
VYSOKÉ UČEŃI TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČŃICH TECHNOLOGÍI

ÚSTAV INFORMAČŃICH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INFORMATION SYSTEMS

HARDWARE-BASED OBJECT DETECTION METHOD

DISERTAČŃI PRÁCE
DOCTORAL THESIS

AUTOR PRÁCE ING. LUDĚK BRYAN
AUTHOR

BRNO 2007

VYSOKÉ UČEŃI TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČŃICH TECHNOLOGÍI

ÚSTAV INFORMAČŃICH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INFORMATION SYSTEMS

HARDWAROVĚ ORIENTOVANÁ METODA DETEKCE OBJEKTŮ
HARDWARE-BASED OBJECT DETECTION METHOD

DISERTAČŃI PRÁCE
DOCTORAL THESIS

AUTOR PRÁCE ING. LUDĚK BRYAN
AUTHOR

VEDOUĆI PRÁCE DOC. ING. VLADIMÍR DRÁBEK, CSC.
SUPERVISOR

BRNO 2007

Abstrakt

V této práci je navržena nová hardwarová metoda detekce objekt̊u v obraze. Základem
této metody je paralelńı extrakce př́ıznak̊u pomoćı jednoduchého porovnáváńı vzor̊u.
Dı́ky paralelismu je metoda vhodná pro hardwarovou implementaci. Součást práce je
také experimentálńı architektura, založená na implementaci v FPGA. Navržená metoda
může být rozš́ı̌rena o adaptivńı uč́ıćı se systém, který automaticky nastavuje parametry
v závislosti na okolńım prostřed́ı. V práci je navržen tento adaptivńı systém pomoćı dy-
namické rekonfigurace FPGA. Na ukázku toho, že navržená metoda může být použitá
pro řešeńı problémů v reálném prostřed́ı, byla navržena a vyhodnocena př́ıpadová studie
zabývaj́ıćı se detekćı státńı poznávaćı značky v obraze.

Abstract

This thesis presents a new hardware designed object detection method. The core of
the proposed method is a highly parallel feature extraction performed by simple template
matching elements. Due to the high parallelism the proposed method is suitable for hard-
ware implementation. Part of the thesis is also an experimental architecture based on
FPGA implementation. The proposed method can be enhanced by an adaptive learning
system that automatically sets the method parameters according to environment condi-
tions. An adaptive learning system implementation using FPGA dynamic reconfiguration
is suggested in the thesis. To show that the proposed method can be used for real life
situations, a case study dealing with license plate detection has been evaluated.

Kĺıčová slova

Detekce objekt̊u, hardware, FPGA, poč́ıtačové viděńı, porovnáváńı vzor̊u, rekonfigu-
race, státńı poznávaćı značka

Keywords

Object detection, hardware, FPGA, computer vision, template matching, reconfigura-
tion, license plate

Luděk Bryan: Hardware-Based Object Detection Method, disertačńı práce, Brno, FIT
VUT v Brně, 2007

Declaration

This thesis is a result of my own work. Section 8.1 was done in collaboration with
Dr. Otto Fuč́ık. This work was not submitted for a degree at any other university. Some
parts of this thesis have been already published as articles [1] [2] [3] [4] [5] [6] [8] [11] [12]
[13] [15] [16] [17].

Luděk Bryan

Acknowledgements

I would like to thank to Doc. Vladimı́r Drábek and Dr. Otto Fuč́ık for their support
and encouragement.

Contents

1 Introduction 1
1.1 Why Is a New Method Being Proposed for PLD Implementation in Em-

bedded Systems? . 2
1.2 Why Do We Need Hardware Methods? . 2
1.3 What is a Method Designed for Hardware? 3
1.4 Chapter Description . 3
1.5 Chapter Conclusions . 3

2 Technological Background 5
2.1 Digital Devices . 5
2.2 Classification of Computer Systems . 6
2.3 FPGAs . 7

2.3.1 HDL, Simulation and Synthesis . 8
2.4 FPGA Reconfiguration . 8

2.4.1 Static Reconfiguration . 9
2.4.2 Partial Static Reconfiguration . 9
2.4.3 Partial Dynamic Reconfiguration . 9
2.4.4 Reconfiguration Applications . 9

2.5 Chapter Conclusions . 10

3 Theoretical Background 11
3.1 Image Algebra . 11
3.2 Spatial Filters . 16

3.2.1 Linear Spatial Filters . 16
3.2.2 Morphological Filters . 17

3.3 Pattern Recognition . 21
3.3.1 Preprocessing . 21
3.3.2 Feature Extraction . 22
3.3.3 Classification . 22

3.4 Object Detection . 24
3.4.1 Edge Detection . 24
3.4.2 Hough Transform . 26
3.4.3 Frequency Domain Transforms . 26
3.4.4 Thinning . 27
3.4.5 Histogram Techniques . 27
3.4.6 Motion Detection . 27
3.4.7 Template Matching . 27
3.4.8 Hardware Architectures . 28

i

ii CONTENTS

3.5 Chapter Conclusions . 28

4 Goals 29

5 Template Based Detection Method 31
5.1 Method Proposition . 31
5.2 Development Phases . 34

5.2.1 Version 1 . 34
5.2.2 Version 2 . 37

5.3 Final Proposal . 39
5.3.1 Preprocessing . 40
5.3.2 Feature Extraction . 41
5.3.3 Classification . 42
5.3.4 Class of objects . 45

5.4 Setting of Parameters . 45
5.4.1 Noise . 45
5.4.2 Image Quality . 46
5.4.3 Sensitivity of Rating to Noise . 47
5.4.4 Size of Templates . 47
5.4.5 Image Class . 50
5.4.6 Class Compactness . 51

5.5 Creating a Template Bank . 52
5.6 Chapter Conclusions . 52

6 Experimental Architecture 53
6.1 Why Is the Experimental Architecture Presented? 53
6.2 Overall Scheme . 53
6.3 Simulator and HW platform . 54
6.4 Serial to Matrix . 55

6.4.1 Logic Scheme . 55
6.4.2 Hardware Scheme . 56
6.4.3 Image Borders . 57
6.4.4 Synthesis Results . 57

6.5 Edge Detection . 57
6.5.1 Synthesis Results . 58

6.6 Thresholding . 58
6.6.1 Synthesis Results . 58

6.7 Feature Extraction Unit . 59
6.7.1 Design with no Knowledge about Target Platform 59
6.7.2 Design with Knowledge about Target Platform 60

6.8 Arr2Num Unit . 61
6.9 Classification . 61
6.10 Overall Synthesis Results . 61
6.11 Chapter Conclusions . 62

CONTENTS iii

7 Adaptive Templates 63
7.1 Static Reconfiguration . 63
7.2 Dynamic Reconfiguration . 63

7.2.1 Creating the Regular Slice Array of Templates 64
7.2.2 Reconfiguration of Banks . 64

7.3 Chapter Conclusions . 66

8 Case Study - License Plate Detection 67
8.1 Introduction to the Unicam System . 67

8.1.1 Innovation . 68
8.1.2 Inter Chip Communicating Subsystem 68

8.2 Number of Templates . 69
8.3 Size and Shape of Templates . 69
8.4 The Proposed Method Application . 70
8.5 Experimental Results . 72
8.6 Speed Up and Price . 74

8.6.1 Comparison to the Current Method 74
8.6.2 Comparison to Software Implementation 75

8.7 Categorization against Existing Methods . 75
8.8 Chapter Conclusions . 75

9 Subsidiary Case Study - Road Signs 77
9.1 Experiment One - Standard Function . 77
9.2 Experiment Two - Method Limitations . 79
9.3 Chapter Conclusions . 80

10 Discussion 81
10.1 Suitable Image Classes . 81
10.2 Categorization against Existing Methods . 82

10.2.1 Edge Detection . 82
10.2.2 Hough Transform . 83
10.2.3 Motion Detection . 83

10.3 Application Specific Image Compression . 83
10.4 Chapter Conclusions . 84

11 Conclusions 85
11.1 The Proposed Method Features . 85
11.2 Experimental Results . 85
11.3 Goal Fulfillment . 86
11.4 Original Contribution . 86
11.5 Chapter Summary . 87
11.6 Future Research . 88

A Evaluation Program 101

iv CONTENTS

Chapter 1

Introduction

Forsyth and Ponce [24] defined the goal of computer vision “. . . to model and automate
the process of visual recognition, a term we interpret broadly as perceiving distinctions
between objects with important differences between them.” Computer vision has been
an important part of world-wide research since the 1970s, when computers started to be
capable of processing large amounts of data. The computer vision field may serve for many
purposes, including surveillance, robot control (Figure 1.1), autonomous vehicle driving,
image set organization, scene analysis, or face detection.

Figure 1.1: Example of an autonomos robot system

Another relatively new area of computer science is programmable hardware (PLDs,
Section 2.1), which deals with hardware circuits capable of changing their internal struc-
ture, even during circuit operation (Section 2.4). PLDs are largely used in embedded
systems (Chapter 2).

The goal of this thesis is to link these three fields - computer vision, embedded sys-
tems and programmable hardware, by suggesting a new method for object detection and
designed for programmable hardware implementation.

1

2 CHAPTER 1. INTRODUCTION

1.1 Why Is a New Method Being Proposed for PLD Imple-
mentation in Embedded Systems?

Software solutions for computer vision are today very well explored. However, a different
situation is in the field of VLSI design. This area is now quickly growing as new devices
are on the market, both powerful and reasonably priced. Mainly PLD1 devices are now
affordable even for small businesses.

An important feature of PLD chips is the possibility to be reprogrammed by the user.
This feature, called reconfiguration, can be used not only for debugging and standard
operation, but also for some more advanced operations. Mainly dynamic reconfiguration
allows the user to quickly reprogram a design (or even a part of one) on a chip. Thus,
completely new computer-related methods are being developed such as evolutionary com-
putation, and evolvable hardware.

Embedded systems are becoming part of many things of everyday use, including cars,
and home appliances. Making a design for an embedded system is comparable to designing
a standard system. The biggest difference is a design space limited by price, size, and power
consumption. It makes sense though to create the method suitable for the embedded
systems, which significantly extends possible range of target applications.

To summarize, as new technologies have developed, a gap has risen in the field of
computer vision techniques targeting PLDs, while this area is becoming more important
as small businesses can use powerful PLDs for their embedded systems.

1.2 Why Do We Need Hardware Methods?

As stated by Leibson [109], the majority of programers today are used to sequential think-
ing. This was mostly caused by the dominating position of purely sequential computers for
a long period of time. As predicted by Liebson, this habit has to change as the multi-core
processors and PLD chips are getting a bigger share of the market.

With the mentioned considerations, one question naturally comes to mind: What are
the advantages of hardware design (either general VLSI design, or specifically PLD design)
over standard processor programming?

• The design can be highly parallel.

• Comparing to parallel processor or processor arrays, implementation of any arbitrary
parallel algorithmis is straightforward, not limited by the processor instruction set.

• Real-time designs are suitable.

• Custom behaviour of inputs / outputs is natural.

• Lower power consumption can be reached. Govindu et al. [111] compared CPU
and PLD implementation of the same algorithm and the PLD implementation was
nearly 8 times more energy efficient.

• For PLDs, chip reconfiguration is possible.

Of course, there are also disadvantages of hardware design:

1Topic of PLD chips will be discussed in Section 2.1

1.3. WHAT IS A METHOD DESIGNED FOR HARDWARE? 3

• Implementation phase is difficult and time consuming.

• Sequential behaviour is expensive and difficult to implement.

As a result, it’s not possible to say universally whether the processor programming or
hardware design is better. Some tasks are suitable for hardware implementation, while
others are more suitable for the processor. Usually, the most efficient way is by using
either the processor, for naturally sequential or easy tasks, and parallel processors or a
hardware custom design, together with a processor, for difficult or naturally parallel tasks.

1.3 What is a Method Designed for Hardware?

There are many methods that can be efficiently implemented in hardware. This thesis will
go a little deeper and will also distinguish methods designed for hardware. What should
be the features of such a method?

• Intended for hardware implementation

• Naturally parallel

• Not efficient software implementation

• Quick or immediate reaction required (software implementation may suffer from
interrupt delays)

• Use of specific hardware features, like reconfiguration for PLD chips

A method designed for hardware is more of an abstract idea, the listed items are more
a clue than a definition. Some of the methods that fall into the category are listed in
Section 3.4.8.

1.4 Chapter Description

In Chapters 2 and 3, all necessary theoretical basis are laid. Also, image algebra used in
latter chapters is introduced. Chapter 4 defines the goals of the thesis. Based on those
goals, detection method is suggested in Chapter 5. In Chapter 6, experimental architecture
of the proposed method is suggested. To show that the proposed method can be used in
real-life projects, the method was utilized in two case studies in Chapters 8 and 9. The
whole thesis is summarized and results are discussed in Chapters 10 and 11.

1.5 Chapter Conclusions

In the introduction chapter, three fields important for this thesis are discussed - computer
vision, embedded systems and programmable hardware. The topic of this thesis is laid -
suggesting a new method for object detection designed for programmable hardware imple-
mentation. Following, questions concerning hardware are asked and answered, explaining
certain concepts and decisions made in this thesis.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Technological Background

As discussed in Chapter 1, an experimental architecture for the proposed method will
be presented with the case studies following. For this reason, different ways of designing
different architectures will be discussed in this section, which will delineate embedded
system field and PLDs from other architectures.

2.1 Digital Devices

This section is an introduction into digital system implementation, because the proposed
detection method is not intended to be implemented on a standard processor system.
Digital devices discussed in this section will be introduced in Section 2.2 from the other
perspective, i.e. which devices can be used for which type of computing systems. There
are three ways how to implement a digital system.

1. Processor is a standard device for implementing a digital system. There are many
types of processors, ranging from general purpose processors through cheap low-
power single-chip processors to specialized digital signal processors (DSPs). Proces-
sor advantages are mainly their universality, easy application development and well
established software support. Their disadvantage is serial processing of instructions,
which comes from their nature. Although this disadvantage has been reduced sig-
nificantly by special processor architectures (processor arrays, VLIW, DPSs . . .),
processors still can not compete with the special-purpose devices (discussed later)
in the field of parallel tasks.

2. ASIC [87] stands for Application Specific Integrated Circuit, and is basically a logic
circuit manufactured for a specific task. First, an expensive matrix of the circuit
has to be made, which is used to manufacture actual chips. The advantages are very
high performance and low price for a large series. The disadvantages are the high
price of the matrix (thus high price for a small series), and difficult development and
testing.

3. Programmable logic devices (PLDs) are circuits that allow the user to program their
internal structure. They can benefit from a design specific for the application, while
the development costs are lower than for ASICs and can also be used for a small
series. Another advantage over ASICs is the possibility of the reconfiguration of
some devices (Section 2.4). The disadvantages are much lower density and speed
compared to the ASICs.

5

6 CHAPTER 2. TECHNOLOGICAL BACKGROUND

After the short introduction to different digital components, now we will focus on
PLDs. There are several types of programmable logic devices. The first type, called simply
PLDs, were followed by CPLDs (Complex Programmable Logic Devices). Although the
CPLDs speed and density are low, they are still in use for their low power consumption and
non-volatility. Today, FPGAs (Field Programmable Gate Arrays) are the most common
programmable devices used.

2.2 Classification of Computer Systems

There are many ways in which computer systems can be classified (e.g. Flynn’s classifi-
cation [115]). We will use a more vague classification based on what devices are usually
used in the system, adopted from [104]:

• Supercomputers, or mainframes consist of a large set of processors operating in
parallel.

• Desktop computers use a processor or a set of a few processors as a primary operating
unit. Performance can be boosted by additional board with PLD or ASIC chip(s).

• Portable computers are not primarily dedicated for intensive computations, and
contain one (possibly multicore) processor.

• PDAs, handhelds and cellphones are relatively new devices where the tradeoff be-
tween performance and power consumption is a big issue. Custom-built processors
are usually solution to this tradeoff.

• Embedded systems are a part of some consumer electronic device. Power issues
may be important in the case of battery operation. Building blocks are usually a
processor, a DSP processor for signal processing operations, or a PLD chip for I/O
operation and performance boosting. For a large series, custom-built ASIC chips
can be used.

• Nanocomputers and biocomputers do not exist yet, though there is a lot of research
in these fields. In the future, these systems may be an answer to many problems
addressed by todays systems.

For this thesis, important are the embedded systems, which will draw our attention
for the rest of this section.

As can be seen, embedded systems are interlinked with many research ares. Digital
devices are becoming part of many things of everyday use, for example cars and home
appliances. These devices are also getting much smarter - cars are trying to avoid col-
lision with another car, or a refrigerator finds out what food is missing and orders it
on-line. Some of these “smart” tasks require human-like behaviour, such as object visual
recognition or deciding how to react to arising situation.

These tasks must usually be processed in real-time, i.e. we must be sure to receive the
solution in a constant maximum time limit. There are two reasons for that, we will look
at them on an example of vision-based vehicle detection for collision avoidance [32].

1. Quick reaction is required. If a system is trying to avoid collision with another car,
the brakes must be hit a very short time after car detection.

2.3. FPGAS 7

2. Data flow must be continuous. Images from video signal are processed in order to
detect a car, and a new image comes from the sensor every n milliseconds. If the
computation took too long, image queue could be filled and come of the images
would have to be discarded.

Today, designers are not limited to processor or ASIC implementation, as they can
use large FPGAs for their designs at affordable cost. It allows demanding algorithms to
be processed, utilizing the parallelism of hardware.

2.3 FPGAs

We assessed PLDs to be the target architecture for the proposed detection method. Choos-
ing between the types of PLDs, the most suitable will be an FPGA for its large logic
resource, possibility of fast reconfiguration speed, and reasonable price. In this section,
we will cover more closely some topics related to FPGA design.

FPGAs are programmable logic devices based on SRAM technology that allow high
speed and density, but are volatile. The first FPGA was introduced in 1985 by Xilinx
[94]. Today leading manufacturers of FPGAs are Xilinx, Altera, Lattice, and Actel. In
the following text, only Xilinx devices will be considered.

The Xilinx FPGA structure [88] (Figure 2.1) consists of input/output buffers (IOBs),
configurable logic blocks (CLBs) carrying logic function and registers, and interconnecting
routes between CLBs. A CLB is a basic building block for the design function, contains
two or four (depending on the device) slices, which consist of two 4-input look-up tables
and two flip-flops.

Figure 2.1: Spartan-3E internal structure

Standard FPGAs use a number of small, fast on-chip memory blocks, called block
RAM (SelectRAMTMfor Xilinx products), or BRAM for short. The BRAM standard size
for low-end FPGAs is 512 kB. Each of these memory blocks can be accessed from two
independent ports, which make them a very powerful in a variety of designs.

8 CHAPTER 2. TECHNOLOGICAL BACKGROUND

2.3.1 HDL, Simulation and Synthesis

There are several ways how to design the structure of an FPGA.

1. CAD system is a program where the designer draws a scheme from basic elements
like logic gates or an adder.

2. A Hardware Description Language (HDL) is similar to a programming language,
but is meant for designing hardware. The two most widely used HDLs are Verilog
and VHDL.

3. Higher level languages like Handel-C [80] or System-C [81] are becoming more im-
portant in the field. An interesting language is SA-C [82] which was created for the
development of image processing algorithms.

As a result of the average design size having grown significantly over the last two
decades, HDLs have become a standard design tool. In this thesis, we will use exclusively
VHDL.

Two basic operations that we can perform with an HDL are simulation and synthesis.
A simulator is a computer program whose input is an HDL code, and output is the
behaviour of this code. A synthesizer is a computer program whose input is an HDL code,
and output is a design file that can be uploaded to an FPGA.

There are two important things that concern us and that we will present for every
synthesis experiment.

1. Occupation of an FPGA will be shown absolutely as number of slices and relatively
as a percentage occupation of a reference chip.

2. Longest logic path delay is very important, as its reciprocal value determines the
maximum clock frequency.

The longest logic path is very important if we consider the synchronous design style,
which is considered a standard today. FPGAs are already designed to comply with this
design style as they contain a sufficient number of registers.

2.4 FPGA Reconfiguration

A major advantage of FPGAs is reprogrammability. Unlike with ASICs, a user can down-
load a new design (or even a part of the design) to an FPGA, even if it is already wired
into the system. With reprogrammability, following capabilities are gained:

1. It is possible to download a new version of the design to the chip, either during the
operation (once every few weeks or months) or during the design development (once
every few minutes).

2. If we need to perform certain space-demanding operations, but not all of them
at once, we can replace the operation unit which is not being used by one that
we currently need. This allows us fitting designs that would not fit into FPGA
otherwise, or the other way around we can save money by buying a smaller FPGA.

3. Reconfiguration can be a part of an FPGA operation. For example, certain circuit
structures can be modified according to the environmental changes. Similar task is
reconfiguration in order to develop circuits using evolvable hardware methods.

2.4. FPGA RECONFIGURATION 9

2.4.1 Static Reconfiguration

The easiest way to perform a reconfiguration is to synthesize a whole new FPGA design,
stop operation of the current one, reprogram the FPGA and issue the reset signal to set
all the register values to their initial state. This procedure is called static reconfiguration.
Static reconfiguration is suitable for case number 1, and eventually for some cases of 2 or
3.

2.4.2 Partial Static Reconfiguration

Sometimes, we may need to reprogram only a part of our design. A reason is usually
shorter reprogramming time, if we need to make changes more often. The reprogramming
procedure is similar to a static reconfiguration; the difference is that only a part of the
FPGA is reprogrammed.

There are two ways how to obtain the bitstream for the partial reconfiguration.

• Use the standard synthesis tool with partial reconfiguration support. Then, for
example, the bitstream can be obtained by synthesizing two FPGA designs (the
initial one and modified one), and run a synthesizer tool over these designs that
creates a partial design consisting only of the changes in these two designs.

• If we can not use the synthesizer for some reason to change the design parts (for
example evolvable hardware methods in case 3), we can modify the existing bitstream
quickly by special software, for example JBits from Xilinx Inc. This solution is much
more difficult compared to previous one.

Partial static reconfiguration is suitable for cases 2 or 3, if we do not need the rest of
the design to be running during reconfiguration.

2.4.3 Partial Dynamic Reconfiguration

Partial dynamic reconfiguration is similar to partial static reconfiguration, but it can be
performed while the non-reconfigured part of the FPGA is running. Dynamic reconfigu-
ration has to be supported by the FPGA chip. Today, most of the FPGAs on the market
have this feature, sometimes with certain limitations (for example Spartan III family can
reconfigure only the whole column of CLBs at a time). Besides obvious advantages like
saving of time and not interrupted processing, dynamic reconfiguration allows us to re-
configure part of an FPGA by itself.

2.4.4 Reconfiguration Applications

With the growing size of PLDs, reconfiguration has become an important research topic
over the last few years. In this section, we will go through a few examples of advanced
usage of an FPGA reconfiguration.

A popular application suitable for reconfiguration is a crossbar implementation, where
connections need to be changed over time. For example, Young et al. [92] developed a
928x928 port crossbar using dynamic reconfiguration on a Xilinx Virtex II 6000. Srivastava
et al. [84] used reconfiguration for adaptive image filtering. Scalera et al. [91] used FPGA
reconfiguration to switch the FPGA configuration from microphone sensor mode to image
recognition mode after identifying an object by a sound.

10 CHAPTER 2. TECHNOLOGICAL BACKGROUND

In the automotive industry, Hübner et al. [93] proposed multi-function ECU (Elec-
tronic Control Unit) using a reconfigurable FPGA, instead of the classical use of multiple
single-function ECUs.

Among many others, these few examples show that FPGA reconfiguration is a strong
tool allowing us to use completely new, unexplored techniques.

2.5 Chapter Conclusions

In the technological background chapter, we discussed different ways how to design a
computer system. Embedded systems and PLDs are important for this thesis. Particular
attention was paid to FPGAs, which will be the target technology for the experimental
architecture in Chapter 6. Reconfiguration capabilities of FPGAs were also discussed, as
reconfiguration will be used in Chapter 7.

Chapter 3

Theoretical Background

In this chapter, we will discuss all important branches of science related to this thesis.
The core of the thesis, which is situated mainly in Chapter 5, relies on two fields of study
- Pattern Recognition (section 3.3), with an emphasis on Spatial Filters (section 3.2) and
Object Detection (section 3.4). We will focus only on techniques related to images, i.e.
we will not consider sound processing or other areas of signal processing. As this work is
based on processing in programmable hardware, some issues will be discussed with regards
to this.

3.1 Image Algebra

While studying relevant literature sources, it was difficult to find a suitable set of math-
ematical definitions for working with spatial filters, or with other techniques used in this
thesis. The requirements were that a set should be easy to use and not imply an imple-
mentation style. For example, Davies [18] uses an algorithmic style of description which
already implies an implementation style, it is therefore unsuitable. Jahne et al. [20] use a
mathematical description style, but many things are left undefined, and thus definitions
are rather more informative than comprehensive.

Ritter [22] developed a comprehensive theoretical background for image algebra based
on sets, with applications for image operations [23]. Their notation is designed to be
universal and can be used for virtually any description of image operations. However, this
strength is also the main weakness of these definitions, as a description of even simple
operations gets tedious and rather difficult to understand.

Based on these facts, an original theoretical background is defined in this section based
on the image and neighborhood of a pixel, both defined as matrix and the structuring
element defined as a set of ordered pairs. This notation is easy to use and sufficient to
describe all results and computations throughout the thesis. This work has been published
in [11].

Basic Considerations

For mathematical operations, we will use some of the symbols from the table located in
the abbreviation section.

In the following definitions, terms that are being defined are underlined. To define
ranges, the notation of a double dot will be used, e.g. if x can be any integer between 0
and n, the notation will be x ∈ {0..n}.

11

12 CHAPTER 3. THEORETICAL BACKGROUND

Image

First, let’s define the basic entities. An Image (Definition 3.1.1) is a matrix of size w, h
consisting of pixels (picture elements). The ordering of pixels in a matrix is based on
standards used for image processing, pixel 0, 0 is in the top left corner. Each pixel is
defined by its color. For our purposes, we will consider only gray-scale images, where the
only color used is gray, thus, pixel can be described by one integer value between 0 (black)
and d− 1 (white), where d is the number of gray levels1, called gray depth. Together with
image, we define a pixel as one element of the image matrix.

Definition 3.1.1 Image G of size w × h and gray depth d is a matrix

G =


g00 g10 · · · gw0

g01 g11 · · · gw1
...

...
. . .

...
g0h g1h · · · gwh


where gij ∈ {0..d− 1}∀i ∈ {0..w − 1}, j ∈ {0..h− 1}

Value gij (pixel)of image G can be also written as Gi,j.

For easier notation, we also define the set of all images with certain width, height, and
gray depth as Gd

w,h, images with certain width and height Gw,h and the set of all images
G are in Definition 3.1.2.

Definition 3.1.2 Let us denote the set of all images of size w × h and gray depth d as

Gd
w,h

The set of all images of size w × h is

Gw,h =
⋃
d∈N

Gd
w,h

and the set of all images is

G =
⋃

w∈N
h∈N

Gw,h

Sometimes, we need to refer to a certain pixel. This is done through coordinates (x, y)
(Definition 3.1.3), that are pointing to a pixel Gx,y.

Definition 3.1.3 The coordinates of a pixel in an image G ∈ Gw,h is an ordered pair
(x, y) s.t. x ∈ {0..w − 1} y ∈ {0..h− 1}

1During the text, we will also employ black/white images, i.e. pixel values will be only 0 and 1. This
case is treated as normal gray-scale image with d = 2

3.1. IMAGE ALGEBRA 13

Structuring Element

As we already said, filter is applied to the neighborhood of a pixel. For each pixel that
we apply filter to, neighborhood has the same shape. Thus, we need to define the shape
of the neighborhood we are applying filter to. This shape is usually called a structuring
element. We will define structuring element as a set of ordered pairs of integer numbers
(Definition 3.1.4). These ordered pairs will then be used as relative coordinates to the
filtered pixel.

Definition 3.1.4 Structuring element S is a set of ordered pairs of integer numbers, i.e.

S ⊆ Z× Z

Again, we will also define the set of all structuring elements (Definition 3.1.5).

Definition 3.1.5 Let S be the set of all structuring elements.

Pixel Neighborhood

Now, we can define the neighorhood of a pixel covered by a structuring element (Definition
3.1.6). Neighborhood is a matrix of the same size as an image, but contains only the actual
pixels that are used as source values for a filter function. The rest of the matrix is filled
with ⊥.

Definition 3.1.6 The neighborhood NG,S
x,y of a pixel at coordinates (x,y) in image G ∈

Gw,h with structuring element S ∈ S is a matrix

NG,S
x,y =


n00 n10 · · · nw0

n01 n11 · · · nw1
...

...
. . .

...
n0h n1h · · · nwh


where nx′y′ = Gx′,y′ ∀(x′, y′) s.t. ∃(i, j) ∈ S x′ = i + x,

y′ = j + y,
nx′y′ =⊥ otherwise

Value nij of neighborhood N can be also written as Ni,j.

Definition 3.1.7 The set of all neighborhoods with structuring element S is

N S =
⋃

G∈G
x∈{0..w−1}
y∈{0..h−1}

NG,S
x,y

where w, h are width and height of an image G.
The set of all neighborhoods is

N =
⋃
S∈S

N S

14 CHAPTER 3. THEORETICAL BACKGROUND

Spatial Filter

Finally, a spatial filter (can be reffered to only as a filter) is defined in Definition 3.1.8.
A filter transforms the neighborhood of any image at any coordinates, but with defined
shape (structuring element), to a natural number. Thus, while defining a filter function,
the structuring element is already known, but the filter can be applied to any pixel of any
image. An actual filter function F is not specified here; its variants are described in more
detail in Section 3.2.

Definition 3.1.8 Filter of structuring element S is a function F : N S → N

Definition 3.1.9 The set of all filters of structuring element S is denoted

FS

The filter is supposed to be applied to all pixels in an image. This is shown in Definition
3.1.10, where G and G′ are the input image and the filtered image, respectively, and S is
a structuring element of a filter.

Definition 3.1.10 Let G ∈ Gw,h be an image, F ∈ FS a filter. Filtered image G′ ∈ Gw,h

filtered by F of source image G is an image G′ so that

G′
x,y = F (N) s.t. N ∈ NG,S

x,y ∀x ∈ {0..w − 1},∀y ∈ {0..h− 1}

In Figure 3.1, you can see an example of an application of a square filter of size 3× 3
to an image. The pixel marked X is the one we modified. The neighborhood of pixel is
outlined by the thick line. The same filter is applied to all pixels in the image.

0,0
0,1
0,2

x
1,0 2,0

2,1
2,21,2

0,0
0,1
0,2

x
1,0 2,0

2,1
2,21,2

0,0
0,1
0,2

x
1,0 2,0

2,1
2,21,2

... ...
0,0
0,1
0,2

x
1,0 2,0

2,1
2,21,2

Figure 3.1: Example of filter application

Image Border

In Figure 3.1, you can see that not all pixels can be processed. Filtering pixels that
are close to the border of an image may require accessing pixels outside an image. For
example, let’s consider a rectangular structuring element of size wf and hf . Then, the
effected pixels are those with the coordinates x, y in Equation 3.1, where xf and yf are
horizontal and vertical position of the filtered pixel in an image, wf and hf are the width
and height of the filter, and wi and hi are the width and height of the image.

3.1. IMAGE ALGEBRA 15

Gx,y : x ≤ wf−1
2 ∧ 0 ≤ y < h ∨

0 ≤ x < w ∧ y ≤ hf−1
2 ∨

x > (w − wf−1
2) ∧ 0 ≤ y < h ∨

0 ≤ x < w ∧ yf > (h− hf−1
2)

(3.1)

In order to filter all pixels correctly, an image must be virtually enlarged so that
missing pixels behind the border are replaced by made-up values (Definition 3.1.11).

Definition 3.1.11 Enhanced image GE is a matrix

GE =



. . .
...

...
...

· · · ge−1−1 ge0−1 ge1−1 · · ·
· · · ge−10 ge00 ge10 · · ·
· · · ge−11 ge01 ge11 · · ·

...
...

...
. . .


Value geij of extended image GE can be also written as GEi,j.

There are a few different solutions on how to extend an image. Let’s assume the
original image G ∈ Gw,h and resulting extended image GE

1. Periodic extension,
GEx,y = Gx mod w,y mod h

which is theoretically correct method, is based on the assumption of the Fourier
transform, that an image is periodically repeated in the whole space. In reality, the
results are questionable, and hardware realization is not straightforward.

2. Constant extension

GEx,y = Gx,y : ∀x ∈ {0..w − 1}, y ∈ {0..h− 1}
GEx,y = const otherwise

assumes constant color behind the image border. The advantage is easy hardware
realization; the disadvantage is the occurrence of sharp edges between the image and
the border.

3. Extrapolating extension

GEx,y = Gx,y : ∀x ∈ {0..w − 1}, y ∈ {0..h− 1}
GEx,y = Gw−1,y : ∀x ∈ {w..∞}, y ∈ {0..h− 1}
GEx,y = G0,y : ∀x ∈ {−∞..− 1}, y ∈ {0..h− 1}
GEx,y = Gx,h−1 : ∀x ∈ {0..w − 1}, y ∈ {h..∞}
GEx,y = Gx,0 : ∀x ∈ {0..w − 1}, y ∈ {−∞..0}
GEx,y = G0,0 : ∀x ∈ {−∞..0}, y ∈ {−∞..0}
GEx,y = Gw−1,0 : ∀x ∈ {w..∞}, y ∈ {−∞..0}
GEx,y = G0,h−1 : ∀x ∈ {−∞..0}, y ∈ {h..∞}
GEx,y = Gw−1,h−1 : ∀x ∈ {w..∞}, y ∈ {h..∞}

tries to adapt the outside pixels according to the pixel(s) on the border. In its easiest
form, outside pixels are set to the closest border pixel. This solution can be efficient,
and is affordable in hardware.

16 CHAPTER 3. THEORETICAL BACKGROUND

4. Shrinking output image considers sf/2 (where sf is size of a filter mask) border pixels
not being used for filtering. This method can lead to very easy implementation, but
shrinks the output image at every direction, which is in many cases unacceptable.

We defined universal filter with fully arbitrary structuring element. However, there
are certain prevalent ways how to design a filter, either because it’s easier or most effi-
cient. Most common and natural choices for structuring element shape are specified in
the following list:

• Filter mask is of rectangular shape, usually square.

• Width and height of the structuring should be odd-sized to keep the symmetry of
the pixel with the result.

3.2 Spatial Filters

Spatial filters (Definition 3.1.8) are widely used for image processing applications. Their
basic idea is to change pixel value according to values of this pixel and certain number
of its neighbouring pixels. This procedure is applied to all pixels in an image. In this
section, specific types of popular spatial filters will be discussed.

3.2.1 Linear Spatial Filters

Every cell in a structuring element of a linear spatial filter is a number, called weight. An
example of weights in square mask of size 3×3 is in Figure 3.2. The result of an application
of a linear spatial filter to one pixel is a two-dimensional convolution of a mask’s weights
and corresponding pixels in an image. This is described in Definition 3.2.1.

W0,0

W0,1

W2,0W1,0

W2,1W1,1

W0,2 W2,2
W1,2

Figure 3.2: Weights in the mask for a linear filter

Definition 3.2.1 Linear filter F is a filter over S so that

∃{fi,j ∈ R|∀(i, j) ∈ S} s.t. ∀ N = NG,S
x,y , F (N) =

∑
(i,j)∈S

nx+i,y+j × fi,j

Typical representatives of linear filters are shown in Figure 3.3 with corresponding
sample images in Figure 3.4. A flat average filter works as low-pass filter; the neighborhood
of every pixel is simply averaged and the result is a smoothed image. A high-pass filter
works the other way around - because of negative values around the center pixel, high
frequencies from an image are displayed.

3.2. SPATIAL FILTERS 17

1/9

-1

-1-1-1

-1-1

-1 -181/9

1/9 1/9

1/9 1/9

1/91/9

1/9

Figure 3.3: Flat average and high-pass filters

Figure 3.4: Original image, flat average and high-pass filter

The problem of linear filters is their uniformity, they work the same way for the
whole image. For example, in a flat average linear filter, this leads into blurring edges. An
enhancement of linear filtering is adaptive filtering [83], where a filter adapts its coefficients
according to the neighobrhood.

3.2.2 Morphological Filters

As can be seen from the nature of linear filters, they use all neighbouring pixel for compu-
tation. Thus, even if the pixel is significantly distorted, it still gets the same importance
as any other pixel. For this and other reasons, we are forced to search outside the area
of linear filters. Unlike linear spatial filters, their non-linear colleagues are not limited by
applying convolution only, which allows them to perform arbitrary functions.

The best known group of non-linear spatial filters are those based on mathematical
morphology [20]. Morphology is a theory about analyzing the shape and form of objects.
The shape of a filter mask, which is called a structuring element, plays an important role
for morphology filters.

Use of morphology in image processing applications is very wide, starting at common
noise removal through segmentation methods [97] [98] to medical applications [95] [96].

Rank-Value Filters

Commonly used morphological filters are [99] dilation, erosion and median. These filters
can be implemented as rank-value filters. Rank-value filters are based on sorting pixel
values covered by a structuring element, and then picking one of these values. For erosion,
the pixel with the minimum value is chosen, for dilation maximum, and for median the
middle value is selected. Mathematical definitions of those filters are defined below.

Definition 3.2.2 Dilation filter is a filter over S so that ∀N ∈ NG,S
x,y

F (N) = max{nij ∈ N}

18 CHAPTER 3. THEORETICAL BACKGROUND

Definition 3.2.3 Erosion filter is a filter over S so that ∀N ∈ NG,S
x,y

F (N) = min{nij ∈ N}

Definition 3.2.4 Let M ⊆ N is a set, x ∈ M .

M<x = {y ∈ M |y < x}
M>x = {y ∈ M |y > x}

Median of set M is then m ∈ M so that

|M<m| − |M>m| ≤ 1

Median filter is a filter over S so that ∀N ∈ NG,S
x,y

F (N) = median{nij ∈ N}

15 37 148 192 191 192

14 14 30 160 190 191

192 191 192 192 192 191

108 177 192 191 192 192

192 192 192 193 192 192

14

30

37

148

160

177

191

192

192

Erosion

Dilation

Median

12 13 15 62 189 190

Input
Image

12 14 14 30 160 190

11 12 13 15 62 189

 49 108 177 191 191 191

 14 15 37 148 191 191

190 191 191 191 191 191

11 12 12 19 151 189

15 37 160 190 191 192

14 14 30 160 190 191

190 191 192 192 192 192

108 177 191 192 192 192

191 192 192 192 192 192

12 13 15 62 189 190

177 192 192 192 192 192

 37 148 192 192 192 192

192 192 192 193 192 193

177 192 192 192 192 192

192 192 194 193 193 193

16 30 160 190 191 191

Figure 3.5: Erosion, median and dilation

3.2. SPATIAL FILTERS 19

In Figure 3.5, examples of applying erosion, median and dilation filters are depicted.
The pixel that is being processed is printed bold, and the structuring element (rectangle
3 × 3) is contoured. The values inside the structuring element are then sorted, and an
appropriate value is picked and placed as the result. For erosion the minimum value is
selected, the medium value for median, and the maximum for dilation. This procedure
(sorting the values covered by a structuring element and picking one) is done for every
pixel in an image (Definition 3.1.10).

Figure 3.6: Original image, erosion and dilation

The examples in Figure 3.5 are fragments of real images. You can see the original image
and application of erosion and dilation in Figure 3.6. It’s clear from these images how
dilation and erosion work - dilation expands the bright pixels (higher values) and erosion
expands the dark pixels (lower values) into their neighborhoods. It may be confusing that
erosion in this example makes the object (a letter) look thicker. The point is that the
object here is dark, which virtually inverts the function of the rank filters.

Erosion and dilation filters are usually used for processing binary images, but can
be extended to gray-level images, as we saw in the previous examples. Binary image
processing can be very efficient in hardware, as necessary operations are reduced to logical
AND / OR.

The notation of erosion operation is in Equation 3.2 and the dilation operation is in
Equation 3.3, where G and G′ are the original and the filtered image respectively; S is a
structure element.

erosion : G′ = G	 S (3.2)

dilation : G′ = G⊕ S (3.3)

Filters consisting of application of dilation and erosion consecutively [31] are also
particularly useful. Examples of those filters are opening in Equation 3.4 and closing in
Equation 3.5. Opening and closing can be utilized, for example, for discarding excessively
bright (or dark) pixel values while keeping the original shape of the objects.

opening : G′ = G ◦ S = (G	 S)⊕ S (3.4)

closing : G′ = G • S = (G⊕ S)	 S (3.5)

If we need to get rid of both extensively dark or bright pixels, we can use a combi-
nation of opening and closing. A combination of opening and closing is called open-close
(Equation 3.6) and combination of closing and opening is close-open (Equation 3.7).

open− close : G′ = (G ◦ S) • S (3.6)

20 CHAPTER 3. THEORETICAL BACKGROUND

close− open : G′ = (G • S) ◦ S (3.7)

Use of a median filter is mainly related with noise-reduction. It is similar to a linear
flat-average filter in the meaning that it reduces the occurrence of peak values in an image,
but it preserves sharp edges and does not blur an image. The comparison of the median
filter with the linear flat-average filter and the open-close filter is showed in Figure 3.7.
There are also more advanced methods for image denoising based on median filtering, for
example the one suggested by Eng et al. [77].

Figure 3.7: Original noisy image, flat average, median, open-close

Hit-or-Miss Filter

Hit-or-miss (or sometimes called hit-and-miss) is a morphological operation, usually used
for binary images. In this thesis, we will assume binary implementation only. The struc-
turing element of the hit-or-miss operation contains two possible values - representing the
foreground and the background. An example of such structuring element is depicted in
Figure 3.8.

0

1

1

1

1

Figure 3.8: Example of hit-or-miss structuring element

If the foreground and the background pixels in an image and in a structuring element
match, the result of the filter application is 1 - see Definition 3.2.5.

Definition 3.2.5 Hit-or-miss filter is a filter over S so that

∃{fi,j ∈ {0, 1}|∀(i, j) ∈ S} s.t. ∀ N = NG,S
x,y , F (N) = 1 ⇔ nx+i,y+j = fi,j : (i, j) ∈ S

3.3. PATTERN RECOGNITION 21

A hit-or-miss filter can be used for pattern detection. For example, the filter with the
structuring element shown in Figure 3.8 will detect one isolated background pixel between
the four foreground pixels.

Usually, we need to detect more patterns together. The solution is simple - make
more structuring elements, filter the input image with all of them and apply a logical OR
operation to the resulting images. As an example, there are four structuring elements
in Figure 3.9, each representing one diagonal edge. The application of all these filters is
shown in Figure 3.10.

0

0

0

1

1

1

0

1

0

1

0

1

1

1

1

0

0

0

0

1

0

1

0

1

Figure 3.9: Structuring elements representing diagonal edges

Figure 3.10: Original image and application of hit-or-miss filters

3.3 Pattern Recognition

Pattern recognition is a computer vision technique for extracting high-level information
from an image. This can be useful for object detection, object tracking, defect detection
or robotic systems.

Pattern recognition is usually decomposed into three step pipeline - preprocessing,
feature extraction and classification. Each of these is described in the following chapters.
However, in reality, many modifications of this pipeline exist, or some of the steps may be
dissolved.

3.3.1 Preprocessing

Preprocessing enhances the image for easier processing during the next steps. This involves
mainly removing noise from an image, but also much more sophisticated methods can be
utilized. A list of feasible methods follows, with a brief description for each of them. For
a complete reference list, see some of the image processing texts (i.e. [25]).

22 CHAPTER 3. THEORETICAL BACKGROUND

• Point operators are applied individually to every pixel in an image, without informa-
tion about its neighborhood. Processing cost is usually low in comparison with other
methods, but utilization is limited. Point operators include thresholding, contrast
stretching, linear, or non-linear operators.

• Spatial filters are more thoroughly discussed in Section 3.2. Unlike point operators,
transformation of a pixel is done according to its neighborhood, not only according
to the pixel itself.

• Histogram techniques modify an image according to the changed shape of its his-
togram (briefly discussed in Section 3.4.5), or use histogram information for setting
values for further processing.

• Transform operations, including the well-known Fourier or wavelet transform, do not
just modify the image as previous methods do, but convert it to completely different
form. Although transforms can be very powerful, implementation in hardware is
very space consuming and difficult to implement (discussed in Section 3.4.3).

3.3.2 Feature Extraction

The second step is feature extraction and is the essential part of pattern recognition. The
goal is to recognize features in an image that indicate the presence of regions of interest. In
other words, we want to transform an image from a spatial domain to a feature domain,
where data represent more abstract quantities. Usually, the features are placed in the
feature vector (v1, v2, · · · , vn).

If we use feature extraction for object detection or recognition, it should treat ob-
jects independently without regard to their placement or other properties. Usually, three
characteristics are desirable [31]:

• Resistance against changes in illumination is usually required. We should propose
algorithms sturdy enough to handle shifts in intensity. Otherwise, our system is
limited to exact lighting conditions.

• Rotational invariance is necessary when the objects in an image or sensor are not
constantly oriented.

• Scale invariance means that the algorithm should work, if possible, equally well for
closer or more distant objects.

For feature extraction, methods have been previously suggested by many authors,
dependent on the target application [20] [34], some of them in hardware [33] [31]. The
spatial filters that we will use in Section 3.2 are one of the more popular methods. An edge
detector is an example of commonly used method, because edges are usually an important
clue for pattern recognition.

3.3.3 Classification

The last step, known as Classification, decides whether there are any regions of interest,
and where, upon the found features.

Classification can be either supervised or unsupervised. For supervised classification,
a training data set is provided and learning has to be performed prior to classification. In
unsupervised classification, the classifier decides about types of regions in an image solely

3.3. PATTERN RECOGNITION 23

from the information included in this image. In this thesis, we will deal only with the
supervised classification.

The fundamental idea of classification [25] is to gather certain features from an image2

during the feature extraction phase, and decide what class the image belongs to.
There are several classification methods. One of the simplest methods is the minimum

distance classifier. Each class is defined by one point in the n-dimensional feature space.
A feature vector belongs to the closest class.

Bayesian decision theory is considered universal statistical method for classification.
This method has been thoroughly described in many books, for example by Duda et al.
[19]. Neural networks are also often used as a classification technique [26] [100].

AdaBoost

Choosing the right set of features extracted from an image during the feature extraction
is very important for successful classification. This issue is particularly important for
the proposed method, as it is designed for hardware thus probably highly parallel and
producing many features. That’s why possible usage of the AdaBoost method in this
thesis is discussed. In this section, a short introduction to the AdaBoost method is
presented.

Boosting [113] refers to a general and effective method of producing a very accurate
prediction rule by combining rough and moderately inaccurate rules. AdaBoost is a com-
monly used boosting method that was introduced in 1995 [112].

Input to the AdaBoost algorithm is a training set (x1, y1) · · · (xm, ym) where each xi

is in a domain space X and each yi is in a label space Y . At the beginning, each training
example (xi, yi) is assigned a weight D0(i), determining how important the training ex-
ample is. At the beginning, all weights D0(i) are the same. A learning algorithm is then
applied repeatedly in rounds t = 1..T . The purpose of the learning algorithm is to get
the weak hypothesis ht : X → {−1,+1}. The error εt of the weak hypothesis is measured
with respect to the distribution Dt:

εt =
∑

i:ht(xi) 6=yi

Dt(i)

Coefficient αt is derived from εt which shows the quality of weak hypothesis ht:

αt =
1
2
ln

(
1− εt

εt

)
Weights of incorrectly classified examples are increased in order to give harder examples

more attention in the next round:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor.
Strong classifier is a function of weak classifiers ht(x)

H(x) = sign

(
T∑

t=1

αtht(x)

)
2Classified can be also an image slice, or even a pixel. In the text, only term image will be used

24 CHAPTER 3. THEORETICAL BACKGROUND

There are many possibilities for choosing weak classifiers. For example, Viola and
Jones [53] suggest the Haar-like image features shown in Figure 3.11. The features are
the difference between the sum of the pixels within rectangular regions (gray and white
rectangles in Figure 3.11). Viola and Jones also suggest an integral image implementation
for fast computation of these features.

Figure 3.11: Example of features suggested by Viola and Jones

For a more thorough description of the AdaBoost learning algorithm, please refer to
Freund’s introduction [113] or a well written illustrative tutorial by Rätsch [110].

3.4 Object Detection

Object detection is a technique used in the computer vision branch of computer science.
The goal of the object detection is to identify a specific object, or an object belonging to
a specific class of objects, in an image.

Object detection is a very important part of computer vision. Object detection can
either work as a stand alone method (object tracking, face detection, . . .), or as a part of
a larger system. Examples of larger systems are face detection with compression of the
background following, or sign detection with OCR of the text following.

There are many object detection methods, with lots of different features and demands.
It’s impossible to make a completely universal solution for a reasonable cost, we must trade
off between features like functionality, speed and hardware demands. In Figure 3.12, there
is a brief overview of possible object detection methods. After preprocessing (de-noising,
thresholding, domain transforms), feature extraction techniques (FE) take place. The
focus is laid on FE in this thesis, therefore we will go through the FE methods mentioned
in Figure 3.12 with a brief description of each of them. In Section 5.1, one technique
discussed will be the basis of the method proposed in this thesis.

Following FE, classification takes place, introduced in Section 3.3.3. Classification
is only a marginal part of this thesis; its application for the proposed method will be
discussed in Section 5.3.3.

3.4.1 Edge Detection

There are two main methods of edge detection [18], template matching and the differential
gradient method. There are also other methods for edge detection not discussed here, for
example a median filter suggested by Zou et al. [62].

The template matching approach is basically linear filtering (Sectin 3.2.1)using a set
of masks to detect a gradient. The field of masks used for edge detection is very well
explored, and there are several sets widely used. An example of two of the masks of such
a set is in Figure 3.13.

The differential gradient method takes the gx and gy gradients in the x axis and y

3.4. OBJECT DETECTION 25

input
image

de-noise

binary
image

threshold

thinning

Hough
transform

Fourier/
wavelet/...
transform

frequency
domain
image

template
matching

edge/
corner

detection

motion
detection

preprocessing

FE in
frequency
domain

feature set

histogram
techniques

detected
object(s)

feature extraction (FE
)

classificationBayes
theory

neural
networks

nearest
neighbour Hough

transform

graph
techniques

boosting
techniques

Figure 3.12: Pattern recognition for object detection

 −1 0 1
−1 0 1
−1 0 1

  0 1 1
−1 0 1
−1 −1 0


Figure 3.13: Robinson “3-level” masks for 0◦ and 45◦

axis, respectively, and computes the gradient g as

g =
√

g2
x + g2

y

Both edge detection methods are relatively simple, but may give very good results
under many circumstances. Edge detection is a technique suitable for hardware imple-
mentation, for example Torres-Huitzil et al. [85] suggested an edge detection method
suitable for an FPGA implementation. An example of an edge detection application is in
Figure 3.14. Usually, edge detection is only the first step in a method [86].

26 CHAPTER 3. THEORETICAL BACKGROUND

3.4.2 Hough Transform

The Hough transform, introduced in 1962 by Hough [57], detects particular shapes. It is
commonly used for regular curves such as lines, circles and ellipses. However, a generalized
Hough transform [58] can detect any type of shape. Here, we will talk only about the
Hough transform used for line detection.

The main point behind the Hough technique for line detection is that each input
measurement (e.g. coordinate point) indicates its contribution to a globally consistent
solution (e.g. the physical line which gave rise to that image point) [25].

There is infinite number of lines that we can run through every point in an image.
Each of these lines can be described by the length of a normal taken from the origin to
the line r and its orientation φ. Basis for computing the Hough transform is the Hough
space graph, which is a graph of r against φ. A point in an image is a sinus wave in the
Hough space graph. By plotting every pixel of the image into the Hough space graph, we
get a set of sinus waves. Wherever the sinus waves intersect in the Hough space graph,
there is a line between the corresponding points in the image. Thus, finding the lines in
the image is transformed into searching for a cumulation of pixels.

An example of Hough transform application to an aerial image is in Figure 3.14 [59].

Figure 3.14: Input image, edge detection and Hough transform

The Hough transform is a powerful tool for line (or other shape) detection [63]. How-
ever, the computational requirements are very high and it is not suitable for hardware
implementation.

3.4.3 Frequency Domain Transforms

In this section, we will briefly discuss transforms from a spatial domain into a frequency
domain. The most popular ones are Fourier, cosine, and wavelet3 transforms. Basic idea of
these transforms is that we may obtain important features from an image in the frequency
domain, which would be normally unaccessible in the spatial domain.

Considering that we can use transforms as a preprocessing technique, we can perform
feature extraction in the frequency domain. For feature extraction, it’s likely we will use
different techniques than the ones developed for feature extraction in the spatial domain.
Transforms are also powerful tools used for compression; for example, JPEG compression
is based on a cosine transform and JPEG 2000 is based on a wavelet transform.

Unfortunately, all mentioned transforms are computationally expensive techniques.
Implementation in hardware is possible, but very costly. This statement was confirmed by
the implementation of a 2-D wavelet transform in FPGA [17], published in [13] and [15].

3The wavelet transform actually transforms an image into a space-frequency domain, not into a fre-
quency domain

3.4. OBJECT DETECTION 27

There are hardware-friendly methods like Haar filters [69] based on adding or subtracting,
however, this particular method gives only limited results.

3.4.4 Thinning

Thinning [18] is a technique that skeletonizes an object. This can be very useful for
object detection because it extracts the shape information out of an object. However, the
method is multi-pass from its nature, and together with other features it is not suitable
for hardware implementation.

This method is not meant to be a “stand-alone” method, but usually prepares the
scene to be processed by another mentioned methods.

3.4.5 Histogram Techniques

A gray-level histogram gathers information about the brightness distribution of an image
or an image slice, it is a dependency graph with the brightness on the x-axis and number
of pixels with the corresponding brightness on the y-axis. An example of an histogram is
in Figure 3.15. A histogram is particularly useful for finding an appropriate threshold for
segmentation [64] [67]. Histogram creation is suitable for hardware implementation.

Gray value

P
ix

el
s

Figure 3.15: Example of a histogram

3.4.6 Motion Detection

Having two consecutive frames from a video stream, it’s possible to extract moving objects
from them [42] [90]. If the camera is not moving, this is a relatively easy operation, even
in hardware [70]. However, any camera movement or changes in the weather make this
task much more difficult [107].

3.4.7 Template Matching

The basic idea of template matching is to have a set of predefined image slices called
templates and try to find similar image slices within an image. A classical template
matching approach is to create a linear filter for each template, with the template as a
mask.

Templates are usually of a smaller size, but not necessarily. For example, Zhao and
Davis [39] suggested a template matching method for detecting people in an image.

Template matching is not limited to the spatial domain. Template matching can be
performed on images passed through the wavelet transform [101], or frequency domain
transforms. There are also many enhancements to standard template matching, for ex-
ample using a distance transform [106] in order to overcome partially missing data.

28 CHAPTER 3. THEORETICAL BACKGROUND

However, linear filters require many multiplication operations, which are not suitable
for hardware implementation. The method suggested by Villasenor et al. [102] overcomes
this problem by implementing templates as binary images, which reduces multiplication
operation into addition. Another solution is to use some cheaper non-linear function that
shows how much the template and the image slice are alike.

3.4.8 Hardware Architectures

There are universal architectures that support the parallelization of image processing
operations. Cavadini et al. [68] suggest VLSI architecture based on an SIMD processor
array. Ratha and Jan [89] use an FPGA array to run image processing tasks. These
solutions may be efficient, but they are more of a way how to implement processors than
a hardware solution.

The area of hardware implementation that deals with less sophisticated image oper-
ations is relatively well explored. VLSI median implementation has been proposed by
Breveglieri and Piuri [74] and FPGA median implementation by Maheshwari et al. [75].
Histogram equalization in FPGA has been suggested by Li et al. [56]. Etiennne-Cummings
et al. [55] developed a single VLSI chip for histogramming, segmentation, and simple pat-
tern matching.

Much work was done in the field of hardware acceleration of standard algorithms. For
example, Zemcik et al. [114] proposed an AdaBoost based face detection system with
FPGA acceleration. Scalera et al. [91] used an FPGA for detection of moving objects in
an image sequence.

As discussed in Chapter 1, there are computer vision methods specifically designed
for hardware implementation. Evolvable hardware [27] methods definitely fall into this
category. Salami, Sakanashi, Iwata et al. [116] [117] [118] developed their compression
methods using evolvable hardware. Sekanina [119] developed an evolvable image filter
and Martinek et al. [120] implemented it in a real FPGA system. Iwata et al. [121] and
Torresen et al. [122] implemented classification methods for pattern recognition systems
in evolvable hardware.

Even though we have shown some of the promising hardware implementations of image
processing methods, the area of hardware designed methods is not well explored yet.

3.5 Chapter Conclusions

In this chapter, important theoretical fields connected with this thesis were introduced
and discussed. Basics of pattern recognition were introduced in Section 3.3. Using these
basics, object detection techniques were presented in Section 3.4. Each of the methods
was discussed with relation to suitability for hardware implementation. In Section 3.4.8,
hardware architectures and methods were presented.

For proper definitions of the image operations throughout this thesis, some mathe-
matical apparatus was needed. In Section 3.1, the theoretical background was defined,
based on image and neighborhood, both of which are defined as a matrix, and structuring
element defined as a set of ordered pairs. This notation is easy to use and sufficient to
describe all results and computations throughout this thesis.

Using the mentioned mathematical definitions, basic types of filters are presented in
Section 3.2. For this thesis, the most important are the morphological filters presented in
Section 3.2.2, particularly the hit-or-miss filter described in Section 3.2.2.

Chapter 4

Goals

As was specified in the Introduction section, the goal of this thesis is to develop an ob-
ject detection method suitable for programmable hardware implementation. Now, other
features the method should have will be discussed.

In Section 2.2, today’s rapidly developing area of embedded systems was described.
Embedded systems can contain not only standard processors, but also programmable
devices, such as those discussed in Section 2.1. The proposed method should be suitable for
embedded system implementation, as object detection is often used in embedded systems.

The proposed method should actively use the reconfigurability of PLD chips, which
delineates the method from general VLSI methods. Reconfiguration could also be used
for adaption to environment changes.

Now the vital question comes: What should be the new feature of the proposed
method, so that the proposed method is not only a parallelized version of a software
method? The answer lies in the nature of hardware implementation, which allows massive
parallel processing. However, for massive parallel processing the basic computation unit
should be as simple as possible in order to place a large number of them into the target
device. So the final goal is to implement a method that will consist of very simple basic
elements, and the strength of the method will be in the implementation of a large number
of those elements. Then, the basic hypothesis of this thesis is:

The proposed method, though based on very simple elements, can compete with com-
mercially used methods due to the massive parallelization of those simple elements.

Summarized, the goal is to implement an object detection method with these features:

1. Method will be designed for hardware as stated in Section 1.3.

2. Simple basic building blocks will be used in order to use massive parallelization.

3. Real-time processing is required so that a solution for every image is found in a
constant maximum time limit. If possible, computation should be done “on-the-
fly”, i.e. the data will be processed while being received at the input, and output
will be available after certain constant time delay. The “on-the-fly” feature is not
necessary for real-time hardware implementation, but it brings some advantages like
minimum delay or no need of buffer implementation.

4. There are limited resources in an embedded system, we should not use a high-power
PC processor or large memory blocks.

5. Adaptability to changes in the environment using PLD reconfiguration should be
possible.

29

30 CHAPTER 4. GOALS

6. Comparable results with commercially used methods are required.

An object detection method will be proposed in Section 5.1, according to the features
listed above.

Chapter 5

Template Based Detection Method

In Chapter 4, the expected functionality of the proposed method is suggested. Coming
from these expectations, a new method is outlined in Section 5.1, perfected in Section
5.2 and the final method is proposal in Section 5.3. Matters related to the hardware
realization of this method are discussed in Chapter 6.

The proposed method together with experimental architecture was described in [1]
and [2].

5.1 Method Proposition

To decide what technique will be used for the proposed method, we will go through Section
3.4. The method should be suitable for FPGA implementation and should profit from the
advantages of FPGAs. This is not the case for any frequency domain transforms, Hough
transform, thinning, or motion detection techniques. Edge detection is suitable for an
FPGA implementation, but is a rather simple method and can be efficiently implemented
in a DSP processor. Histogram techniques are suitable for an FPGA implementation and
profit from hardware implementation. However, histogramming usually does not give suf-
ficient results for the method as a whole, but can be used as a part of the method for
segmentation (Section 5.2.2). The method suggested by Viola and Jones, mentioned in
Section 3.3.3, uses only a limited number of features, therefore it can not be considered
a method designed for hardware. Template matching, is suitable for hardware imple-
mentation in non-linear filter form. Template matching can also benefit from hardware
implementation by utilizing massive parallelization in the case of larger number of filters.

Probably easiest way, in which to implement the template matching technique, is
shown in the example in Figure 5.1. Our goal is to find the united express logo and the
windows in the picture. This is done through a unit called template searching, which is
trying to find a place in the picture that is the same (or similar) to a template. Output
from this unit are the coordinates of the located object.

In this form, the method may suffer from some important problems.

• The object will not look the same every time. I.e. we do not want to search for one
object, but for certain class of objects. For example, we want to find an airplane
(not only united express) or we may be searching for a sign (not identical with the
one on the airplane).

• The object may consist of some repeating patterns. In the example, these are win-
dows and certain letters. Having only one template for each of these repeating

31

32 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

Template searching

Input
image

Object located
X = 13, Y = 190

Figure 5.1: Example of template matching method

objects may significantly save implementation resources.

• There may be parts of an object not holding any information, e.g. white space
between letters or windows. However, appropriate detection hardware must be still
implemented.

These issues may be solved by more sophisticated detection methods. However, the
requirement from Chapter 4 is to suggest very simple detecting elements.

The basic idea on how to resolve this is to decompose the searched object into smaller
objects (templates), and search for each of these templates separately, used by Qiang and
Bo [108], for example. Presence of an object is then determined by dependencies of these
templates. This way we can allow higher miss rate of the simple elements, while the
object as a whole should still be detected. By this decomposition, we also will switch from
searching for instances of an object to searching for objects belonging to a certain class.
This feature is caused by the possibility of locating objects that do not exactly match a
template.

This is depicted in the example in Figure 5.2. The searched object is again an airplane
with the United Express logo. Templates in our case are letters, the logo and the shape of
a window1. You may notice that we searched only once for repeating letters in the word
“express”, since the same letters are considered to be the same pattern.

All templates are located in the image and results are put into a new image, called a
template occurrence image. Representation of those templates in a template occurrence
image may vary; we use a simple black rectangle for every template found.

The final step is searching for an object. In this case, it is the simple detection of a
burst of black rectangles.

Now, we are ready to generally define the method in Definition 5.1.1.

1An object does not have to be decomposed to semantic elements, like letters. Decomposition can be
done over smaller elements, for example parts of the letters.

5.1. METHOD PROPOSITION 33

Unit 1

Input
image

Object located

Object searching

Unit 10Unit 8Unit 7Unit 2 ... Unit 9 Unit 13Unit 12Unit 11

Template
occurence image

Figure 5.2: Proposition of the method

Definition 5.1.1 Method

1. Define parameters of templates:

• Number of templates
• Size of each template
• A bitmap image for each template

2. Search for each of these templates in an input image in hardware. If a template is
present, mark this in the template occurrence image (temporary image of same size
as input image).

3. According to the template occurrence image, decide whether the searched object is
present and where.

Unlike in the example, templates in a real system are expected to be smaller, auto-
matically generated and their number will be in hundreds.

How does Definition 5.1.1 comply with goals of Chapter 4?

1. Feature extraction can be efficiently implemented in hardware; each template can
be implemented in parallel. Questions of hardware suitability from Section 1.3 will
be a topic throughout the rest of this thesis, mainly in Sections 5.3, 7 and 8.6.

2. Achieving a simple template matching element will be the goal of the following
sections 5.2 and 5.3.

3. A major part of the algorithm, filtering, will be computed “on-the-fly”. The classi-
fication part of the algorithm (actual object detection based on feature occurrences)
can be also implemented in hardware.

34 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

4. The processor part should not be too computationally difficult, thus an embedded
processor will be suitable.

5. The method proposed in Chapter 7 allows adaptation to the environment or slow
changing object.

6. The results in Section 8.5 show that the method’s efficiency is comparable to com-
mercial methods.

5.2 Development Phases

As was said in Section 5.1, we aim to implement a large number of search units, each
searching for one fragment of the object.

For the method, the standard sequence of steps of pattern recognition introduced in
Section 3.3 should be used - preprocessing, feature extraction, and classification. The
main focus should be laid on quality feature extraction, as it makes classification easy and
less source-consuming.

• Preprocessing will be a preliminary step to feature extraction. It should make feature
extraction easier and more effective. The input to a preprocessing unit is an input
image G ∈ Gd

w,h, and the output is an image of the same size Gp ∈ Gdp

w,h.

• Feature extraction will be the core of the method. A filter bank implemented in
hardware will search for features indicating an occurrence of an object. The input
to the feature extraction unit is the output image from the preprocessing unit Gp.
The output is an image of the same size containing information about matching
templates Gf ∈ Gdf

w,h. This output image is called a template occurrence image.

• Classification should be easy, as it will profit from high-quality feature extraction.
In the simplest case, searching for the largest bunch of extracted features should
be enough. The input is template occurrence image Gf , and the output is a set of
coordinates of the image G pointing to the located objects c ∈ 2(x,y) (if no object is
found, empty set is returned).

There were a few development phases before the final solution was reached. They are
presented in this section. This should help to understand why certain decision were made.
The final phase is in a separate Section 5.3. For all phases, a section named class of objects
is included, which discusses what kind of objects the method is capable of dealing with.

5.2.1 Version 1

In the first version, there is no preprocessing phase. The feature extraction method is
suggested here and basic ideas about classification are presented.

Feature Extraction

The first consideration is what technique we will use for feature extraction. It should work
as in the example in Figure 5.2 - input will be an image, output will be an image with
parts matching the templates displayed. For this requirement, the closest technique is a
set of spatial filters, each searching for one template.

5.2. DEVELOPMENT PHASES 35

The next question concerns on what type of filters should be used. Requirements
for the filter can be summarized in the following points, as they have been described in
Section 3.3.2 and in Chapter 4.

• Implementation in hardware must be relatively cheap.

• A filter must show good resistance against changes in illumination.

• If possible, a filter should be rotationally and scale invariant. This requirement can
be realized by implementing a number of filters for each template, each differently
angled or zoomed.

There are many ways in which filters with these features can be implemented. Lin-
ear filters with convolution may be suitable, but are very space demanding in hardware
because of necessary multiplication, so non-linear filters are preferable.

15 37 8 192 191 192

14 14 0 160 190 191

192 191 192 192 192 191

108 177 192 191 192 192

192 192 192 193 192 192

12 13 15 62 189 190

Input
Image

 14 0 160

 177 192 191

 37 8 192

Match

Template

Match

Figure 5.3: Example of version no. 1

Basically, we need to compare similarities between two images (template and a slice
of an image). This leads us towards using a comparison operation in the filter. Two
operations Suitable for comparing are the mean of absolute differences and the mean
square error, both used, for example, by Chang and Hwang [38]. However, these methods
are still quite expensive, mainly the mean square error. The mean of absolute differences
is relatively suitable for hardware, but we could not do the important step in Section 5.2.2,
making the implementation significantly cheaper.

As the most natural cheap method, the one proposed by Gause et al. [30] may come
to mind, which will be our version 1 method. The basic concept of this filter is the simple
comparison of a template and an image slice. For our purposes, we define the template
for version 1 as the structuring element. For simplicity, now we define only one template
and one filter. Every pixel of the template is compared to a value of a relevant image
pixel, and if all pixels match, the result of the filter is 1. This filter is very similar to the
hit-or-miss filter from Section 3.2; the only difference is that the gray depth is considered
to be arbitrary. An example of this is in Figure 5.3.

36 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

Definition 5.2.1 Version 1 template of structuring element S and image G is a function

T : S → {0, 1..d− 1}

where d is gray depth of image G.

Definition 5.2.2 Version 1 filter is a filter over S

F (N) =
{

1 nx+i,y+j = Ti,j ∀(i, j) ∈ S
0 otherwise

where N = NG,S
x,y

Classification

In this thesis, there will be no straight answer for how to implement the classification part,
because it largely depends on the application. For our purposes, we will use two extreme
versions of classification:

1. Minimal classification where object is detected when the number of matched tem-
plates exceeds a certain number in an area of the objects’ size

2. Maximal classification where object is detected when there are slices matching tem-
plates at the exact position as on the searched object

In reality, we will probably use something between those two. For instance, specific
slices have to be placed in certain areas.

Class of objects

This version finds only image slices exactly matching a template. Thus, for maximal
classification, only the exact object that we are searching for is detected, with an allowance
for differences between the slices. In Figure 5.4, you see an example of such a case.

Original object Match

Figure 5.4: Example of version 1, maximal classification

For minimal classification, slices must also match templates exactly, but they can be
differently organized than in the original object.

Things to Improve

Unfortunately, in reality, objects in the image will never be exactly the same as those
in the template. Reasons for this are changing illumination, noise and other issues, like
different distance or position of the object from the camera. Overall, there are several big
disadvantages coming with the first version:

• Not resistant against changes in illumination.

• Not noise-resistant.

• Still quite expensive for parallel implementation in hardware, as for every template,
w × h (width, height) n-bit comparators are required

5.2. DEVELOPMENT PHASES 37

5.2.2 Version 2

In this version, we will make a fairly big step. Instead of finding image slices exactly
matching templates, we will search for shapes typical for a certain class of objects. It
changes the class of the searched objects, and also helps to achieve one of the goals -
maximizing hit rate even at the expense of more false alarms.

Feature Extraction

The form of the template has changed significantly. It’s not a small gray-scale image any
more, it is a matrix where each element is a binary value saying whether a corresponding
pixel should be bright or dark to match.

Naturally the question comes - what value of the pixel means bright and what value
means dark? Generally, we have to decide for a value called divider (Definition 5.2.4),
which is a limit between dark and bright pixels.

Definition 5.2.3 Version 2 template of structuring element S is a function

T : S → {0, 1}

Definition 5.2.4 Version 2 filter is a filter over S so that

F (N) =


1 ((nx+i,y+j <= D ∀Ti,j = 0) ∧

(nx+i,y+j > D ∀Ti,j = 1)) ∀(i, j) ∈ S
0 otherwise

where N = NG,S
x,y and D ∈ {0, 1, ..d} divider between dark and bright pixels

Now, we will discuss how to find the dividing value. This problem is identical to the
thresholding problem. There are more ways, some more or less effective and costly than
others.

Global Thresholding

The first group of dividing functions contains functions with the same value for the whole
image.

1. Constant thresholding value is easiest way to implement, unfortunately obviously
very ineffective.

2. Information from the whole picture is used to obtain the thresholding value. Meth-
ods widely used for this purpose are using histograms. Unfortunately, a threshold
computed from a whole image histogram may not give desirable values - if the object
we search for is in the dark or bright part of the image.

Local Thresholding

Unfortunately, none of the global thresholding functions are suitable. One solution is to
compute the dividing point for each pixel separately, where the divider value will be a
function of the pixel neighborhood.

38 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

1. Average between maximum and minimum value in the neighborhood is relatively easy
and cheap to implement and may be effective (evaluation will be done in Section
5.3.1).

2. Average of all of the pixels in the neighborhood is comparable to the previous
method, considering computational complexity.

3. Median value of the neighborhood pixels, compared to the previous two methods,
is much more difficult and expensive to implement, mainly in hardware [73] [74]
[75]. One solution how to make implementation cheaper might be, for example, to
implement in hardware only an estimation of the median like the one suggested by
Suorania et al. [76].

4. Value based on the neighborhood histogram is probably the most expensive, and
conventional methods are likely to fail due to the small neighborhood.

The function which will be actually used for the final method version will be discussed
in Section 5.3.1.

15 37 8 192 191 192

14 14 0 160 190 191

192 191 192 192 192 191

108 177 192 191 192 192

192 192 192 193 192 192

12 13 15 62 189 190

Input
Image

 0 0 1

 1 1 1

 0 0 1

Div 160
Match

Template

Match

Figure 5.5: Example of version no. 2

Class of objects

A vital question comes with this version. Will changing the feature extraction method
badly effect the class of objects we are trying to find?

Theorem 5.2.1 For parameters properly adjusted, the set of objects found by version 1
is a subset of set of objects found by version 2.

Proof 5.2.1 We will let the version 1 template be T1. We will let the version 2 template
be T2 of structuring element S from T1 of structuring element S using following rules:

5.3. FINAL PROPOSAL 39

1. M is arbitrary function, Vm is a value derived from values in T1: Vm = M{T1(i, j) :
(i, j) ∈ S}.

2. Value in T2 will be zero if corresponding value in T1 is less or equal to Vm, or one
for corresponding value more than Vm: T2(i, j) = 0 ⇔ T1(i, j) ≤ Vm, T2(i, j) = 1 ⇔
T1(i, j) > Vm

3. Set divider D = Vm

In the following steps, we will review facts about detection. F 1 is a version 1 feature
extraction filter, F 2 is a version 2 feature extraction filter.

1. The only objects detected by T1 are those with pixel values equal to T1 values:
F 1(N) = 1 ⇔ nx+i,y+j = T1(i, j) : (i, j) ∈ S

2. To detect an object by T2

• All pixel values with corresponding dark template values must be less or equal
to Vm

• All pixel values with corresponding bright template values must be more than
Vm

F 2(N) = 1 ⇔ ((nx+i,y+j ≤ D ∀T2(i, j) = 0)∨ (nx+i,y+j > D ∀T2(i, j) = 1)) : (i, j) ∈
S

Any object detected by T1 should be detected by T2. A sufficient condition is that every
value detected by T1 is also detected by T2.

(T1(i, j) ≤ D ∀T2(i, j) = 0) ∧ (T1(i, j) > D ∀T2(i, j) = 1

As a result from how template T2 was created, this equation will be always true.

The version 2 algorithm is capable of finding all objects in a class found by version 1.
The problem may occur the other way around - if version 2 is going to produce too many
false alarms. The answer is not trivial and may significantly affect the method’s quality.
However, the step made in version 2 leads to very cheap hardware implementation, which
is one of the primary goals.

5.3 Final Proposal

In the final version, we will try to make the method compliant with the simple processing
element requirement.

The core of the method, feature extraction, will be crucially considering the utilization
of an FPGA chip, because we plan to implement many filters in parallel. It’s likely that
the number of these filters will be limited by the size of the chip. Thus, our goal is to
make filter implementation as cheap as possible.

To achieve this goal, we will analyse steps used in pattern recognition, namely prepro-
cessing and feature extraction. The basis of this concept can be seen in Figure 5.6 - there
is only one preprocessing unit, but there are n feature extraction units (filters). Thus, the
size of one feature extraction filter will impact the overall chip occupation significantly.

40 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

Preprocessing

Filter n

Filter 1

.

.

Input
image Filter 2

Filtered
image

Figure 5.6: Hardware preprocessing and feature extraction data flow

This indicates that we should not be afraid of the space-consuming implementation of the
preprocessing unit for the sake of getting as simple filters as possible.

Looking at the version 2 algorithm, values from the image are compared to the divider
value in every filter. However, divider is the same for all filters, because they are based
solely on values from the image, not from a template. This indicates the possibility of
moving part of this comparison to the preprocessing part, and keeping only necessary
small part in the feature extraction.

We want to do as much work in preprocessing as possible, that means leaving only
the necessary part for feature extraction. This necessary part is comparing 1-bit values
in templates with 1-bit values derived from an image, saying whether the pixel is dark
or bright. This implementation will be very cheap in hardware - if templates are known
at time of synthesis, it would require only invertors for dark pixels and one AND gate
through all values (chip occupancy will be discussed more in Section 6.10).

5.3.1 Preprocessing

Generally, the preprocessing unit has to convert an image to a binary image. How this
conversion is done is largely application specific. In the simplest case, we could adopt the
method of computing the divider as in Section 5.2.2. In this thesis, preprocessing will be
made suitable for the case studies - the license plate detection and the road sign detection.

During experiments, preprocessing gave much better results if the edge detection was
performed first, as can be seen in Table 5.1. The meaning of the values in the table
will be described later in this section. Therefore, the whole preprocessing operation is
implemented as a set of two filters - the edge detection filter and thresholding filter.

For the edge detection filter (1st stage), the output of the filter (pixel in the output
image) will be the response of the edge filter. Many methods could be used for edge
detection. The most common approach would be the linear filters from Section 3.4.1.
But, as mentioned, these filters are not suitable for hardware implementation. As an
alternative, a 3 × 3 non-linear filter was developed. The function of this filter is the
difference between the minimum and maximum of the pixels in a neighborhood (Definition
5.3.1).

The second stage is actual segmentation. A non-linear 3×3 filter computes a value from
the neighborhood, and outputs 1 if the pixel value is greater than this value, or 0 otherwise.
There are more options for what the function for the dividing value could be, this function
is identical to the divider functions discussed in Section 5.2.2. Experiments for all the
discussed functions were made. Functions based on the histogram did not give satisfactory
results due to the small neighborhood, and global thresholding functions often discarded
important local features. Hence a decision among the local thresholding techniques had

5.3. FINAL PROPOSAL 41

to be made - average between minimum and maximum, median, or neighborhood average.
All three techniques were applied to the experiment in a subsidiary case study in Chapter
9. For each of these experiments, the image class quality was computed (defined in Section
5.4.5) which refers to the object detection quality. Image class quality is a real number in
the range (0,∞) and higher number refers to better quality.

Technique Quality with edge det. Quality w/out edge det.
Min-max average 5.3 1.3

Average 2.8 1.2
Median 2.3 1.2

Table 5.1: Image Class Quality for Preprocessing Techniques

Results are in Table 5.1. Clearly, the average between the minimum and maximum
gives the best results for the test case. Even though this result does not necessarily imply
that the min/max technique is generally the best, we will use it for our experiment since
the preprocessing part is only marginal in the context of this thesis.

Definition 5.3.1 The preprocessing filter phase 1 P1 ∈ FS and preprocessing filter phase
2 P2 ∈ FS are defined as follows.

Let N = NG,S
x,y ∀G ∈ Gw,h ∀w, h ∈ N ∀x ∈ {0..w − 1}∀y ∈ {0..h− 1}.

Let us define average of minimum and maximum as

MM(N) =
max{nij ∈ N}+ min{nij ∈ N}

2

Then, we can define
P1(N) = MM(N)

P2(N) =

{
1 Gx,y > MM(N)

0 otherwise

This method proved to be very effective in preserving shapes and removing noise,
which are basic considerations for the quality of feature extraction. An Example of a
preprocessed image is in Fig. 5.7.

5.3.2 Feature Extraction

With the feature extraction filter, we are going back to version 1. The difference is,
now we will work with binary image and templates, which is much better for hardware
implementation. In this version, we also start working with a filter bank instead of one
filter. The filter bank was expected to be used in previous version too, but was omitted
for simplicity.

To define a template bank, we have to first define a template as a function assigning
each structuring element either 0 or 1 (Definition 5.3.2). This value determines whether
the corresponding pixel should be dark or bright. The definition of a template bank
follows in Definition 5.3.4 as a function assigning each possible template either a number
or ⊥. The feature extraction filter in Definition 5.3.6 then puts identification numbers to
template occurrence image to positions where corresponding templates fit.

42 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

Definition 5.3.2 Template for structuring element S is function

T : S → {0, 1}

Definition 5.3.3 Set of all templates for structuring elements S is denoted

TS

Definition 5.3.4 Template bank B for structuring element S is function

B : TS → N⊥

Definition 5.3.5 Set of all template banks for structuring elements S is denoted

BS

Definition 5.3.6 Let N = NG,S
x,y be a neighborhood for some G ∈ G2

w,h w, h ∈ N x ∈
{0..w−1}y ∈ {0..h−1} and T ∈ TS a template. Operator ≈ (match) is defined as follows:

N ≈ T ⇔ ∀i, j ∈ S : Nx+i,y+j = T (i, j)

Feature extraction filter F ∈ FS for template bank B ∈ BS is every filter that satisfies
the following condition:

F (N) 6=⊥⇒ ∃T ∈ TS s.t. B(T) = F (N) ∧ T ≈ N

An illustration of preprocessing and feature extraction is shown in Figure 5.7. On
the right and left side real-life image and an artificially made close-up image are shown,
respectively. For preprocessing, the min-max average method without an edge detection
filter has been used. In the feature extraction phase, we are searching for templates T1..Tn

included in the template bank. Finally, the pattern occurrence image is created with the
located slices matching templates. In the right image, three occurrences of template “E”
(template T3) have been found.

5.3.3 Classification

In Section 5.2.1, we outlined two possible classification implementations. As stated before,
the proper classification method depends on the application for which it is being used.

First, basic terms are defined. Be aware that term neighborhood defined earlier will be
used here for a different purpose than spatial filters.

Definition 5.3.7 Size |T | of the template T ∈ TS is

|T | = |S|

Size |N | of the neighborhood N ∈ N is

|N | = |{nij |nij ∈ N,nij 6=⊥}|

5.3. FINAL PROPOSAL 43

15 37 8 192 191 192

14 14 0 160 190 191

192 191 192 192 192 191

108 177 192 191 192 192

192 192 192 193 192 192

12 13 15 62 189 190

Input
Image

 1 0 1

 1 1 0

 1 0 0

Match T1 Match

Prepro-
cessed
Image

 0 0 1 0 0 1

Preprocessing

 0 1 0 1 0 1

 1 0 0 0 0 0

 0 1 1 0 0 0

 0 1 0 0 0 1

 1 0 0 1 0 0

 0 0 1

 0 0 0

 0 0 0

T2

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 2 0

 0 0 1 0 0 0

 0 0 0 0 0 0

1 2 3 3 3

Pattern
occurence
Image

Template
bank

T1 T2 T3

Figure 5.7: Example of preprocessing and feature extraction

Definition 5.3.8 Let G′ be a filtered image by the feature extraction fitler F ∈ FS for the
template bank B ∈ BS of source image G. Let N ′ ∈ NG′,S

x,y be a neighborhood. The rating
R of neighborhood N ∈ NG,S

x,y for bank B is a number

RB,N =

∑
(i,j)∈S

ai,j

|S|
, where ai,j =

{
1 N ′

x+i,y+j > 0
0 otherwise

The rating is a very important feature of a neighborhood. It shows how high the
proposed method rates a particular neighborhood. Here it is defined as a number of
template detections counted over one pixel (minimal classification method). Generally,
any other classification method could be used. However, for future computations, only
rating as defined in Definition 5.3.8 will be used.

44 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

The best match (Definition 5.3.9) is a neighborhood of shape SBM that has the highest
rating of all neighborhoods with the same shape inside the neighborhood N .

Definition 5.3.9 Best match BM ∈ NN,SBM in neighborhood N ∈ NG,S
x,y for bank B is

a neighborhood such that
RB,BM ≥ RB,C ∀C ∈ NN,SBM

An output of the whole proposed method (Definition 5.3.10) is the best match in the
whole image, or ⊥ if the algorithm assumes that there is no object in an image.

Definition 5.3.10 Let N be the neighborhood of image G ∈ Gw,h such that

Nx,y 6=⊥ ∀x ∈ {0..w − 1} ∀y ∈ {0..h− 1}

Limit L ∈ N is a number defined by the user.
Let BM be the best match in N for bank B. Then classification output of image G

with bank B and limit L is

UL
G,B =

{
BM RBM > L
⊥ otherwise

To check whether the best match detection is correct or not, we have to first define an
object2.

Definition 5.3.11 The object OG of image G is either neighborhood that the user defined
as an object or ⊥ if there is no object in G.

The surrounding of neighborhood OG ∈ NG is the neighborhood N ∈ NG where

Ox,y =⊥⇔ Nx,y 6=⊥

Now, we can determine whether we found the right object or not.

Definition 5.3.12 Let OG be the object and UL
G,B be the classification output. With image

G, limit L, and bank B, classification output hits object O when

U = O

The definition of Hit can also differ slightly in real-life implementation. Mainly, ab-
solute accuracy may not be required, which would allow the classification output to be
shifted against the object.

Rating by AdaBoost

AdaBoost (Section 3.3.3) could be particularly useful for classification, giving each tem-
plate a different importance. Classification with AdaBoost is defined as follows:

2Here, we defined only one object in an image. If needed the definition can easily be changed to describe
more objects in an image.

5.4. SETTING OF PARAMETERS 45

Definition 5.3.13 Let G′ be the filtered image by the feature extraction fitler F ∈ FS for
the template bank B ∈ BS of the source image G. Let N ′ ∈ NG′,S

x,y be a neighborhood. The
rating by AdaBoost R of neighborhood N ∈ NG,S

x,y for bank B is a number

RB,N =

∑
(i,j)∈S

αp × ai,j

|S|
, where p = N ′

x+i,y+j , ai,j =
{

1 N ′
x+i,y+j > 0

0 otherwise

where αp is a coefficient assigned to every template.

Coefficients αp have to be obtained by the AdaBoost learning algorithm on the training
set of images with marked objects. An example of such a learning algorithm follows:

1. Using conventional methods, obtain a large number of templates based on the ob-
jects in the training images (for example, pick template-size slices from objects and
threshold them).

2. Select the best template with respect to the weights given to the training images
(for example, sum of the weights of the training images where the object was hit).

3. Set α for the selected template (for example, based on the number of object hits).

4. Increase the weights of the training images that were missed by the template.

5. Repeat from step 2 on until the number of templates is sufficient.

5.3.4 Class of objects

The set of objects detected in a class is the same as in version 2 (Section 5.2.2), the
advantage of this version is the possibility of easier hardware realization.

5.4 Setting of Parameters

In this section, important features of the proposed method will be analyzed, which allows
us to properly set parameters. The outputs of this section will be used in the case study
for setting the parameters of the real-life experiment in Sections 8.2 and 8.3. First, we
define basic concepts.

5.4.1 Noise

For the real-life environment, we have to consider that two images of one object will never
be the same. Some factors are sensor quality and environment changes. For our purposes,
we deal with these factors altogether by defining a noisy pixel and an ideal image.

Definition 5.4.1 A noisy pixel (x, y) is a pixel whose value is different than the value
expected by the user. The ideal value ix,y of a noisy pixel (x, y) is the value that the user
expects to observe.

Definition 5.4.2 The ideal image I ∈ Gw,h of image G ∈ Gw,h is an image that

Ix,y = ix,y ∀x ∈ {0..w − 1}∀y ∈ {0..h− 1}

where ix,y is the ideal value of pixel Gx,y

46 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

The noise coefficient (Definition 5.4.3) is a real number showing how noisy a neigh-
borhood is. Limitation to a maximum noise of 0.5 comes from the probability nature of
C, i.e. 0 means no noise in the image and 0.5 means completely random noise. Values
above 0.5 would form inverted original image, which is not desirable for our meaning of
C.

Definition 5.4.3 The noise coefficient CN of neighborhood N ∈ NG,S is

CN =
{

CR CR ≤ 0.5
0.5 otherwise

where CR =
∑

abs(Nx,y − Ix,y)
|S|

∀Nx,y 6=⊥

where I ∈ G is the ideal image of image G

5.4.2 Image Quality

In this section, we will deal with image quality, which will help us in the following sections
to properly set the method parameters. Definition 5.4.4 defines the quality as a fraction
of the ratings of two arbitrary neighborhoods.

Definition 5.4.4 The quality Q of neighborhood N ∈ NG,S against neighborhood Nref ∈
NG,S for bank B ∈ BS of image G ∈ G is defined as

Q =
RN

RNref

Image quality in Definition 5.4.5 determines how well an image is suitable for the
proposed method.

Definition 5.4.5 Image quality QG is the quality of object O of image G for bank B
against the best match in the surrounding of the object O, where bank B is a bank that
gives the highest QG.

Figure 5.8 illustrates the meaning of Definition 5.4.5. In this figure is a typical example
of the rating distribution in an image. The x-axis is the rating and the y-axis is the number
of detections with corresponding ratings. The distance between an object rating and the
best non-object rating determines the quality of the image.

Rating

N
um
be
r

N
on
-o
bj
ec
ts

O
bj
ec
t

Q
ua
lit
y

Figure 5.8: Typical distribution of ratings in an image

In case the object rating on the x-axis falls into the non-object zone, the quality will
be less than 1, which means the object can not be detected by the proposed method.

5.4. SETTING OF PARAMETERS 47

5.4.3 Sensitivity of Rating to Noise

In this section, we will try to explore more about the changes of a rating according to the
noise in an image.

By adding noise to an ideal image, two things will happen simultaneously:

1. New templates can be detected in noisy places. Because the bank has been designed
for the object, we assume the detection of new templates is caused purely by noise,
i.e. newly detected templates are not influenced by previously detected templates.

2. Detected templates will not be detected any more, if they are affected by noise.

For the first case, the probability that the noise will create a slice in one specific place
that one specific template will detect is C |T |. Probability that one of the |B| templates
will be detected is P = |B| ×C |T |. For a neighborhood of size |N |, the average number of
template detections will be P × |N |. The Average number of template detections counted
over one pixel is then P , which is also most probable rating of the neighborhood N .

For the second case, the probability that an area of size |T | is not hit by a noisy pixel
is (1 − C)|T |. For k detected templates in neighborhood N , in average k × (1 − C)|T |

templates will not be affected by noise. Counting the not affected templates over one
pixel we get new rating, which is k/|N | × (1− C)|T | = RI × (1− C)|T |.

We can not determine an exact rating based on the noise coefficient. We can determine
only the probability that a particular rating will occur. That’s why we deal with only the
rating that occurs with the highest probability.

From the previous statements, the following conclusion comes: The most probable
rating R of neighborhood N ∈ NG,S

x,y , with noise coefficient C, and bank B designed for
neighborhood N , is a number

R = |B| × C |T | + RI × (1− C)|T |

where I is the ideal image of G, NI ∈ N I,S
x,y is the neighborhood, RI is the rating of NI

and T ∈ B is a template.

5.4.4 Size of Templates

In this section, we will try to conclude with an equation for the optimal template size
for an image class. Following computations will be done on one image that is a typical
representative of the class.

For the computations, an important assumption is made, that there is a neighborhood
with a noise coefficient3 C = 0.5, of at least the size of an object in an image. This
may not be true for all images in a class, but it’s a sufficient condition if there are such
neighborhoods in a significant part of an image class. An example of such a neighborhood
would be an irregular pattern such as sand, snow, a forest in the distance, or objects
illuminated by the sun from the specific angle. Obsertvations of the image class used in
Chapter 8 show that around 90% of images satisfy the assumption, mainly because of the
road illumination or the stripes.

Let there be an image G ∈ G with object O ∈ NG,S with a noise coefficient of CO

and bank B ∈ B. T is a template of bank B. I is the ideal image of G. Let there be
a neighborhood N ∈ NG,S in the surrounding of an object O with the noise coefficient
CN = 1/2. Then

3In this context, noise can be any part of an image where pixels are considered to be random

48 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

RO = |B| × C
|T |
O + RI × (1− CO)|T |

where NI ∈ N I,S
x,y is the neighborhood, RI is the rating of NI

Assuming CO being close to 0, |B| × C
|T |
O will be very low and compared to the rest

of the equation insignificant, thus we get

RO = RI × (1− CO)|T |

The rating for neighborhood N is

RN = |B| × C
|T |
N + RI × (1− CN)|T |

RI × (1− CO)|T | becomes insignificant compared to the rest of the equation, because
N is in the surrounding and RI is supposed to be very low here. From above, CN = 1/2
resulting in

RN =
|B|
2|T |

The best match of the surrounding can be either the rating of the noisy place, or the
best match of the ideal image surrounding. Then the quality of the image is

Q =


RI(1−CO)|T |

|B|
2|T |

for |B|
2|T | > RS

RI(1−CO)|T |

RS
otherwise

where RS is the rating of the best match of the surrounding of object of I.
Now, our goal is to find a maximum Q dependent on |T |. A quality function dependent

on |T | consists of two functions on the two intervals < 1, t > and (t,∞), where t is a value
of |T | where these two functions switch. The switching point is:

|B|
2t

= RS

2t =
|B|
RS

t = log2

|B|
RS

For the first interval, we will find a maximum Q using the first derivative of Q:

Q =
RI(1− CO)|T |

|B|
2|T |

Q =
RI

|B|
× 2|T | × (1− CO)|T |

Q′ =
RI

|B|
× 2|T | × ln 2× (1− CO)|T | +

+
RI

|B|
× 2|T | × ln(1− CO)× (1− CO)|T |

Q′ =
RI

|B|
× 2|T | × (1− CO)|T | × (ln 2 + ln(1− CO))

5.4. SETTING OF PARAMETERS 49

The maximum of the function is at Q′ = 0

0 =
RI

|B|
× 2|T | × (1− CO)|T | × (ln 2 + ln(1− CO))

0 = 2|T | × (1− CO)|T |

Q′ does not cross 0 for T ∈< 1, log2
|B|
RS

>, i.e. Q is either rising or falling on the whole
interval. To find out whether Q is rising or falling, we will find Q′ for |T | = 1 and for
RI > 0, |B| > 0, CO ∈< 0, 1/2 >

Q′ =
RI

|B|
× 2|T | × (1− CO)|T | × (ln 2 + ln(1− CO))

Q′ =
RI

|B|
× 2× (1− CO)× (ln 2 + ln(1− CO))

RI

|B|
> 0 ∧ (1− CO) > 0 ∧ (ln 2 + ln(1− CO)) > 0 ⇒

Q′ > 0

The function Q(|T |) is rising on the interval < 1, log2
|B|
RS

>.
For the second interval, the first derivative of Q is

Q =
RI(1− CO)|T |

RS

Q =
RI

RS
× (1− CO)|T |

Q′ =
RI

RS
× ln(1− CO)× (1− CO)|T |

The limit of the function is at Q′ = 0

0 =
RI

RS
× ln(1− CO)× (1− CO)|T |

0 = (1− CO)|T |

Q′ does not cross 0 for |T | ∈< log2
|B|
RS

,∞ >, i.e. Q is either rising or falling on the
whole interval. To find out whether Q is rising or falling, we will find Q′ for |T | > 1 and
for RI > 0, RS > 0, |B| > 0, CO ∈< 0, 1/2 >

Q′ =
RI

RS
× ln(1− CO)× (1− CO)|T |

RI

RS
> 0 ∧ ln(1− CO) < 0 ∧ (1− CO)|T | > 0 ⇒

Q′ < 0

The function Q(T) is falling on the interval < 1, log2
|B|
RS

>.

50 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

|T|

Q

Figure 5.9: Example of Q dependent on |T |

The function consists of two intervals. The function is rising on |T | ∈< 1, log2
|B|
RS

>

and it is falling on |T | ∈< log2
|B|
RS

,∞ >. For illustration, an example of the function is in
Figure 5.9.

Resulting, the size of the template |T | for the highest image quality QG is

|T | = log2
|B|
RS

(5.1)

where |B| is the number of templates in the bank and RS is the rating of the best match
of the surrounding of an object of the ideal image of image G.

5.4.5 Image Class

The proposed method is applicable to various object classes. Also, the successful detection
of an object is largely dependent on the object’s surrounding. That’s why we define the
image class as a reference term for the following computations.

Definition 5.4.6 Image class A is a set of images.

Definition 5.4.7 Image class quality QB
C for class A and bank B is the quality of the

object with the lowest rating from A against best match in the surrounding of an object
from A

Figure 5.10 will help illustrate the meaning of image class quality. In this figure, there
is a typical distribution of ratings of detected objects in a class4. The x-axis is a rating,
the y-axis is the number of detections with corresponding ratings, involving the whole
image (not only detection of objects). On the right, there is a set of detected objects
with relatively high rating. On the left, there is a set of non-objects with supposingly low
rating. Image class quality is determined by the worst of the objects and the best of the
non-objects.

In most cases in real life, there will be some objects missed by the algorithm. In these
cases, the object and the non-object sets blend together and QB

A < 1, thus the significance
of this value is low. For these cases, hit rate is defined as a fraction of the images with
successfully detected objects.

4Class quality can be also used for multiple objects in a single image

5.4. SETTING OF PARAMETERS 51

Rating

N
um
be
r

N
on
-o
bj
ec
ts

O
bj
ec
ts

Q
ua
lit
y

Figure 5.10: Typical distribution of ratings in a class

Definition 5.4.8 The hit rate HB,L
A for class A, bank B, limit L, classification output

UL
G,B and object OG is

HB,L
A =

|G| s.t. UL
G,B hits QG

|G|
∀G ∈ A

Theoretically, image class A consists of all images of all scenes that the user considers
valid. However, for real-life experiments and learning, we can use only a subset of A. For
accurate image quality estimation, we have to choose the subset representing as many
different scenes as possible.

5.4.6 Class Compactness

In this section, we will examine issues related with the number of templates in a bank.
Template bank, and consequently the number of templates, would be ideally defined as a
bank resulting in the highest class quality.

In real life, we can create templates from the subset of a class as described in Section
5.5, and manually determine a sufficient number of templates. This estimate of a sufficient
number of templates will be based on the object size, average rating, and compactness of
the class.

An important feature related to the number of templates is the compactness of image
class, which is a function of the number of templates dependent on the size of the image
class. In other words, compactness specifies how many more templates we have to add to
successfuly detect new image in the class. There can be three basic types of compactness:

1. Constant compactness is defined by the function |B| ∼ a. This type of compact-
ness is ideal for the proposed method. It will be the case of detecting one object
with different backgrounds, or objects consisting of the same slices, only scattered
throughout the object.

2. Logarithmic compactness is defined by |B| ∼ a1 + a2 × logn, where n is the number
of images in the class. This type of compactness is still acceptable, indicating the
class consists of images with objects made from sub-objects (letters, numbers etc).

3. Linear compactness is defined by |B| ∼ a × n, where n is the number of images in
the class. The class with this type of compactness is not suitable for the proposed
method, indicating the class objects do not share one universal template bank.

52 CHAPTER 5. TEMPLATE BASED DETECTION METHOD

5.5 Creating a Template Bank

Now we should discuss an issue that has been omitted so far - how to create the templates.
An algorithm was suggested that creates a suitable template bank for every particular
image class. Input to the algorithm is an image (or a set of images) with the coordinates
of an object in the image. The principle of the algorithm is in Figure 5.11. First, the bank
is filled with templates and sorted by quality. The better half of the templates is kept and
the other half is replaced by new templates. The bank is sorted again and the process
repeats, either on the same image or on the next image in the set, depending on the
particular implementation. The algorithm may stop when the bank quality is sufficient,
but the algorithm may also continue in an infinite loop as proposed in Chapter 7.

Fill the bank

Evaluate and sort the bank

Fill the bottom half of the bank

Figure 5.11: Creating a template bank

How are the templates obtained and evaluated? The algorithm takes an image and
the coordinates of the object in that image. The algorithm then creates many templates
based on small slices from the object in that image. The evaluation of a template is based
on how many occurrences were found inside the object and how many outside. There may
also be included a template occurrences limit, i.e. if the number of occurrences exceeds
this limit, the template rating is zero. This prevents finding templates that are not related
to the object structure, like empty template or completely filled template.

5.6 Chapter Conclusions

In this chapter, a template based detection method was proposed, fulfilling the require-
ments from Chapter 4. This method was roughly outlined in Section 5.1 and compared to
the items from Chapter 4. The method was perfected in Section 5.2, and the final version
was proposed in Section 5.3. The final method proposal consists of the preprocessing,
feature extraction and classification, described using the definitions from Section 3.1.

Preprocessing consists of two filters - an edge detection filter and a local thresholding
filter. A binary preprocessed image is passed to the feature extraction stage, which consists
of a large set of filters that run in parallel. Each of the feature extraction filters then
compares an image slice to a template, which is basically a small binary image representing
a part of the object. The set of those templates is called a template bank. The final phase
of the object detection is classification. For classification, various standard techniques can
be used depending on the application that the method is being used for. Two of them
were suggested in Section 5.3.3, using a sum of the features or the Adaboost method.

In Section 5.4, important parameters of the proposed method were analyzed. Results
from two of them, the size of templates in Section 5.4.4 and the number of templates in
Section 5.4.6 are used later in a case study to set the corresponding parameters. Section
5.5 describes the learning algorithm for creating the templates of this method.

Chapter 6

Experimental Architecture

In this chapter, we will deal with the experimental architecture for the method proposed
in Section 5.3.

6.1 Why Is the Experimental Architecture Presented?

In this thesis, the new object detection method suitable for hardware implementation was
suggested. And the suitability for hardware puts a question - How to confirm that the
method is really “hardware friendly”? By only estimating the number of equivalent gates
occupied by the method implementation, we may miss certain important factors effecting
possible real-world implementation:

• Maximum propagation delay of the method implementation (could possibly cause
the method to not be feasible for real implementation)

• Availability of other circuitry, like clock management circuits or memories, suffi-
ciently large and fast

• Availability and price of a target implementation platform, i.e. we should know if
the proposed method can compete with other contemporary methods

To summarize, by analyzing the hardware requirements without considering specific
architectural issues, we may miss some important aspects of the proposed method. That’s
why experimental architecture is presented. The results of the experimental architecture
experiments will show whether the method can be implemented in real life with today’s
technologies, and how it stands in comparison to other contemporary methods.

6.2 Overall Scheme

Figure 6.1 shows the overall scheme. The connecting line descriptors show the format of
the data. Input to the system is a serial stream of data with bit length D representing
pixels coming from a sensor. The pixels are ordered from left to right, lines from top to
bottom. The whole scheme works “on-the-fly”, i.e. whenever a new pixel comes to the
input, a new pixel is computed and appears at the output (with a certain delay, caused
by the serial to matrix unit).

Block serial to matrix (Section 6.4) is necessary, because filters work with surrounding
of the actual pixel. It converts the serial pixel input to a matrix of N × N pixels, that

53

54 CHAPTER 6. EXPERIMENTAL ARCHITECTURE

contains the actual pixel and its surroundings. For this purpose, N − 1 image lines must
be stored in memory. For FPGA implementation, the most suitable are internal Block
RAMs.

With this matrix of pixels (N×N pixels with bit depth D), we can do the preprocessing
in the edge detection and threshold units.

After preprocessing, feature extraction can take place using a template bank. It com-
pares all |B| templates with an image slice coming from the threshold unit, and if some
of the templates fit, the proper output signal is set. There is a maximum of |B| output
signals, one for each template. However, some of the templates can share output signals
which reduces the number of signals. Then, the appropriate signal is set when any of the
joint templates match.

The output image should be an array with the identification numbers of matched
templates, so the set of |B| signals must be converted to a number of the matched template
in arr2num unit. This number is finally the serial output forming a template occurrence
image.

Edge
Detection

NxNxD

Threshold

1

Feature
ExtractionN

xN
x1

Template
Bank

|B|xNxNx1

|B|x1
Arr to
Num

Index

S2MD

S2M

D

N
xN

xD

S2M

Figure 6.1: Overall hardware scheme

6.3 Simulator and HW platform

For the following chapters, we will need to provide some simulation and synthesis results.
For simulation, we will use the ModelSim XE II 5.7g Starter Edition.

Device family Device Slices BRAM bits Price (March 2007)
Spartan-3 XC3S1500 13312 576k $74
Spartan-3 XC3S5000 33280 1872k $242
Spartan-3E XC3S1600E 14752 648k $63
Virtex-II XC2V3000 14336 1728k $630
Virtex-II XC2V8000 46592 3024k $8323
Virtex-II Pro XC2VP30 13696 2448k $405
Virtex-II Pro XC2VP100 44096 7992k $6235

Table 6.1: Edge Detection Synthesis Results

One of the Xilinx devices will be used for synthesis experiments, because there is a
free synthesis software Xilinx ISE Webpack. There is a list of Xilinx FPGAs that could
be used for synthesis in Table 6.1. This list includes low-cost families of the Spartan-3
and Spartan-3E, and high-end families of the Virtex-II and Virtex-II Pro. Virtex-II Pro
also contains either one or two PowerPC processors.

6.4. SERIAL TO MATRIX 55

According to the synthesis results in Section 6.10, we do not need vast BRAM resources
or fast propagation through the chip, thus we can choose one of the low-cost models.
Resulting, Spartan-3 XC3S1600E (E platform optimized for logic resources) has been
chosen as a reference target FPGA, for its sufficient logic resources and affordable price.
We could also consider Spartan-3 XC3S5000 if we need more templates implemented, or
the Virtex-II Pro XC2VP30 in case we need a processor on the chip (now, we assume a
processor placed on the board with an FPGA).

6.4 Serial to Matrix

The proposed method operates on the pixel neighborhood, and expects input pixels coming
serially. This situation is suitable for hardware implementation, where only the relevant
parts of the image will be stored in the memory. Several possibilities for implementation
exist, including a standard systolic array [103] or the cellular architecture introduced by
Porter et al. [105]. For our purposes, a systolic array implementation is fully satisfactory.
Our implementation of systolic array engine called serial to matrix (S2M) is described in
this section.

In [6], the S2M unit was introduced that converts serial data input (in our case pixels
from a camera) into a matrix of values, representing a pixel and its neighborhood. As you
can see (for example in Figure 3.1), this hardware circuit is necessary for the application
of a filter.

6.4.1 Logic Scheme

Logically, the system consists of a FIFO memory that can store h− 1 lines of the image,
where h is the height of the output matrix. There are h data outputs from the FIFO -
the first one is at the very beginning of the FIFO, next outputs follow after the image
width wI . The last output is at the end of the FIFO. All of these outputs run through
five registers operated by the input pixel clock - outputs from these registers create the
w × h matrix. This matrix “runs” through the image, pixel by pixel, in the order of the
input pixels. This scheme is depicted in Figure 6.2.

FIFO h x wI pixels

R

R

R
R

wI 2wI0 h x wI

serial
input

R

R

R
R

R

R

R
R

n0,0

n0,3

n0,2

n0,1

n1,0

n1,3

n1,2

n1,1

n2,0

n2,3

n2,2

n2,1

Figure 6.2: Logic scheme of an S2M unit for a 3× 4 filter size

56 CHAPTER 6. EXPERIMENTAL ARCHITECTURE

6.4.2 Hardware Scheme

As a result from the logic scheme that we will need to access more memory cells at each
pixel clock cycle. There are two solutions for the standard memory types:

1. One memory provides time multiplex in one pixel clock cycle. Unfortunately, this
solution may be unviable for more outputs - for example, for the standard 40 ns
pixel clock and 8 outputs, the memory must be accessed every 5 ns.

2. One memory is dedicated for every output. For FPGA circuits, this is very handy
solution because we can use on-chip block RAMs (Section 2.3), whose size roughly
corresponds to the size of an image line. In the following text, we will consider only
this concept.

Hardware realization (Figure 6.3) is different from the logic scheme. The FIFO is
implemented by a set of block RAMs. One of the ports is used for the input and one for
the output, which avoids possible collisions when accessing the Block RAMs.

 bram0 bram1 bram2 bram3

input pixel pointer

output data pointers

Figure 6.3: S2M logic scheme

Block RAMs, ordered consecutively, form one large round buffer. Pixels are written to
this buffer serially. Pointers for output data are spaced uniformly within the buffer. All
pointers (input and output) are moving the same way, one step per one pixel clock.

It’s clear from the picture that the spacing between output pointers (which is equal to
the length of an image line) must be the same or greater than the size of a block RAM.
Otherwise there would be more than one reading from the block RAM at a time, which
is not possible. What should be done if line is shorter than a block RAM? The easiest,
but inefficient solution is to not use the n lowest bits of block RAMs, which will lead into
using only every 2nth word in the block RAMs. This virtually makes the block RAMs n
times smaller.

A picture of a hardware scheme is in Figure 6.4. The input address register points to a
place where the next pixel will be stored. The address register is incremented every pixel
clock and is overflowing to zero, which complies with our goal of storing pixels serially to
a round buffer. The lower bits of the address are used as the address to the block RAMs,
while the upper bits set one of the chip select signals. Data input to all of the block RAMs
is the same (a pixel from a camera) and also the address of the input data is the same.

Data output is realized in a similar way to the input, the difference is that there are
more outputs coming from the different parts of the global memory, thus there are more
units taking care of the address and the chip select signal. For every input to the output
matrix, there is one address register. The main issue is that an address can point to any
block RAM, so we have to create a unit (the address unit) that passes an address to an

6.5. EDGE DETECTION 57

BRAM BRAMBRAM

high low
address register

input pixel

data unit

pixel clock

data matrix registers

internal
address

address unit

pixel clock

dec
1 CS0 CSn

+1

1
1

....addr reg 0
 high low

addr reg n
 high low

CSn,addr n
CS0

addr 0

BRAM
data

Figure 6.4: S2M hardware scheme

appropriate block RAM, and then sets a similar network to get data from the correct
block RAM to the correct matrix input (data unit).

6.4.3 Image Borders

The introduced model does not address the problem with the image borders presented in
Section 3.1. With this configuration, the outside pixels on the left and on the right are
pixels from the other side of an image, while the outside pixels at the top or the bottom
are even more random values from the image. Probably the easiest solution is to add a
module to the very beginning of the datapath, that virtually adds a certain number of
relevant pixels around an image. A detailed description of this module will not be placed
here due to its easy implementation and low resource demands.

6.4.4 Synthesis Results

As the S2M unit can not be synthesized by itself, because of too many output signals, the
synthesis results will be included together with the following units.

6.5 Edge Detection

The edge detection unit is a non-linear filter that outputs the difference between the min-
imum and the maximum in the pixel neighborhood. As subtraction is a simple operation,
our main goal is to design a unit that finds the minimum or the maximum of an array of
integer values.

58 CHAPTER 6. EXPERIMENTAL ARCHITECTURE

A binary tree implementation seems to be the best option for the low propagation delay
and resource utilization. The design principle is shown in Algorithm 6.5.1. Only operative
parts have been included. The array of input values is in temp(0, n), n ∈< 0, 2size log c >.
size log c is a binary logarithm of size and the size is the number of input values. The
output is placed at signal MAX.

Algorithm 6.5.1 Maximum Unit principle VHDL Code

type t_temp is array (0 to size_log_c, 0 to 2**size_log_c-1)
of std_logic_vector(depth_c-1 downto 0);

variable temp: t_temp;
...

for j in 1 to size_log_c loop
for i in 0 to (2**size_log_c)/(2**j)-1 loop

if temp(j-1, i*2+1) > temp(j-1, i*2) then
temp(j,i) := temp(j-1, i*2+1);

else
temp(j,i) := temp(j-1, i*2);

end if;
end loop;

end loop;
MAX <= temp(size_log_c,0);

6.5.1 Synthesis Results

Slices BRAMs Max. delay
Edge det. 468 4 21.0 ns

Table 6.2: Edge Detection Synthesis Results

The synthesis results can be found in Table 6.2. The unit S2M was included in the
synthesis. Both chip occupation and propagation delay are very low, showing that the
edge detection unit can be used in the system without any problems.

6.6 Thresholding

The thresholding unit is a non-linear filter that computes an average value of the maximum
and minimum in the pixel neighborhood and outputs 1 for a pixel value above the average,
or 0 otherwise. A comparison to the average is an easy operation, thus we lay the main
focus on the min-max average part.

The design principle is almost identical to the Algorithm 6.5.1, and so is not included
here. The only difference is that the resulting number is not an output, but is used for
the thresholding operation.

6.6.1 Synthesis Results

The synthesis results can be found in Table 6.3. The unit S2M was included in the
synthesis. Both chip occupation and propagation delay are very low, showing that the
thresholding unit can be used in the system without any problems.

6.7. FEATURE EXTRACTION UNIT 59

Slices BRAMs Max. delay
Thresholding 352 4 14.4 ns

Table 6.3: Thresholding Synthesis Results

6.7 Feature Extraction Unit

The feature extraction unit is the most important part of the design. It compares the
output of the thresholding unit to all of the templates. For implementation, it compares
one bit array to n template bit arrays. The output is an n bit vector indicating which
template arrays match.

The implementation process consisted of two phases. First, the circuit with no prior
knowledge of the internal structure of the target circuit was designed. Because synthesis
results did not meet the expectations, and because a more precise definition of the logic
elements was needed for the design in Chapter 7, another design was suggested after
examination of the internal chip structure. As the results were quite surprising, both
mentioned designs are presented.

6.7.1 Design with no Knowledge about Target Platform

The design principle is shown in Algorithm 6.7.1. Only the operative parts have been
included. The input bit array is in temp(0, n), n ∈< 0, 2size log c >. size log c is a binary
logarithm of size, and size is number of input values. sizec is the size of a template
and elementsc is the number of templates. templates is an array that holds the template
values.

First, the array arr eq is created. It contains the results of the comparison of the input
vector and all of the templates. If all bits from the arr eq belonging to one template are
equal to 1, i.e. all template bits match the input vector, the corresponding bit in the
output vector OCC is set to 1.

Algorithm 6.7.1 Feature extraction principle VHDL Code

type templates_t is array(elements_c-1 downto 0) of
std_logic_vector(size_c-1 downto 0);

signal templates: templates_t;
signal arr_in: std_logic_vector(size_c-1 downto 0);
type ttemp is array(size_log_c downto 0, 2**size_log_c-1 downto 0)

of std_logic;
variable temp: ttemp;
...

for el in 0 to elements_c-1 loop
for i in 0 to size_c-1 loop

arr_eq(el)(i) <= templates(el)(i) AND arr_in(i);
end loop;

end loop;

for el in 0 to elements_c-1 loop
for i in 0 to 2**size_log_c-1 loop

temp(0,i) := arr_eq(el)(i);
end loop;

60 CHAPTER 6. EXPERIMENTAL ARCHITECTURE

for j in 1 to size_log_c loop
for i in 0 to (2**size_log_c)/(2**j)-1 loop

temp(j,i) := temp(j-1, i*2+1) AND temp(j-1,i*2);
end loop;

end loop;
OCC(el) <= temp(size_log_c,0);

end loop;

Slices BRAMs Max. delay
Feature extraction 13854 0 8.87 ns

Table 6.4: Feature Extraction Synthesis Results

The synthesis results can be found in Table 6.4 for 500 templates of size 5x5 pixels
(typical values used in experiments). Unit arr2num (Section 6.8) had to be included in
the synthesis (however, the arr2num unit occupies only a small part of the FPGA chip),
because the feature extraction unit has many output signals. The propagation delay is
surprisingly low. As may be expected, the chip occupation is very high.

6.7.2 Design with Knowledge about Target Platform

Look up tables (LUTs) are the basic building blocks in the Xilinx FPGAs. Every LUT
is configured by a 16bit array. The output of the LUT is the n − th value of this array,
where n is a binary number formed by the 4 LUT inputs. The template values will be
stored in the LUTs arrays - all bits are reset to zeros, except the one for which the input
combination matches the corresponding part of the template.

For a 5× 5 template, there are 25 one-bit comparisons needed. The output is 1 when
all template bits match the input, or 0 otherwise. This function can be performed using
8 LUTs. The organization of such a scheme is in Figure 6.5. The first six LUTs are
comparing 24 input bits to the template values. The 7th LUT keeps the 8000h value
which forms the 4 input AND. The 8th LUT works in a similar way to the 7th, while
treating also the 25th bit of input.

LUT1
0-3

25

LUT6
20-24

LUT2
4-7

0-3

4-7

...

20-23

LUT7
8000h

LUT 8
25 &
800h

24

match

Figure 6.5: Fiting a 5x5 template comparison to 8 FPGA slices

The results in Table 6.5 for 500 templates show a big improvement in the occupation
of the FPGA. By placing the design directly into the LUTs, the design size was reduced
to 32% of the previous design. However, this 32% is a reduction of the original design

6.8. ARR2NUM UNIT 61

Slices BRAMs Max. delay
Feature extraction 4537 0 18.31 ns

Table 6.5: Feature Extraction with LUTs Synthesis Results

together with the Arr2Num unit. If we also consider the results of Chapter 7, an estimate
is that placing the design directly into the LUTs reduces its size to 18%.

6.8 Arr2Num Unit

The arr2num unit converts the n bit signal to the number of the position of the first non-
zero signal. The design principle is shown in Algorithm 6.8.1. Only the operative parts
have been included. elements log c is a binary logarithm of the number of templates. The
input is the signal OCC from Algorithm 6.7.1, the output is NUM , which is the number
of the first non-zero signal in OCC.

Algorithm 6.8.1 Arr2num principle VHDL Code

NUM <= (others => ’0’);
for i in 0 to elements_c-1 loop

if OCC(i) = ’1’ then
NUM <= conv_std_logic_vector(i, elements_log_c);

end if;
end loop;

6.9 Classification

The architecture of the classification part will not be discussed thoroughly in this thesis
since it is only a marginal topic and is largely application specific.

Minimal classification (only counting the number of active pixels in a region, Definition
5.3.12) could be efficiently implemented in hardware as a filter of the same size as an object.
The architecture would be based on the concept introduced in Section 6.4, the important
pixels would be on the right side and left side of the sliding window. The active pixels on
the right side (entering the sliding window) would be added into a classification register,
the active pixels on the left (leaving the sliding window) would be subtracted.

The architecture could be easily modified to perform the function that will be proposed
in Section 8.4 by creating an array of n registers, where n is the number of features. Then,
the architecture would perform the same function as in minimal classification for each of
the registers.

Both of the architectures are limited by available BRAMs on an FPGA chip, as their
number grows linearly with the height of the sliding window.

6.10 Overall Synthesis Results

In this section, the results from the previous sections are all put together. The target
FPGA is the Xilinx Spartan III XC3S1600E.

62 CHAPTER 6. EXPERIMENTAL ARCHITECTURE

Slices BRAM Max. delay
Edge detection 468 2 kB 21.0 ns
Thresholding 352 2 kB 14.4 ns
Feature extraction 4537 0 18.31 ns
XC3S1600E 14752 648 kB N/A
Total 5357 [36%] 4 [1%] 21.0 ns

Table 6.6: Overall Synthesis Results

The results are shown in Table 6.6. The design occupies 36% of the XC3S1600E
FPGA chip. Maximum propagation delay of 21 ns allows “on-the-fly” implementation, as
a normal HDTV cameras’ pixel clock is usually 40 ns.

These results show that the method can be implemented in a real system, in fact there
is no need of the more expensive, cutting-edge technology, FPGAs. More experimental
results, including speed up estimation compared to a DSP solution, will be presented in
the case study in Sections 8.5 and 8.6.

6.11 Chapter Conclusions

In the experimental architecture section, an architecture for the method from Chapter 5
was proposed. The architecture is based on implementation to an FPGA chip. Each of
the units that the experimental architecture consists of was described in a separate section
and synthesized to check the FPGA occupation and the maximum propagation delay.

The architectural core is the feature extraction unit (Section 6.7). An improvement
was suggested by placing the templates directly into the processing elements of the tar-
get FPGA (Section 6.7.2), because the chip occupation is critically dependent on the
implementation of this unit.

In Section 6.10, the synthesis results of all the units were put together. Thanks to
the implementation of the feature extraction unit directly into the processing elements, it
shows that the whole experimental architecture can fit into a standard low-cost FPGA.
The propagation delay turned out to be low enough for the “on-the-fly” implementation.

Chapter 7

Adaptive Templates

The method proposal brings up a question: How should the bank be updated if the
environment or objects change, and as a result, the bank does not give satisfactory results
any more? This question will be answered in this chapter. Two techniques involved with
updating the bank are proposed - a method using static reconfiguration and a method
using dynamic reconfiguration. A description of the the dynamic reconfiguration approach
was published in [3].

7.1 Static Reconfiguration

For the static reconfiguration technique, there will be predefined banks for different en-
vironment conditions or different objects at the computing system location. These banks
can be, for instance, created on a PC from real images using the algorithm from Section
5.5. For example, there will be only one bank for an environment without changes (like a
car detection in a tunnel), but there will be day/night/strong sun banks for the outside
environments. The FPGA chip will then be statically reconfigured with the bank that fits
best with the actual weather conditions.

7.2 Dynamic Reconfiguration

The dynamic reconfiguration block scheme is in Fig. 7.1. It is a modification of the
hardware scheme in Figure 6.1. Together with the normal feature extraction process
(using “current” template bank) there is a parallel branch for the feature extraction of
new templates being tested (“test bank”). The results from both of these branches are
evaluated and compared in the processor. The testing branch creates new templates for
the test bank, and removes the worst templates. The normal branch adds good templates
to the current bank from the test bank.

In order to replace old templates with new ones using FPGA dynamic reconfiguration,
the templates have to be in fixed predefined positions. Probably the easiest way to do
this is to place the templates in a regular array. Here a solution using standard Xilinx
ISE tools is suggested with the direct placement of templates into LUTs, as described in
Section 6.7.2.

63

64 CHAPTER 7. ADAPTIVE TEMPLATES

preprocessing

FE
test

bank FE
curr.
bank

Arr2NumArr2NumFPGA

Processor
Classification Classification

Templates
update

Compare

Templates
creating

Out

In

Figure 7.1: Dynamic reconfiguration

7.2.1 Creating the Regular Slice Array of Templates

Each slice of a Spartan-3 FPGA consists of two LUTs, so one template will only occupy
4 slices. This can be achieved by setting constraints in the UCF file. An example of
implementation of half of the template follows:

INST "LUT4_10" LOC=SLICE_X70Y0;
INST "LUT4_20" LOC=SLICE_X70Y0;
INST "LUT4_30" LOC=SLICE_X70Y1;
INST "LUT4_40" LOC=SLICE_X70Y1;

LUT4 n is the label of the LUT component instantiation in the VHDL code, where
n is the number of each of the 8 LUTs of the template. The last number (in this case,
0) is the template number. A simple C program automatically creating such a UCF file
was created. Placement of LUTs iinnto the slices is shown in Figure 7.2. Numbers XnY n
show the number of a slice, numbers inside LUTs are numbers of the LUTs discussed
earlier in this paragraph. In the figure, you see the beginning of the first (template 0) and
the second (template 50) column.

Placement of the design in the XC3S1600E FPGA with two banks of filters, each
containing 500 templates, is shown in Figure 7.3.

7.2.2 Reconfiguration of Banks

As can be seen in Figure 7.1, we need to be able to reconfigure both current and test banks
by the processor. As we have shown before, template values are stored in the LUT config-
uration. Thus, we do not need to reconfigure anything else but the LUTs configurations
in certain columns. The most efficient way is to directly change the configuration data for

7.2. DYNAMIC RECONFIGURATION 65

Figure 7.2: Position of LUTs in slices

Figure 7.3: Placement of two template banks and related logic

the partial reconfiguration in the processor. To find out what bits in the bitstream are
related to each LUT configuration, reverse engineering was used. However, this technique
has not been tested on real hardware yet, as all the tests were performed only by software
tools.

66 CHAPTER 7. ADAPTIVE TEMPLATES

7.3 Chapter Conclusions

In the adaptive templates section, two techniques of dealing with the set of templates
for the method from Chapter 5 were proposed. The first technique (Section 7.1) assumes
different sets of pre-made templates are being downloaded to the system using static
reconfiguration. The second technique, compared to the first one is considerably advanced.
It offers automatic creation of suitable templates during system operation. It also uses
dynamic reconfiguration for its operation, as described in Section 7.2.

Chapter 8

Case Study - License Plate
Detection

To demonstrate that the proposed method suggested in Chapter 5 can be competitive
with methods currently used in real life, the proposed method had to be implemented in
an actual real-life situation and compared with some existing methods. This happened
to be a difficult task, as the real-world methods and the testing data sets are usually
proprietary. Fortunately, there was a chance to test the method on the real-life problem
of detecting the license plates, the Unicam system1. In this chapter, the proposed method
will be evaluated and compared to the method based on a DSP processor architecture
currently used in the Unicam system.

Traffic related applications using computer vision are becoming more and more popu-
lar. With increasing computer performance, complex image operation tasks can be done.
Therefore, there are more and more applications where a video camera is the only system
input, which makes the whole system cheaper and more portable.

Red light running and speeding are no more the only traffic related tasks performed by
computer vision techniques. For example, Sun et al. [78] suggested a real-time precrash
system using the Haar wavelet transform, and Matsushita et al. [79] insert informatory
signs into real images.

8.1 Introduction to the Unicam System

The Unicam system [37] is based on video-detection devices that use a microprocessor to
analyze video image input from a video camera. There are two basic techniques, tripline
and tracking used to detect traffic. Tripline techniques monitor specific zones on the
video image to detect the presence of a vehicle, whereas video tracking techniques employ
machine vision algorithms to identify and track vehicles as they pass through the field
of view. Video technology can offer a wide variety of traffic information. In addition to
conventional data such as volume, presence, occupancy, density, speed and classification,
other data such as dwell time, incident detection and even origin destination information
can be obtained. Video can also be used to provide surveillance information on a roadway
as well as for photo-enforcement of traffic violations like red-light running and speeding.

1Thanks is given to Camea ltd. for supporting this research by providing me with the hardware boards
and sample images. However, none of the outputs of the research part of this thesis have been used for
commercial purposes by Camea ltd.

67

68 CHAPTER 8. CASE STUDY - LICENSE PLATE DETECTION

The Unicam system offers advanced machine vision technology to provide automated
video image vehicle detection systems. It uses proprietary algorithms and special image
processing modules to achieve great accuracy while keeping the overall system price low.

Some possible applications of the Unicam system are as follows:

• Unicam Redlight records red-light-violating vehicles. This option continuously mon-
itors the lights at an intersection.

• Unicam Section Control records speeding vehicles, measures the average speed of
a vehicle measured in the relatively long distance between two of more installed
cameras.

8.1.1 Innovation

We showed that the embedded processing solution can be more efficient than the tra-
ditional one [4]. It is more compact, more easily serviced, etc., but in fact, the main
advantage is that the system is distributable. This means that the cameras can be placed
remotely from the PC that integrates the system functionality, and that the connection of
the camera units can be done through the network connection which is easier to implement
than a proprietary analog or digital video signal connection. In addition, this approach
allows for the creation of widely distributed systems running in the agglomerations with
long distances between the intelligent cameras and PCs. The basic differences between the
traditional computer based approach and the embedded processing approach are shown
in Fig. 8.1.

Figure 8.1: Traditional and embedded approach

8.1.2 Inter Chip Communicating Subsystem

To develop the experimental architecture proposed in Chapter 6, it was necessary to
prepare a hardware platform to be ready for image processing experiments. This section
shows part of this effort, an on-board communication system, introduced in [8].

This system allows communication between every two devices on the board also with
the support of the dynamic reconfiguration of the FPGA on-board chip. The system can
be controlled and dynamically reconfigured by any of the devices connected.

In Figure 8.2 the device called the core is the master of all of the communication. A
device that wants to communicate with some other device requests the core for transfer
of the data. A detailed description of this system is in [12].

8.2. NUMBER OF TEMPLATES 69

Figure 8.2: Inter chip communication core

8.2 Number of Templates

To determine the optimal number of templates, we will apply matters discussed in Sec-
tion 5.4.6. The compactness of the class should be logarithmic, because the characters
appearing in a license plate are a subset of all characters (thus compactness can not be
constant), but the character set is finite (thus compactness can not be linear). With this
knowledge, a few experiments were performed on the testing set. The best results reached
were for the bank size of 300 to 700 templates. The number of templates was set to 500.

8.3 Size and Shape of Templates

Optimal size of the template is crucial for the proper function of the method. For easier
implementation, there will be an initial requirement to the shape of the template, of it
being square. To determine the right size, we will use the theory from Section 5.4.4,
specifically the Equation 5.1:

|T | = log2
|B|
RS

where |T | is the template size, |B| is the number of templates in the bank and RS is the
rating of the best match of the surrounding of an object. The number of templates |B|
from Section 8.2 is 500. Now we will compute RS . The average size of the license plate
in the testing set is 3000 pixels. The number of detected templates in the best match is
usually ranging around 10. Resulting,

RS =
10

3000
=

1
3

The optimal size of the template is then

|T | = log2
|B|
RS

= log2
500

0.0033
= 17.2

Now we know how many pixels a template should contain, the question about the
template shape remains. As license plates are rectangular and characters are not of any
particular shape, the template shape should be rectangular. In particular, the shape of

70 CHAPTER 8. CASE STUDY - LICENSE PLATE DETECTION

the characters does not entitle the template to be stretched in either height or width.
Resulting, the shape of the templates will be the square.

Considering the shape of the curve in Figure 5.9, we should rather choose larger than
smaller templates. The closest larger square shape to 17.2 is a square of size 5× 5 pixels,
which will also be the shape used in the following experiments.

8.4 The Proposed Method Application

Implementation of the preprocessing and feature extraction is completely the same as
proposed in Section 5.3. The classification part differs, which will be described in Section
5.3.3.

Preprocessing

An Example of an original image and a preprocessed image is are Fig. 8.3.

Figure 8.3: Original image and preprocessing

Feature Extraction

A 5× 5 template size has been chosen and teh number of templates is 500, as specified in
Sections 8.2 and 8.3. A template bank is created based on the algorithm in Section 5.5.
An example of the template bank subset is shown in Fig. 8.4. An example of an image
after feature extraction is in Fig. 8.5.

Figure 8.4: A template bank subset

8.4. THE PROPOSED METHOD APPLICATION 71

Classification

The task of classification is to find the license plate, if present, in an image. A successful
classification example is shown in Figure 8.5.

Figure 8.5: Feature extraction and classification

Classification, as presented in Section 5.3, suffers significantly from the regular patterns
outside of the license plate. For example, if a template detects the pattern of a vent
(Fig. 8.6), there may be more detected templates there, than in the license plate. However,
although the number of templates is very high, there are usually only one or two templates
involved.

Figure 8.6: Example of the regular pattern problem

The problem of regular patterns and other classification problems lead us to a mod-
ification of the rating function defined in Section 5.3. One possibility is to consider not
only the number of templates, but also how various they are (i.e. how many different
templates are in the area). Then, this modified rating Rm of neighborhood N can be
generally any function f of rating R of neighborhood N and a set L of detected templates
in the neighborhood N .

Rm = f(R,L)

The regular pattern problem seen in the last example showes that this case study is
very important part of this thesis. If the proposed method testing was performed only

72 CHAPTER 8. CASE STUDY - LICENSE PLATE DETECTION

on a limited number of images, the results would not have told us much about the actual
method’s properties.

Another possible improvement is considering that different parts of the neighborhood
should contain different templates or different numbers of templates.

Definition 8.4.1 The neighborhood part P ∈ NG,S
x,y of neighborhood N ∈ NG,SN

x,y is a
neighborhood such that

S ⊆ SN

The partitioned rating Rp of neighborhood N is

Rp =
∑

Rmi

where Rmi is a modified rating of the neighborhood part of neighborhood N for i ∈ N.
An example of an application of a partitioned rating for the presented case study is in
Figure 8.7. There are four parts of the license plate in the example. The border part
should include only templates with straight lines or gradients, parts with numbers and
letters can include any template, while the empty part should not include any template
(i.e. function Rm will get negative results if any templates were detected).

Figure 8.7: Partitioning of the license plate

For experiments, partitioning of the license plate wasn’t used, mainly because the
training images in different sets differed slightly in size. The modified rating was used in
the experiments that considers how various the templates are, which helped significantly:

Rm = R× (1 + |NT |I)

where |NT | is the number of templates detected in neighborhood N and I ∈ R+ is a
coefficient that represents the influence of |NT |.

8.5 Experimental Results

The method was tested on a set of images from real traffic. The results are compared to the
method that is currently used for detection in Unicam cameras, and has been developed
for many years. For evaluation, the metrics suggested by Mariano et al. [72] seem to be
suitable. However, there is no data available concerning the accuracy of detection for the
currently used method. As a result, only the binary information, whether the object is
detected or not, was used.

The basis for the evaluation is the hit rate introduced in Definition 5.4.8. If a vehicle
is present, the algorithm has to find the license plate position for successful detection. If
there is no vehicle present (road images), the algorithm has to return “no license plate”.

The proposed method has not been implemented as a whole in hardware yet. All tests
were performed by a C program that works the same way as the design works in hardware.

8.5. EXPERIMENTAL RESULTS 73

The method needs to be trained first for every class of images by creating an ap-
propriate template bank. For every image set, a subset containing 10 to 30 images was
selected. Using a C program implementing the method from Section 5.5, 500 templates
were obtained that were used as a bank for the whole image set. From the same subset,
the limit value from Definition 5.3.10 was also obtained for each of the image sets. The
limit value is used to cover images without any license plate.

Images were divided into the following groups:

• Normal images: standard quality images ranging from a little darker to a little
brighter, also including images with the sun making shadows on the road

• Light : the license plate is too bright, possibly caused by too wide of an aperture

• Dark : the license plate is too dark, either because of bad lighting conditions or too
narrow of an aperture

• Shadows: light coming from the side creating shadows on the license plate

• Road : road images without a car, under normal weather conditions

• Snow road : road images without a car, with bright light causing a reflection on the
road, or with snow on the road, including images taken while snowing

• Tilted : images tilted between −7◦ and 7◦, included to find out how precisely the
camera has to be installed

Figure 8.8: An example of a light, a dark, a shadowy and a snow image

The results are presented in Table 8.1. Current and proposed are the two compared
methods, image set is the number of images in each testing set, and the occ column is

74 CHAPTER 8. CASE STUDY - LICENSE PLATE DETECTION

Table 8.1: Experimental results

Current Proposed Set Occ
Normal 94.1% 97.1% 377 33%
Light 96.7% 100% 29 3%
Dark 62.5% 93.6% 63 3%
Shadows 90.2% 78.4% 162 1%
Road 100% 100% 233 51%
Snow road 99.1% 99.7% 321 9%
Tilted images 40.4% 91.8 % 98 N/A
Total 96.6% 98.6% 1283 100%

the rough estimate of percentages showing how often each group takes place in real-life.
The results are shown in percents of successful detections. The last line, total, shows an
estimate of the overall hit rate using the occ column.

The proposed method hit rate shows 2% better results than the current one. The
credibility of this result may be affected by the limited test set, estimation of the occ
values and the need of training set for each testing image group. However, the results still
show that the proposed method quality is at least comparable to the current one.

8.6 Speed Up and Price

In this section, the proposed method is compared to two other implementations. First,
the with implementation of the current method used in Section 8.5, implemented on the
embedded processor. This comparison is the most important, because the current method
serve as a reference. Second, we compare the proposed method implemented in C, on a
PC computer, and in hardware to show the speed up achieved by moving the algorithm
to hardware.

8.6.1 Comparison to the Current Method

The proposed method computes outputs “on-the-fly”. Considering an image slice of size
of 860× 105 and a maximum propagation delay 21.0 ns, total computation time is

Thw = 860× 105× 21.0ns = 1.9ms (8.1)

The current method runtime on the embedded processor TMS 320C6416 is on average
Tdsp = 30 ms, depending on the image complexity. The algorithm has been optimized for
parallel processing in the processor. The speed up of the proposed method is

Sdsp = Tdsp/Thw = 30/1.9 = 15.8 (8.2)

Even though the hardware and software solutions work differently (dedicated hardware
can not be used for other purposes while not in use), the speedup of 15.8 shows that the
hardware solution is at least comparable to the DSP one.

The price of the suggested FPGA chip, the Spartan-3E 1600, is around $63. The
price of the DSP chip, the TMS 320C6416, is around $150. The fraction of the hardware
solution price over the DSP solution price is

8.7. CATEGORIZATION AGAINST EXISTING METHODS 75

Pdsp = $63/$150 = 0.42 (8.3)

A simple price comparison is not going to give us a precise answer about which solution
is cheaper. With the hardware solution, we still need to use some kind of processor for
subsidiary functions. Also the other way around, with the DSP solution, we may need an
FPGA chip for the low-level system functions. Still, the chip prices give us pretty good
look on the final solution price.

8.6.2 Comparison to Software Implementation

The proposed method running on the Pentium M 1.6 GHz processor takes Tpm = 9350
ms. The speed up of the proposed method running on an FPGA is

Spm = Tpm/Thw = 9350/1.9 = 4921 (8.4)

This speed up shows how efficient FPGA implementation may be for highly parallel
tasks compared to processor implementation. Not only is the speed up itself extensive,
but an FPGA runs at 48 MHz while the processor runs at 1.6 GHz.

However, these numbers do not reflect any real-life situation. The speedup is more
or less proof that it makes no sense to implement the method in software, and that the
method is suitable for hardware implementation. Considering statements from Section 1.3,
the speed up helps to realize one of the goals that the method was designed for hardware
implementation.

8.7 Categorization against Existing Methods

There are many ways of dealing with license plate detection. The method used for com-
parison in Section 8.5 is based on edge filters. Kamat et al. [40] use the Hough transform
implemented on DSP processors. Hsieh and Yu [45] use algorithms based on the wavelet
transform. Two consecutive images are compared for changes by Cui and Huang [42]. Li
et al. [49] use a histogram and neural networks. Dalaff et al. [54] suggest a method based
on following the image background. Porikili and Kocak [51] use the covariance descriptor
and a neural network. Matas and Zimmermann [50] search for extremal regions, which
are defined by contiguous sets of pixels. Zhang et al. [52] use Haar-like features proposed
by Viola [53] together with the AdaBoost learning method. Other methods can be found
in [41] [43] [44] [47] [48].

Not many license plate detection methods have been implemented in hardware. Bellas
et al. [65] propose a method using opening and closing filters implemented in an FPGA.
Cuchiara et al. [46] uses an FPGA implementation for comparing two consecutive images.

8.8 Chapter Conclusions

In the case study section, a system for the license plate detection based on the architecture
proposed in Chapter 6 was presented. In Section 8.1, the Unicam system was briefly
presented, which is the environment where the case study takes place. In Sections 8.2
and 8.3, the number of templates and the size of templates, respectively, were determined
using the outcomes from Section 5.4.

76 CHAPTER 8. CASE STUDY - LICENSE PLATE DETECTION

The proposed method is applied to the license plate detection environment in Section
8.4. The proposed method was evaluated and compared to the method currently used
in the Unicam system in Section 8.5. The evaluation was made on a set of almost 1300
real-life images from different environments. The results show that the detection quality
of the proposed method is at least comparable to the current one being used.

In Section 8.6.1, the current method and the proposed method’s hardware implemen-
tations are compared. The speed up of the proposed method against the current one is
15.8. Solution of the proposed method using FPGA seems to be approximately twice
cheaper than the current DSP based solution.

In Section 8.6.2, the proposed method was compared to the software implementation
of the same method. A speed up of about 5000 shows that the proposed method was
designed for hardware, as discussed in Section 1.3.

Chapter 9

Subsidiary Case Study - Road
Signs

To confirm the universality of the proposed method and to find out more about the
method’s properties, one more case study concerned with the detection of road signs is
introduced. As this case study is only subsidiary, a rather artificial example of a road sign
poster has been chosen.

This case study consists of two experiments. The first experiment should confirm the
method utility and is similar to the case study from Chapter 8. The second experiment
should show the proposed method’s features and limitations, as the method samples and
counter-samples were given very similar to each other.

9.1 Experiment One - Standard Function

The goal of this study is to create a template bank capable of detecting road signs of a
specific type. The testing image is in Figure 9.2. Road signs meant for detection are in
the first seven rows. Items that should not be detected are the informatory signs in the
bottom of the image and the text accompanying the road signs.

The testing image was modified for training. The training image is in Figure 9.2. The
training image consists of a part considered to contain objects marked by a dashed line.
The rest of the training image is the background - algorithm is trying to find templates
that match the object and do not match the background. The training set has been
chosen to reflect main characteristics of objects, i.e. training set contains both circular
and triangular signs.

Figure 9.1: A template bank subset

To make things easier, the size (5× 5) and number (500) of templates were kept from
the previous case study. Implementation of the algorithm from Section 5.5 has been used
to create a template bank. The first few templates from the bank are shown in Figure
9.1. The image after the application of the bank is in Figure 9.3.

77

78 CHAPTER 9. SUBSIDIARY CASE STUDY - ROAD SIGNS

Figure 9.2: Testing image and training image of road signs for experiment one

Figure 9.3: Road signs results for experiment one

Looking at the results in Figure 9.3, the questions about image class quality from
Section 5.4.5 will arise. A distribution graph of object ratings is in Figure 9.4. On the x-
axis there is a rating (based on a number of templates and a number of varying templates),
and on the y-axis there is the number of objects with a particular rating. As can be seen,
objects and non-objects are well divided, the distribution is very similar to the sample in
Figure 5.10.

The quality of the set based on definition 5.4.7 is a fragment of the worst rating of an
object and the best rating of a non-object, which in this case it is

616/116 = 5.3

9.2. EXPERIMENT TWO - METHOD LIMITATIONS 79

Figure 9.4: Rating distribution of experiment one

The values of this equation are also noticeable in Figure 9.4 as boundaries of the rating
with zero occurrences.

Image class as we defined it (round and triangular road signs as objects, informatory
road signs and text as background) has a good quality. However, if we wanted the tri-
angular road signs to the be the background (not detected), image class quality would
probably get significantly worse, as round and triangular signs share a lot of similar fea-
tures. These ideas lead us into more general thoughts about the proposed method, its
usage and limitations, studied in Section 9.2.

9.2 Experiment Two - Method Limitations

In this experiment, the proposed method’s limitations are observed. Unlike in the previ-
ous experiment, where the samples and counter-samples were distinct, the samples and
counter-samples are chosen to be very similar. The first image in Figure 9.6 is a training
image for the experiment. The training set contains the 12 mandatory road signs on the
left, the counter-samples are 12 different mandatory signs and some of the informatory
signs. Cautionary signs are left alone.

The distribution of the rating is shown in Figure 9.5. Unlike in experiment one, there
is no clearly recognizable boundary between objects and non-objects. It’s not possible to
properly set the limit value for classification (value from experiment one has been kept)
because of this. The resulting detection is on the right image in Figure 9.6.

Figure 9.5: Rating distribution of experiment one

The image quality was determined only from the samples and counter samples, because
it’s not clear in this example what group the other signs should belong to. However, the
image quality was

80 CHAPTER 9. SUBSIDIARY CASE STUDY - ROAD SIGNS

520/664 = 0.78

which means some of the learning samples had a worse rating than some of the counter
samples. This result strengthens the assumption that the classes suitable for the proposed
method must considerably vary on the object level comparable to the template size. Dis-
cussion about this topic will be covered in Section 10.1.

Figure 9.6: Training image and results of road signs experiment two

9.3 Chapter Conclusions

In the subsidiary case study chapter, another confirmation of the proposed method effi-
ciency was achieved. The subject of the case study was a set of different types of road
signs. In the first experiment in Section 9.1, the goal was to detect similar road signs as
the ones in the training set. The outputs of the experiment were processed by techniques
suggested in Section 5.4.5, resulting in the image class quality being 5.3, which means the
quality of detection is good.

In the second experiment in Section 9.2, the goal was to push the limits of the method
and to find an object set where the method fails. This was done by setting the training
samples and counter samples to objects treated very similarly by the proposed method.
The image class quality of this experiment was 0.78, which shows that the method failed
in this experiment, as was expected.

Chapter 10

Discussion

This chapter is a general discussion about the proposed method.

10.1 Suitable Image Classes

Here, we will broadly discuss the suitability of image classes for the proposed method.
These assumptions are based on an educated guess from my knowledge of the proposed
method, together with experiments made on the method, for example the ones in Chapter
9.

Suitable Objects

Suitable objects are generally man-made objects with certain typical shapes:

• Cars, airplanes or other means of transport

• Consumer products made of plastic, iron, wood, ceramics or other non-deformable
materials

• Printed boards

• Food products with fixed shapes like biscuits, chocolates or eggs

• Larger patterns with typical shapes

• Detection of defects with typical shapes like holes made by a tool with a specific
shape

• Different types of signs, like road signs or logos

• Aerial images of buildings or other objects with typical shapes

• Printed letters, including license plates of vehicles

Non-Suitable Objects

Objects not suitable for the method are generally natural objects with irregular changing
patterns

• Small patterns like sand or dirt, in an average size of few pixels, are not suitable for
the proposed method.

81

82 CHAPTER 10. DISCUSSION

• Food products with shapes with a large degree of freedom like pizza, bread, cakes
or meat products

• Patterns with irregular shapes like wood or rocks

• Detection of cracks or other randomly shaped defects

• Natural objects like trees or water

• Aerial images of natural objects like mountains, desserts or forests

• Animals or humans, including faces or gestures

Problematic Objects

Objects rotationally and scale invariant can be generally detected by the method, but new
templates have to be created for different angles or zooms. This leads into larger hardware
demands and a higher price, which may be unacceptable in some cases.

Problematic Surroundings

An advantage of the proposed method is its resistance against a noisy surroundings, if
we comply with the requirements on the size of templates in Section 5.4.4. Problematic
surroundings are those with similar shapes as the templates. For example, for an object
consisting of letters, a problematic surrounding would be one with letters of a similar size
as object letters. A solution may be to involve a more sophisticated classification stage.

10.2 Categorization against Existing Methods

The necessity of creating a new template bank for every image class may be understood
as a disadvantage compared to standard methods. However, this is a basic feature of
our method and may be highly desired, for two reasons. First, a higher hit-rate may be
achieved by proper training. Second, we may easily change the target object for detection
by simple creating a new bank, which makes the method much more universal. Switching
from searching for one object class to searching for completely different objects may be
an easy step made by the operator, not requiring programmer interference.

Following is the discussion of the proposed method against methods with similar fea-
tures.

10.2.1 Edge Detection

Described in Section 3.4.1, this method is easy and sometimes may give very good results.

Advantages of the Proposed Method

• More resistant against noise

• Adjustable by setting the template size

• Variable - detection of different objects by changing the template bank

10.3. APPLICATION SPECIFIC IMAGE COMPRESSION 83

Advantages of the Edge Detection Method

• Easy to implement

• Spends fewer resources

10.2.2 Hough Transform

Described in Section 3.4.2, this method is difficult to implement, but very powerful.

Advantages/Features of the Proposed Method

• Easier to implement in hardware

• Oriented on the shape of the whole object

Advantages/Features of the Hough Transform

• More complex, suitable for dealing with missing information

• Oriented on lines in the object

10.2.3 Motion Detection

Described in Section 3.4.6, this method is easy to implement in hardware for fixed envi-
ronments, but very hard to implement otherwise.

Advantages/Features of the Proposed Method

• Detects also not-moving objects

• Does not suffer heavily from environment changes

Advantages/Features of the Motion Detection Method

• Perfectly detects moving objects, even if other methods fail

10.3 Application Specific Image Compression

Object detection is usually only the first step to other computer vision tasks, as can be
seen in Section 8.1. One of the tasks where object detection can be helpful is application
specific image compression. The basic idea of this technique [60] is to compress different
image parts at a different compression level according to the importance in an image.
Generally, an image can be divided into n areas by the proposed object detection method,
each compressed by a different compression level [61].

For the Unicam system, application specific compression can be used for on-line mon-
itoring of traffic, in case there is limited bandwidth in the data path. An example1 is
shown in Figure 10.1. There are three areas, located by the proposed method, bordered
with the dashed lines. The most important area is the license plate, compressed with a
low ratio in order to keep as many details as possible. The second area is the vehicle,

1Example was made artificially only for illustration

84 CHAPTER 10. DISCUSSION

Figure 10.1: Application specific image compression for the Unicam system

compressed by a medium ratio to keep the shape and vehicle features, but not necessarily
all details. The rest of the image, i.e. the road and other vehicles, is compressed with the
highest ratio to save as much bandwidth as possible.

Another possibility how to reduce the amount of data is to utilize the template iden-
tifiers. The idea is simple. If a template matches an image slice, it means the image slice
looks like the template. Provided there is a copy of the same template bank in the receiver
side, parts of the image can be reconstructed from those template identifiers. However,
there are limitations that may prevent this method from being applied. First, a grayscale
image can not be fully reconstructed from binary templates. This is not a problem for
binary images, or if we need to observe only the shape of an object. Second, a new method
would have to be developed in order to merge the standard compression method and the
proposed template identifiers method.

10.4 Chapter Conclusions

The discussion chapter consists of more general thoughts. In Section 10.1, the topic of the
suitable and unsuitable image classes takes place. In Section 10.2, the proposed method is
compared its alternatives, with pros and cons on both sides. In Section 10.3, an example
of the larger system for application specific image compression using the proposed method
is suggested.

Chapter 11

Conclusions

A New method for object detection has been proposed. An important feature of the
proposed method is that it has been designed for hardware implementation. The pro-
posed method is based on very simple elements, filters detecting only one template each.
The filters are implemented in a parallel matrix in an FPGA. Although based on simple
elements, the proposed method’s results are comparable to commercial method results.

11.1 The Proposed Method Features

The proposed method follows the standard three step pattern recognition scheme - pre-
processing, feature extraction, and classification.

Preprocessing consists of two filters - an edge detection filter and a local thresholding
filter. A binary preprocessed image is passed to the feature extraction stage, which consists
of a large set of filters that run in parallel. Each of these filters compares an image slice
to a template. A template is basically a small binary image representing a small part of
an object. The set of these templates is called a template bank. The final phase of the
object detection process is classification. For classification, various standard techniques
can be used depending on the application that the method is being used for. Two of them
were suggested in Section 5.3.3, using a simple sum of the features or using the Adaboost
method (Section 3.3.3).

11.2 Experimental Results

To show that the proposed method can be used in a real-life system, a case study deal-
ing with the license plate detection was utilized. The proposed method was evaluated
and compared to the method based on DSP processor architecture currently used in the
Unicam system in Section 8.5. The evaluation was made on a set of almost 1300 real-
life images from different environments. The results show that the detection quality the
proposed method is at least comparable to the current one.

In Section 8.6.1, the proposed method and the DSP Unicam method hardware imple-
mentations were compared. The speed up of the proposed method against the current
one is 15.8, and the solution of the proposed method using an FPGA seems to be approx-
imately twice cheaper than the current DSP based solution.

In Section 8.6.2, the proposed method was compared to the software implementation
of the same method. A speed up of about 5000 shows that the proposed method was
designed for hardware, as discussed in Section 1.3.

85

86 CHAPTER 11. CONCLUSIONS

11.3 Goal Fulfillment

The requirements specified in Chapter 4 have all been met, namely:

1. The method is designed for hardware, as the core of the method, feature extraction,
is feasible for FPGA implementation. The proposed method can also profit from
reconfiguration as shown in Chapter 7.

2. Simple building blocks are used. Template matching units are very simple, and can
be placed in only a few FPGA slices, as shown in Section 6.7.2.

3. Real-time processing is used. Feature extraction is computed “on-the-fly”.

4. Limited resources are considered for method implementation. A standard FPGA
is sufficient for the hardware part. The processor part, classification, is not too
computationally difficult, thus an embedded processor implementation is suitable.

5. Adaptability to changes is a part of the method. The technique proposed in Chapter
7 allows adaptation to the environment or slow object changes.

6. The results in Section 8.5 show that the method efficiency is comparable to com-
mercial methods.

11.4 Original Contribution

• In Section 3.1, I suggested a set of mathematical definitions for working with basic
computer vision operations.

• In Section 5.3, I proposed a new method for object detection designed for hardware
implementation.

• In Section 5.4, I analyzed the proposed method and suggested optimal size of the
templates. I defined image quality for the method and image class quality.

• In Chapter 6, I proposed a hardware scheme for the proposed method, and confirmed
its workability by simulation and synthesis of all of the major parts.

• In Chapter 7, I extended the proposed method to adaptation to environmental
changes using partial dynamic FPGA reconfiguration.

• In Section 8.4, I applied the proposed method to the real-world problem of a license
plate detection. To set the method parameters properly, I used the theory from
Section 5.4 in Sections 8.2 and 8.3.

• In Section 8.5, I compared the detection abilities of the proposed method to a real-
world license plate detection method. The testing set was composed of nearly 1300
real-world images.

• In Section 8.6, I compared the speed up and price of the proposed method to a
real-world license plate detection method.

• In Section 9.1, I confirmed the proposed method’s ability to detect different types
of objects by applying the method to another case study.

11.5. CHAPTER SUMMARY 87

• In Section 9.2, I explored the proposed method’s limits by setting the learning set
and counter set to objects that are very similar.

11.5 Chapter Summary

In this section, fundamentals from all chapters are summarized. Basically, parts of each
of the chapter conclusion sections are put together here.

In Chapter 1, three fields important for this thesis are discussed - computer vision,
embedded systems and programmable hardware. The goal of this thesis is laid - suggesting
a new method for object detection designed for programmable hardware implementation.
Following, questions concerning hardware are asked and answered, explaining certain con-
cepts and decisions made in this thesis.

In Chapter 2, we discussed different ways how to design a computer system. Embed-
ded systems and PLDs are important for this thesis. Particular attention was paid to
FPGAs, which was the target technology for the experimental architecture in Chapter 6.
Reconfiguration capabilities of FPGAs were also discussed, as reconfiguration was used in
Chapter 7.

In Chapter 3, important theoretical fields connected with this thesis were introduced
and discussed. Basics of pattern recognition were introduced in Section 3.3. Using these
basics, object detection techniques were presented in Section 3.4. Each of the methods
was discussed with relation to suitability for hardware implementation. In Section 3.4.8,
hardware architectures and methods were presented.

For proper definitions of the image operations throughout this thesis, some mathe-
matical apparatus was needed. In Section 3.1, the theoretical background was defined,
based on image and neighborhood, both of which are defined as a matrix, and structuring
element defined as a set of ordered pairs. This notation is easy to use and sufficient to
describe all results and computations throughout this thesis.

Using the mentioned mathematical definitions, basic types of filters are presented in
Section 3.2. For this thesis, the most important are the morphological filters presented in
Section 3.2.2, particularly the hit-or-miss filter described in Section 3.2.2.

In Chapter 4, goals to be completed in this thesis are defined. The primary goal is to
show that the proposed method, though based on very simple elements, can compete with
commercially used methods due to the massive parallelization of those simple elements.

In Chapter 5, the template based detection method was proposed, fulfilling the require-
ments from Chapter 4. The method was roughly outlined in Section 5.1 and compared to
the items from Chapter 4. The method was perfected in Section 5.2, and the final version
was proposed in Section 5.3. The final method proposal consists of the preprocessing,
feature extraction and classification definitions, all of them described using the definitions
from Section 3.1.

In Section 5.4, important parameters of the proposed method were analyzed. Results
from the two of them, the size of templates in Section 5.4.4 and the number of templates in
Section 5.4.6 are used later in the case study to set the corresponding parameters. Section
5.5 describes the learning algorithm of creating the templates for the method.

In Chapter 6, an architecture for the method from Chapter 5 was proposed. The
architecture is based on implementation to an FPGA chip. Each of the units that the
experimental architecture consists of was described in separate section and synthesized to
check the FPGA occupation and the maximum propagation delay.

88 CHAPTER 11. CONCLUSIONS

The architectural core is the feature extraction unit (Section 6.7). An improvement
was suggested by placing the templates directly into the processing elements of the tar-
get FPGA (Section 6.7.2), because the chip occupation is critically dependent on the
implementation of this unit.

In Section 6.10, the synthesis results of all the units were put together. Thanks to
the implementation of the feature extraction unit directly into the processing elements, it
shows that the whole experimental architecture can fit into a standard low-cost FPGA.
The propagation delay turned out to be low enough for the “on-the-fly” implementation.

In Chapter 7, two techniques of dealing with the set of templates for the method
from Chapter 5 were proposed. The first technique (Section 7.1) assumes different sets
of pre-made templates are being downloaded to the system using static reconfiguration.
The second technique, compared to the first one is considerably advanced. It offers au-
tomatic creation of suitable templates during system operation. It also uses dynamic
reconfiguration for its operation, as described in Section 7.2.

In Chapter 8, a system for the license plate detection based on the architecture pro-
posed in Chapter 6 was presented. In Section 8.1, the Unicam system was briefly presented,
which is the environment where the case study takes place. In Sections 8.2 and 8.3, the
number of templates and the size of templates, respectively, were determined using the
outcomes from Section 5.4.

In Chapter 9, another confirmation of the proposed method efficiency was achieved.
The subject of the case study was a set of different types of road signs. In the first
experiment in Section 9.1, the goal was to detect similar road signs as the ones in the
training set. The outputs of the experiment were processed by techniques suggested in
Section 5.4.5, resulting in the image class quality being 5.3, which means the quality of
detection is good.

Chapter 10 consisted of more general thoughts. In Section 10.1, topic of the suitable
and unsuitable image classes takes place. In Section 10.2, the proposed method is com-
pared to the methods that could be used instead of the proposed method, with pros and
cons on the both sides. In Section 10.3, an example of the larger system for application
specific image compression using the proposed method as its part is suggested.

11.6 Future Research

Even though the method has been tested on real data and all parts have been synthesized,
there is a long way to real implementation. Consequently, the first future goal is to make
the system work in real hardware system, processing real data on site. A statistical
evaluation of the results of this on-site system will help to find possible weak spots in the
method, resulting in making the method more efficient.

Having the real hardware system would also allow us to analyze some other method’s
features. For example, in Section 1.2, we stated that a PLD implementation can be
significantly more energy efficient than a processor implementation. If this statement was
confirmed, it would be an important advantage of the proposed method.

References

Author’s publications (Bryan L., Crha L.)

[1] Bryan L., Fuč́ık O., Drábek V.: HW-Based Object Detection Method for Traffic Moni-
toring, 6th Electronic Circuits and Systems Conference, Bratislava, SK, 2007, accepted
for publication

[2] Crha L.: System for the license plate detection and image compression using hardware,
In: Proc. of the 7th IEEE Workshop on Design and Diagnostics of Electronic Circuits
and Systems, Bratislava, SK, SAV, 2004, p. 274-276, ISBN 80-969117-9-1

[3] Bryan L., Fuč́ık O.: FPGA Implementation of a Reconfigurable License Plate De-
tection Method, Proceedings of the 2007 Engineering of Reconfigurable Systems and
Algorithms, Las Vegas, NV, US, 2007

[4] Fuč́ık O., Zemč́ık P., Tupec P., Crha L., Herout A.: The Networked Photo-Enforcement
and Traffic Monitoring System Unicam, Proceedings of Engineering of Computer-
Based Systems, Los Alamitos, US, IEEE CS, 2004, p. 423-428, ISBN 0-7695-2125-8

[5] Crha L., Fuč́ık O., Šustek J.: Environment for Hw/Sw Codesign of Embedded Systems,
Proceedings of the 8th IEEE Design and Diagnostic of Electronic Circuits and Systems
Workshop, Sopron, HU, UWH, 2005, ISBN 9639364487

[6] Crha L., Fuč́ık O., Drábek V.: Image filter implementation in FPGA used for the
license plate detection, Proceedings of 38th International Conference Modeling and
Simulation of Systems, 2004, Ostrava, CZ, MARQ, 2004, ISBN 80-85988-98-4

[7] Marek T., Novotný M., Crha L.: Design and Implementation of the Memory Scheduler
for the FPGA - Based Router, Proc. of the Field Programmable Logic and Application
2004, Leuven, BE, Springer, 2004, p. 1133-1139, ISBN 3-540-22989-2

[8] Crha L.: Nové metody komprese, Sborńık pŕıspěvk̊u ze semináře Poč́ıtačové Architek-
tury & Diagnostika, Brno, CZ, FIT VUT, 2003, ISBN 80-214-2471-0

[9] Crha L.: Systém pro aplikačně specifickou kompresi obrazu, Zborńık pŕıspevkov Česko-
slovenského seminára pre študentov doktorandského štúdia Poč́ıtačové architektúry &
Diagnostika, Bratislava, SK, SAV, 2004, p. 94-100, ISBN 80-969202-0-0

[10] Zemč́ık P., Herout A., Crha L., Fuč́ık O., Tupec P.: Particle rendering engine in DSP
and FPGA, Proceedings of Engineering of Computer-Based Systems, Los Alamitos,
US, IEEE CS, 2004, p. 423-428, ISBN 0-7695-2125-8

89

90 REFERENCES

[11] Bryan L.: A Set of Definitions for Working with Spatial Filters, Proceedings of the
13th Student Conference and Competition on Electrical Engineering, Information and
Communication Technologies, 2007 Volume 4, Brno, CZ, VUT Brno, 2007, p. 430-434,
ISBN 80-214-3410-3

[12] Crha L., Fuč́ık O., Zemč́ık P., Drábek V., Tupec P.: Inter chip communicating sys-
tem with dynamically reconfigurable hardware support, Proceedings of the 6th IEEE
Design and Diagnostic of Electronic Circuits and Systems Workshop, Poznan, Poland,
2003, p. 311-312, ISBN 83-7143-557-6

[13] Venard O., Blanchard Y., Lionti R., Crha L: Single chip FPGA realization of a 2D
multicomponent wavelet transform, 3rd IEEE International Symposium on Image and
Signal Processing and Analysis, Rome, IT, 2003, ISBN 953-184-062-8

[14] Crha L.: Jak se ṕı̌se procesor, ABC Linuxu, Vol. 2005, Praha, CZ, ISSN 1214-1267,
http://www.abclinuxu.cz/clanky/programovani/jak-se-pise-procesor

[15] Crha L: 2D Multicomponent Wavelet Transform, Preprints of IFAC Workshop on
Programmable Devices and Systems Conference, FEI VŠB, Ostrava, CZ, 2003, p. 384-
390, ISBN 0-08-044130-0

[16] Crha L: CPLD, FPGA and DSP communication, Proceedings of the 9th Student Con-
ference and Competition on Electrical Engineering, Information and Communication
Technologies, Brno, CZ, 2003, p. 619-623, ISBN 80-214-2379-X

[17] Crha L.: Wavelet Transform Implementation in FPGA, diploma thesis, ESIEE Paris,
FR, FIT VUT Brno, 2002

Other publications

[18] Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities, 3rd edition, San
Francisco, CA, USA, Elsevier inc., 2005, ISBN 0-12-206093-8

[19] Duda R., Hart P., Stork D.: Pattern Classification, Second edition, John Wiley &
Sons Inc., New York NY, 2000, ISBN 0-471-05669-3

[20] Jahne B., Hausecker H., Geisler P.: Handbook of Computer Vision and Applications,
Academic Press, San Diego 1999, ISBN 0-12-379770-5

[21] Russ J.: The Image Processing Handbook, Third Edition, CRC Press, Boca Raton,
FL, 1999, ISBN 0-8493-2532-3

[22] Ritter G.: Image Algebra, Center for Computer Vision and Visualization, Depart-
ment of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, 1993, 1999

[23] Ritter G., Wilson J.: Handbook of Computer Vision Algorithms in Image Algebra,
CRC Press, Boca Raton, FL, 1996, ISBN 0-8493-2636-2

[24] Forsyth D., Ponce J.: Computer Vision: A Modern Approach, Prentice Hall, 2003,
ISBN 978-0130851987

REFERENCES 91

[25] Fisher B., Perkins S., Walker A., Wolfart E.: HIPR - HyperMedia Image Processing
Reference, Department of Artificial Intelligence, University of Edinburgh, UK, 1994,
http://www.cee.hw.ac.uk/hipr/html/hipr_top.html

[26] Ripley B.: Pattern Recognition and Neural Networks, Cambridge University Press,
Cambridge, UK, 1996, ISBN 0 521 46086 7

[27] Bentley P.: Evolutionary Design by Computers, 1st edition, Morgan Kaufmann, 1999,
ISBN 978-1558606050

[28] Amit Y.: 2D Object Detection and Recognition, Models, Algorithms, and Networks,
The MIT Press, Cambridge, MA, 2002, ISBN 0-262-01194-8

[29] Peat J.: Scientific Writing Easy When You Know How, BMJ Books, London, UK,
2002, ISBN 0 7279 1625 4

[30] Gause J., Cheung P., Luk W.: Reconfigurable Shape-Adaptive Template Match-
ing Architectures, Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2002, p. 98-107, ISBN 9780769518015

[31] Porter R.: Evolution on FPGAs for Feature Extraction, PhD Thesis, Queensland
University of Technology, Brisbane, Australia, 2001

[32] Sun Z., Debis G., Miller R.: On-Road Vehicle Detection: A Review, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, May 2006, p.
694-711, ISSN 0162-8828

[33] Bariamis D., Iakovidis D, Maroulis D., Karkanis S.: An FPGA-based Architecture for
Real Time Image Feature Extraction, Proceedings of the 17th International Conference
on Pattern Recognition, 2004, p. 801-804, ISBN 0-7695-2128-2

[34] Rigoll G., Kosmala A.: New Improved Feature Extraction Methods for Realtime
High Performance Image Sequence Recognition, Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1997, p. 2901-2904, ISBN
978-0818679193

[35] Parker, J.R.: Gray Level Thresholding in Badly Illuminated Images, Transactions
on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, 1991, p. 813-820, ISBN
0162-8828/91/0800

[36] Knuth D.: The Art of Computer Programming, Volume 3: Sorting and Searching,
Third Edition, Addison-Wesley, 1997, ISBN 0-201-89685-0

[37] http://www.camea.cz

[38] Chang Ch., Hwang J.: On the Face Detection with Adaptive Template Matching and
Cascaded Object Detection for Ubiquitous Computing Environment, Lecture Notes
in Computer Science, Computational Science and Its Applications, Springer-Verlag,
Berlin, 2005, Heidelberg, p. 1204-1212, ISSN 0302-9743

[39] Zhao L., Davis L.: Closely Coupled Object Detection and Segmentation, Proceedings
of the 10th IEEE International Conference on Computer Vision, 2005, p. 454-461, ISBN
1550-5499/05

92 REFERENCES

[40] Kamat V., Ganesan S.: An Efficient Implementation of the Hough Transform for
Detecting Vehicle License Plate Using DSPs, Proceedings of the Real-Time Technology
and Applications Symposium, IEEE Computer Society, 1995, p. 58-59, ISBN 0-8186-
8016-4

[41] Lim D., Choi S., Jun J.: Automated Detection of All Kinds of Violations at a Street
Intersection Using Real Time Individual Vehicle Tracking, Proceedings of the 5th IEEE
Southwest Symposium on Image Analysis and Interpretation, IEEE Computer Society,
Washington, DC, USA, 2002, p. 126-130, ISBN 0-7695-1537-1

[42] Cui Y., Huang Q.: Automatic License Extraction from Moving Vehicles, Proceedings
of the 1997 International Conference on Image Processing, IEEE Computer Society,
Washington, DC, USA, 1997, p. 126-130, ISBN 0-8186-8183-7

[43] Lee H., Chen S., Wang S.: Extraction and Recognition of License Plates of Motor-
cycles and Vehicles on Highways, Proceedings of the 17th International Conference
on Pattern Recognition, IEEE Computer Society, Washington, DC, USA, 2004, p.
356-359, ISBN 0-7695-2128-2

[44] Jia W., Zhang H., He X.: Mean Shift for Accurate Number Plate Detection, Proceed-
ings of the 3rd International Conference on Information Technology and Applications,
IEEE Computer Society, Washington, DC, USA, 2005, p. 732-737, ISBN 0-7695-2316-1

[45] Hsieh J., Yu J., Hung K.: Multiple License Plate Detection for Complex Background,
Proceedings of the 19th International Conference on Advanced Information Networking
and Applications, IEEE Computer Society, Washington, DC, USA, 2005, p. 389-392,
ISBN 0-7695-2249-1

[46] Cucchiara R., Piccardi M., Prati A., Scarabottolo N.: Real-time Detection of Moving
Vehicles, Proceedings of International Conference on Image Analysis and Processings,
IEEE Computer Society, Washington, DC, USA, 1999, p. 618-624, ISBN 0-7695-0040-4

[47] Yang F., Ma Z.: Vehicle License Plate location Based on Histogramming and Matem-
atical Morphology, Proceedings of the 4th IEEE Workshop on Automatic Identification
Advanced Technologies, IEEE Computer Society, Washington, DC, USA, 2005, p. 89-
94, ISBN 0-7695-2475-3

[48] Ko M., Kim Y.: License Plate Surveillance System Using Weighted Template Match-
ing, Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, IEEE
Computer Society, Washington, DC, USA, 2003, p. 269-275, ISBN 0-7695-2029-4/03

[49] Li G., Zeng R., Lin L.: Research on Vehicle License Plate Location Based on Neural
Networks, Proceedings of the 1st International Conference on Innovative Computing,
Information and Control, IEEE Computer Society, Washington, DC, USA, 2006, p.
174-177, ISBN 0-7695-2616-0/06

[50] Matas J., Zimmermann K.: Unconstrained Licence Plate and Text Localization and
Recognition, Proceedings of the IEEE Intelligent Transportation Systems, 2005, p.
225- 230, ISBN 0-7803-9215-9

[51] Porikli F., Kocak T.: Robust License Plate Detection Using Covariance Descriptor
in a Neural Network Framework, Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance, 2006, p. 107-111, ISBN 0-7695-2688-8/06

REFERENCES 93

[52] Zhang H., Jia W., He X., Wu Q.: Learning-Based License Plate Detection Using
Global and Local Features, Proceedings of the The 18th International Conference on
Pattern Recognition, 2006, p. 1102-1105, ISBN 0-7695-2521-0/06

[53] Viola P., Jones M.: Rapid Object Detection using a Boosted Cascade of Simple
Features, Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2001, p. I511-I518, ISSN 1063-6919

[54] Dalaff C., Reulke R., Kroen A., Ruhe M., Schischmanow A., Schlotzhauer G., Tuch-
scherer W., Kahl T.: A Traffic Object Detection System for Road Traffic Measurement
and Management, Proceedings of Image and Vision Computing, New Zealand, 2003,
p. 78-83, ISBN 0-473-10523-3

[55] Etiennne-Cummings R., Pouliquen P., Lewis M.: Single Chip for Imaging, Color Seg-
mentation, Histogramming and Pattern Matching, Electronic Letters, Vol. 38, No. 4,
2002, p. 172 174, ISBN 0-7803-7335-9

[56] Li X., Ni G., Cui Y., Pu T., Zhong Y.: Real-time image histogram equalization
using FPGA, Proc. SPIE Vol. 3561, Electronic Imaging and Multimedia Systems II,
p. 293-299, 1998, 1998SPIE.3561..293L

[57] Hough P.: Method and Means for Recognizing Complex Patterns, U.S. Patent
3069654, 1962

[58] Duda O., Hart P.: Use of the Hough Transformtion to Detect Lines and Curves in
Pictures, Comm. ACM, Vol 15, ACM Press, New York, NY, USA, 1972, p. 11-15,
ISSN 0001-0782

[59] Rowe N.: Image Processing, U.S. Naval Postgraduate School, http://www.cs.nps.
navy.mil/people/faculty/rowe/imageprocover.htm

[60] Ding J., Furgeson J., Sha E.: Application Specific Image Compression for Virtual
Conferencing, Proceedings of the The International Conference on Information Tech-
nology: Coding and Computing, 2000, p. 48-54, ISBN 0-7695-0540-6

[61] Moni S.: Application-Specific Image Compression for Multimedia Applications, Jour-
nal of Electronic Imaging, July 1998, Volume 7, Issue 3, p. 464-473

[62] Zou Y., Dunsmuir W.: Edge Detection Using Generalized Root Signals of 2-D Median
Filtering, Proceedings of the 1997 International Conference on Image Processing, 1997,
p. 417-420, ISBN 0-8186-8183-7/97

[63] Jung C., Schramm R.: Rectangle Detection based on a Windowed Hough Trans-
form, Proceedings of the 17th Brazilian Symposium on Computer Graphics and Image
Processing, IEEE Computer Society 2004, p. 113-120, ISBN 1530-1834/04

[64] Rahman C., Badawy W., Radmanesh A.: A Real Time Vehicles License Plate Recog-
nition System, Proceedings of the IEEE Conference on Advanced Video and Signal
Based Surveillance, 2003, p. 163-167, ISBN 0-7695-1971

[65] Bellas N., Chai S., Dwyer M., Linzmeier D.: FPGA implementation of a license plate
recognition SoC using automatically generated streaming accelerators, Proceedings of
the 20th International Parallel and Distributed Processing Symposium, 2006, ISBN
1-4244-0054-6

94 REFERENCES

[66] Ng H.: Automatic Thresholding for Defect Detection, Proceedings of the 3rd Interna-
tional Conference on Image and Graphics, Elsevier Science Inc. New York, NY, USA,
2004, p.1644-1649, ISBN 0-7695-2244-0/04

[67] Solihin Y., Leedham C.: Integral Ratio: A New Class of Global Thresholding Tech-
niques for Handwriting Images, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 21, No. 8, August 1999, IEEE Computer Society, p. 761-768, ISBN
0162-8828/99

[68] Cavadini M., Wosnitza M., Thaler M., Troster G.: A VLSI Architecture for Real
Time Object Detection on High Resolution Images, Proceedings of the 8th European
Signal Processing Conference, 1996, Trieste, Italy

[69] Gupta A., Mukerjee A.: Computational Models for Object Detection and Recogni-
tion, Department of Computer Science and Engineering, Indian Institute of Technology
Kanpur, 2004

[70] Aguilar-Ponce R., Tessier J., Emmela C., Baker A., Das J.: Real-Time VLSI Archi-
tecture for Detection of Moving Object Using Wronskian Determinant, 48th Midwest
Symposium on Circuits and Systems, Vol. 1, 2005, p. 875- 878, ISBN 0-7803-9197-7

[71] Ikeda M., Kondo T., Nitta K., Suguri K., Yoshitome T., Minami T., Iwasaki H.,
Ochiai K., Naganuma J., Endo M., Tashiro Y., Watanabe H., Kobayashi N., Okubo
T., Ogura T., Kasai R.: SuperEnc: Mpeg-2 Video Encoder Chip, IEEE Micro, Jul-Aug
1999, p. 56-65, ISSN: 0272-1732

[72] Mariano V., Min J., Park J., Kasturi R., Mihalcik D., Li H., Doermann D., Drayer
T.: Performance Evaluation of Object Detection Algorithms, Proceedings of the 16th
International Conference on Pattern Recognition, IEEE Computer Society, 2002, ISBN
1051-4651/02

[73] Vega-Rodrigues M., Sanchez-Perez J., Gomez-Pulido J.: An Fpga-Based Implemen-
tation for Median Filter Meeting the Real-Time Requirements of Automated Visual
Inspection Systems, Proceedings of the 10th Mediterranean Conference on Control
and Automation, 2002, Lisbon, Portugal, ISBN 962-442-228-1

[74] Breveglieri L., Piuri V.: Digital Median Filters, Journal of VLSI Signal Processing
31, p. 191206, 2002, ISSN 0922-5773

[75] Maheshwari R., Rao S., Poonacha P.: FPGA Implementation of Median Filter, 10th
International Conference on VLSI Design, IEEE Computer Society, 1997, p. 523-524,
ISBN O-8186-7755-4/96

[76] Suorania R., Estola K.: New Class of Order Statistic Filters for Running Median Es-
timation, IEEE International Conference on Acoustics, Speech, and Signal Processing,
Volume 3, 1993, p. 27-30, ISBN 0-7803-0946-4/9

[77] Eng H., Ma K.: Noise Adaptive Soft-Switching Median Filter for Image Denoising,
IEEE International Conference on Acoustics, Speech, and Signal Processing, Volume
6, IEEE Computer Society, 2000, p. 2175-2178, ISBN 0-7803-6293-4

[78] Sun Z., Miller R., Bebis G., DiMeo D.: A Real-time Precrash Vehicle Detection
System, Proceedings of the 6th IEEE Workshop on Applications of Computer Vision,
IEEE Compuer Society, 2002, p. 171-177, ISBN 0-7695-1858-3/02

REFERENCES 95

[79] Matsushita N., Hihara D., Ushiro T., Yoshimura S., Rekimoto J., Yamomoto Y.:
ID CAM: A Smart Camera for Scene Capturing and ID Recognition, Proceedings of
the 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality,
IEEE Computer Society, 2003, p. 227-237, ISBN 0-7695-2006-5/03

[80] http://www.celoxica.com/technology/c_design/handel-c.asp

[81] http://www.celoxica.com/technology/c_design/systemc.asp

[82] Draper B., Najjar W., Bohm W., Hammes J., Rinker B., Ross C., Chawathe M., Bins
J.: Compiling and Optimizing Image Processing Algorithms for FPGAs, Proceedings
of the 5th IEEE International Workshop on Computer Architectures for Machine Per-
ception, IEEE Computer Society, 2000, p. 222-232, ISBN 0-7695-0740-9/00

[83] Palenichka R., Zinterhof R., Ivasenko I.: Adaptive Image Filtering and Segmentation
Using Robust Estimation of Intensity, Proceedings of the Advances in Pattern Recog-
nition, Joint IAPR International Workshops, Springer-Verlag, London, UK, 2000, p.
888-898, ISSN 0302-9743

[84] Srivastava N., Trahan J., Vaidyanathan R, Rai S.: Adaptive Image Filtering Using
Run-Time Reconfiguration, Proceedings of the International Parallel and Distributed
Processing Symposium, IEEE Computer Society, 2003, p. 180-187, ISBN 0-7695-1926-
1/03

[85] Torres-Huitzil C., Arias-Estrada M.: An FPGA Architecture for High Speed Edge and
Corner Detection, Proceedings of the 5th IEEE International Workshop on Computer
Architectures for Machine Perception, IEEE Computer Society, 2000, p. 112-117, ISBN
0-7695-0740-9/00

[86] Shin M., Goldgof D., Bowyer K.: Comparison of Edge Detectors Using an Object
Recognition Task, Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 1999, p. 1360-1366

[87] ASIC Design Tutorial, http://www.tutorial-reports.com/hardware/asic/

[88] Spartan-3E FPGA Family Data Sheet, http://direct.xilinx.com/bvdocs/
publications/ds312.pdf

[89] Ratha N., Jain A.: FPGA-based Computing in Computer Vision, Proceedings of the
1997 Computer Architectures for Machine Perception, 1997, ISBN 0-8186-7987-5/97

[90] Rigoll G., Kosmala A.: New Improved Feature Extraction Methods for Real-Time
High Performance Image Sequence Recognition, Proceedings of the 1997 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, IEEE Computer
Society, 1997, p. 2901-2905, ISBN 0-8186-7919-0/97

[91] Scalera J., Jones III C., Soni M., Bucciero M., Athanas P., Abbott A., Mishra A.:
Reconfigurable Object Detection in FLIR Image Sequences, Proceedings of the 10th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2002,
p. 284-286, ISBN 1082-3409/02

96 REFERENCES

[92] Young S., Alfke P., Fewer C., McMillan S., Blodget B., Levi D.: A High I/O Re-
configurable Crossbar Switch, Proceedings of the 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, IEEE Computer Society, 2003,
ISBN 0-7695-1979-2

[93] Hübner M., Becker J.: Seamless Design Flow for Run-Time Reconfigurable Automo-
tive Systems, DATE Workshop on Future Trends in Automotive Electronics and Tool
Integration, 2006, p. 47-51

[94] Donlin A.: Applications, Design Tools and Low Power Issues in FPGA Reconfigu-
ration, in Designing Embedded Processors, Springer Netherlands, 2007, p. 513-541,
ISBN 978-1-4020-5868-4

[95] Jan S., Clapworthy G., Rooze M.: Morphology-Based Data Elimination from Medical
Image Data, IEEE Computer Graphics and Application Journal, March/April 2000,
p. 46-52, ISBN 0272-1716/00

[96] Yamamoto S., Matsumoto M., Tateno Y., Iinuma T., Matsumoto T.: Quoit Filter - a
New Filter Based on Mathematical Morphology to Extract the Isolated Shadow, and
Its Application to Automatic Detection of Lung Cancer in X-ray CT, Proceedings of
the 1996 International Conference on Pattern Recognition, IEEE Computer Society,
1996, p. 3-8, ISBN 1051-4651/96

[97] Gu L., Kaneko T., Tanaka N., Haralick R.: Robust Extraction of Characters from
Color Scene Image Using Mathematical morphology, Proceedings of Fourteenth Inter-
national Conference on Pattern Recognition, 1998, p. 1002-1004, ISBN 0-8186-8512-3-2

[98] Barata T., Pina P., Granado I.: Segmenting at Higher Scales to Classify at Lower
Scales. A Mathematical Morphology Based Methodology Applied to Forest Cover Re-
mote Sensing Images, Proceedings of the International Conference on Pattern Recog-
nition 2000, ISBN 1051-4651/00

[99] Haralick R., Sternberg S., Zhuang X.: Image Analysis Using Mathematical Mor-
phology, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, p.
532-550, ISSN 0162-8828

[100] Bianchini M., Maggini M., Sarti L, Scarselli F.: Recursive neural networks for object
detection, Special issue on neural networks and kernel methods for structured domains,
2005, p. 1040-1050, ISSN 0893-6080

[101] Nakano T., Morie T., Iwata A.: A Face/Object Recognition System Using FPGA
Implementation of Coarse Region Segmentation, SICE Annual Conference in Fukui,
Fukui University, Japan, 2003, p. 1552-1557

[102] Villasenor J., Schoner B., Chia K., Zapata C., Kim H., Jones C., Lansing S.,
Mangione-Smith B.: Configurable Computing Solutions for Automatic Target Recog-
nition, Proceedings of the 36th ACM/IEEE Conference on Design Automation, 1999,
p. 697-702, ISBN 1-58133-109-7

[103] Yu H., Leeser M.: Automatic Sliding Window Operation Optimization for FPGA-
Based Computing Boards, 14th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 2006, p. 76-88, ISBN 0-7695-2661-6/06

REFERENCES 97

[104] InetDaemon.com: Classification of Computer Systems, http://www.inetdaemon.
com/tutorials/computers/types.shtml

[105] Porter R., Frigo J., Gokhale M., Wolinski C., Charot W., Wagner C.: A Pro-
grammable, Maximal Throughput Architecture for Neighborhood Image Processing,
14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
2006, p. 279-280, ISBN 0-7695-2661-6/06

[106] Hezel S., Kugel A., Manner R., Gavrila D: FPGA-based Template Matching using
Distance Transforms, Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2002, p. 89-98, ISBN 1082-3409/02

[107] Fan J., Elmagarmid A.: Statistical Approaches to Tracking-Based Moving Object
Extraction, Proceedings of the 1999 International Conference on Information Intelli-
gence and Systems, IEEE Computer Society, Washington DC, USA, p. 375-381, ISBN
O-7695-0446-9/99

[108] Qiang L., Bo Z.: Template Matching Based on Image Gray Value, Visual Com-
munications and Image Processing, Proceedings of the SPIE, Volume 5960, 2005, p.
614-622, 2005SPIE.5960..614L

[109] Leibson S.: Challenges in Consumer Electronics for 21st Century, Keynote
lecture, Worldcomp 2007, Las Vegas, NV, USA, June 2007, http://www.
world-academy-of-science.org/worldcomp07/ws/keynotes/keynote_leibson

[110] Rätsch G.: Adaboost, a tutorial for Machine Learning Summer Schools 2003,
Canberra, Australia, February 2-14, http://informatik.unibas.ch/lehre/ws05/
cs232/_Folien/08_AdaBoost.pdf

[111] Govindu G., Zhuo L., Choi S., Gundala P., Prasanna V.: Area and power perfor-
mance analysis of a floating-point based application on FPGAs, Proceedings of the
7th Annual Workshop on High Performance Embedded Computing, 2003

[112] Freund Y., Schapire R: A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, August 1997,
p. 119-139, ISSN 0022-0000

[113] Freund Y., Schapire R.: A Short Introduction to Boosting, Journal of Japanese
Society for Artificial Intelligence, September 1999, p.771-780, ISSN 0912-8085

[114] Zemč́ık P., Herout A., Beran V., Granat J.: Hardware Accelerated Image Analysis
in FPGA, Proceedings of SCCG, Casta-Papiernicka, SK, 2006

[115] Flynn M.: Some Computer Organizations and their Effectiveness, IEEE Transac-
tions on Computers 24, September 1972, IEEE Computer Society, p. 948-960, ISSN
0018-9340

[116] Sakanashi H., Iwata M., Higuchi T.: A Lossless Compression Method for Halftone
Images using Evolvable Hardware, Proceedings of the 4th International Conference on
Evolvable Systems: From Biology to Hardware, 2001, p. 314-326, ISBN 3-540-42671-X

[117] Salami M., Murakawa M., Higuchi T.: Data Compression Based on Evolvable Hard-
ware, Proceedings of the 1st International Conference on Evolvable Systems: From
Biology to Hardware, 1996, p. 169-179, ISBN 3-540-63173-9

98 REFERENCES

[118] Tanaka M., Sakanashi H., Salami M., Iwata M., Kurita T., Higuchi T.: Data Com-
pression for Digital Color Electrophotographic Printer with Evolvable Hardware, Pro-
ceedings of the 2nd International Conference Evolvable Systems: From Biology to
Hardware, Springer, 1998, p. 106-114, ISBN 3-540-64954-9

[119] Sekanina L.: Evolvable Components, From Theory to Hardware Implementations,
Springer-Verlag, Berlin, Germany, 2004, 194 p., ISBN 3-540-40377-9

[120] Martinek T., Sekanina L.: An Evolvable Image Filter: Experimental Evaluation of
a Complete Hardware Implementation in FPGA, Lecture Notes in Computer Science,
no. 3637, 2005, Germany, p. 76-85, ISSN 0302-9743

[121] Iwata M., Kajitani I., Yamada H., Iba H., Higuchi T.: A Pattern Recognition System
Using Evolvable Hardware, Proceedings of the 4th International Conference on Parallel
Problem Solving from Nature, Springer-Verlag, London, UK, 1996, p. 761-770, ISBN
3-540-61723-X

[122] Torresen J., Bakke J., Sekanina L.: Recognizing Speed Limit Sign Numbers by
Evolvable Hardware, Lecture Notes in Computer Science, No. 3242, 2004, p. 682-691,
ISSN 0302-9743

List of Mathematical Symbols and
Abbreviations

Symbol Meaning
abs(x) Absolute value of number x
|s| Number of elements in set s
s.t. So that
Gd

w,h Set of all images of size w × h and gray depth d

Gw,h Set of all images of size w × h
G Set of all images
N S Set of all neighborhoods with structuring element S
N Set of all neighborhoods
FS Set of all filters of structuring element S
TS Set of all templates for structuring elements S
BS Set of all template banks for structuring elements S

Table 11.1: Mathematical symbols and definitions

99

100 REFERENCES

Abbreviation Meaning Explanation
PLD Programmable Logic Device 2.1
FPGA Field Programmable Gate Array 2.3
CPLD Complex Programmable Logic Devices 2.1
ASIC Application Specific Integrated Circuit 2.1
DSP Digital Signal Processing
DSP Digital Signal Processor
VLIW Very Large Instruction Word
VLSI Very Large Scale Integration
VHDL VHSIC Hardware Description Language 2.3.1
CPU Central Processing Unit
CLB Configurable Logic Block 2.3
IOB Input Output Buffer 2.3
RAM Random Access Memory
BRAM Block RAM 2.3
SRAM Static RAM
I/O Input / Output
PDA Personal Digital Assistent
CAD Computer Aided Design 2.3.1
ECU Electronic Control Unit 2.4.4
FE Feature Extraction 3.3.2
JPEG Joint Photographic Experts Group
2-D 2 Dimensional
SIMD Single Instruction Multiple Data
Pixel Picture Element 3.1
PC Personal Computer
FIFO First In First Out
LSB Least Significant Bit
MSB Most Significant Bit
S2M Serial to Matrix 6.4
LUT Look Up Table 6.7.2
HDTV High Definition Television (1280 x 720)
Occ Occurrence, occur
Temp Temporary
Arr Array
Num Number

Table 11.2: Abbreviations

Appendix A

Evaluation Program

To perform evaluations in Chapters 8 and 9, a C program has been programmed that
simulates the proposed method’s function. Following are the command line options and
examples of use.

parameter values initial meaning
-p string ../ t1/ input file path
-f string 001 glob input file name
-FilterOnly string none Perform only image filtering1

-Evolv 0 / 1 1 Bank creation (1) or object detection (0)
-CompX int 5 Template size X
-CompY int 5 Template size Y
-Iter int 20 Number of iterations for the bank creation
-Elem int 300 Number of elements in the bank
-Interactive 0 / 1 1 Shows the progress
-SPZFindOnly 0 / 1 0 Perform only classification operation
-BankUpdate 0 / 1 1 Consider also templates in existing bank
-LocalBank 0 / 1 0 Use a local bank
-MergeBank 0 / 1 0 Merge two banks together
-EmptyBank 0 / 1 0 Create an empty bank
-SegmOnly 0 / 1 0 Perform the preprocessing only
-WithoutSegm 0 / 1 0 Omit preprocessing
-WithoutEdge 0 / 1 0 Omit edge detection in preprocessing
-BW 0 / 1 0 Output image in BW suitable for printing
-Separator int -Elem / 2 How many templates are active
-MaxSPZCompOut int 200 Max. number of templates outside an object
-MinAccuracy int 5 Threshold of the object detection
-MinSPZDistance int 0 Minimal distance between located objects
-NumSPZs int 139 Maximum number of objects
-CompInfluence real 1.8 Influence of number of different templates

Table A.1: C program parameters

Implicit bank name is bank.bmp. In case a local bank is used (-LocalBank), bank

1Filter can be one of the following: none, FlatAverage, SampledGaussian, HighPass, Erosion, Dilation,
Median, OpenClose, HitMiss, BinMedian, BinAvg, BinMinMax

101

102 APPENDIX A. EVALUATION PROGRAM

name is bank[FileName].bmp. Coordinates of the license plate in an image (if we want
to create a template bank) have to be stored in a file SPZPos.txt in format filename x y.

To create a template bank bank.bmp from image 0000.bmp:

a.exe -f 0000 -BankUpdate 0

To detect an object in image 0000.bmp using a bank in bank.bmp:

a.exe -f 0000 -Evolv 0

The source codes of the C program can be found at
http://www.fit.vutbr.cz/~crha/phd/case_study.cpp and
http://www.fit.vutbr.cz/~crha/phd/case_study.h
The example of the image of road signs used in Chapter 9 can be found at
http://www.fit.vutbr.cz/~crha/phd/signs.bmp
and an example of a vehicle from Chapter 8 at
http://www.fit.vutbr.cz/~crha/phd/0000.bmp

