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AUTOR PRÁCE MARTIN KARAFIÁT
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Abstract

This thesis investigates into two important issues of acoustic modeling for automatic speech

recognition (ASR). The first topic are robust discriminative transforms in feature extraction.

Two approaches of smoothing the popular Heteroscedastic Linear Discriminant Analysis (HLDA)

were investigated: Smoothed HLDA (SHLDA) and Maximum A-Posteriori (MAP) adapted

SHLDA. Both variants perform better than the basic HLDA. Moreover, we have found, that re-

moving the silence class from the HLDA estimations (Silence-reduced HLDA) is equally effective

and cheaper in computation. The second part deals with using heterogeneous data resources

in ASR training. For a task, where little data is available for the target domain (meetings –

16kHz “wide-band” (WB) speech), techniques that allow to make use of abundant data from

other domain, yet different in the acoustic channel (telephone data – 8kHz “narrow-band” –

NB) were investigated. We successfully implemented an adaptation with WB data transformed

to the NB domain based on Constrained Maximum Likelihood Linear Regression (CMLLR). A

solution of how to apply this transform for HLDA and speaker-adaptive trained (SAT) systems

was given using maximum likelihood. Finally, integration of this method with discriminative

approaches was investigated and successfully solved. All experimental results are presented on

standard data from NIST Rich Transcription (RT) 2005 evaluations.
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Abstrakt

Tato disertačńı práce se zabývá dvěma významnými problémy z oblasti automatického

rozpoznáváńı řeči (automatic speech recognition - ASR). Prvńım tématem jsou robustńı diskrim-

inativńı transformace použ́ıvané pro výpočet př́ıznak̊u. Ověřili jsme dvě varianty vyhla-

zováńı populárńı Heteroscedastické lineárńı discriminačńı analýzy (HLDA): vyhlazenou HLDA

(Smoothed HLDA - SHLDA) a Maximum A-Posteriori adaptovanou HLDA. Obě varianty posky-

tuj́ı lepš́ı výsledky než základńı HLDA. Zjistili jsme rovněž, že pokud se při odhadu HLDA omeźı

nebo zcela odstrańı úseky ticha (Silence-Reduced HLDA), jsou výsledky srovnatelné a metoda

je podstatně méně náročná na výpočetńı výkon. Druhá část disertace se zabývá použit́ım het-

erogenńıch dat pro trénováńı ASR systémů. Zkoumali jsme techniky, které pro úlohu, kde je k

disposici omezené množstv́ı trénovaćıch dat (meetingy - 16kHz, “široké pásmo”, “wide-band”,

WB) umožńı využit́ı dat z oblasti, kde je jich k disposici dostatek (telefonńı data - 8kHz, “úzké

pásmo” , “narrow-band”, NB). Úspěšně jsme implementovali adaptaci s WB daty transfor-

movanými do NB oblasti pomoćı Constrained Maximum Likelihood lineárńı regrese (CMLLR).

Pomoćı metody maximum likelihood jsme ukázali, jak tuto transformaci použ́ı společně s HLDA

a SAT (speaker-adaptive) trénovanými systémy. V závěru jsme studovali a úspěšně využily inte-

graci této techniky s diskriminativńımi přistupy k trénováńı. Všechny experimentálńı výsledky

jsou presentovány na standardńıch datech z NIST Rich Transcription (RT) 2005 evaluaćı.
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LVCSR systém, meeting recognition, linearni transformace, Adaptace, Adaptace např́ıč

doménami, HLDA, CMLLR, MLLR.
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Chapter 1

Introduction

Human effort to save and keep information is so old as a human being is. First saved data was

typically for religious purpose. The storage media was the human memory and conversion of

text to lyrics and songs was often used to increase the accuracy. During the human evolution,

many other media have been used in extension (written or printed text, photography, film. . . ).

And obviously the purpose has strongly expanded into many fields - entertainment, education,

description of anything, security. . . . But the sense is still same - keep to remember.

“Keep as much as possible” could well describe 20th century by boom of digitization and

computer age. Almost all kinds of information are stored in digital form which makes it quickly

accessible. The increasing amount of stored information requires development of automatic

indexing methods allowing quick search.

In last few years, significant importance was put on audio/visual data. Two different kinds

of information are combined here. The video records (seeing modality) is useful source of infor-

mation but it is quite difficult to find interesting points. The audio records (hearing modality)

can be easily processed by speech recognition system. The recognition output can be further

used by indexer or as an input for other information retrieval techniques: summarization, spoken

term detection. . .

Due to two modalities on the input, this approach is also called “multimodal approach”

- a weakness of one modality could be complemented by strength of other. Obviously, the

complexity of such system can be huge and it can touch many science branches. In this work,

we focus only on one part of the whole system - speech recognition.

The used data were taken from “meeting sessions”. We can imagine that a few more or

less intelligent people are sitting around the table and spontaneously discussing some technical

problem. Obviously, the language has to be same but dialects can differ and the speakers are

frequently non-native. The whole discussion is recorded by video camera and microphones.

1



2 1 Introduction

1.1 Speech recognition history

The speech recognition is quite old task. The history goes into 50ties of the last century. The

first speech-to-text translation systems were able to recognize just syllables [44] or isolated

digits [8],[13] and they were speaker-dependent. In 80ties, statistical approaches, particularly

Hidden Markov Models (this technique will be described in section 2), were introduced. They

significantly pushed forward the progress and these systems were able to recognize continuous

speech and they were speaker independent. The size of dictionary significantly increased over

thousand words and, consequently, first large vocabulary systems appeared.

From the 1990ties until now, evaluations of speech technologies are pursued on various

tasks. For example WSJ - read paragraphs from Wall Street Journal, ATIS - spontaneous

speech with automatic air travel system. One of the most challenging tasks was, and still is, the

Switchboard - transcription of spontaneous telephone conversations also called conversation tele-

phone speech (CTS). This evaluation was introduced by U.S. National Institute for Standards

in Technology (NIST) and it was called “HUB-5”. On contrary to the read speech, this task is

linguistically and acoustically unconstrained. The speech has variable speaker rate and conver-

sation style. It also contains large amount of disfluencies such as unfinished words, hesitations,

laugh, coughs. . . . A need to cover variability of spontaneous speech led to extensive recording

of this kind of data (Switchboard-I, Fisher. . . ). The first experiments showed, not surprisingly,

significant dependence of word error rate (WER) on the amount of training data [25].

1.2 Meeting recognition

In comparison to telephone conversations, the meetings speech differs in channel. Different

microphones are used and the bandwidth is different. Telephone speech is naturally recorded

in low bandwidth (8kHz) and meetings are recorded in wider band (16kHz). But the meeting

speech is quite similar to CTS in conversation style, therefore similar problems exists. The

development on meeting speech recognition was the cause of the Rich Transcription (RT) NIST

evaluation in 2005 which is running till now. Big proportion of non-native speakers, different

channel parameters. . . increase the demands for relevant acoustic data1. Recordings of this kind

of conversation took place at several sites (M4/AMI/AMIDA series of projects2. . . ) but still

not enough data is available.

The meeting is usually recorded in two ways:

• Using independent headset microphones (IHM) - microphones are put directly on the

speakers. It gives the clearest signal, and problems with crosstalks (more speakers talk-

ing at same time) are limited. But the speakers do not find too comfortable to keep

microphones on their bodies.

1The data required for the training of language model can be partly derived from in-domain texts.
2www.m4project.org, www.amiproject.org
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• Using multiple distant microphones (MDM) - microphones are spread on the table or room.

It is more comfortable for speakers but the quality of records and also the recognition

performance is worse.

Setting up the microphones into a microphone array offers the opportunity to improve the

quality of the signal by using localization techniques. Obviously, the complexity of system then

increases.

In this work, we focus on the IHM speech only. MDM speech recognition is an important

research topic but it is beyond the scope of this thesis.

1.3 Goals of this thesis

The aim is to increase the robustness of acoustic techniques in meeting speech recognition,

especially by the use of Heteroscedastic Linear Discriminant Analysis (HLDA). We propose

MAP-Smoothed and Silence Reduced HLDA modifications.

Further, we focus on effective porting of telephone speech data resources into the meeting

domain. A common problem is different bandwidth. The standard approach is to downsample

the wide-band data, which is not very efficient due to the loss of information from the upper

band. We investigate substitution of the downsampling by adaptation which does not remove

any information. Next, we focus on using this approach together with advanced techniques

like HLDA, Speaker Adaptive Training (SAT) and discriminative training. The solution is not

trivial, so mathematical development and extensive experimental work is presented.

1.4 Scope of chapters

Basic speech recognition system structure is introduced in chapter 2. The problems are formu-

lated and basic terms are explained. The focus is put on Hidden Markov Models (HMM) and

feature extraction used in this thesis.

Chapter 3 introduces linear transforms widely used in speech processing and speech recog-

nition, especially already mentioned HLDA.

In chapter 4, our baseline recognition systems are described. The specifications of training

and test data sets follow.

Chapter 5 investigates into HLDA, and its modification with more robust estimates of statis-

tics is proposed. Next, positive effect by weighting of silence class in HLDA estimation is pre-

sented (Silence Reduced HLDA).

In chapter 6, channel normalization techniques followed by speaker normalization (VTLN)

and adaptation (MLLR and CMLLR) are introduced. The speaker adaptive training is described

too.
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Chapter 7 examines the use of well trained models on telephone data in meeting recognition

system. Already mentioned technique using adaptation instead of downsampling is proposed

and investigated.

Finally, the thesis is concluded and plans for future work are outlined in chapter 8.

1.5 Original contributions of this thesis

In our opinion, the original contributions — “claims of this thesis” — can be summarized as

follows:

• Proposal and testing of robust methods of HLDA estimation in LVCSR:

– Smoothing based on the amount of data available for each class - MAP-SHLDA.

– Balancing of silence class in Silence-Reduced HLDA.

• Linear transforms employed as narrow-band → wide-band (NB-WB) adaptations:

– MLLR adaptation of narrow-band models to wide-band speech.

– CMLLR feature transform used to convert WB speech to NB models.

– NB-WB transform in HLDA estimation - use of MAP for interpolation between NB

and WB statistics.

– NB-WB transform in speaker adaptive training.

– NB-WB transform with discriminative approaches - MPE-MAP.



Chapter 2

Basis of speech recognition

Speech recognition system is a complex machine, usually composed of four main parts:

1. Signal processing - Extraction of features from speech waveforms by mapping to a

representation (a sequence of feature vectors) that is more easily modeled. This procedure

is mostly based on a spectral analysis of a short time interval. The typical examples

of spectral analysis based features are well known Mel Frequency Cepstral Coefficients

MFCC and Perceptual Linear Predictive PLP features. More details can be found later in

section 2.1.

Due to the research done in the last decade, feature extraction from long time context

started to be significant too [51],[27].

2. Acoustic classification - Use of statistical tools to obtain likelihood or probability that

input features are generated by a model. Models can represent whole words or just

phonemes. The most common method used for acoustic modeling is Hidden Markov Model

(HMM). More detailed description can be found in section 2.2.

3. Language modeling - Use of information given by language model to generate proba-

bility of given word sequence. The language model is able to suppress meaningless words

sequences, respectively enhance reasonable ones. See section 2.5 for more details.

4. Decoding - Use of output information from Acoustic models and Language model to

search for the most accurate output sentence. The complexity of searching space grows

exponentially with size of dictionary. Therefore, a lot of optimization is necessary in case

of a large vocabulary task. The description of the decoding process is not core of this

work. Interested reader can find more information in [43].

A simple example of a speech recognition process is shown in figure 2.1. At first, the features

are extracted from speech waveforms by the Signal processing block. The acoustics models are

applied to obtain likelihood of acoustic match of feature vector to each particular model. The

5
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Speech
Acoustic
modeling

Acoustic
models

Decoder

Language
model

processing
Signal

Recognition output

Figure 2.1: Example of recognition process.

outputs from acoustic models together with language model likelihood make up the input for

the decoder. It combines these likelihoods with information from history (older likelihoods,

recognized words. . . ) for the generation of the output of the recognizer.

The output is expected in the following typical forms:

• One–best output - the sequence giving the best overall likelihood is generated.

• N–Best output - N the most probable hypotheses are generated.

• Lattice (Graph of hypotheses) - allows more hypotheses in parallel. In comparison with

the N–best string output, a lattice can be stored more efficiently. It consists of nodes and

links with assigned words and other associated information (times, acoustic likelihood,

language model likelihood).

N–Best or lattice outputs are often used in two-(or more)-pass decoding process. Weak

language and acoustic models produce wide lattices (or N–best strings) in the first pass which

significantly limits the search space. The lattices are just “rescored” using strong models and

new, more accurate, one-best hypothesis is generated.

2.1 Feature extraction

The purpose of feature extraction is to transform speech waveform into a form suitable for the

recognizer. The standard feature extraction can be divided into the following steps:

1. Segmentation - Speech signal is divided into segments, where speech is regarded as

stationary. A multiplication of speech waveform with rectangular or more often Hamming
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window can be used for this purpose. The typical value for window size is 25ms and time

shift is 10ms.

2. Spectrum - The power or magnitude Fourier spectrum is computed for every speech

segment.

3. Auditory-like modifications - Modifications inspired by physiological and psychological

findings about human perception of loudness and different sensitivity for different frequen-

cies are performed on spectra of each speech frame [39, 26]. The type of modification has

influence on the output feature kind.

4. Decorrelation and dimensionality reduction - In case of using HMM with diagonal

covariance modeling (see below), the features have to be decorrelated and nuisance di-

mensions have to be removed. Empirically chosen Discrete Cosine Transform (DCT) is

commonly used for this purpose. Some examples, where different kind of transforms are

used to improve feature extraction, can be found in [4, 28, 35].

5. Derivatives – Feature vectors are usually augmented with first and second order deriva-

tives of their time trajectories (delta and acceleration coefficients). These coefficients

describe changes and speed of changes of the feature vector coefficients in the time.

2.1.1 Perceptual linear predictive analysis

The Perceptual linear predictive coefficients (PLP) are popular features in speech recognition

area. Since these features are used in our experiments, a brief description of this method is given

here.

The PLP analysis was first introduced by Hermansky [26]. The main idea of this technique

is to take advantage of three principal characteristics derived from the physical and acoustic

properties of the human ear for estimating the audible spectrum. These are:

1. Spectral resolution of the critical band.

2. Equal-loudness curve.

3. Intensity-loudness power law.

The whole method could be described in the following steps:

1. The short-term power spectrum P (ω) of speech segment (after Hamming windowing) is

taken.

2. Critical Band Spectral Resolution:
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• Bark frequency domain: The spectrum P (ω) is transformed to the Bark frequency

domain (Ω) by:

Ω(ω) = 6 ln
( ω

1200π
+ ((

ω

1200π
)2 + 1)

1
2

)

(2.1)

where ω represents the angular frequency measured in rad/s. The resulting warped

spectrum is than convoluted with the power spectrum of the simulated critical-band:

Ψ(Ω) =



































0 for Ω < −1.3

102.5(Ω−0.5) for −1.3 < Ω < −0.5

1 for −0.5 < Ω < 0.5

10−1.0(Ω−0.5) for 0.5 < Ω < 2.5

0 for Ω > 2.5

(2.2)

The discrete convolution of Ψ(Ω) with P (Ω) produces the samples of the critical band

power spectrum:

Θ(Ωi) =
2.5
∑

Ω=−1.3

P (Ω − Ωi)Ψ(Ω) (2.3)

The sampling interval is chosen so that the integral number of spectral samples covers

the whole analysis band. Normally, 18 spectral samples are chosen to cover the 0-16.9

Bark band (0-5 kHz) in 0.994 Bark-steps.

• Mel-frequency domain: A conversion to Mel-frequency domain is a traditional ap-

proach based on psycho-acoustic findings, where better resolution in a spectrum is

preserved for lower frequencies than for higher frequencies.

The relationship between frequency and Mel scale domain is:

fm = 1127.01048 ln(1 + f/700)

Mel filter bank is applied to smooth the spectrum: Energies in the spectrum are

integrated by a set of a band limited triangular weighting functions. Their shape can

be seen in figure 2.2. These weighting functions are equidistantly distributed over the

Mel scale. A vector of filter bank energies for one frame can be seen as a smoothed

and down-sampled version of the spectrum.

Mel scale used instead of Bark scale in the PLP analysis generates so called ML-

PLP features. A previous work [52] mentions better robustness using of ML-PLP

compared to standard PLPs with Bark-scale. Therefore, this implementation is used

in this work.

3. Equal-loudness preemphasis: The simulated equal-loudness curve is used to pre-

emphasize the output from critical band analysis Θ(Ω(ω)):

Ξ(Ω(ω)) = E(ω)Θ(Ω(ω)) (2.4)
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m1 mP

freq

1

m j... ...
Energy in
Each Band

MELSPEC

Figure 2.2: Mel scale filter bank (reproduced from [54]).

The function E(ω) represents an approximation of the human auditive sensitivity to react

to different frequencies at about 40 dB level. Detailed equations of this approximation can

be found in [26].

4. Intensity-Loudness Power Law is an approximation to the power law of hearing and

simulates the non-linear relationship between the sound intensity and the perceived loud-

ness:

Φ(Ω) = Ξ(Ω)0.33 (2.5)

This operation also reduces the spectral amplitude variation of the critical-band.

5. Autoregressive Modeling: In this step, the expression Φ(Ω) is approximated by the

spectrum of an all-pole model. Then, the inverse discrete Fourier transform (IDFT) is

applied to obtain the autocorrelation function of Φ(Ω). The first M+1 values are used for

solving the Yule-Walker equation for obtaining the autoregressive coefficients of the all-

pole model of order M . These coefficients can be transformed to other types of parameters

for further analysis.

2.2 Introduction to Hidden Markov Models

Hidden Markov Models are the most popular acoustic modeling method used in speech recog-

nition systems. In this chapter, the basic principles only will be described. Very good and

compact introduction to HMM can be found in [54]. Detailed HMM description and derivation

of all formulae are in [29, 18, 30, 49].
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11a

1o

23a12a

22a 33a
44a

34a

2o 3o 4o 5o 6o

1 32 4

o( )11b o( )21b o( )32b o( )43 o( )53b o( )64bb

Figure 2.3: Typical Hidden Markov Model of a word (reproduced from [54]).

2.2.1 HMM based speech recognition

From statistical point of view, the goal of speech recognition is to find the most likely word

sequence W′ = w1, w2, . . . , wn given the sequence of observations (sequence of feature vectors)

O = o(1),o(2), . . . ,o(T ). This can be expressed as:

W′ = arg max
W

{P (W|O)}, (2.6)

where W is arbitrary word sequence.

It is not easy to directly estimate the posterior probability P (W|O). According to Bayes

Rule, the probability can be expressed as:

P (W|O) =
p(O|W)P (W)

p(O)
, (2.7)

where p(O) is a probability (or a probability density) of the observation sequence, which stays

constant over different word sequences, W, and, therefore, it can be ignored when making

decision about the most likely sequence, W′. P (W) is the prior probability of word sequence

W, which is usually estimated using language model (see section 2.5).

The recognition problem can be rewritten as:

W′ = arg max
W

{p(O|W)P (W)}. (2.8)

The likelihood p(O|W) can be modeled and evaluated using Hidden Markov Models. An ex-

ample of HMM with left-to-right topology, typically used to model a single word in speech

recognition, is shown in figure 2.3. HMM is a generative model, which can be seen as a finite

state machine making transition from state i to state j with probability aij and generating a

feature vector, o(t), based on distribution bj(o) at every discrete time step, t. Having a set

of models {M1,M2, . . . } representing individual words (or even smaller linguistic units such as
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phonemes) {w1, w2, . . . }, model M representing a word sequence W can be simply created by

concatenating appropriate individual models. The compound model is typically constraint so

that the first and the last feature vector must be generated by the first and the last HMM

state, respectively. In speech recognition, of course, we do not use HMM to generate anything.

However, model M representing word sequence W allows us to evaluate likelihood p(O|M),

which represents the desired likelihood p(O|W ). State-dependent observation distribution bs(o)

is typically modeled using mixture of multivariate Gaussians with diagonal covariance matrices

bs(o) =
∑

m

csmbsm(o), (2.9)

where csm is weight of mth Gaussian component associated with sth HMM state and bsm is the

Gaussian component:

bsm(o) =
1

(2π)n
∏n

k=1 σ2
smk

e

−

n
∑

k=1

(ok − µsmk)
2

2σ2
smk , (2.10)

where µsmk and σ2
smk are kth coefficients of mean and variance vector of the Gaussian component.

Likelihood of observation sequence, O, given a state sequence, S = s(1), s(2), . . . , s(T ), and

model M is

p(O|S,M) =
T

∏

t=1

bs(t) (o(t)) (2.11)

and probability of a state sequence, S, given a model, M , is

P (S|M) =

T
∏

t=2

as(t−1)s(t). (2.12)

Since the state sequence is not directly observable (discrete random variable s(t) is hidden), the

likelihood p(O|M) is expressed as a sum over all possible state sequences:

p(O|M) =
∑

S

p(O|S,M)P (S|M). (2.13)

It can be computed using the Baum-Welch algorithm (see section 2.3.3). This likelihood is often

approximated by the likelihood of the best state sequence S only:

p̂(O|M) = max
S

{p(O|S,M)P (S|M)}, (2.14)

This likelihood, so called Viterbi likelihood (or incorrectly Viterbi probability), can be computed

more efficiently than the true likelihood. Viterbi decoding, which is an algorithm based on

Dynamic Programming allowing to efficiently compute Viterbi probability, is used to find the

most likely sequence of composite HMM states. Such state sequence uniquely identifies the most

likely sequence of words.
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...
HMM for "Zero"

HMM for "Two"
HMM for silenceHMM for Silence

HMM for "One"

Figure 2.4: Recognition network used for recognition of connected digits.

sil dh ey sp aa r sil

Figure 2.5: Monophone expansion of sentence “THEY ARE”.

2.3 Application of HMM in recognition systems

In more sophisticated recognition systems such as a large vocabulary recognizer, it is impos-

sible to work with word HMMs. The models of words are composed of smaller units, usually

phonemes, according to given dictionary.

Three main kinds of word-phoneme expansions are used:

• monophones - context independent phoneme models. It gives simple implementation but

not good performance due to context dependency of phonemes.

• within-word context dependent phonemes - the words are expanded into context dependent

phoneme unit, but with no respect of phonemes outside of word boundaries.

• cross-word context dependent phonemes - on contrary to within-word, the cross-word

expansion goes through the word boundaries.

The context expansion commonly considers neighboring context only, so called triphones. Wider

context size, like quinphones, are used in some state-of-the-art systems too [53]. Figure 2.5 shows

monophone expansion of sentence “THEY ARE”. The cross-word triphone expansion is shown

in figure 2.6. Typically, more pronunciation variants are defined for each word. The example is

shown in figure 2.7.

sil sil-dh+ey dh-ey+aa sp ey-aa+r aa-r+sil sil

Figure 2.6: Cross-word triphone expansion of sentence “THEY ARE”.
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sil sil-dh+ey

dh-ey+axr

dh-ey+sil

dh-ey+aa

sp

sil

sp

ey-axr+sil

sil-aa+r

sil-axr+sil

ey-aa+r

sil

aa-r+sil

Figure 2.7: Cross-word triphone expansion of sentence “THEY ARE” with more pronunciation

variants.

2.3.1 Forced alignment

The forced alignment is a recognition using a given data transcription, typically on word level.

A recognition network is composed for each sentence according to this transcription and dic-

tionary. It allows to find the most probable phoneme sequence from the dictionary and also

time boundaries of the words and phonemes. This is commonly used during the training pro-

cess: data are re-aligned by currently trained models. It produces more precise phoneme-level

transcription for further training.

2.3.2 Decision tree clustering

Context dependent triphones provide better acoustics modeling than independent ones, but

unseen or rarely occurring triphones can not be properly trained. This problem can be solved

by decision tree clustering technique:

1. First, a set of binary questions has to be created. It could be data driven or based on

linguistic rules, which is more common. For example: Is the left context “e”? Is the right

context a vowel? Is the right context an unvoiced stop?

2. Selection of a state and merging all context variants is done - for example - all central

triphone states derived from “s”.

3. Next, the binary questions are applied. The joint state from the point 2 is split according

to the particular question. For each split, it is checked if the partition generates a positive

effect (increase of likelihood) and if there is enough training data for both new states. The

best split is chosen and we iterate the algorithm on the newly created states. The splitting

stops if none of questions can generate new states fulfilling the two conditions above.

Note, that the minimum increase of likelihood and minimum training observations per

state are the main constants which control the whole process and the resulting number of

clusters.

4. Return to point 2 for next state.
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5. With the help of successful decisions trees, we can fill the list of triphones for unseen

triphones.

2.3.3 Estimation of HMM parameters using maximum likelihood

Before Hidden Markov Models can be used for recognition, the set of their parameters, λ =

{aij ,µj ,σ
2
j }, must be determined. For simplification, only one-Gaussian models are considered.

The usual practice is to estimate the parameters from training speech data for which the

correct transcription is known. The most popular training scheme is maximum likelihood (ML)

parameter estimation: Let MW

λ
denote a compound model representing model sequence W,

where λ are parameters of all models from which the compound models is constructed. The

goal is to find such setting of values, λ′, that maximizes the likelihood of training data:

λ′ = arg max
λ

{

R
∏

r=1

P (Or|MWr

λ )

}

, (2.15)

where R is number of training utterances, Or is observation sequence for rth utterance and Wr

is its transcription. Well known Baum-Welch algorithm [2], which is based on the standard EM

(Estimation Maximization) [9], can be used to search for ML estimates of HMM parameters.

This algorithm guarantees to increase (or at least not to decrease) the likelihood of training

data. It collects set of statistics over the training data using current set of parameters λ. Those

statistics are further used to estimate new set of parameters λ̂. This is an iterative process

which converges to the parameter settings λ′.

The algorithm estimates an “occupation” probability γr
j (t), which is the posterior probability

of being in state j in time t of utterance r by computing likelihoods based on two different

partial probabilities: forward probability αr
j(t) which expresses a likelihood of all possible state

sequences up to and including state j and time t of utterance r. Backward probability βr
j (t)

expresses all possible state sequences from state j and time t to the end of utterance r.

The forward probability is computed by the following recursion:

αr
j(t) =

S
∑

k=1

αr
k(t − 1)ajkbj(o

r(t)) (2.16)

where S is the final state. The initial conditions are set to α1(1) = 1 and αj(1) = a1jbj(o(1))

for j > 1.

The backward probability is computed as:

βr
j (t) =

S
∑

k=1

βr
k(t + 1)akjbj(o

r(t + 1)) (2.17)

with initial conditions βr
j (T

r) = ajS where T r is number of frames of utterance r.

Then, the occupation probability γr
j (t) is given by

γr
j (t) =

αr
j(t)β

r
j (t)

p(Or)
(2.18)
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where the probability of the data p(Or) = αr
S(T r) = βr

1(1).

These occupation probabilities make it possible to gather sufficient statistics for re-estimation

formulae.

γj =
R

∑

r=1

T r
∑

t=1

γr
j (t) (2.19)

θj(O) =

R
∑

r=1

T r
∑

t=1

γr
j (t)o

r(t) (2.20)

θj(O
2) =

R
∑

r=1

T r
∑

t=1

γr
j (t)(o

r(t))2 (2.21)

Then, the following formulae are used to re-estimate Gaussian parameters:

µ̂j =
θj(O)

γj
(2.22)

σ̂j =
θj(O

2)

γj
− µ2

j (2.23)

The extension to Gaussian mixture models is straightforward. The statistics

γjm, θjm(O), θjm(O2) need to be collected for each mixture component m. The Gaussian pa-

rameters are updated by equations similar to 2.22 and 2.23.

Finally, the mixture weights cjm are updated according to:

cjm =
γjm

∑

m γjm
. (2.24)

2.4 Estimation of HMM parameters using discriminative ap-

proach

In addition to Baum-Welch algorithm (which was described in previous section) other training

schemes exist where HMM parameters are not estimated in ML fashion. Maximum Mutual In-

formation (MMI) [41], Minimum Classification Error (MCE) [7], Minimum Phone Error (MPE),

and Minimum Word Error(MWE) [48] are examples of discriminative training schemes. Instead

of maximizing the likelihood, an objective function, which is believed to be closer related to the

recognition performance, is maximized.

Let us introduce the MPE training as it is used in this thesis later. Only basic principles of

MPE will be given, and for simplification, only one-Gaussian per state models are considered.

More detailed information can be found in [48],[46].

For R training observation sequences {O1, . . . ,Or, . . . OR} we known word and phone tran-

scriptions Wr. The Wr is a subset of space of all possible hypotheses W. The MPE criterion

for parameter set λ is defined by

FMPE(λ) =
R

∑

r=1

∑

W∈W
pλ(Or|W)κP (W)A(W)

∑

W∈W
pλ(Or|W)κP (W)

, (2.25)
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where A(W) is measure of number of phones correctly recognized in hypothesis W. P (W) is

probability of hypothesis W given by language model and κ is a scaling constant.

For each training utterance, MPE criterion averages over all hypothesis from W weighted

by the respective accuracy A(W). Therefore, the correct transcriptions Wr are used only for

measuring the accuracy A(W).

Related to MPE criterion is MWE criterion, the only difference is in measure of accuracy

A(W) on word level instead of phone one. The MWE was found more effective in maximizing

accuracy on training set than MPE, but slightly worse results on test set were presented [48].

The MPE framework is done in context of word level recognition too like MWE. It works on

word level but the accuracy measure is based on how many phones are correct.

The space of hypotheses W could be enormously huge, therefore it has to be limited to

reasonable size. Lattices are used for this purpose. Typically, the ML trained models are taken

as the input. Those models are used for generation of word-phoneme lattices over the training

data. These lattices contain the time information also on phone level which is further used to

speed up the processing.

2.4.1 Calculation of A(W)

The function of A(W) ideally equals the number of correct phones minus the number of inser-

tions. It could be expressed as a sum of phone level accuracies A(q) over all phones q in W,

where A(q) is defined as:

A(q) =











1 if correct phone

0 if substitution

−1 if insertion

(2.26)

This, however, calls for a dynamic programing to obtain the alignment of each hypothesis

and reference sequence, which is quite inefficient. If time boundaries of phones in both sequences

are known, the following approximation can be used to avoid this extra-computation:

Consider a phone q from hypothesis W and phone z from reference transcript which overlap

in time: e(q, z) is overlapped proportion of q in reference phone z. Then, the approximated A(q)

can be computed according to:

A(q) = max
z

{

−1 + 2e(q, z) if z and q are the same phone

−1 + e(q, z) if z and q are different
(2.27)

If phone q overlapped with more than one phone from reference, more “partial” A(q) are

computed and the highest value is taken.
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2.4.2 MPE estimation and update

The whole optimization of objective function can be found in [46]. But the most important

value is the differential of 2.25 w.r.t. log likelihood of phoneme arc q from the lattice:

γMPE
q =

1

κ

δFMPE

δ log p(O|q)
, (2.28)

which can be computed as

γMPE
q = γq(c(q) − cr

avg), (2.29)

where γq is the posterior probability of the arc q derived by forward-backward algorithm over

the arcs. c(q) is average accuracy A(W) of hypothesis passing through the arc q, and cr
avg is the

average A(W) of all the hypothesis in the recognition lattice for r’th training file (all averages

are weighted by posteriors of the hypotheses).

If time information about word and phones boundaries is given in lattice, so called, exact-

match algorithm can be effectively used to speed up the computation of forward-backward

algorithm:

Let’s say that each phone arc q has a known start time sq and end time eq. Forward-

backward computation within a single arc q gives the arc-likelihood p(O|q) and also occupation

probabilities γqjm for Gaussian m of state j. When all arcs are processed, the arc-likelihoods

p(O|q) are used in the lattice node-level forward-backward computation. It estimates a posterior

probability of arc γq: probability of going through the arc q.

When the γMPE
q and state occupation probabilities are calculated, the statistics for MPE

update can be collected:

γjm =

Q
∑

q=1

eq
∑

t=sq

γqjm(t)γMPE
q (2.30)

θjm(O) =

Q
∑

q=1

eq
∑

t=sq

γqjm(t)γMPE
q o(t) (2.31)

θjm(O2) =

Q
∑

q=1

eq
∑

t=sq

γqjm(t)γMPE
q o(t)2 (2.32)

The new model parameters can be updated by Extended Baum-Welch formula which was

introduced for optimization of MMI objective function [42]. For MPE, it could be simplified to:

µ̂jm =
θjm(O) + Dµjm

γjm + D
(2.33)

σ̂jm =
θj(O

2) + D(σ2
jm + µ2

jm)

γjm + D
− µ̂2

jm (2.34)

(2.35)

where µjm and σjm are original Gaussian parameters. Constant D is set on Gaussian level to

twice the value needed to ensure a positive variance update or to a global constant E multiplied
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by γden
jm , which is sum of negative contributions from equation 2.30. E is commonly set to 1 or

2.

2.4.3 I-smoothing

The I-smoothing is a technique which allows an interpolation between MPE and ML estimates

based on amount of data available for each Gaussian, where ML statistics are regarded as a

prior.

The ML statistics are collected using correct transcriptions, equations 2.19-2.32, and added

into the MPE statistics according to:

γ′

jm = γjm + τ (2.36)

θ′jm(O) =
θjm(O)γjm + θML

jm (O)τ

γjm + τ
(2.37)

θ′jm(O2) =
θjm(O2)γjm + θML

jm (O2)τ

γjm + τ
(2.38)

where τ is a control constant.

I-smoothing has been found very effective in discriminative training approaches, not only in

MPE.

2.4.4 MPE-MAP

Similarly to I-smoothing, MPE-MAP incorporates a prior information into the MPE update. In

the I-smoothing, the priors are estimated in ML fashion which could be inaccurate if enough

data is not available. Therefore, in this case it is preferable to use ML-MAP to estimate more

robust priors.

The MPE-MAP operates in two levels. First, new priors are estimated using ML-MAP and

unadapted mean µ̃jm and variance σ̃jm are used as priors:

µ
map
jm =

θML
jm (O) + τ µ̃jm

γML
jm + τ

(2.39)

σ
map2
jm =

θML
jm (O2) + τ(µ̃2

jm + σ̃2
jm)

γML
jm + τ

− µ
map2
jm (2.40)

Then, the ML-MAP parameters are used as the priors in MPE-MAP update. For the MPE-

MAP, mean is given by:

µ̂jm =
θjm + Dµjm + τ Iµ

map
jm

γjm + D + τ I
(2.41)

The MPE-MAP is an iterative process where in each stage µ
map
jm and σ

map2
jm values re-

computed using new ML statistics. It introduces two new values: τ which controls the prior

distribution for MPE-MAP estimated by ML-MAP, and τ I which controls the weight of prior

in the discriminative update.
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2.5 Language models

The role of language model (LM) is to select the hypothesis which is the most likely the right

sequence of speech elements (sentence) of a given language. The complexity of used language

model depends on complexity of the problem being solved (continuous speech vs. limited number

of commands). Statistical models derived from data are usually used for this purpose (N-grams).

HMM based speech recognition provides unified framework, where acoustic and language models

are jointly used to find the most probable word sequence (see section 2.2.1).

Although LM are essential for good recognition performance, this thesis does not deal with

LM and interested reader can refer to [30, 40, 6] for more information.



20 2 Basis of speech recognition



Chapter 3

Linear transforms in feature-space

In our experiments described later (chapter 5), linear transforms are used to decorrelate and

reduce dimensionality of features.

3.1 Heteroscedastic Linear Discriminant Analysis

The Heteroscedastic Linear Discriminant Analysis [31] can be used to derive linear projection de-

correlating feature vectors and performing the dimensionality reduction. For HLDA, each feature

vector that is used to derive the transformation must be assigned to a class. When performing

the dimensionality reduction, HLDA allows to preserve useful dimensions, in which feature

vectors representing individual classes are best separated (Figure 3.1). HLDA allows to derive

such projection that best de-correlates features associated with each particular class [31, 15].

To perform de-correlation and dimensionality reduction, n-dimensional feature vectors are

projected into first p < n rows, ak=1...p, of n × n HLDA transformation matrix, A. An efficient

iterative algorithm [15] is used in our experiments to estimate matrix A, where individual rows

are periodically re-estimated using:

âk = ckG
(k)−1

√

T

ckG
(k)−1cT

k

(3.1)

where ci is the ith row vector of co-factor matrix C = |A|A−1 for the current estimate of A and

G(k) =







∑J
j=1

γj

akΣ̂
(j)aT

k

Σ̂(j) k ≤ p

T

akΣ̂aT
k

Σ̂ k > p
(3.2)

where Σ̂ and Σ̂(j) are estimates of global covariance matrix and covariance matrix of jth class,

γj is number of training feature vectors belonging to jth class and T is the total number of

training feature vectors.

In our experiments, the classes are defined by each Gaussian mixture component m of each

state s. The selection, that feature vector o(t) belongs to class j, is given by the value of

21
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Figure 3.1: Heteroscedastic Linear Discriminant Analysis for 2-Dimensional Data (reproduced

from [5]).

occupation probability γj(t). These occupation probabilities, are used to re-estimate transition

probabilities, and mixture component weights according to standard Baum-Welch algorithm.

In this algorithm, occupation probabilities, γj(t), and feature vectors o(t) are used to estimate

n-dimensional mean vector, µj , and full covariance n× n matrix, Σj, of each Gaussian mixture

component, j, according to equations:

γj =

T
∑

t=1

γj(t), (3.3)

µ̂j =

∑T
t=1 γj(t)o(t)

γj
, (3.4)

Σ̂j =

∑T
t=1 γj(t)(o(t) − µ̂j)(o(t) − µ̂j)

T

γj
(3.5)

where T is the number of feature vectors used for training. Note that these equations correspond

to 2.22 and 2.23 except for estimation of full covariance matrix. New HLDA projection, A, is

then derived using the occupation probabilities and the estimated class covariance matrices, Σ̂j.

To obtain the correct estimates of HMM parameters in feature space corresponding to the

newly derived transformation, Ap, p-dimensional mean vector, µ̂HLDA
j , and variance vector,

σ̂HLDA
j , of each Gaussian mixture component are updated according to:
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Figure 3.2: Linear Discriminant Analysis for 2-Dimensional Data (reproduced from [5]).

µ̂HLDA
j = Apµ̂j , (3.6)

σ̂HLDA
j = diag(ApΣ̂jA

T
p ), (3.7)

where Ap is matrix consisting of the first p rows of matrix A.

In the special case, where p = n (no dimensionality reduction is performed), HLDA trans-

formation equals to Maximum Likelihood Linear Transform (MLLT) [19], which is also often

referred to as diagonalization transform.

Note, that an alternative definition of HLDA (sometime referred to as HDA) proposed by

Saon [50] also exists, which is, however, not derived in the maximum likelihood framework.

3.2 LDA

Well known Linear Discriminant Analysis (LDA) can be seen as special case of HLDA, where it

is assumed that covariance matrices of all classes are the same (see Figure 3.2). In contrast to

HLDA, closed form solution exists in this case.

Base vectors of LDA transformations are given by eigen vectors of matrix Σac × Σ−1
wc . The

within-class covariance matrix, Σwc, which represents the unwanted variability in data, is esti-

mated as weighted average of covariance matrices of all classes:

Σ̂wc =
1

N

∑

j

γjΣ̂j, (3.8)

where N is the number of classes.
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The across-class covariance matrix Σac represents the wanted variability in data and it is

computed as the covariance matrix of weighted mean vectors of all classes:

Σ̂ac =
1

T

∑

j

γj(µ̂j − µ̂)(µ̂j − µ̂)T = Σ̂ − Σ̂wc, (3.9)

where µ̂ is the global mean vector and Σ̂ is the global covariance matrix.

Again, projection to only several eigen vectors corresponding to largest eigen values can be

performed in order to reduce the dimensionality of features.



Chapter 4

Description of recognition system

To get accurate acoustic models, it is important to train on large corpora close to the target

task. Meetings should be used for acoustic model training but data in this domain is still

sparse. As was already mentioned, meeting speech is spontaneous discussion. The wide-band

(WB) 16 kHz sampling rate is typically used for recording. The conversational telephone speech

(CTS) speaking style is close to meeting data and training data is more abundant. Therefore,

development was made also with CTS data, although it is naturally recorded in 8 kHz, narrow

band (NB). Experiments allowing for use of CTS corpora in the training of acoustic models for

meeting will be presented later in chapter 7. Hence, two recognition systems were created, one

for meeting speech and the second for telephone speech. Both are described later in this chapter.

When the recognition systems were built, meeting and telephone speech test sets were pro-

cessed by corresponding systems to produce wide lattices. Consequently, newly developed models

and approaches could be efficiently tested by acoustic rescoring of these lattices.

4.1 Description of basic HMM training

The features were 13th order ML-PLP cepstral coefficients, including the 0th one, with the first

and second derivatives added. This gives a standard 39 dimension feature vector. Cepstral mean

and variance normalization was applied (described later in 6.1.1). Cross-word triphones were

chosen as the smallest modeled units. Each HMM contained 3 emitting states in the left-to-right

topology.

Training transcriptions were created from word level transcriptions and given dictionary.

The first pronunciation variant was taken.

To initialize the system, monophone models were first trained from scratch using Baum-

Welch algorithm (see section 2.3.3) and mixture splitting. In more detail:

1. Initialize set of 1 Gaussian models by global mean and variance.

2. Run 4 Baum-Welch iterations.

3. Mixture splitting - split 2 mixtures with the highest mixture weight.

25
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4. Go to step 2 if requested number of Gaussian was not reached.

As monophones are used just for initialization, 16 Gaussians mixtures were chosen for output.

The final models were fixed and they are shortly called “mono”.

In the next step, the transition to triphones was done:

1. Take “mono” models as an input.

2. Merge all non-silence Gaussian mixtures to produce set of 1 Gaussian models.

3. Clone according to all triphones occurring in the training data.

4. Run 4 Baum-Welch iterations and save statistics for decision tree algorithm.

5. Use decision tree clustering to create tied-state triphone (see 2.3.2). The number of re-

sulting tied states was set depending on the amount of training data.

6. HMM training and mixture splitting similar to that for monophones followed. The final

models are shortly called “xwrd.1”. The 16 Gaussian models were selected again.

The estimation of decision tree statistics in step 4 is given by simple 1-Gaussian models which

could be inaccurate. Also, the data transcriptions can be regenerated using forced alignment

and the current models. Therefore we increased the accuracy of the system by running the whole

triphone training again with two changes:

• Transcriptions were created using forced alignment.

• Step 4 was changed - the 1-Gaussian triphone models from step 3 were updated according

to forward-backward procedure which was not based on models from the previous iteration

but on the final models from step 6. This technique is called 2-model reestimation.

This process can run iteratively using always output models from the previous iteration,

which produces model selections shortly called “xwrd.2”,“xwrd.3”. . .

4.2 Conversational telephone speech recognition system

4.2.1 Acoustic models

The CTS system was trained on ctstrain04 training set, a subset of the h5train03 set, defined at

the University of Cambridge. It contains about 278 hours of well transcribed speech data from

Switchboard I,II and Call Home English (see Table 4.1).

All CTS models selections were tested on the Hub5 Eval01 test set (defined during 2001 NIST

CTS evaluation) composed of 3 subsets of 20 conversations from Switchboard-1, Switchboard-2

and Switchboard-cellular corpora, for a total length of more than 6 hours of audio data (see

Table 4.2).
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Database Amount of data [hours]

h5train03 ctstrain04

Switchboard I 263.61 248.52

Switchboard II - cellular 16.18 15.27

Call Home English 15.77 13.93

Total 295.56 277.72

Table 4.1: CTS training data description.

Database Amount of data [hours]

Switchboard I 2

Switchboard II 2

Switchboard II - cellular 2.2

Total 6.2

Table 4.2: Description of eval01 test set.

The “basic” models were trained by 4 whole iterations of algorithm in section 4.1. Table 4.3

shows the effect of re-clustering. The final “xwrd.4” basic CTS system contained 7598 tied states

and 16 Gaussian mixtures per state.

4.2.2 Language model

The Language model used in the decoding was estimated by interpolation from Switchboard I,II

+ Call Home English and Hub4 (Broadcast news) transcriptions (see Table 4.4). The size of

recognition vocabulary was 50k words.

models WER [%]

mono 52.6

xwrd.1 37.0

xwrd.2 36.8

xwrd.3 36.7

xwrd.4 36.7

Table 4.3: Effect of reclustering in triphone model training.



28 4 Description of recognition system

Corpus Count of words LM weights

2gram 3gram

SWB + CallHome 3.5M 0.733 0.639

Hub4 LM96 220M 0.266 0.360

Table 4.4: Number of words and weights per corpus for CTS language model.

4.2.3 System flow-chart

Final eval01 test set lattices were generated by simple system based on “xwrd.4” models (see

section 4.2.1) using a bigram language model (see section 4.2.2). Those lattices were further

expanded by trigram language model. This is shown in figure 4.1

feature extraction
PLP Decoding

(lattice generation)

Language model
(2−gram)

Lattice expansion

Acoustic models
(xwrd.4)

Language model
(3−gram)

speech

Figure 4.1: CTS lattice generation

4.3 Meeting speech recognition system

The meeting speech recognition system had more sophisticated structure than the CTS one. It

was developed for NIST Rich Transcription evaluation 2005. Just brief information will be given

in this section. More details can be found in [22].

4.3.1 Acoustic models

The acoustics models were trained on 112h of meeting data collected from all meeting corpora

currently available by Linguistic Data Consorcium (LDC), see Table 4.5.

Meeting models were tested on the NIST Rich Transcriptions 2005 test set (rt05) composed of

5 subsets which were made available by AMI, NIST, Interactive System Labs (ISL), International

Computer Science Institute (ICSI) and Virginia Polytechnic (VT), see Table 4.6. The total

length of all speech segments was about 2h.
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Corpora Size [h]

ICSI meeting corpus 73

NIST data 13

ISL 10

AMI preliminary development set 16

Total 112h

Table 4.5: Description of meeting data for the training.

Database Amount of data [hours]

AMI 0.39

ISL 0.46

ICSI 0.45

NIST 0.41

VT 0.35

Total 2.06

Table 4.6: Description of rt05 test set.

The “basic” models were trained using similar procedure as the CTS models above but the

following advanced techniques were used to obtain more accurate system:

• VTLN - vocal tract length normalization. Speaker normalization technique, it will be

described later in section 6.1.2

• SHLDA - Smoothed Heteroscedastic linear discriminant analysis. Maximum likelihood

feature transform, it will be described later in section 5.1

• MPE training - Minimum Phone Error discriminative training.

4.3.2 Language model

The Language model used in NIST RT05 system was based on interpolation of various corpora,

see Table 4.4. The size of recognition vocabulary was again 50k words.

4.3.3 System flow-chart

The NIST RT05 test data were processed by system shown in figure 4.2.

Several advanced techniques were used:
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Corpus words [MW]

Swbd/CHE 3.5

Fisher 10.5

Web (Swbd) 163

Web (Fisher) 484

Web (Fisher topics) 156

BBC - THISL 33

HUB4-LM96 152

SDR99-Newswire 39

ICSI/NIST/ISL/AMI 1.5

Web(ICSI) 128

Web (AMI) 100

Web (CHIL) 70

Table 4.7: Numbers of words per corpus used for training of meeting language model.

• CMN/CVN - Cepstral Mean and Variance Normalization - simple feature normalization,

it will be described later in section 6.1.1

• MLLR - Maximum Likelihood Linear Regression - speaker adaptation technique. It esti-

mates a transform (or set of transforms) which rotate model parameters in order to increase

likelihood on adaptation (test) data. It will described in more detail in section 6.2.2.

• Confusion Networks (CN) - The technique converts lattice into the so called “Confusion

Network” or “sausage lattice”. The confusion network could be imagined as a sequence of

“sausages” where each “sausage” contains a list of words with known posterior probability.

More details can be found in [37],[36].

• Consensus decoding, also called Minimum word error decoding, picks up the word with

highest probability from each “sausage”. It optimizes Word Error Rate (WER). This is

main advantage of this approach because the decoders itself gives output which optimizes

the best Sentence Error Rate (SER).

The system works in six passes:

1. First, the PLP features were extracted from the waveforms and speech activity segments

were detected. The first decoding run with “basic” ML trained models and 3-gram LM.

It generated one-best output strings.

2. VTLN warping factor for each speaker was searched out by iterative feature coding and

aligning of first pass output. VTLN PLP features were generated and second decoding pass

run. The same 3-gram LM but more sophisticated VTLN SHLDA MPE trained acoustics

models were taken. Therefore, it produced more reliable one-best output string than the

first pass.
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Figure 4.2: AMI RT05 system description (reproduced from [22]).

3. The output from previous pass was used for speaker adaptation based on MLLR. 2 adap-

tation transforms (silence, voice) were estimated. These transforms were further applied

on current VTLN SHLDA MPE models and wide lattices were generated by decoding with

2-gram LM.

4. The 2-gram lattices from previous pass were expanded by more accurate 3-gram and 4-

gram Language models.

5. More accurate one-best output generated from the 4-gram lattices was used to reestimate

the MLLR transforms. New sets of lattices were generated by acoustic rescoring of current

4-gram lattices using new transforms and VTLN SHLDA MPE models.

6. Confusion networks were generated from final set of lattices. Minimum word error decoding

produced the final one-best output string but it did not contain any time information about

word boundaries which is required by NIST scoring script. Therefore, forced alignment

run to add this time information back.

The lattices used in this work were taken from pass 4.
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Chapter 5

Study of the HLDA

HLDA estimation algorithm requires estimation of full covariance statistics for each class. A

Gaussian is usually considered as the class in a standard HMM system. This can however lead

to noisy estimation of statistics even in case of well tuned system. Therefore, a smoothing

techniques will be introduced in this chapter to obtain more robust HLDA estimation.

In our experiments, we added the third derivatives into the PLP feature stream, which gave

us 52 dimensional feature vectors. HLDA transform was then trained to perform the projection

from 52 to 39 dimension. The statistics were projected into the new space and HMM models

were updated. A few additional Baum-Welch iterations were run to better settle HMM into the

new space.

In chapter 7, we will investigate using of CTS models in meeting system, therefore the

development run on both tasks. It is important to know if the best approach for telephone

speech generalizes also for meetings. The testing was performed on eval01 test set (for CTS

system) and on rt05 test set (for meeting system). For meeting system, VTLN was applied in

advance.

Table 5.1 shows a comparison of no HLDA, HLDA without dimensionality reduction (also

called Maximum Likelihood Linear Transform) and HLDA system projecting 52 dimensional

space to 39.

HLDA approach CTS system - WER [%] Meeting system - WER[%]

no HLDA 36.7 30.3

MLLT 35.0 29.0

HLDA 34.8 28.8

Table 5.1: Comparison of HLDA and MLLT systems on eval01 and rt05 test sets.
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5.1 Smoothed HLDA - SHLDA

SHLDA is a technique based on combination of HLDA and LDA proposed in [3], where class

covariance matrices are estimated more robustly, and at the same time, (at least the major)

differences between covariance matrices of different classes are preserved. Smoothed HLDA

(SHLDA) differs from HLDA only in the way of estimating class covariance matrices. In the

case of SHLDA, the estimate of class covariance matrices is given by:

Σ̌j = αΣ̂j + (1 − α)ΣWC (5.1)

where Σ̌j is “smoothed” estimate of covariance matrix of class j. Σ̂j is the original estimate of

covariance matrix given by equation 3.5, ΣWC is estimate of within-class covariance matrix (see

equation 3.8) and α is smoothing factor — a value in the range of 0 to 1. Note that for α equal

to 0, SHLDA becomes LDA and for α equal to 1, SHLDA becomes HLDA.

Results of Smoothed HLDA in CTS and meeting systems

Figure 5.1a shows the dependency of WER on SHLDA smoothing factor α for eval01 test set.

Pure LDA failed, probably due to bad assumption of the same Gaussian distribution in all

classes. The best system performance 34.6% was obtained for smoothing factor α = 0.9. The

relative improvement of this system is 7.9% compared to the non-HLDA and 0.6% compared to

the clean HLDA setup.
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Figure 5.1: Dependency of WER on SHLDA smoothing factor α.

The results for RT05 test set are shown in the Figure 5.1b. We obtained similar curves as for

CTS system. The best system performance 28.6% was obtained for smoothing factor α = 0.8.

The relative improvement over the clean HLDA setup was 0.8%.
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5.2 MAP smoothed HLDA - MAP-SHLDA

SHLDA gives more robust estimation than standard HLDA but optimal smoothing factor α

depends on the amount of data for each class. In extreme case, α should be set to 0 (HLDA) if

infinite amount of training data is available. With decreasing amount of data, optimal α value

will slide up to LDA direction.

To add more robustness into the smoothing procedure, we defined maximum a posteri-

ori (MAP) smoothing similar to classical MAP adaptation of Gaussian parameters introduced

in [17]. The within-class covariance matrix ΣWC is considered as the prior and an estimate of

the class covariance matrix is given by:

Σ̌j = ΣWC
τ

γj + τ
+ Σ̂j

γj

γj + τ
(5.2)

where τ is a control constant and γj is occupation count for class j. Obviously, if insufficient

data is available for current class, the prior resource ΣWC is considered as more reliable than

the class estimation Σ̂j. In case of infinite data, only the class estimation of covariance matrix

Σ̂j is used for further processing.

MAP-SHLDA results for CTS and meeting systems

Figure 5.2a shows results of this technique for CTS eval01 test set. The best performance 34.6%

was obtained again for τ = 400, which is 0.7% relative improvement compared to the clean

HLDA setup.
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Figure 5.2: Dependency of WER on MAP-SHLDA smoothing factors.

Figure 5.2b show results of this technique for meeting RT05 test set. The best performance
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Figure 5.3: Dependency of WER on Silence Reduction factor SR.

28.6% was obtained for τ = 400. The relative improvement of this system is 0.9% compared to

the clean HLDA setup.

5.3 Silence Reduction in HLDA estimation - SR-HLDA

From the point of view of transformation estimation, silence is a “bad” class as its distributions

differ significantly from all speech classes. Moreover, training data (even if end-pointed) contains

significant proportion of silence. An estimation of two HLDA transforms solves this problem

but it makes the implementation more difficult.

Rather than discarding the silence frames, the occupation counts, γj , of silence classes ζ,

which take part in computation of HLDA estimation in equation 3.2, are scaled by factor 1/SR.

γ̂j =
γj

SR
if j ∈ ζ (5.3)

SR = ∞ corresponds to complete elimination of silence statistics.

Results with SR-HLDA in CTS and meeting systems

Figure 5.3a presents nice effect of silence reduction on eval01 test set. The best result is 34.5%,

which is 0.9% relative improvement over the standard HLDA. It was obtained by the Silence

Reduction factor SR = 10.

Figure 5.3b shows the results of silence reduction in HLDA system on rt05 test set. The

elimination of all silence statistics gives the best performance 28.5%. This is 1.2% relative

improvement over the standard HLDA.
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System CTS system - WER [%] Meeting system - WER [%]

(no HLDA) 36.71 30.30

standard HLDA 34.80 28.84

SHLDA 34.62 28.61

MAP-SHLDA 34.57 28.57

SR-HLDA 34.48 28.50

Table 5.2: Comparison of HLDA systems on eval01 and RT05 test sets.

This approach is giving quite good results but for some SR values it causes a degradation of

performance. Removing all silence statistics gives good results for both tests without any need

of tuning.

5.4 Summary of HLDA results

Table 5.2 summarizes the performances of all already presented techniques. Smoothed HLDA

(SHLDA) and MAP variant of SHLDA, taking into account the amounts of data available for

estimation of statistics for different classes, perform both better than the basic HLDA. We

have however found, that removing the silence class from HLDA statistics (Silence-reduced

HLDA) is equally effective and cheaper in computation. Testing SHLDA and MAP-SHLDA on

the top of SR-HLDA did not bring any further improvement, therefore we stick with SR-HLDA,

especially with complete silence removal, as the most suitable transformation in our next LVCSR

experiments.
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Chapter 6

Normalization and adaptation

techniques for LVCSR

Speech recorded in real environment differs from clean speech. The technical side of the problem

includes microphone and channel variations. Non-native speech is expected in meetings which

also produces huge speaker variance. Therefore, robustness is the major issue for our task. In

this chapter, basic channel and speaker normalization techniques will be described as well as

more advanced speaker adaptations.

6.1 Feature normalization

6.1.1 Cepstral mean and variance normalization

Published works [45] show a negative impact of noise to the speech recognition due to mean

shift and variance reduction in the distribution of cepstral features.

Cepstral mean and variance normalization is well know normalization technique to decrease

the sensitivity of cepstral features to channel distortions. The mean and variance normalized

feature vector ôk(t) is computed according to:

ôk(t) =
ok(t) − µ̂k

σ̂k

, k = 1..K. (6.1)

Where k is index of speech segment and K is total number of segments. µ̂k and σ̂k are

estimates of the mean and standard deviation of cepstral features over the segment k. Usually,

k is given by index of each sentence generated by speech/non-speech segmenter. But previous

experiments on the conversational telephone speech show better performance obtained with µ̂k

and σ̂k estimated on the whole conversation side due to poor mean and variance estimates in

some short segments [24].

39
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models WER [%]

baseline 36.7

baseline + VTLN on test 36.0

VTLN train + VTLN on test 34.2

Table 6.1: WER reduction by VTLN on eval01.

6.1.2 Vocal tract length normalization

Vocal tract length normalization (VTLN) is speaker based normalization based on warping

of frequency axis by speaker dependent warping factor [32]. It is typically made by simple

multiplication of frequency and warping factor.

The normalization of vocal tract among speakers has strong positive effect in reduction

of cross-speaker variability. The warping factor is typically found by search procedure which

compares likelihoods at different warping factors: the features are repeatedly coded using all

warping factors in a search range, typically 0.8-1.2. After each coding, forced alignment is used

to measure the likelihood. The warping factor producing the best likelihood is then chosen.

The VTLN can by applied in both training and test. Obviously, applying VTLN in both

training and recognition leads to the best performance, as we are using “sharp” speaker invariant

models. Table 6.1 shows the effect of VTLN: 7% relative improvement against baseline is reached

using VTLN training and testing and only 2% relative gain is shown if VTLN is applied on test

data only.

The common way to cope with difference of male and female speakers are gender-dependent

(GD) HMMs. But it causes a data split in the HMM training and the complexity of recognition

system increases. VTLN minimizes gender differences across data. Consequently, the need of

GD models in VTLN system is disputable. Moreover, experiments show that system trained on

all the data can outperform gender-dependent system if VTLN is applied [20]. No need of GD

models is additional advantage which significantly simplifies the system.

Figure 6.1 shows male/female histograms of warping factors on CTS training set. The strong

dependency of VTLN on gender is obvious.

Our system does not use gender dependent models and it is trained on all the data.

6.2 Adaptation

Speech recognition systems can be dived into two categories:

• “speaker-independent” - trained on a big amount of data containing recordings of many

speakers.

• “speaker-dependent” - trained on one speaker data.
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Figure 6.1: Histograms of male and female warping factors on the CTS training set.

A “speaker-dependent” system is more accurate but the problem is the sparsity of training

data. It is usually not possible to train speaker-dependent models because the standard training

techniques (section 2.2) expect enough data to estimate HMM parameters. Common solution

is to adapt speaker-independent models on speaker-specific data.

In this work, two different adaptation principles are used: maximum a posteriori (MAP)

approach and adaptation using linear transforms. Therefore, a quick introduction will be given

in the following sections.

6.2.1 Maximum a posteriori (MAP) adaptation

Maximum a posteriori approach incorporates prior knowledge about model distribution into the

training process. This technique is introduced and well described in [17], which presents an

implementation of MAP into the standard maximum likelihood estimation of HMM parameters

using EM algorithm.

The solution for mean updates turns to be simply a weighted sum of prior means and observed

data. The update formula for state j and mixture component m is:

µ̂jm =
γjm

γjm + τ
µ̄jm +

τ

γjm + τ
µjm (6.2)

where τ is the controlling value (the weight of the prior knowledge to the adaptation data) and

γjm is sum of the occupations likelihoods computed by standard forward-backward algorithm.



42 6 Normalization and adaptation techniques for LVCSR

It represents the amount of adaptation data for state j and mixture m and is defined defined

as:

γjm =
T

∑

t=1

γjm(t).

µjm is prior mean and µ̄jm is the mean of the observed adaptation data o(t):

µ̄jm =

∑T
t=1 γjm(t)o(t)

γjm
(6.3)

In the adaptation process, the speaker-independent parameters are chosen as the prior pa-

rameters and speaker-dependent data represents observed adaptation data.

The MAP approach can be used in various training techniques. In this work, MAP approach

is mainly used later in chapter 7 to allow for using of CTS models in training of the meeting

system.

6.2.2 Maximum likelihood linear regression (MLLR)

MLLR is linear transform operating in the space of model parameters which maximizes the

likelihood of the adaptation data. On contrary to MAP, where only parameters which have

enough data are adapted, MLLR estimates a transform or set of transforms to rotate all model

parameters. Therefore, less data is needed to make this technique effective.

The transform is estimated by optimization of the following EM criterion [9, 34]:

Q(M,M̂ ) = K−

1

2

M
∑

m=1

T
∑

t=1

γm(t)[Km + log(|Σ̂m|) + (6.4)

+(o(t) − µ̂m)T Σ̂−1
m (o(t) − µ̂m)],

where µ̂m and Σ̂m are transformed mean and variance for Gaussian component m, M is the total

number components, γm(t) is probability of being in component m at time t. K is a constant

depending only on the transition probabilities. Km is a normalization constant associated with

component m. OT = o(1).....o(T ) is the adaptation data.

The transformed mean µ̂m and variance Σ̂m are:

µ̂m = Amµm + bm, (6.5)

Σ̂m = HmΣmHT
m (6.6)

where Am and Hm are transformation matrices and bm is adaptation bias of mean µm tied with

mixture m.

In this thesis, estimation of mean adaptation transform only will be given. The adaptation

of variances can be found in [16].
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If transformation matrices were specific for each Gaussian parameter, it would cause com-

plete reestimation. The problem of unseen adaptation data would not be solved. Therefore,

the transforms are tied among the Gaussians, so if some adaptation data are unavailable, the

transform is still applied. The classes could be created manually (for example silence/speech)

or Gaussians can be grouped using a regression class tree [33]. If small amount of adaptation

data is available, all parameters can share the same transforms.

To decrease the number of matrix parameters needed to be estimated and also the amount

of adaptation data required, a block diagonal matrix can be used instead of full transformation

matrix:

A =







As 0 0

0 A∆ 0

0 0 A∆2






(6.7)

The sub-matrix As is specific to static parameters, A∆ for deltas and A∆2 for accelerations,

and the rest is set to zero.

Estimation of the Mean transform

Equation 6.5 can be rewritten to

µ̂m = Wmξm (6.8)

where

Wm =
[

Am bm

]

(6.9)

ξm =
[

1 µT
m

]T

(6.10)

The solution for particular transform Wm which is shared among R Gaussians {m1, . . . ,mR}

can be found by differentiating the criterion in 6.4 w.r.t Wm and setting it to zero. The details

can be found in [34]. This leads to general equation for estimation of the transformation matrix

Wm:
T

∑

t=1

R
∑

r=1

γmr (t)Σ
−1
mr

o(t)ξT
mr

=

T
∑

t=1

R
∑

r=1

γmr (t)Σ
−1
mr

Wmξmrξ
T
mr

(6.11)

The left side of the equation 6.11 is independent on the transformation matrix Wm and it

will be referred to as Z:

Z =

T
∑

t=1

R
∑

r=1

γmr(t)Σ
−1
mr

o(t)ξT
mr

(6.12)

The right side of the equation 6.11 will be referred to as Y and it could be further rewritten

to:

Y =
R

∑

r=1

V(r)WmD(r) (6.13)
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where V(r) is inverse covariance matrix weighted by occupation probabilities:

V(r) =

T
∑

t=1

γmr(t)Σ
−1
mr

(6.14)

and D(r) is outer product of the extended mean vectors ξmr :

D(r) = ξmrξ
T
mr

(6.15)

If the elements of matrices Y, V(r), W(r) and D(r) are denoted by yij , vij, wij and dij ,

equation 6.13 can be rewritten as:

yij =
n

∑

p=1

n+1
∑

q=1

wpq

[

R
∑

r=1

v
(r)
ip d

(r)
qj

]

(6.16)

Generally, HMMs uses diagonal covariance and D is symmetric, therefore:

R
∑

r=1

v
(r)
ip d

(r)
qj =







∑R
r=1 v

(r)
ii d

(r)
qj when i = p

0 when i 6= p
. (6.17)

Therefore,

yij =

n+1
∑

q=1

wiqg
(i)
jq , (6.18)

where g
(i)
jq are elements of matrix G(i) given by,

G(i) =
R

∑

r=1

v
(r)
ii D(r) (6.19)

The G(i)−1 and Z are completely independent from transformation matrix Wm and both

can be computed from occupation probabilities and model parameters. Therefore, i’th row of

matrix Wm, can be directly computed from the following equation by Gaussian elimination or

LU decomposition:

wT
i = G(i)−1zT

i (6.20)

where zi is i’th row of matrix Z.

Multiple iterations of MLLR

The estimation of adaptation matrix depends on Gaussian posterior probability γm(t) on adap-

tation data. See equation 6.11 or equations 6.14 and 6.12 with statistics V and Z needed for

MLLR update. Therefore multiple iterations can improve MLLR estimation [33]. The adapta-

tion transforms from previous iteration are used to estimate better Gaussian alignment γm(t)

for the current update.
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6.2.3 Constrained Maximum likelihood linear regression

MLLR allows different transforms for means and variances but in Constrained MLLR, mean

and variance transforms are constrained to be the same [10]:

µ̂ = A′µ + b′, (6.21)

Σ̂ = A′ΣA′T (6.22)

Then, the EM criterion in equation 6.4 can be rewritten to:

Q(M,M̂ ) = K −
1

2

M
∑

m=1

T
∑

t=1

γm(t)[Km+

+log(|Σm|) − log(|A|2) + (6.23)

+(ô(t) − µm)T Σ−1
m (ô(t) − µm)],

where

ô(t) = A
′
−1o(t) + A

′
−1b′ = Ao(t) + b. (6.24)

The solution of equation 6.23 can be found in [10, 9, 14].

It is obvious that CMLLR can be applied online by transforming the features only. Therefore,

there is no need to transform model parameters [14] which is significant advantage of this method.

Note, that this attribute of CMLLR causes that it is also called feature-space MLLR (FMLLR).

6.3 Speaker Adaptive Training

Speaker adaptive training (SAT) is a technique used to suppress cross-speaker variance [1]. The

original algorithm estimates a set of MLLR transforms to adapt global model to the speaker-

dependent training data. These transforms are further applied during the training. But this

is not straight-forward in practical implementation due to storage of all Gaussian statistics for

each speaker in memory during the iteration [38].

The application of CMLLR instead of MLLR, which we used, solves this problem. The

features are online transformed by speaker specific transform and no additional statistics need

to be kept [14].

The speaker adaptive training can be easily described in the following steps:

1. Take speaker-independent models as the input.

2. Speaker-dependent CMLLR transforms are estimated using the input models and training

data.

3. The input models are further retrained with CMLLR transforms applied.

4. The accuracy in the last iteration is checked.

5. Models from the last iteration are taken as input models and the process is repeated from

step 2 until the accuracy stabilizes.
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Chapter 7

Narrow band - wide band adaptation

As was already mentioned, the amount of training data has a crucial effect on the accuracy of

HMM-based meeting recognition systems but data in the meeting domain is still sparse. The

common approach is to use other corpora for the training of acoustic models. One possibility

to improve the system performance is to perform adaptation of models trained on considerably

larger amounts of data. Typical domains with large amounts of recorded material are broadcast

news (BN) or conversational telephone speech (CTS). This data differs from the meeting domain,

so one would try to adapt to either different recording environments or to different speaking

style. As the speaking style is often the cause for greater variability, adaptation to database

with similar speaking style is preferred. Hence for the meeting domain, adaptation of models

trained on CTS data is appropriate [11].

Conversational telephone speech speaking style matches well with meetings but CTS is nat-

urally recorded with low bandwidth. Therefore, an adaptation to meeting domain is not trivial

as the standard bandwidth for meeting recordings is 16 kHz (wide-band, WB).

7.1 Adaptation of CTS model to downsampled data (NB-NB)

The intuitive way to circumvent the problem of different band-widths is to downsample meeting

data to NB and use directly the CTS models, see Figure 7.1.

The downsampled meeting data still significantly differs from the CTS, mainly in channel

parameters. Therefore, adaptation of CTS models to downsampled meeting training data

significantly improves the system. Figure 7.2 presents MAP adaptation to the downsampled

data.

7.1.1 Experiments with downsampling

To find out the degradation caused by downsampling the data, the HMMs were also trained

on downsampled meeting training data. The comparison is shown in the first two lines of

Table 7.1. A degradation of 0.4% can be seen. Direct decoding of downsampled test data with

47
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Meeting test data (WB) Downsampling Feature extraction TESTING

Well trained NB CTS HMMs

Test

Figure 7.1: Simple system based on downsampling of WB data and CTS models.

Meeting test data (WB) Downsampling Feature extraction

Downsampling Feature extraction MAP adaptation NB−NB Adapted HMMs

Well trained NB CTS HMMs

TESTING

Meeting train data (WB)

Test

Training

Figure 7.2: Simple system based on downsampling of WB data and adapted CTS models.

CTS models (Figure 7.1) does not perform well probably due to data mismatch - 2.2% worse

than WB meeting system. But the adapted CTS system improves this result significantly. We

tried to use just MAP adaptation (Figure 7.2) and also a cascade of MLLR followed by MAP

adaptation, which outperforms WB baseline by 0.8% absolute.

The main disadvantage of this approach is the loss of the upper band (4-8 kHz) while it is

known to contain useful information [23]. The solution will be given in the next section.

7.2 Introduction into NB-WB adaptation

The loss of information by downsampling of WB data can be solved by global transformation

based on Maximum Likelihood Linear Regression (MLLR) to perform a NB to WB conversion

and its application on CTS models instead of downsampling the data. With this approach, even

though the upper band information cannot be recovered for CTS data, we can still make use of

the richer information in actual target domain recordings.
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Training set Adaptation WER [%]

WB meeting none 30.3

NB meeting none 30.7

CTS none 32.5

CTS-NB MAP 29.8

CTS-NB MLLR MAP 29.5

Table 7.1: Performance of non-adapted and downsampled systems.

Once the CTS models are rotated into the WB domain, it is possible to use any adaptation

technique to better settle the rotated CTS models into the WB domain. We used an Maximum

a Posteriori (MAP) adaptation [17]. The basic idea of this process is shown in Figure 7.3.

Meeting test data (WB) Feature extraction

Feature extraction MAP adaptation

global MLLR (NB−WB)

MLLR adaptation

Well trained NB CTS HMMs

NB−WB Adapted HMMs

TESTING

Test

Meeting train data (WB)

Training

Figure 7.3: NB→WB adapted system using MLLR.

7.3 MLLR as a transformation between wide-band and narrow-

band

The initial MLLR NB→WB single transform was estimated using CTS models and WB data.

This is, however, not too accurate due to data mismatch. Therefore, the iterative MLLR (see

section 6.2.2) was used. Therefore, the process run iteratively and the following iterations
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use MLLR NB→WB from previous iteration to obtain better alignment for estimating MLLR

statistics.

Table 7.2 shows the performance of CTS models rotated by various kinds of NB→WB MLLR

transforms. The “single” represents one single transform, “speech/non-speech” represents two

transforms estimated one for speech, one for silence. Experiments to compare block-diagonal and

full transformation matrices are reported too. Adding more transforms than one global gives no

improvement. After quite some iterations (12-16) the process stabilizes. The full transformation

matrix gives 0.3% absolute improvement.

MLLR iteration WER [%]

single block-diag speech/non-speech block-diag single full

4 35.2 35.2 35.3

8 34.4 34.3 34.0

12 34.1 34.1 33.9

16 34.1 34.1 33.8

20 - - 33.9

Table 7.2: NB→WB - Performance of CTS models on the WB meeting data with various kinds

and quality of NB→WB MLLR.

When the NB→WB transformation is applied on the CTS models, it is possible to use any

adaptation technique to adapt the CTS models into the transformed space.

Figure 7.4 shows the performance using standard MAP with a fixed prior using full MLLR

matrix from 16th iteration. It runs iteratively - models from previous iteration were used to

estimate statistics for current iteration till the process converged.

In our experiments, we use MAP adaptation applied iteratively, so output HMMs from

previous iteration are taken as a prior for the current iteration [23]. The first iteration is

standard MAP. The MLLR-adapted CTS prior is used to align WB data, which is not very

accurate. The solution is to use the models from the previous iteration similarly as above. But

we tried to go further - take models from previous iteration as the MAP prior. This gives better

Gaussian alignment and also smoother convergence to WB system. There is however a risk of

overtraining, so the optimal τ value has to be set higher than in standard MAP; the number of

iterations then provides the adaptation control. This approach changes the tuning of adaptation

control value τ to just finding the best performing iteration.

Figure 7.5 shows the MAP performance with different τ values and fixed block-diagonal

MLLR transform from 12th iteration. We can see that the value of τ is not too important, but

higher values give more smooth convergence to the best WER. Beyond the optimum number of

iterations, the system tends to be overtrained. In comparison with standard MAP, this gives a

bit better results, more than 0.1% absolute.
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Figure 7.4: NB→WB - τ constant in standard MAP with full MLLR matrix taken from 16th

iteration.

The comparison of full MLLR matrix and block-diagonal one is shown in Table 7.3. A 0.3%

improvement given by full transformation matrix is lost in MAP adaptation process. We found

this a bit disappointing, but the overall results of MLLR-MAP combination are very good.

7.3.1 Summary of MLLR NB→WB adaptation

The comparison with traditional non-adapted system is summarized in Table 7.4. We can see

that MLLR WB→NB adapted systems outperform the best downsampled system by 0.2%.

Although promising results were obtained, there is a main disadvantage: MLLR is difficult

to implement with advanced techniques such as Heteroscedastic Linear Discriminative Analysis

(HLDA) (section 3.1) and Speaker Adaptive Training (SAT) (section 6.3). Therefore we propose

a single constrained MLLR (CMLLR) (section 6.2.3) for feature space transformation1 from

WB to NB. This method allows for straight forward implementation and requires little extra

computation in decoding.

1Note, that the transforms proposed above transformed the model parameters, not features.
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Figure 7.5: NB→WB - τ constant in the iterative MAP with block-diagonal single MLLR taken

from 12 iteration.

Adaptation

MLLR MLLR MAP

block-diagonal 34.1 29.3

full 33.8 29.3

Table 7.3: NB→WB - Comparison of MLLR and MLLR-MAP with block-diagonal and full

MLLR matrix.

7.4 CMLLR as a transformation between wide-band and

narrow-band

The CMLLR transformation is estimated to adapt CTS models to meeting WB data. This

can equally be interpreted as a projection of WB meeting data into NB CTS domain. This

does not seem an obvious choice as one constrains the increased richness of WB meeting data.

However, the alternative, i.e. transforming NB CTS data into the WB space, clearly can only

add distortion, but add no information. Hence better model training on the larger amounts of

data is given priority. Using a transformation matrix to make the meeting data more like CTS

data may however preserve some of the characteristics only visible with higher bandwidth. The

basic idea of this process is shown in Figure 7.6.

The initial CMLLR WB→NB single transform was estimated in the same way as MLLR
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Training set Adaptation WER [%]

WB none 30.3

CTS-NB MLLR MAP 29.5

CTS-WB MLLRNB→WB,MAP 29.3

Table 7.4: Comparison of downsampled and WB→NB MLLR MAP systems.

Meeting test data (WB) Feature extraction

Feature extraction MAP adaptation

Well trained NB CTS HMMs

WB−NB Adapted HMMs

CMLLR adaptation

global CMLLR (WB−NB)

Meeting train data (WB)

TESTING

Test

CMLLR adaptation

global CMLLR (WB−NB)

Training

Figure 7.6: WB→NB adapted system based on CMLLR.

above. We use block-diagonal transform. Table 7.5 shows performance of CTS models directly

applied on WB→NB rotated test data. After 12 CMLLR iterations, like with the MLLR, we do

not have any improvement, so this transformation was used.

Next, an iterative MAP followed to better settle the models into the target space. Figure 7.7

shows the performance with different τ values with fixed number of 12 CMLLR iterations.

Similar behavior as in MLLR approach is observed.

The accuracies of unadapted systems (training on the meeting data only), WB→NB adapted

and downsampled systems are shown in Table 7.6. In comparison to MLLR approach, the

CMLLR gives 1.5% worse results on system without MAP adaptation due to constrains in

transformation matrix on means and variances. But after MAP, CMLLR gives 0.2% better

performance, so it seems to be more useful for other adaptation. The best performance of

WB→NB system is 29% which is a 4.4% relative improvement over the non-adapted WB system

and 2.7% over NB-NB adapted system.
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CMLLR iterations WER [%]

4 40.0

8 35.7

12 35.3

16 35.4

20 35.4

Table 7.5: WB→NB - Performance of CTS models on the WB meeting data with different

WB→NB CMLLR quality.

Training set Adaptation WER [%]

WB meeting none 30.3

NB meeting none 30.7

CTS-NB CMLLR MAP 29.8

CTS-WB MLLRNB→WB,MAP 29.3

CTS-WB CMLLRWB→NB ,MAP 29.1

Table 7.6: Performance of WB→NB systems.

7.5 WB→NB transform in HLDA estimation

7.5.1 WB→NB system based on HLDA from CTS

The easiest way to train WB→NB HLDA system is to take HLDA transforms and HMMs already

trained on CTS data and adapt them directly to the WB→NB transformed features similarly

as in the basic system above. This process is displayed in Figure 7.8. The upper branch shows

standard HLDA estimation in the CTS domain, described already in chapters 3 and 5. Then,

the models and HLDA matrix are fixed for adaptation into the meeting domain.

Obviously, this is not optimal as the HLDA is trained on CTS but the target data are

meetings.

7.5.2 Adaptation of statistics

It is useful to estimate statistics required for HLDA estimation from both data sets, to take an ad-

vantage of the meeting data also for HLDA matrix estimation. We use MAP adaptation of statis-

tics, so the CTS full-covariance statistics Σ
(m)
(CTS),µ

(m)
(CTS), γ

(m)
(CTS) are considered as priors and the

WB→NB transformed WB statistics Σ̂
(m)
(WB), µ̂

(m)
(WB), γ̂

(m)
(WB) are taken for the adaptation. These

statistics can be directly obtained by collecting over the transformed features or by WB→NB
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Figure 7.7: WB→NB - τ constant in the iterative MAP with fixed number of 12 CMLLR

iterations.

rotation of the original ones:

µ̂
(m)
(WB)

= A(WB→NB)µ
(m)
(WB)

+ b(WB→NB), (7.1)

Σ̂
(m)
(WB) = A(WB→NB)Σ

(m)
(WB)A(WB→NB)T (7.2)

γ̂
(m)
(WB) = γ

(m)
(WB), (7.3)

where A(WB→NB) and b(WB→NB) are given by

WB→NB CMLLR transform.

The estimation of an arbitrary covariance matrix Σ(m) is given by:

Σ(m) =

∑T
t=1 γ(m)(t)o(t)o(t)T

γ(m)
− µ(m)µ(m)T , (7.4)

where γ(m) is occupation count of component m given by:

γ(m) =
T

∑

t=1

γ(m)(t) (7.5)
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Figure 7.8: WB→NB system using HLDA from CTS.

The MAP adaptation of the statistics is given by:

µ̌(m) =
γ̂

(m)
(WB)µ̂

(m)
(WB) + τµ

(m)
(CTS)

γ̂
(m)
(WB) + τ

(7.6)

Σ̌(m) =
(Σ̂

(m)
(WB) + µ̂

(m)
(WB)µ̂

(m)T

(WB))γ̂
(m)
(WB)

γ̂
(m)
(WB) + τ

+ (7.7)

+
(Σ

(m)
(CTS) + µ

(m)
(CTS)µ

(m)
(CTS)

T
)τ

γ̂
(m)
(WB) + τ

− µ̌(m)µ̌(m)T

γ̌(m) = γ
(m)
(CTS) (7.8)

where τ is the a control constant and µ̌(m), Σ̌(m), γ̌(m) are the resulting adapted statistics. In our

experiment, Gaussian component occupation counts γ(m) are simply copied from CTS system.

The part of our future plan is to do it in more “clever” way, for example similarly as adaptation

of Gaussian component weights.

In the next step, HLDA is estimated from these statistics and HMMs are updated by pro-

jecting the statistics through HLDA (see equations 3.6 and 3.7 ). The standard iterative MAP

adaptation follows to settle updated HMMs. This process is shown in Figure 7.9.

7.5.3 Experiments

HLDA transform is used to perform dimensionality reduction from 52 dimensional space to

39. Therefore, WB→NB CMLLR has to be also 52 dimensional. To be able to estimate this

transform, 52 dimensional CTS models need to be trained. “Single pass retraining” technique

was used for this purpose. It works with one model set (39 dimensional CTS models) and
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Figure 7.9: WB→NB system using HLDA based on merged statistics from the CTS and meeting

training set.

two feature streams: the first, compatible with current model set (39 dimensional PLPs), is

used to generate full Gaussian alignment γjm(t) and the second, incompatible to model set (52

dimensional PLPs), is used for collection of statistics θjm(O), θjm(O2) (see equations 2.19, 2.21).

The new models are updated using statistics of the second stream (see equations 2.22-2.24).

When the models are trained, new 52 dimensional WB→NB CMLLR can be estimated by the

same iterative approach as in section 7.4.

Full covariance statistics have to be accumulated for both data sets to estimate HLDA matrix.

For the merging procedure, it is important to collect them by the same clustered models. The

WB→NB transform was applied on WB data and all statistics were collected with the CTS

models. Consequently, the WB statistics were collected in rotated space, thus equations 7.1,7.2

did not need to be applied.

Equations 7.6-7.8 were used to merge the statistics. The new HLDA matrix was estimated

and CTS HMMs were updated. Further, the iterative MAP was applied to settle the HMMs

into the new space.

Figure 7.10 shows the dependency of WER on the τ value during MAP merging of statistics.

For τ = “Inf”, it presents the system based on CTS HLDA described in previous section (7.5.1).

The WER is 28.3%. This is an interesting result because it still gives almost 1% relative

improvement over the non-adapted HLDA meeting system although no meeting data was used

in HLDA estimation. It is caused by significantly bigger amount of CTS data than meetings. The

system generates the best accuracy 27.8% with τ = 200. It gives a 2.5% relative improvement

over the non-adapted HLDA system (see Table 7.7).
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7.5.4 Experiments with downsampled data

For comparison with standard downsampling approach, the same experiments run also in the

downsampled NB domain. First, NB non-adapted HLDA system was trained and evaluated.

Table 7.7 shows 1.2% degradation of accuracy by downsampling.

Using an adapting scheme, the WB→NB CMLLR feature rotation in Figures 7.9 and 7.8 was

replaced by downsampling of waveforms and feature extraction from this data. Table 7.7 presents

both kinds of HLDA estimation in CTS-NB adapted system: the HLDA taken directly from CTS

system and HLDA estimated from the MAP adapted statistics like in previous section 7.5.2. It

is interesting that HLDA taken from CTS for NB-NB adapted system gives better performance

than adapted HLDA. It seems that statistics collected over the downsampled meeting data do

not contain any additional information for HLDA estimation.

7.5.5 HLDA conclusions

We have proved that when using WB data, CMLLR transforms outperforms the down-sampling

and that the HLDA estimates significantly improve (from 28.6% to 27.8%, almost 1% absolute).
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System HLDA adaptation WER [%]

WB non-adapted HLDA 28.5

NB non-adapted HLDA 29.7

WB-NB CMLLRWB→NB , HLDA from CTS 28.3

WB-NB CMLLRWB→NB , MAP HLDA 27.8

CTS-NB HLDA from CTS 28.6

CTS-NB MAP HLDA 29.0

Table 7.7: Performance of HLDA systems.

7.6 WB→NB transform in Speaker Adaptive Training

Speaker adaptive training (SAT) was further used in addition to HLDA to improve the accuracy.

As it was introduced in section 6.3, SAT is a technique used to suppress cross-speaker variance.

The implementation in the WB→NB adapted system differs primarily in using adaptation in-

stead of reestimation. Consequently, the initial seed can not be taken from the final iteration of

training of input models. On contrary, prior models have to be used.

WB−NB matrix
CMLLR

HLDA rotation

matrix
HLDA

HLDA rotation

CTS HLDA HMMs

MAP adaptation
CMLLR adaptation

set of SAT transforms

CMLLR adaptation

set of SAT transforms
TESTING

Test

WB−NB rotation

WB−NB rotation

Meeting PLP (WB)

Meeting test PLP (WB)

1. SAT iteration

2.,3... SAT iteration

WB−NB Adapted HLDA SAT HMMs

Training

Figure 7.11: WB→NB system in Speaker Adaptive Training.

An implementation of WB→NB transform during the SAT training is shown in Figure 7.11.

It is a straightforward procedure which could be described in the following steps:

1. Choose proper CTS HLDA prior model.

2. Rotate the WB data by WB→NB transform and HLDA transform A(HLDA). These ma-
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Prior SAT training WER [%]

CTS MAP-HLDA - 26.8

CTS MAP-HLDA yes 26.6

CTS MAP-HLDA SAT yes 26.5

Table 7.8: Performance with different prior models. The CMLLR adaptation was applied also

in testing.

trices can be multiplied and feature rotation can be written as:

ô(t) = Zo(t) + z, (7.9)

where

Z = A(HLDA)A(WB→NB) (7.10)

z = A(HLDA)b(WB→NB) (7.11)

3. Use the prior to estimate SAT CMLLR transforms for each speaker in the training data

ô(t).

4. Take the prior and run iterative MAP using the rotated data ô(t) transformed by the

respective SAT CMLLR transform.

5. Estimate a new set of SAT CMLLR transforms using the final models and go to step 4.

This process can be repeated iteratively until the accuracy stops to increase. In our experi-

ments, we have not noticed any improvement after the second iteration.

We experimented with two kinds of priors:

• CTS MAP-HLDA prior model from section 7.5, using MAP-HLDA with τ = 200.

• The prior above was further SAT retrained in CTS domain. We called it CTS MAP-

HLDA SAT.

Table 7.8 presents 0.1% absolute improvement using SAT retrained prior. This is coherent

with the conclusion from section 7.3 that a better prior gives just small improvement after

adaptation.

7.6.1 Comparison with downsampling

The comparison of proposed SAT implementations and traditional approach using downsampling

lies in replacing of WB→NB CMLLR by downsampling of data and feature extraction. It is
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Figure 7.12: Downsampled and WB→NB adapted HLDA SAT system.

System Adaptation WER [%]

WB none 27.5

NB none 28.8

NB-NB CMLLRSAT 27.9

WB-NB CMLLRWB→NB, CMLLRSAT 26.5

Table 7.9: Results of HLDA SAT systems.

shown in Figure 7.12. The upper branch presents the traditional approach and the lower branch

the WB→NB system.

Table 7.9 shows the accuracy of SAT systems. The best performance 26.6% is obtained by

WB→NB HLDA SAT system which is a 3.3% relative improvement over the non-adapted HLDA

SAT system and 4.6% relative improvement over NB-NB adapted system.

7.7 Discriminative training of WB→NB adapted system

Discriminative approaches are getting widely used in training of acoustic models for state-of-

the-art recognition systems. We decided to improve our system by using discriminative MAP

adaptation. Several discriminative criteria are available but usually the best performance is

achieved by using the Minimum Phone Error (MPE) criterion. As introduced in section 2.4.4,

MPE-MAP adaptation is an iterative process, where each iteration consists of two steps: First,

a given prior model is adapted using standard (ML-)MAP adaptation. However, the resulting

model is used only as a prior for the following MPE update, where the parameters of the

current model are shifted to make compromise between improving MPE objective function and

obeying the prior distribution. Therefore, we need to distinguish two models that serve as

the input for MPE-MAP adaptation: the (fixed) prior model and the starting point model,

which is to be iteratively updated. It is usual practice to set the starting point to be equal
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Prior Starting point Adaptation WER [%]

CTS MAP-HLDA MPE CTS MAP-HLDA MPE MPE-MAP 27.2

CTS MAP-HLDA MPE - ML-MAP 27.0

CTS MAP-HLDA MPE CTS MAP-HLDA MPE.ML-MAP MPE-MAP 25.6

Table 7.10: MPE-MAP: Effect of prior and starting point.

to the prior. However, the problem for the practical implementation of WB→NB system lies

in quite significant difference between the CTS prior models and WB→NB rotated adaptation

data. Therefore, we first adapt the CTS prior to rotated adaptation data using iterative ML-

MAP 2 to obtain good starting point, which is further iteratively adapted using MPE-MAP

(still with CTS model fixed as the prior). Although each MPE-MAP iteration also contains a

single iteration of ML-MAP adaptation, performing the iterative ML-MAP before starting the

discriminative adaptation turned out to be essential for successful use of MPE-MAP.

7.7.1 Discriminative adaptation of WB→NB HLDA system

For simplicity, in the first experiment with discriminatively adapted models, we do not make use

of SAT, just MAP-HLDA. It is important for MPE-MAP adaptation to have a relevant prior

information about the target domain distributions. Therefore, the CTS MAP-HLDA models

described in previous sections were further trained using MPE to get a better prior model. In

section 7.7, we also mentioned the importance of having proper model that serves as a starting

point for MAP-MPE. Therefore, experiments were conducted exploring the influence of the

starting point and the adaptation approach.

First, we compared ML-MAP and MPE-MAP using CTS HLDA MPE prior and starting

point models. Discriminatively trained prior was used here, therefore the floating prior approach

in ML-MAP used above was inappropriate. The discriminative information is lost in further

iterations, so the prior was fixed and the models from the previous iterations were used only for

alignment in the current iteration.

In Table 7.10, we can see that the MPE-MAP using CTS HLDA MPE starting point does

not give any improvement, even 0.2% degradation of accuracy due to starting point too different

from the target data. In the next step, we decided to use ML-MAP adapted models as the

starting point for MPE-MAP adaptation. This approach yielded 1.6% absolute improvement

compared to CTS MAP-HLDA MPE starting point.

The final adaption scheme is shown in Figure 7.13.

2On contrary to iterative MAP described in section 7.3, the prior does not change over the iterations and stays

fixed to CTS model.
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Figure 7.13: Adaptation scheme of MPE-MAP adaptation into the WB→NB features.

7.7.2 Discriminative training of WB→NB adapted HLDA SAT system

The discriminative extension of the speaker adaptive training of the WB→NB system is based

on sections 7.6 and 7.7.1.

A need for good CTS prior led to additional MPE training of the CTS MAP-HLDA SAT

models. It produced new models set referred CTS MAP-HLDA SAT MPE. When processing

the meeting data, SAT transforms were estimated based on the CTS WB→NB resulting models

from section 7.6. The transforms remained fixed for further processing.

Using an equivalent setup as that in section 7.7.1, we adapted CTS MAP-HLDA SAT models

into WB→NB rotated domain using iterative ML-MAP with application of the above SAT

transforms. These models, further referred to as NBWB MPE ML-MAP SAT, are used as the

starting point for the final MPE-MAP adaptation (see Figure 7.14).

To investigate the effect of the CTS prior, the NBWB MPE ML-MAP SAT models were also

re-trained only using MPE instead of adapting using MPE-MAP. Table 7.11 shows that a 1.5%

absolute improvement is obtained by MPE training of ML-MAP adapted models. Incorporation

of the CTS prior and use of MPE-MAP adaptation gives 0.3% additional improvement.

As the ML-MAP adapted model NBWB MPE ML-MAP SAT turns out to be very good

starting point for consequent MPE-MAP adaptation, another option is to use this also as the

prior for the MPE-MAP. Comparing the last two lines in the Table 7.11, we can see that keeping

the original prior CTS MAP-HLDA SAT MPE trained only on CTS data is the better option.

The final models were successfully used in the AMI LVCSR system for NIST 2006 Rich

Transcription evaluation.
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Figure 7.14: SAT - adaptation scheme of MPE-MAP adaptation into the WB→NB features.

Prior Starting point Adaptation WER[%]

CTS MAP-HLDA SAT MPE - ML-MAP 25.7

- NBWB MPE ML-MAP SAT MPE 24.2

NBWB MPE ML-MAP SAT NBWB MPE ML-MAP SAT MPE-MAP 24.1

CTS MAP-HLDA SAT MPE NBWB MPE ML-MAP SAT MPE-MAP 23.9

Table 7.11: MPE-MAP in the SAT: Effect of prior and starting point.

7.8 WB→NB adapted system trained on increased amount of

data

The availability of new meeting data resources, especially the release of full AMI corpus3, led

to further improving of the current LVCSR system. Moreover, we were able to check how

the techniques generalize on the new data. The CTS training data size was increased too by

Fisher corpus. The new data sizes are described in Table 7.12. We see that the additional data

represents about 70 hours of meetings and more than 1700 hours of telephone speech.

7.8.1 CTS system development

The previous work on training from large databases [12] showed no yield over 1000 hours using

ML training. But the discriminative techniques were still improving the system significantly.

3Detailed information on AMI corpus is available at http://corpus.amiproject.org



7.8 WB→NB adapted system trained on increased amount of data 65

Task IHM MDM CTS

standard data 112h 63h 278h

boosted data 183h 127h 2000h

Table 7.12: Amount of data in the original and data boosted systems.

Data amount orig WB→NB CMLLR new WB→NB CMLLR

CTS 52d 280h 36.3 -

CTS 52d 1000h 35.4 34.0

Table 7.13: CTS 52d models: Effect of WB→NB CMLLR and training data size. It was tested

by acoustic rescoring of rt05 lattices.

Therefore, the training data was split to produce two training sets of 1000h and 2000h.

First, the VTLN warping factors were estimated using 280h VTLN models. The ML models

were trained on 1000h using the same techniques as for 270h system: decision tree clustering

produced 10000 tied-states and mixture-up training run to produce 20-Gaussian models.

These models were retrained using single pass retraining to 52 dimensional space and new

WB→NB global CMLLR transform was estimated. Table 7.13 shows improvement given by

new CTS models and the transform.

The HLDA transform was estimated taking into account the further adaptation to the meet-

ing domain. Hence, full covariance statistics were collected for both data sets and merged using

MAP criteria (see section 7.5). The model parameters were projected into the new space and

further trained using SAT. Next, the final CTS SAT models were further trained discriminatively

using MPE criteria on the full 2000h set.

Table 7.14 shows the effect of amount of training data. As expected, ML training on 2000

hours does not give any improvement over that on 1000h (note however, that the decision trees

were not re-done for the larger set). MPE training using 2000h shows a substantial gain of 3.7%

absolutely against ML and 0.5% compared to 1000h MPE models. All model sets make use of

MAP-HLDA. As these are SAT models, speaker based adaptation was applied in all test cases.

Data amount 280h 1000h 2000h

ML HLDA SAT 31.3 29.6 29.6

MPE HLDA SAT 28.0 26.4 25.9

Table 7.14: CTS system: Dependency of WER on the training data size. It was tested by

acoustic rescoring of eval01 lattices.
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Data amount 112h 182h

ML HLDA SAT 27.5 25.8

MPE HLDA SAT 24.5 23.4

Table 7.15: Unadapted meeting system: Dependency of WER on the training data size.

Data amount 112h / 278h 183h / 2000h

CTS SAT prior

ML-MAP 26.5 25.1

CTS SAT MPE prior

ML-MAP 25.7 23.8

MPE-MAP 23.9 22.1

Table 7.16: WB → NB: Effect of training data and adaptation approach.

7.8.2 WB→NB adaptation using SAT and new data

All experiments to adapt a new 2000h CTS MPE HLDA SAT models into the WB→NB rotated

domain used the same algorithm as described above.

First, an unadapted baseline system was trained just on the new meeting data which yielded

1.7% absolute improvement in ML training over the original system and more than 1% when

using MPE (see Table 7.15).

To capitalize on these gains, the 2000h CTS MPE HLDA SAT models were adapted in the

WB→NB rotated domain according to the scheme in section 7.7.2: First, MPE starting point

models were trained using ML-MAP and MPE-MAP adaptation followed.

Table 7.16 shows a 1.8% absolute gain due to adding training data and 1.3% improvement

by adaptation from CTS.



Chapter 8

Conclusion and future work

The recognition of meeting speech is an important research issue and has been in the center of

interest of several EC-sponsored projects: M41, CHIL2, AMI3, and AMIDA4. This work has been

done in tight cooperation with the meeting recognition team in the series of M4/AMI/AMIDA

[21] and concentrated on feature extraction and acoustic modeling. It has investigated into two

important problems in building of recognition system for meeting data:

• Improving of robustness of HLDA estimation by smoothing.

• Making use of additional data resources in the training.

8.1 Robust HLDA

Two approaches of HLDA smoothing were tested: Smoothed HLDA (SHLDA) and MAP variant

of SHLDA, taking into account the amounts of data available for estimation of statistics for

different classes. Both variants perform better than the basic HLDA. Moreover, we have found,

that removing the silence class from the HLDA estimations (Silence-reduced HLDA) was equally

effective and cheaper in computation. Testing SHLDA and MAP-SHLDA on the top of SR-

HLDA did not bring any further improvement.

8.2 NB-WB adaptation

We successfully implemented an adaptation technique where WB data is transformed to the

NB domain by CMLLR feature transform. Here, the well trained CTS models are taken as

priors for adaptation. A solution of how to apply this transform for HLDA and SAT systems

was given using maximum likelihood. A 4.6% relative improvement against adaptation in the

1http://www.dcs.shef.ac.uk/spandh/projects/m4/
2http://chil.server.de
3http://www.amiproject.org/
4http://www.amidaproject.org/

67
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downsampled domain was obtained. Next, ML-MAP was replaced by the discriminative MPE-

MAP scheme, where a 2.4% relative improvement over the non-adapted meeting system was

shown.

Finally, the Fisher corpora were included for improving the CTS prior model and also some

new meeting data resources were added. In the final MPE-MAP implementation, we obtained

a 5.6% relative improvement over the non-adapted meeting system.

8.3 Future work

In HLDA, the improvements obtained by smoothing techniques in HLDA show that these ap-

proaches are performing well but the differences are quite small. Therefore we want to focus on

areas which suffer from higher insufficiency of data, such as long-span features [55], where the

proposed approaches should lead to significant improvements.

In the second field, we have shown that speech data from sources different from the target

domain can be advantageously used to improve the performance of a recognition system. The

future of meeting recognition is definitely in processing speech from multiple multiple distant

microphones (MDM), as they are much more practical for users than independent head-set

microphones (IHM). MDM speech was processed by our speech recognition system but the

powerful adaptation approaches presented in this thesis were not yet implemented for MDM.

Therefore, our research will focus into this area. The potential for improvement is even greater

than for IHM, as MDM speech corpora are even less available due to removing of crosstalks

(more speakers talking in same time) and the channel variability in MDM speech is greater than

for IHM.
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