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Abstract
This thesis examines two problems, that rely on a precise understanding of factual infor-
mation. In factoid question answering (QA), it addresses three topics, Firstly, it shows
a novel probability formulation and training objective for systems that extract answer as
a span of text. The experiments show that the proposed compound objective with joint
probability space is Pareto optimal to other used objectives. Secondly, the thesis studies
the problem of open-domain QA. It shows that extractive approaches and abstractive ap-
proaches have complementary strengths and proposes a pipelined state-of-the-art system
R2-D2 that serves as a strong baseline for the community. Thirdly, it studies the effect
of pruning down the retrieval corpus under R2-D2. The experiments demonstrate that for
two popular datasets, NaturalQuestions and TriviaQA, two-thirds of the retrieval corpus
can be removed without the loss of performance, and 92 % can be removed with a loss
of performance up to -3 exact match score. Findings also indicate that the same pruning
mechanism is implicitly present in modern supervised retrieval mechanisms, such as DPR.
In fact-checking, the thesis studies two topics. Firstly, it shows that pretrained model ap-
proaches can reach competitive performance in rumor stance detection without using of any
handcrafted features or metadata. Specifically, our system targets rumor stance detection in
social media threads and selects whether each post supports, denies, queries, or comments
on the rumor present in the discussion thread. Experiments demonstrate that using just the
first thread post and the previous thread post is sufficient in obtaining strong performance
of determining the current post stance. Secondly, the thesis studies evidence-grounded
fact-checking. Claim-Dissector—a system that jointly identifies the relevant evidence and
produces a veracity verdict—is proposed. The proposed system can find supporting and
refuting evidence for a claim at any language granularity, including tokens, sentences, or
paragraphs, and link them in an interpretable way with the verdict. It is demonstrated that
the model allows successful transfer learning from the coarse granularity of supervision to
the fine granularity of predictions. In particular, it is shown that training on sentence level
of relevance is sufficient to obtain relevant token-level rationales, and training on block
level indeed provides competitive sentence-level cues. The strong performance of Claim-
Dissector is demonstrated across 5 datasets and 2 underlying pretrained models, including
a newly collected dataset TLR-FEVER. The code for all experiments is available online.

Abstrakt
Tato práce se zabývá dvěma problémy, které spoléhají na přesné pochopení faktických in-
formací. Ve faktoidním zodpovídání otázek (QA) se práce zabýva třemi tématy. Nejprve
je představena nová objektivní funkce a formulace složené pravděpodobnosti pro systémy,
které extrahují odpověď jako textový úsek. Experimenty ukazují, že navrhovaná objektivní
funkce se složeným pravděpodobnostním prostorem je Pareto optimální vůči jiným, běžně
používaným objektivním funkcím. V druhé části se práce zabývá problematikou QA nad
otevřenou doménou. Ukazuje vzájemně doplňující se vlastnosti extraktivních a abstrak-
tivních přístupů a navrhuje nový modulární systém R2-D2, který slouží jako silný systém
pro srovnání (baseline) v komunitě. V třetí části práce studuje vliv zmenšovaní korpusu pro
vyhledávání pomocí mechanismu prořezávání při použití R2-D2. Experimenty ukazují, že u
dvou populárních datových sad — NaturalQuestions a TriviaQA — lze odstranit dvě třetiny
korpusu pro vyhledávání, aniž by došlo ke zhoršení výsledných odpovědí systému a 92 % lze
odstranit se zhoršením pouze do -3 skóre přesné shody (exact match). Zjištené poznatky



naznačují, že stejný mechanismus prořezávání je implicitně přítomen v moderních metodách
učeného vyhledávání, jako je DPR. Dále v oblasti ověřování faktů se práce dotýká dvou té-
mat. Jednak ukazuje, že předtrénované modely, které nepoužívají žádné ručně vytvořené
příznaky nebo metadata, mohou dosáhnout konkurenceschopných výsledků v detekci pos-
toje lidí k fámám. Vytvořený systém se konkrétně zaměřuje na zjišťování postojů k fámám
ve vláknech sociálních sítí a určuje, jestli daný příspěvek ve vlákně podporuje, odmítá,
zpochybňuje nebo komentuje fámu přítomnou v diskusním vláknu. Provedené experimenty
ukazují, že použití pouze prvního příspevku vlákna a předchozího příspevku vlákna stačí
k tomu, aby model určil aktuální postoj příspevku. Posledním tématem, kterým se práce
zabývá, je ověřování faktů založené na vyhledávání podporující evidence. Je navržen sys-
tém Claim-Dissector, který společně identifikuje relevantní evidenci a určuje věrohodnost
diskutabilního tvrzení. Navržený systém dokáže najít podpůrnou a vyvracející evidenci
pro tvrzení v jakékoli jazykové granularitě, na úrovni tokenů, vět nebo odstavců, a propo-
jit je interpretovatelným způsobem s verdiktem. Dále je ukázáno, že model umožňuje
úspěšný přenos učení z hrubé granularity poskytnuté během učení na jemnou granularitu
predikcí. Zejména je ukázano, že učení identifikace relevance na úrovni vět je dostatečné
k získání relevantních zdůvodnění na úrovni tokenu a učení na úrovni bloku je dostatečné
k získání relevantních zdůvodnění na úrovni vět. Silné výsledky systému Claim-Dissector
jsou demonstrovány na 5 datových sadách, včetně nově shromážděné sady TLR-FEVER,
a dvou různých předtrénovaných modelech. Kód pro všechny experimenty je k dispozici
online.
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Chapter 1

Introduction

With the development of new deep differentiable architectures (mostly the Transformers
architecture (Vaswani et al., 2017) and its derivatives), natural language processing has
undergone a series of developments, largely advancing tasks deemed as “too complicated to
deal with” into “useful in practice” stage.

An example of such is question answering (QA)—the first topic of this thesis. One
important goal of question answering is to complement traditional document retrieval sys-
tems when necessary. In document retrieval, the user enters a query 𝒬, the search engine
performs retrieval and the user is shown a preview of the most relevant documents 𝒟. In
some cases, this is exactly what is needed, e.g., when the user is searching for a particular
website. However, in some cases, the query is a question that can be answered directly,
without forcing the user to read top returned articles manually (Etzioni, 2011). The sys-
tem would do a better job if it would extract the information of interest (i.e., an answer)
and provide it directly and faithfully—with a set of arguments that validate its reasoning.
Despite its long history in the text retrieval community, state-of-the-art question answering
only recently became competitive with humans and is a practical tool to be used in every-
day life. Apparent day-to-day use cases are chatbots and voicebots, present in applications
such as customer support or home assistants. According to a survey from Kinsella (2020),
asking a question is the second most frequent use case of modern voice assistants among
U.S. adults.

Formally, QA can be defined as follows: given a question 𝒬, QA focuses on (1) finding
a (possibly minimal) set of documents 𝒟 which are helpful for inferring the answer 𝒜
and (2) inferring the answer 𝒜 from these documents. In recent literature, this problem
setting is often referred to as open-domain question answering (ODQA). Clearly, the task
is less complicated if we skip step (1) and already provide a system with a minimal set
of documents 𝒟 necessary for answering the question—a task often referred to as closed-
domain question answering (CDQA). Both tasks are illustrated in Figure 1.1.

In this work, we will be always referring to the particular instance of question answering
named factoid question answering; that is a question answering where the answer is a
fact. There is no broadly accepted formal definition of what a fact is (as common when
formalizing something as ambiguous as natural language). In this work we will adopt the
following definition: the factoid question-answer pair is such that the length of the answer
in words is bounded with 𝑘, typically 𝑘 < 10. An opposite of such is long-form question
answering (Krishna et al., 2021), which focuses on long explanations that rather explain
extensive processes, not merely state plain facts (Lee et al., 2019). Next, the scope of the
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QA problem studied within this work covers only extractive QA (EQA); that is a problem
where the answer is a text span that can be selected from (given or retrieved) text snippet.

Competitions in ODQA were organized for a long time, going back to TREC 1999
question answering (QA) track1. In TREC 2001, Voorhees et al. (2001) mentions that the
systems submitted in the competition are composite systems. The majority of these were
made of question-type classifiers, which usually differentiated between the processing of
“who”, “where”, “when”, and “which” questions, followed by standard text-overlap driven
document retrieval, document parsing, subsequent entity parsing, and then finally answer
extraction. The extraction was done by comparing each entity’s context with the question
words, picking up the best entity from the text. To tackle the ODQA, these competitions
were making assumptions such as (i) the answer is always an entity, (ii) the answer string
had a fixed amount of bytes, and if the answer’s entity was contained somewhere within
this chunk of text, the prediction was deemed as correct, or (iii) the topics were restricted
to the news domain from particular news services.

In contrast, only in 2016, (Wang and Jiang, 2017) it was first demonstrated that the
freshly adopted neural systems can extract precise textual spans containing an answer in
CDQA dataset SQuAD (Rajpurkar et al., 2016). In 2017, Chen et al. (2017a) showed that
SQuAD can be also approached in the open domain, considering the whole of Wikipedia
as an unstructured textual corpus used for document retrieval. In 2018, the human perfor-
mance on popular SQuAD was exceeded in CDQA. In 2019, it was shown (Lee et al., 2019)
that neural document retrieval can outperform classical text-overlap-driven approaches for
retrieval in ODQA. Finally, in 2021, ODQA systems outmatched human teams made up of
trivia experts in trivia quiz EfficientQA2(Min et al., 2021) on questions where the answers
were not guessed by humans instantly. Answer to these questions could then be discussed
within the teams of up to 8 people (more details in Subsection 5.4), but nevertheless, sys-
tems correctly answered these questions significantly more frequently than human teams.
Apart from research work, another proof of advancements is that since 2020, the popular
search engine Google provides a question answering service3, highlighting sentences which

1https://trec.nist.gov/data/qa.html. Accessed 15.3.2023.
2One of these systems was our R2-D2 system, further described in the thesis.
3https://www.theverge.com/2020/6/4/21280115/google-search-engine-yellow-highlight-featured-snippet-anchor-text.

Accessed 15.3.2023.

Corpus/DB Documents

"Who is Jožko Mrkvička?"
Question: Q

Document Retrieval

Answer: A
"A fictional character in 
colloquial Slovak, whose 
name is used to denote an 
ordinary average citizen."

Answer Extraction

1.

2.

Document(s): D

Open-Domain QA Closed-Domain QA

Figure 1.1: Open-Domain vs Closed-Domain Question Answering.
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possibly contain an answer. This evidence demonstrates the advances in QA. However,
there is a great deal of not well-understood processes underlying these rapid advancements,
such as the complementarity of different answer inference approaches (Fajcik et al., 2021b)
or impact of different optimization objectives on answer inference (Fajcik et al., 2021c).
These problems are studied within the scope of this thesis.

A different example of a task which undergone a shift from research-only interest to
being practically useful, and the second topic of this thesis, is fact-checking (FC). Given a
factual claim 𝒞, decide upon veracity 𝒱 of this claim (e.g., true, false, unverifiable, . . . ).

The advantages of free speech and direct access to large audiences through social media
have led to the appearance of a colossal amount of unverified information. This is uncon-
trolled by official cables or traditional media. This has given rise to many fact-checking
organizations including FactCheck.org4, Snopes5, Politifact6, and EUfactcheck7, and tools
such as Google Factcheck8. Furthermore, the spread of unverified information has led to-
wards the modern incarnation of the fact-checker—a professional who assesses the veracity
of popular claims based on trustworthy evidence. Development of automated fact-checkers
useful in assisting these professionals is a challenging task with significant real-word im-
pact (Nakov et al., 2021).

From the technical perspective, fact-checking draws a lot of parallels with question
answering. One such parallel is that every question, which can be answered with ”yes“,
”no“, or “i-don’t-know”(IDK) answer, can be converted to “true”, false” or “unverifiable”
fact via 1-to-1 mapping (Sulem et al., 2022). Another parallel is that an instance of CDQA
can be also converted to a fact. However, here the label conversion can be non-trivial,
especially if the instance is unanswerable. An example of these parallels is illustrated with
Figure 1.2. Analogically to the ODQA, fact-checking can be approached with an open-
domain retrieval of documents.

Until recently, the majority of FC approaches relied on superficial cues of credibility,
such as the way the claim is written, the statistics captured in the claim author’s profile,
or the stances of its respondents on social networks (Zubiaga et al., 2016; Derczynski et al.,

4https://www.factcheck.org/. Accessed 15.3.2023.
5https://www.snopes.com/. Accessed 15.3.2023.
6https://www.politifact.com/. Accessed 15.3.2023.
7https://eufactcheck.eu/. Accessed 15.3.2023.
8https://toolbox.google.com/factcheck/explorer. Accessed 15.3.2023.

Context: Jane, who is a native of Los Angeles, married a lawyer from NYC.

  Y/N: Did Jane marry in NYC?   CD: Who married in NYC?   Fact: Jane married in NYC.(b)

  Y/N: Was Jane born in France?   CD: Who was born in France?   Fact: Jane was born in France.(c)

 IDK unanswerable unverifiable

unanswerableno false

  Y/N: Did Jane marry a lawyer?   CD: Who married a lawyer?   Fact: Jane married a lawyer.(a)
yes Jane true

Figure 1.2: Examples of Yes/No/IDK QA(left), CDQA (center) and Facts (right). The
non-trivial conversion of CDQA instances into Yes/No and Facts is shown in (b). While
EQA (b) is unanswerable, both conversions correspond to no/false label. Inspired by Sulem
et al. (2022).
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2017; Gorrell et al., 2019; Fajcik et al., 2019; Li et al., 2019). From 2018, a significant
effort towards evidence-grounded systems has been made with the introduction of FEVER
dataset (Thorne et al., 2018) and subsequent FEVER workshops9. In contrast to previous
superficial methods, evidence-grounded systems rely on a set of trustworthy documents
(e.g., Wikipedia, newspaper from trusted sources, governmental reports & laws, company
guidelines, verified responses on public forums, etc.), and verify a claim if and only if
it is supported by facts found in this trustworthy set. The retrieval of these documents
grounding the verdict demonstrates another parallel with ODQA.

However, the difference to question answering appears when considering a practical
perspective. When considering journalistic fact-checking, the value of the final verdict is just
as important as the production of justification for the verdict. Disproving a claim without
linking it to factual evidence often fails to be persuasive and can even cause a “backfire”
effect—refreshing and strengthening the belief into an erroneous claim (Lewandowsky et al.,
2012). Therefore the interpretability requirement is a must for FC systems. In contrast,
for QA, it is often sufficient to show the answer within the found context. For FC, it is
necessary to have a set of non-trivial arguments that justify the verdict, such as the set of
supporting/refuting documents. In this thesis, we focus on both, superficial and evidence-
grounded approaches. Firstly, determining rumor stance from tweets and Reddit posts
is examined (Fajcik et al., 2019). Finally, a novel framework for interpretable evidence-
grounded fact-checking is presented (Fajcik et al., 2023).

1.1 Goals
The goals of this thesis are two-fold. The first goal is to extend the understanding of ques-
tion answering models; in particular their objectives, and the complementarity of popular
architectures, and leverage newfound properties to improve the state-of-the-art. The second
goal studies different approaches to stance detection in fact-checking, and the link between
stances of individual evidences10 and their aggregation into final veracity verdict.

1.2 Contributions
In this section, the summary of the thesis contributions is presented. Following the stated
goals, the thesis targets these with 5 research projects, each having its own contributions.
These can be divided into factoid question answering, and fact-checking parts (more in
Section 1.3).

Rethinking the Objectives of Extractive QA. (Fajcik et al., 2021c)
Motivation: First, the commonly taken assumption of independence in extractive QA is
challenged. Considering a question 𝒬 and a document or a set of documents 𝒟, the EQA
commonly estimates the categorical probability mass function P(𝒜|𝒟,𝒬). In practice, the
domain of P(𝒜|·) lies in all possible span start and span end positions (𝑎𝑠, 𝑎𝑒) ∼ 𝒜 in each
document. For instance, if only possible answer in single document lies at the position
(2, 4), the ideal estimated distribution should assign all probability mass to this particular
position, formally P(2, 4|·) = 1. Following the earliest work on span extraction (Wang and

9https://fever.ai/. Accessed 15.3.2023.
10Following practices from archaeology, the thesis uses the plural term “evidences” instead of “pieces of

evidence” for brevity.
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Jiang, 2017), majority of the influential work in the field (Xiong et al., 2017; Seo et al., 2017;
Chen et al., 2017a; Yu et al., 2018; Devlin et al., 2019; Cheng et al., 2020) computed the joint
probability through assumption of independence (AoI) P(𝑎𝑠, 𝑎𝑒|·) = P(𝑎𝑠|·) P(𝑎𝑒|·). How-
ever, the AoI may lead to obviously wrong predictions, especially in high-entropy scenarios
where model considers several answer candidates, as shown in Figure 1.3.

Question: What was the name of atom bomb dropped by
USA on Hiroshima?
Passage: ...The Allies issued orders for atomic bombs to be
used on four Japanese cities were issued on July 25. on
August 6, one of its b - 29s dropped a little boy uranium gun-
type bomb on Hiroshima. three days later, on August 9, a fat
man plutonium implosion-type bomb was dropped by
another b - 29 on Nagasaki...
Ground truth: little boy

 
P(𝑎𝑠, 𝑎𝑒|·) Top Predictions from QA model

33.3 little boy uranium gun-type bomb on Hiroshima.
three days later, on August 9, a fat man

32.15 little boy
23.51 fat man
3.60 a fat man
2.08 a little boy uranium gun - type bomb on hi-

roshima. three days later, on august 9, a fat
man

1.03 a little boy

Figure 1.3: An example of an error which comes with an independence assumption. The
model assigns high probability mass to boundaries around “little boy”, and “fat man”
answers. However, the maximum probability is assigned to start of one and the end of
another answer. Hence the model produces obviously wrong answer.

Contributions: Motivated by this observation the thesis contributions are: (i) introduction
of new ways of efficient joint probability computation, adding negligible theoretical com-
putation/memory complexity overhead and zero practical overhead over the assumption
of independence (Appendix F.1); (ii) introduction of compound objective (composed of
both, joint probability term and AoI term) and its comparison with objectives using only
joint probability formulation P(𝑎𝑠, 𝑎𝑒|·), AoI term P(𝑎𝑠|·) P(𝑎𝑒|·) or conditional probability
factorization P(𝑎𝑠|·) P(𝑎𝑒|𝑎𝑠, ·); (iii) a large scale evaluation on 3 QA model architectures,
trained with 10 random seeds, across 6 different EQA datasets supported with statistical
sets and (iv) a manual analysis which provides a closer look on the different impacts of in-
dependent and compound objectives. Conclusively, we show that optimizing the compound
objective and decoding the direct joint probability distribution P(𝑎𝑠, 𝑎𝑒|·) is consistently
superior or equal to different objectives in exact match metric across all considered datasets.
Fusing the Retrieval, Abstractive QA and Extractive QA (Fajcik et al., 2021b)
Motivation: ODQA is commonly approached with the traditional retriever-reader architec-
ture. Such ODQA systems (Chen et al., 2017a) seek evidence for answering the questions
inside the knowledge source using the retriever and then extract the answer from the re-
trieved knowledge using the reader. The knowledge source is often a large corpus of short
snippets of natural language (e.g., taken from an encyclopedia). Some work (Nogueira and
Cho, 2019; Luan et al., 2021) further adopts computationally expensive reranking step on
top-𝐾1 retrieved documents to further increase the accuracy of relevant documents selected
at top-𝐾2 places (𝐾2 < 𝐾1), which are then fed to even more computationally expensive
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models. Moreover, other work uses abstractive reader (sometimes referred to as generative
reader), fusing the information from documents and generating the answer in an autore-
gressive fashion, word-by-word11(Lewis et al., 2020; Min et al., 2020; Izacard and Grave,
2021b). A different line of work uses extractive reader, extracting the string answer from
the grounding documents (Chen et al., 2017a; Lee et al., 2022; Cheng et al., 2021b).
Contributions: Here, the thesis contributes in: (i) the proposal of a simple novel approach to
aggregate scores from all system components that demonstrates that combining extractive
and generative approaches is superior to a posterior averaging ensemble of homogeneous
models; (ii) the state-of-the-art performance for two large and popular datasets NQ-Open
(Kwiatkowski et al., 2019; Lee et al., 2022) and TQ-Open (Joshi et al., 2017), while having
the same knowledge source and the retriever as in the previous works12 (Karpukhin et al.,
2020; Izacard and Grave, 2021b); (iii) it is shown that the extractive reader can sometimes
match the performance of the generative approaches without taking the advantage of the
fusion between retrieved passages. This indicates that the evidence aggregation from mul-
tiple passages in the generative approaches is either not learned or not necessary to perform
well on these datasets; (iv) while using rerankers is a common practice in information re-
trieval (Nogueira et al., 2019, 2020; Luan et al., 2021), our work (Fajcik et al., 2021b) was
the first to study the interaction of novel dense retrieval methods and reranking in the con-
text of ODQA; (v) we verified that the previously proposed compound objective improves
performance also in the ODQA setting.

Published in 2021, our system R2-D2 became a standard baseline to compare to in
ODQA (Lee et al., 2022; Asai et al., 2022; Kedia et al., 2022; Jiang et al., 2022; Izacard
et al., 2022, inter alia).
Pruning the Index Contents for Memory Efficient Open-Domain QA (Fajcik
et al., 2021a; Min et al., 2021)
Motivation: The unstructured knowledge source of ODQA is a large corpus of short snippets
of natural language. For instance, Karpukhin et al. (2020) uses a corpus of 21M passages
created from articles on Wikipedia split into 100-word segments. Such a massive index of
external documents—only from Wikipedia—scales in the order of tens of GiB. Motivated
by this observation, we pose a research question: How much of this set can we prune out,
without damaging the system’s performance?.
Contributions: As our contribution, we gain evidence towards answering this question
with our content-based pruning approach—a strong binary classifier that selects whether
the passage is irrelevant or not apriori—without seeing any question—on popular ODQA
datasets NQ-Open (Lee et al., 2022; Kwiatkowski et al., 2019), TQ-Open (Joshi et al., 2017)
and EfficientQA (Min et al., 2021). Surprisingly, we find that most (about 92 %) of the
information content can be pruned away with only minor (-3 EM) performance degradation
to be seen in the current open-domain pipelined QA systems across datasets.

Furthermore, the proposed approach was tested within the NeurIPS competition Effi-
cientQA13 (Min et al., 2021), placing our system at 3rd place in systems having less than
6GiB in total. We were only attendants in the published leaderboard with university-only
affiliations.
Baseline for Rumour Stance Detection (Fajcik et al., 2019)
Motivation: Fighting false rumours at the internet is a tedious task. Sometimes, even

11Such models can generate string which never occurred in any grounding document.
12Works with better retrieval were matched and sometimes outperformed too. More in Chapter 4.
13https://efficientqa.github.io/. Accessed 15.3.2023.
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understanding what an actual rumor is about may prove challenging. And only then one
can actually judge its veracity with an appropriate evidence. The works of Ferreira and
Vlachos (2016) and Enayet and El-Beltagy (2017) focused on predictions of rumor veracity
in thread discussions. These works indicated that veracity is correlated with discussion
participants’ stances towards the rumor.
Contributions: Taking part in the RumourEval2019 (Gorrell et al., 2019)—a challenge
focused on classifying whether posts from Twitter and Reddit supports, denies, queries, or
comments a hidden rumor, truthfulness of which is the topic of an underlying discussion
thread—the thesis contributes in designing a simple model that automatically determines
the stance of each participant in the discussion thread on Twitter and Reddit. It employs
an end-to-end system that has reached the F1 score of 61.67 % on the provided test dataset.
Without any hand-crafted feature, the system finished at the 2nd place in the competition,
only 0.2 % F1 behind the winner. In particular, our system follows the assumption that the
stance of the discussion’s post depends only on itself, on the source thread post (the one
discussion originates from), and on the previous thread post.

Considering its simplicity, and an advantage of then novel pretrained BERT model
(Devlin et al., 2019), our stance classifier became a standard baseline in the rumor detection
community (Scarton et al., 2020; Khandelwal, 2021; Wang et al., 2021; Rao et al., 2021,
inter alia).
Interpretable Relevance-Grounded Veracity Prediction (Fajcik et al., 2023)
Motivation: Today’s automated fact-checking systems are moving from predicting the
claim’s veracity by capturing the superficial cues of credibility, such as the way the claim
is written, the statistics captured in the claim author’s profile, or the stances of its respon-
dents on social networks (Zubiaga et al., 2016; Derczynski et al., 2017; Gorrell et al., 2019;
Fajcik et al., 2019; Li et al., 2019) towards evidence-grounded systems which, given a claim,
identify relevant sources and then use these to predict the claim’s veracity (Thorne et al.,
2018; Jiang et al., 2020; Park et al., 2022). In practice, providing precise evidence turns
out to be at least as important as predicting the veracity itself. Disproving a claim without
linking it to factual evidence often fails to be persuasive and can even cause a “backfire”
effect—refreshing and strengthening the belief into an erroneous claim (Lewandowsky et al.,
2012) (more in Appendix F.2).

For evidence-grounded fact-checking, most of the existing state-of-the-art systems (Jiang
et al., 2021; Stammbach, 2021; Khattab et al., 2021a) employ a 3-stage cascade approach;
given a claim, (1) they retrieve relevant documents, (2) rerank relevant evidences (sentences,
paragraphs or larger text blocks) within these documents, and (3) predict the claim’s ve-
racity from the top-𝑘 (usually 𝑘=5) relevant evidences.

This comes with several drawbacks; firstly, the multiple steps of the system lead to
error propagation, i.e. the input to the last system might often be too noisy to contain
any information. Some previous work focused on merging evidence reranking and veracity
prediction into a single step (Ma et al., 2019; Schlichtkrull et al., 2021). Secondly, in open-
domain setting, number of relevant evidences can be significantly larger than 𝑘14, especially
when there is a lot of repeated evidence. Thirdly, in open-domain setting, sometimes there
is both supporting and refuting evidence. The re-ranking systems often do not distinguish
whether evidence is relevant because it supports or refutes the claim, and thus may select
the evidence from one group based on the in-built biases.

14e.g.,~3.7 % of FEVER dataset’s (Thorne et al., 2018) non-exhaustive annotations.

15



To further strengthen the persuasive effect of the evidences and understand the model’s
reasoning process, some of these systems provide cues of interpretability (Popat et al., 2018;
Liu et al., 2020). However, the interpretability in the mentioned work was often considered a
useful trait, which was evaluated only qualitatively, as the labor-intensive human evaluation
was out of the scope of their focus.
Contributions: To this extent, we contribute with Claim-Dissector (CD), a latent variable
model which: (i) jointly ranks top-relevant, top-supporting, and top-refuting evidences, and
predicts veracity of the claim in an interpretable way, where the probability of the claim’s
veracity is estimated using the linear combination of per-evidence probabilities, (ii) can
provide fine-grained (sentence-level or token-level) evidence, while using only coarse-grained
supervision (on block-level or sentence-level respectively), (iii) can be parametrized from a
spectrum of language representation models (such as RoBERTa or DeBERTaV3 (Liu et al.,
2019; He et al., 2021), (iv) achieves competitive performance on FEVER dataset (Thorne
et al., 2018) and state-of-the-art on FAVIQ-A and REALFC datasets (Park et al., 2022;
Thorne et al., 2021).

1.3 Thesis Plan
In Chapter 2, the thesis introduces basic notation, clarifies terminology, refreshes the inner
workings of pretrained models and training techniques, and defines common metrics used
across the work. Next, in the first part of the thesis focusing on QA, Chapter 3 intro-
duces work on compound objective and its comparison with other objective types common
in EQA. Then, Chapter 4 builds upon the common techniques used in ODQA and intro-
duces R2-D2, a pipelined system that leverages the strengths of extractive and generative
QA models, fuses the outputs with retrieval and reranking scores, achieving strong results
across ODQA datasets. Furthermore, Chapter 5 introduces the index pruning approach
and its application in the R2-D2 system. The second part of the thesis, oriented around
fact-checking, follows. Chapter 6 introduces our system, which determines the stances of
respondents in social media discussions towards the hidden rumor without any handcrafted
features and achieved strong performance in the RumourEval2019 competition. In contrast,
the subsequent Chapter 7 introduces a novel framework, that establishes an interpretable
link between the computation of the grounding evidence relevance on different levels of
language granularity, and final veracity assessment. The final takeaways, including limita-
tions of systems introduced within the thesis, and explicit dicussion of author’s publications
related to this thesis are summarized in Chapter 8. Code for all experiments is released
online (see Appendix B).
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Chapter 2

Preliminaries

This section presents unified terminology and introduces basic concepts of language pro-
cessing, used within this thesis. The list of concepts described here is non-exhaustive and
is written only for the purpose of notational clarification and refreshing the knowledge of
the reader.

2.1 Basic Functions & Notation
Random Event is an event, the outcome (e.g., a measurement) of which is subject to
uncertainty. It is assumed that all possible outcomes 𝑂 = {𝑜1, 𝑜2, ...} of such an event
are known. Obtaining an outcome from the random event is also referred to as sampling
(denoted with binary operator ∼).
Probability Mass Function / Probability Distribution Probability Mass Function
(PMF) is a function P(𝑋) : 𝑂 → 𝑃 , that assigns a probability P(𝑋 = 𝑜) = 𝑝 ∈ 𝑃
(defined below) to each individual outcome 𝑜 ∼ 𝑋 of the random event 𝑋. The thesis uses
terms PMF and Probability Distribution (sometimes abbreviated to just “distribution”)
interchangeably.
Probability Probability of a random event 𝑋, written as P(𝑋 = 𝑎1), quantifies the like-
lihood that random event 𝑋 will yield value 𝑎1 ∼ 𝑋 upon sampling. In this work, we only
assume probabilities for discrete events 𝑋 (i.e., they have a finite set of outcomes). Thus
each probability has the property of (i) being non-negative and (ii) being lesser or equal
to 1.
Notational Shortcuts In some cases, probability assignment P(𝑋 = 𝑎) is not written
explicitly to avoid long formulas. Instead only P(𝑎) notation is used. It can always be told,
whether a term is a distribution function or a single value—a probability of an outcome—
according to notation P for a distribution function vs. P for a probability.
Dense Dense function, or dense layer function refers to a affine projection, with an optional
additive shift. Formally, given a 𝑑-dimensional vector 𝑥 ∈ R𝑑, a dense function dense : R𝑑 →
R𝑑2 is defined as dense(𝑥) = 𝑊𝑥+ 𝑏, where 𝑊 ∈ R𝑑2×𝑑 and 𝑏 ∈ R𝑑2 .
Softmax Softmax function, applied to a vector or a set, exponentiates and normalizes the
items within. Formally, for 𝑥 ∈ R𝑑 softmax : R𝑑 → R𝑑, 𝑖-th softmax output is defined
as softmax(𝑥)𝑖 =

exp(𝑥𝑖)∑︀𝑑
𝑗=1 exp(𝑥𝑗)

; and similarly for a set 𝐴 ⊂ R and its 𝑖-th element 𝑎𝑖 ∈ 𝐴,

according to index set 𝑖 ∈ 𝐼𝐴, it is defined as softmax(𝐴)𝑖 =
exp(𝑎𝑖)∑︀
𝑥∈𝐴 exp(𝑥) . The coefficients
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obtained with softmax normalization can be directly used to parametrize Categorical PMF.
Hence, some formulas directly assign its outputs as distribution.
Tanh tanh : R→ [−1, 1] function refers to function tanh(𝑥) = 𝑠𝑖𝑛ℎ(𝑥)

𝑐𝑜𝑠ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 .

ReLU ReLU : R→ [0,∞] function refers to function ReLU(𝑥) = max(𝑥, 0).
Sigmoid sigmoid : R → [0, 1] function is a non-linear function (1 + exp(−𝑥))−1. When
Tanh, ReLU or Sigmoid are applied on a vector 𝑥, they are meant to apply as elementwise
operator f(𝑥)i = f(𝑥i).
Cross-Entropy Cross-Entropy (CE) measures the (non-negative) error attained from the
usage of the (model) function P(𝑌 ) over data generated from random event 𝑋, that follows
the empirical distribution P(𝑋). Formally, empirical cross-entropy can be estimated as
H(𝑋,𝑌 ) = −

∑︀
𝑥∼𝑋 log P(𝑌 = 𝑥).

Binary Cross-Entropy Binary Cross-Entropy (BCE) is a special case of Cross-Entropy,
computed for a random event with just two outcomes. It is often implemented with
Bernoulli distribution, which requires just 1 (usually sigmoid-normalized) parameter.

The reader is referred to Bishop (2006) for a comprehensive explanation of the basics defined
in this section.

2.2 Metrics
This section describes statistics commonly used to measure performance across chapters of
this thesis. The list is non-exhaustive; metrics used just for a specific dataset or a specific
method are described in the respective chapter. As usual within the machine learning
literature, for binary classification, we define True Positives (TPs), False Positives (FPs),
True Negatives (TNs), and False Negatives (FNs). TPs denote the number of times, the
true class was predicted on the dataset. FPs denote the number of times, the false class was
predicted on the dataset. FNs denote the number of times, the true class was not predicted
on the dataset. Lastly, TNs denote the number of times, the false class was not predicted
on the dataset. Next, we define precision as 𝑇𝑃

𝑇𝑃+𝐹𝑃 and recall as 𝑇𝑃
𝑇𝑃+𝐹𝑁 . We refer the

reader to Wikipedia1 for exact details for computation of accuracy/binary F1. Unless said
otherwise, the less frequent class is considered a true class, and the more frequent class is
a false class (Chicco and Jurman, 2020).

Accuracy describes the relative proportion of correctly classified examples. It is always
reported as percentage.
F1 score for Classification is a harmonic mean of precision and recall—can be binary,
or multi-class, in case of which it can be micro-averaged or macro-averaged. For the binary
case, we use the standard definition. For macro-averaged version, F1 is computed for every
class independently, using the 1–vs–all strategy (treating the selected class as true, and all
other classes as false). The F1s computed for each class are then averaged. For micro-
averaged version, the TPs, FPs, TNs, and FN counts are also computed using the 1–vs–all
strategy. Next, all TPs are summed into microTPs, FPs are summed into microFPs, etc.
Finally, F1 is computed from microTPs, microFPs, microTNs, and microFNs. In all cases,
it is reported as percentage.

1https://en.wikipedia.org/wiki/F-score. Accessed 6.3.2023.
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F1 for Span Classification is a special case of F1. Consider a predicted sequence 𝑃𝑠 =
{𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑛} and a ground-truth answer sequence 𝐺 = {𝑔1, 𝑔2, 𝑔3, ..., 𝑔𝑚}, tokenized
with the same tokenization method. TPs are equal to the number of overlapping tokens
|𝑃 ∩ 𝐺|. The total number of predicted positives TPs+FPs is given by 𝑃𝑠’s cardinality
|𝑃𝑠|. The total number of true items TPs+FNs is given by the cardinality of |𝐺|. Therefore
precision is defined as |𝑃𝑠∩𝐺|

|𝑃𝑠| and recall as |𝑃𝑠∩𝐺|
|𝐺| . Per-sample F1 for each example is

computed as a harmonic mean of such precision and recall. Most of the datasets contain
more than one ground truth 𝐺. In such case, the maximum F1 across all ground truths
is considered per sample. Total F1 then makes an average over each sample’s F1. In
practice, both predicted, and ground-truth sequences are often unicode normalized, and
their stopwords are dropped2. It is always reported as percentage.
Exact Match (EM) is a considering whether predicted sequence 𝑃 exactly matches at
least one of the sample-annotated ground-truth sequences 𝐺1, 𝐺2, ... (similar to F1 for span
classification). In practice, the same preprocessing as for F1 usually applies.3

Accuracy@K (also referred to as Top-K Accuracy, HIT@K, Recall@K4 in literature) com-
putes the proportion of examples where the correct item (class, document, answer,. . . )
is in the top-K most probable elements according to model under evaluation. In this
thesis, it is used to evaluate the document-with-answer retrieval. For instance, Accu-
racy@10=25 % means that in 25 % of cases, at least one document with an answer was
located in top-10 retrieved documents. In practice, both document 𝑑 = 𝑑1, 𝑑2, 𝑑3, ... and
answer 𝑎 = 𝑎1, 𝑎2, 𝑎3, ... are unicode normalized and tokenized. Then it is checked whether
an answer sequence is present within the document sequence5.

2.3 Language Representation Models
This section reviews the details for pretraining, and architectural properties of language
representation models (LRMs) applied in the thesis. We define LRM as any parametric
model that is first pretrained with a different objective, then one being used in a setup
described within the scope of this thesis. All presented parametric models are based on
transformer model architecture (Vaswani et al., 2017), with a few modifications as discussed
further.

BERT (Devlin et al., 2019) follows architecture of the transformer encoder. The archi-
tectural differences are: (i) the GeLU (Hendrycks and Gimpel, 2016) activation function is
used instead of ReLU and (ii) the inputs embeddings constructed from the summation of
learned token embeddings, segment embeddings, and positional embeddings. The 30,000
token vocabulary of lexemes is found by the WordPiece method (Wu et al., 2016).

During pretraining, the corpus is split into sentences. BERT’s input is composed of 2
tokenized sentences, each tokenized as 𝑠11, 𝑠12, 𝑠13, 𝑠14, ..., 𝑠1𝑛 and 𝑠21, 𝑠22, 𝑠23, ..., 𝑠2𝑚.

[CLS]𝑠11, 𝑠12, 𝑠13, 𝑠14, ..., 𝑠1𝑛[SEP]𝑠21, 𝑠22, 𝑠23, ..., 𝑠2𝑚[SEP]
2F1 score as computed in Rajpurkar et al. (2016) available at https://cutt.ly/R8AiyeR (Accessed 6.3.2023)

is often used as a point of reference.
3EM score as computed in Rajpurkar et al. (2016) available at https://cutt.ly/e8SZA8U. (Accessed 7.3.2023)

is often used as a point of reference.
4In IR literature (differently from this work), recall@K also often measures how many relevant documents

from the total number of relevant documents were in top-K retrieved documents.
5Answer matching as computed in Karpukhin et al. (2020) available at https://cutt.ly/n8SC0wG (Accessed

7.3.2023) is often used as a point of reference.
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The 2 sentences are either consecutive or randomly picked (uniformly). [CLS], and [SEP]
are so-called special tokens. Next, 15 % of tokens at the input (except the special tokens)
are selected and of those (i) 80 % are replaced with special [MASK] token, 10 % are replaced
with a random token from the vocabulary, and last 10 % are left unchanged. The input
representations are summed from a learned token, segment, and positional representations
for each token, including special tokens. There are just two segment representations, first
for tokens of the first sentence, and second for tokens of the second sentence. Next, the
summed representations are encoded by N layers of the transformer encoder.

The BERT’s output contains exactly the same amount of output representations as its
input, therefore it is possible to align every input token with its position-aligned output
representation. The masked language modeling MLM loss is computed only from represen-
tations aligned with selected tokens. Such representations are projected to vocabulary size
and normalized via softmax to obtain per-token probabilities. The CE loss is computed for
each of these, maximizing the probability of the selected-and-possibly-masked token. The
training with a minibatch size of 256 took approximately 1M steps to converge on a corpus
with 3.3B words. Two sentence format was used for Next Sentence Prediction objective,
which was found not-useful by later work (Liu et al., 2019), so its description is omitted.

During fine-tuning for QA, the model is presented with a question in the first segment
and a context in the second segment. Therefore the representations of context tokens 𝐻
can be isolated from the output matrix by aligning these representations with context-token
representations (more in Section 3.2.2).
RoBERTa (Liu et al., 2019) is a robustly optimized BERT, trained with more data, and
minor pretraining differences. These include (i) training with 8x larger minibatch size,
about 10x more training data, with half as many steps as BERT, (ii) dynamic masking—
potentially masked tokens were selected during training, achieving more masking patterns
for the same samples—as opposed to static masking where these tokens were selected in
the preprocessing for BERT, and (iii) tokenization with byte-pair-encoding (Sennrich et al.,
2016).
ALBERT (Lan et al., 2020) introduced a BERT-like LRM with (i) parameter sharing
across all transformer layers, (ii) low-dimensional token embeddings with upscaling, (iii)
additional sentence-order prediction loss and (iv) n-gram masking. Thanks to parameter
sharing, the authors could increase the model’s dimensionality, without a dramatic increase
in parameter size. When comparing with a 110M BERT, input embeddings were 6x smaller,
and upscaled with 𝑊 ∈ R𝑑×𝑑𝑚 projection to a model dimensionality 𝑑𝑚. Sentence order
prediction loss, computed from [CLS]-token representation through projection and BCE,
computes whether consecutive sentences at the model’s input switched their original order
or not. Lastly, following SpanBERT’s n-gram masking approach (Joshi et al., 2020), authors
do not mask 15 % of the input tokens at random but mask sub-sequences of the random
length instead. RoBERTa’s training corpus is used for pretraining.
ELECTRA (Clark et al., 2020) used BERT as a source of corrupted data (a generator),
and trained a discriminator model with BERT-like architecture, that predicts for every
token whether it was corrupted or not (so-called replaced token detection). The genera-
tor and the discriminator are trained jointly. The smaller generator model uses BERT’s
MLM objective. Then, based on the token probability computed for MLM loss, the re-
placement token is sampled for all selected tokens. Lastly, the discriminator encodes inputs
with replacements and computes BCE for every token position, computing the probability
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whether the token was “real” or “fake”. In fine-tuning for downstream applications, only
the discriminator is used. RoBERTa’s training corpus is used for pretraining.
DeBERTaV3 (He et al., 2021) uses an ELECTRA-based training setup, virtual adver-
sarial training (VAT) (Miyato et al., 2018), introduces several architectural changes, and
non-shared token representations. Unlike ELECTRA (i), the token embeddings are not
shared, but disentangled; the generator uses embeddings 𝐸, whereas the discriminator uses
token embeddings 𝐸 + 𝐸Δ. Furthermore, discriminator’s loss gradients are never propa-
gated towards 𝐸. Next (ii), DeBERTa uses disentangled attention, averaging 3 types of
attention scores on each layer—attention of positional embeddings to token-level embed-
dings, token-to-positional, and token-to-token embeddings. The positional embeddings are
selected in such a way, that they effectively fulfill the role of relative positional encod-
ing6. And finally (iii), it adds the 1D convolutional layer after 1st layer of the transformer.
RoBERTa’s training corpus is used.
T5 (Raffel et al., 2020) introduced a pretrained encoder-decoder LRM model (unlike encoder-
only models above) based on a modified transformer architecture, that was pretrained on
a mixture of 22 supervised and unsupervised tasks. Authors have used textual cues at
the encoder’s input to encode each supervised task e.g., encoder input ”translate English
to German: That is good.“ and decoder input ”Das ist gut.“. The unsupervised task was
the generation of the missing subsequences (15 % of the encoder’s input, in a similar way
as SpanBERT (Joshi et al., 2020)), infilled with special tokens. T5’s vocabulary contains
special tokens <1>, <2>, <3>, . . . that are used to represent the missing subsequences. For
instance, the text ”Thank you for inviting me to your party last week“, is masked as ”Thank
you <1> me to your party <2> week.“, which is used as the encoder’s input. The target
sequence the decoder is asked to generate is then ”<1> for inviting <2> last <3> “. The
objective is the standard CE for autoregressive language models. The unsupervised pre-
training is done on the newly collected C4 corpus7 of ~156B tokens (about 47x more than
BERT).

The major architectural difference are relative positional encodings, added as a scalar
to every self-attention score, instead of absolute encoding at the input. Other minor ar-
chitectural changes include (i) no additive biases included in layer normalization, and (ii)
residual skip connection is computed after layer normalization (not before), dropouts are
applied differently.

6Relative positional encodings do not encode the absolute position 𝑖, but a distance between two positions
𝑖− 𝑗 at the model’s input.

7Available at https://www.tensorflow.org/datasets/catalog/c4. Accessed 8.3.2023.

Question + Passage 1 encoder

Question + Passage 2 encoder

Question + Passage N encoder

decoder Answerconcat …

………

Figure 2.1: Schema of Fusion-in-Decoder architecture for QA. Each encoder input is a
different passage, concatenated with a question. The figure is taken from Izacard and
Grave (2021b).
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2.3.1 Fusion-in-Decoder Architecture

This thesis builds or compares to Fusion-in-Decoder (FiD) architecture (Izacard and Grave,
2021b) in several chapters. For instance, R2-D2’s generative reader (Subsection 4.2.3) and
an EGG method (Section 7.5) are based on T5 (Raffel et al., 2020) connected in FiD
setup. Fusion-in-Decoder is a method for processing very long inputs by encoder-decoder
models pretrained on short inputs. Specifically, the input 𝐼 is chunked (often naturally,
e.g. different documents) into 𝐼1, 𝐼2, 𝐼3... and each is independently encoded through the
model’s encoder into representations 𝐻1,𝐻2,𝐻3, ..., ,𝐻 𝑖, ..., where 𝐻 𝑖 ∈ R𝐿𝑖×𝑑, 𝑑 is the
model’s hidden dimensionality and 𝐿𝑖 is the length of the i-th chunk in tokens. All 𝑛 chunk
representations are then concatenated into 𝐻 = [𝐻1,𝐻2, ...,𝐻𝑛], 𝐻 ∈ R𝐿×𝑑, and 𝐿 =∑︀

𝑖 𝐿𝑖. Single representation 𝐻 is co-attended in the transformer’s decoder (Figure 2.1).

2.4 Techniques for Training Memory-Expensive Models
This section discusses technical details crucial for training large context-grounded models
typical for document-grounded reasoning (common in QA and FC).

Gradient Checkpointing (Chen et al., 2016a) is a technique for controlling the memory-
computation trade-off. In a typical deep learning model, the forward pass involves comput-
ing intermediate activations, which are stored for the backward pass to efficiently compute
gradients during backpropagation. Instead of storing all intermediate activations during
the forward pass, gradient checking stores only a subset of them, known as ”checkpoints“,
which are used to recompute the remaining activations during backpropagation. This allows
for a smaller memory footprint during training, at the cost of some additional computa-
tion during the backward pass. The gradient checkpointing in Transformers library (Wolf
et al., 2020), used for implementing Transformer networks in this thesis, does not save
intermediate variables for any pretrained model layers, for maximu memory efficiency.
Gradient Accumulation is a memory-computation trade-off technique, which allows
training model with a larger minibatch size, than the number of samples that fit into
memory. Considering a dataset 𝑋 = {𝑥1, 𝑥2, ...} and a per-sample loss function ℓ𝜃, the loss
for minibatch of examples 𝑋ℬ ⊂ 𝑋 is ℒ𝜃(𝑋ℬ) =

1
|𝑋ℬ|

∑︀
𝑥∈𝑋ℬ

ℓ𝜃(𝑥). Then, the gradient ∇𝜃

w.r.t. parameters 𝜃 is ∇𝜃ℒ𝜃(𝑋ℬ) =
∑︀

𝑥∈𝑋ℬ
∇𝜃

1
|𝑋ℬ|ℓ𝜃(𝑥). This means, if at least 1 sample

fits the memory of our hardware, any minibatch size can be simulated, by computing the
result ∇𝜃

1
|𝑋ℬ|ℓ𝜃(𝑥) in each iteration, and summing to results for 𝑛 iterations to achieve the

minibatch size 𝑛. The optimization step (corresponding to the change of the model’s pa-
rameters 𝜃) is performed only every 𝑛 iterations. Note that this is especially advantageous
for multi-GPU implementations (explained below).
Multi-GPU Training is a technique, which allows to optimize the same model at the
different GPUs (and possibly different machines) concurrently. Each GPU 𝑔 from the pool
of GPU’s 𝐺 obtains a piece of minibatch 𝑋ℬ𝑔, 𝑋ℬ =

⋃︀
𝑔∈𝐺𝑋ℬ𝑔, and computes its gradi-

ent ∇𝜃ℒ(𝑋ℬ𝑔) = ∇𝜃
∑︀

𝑥∈𝑋ℬ
1

|𝑋ℬ𝑔|ℓ𝜃(𝑥). When ∇𝜃ℒ(𝑋ℬ𝑔) is computed on each GPU, the
machines will perform synchronization, and average their gradients to obtain gradient for
minibatch ∇𝜃ℒ(𝑋ℬ) =

1
|𝐺|

∑︀
𝑔∈𝐺∇𝜃ℒ(𝑋ℬ𝑔). The usage of multi-GPU training is especially

beneficial for maximum GPU utilization when combined with gradient accumulation. The
synchronization then needs to be done only once the accumulation is done, resulting in
significantly less frequent synchronization and thus much less overhead.
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Part I

Factoid Question Answering
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Chapter 3

Rethinking the Objectives of
Extractive QA

The goal of extractive question answering (EQA) is to find the span boundaries—the start
and the end of the span from text evidence, which answers a given question in the provided
evidence1. Therefore, a natural choice of the objective for this problem is to model the prob-
abilities of the span boundaries. In the last years, there was a lot of effort put into building
better neural models underlying the desired probability distributions. However, there has
been little progress seen toward the change of the objective itself. For instance, the “default”
choice of objective for modeling the probability over spans in SQuADv1.1 (Rajpurkar et al.,
2016)—maximization of independent span boundary probabilities P(𝑎𝑠|·) P(𝑎𝑒|·) for the an-
swer at position ⟨𝑎𝑠,𝑎𝑒⟩—has stayed the same over the course of years in many influential
works (Xiong et al., 2017; Seo et al., 2017; Chen et al., 2017a; Yu et al., 2018; Devlin et al.,
2019; Cheng et al., 2020) since the earliest work on this dataset—the submission of Wang
and Jiang (2017). Based on the myths of worse performance of different objectives, these
works adopt the deeply rooted assumption of independence. However, this assumption may
lead to obviously wrong predictions, as shown in Figure 3.1. In addition, this assumption
leads to degenerate distribution 𝑃 (𝑎𝑠, 𝑎𝑒|·), as high probability mass is assigned to many
trivially wrong2 answers.

Some of the earlier work (Wang and Jiang, 2017; Weissenborn et al., 2017) and recent
approaches including large language representation models (LRMs) like XLNet (Yang et al.,
2019c), ALBERT (Lan et al., 2020) or ELECTRA (Clark et al., 2020) started modeling
the span probability via conditional probability factorization 𝑃 (𝑎𝑒|𝑎𝑠, ·)𝑃 (𝑎𝑠|·). However,
is it unknown whether this objective improves any performance at all, as almost none of
the recent works reported results on its effect, not even described its existence (except
ELECTRA paper). Additionally, this objective requires beam search which slows down
inference in test time. Exceptionally, Lee et al. (2016) proposed one way for modelling
P(𝑎𝑠, 𝑎𝑒) directly, but the approach was only sparsely adopted (Lee et al., 2019; Khattab
et al., 2021b). This may be caused by the belief, that enumerating all possible spans has a
large complexity (Cheng et al., 2021a). However, in practice we find the complexity to be

1In this chapter, all definitions and derivations are made for CDQA problem, where the answer is ex-
tracted from a single piece of evidence. The presented approaches can be easily extended to the multi-
document scenario, as shown in the subsequent Chapter 4.

2We roughly define “trivially wrong” as not resembling any string form human would answer, e.g., the
first or the second last answer of Figure 1.3.
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Question: What was the name of atom bomb dropped by
USA on Hiroshima?
Passage: ...The Allies issued orders for atomic bombs to be
used on four Japanese cities were issued on July 25. on
August 6, one of its b - 29s dropped a little boy uranium gun-
type bomb on Hiroshima. three days later, on August 9, a fat
man plutonium implosion-type bomb was dropped by
another b - 29 on Nagasaki...
Ground truth: little boy

 P(𝑎𝑠, 𝑎𝑒|·) Top Predictions from QA model
33.3 little boy uranium gun-type bomb on Hiroshima.

three days later, on August 9, a fat man
32.15 little boy
23.51 fat man
3.60 a fat man
2.08 a little boy uranium gun - type bomb on hi-

roshima. three days later, on august 9, a fat
man

1.03 a little boy

Figure 3.1: An example of an error that comes with an independence assumption. The
model assigns high probability mass to boundaries around “little boy”, and “fat man”
answers. However, the maximum probability is assigned to the start of one and the end of
another answer. Hence the model produces obviously wrong answer.

often similar to the assumption of independence when implementing the objective efficiently.
We continue with the analysis and the in-depth discussion on complexity in Appendix F.1.

In this work, we try to break the myths about the objectives that have been widely used
previously. We experiment with the joint objective and we also introduce a new compound
objective, that deals with modeling joint probability 𝑃 (𝑎𝑠, 𝑎𝑒|·) directly while keeping the
traditional independent objective as an auxiliary objective. We experiment with 5 different
joint probability function realizations and find that with current LRMs, simple dot product
works the best. However, we show that this is not a rule, and for some models, other function
realizations might be better. The conducted experiments demonstrate that using compound
objective is superior or equal to (i.e., Pareto optimal to) previously used objectives across
the various choices of models or datasets.

In summary, the contributions of this chapter are:

1. introduction of new ways of efficient joint probability computation, adding negligible
theoretical computation/memory complexity overhead and no practical overhead over
the assumption of independence,

2. introduction of the compound objective and its comparison with the traditional objec-
tives based on the assumption of independence, conditional probability factorization,
or direct joint probability,

3. a thorough evaluation on the wide spectrum of models and datasets comparing dif-
ferent objectives supported by statistical tests,

4. a manual analysis that provides a closer look at the different impacts of independent
and compound objectives.
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3.1 Probabilistic Assumptions for the Answer Span
This section describes the common approach to the EQA, with its independent modeling
of the answer span start and end positions. Secondly, it defines an assumption based
on conditional factorization of span probability. Finally a function family for computing
joint span probability and a combination of independent and joint assumption we call the
compound objective are proposed.

The EQA can be defined as follows: Given a question 𝑞 and a passage or a set of passages
𝐷, find a string 𝑎 from 𝐷 such that 𝑎 answers the question 𝑞. This can be expressed by
modeling a categorical probability mass function (PMF) that has its maximum in the
answer start and end indices 𝑎 = ⟨𝑎𝑠, 𝑎𝑒⟩ from the passage 𝐷 as P(𝑎𝑠, 𝑎𝑒|𝑞,𝐷) for each
question-passage-answer triplet (𝑞,𝐷, 𝑎) from the dataset 𝒟. The parameters 𝜃 of such a
model can be estimated by minimizing the negative maximum likelihood objective

−
∑︁

(𝑞,𝐷,𝑎)∈𝒟

log P𝜃(𝑎𝑠, 𝑎𝑒|𝑞,𝐷). (3.1)

During inference, the most probable answer span ⟨𝑎𝑠, 𝑎𝑒⟩ is predicted. Although there
are works that were able to model the joint probability explicitly (Lee et al., 2016), modeling
it directly results in a number of categories quadratic to the passage’s length. Optimizing
such models may be seen as challenging, as there are often more classes than the amount
of data points within the current datasets. For illustration, considering a typical length
of BERT inputs 512, naive implementation would lead to roughly ≈ 131, 000 categories.
Therefore, state-of-the-art approaches resort to independence assumption P(𝑎𝑠, 𝑎𝑒|𝑞,𝐷) =
P𝜃(𝑎𝑠|𝑞,𝐷) P𝜃(𝑎𝑒|𝑞,𝐷). The factorized probability is usually computed by the model with
shared parameters 𝜃, as introduced in Wang and Jiang (2017). For most of the systems
modeling the independent objective with neural networks, the final endpoint probabilities3

are derived from start/end position passage representations computed via shared model
𝐻𝑠,𝐻𝑒 ∈ R𝑑×𝐿 as shown for 𝑏 ∈ {𝑠, 𝑒}.

P𝜃(𝑎𝑏) = softmax(𝑤⊤
𝑏 𝐻𝑏 + 𝑏𝑏) (3.2)

The passage representations 𝐻𝑠, 𝐻𝑒 are often pre-softmax layer representations from neural
network with passage and question at the input. Symbols 𝑑 and 𝐿 denote the model-specific
dimension and the passage length, respectively.

Occasionally, the conditional factorization of probabilities P(𝑎𝑠, 𝑎𝑒|𝑞,𝐷) = P𝜃(𝑎𝑠) P𝜃(𝑎𝑒|𝑎𝑠)
is considered instead. The probabilities of span’s start and end are computed the same way
as in equation 3.2. The difference is in the end representations 𝐻𝑒 = 𝑓(𝑎𝑠), which now
must be a function of span’s start 𝑎𝑠.

3.1.1 Joint Assumptions

However, one does not need to apply simplifying assumptions and instead compute joint
probability directly. We define a family of joint probability functions P𝜃(𝑎𝑠, 𝑎𝑒) with an
arbitrary vector-to-vector similarity function 𝑓𝑠𝑖𝑚 used for obtaining each span score (e. g.,
the dot product 𝐻⊤

𝑠 𝐻𝑒)4.

P𝜃(𝑎𝑠, 𝑎𝑒) = softmax(vec(𝑓𝑠𝑖𝑚(𝐻𝑠,𝐻𝑒))) (3.3)
3For brevity, 𝑞,𝐷 dependencies are further omitted and bias terms are broadcasted along dimension 𝐿.
4Here, we slightly abuse the notation for the sake of generality. See Subsection 3.2.2 for specific applica-

tions.
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Finally, we define a multi-task compound objective (3.4) composing the joint and inde-
pendent probability formulations, computed via a shared model 𝜃.

−
∑︁

(𝑞,𝐷,𝑎)∈𝒟

log P𝜃(𝑎𝑠, 𝑎𝑒) P𝜃(𝑎𝑠) P𝜃(𝑎𝑒) (3.4)

Here probability P(𝑎𝑠) P(𝑎𝑒) can be seen as an auxiliary objective for the more complex joint
objective P𝜃(𝑎𝑠, 𝑎𝑒) used for decoding in test time. Empirically, we found the compound
objective to be Pareto optimal to other presented assumptions.

3.2 Experimental Setup
We use Transformers (Wolf et al., 2020) for language representation model (LRM) im-
plementation. Our experiments were done on 16GB GPUs using PyTorch (Paszke et al.,
2019). For experiments with LRMs, we used Adam optimizer with a decoupled weight
decay (Loshchilov and Hutter, 2017). The used hyperparameters were the same as the
SQuADv1.1 default hyperparameters as proposed by specific LRM authors through all our
datasets. For BIDAF, we tuned hyperparameters using Hyperopt (Bergstra et al., 2013)
separately for independent and compound objectives5. See Appendix A.1 for further details.

In all our experiments, we apply length filtering (LF). Therefore, probabilities 𝑃 (𝑎𝑠 =
𝑖, 𝑎𝑒 = 𝑗) are set to 0 iff 𝑗 − 𝑖 > 𝜁, where 𝜁 is a length threshold. Following Devlin et al.
(2019), we set 𝜁 = 30 in all of our experiments.

3.2.1 Similarity Functions

Here we sum up the definitions of similarity functions presented in the paper. We ex-
perimented with 5 similarity functions. For each start representation ℎ𝑠 ∈ R𝑑 and end
representation ℎ𝑒 ∈ R𝑑, both column vectors from the matrix of boundary vectors 𝐻𝑠,
𝐻𝑒 ∈ R𝑑×𝐿 respectively. Note that 𝑑 here is model specific dimension, 𝐿 is passage length,
∘ denotes elementwise multiplication and [; ] denotes concatenation. The similarity func-
tions above these representations are defined as:

• A dot product:
𝑓𝑑𝑜𝑡(ℎ𝑠,ℎ𝑒) = ℎ𝑠

⊤ℎ𝑒. (3.5)

• A weighted dot product:

𝑓𝑤𝑑𝑜𝑡(ℎ𝑠,ℎ𝑒) = 𝑤⊤[ℎ𝑠 ∘ ℎ𝑒]. (3.6)

• An additive similarity:
𝑓𝑎𝑑𝑑(ℎ𝑠,ℎ𝑒) = 𝑤⊤[ℎ𝑠;ℎ𝑒]. (3.7)

• An additive similarity combined with weighted product:

𝑓𝑚𝑎𝑑𝑑(ℎ𝑠,ℎ𝑒) = 𝑤⊤[ℎ𝑠;ℎ𝑒;ℎ𝑠 ∘ ℎ𝑒]. (3.8)

• A multi-layer perceptron (MLP) as proposed by Lee et al. (2019):

𝑓𝑀𝐿𝑃 (ℎ𝑠,ℎ𝑒) = 𝑤⊤𝜎(𝑊 [ℎ𝑠;ℎ𝑒] + 𝑏) + 𝑏2, (3.9)

where 𝜎(𝑥) = ln(ReLU(𝑥)) and ln denotes layer normalization (Ba et al., 2016).
5We used 𝑓𝑚𝑎𝑑𝑑 similarity during parameter tuning.
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3.2.2 Applied Models

Our experiments are based on three EQA models:

BERT-base (Devlin et al., 2019) and ALBERT-xxlarge (Lan et al., 2020) are LRMs
based on the self-supervised pretraining objective (see Section 2.3). During fine-tuning,
each model receives the concatenation of question and passage as input. Outputs 𝐻 ∈ R𝑑×𝐿

corresponding to the passage inputs of length 𝐿 are then reduced to boundary probability
distributions by two vectors 𝑤𝑠, 𝑤𝑒 as P(𝑎𝑏) = softmax(𝑤⊤

𝑏 𝐻 + 𝑏𝑏) where 𝑏 ∈ {𝑠, 𝑒}. To
compute joint probability distribution P(𝑎𝑠, 𝑎𝑒), start representations are computed using
𝑊 ∈ R𝑑×𝑑 and 𝑏 ∈ R𝑑 (broadcasted) as 𝐻𝑠 = 𝑊𝐻 + 𝑏 and end representations as
𝐻𝑒 = 𝐻. Unless stated otherwise, a dot product 𝑓𝑑𝑜𝑡 is used as the similarity measure.

P(𝑎𝑠, 𝑎𝑒) = softmax(vec(𝐻⊤
𝑠 𝐻𝑒)) (3.10)

For comparison with the conditional objective, we reimplemented the conditional ob-
jective used in ALBERT (Lan et al., 2020). First, the probability distribution P(𝑎𝑠) for
the start position is computed in the same manner as for the independent objective—by
applying a linear transformation layer on top of representations 𝐻 ∈ R𝑑×𝐿 from the last
layer of the LRM, where 𝑑 is the model dimension and 𝐿 denotes the input sequence length.

P(𝑎𝑠) ∝ exp (𝑤⊤
𝑠 𝐻 + 𝑏𝑠) (3.11)

During the validation, top-𝑘 (𝑘 = 10 in our experiments) start positions are selected from
these probabilities, while in the training phase, we apply teacher forcing by only selecting
the correct start position. Representation of i-th start position ℎ𝑖 from the last layer of
the LRM corresponding to the selected position is then concatenated with representations
corresponding to all the other positions 𝑘 = 0..𝐿 into matrix 𝐶.

𝐶 =

⎡⎢⎢⎢⎣
— [ℎ0;ℎ𝑖] —
— [ℎ1;ℎ𝑖] —

...
— [ℎ𝑛;ℎ𝑖] —

⎤⎥⎥⎥⎦ (3.12)

Subsequently, a layer with tanh activation is applied on this matrix 𝐶, followed by a linear
transformation to obtain the end probability distribution:

P(𝑎𝑒|𝑎𝑠 = 𝑖) ∝ exp (𝑤⊤
𝑐 tanh (𝑊𝐶 + 𝑏′) + 𝑏) (3.13)

For each start position, we again select top-𝑘 end positions, to obtain 𝑘2-best list of
answer spans. In contrast to the official ALBERT implementation, we omitted a layer
normalization after tanh layer.
BIDAF (Seo et al., 2017) dominated the state-of-the-art systems in 2016 and motivated a
lot of following research work (Clark and Gardner, 2018; Yu et al., 2018). Question and pas-
sage inputs are represented via the fusion of word-level embeddings from GloVe (Pennington
et al., 2014) and character-level word embeddings obtained via a convolutional neural net-
work. Next, a recurrent layer is applied to both. Independently encoded questions and
passages are then combined into a common representation via two directions of attention
over their similarity matrix 𝑆. The similarity matrix is computed via multiplicative-additive
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interaction from equation (3.14) between each pair of question vector 𝑞𝑖 and passage vec-
tor 𝑝𝑗 , where [; ] denotes row-wise vector concatenation and ∘ stands for the Hadamard
product.

𝑆𝑖𝑗 = 𝑓𝑚𝑎𝑑𝑑(𝑞𝑖,𝑝𝑗) = 𝑤⊤[𝑞𝑖;𝑝𝑗 ; 𝑞𝑖 ∘ 𝑝𝑗 ] (3.14)
Common representations are then concatenated together with document representations
yielding 𝐺 and passed towards two more recurrent layers producing 𝑀 and 𝑀2—first
to obtain answer-start representations 𝐻𝑠 = [𝐺;𝑀 ] and second to obtain answer-end
representations6 𝐻𝑒 = [𝐺;𝑀2]. Unless stated otherwise, the joint probability P(𝑎𝑠, 𝑎𝑒)
is then computed over scores from vectorized similarity matrix of 𝐻𝑠 and 𝐻𝑒 using the
2-layer feed-forward network 𝑓𝑀𝐿𝑃 as a similarity function. We refer reader to read the
original publication (Seo et al., 2017) for the in-detail description of BIDAF architecture.

3.2.3 Datasets

Dataset Train Test
SQuADv1.1 87,599 10,570
SQuADv2.0 130,319 11,873

Adversarial SQuAD - 3,560
Natural Questions 104,071 12,836

NewsQA 74,160 4,212
TriviaQA 61,688 7,785

Table 3.1: Number of examples per each dataset used.

We evaluate our approaches on a wide spectrum of datasets. We do not split develop-
ment datasets, as we use fixed hyperparameters with a fixed amount of steps and use the
last checkpoint for our LRM experiments. This also makes our results directly comparable
to other works (Devlin et al., 2019; Lan et al., 2020)7. The statistics for all datasets are
shown in Table 3.1. To focus only on the extractive part of QA and to keep the format the
same, we use curated versions of the last 3 datasets as released in MrQA shared task (Fisch
et al., 2019). The curation process converted and filtered the dataset according to two
criterias into a unified, extractive format. Firstly, the answer to each question must appear
as a span of tokens in the passage. Secondly, passages, which may span through multiple
paragraphs or documents, are concatenated and truncated to the first 800 tokens. This
eases the computational requirements for processing long documents efficiently.

SQuADv1.1 (Rajpurkar et al., 2016) is a popular dataset composed of question, para-
graphs, and answer span annotation collected from the subset of Wikipedia passages.
SQuADv2.0 (Rajpurkar et al., 2018) is an extension of SQuADv1.1 with additional 50k
questions and passages, which are topically similar to the question, but do not contain an
answer.
Adversarial SQuAD (Jia and Liang, 2017) tests, whether the system can answer ques-
tions about paragraphs that contain adversarially inserted sentences, which are automati-
cally generated to distract computer systems without changing the correct answer or mis-
leading humans. In particular, our system is evaluated in AddSent adversary setting,
which runs the model as a black box for each question on several paragraphs containing
different adversarial sentences and picks the worst scoring answer.

6For details, see formulas 2 to 4 in Seo et al. (2017).
7Submissions on the SQuAD test set need to be manually validated, which often takes months in practice.
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Natural Questions (Kwiatkowski et al., 2019) dataset consists of real user queries ob-
tained from Google search engine. Each example is accompanied by a relevant Wikipedia
article found by the search engine, and human annotation for long/short answer. The long
answer is typically the most relevant paragraph from the article, while short answer consists
of one or multiple entities or short text spans. We only consider short answers in this work.
NewsQA (Trischler et al., 2017) is a crowd-sourced dataset based on CNN news articles.
Answers are short text spans and the questions are designed such that they require reasoning
and inference besides simple text matching.
TriviaQA (Joshi et al., 2017) consists of question-answer pairs from 14 different trivia
quiz websites and independent evidence passages collected using Bing search from various
sources such as news, encyclopedias, blog posts, and others. Additional evidence is obtained
from Wikipedia through entity linker.

Sample from each used dataset can be found within Appendix E.1.

3.2.4 Statistical Testing

To improve the soundness of the presented results, we use statistical testing. An exact
match (EM) metric can be viewed as an average of samples from the Bernoulli distribution.
As stated with the central limit theorem, a good assumption might be the EM comes from
the normal distribution. We train 10 models for each presented LRM’s result, obtaining 10
EMs for each sample. Then we use the one-tailed unpaired unequal variances t-test to check
whether the case of improvement is significant. The improvement is considered significant
iff p-value < 0.05.

3.2.5 Metrics

In this chapter, the performance of the proposed method is measured through two evaluation
metrics: Exact Match (EM) and F1 for Question Answering (F1). Both metrics are
described in-depth in Section 2.2.

3.3 Results
We now show the effectiveness of the proposed approaches. Each of the presented results
is averaged from 10 training runs.

EM F1 EM F1
I 66.16 76.19 81.31 88.65

I+J BIDAF BERT
𝑓𝑑𝑜𝑡 64.30 73.84 81.83 88.52
𝑓𝑎𝑑𝑑 66.04 75.10 81.52 88.47
𝑓𝑤𝑑𝑜𝑡 66.10 75.16 81.35 88.29
𝑓𝑚𝑎𝑑𝑑 66.11 75.23 81.45 88.44
𝑓𝑀𝐿𝑃 66.96 75.90 81.61 88.44

Table 3.2: A comparison of similarity functions in the models trained via compound objec-
tive (I+J) and independent objective (I).
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Model Obj SQ1 SQ2 AdvSQ TriviaQA NQ NewsQA

BERT

I 81.31/88.65 73.89/76.74 47.04/52.62 62.88/69.85 65.66/78.20 52.39/67.17
J 81.33/88.13 72.66/75.04 48.10/53.54 63.93/69.90 67.75/78.70 52.73/66.41

JC 81.22/88.29 71.51/74.38 46.07/51.35 62.82/69.94 66.48/77.34 52.39/67.05
I+J 81.83/88.52 73.53/76.14 48.32/53.47 63.73/69.75 67.75/78.81 52.96/66.83

ALBERT

I 88.55/94.62 87.07/90.02 68.12/73.54 74.7/80.33 70.78/83.42 59.95/75.0
J 88.84/94.64 86.87/89.71 68.90/74.17 75.11/80.41 73.36/84.01 60.19/74.28

JC 88.60/94.59 86.78/89.73 68.0/73.25 - 72.33/83.35 58.52/72.74
I+J 89.02/94.77 87.13/89.98 69.57/74.76 75.31/80.43 73.32/84.08 60.41/74.46

Table 3.3: EM/F1 results of different objectives through the spectrum of datasets. Bold
results mark best EM across the objectives. Italicized I+J results mark a significant im-
provement over the independent objective.

Similarity Functions . We analyzed the effect of different similarity functions over all
models in Table 3.2. We found different similarity functions to work better with different
architectures. Namely, for BIDAF, most of the similarity functions work equally or worse
than the independent objective. Exceptionally, 𝑓𝑀𝐿𝑃 works significantly better. This is
surprising especially because we tuned the hyperparameters with the 𝑓𝑚𝑎𝑑𝑑 function. For
BERT, most of the similarity functions performed better than the independent objective,
and simple dot-product 𝑓𝑑𝑜𝑡 improved significantly better above all. We choose 𝑓𝑀𝐿𝑃 for
BIDAF and 𝑓𝑑𝑜𝑡 for our LRMs for the rest of the experiments.
Comparison of Objectives . Our main results—the performance of independent (I),
joint (J), joint-conditional (JC) and compound (I+J) objectives—are shown in Table 3.3.
We note the largest improvements can be seen for an exact match (EM) performance
metric. In fact, in some cases objectives modeling joint PMF lead to degradation of F1,
while improving EM (e.g., on SQuADv1.1 and NewsQA datasets for BERT). Upon manual
analysis of BERT’s predictions based on 200 differences between independent and compound
models on SQuADv1.1, we found a potential explanation. In 10 cases (5 %) the independent
model chooses a larger span encompassing multiple potential answers, thus obtaining a non-
zero F1 score. In 9 out of 10 of these cases, we found the compound model to pick just one
of these potential answers8, obtaining either full match or no F1 score at all. We found no
cases of compound model encompassing multiple potential answers in the analyzed sample.

Next, we remark that compound objective outperformed others in most of our experi-
ments. In the BERT case, the compound objective performed significantly better than the
independent objective on 5 out of 6 datasets. In ALBERT case, the compound objective
performed significantly better than the independent objective 5 from 6 times and it was on
par in the last case. Comparing compound to joint objective in BERT and ALBERT cases,
the two objectives produce similar results, with compound objective performing slightly
better when significantly outperforming joint objective on the two SQuAD datasets and no
significant differences for the other 4 datasets.
Conditional Objective Our implementation of the conditional objective performs even
or worse to the independent objective in most cases. Upon investigation, we found the
model tends to be overconfident about start predictions and underconfident about its end
predictions, often assigning high probability to a single answer-start. In Table 3.4, we an-
alyze the top-5 most probable samples from BERT on each example of SQuADv1.1 dev
data. We found that on average the conditional model kept its top-1 start prediction in

8For instance, in Table 3.7, row 4, column 3, we consider 2,000; 40,000; 2,200; 1,294 and 427 as potential
answers.
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90 % of subsequent top-2 to top-5 less probable answers, but kept its top-1 end prediction
only in 4 % of top-2 to top-5 subsequent answers. We found this statistic to be on par
for start/end prediction for different objectives. Interestingly, Table 3.4 also reveals that
independent objective contains less diverse start/end tokens than joint objectives. Based
on these results, and assumptions done in the model, we hypothesize that: (a) the con-
ditional objective selects the answer’s start regardless of whether a model can confidently
identify the end of this answer (b) since the independent model selects the start and end
independently, it is prone to select high-probability start and then only change end predic-
tions in subsequent top-2 to top-5 predictions (or vice-versa select end and change starts in
subsequent predictions).
Largest Improvements and Degradation Upon closer inspection of the results, we
found possible reasons for the result degradation of the compound model on SQuADv2.0,
and also its large improvements gained on the NQ dataset.

For SQuADv2.0, the accuracies of no-answer detection for independent/joint/compound
objectives in the case of BERT models are 79.89/78.12/79.32. We found the same trend for
ALBERT. We hypothesize, that this inferior performance of joint and compound models
may be caused by the model having to learn a more complex problem of 𝐾2 classes of all
possible spans over the input document, which is often more (e.g. for 𝐾 = 512) than the
size of the datasets, leaving the less of “model capacity” to this another task. To confirm
that the compound model is better at the answer extraction step, we run all 10 checkpoints
trained on SQuADv2.0 data with an answer, while masking the model’s no-answer option.
The results shown in Table 3.5 support this hypothesis.

On the other side, we found the large improvements over NQ might be exaggerated by
the evaluation approach of MRQA, where in the case of multi-span answers, choosing one
of the spans from multi-span answer counts as correct. Upon closer result inspection, we
found that the independent model here was prone to select the start of one span from the
multi-span answer and the end of a different span from the multi-span answer. To quantify
this behavior, we annotated 100 random predictions with multi-span answers in original
NaturalQuestions on whether they pick just one span from the multi-span answer (which
follows from the MRQA formulation) or they encompass multiple spans. For independent/-
compound objectives we found 59/77 cases of picking just one of the spans and 22/4 cases
of encompassing multiple spans from the multi-span answer for the BERT model and 57/81
and 33/10 cases for the ALBERT respectively.
Length Filtering Heuristic Additionally, we found the benefit from the commonly used
length filtering (LF) heuristic is negligible for models trained via any joint objective, as
shown in Table 3.6. Therefore, we find it unnecessary to use the heuristic anymore. In this
experiment, we also include our results with BIDAF, which show significant improvement
of compound objective on the SQuADv1.1 dataset from other approaches.

Model Start Token End Token
I 43.76% 45.66%

JC 90.12% 3.9%
J 33.71% 35.91%

I+J 34.95% 37.27%

Table 3.4: Proportion of samples, on which top-1 prediction start/end token was kept as
start/end token also in top-2 to top-5 subsequent predictions.
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3.4 Analysis
Fixed Error Types Apart from an example in Figure 1.3, we provide more examples of
different predictions9 between models trained with the independent and compound objective
in Table 3.7. In general, by doing manual analysis of errors, we noticed three types of
trivially wrong errors being fixed by the compound objective model in BERT:

1. Uncertainty of the model causes it to assign high probabilities to two different answer
boundaries. During decoding the start/end boundaries of two different answers are
picked up (fourth row in Table 3.7).

2. The model assigns high probability to answer surrounded by the paired punctuation
marks (e. g. quotes). It chooses the answer without respecting the symmetry between
paired punctuation marks (third row of Table 3.7).

3. Uncertainty of the model causes it to assign high probabilities to two spans containing
the same answer string. This is the special case of problem (1)—while the model often
chooses the correct answer, the boundaries of two different spans are selected (first
row of Table 3.7).

To quantify the occurrence of these errors, we study our best BERT and ALBERT
checkpoint predictions for SQuADv1.1 validation data. For BERT, we found the most
frequently occurring is error type (1), for which we manually annotated 200 random dif-
ferences between independent and compound model predictions. We found 5 % of them to
be the case of this error of the independent, and no case of this error for the compound
model. Interestingly, 4 out of 10 of these cases were questions clearly asking about a single
entity, while the independent model answered multiple entities, e.g., Q: Which male child of
Ghengis Khan and Börte was born last? A: Chagatai (1187—1241), Ögedei (1189—1241),
and Tolui. For the error type (2), we filtered all prediction differences (more than 1300
for BERT and ALBERT) down to cases, where either independent or compound predic-
tion contained non-alphanumeric paired punctuation marks, which resulted in less than 30
cases for each. For BERT, 37 % independent predictions from these cases contained an error
type (2), while again no paired punctuation marks errors were observed for the compound
objective.

For the error type (3), we filter prediction differences down to cases, where independent
or compound prediction contained the same prefix and suffix of length at least 2 (only 9
and 5 cases for BERT and ALBERT). From these, error type (3) occurred in 3 cases for
BERT and in 1 case for ALBERT in case of independent and again we found no case for the

9We chose to analyze the different predictions, as the model is usually more uncertain in these borderline
cases.

Objective EM F1

BERT
I 80.70 88.71
J 81.38 81.51

I+J 81.51 88.69

ALBERT
I 87.40 94.10
J 87.74 94.31

I+J 87.90 94.38

Table 3.5: Performance of SQuADv2.0 models on answerable examples of SQuADv2.0.
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Model I J JC I+J

BIDAF - 65.85/75.94 - - 66.95/75.89
LF 66.16/76.19 58.24/67.42 - 66.96/75.90

BERT - 80.98/88.40 81.30/88.11 81.16/88.25 81.80/88.50
LF 81.31/88.65 81.33/88.13 81.22/88.29 81.83/88.52

ALBERT - 88.39/94.51 88.82/94.64 88.57/94.57 89.01/94.77
LF 88.55/94.63 88.84/94.64 88.60/94.59 89.02/94.77

Table 3.6: SQuADv1.1 EM/F1 results with length filtering (LF) computed from the same
set of checkpoints. Differences larger than 0.1 are in bold.

Question Passage Independent Compound Ground
Truth

What company won a
free advertisement due
to the QuickBooks con-
test?

QuickBooks sponsored a ”Small Business Big Game“ con-
test, in which Death Wish Coffee had a 30-second commer-
cial aired free of charge courtesy of QuickBooks. Death Wish
Coffee beat out nine other contenders from across the United
States for the free advertisement.

Death Wish Coffee had
a 30-second commer-
cial aired free of charge
courtesy of QuickBooks.
Death Wish Coffee

Death Wish
Coffee

Death Wish
Coffee

In what city’s Marriott
did the Panthers stay?

The Panthers used the San Jose State practice facility and
stayed at the San Jose Marriott. The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott.

San Jose State practice
facility and stayed at
the San Jose

San Jose San Jose

What was the first point
of the Reformation?

Luther’s rediscovery of ”Christ and His salvation“ was the
first of two points that became the foundation for the Refor-
mation. His railing against the sale of indulgences was based
on it.

Christ and His
salvation”

Christ and
His salva-
tion

Christ and
His salva-
tion

How many species of
bird and mammals are
there in the Amazon re-
gion?

The region is home to about 2.5 million insect species, tens
of thousands of plants, and some 2,000 birds and mammals.
To date, at least 40,000 plant species, 2,200 fishes, 1,294
birds, 427 mammals, 428 amphibians, and 378 reptiles have
been scientifically classified in the region. One in five of
all the bird species in theworld live in the rainforests of the
Amazon, and one in five of the fishspecies live in Amazonian
rivers and streams. Scientists have describedbetween 96,660
and 128,843 invertebrate species in Brazil alone.

2,000 birds and mam-
mals. To date, at least
40,000 plant species,
2,200 fishes, 1,294 birds,
427

427 2,000

What was found to be
at fault for the fire in
the cabin on Apollo 1
regarding the CM de-
sign?

NASA immediately convened an accident review board,
overseen by both houses of Congress. While the determi-
nation of responsibility for the accident was complex, the
review board concluded that “deficiencies existed in Com-
mand Module design, workmanship and quality control.” At
the insistence of NASA Administrator Webb, North Ameri-
can removed Harrison Storms as Command Module program
manager. Webb also reassigned Apollo Spacecraft Program
Office (ASPO) Manager Joseph Francis Shea, replacing him
with George Low.

deficiencies existed in
Command Module de-
sign, workmanship and
quality control.“

Harrison
Storms

deficiencies

Table 3.7: Examples of predictions from SQuADv1.1 using BERT trained with independent
and compound objective.
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Model I J I+J

BIDAF LF 66.16/76.19 58.24/67.42 66.96/75.90
SF 66.20/76.21 - 66.99/75.90

BERT LF 81.31/88.65 81.33/88.13 81.83/88.52
SF 81.38/88.68 81.23/87.97 81.65/88.36

ALBERT LF 88.55/94.63 88.84/94.64 89.02/94.77
SF 88.53/94.00 88.28/94.10 88.68/94.49

Table 3.8: SQuADv1.1 EM/F1 results with length filtering (LF) and LF + surface form
filtering (SF).

Figure 3.2: Histograms of average character length of top-20 predicted answers from BERT
trained with different objectives compared with character length of ground-truth answers.

compound for both models. Note the error type (3) can be fully alleviated by marginalizing
over probabilities of top-K answer spans during the inference, as in (Das et al., 2019; Cheng
et al., 2020) (read Part “Marginalizing Over the Same String Forms” below for details).
Interestingly, for ALBERT, we found only a negligible amount of errors of type (1) and (2)
for both objectives10.
Marginalizing Over the Same String Forms To alleviate the error type (3) from
Section 3.4, we experimented with marginalizing over probabilities of top-100 answers (so-
called surface form filtering). This is done by summing the probabilities of the same string
spans into the most probable string occurrence and setting the probability of the rest to 0.
The results for all trained models averaged over 10 checkpoints are presented in Table 3.8.
Note this approach sometimes hurts performance, especially in the case of joint probability
approaches, where this error type happens very rarely.

10The full difference between BERT’s and ALBERT’s predictions and manual analysis can be found in
the supplementary.
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Bias Towards Longer Answer Spans Finally, during manual analysis, we observed that
uncertain models with an independent objective are prone to pick large answer spans. To
illustrate, that spans retrieved with approaches modeling joint probability differ, we took
the top 20 most probable spans from each model and averaged their length.

This was done for each example in the SQuADv1.1 test dataset. The histogram of these
averages is shown in Figure 3.2. For a fair comparison, these predictions were filtered via
length filtering.

3.5 Related Work
One of the earliest works in EQA from Wang and Jiang (2017) experimented with generative
models based on index sequence generation via pointer networks (Vinyals et al., 2015) and
now traditional boundary models that focus on the prediction of start/end of an answer
span. Their work showed substantial improvement of conditional factorization boundary
models over the index sequence generative models.

Followup work on EQA (Seo et al., 2017; Chen et al., 2017a; Clark and Gardner, 2018;
Yu et al., 2018; Devlin et al., 2019; Cheng et al., 2020) and others considered using the
assumption of independence in their objectives.

Xiong et al. (2017) explored an iterative boundary model. They used RNN and a
highway maxout network to decode the start/end of the span independently in multiple
timesteps, each time feeding the RNN with predictions from the previous time step until
the prediction was not changing anymore. In their following work Xiong et al. (2018)
combined their objective with a reinforcement learning approach, in which the decoded
spans from each timestep were treated as a trajectory. They argued that cross-entropy is
not reflecting F1 performance well enough, and defined a reward function equal to F1 score.
Finally, they used policy gradients as their auxiliary objective, showing 1 % improvement
in the terms of F1 score.

Authors of recent LRMs like XLNet (Yang et al., 2019c), ALBERT (Lan et al., 2020) or
ELECTRA (Clark et al., 2020) use conditional probability factorization P(𝑎𝑒|𝑎𝑠) P(𝑎𝑠) for
answer extraction in some cases11. Although the objective is not described in mentioned
papers (except for ELECTRA), we follow the recipe for modeling the conditional probability
from their implementation in this work. We believe this is the first official comparison of
this objective w.r.t. others.

The most similar to our work is RaSoR system (Lee et al., 2016). In their work,
authors compared various objectives—binary answer classification of every input token,
BIO sequence classification with CRF layer on top of their model, and most importantly
joint objective, which turns out to work the best. However, in our experiments, training
with the joint objective alone does not always perform that well. For BIDAF, we failed to
find the hyperparameters for the model to converge to results similar to different approaches.

11For instance, ALBERT uses conditional objective for SQuADv2.0, but not for SQuADv1.1.
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3.6 Chapter Summary
This chapter closely studies the objectives used within the extractive question answering
(EQA). It identifies the commonly used independent probability model as a source of triv-
ially wrong answers. As a remedy, it experiments with various ways of learning the joint
span probability. Finally, it shows how the joint objective, and subsequently the compound
objective—the combination of independent and joint probability in objective—improves
statistical EQA systems across 6 datasets without using any additional data. Using the
proposed approach, we were able to reach significant improvements through the wide spec-
trum of datasets, including +1.28 EM on Adversarial SQuAD and +2.07 EM on Natu-
ralQuestions for BERT-base. We performed a thorough manual analysis to understand
what happened to trivially wrong answers, and we found most of the cases disappear. We
also found that independent models tend to “overfit” to F1 metric by encompassing multiple
possible answer spans, which would explain the effect of joint objectives improving the EM
far more consistently than the F1. We showed the samples from the joint model contain the
greatest start/end token diversity. We further hypothesize that having diverse answers may
be especially beneficial towards answer reranking step commonly used in QA (Fajcik et al.,
2021b; Iyer et al., 2021). In addition, we also identified the reason for the performance
decrease with compound objective on SQuADv2.0—no-answer classifier trained within the
same model performs worse—and we leave the solution for this deficiency for future work.
In the next Chapter 4, the compound objective will be further applied in ODQA setting,
where its contributions were also confirmed.
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Chapter 4

On Complementarity of Extractive
and Abstractive QA

Years 2020–2021 showed rapid progress in neural factoid open-domain question answering
based on retriever-reader architecture (ODQA). Such ODQA systems (Voorhees et al., 2001;
Chen et al., 2017a) seek evidence for answering the questions inside the knowledge source
using the retriever and then extract the answer from the retrieved knowledge using the
reader. The knowledge source is often a large corpus of short snippets of natural language,
so-called passages (e.g., taken from an encyclopedia).

The progress can be attributed to advances in neural retrieval methods (Karpukhin
et al., 2020; Izacard and Grave, 2021a; Khattab et al., 2021b; Luan et al., 2021; Xiong
et al., 2020, inter alia) that benefit from smarter negative sampling strategies or a better
trade-off between complex question-passage interaction and its efficiency. It also can be
attributed to reading methods that enable processing large quantities of retrieved passages
Izacard and Grave (2021b). They compensate for a certain amount of the retrieval error
and enable early aggregation of the answer’s evidence between passages.

This work demonstrates a relative improvement of 23-32 % compared to last year’s state-
of-the-art DPR system (Karpukhin et al., 2020), while using the same knowledge source and
the retriever. We propose a state-of-the-art ODQA baseline composed of a retriever, passage
reranker, extractive reader, generative reader, and a novel component fusion approach. We
follow the practice from information retrieval and show that our moderately sized reranker
allows reducing the passage count needed at the input of large reader models about four
times. Our readers then take the best from both worlds. The extractive reader proposes
a list of salient answer spans. The abstractive reader reranks these spans, seeing all the
passages at once, or generates its own answer. The proposed pipeline is heterogeneous and
modular, making it an ideal benchmark.

In summary, the contributions of this chapter are three-fold:
1. We present a simple novel approach to aggregate scores from all system components

and show that the complementarity of heterogeneous extractive and abstractive ap-
proaches is superior to a posterior averaging ensemble of homogeneous models.

2. We show that the extractive reader can sometimes match the performance of the
abstractive approaches without taking the advantage of the fusion between retrieved
passages. This indicates that the evidence aggregation from multiple passages in the
abstractive approaches is either not learned or not necessary to perform well on these
datasets.
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3. We push the state-of-the-art for two large and popular datasets, demonstrating what
is achievable with the proposed approach, having the same knowledge source and the
retriever as in the previous works (Karpukhin et al., 2020; Izacard and Grave, 2021b).

4.1 Open-domain Question Answering Pipeline
We propose the R2-D2 (Rank twice, reaD twice), a 4-stage pipelined system that can
choose whether to generate or to extract an answer. The parameters of each component in
the pipeline are estimated separately. It is composed of DPR passage retriever (Karpukhin
et al., 2020), passage reranker (see Subsection 4.1.1), and two readers. Figure 4.1 shows
the diagram of our system. The first reader performs an extractive span-selection similar
to the systems in the previous Chapter 3. The second reader is based on Fusion-in-Decoder
(FiD) (Izacard and Grave, 2021b).

Formally, given a question 𝑞 ∈ 𝒬 from the set of all possible questions 𝒬 and the
corpus 𝒞 = {𝑝1, 𝑝2, ..., 𝑝𝑛} composed of passages 𝑝𝑖, the retriever learns a ranking function
rank : 𝒬× 𝒞 → R that assigns a score to each passage. We assume each passage contains
its passage title (e.g., a title from the Wikipedia article).

Taking a top-𝐾 scoring passages 𝒞𝑟 ⊂ 𝒞, reranker again rescores 𝒞𝑟 scoring passages by
learning a reranking function rerank : 𝒬× 𝒞𝑟 → R. Note that while rank and rerank have
similar signatures, the computational cost of rerank over the same amount of passages is
drastically higher, as it computes fine-grained interaction between tokens of question and
passage.

Next, the rescored passages are passed to two readers: the extractive reader reads top-𝑉
passages 𝒞𝑟𝑟 ⊂ 𝒞𝑟 independently of each other and computes the probability distribution
P𝑒(𝑎𝑒|𝑞, 𝒞𝑟𝑟) across each span 𝑎𝑒 in the passages (see subsection 4.1.2). The FiD generative
reader reads top-𝑉2 passages 𝒞′𝑟𝑟 ⊂ 𝒞𝑟 jointly and generates an answer from autoregressively
factorized probability space P𝑔(𝑎𝑔|𝑞, 𝒞′𝑟𝑟) via greedy search.

Finally, R2-D2 aggregates the outputs from all components using two fusions (described
in Subsection 4.1.3).

4.1.1 Passage Reranker

The proposed passage reranker is based on a transformer cross-encoder similar to Nogueira
and Cho (2019); Luan et al. (2021). The input is composed of question 𝑞 ∈ 𝒬 and passage
𝑝 ∈ 𝒞𝑟 concatenated with a special SEP token. The passage consists of a title and context
that are prepended with special start tokens and concatenated together. We denote the
contextual representation of input token 𝑤 obtained by the cross-encoder as En(𝑝, 𝑞)[𝑤] ∈
R𝑑.

Now we can define the reranking function for passage rescoring as

rerank(𝑞, 𝑝) = En(𝑝, 𝑞)[CLS]⊤𝑤 (4.1)

where 𝑤 ∈ R𝑑 is a trainable vector and CLS is the special token added at the start of
an input sequence. Finally, reranking probability that quantifies whether the passage 𝑝
contains an answer to the question 𝑞 is defined as

P𝑟𝑟 (𝑝|𝑞, 𝒞𝑟) = softmax
𝑝′∈𝒞𝑟

(︀
rerank

(︀
𝑞, 𝑝′

)︀)︀
𝑝
. (4.2)

Training. The model input for each question is exactly one positive sample supplemented
with hard negatives from the retriever. The ground truth passage annotated the same way
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In which Czech city is the brew-
ery of its largest beer exporter?

Retriever

top-K passages

1. ... town of České Budějovice, known as Bud-
weis...
2. Czech Beer Festival is the biggest ...
3. Plzeň, also called Pilsen is a city...

index

Passage
reranker

top-K reranked passages

1. Plzeň, also called Pilsen is a city...
2. ... town of České Budějovice, known as Bud-
weis...
3. Czech Beer Festival is the biggest ...

Extractive
reader

top-M answer spans

1. České Budějovice
2. Festival
3. Plzeň

Abstractive
reader

top generated answer

1. Brno

Abstractive
reader
top-M

reranked spans

1. Plzeň
2. Festival
3. České Budějovice

Score
aggregation

top-M aggr. spans

1. Plzeň
2. České Budějovice
3. Festival

Binary
decision

top answer

1. Plzeň

Figure 4.1: R2-D2 pipeline.
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as in Karpukhin et al. (2020), is primarily used as a positive sample. If the ground truth
is unknown, the positive sample is the top retrieved passage containing an answer. Hard
negatives are uniformly sampled from the retriever’s top-𝐾 results that do not contain the
answer. The parameters are estimated via cross-entropy loss.

4.1.2 Extractive Reader

Extractive reader estimates the probability P𝑒(𝑎𝑒|𝑞, 𝒞𝑟𝑟). It is the probability of a span 𝑎𝑒
from top-𝑉 passage 𝑝 ∈ 𝒞𝑟𝑟 being an answer to a question 𝑞. We decompose the P𝑒(𝑎𝑒|𝑞, 𝒞𝑟𝑟)
into four probabilities of:

• token 𝑠 being starting token of an answer span,
• token 𝑒 being ending token of an answer span,
• tokens 𝑠 and 𝑒 being boundary tokens of an answer span (Fajcik et al., 2021c),
• passage 𝑝 containing an answer for the question 𝑞 (inner reranker) as in Karpukhin

et al. (2020).

The final joint probability used in test-time, the product of these probabilities is computed1.
These probabilities are defined as:

P𝑏(𝑏𝑖|𝑞, 𝒞𝑟𝑟) = softmax(𝑠𝑏)𝑖 . (4.3)

LRM
LRM

LRM

(q,p1)

(q,p2)
(q,p3)

Softmax

Independent &

Concurrent

Start,end, span or passage scores
computed for p1

Figure 4.2: Illustration of globally normalized PMF computed by passage-localized LRM.

Here, 𝑏 may stand for a start, end, joint, and a passage. The 𝑖 is an index of a given element
(𝑖-th passage or 𝑖-th span or 𝑖-th start/end), and the 𝑠𝑏 is a vector of scores for each element
among all passages in 𝒞𝑟𝑟. The model estimates the scores 𝑠𝑏 with only a single passage at
its input (Clark and Gardner, 2018). However, softmax normalization sum sums through
all the passages, computing the global probability space (Cheng et al., 2020) (illustrated in
Figure 4.2). These scores are computed in scalar form as:

𝑠𝑠𝑠𝑡𝑎𝑟𝑡 = En(𝑝, 𝑞)[𝑠]⊤𝑤𝑠𝑡𝑎𝑟𝑡 (4.4)

𝑠𝑒𝑒𝑛𝑑 = En(𝑝, 𝑞)[𝑒]⊤𝑤𝑒𝑛𝑑 (4.5)

𝑠𝑠,𝑒𝑗𝑜𝑖𝑛𝑡 = (𝑊 𝑗En(𝑝, 𝑞)[𝑠] + 𝑏𝑗)
⊤En(𝑝, 𝑞)[𝑒] (4.6)

𝑠𝑝𝑝𝑎𝑠𝑠𝑎𝑔𝑒 = En(𝑝, 𝑞)[CLS]⊤𝑤𝑝 . (4.7)
1Decoding from subsets of these probabilities showed no significant difference (Table 4.4).
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Here, 𝑤*, 𝑏𝑗 ∈ Rℎ, En(𝑝, 𝑞)[·] ∈ Rℎ, and 𝑊 𝑗 ∈ Rℎ×ℎ are all trainable parameters. In par-
ticular, En encoder is based on a language representation model (LRM). We omit the spans
in the title and question for answer span selection. Therefore the final answer can be se-
lected only from the context. The following training loss ℒ with independently marginalized
components is used per sample:

ℒ = − log
∑︁

𝑠∈𝑠𝑡𝑎𝑟𝑡𝑠(𝐶𝑟𝑟)

P𝑠𝑡𝑎𝑟𝑡(𝑠|𝑞, 𝒞𝑟𝑟)− log
∑︁

𝑒∈𝑒𝑛𝑑𝑠(𝐶𝑟𝑟)

P𝑒𝑛𝑑(𝑒|𝑞, 𝒞𝑟𝑟)

− log
∑︁

𝑗∈𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠(𝐶𝑟𝑟)

P𝑗𝑜𝑖𝑛𝑡(𝑗|𝑞, 𝒞𝑟𝑟)− log
∑︁

𝑝∈𝐶𝑟𝑟

P𝑝𝑎𝑠𝑠𝑎𝑔𝑒(𝑝|𝑞, 𝒞𝑟𝑟) .
(4.8)

Summation aggregates probabilities from target annotations (starts, ends, etc.) ob-
tained in a distant supervision fashion. The answer span is annotated iff it contains the
same string form as the answer string. The passage is annotated if it contains answer span
(Clark and Gardner, 2018; Karpukhin et al., 2020). This is similar to surface form filtering,
introduced in Section 3.4, but instead used in training.

4.1.3 Component Fusion

To produce the final answer, R2-D2 aggregates the log-probabilities of all system compo-
nents via linear combinations tuned on validation data.

Firstly, the log-probabilities of all system components for top-𝑀 answer spans proposed
by the extractive reader are aggregated. Formally, assume the 𝒜𝑞 is the set of top-𝑀
answer spans from P𝑒(𝑎|𝑞, 𝒞𝑟𝑟) for question 𝑞. The generative model performs the answer
reranking re-evaluating the log-probability of the answer spans

{log P𝑔(𝑎|𝑞, 𝒞′𝑟𝑟) : 𝑎 ∈ 𝒜𝑞}. (4.9)

Next a logistic regression loss (4.11) is minimized to perform score aggregation. It
combines the scores across the R2-D2 components to maximize the correct answer span
probability over dataset 𝒟. This dataset is composed of the top-𝑀 outputs of the extractive
reader with the correct answer.

𝑥(𝑎) = [P𝑒(𝑎) P𝑔(𝑎) P𝑟(𝑝𝑎) P𝑟𝑟(𝑝𝑎)] (4.10)

−
∑︁

(𝒜𝑞 ,𝑔𝑡)∈𝒟

log softmax
𝑎∈𝒜𝑞

(︀
𝑤⊤ log 𝑥(𝑎) + 𝑏

)︀
𝑔𝑡

(4.11)

Here 𝑝𝑎 denotes the passage containing the answer span 𝑎, 𝒜𝑞 is a set of proposed answer
spans, 𝑔𝑡 is the correct answer span, probability dependencies, including 𝑞, are dropped for
clarity and only the logistic regression parameters 𝑤, 𝑏 are tuned in this step.

Finally, we hypothesized the correct answer span might not always be available in the
passage set 𝒞𝑟𝑟, but the generative reader might be able to generate the answer from its
parameters and the evidence given in passages. We introduce the binary classifier, which
decides whether to select the best span answer from the answer aggregation step or a
free-form answer generated via FiD. Given that 𝑠𝑎𝑔𝑔(𝑞) = max𝑎∈𝒜𝑞 𝑤

⊤𝑥(𝑎) + 𝑏 is the best
span score and 𝑠*𝑔(𝑞) = log P𝑔(𝑎

*
𝑞 |𝑞, 𝒞′𝑟𝑟) is the log-probability of the answer 𝑎*𝑞 obtained via

greedy decoding for question 𝑞, a classifier is trained via binary cross-entropy BCE(𝑙, 𝑡) loss
with log-odds ratio 𝑙 and target 𝑡 to do the binary decision∑︁

(𝑒,𝑡)∈𝒟

BCE(𝑤⊤[𝑠𝑎𝑔𝑔(𝑒); 𝑠
*
𝑔(𝑒)] + 𝑏, 𝑡). (4.12)
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Here, the training dataset 𝒟 contains only cases where either the extractive or exclusively
the abstractive prediction is correct (but not both).

4.2 Experimental Setup
Presented models are implemented in PyTorch (Paszke et al., 2019) using Transformers
(Wolf et al., 2020). We use 12GB GPU to train the passage reranker, 48GB GPU for
the generative reader, and 16x 32GB GPUs to train the extractive reader with 𝑉 = 128
passages at its input. The inference runs on a 12GB GPU. In all experiments, we used
Adam optimizer with a decoupled weight decay (Loshchilov and Hutter, 2017).

4.2.1 Metrics

Our models are evaluated by EM and Accuracy@K. Following the previous work, we use
the script from Lee et al. (2022)2 to measure the EM, and match the answer string exactly
as Karpukhin et al. (2020)3. The metrics are defined in Section 2.2.

4.2.2 Datasets and Data Pre-processing

We evaluate our models on three datasets. Their statistics are available in Table 4.1. To
train the reranker we filter out examples, which do not contain golden passage or exact
match in top-𝐾 retrieved passages. To train the extractive reader, only examples with
an exact match in a golden passage or top-1 retrieved passage are kept. Both filtering
strategies are closely described in Appendix A.2.

NQ-Open (Lee et al., 2022) or NaturalQuestions-Open consists of real user queries ob-
tained from the Google search engine. The maximum length of each answer is at most
5 tokens. The released version of the dataset is already tokenized. Each training and
development sample contains 1 annotated answer, while the test dataset contains a 5-
way answer annotation. Note that this dataset version is slightly different from the one
in Subsection 3.2.3. Apart from the slightly different filtering procedure of the original
NaturalQuestions dataset (Kwiatkowski et al., 2019), the golden documents—documents
with correct answer—are mapped to the 12-20-2018 Wikipedia snapshot. This is useful for
document retrieval supervision.
TQ-Open (Joshi et al., 2017) or TriviaQA-Open consists of question-answer pairs from
14 different trivia quiz websites. Each question contains a human-annotated answer and a
set of answer aliases gathered from Wikipedia. We use the filtered version. This version is
larger than the version from Subsection 3.2.3, as it contains all questions with documents
grounded in web, heuristically mapped to Wikipedia articles (Karpukhin et al., 2020).
EfficientQA (Min et al., 2021) is a dataset collected the same way as NQ-Open through
2019. Since the Wikipedia snapshot used within this work is from the year 2018, this
dataset likely contains more questions without evidence in our corpus than NQ-Open. We
use the officially released dev set for testing4 models trained and validated on NQ-Open
data.

2Python code at https://cutt.ly/rkZNIer. Accessed 16.3.2023.
3Python code at https://cutt.ly/0luNhx4. Accessed 16.3.2023.
4The official test set was not released during our experiments.
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Dataset Train Dev Test
NQ-Open 79,168 8,757 3,610

- filtered reranker 71,238 - -
- filtered extractive reader 61,755 - -
- with golden passage 58,876 6,515 -

TQ-Open 78,785 8,837 11,313
- filtered reranker 69,346 - -
- filtered extractive reader 62,332 - -
- with golden passage 60,413 6,760 -

EfficientQA - - 1,800

Table 4.1: Dataset statistics. The filtered lines report how many examples are kept for
training the reranker (filtered reranker) and extractive reader (filtered extractive reader).
The lines with golden passage denote how many examples from the set contain golden
passage annotation.

Additionally, we also report results according to train-test set question/answer overlaps for
NQ-Open and TQ-Open discovered by Lewis et al. (2021a) in Appendix D.3.

4.2.3 Models and Pipeline

Retriever. We use BERT-based DPR from the official checkpoint5. Each passage is rep-
resented via 768-dimensional embedding. We use a multiset checkpoint for TQ-Open—a
checkpoint from a model trained across multiple ODQA datasets including TQ-Open—as
the checkpoint for TQ directly isn’t officially released. We use the same knowledge corpus
containing 21,015,320 passages based on the 12-20-2018 Wikipedia snapshot as Karpukhin
et al. (2020). In inference time, the retriever passes 𝐾 = 200 passages 𝒞𝑟 to reranker.
Passage Reranker. We use the RoBERTa-base (Liu et al., 2019) and truncate the inputs
to a maximum length of 256. The linear scheduler with 0.1 warmup proportion is used, the
number of epochs is 5 and the model is validated every 40,000 optimization steps. We use
learning rate 1.6 ·10−4 and minibatch size 8. In training, the model reranks 24 passages per
question with negatives uniformly sampled from top-400 passages retrieved by DPR. During
the inference, top-𝐾 (𝐾 = 200) retriever passages are rescored and passed to readers.
Extractive Reader. The extractive reader encoder is based on pretrained ELECTRA-
large. Its inputs are truncated if they are longer than the allowed maximum size (512
tokens). During the training phase, all spans from all 𝑝 ∈ 𝒞𝑟6 that match7 with at least one
of the known answers are selected as target annotations. Therefore the annotations might
appear in the wrong context. The extractive reader reads the top-𝑉 = 128 passages during
the training phase and when it is used without the reranker. To demonstrate the effect of
the reranker, the reader reads only the top-𝑉 = 24 passages if the reranker is used. We use
a linear scheduler with a warmup for the first 20,000 steps for all models. The maximum
number of training steps is 200,000. The model is validated every 20,000 steps, and the best
checkpoint among validations is selected. The learning rate is 2 ·10−5 and the optimization
step was done after each training example.

5https://github.com/facebookresearch/DPR. Accessed 16.3.2023.
6Note that we train on data from retriever, not reranker.
7Matching strategies are described in Appendix A.2.
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Generative Reader. We utilize T5-large (Raffel et al., 2020) and use a concatenation of
question, passages, and their respective titles at the Fusion-in-Decoder’s input the same way
as Izacard and Grave (2021a). We truncate each passage to the length of 250 tokens for NQ-
Open. For TQ-Open, as questions are significantly longer, we truncate whole inputs to the
same size. Following FiD for TQ-Open, we use only human-generated answer. In training,
the golden passage always comes first, if available, and we take the rest of passages as ranked
by retriever up to 𝑉2 passages. The model is trained using standard cross-entropy loss and
considers left-to-right factorization of the sequence probability. Izacard and Grave (2021a)
trained FiD with 𝑉2 = 100 passages at its input. However, such an approach requires a
tremendous amount of GPU memory and thus requires employing speed-memory trade-
offs such as gradient checkpointing (Chen et al., 2016a). Unlike the original approach, we
use only 𝑉2 = 25 passages in our FiD. We note that in practice combining reranker with
shorter-context FiD yields results similar to the original implementation with much lower
memory consumption and better throughput in the R2-D2 setting8. We analyze the speed
of our implementation in Appendix B.1. Other hyperparameters are similar to the original
work—minibatch size 64, learning rate 5 · 10−5 but no learning rate schedule. In test time,
we decode an answer via greedy decoding.

8Due to the numerous decoder computations in answer re-ranking.
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4.3 Results and Analysis

Method NQ TQ #𝜃

Ex
tr

ac
tiv

e

BM25+BERT (Mao et al., 2021a) 37.7 60.1 110M
Hard EM (Min et al., 2019a) 28.1 50.9 110M
Path Retriever (Asai et al., 2020) 32.6 - 447M
Graph Retriever (Min et al., 2019b) 34.5 56.0 110M
ORQA (Lee et al., 2022) 33.3 45.0 220M
REALM (Guu et al., 2020) 40.4 - 660M
ProQA (Xiong et al., 2021b) 34.3 - 220M
DPR (Karpukhin et al., 2020) 41.5 56.8 220M
RDR (Yang and Seo, 2020) 42.1 57.0 110M
GAR+DPR (Mao et al., 2021a) 43.8 - 626M
ColBERT (Khattab et al., 2021b) 48.2 63.2− 440M
RIDER (GAR+DPR) (Mao et al., 2021b) 48.3 - 626M
UnitedQA-E (Cheng et al., 2021b) 51.8 68.9 440M
FiE (Kedia et al., 2022) 54.9 68.2 220M
FiE-large (Kedia et al., 2022) 58.4 71.6 440M

G
en

er
at

iv
e

BM25+SSG (Mao et al., 2021a) 35.3 58.6 406M
T51.1+SSM (Roberts et al., 2020) 35.2 61.6 11B
RAG (Lewis et al., 2020) 44.5 56.8 516M
DPR+SSG (Min et al., 2020) 42.2 - 516M
FiD-base (Izacard and Grave, 2021b) 48.2 65.0 333M
FiD-large (Izacard and Grave, 2021b) 51.4 67.6 848M
FiD-large++ (Izacard et al., 2020) 54.7 73.3 848M
UnitedQA-G (Cheng et al., 2021b) 52.3 68.6 880M
EMDR2 (Singh et al., 2021) 52.5 71.4 333M
YONO (Lee et al., 2022) 53.2 72.1 440M
ReAtt (Jiang et al., 2022) 54.7 - 770M
Atlas (Izacard et al., 2022) 60.4 79.8 11B

En
s. UnitedQA (Ens. E+G+G) (Cheng et al., 2021b) 54.7 70.5 1.87B

O
ur

s

R1-D1 (Generative) 49.9 65.4 848M
R1-D1 (Extractive) 50.8 65.0 445M
R2-D2 (21M) 55.0 69.9 1.29B
R2-D2 (21M) w/ HN-DPR 55.9 - 1.29B

Table 4.2: Comparison with the state-of-the-art in EM. #𝜃 denotes the estimated amount
of model parameters (in millions (M)/billions (B)). Results with gray background were
published after R2-D2. Bold font highlights the best result (not considering subsequent
work). The symbol − reports the result only for a smaller system with 220𝑀 parameters.

The effectiveness of our approach is compared with the state-of-the-art in Table 4.2.
Our system, composed of just the retriever and FiD reader R1-D1 (Generative), shows
inferior performance compared to FiD-large. This is most likely caused by 4 times fewer
passages at its input, as in Izacard and Grave (2021b). In contrast, our ELECTRA-based
extractive reader R1-D1 (Extractive) shows large gains compared to extractive state-of-the-
art, while having the same retriever as DPR. We hypothesize this may be caused by the
ELECTRA pretraining method, which shows strong performance through a variety of tasks
and we further show that it is also due to training and inference with large input size of
128 passages and better objective (discussed in Section 4.3.2).

The only system that matches the performance of our extractive reader is the concurrent
work on UnitedQA-E (Cheng et al., 2021b), which uses advanced regularization and Har-
dEM techniques. We note that these are orthogonal to our approach and could potentially
lead to further improvements.

Furthermore, we find that our R2-D2 system with 21M passages corpus is competitive
even with FiD++, which uses DPR retriever improved via knowledge distillation, and 26M
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Figure 4.3: Accuracy@K on test-data.

passage corpus, which also includes lists. Additionally, we evaluate our model with a better
retrieval model (HN-DPR) based on the DPR checkpoint where hard negatives are mined
using the retrieval model itself9. Note that we do not compare EfficientQA with state-of-
the-art, as the previous works didn’t report results on the dev set we use for testing.

Finally, the results published after R2-D2 (Fajcik et al., 2021b) are presented in gray
rows. We note that all these systems use better-performing retrieval system than DPR.

4.3.1 Reranker Performance

Next, we compare the performance of our retriever, reranker, and reader with Accuracy@K
in Figure 4.3. The passage reranker improves the accuracy consistently and we observe the
same trend on other datasets (Appendix D.1). We also include analysis, where we rerank
each passage 𝑝𝑖 according to its 𝑠𝑖𝑝𝑎𝑠𝑠𝑎𝑔𝑒 score from the extractive reader. We observe results
similar or even better to reranker for 𝐾 < 10, indicating the extractive reader reranks
well on its own. However, in subsequent experiments we do not replace the reranker with
reader because: (i) passage reranker has fewer parameters, (ii) extractive reading can run in
parallel with reranking and generative reading as the extractive reader is not benefiting from
reranking, and (iii) passage reranking scores often improve results during score aggregation
(see Section 4.3.4).

9https://cutt.ly/Ux5Yt4h. Accessed 16.3.2023.
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Figure 4.4: Influence of test input size on extractive reader’s performance for various train
input sizes (different curves) on NQ-Open test dataset.

independent
marginalization

span
marginalization

joint
objective EM

- ✓ - 45.42
- ✓ ✓ 45.41
✓ ✓ - 45.71
✓ - ✓ 47.09
✓ ✓ ✓ 47.06

Table 4.3: Ablation of loss components on NQ-Open test dataset using ELECTRA-base
model.

4.3.2 Extractive Reader Ablation

In order to investigate the influence of the number of input passages on the extractive
reader’s performance, we trained multiple ELECTRA-base models, each with a different
input size. During test time, we evaluate each, varying the input size. Figure 4.4 shows
that increasing train/test input size has a positive influence on the extractive reader’s
performance. However, input size 128 doesn’t seem to increase the performance anymore,
causing diminishing returns in test time.

Secondly, we analyze the ablation of loss components in Table 4.3. Following Cheng
et al. (2020), we compare the independent marginalization over all answer span starts 𝑆
and ends 𝐸

− log
∑︁
𝑠∈𝑆

P𝑠𝑡𝑎𝑟𝑡(𝑠)− log
∑︁
𝑒∈𝐸

P𝑒𝑛𝑑(𝑒) (4.13)

with loss that does span marginalization through spans

− log
∑︁
𝑐∈𝐶𝑟𝑟

∑︁
(𝑠,𝑒)∈answers(𝑐)

P𝑠𝑡𝑎𝑟𝑡(𝑠) P𝑒𝑛𝑑(𝑒). (4.14)

Here answers(𝑐) represents all answer spans in the passage 𝑐. As explicitly shown in Ap-
pendix C.1, independent marginalization sums through the combination of every start-end
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Factorization NQ-dev NQ-test EfficientQA
I 48.32 50.58 47.33
J 48.53 51.25 47.83

I+J 48.57 50.83 47.83
I+C 48.22 50.55 47.22
J+C 48.49 51.11 47.56

I+J+C 48.50 50.86 47.67

Table 4.4: The results of the pipeline with different types of extractive reader’s distribution
used for decoding. See text for details.

Readers Fusion NQ-Open TQ-Open EfficientQA
ret. +rr Δ ret. +rr Δ ret. +rr Δ

ext - 50.78 50.72 -0.06 65.01 65.46 0.45 47.00 47.56 0.56
gen - 49.92 50.69 0.77 65.38 69.14 3.76 44.83 47.33 2.50

ext+gen naive 51.88 52.44 0.56 66.17 68.01 1.84 47.06 49.11 2.05
ext+gen aggr 54.13 54.90 0.77 67.42 68.66 1.24 50.44 52.00 1.56
ext+gen aggr+bd 54.07 54.99 0.92 67.37 69.94 2.57 49.72 52.22 2.50

Table 4.5: Ablation study. We report results for extractive (ext), generative (gen), and
both readers (ext+gen) without (ret.) and with reranking (+rr). The Δ column shows the
exact match difference caused by passage reranking.

factor P𝑠𝑡𝑎𝑟𝑡(𝑠) P𝑒𝑛𝑑(𝑒), whereas the span marginalization from equation (4.14) sums only
through the subset of these elements corresponding to specific answer span, i.e., the in-
dependent marginalization also contains inter-passage spans, which is an obviously wrong
assumption. In spite of this, (i) Table 4.3 shows that independent marginalization achieves
better performance, which is consistent with Cheng et al. (2020).

Next, (ii) Table 4.3 also shows that the joint probability component from equation (4.6)
performs better when combined with the independent marginalization, but has no effect
when combined with span marginalization. Additionally, (iii) Table 4.3 shows that the
usage of the joint objective is neutral or beneficial to NQ-Open performance, which further
agrees with observations in Table 3.3 from Chapter 3.

Finally, we analyze the usage of different distributions (independent (I), joint (J), and
passage classifier (C)) for decoding in inference time (Table 4.4). We saw that using just
joint (J), or a combination of independent & join probability space (I+J) works marginally
better. Note that thorough this work, we reported all results in the I+J+C setting.

4.3.3 Pipeline Ablation

The ablations are listed in Table 4.5. We ablate results without using passage reranker,
with separate readers and their combination, and with different stages of component fu-
sion. Namely, performing a naive answer re-ranking by generative reader means the system
chooses the most probable answer span among the top-𝑀 spans provided by the extractive
reader according to generative reader log-probabilities as shown in equation (4.9). Anal-
ogously, the aggr fusion denotes that the system chooses the most probable answer span
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𝑃 * ∅ {𝑟} {𝑟𝑟} {𝑟, 𝑟𝑟}

N
Q

-O
pe

n {𝑒} 50.72 51.41 51.55 51.69
{𝑔} 52.44 52.88 53.35 53.19
{𝑒, 𝑔} 54.63 55.10 54.82 54.90

T
Q

-O
pe

n {𝑒} 65.54 65.64 65.60 65.61
{𝑔} 68.25 68.17 68.21 68.26
{𝑒, 𝑔} 68.45 68.57 68.66 68.66

Table 4.6: Results for different pipeline components used for score aggregation on NQ-Open
a TQ-Open. See text for details.

𝑃 * ∅ {𝑟} {𝑟𝑟} {𝑟, 𝑟𝑟}

N
Q

-O
pe

n {𝑒} 52.85 53.30 53.10 52.94
{𝑔} 52.44 52.77 53.21 53.07
{𝑒, 𝑔} 54.35 55.10 54.46 54.99

T
Q

-O
pe

n {𝑒} 69.34 69.28 69.23 69.26
{𝑔} 69.76 69.71 69.65 69.77
{𝑒, 𝑔} 69.80 69.89 69.88 69.94

Table 4.7: Results for binary decision on NQ-Open and TQ-Open for different aggregated
pipeline components from Table 4.6.

according to aggregated scores, as in equation (4.11). Finally, the aggr+bd fusion denotes
the binary decision, as shown in equation (4.12).

As expected, we observe that the reranker improves the results consistently for the
generative model in all cases. The gains are especially large for TQ-Open (over 3.7 EM,
underscored in Table 4.5). In fact, the results are comparable to Izacard and Grave (2021a),
suggesting that using the FiD reader with a smaller context window and reranker is a
reasonable alternative to memory inefficient FiD with large input size. Furthermore as
expected, the extractive reader without reranker already has top-128 passages at the input,
and the passage reranking doesn’t provide any advantage (less than 1 EM).

Finally, the results on NQ-Open and EfficientQA suggest applying the binary decision
does not bring large improvements over the score aggregation if any. However, notice that
this is not the case for TQ-Open, where the generative reader performs significantly better
compared to the extractive reader, suggesting both component fusions play important roles
in the system.

4.3.4 Component Fusion

Furthermore, we analyze the performance of each component combination in the score
aggregation and its impact on the component fusion via binary decision. Both fusions
are tuned on validation data and reported on the test dataset of the NQ-Open and TQ-
Open datasets. See Appendix D.2 for analysis on additional datasets. Table 4.6 shows all
relevant combinations of ranker r, reranker rr, extractive reader e, and generative reader g
probabilities used in score aggregation. In overall, we observe that combining retriever and
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Readers Ensemble EM Δ𝑒𝑥𝑡 Δ𝑔𝑒𝑛

ext
- 46.79 - -

2 models 48.30 1.51 -
3 models 48.59 1.80 -

gen
- 45.00 - -

2 models 46.30 - 1.30
3 models 46.59 - 1.59

ext+gen aggr 49.92 3.13 4.92

Table 4.8: Comparison between ensembling via posterior averaging and score aggregation
on NQ-Open.

reranker scores with the reader leads to better or equal performance. On NQ-Open, we
observe minor improvements up to ~1 EM. However, there is no difference on TQ-Open.

The impact of adding a binary decision after the score aggregation is shown in Table 4.7.
Interestingly, the binary decision component significantly improves the performance only
without reranked answer scores ({𝑒} rows in both tables). However, fusing the generative
and extractive reader via binary decision performs significantly worse on NQ-Open than
fusing both readers together with score aggregation ({𝑒} row in Table 4.7 vs. {𝑒, 𝑔} row
in Table 4.6). As already noted in ablations, we find this to be quite the opposite for
TQ-Open. We hypothesize that the binary decision is strong in cases, where the generative
reader performs better to extractive reader (the case of TQ-Open). We argue that if the
generative reader is better, the abstractive answer should be used far more often, than
when it’s not. We support the hypothesis by analyzing the proportion of test samples,
on which the binary decision component was activated (i.e. an abstractive prediction was
selected). On NQ-Open, the component almost never activated (only on 3.5 % samples),
but this proportion is much higher (26.6 %) on TQ-Open.

4.3.5 Comparison with Posterior Averaging

Finally, we compare our score aggregation with the ensemble computed via posterior prob-
ability averaging. In particular, we train three extractive and generative base-sized models
initialized with a different random seed. We do not use a reranker in this experiment and
set the train/test input size of the extractive reader to 32. We assess the predictions us-
ing the averaged posterior probabilities and compare their average performance with score
aggregation in Table 4.8. Concretely, we compare with the average of all 2 model ensem-
bles (2 models) and with an ensemble of all 3 checkpoints (3 models). We observe two to
three times improvement of score aggregation over the posterior probability averaging on
NQ-Open test dataset.

4.4 Related Work
Passage Reranking. Previous work in QA based on neural nets used Bi-LSTM encoders
(Wang et al., 2018; Lee et al., 2018) that score each document independently. Over time,
Bi-LSTM were replaced by BERT-like transformer encoders (Qiao et al., 2019; Wang et al.,
2019). For document ranking, Nogueira et al. (2019) proposed a multi-stage architecture.
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The first stage scores each document independently, and the second estimates the more
relevant document from all document pairs. Another document ranking approach uses the
seq2seq model to generate a true or false answer to the document’s relevance to the query
(Nogueira et al., 2020). Recent works have often focused on effective reranking. Xin et al.
(2020) achieved inference speedup using early exiting, Jang and Kim (2020) proposed a
smaller and faster model and Mao et al. (2021b) came up with a method that uses reader’s
predictions to rerank the passages.

Our reranker is most similar to Nogueira and Cho (2019); Luan et al. (2021), except
that unlike in IR, we assume there is just one correct passage and thus train our model via
categorical cross-entropy.

Subsequent work on reranking in QA inspired by this work includes YONO (Lee et al.,
2022), where authors designed a single-architecture system that does retrieval, reranking,
and answer extraction via FiD-like model jointly, unlike the proposed pipelined R2-D2
method. Furthermore, Atlas system (Izacard et al., 2022) studies passage reranking in
the domain of retriever-reader domain adaptation. Specifically, top-k documents, retrieved
from pretrained retriever, are reindexed and reranked using the new updated retriever. This
facilitates training, by possibly providing informative negatives (Xiong et al., 2021a), and
avoiding online index refreshing.
Multipassage Reading Comprehension Related work considers generative and extrac-
tive approaches toward modeling the reader. The generative reader generates an answer
while conditioned on question alone (Roberts et al., 2020), or a question with relevant pas-
sages (Lewis et al., 2020; Min et al., 2020). Izacard and Grave (2021b) showed it suffices
to concatenate the passages in the decoder of the seq2seq model, increasing the number of
top passages the model can depend on dramatically. The extractive reader used in ODQA
assumes that the answer is a continuous span string located in retrieved paragraphs (Chen
et al., 2017a). Clark and Gardner (2018) proposed to aggregate the probabilities of distantly
supervised answer matches via Maximum Marginal Likelihood MML. Lin et al. (2018) pro-
posed to denoise distantly supervised answer string matches in MML via paragraph-ranker.
Cheng et al. (2020) experimented with different assumptions for MML, showing improve-
ment when marginalizing over components of span probability independently. Karpukhin
et al. (2020) incorporated an independent passage classifier loss to his MML objective.

Our objective is similar to the last work, except that it uses a joint component and also
optimizes MML over relevant passages’ probabilities. Furthermore, Chapter 3 proposed
to model joint span probability directly via compound objective, instead of modeling the
probability of span’s start and end independently.

Subsequent work from Kedia et al. (2022) further applied joint objective together with
the extractive reader, which combines cross-passage information in the encoder, so-called
Fusion-in-Encoder (FiE). Work demonstrates the strength of better retrieval from (Izacard
et al., 2020) combined with cross-passage fusion and joint objective achieving state-of-the-
art across systems with less than 1B parameters at the time of writing.
Component Fusion. Yang et al. (2019b) also combined BM25 ranker and reader scores
via linear combination. Our work can be seen as an extension of this idea to combine
the scores of all pipeline components. Iyer et al. (2021) proposed a system that directly
learns to rerank question-passage-answer triplets proposed via extractive model. However,
reranking answers from their large extractive model via large reranker leads to ~1 EM
improvement absolute, whereas R2-D2s score aggregation improves 4 to 5 EM w.r.t. the
extractive reader. Concurrently with our work, Cheng et al. (2021b) proposed a hard voting
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ensembling scheme to combine the reader predictions. Firstly, each model from an ensemble
produces its best prediction, then the votes for identical predictions are combined, omitting
the scores produced by the individual models. The authors obtained the best results using
two FiD readers and a single extractive reader, leading to 1.6 and 2.4 EM improvement on
TQ-Open and NQ-Open, compared to their best single extractive or generative model.

Subsequent work includes EMDR2 (Singh et al., 2021), an approach where the retriever
and reader are trained jointly, and ReAtt (Jiang et al., 2022), a system where retriever
and reader are components of single T5-based architecture trained jointly. Lastly, Izacard
et al. (2022) introduced Atlas, a model pretrained for retrieval-augmented tasks. Authors
compare different joint retriever-reader training approaches, including EMDR2, for few-shot
learning, and full fine-tuning, across knowledge-intensive tasks. Their fully fine-tuned 11B
system achieves state-of-the-art at the time of writing.

4.5 Chapter Summary
This chapter proposed R2-D2, a novel state-of-the-art pipeline for open-domain QA based
on 4 components: retriever, reranker, generative reader, and extractive reader. It was
shown that employing a reranker is a reasonable alternative to using large passage counts
at the input of both the extractive and the generative reader. Our results on NQ-Open and
EfficientQA showed that the extractive and the generative reader could perform equally
in ODQA, although the generative reader is twice the size of the extractive reader. How-
ever, we observe the extractive reader underperforms on TQ-Open. We hypothesize, that
the cause is (1) the complexity of trivia questions with many entities, which often require
combining evidence from multiple passages—these are impossible to answer for the extrac-
tive reader by design—and (2) the expensive hyperparameter search, as we used NQ-Open
hyperparameters also for TQ-Open. Contrary to belief based on the results on different
datasets (Yang et al., 2019b; Wang et al., 2019; Izacard and Grave, 2021b), we found the
extractive reader can also benefit from larger input sizes, both in training and test time.
Finally, we proposed a component fusion, which allows the merging of the complementary
behavior of generative and extractive approaches along with the ranking components, and
found it improves the results significantly. Due to its heterogeneous and modular nature,
our pipeline forms an ideal base for past and future research of component integration in
modern ODQA.
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Chapter 5

Inherent Redundancy in
Open-Domain Index

Recent work on retrieval-based open-domain question answering (ODQA) often comes with
a system that seeks an answer for the question in the massive index of external passages
that scales in the order of millions or even billions (Seo et al., 2019) of natural language
passages. Recent advances in neural passage retrieval (Karpukhin et al., 2020; Izacard and
Grave, 2021a; Khattab et al., 2021b; Luan et al., 2021, inter alia) greatly improved the
performance of ODQA. It seems that the retriever has to efficiently represent each of the
passages, in order to find the documents containing test answers. However, it is not the
case. We find that not all passages are equally important and the current approaches can
exploit the passage prior in existing datasets.

In this work, we demonstrate that there often exists a strong prior over golden passages.
Our simple approach is based on the apriori passage relevance classifier, which decides for
a given passage and its title whether the passage is irrelevant or not. We exploit this prior
on popular ODQA datasets—NQ-Open, EfficientQA, and TQ-Open. We tune our simple
approach for pruning away the contents of a massive index so that only 8 % of original
index content is retained and while losing only up to 3 % exact match. In summary, the
contributions of this chapter are 3-fold:

1. Our experiments show there is a concerningly strong prior over passages on studied
datasets. Such prior could e.g., ease off the problem of retrieval by not representing the
irrelevant passages at all, assuming they are redundant. This is probably why choos-
ing in-batch negatives—samples positive for other examples in minibatch—instead of
random negatives during training of a neural passage retriever leads to converging
towards competitive results (Xiong et al., 2021b; Karpukhin et al., 2020).

2. We empirically verify that the same prior is captured in the recent DPR passage
embeddings (Karpukhin et al., 2020), indicating the neural retrieval models could
prune the passage space the very same way as our classifier does. This agrees with
the observations of the recent work, that reports on DPR’s inability to generalize
across domains.

3. Exploiting this prior, we demonstrate is possible to build a memory efficient ODQA
system that can fit into a 6GiB docker image, losing only a negligible amount of per-
formance. We submit this trivially compressed system to the NeurIPS@EfficientQA
challenge (Min et al., 2021), achieving 3rd place in the competition.
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5.1 Pruning Approach
To reduce the size of the index, we resort to an apriori relevance classifier that selects the
relevant content without seeing a question. Note this is in contrast with the retriever, which
considers a question when assigning relevance. Consider the Wikipedia corpus split into
100-word passages. The work of Karpukhin et al. (2020) indicates that the distribution
of golden passages—the passages containing an answer from the dataset—differs from the
distribution of all passages. This is implicated by the fact that golden passages perform
as better negative samples than just any randomly sampled passages when training the
retriever. Therefore, given a passage 𝑝𝑖 from Wikipedia, we propose an apriori relevance
classifier (we call pruner) into relevance class 𝑟 that models the Bernoulli distribution
P(𝑟|𝑝𝑖). The input of this classifier is the concatenation of a Wikipedia passage (sometimes
referred to as context) and its article’s title separated with the special SEP token and
different segment embedding. The classifier is trained via binary cross-entropy on the set of
golden passages and non-golden passages extracted from Wikipedia. In test-time, we collect
the probabilities P(𝑟|𝑝𝑖) for each passage 𝑝𝑖 in the corpus and use them for ranking. We keep
only passages 𝑝𝑖 that satisfy the threshold constraint P(𝑟|𝑝𝑖) > 𝜏 ; 𝜏 ∈ (0, 1). Furthermore,
we empirically verify in Section 5.3.2 that the passage embeddings from Karpukhin et al.
(2020) contain strong features that capture the very same apriori relevance as this classifier
does.

5.2 Experimental Setup
LRM, QA baseline, Datasets To estimate the impact of corpus pruning on various
ODQA components, we evaluate the approach on the heterogeneous modular ODQA sys-
tem R2-D2 (Rank twice, reaD twice) introduced in Chapter 4. We implement our
pruner in PyTorch (Paszke et al., 2019) using Transformers (Wolf et al., 2020). Pruner
training along with R2-D2 inference runs on a 12GB GPU. We evaluate the pipeline by
two standard metrics EM and Accuracy@K (see Section 2.2 for detail). We include three
same datasets as used for R2-D2 validation (Subsection 4.2.2), namely NQ-Open, TQ-Open
and EfficientQA (Min et al., 2021) dataset, which was also the official development dataset
on EfficientQA challenge. We fine-tune the base version of ELECTRA (Clark et al., 2020)
with a 2-layer feed-forward network on top of it as a binary classifier (the same way as au-
thors do it in classification tasks, with GeLU (Hendrycks and Gimpel, 2016) and dropout),
using Adam optimizer with a decoupled weight decay (Loshchilov and Hutter, 2017).
Pruning Datasets To train the pruner, we create a training set with 2 negative passages
per positive passage from the dataset’s training examples1 with golden passage annotation.
The negative passages are uniformly sampled from all non-golden Wikipedia passages. To
create development and test sets for pruner, we split the subset of the dataset’s development
set with examples containing golden passage annotation, using a 1 : 2 ratio. We sample
only one negative passage per positive sample for development and test sets so that datasets
are balanced. We further refer to these datasets as Golden. The procedure is the same for
both datasets. The statistics of these datasets are shown in Table 5.1.
Pruner Training The system is trained via weighted cross-entropy in 2 epochs using
minibatch size 12 and learning rate 3 · 10−5 linearly decreasing to 0. The loss per positive

1In the preliminary experiment, we tried different ratios to use as a large dataset as possible, and found
1 : 2 split working better than 1 : 𝑛 for 𝑛 > 2 ratios.
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Dataset Train Dev Test
full w/ann full w/ann full

NQ-Open 79,168 58,876 8,757 6,515 3,610
TQ-Open 78,785 60,413 8,837 6,760 11,313

EfficientQA - - - - 1,800
NQ-Golden - 176,628 - 4,332 8,698
TQ-Golden - 181,239 - 4,516 9,004

Table 5.1: Dataset statistics. The columns w/ann denote how many examples from the full
set contain golden passage annotation. The Golden sets are datasets used to estimate the
pruner.

Dataset Index Reader
ext gen ext+gen

NQ-Open
1.7M 48.92 48.31 52.58
21M 50.72 50.69 54.99
Δ -1.80 -2.38 -2.41

TQ-Open
1.7M 63.51 67.18 67.96
21M 65.46 69.14 69.94
Δ -1.95 -1.96 -1.98

EfficientQA
1.7M 45.06 45.22 49.22
21M 47.56 47.33 52.22
Δ -2.50 -2.11 -3.00

Table 5.2: Results with pruned index. The Δ row shows the exact match difference caused
by pruning.

sample has twice the weight of the loss per negative sample. To analyze a particular
operating point, the 𝜏 threshold is tuned so that we pool the top 1.7M passages. Such an
amount conveniently fitted the 6GiB constraint of the EfficientQA challenge. We combine
these relevant passages with missing golden passages from the training data, obtaining
1,702,133 passages in total for NQ-Open and EfficientQA and 1,706,676 passages in total
for TQ-Open.

5.3 Results and Analysis

5.3.1 Performance Validation

Reading Performance on 1.7M Passages. To understand the effects of pruning, our
results show the impact of pruning on the passage ranking and its impact on the system’s
ability to produce the final answer. The results of the latter with an index of 1.7M passages
are shown in Table 5.2. We observe the largest decrease in performance on EfficientQA,
which is probably due to the dataset’s covariate shift caused by its timeframe. We also
tried to train a multiset pruner on the unified NQ-Golden and TQ-Golden dataset. We
found only a minor decrease in performance (-1.3 EM on NQ and -0.3 EM on TQ test sets)
when pruning 1.7M passages.

In addition to evaluation on the TQ-Open and NQ-Open showed in Table 5.2, we also
report results on subsets of these datasets in Table 5.3, as split in Lewis et al. (2021a). We
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Figure 5.1: Index size analysis on test sets. Pruned index stands for 1.7M passages, a point
we chose to analyze in this thesis. Note the R2-D1 system uses a retriever and reranker
(R2) but only one reader (D1), extractive (ext.), or generative (gen.).

compare R2-D1 (with extractive and generative reader, marked as gen and ext respectively)
and R2-D2 (ext+gen) to the official result on FiD (Izacard and Grave, 2021b). We find
there is no difference on question overlap subset between the full and pruned version on
both datasets, which is expected as every training question has its golden document in the
pruned index. Interestingly, observing answer overlap only subset on NQ-Open, we see a
performance drop for the gen model but no difference in the R2-D2 setting. Similarly, on
TriviaQA, the bad performance of the extractive reader is partially compensated for by the
gen model in answer overlap only setting. This demonstrates the robustness of the R2-D2’s
component fusion.
Overall Reader Performance. Furthermore, we analyze the exact match as a function
of index size for NQ in Figure 5.1. We start by including all the golden passages from
the training data (40,670 for NQ-Open, 50,502 for TQ-Open). Next, we consider adding
the passages according to the ranking produced by the pruner. We find the difference
between using the full index and only golden passages is about 21 EM (21.27 for NQ-Open,
21.01 for TQ-Open). This means the R2-D2 system that uses only the golden passages
from training data achieves a performance comparable to ORQA (Lee et al., 2022), the
first system presented on NQ-Open. On the other hand, we do not observe any significant
difference in EM up from the 7.7M passages on both datasets, indicating almost two-thirds
from 21M total passages are completely redundant for R2-D2.
Ranking Performance. Next, we analyze the performance of R2-D2’s retrieval on the
pruned and full index in Figure 5.2. We consider performance with and without the reranker
module in the pipeline. The reranker improves the accuracy consistently for both, pruned
and full versions of the pipeline. Remarkably, the pruned version of R2-D2 with reranker
(reranked-pruned) performs better than the full version only with retriever (retrieved-full)
up to 𝐾 = 26 paragraphs (dashed vertical line). We observe a similar trend on other
datasets, e.g., for the TQ-Open test the reranked-pruned improves over retrieved-full up
to 𝐾 = 116 paragraphs (additional analyses on dev sets and EfficientQA set are in Ap-
pendix D.4).
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Model NQ-Open TQ-Open

Total Question
Overlap

Answer
Overlap

Only

No
Overlap Total Question

Overlap

Answer
Overlap

Only

No
Overlap

- FiD 51.40 71.30 48.30 34.50 67.60 87.50 66.90 42.80
ext+gen 54.99 75.00 48.89 39.91 69.94 90.18 71.53 44.83

21M gen 50.69 70.06 46.98 34.04 69.14 87.50 70.32 44.83
ext 50.72 72.53 45.40 35.11 65.46 83.63 66.42 39.46

ext+gen 52.58 75.00 48.89 34.88 67.96 90.18 68.61 41.92
1.7M gen 48.31 69.75 43.81 30.24 67.18 88.39 68.86 42.08

ext 48.92 72.84 45.71 31.23 63.51 85.12 62.77 36.93

Δ
ext+gen -2.41 0.00 0.00 -5.03 -1.98 0.00 -2.92 -2.91

gen -2.38 -0.31 -3.17 -3.80 -1.96 0.89 -1.46 -2.75
ext -1.80 0.31 0.31 -3.88 -1.95 1.49 -3.65 -2.53

Table 5.3: Results on the overlapping and non-overlapping parts of test sets for NQ and
TQ. Total column corresponds to the overall result on the whole dataset, as reported be-
fore, Question Overlap corresponds to samples with train-test question overlap and answer
overlap, Answer Overlap Only corresponds to samples with answer overlap, but no question
overlap and No Overlap corresponds to samples with no overlap between train and test sets.

5.3.2 Pruner

Our pruning approach achieved 90.63% accuracy on NQ-Golden test dataset and 86.94%
accuracy on TQ-Golden test dataset. This indicates that there exists a strong prior over
the passages of Wikipedia in these open-domain QA datasets. Interestingly, the pruner still
missed 5.2 % of golden passages from the NQ-Golden training passages and 13.2 % of the
TQ-Golden golden passages in the 1.7M index.
What Pruner Learned To offer a glimpse of what our pruner system learned, we turn
towards two experiments on NQ-Golden. Firstly, we investigate to what extent the pruner’s
score assigned to a passage correlates with the number of pageviews of the passage’s article.
We hypothesize the pageviews roughly correspond to the topic’s popularity, and thus the
stronger the pruner correlates with it, the better it generalizes towards estimating what
topics were popular at the time of dataset collection.

Concretely, we collect Wikipedia article’s pageviews2 between 2018-08-01 and 2018-12-
31. First, considering pageviews→pruner direction, we tune the pageviews-based threshold
classifier on the NQ-Golden training data, directly optimizing for accuracy. The simple
approach leads to 76 % accuracy on the dev data, indicating the pageviews and relevance
annotation are correlated. Correlation is transitive, and thus since annotations and the
pruner’s decision are also correlated (accuracy ~90 %), a correlation between the pruner
and pageviews is likely present. To investigate this directly, we study pageviews←pruner
direction. We train a linear regression, which estimates the pageviews from our pruner’s
hidden state embedding from the [CLS] token-level output. We compute the rank cor-
relation between the estimated pageviews and the true pageviews on dev data, finding a
moderate correlation (Kendall’s 𝜏 = 0.53).

2Available at https://dumps.wikimedia.org/other/pageviews/. Accessed 16.3.2023.
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Figure 5.2: Analysis of Accuracy@K on test sets.

In the second experiment, we compare to what extent might what pruner is learning
be similar to memorizing the training samples and using a K nearest neighbor (K-NN)
classifier. To represent the passage along with its title by the single vector, we average the
pretrained ELECTRA’s input embeddings (already combined with segment and positional
embeddings) created the same way as our pruner’s input embeddings are (see Section 5.1).
We project the training and validation sample representations into 2-dimensional space
using T-SNE (Van der Maaten and Hinton, 2008) and plot them in Figure 5.3. We observe
the class of each sample from the development data indeed seems to be similar to the classes
of its K-NN from the training data.

To quantify this observation, we match each passage representation from the dev data
with the K=5 nearest passages from the training data, according to its cosine similarity.
We find predicting the same label as is assigned to the majority of K nearest neighbors
from the training data already yields 81 % accuracy on the dev data of NQ-Golden.
Connection between Retrieval Embeddings and Pruner. Next, we analyze whether
the DPR embeddings on NQ capture the same phenomena as our pruner does. Starting with
basic statistics, we compute the mean and the variance vectors of 𝑑-dimensional embeddings
representing pruned (1.7M) set of documents 𝑃 and those which represent the rest of the
knowledge base 𝑁 . We find that computing the L2 distance between both, means and
variances, yields order of magnitude different results than the distance between randomly
permuted splits of 𝑃 ∪𝑁 with the same size. Next, we found a significant difference between
the average length of embedding vectors from 𝑃 and 𝑁 . Conclusively, we train a logistic
regression classifier on a balanced dataset constructed from 𝑃 and a subset of 𝑁 , which
predicts if the passage belongs to the pruned set 𝑃 or not based on its embedding. We
found the classifier achieves 84.1 % accuracy on the dev set, confirming our hypothesis that
the apriori relevance is indeed (in some way) captured in DPR’s embeddings.

5.4 Exploiting the Passage Prior for Memory-Efficient QA
Compressing the R2-D2 System into 6GiB We save models and index in half-precision
without significant loss of performance and use off-the-shelf ZIP3 compression to reduce the

3https://launchpad.net/ubuntu/+source/zip. Accessed 16.3.2023.
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Figure 5.3: Representations of the relevant and irrelevant passages from the NQ-Golden
training and development data as obtained via T-SNE. Blue and cyan points correspond
to relevant passages in training and development data. Red and orange points correspond
to irrelevant passages in training and development data.

size of the models and the corpus. To fit the 6GiB limit, and thus be comparable with re-
cent EfficientQA competition4 format, we use 100MB CentOS8 docker image5 and compress
python’s site-packages to reduce the size of PyTorch.

We compare the memory footprint of the compressed system’s docker image (pruned
system) with the image of the full system in Figure 5.4. The total uncompressed size of an
image is 81.01GiB while the size of the pruned image is 5.96GiB (92.6 % less). Here, codes
are python code and configurations, corpus is a sqlite3 database of passages, and binaries
are the OS with python libraries. We save dense index as a raw h5 matrix. Interestingly,
the dense corpus has similar space requirements as the parameters of all 4 components of
the R2-D2 pipeline used in this work.

4https://efficientqa.github.io/. Accessed 15.3.2023.
5Docker image id: nvidia/cuda:10.2-base-centos8
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Figure 5.4: Component sizes inside the docker image.
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5.4.1 EfficientQA Challenge

EfficientQA challenge (Min et al., 2021) focused on the compression of disk requirements of
ODQA systems. In practice, the constraint was measured on the docker image size, so the
system could uncompress itself before execution. In this section, we will focus on a single
track of this competition, the best-performing system with a total size under 6 GiB.
Performance Validation The system performance was measured via two metrics: au-
tomatic (EM) and human evaluation. Each question in EfficientQA test set6 has up to
5 annotated answers. This list is non-exhaustive, thus it can happen that the correctly
predicted answer is not in-between the annotated answers considered by automatic metric.
Each prediction was rated by three separate human annotators. Each of these analyzed
question following a 3-step process:

1. the annotator first works on understanding the meaning and intent of the question
(with a web search if necessary),

2. the annotator then determines whether the question is ambiguous, i.e., whether the
question can lead to multiple different answers depending on factors such as: when the
query was asked; where the query was asked; some unspoken intent of the questioner;
or the opinion of the person giving the answer,

3. the annotator determines whether each answer is “definitely correct” (correct given a
usual interpretation of the question), “possibly correct” (could be correct, given some
interpretation of the question), or “definitely incorrect”.

Submitted System The system submitted in EfficientQA slightly differs from the pub-
lished (and improved) R2-D2 system (Chapter 4). The reranker was based on Longformer,
which we later found had an inferior performance on EfficientQA (Fajcik et al., 2021b) com-
pared to the more computationally efficient RoBERTa-based reranker. Next, our pruner
was based on a less-performing RoBERTa-based classifier. The component fusion did not
include the combination of the retriever’s and reranker’s probabilities. Lastly, our hyper-
parameters and preprocessing were not identical to the published version.
Competition Results The results are available in Table 5.4. The percentages in paren-
theses show relative improvement of human evaluation over automatic evaluation. Our
system achieved 3rd place in both, automated metrics and human evaluation. The reason
for the judgment match between the two metrics might lie in the systems with similar
retriever-reader architecture of these systems. This is reflected in relatively large inter-
agreement between the systems (more than 50 % with other systems in track) compared to
different competition tracks. For instance, in a track under 500MiB, a system UCLNLP-FB
(Lewis et al., 2021b) generated a colossal amount of question-answer pairs. In test time,
this system retrieved the question-answer pair most similar to the question at the input
and responded with the associated answer. While such a method performed very well in
EM, the system performed worse than the competing retriever-reader system NAVER RDR
(Yang and Seo, 2021) in human evaluation.
Component Size Comparison The analysis of component sizes of top-3 systems in the
track is available in Figure 5.5. The analyzed components are: passage corpus—a collection
of texts to search from, dense index—a set of embeddings for every text from text collection,
sparse index—a set of sparse embeddings for every text from text collection (only FB system

6This is the hidden competition test set, not used for other experiments from Chapter 4, or Chapter 5.
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Model EM Human Evaluation
Definitely Possibly

FB system (Izacard et al., 2020) 53.33 65.18 (+22.2%) 76.09 (+42.7%)
Ousia-Tohoku Soseki7 50.17 62.01 (+23.6%) 73.83 (+47.2%)
BUT R2-D2 (ours) 47.28 58.96 (+24.7%) 70.33 (+49.2%)

Table 5.4: EfficientQA competition results in track under 6 GiB.

Figure 5.5: Comparison of different system component sizes in GiB in top-3 EfficientQA
submissions. QA corpus component was not present in this track. Figure edited from Min
et al. (2021).

used this), parameters—the size of all parameters from neural models and codes/binary
corresponds to source code, and binaries such as OS, Python, and PyTorch.

5.4.2 Trivia Game: Humans vs AI

Finally, our system was used among the QA systems competing with Trivia experts in the
QA competition. According to Turing (1950), the ultimate goal of artificial intelligence is
to create machines that answer questions as well as humans (known as the Turing test).
In practice, past work has shown that it depends on which humans. Existing comparisons
of human question answering ability often use unskilled humans (Rajpurkar et al., 2016),
leading to claims of computers “putting millions of jobs at risk” (Cuthbertson, 2018). In
order to select a skilled human team, 5 teams, each up to 8 players, which signed up for
the competition through social media, were given an hour to compete with the baseline
systems. The best team was picked up for the final game. More details on the preliminary
round can be found in the original publication (Min et al., 2021).
Competition Rules Each round with a single question could contain up to three phases8.
At the start of every round, humans and computers switched. If ones did not succeed in
the current phase, the others had the opportunity. Most of the answers were answered by
winning systems in the track, but rarely moderator selected “the guest system”, including
R2-D2.

8Blogpost and video recording of the game is available at https://go.umd.edu/2020eqa. Accessed 16.3.2023.
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Figure 5.6: Results from Humans vs AI competition. Figure is taken from Min et al. (2021).

1. In the first phase, systems under 500 MiB were competing with instant responses from
the players. One of the players had to immediately press the buzz-in key in order to
sign up for the answer, and could not talk to each other. If no one succeeded in the
first round, the second phase continued. A correct answer in this round awarded the
team with 3 points.

2. In the second phase, humans had 30 seconds to discuss the answer, and now competed
with the systems under 6 GiB. If no one succeeded in the second phase, the last phase
continued. A correct answer in this round awarded the team with 2 points.

3. In the last phase, humans were given access to the search result snippets from a search
engine using the question as a query and again had 30 seconds for discussion. In this
phase, the computer system were not limited in memory. A correct answer in this
round awarded the team with 1 point.

Competition Results Numbers of correctly and incorrectly answered questions from each
phase from computers and humans are shown in Figure 5.6. While humans performed
better in overall—answered more questions correctly in total, and obtained more points—
computers managed to take a lead in phase 2. These were scenarios, where the answer was
not guessed by humans instantly, and systems under 500MiB provided incorrect answer.

5.5 Related Work
Lewis et al. (2021a) showed 60-70 % of answers and 30 % of questions from test-set (including
NQ-Open and TQ-Open) have a near-duplicate paraphrase in their respective training sets
in studied ODQA datasets. Min et al. (2021) presented a simple baseline that includes an
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index containing 1.65M passages. These include all passages from the Wikipedia articles
assigned to the top-5 positive passages from DPR training data for NQ (Karpukhin et al.,
2020) (therefore golden passage, and highest-ranking BM25 passages to each question).
However, this pruning approach led to a -6.7 EM decrease, while ours led to at most -3
EM with a similar number of passages. Izacard et al. (2020) employed three strategies to
reduce the size of the index, among which was a pruner that filters articles based on their
title and list of Wikipedia categories. Nonetheless, their pruning approach leads to ~4 EM
loss in performance with FiD-large while still retaining 10M passages. Concurrently with
our work Yang and Seo (2021) proposed a RoBERTa-based pruner almost identical to ours
as a part of their memory pruning framework. Their DPR-based extractive system with
1,2M passages loses about 5 % exact match on test sets of NQ and TQ. Interestingly, our
nearest R2-D2 result with exactly 1M passages leads to slightly lower performance loss
(4.23 and 3.48 EM on NQ-Open and TQ-Open, respectively). This could be attributed to
(a) different pruner model and dataset construction and (b) the robustness of R2-D2.

5.6 Chapter Summary
This chapter exposed a strong prior that is present in currently popular ODQA datasets
NQ-Open and TQ-Open. Exploiting this prior, we showed it’s possible to drastically reduce
the colossal number of passages commonly used within the knowledge-base of retrieval-based
open-domain QA systems (by 92 %) with only minor loss of performance (-3 EM). It was
shown the proposed approach can be exploited in reducing the memory footprint of the QA
system, and that such a system can beat skilled humans in a certain type of questions. Our
R2-D2 system, with just 8 % of Wikipedia knowledge, is also available as an online demo9.

As a final remark, we note the pruned index size opens up new possibilities, as it
means the knowledge-base embedding matrix now fits to most modern GPUs. However,
the possibility of such a drastic reduction of knowledge-base is concerning. In practice,
removing the system’s knowledge is often an undesirable property. How well do the methods
evaluated on these datasets perform in different prior scenarios? Will future search engines
ignore unpopular topics altogether? Does this strong prior over passages suggest that the
open-domain answering datasets aren’t really “open” enough?. We would like to address
these questions in future research.

9Available at https://r2d2.fit.vutbr.cz/. Accessed 16.3.2023. The integration into the demo system is not
the original work of the author of this thesis.
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Chapter 6

Extracting Rumour Stances for
Fact Verification

In this chapter, our work on challenge for determining rumor veracity from rumor stances
(RumourEval 2019) (Gorrell et al., 2019) is presented. Rumour verification is a particular
case of fact-checking. Rumours are “circulating stories of questionable veracity, which are
apparently credible but hard to verify, and produce sufficient skepticism and/or anxiety so
as to motivate finding out the actual truth” (Zubiaga et al., 2016). The challenge focused
on capturing the rumor’s credibility from superficial sources, i.e., from the text itself, user’s
metadata from social media, and most importantly discussion thread of other users’ replies
from the respective social media, the rumor comes from (Twitter or Reddit1). In this
context, this work’s contribution lies solely on determining the rumor stance of each reply
from the discussion thread, not the veracity of the rumor itself. Past work has demonstrated
the importance of this subtask as a first step to veracity identification (Ferreira and Vlachos,
2016; Chen et al., 2016b; Enayet and El-Beltagy, 2017; Li et al., 2019; Glenski et al., 2018;
Jin et al., 2016; Liu et al., 2015; Mendoza et al., 2010; Procter et al., 2013; Qazvinian et al.,
2011; Wei et al., 2019; Zhao et al., 2015, inter alia). In detail, subtask A from SemEval-
2019’s Task 7 (also referred to as SDQC classification) focused on classifying whether the
stance of each post in a given Twitter or Reddit thread supports, denies, queries or comments
the hidden rumor. The rumor itself is not explicitly annotated, but it is a part of the source
post from the discussion thread. In all cases, we refer to the judged post in the discussion
thread as the target post, the post that started the discussion as the source post, and the
post to which the target post replies to as the previous post. An example of a discussion
thread is shown in Figure 6.1. Rarely, the source post refutes the hidden rumor; the example
of such a case is shown in Figure 6.2. The discussions collected from Twitter were focusing
only on 9 topics popular in 2019—Sydney siege, Germanwings crash, etc., whereas the test
dataset contained a different set of topics.

In summary, the contributions of the work described in this chapter are:

1. We establish a strong baseline for rumor stance classification, achieving second place
in the competition, only 0.2 % F1 behind the winner (Yang et al., 2019a).

2. Unlike previous work, and the majority of the submissions, including the first-place
submission, we demonstrate that no handcrafted features are necessary to obtain a
top-performing system.

1Websites available at https://twitter.com/ and https://www.reddit.com/ respectively.
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SDQC support classification. Example 1:

u1: We understand that there are two gunmen and up to a dozen hostages inside the cafe under siege at
Sydney.. ISIS flags remain on display #7News [support]

u2: @u1 not ISIS flags [deny]
u3: @u1 sorry - how do you know its an ISIS flag? Can you actually confirm that? [query]

u4: @u3 no she cant cos its actually not [deny]
u5: @u1 More on situation at Martin Place in Sydney, AU LINK [comment]
u6: @u1 Have you actually confirmed its an ISIS flag or are you talking shit [query]

SDQC support classification. Example 2:

u1: These are not timid colours; soldiers back guarding Tomb of Unknown Soldier after today’s shoot-
ing #StandforCanada PICTURE [support]

u2: @u1 Apparently a hoax. Best to take Tweet down. [deny]
u3: @u1 This photo was taken this morning, before the shooting. [deny]
u4: @u1 I dont believe there are soldiers guarding this area right now. [deny]

u5: @u4 wondered as well. Ive reached out to someone who would know just to confirm
that. Hopefully get response soon. [comment]

u4: @u5 ok, thanks. [comment]

Table 2: Examples of tree-structured threads discussing the veracity of a rumour, where the label associated with
each tweet is the target of the SDQC support classification task.

plus additional data such as stance data classified
in task A and any other information teams chose
to use from the selection provided, systems return
a label describing the anticipated veracity of the
rumour. Examples are given in Table 1. In addi-
tion to returning a classification of true, or false, a
confidence score was also required, allowing for a
finer grained evaluation. A confidence score of 0
should be returned if the rumour is unverified.

2 Data & Resources- RumourEval 2019

The data are structured as follows. Source posts
introduce a rumour, and may be true, false or un-
verified. These are accompanied by an ensuing
discussion (tree-shaped) in which users support,
deny, comment or query (SDCQ) the rumour in
the source text. This is illustrated in figure 1 with
an example rumour about Putin. Note that source
posts also need to be annotated for stance, as the
way a post presents a rumour usually gives stance
information also. For example, when introduc-
ing a rumour, an implicit “support” stance may
be present, in that the rumour is assumed to con-
vey valid information. In the Reddit data, rumours
were often introduced with an implicit “query”, as

they were presented for discussion/debunking.
The RumourEval 2017 corpus contains 297

source tweets grouped into eight breaking news
events, and a total of 7100 discussion tweets. This
became training data in 2019, and was augmented
with new Twitter test data and new Reddit mate-
rial. The Reddit material was split into training
and test sets. Each are discussed in turn below.

In RumourEval 2017 along with the tweet
threads, we also provided additional context that
participants could make use of (Derczynski et al.,
2017). However, only one system had made use
of this additional context. Due to lack of time
such context data was not provided in RumourEval
2019 but we would look into re-introducing this in
future editions of the task.

2.1 English Twitter data about natural
disasters

The additional English Twitter testing data is
about natural disasters. In such events, where
chaos dominates the situation, rumours are spread
on various issues and false rumours have the po-
tential to increase the chaos. Detecting such false
rumours are important to plan actions that will

Figure 6.1: Example of discussion thread from RumourEval2019 dataset. Each post is
accompanied by its stance towards the rumor (in square brackets). Figure taken from
Gorrell et al. (2019).

.@AP I demand you retract the lie that  
people in #Ferguson were shouting "kill the police",  
local reporting has refuted your ugly racism

Figure 6.2: An example of discussion’s source post denying the actual rumor which is
present in the source post—annotated with red cursive.
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S D Q C Total
train 925 378 395 3519 5217
in % 18 7 8 67
dev 102 82 120 1181 1485
in % 7 6 8 80
test 157 101 93 1476 1827
in % 9 6 5 81

Table 6.1: Across-class statistics of the training, development, and test dataset. The
examples belong to 327/38/81 training/development/test tree-structured discussions.

3. It is shown that the majority of the stances can be correctly judged when considering
only the source post, previous post, and the target post itself.

6.1 BUT-FIT’s System

6.1.1 Dataset

RumourEval 2019 dataset is composed of Twitter and Reddit dataset. The Twitter dataset
was focusing on rumors about 9 particular disasters found on Snopes and Politifact2. Reddit
threads are more varied and were identified through manually searching debunking forums
and current affairs forums. Each thread was annotated by up to 10 humans. The stance
inter-agreement was 76.2 % for Twitter and 78 % for Reddit. The statistics of post annota-
tions from the official RumourEval dataset are available in Table 6.1. Additional insights
we learned from the dataset are presented in Appendix E.3.

6.1.2 Pre-processing

We parse and replace URLs and mentions with special tokens $URL$ and $mention$ using
tweet-processor3. We use spaCy4 to split each post into sentences and add the [EOS]
token to indicate the termination of each sentence. We employ the tokenizer that comes
with the Hugging Face PyTorch re-implementation of BERT5. The tokenizer lowercases
the input and applies the WordPiece encoding (Wu et al., 2016) to split input words into
most frequent n-grams present in the pretraining corpus, effectively representing text at
the sub-word level while keeping a 30,000-token vocabulary only.

6.1.3 Model

Following (then a recent) trend in transfer learning from language representation models
(LRM), we employ the pretrained BERT model. During pretraining, the model’s input
consists of two documents [CLS]document1[SEP]document2[SEP] each represented by a
sequence of tokens divided by the special [SEP] token and preceded by the special [CLS]
token. Input tokens are represented by jointly learned token embeddings 𝐸𝑡, segment

2Websites available at https://www.snopes.com/ and https://www.politifact.com/ respectively.
3https://github.com/s/preprocessor. Accessed 16.3.2023.
4https://spacy.io/
5https://github.com/huggingface/pytorch-pretrained-BERT
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[CLS] oh sweet and whole ##some red ##dit , is it true us citizens have to pay to use us dollar bills as currency ? [ e ##os ]  
to use a dollar bill - no . . . . behind the scene taxes / fees - of course ! [ e ##os ] cu ##z . . . ' mu ##rica [ e ##os ] [SEP]  

no , like we are tax ##ed as a country to use the usd [ e ##os ] [SEP]

Encoded Input

Transformer Encoder N times

Dense/Tanh

Dense/Softmax

Token embeddings Positional embeddings Segment embeddings+ +

Pre-trained parameters[CLS]-token level output

Figure 6.3: An architecture of BUT-FIT’s system. The text segment containing document1
is green, the segment containing document2 (the target post) is blue. The input represen-
tation is obtained by summing input embedding matrices 𝐸 = 𝐸𝑡 + 𝐸𝑠 + 𝐸𝑝 ∈ R𝐿×𝑑, 𝐿
being the input length and 𝑑 the input dimensionality. The input is passed 𝑁 times via the
transformer encoder. Finally, the [CLS] token-level output is fed through two dense layers
yielding the class prediction.

embeddings 𝐸𝑠, capturing whether the word belongs into document1 or document2, and
positional embeddings 𝐸𝑝. The full description of the BERT model can be found in Sec-
tion 2.3.

Our system follows the assumption that the stance of the discussion’s post depends only
on itself, on the source thread post, and on the previous thread post. Since the pretraining
input is composed of two documents, we experimented with different ways of encoding the
input (see Section 6.3), ending up with just a concatenation of the source and the previous
post as document1 (left empty in case of the source post being the target post) and the
target post as document2. The fine-tuning of BERT is done using the [CLS] token-level
representation and passing it through two dense layers yielding posterior probabilities as
depicted in Figure 6.3. A weighted cross-entropy loss is used to ensure a flat prior over the
classes. The class weights are equal to the frequency of the underrepresented class when
compared to the majority class, i.e., 2 times less frequent class will be weighted with the
weight 2.

6.1.4 Ensembling

Before submission, we trained 100 models differing just by their learning rates. We experi-
mented with 4 different greedy fusion mechanisms in order to maximize the F1 measure on
the development set. We note that each of the proposed mechanisms is stochastic, and we
re-run it several times and pick the best result.

The TOP-N fusion chooses 1 model randomly and adds it to the ensemble. Then, it ran-
domly shuffles the rest of the models and tries to add them into the ensemble one at a
time, while iteratively calculating the ensemble’s F1 by averaging the output probabilities
of every model in the ensemble. If a model increases the total F1 score, the model is per-
manently added to the ensemble. The process is repeated until no further model improving
the ensemble’s F1 score can be found. This procedure resulted in a set of 17 best models.
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The EXC-N fusion chooses all 100 models into the ensemble and then iteratively drops one
model at a time. In each round, a model that results in the largest increase of the ensemble’s
F1 is dropped. The process stops when dropping any other model cannot increase the F1
score. Using this approach, we ended up using 94 models.
The TOP-Ns fusion is analogous to the TOP-N fusion, but it averages pre-softmax scores
instead of output class probabilities.
The OPT-F1 fusion aims at learning weights that sum up to 1 for the weighted average of
output probabilities from models selected via the procedure used in the TOP-N strategy. The
weights are estimated using modified Powell’s method from the SciPy package to maximize
the F1 score on the development dataset.

6.2 Experimental Setup
We implemented our models in PyTorch, taking advantage of the Huggingface reimple-
mentation (see Footnote 5), with the “BERT-large-uncased” setting, pretrained using
24 transformer layers, having the hidden unit size of 𝑑 = 1024, 16 attention heads, and
335𝑀 parameters. When building the ensemble, we picked learning rates from the interval
[1e−6, 2e−6]. Each epoch iterates over the dataset in an ordered manner, starting with the
shortest sequence. We truncate sequences at maximum length 𝑙 = 200 with a heuristic—
firstly we truncate the document1 to length 𝑙/2, if that is not enough, then we truncate the
document2 to the same size. We keep the minibatch size of 32 examples and keep other
hyperparameters the same as in the BERT paper (Devlin et al., 2019). We use the same
Adam optimizer (Kingma and Ba, 2015) with the L2 weight decay of 0.01 and no warmup.
We observed that the BERT models had to cope with a high variance during the training.
This might be caused by the problem difficulty, the relatively small number of training ex-
amples, or the complexity of the models. To deal with the problem, we decided to discard
all models with F1 scores of less than 55 on the development dataset. Our initial experi-
ments used sequences up to the length of 512, but we found no difference when truncating
them down to 200. We trained the model on the GeForce RTX 2080 Ti GPU.

6.2.1 Baselines

We compare our system to three baselines. The first is the Branch-LSTM baseline provided
by the task organizers6—inspired by the winning system of RumourEval 2017. The second
baseline FeaturesNN is our re-implementation of the first baseline in PyTorch without the
LSTM—posts are classified by means of a 2-layer network (ReLU/Softmax), using only the
features defined in Footnote 8. In the third case (BiLSTM+SelfAtt), we use the same input
embeddings as in our submitted model but replace the BERT’s transformer with a 1-layer
BiLSTM network followed by a self-attention and a softmax layer, inspired by Lin et al.
(2017). The only difference is no orthogonality constraint, as we didn’t find it helpful in
preliminary experiments.

6.2.2 Evaluation

The evaluation follows standard classification metrics: Accuracy and macro-averaged F1
score (see Section 2.2).

6http://tinyurl.com/y4p5ygn7. Accessed 16.3.2023.
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#𝜃 Acc𝑡𝑒𝑠𝑡 macro F1𝑑𝑒𝑣 macro F1𝑡𝑒𝑠𝑡 F1𝑆 F1𝑄 F1𝐷 F1𝐶
Branch-LSTM 453K 84.10 - 49.30 43.80 55.00 7.10 91.30
FeaturesNN 205K 82.84 45.46± 1e−2 44.55± 2e−2 40.29 40.12 17.69 80.43
BiLSTM+SelfAtt 28M 83.59 47.55± 6e−3 46.81± 6e−3 42.21 45.20 17.75 81.92
BERT𝑏𝑎𝑠𝑒 109M 84.67 51.40± 1e−2 53.39± 3e−2 43.49 59.88 18.42 90.36
BERT𝑏𝑖𝑔−𝑛𝑜𝑝𝑟𝑒𝑣 335M 84.33 52.61± 2e−2 52.91± 4e−2 42.37 55.17 24.44 90.15
BERT𝑏𝑖𝑔−𝑛𝑜𝑠𝑟𝑐 335M 84.51 53.72± 2e−2 55.13± 3e−3 43.02 56.93 26.53 90.51
BERT𝑏𝑖𝑔 335M 84.08 56.24± 9e−3 56.70± 3e−2 44.29 57.07 35.02 90.41
BERT𝑏𝑖𝑔 EXC-N* - 85.50 58.63 60.28 48.89 62.80 37.50 91.94
BERT𝑏𝑖𝑔 TOP-N* - 85.22 62.58 60.67 48.25 62.86 39.74 91.83
BERT𝑏𝑖𝑔 OPT-F1 - 85.39 62.68 61.27 48.03 62.26 42.77 92.01
BERT𝑏𝑖𝑔 TOP-N𝑠 - 85.50 61.73 61.67 49.11 64.45 41.29 91.84
GPT 116M - 55.51△ - - - - -
GPT+ft 116M×2 - 56.69△ - 48 60 48 91
GPT+ft (ens) - - - 61.87 - - - -
ConversBERT+ft 109M×2 - 56.7 - - - - -
BSAF? 340M 86.10 - 63.47 45.87 60.82 54.86 92.34
BSAF(ens)? - - - 64.66 45.96 61.99 57.93 92.74
jLF? 149M - - 57.82 - - - -
jLF+ft? 149M - - 63.71 - - - -
jLF+ft+BiLSTM? 160M - - 64.87 - - - -
jLF+ft+BiLSTM(ens)? - - - 67.20 51.58 65.76 58.90 92.56

Table 6.2: Results on the dev and test dataset. SemEval submissions are denoted by *.
Results marked with △ report their best—not average—result. Models marked with ?

follow unknown result reporting protocol. Results with gray background were published
concurrently, or after the publication of the original work (Fajcik et al., 2019).

6.3 Results and Discussion
Main Results The results are shown in Table 6.2. The values for every single model were
obtained by averaging the results of 11 models. We report the mean and the standard
deviation in these cases. #𝜃 denotes the number of parameters. Columns F1𝑆 to F1𝐶
report individual F1 scores for each class on test dataset. All ensemble models have the F1
score optimized on the development dataset. BiLSTM+SelfAtt contains 4.2M parameters,
without pretrained BERT embeddings. BERT𝑏𝑖𝑔−𝑛𝑜𝑠𝑟𝑐 and BERT𝑏𝑖𝑔−𝑛𝑜𝑝𝑟𝑒𝑣 denote system
instantiations with an empty source and an empty target post, respectively. Results marked
with +ft use handcrafted features.
Observations We observe that (i) the BERT model offers a substantial performance boost
when compared to three baselines; (ii) in the BERT model case, the test set performance
actually improves when compared to the dev set performance. This could be caused by
its pretraining causing better cross-domain transfer when exposed to different events from
the test set. Next, (iii) it can be concluded that both the previous post and source post
are essential for the model’s performance. Finally (iv) we note that OPT-F1 achieves ex-
cellent results on the dev set, as it is the only fusion trained on the dev set via gradient
descent-based procedure. However, in spite of our expectations, this fusion approach did
not outperform others on the test set.
What Features Were Not Helpful We tried adding a number of other features, includ-
ing those indicating positive, neutral, or negative sentiment, and all the features used by
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the FeaturesNN baseline into a final 2-layer network. We also tried adding jointly learned
POS, NER, and dependency tag embeddings, as the third segment embeddings7. We also
experimented with an explicit [SEP] token to separate the source and the previous post in
the BERT input. However, none of the mentioned changes led to a statistically significant
improvement.
Insights from Subsequent Work In general, we observe two directions of improvements
in subsequent work (related work is in the next Section 6.4). Firstly, usage of different
handcrafted features significantly improves F1 score of posts that deny the rumor. This
is demonstrated by all documented works: the RumourEval’s winning system GPT (Yang
et al., 2019a), ConversBERT (Radhakrishnan et al., 2020), BSAF (Wang et al., 2021) and
jLF (Khandelwal, 2021). For the most extensive set of features, we refer the reader to
Khandelwal (2021), where 441 total features were used. This included structural features
capturing the post’s structure (video presence, the ratio of capital letters, . . . ), content fea-
tures capturing the presence of indicative words (cue words, swear words, rumor words like
’gossip’ or ’hoax’), conversational features which capture similarities between target post
and other posts in the thread sequence, affective features such as the presence of words
representing pleasantness, activation, and imagery (Whissell, 2009), emotion features such
as the presence of words capturing fine-grained emotion spectrum, dialogue act features
(Pennebaker et al., 2001) and speech-act features (Wierzbicka, 1987) capturing the pres-
ence of words typical for a predefined set of acts. Unfortunately, none of the works above
quantified the importance of its selected features. Secondly, jLF shows that incorporating
the very long context of previous discussion posts (not just a source post and a previous
post), and jointly training for rumor veracity prediction produces substantial performance
improvements. A simple prior from the thread sequences was also uncovered by (Radhakr-
ishnan et al., 2020), who incorporated the beliefs that a query post is less likely to follow
another query post, and a support post is more likely to follow a support post via prior
distribution interpolated with the estimated distribution.

6.4 Related Work
Previous SemEval Competitions In previous years, there were two SemEval compe-
titions targeting the stance classification. The first one focused on the setting in which
the actual rumor was provided (Mohammad et al., 2016). Organizers of SemEval-2016
Task 6 prepared a benchmarking system based on SVM using hand-made features and
word embeddings from their previous system for sentiment analysis (Mohammad et al.,
2013), outperforming all the challenge participants.

The second competition was the previous RumourEval won by a system based on word
vectors, handcrafted features8 and an LSTM (Hochreiter and Schmidhuber, 1997) summa-
rizing information of the discussion’s branches (Kochkina et al., 2017). Other submissions
were either based on similar handcrafted features (Singh et al., 2017; Wang et al., 2017;
Enayet and El-Beltagy, 2017), features based on sets of words for determining language cues
such as Belief or Denial (Bahuleyan and Vechtomova, 2017), post-processing via rule-based

7We tried adding the learned representations to the input the same way the segment/positional embed-
dings are added.

8The features included: a flag indicating whether a tweet is a source tweet of a conversation, the length of
the tweet, an indicator of the presence of URLs and images, punctuation, the cosine distance to the source
tweet and all other tweets in the conversation, the count of negation and swear words, and an average of
word vectors corresponding to the tweet.
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heuristics after the feature-based classification (Srivastava et al., 2017), Convolutional Neu-
ral Networks (CNNs) with rules (García Lozano et al., 2017), or CNNs that jointly learned
word embeddings (Chen et al., 2017b).
End-to-end Approaches Augenstein et al. (2016) encode the target text by means of
a bidirectional LSTM (BiLSTM), conditioned on the source text. The paper empiri-
cally shows that the conditioning of the source text matters. Du et al. (2017) propose
target augmented embeddings—embeddings concatenated with an average of source text
embeddings—and apply them to compute attention based on the weighted sum of target
embeddings, previously transformed via a BiLSTM. Mohtarami et al. (2018) propose an
architecture that encodes the source and the target text via an LSTM and a CNN sepa-
rately and then uses a memory network together with a similarity matrix to capture the
similarity between the source and the target text and infers a fixed-size vector suitable for
the stance prediction.
Subsequent Work. The concurrent BLCU-NLP team (Yang et al., 2019a) used GPT
(Radford et al., 2018) with handcrafted features, data augmentation for similar datasets,
and all thread posts preceding the target post prepended (or truncated) and achieved 1st
place in the competition. Radhakrishnan et al. (2020) shown that using BERT trained on
social media conversations, and post-training probability adjustment with priors can further
improve the performance. Wang et al. (2021) shows that score aggregation via an additional
self-attention layer could provide marginal improvements. Lastly, Khandelwal (2021) has
shown that substantial improvements can be made with extensive feature utilization, the
inclusion of the long context preceding the post via LongFormer (Beltagy et al., 2020), and
joint training with veracity prediction. Result comparisons with subsequent work can be
found in the previous Section 6.3.

6.5 Chapter Summary
The system presented in this chapter achieved the macro F1 score of 61.67, without the
usage of any handcrafted features. It improved over the challenge baseline by 12.37 %
absolute while using only the source post of discussion, the previous post, and the target
post to classify the target post’s stance to a rumor. The system achieved 2nd place in
the competition. Furthermore, this chapter explored different ensembling techniques and
provided evidence showing that TOP-Ns fusion is a good choice for probabilistic model
ensembling.

Next, it was shown that despite the advances of the current pretrained models, the best
performance of the subsequent work at the time of writing achieves 67.2 F1. The inability
to achieve better performance may by hindered by the low human inter-agreement—76.2 %
for Twitter data and 78 % for Reddit data respectively (Gorrell et al., 2019). Up to this day,
the RumourEval dataset is a challenging testing ground for testing language understanding
capabilities of future NLP models.

Lastly, the amount of subsequent work which took advantage of the approach and the
code released in our original work (Fajcik et al., 2019) demonstrates that our submission
became a strong baseline for the community and served as a point of comparison for these
works (Radhakrishnan et al., 2020; Wang et al., 2021; Khandelwal, 2021).
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6.6 Comparison with Systems Grounded with Trusted
Evidence

Approaches to automated fact-checking based on capturing superficial cues of credibility,
as the way the claim is written, and metadata such as author, source, or common news-
concluding phrases, are definitely not very trustworthy cues for decision-making. However,
in prior work, there is an abundance of work (Zubiaga et al., 2016; Derczynski et al., 2017;
Li et al., 2019) in this direction. A possible explanation for this such directions is the
following. Firstly, it is much easier to implement superficial systems when compared to
their trustworthy evidence-grounded counterpart, as the latter includes an extra retrieval
step and keeping an up-to-date database of trustworthy information. Secondly, collecting
dataset with trustworthy evidence annotation for disproving the false information is ex-
pensive, whereas there is plenty of easy-to-scrape FC websites picking up a specific claim,
from a specific post of news-site, and verifying its potential falsehood9. Thirdly, despite
not being faithful, such methods are useful for early intervention, where the purpose of the
system is merely to filter out the sheer amount of content for manual fact-checks in social
media. Lastly, sometimes no evidence-grounding information is found, and only superficial
information is available. Hence, in this thesis, we argue that such systems are not subor-
dinate, but complementary to evidence-grounded systems, such as the one presented in the
next Chapter 7.

9For instance https://www.politifact.com/.
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Chapter 7

Interpretable Evidence-Grounded
Fact-Checking

Today’s automated fact-checking systems are moving from predicting the claim’s veracity
by capturing the superficial cues of credibility, such as the way the claim is written, the
statistics captured in the claim author’s profile, or the stances of its respondents on social
networks (Zubiaga et al., 2016; Derczynski et al., 2017; Gorrell et al., 2019; Fajcik et al.,
2019; Li et al., 2019) towards evidence-grounded systems which, given a claim, identify
relevant sources and then use these to predict the claim’s veracity (Thorne et al., 2018;
Jiang et al., 2020; Park et al., 2022). In practice, providing precise evidence turns out
to be at least as important as predicting the veracity itself. Disproving a claim without
linking it to factual evidence often fails to be persuasive and can even cause a “backfire”
effect—refreshing and strengthening the belief into an erroneous claim (Lewandowsky et al.,
2012)1.

For evidence-grounded fact-checking, most of the existing state-of-the-art systems (Jiang
et al., 2021; Stammbach, 2021; Khattab et al., 2021a) employs a 3-stage cascade approach;
given a claim, they retrieve relevant documents, rerank relevant evidences (sentences, para-
graphs or larger text blocks) within these documents, and predict the claim’s veracity from
the top-𝑘 (usually 𝑘=5) relevant evidences.

This comes with several drawbacks; firstly, the multiple steps of the system lead to
error propagation, i.e. the input to the last system might often be too noisy to contain
any information. Some previous work focused on merging evidence reranking and veracity
prediction into a single step (Ma et al., 2019; Schlichtkrull et al., 2021). Secondly, in
an open-domain setting, number of relevant evidences can be significantly larger than 𝑘2,
especially when there is a lot of repeated evidence. Thirdly, in an open-domain setting,
sometimes there is both, supporting and refuting evidence. The re-ranking systems often do
not distinguish whether evidence is relevant because it supports or refutes the claim, and
thus may select the evidence from one group based on the in-built biases.

Another problem is that existing evidence-grounded datasets for fact-checking often an-
notate relevant evidences on the different granularity of text. Some datasets provide only
noisy paragraph-level annotation (Park et al., 2022), others finer sentence-level annotation
(Thorne et al., 2018, 2021). To further strengthen the persuasive effect of the evidences
and understand the model’s reasoning process, some of these systems provide token-level

1Further discussion in Appendix F.2.
2e.g.,~3.7 % of FEVER’s non-exhaustive annotations.
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cues of interpretability (Popat et al., 2018; Liu et al., 2020). However, the token-level inter-
pretability in the mentioned work was often considered a useful trait, which was evaluated
only qualitatively, as the labor-intensive human evaluation was out of the scope of their
focus.

To this extent, in this chapter we propose Claim-Dissector (CD), a latent variable model
which:

1. jointly ranks top-relevant, top-supporting, and top-refuting evidences, and predicts
the veracity of the claim in an interpretable way, where the probability of the claim’s
veracity is estimated using the linear combination of per-evidence probabilities (Sub-
section 7.1.2),

2. can provide fine-grained (sentence-level or token-level evidence) while using only
coarse-grained supervision (on block-level or sentence-level respectively),

3. can be parametrized from a spectrum of language representation models (such as
RoBERTa or DeBERTaV3 (Liu et al., 2019; He et al., 2021)).

Finally, we collect a 4-way annotated dataset TLR-FEVER of per-token relevance annotations.
This serves as a proxy for evaluating interpretability: we measure how similar are the cues
provided by the model to the ones from humans. We believe future work can benefit from
our quantitative evaluation approach while maintaining focus.

7.1 Model Description
We present a 2-stage system composed of the retriever and the verifier. The documents
are ranked via retriever. Each document is split into blocks. The blocks from top-ranking
documents are passed to the verifier and jointly judged. Our interpretable CD verifier is
capable of re-ranking documents for any granularity of relevant evidence (e.g., document,
block, sentence, token). Jointly, the same model predicts the claim’s veracity. The overall
schema of our approach is depicted in Figure 7.1.

7.1.1 Retriever

Given a claim 𝑐 ∈ 𝒞 from the set of all possible claims 𝒞 and the corpus 𝒟 = {𝑑1, 𝑑2, ..., 𝑑𝑛}
composed of documents 𝑑𝑖, the retriever produces a ranking using function rank : 𝒞×𝒟 → R
that assigns a claim-dependent score to each document in the corpus. In this work, we focus
on the verifier; therefore, we take the strong retriever from Jiang et al. (2021). This retriever
interleaves documents ranked by BM25 (Robertson and Zaragoza, 2009) (𝑎1, 𝑎2, ...𝑎𝑛) and
Wikipedia API (𝑏1, 𝑏2, ...𝑏𝑚) following Hanselowski et al. (2018) as (𝑎1, 𝑏1, 𝑎2, 𝑏2, ...), while
skipping duplicate articles. Each document is then split into non-overlapping blocks of
size 𝐿𝑥, respecting sentence boundaries3. Our verifier then computes its veracity prediction
from top-𝐾1 such blocks. To keep up with similar approaches (Hanselowski et al., 2018;
Stammbach and Neumann, 2019; Subramanian and Lee, 2020), we also experiment with
expanding evidence with documents hyperlinked to the top retrieved articles. We rank
these documents according to the rank and sequential order in the document they were
hyperlinked from. We then process these extra ranked documents the same way as retrieved
documents, adding top-𝐾2 blocks to the verifier’s input. As discussed more closely in

3Every block contains as many sentences as can fit into 𝐿𝑥 tokens, considering the verifier’s tokenization.
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Figure 7.1: Diagram of Claim-Dissector’s workflow. Abbreviations S, R, IRR, NEI stand
for support, refute, irrelevant, and not-enough-information. MLP function from the figure
is defined by equation 7.1.

Stammbach and Neumann (2019), some relevant documents are impossible to retrieve using
just the claim itself, as their relevance is conditioned on other relevant documents. However,
we stress that such approaches also mimic the way the FEVER dataset was collected, and
thus the improvements of such an approach on “naturally collected” datasets might be
negligible if any.

7.1.2 Verifier

The verifier first processes each block independently using a language representation model
(LRM) and then aggregates cross-block information via multi-head attention (Vaswani
et al., 2017), computing matrix 𝑀 . This matrix is used to compute both, the probability
of each evidence’s relevance and the probability of the claim’s veracity. Furthermore, the
way the model is constructed allows learning a linear relationship between these probability
spaces.

Formally given a claim 𝑐 and 𝐾 = 𝐾1+𝐾2 blocks, 𝐾 input sequences 𝑥𝑖 for each block 𝑖
are constructed as

[CLS] <claim> 𝑐 [SEP] <title> 𝑡 <passage> 𝑠1 <sentence> 𝑠2
<sentence>...𝑠#<sentence> [SEP],

where [CLS] and [SEP] are transformer special tokens used during the LRM pretrain-
ing (Devlin et al., 2019). Each block is paired with its article’s title 𝑡 and split into
sentences 𝑠1, 𝑠2, ..., 𝑠#. Symbols 𝑐, 𝑡, 𝑠1, 𝑠2, ..., 𝑠# thus each denote a sequence of tokens.
We further introduce new special tokens <claim>, <title>, <passage>, <sentence> to

77



separate different input parts. Crucially, every sentence is appended with a <sentence>
token. Their respective embeddings are trained from scratch. Each input 𝑥𝑖 is then en-
coded via LRM 𝐸𝑖 = LRM(𝑥𝑖) ∈ R𝐿𝐵×𝑑, where 𝐿𝐵 is an input sequence length, and 𝑑 is
LRM’s hidden dimensionality. The representations of every block are then concatenated
into 𝐸 = [𝐸1;𝐸2; ...;𝐸𝐾 ] ∈ R𝐿×𝑑, where 𝐿 is the number of all tokens in the input
sequences from all retrieved blocks. Then we index-select all representations from 𝐸 cor-
responding to positions of sentence tokens in 𝑠1, 𝑠2, ..., 𝑠# into score matrix 𝐸𝑠 ∈ R𝐿𝑒×𝑑,
where 𝐿𝑒 corresponds to the number of all tokens in all input sentences (without special
tokens). Similarly, we index-select all representations at the same positions as the special
<sentence> tokens at the input from 𝐸 into matrix 𝑆 ∈ R𝐿𝑆×𝑑, where 𝐿𝑆 ≪ 𝐿𝑒 is the
total number of sentences in all inputs 𝑥𝑖. The matrix 𝑀 ∈ R𝐿𝑒×3 is then given as

𝑀 = SLP(MHAtt(𝐸𝑠,𝑆,𝑆))𝑊 . (7.1)

The MHAtt : R𝐿𝑒×𝑑×R𝐿𝑆×𝑑×R𝐿𝑆×𝑑 → R𝐿𝑒×𝑑 operator is a multi-head attention (Vaswani
et al., 2017) with queries 𝐸𝑠, and keys and values 𝑆. 𝑊 ∈ R𝑑×3 is a linear transformation,
projecting resulting vectors to the desired number of classes (3 in case of FEVER). SLP
operator is defined as

SLP(𝑥) = GELU(dp(𝑊 ′ lnorm(𝑥))). (7.2)

The operator dp denotes the dropout (Srivastava et al., 2014) used in training, 𝑊 ′ is a
trainable matrix, GELU is the Gaussian Error Linear Unit (Hendrycks and Gimpel, 2016)
and lnorm is the layer normalization (Ba et al., 2016).

To compute the per-evidence probabilities we split the matrix 𝑀 according to tokens
belonging to each evidence. For instance, for sentence-level evidence granularity we do
split 𝑀 = [𝑀 𝑠1,1;𝑀 𝑠2,1; ...;𝑀 𝑠#,𝐾 ] along dimension 𝐿𝑒 into submatrix representations
corresponding to sentence 𝑠1 in block 1 up to last sentence 𝑠# in block 𝐾. We then
independently normalize each such matrix of 𝑖-th evidence of 𝑗-th block as4:

P𝑖,𝑗(𝑤, 𝑦) =
exp𝑀 𝑖,𝑗

𝑤,𝑦∑︀
𝑤′

∑︀
𝑦′ exp𝑀

𝑖,𝑗
𝑤′,𝑦′

. (7.3)

Note that 𝑤 ∈ {1, 2, ..., |𝑠𝑖,𝑗 |} is a token index in the (i,j)-th evidence and 𝑦 ∈ {S, R, IRR} is
the relevance class label. Then we marginalize over latent variable 𝑤 to obtain the marginal
log-probability per evidence.

log P𝑖,𝑗(𝑦) = log
∑︁
𝑤′

P𝑖,𝑗(𝑦, 𝑤′) (7.4)

Then objective ℒ𝑅 is computed for evidences annotated in label set A = {(𝑦*1, (𝑖1, 𝑗1)), ...}
(usually |A| ≪ 𝐿𝑆) for a single claim5.

ℒ𝑅 =
1

|A|
∑︁

𝑦*,(𝑖,𝑗)∈A

log P𝑖,𝑗(𝑦*) (7.5)

In training, A contains the same amount of relevant and irrelevant labels. For relevant,
the log-probability log P𝑖,𝑗(𝑦 = 𝑦*) is maximized, based the overall claim’s veracity label

4Note that the probability also depends on input sequences {𝑥𝑖}𝑖∈{1,2,...,𝐾}, but we omit this dependency
for brevity.

5If example has NEI veracity in FEVER, ℒ𝑅 = 0.
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𝑦* ∈ {𝑆,𝑅}. For irrelevant evidences, 𝑦* = IRR is maximized. As FEVER contains only
annotation of relevant sentences, we follow the heuristic of Jiang et al. (2021) and sample
irrelevant sentences ranked between 50 and 200, in order to avoid maximizing the objective
for false negatives. In test-time, we rank the evidence (𝑖, 𝑗) according to its combined
probability of supporting or refuting relevance 𝑠𝑐𝑜𝑟𝑒𝑖,𝑗 =

∑︀
𝑦∈{𝑆,𝑅} P

𝑖,𝑗(𝑦).
Next, we compute the probability of the claim’s veracity 𝑦 ∈ {S, R, NEI}. First notice

that scores in 𝑀 are logits (proof in Appendix C.2)

𝑀 𝑖,𝑗
𝑤,𝑦 = log(𝐶𝑖,𝑗 P𝑖,𝑗(𝑤, 𝑦)). (7.6)

Therefore, we use a learnable extra non-negative degree of freedom 𝐶𝑖,𝑗 to compute a linear
ensemble6 producing the final probability

P(𝑦) =

∑︀
𝑖,𝑗,𝑤 𝐶𝑖,𝑗 P𝑖,𝑗(𝑤, 𝑦)∑︀

𝑦′
∑︀

𝑖,𝑗,𝑤 𝐶𝑖,𝑗 P𝑖,𝑗(𝑤, 𝑦′)
. (7.7)

Lastly, we bias the model to focus only on some tokens in each evidence by enforcing
an ℒ2 penalty over the scores in 𝑀 by

ℒ2 =
1

𝐿𝑒
||𝑀 ||2𝐹 , (7.8)

where || · ||𝐹 denotes Frobenius norm. We show empirically that prior imposed by this ob-
jective is crucial for obtaining weakly-supervised token-level cues (Section 7.4.2). Therefore
the final per-sample loss with hyperparameters 𝜆𝑅, 𝜆2 is

ℒ = − log P(𝑦)− 𝜆𝑅ℒ𝑅 + 𝜆2ℒ2. (7.9)

7.1.3 Baseline

Apart from previous work, we propose a baseline bridging the proposed system and the
recent work of Schlichtkrull et al. (2021). In order to apply this recent work for FEVER,
we introduce a few necessary modifications7. We normalize all scores in 𝑀 to compute
joint probability across all blocks

P(𝑤, 𝑦) =
exp𝑀𝑤,𝑦∑︀

𝑤′
∑︀

𝑦′ exp𝑀𝑤′,𝑦′
. (7.10)

Following previous work, we marginalize out per-token probabilities in each evidence 𝑠𝑖,𝑗 .

P(𝑠𝑖,𝑗 , 𝑦) =
∑︁

𝑤′∈𝑠𝑖,𝑗

P(𝑤′, 𝑦) (7.11)

Using this sentence probability formulation, the objective is computed for every relevant
evidence.

ℒ𝑏0 =
1

|A𝑝|
∑︁

𝑠𝑖,𝑗 ,𝑦∈A𝑝

log P(𝑠𝑖,𝑗 , 𝑦) (7.12)

Next, unlike Schlichtkrull et al. (2021), we interpolate objective ℒ𝑏0 with objective

ℒ𝑏1 = log P(𝑦) = log
∑︁
𝑠𝑖,𝑗

P(𝑠𝑖,𝑗 , 𝑦) (7.13)

6Assuming 𝑦=IRR=NEI.
7The necessity of these is explained in Appendix F.3.
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by computing their mean. Like the CD, we use ℒ𝑏1 objective to take advantage of examples
from NEI class for which we have no annotation in A𝑝 (and thus ℒ𝑏0 is virtually set to 0).
Unlike CD, the annotations A𝑝 in ℒ𝑏0 contain only relevant labels where 𝑦* ∈ {𝑆,𝑅}8.

In order to not penalize non-annotated false negatives, we compute global distribution
in ℒ𝑏0 during training only from representations of tokens from labeled positive and negative
sentences in 𝑀 . In test time, we rank evidences according to 𝑠𝑐𝑜𝑟𝑒𝑖,𝑗 =

∑︀
𝑦∈{𝑆,𝑅} P(𝑠𝑖,𝑗 , 𝑦),

and predict claim’s veracity according to P(𝑦) =
∑︀

𝑠𝑖,𝑗
P(𝑠𝑖,𝑗 , 𝑦). We also considered differ-

ent model parametrizations discussed in Appendix D.5.

7.1.4 Transferring Supervision to Finer Language Granularity

The proposed model can benefit from annotation on the coarser granularity of the language
than tested in inference time. For example, evidence annotation can be done at the docu-
ment, block, paragraph, or token level. In Section 7.4.2, we show despite the fact that the
model is trained on coarse granularity level, the model still shows a moderate performance
of relevance prediction when evaluated on finer granularity. We demonstrate this with two
experiments.

First, the model is trained with sentence-level supervision and it is evaluated on a token-
level annotation. For this we leave model as it is—reminding that prior over per-token
probabilities enforced by the objective ℒ2 is crucial (Table 7.8).

Secondly, we assume only block-level annotation is available in training and we evaluate
on sentence-level annotation. Here, we slightly alter the model, making it rely more on its
sentence-level representations. In Section 7.4.2, we show this simple alteration significantly
improves the performance at the sentence level. To compute the block-level probability,
the block is the evidence, therefore the evidence index can be dropped. The probability of
the 𝑗-th block 𝑏𝑗 is obtained by marginalizing out the per-token/per-sentence probabilities.

P(𝑏𝑗 , 𝑦) =
∑︁

𝑠𝑖,𝑗∈𝑏𝑗

P(𝑠𝑖,𝑗 , 𝑦) =

∑︁
𝑠𝑖,𝑗∈𝑏𝑗

∑︁
𝑤′∈𝑠𝑖,𝑗

P(𝑤′, 𝑦)
(7.14)

In practice, we found it helpful to replace the block-level probability P(𝑏𝑗 , 𝑦) with its lower-
bound P(𝑠𝑖,𝑗 , 𝑦) computed for 1 sentence sampled from the relevant sentence likelihood.

P(𝑏𝑗 , 𝑦) ≈ P(𝑠𝑖,𝑗 , 𝑦); 𝑠𝑖,𝑗 ∼ P(𝑠𝑖,𝑗 , 𝑦 ∈ {𝑆,𝑅}) (7.15)

Intuitively, making a single sentence estimate (SSE) forces the model to invest the mass into
a few sentence-level probabilities. This is similar to HardEM9. In ℒ𝑅 we then maximize
the probabilities of positive blocks computed as in equation 7.15, and negative sentences10

computed (and normalized) on sentence level as in equation 7.5.
8Maximizing NEI class for irrelevant sentences leads to inferior accuracy. This makes sense, since it

creates “tug-of-war” dynamics between ℒ𝑏0 and ℒ𝑏1. The former objective tries to allocate mass of joint
space in NEI class, since most documents are irrelevant, whereas the latter objective tries to allocate the
mass in the dimension of labeled veracity class.

9In preliminary experiments, we also tried HardEM, but the results over multiple seeds were unstable.
10Indices of irrelevant sentences are mined automatically (see Section 7.1.1), therefore this supervision

comes “for free”.
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Baseline for Token-level Rationales

Similarly to Shah et al. (2020); Schuster et al. (2021), we train a masker—a model which
learns to replace the least amount of token embeddings at the Claim-Dissector’s input with
a single learned embedding11 in order to maximize the NEI class probability. We compare
the unsupervised rationales given by the masker with the unsupervisedly learned rationales
provided by the Claim-Dissector on-the-fly.

Our masker follows the same architecture as Claim-Dissector, except that the multi-
headed layer from the equation (7.1) is omitted. It receives 𝐾1 blocks at its input, encoded
the very same way as for the Claim-Dissector. Instead of computing matrix 𝑀—which con-
tains three logits per evidence token, the masker predicts two logits [𝑙𝑖0, 𝑙𝑖1]—corresponding to
keep/mask probabilities [𝑝𝑖0, 𝑝𝑖1] for 𝑖-th token in evidence of every block. The mask [𝑚𝑖

0,𝑚
𝑖
1]

is then sampled for every token from concrete distribution via Gumbel-softmax (Jang et al.,
2017). During training, 𝑖-th token embedding 𝑒𝑖 at the Claim-Dissector’s input 𝑒′𝑖 is replaced
with a linear combination of itself and a learned mask-embedding 𝑒𝑚 ∈ R𝑑, tuned with the
masker.

𝑒′𝑖 = 𝑚𝑖
0𝑒𝑖 +𝑚𝑖

1𝑒𝑚 (7.16)
The masker is trained to maximize the Claim-Dissector’s log-likelihood of NEI class while
forcing the mask to be sparse via L1 regularization. Per-sample objective to maximize with
sparsity strength hyperparameter 𝜆𝑆 is given as

ℒ = log P(𝑦 = 𝑁𝐸𝐼)− 𝜆𝑆

𝐿𝑒

∑︁
𝑖

|𝑚𝑖
0|. (7.17)

7.2 Related Work
Datasets. Previous work in supervised open-domain fact-checking often focused on large
datasets with the evidence available in Wikipedia such as FEVER (Thorne et al., 2018),
FEVER-KILT (Petroni et al., 2021), FAVIQ (Park et al., 2022), HoVer (Jiang et al., 2020),
REALFC (Thorne et al., 2021) or TabFact (Chen et al., 2020). We follow this line of
work, and validate our approach mainly on FEVER because of its sentence-level anno-
tation, open-domain setting, 3 levels of veracity (into S/R/NEI classes), and controlled
way of construction—verification should not require world knowledge, everything should be
grounded on trusted, objective, and factual evidence from Wikipedia.
Open-domain Fact-Checking (ODFC) Unlike this work, most of the previous work
includes 3-stage systems that retrieve evidence, rerank each document independently, and
then make a veracity decision from top-𝑘 documents (Thorne et al., 2018; Nie et al., 2019;
Zhong et al., 2020).

Jiang et al. (2021) particularly distinguished the line of work which aggregates the
final decision from independently computed per-sentence veracity probabilities (Zhou et al.,
2019; Soleimani et al., 2020; Pradeep et al., 2021b, inter alia) and the line of work where
the top-relevant sentences are judged together to compute the final veracity probability
(Stammbach and Neumann, 2019; Pradeep et al., 2021a, inter alia). Jiang et al. (2021)
compares a similar system against these two assumptions, showing that joint judgment
of relevant evidence is crucial when computing final veracity. We stress that our system
falls into the joint judgment category. Although relevance is computed per sentence, these

11Schuster et al. (2021) used mask token representation, but we get singificantly better performance on
TLR-FEVER, if we learn the “noise embedding” instead.
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probabilities along with linear combination coefficients depend on all inputs, so the model
conditioned on all (often hundreds) of input sentences.

To deal with multi-hop evidence (evidence which is impossible to mark as relevant
without other evidence) Subramanian and Lee (2020); Stammbach (2021) iteratively rerank
evidence sentences to find minimal evidence set, which is passed to the verifier. Our system
jointly judges sentences within a block, while the multi-head attention layer could propagate
cross-block information. Our overall performance results suggest that our system is about
on par with these iterative approaches while requiring only single forward computation.
However, further analysis shows our model underperforms on multi-hop evidence (more in
Section 7.4.2).
Interpretability Popat et al. (2018); Liu et al. (2020) both introduced systems with an
interpretable attention design and demonstrated their ability to highlight important words
through a case study. In our work, we take a step further and propose a principled way
to evaluate our system quantitatively. We note that Schuster et al. (2021) proposed a very
similar quantitative evaluation of token-level rationales, for data from the VitaminC dataset.
The dataset, constructed from factual revisions on Wikipedia, assumed that the revised
part of facts is the most salient part of the evidence. In contrast, we instruct annotators
to manually annotate terms important to their judgment (Section 7.3.1). The VitaminC
dataset is not accompanied by the evidence corpus, thus we deemed it as unsuitable for
open-domain knowledge processing.

Krishna et al. (2022) proposed a system that parses evidence sentences into natural
logic-based inferences (Angeli and Manning, 2014). These provide deterministic proof of
the claim’s veracity. Authors verify the interpretability of the generated proofs by asking
humans to predict veracity verdict from them. However, the model is evaluated only on the
FEVER dataset and its derivatives, which contain potential bias to their approach—the
claims in this dataset were created from facts through ”mutations“ according to natural
logic itself.
Joint Reranking and Veracity Prediction Schlichtkrull et al. (2021) proposed a system
similar to our work for fact-checking over tables. The system computes a single joint
probability space for all considered evidence tables. The dataset however contains only
claims with true/false outcomes, typically supported by a single table. While our work
started ahead of its publication, it can be seen as an extension of this system.

7.3 Experimental Setup
Unless said otherwise, we employ DeBERTaV3 (He et al., 2021) as LRM. In all experiments,
we firstly pretrain the model on MNLI (Williams et al., 2018). We use maximum block-
length 𝐿𝑥 = 500. Our recipe for implementation and model training including baselines is
closely described in Appendix A.3.

7.3.1 Datasets

We evaluate our system on 5 datasets. Samples from these are available in Appendix E.1.

FEVER. We mainly validate our approach on FEVER (Thorne et al., 2018) and our newly
collected dataset of token-level rationales, which extends a subset of FEVER with extra
annotations. FEVER is composed of claims constructed from Wikipedia. Each claim was
annotated as SUPPORTED, REFUTED or there is NOT-ENOUGH-INFORMATION for
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FEVER Total Supported Refuted Not-Enough-Info
Train 145,449 80,035 29,775 35,639

- FEVER𝑀𝐻 12,958 (8.91%) 10,003 2,955 -
- FEVER𝑀𝐻𝐴𝑅𝑇

11,701 (8.04%) 8,959 2,742 -
Dev 19,998 6,666 6,666 6,666

- FEVER𝑀𝐻 1,204 (6.02%) 675 529 -
- FEVER𝑀𝐻𝐴𝑅𝑇

1,059 (5.30%) 596 463 -
Test 19,998 - - -

Table 7.1: FEVER dataset and its subsets.

HoVer Total Supported Not-Supported
Train 18,171 11,023 7,148

- 2 Hop 9,052 6,496 2,556
- 3 Hop 6,084 3,271 2,813
- 4 Hop 3,035 1,256 1.779

Dev 4,000 2,000 2,000
Test 4,000 2,000 2,000

Table 7.2: HoVER dataset and its subsets.

its veracity, achieving 68 % inter-annotator agreement. Each annotator was presented with
an evidence sentence and the first sentence of articles from hyperlinked terms. In FEVER,
examples in the development set contain multi-way annotation of relevant sentences, i.e.,
each annotator selected set of sentences (evidence group) he considered relevant. To analyze
the performance of our components on samples that might need multi-hop reasoning, we
further created subsets of training/development set. FEVER𝑀𝐻 contains only examples
where all annotators agreed on that more than 1 sentence is required for verification, whereas
FEVER𝑀𝐻𝐴𝑅𝑇

contains only examples, where all annotators agreed that sentences from
different articles are required for verification. As majority of examples of FEVER𝑀𝐻 are
from FEVER𝑀𝐻𝐴𝑅𝑇

, we only evaluate on FEVER𝑀𝐻 . We include the subset statistics in
Table 7.1.
TLR-FEVER To validate token-level rationales, we collect our own test dataset on a
random subset of the validation set (only considering examples with gold sentence an-
notation). We collect a 4-way annotated set of token-level rationales inside the already
annotated relevant sentences (each token is annotated with a RELEVANT/IRRELEVANT
label). The annotators were colleagues with NLP background from our lab. We instruct
every annotator via written guidelines, and then we had 1-on-1 meeting after annotating
a few samples, verifying that the contents of the guidelines were understood correctly. We
let annotators annotate 100 samples, and resolve reported errors manually, obtaining 94
samples with fine-grained token-level annotation. In guidelines, we simply instruct annota-
tors to highlight the minimal part of the text they find important for supporting/refuting the
claim. There should be such a part in every golden sentence (unless an annotation error
happened). The complete guidelines are available in Appendix E.2.

To establish the performance of the average annotator, in place of inter-agreement, we
compute the performance of each annotator compared to other annotators on the dataset
and then compute the average annotator performance. We refer to this as human baseline
lower-bound, as each annotator was compared to only 3 annotations, while the system
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FAVIQ Total Support Refute
Train 17,008 8,504 8,504
Dev 4,260 2,130 2,130
Test 4,688 2,344 2,344

Table 7.3: FAVIQ dataset statistics.

RealFC Total Supported Refuted Neutral
Train 50,902 13,122 (25.78%) 6,236 (12.25%) 31544 (61.97%)

- Bipolar Evidence 3,193 (6.27%) 1,453 1,422 318
Dev 5,832 1,578 (27.06%) 724 (12.41%) 3530 (60.53%)

- Bipolar Evidence 381 (6.53%) 190 162 29
Test 6,265 1,742 (27.81%) 817 (13.04%) 3706 (59.15%)

- Bipolar Evidence 473 (7.55%) 209 209 55

Table 7.4: RealFC dataset and its subsets.

is compared to 4 annotations. We measure performance via F1 metric and report it in
Table 7.8.
HoVer We study the limitations of our system when applied to a dataset that requires
multi-hop reasoning on HoVer (Jiang et al., 2020). The dataset is created from HotspotQA
(Yang et al., 2018), a Wikipedia-based QA dataset for multi-hop reasoning. Annotators first
manually converted question-answer pairs into claims. The subset of original 2-hop claims
is further extended to require 3 to 4 hops, using related Wikipedia pages. Then the claims
are mutated, by word substitutions, the inclusion of negated words (not necessarily making
claim refuting (Schuster et al., 2019)), entity substitution, or making the claim more specific
or more general. Next, the claims are labeled into SUPPORTED and NOT-SUPPORTED
classes. Unlike in FEVER, due to low annotator inter-agreement between refuting and NEI
classes, authors merge these into NOT-SUPPORTED class, achieving inter-agreement 90 %
dataset statistics, including a number of examples requiring a different amount of reasoning
hops, are shown in Table 7.2.
FAVIQ-A. To assess the performance of our system when using silver-mined passage an-
notations, following Asai et al. (2022), we test our system on FAVIQ-A (Park et al., 2022).
FAVIQ-A is a fact-checking dataset created by automatically converting disambiguated
question-answer pairs from AmbigQA (Min et al., 2020). The conversion is done via 11B
text-to-text language model T5-XXL (Raffel et al., 2020) trained on QA to natural language
inference format conversion data from Demszky et al. (2018) and further finetuned on small
AmbigQA-specific dataset created by the authors. Having two disambiguated questions 𝑞1,
𝑞2 of question 𝑞, authors convert them into claims using their corresponding answers 𝑎1, 𝑎2
to create SUPPORTED claims and pair them with mismatched answers (𝑞1,𝑎2), (𝑞2,𝑎1) to
create REFUTED claims. As evidence labels, we use labels automatically mined Wikipedia
passage labels from Asai et al. (2022). The statistics of this dataset are shown in Table 7.3.
RealFC To validate our system on a natural dataset with exhaustive annotations and
bipolar evidence annotated, we resort to (Thorne et al., 2021). RealFC is a dataset created
from yes/no questions collected from Google search queries (Clark et al., 2019; Kwiatkowski
et al., 2019). Questions are manually converted to claims. The system is given the claim
along with a specific section of the Wikipedia page. The section is split into non-overlapping

84



blocks, as in FEVER. Thus, this dataset does not include the retrieval step. Each sentence
of a section is annotated for being SUPPORTING/REFUTING/NEUTRAL towards the
claim. The verdict12 for each section can be SUPPORT/REFUTE/NEUTRAL. About 6–
7 %13 of these sections contain both, supporting and refuting evidence (so-called bipolar
evidence).

7.3.2 Evaluation Metrics

Recall@Input (RaI). We evaluate retrieval w.r.t. recall at the model’s input while con-
sidering the different amount of K1+K2 blocks at the input, i.e. the score hit counts iff any
annotated evidence group was matched in K1+K2 input blocks.
Number of Sentences@Input (#SaI) denotes an average number of sentences at the
model’s input under the corresponding 𝐾1 +𝐾2 retrieval setting.
Accuracy (A) The proportion of correctly classified samples, disregarding the predicted
evidence.
Recall@5 (R@5) The proportion of samples for which any annotated evidence group is
matched within top-5 ranked sentences.
FEVER-Score (FS). The proportion of samples for which (i) any annotated evidence
group is matched within top-5 ranked sentences, and (ii) the correct class is predicted.
F1 Score measures unigram overlap between predicted tokens and reference tokens, disre-
garding articles (same way as in QA). Having multiple references, the maximum F1 between
prediction and any reference is considered per sample. More details can be found in Sec-
tion 2.2.
F1 Score for binary relevance classification computes the harmonic mean of precision and
recall for less frequent class (Section 2.2).
EM Unlike in QA, the EM results reported on HoVer, used for assessment of performance
on relevance predictions, are proportional to the number of cases when all evidences anno-
tated as ground truth were selected as relevant.
Conditional scoring Similarly to FS, conditional scoring validates both; the performance
of reranking and veracity prediction. Specifically, it computes average accuracy/F1 score
across samples, while setting per-sample hit/F1 to 0, if the model predicted the wrong
veracity. The exact definition of conditional scores used is in Appendix E.4.

In practice, both CD and masker model infer continuous scores capturing relevance for every
token14. When evaluating F1, we select only tokens with scores greater than threshold 𝜏 .
We tune the optimal threshold 𝜏 w.r.t. F1 on TLR-FEVER.

7.4 Results and Analysis on FEVER

7.4.1 Retrieval Performance

We evaluate the retrieval method from Jiang et al. (2021) and the proposed hyperlink ex-
pansion method in Table 7.5. We focus on analyzing the effect of hyperlink expansion,

12The inter-agreement for section-level annotations is unknown.
13Depending on the data split.
14We consider mask-class logits as scores for masker.
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K1+K2 FEVER FEVER𝑀𝐻 FEVER𝑀𝐻𝐴𝑅𝑇
#SaI

35+0 94.2 52.0 45.8 239.9
100+0 95.1 58.5 53.1 649.4
35+10 95.2 61.9 57.0 269.6
35+20 95.9 69.0 65.2 309.0
35+30 96.7 77.5 74.7 388.6
35+35 97.5 84.1 82.3 506.7
35+50 97.7 86.5 85.0 624.3
35+100 98.4 93.0 92.4 1008.8
100+100 98.6 93.4 92.7 1431.0

Table 7.5: Retrieval performance in RaI on FEVER dev set and its subsets.

varying 𝐾2, while keeping 𝐾1 = 35 in most experiments, which is setting similar to pre-
vious work—Jiang et al. (2021) considers reranking top-200 sentences. We observe that
setting 𝐾1 + 𝐾2 = 35 + 10 already outperforms retrieval without hyperlink expansion
and 𝐾1 = 100 blocks. Such observation is thus consistent with previous work which used
hyperlink signal (Hanselowski et al., 2018; Stammbach and Neumann, 2019).

7.4.2 Claim-Dissector’s Performance

We report the results of base-sized models based on a 3-checkpoint average. We train only
a single large model. We further evaluate retrieval in Appendix D.6 as it is a non-essential
part of our contribution.

Performance. We compare the performance of our system with previous work in Ta-
ble 7.6. Results marked with ? were unknown/uncertain, and unconfirmed by authors. We
note that apart from HAN (Ma et al., 2019), all previous systems were considering two sep-
arate systems for reranking and veracity prediction. Next, we note that only the ProofVer
system uses additional data. It leverages rewritten-claim data for fact-correction paired
with original FEVER claims (Thorne et al., 2021).

We observe that (i) even our base-sized RoBERTa-based CD model outperforms base-
sized HESM on dev data, and its large version outperforms large-sized KGAT, DREAM,
and HESM on test data, (ii) our base-sized DebertaV3-based CD model matches large-
based DREAM and even KGAT with oracle inputs on dev set, (iii) model version with
hyperlink expansion (suffixed \w HE) further improves the overall performance, (iv) using
larger model improves mostly its accuracy, (v) Claim-Dissector𝐿 \w HE achieves better
FEVER score than T5-based approach (with two 3B models) and better accuracy than
LongFormer+DebertaXL, but it is not Pareto optimal to these previous SOTA, (vi) our
model is outmatched by recent ProofVer-SB, though it is more efficient as ProofVer-SB
requires two rounds of reranking and autoregressive decoding. We still consider this a
strong feat, as our system was focusing on modeling reranking and veracity prediction
jointly in an interpretable way. Finally, we inject blocks with missing golden evidence into
inputs of Claim-Dissector𝐿 \w HE at random positions and measure oracle performance.
We observe that items missed by retrieval are still beneficial to the performance.
Ablations. We ablate components of Claim-Dissector (CD) in Table 7.7. Firstly, we resort
to single-task training. We drop veracity classification (VC) objective log P(𝑦) or relevance
classification (RC) objective ℒ𝑅 from the loss. We observe an overall trend—single-task
model performs slightly better to multi-task model. The advantages of the multi-task model,
however, lie in its efficiency and ability to provide explanations between per-evidence rele-
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System FS A R@5 HA #𝜃

D
ev

el
op

m
en

t
Se

t

TwoWingOS (Yin and Roth, 2018) 54.3 75.9 53.8 ✕ ?
HAN (Ma et al., 2019) 57.1 72.0 53.6 ✓ ?
UNC (Nie et al., 2019) 66.5 69.7 86.8 ✓ 408M
HESM (Subramanian and Lee, 2020) 73.4 75.8 90.5 ✓ 39M
KGAT[OR] (Liu et al., 2020) 76.1 78.3 94.4 ✕ 465M
DREAM (Zhong et al., 2020) - 79.2 90.5 ✓? 487M
T5 (Jiang et al., 2021) 77.8 81.3 90.5 ✕ 5.7B
LF+D𝑋𝐿 (Stammbach, 2021) - - 90.8 ✕ 1.2B
LF2−𝑖𝑡𝑒𝑟+D𝑋𝐿 (Stammbach, 2021) - - 93.6 ✓ 1.2B
ProofVer-MV (Krishna et al., 2022) 78.2 80.2 - ✓ 515M
ProofVer-SB (Krishna et al., 2022) 79.1 80.7 93.6 ✓ 765M
Baseline𝑗𝑜𝑖𝑛𝑡 75.2 79.8 90.0 ✕ 187M
Claim-Dissector𝑅𝑜𝐵𝐸𝑅𝑇𝑎 74.6 78.6 90.4 ✕ 127M
Claim-Dissector𝑅𝑜𝐵𝐸𝑅𝑇𝑎𝐿 75.1 79.1 90.6 ✕ 360M
Claim-Dissector𝑅𝑜𝐵𝐸𝑅𝑇𝑎𝐿 \w HE 76.1 79.4 91.7 ✓ 360M
Claim-Dissector 76.2 79.5 91.5 ✕ 187M
Claim-Dissector \w HE 76.9 79.8 93.0 ✓ 187M
Claim-Dissector𝐿 76.9 80.4 91.8 ✕ 439M
Claim-Dissector𝐿 \w HE 78.0 80.8 93.3 ✓ 439M
Claim-Dissector𝐿 \w HE [OR] 78.9 81.2 94.7 ✓ 439M

Te
st

Se
t

KGAT (Liu et al., 2020) 70.4 74.1 - ✕ 465M
DREAM (Zhong et al., 2020) 70.6 76.9 - ✓? 487M
HESM (Subramanian and Lee, 2020) 71.5 74.6 - ✓ 58M
ProofVer-MV (Krishna et al., 2022) 74.4 79.3 - ✓ 515M
T5 (Jiang et al., 2021) 75.9 79.4 - ✕ 5.7B
LF2−𝑖𝑡𝑒𝑟+D𝑋𝐿 (Stammbach, 2021) 76.8 79.2 - ✓ 1.2B
ProofVer-SB (Krishna et al., 2022) 76.8 79.5 - ✓ 765M
Claim-Dissector𝑅𝑜𝐵𝐸𝑅𝑇𝑎𝐿 73.1 76.4 - ✕ 360M
Claim-Dissector𝑅𝑜𝐵𝐸𝑅𝑇𝑎𝐿 \w HE 74.3 77.8 - ✓ 360M
Claim-Dissector𝐿 74.7 78.5 - ✕ 439M
Claim-Dissector𝐿 \w HE 76.5 79.3 - ✓ 439M

Table 7.6: Performance on dev and test splits of FEVER. #𝜃 denotes the number of
parameters in the model. Model names suffixed with [OR](as Oracle) inject missing golden
evidence into its input. Models using any kind of hyperlink augmentation (HA) are marked.
Our models with hyperlink expansion are suffixed with (\w HE). Overall best and our best
result are in bold and underlined respectively (disregarding oracle results).

FEVER FEVER𝑀𝐻

System FS A R@5 FS A R@5
CD𝐿𝐴𝑅𝐺𝐸 \w HE [OR] 78.9 81.2 94.8 50.3 81.9 58.9
CD𝐿𝐴𝑅𝐺𝐸 \w HE 78.0 80.8 93.4 44.7 81.2 53.1
CD \w HE 76.9 79.8 93.2 41.3 80.8 49.9
CD \w HE \wo MH 76.5 79.5 93.0 41.7 80.8 50.2
Baseline 75.2 79.8 90.0 28.9 80.9 34.7
CD 76.2 79.6 91.7 30.0 79.2 36.4
CD \wo ℒ2 76.0 79.7 91.6 30.4 79.5 36.2
CD \wo VC - - 91.9 - - 37.8
CD \wo RC - 79.9 - - 81.5 -

Table 7.7: Ablation Study. Minor differences to Table 7.6 are caused by different early-
stopping (Appendix A.3).

vances and final conclusion. Next, we observe that dropping the ℒ2 objective doesn’t affect
the performance significantly. Further, we study the effect of hyperlink expansion (HE)
and the effect of the multi-head (MH) attention layer. As expected, hyperlink expansion
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System F1
Select All Tokens 52
Select Claim Overlaps 63
Masker 71
Claim-Dissector \wo ℒ2 60
Claim-Dissector 77
Human Performance LB 85

Table 7.8: Token-level relevance on TLR-FEVER.
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Figure 7.2: Average FEVER-Score (FS) and F1 performance on dev sets during training.
Red dashed horizontal line marks the F1 performance when selecting all tokens (Select All
Tokens) from Table 7.8. Opaque lines show the performance of individual checkpoints.

dramatically increases performance on FEVER𝑀𝐻 . The multi-head attention also brings
marginal improvements to results on FEVER. However, contrary to our expectations, there
is no effect of the MH layer on FEVER𝑀𝐻 , the improvements happened in the non-multihop
part. Additional experiments with CD on the HoVer dataset (see Section 7.5) confirm this,
CD does not work well on examples with cross-article multihop evidence. Improving cross-
article reasoning was not our aim, and we leave the investigation to future research.
Transferring Sentence-Level Supervision to Token-Level Performance. We evalu-
ated the performance of token-level rationales15 on our dataset in Table 7.8. We considered
two baselines. The first was to select all tokens in golden evidences (Select All Tokens). The
second was to select only tokens that overlap with claim tokens (Select Claim Overlaps).
We found that our model with weakly-supervised objective produces token-level rationales
significantly better16 than the masker—a separate model trained explicitly to identify to-
kens important to the model’s prediction. Furthermore, the results also demonstrate the
importance of ℒ2 objective. However, human performance is still considerably beyond the
performance of our approach.

Furthermore, in Figure 7.2, we analyze how the performance on FEVER-Score and F1
changes over the course of training on FEVER and TLR-FEVER sets. We find our scores

15We visualized predicted token-level rationales on 100 random dev set examples in the supplementary
material.

16See Appendix F.4 for our F1 significance testing protocol.
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Figure 7.3: Example of interpretable refuting evidence from Claim-Dissector for claim
“American Sniper (book) is about a sniper with 170 officially confirmed kills.”.

reach the top performance and then quickly deteriorate. It is thus necessary to do the early
stopping on both, the performance metric and the interpretability metric. In addition, our
experiments shown that tuning of 𝜆2 is crucial, i.e., 𝜆2 = 2𝑒− 3 tuned for DeBERTa-base,
achieves no interpretability for the large version (where we use 5𝑒− 4)17.

Lastly, interpretable refuting example18 is available in Figure 7.3. Example shows top-6
refuting sentences ranked by their refuting relevance probability P𝑖,𝑗(𝑦 = 𝑅). Each sentence
is prefixed with its Wikipedia article title, refuting relevance probability (RS) and prediction
score (PS). The prediction score is the corresponding non-negative linear coefficient 𝐶𝑖,𝑗

max-normalized between 0 and 1 based on maximum 𝐶𝑖,𝑗 for this sample. The token-level
relevance, sentence relevance, and sentence prediction score are highlighted on a red-to-black
scale (low relevance is black, high relevance is red). Interestingly, the prediction score is
highest for sentences containing crucial refuting evidence—the number of confirmed kills19.
Are Prediction Scores Useful? In Figure 7.3, a maximum prediction score is assigned to
a sentence, that has a lower relevance score than the most relevant document. However, we
argue that the sentence with the highest prediction score contains the most relevant infor-
mation. Hence we formulate the hypothesis that top prediction score better ranks relevance
towards final judgment, whereas top relevance score only reflects the model’s confidence
of the sentence being somehow relevant. First, we note that scores are highly correlated,
but not the same (average Kendall-𝜏 0.84). Next, we turn to the A/B testing (details
in Appendix F.5), where we select 100 random samples such that: (i) each was correctly
predicted, (ii) has a verdict supported or refuted. From these, we select (a) a sentence with
the highest prediction score and (b) a sentence with equal or better relevance probability
than (a); if there is no such sentence, we don’t include it. We employ 5 annotators to say
their preference for sentence (a), sentence (b), or neither (c).

We find that (i) 80 % of annotators unanimously agreed on not preferring (b), (ii) 3
or more annotators in 73 % of cases preferred (a) over (b,c) and finally (iii) the worst

17The sensitivity to 𝜆2 is analyzed in Appendix D.7.
18We visualized token-level rationales on 100 random dev set examples at shorturl.at/beTY2.
19We further visualized token-level rationales on 100 random dev set examples at shorturl.at/beTY2. Ac-

cessed 16.3.2023.
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Model FS A R@5
Full Supervision 76.2 79.5 91.5
Block Supervision 65.5 76.9 77.8
Block Supervision + SSE 69.7 78.1 83.0

Table 7.9: Sentence-level performance on FEVER dev set under different kinds of supervi-
sion.

single annotator preference for (a) over (a+b) cases was 86 %, demonstrating that human
preferences strongly support declared hypothesis.
Transferring Block-Level Supervision to Sentence-Level Performance. The per-
formance of our model on the sentence-level evidences is evaluated in Table 7.9. We notice
that even our vanilla Claim-Dissector trained with block supervision reaches competitive
recall@5 on the sentence level. However, adding SSE from equation 7.15 leads to further im-
provements both in the recall, but also in accuracy. We expected the recall will be improved
because the model now focuses on assigning high probability mass only to some sentences
within the block since high entropy of the per-sentence distribution would be penalized in
the loss. However, we have not foreseen the damaging effect on accuracy, that block-level
supervision causes. Interestingly, the accuracy without any evidence supervision reported
in the last row of Table 7.7 was increased.
Detecting Samples with Bipolar Evidence We manually analyzed whether we can
take advantage of the model’s ability to distinguish between evidence, which is relevant
because it supports the claim, and evidence that is relevant because it refutes the claim. To
do so, we try to automatically detect examples from the validation set, which contain both,
supporting and refuting evidence (which we refer to as bipolar evidence). We note that
there were no examples with explicitly annotated bipolar evidence in the training data.

We select all examples where the model predicted at least 0.9 probability for any sup-
porting and any refuting evidence20. We found that out of 72 such examples, 66%(48) we
judged as indeed having the bipolar evidence. We observed that about half (25/48) of these
examples had bipolar evidence because of the entity ambiguity caused by the open-domain
setting. E.g., claim “Bones is a movie” was supported by sentence article “Bones (2001
film)” but also refuted by a sentence from article “Bones (TV series)” and “Bone” (a rigid
organ).

7.5 Results and Analysis on Other Datasets
In this section, we study the application of CD on datasets of non-FEVER origin. Unless
said otherwise, we use hyperparameters from FEVER. The experimental details of the
application on each dataset are explained along with the results.

HoVER To further study how limited is our model on claims, which require multihop
information, we trained and tested our system on HoVer in Table 7.10. In particular,
we follow the recipe for Baleen (Khattab et al., 2021a) and retrieve 4×25 top articles
using official Baleen implementation with quantized index21, which achieves about 2 %
lower retrieval@100 on supported samples than reported in the paper. We split top-5

20Annotations are available at shorturl.at/qrtIP. Accessed 16.3.2023.
21https://github.com/stanford-futuredata/Baleen. Accessed 16.3.2023.
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Hops A EM
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2 - 47.3
3 - 37.7
4 - 33.3
All 84.5 39.2

C
D

2 81.3 48.0
3 80.1 16.9
4 78.1 7.7
All 79.9 23.3

Table 7.10: Results on HoVer dataset (dev split).

Test Dev Δ 𝜃

BART𝐿𝐴𝑅𝐺𝐸 (Park et al., 2022) 64.9 66.9 2.0 374M
EGG (Asai et al., 2022) 65.7 69.6 3.9 336M
CD𝑅𝑜𝐵𝐸𝑅𝑇𝑎 58.6 69.8 11.2 127M
CD𝑅𝑜𝐵𝐸𝑅𝑇𝑎𝐿 66.9 73.3 6.4 360M
CD 69.8 76.3 6.5 187M
CD \wo RC 71.2 73.3 2.1 187M
CD𝐿𝐴𝑅𝐺𝐸 72.0 79.7 7.7 439M

Table 7.11: Performance on FAVIQ-A.

documents from each iteration into blocks, padding input with further documents from the
first retrieval iteration when necessary. We keep input size at 𝐾1 = 35, and we do not
use hyperlink expansion. We compute the probability of the NOT-SUPPORTED class by
summing NEI and REFUTE classes. Furthermore, we assume simplified conditions, infuse
inputs with oracle information when necessary (achieving RaI 100 %), and predict as many
evidences, as there was annotated. We refer the reader to Khattab et al. (2021a) for further
information about setup and evaluation metrics.

Nevertheless, our system lags behind Baleen on 3 and 4-hop examples. We hypothesize
that similarly to Baleen, an autoregressive process is necessary to match its multi-hop
performance. We leave the question of interpretable multi-hop fact-checking with Claim-
Dissector open for our future work.
FAVIQ-A The performance of our system on FAVIQ-A, a dataset with silver-mined anno-
tations, is shown in Table 7.11. The model is given top-20 passages retrieved via the DPR
system (Karpukhin et al., 2020). We compare to the evidentiality-guided generator (EGG),
a t5-based FiD (Izacard and Grave, 2021b) with two decoders from Asai et al. (2022). Sim-
ilarly to HoVER, we compute the probability of the FAVIQ-REFUTE class by summing
NEI and REFUTE class probs from the original FEVER-made model architecture.

The results shown in Table 7.11 demonstrate that DebertaV3-based Claim-Dissector
reaches solid state-of-the-art results on the dataset. The domain mismatch (measured by
difference Δ) between development and test set is likely caused by the domain shift of
NaturalQuestions test set, from which FAVIQ’s test set was created (see Appendix B in
Min et al. (2020)). However, despite our best efforts, we have not uncovered the cause of
massive degradation between the dev and test set for roberta-base based Claim-Dissector
(the standard deviation on the test set was only ±0.4 accuracy points). Interestingly, the
gap for DeBERTa-based CD is negligible if we do not use relevance supervision (CD \wo
RC).
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Dataset Model EviF1 VA VF1 CondAcc CondF1

Full

3-way+C (Thorne et al., 2021) 46.8 75.5 65.5 64.2 51.8
Any-Best+C (Thorne et al., 2021) 48.6 75.5 65.5 64.2 52.2
CD𝑅𝑜𝐵𝐸𝑅𝑇𝑎\W 48.7 76.7 66.6 64.8 52.4
CD𝑅𝑜𝐵𝐸𝑅𝑇𝑎 53.0 76.3 68.6 65.0 55.3
CD 54.7 79.1 72.2 67.6 58.5
CD𝐿𝐴𝑅𝐺𝐸 56.3 80.8 73.7 69.6 60.7

Bipolar 3-way+C (Thorne et al., 2021) 48.1±3.3 43.0±1.1 40.3±1.2 23.0±1.4 28.7±1.4
CD𝑅𝑜𝐵𝐸𝑅𝑇𝑎 56.4±0.7 51.9±1.8 47.7±2.9 32.4±0.6 38.7±1.2

Table 7.12: Performance on RealFC test set.

RealFC The results on RealFC are shown in Table 7.12. For relevant evidence classi-
fication, binary F1 (EviF1) computed from the concatenation of all relevant/irrelevant
decisions for all sentences is reported. Here supporting or refuting evidence counts as rel-
evant, neutral as irrelevant. For verification, accuracy/macro F1 (denoted VA, VF1) are
reported. Lastly, we also report conditional scores CondAcc and CondF1, which are aggre-
gated from per-sample binary F1 relevance, set to 0 if the target veracity was not predicted
correctly22. We compare CD with a pipelined baseline composed from a 3-class relevance
classification (assuming either supporting or refuting evidence is relevant) followed by a
veracity classifier (first row). Both components are based on roberta-base (Liu et al.,
2019). We also report best number for the corresponding column across all (RoBERTa-
based) baselines from Thorne et al. (2021) (second row). We find that in a similar setup,
CD improves only marginally over baseline. The early stopping of baselines and the third
row is performed on VA. Row 4 and further report on results early stopped on CondF1, as
we found CondF1 to correlate with the majority of the metrics. Furthermore, from row 4,
we use veracity class weighting similar to one from the previous Chapter (Subsection 6.1.3).
Using identity-weighting (each weight is 1), we observe accuracy to be maximal, whereas
using the inverse-class-prior weighting exactly as in the previous chapter we found F1 to
perform the best. However, for maximizing conditional scores, we found the average of
identity-weighting and inverse-class-prior to work the best, and so we report these further.

We find that CD-based systems with class weighting set a new state-of-the-art on the
dataset. Additionally, we uncover the large performance boost specifically on the subset
of the dataset with annotated bipolar evidence (with at least 1 supporting, and 1 refuting
evidence annotated) (last two rows).

7.6 Chapter Summary
In this chapter, we proposed Claim-Dissector, an interpretable probabilistic model for fact-
checking and fact-analysis. Our model jointly predicts the supporting/refuting evidence
and the claim’s veracity. It achieves results comparable to the state-of-the-art on FEVER,
and sets new state-of-the-art on FAVIQ-A and RealFC datasets while providing three lay-
ers of interpretability. Firstly, it identifies salient tokens important for the final prediction.
Secondly, it allows disentangling the ranking of relevant evidences into ranking of support-
ing evidence and the ranking of refuting evidence. This allows detecting bipolar evidence
without being exposed to such bipolar evidence sets during training. Thirdly, it combines
the per-token relevance probabilities via linear combination into a final veracity assessment.

22Due to rather complicated exact definition, official conditional scores are documented in Appendix E.4
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Therefore it can be identified to what extent the relevance of each token/sentence/block-
/document contributes to the final assessment. Conveniently, this allows to differentiate
between the concept of evidence relevance and its contribution to the final assessment. Our
work was however limited in experiments with these coefficients, and we would like to an-
alyze what they can learn, and how to inject features, such as satire assessment or source
trustworthiness, through these coefficients in our future work.

Finally, it was shown that a hierarchical structure of our model allows making predic-
tions on even finer language granularity, than the granularity the model was trained on.
We believe the technique proposed in this chapter is transferable beyond fact-checking.
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Chapter 8

Epilogue

The last chapter of the thesis focuses on summarizing the takeaways of this work in Sec-
tion 8.1. In the end„ it carefully points out the limitations of our research and its conclu-
sions, and possible future directions (Section 8.2). The overview of published research work
is documented in Section 8.2.

8.1 Conclusion
The major takeaways from this thesis touch the topics such as the better understanding of
objectives and complementarity underlying factoid QA, the problem of under-represented
passages, for which the model is not being “interested-in” in retrieval, or learning of fine-
grained rationales from coarse-grained data necessary to support fact-checkers in their work
and persuade the ever-growing masses from believing the falsehoods by providing tools for
an interpretable explanation.

Recapitulating back to rethinking the EQA objectives, we clearly demonstrated that the
further usage of independent formulation of the span probability is unjustified. Using joint
probability, possibly in a loss with compound objective, provides a span distribution that
peaks around spans that are not a “trivially wrong answer”—i.e., a text spanning between
considered positions, resulting in a nonsense (see Chapter 3 for definition). We also note this
formulation is crucial for high-entropy span distributions, such as multi-span answer setting,
or apriori answer sampling—sampling a potential answer to a not-yet-known question—in
data augmentation, as supported by Lewis et al. (2021b). Finally, it was shown the joint
formulation does not need to be inefficient and even demonstrated that a well-optimized
dot product similarity works very well with transformer-based systems.

Moving towards R2-D2, we have shown exploiting the complementarity of the LRMs
trained with a different objective, and pretrained on different datasets can achieve very
strong performance. The combination of extractive and abstractive fusion is important in
practice because some information, though captured within the model’s parameters, can
be missing from the explicit grounding data. So despite having a weaker extractive reader
on TQ-Open wasn’t originally our intention, having our classifier yield 26.6 % of answers
as abstractive answers showcases, how extractive LRMs can fall back to large generative
models. Furthermore, we’ve practically demonstrated that scores from the previous com-
ponents, which basically come for free, are not to be thrown away, as using them sometimes
increased, but never decreased the performance of the system.
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Investigating the priors in current ODQA, we found that large ODQA datasets NQ-
Open and TQ-Open do not require, and likely do not utilize, the large knowledge bases
of unstructured documents they ought to work with. It was found, the majority (about
two-thirds) of this knowledge can be pruned out, given the texts found in the training set,
with no impact at all, and 92 % can be removed with degradation up to -3 EM. Then we
analyzed the DPR embeddings (Karpukhin et al., 2020), claiming strong performance on
these datasets, and found their statistics exhibit strong cues pointing at differences between
the documents our pruning approach identified as relevant, and those it identified as non-
relevant. Lastly, we have exploited this prior in the EfficientQA competition and unlike
other teams, we achieved strong performance without the usage of dimensionality reduction
or precision reduction techniques, such as quantization.

The work on RumourEval19 has shown that the stances of the conversations towards
the implicit rumor can be efficiently detected when considering only the source post, and
previous post of each stance. As demonstrated in subsequent work, this does not mean, that
the other posts and metadata are not beneficial. However, 3 years after the competition, the
best systems still achieve achieving less than 70 % F1 score on the task (Khandelwal, 2021).
This could be connected with the ambiguity of the task setup itself, and its annotation
procedure (reported annotator inter-agreement 76.2 %).

Lastly, Chapter 7 unveiled a LRM-independent approach, that allows determining the
cues of relevance for the particular prediction up to a specific token’s contribution towards
it. Moreover, there is an explicit link between the relevance probability computation and
the final veracity assessment. This approach is not only performing well across datasets,
but we argue that it’s also necessary for the system being useful to the fact-checkers, and
thus interpretable, in practice.

8.2 Research Limitations and Future Directions
Metrics for EQA In Chapter 3, we’ve only considered automatic metrics for evaluation.
A possible extension of this work is to turn towards human preferences and make humans
rate the correctness, the soundness, and the form of the answers.
Large LRM Scaling In Chapter 3, we’ve considered BERT with 110M parameters and
ALBERT 235M parameters from the transformers family. We haven’t noticed lesser im-
provements for the larger ALBERT model. However, the trends can be different when
considering e.g., 20B models or larger.
Tuning R2-D2’s Hyperparameters R2-D2’s hyperparameters on TQ-Open were not
tuned. We presume this caused the degradation observed, especially for the extractive
reader. Different work (Cheng et al., 2021b; Kedia et al., 2022) however showed substantially
better performance of extractive reader on TQ-Open.
Retrieval Outside of Wikipedia The open-domain systems presented in this work were
all trained and tested only on unstructured knowledge from Wikipedia. The language of
Wikipedia is factual, has neutral sentiment, does not contain different views, opinions, or
conflicting knowledge1, and is well structured into chapters, where the first chapter is always
a summary.

1At least not on purpose.
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The web is a quite different domain. As expected based on findings from Chapter 5,
semantic retrieval does not seem to perform well for knowledge-intensive tasks (including
QA and FC)(Piktus et al., 2021).

As an example, in an ongoing work, we integrated Claim-Dissector (a Wikipedia-based
dataset) with retrieval over news media. We found that the veracity assessments from
the system are unusable because the system does not consider other factors important for
relevance assessment in practice, such as source, its reliability, or its narrative. This is the
area of active research, as human fact-checkers also need to deal with lies (Uscinski and
Butler, 2013).
Data Biases Claim-Dissector, trained on FEVER, does not exhibit a strong relevance
identification accuracy in certain real scenarios. On real data, the system often struggles
to recognize what facts are refuting, and what is irrelevant, especially when applied out-of-
domain. In the downstream application described in the point above, we tested claims such
as the claim ”Weapons are being smuggled into Estonia“. Our system discovered an article
with facts about ”Weapons being smuggled into Somalia“, and used it as main refuting
evidence to predict REFUTE veracity.
Multilinguality Neither of the research conducted within this thesis was done outside of
the English language. It is especially interesting for languages that follow scriptio continua
with a south-Asian origin (Thai, Lao, Myanmar, Javanese, . . . ), for which the classical
retrieval approaches such as BM25, based on the lexical overlap, tend to perform poorly
(Slávka, 2021; Asai et al., 2021). Another advantage is the sheer amount of information
available across multilingual content. The initial indication for this is the work of my
student Slávka (2021), which shows that even when using questions originated in English
(dataset MKQA (Longpre et al., 2021)), the multilingual reader system tends to work better
if retrieval is performed in all MKQA’s languages, not just English.
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Author Publications Related to This Thesis
The findings reported in this thesis were published at the ACL venues (EMNLP, NAACL,
ACL?2), under Proceedings of Machine Learning (PMLR), or freely at arXiv. Core-2018
ranking3 for these venues is A for EMNLP and NAACL, A* for ACL. PMLR itself does not
have a core rank, but traditionally, workshops from NeurIPS (A*) publish their proceedings
here.

1. Findings of Chapter 3 are published under The 3rd Workshop on Machine Read-
ing for Question Answering4 workshop organized at EMNLP 2021 (Fajcik et al.,
2021c). Our paper also received the Honorable Mention award.

2. Findings of Chapter 4 are published (Fajcik et al., 2021b) at the main EMNLP 2021
conference under Findings of the Association for Computational Linguistics:
EMNLP 2021.

3. Findings of Chapter 5 are presented at the EfficientQA@Neurips 2021 challenge, and
published (Min et al., 2021) under Proceedings of Machine Learning Research.
Our part in this work was further extended a published as a standalone paper freely
available at arXiv (Fajcik et al., 2021a).

4. Findings of Chapter 6 are published under International Workshop on Semantic
Evaluation 2019 at NAACL 2019 (Fajcik et al., 2019).

5. Findings of Chapter 7 are published (Fajcik et al., 2023) at the main ACL 2023
conference under Findings of the Association for Computational Linguistics:
ACL 2023.

2Final decision for CD will be available on 1.5.
3http://portal.core.edu.au/conf-ranks/. Accessed 20.3.2023.
4https://mrqa.github.io/. Accessed 20.3.2023.
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Appendix A

Hyperparameters & Preprocessing

A.1 Hyperparameters for the Objectives of Extractive QA
The exact hyperparameters used in this work are documented in our code. We note that
for BERT and ALBERT, we simply followed the hyperparameters proposed by the authors
for SQuADv1.1. In the case of LRM models, each input context is split into windows as
proposed by Devlin et al. (2019). Each input sequence has a maximum length of 384,
questions are truncated to 64 tokens, and context is split with overlap stride 128. For
SQuADv2.0, we follow BERT’s approach for computing the no-answer logit in test-time.
Having the set of k windows 𝑊𝑒 for each example 𝑒, we compute the null-score 𝑛𝑠𝑤 =
logit𝑃 (𝑎𝑠 = 0) + logit𝑃 (𝑎𝑒 = 0) for each window 𝑤 ∈ 𝑊𝑒. For joint and compound
objectives 𝑛𝑠𝑤 = logit𝑃 (𝑎𝑠 = 0, 𝑎𝑒 = 0). Defining that for each window 𝑤 the best non-null
answer logit is 𝑎𝑤, the no-answer logit is then given by the difference of lowest null-score
and best-answer score Γ = min𝑤∈𝑊𝑒(𝑛𝑠𝑤) −max𝑤∈𝑊𝑒(𝑎𝑤) among all windows of example
𝑒. The threshold for Γ is determined on the validation data via an official evaluation script.

A.2 Data Pre-processing in R2-D2
This section describes how the training datasets for the reranker and extractive reader are
filtered, and how the distant supervision labeling is generated. Note not each example
contains the golden passage, as not each example can be mapped to the used dump of
Wikipedia. We use the same golden passage mapping as Karpukhin et al. (2020).

For passage reranking, the input must contain at least one positive example. We meet
this condition either by adding a golden passage or searching for the passage with an
answer in the top 400 results retrieved by DPR. In detail about the search, first, the Simple
tokenizer proposed in DrQA1 tokenizes each passage and golden answer. The positive
example is the best-scored tokenized passage that contains an exact match with one of the
tokenized answers. Note the search proceeds in the same way as in DPR’s Accuracy@K
implementation2.

The extractive reader is trained only on samples that contain an exact match to at least
one of the annotated answers in the top-1 passage, or golden passage if it is available. The
exact match is performed on the subword token level (i.e. in ELECTRA’s tokenization).

1https://github.com/facebookresearch/DrQA
2https://github.com/facebookresearch/DPR
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Next, the span annotations are extracted from the passages at the reader’s input. Note
each sample may contain multiple answers. The annotations for each answer in each sample
are obtained differently in retrieved passages and in the golden passage. For retrieved
passages, we search for the answer’s exact matches in passages and use each match as
target annotation. For the golden passage, we also search for the answer’s exact matches in
it. If there is none, the answer is soft-matched with a single sub-sequence of golden passage,
which yields the highest non-zero F1 score. The F1 soft match is also performed on the
subword token level. Therefore answers with zero highest F1 soft match with a golden
passage and no exact match in any of the reader’s input passages are discarded.

A.3 Hyperparameters & Data Pre-processing in
Claim-Dissector

We base our implementation of pretrained language representation models on Huggingface
(Wolf et al., 2020). Unless said otherwise, we employ DeBERTaV3 (He et al., 2021) as LRM.
In all experiments, we firstly pretrain the model on MNLI (Williams et al., 2018). While we
observed no significant improvement when using a MNLI-pretrained checkpoint, we found
that without MNLI pretraining, our framework sometimes converges to poor performance.
We train the model on FEVER with minibatch size 64, learning rate 5𝑒− 6, and maximum
block-length 𝐿𝑥 = 500. We schedule a linear warmup of the learning rate for first 100
steps and then keep a constant learning rate. We use Adam with decoupled weight decay
(Loshchilov and Hutter, 2017) and clip gradient vectors to a maximal norm of 1 (Pascanu
et al., 2013). In all experiments, the model is trained and evaluated in mixed precision.
We keep 𝜆𝑅 = 𝜆2 = 1. We use 8x Nvidia A100 40GB GPUs for training. We validate our
model at every 500-th step and select the best checkpoint according to FEVER-Score (see
Subsection 7.3.2). We have not used any principled way to tune the hyperparameters.

To train the model with SSE, we decrease the strength of block-level supervised ℒ𝑅
objective to 𝜆𝑅 = 0.7. We switch between vanilla objective and SSE objective randomly on
a per-sample basis. Training starts with replacement probability 𝑝𝑠𝑠𝑒 = 0. for first 1, 000
steps. The probability is then linearly increased up to 𝑝𝑠𝑠𝑒 = 0.95 on step 3, 000, after
which it is left constant.

All results except for Table 7.7 and Table 7.8 were early-stopped based on the best FS.
For Table 7.7, we report the best result for each metric early-stopped independently, to be
comparable with ablations where FS was not available. For Table 7.8, we record best F1
during training.

Masker is implemented using DeBERTaV3 architecture. We keep most hyperparame-
ters the same as for Claim-Dissector. The only difference is learning rate 2𝑒− 6, adaptive
scheduling on Gumbel-softmax (Jang et al., 2017) temperature 𝜏 , and training model/-
masker on different dataset split. Training starts with temperature 𝜏 = 1 and after ini-
tial 100 steps, it is linearly decreasing towards 𝜏 = 0.1 at step 700. Then we switch to hard
Gumbel-softmax—sampling 1-hot vectors in the forward pass while computing gradients as
we would use a soft sample with 𝜏 = 0.1 at the backward pass. We randomly split the
training set and we train the model on 75 % of the data, and masker on the remaining 25 %
of the data.
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Appendix B

Released Code

All code released within this dissertation is documented within Table B.1.

B.1 Inference Speed of R2-D2’s Implementation
While optimizing the R2-D2’s inference speed was not the main focus of this paper, we
show that even our unoptimized implementation can be used in practice in a small scale.
We analyze the speed of our implementation on NQ-Open test data in Table B.2. The times
were measured on a workstation with Intel Xeon Silver 4214 48-core CPU, 188GB RAM,
and Nvidia 2080Ti 12GB GPU. Table columns show settings with and without passage
reranker. Table rows are split into two parts; intermediate rows show time spent by the
pipeline’s single component (e.g., row ext. reader shows what time the pipeline spent by
running just the ext. reader), and total rows show the total time taken by the whole
pipeline. The retriever and reranker infer with batch sizes 32 and 100 respectively, and the
readers run with minibatch size 1.

We note that in retrieval, we do not use any approximate K-NN algorithm to facilitate
retrieval of top-K nearest passages and instead do the dot product with the matrix of
passages directly on the CPU. Secondly, we note that we do not parallelize the inference
of generative reader and extractive reader. Thirdly, notice the difference in the extractive
reader’s speed with and without passage reranker is caused by its different input size (see
details of extractive reader’s experiments setup in subsection 4.2.3). Finally, we compare

Project Location What is available
Rethinking the Objectives of Ex-
tractive QA

https://github.com/KNOT-FIT-
BUT/JointSpanExtraction

Code, manual annotations from
analysis, all result measurements.

R2-D2 https://github.com/KNOT-FIT-
BUT/R2-D2

Code, checkpoints, preprocessed
data.

R2-D2 Pruning https://github.com/KNOT-FIT-
BUT/scalingQA

Code, checkpoints, preprocessed
data, prior relevance probabilities.

Stance Detection for RumourEval https://github.com/MFajcik/
RumourEval2019

Code, introspections

Claim-Dissector https://github.com/KNOT-FIT-
BUT/ClaimDissector

Code, checkpoints, preprocessed
data, manual analyses

Table B.1: Code Availability.
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the speed of our approach using FiD with 25 and 100 input passages, like in the original
FiD implementation1. The ratios of our measurements are compared explicitly in Table
B.3.

Modules Rankers
retriever +reranker

in
te

rm
ed

ia
te

retriever 0.21 0.21
passage reranker - 1.94

ext. reader 2.21 0.35
gen. reader (25) 0.55 0.55

answer reranker (25) 3.11 3.11
gen. reader (100) 1.85 -

answer reranker (100) 11.67 -

to
ta

l

ext 2.41 2.19
gen (25) 0.76 2.70

ext+gen (25) 6.08 6.16
gen (100) 2.06 -

ext+gen (100) 15.94 -

Table B.2: Inference times on NQ-Open in seconds per question. See text for details.

Setup ratios Modules
only gen. ans. reranker gen pipe. ext+gen pipe.

gen(100) / gen(25) 3.36x 3.75x 2.71x 2.62x
rr+gen(25) / gen(25) *1.00x *1.00x 3.55x 1.01x
gen(100) / rr+gen(25) *3.36x *3.75x 0.76x 2.58x

Table B.3: Ratios of inference times on NQ-Open. First, two columns compare the speed
in the stage of generating abstractive answer (only gen.) and answer reranking (ans.
reranker). The subsequent columns compare the speed of the whole pipeline just with
a generative reader and no component fusion (gen pipe.) and full R2-D2 pipeline (ext+gen
pipe.). Row gen(100)/gen(25) compares the speedup of the pipeline when using just 25
passages in FiD’s input (denoted as gen(25)) instead of 100 (denoted as gen(100)). Row
rr+gen(25)/gen(25) shows speedup gained from not using passage reranker (denoted as rr).
Row gen(100)/rr+gen(25) compares the speed of using rr and gen(25) instead of gen(100)
(with no passage reranking). Results marked with * are not affected by the passage rerank-
ing component, as they only measure the speed of the pipeline’s individual component. For
instance, the table shows that doing an answer reranking with a generative reader with just
25 passages at its input runs 3.75x faster than doing an answer reranking with a generative
reader that uses 100 passages.

1We simply pass 100 input passages to the model trained with 25 passages in the experiment.
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Appendix C

Proofs

C.1 Independent Marginalization Sums All Start-End Com-
binations

The start and end components in the extractive reader’s loss from R2-D2 (see equation
4.8) perform summation over all start-end combinations (even inter-passage combinations).
This can be trivially shown as

− log
∑︁
𝑠∈𝑆

P𝑠𝑡𝑎𝑟𝑡(𝑠)− log
∑︁
𝑒∈𝐸

P𝑒𝑛𝑑(𝑒) =

= − log
∑︁
𝑠∈𝑆

P𝑠𝑡𝑎𝑟𝑡(𝑠)
∑︁
𝑒∈𝐸

P𝑒𝑛𝑑(𝑒) =

= − log
∑︁

𝑠∈𝑆,𝑒∈𝐸
P𝑠𝑡𝑎𝑟𝑡(𝑠) P𝑒𝑛𝑑(𝑒) .

(C.1)

C.2 Logit Proof
The link between equation 7.3 and equation 7.6 can be easily proved as follows. Applying
logarithm to equation 7.3 we get

log P𝑖,𝑗(𝑤, 𝑦) = 𝑀 𝑖,𝑗
𝑤,𝑦 − log

∑︁
𝑤′

∑︁
𝑦′

exp𝑀 𝑖,𝑗
𝑤′,𝑦′ . (C.2)

Expressing 𝑀 𝑖,𝑗
𝑤,𝑦, substituting 𝐶𝑖,𝑗 =

∑︀
𝑤′

∑︀
𝑦′ exp𝑀

𝑖,𝑗
𝑤′,𝑦′ , and merging the logarithms,

we arrive to equation 7.6. We recommend Bishop (2006), chapter 4.2 for further informa-
tion.
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Appendix D

Additional Results

D.1 Reranking Performance in R2-D2
Analysis of Accuracy@K, reranking top-200 retrieved results, on NQ-Open development
data is shown in Figure D.1a, on EfficientQA data is shown in Figure D.1b, and on TQ-
Open development data in Figure D.1c.
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Figure D.1: Analysis of Accuracy@K on different datasets.
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D.2 Additional Component Fusion Analysis in R2-D2
This section includes results analogical to Tables 4.6, 4.7 on EfficientQA and development
data of NQ-Open and TQ-Open (Tables D.1, D.2).

𝑃 * ∅ {𝑟} {𝑟𝑟} {𝑟, 𝑟𝑟}

N
Q

-O
pe

n {𝑒} 48.38 48.94 48.85 49.14
{𝑔} 49.99 50.49 50.35 50.47
{𝑒, 𝑔} 51.79 51.97 51.82 51.80

T
Q

-O
pe

n {𝑒} 65.07 65.21 65.16 65.24
{𝑔} 67.68 67.72 67.73 67.76
{𝑒, 𝑔} 68.13 68.19 68.17 68.12

Effi
ci

en
tQ

A {𝑒} 47.56 48.33 48.89 48.72
{𝑔} 49.11 49.56 50.22 50.11
{𝑒, 𝑔} 50.78 51.67 50.89 52.00

Table D.1: Score aggregation on validation data of NQ-Open, TQ-Open and EfficientQA.

𝑃 * ∅ {𝑟} {𝑟𝑟} {𝑟, 𝑟𝑟}

N
Q

-O
pe

n {𝑒} 50.65 51.24 51.01 51.17
{𝑔} 50.36 50.91 50.68 50.90
{𝑒, 𝑔} 52.24 52.29 52.27 52.07

T
Q

-O
pe

n {𝑒} 69.03 69.03 69.01 68.99
{𝑔} 69.54 69.46 69.62 69.70
{𝑒, 𝑔} 69.77 69.79 69.67 69.61

Effi
ci

en
tQ

A {𝑒} 48.33 50.06 49.39 49.67
{𝑔} 48.94 49.50 50.06 49.72
{𝑒, 𝑔} 50.78 51.83 50.94 52.22

Table D.2: Binary decision on NQ-Open, TQ-Open and EfficientQA.
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Model NQ-Open TQ-Open

Total Question
Overlap

Answer
Overlap

Only

No
Overlap Total Question

Overlap

Answer
Overlap

Only

No
Overlap

FiD 51.40 71.30 48.30 34.50 67.60 87.50 66.90 42.80
ext+gen 54.99 75.00 48.89 39.91 69.94 90.18 71.53 44.83

gen 50.69 70.06 46.98 34.04 69.14 87.50 70.32 44.83
ext 50.72 72.53 45.40 35.11 65.46 83.63 66.42 39.46
Δgen 4.30 4.94 1.91 5.87 0.80 2.68 1.21 0.00
Δext 4.27 2.47 3.49 4.80 4.48 6.55 5.11 5.37

Table D.3: Results on the overlapping and non-overlapping parts of test sets for NQ and
TQ. Total column corresponds to the overall result on the whole dataset, as reported be-
fore, Question Overlap corresponds to samples with train-test question overlap and answer
overlap, Answer Overlap Only corresponds to samples with answer overlap, but no question
overlap and No Overlap corresponds to samples with no overlap between train and test sets.

D.3 R2-D2 Results According to Question and Answer Test-
Train Overlap

In addition to evaluation on the TQ-Open and NQ-Open shown in Table 4.2, we also
report results on subsets of these datasets in Table D.3, as split by Lewis et al. (2021a).
We compare R2-D1 (retriever, reranker, and extractive or generative reader, marked as gen
and ext respectively) and R2-D2 (ext+gen) to official results on FiD (Izacard and Grave,
2021b).

D.4 Additional Results for Pruning Effect on Reranking
Results on additional datasets are shown in Figures D.2a, D.2b and D.2c.

D.5 Experiments with Different Model Parametrizations of
Claim-Dissector

Apart from parametrizations provided in the main paper, we experimented with several
different parametrizations described below. We keep the training details the same as for
our baseline (Section 7.1.3). Starting off with a baseline system formulation, we will consider
replacing 𝐿𝑏0 with different objective functions.

ℒ𝑏2 =
1

|A|
∑︁

𝑠𝑖,𝑗 ,𝑦∈A
log P(𝑠𝑖,𝑗 , 𝑦) (D.1)

With 𝐿𝑏2, the annotation set A contains both relevant and irrelevant annotations. We
found in practice this does not work - recall@5 during training stays at 0. This makes sense
since if annotation exists, the final class is likely SUPPORT or REFUTE. Drifting the
probability mass towards NEI for irrelevant annotations is adversarial w.r.t. total veracity
probability.
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Figure D.2: Analysis of Accuracy@K on different datasets.
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FEVER
Model FS A R@5
CD 76.2 79.5 91.5
Baseline 75.2 79.8 90.0
𝐿𝑏3 76.0 79.0 91.2
𝐿𝑏4 75.7 79.7 90.4

Table D.4: Different model parametrizations.

K1 Recall Recall𝑀𝐻 Recall𝑀𝐻𝐴𝑅𝑇
#SaI

10 90.4 40.1 33.0 68.8
20 93.4 48.0 41.5 132.9
30 94.1 51.3 45.0 196.8
35 94.2 52.0 45.8 239.9
50 94.5 54.3 48.4 325.4
100 95.1 58.5 53.1 649.4

Table D.5: Retrieval performance on FEVER dev set.

ℒ𝑏3 = log
∑︁

𝑠𝑖,𝑗 ,𝑦∈A𝑝

P(𝑠𝑖,𝑗 , 𝑦) (D.2)

Instead of maximizing the multinomial probability, 𝐿𝑏3 objective marginalizes relevant an-
notations.

ℒ𝑏4 = log
∑︁

𝑠𝑖,𝑗∈A𝑝

∑︁
𝑦

P(𝑠𝑖,𝑗 , 𝑦) (D.3)

Additionally to 𝐿𝑏3, 𝐿𝑏4 also marginalizes out the class label 𝑦.
The results in Table D.4 reveal only minor differences. Comparing 𝐿𝑏3 and 𝐿𝑏4, marginal-

izing out label improves the accuracy, but damages the recall. Baseline parametrization
achieves the best accuracy but the worst recall. Claim-Dissector seems to work the best in
terms of FS, but the difference to 𝐿𝑏3 is negligible if any.

D.6 Claim-Dissector: Retrieval Performance on FEVER
An in-depth evaluation of the retrieval method adopted from Jiang et al. (2021) is available
in Table D.5.

D.7 Sensitivity to 𝜆2 Weight
In Figure D.3, we analyze the sensitivity of 𝜆2 parameter on F1 performance on TLR-
FEVER during training. Choosing the large weight may lead to instabilities and vanishing
of interpretable rationales, choosing smaller weight delays the peak performance in terms
of F1. Note that for DeBERTaV3-large we chose 𝜆2 = .0005, as the one we used for base
version (𝜆2 = .002) leaded to such vanishing.
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Figure D.3: Sensitivity to 𝜆2 weight selection for Deberta-V3-base model. Red dashed
horizontal line marks the F1 performance when selecting all tokens (Select All Tokens)
from Table 7.8.
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Appendix E

Dataset Details

E.1 Samples
This section provides samples from every dataset used in the thesis. Each sample comes
from the development set.

SQuAD (Rajpurkar et al., 2016)

Context:

The first recorded travels by Europeans to China and back date from
this time. The most famous traveler of the period was the Venetian
Marco Polo, whose account of his trip to ”Cambaluc“, the capital of
the Great Khan, and of life there astounded the people of Europe.
The account of his travels, Il milione (or, The Million, known
in English as the Travels of Marco Polo), appeared about the year
1299. Some argue over the accuracy of Marco Polo’s accounts due to
the lack of mentioning the Great Wall of China, tea houses, which
would have been a prominent sight since Europeans had yet to adopt
a tea culture, as well the practice of foot binding by the women in
capital of the Great Khan. Some suggest that Marco Polo acquired
much of his knowledge through contact with Persian traders since
many of the places he named were in Persian.

Question:

How did some suspect that Polo learned about China instead of by
actually visiting it?

Answers from 3 annotators:

through contact with Persian traders

through contact with Persian traders

through contact with Persian traders

SQuAD2.0 (Rajpurkar et al., 2018) contains unanswerable questions for contexts from
SQuAD. The unanswerable question for the context above was

Who was the last known European to visit China and return?
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Adversarial SQuAD (Jia and Liang, 2017) contains SQuAD context with a appended
distractor sentence. Each context is appended 5 times with a distractor sentence, and
worst-of-5 performance is considered during evaluation. The appended distractor sentence
is underlined.

Context:

The connection between macroscopic nonconservative forces and mi-
croscopic conservative forces is described by detailed treatment
with statistical mechanics. In macroscopic closed systems, non-
conservative forces act to change the internal energies of the
system, and are often associated with the transfer of heat. Accord-
ing to the Second law of thermodynamics, nonconservative forces
necessarily result in energy transformations within closed systems
from ordered to more random conditions as entropy increases.
The law of thermodynamics is associated with an open system heat
exchange.

Question:

What is the law of thermodynamics associated with closed system
heat exchange?

Answers from 3 annotators:

Second law

Second law of thermodynamics

Second

Natural Questions (Kwiatkowski et al., 2019) is a dataset used in two different ways in
the thesis. In chapter 3, the MRQA version (Fisch et al., 2019) of the original dataset was
used (example below). In ODQA, (Chapter 4 and Chapter 5), a NQ-Open version is used.
NQ-Open contains only samples with short answers up to 5 whitespace tokens, and no
context. Instead the contexts are to be retrieved from the Wikipedia dump. The example
below (without context) is also part of NQ-Open. We note that during the conversion
of this dataset, the multi-span answers were converted into multiple answers (the sample
below contains such a multi-span answer). However in both versions of the dataset these
were considered as multiple answers—selecting only one of the spans is sufficient for correct
validation. As discussed in Chapter 3, joint probability is biased to pick only one of these
spans, thus achieving great gains on Natural Questions.

Context:

<P> According to Unfinished Tales , at the start of the War of the
Elves and Sauron , Celebrimbor gave Narya together with the Ring
Vilya to Gil - galad , High King of the Noldor . Gil - galad
entrusted Narya to his lieutenant Círdan , Lord of the Havens of
Mithlond , who kept it after Gil - galad ’s death . According to
The Lord of the Rings , Gil - galad received only Vilya , while
Círdan received Narya from the very beginning along with Galadriel
receiving Nenya from the start . </P>
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Question:

who were the three elves who got rings

Answers:

Gil - galad

Galadriel

Círdan

NewsQA (Trischler et al., 2017)
Context:
WASHINGTON (CNN) - Department of Homeland Security Secretary Janet
Napolitano apologized Friday for a department assessment that suggested
returning combat veterans could be recruited by right-wing extremist
groups. Homeland Security Secretary Janet Napolitano says she offered
her “sincere apologies for any offense.“ She met with American Legion
National Commander David Rehbein at Homeland Security headquarters.
“The secretary started the meeting with an apo-llogy to me personally, to
the American Legion and to the entire veterans community,“ Rehbein told
reporters after the meeting. In a statement issued by the department,
Napolitano said, “We connected meaningfully about the important issues
that have emerged over recent days, and I offered him my sincere apologies
for any offense to our veterans caused by this report. ... I pledge that
the department has fixed the internal process that allowed this document
to be released before it was ready.“ The report was an unclassified ass-
essment sent to law enforcement agencies. It was titled “Rightwing
Extremism: Current Economic and Political Climate Fueling Resurgence in
Radicalization and Recruitment.“ The mention of combat veterans surfaced
on a conservative radio program earlier this month, and it drew the scorn
of commentators and conservative members of Congress. Rep. John
Carter, R -Texas, called on Napolitano to resign. Rehbein said Friday
it is time to move forward. “In the mind of the American Legion, I think
her apology was sufficient,“ he said. “The way the Vietnam veterans were
treated once they came home, that’s what drives the sensitivity to this,
because those things start small and then grow from there, and we need to
make sure anytime something like that happens we need to step on that and
make sure it goes away very quickly.“

Question:

Who could be recruited by right-wing extremists?

Answer:

returning combat veterans

TriviaQA (Joshi et al., 2017) also provides automatically produced aliases for annotated
answer. These are not present for MRQA version (Fisch et al., 2019). For , the aliases are
available, and contexts are omitted.

Context:
WASHINGTON (CNN) - Department of Homeland Security Secretary Janet
Napolitano apologized Friday for a department assessment that suggested
returning combat veterans could be recruited by right-wing extremist
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groups. Homeland Security Secretary Janet Napolitano says she offered
her “sincere apologies for any offense.“ She met with American Legion
National Commander David Rehbein at Homeland Security headquarters.
“The secretary started the meeting with an apo-llogy to me personally, to
the American Legion and to the entire veterans community,“ Rehbein told
reporters after the meeting. In a statement issued by the department,
Napolitano said, “We connected meaningfully about the important issues
that have emerged over recent days, and I offered him my sincere apologies
for any offense to our veterans caused by this report. ... I pledge that
the department has fixed the internal process that allowed this document
to be released before it was ready.“ The report was an unclassified ass-
essment sent to law enforcement agencies. It was titled “Rightwing
Extremism: Current Economic and Political Climate Fueling Resurgence in
Radicalization and Recruitment.“ The mention of combat veterans surfaced
on a conservative radio program earlier this month, and it drew the scorn
of commentators and conservative members of Congress. Rep. John
Carter, R -Texas, called on Napolitano to resign. Rehbein said Friday
it is time to move forward. “In the mind of the American Legion, I think
her apology was sufficient,“ he said. “The way the Vietnam veterans were
treated once they came home, that’s what drives the sensitivity to this,
because those things start small and then grow from there, and we need to
make sure anytime something like that happens we need to step on that and
make sure it goes away very quickly.“

Question:

Because he held the earth on his shoulders, for what Greek figure
did Gerardus Mercator name his book of maps?

Answer:

Atlas

Aliases:

“Atlases”, “Atlas (cartography)”, “Atlas (geography)”,
“The Atlases”, “Atlas”, “Atlas (book)”, “Atlas the book”

RumourEval19 (Gorrell et al., 2019). The example was already shown in Figure 6.1.
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FEVER and TLR-FEVER (Thorne et al., 2018). A set of annotated relevant sentences
is unified across all FEVER annotators. Relevant tokens, as judged by different annotators
of TLR-FEVER are shown with different colors. Each sentence is prepended with the article
title in brackets.

Relevant Sentences (annotator #1):

”
(Billboard Dad) Billboard Dad ( film ) is a 1998 American direct-to-

video comedy film, directed by Alan Metter starring Mary-Kate and Ashley
Olsen.“,

”
(Alan Metter) Alan Metter is an American film director whose

most notable credits include Back to School starring Rodney Dangerfield,
and Girls Just Want to Have Fun with Sarah Jessica Parker.“,

”
(Alan

Metter) He also produced and directed the 1983 television special The
Winds of Whoopie for Steve Martin.“

Relevant Sentences (annotator #2):

”
(Billboard Dad) Billboard Dad ( film ) is a 1998 American direct-to-

video comedy film, directed by Alan Metter starring Mary-Kate and Ashley
Olsen.“,

”
(Alan Metter) Alan Metter is an American film director whose

most notable credits include Back to School starring Rodney Dangerfield,
and Girls Just Want to Have Fun with Sarah Jessica Parker.“,

”
(Alan

Metter) He also produced and directed the 1983 television special The
Winds of Whoopie for Steve Martin.“

Relevant Sentences (annotator #3):

”
(Billboard Dad) Billboard Dad ( film ) is a 1998 American direct-to-

video comedy film, directed by Alan Metter starring Mary-Kate and Ashley
Olsen.“,

”
(Alan Metter) Alan Metter is an American film director whose

most notable credits include Back to School starring Rodney Dangerfield,
and Girls Just Want to Have Fun with Sarah Jessica Parker.“,

”
(Alan

Metter) He also produced and directed the 1983 television special The
Winds of Whoopie for Steve Martin.“

Relevant Sentences (annotator #4):

”
(Billboard Dad) Billboard Dad ( film ) is a 1998 American direct-to-

video comedy film, directed by Alan Metter starring Mary-Kate and Ashley
Olsen.“,

”
(Alan Metter) Alan Metter is an American film director whose

most notable credits include Back to School starring Rodney Dangerfield,
and Girls Just Want to Have Fun with Sarah Jessica Parker.“,

”
(Alan

Metter) He also produced and directed the 1983 television special The
Winds of Whoopie for Steve Martin.“

Claim:
Billboard Dad was directed by a parrot.

Verdict:
REFUTE

FAVIQ (Park et al., 2022).
Claim:
the 76th season was the last time that the bills won their division.

Verdict:
SUPPORTS
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HOVER (Jiang et al., 2020) contains facts requiring up to 4 hops of reasoning for verifi-
cation (shown below).

Claim:

James Hewitt and another solicitor have in common the English country
of origin. The other English solicitor was a chair of a human
rights group. This group was a member of the International Corporate
Accountability Roundtable Steering Committee.

Annotated Evidence:
(Mark Stephens (solicitor)) Mark Howard Stephens CBE (born 7 April 1957)
is an English solicitor specialising in media law, intellectual property
rights and human rights with the firm Howard Kennedy LLP.

(James Hewitt) Mark Howard Stephens CBE (born 7 April 1957) is an English
solicitor specialising in media law, intellectual property rights and
human rights with the firm Howard Kennedy LLP.

(Global Witness) Gillian Caldwell joined the organisation as Executive
Director in July 2015 and Mark Stephens (solicitor) was appointed Chair
in March 2016.

(International Corporate Accountability Roundtable) ICAR’s Steering
Committee includes EarthRights International, Human Rights Watch, Human
Rights First, Global Witness and Amnesty International.

Verdict:

SUPPORTED

REALFC (Thorne et al., 2021) contains Wikipedia sections with verdicts and per-sentence
level annotations.

Claim:

puerto rican citizens pay u.s. taxes

Wikipedia Section

(supporting) The Commonwealth of Puerto Rico is a territory of the
United States and Puerto Ricans are US citizens.

(refuting) However, Puerto Rico is not a US state.

(refuting) Because of this, only Puerto Rican residents who are federal
government employees, and those with income sources outside of the
territory, pay federal income tax.

(refuting) All other employers and employees pay no federal income taxes.

(supporting) However, residents of Puerto Rico and businesses operating
in Puerto Rico do pay some federal taxes, and the commonwealth’s govern-
ment has its own taxes as well.

(neutral) In July 2018, approximately 21% of the labor force on Puerto
Rico were employed by the government, however this includes both the
commonwealth and federal governments.

Section Verdict:

refuted
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E.2 TLR-FEVER Guidelines
Annotation guidelines
Welcome to the “Pilot annotation phase” and thank you for your help!
How to start annotate
If you haven’t done so, simply click on ”Start Annotation“ button, and the annotation will
start.
Annotation process & guidelines

• In pilot annotation, we are interested in annotator’s disagreement on the task. So
whatever disambiguity you will face, do not contact the organizers but judge it your-
self.

• Your task is to annotate 100 samples. In each case, you will be presented with list
of sentences divided by | character. The sentences do not need to (and often do not)
directly follow each other in text. Be sure that in each case you:

• read the claim (lower-right corner)

• read metadata - to understand the context, you also have access to other metadata
(lower-right corner), such as

– titles - Wikipedia article names for every sentence you are presented with, split
with character |,

– claim_label - Ground-truth judgment of the claim’s veracity.

• highlight minimal part of text you find important for supporting/refuting
the claim. There should be such part in every sentence (unless annota-
tion error happened). PLEASE DO NOT ANNOTATE ONLY WHAT IS
IMPORTANT IN THE FIRST SENTENCE.

• Use ”RELEVANT“ annotation button highlight the selected text spans.

• In some cases, you can find errors in the ground-truth judgment, in other words,
either document is marked as supported and it should be refuted according to your
judgment or vice-versa. If you notice so, please annotate any part of the document
with CLAIM_ERROR annotation.

• In case you would like to comment on some example, use comment button (mes-
sage icon). If the comment is example specific, please provide specific example’s id
(available in-between metadata).

FAQ

• The example does not contain enough information to decide whether it should be sup-
ported or refuted. Should I label it as a CLAIM_ERROR?
No. In such a case, please annotate parts of the input, which are at least partially
supporting or refuting the claim. Please add comment to such examples. If there are
no such input parts, only then report the example as CLAIM_ERROR.

That is it. Good luck!
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E.3 RumourEval 2019 Dataset Insights
During data analysis, we gained insights shared within this section.

Empty datapoints 12 data points do not contain any text. According to the dataset
authors, they were deleted by users at the time of data download and were left in the data
not to break the conversational structure.
Domain-specific context dependency The query stance of some examples taken from
subreddit DebunkThis1 is dependent on domain knowledge. Examples from the subreddit
DebunkThis have all the same format ”Debunk this: [statement]“, e.g. “Debunk this:
Nicotine isn’t really bad for you, and it’s the other substances that make tobacco so harmful.”.
All these examples are labeled as queries.
Multiple stances within the same tweet The single class of some posts is ambigu-
ous, as they contain more statements that could be classified into different classes. The
source/previous post “This is crazy! #CapeTown #capestorm #weatherforecast
https://t.co/3bcKOKrCJB” and the target post “@RyGuySA Oh my gosh! Is that not a
tornado?! Cause wow, It almost looks like one!”, labeled as a comment in the dataset,
might be seen as a query as well.
Metadata The dataset contains a whole tree structure and metadata for each discussion
from Twitter and Reddit. Obviously, the nature of the data differs across platforms. For
example, the Reddit subset includes upvotes.

E.4 Conditional Scoring on RealFC Dataset
First, binary F1 is computed for each 𝑖-th example from the dataset—section with several
sentences, and every sentence is predicted to be relevant (i.e., supporting or refuting) or
irrelevant (i.e., neutral)—obtaining F1 score 𝑠(𝑖). Define I[𝑚(𝑖) = 𝑙𝑖] as an indicator func-
tion yielding 1 if model 𝑚𝑣 predicted the veracity correct class 𝑙𝑖 for an 𝑖-th example, and
0 otherwise. With dataset of size 𝑁 , the CondAcc is defined as an average F1 score for
samples with correct veracity

CondAcc =
1

𝑁

𝑁∑︁
𝑖=1

𝑠(𝑖)I[𝑚𝑣(𝑖) = 𝑙𝑖]. (E.1)

Next, assume that 𝑇𝑃𝑠, 𝑇𝑃𝑟, and 𝑇𝑃𝑛 and similarly FP𝑥 and FN𝑥 are TPs, FPs, and
FNs computed for each veracity class—support veracity (𝑠), refute veracity (𝑟), or neutral
veracity (𝑛), and 𝑥 ∈ {𝑠, 𝑟, 𝑛}. Further, assume that 𝑤𝑇𝑃𝑠, 𝑤𝑇𝑃𝑟, 𝑤𝑇𝑃𝑛 are computed as
𝑤𝑇𝑃𝑥 =

∑︀𝑁
𝑖=1 𝑠(𝑖)I[𝑚𝑣(𝑖) = 𝑙𝑖 ∧ 𝑥 = 𝑙𝑖], where 𝑥 ∈ {𝑠, 𝑟, 𝑛}. Firstly, weighted F1 𝑤𝐹1𝑥 is

computed for each class separately from precision 𝑝𝑥 and recall 𝑟𝑥 as shown in Equation E.2.
The CondF1 score is obtained by averaging 𝑤𝐹1𝑥 across all classes 𝑥 ∈ {𝑠, 𝑟, 𝑛}.

𝑝𝑥 =
𝑤𝑇𝑃𝑥

𝑇𝑃𝑥 + 𝐹𝑃𝑥
𝑟𝑥 =

𝑤𝑇𝑃𝑥

𝑇𝑃𝑥 + 𝐹𝑁𝑥

𝑤𝐹1𝑥 = 2
𝑝𝑥𝑟𝑥

𝑝𝑥 + 𝑟𝑥

(E.2)

1https://www.reddit.com/r/DebunkThis/. Accessed 20.3.2023.
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Appendix F

Extra Dicussions

F.1 Addressing the Complexity of Extractive QA Objectives
One may ask what complexity joint modeling objectives come with independently of the
underlying architecture. Given that 𝐿 is the length of the input’s passage and 𝑑 is the model
dimension, the independent objective contains only linear transformation and is in O

(︀
𝑑𝐿

)︀
for time and memory, assuming the multiplication and addition are constant operations.
For the rest of this analysis, we will denote both time and memory complexities as just
complexity, as they are the same for the analyzed cases.

The conditional objective increases the complexity for both only constantly, having an
extra feed-forward network for end token representations. However, one may experience
a significant computational slowdown, because of the beam search. Having a beam size
𝑘 and a minibatch size 𝑏, the end probabilities cannot be computed in parallel with start
probabilities, and have to be computed for the 𝑘𝑏 cases.

For direct joint probability modeling, the complexity largely depends on the similarity
function. The easiest case is 𝑓𝑑𝑜𝑡, where in theory the complexity rises to O

(︀
𝑑𝐿2

)︀
, but in

practice, the dot product is well optimized and has a barely noticeable impact on the speed
or memory.

For the 𝑓𝑎𝑑𝑑 the complexity is given by the linear projection 𝐻*𝑤* being in O
(︀
𝑑𝐿

)︀
and

outer summation of two vectors 𝐻𝑠𝑤1 ⊕𝐻𝑒𝑤2, which is in O
(︀
𝐿2

)︀
, where 𝑤 = [𝑤1,𝑤2]

and 𝐻* ∈ R𝑛×𝑑 are the start/end representation matrices. Therefore the complexity is
O
(︀
𝑑𝐿 + 𝐿2

)︀
. We observed that in practice this approach is not very different from 𝑓𝑑𝑜𝑡,

probably due to 𝑑 being close to 𝐿.
Next, a weighted product 𝑓𝑤𝑑𝑜𝑡 can be efficiently implemented as 𝐻𝑠(𝑤 ∘𝐻𝑒), where

𝑤 is broadcasted over every end representation in 𝐻𝑒. In this case, the complexity stays
the same as for 𝑓𝑑𝑜𝑡.

To demonstrate that in practice the speed and memory requirements between indepen-
dent and joint approach are comparable, one BERT epoch on SQuADv1.1 took about 47
minutes and 4.2GB of memory with the same minibatch size 2 on 12GB 2080Ti GPU with
both objective variants. We observed the same requirements for all direct joint probability
modeling methods mentioned so far.

Finally, the most complex approach is clearly 𝑓𝑀𝐿𝑃 . While a theoretical time and
memory complexity of an efficient implementation1 is in O

(︀
𝑑2𝐿 + 𝑑𝐿2

)︀
, the complexity

1The linear transformation 𝑑 × 2𝑑 can be applied to each start or end vector separately, and only then
the start/end vectors have to be outer-summed.
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of this approach can be improved by pruning down the number of possible spans (and the
probability space). Assuming the maximum length of the span is 𝑘 ≪ 𝐿, one can reduce the
complexity to O

(︀
𝑑2𝐿+ 𝑑𝐿𝑘

)︀
(an approach adopted in Lee et al. (2019)). To illustrate this

complexity, the BERT model with the full probability space on SQuADv1.1 with minibatch
size 2 took 76 minutes per epoch while allocating 8.2GB of GPU memory (we were unable
to fit larger minibatch size to 12GB GPU).

F.2 The Continued Influence Effect: Retractions Fail to Elim-
inate the Influence of Misinformation

Lewandowsky et al. (2012) summarizes the research paradigm, which focuses on credible
retractions in neutral scenarios, in which people have no reason to believe one version of
the event over another. In this paradigm, people are presented with a factious report about
an event unfolding over time. The report contains a target piece of information (i.e. a
claim). For some readers, the claim is retracted, whereas for readers in a control condition,
no correction occurs. Then the readers are presented with a questionnaire to assess their
understanding of the event and the number of clear and uncontroverted references to the
claim’s veracity.

In particular, a stimulus narrative commonly used within this paradigm involves a
warehouse fire, that is initially thought to have been caused by gas cylinders and oil paints
there were negligently stored in a closet. A proportion of participants is then presented with
a retraction such as ”the closet was actually empty“. A comprehension test follows, and
the number of references to the gas and paint in response to indirection inference questions
about the event (e.g., ”What caused the black smoke?“) is counted.

Research using this paradigm has consistently found that retractions rarely, if ever,
had the intended effect of eliminating reliance on misinformation, even when people re-
member the retraction when later asked. Seifert (2002) have examined whether clarifying
the correction might reduce the continued influence effect. The correction in their studies
was strengthened to include the phrase ”paint and gas were never on the premises“. Re-
sults showed that this enhanced negation of the presence of flammable materials backfired,
making people even more likely to rely on the misinformation in their responses. Some
other additions to the correction were found to mitigate to a degree, but not eliminate, the
continued influence effect. For instance, when participants were given a rationale about
how misinformation originated, such as ”a truckers’ strike prevented the expected deliv-
ery of the items“, they were less likely to make references to it. Even so, the influence
of the misinformation could still be detected. The conclusion drawn from studies on this
phenomenon is that it is extremely difficult to return the beliefs of people who have been
exposed to misinformation to a baseline similar to those of people who have never been
exposed to it. We recommend reading Lewandowsky et al. (2012) for a broader overview
of the misinformation and its correction.

F.3 The Necessity of Claim-Dissector’s Baseline Modifica-
tions

The reason for the modification is that (i) the original model (Schlichtkrull et al., 2021)
(without 𝐿𝑏1) could not benefit from NEI annotations present on FEVER, resulting in an
unfair comparison with our models and previous work, as TabFact does not contain such

138



annotations (ii) the original model is not able to distinguish the attribution from the re-
peated relevant evidence, because equations (6)/(9) in their work just sum the probabilities
of relevant items supervised independently—they do not use the supervision of overall ve-
racity for the claim. This is problematic, especially in a FEVER setting comparable to
ours, where the relevance of hundreds of sentences is considered (many of them possibly
relevant) as compared to TabFact where only top-5 retrieved tables were considered, and
often only a single is relevant.

F.4 Statistical Testing on F1 Measure
To compare CD with masker in F1, we follow Goutte and Gaussier (2005), sum TPs, FPs,
FNs across the dataset, estimate recall (R) and precision (P) posteriors, and sample F1
distributions. To obtain a sample of average F1 from multiple checkpoints, we estimate the
P and R posteriors for each checkpoint separately, sample F1 for each checkpoint and then
average these. We estimate 𝑝 ≈ P(F1𝑎 >F1𝑏) via Monte-Carlo using 10,000 samples, and
consider the significance level at 𝑝 > 0.95.

F.5 Details on Analysis of Prediction Scores
We define relevance score (RS) as P𝑖,𝑗(𝑦 = 𝑙) where 𝑙 ∈ {𝑆,𝑅} is the ground truth label.
For A/B testing, we shuffle (a) and (b) cases for annotators, so they cannot determine
which sentence comes from which source. An example of 1 annotation is available at https:
//shorturl.at/hiCLX. Since we found many annotators hesitated with no preference option (c)
when computing Krippendroff’s 𝛼, we assume two classes, and empty preference when the
annotator does not have a preference (case (c)) (we do not consider it a separate nominal
category). Krippendorff’s 𝛼=0.65 achieved moderate agreement.

To compute average Kendall 𝜏 , we select sentences with RS>0.7 for each example; this
creates relevance ranking. Then we reorder selected sentences according to PS, obtaining
prediction ranking. Kendall 𝜏 is computed for every sample, and the resulting statistic is
averaged across all samples in the FEVER validation set.
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