP system but worse than the simplified system. This could mean that band neural net-
works do something similar as chain of windowing, DCT and dimensionality reduction. This chain
is discussed thoroughly in the following subsections.
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2.3.1 Weighting of temporal vectors and DCT

The weighting of temporal vectors has no effect in the TRAP system. It was canceled out by the
subsequent normalization. The situation changed in the simplified system, the weighting start to be
beneficial. Let us see an experiment. The simplified system was trained with and without DCT and
with or without Hamming window. The results are in Table 2.6.

The first two rows indicate that it does not matter whether thewindow is applied or not if the
DCT is not applied. Precisely, the result with window is evenworse, but this can be just a bad luck
as the training algorithm got stuck in a local optimum. If theDCT is applied (third row), the result
is significantly better. The improvement comes from smallerpatterns (less parameters at the input
of the network). The dimensionality reduction implies the fact that the temporal trajectory can be
down-sampled twice without any degradation in accuracy. This had been already found in [8] and
[4]. The DCT with dimensionality reduction can be also seen as a kind of temporal filtering, similar
to RASTA [5]. Here, smaller and smoother patterns imply lesstrainable parameters in the neural
network and less chance to get stuck in local optimum during the training. If the window is applied
together with DCT (last row), the result is even better. The DCT saved the window and it was not
canceled out by the normalization! The window attenuates values at the edges of temporal context,
so the training algorithm can focus to the center of the context during the initial phase of training.

ins sub del PER

no window, no DCT 4.2 18.0 10.4 32.6
Hamming, no DCT 4.0 18.5 10.5 33.0
no window, DCT 4.2 17.3 9.2 30.7
Hamming and DCT 3.7 16.6 9.6 29.9

Table 2.6:Effect of windowing of temporal vectors (PER).

Why is the attenuation important? The answer can be found in histograms of values at different
places of the temporal vector. The histogram is narrow for the center (the variance is low). Then
the width grows and it is the highest at the edges. The trajectory in feature space representing a
phoneme is affected by neighboring phonemes. The DCT tries to describe the input pattern by first
few bases in such a way that the variance in the pattern is preserved. The DCT features must be
definitely focused to the edges if no window is applied. The window allows to describe the central
part of context with a better resolution.

2.3.2 The Discrete Cosine Transform as a frequency filter

The DCT applied to temporal vector can be seen as a modulationfrequency band-pass filter. What
are the important frequencies that needed to be modelled? The lower frequency limit is given by
the length of temporal vector. If the length is higher, lowerfrequencies can be modelled. The upper
frequency limit is given by the number of used DCT coefficients. But the number required DCT
coefficients to keep a constant upper frequency limit grows also with the length of the temporal
vector. Is it better to keep the input for neural network constant and model narrower frequency range
for longer context, or is it better to increase the input and keep the frequency range constant? The
following experiment gives answers to these questions. Theoptimal length of temporal context is
evaluated for fixed number of DCT coefficients (15 +C0) and then the number of DCT coefficients
is varied according to equation:

nDCT =
context length

2
+ 1 (2.7)
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This equation ensures fixed upper frequency limit. The context length is in frames (10 ms units).
The results are in Table 2.7 and in Figure 2.3. Both lower frequency and upper frequency limits are
reported. The optimal length of temporal contexts is about 300 ms for both cases. This is similar as
for the TRAP system. It is definitely better to keep the upper frequency limit constant (to increase
the number of DCT coefficients), as can be seen from the figure.It is possible to get an additional
information using a longer temporal context, but it is necessary to model the whole trajectory with
equal variance (detail) as before.

length (ms) 110 210 310 410 510 610 710 810 1010
lower fm (Hz) 4.6 2.4 1.6 1.2 1.0 0.8 0.7 0.6 0.5

fixed upperfm (Hz) 68.2 35.7 24.2 18.3 14.7 12.3 10.6 9.3 7.4
# DCT # DCT 16 16 16 16 16 16 16 16 16

PER (%) - - 29.9 30.2 30.8 32.4 33.9 35.7 39.6

varied upperfm (Hz) 22.7 23.8 24.2 24.4 24.5 24.6 24.7 24.7 24.8
# DCT # DCT 6 11 16 21 16 31 36 41 51

PER (%) 34.5 30.8 29.9 30.4 30.6 30.8 31.5 31.3 32.4

Table 2.7: Effect of temporal context length for fixed and varying number of DCT coefficients (thefm is
modulation frequency).
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Figure 2.3:Dependency of PER on temporal context length for fixed and varied number of DCT coefficients.

2.4 Study of amount of training data

The phonemes are represented by trajectories in the featurespace. There is not one trajectory for
one phoneme, but many. The number grows with the length of temporal context. Let us consider
one phoneme: this phoneme can be affected by 39 phonemes on the left and by 39 phonemes on the
right. Each of these phonemes can be affected by 39 others. The number of trajectories will grow
exponentially.

Let’s study the amount of data we have in the database for certain lengths of the temporal context.
The average phoneme length is a good unit for measurement. The task can be simplified and the n-
grams statistics can be used6.

Table 2.8 shows the coverage of n-grams in the test part of TIMIT database. The most important
columns are the third (numbers in brackets) – percentage of n-grams occurring in the test part but
not in the training part, and fourth – error which would be caused by a decoder if the unseen n-grams

6Note that we never use those n-grams in phoneme recognition,it is just a tool to show amounts of sequences of different lengths!
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are not allowed. The error is calculated by sum of occurrences of unseen n-grams divided by sum of
occurrences of all n-grams:

error =

∑

i∈N
C (ni)

∑

i∈A
C (ni)

(2.8)

N is a set of unseen n-grams,A is a set of all n-grams andC (ni) gives number of occurrences of
n-gramni in the test part of database.

For bi-grams, there are2.26 % of unseen cases but this amount causes almost no error (0.13 %).
The situation is much worse for trigrams with18.83 of unseen cases causing7.60 % of error. It is
almost impossible to model four-grams due to44.10 % of error. These errors can be expected to be
smaller in case of larger databases but still the maximum possible length of context seems practically
to be three times or four times phoneme length due to exponential growth of error.

To conclude, the most limiting issue for a system based on long temporal context is the amount
of training data because the demand for data grows exponentially with the temporal context length.
This situation force us to look for a way around. One solutionis to collect huge databases. Current
systems use more than 1000 hours of training data [1]. This system just 2.5 hours. The collecting
and annotation of new databases is very costly. But it is the mostly used way today. Another solution
is the development of clever algorithms. This way is chosen for this thesis.

n-gram # different # not seen in error
order n-grams the train part (%)

1 39 0 ( 0.00%) 0.00
2 1104 25 ( 2.26%) 0.13
3 8952 1686 (18.83%) 7.60
4 20681 11282 (54.55%) 44.10

Table 2.8:Numbers of occurrences of different n-grams in the test partof the TIMIT database, number of
different N-grams which were not seen in the training part and error that would be caused by omitting unseen
N-grams in the decoder.
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Chapter 3

System with split temporal context (LC-RC
system)

3.1 Motivation

The study of amount of data needed to train a long temporal context based system (section 2.4)
showed that very large databases are necessary. A development of techniques that need less data and
limit the cost spent on data collection and annotation wouldbe beneficial. This chapter investigates
one such technique. This technique is inspired by the function of band neural networks in the TRAP
system and Table 2.8.

If we are not able to classify long trajectories in the feature space because there are simply many
of them and very big portion was not seen during training, letus to split the trajectores into more
parts.

These parts can be modelled separately and then the results can be merged together. An assump-
tion of independence is done. Obviously by the split, a part of information is lost.

Let us see what will happen if the trajectory is split into twoparts on n-gram statistics. All
trigrams were split into two bigrams. The error caused by unseen trigrams 7.60 % was replaced by
two times the error of bigrams which is only 2× 0.13 % = 0.26 %. For four-grams, the error was
reduced from 44.10 % to just 15.2 %. The reduced errors are summarized in Table 3.1.

n-gram # different # not seen in error reducted error
order n-grams the train part (%) (%)

2 1104 25 ( 2.26%) 0.13 0.00
3 8952 1686 (18.83%) 7.60 0.26
4 20681 11282 (54.55%) 44.10 15.2

Table 3.1:Effect of splitting trajectories into two parts – reduced errors. All other columns are unchanged.

3.2 The system

The experimental system is derived from the simplified system described in section 2.3. The Mel-
bank energies were extracted and the 310 ms long temporal vectors (31 values) of evolution of critical
bank energies were taken. Each temporal vector was split into two parts – left part (values 0 - 16) and
right part (values 16 - 31). Both parts were windowed by corresponding half of Hamming window
and projected to the DCT bases. 11 DCT coefficients were kept for each part. Such preprocessed
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vectors were concatenated together for each part of contextseparately and sent to two neural net-
works – these are trained to produce phoneme posteriors, similary as in the TRAP system. Output
posterior vectors are concatenated, transformed by logarithm and sent to another (merging) neural
network trained again to deliver phoneme posteriors. Finally, the phoneme posteriors are decoded by
a Viterbi decoder and strings of phonemes are produced. The whole process is illustrated in Figure
3.1. This system is called the Left context – Right context system, or shortly LC-RC system.

Figure 3.1:Block diagram of the Split Temporal Context system.

3.3 First result and comparison to the simplified system

The LC-RC system was compared to the simplified system. The results are in Table 3.2. The RC-
LC system reached significanlty better result. The motivation was proven to be correct despite the
independence assumption.

system ins sub del PER

simplified 3.7 16.6 9.6 29.9
LC-RC 4.0 15.4 9.0 28.4

Table 3.2:Comparison of the LC-RC and simplified systems.
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3.4 Modelled modulation frequencies

Where the improvement in the LC-RC systems comes from? The following experiment tries to
answer the question. The optimal number of DCT coefficients was found for the left context. Table
3.3 shows the results. It is the best to include 14 DCT coefficients (almost all).

Now let us compare modulation frequencies modelled by both the LC-RC and the simplified
systems. The comparison is in Table 3.4. The upper limit for modelled frequencies is much higher
for the LC-RC system. The LC-RC system models the trajectorywith lower variance (higher details).
The two blocks also increase the temporal resolution. The remaining question is the drawback of the
LC-RC system coming from not seeing frequencies bellow 1.67Hz. RemovingC0 in the simplified
system causes increment in PER as the information about vertical shifts in different bands is lost and
is not seen by the network. However the lost in PER does not exeed 0.5 %.

# coef 6 8 9 10 11 12 13 14 16
upperfm (Hz) 16.7 23.3 26.7 30.0 33.3 36.7 40.0 43.3 50.0

PER (%) 36.9 36.0 35.7 35.7 35.4 35.5 35.4 35.2 35.4

Table 3.3:Optimal number of DCT coefficients (includingC0) for the left context in the LC-RC system and
corresponding modulation frequencies.

system context length optimum # coefs lowerfm upperfm

(ms) (-) (Hz) (Hz)

simplified system 310 16 1.67 25.00
LC part 160 14 3.33 43.33

Table 3.4:Comparison of minimal and maximal modulation frequencies for the left part in the LC-RC system
and the simplified system.

3.5 Optimal lengths of left and right contexts

The previous experiment showed that the upper limit of modulation frequency used by the LC-RC
is significantly higher than for the simplified system. If we have a more capable classifier, is not
it worth to extend also the temporal context? At first, let us evaluate the optimal temporal context
length for context networks. The results are in Table 3.5. The number of DCT coefficients was set
according to equation:

n = int

(

2

3

len

10

)

(3.1)

This equation ensures the upper limit of modulation frequencies constant (about 33 Hz). The opera-
tor ”int” is rounding to the first lower integer.

len (ms) 100 120 140 160 180 200 220 240 260 310 360 410

LC PER (%) 36.5 36.0 36.3 35.4 35.8 35.1 35.2 35.4 35.8 35.9 35.8 36.5
RC PER (%) 37.8 38.0 37.4 37.7 37.2 37.1 37.2 37.5 37.3 37.4 37.7 38.1

Table 3.5:Optimal length of left and right temporal contexts in the LC-RC system.

The minima for both contexts are at 200 ms. This is interesting, because the full context is about
400 ms which is closer to the optimum for band neural networksin the TRAP system seen in section
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len (ms) 270 310 350 390 430 470 510 550

13 DCTs 28.5 27.9 27.8 27.8 27.8 27.6 27.8 27.9
16 DCTs - 28.3 28.0 27.8 27.9 27.6 27.8 27.8

Table 3.6:Optimal length of temporal context for the whole LC-RC system.

??, where we know that useful information for classification iscontained. The beginning of both
graphs in Figure?? seems to be quite noisy. The peaks partially disappear if more DCT coefficients
are used. This suggests that the DCT transform is not the bestchoice to model higher modulation
frequencies. The PER is better for the left contexts. This indicates that the signal at the beginning of
phoneme is more important.

3.6 Optimal length of temporal context for the whole LC-RC system

An optimistic result from the previous section does not ensure that the whole system will use all the
400 ms given by sum of both optimal context lengths. Therefore the same experiment was repeated
for the whole system. Both contexts have the same length. This time, the number of DCT coefficients
was fixed to ensure stability in the initial part of graph. Theresults are in Table 3.6. The optimal
length is even higher than the sum of optimal lengths for bothcontexts! The optimal lengths of
contexts for merging differ from the context lengths with minimal PER. The final part of the graph
(crossing lines) shows again that it is important not to cut off the upper modulation frequencies.

3.7 Discussion

This chapter proved that the information usable for recognition of a phoneme is spanned across
almost 500 ms. And we are actually able to extract the information! This chapter also brought more
insight to the training of neural networks. It is beneficial to introduce some reasonable constrains
coming from the task.

Although we see the optimal parameters, the later experiments are done with a shorter temporal
context (310 ms) and less number of DCT coefficients (11 per context). The reason is comparison
with the baseline systems, and also a faster turnover of experiments.
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Chapter 4

Towards the best phoneme recognizer

The previous two chapters described the development of a good phoneme recognizer. The next goal
described in this chapter was is to improve it as much as possible by adding techniques commonly
used in speech recognition.

4.1 More states

One of the most common techniques in speech recognition are state models. The main purpose
of states is the selection of particular views at features. The decoder proposes new direction of
trajectory and a model in a state verifies whether the direction is correct or not. It is similar as if
someone advices us a route. We can verify that we are still on the route according to some important
objects at different places of the route. The more importantobjects we see the more sure we are.

Features based on long temporal context and ANN can see many important objects from one
point. But the main benefit of states comes during the training. The training algorithm is focused
to certain parts of phonemes. We guide the training. The focused patterns are easier and sharp.
The weights are associated with certain parts of phoneme andin case of increasing the number of
parameters of the network, we have a chance to decrease the error.

The hierarchical structure of neural networks also benefitsfrom states during recognition. The
lower network (band or context network) roughly estimates aplace (state) where the recognition is
in the feature space. The position is more precise with more states. The upper network (merger) uses
the knowledge about this place and it can focus on details.

Another benefit is minimum phoneme duration. If three state models are used, the minimum
duration of phoneme is 30 ms. This is good to prevent the decoder from switching of one phone to
another, although this can be also enforced by repetition ofexisting HMM states or setting appropri-
ate phoneme insertion penalty.

4.1.1 Implementation of states

The parametrization and neural network structure is unchanged for this approach. The neural net-
works were trained on force-aligned state transcriptions.The decoder was modified to force a pass
through the state sequences in phoneme models. The phoneme models are left-to-right with no skip
states.
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Figure 4.1:Different time and/or frequency split architectures: a) TRAP system, b) LC-RC system, c) 2 x 2
system

4.1.2 Results

The realignment does not bring any improvement for one-state models. Three iterations were suf-
ficient for three-state models. Different one-state systems and three-state systems are compared in
Table 4.1.

system 1 state 3 states difference

MFCC,9 frames 39.9 35.6 4.3
MFCC39 37.7 32.8 4.9
MFCC39,4 frames 34.1 29.9 4.2
simplified system (310 ms, 11 DCTs) 29.9 28.7 1.2
3 band TRAPs 29.2 25.8 3.4
LC-RC system 28.5 24.4 4.1

Table 4.1:Comparison of 1-state and 3-state systems

The three state systems are able to significantly reduce the phoneme error rate. The LCRC system
profits about 4.1 % from the 3-state system. The simplified system has the smallest reduction.

4.2 Other architectures

All the previous experiments indicated that the clue to build a good recognizer based on HMM/ANN
is the ability to focus the training algorithm on well definedcoherent segments with as descriptive
features as possible. Let us experiment with some more variants of the TRAP and the LC-RC
systems.

4.2.1 How many bands in the TRAP multiband system are optimal?

If the number of joint bands is small, the band neural networkdoes not have enough information for
classification, the error rate is higher and the input pattern for merger is very difficult. If the number
of joint bands is higher, the band neural network input patterns start to be difficult. A tradeoff must
be found. The optimal number of joint bands is evaluated in Table 4.2. For wideband speech, the
optimal number is 5. Another experiment showed that 3 is optimal for narrow band speech.

4.2.2 Split temporal context system (STC) with more blocks

The trajectory in feature space representing phoneme can besplit into more than two parts and a
generalization of the LC-RC system can be done (see Figure 4.1b). In this experiment the optimal
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# bands per net 1 3 5 7 13

PER (%) 28.2 25.8 24.8 24.9 25.6

Table 4.2:Optimal number of joint bands for band neural network in the 3state multiband TRAPs system

# blocks 1 2 3 5

PER (%) 26.8 24.4 24.2 23.4

Table 4.3:Optimal number of blocks in 3-state split temporal context system

number of parts is found. The input temporal vectors are split to 2, 3 and 5 parts. The Hamming
windows are applied to all parts followed by dimensionalityreduction to 11, 8, and 5 bases by DCT.

The tradeoff must be found even here. If the number of parts increases, the input pattern for
merger also increases and starts to be difficult. The resultscan be seen in Table 4.3. The best number
of blocks is 5. It may be even more, but this was not evaluated –the system starts to be slow and
impractical.

4.2.3 Combination of both – split in temporal and split in frequency domain

The system is called ”2 x 2 system” – two temporal parts and twofrequency parts (see Figure 4.1c).
The system contains 5 neural networks (4 blocks and 1 merger). The preprocessing is similar to the
preprocessing for the LC-RC system.

4.2.4 Comparison of the TRAP, STC and ”2x2” architecture

The architectures are compared in Table 4.4. The lowest PER is obtained by the 5 block STC system.
But the PERs for the 5 band TRAPs and the ”2 x 2” systems are veryclose. This proved that both
assumption – split in time and split in frequency – are helpful. It is not very important how the split
is done. It is more important that the obtained patterns are easily learnable by the neural networks.
The STC (LC-RC) system is used in later experiments because it needs less computer resources.

4.3 Tuning to the best performance

The STC with 5 blocks was taken and tuned to the best performance mainly by improved NN train-
ing: The scheduler for neural network learning rate was changed to use thetraining set. The sched-
uler halves the learning rate learning if the decrease in theframe error rate (FER) is less than 0.5%
(thecross-validation setvas used before). The number of training epochs was fixed at 20.

Then, the numbers of hidden layer neurons in networks were increased from 500 to 800. I have
seen that it was almost impossible to overtrain neural networks with 800 neurons in 20 epochs,

system 1 state 3 states

3 band TRAPs 29.2 25.9
5 band TRAPs - 24.8
STC - 2 blocks (LC-RC) 28.5 24.4
STC - 5 blocks - 23.4
2 x 2 - 24.1

Table 4.4:Comparison of different time and/or frequency split neuralnetwork architectures.
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system PER (%)

STC - 5 blocks 23.4
20 epochs in training 22.7
20 epochs in training + 800 neurons 22.1
+ CV part (18 minutes) 21.8
+ bigram LM 21.52

Table 4.5:Improvements to the 5-block STC system

therefore the CV set was added to the training one. At the end,bigram language model1 estimated
(without any smoothing) on phonetic transcriptions of the training part was included. All described
steps are summarized in Table 4.5.

4.4 Discussion

This chapter showed that the results can be significantly improved by a few easy and cheap tricks –
finer representation of neural network outputs, introduction of more independence assumption to the
neural network structure, more epochs in neural network training and a language model.

Also, few other structures of neural networks were studied.Although for example the tandem
structure seems to be very perspective, it is not used later due to its higher complexity and more
difficult training. It is rather a motivation for an investigation of different neural network structures.

1Known as phonotactic model in language recognition
2This correspond to the classification error rate 17.2%
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Chapter 5

Conclusions

This work showed that it is possible to develop highly accurate phoneme recognizers on very low
amount of training data. The accuracy comes from modelling of long temporal contexts for phonemes
(few hundreds of milliseconds). The difficulty is the designof models for such large phoneme pat-
terns. This thesis describes many techniques that allow to train neural networks for this purpose.
The most important one is incorporation of some constraintscoming from the task to the neural net-
work structure. The possibility that the training algorithm will get stuck in local extreme is reduced.
A hierarchical structure of neural networks was proposed for this purpose. The other techniques
are dimensionality reduction of input patterns, windowingof the patterns or a finer representation
of neural network outputs. Such designed phoneme recognizer with the split temporal context was
integrated to a software package and it is now publically available on our web page1.

A reviewer of one of my articles argued that ”the TIMIT was beaten to dead by this work”. It
is impossible to study new promising techniques without coming to their limits and without having
well trained classifiers. Although the phoneme error rate isalready low (21.48 %), it is definitely
not the final number, and even not for this unadapted system. Different normalization techniques,
better language model, duration modelling or other complementary features can be applied. Then
the system can by improved by speaker adaptation, speaker adaptive training, channel compensation
and other techniques.

All the reported results here are phoneme recognition errorrates. But a lower phoneme recogni-
tion error rate does not automatically mean lower word recognition error rate. It is always necessary
to verify the advantage of new techniques on the final task. The relation between phoneme error rate,
word error rate and language models will be studied in my future work.

1http://speech.fit.vutbr.cz/en/software/phoneme-reco gnizer-based-long-temporal-context
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Abstract

Techniques for automatic phoneme recognition from spoken speech are investigated. The goal is to
extract as much information about phoneme from as long temporal context as possible. The Hidden
Markov Model / Artificial Neural Network (HMM/ANN) hybrid system is used. At first, the Tem-
poral Pattern (TRAP) system is implemented and compared to other systems based on conventional
feature extraction techniques. The TRAP system is analyzedand simplified. Then a new Split Tem-
poral Context (STC) system is proposed. The system reaches better results while the complexity
was reduced. Then the system was improved using commonly used techniques such as three-state
phoneme modelling and phonotactic language model. This system reaches 21.48 % phoneme error
rate on the TIMIT database.
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