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hluboké učení pro virtuální personalizované

modelování lebky a jeji rekonstrukci

P H . D . T H E S I S

disertační práce
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A B S T R A C T

Skull segmentation from 3D patient data and virtual reconstruction of the defec-

tive skull shape are the most challenging steps required for creation of patient-

specific models of skull. These models are used in cranioplasty practice for surgery

planning, patient education and patient-specific implant design, but their utility is

currently limited by the amount of manual processing time required to reach suffi-

cient virtual model quality. This thesis aims to streamline this virtual workflow by

utilizing deep learning methods.

The thesis proposes a novel solution that consists of an automatic skull seg-

mentation method based on a combination of convolutional neural networks and

graph cut algorithm and an automatic virtual skull reconstruction method based

on convolutional network cascade. Both of these components are demonstrated to

achieve state-of-the-art accuracy. This work also aims to improve reproducibility

of the skull reconstruction research by providing a structured synthetic dataset for

development and benchmarking of automatic methods.

The main focus of this work is on applicability in clinical practice. While the

proposed skull segmentation method is already successfully deployed to clinical

workflow, the integration of automatic virtual skull reconstruction presents some

additional challenges, such as low tolerance towards shape imperfections around

the defect border. This work therefore also proposes an extension of the skull recon-

struction method that allows its adaptation to target population and the desired

type of cranial implant shape, which can vary between different clinical sites. The

results of expert’s evaluation show that the shape outputs of this method reach

enough quality to be deployed into clinical practice along with the segmentation

method.
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A B S T R A K T

Segmentace lebky ze 3D pacientských dat a virtuální rekonstrukce tvaru lebek

s defekty jsou nejnáročnějšími kroky potřebnými pro tvorbu lebečních modelů na

míru pacienta. Tyto modely jsou v kranioplastice využívány pro plánování operací,

poučení pacienta a design implantátů na míru, avšak jejich využitelnost je v součas-

nosti limitována množstvím manuální práce potřebné pro dosažení dostatečné

kvality virtuálních modelů. Tato teze má za cíl zefektivnění tohoto virtuálního

pracovního postupu s využitím metod hlubokého učení.

Teze popisuje klinickou motivaci a současnou výzkumnou literaturu v oblasti

automatizace virtuální kranioplastiky. Dále navrhuje nové řešení sestávajicí z

metody automatické segmentace lebky založené na kombinaci konvoluční neu-

ronové sítě a algoritmu graph-cut a metody automatické rekonstrukce lebky za-

ložené na kaskádě konvolučních sítí. Obě tyto komponenty demonstrují přesnost

na úrovni vědeckého stavu poznání. Dále tato práce cílí na zvýšení reprodukovatel-

nosti výzkumu lebečních rekonstrukcí poskytnutím strukturovaného syntetického

datasetu pro vývoj a srovnávání automatických metod.

Hlavním cílem této práce je využitelnost v klinické praxi. Zatímco navržená

metoda segmentace lebek je již v klinické praxi využívána, integrace automat-

ické virtuální rekonstrukce lebky představuje několik dalších překážek, jako nízká

tolerance k nepřesnostem ve tvaru okolo hranice defektu. Tato práce proto také

navrhuje rozšíření metody rekonstrukce lebky, které umožňuje její adaptaci na

cílovou populaci a typ kraniálních implantátů, který se může mezi jednotlivými

klinickými pracovištěmi lišit. Výsledky vyhodnocení experta ukazují, že výstupy

této metody dosahují dostatečné kvality pro implementaci do klinické praxe

společně s metodou segmentace.
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Hluboké učení; Lékařské zobrazování; Kranioplastika; Plánování operací; Segmen-
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1
I N T R O D U C T I O N

Virtual 3D patient-specific anatomical models are becoming an important factor

in improving outcomes of surgical interventions as well as reducing the operating

time. The goal of the research presented in this thesis is to accelerate the creation

of these models with the use of deep learning algorithms. Although some of the

approaches presented here are potentially applicable to various target domains, the

main focus of this work is on craniomaxillofacial surgery, specifically treatment

planning and reconstruction of skull defects. For this application, two types of

anatomical models are typically used in the process of surgery planning. First, a

precise model of a patient’s defective skull serves for the planning of complex

procedures, training, or patient education. Second, a virtual reconstruction of the

defective tissue geometry provides a template for designing a patient-specific skull

implant.

In correspondence with these practical applications, the methodological contri-

butions of this work can be divided into two parts. The first area is precise seg-

mentation of the skull in computed tomography data. Since a plethora of general-

purpose segmentation algorithms can be applied to this problem, more attention is

given to the cases where the available dataset used for the optimization of the seg-

mentation algorithms cannot fully encompass the variability in data encountered

in clinical practice and to the parts of the skull most difficult to segment due to

their thinness and low visibility.

The second part of this work addresses the step of the virtual reconstruction

of the full skull geometry. Given the shape representation of the patient’s defec-

tive skull, the reconstructed part of the skull has to fully restore its protective and

aesthetic function. In the current medical practice, semi-automatic methods with

heavy use of manual refinement in computer-assisted design software are preva-

lent. As opposed to these often time-consuming approaches, fully automatic skull

reconstruction methods can help streamline the clinical workflow. A novel deep

learning-based, fully automatic skull reconstruction method is therefore proposed

and evaluated. To improve the practical utility of the proposed method, this thesis

further proposes an extension that allows adaptability to the target population and

type of cranial implant.

Because automatic skull reconstruction is a rather novel area of research, some

fundamental topics have not yet been completely addressed in the literature, such

as: Is the task of skull shape reconstruction deterministic? Which metrics and what

1



introduction 2

datasets should be used to evaluate the clinical applicability of the reconstruction

methods? To provide grounds for further research in these areas, this work addi-

tionally presents a public synthetic dataset of defective skulls. Furthermore, several

different reconstruction metrics are studied in relation to how indicative they are

of the actual performance of the reconstruction methods in clinical practice.

Several chapters of this thesis are adapted from articles published by the author.

The articles are first-author publications and, unless stated otherwise, the research

and writing were done primarily by the author with guidance and supervision of

the thesis consultant and supervisor.



Part I

B A C K G R O U N D



2
A N AT O M I C A L M O D E L S I N S U R G E RY P L A N N I N G

This chapter serves as an overview of anatomical model applications in skull

surgery. It also covers relevant topics of human skull anatomy and pathology as

well as patient data acquisition. These topics are discussed to the extent necessary

to illustrate both the motivation and current limitations of producing anatomical

models for skull surgery planning.

2.1 general applications of anatomical models

3D patient-specific anatomical models, also called biomodels, improve spatial in-

terpretation of patient data by surgeons [36, 102]. In contrast to conventional two-

dimensional modalities, such as X-ray data or slices through computed tomogra-

phy (CT) or magnetic resonance (MR) data, the use of 3D anatomical models brings

more versatility to computer-assisted surgery. They may be used in pre-operative

(surgical planning and implant design) or intra-operative (surgical navigation) ap-

plications, in combination with augmented or virtual reality, or surgical robot guid-

ance systems [126, 105]. Furthermore, anatomical models are used in medical and

dental education because they can depict anatomical structures in a more efficient

way than cadavers [40].

The recent boom of 3D printing technology and its advancements in both pre-

cision and cost-effectiveness further added to the range of anatomical models ap-

plication [121]. A straightforward application of 3D printed anatomical models

is constructing a direct representation of patient’s anatomical structures for pre-

operative planning and training. Surgical interventions pose various risks, such as

blood loss, infection, excessive trauma due to imprecise surgical technique, and

time spent under anesthesia. Multiple studies show that using anatomical models

during surgery planning reduces operative time and increase the procedure accu-

racy, effectively leading to better clinical outcome [58, 79, 138]. Such models are

also suitable for pre-operative patient education which can increase patient’s ca-

pacity to provide informed consent. This, in turn, leads to reduced legal risks for

the surgeons [78].

However, exact replicas of the patient’s anatomical structures are not the only

convenient type of anatomical model. In dental, orthopedic, and craniomaxillofa-

cial surgery, custom 3D printed surgical guides are becoming popular [121]. Of

4



2.2 repairing the skull : cranio-maxillofacial skeleton surgery 5

most interest for this thesis, custom patient-specific implants (PSI) can be 3D

printed using biocompatible materials such as titanium, polyether ether ketone,

or other compounds [96, 50, 10]. As an alternative to directly using the target im-

plant shape, an implant mold can be printed to be used for implant manufacturing

later [132].

The aforementioned benefits of using anatomical models for surgical support

usually come at the price of the increased cost of the procedure [121]. This is

mostly caused by the fact that creating a precise patient-specific anatomical model

is a tedious and time-demanding task with little room for inaccuracies and produc-

ing the models poses a challenge even for experienced clinical experts. Developing

automated solutions to the most challenging steps of the anatomical model cre-

ation pipeline and integrating them into the clinical workflow will be crucial for

enabling wider patient access to these procedures in the future.

2.2 repairing the skull : cranio-maxillofacial skeleton surgery

Cranio-maxillofacial (CMF) surgery deals with congenital and acquired deformi-

ties of the head, face, and jaw. Although CMF surgery generally deals with all

types of tissue, this work focuses on reconstructive bone surgery. The main chal-

lenges of this domain lie in reestablishing anatomically correct shape, consistently

restoring orbital volume, and accurately repositioning CMF skeleton components

into optimal spatial relationships [13].

Suboptimal results of these interventions may lead not only to further clinical

problems, but also societal issues related to loss of facial symmetry and aesthetics.

This puts additional emphasis on the precision of pre-operative planning. It then

comes as no surprise that CMF surgery served as a pioneer in clinical applications

of anatomical models [36].

2.2.1 Overview of Skull Anatomy

The human CMF skeleton, or skull, is a bony complex that maintains the facial

structure and mechanically protects the brain. The two main parts of the skull

are the neurocranium, consisting of the cranial vault, and viscerocranium which en-

compasses the facial bones. There is a total of 22 bones that comprise the skull

(see Figure 2.1) and with the exception of the mandible (the lower jaw), these in-

dividual bones are attached by connective regions known as sutures. While the

sutures accommodate movement during development to enable the growth of the

internal organs, increased level of interdigitation and bone bridging prevents the

movement in adult skulls [30].
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Figure 2.1: Frontal and lateral views of the skull bones. Taken from Gray’s Anatomy of the

Human Body [46]

Anatomical landmarks provide another way to navigate the complex skull

anatomy. Many anatomical landmarks have been defined on the human skull for

use in cephalometry which studies variability in human skulls through defined

measurements of distances and angles. They can be broken down into two groups,

as seen in Figure 2.2: the medial landmarks that lie on the mid-sagittal plane, and

the bilateral landmarks that occur laterally on both sides of the skull.

Some of these landmarks also define anatomical planes that can be used for

aligning the target skull into a standardized position and for evaluating skull

and facial symmetry. The mid-sagittal plane (MSP) is anatomically defined as a

vertical plane passing through the skull midline and it can be defined by any

three medial landmarks, such as the basion, nasion, and sella turcica [8]. This

plane marks the theoretical symmetry axis of the skull, but it is worth noting that

no skull is perfectly symmetric and slight asymmetries are a natural part of the

skull anatomy [67]. The Frankfort-horizontal plane (FHP) defined by the orbitale

and the porion landmarks then defines the standard horizontal inclination of the

skull [97, 84]. In clinical practice, this plane is also preferred for the identification
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Figure 2.2: Cephalometric landmarks defined on the human skull [109].

of the optimal skull symmetry plane, which is defined as the plane perpendicular

to the Frankfort-horizontal plane going through one of the medial landmarks. This

definition of the symmetry plane tends to less underestimate the facial asymmetry

when compared to the mid-sagittal plane [7]. See Figure 2.3 for an illustration of

the anatomical planes of the skull.
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Figure 2.3: The mid-sagittal and the Frankfort-horizontal plane defined by the Orbital (Or)

and the Porion (Po) landmarks. Note that three points are required to define

the plane and therefore the mid-point between left and right porion is used in

this example. Image adapted from Lin et al. [80]

2.2.2 Cranial and Facial Bone Defects

Skull defects are pathological changes in the physiological anatomy of the skull

described in the previous section. Congenital skull defects are also known as birth

defects. Congenital defects include both facial deformities, such as cleft lip, cleft

palate, and cleft jaw, and cranial deformities, such as craniosynostosis [1, 3]. Al-

though CMF surgery deals with many more congenital skull defects, these are not

in the scope of this short overview and not directly addressed in this thesis [4].

As opposed to congenital skull defects, acquired skull defects are caused by factors

not directly related to the skull developmental processes. These include mostly

head trauma, infection, and tumors [114]. In the remainder of this work, the term

skull defect will refer specifically to the acquired skull defects. Clinical treatment of

acquired skull defects usually involves reconstructing the original skull shape in

order to restore the aesthetic, masticatory, and protective functions of the skull. In

the case of the neurocranium, restoring the skull shape (referred to as cranioplasty)

can also lead to alleviating neurological impairment [2]. Two approaches can be

taken to incorporating material into the skull defect to restore its shape: using the

original part of the patient’s bone (also referred to as autologous bone implant or

bone graft) or constructing an implant from synthetic material. Appropriate use

of anatomical models further improves the clinical outcome and reduces operat-
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Figure 2.4: Illustration of individual steps of craniotomy procedure [117].

ing time of both of these methods, but the effect is most evident in the second

case [121].

Using the autologous bone is straightforward in some cases of minor traumatic

fractures, where the surgeon only needs to slightly reshape and reposition the

bone before reattaching it to the rest of the skull using titanium mini plates or

clamps [60]. Another procedure where the use of the autologous bone is common

is a craniotomy, during which a part of the skull is temporarily removed to access

the tissues underneath. The clinical implications for craniotomy include treating

brain hemorrhage, infection of intracranial tissues, or resection of a tumor. The

craniotomy procedure is illustrated in Figure 2.4. Similarly, during decompressive

craniectomy, part of the skull is removed in order to decrease intracranial pressure

caused by brain swelling due to head trauma or a stroke. The bone graft then needs

to be stored for long enough for the swelling to subside, which may take weeks or

months [71].

Although the autologous bone may seem like the perfect implant, it can often

become infected or degraded either during the bone preservation stage or during
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patient rehabilitation for various reasons [122, 26]. The incidence of these failure

cases is as high as 10% of all cranioplasties [123]. Furthermore, the original bone

can be unusable straight away, for example in cases where the bone is resected to

remove a bone tumor, which also applies to maxillar and mandibular bones.

In cases where the use of autologous bone is not possible, the use of alloplastic

materials is implied to replace the removed part of the bone [68]. Multiple different

material options exist and the final choice is usually down to the personal prefer-

ence of the surgeon. Some materials such as titanium mesh or polyether-ether-

ketone (PEEK) can be manufactured pre-operatively based on a patient scan using

rapid prototyping. On the other hand, bone cement based on polymerized methyl-

methacrylate (PMMA) usually needs to be manually fitted to the patient’s skull,

which may increase the surgery time if done intra-operatively. They can, however,

be loaded with a bioactive component such as antibiotics [61]. Most importantly,

the risk of the implant having to be eventually removed due to complications is

significantly lower when using these alloplastic materials and they are therefore

often chosen in favor of the autologous bone not only in revision cranioplasties

but in primary cranioplasties as well [61]. That is, however, conditioned on the fact

that the implants are modeled to fit perfectly to the patient’s skull.

2.3 producing precise anatomical models for skull surgery

Patient-specific anatomical models can be used in several different ways in the

context of reconstructive skull surgery planning.

• Defective skull model for planning of the intervention

• Directly 3D printed implant (titanium, PEEK)

• Negative implant-shaped block used for molding the implant (PMMA)

The process of producing any of the mentioned types of physical anatomical mod-

els of the skull can be broken down into four steps: Data acquisition, image pro-

cessing, virtual reconstruction, and manufacturing. The modern manufacturing

methods achieve satisfactory accuracy for use in skull reconstruction and the ma-

jority of imprecision of the results comes from the three preceding steps [125].

2.3.1 Data Acquisition

Today’s radiologists have a broad range of different medical imaging modalities

at hand, from low-end ultrasound systems to magnetic resonance capable of dis-

playing structural as well as functional tissue properties and positron-emission
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Figure 2.5: Scheme of a standard CT scanning system with a side view (left) and a cross-

view (right) [16].

tomography used for the identification of areas with heightened metabolism. In

the case of hard tissue surgical planning, CT is usually the modality of choice

because of its unparalleled hard tissue contrast, short acquisition times, and no

clinical contraindications except for radiation dose.

CT systems are, in the physical sense, similar to the X-ray radiography in that

they measure the attenuation of X-ray photon beam on the way from the radiation

source to the scintillation detectors through the scanning area in which the patient

is positioned. The beam attenuation on the detector is then calibrated using the

known attenuation coefficient of water which results in the Hounsfield Unit HU

scale measurement. The construction of most current CT scanners is such that sev-

eral transversal slices are simultaneously acquired by measuring several fan-like

projections of the patient body under different angles as shown in Figure 2.5. Alter-

natively, cone beam computed tomography (CBCT) is often used in CMF surgery

because it significantly decreases the patient radiation dose and acquisition time.

Iterative mathematical reconstruction or filtered back-projection is then employed

to transform the set of these projections into 3D data volume. The intensity of each

voxel (the volumetric equivalent of a pixel) in this data volume can be interpreted

as HU measurement in the area of the voxel. The acquired patient CT data are

usually stored in the Digital Imaging and Communications in Medicine (DICOM)

format which comprises the header containing the meta-information and the im-

age intensity data stored in a voxel grid.

Both the scanner construction and the reconstruction method can lead to specific

artifacts encountered exclusively in this modality. While some common artifacts

such as motion blur, noise, and ring artifact can be avoided during the acquisition,

others cannot, especially in the case of present metal artifacts. To truly reconstruct
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Figure 2.6: Examples of synthetic CT data without (upper row) and with beam hardening

effect (bottom row). Scatter produces a similar type of artifact [16].

the volume, a theoretically infinite amount of the projections in different angles

would be required. The above-mentioned methods used for approximate recon-

struction from a limited number of projections are unable to correctly reconstruct

the image in the case of small extremely high-intensity objects (see Figure 2.6),

typically metal objects, due to beam scatter and hardening phenomena. This is

particularly troublesome in surgical planning as the target tissue often contains

metal implants such as fixation materials or dental implants [16]. Partial volume

artifact is another source of imprecision in the CT data. In places where multiple

tissues with different densities occupy the space of a single voxel, the resulting

attenuation is proportional to their quantities. In the case of very thin bone struc-

tures, such as skull orbits, this means that the bone has very little definition in

the data. Both of these issues cause complications in the subsequent step of the

anatomical model production pipeline [53].

2.3.2 Image Processing and Segmentation

Before the CT data is converted to the standard tessellation language (STL) format

used for manipulating the skull geometry and manufacturing, image processing

methods are used for tasks such as re-sampling and cropping the data, mid-sagittal

plane detection, and skull segmentation.

Correct skull segmentation, in other words correctly selecting the voxels that

belong to the skull, is critical for final anatomical model precision [39]. Errors in

segmentation lead to complications during the surgery, especially if the model is

used for manufacturing of PSIs [51]. Because bone tissue has high image intensity

in the CT image data due to its calcium content, HU value thresholding is often

used for its segmentation from other tissues. However, this is not a sufficient crite-

rion to obtain a segmentation of the skull acceptable for manufacturing anatomical

models for several reasons, some of which are illustrated in Figure 2.7.
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Figure 2.7: Examples of slices through a head CT, with expert-made segmentation in cyan.

From left to right: the maxillary sinus, thin bone in orbits, skull defect.

First, the paranasal sinuses (i. e. the cavities in frontal, maxillary, and ethmoidal

bones, see Figure 2.1) are often included in the skull segmentation to facilitate

better stability of the manufactured model [120]. Second, the bone tissue forming

sinusoidal and orbital walls is too thin to attain high intensity values due to partial

volume artifact and CT slice thickness. Finally, the noise in form of adjacent tissues,

such as vertebrae and bone fragments, instrumentation, such as fixation material

and CT scanner table, or artifacts caused by metal implants need to be removed.

Several software packages approved for medical use such as Mimics (Materialise®,

Belgium), and Osirix® MD (Pixmeo, Switzerland) therefore come equipped with

global and local thresholding tools in combination with manual post-processing

tools. The manual post-processing step that addresses these issues is, however,

very time-consuming [125]. A review of skull segmentation methods can be found

in Section 3.1.

2.3.3 Virtual Skull Reconstruction

After the segmentation, the binary segmented mask is converted to the polygonal

STL format using triangulation (typically marching cubes or Delaunay with mesh

smoothing) [125]. Virtual reconstruction of the skull is the process of designing the

shape that completes the defective skull using computer-assisted design (CAD)

software. This is a different process from the final virtual implant design, which

usually takes place after the reconstruction.

The reconstruction is usually done by using the mirrored healthy side of the

skull or a similar case from a patient database as a template, and then manually

fine-tuning the shape to fit seamlessly to the defective skull. However, a consid-

erable amount of manual work is required to reach enough precision along the

entire defect border while preserving the physiological shape and symmetry of

the skull and that, as in the case of the image segmentation step, reduces the cost-
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effectiveness of using the final anatomical model. A review of skull reconstruction

methods can be found in Section 3.2.

The goal of this thesis is to propose a robust and fully automatic skull segmen-

tation and reconstruction method that will lead to standardization and increased

efficiency of clinical workflow of cranioplasty planning.



3
L I T E R AT U R E R E V I E W O F S K U L L S E G M E N TAT I O N A N D

R E C O N S T R U C T I O N M E T H O D S

Eijnatten et al. summarize the cranial PSI design workflow by dividing param-

eters affecting the resulting quality into several categories as illustrated in Fig-

ure 3.1 [125]. This thesis directly addresses two main bottlenecks in the time effec-

tiveness of this workflow: the skull segmentation and the computer-aided design

of the implant shape, both of which require a substantial amount of the operating

expert’s time. This chapter provides an overview of existing semi-automatic and

automatic segmentation and virtual reconstruction methods applied to the skull

and serves as a background and reference for the rest of this thesis.

3.1 skull ct segmentation

Skull segmentation quality is most often measured either using average1 surface

distance or volumetric overlaps, such as the Dice coefficient. Authors of a meta-

study that reviewed 36 CT bone segmentation articles in the context of anatomical

models creation suggest reporting the average surface distance as a quantitative

metric as it is easy to interpret. However, at the same time, the authors advise

complementing these results with rendered 3D models of the segmented objects

with color-coded surface errors because local characteristics play a crucial role in

the manufacturing of precise anatomical models, and especially if they are being

created for use in PSI design where the accuracy requirements are higher [125].

Thresholding the HU values is currently the most commonly used method of

bone segmentation in CT data, including the segmentation of skull for anatomi-

cal model printing [125]. Although the precision of as much as 0.2 mm in terms

of average surface distance can be achieved using thresholding as an initial seg-

mentation estimate, the post-processing required to reach the final result can take

several hours of manual work, which drastically increases the cost of the result-

ing anatomical model [107, 38]. Additionally, the optimal threshold HU value is

subjective and depends on the CT scanner [99, 100, 124]. In some cases, global

thresholding may provide sufficient approximation of the skull shape, even for

subsequent virtual reconstruction steps. For example, the SkullFix dataset [72] that

is used for the development of automatic skull reconstruction methods was created

1 Average surface distance and mean surface distance are used interchangeably in this work.

15
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Figure 3.1: Overview of the parameters that can influence the accuracy of medical AM

constructs. Adapted from [125]

using this method to provide reference shapes of the skulls The SkullFix dataset

focuses on defects of parietal bone on top of the skull where thresholding usu-

ally provides sufficient segmentation accuracy [72]. However, it does not provide

satisfactory results in other parts of the skull (see Figure 3.2 a).

The sinus and orbital walls are some of the most challenging parts of the skull

to be segmented due to their sub-voxel thickness. Linares et al. [81] use a sheet-

ness filter based on a Hessian matrix decomposition to locate the thin structures.

Clustering of the volume into super-voxels is then performed and the final seg-

mentation is obtained using interactive graph-cuts with user-defined seeds. The

authors show that they can achieve high similarity to expert-made ground-truth
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segmentation with a mean Dice coefficient of 0.915. An example of the result of

this method can be seen in Figure 3.2 middle.

In the first attempt to use a deep learning approach for segmentation of skull

from CT data, Minnema et al [95]. trained a 4 layers deep convolutional neural

network (CNN) model that classifies the CT volume voxel by voxel in a sliding

window manner. The authors used a dataset of 20 defective skulls with gold stan-

dard anatomical models that were created manually by an expert and leave-2-out

cross-validation. The method reaches an average Dice coefficient of 0.92 and an av-

erage surface distance of 0.44 mm. The example renders of the skull segmentation

results (see Figure 3.2 right) show that the method often misclassifies skull voxels

as background in thinner parts of the skull, which may have been caused by the

faulty conversion of the gold-truth mesh model to voxel grid before the training.

These errors are typically not in the area of interest of the authors (i. e. close to the

skull defect).

Metzger et al. [93] use an anatomical atlas template created from a manually

segmented CT dataset of a healthy patient. The template is then registered to the

target patient to provide segmentation using rigid and non-rigid registration based

on mutual information criterion. This method achieves good stability even for the

thin structures in orbital areas but it comes at the cost of lower accuracy in eth-

moidal, sphenoidal, and temporal bones, where mean surface distances are over

0.5 mm. The authors also propose a semi-automatic post-processing thresholding

step to improve accuracy in these larger bones but the outputs are not preferred

by the clinicians in subjective evaluation because it, once again, introduces holes

into thinner skull structures.

Statistical shape models (SSM) form an important group of CT bone segmenta-

tion algorithms that could be considered for anatomical bone model creation. SSMs

model the general bone shape using mean and variation of corresponding vertex

or landmark positions of ground truth bone models in the training set. Principal

component analysis (PCA) or an alternative method reduces the dimensionality

by modeling only the main eigenmodes of shape variability. Segmentation of new

CT data is then obtained by finding an optimal linear combination of these eigen-

modes that fits the CT volume intensity values by some criteria [49]. SSMs have

been successfully used for segmentation of multiple bones in the hip area such as

the pelvis, hip joint, and femur [111, 29, 136]. In the context of skull segmentation,

Chang et al. [21] used SSM to segment the anterior surface of the maxilla bone and

reached an average surface distance of 0.2 mm. However, due to the dimensionality

reduction and limited training datasets, SSMs are not well suited for segmentation

of large structures with high anatomical variability [125]. This makes them unsuit-
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Figure 3.2: Skull models resulting from existing segmentation methods. Global threshold-

ing [72] (a), Linares et al. [81] (b), Minnema et al. [95] (c), Metzger et al. [93] (d).

Note that none of the methods achieves satisfactory accuracy of both the large

bones and orbits.

able for automatic segmentation in skull PSI design workflow where high local

precision is required.

A summary of the current skull segmentation methods can be found in Table 3.1.

It is worth noting that the overall performance of segmentation methods is usually

evaluated in the context of a specific target use. Although the methods mentioned

in this section perform well in their respective areas of interest and even in the

presence of defects, the segmentation performance is often limited in places where

the skull bone is very thin, such as orbits and sinus walls. This is arguably due to

the fact that the target use cases of these methods do not require optimal results

in this area and the time cost of acquiring such ground truth data is simply not

worth its value. However, this limits the range of applications of such segmentation
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Table 3.1: Comparison of segmentation methods using average surface distance (ASD) and

volumetric Dice coefficient (VDC). Thresholding is not included in the methods

because the quantitative results depend on amount manual post-processing.

Authors ASD [mm] VDC [%] Note

Metzger et al. [93] ĺ 0.6 -
Trade off between holes and generally

lower accuracy.

Minnema et al. [95] 0.44 92.0
Occasional holes, often in orbital

area.

Linares et al. [81] - 91.5
Holes in orbital area, requires manual

input.

outputs. For example, skull orbital floors and walls may be the target of virtual

skull reconstruction [42], yet the segmentation outputs of the presented methods

could not be used as a shape template for creating the PSI due to the segmentation

containing holes. It is therefore desirable to develop methods able to consistently

provide high-quality segmentation even in these challenging areas of the skull.

Manual post-processing might still be required in many cases, but the time cost

decreases with the higher quality of the initial automatic segmentation output.

3.2 skull shape reconstruction

Skull reconstruction can have multiple meanings in the literature, such as the

process of repositioning bone fragments for fracture reduction [59] or creating a

patient-specific anatomical model by means of segmentation and stacking of the

CT slices [57]. In this thesis, skull reconstruction and skull segmentation are con-

sidered two different tasks. Reconstruction is understood as the task of mapping

an input shape of the defective skull (represented as a binary voxel grid or a sur-

face mesh model) to the corresponding reconstructed shape (a shape of complete

skull, the missing patch, or the shape of final cranial implant). Although some

methods in the literature are proposed to work directly with the HU values of

the voxel grid, there is usually a thresholding step that discards them during pre-

processing [20, 85, 41]. The soft tissues are therefore completely ignored during

the skull reconstruction process. Most current methods focus on reconstructing

the missing skull patch that perfectly completes the defective skull, which is sub-

sequently used as a template for the final cranial implant design in a manual step.

However some methods also automatically finalize the shape by drawing the de-
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fect perimeter away from the skull defect border and accounting for the defect

border shape [85].

Similar to the segmentation task, mean surface distance and Dice coefficient are

often used to evaluate the quality of the reconstructed shape, with another popular

choice being the percent of vertices or voxels with less than 1 mm from the target

surface. However, using such metrics imposes some assumptions. These metrics

compare the reconstructed shape to the original shape of the healthy skull that

has to be available. Since pre-injury CT scan is rarely available, this limits the

evaluation to artificially created skull defects. Second, it does not account for the

shape variability of clinically viable reconstructions. For example, a bilateral defect

implant shape can be slightly different from the original skull shape, as long as it

is symmetric and fits well to the defective skull. The 3D model renders with color-

coded surface distances are also a popular way to present the result. If reference

shape is not available, as is usually the case for real defective patient skulls, the 3D

rendered model can be used to visually evaluate anatomical feasibility, symmetry,

and smoothness of fit. A considerable part of published works leaves the entire

evaluation to this subjective visual assessment.

3.2.1 Surface Interpolation Methods

Methods based on surface interpolation aim to reconstruct holes by mathematically

defining the surface over the defect area while maximizing the smoothness on

the bone-implant interface. The first surface interpolation of a skull defect was

proposed by Carr et al. [20], who proposed using radial basis function (RBF) for

interpolation of 2D depth-map representing the skull surface around the defect.

The algorithm starts by manually delineating the defect area. The depth map is

then generated by casting parallel rays from a user-defined direction. The missing

depth-map pixels are then interpolated using two forms of RBF; linear or thin-plate

spline (TPS). TPS was found more appropriate because it enforces C1 continuity

along the defect border, ensuring the smoothness of fit (see Figure 3.3).

The same authors showed that RBFs can be used to repair holes in 3D point

clouds directly by interpolating a 3D signed distance function that represents the

surface as a zero level set [19]. Zhou et al. [139] extend the RBF surface interpola-

tion method by automatic detection of the defect border. Sing et al. [116] instead

repair the defect using Beziér patch with the defect border additionally smoothed

using a combination of Laplacian smoothing and mean curvature flow algorithm.

Non-uniform rational basis spline (NURBS) representation is used by Chen et

al. [22] to model the missing surface patch, which allows them to directly man-

ufacture the corresponding titanium implant using a multi-point forming process.
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Figure 3.3: Illustration of skull surface interpolation using TPS. Defect area is selected on

the input skull (a) and after interpolating the depth-map (b), the final surface

can be merged with the skull (c). Adapted from Carr et al. [20]

Figure 3.4: An example of reconstruction of an artificial defective skull (a) using anatomical

constrains (b) and minimizing bending energy using TPS only (c). Anatomical

constraints help to avoid undesired flattening of the surface close to the defect

center. Adapted from Wu et al. [133]

The methods in this category are suitable for reconstructing defects in any con-

vex part of the skull, including bilateral defects, and can be evaluated at arbitrary

resolution. However, they are only constrained by the skull surface in close prox-

imity to the defect border which leads to flattening in central regions of the recon-

structed surfaces with large areas (see Figure 3.4) [20, 116]. Although this may be a

desirable property for some use cases such as manufacturing titanium meshes with

hydraulic presses, it ultimately damages the natural skull shape [20, 133]. They are

also naturally unable to reconstruct complex shapes such as orbits. Despite these

limitations, some elements of these methods, such as using TPS interpolation for

the final fitting of the reconstructed surface patch, were successfully used in more

recent hybrid skull reconstruction methods discussed in the following sections.

3.2.2 Methods Based on Anatomical Templates

Beyond surface smoothness, further anatomical constraints can be incorporated

into skull reconstruction methods by using anatomical templates. Prior knowledge
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about the missing skull shape can come in form of a similar patient skull found in

a database of healthy skull scans or, in case of unilateral defects, from mirroring

the opposing healthy part of the target skull. The methods in this category typi-

cally include two main steps; identifying the optimal template (by searching the

database or by identifying the optimal symmetry plane for mirroring) and fitting

the template to the target skull.

Repairing unilateral skull defects by mirroring is the most documented applica-

tion of computer-assisted surgery in cranioplasty in the current literature [54, 47].

In the simplest case, the mirroring plane is identified manually by specifying three

or more points on the mid-sagittal plane [47], although, as mentioned in Sec-

tion 2.2.1, the optimal symmetry plane can actually differ from the mid-sagittal

plane due to skull asymmetry. Recent methods that automate the symmetry plane

detection step instead rely on different approaches such as template registration,

feature-based point matching between the opposing sides of the skull, or CNN-

based rotation estimation [27, 133, 77, 31]. After the healthy side of the skull is mir-

rored, the final fitting to the patient’s defect is often performed manually [70, 55].

To reduce the time cost, the fitting can also be done automatically. Chen et al. [23]

guide the final fitting using contours defined manually in two axial slices and re-

port over 80% reduced time cost as opposed to fully manual fitting. Gall et al. [43]

report similar results using Laplacian smoothing of the skull-implant interface af-

ter mirroring (see Figure 3.5). Direct comparison of manual fitting and automatic

fitting using ANTs diffeomorphic registration [11] was performed by Wagner et

al [129]. The authors found that the resulting reconstruction of an artificial defect

of zygomatic bone overlapped with the original shape with a Dice coefficient of

0.87 for both manual and automatic reconstruction. However, visual inspection of

the automatic fitting result reveals visible asymmetry.

In cases of bilateral defects where mirroring does not provide sufficient anatom-

ical information, anatomical templates can be used instead. For example, Gall et

al. [43] use a simple sphere as an anatomical shape prior. For robustness, templates

acquired from healthy skulls are more appropriate, but they require a suitable tem-

plate to be identified because the anatomical variability of human skull shape is

substantial. The most suitable template can be chosen from a database manually

by visual inspection or by using geometric or demographic descriptors [133]. Sim-

ply using the average skull shape computed from a database of multiple patients

is another possibility [34]. However, more recent methods take advantage of an au-

tomatically identified optimal template chosen from a database of healthy skulls

using Procrustes analysis [85] or SSMs [112, 41, 42].
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Figure 3.5: Illustration of mirroring-based reconstruction. The optimal symmetry plane has

to be identified (a) and the mirrored object is fitted to the defect (b). Image

adapted from Gall et al. [43]

3.2.3 Methods Based on Statistical Shape Modelling

Beyond segmentation, SSMs have been successfully used to study skull variabil-

ity and symmetry, quality assurance and evaluation of skull fracture reduction

outcome, or evaluation of craniosynostosis in pediatric patients. In terms of skull

reconstruction, SSMs can serve as a straightforward way of finding an optimal

skull shape template for reconstruction, provided that a large enough database of

healthy skulls is available.

Semper-Hogg et al. [112] use a database of 175 healthy patients to construct SSM

for skull mid-face area reconstruction. They begin by rigidly registering each skull

to a single skull template using 4 manually defined anatomical landmarks. Vertex

correspondences are then found by diffeomorphic registration of the template to

each skull in the database. The authors use artificial defects with a diameter of

3 cm placed in zygomatic bone for evaluation. The defective skull is first rigidly

aligned to the average shape and the SSM is then modified to only include pa-

tients with the similar placement of the 4 initial landmarks, resulting in a posterior

SSM. Finally, the defective skull is registered to the average posterior shape using

the non-elastic iterative closest point (ICP) algorithm and projected into the model

PCA space where the best fitting SSM instance is found. The authors report the

average surface distance of the result from the original shape of 0.85 mm, outper-

forming an alternative manual mirroring method.

The same authors later evaluated the same method on artificial bilateral defects

of orbital floors and naso-orbital-ethmoid area, reaching average surface error of

0.75 and 0.81 mm, respectively [42]. However, visual inspection shows that despite

the high similarity of the result to the original shape, there are noticeable errors
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of 1-2 mm along some parts of the defect border, which could be attributed to the

fact that the quality of SSM fit is limited by the variability of input healthy skull

database and its loss during the PCA projection.

3.2.4 Hybrid Methods

Methods in this category use a combination of two or more previously described

approaches, which allows them to address some of their mentioned limitations.

They usually comprise of identifying and registering a correct anatomical template

and fitting it to the defective skull using surface interpolation methods.

A straightforward combination of automatic mirroring and surface interpolation

was proposed by Marzola et al. [88]. The method uses automatic symmetry plane

detection [9] to mirror the healthy part of the skull and provide anatomical con-

straints in the defect area. Part of the mirrored points closest to the defect border

is then discarded and TPS depth-map interpolation method [20] is used to connect

the mirrored points and the defective skull. Although authors focus on uni-lateral

defects, the method also demonstrated the ability to reconstruct defects reaching

slightly into both lateral sides of the skull.

Dean at al. [34] start the semi-automatic reconstruction process by manually

setting several points along the defect border. These points are then connected by

using the Dijkstra algorithm that finds the optimal path connecting these points

while avoiding parts of the surface with a high principal curvature value. This path

is considered the defect border where the implant should connect to the defective

skull. A template in form of the mirrored skull or average skull shape is then

fitted to the defect border in two stages. In the first stage, several manually input

correspondences are used as an input for TPS warp algorithm to initially register

the template to the target skull and to find correspondences of the defect border

points [17]. Then, TPS warp is used again, this time using the correspondences on

the defect border, ensuring a better fit.

Similarly, Wu et al [133]. also begin the reconstruction by using paired point

matching to find correspondences between the template and target skull. Next,

the authors transform both shapes into spherical coordinates with origin in the

mid-point between the two porion landmarks (i. e. the theoretical center of the

Frankfort-horizontal plane). Then, scaling factors of the radial distance coordinates

between the template and the target at user-defined defect border points are inter-

polated and used for the deformation of the template area inside the defect. The

authors report 81% of the surface having an error of 0 or 1 voxel, but the resolution

of the CT data is not disclosed.
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Marreiros et al. [85] use Procrustes analysis to identify the optimal skull template

from a database using 17 manually defined anatomical landmarks and 700 addi-

tional pseudo-landmarks. To improve the reproducibility of manual annotations,

all landmarks are first slid along the skull surfaces to minimize bending energy.

Target skull pseudo-landmarks corresponding to the defect area are then selected

manually by the user and the corresponding pseudo-landmarks of the template are

relaxed to minimize the bending energy again. Finally, the pseudo-landmarks are

interpolated using depth-map TPS interpolation similarly to Carr et al. [20]. The

method also estimates the inner surface and shape of the implant along the defect

border automatically, although this aspect of the method is not evaluated quanti-

tatively. The method reaches high accuracy of 0.4 mm on large artificial defects,

including bilateral defects.

A similar method proposed by Fuessinger et al. [41] instead uses posterior SSM

to find the optimal skull template using 6 anatomical landmarks and 2900 pseudo-

landmarks. The pseudo-landmarks corresponding to the defect area are detected

automatically based on their distance from corresponding template landmarks,

surface normal difference, and surface curvature. A precise fit is then achieved by

TPS warping the template using the point correspondences along the defect border.

The authors report good accuracy of 0.47 and 0.5 mm for unilateral and bilateral

artificial spherical defects, respectively.

The hybrid approaches generally reach the lowest surface distances from the

original skull shapes, are suitable for large defects, and have been shown to provide

a good fit along the defect border. Their downside is that they are often dependent

on an exact definition of defect border and that they make several assumptions

about the shape of the target anatomy (i. e. mostly spherical or elliptical shape of

neurocranium), which makes them generally unsuitable for the reconstruction of

orbits and zygomatic bones (see Figure 3.6).

3.2.5 Deep Learning-Based Methods

Although CNNs have overtaken most conventional medical image analysis do-

mains such as classification, detection, and segmentation, it only made its way

into anatomical shape completion research in recent years. The most common for-

mulation of the task is mapping the input binary image with defective shape to

the binary image of either the reconstructed or the missing shape. This allows for

use of network architectures and loss functions well known from segmentation

literature.

Using deep learning for general 3D shape reconstruction (also referred to as

shape inpainting or shape completion) is a well-studied research topic in the lit-
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Figure 3.6: Examples of skulls reconstructed using the approach proposed by Marreiros et

al. [85]. High-quality reconstructions can be achieved even for bilateral defects

(a) but more complex anatomy of orbits causes failures and “leaking” effect (b).

erature outside of the medical domain, although the target application is usually

filling incomplete sensor data such as LiDAR. The basic approach is to represent

the incomplete input shape as a binary voxel grid and train a 3D CNN with a

deterministic denoising auto-encoder architecture to output the completed binary

shape [113].

Since the computational cost of such methods scales cubically with the target

working resolution, they quickly become impractical. For example, for application

in skull reconstruction, volumes of up to 5123 voxels need to be processed in order

to reach the desired precision. To correctly account for large defects, the output

neurons should also have their receptive field spanning the whole input volume,

resulting in a CNN so deep that it would not be possible to implement due to

GPU memory limitations. To tackle the issue of memory requirements, several

ways to make the training and inference more efficient have been studied. The first

group of methods exploits different data representations such as graphs or point

clouds [118, 131]. The second group uses the 3D CNN only for coarse shape esti-

mation, refining the result in the post-processing step. Some authors use database

lookup to identify a similar high-resolution object and then find the correspon-

dences with the incomplete input shape or use it as the output directly [33, 82]. A

second CNN, based on recurrent 2D convolutions has also been used to increase

the output resolution [130].

An orthogonal research direction in this area led to substituting the purely dis-

criminative CNN models with generative models such as generative adversarial
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networks (GANs) or variational auto-encoders [130, 82, 118], suggesting that the

shape completion task actually has multiple correct solutions conditioned on a sin-

gle input. This issue of one-to-many mapping has also been raised by authors in

the context of anatomical shape reconstruction [5, 6] where it is used to take the

acceptable inter-expert variability of the resulting shape into account. However,

the argument that the variability of the output should be enforced at the cost of

precision measured against the original shape is in direct conflict with the current

literature on skull reconstruction where the original shape is usually considered to

be ground truth.

The first documented use of CNNs for the reconstruction of incomplete skull

shape images was reported by Morais et al. in 2019 [98], who used a database of

1113 segmented MR scans of the skull with artificial defects placed in the neuro-

cranium to train a denoising auto-encoder. The model only uses two convolutional

layers and one fully connected layer in the encoder and two deconvolutional lay-

ers in the decoder parts of the architecture. The experiments were limited to infer

shapes of maximum 603 voxels due to memory restrictions, but the approach was

proven to be effective in reconstructing the defective skulls. Voxel reconstruction

error of 3.2% is reported by the authors, demonstrating the feasibility of using

CNN for 3D skull shape reconstruction.

Matzkin et al. [91] use a similar approach to train several different models on

segmented and CT datasets with the resolution of 2 mm per voxel. Each skull is

first registered to an anatomical atlas. They use a reconstruction method based

on direct PCA projection of the voxel grid as a baseline method and compare

it to simple auto-encoder and U-net [108] models. They also compare results of

direct missing shape estimation and of full skull shape reconstruction. The direct

missing shape estimation using U-net architecture is shown to yield the best results

with Dice coefficient 0.8, showing the importance of skip-connections in the U-net

architecture. The authors also report similar results for real craniectomy cases, but

only several cases of post-operative CT scans without any further description are

used. The same authors later also attempted to use anatomical atlas as a shape

prior by using it as an additional input CNN channel [90]. Although it was shown

to improve performance on out-of-distribution cases, the shape prior decreased the

quality of the reconstruction results on average.

Li et al. [73] created a public dataset of defective skull shapes by thresholding

the CQ500 head CT database and injecting artificial defects (referred to later as the

SkullFix dataset [64]). The dataset was then used to organize the first AutoImplant

challenge hosted by the MICCAI 2020 conference. The goal of the challenge was to

reconstruct defects with shapes typical for craniectomy, positioned in the parietal
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Figure 3.7: Examples of skull defect reconstructions from the AutoImplant challenge par-

ticipants. Results by Pimentel et al. [104] (A1), Shi et al. [115] (A2) and Ellis

et al. [37] (A4). Image adapted from Li et al. [76]. Criss-cross pattern caused

by combining results from different slices in A2 and over-smoothing due to

resampling to lower resolution in A4 can be noticed.

bone. Results were evaluated using the average of Dice coefficient and Hausdorff

distance over 100 regular testing cases and 10 additional out-of-distribution cases.

The baseline approach proposed by the authors of the challenge [74] is based on

two auto-encoders. The first auto-encoder reconstructs the missing skull patch on

a low resolution. This first result is then used to compute the 3D bounding box, in

which the second, high-resolution model estimates the final output. The authors

reach a Dice coefficient of 0.856 on the regular test dataset. A total of 11 teams

participated in the challenge and all of the methods were based on CNNs. Among

the more interesting methods, Pimentel et al. [104] used a SSM of healthy skulls for

prediction of the missing skull patch, which was then refined using 2D GAN and

report results of 0.917 Dice coefficient. Shi et al. [115] showed that very competitive

results in terms of Dice coefficient can be achieved by simply reconstructing 2D

sagittal and frontal slices of the skull and then averaging the results, reaching a

Dice coefficient of 0.931. The winning contribution by the team of Ellis et al. [37]

used a very large 3D U-net model in combination with a novel data augmentation

method based on mutual elastic registration of each pair of training data, resulting

in the highest achieved Dice coefficient of 0.942, despite operating on less than half

the resolution of the original ground-truth data.

Methods based on deep learning promise the ability to reconstruct any part

of the skull present in the training dataset, including the challenging facial area,

and the ability to seamlessly connect the reconstructed shape to any part of the
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defect border. However, it is necessary to consider these requirements when de-

signing the training process and data. The current methods were shown to achieve

great performance when reconstructing artificial defects created as spheres or axis-

aligned regular shapes in neurocranium (see Figure 3.7), but the ability to connect

high-resolution reconstructed shapes to more complex border defect shapes in the

facial area is yet to be demonstrated. This requires the development of appropriate

datasets containing a balanced amount of defects with various shapes and char-

acteristics. That, in turn, requires the datasets to be created from skulls without

undesired holes and artifacts in areas of thin bone. Additionally, the existing ap-

proaches do not include any mechanism for taking skull symmetry into account in

form of prior information, relying on the model having enough capacity to learn

it implicitly instead.

A summary of the current literature is shown in Table 3.2. It shows that despite

the recent advances in the research of automatic virtual skull reconstruction, no

automatic method so far demonstrated the ability to provide high-quality recon-

struction estimates of neurocranium as well as facial and orbital defects of the skull

while ensuring the precise fit of the implant along the defect border. Also, most of

the approaches are validated either using artificial defects only or using very few

real cranioplasty cases and little attention is given to the fully automatic use case

of direct intra-operative implant design and manufacturing. Finally, no work ad-

dressed the challenge of generating multiple missing shapes hypothesis for single

defective skull as of time of writing this thesis.
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Table 3.2: Skull reconstruction accuracy in terms of ASD [mm] and VDC [%]. Methods

that do not report either of these metrics and methods that require large amount

of manual fine-tuning are omitted. Asterisk denotes methods published concur-

rently with this thesis.

Authors ASD VDC Note

Methods based on surface interpolation

Carr

et al. [20]
ĺ 0.56 -

Limited to smaller defects of neurocranium.

Evaluated on artificial defects.

Methods based on anatomical templates

Wagner

et al. [129]
- 87.0

Limited to unilateral defects. Evaluated

on artificial unilateral facial defects.

Methods based on SSMs

Semper-Hogg

et al. [112]
0.85 -

Implant fit not guaranteed. Evaluated

on artificial unilateral facial defects.

Fuessinger

et al. [42]
0.81 -

Implant fit not guaranteed. Evaluated

on artificial bilateral facial defects.

Hybrid methods

Marreiros

et al. [85]
0.40 -

Limited to neurocranium. Evaluated

on large artificial bilateral and

unilateral defects.

Fuessinger

et al. [41]
0.50 -

Limited to neurocranium. Evaluated on

artificial bilateral and unilateral defects.

Methods based on deep learning

* Matzkin

et al. [91]
- 80.0

Evaluated on artificial and real defects

of neurocranium.

* Li et al. [72] - 85.6
Evaluated on artifical bilateral defects

of neurocranium.

* Pimentel

et al. [104]
- 91.7

2D post-processing. Evaluated on

artifical bilateral defects of neurocranium.

* Shi et al. [115] - 93.1
2D slices reconstruction. Evaluated on

artifical bilateral defects of neurocranium.

* Ellis

et al. [37]
- 94.2

Limited resolution. Evaluated on artifical

bilateral defects of neurocranium.
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Work presented in this part of the thesis addresses processing the patient CT

data into shape representation of the patient’s skull. This has two main appli-

cations: first, automatization of data processing steps of cranioplasty anatomical

model design workflow, and second, efficient creation of a public dataset of defec-

tive skulls and corresponding missing skull patches that can be used for develop-

ment and evaluation of virtual skull reconstruction methods.

CT scans of patients indicated for cranioplasty were provided for this work by

TESCAN Medical company and included gold standard segmentation as well as

reconstruction done by experts with extensive experience in PSI design. One of

the drawbacks of the current skull reconstruction literature is that authors usually

report results of several in-house skull samples which often cannot be published

due to the nature of patient data and this limits the reproducibility of the proposed

approaches. Because the same applies to the in-house patient data available for

this work, we used the provided data to develop an automatic processing method

that we then applied to the public CQ500 skull database [28] from which a public

synthetic cranioplasty dataset was finally created.

Based on observations of the provided real cranioplasty patient cases, we con-

cluded that the skull shape representation should have the following proper-

ties. First, the skulls should be aligned to the natural head position defined by the

Frankfort-horizontal plane [92]. This removes several degrees of freedom in skull

shape variability and allows the reconstruction methods to focus on modeling the

anatomical variability instead. Second, the shapes should come from precise seg-

mentation of CT data, including the orbital area which is often the target of the

reconstruction. Additionally, as for the synthetic cranioplasty dataset, the defects

should match the shape distribution of real defects, including both global characteristics

and fine details along the defect border. Although the defect shape is often regular

with craniotome drill holes along the edge, the defects can generally have arbitrary

shapes. The ongoing bone remodeling and healing processes additionally increase

the complexity of the defect border shape, which is usually not perfectly sharp.

This chapter addresses each of these points in turn.
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C N N - B A S E D S K U L L A L I G N M E N T

This chapter presents an automatic method for alignment of arbitrary skull CT

data to the natural head position (i.e. FHP parallel with the axial plane and MSP

parallel with the lateral plane [92]). The skulls in CT scans of patients, especially

those indicated for cranioplasty, are often heavily rotated due to the patient’s con-

dition and medical instrumentation. The scans also span different parts of the

patient’s head depending on scanning protocol and type of examination. By mov-

ing the skull into the natural position, we correct for the resulting translation and

rotation variability. We also define the FHP as the bottom margin of the area of

interest for skull reconstruction. This technical choice lets us focus on defects of

the neurocranium and the upper part of the viscerocranium including the orbital

area. Although we do not directly address the excluded regions below the margin

such as zygomatic arches, maxillar bone, or skull base, all methods proposed in

this thesis are general and could be extended to include them.

Several works that present automatic methods for anatomical skull plane detec-

tion exist in the current literature. Cheng et al. [27] automatically detect the anatom-

ical landmarks that define these planes. The authors first register a template to find

initial landmark positions and then refine them using landmark-specific heuristics

such as near extreme points or local maxima of Gaussian curvature. The method

showed good performance but the evaluation was limited to three skull models

and requires a healthy skull template to be correctly registered. Silva et al. [31] use

a rotation-invariant 2D CNNs to estimate the optimal alignment directly instead.

Both methods assume that skull segmentation is available from a pre-processing

step. The method used in this work is also based on anatomical landmarks. To

avoid the need for segmentation or template registration, we detect the anatom-

ical landmarks of interest directly using a heatmap regression CT similar to the

method proposed by Payer et al. [103]. The skull is then transformed into the nat-

ural position using a reference set of the landmarks defining FHP.

4.1 automatic landmark detection

For the CT training and inference, the landmark detection task is defined as regres-

sion of heatmaps in form of 3D Gaussians centered around the landmark positions.

We use a simple 3D U-net architecture [108, 101] with 16 initial features and the

33
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Figure 4.1: Overview of the automatic landmark detection method using heatmap regres-

sion U-net. Asterisk denotes convolution operation. Both the convolution and

argmax operations are performed channel-wise. Note that 2D representation is

used for illustration while the method operates fully in 3D.

number of the output channels equal to the number of target landmarks. The CT

is trained for 100, 000 iterations with Adam optimizer using mean squared error

loss function. Rotation and translation invariance is important for the model to be

able to correctly process data of patients in various positions. To account for this,

we train the model using data crops with random offsets and strong data augmen-

tation with random rotations. During inference, the positions of the landmarks are

found in each channel as the coordinate of the maximum value after convolution

with the same Gaussian kernel that was used for the training heatmaps generation.

The method is illustrated in Figure 4.1.

The FHP is defined by the left and right Porion and Orbitale landmarks (see

Figure 2.2 for reference). Because ground truth landmark annotations were not

available from the experts, the annotations were done manually by the author

of this thesis. This resulted in a dataset of 150 patients for the detection model

training.

Figure 4.2 shows the accuracy of the trained landmark detection model on a

test set of 37 patients. The median error of all four landmarks was under 2 mm,

although slightly higher errors were measured in orbitale landmarks which could

be partly attributed to imperfect manual annotations. The achieved accuracy is in

agreement with other works using 3D CNNs for cranial landmark detection [137].

Most importantly, there were no significant outliers and the landmark detection

provided stable detection on all test cases, including challenging cases with strong

rotation and a high amount of noise in form of medical instrumentation and de-

fects (see Figure 4.3).
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Figure 4.2: Test set accuracy of the detected landmark positions in milimeters.

4.2 ct volume transformation into natural head position

We define the target skull position by manually setting a reference set of Porion

and Orbitale landmarks on the z = 0 plane (i. e. bottom of the target volume).

Singular value decomposition, well known from the iterative closest point regis-

tration algorithm [15], is then used to compute the optimal rigid transformation

matrix between the detected and reference set of landmarks. We finally align the

CT volume by applying the transform to it and using linear interpolation. Several

results of automatic skull CT volume alignment are shown in Figure 4.3.

Although we do not directly evaluate the accuracy of this alignment, it is shown

in later sections of this thesis that normalizing the skull position using this au-

tomatic approach improves the performance of subsequent skull reconstruction

methods by reducing the degrees of freedom of the skull shapes.

4.3 conclusion

The proposed method is able to bring arbitrary skull CT data into the natural head

position. We showed that it works well for skulls with large defects as well as

patients in a strongly rotated position. The method assumes only that the skull

and the CT volume contains both Porion and Orbitale landmarks. If this is not

the case, a different set of landmarks defining a different anatomical plane can be

used for normalization of the skull position instead. For example, in Section 9.6 of

this thesis, we use Supra-orbital notches instead of Orbitale landmarks for align-
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Figure 4.3: Skull CT volume alignment results. The original CT volume with the automat-

ically detected landmarks highlighted in red (left) and the aligned skull CT

volume (right).
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ment because some data samples do not include them in an attempt to reduce

unnecessary irradiation of optical nerves during CT scan.

Using the landmark-based alignment makes it easy to include user interaction

through manual landmark position correction. Drevicky et al. [35] showed that the

value of the landmark detection model output at the detected landmark position

correlates with the certainty of the model estimate. The outputs of the model can

therefore also be used to indicate an uncertain landmark detection and prompt the

user for manual correction if required. However, we encountered no cases where

significant correction would be required in our experiments.



5
S E G M E N TAT I O N O F D E F E C T I V E S K U L L S U S I N G C N N S A N D

G R A P H - C U T S

This chapter presents the paper “Segmentation of defective skulls using CNNs and

graph-cuts” presented at the MICCAI 2019 Muskuloskeletal Imaging workshop

[65]. The text has been edited by removing the section with related work, which

can be found in Chapter 3.1.

The main purpose of this work was to provide a fast and precise data seg-

mentation method for anatomical model designers in TESCAN Medical company.

Because of the way the provided gold-truth models were created for anatomical

modeling, the ethmoidal and zygomatic bones forming the orbital area were also

properly modeled which resulted in good performance of the segmentation model

in this area. The maxillary sinuses were filled to increase mechanical model sta-

bility (see Figure 5.6 b). This may have contributed to the relatively high reported

Dice coefficient values because it is easier to achieve higher overlap with such large

and compact structures as opposed to precisely segmenting thin maxillar bones as

done in other methods in the literature. Nevertheless, the method also achieved

good performance in thin bones of orbital areas and since its deployment, it has

been successfully used to produce anatomical models of skulls, achieving a sub-

stantial reduction of the time required for manual post-processing.

The method was additionally used for segmentation of the CQ500 public skull

CT database [28]. High accuracy was achieved on this data as well, although occa-

sional holes in the orbital area could be spotted. This made it possible to efficiently

create a public, large-scale skull shape dataset which was later published and used

for the development and benchmarking of skull reconstruction methods, as de-

scribed in the following sections.

5.1 introduction

Computer-assisted pre-surgical planning using generated 3D tissue models is see-

ing increasing use in personalized medicine. In the context of craniofacial surgery,

the applications range from patient education, diagnosis, and operative plan-

ning [36] to patient-specific implant design [55], mostly in the cranial area. The

latter had been accelerated by the advent of additive manufacturing (AM), also

known as 3D printing in recent years [96]. A typical workflow of producing a pre-

38
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0.5 1.6 2.7 3.8 5.0

Figure 5.1: Example renders of segmented skulls with the distance to the ground-truth

surface in mm coded in color. Multi-view CT segmentation outputs (top) and

multi-view CutCNN segmentation outputs (bottom) are shown. To better dis-

play the differences, voxels with the surface error of less than 0.5mm are left

dark blue.

surgical 3D tissue model consists of data acquisition, converting the data into a

patient model, and optionally printing the model. Computed tomography (CT) is

usually the modality of choice because of its unparalleled hard tissue contrast re-

quired for precise model shape extraction. As the manufacturing process is usually

able to produce the model with satisfactory precision, converting the raw CT data

into an accurate patient model remains the most crucial step [87].

In this work, we propose an improved segmentation method that extracts region

and boundary potentials using CNN and then uses graph-cut for globally opti-

mal segmentation. The method outperforms methods based on conventional deep

learning and other state-of-the-art methods of skull segmentation, and it produces

results acceptable for the targeted use of 3D tissue modeling in clinical practice.

Furthermore, we directly compare 2D and 3D CNNs for segmentation and demon-

strate that the benefit of using the 3D approach is not unequivocal.

5.2 proposed method

We use the well-known U-net model [108] as a baseline method for our segmen-

tation experiments. We experimented with both multi-view (MV) ensemble of 3
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orthogonal 2D U-nets as used in [24] and fully 3D U-net [101] since to the authors’

best knowledge, the current literature lacks direct comparison between the two

approaches. The applied U-net slightly differs from the original architecture by us-

ing batch normalization and padding during convolutions, replacing the up-conv

layers with bilinear up-sampling, and reducing the initial number of convolutions

to 16. The architecture of the 3D model is identical except that each convolution,

max-pooling, and up-sampling operation is replaced by its 3D equivalent. The net-

works are trained until convergence using mini-batches of shape 24× 128× 128
in case of 2D and 4× 128× 128× 64 in case of the 3D model using the Dice loss

function [94].

To improve segmentation performance on slightly out-of-distribution data (such

as previously unseen medical material or defect shapes), we opted to apply 3D

graph-cut segmentation on the CNN output. While this approach has been taken

by other authors before, we train the [83], we also modify our CT model to output

an edge probability for each voxel in addition to the object probability. Thus, the

final layer of the CNN has 3 channels instead of the standard 2. Figure 5.2 illus-

trates how this step can provide additional boundary information to the graph-cut

in comparison to simply using the conventional intensity or probability gradient.

Another advantage of this approach is that since both region and boundary terms

have similar dynamic ranges, finding the optimal λ parameter of the graph-cut

algorithm is simplified. We leave λ = 1 throughout our experiments.

We train the network using the following form of the Dice loss function:

L = 1− 2 ·
∑M
m=1

(
pm0 g

m
0 + pm1 g

m
1 + pme g

m
e

)∑M
m=1

(
pm0 + gm0 + pm1 + gm1 + pme + gme

) , (5.1)

where pm0 and pm1 are the probabilities of voxel m belonging to class background

and object respectively, and gm0 and gm1 are the corresponding ground-truth labels.

Analogously, pme and gme are the probability and the ground-truth label of voxel

belonging to the object edge. Edge map ground truth is obtained by subtracting

the binary object from its morphologically dilated version, leaving a surface with

single voxel thickness. Note that edge voxels overlap with the background voxels

and the edge probability channel is therefore not included in the final softmax

activation layer of the CNN.

Next, the output maps are converted into a 6-connected graph structure with

the region terms R (a) for voxel a given by

Robj(a) = − ln(pa1 ), Rbkg(a) = − ln(pa0 ) (5.2)

and the boundary term B (a,b) between neighbouring voxels a and b given by

B(a,b) = − ln[max(pae ,pbe )]. (5.3)



5.3 experiments 41

Figure 5.2: Example CT output slice, from left to right: Data, object probability map, edge

probability map. Notice the segmentation error caused by an external object

with a density similar to that of the skull in the upper left. The error is correctly

separated by its detected edge.
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Figure 5.3: 2D Segmentation model architecture. Series of two convolutions, batch nor-

malizations and ReLU activations are used in each block. In 3D model each

2D operator (convolutions, max-pooling and bi-linear upsampling) is replaced

with its 3D equivalent.

Finally, globally optimal 3D segmentation can be obtained by finding minimum

cut through this graph [18]. This method will be referred to as CutCNN in the

remaining parts of the paper. Note that while the CT can be either multi-view

(MV) or 3D, the graph-cut segmentation is always 3D. The 2D CNN architecture

can be seen in Figure 5.3 and the complete method is summarized in Figure 5.4.

5.3 experiments

In this section, we present the skull tissue dataset on which the segmentation meth-

ods were evaluated. Then, we present the results of different segmentation meth-

ods on the dataset.
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Figure 5.4: Scheme of the proposed segmentation framework. Input data (a) are processed

by a CT model (b) to produce a probability map (c) and an edge strength map

(d). These provide the boundary and region term for the graph-cut optimization

step (e) which produces the binary output segmentation (f).

5.4 dataset

Head CT scans of 199 different patients were available for this study. The scans

were acquired for the purpose of patient skull modeling and its additive manu-

facturing or further patient-specific implant design. Therefore, pixel-wise ground-

truth segmentation done by an experienced radiologist was also available for

model training. The scans were acquired on multiple CT scanners using a variety

of different acquisition protocols. The voxel size varied from 0.38× 0.38× 0.38 mm

to 0.5× 0.5× 1.5 mm. All volumes were re-sampled to the isometric resolution of

1 mm per voxel for the experiments.

As the majority of these scans were acquired prior to surgery, the skulls often

contained various defects, fixation materials, and other external objects. This makes

fully automatic segmentation of these scans a challenging task, because many of

these structures were only present in a single patient scan, making generalization

difficult.

5.5 metrics

Multiple metrics were used to quantitatively compare outputs of different segmen-

tation methods used in the study. Inspired by the MICCAI 2018 Medical Segmenta-

tion Decathlon challenge1, volumetric Dice coefficient and surface Dice coefficient

were chosen. Furthermore, mean surface distance has been also included in the

metrics as this is the recommended measure in the area of medical tissue model

1 http://medicaldecathlon.com/

http://medicaldecathlon.com/
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preparation [125]. Implementations of the metrics used in this work are publicly

available2.

Volumetric Dice coefficient (VDC) is a well-known metric in the medical segmen-

tation domain. Given a number of true positive (TP) samples, false positive (FP)

samples, and false negative (FN) samples, the coefficient is given by

VDC =
2 · TP

2 · TP+ FP+ FN
. (5.4)

In the case of volumetric Dice coefficient, the number of voxels assigned an

object label in output segmentation as well as in the ground-truth segmentation is

used to compute TP while FP + FN corresponds to the number of voxels assigned

a different label.

To compute a surface Dice coefficient (SDC), the output and the ground-truth

binary segmentation volumes are converted to polygon meshes. Each surface el-

ement in the output segmentation mesh is then considered a TP sample if the

distance to the closest point on the ground-truth surface is lower than threshold t

and vice-versa. The surface elements in output and ground-truth meshes that do

not fall under this threshold are counted as FN and FP, respectively. We chose the

threshold to correspond to the voxel size in our experiment.

5.6 experimental design and results

The performance of four different models has been evaluated in this study. Both 3D

and MV CNN models and their CutCNN counterparts were implemented in the

TensorFlow framework. PyMaxflow library was used for the implementation of the

graph-cut optimization. All experiments were run on a desktop system equipped

with Nvidia Titan Xp GPU, an i5 intel core processor, and 16GB RAM.

22 scans were randomly selected as test subjects for the experiment, leaving 177

skulls for model training. Using convolutional kernels of size 3 in all the CNN

models results in the 3D model having the same number of trainable parameters

as the sum of the three orthogonal 2D models. The comparison between the MV

ensemble and the 3D approach can therefore be considered an ablation study to

an extent. CutCNN models also have a similar number of parameters, the only

difference being the final edge probability output layer. A quantitative comparison

of the results of each method is presented in Figure 5.5 and Table 5.1. Further

qualitative results are shown in Figure 5.6 and 5.1.

2 https://github.com/deepmind/surface-distance

https://github.com/deepmind/surface-distance
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Figure 5.5: Accuracy of standard multi-view (MV) and 3D CNN and their CutCNN coun-

terparts. Results are shown in terms of mean surface distance (MSD), volumet-

ric Dice coefficient (VDC), and surface Dice coefficient (SDC).

5.7 discussion

CutCNN segmentation framework resulted in a performance gain in all cases in

terms of every metric used in the experiment over standard CNN approaches. The

output of CNN object probability map often contains errors near external objects

or smaller tissue defects as these are scarce in the training data distribution. How-

ever, the graph-cut optimization guides the resulting binary segmentation towards

a spatially consistent and compact shape, often eliminating these artifacts if a de-

tected edge corresponds mostly to the correct object boundary. This effect is further

illustrated in Fig. 5.1.

Our second observation is that using 3D convolutional kernels has a rather small

effect on the final segmentation precision quantitatively compared to the MV ap-

proach. However, although the quantitative difference is small, for applications

in medical additive manufacturing, it is important to avoid ragged segmentation

output which may result from MV CNN in areas of lower model certainty. These

include for example teeth, which are challenging to detect, especially when the

lower and upper teeth are in contact (see Figure 5.6 a), or maxillary sinus, which

is often enclosed in order to improve the mechanical stability of the manufactured

model (see Figure 5.6 b). Therefore, 3D U-nets are often considered necessary to

avoid these discontinuities caused by slice-by-slice processing.

However, this artifact can also be addressed by employing the CutCNN frame-

work since the ragged segmentation boundary introduces a high boundary-term

penalization during optimization and it is therefore avoided in the final binary
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Table 5.1: Comparison of segmentation methods using mean surface distance (MSD) [mm],

volumetric Dice coefficient (VDC) and surface Dice coefficient (SDC).

Method MSD VDC SDC

MV CT 0.37 96.7 97.1

3D CT 0.35 96.7 97.0

MV CutCNN 0.31 97.7 98.3

3D CutCNN 0.32 98.0 98.1

* Minnema et al. [95] 0.44 92.0 -

* Linares et al. [81] - 91.5 -

* Results obtained on different datasets

segmentation. Thus, employing CutCNN allows the decision between the 3D and

multi-view approach to be merely a technical choice. Using 2D models can offer

some advantages, such as faster training of deeper models with less overfitting [24].

We also evaluate the performance of the proposed method in the context of ex-

isting related work in skull segmentation. In terms of volumetric Dice coefficient,

the proposed method achieved performance of 0.977± 0.019 in the multi-view sce-

nario and 0.980± 0.013 in the 3D scenario. This result is considerably higher than

that of 0.92± 0.04 reported by Minnema et al. [95]. This is probably caused by sev-

eral limiting factors in the other works, including the small training set that only

allowed for a smaller CNN architecture and employing a patch-based approach.

To our best knowledge, the presented work is the first to apply a fully automatic

segmentation approach to a pathological skull dataset of this size. Furthermore,

we also achieve a low mean surface distance with the proposed method, namely

0.31± 0.33 mm.

We also trained the multi-view CutCNN model with an isometric resolution of

0.5 mm per voxel to facilitate enough precision for clinical practice with almost no

loss in accuracy. Preliminary testing of the proposed method by experts in medical

tissue modeling practice showed that the results of this model are accurate enough

to substantially reduce the amount of time spent by creating the model in practice

when compared to currently used semi-automatic segmentation methods.

5.8 conclusions

In this work, we presented CutCNN, an improved hard tissue segmentation

method that integrates the CNN output with graph-cut segmentation. The results

of such a method surpassed the commonly used CNN architectures such as 3D
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Figure 5.6: Qualitative results shown for several chosen axial slices. From top to bottom:

Multi-view CT output (red), ground-truth (magenta), multi-view CutCNN out-

put (blue).

and multi-view U-nets as well as other competitive methods in the skull segmenta-

tion domain. The object and edge probability maps in combination with graph-cut

provide a compact and smooth final tissue segmentation while adding very little

computational cost. This method could therefore be used to improve the perfor-

mance of any semantic segmentation task given that the edges are well defined

in the data. In the future, to deal with any remaining segmentation errors, user

interaction can be introduced to the method on both CNN and graph-cut level as

the output of both steps can be improved through user scribbles in an iterative

fashion. This will further reduce the time spent producing accurate tissue models.



6
S K U L L B R E A K D ATA S E T D E V E L O P M E N T

This chapter presents the original SkullBreak data description paper. It was pub-

lished along with the work presented in Section 8 of this thesis.

Although a dataset of defective skulls along with their expert-designed ground

truth implants and skull patches was provided by TESCAN Medical for this work,

it had several limitations. For one, because the skulls came from patients indicated

for cranioplasty, they already contained a cranial defect and therefore could not be

easily extended by artificial defects for data augmentation purposes. Because they

mostly contained uni-lateral defects of the neurocranium and only a small portion

of bi-lateral defects or defects reaching into the orbital area, it was not suitable for

training deep CNN models for generic skull reconstruction. Second, the dataset

could not be published for the reasons mentioned in Section 5.

The SkullBreak dataset was created and published to address these limitations.

It could be used to expand the training dataset by a virtually unlimited number

of artificial defects. It was also intended to help standardize the data used for

benchmarking different skull reconstruction methods.

6.1 introduction

The final objective of research in the area of automatic skull reconstruction is pro-

viding a method that is able to complete the correct shape of missing anatomy for

any possible defect instance. Such reconstructed skull then serves as a template for

designing the patient-specific implant.

Despite the increasing availability of medical datasets, providing a dataset of

real defective skulls with enough variability to truly gauge the effectiveness of

automatic methods is very challenging. Gathering enough data to consider super-

vised training of deep models is even less feasible due to the fact that the most

challenging cases such as big frontal defects or defects reaching into the orbital

area are far less frequent than simpler cases of smaller unilateral defects of the

cranium. Yet the effectiveness in dealing with these complex defects is the most

desired property in automatic methods as the reduction of surgery planning time

is accentuated.

To account for the lack of real defective patient scans, the practice in most of

the current literature [112, 41, 42, 98] is to evaluate reconstruction methods on

47
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Real Synthetic

Figure 6.1: Examples of 3D models and slices through defective skulls from real patients

(left) and synthetically generated defective skulls (right). The real patient sam-

ples include defects reconstructed by an experienced clinician.

skulls with simple synthetic defects created in healthy patient scans. However,

these synthetic defects are usually very simplistic and are not publicly available to

serve as a benchmark. In order to provide a suitable public dataset for training and

validation of reconstruction methods, we created a realistic defective skull dataset

from a population of healthy skulls available in the CQ500 dataset [28].

6.2 pre-processing

Of the 491 patient scans, we filtered out those that contained skull fractures in

expert reads or that were scanned with too thick slice spacing. Of the remaining

322 scans we further hand-picked only those that contain the whole cranial and

orbital area and were overall suitable for further processing. The resulting 189

scans were used as the basis of our dataset. As the first step, we re-sampled each

data volume to an isotropic voxel size of 0.4mm and padded them to a size of 5123

which ensures that the skulls can fit into the volume. Next, to remove unnecessary

degrees of freedom in the skull position and rotation, we rigidly transformed each

skull so that the Frankfort-horizontal plane (FHP), defined by orbital floors and

auditory meatuses [84], was placed in the center of the bottom slice of the volume

as illustrated in Figure 6.2.

For this purpose, we manually annotated the four landmarks defining this plane

on 80 patient scans1. Then, we trained a CNN model to detect these landmarks in

the CT data by the method of heatmap regression, which has been used exten-

sively in anatomical landmark detection [103]. The achieved average error of the

trained model on a held-out test set was under 4mm for each of the four land-

marks. We also manually placed a single set of reference landmarks on the ground

1 This dataset was the first iteration of the landmark detection dataset described in Section 4. Although

the model trained on this smaller dataset resulted in generally worse performance, the resulting

alignment was successful in all cases.
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Figure 6.2: Overview of the skull extraction method. In the re-sampled and padded CT

data (a), the four landmarks are first detected by CNN (b). The detected land-

marks (red) and their position along with reference landmarks (green) are then

used to compute an affine transform of the data into the reference coordinate

system where FHP is placed in the center of the bottom of volume (c). Finally,

the skull tissue is segmented using CutCNN [65] method (d).

plane of the target coordinate system. We use these reference landmark positions

along with the detected landmark positions to compute the desired transformation

matrix using singular value decomposition well known from the iterative closest

point algorithm [15]. This automatic rigid alignment method was successful in

compensating for rotation and translation on all of the patient scans.

skull segmentation After pre-processing all of the scans, skulls were seg-

mented in the CT data to provide the binary shapes. For this, we used an internal

dataset of defective patient scans with the ground-truth segmentation provided

by an expert clinician. A combination of CNN models and graph-cut was used

as the segmentation method. The method is described in detail in Section 5. The

method generalized well to the population of healthy skulls in the CQ500 dataset

and resulted in satisfactory segmentation of all of the scans.

6.3 defect generation

The skull segmentation masks in the reference coordinate system were designated

a dataset of healthy skulls Xhealthy. In current literature, synthetic defective skulls

are created by subtracting a simple binary shape representing the defect area D

such as cube [98, 6] or sphere [41, 42] at a random location, creating defective

shape Xdefective = Xhealthy −D. While this allows for a simple and fast generation

of artificial defects, such simple shapes cannot account for the variability of the

shape of defect border caused by factors such as different causes of trauma or
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healing stages in real patients as shown in Figure 6.1 (a). To address this issue, we

generated a set of defect volumes D by first generating a union of spheres with

a random radius located around a random location and then applying a random

elastic transformation to the volume. The artificially defective skulls were then

computed as Xdefective = r(Xhealthy −D
i) where Di is a randomly sampled defect

volume instance and r(·) is a function that applies morphological opening opera-

tion with structuring element of a sphere with a random radius to the part of the

healthy skull in close proximity to defect border. This operation mimics different

stages of bone resorption. Examples of randomly generated defective skulls are

shown in Figure 6.1 (b).

From each of the healthy skulls, we generated five instances of defective skulls.

To allow for structured validation of the skull reconstruction methods, we con-

strain each defect into one of three areas as shown in Figure 6.3. The first area,

designated unilateral-frontal, includes the frontal bone and parts of sphenoid and

zygomatic bones and it is constrained to either the left or right side of the skull.

The second area designated unilateral-parietal mostly includes parietal and nearest

parts of frontal, temporal, and occipital bones and it is also constrained to one

of the sides of the skull. The third area is designated bilateral and it is the com-

bination of the first two areas, with the centers of defect concentrated near the

mid-sagittal plane to ensure that defects in this group reach into both sides of the

skull. Finally, two more random defects were created in each skull at completely

random locations. The data were randomly split into 179 training and 10 testing

samples of healthy skulls and corresponding 895 training and 50 testing samples

of defective skulls. The testing skulls that had significant overlap with any of the

training skulls (Dice coefficient > 0.75) were visually inspected to minimize the

risk of a patient being present in both training and testing set due to follow-up

scan. This test set allows for comprehensive evaluation of reconstruction methods

thanks to its variability while still making it possible to measure performance even

for semi-automatic methods. To our best knowledge, the biggest evaluation dataset

in current literature so far contained 31 skulls [41]. The dataset is publicly available

as the SkullBreak dataset2.

2 https://www.fit.vut.cz/person/ikodym/skullbreak/

https://www.fit.vutbr.cz/~ikodym/skullbreak
https://www.fit.vut.cz/person/ikodym/skullbreak/
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(a) (b) (c)

Figure 6.3: Defect area constrains. The unilateral-parietal (a) and unilateral-frontal (b) de-

fects are constrained to one side of the skull. The random and bilateral defects

are only constrained vertically (c). Bilateral defect center positions are further

constrained into the yellow area.
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S K U L L B R E A K D ATA S E T I N T H E C O N T E X T O F T H E

A U T O I M P L A N T C H A L L E N G E

The SkullBreak dataset was created concurrently and independently of the Au-

toImplant challenge dataset, which was used for similar goals. Due to the MICCAI

2020 event, the AutoImplant dataset (later referred to as SkullFix dataset) soon be-

came better known in the research community. The SkullBreak dataset was there-

fore modified slightly to be compatible with the SkullFix data in terms of train-

ing/testing split and data format. Both datasets were then published jointly in the

Data-in-brief journal [64] to serve as a combined benchmark for skull reconstruc-

tion methods. Both datasets will be used in the 2021 edition of the AutoImplant

challenge that is being organized as of the time of writing this thesis.

This chapter presents the overview and mutual comparison of the two datasets

as it was published in the Data-in-brief journal. The author of the thesis contributed

by curating the SkullBreak part of the dataset, producing the describing data statis-

tics, and contributing to the final article text.

7.1 data description

The dataset described in this article was adapted from a public head CT collec-

tion from CQ500 (http://headctstudy.qure.ai/dataset), which was originally

intended for the detection of critical findings in head CTs. The head CT collection

is originally provided by the Centre for Advanced Research in Imaging, Neuro-

sciences and Genomics(CARING), New Delhi, IN. In total, the adapted dataset

consists of 880 triplets of a defective skull, a corresponding complete skull, and an

implant, which is given by the difference between the defective and the complete

skull. All data samples are represented as binary volumes and saved in NRRD

format. The dataset is split into two tracks: the SkullFix track and the SkullBreak

track.

The SkullFix track consists of the data used in the MICCAI 2020 AutoImplant

challenge. This track is split into a training set with 100 triplets, a test set with 100

triplets, and a test set with 10 triplets. The defects in this track have a rectangu-

lar shape with craniotome drill holes in the corners, as often encountered in the

craniotomy procedures. The defects are mostly located in the back of the skulls,

depending on patient position during the CT data acquisition, with the exception

52

http://headctstudy.qure.ai/dataset
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Figure 7.1: Examples of the 3D model renders (top) and slices (bottom) through the skull

defect data. 3 defects from the 10 test data of the SkullFix track and 3 defects

from the training data of the SkullBreak track (taken from [63]), respectively.

of the test set with 10 triplets, where the shapes, sizes, and positions of the defect

are different as seen Figure 7.1. These 10 defects were used in the AutoImplant

challenge to test the robustness of the proposed methods. The dimension of the

data in SkullFix is 512× 512×Z and Z is the number of axial slices.

The SkullBreak track consists of the data originally used in Kodym et al. [63]. The

dataset was adapted so that there is no overlap between training and test sets of

both tracks presented in this article. 114 training and 20 test skulls were used to

create this track. On each skull in this track, five different synthetic defects were

created:

• unilateral defect in the parieto-temporal area,

• unilateral defect in the fronto-orbital area,

• bilateral defect,

• two random defects.

This resulted in a training set with 570 triplets and a test set with 100 triplets.

The defects in this track were created with random shapes. Several examples from

this track can be seen in Figure 7.1. The dimension of the data in SkullBreak is

512× 512× 512.
In addition to the position and shape of the skull defects, the defect size is an-

other factor that has an effect on the difficulty of implant design. Therefore, we

report voxel occupancy rate (VOR) and approximate defect surface area (DSA) to

illustrate the properties of the described dataset. Figure 7.2 shows the statistics of

the dataset, including the VOR of the complete skulls and the implants and the

DSA. The VOR is defined as the percentage of occupied voxels in the whole image

volume: VOR =
∑

V
N , where

∑
V is the number of occupied voxels in the volume

V and N = 512× 512× Z is the total voxel number (occupied and unoccupied).

The DSA was approximated by isolating only the implant voxels located on the
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outer surface of the original complete skull and using the voxel size information

to approximate the total area of the isolated surface. The differences in DSA be-

tween individual defect groups in the dataset are most apparent in the SkullBreak

track, owing to the fact that the groups are constrained to different areas. The uni-

lateral defects (parieto-temporal and fronto-orbital) are smaller because they are

restricted only to one side of the skull, while the others are unconstrained. The

fronto-orbital defects are further constrained to the space around orbits while the

parieto-temporal can span the whole braincase area. The SkullFix defects have less

variability, mostly being average in their size with the exception of the 10 test cases

which are smaller.
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Figure 7.2: Boxplot of the data information for the training set and test set of both dataset

tracks, including VOR of the complete skulls (top left), VOR of the implants

(top right), and approximate defect area (bottom).
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Table 7.1: Differences between the SkullFix and the SkullBreak dataset tracks.

SkullFix SkullBreak

Training/test split 100/100+ 10 570/100

Volume size 512× 512×Z 512× 512× 512

Voxel size various 0.4 mm

Preprocessing acquisition geometry regu-

larization transform

acquisition geometry reg-

ularization transform and

rigid alignment using

the landmarks defining

Frankfort-horizontal plane

Skull segmentation thresholding at 150 HU,

noise removal using con-

nected components analy-

sis

convolutional neural net-

work and graph-cut [65]

Defect injection binary defect shape sub-

traction from complete

skull

binary defect shape sub-

traction from complete

skull and defect border

smoothing using morpho-

logical operations
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7.2 experimental design, materials , and methods

Cranial implant design is the main bottleneck for an optimized workflow for cran-

ioplasty [75]. The development of automated cranial implant design solutions, es-

pecially deep learning based solutions, has been hindered by the lack of public

datasets. The real defective skulls from brain tumor surgery or trauma are difficult

to obtain in large quantities and there often lack the ground truth, i.e., the complete

skulls or the implants. We hence devised a pipeline to convert publicly available

head CT collections into datasets suitable for training deep learning models. Ar-

tificial skull defects are used to simulate the surgical and traumatic process. The

original CQ500 data contain head CT scans and expert annotations from the Cen-

tre for Advanced Research in Imaging, Neurosciences and Genomics, New Delhi,

IN. The scans that contained skull fractures according to the expert annotations

were removed as well as those that were not acquired with thin plate scanning

protocol. The skulls in the presented dataset were sampled from the remaining

scans. In cases of multiple series, the series with the highest resolution was used

for further processing of each scan. The chosen scans contained between 211 and

394 axial slices. Acquisition geometry regularization transform was applied to each

scan to correct deformations caused by gantry tilt and the data were converted to

the NRRD format.

Both dataset tracks were created from the original CQ500 data using three main

steps; CT data preprocessing, skull segmentation, and artificial defect injection.

However, because they were originally created independently of each other, the

individual processing steps differ. The different properties and the specific steps

taken to create the two tracks are summarized in Table 7.1.

For preprocessing, the acquisition geometry regularization transform of SkullFix

is performed using 3D Slicer to correct obvious deformation or tilting of the skull

data. It involves several steps:

• Go to Edit -> Application Settings -> DICOM and change “acquisition geom-

etry regularization” to “apply regularization transform”.

• While importing the DICOM, an item called “acquisition transform” is

shown within the series.

• In the transform hierarchy, right-click on the deformed DICOM and press

“harden transform”.

• Save the transformed data as NRRD.

For SkullBreak, the “dcm2niix” tool (https://github.com/rordenlab/dcm2niix)

is used to convert DICOM series to 3D data. It corrects the deformation caused by

https://github.com/rordenlab/dcm2niix
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gantry tilt. On each skull, four landmarks defining the Frankfort-horizontal plane,

i.e., the left and right auditory meatus and the left and right orbital floor, were

aligned onto the z = 0 plane using rigid transformation. Finally, to be in conformity

with the SkullFix dataset, the SkullBreak dataset is converted into NRRD format.

7.3 artificial defect shapes

The skull defects in the presented dataset are created by subtracting a part of the

healthy skull with the subtracted part serving as ground truth for the implant

shape. In real patients, the defects can have different causes, such as craniotomy

due to brain or bone tumors, brain swelling, or traumatic fractures. Consequently,

the shape, position, and size of the defects can also vary.

During a craniotomy, the craniotome drill is often used to drill holes into the

skull by the surgeon, leading to the defect having roundish holes in the corners.

The defects in the SkullFix track emulate this property by injecting defects with

such roundish corners into the back of the complete skulls. The defects in the

SkullBreak track, on the other hand, have completely random shapes given by ran-

dom combinations of elastically deformed spheres. The positions of the SkullBreak

defects are also random, although they are structured into several categories, as

discussed in the Data Description section. Furthermore, ongoing bone remodeling

processes can deform the defect borders. To simulate this, the defect borders in the

SkullBreak track are smoothed by morphological opening operation with structur-

ing element in form of sphere with a radius between 2 and 7 voxels. Examples of

the defects in both dataset tracks can be seen in Figure sh7.1.
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V I RT U A L S K U L L R E C O N S T R U C T I O N
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This part of the thesis presents the development of an automatic virtual skull

reconstruction method based on cascaded 3D CNN architecture. It follows up di-

rectly to the work described in the previous chapter by operating on the aligned

and segmented volumetric skull shape representations of the SkullBreak and in-

house cranioplasty data.

Experiments were performed on the synthetic SkullBreak and SkullFix data with

ground-truth shapes to confirm that the proposed architecture is capable of per-

forming the skull reconstruction task with sufficient accuracy and to study the

effects of individual model components on the reconstruction performance. Then,

an approach for combining the synthetic data with real data containing the expert-

provided gold truth reconstructed shapes was proposed, providing a way to jointly

design both the reconstructed skull shapes and the final cranial implant.

Attention is also given to the question of quantitative evaluation of skull recon-

struction result and the choice of quantitative metrics. The topic is addressed by

proposing a novel skull reconstruction metric and discussing the commonly used

quantitative metrics in the context of subjective expert scoring of the automatic

skull reconstruction outputs.
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S K U L L R E C O N S T R U C T I O N U S I N G C A S C A D E D C N N S

This chapter presents the paper “Skull Shape Reconstruction Using Cascaded Con-

volutional Networks” as published in the Computers in Biology journal [63]. The

text has been edited by removing the chapter with related work, which can be

found in Chapter 3.2 and the chapter describing the synthetic dataset, which is

described in the Section 6.

The purpose of this work was to experimentally confirm the hypothesis that a

CNN model is capable of learning to reconstruct generic skull defects with high

enough resolution to be considered for clinical practice, as this was only previously

done on very coarse data volumes [98]. A generative approach to model the skull

reconstruction process was also explored. Although the achieved variability was

limited, it was the first attempt to generate multiple reconstruction hypotheses for

a single defective skull.

8.1 introduction

Patient-specific implants (PSIs) are often used for the treatment of craniofacial

defects. Especially in cases of larger defects caused by trauma, tumor resection,

or decompressive craniectomy, it is usually required to reconstruct the original

skull shape for aesthetic purposes and protection of intracranial structures against

mechanical impact [68, 69].

Current state-of-the-art methods usually comprise of using a patient CT scan to

design the implant pre-operatively and then 3D printing of the result using bio-

compatible materials such as titanium, porous polyethylene, or polyether ether

ketone [55, 52]. Alternatively, implants can be cast in a 3D-printed mold from bone

cement which can be loaded with antibiotics to decrease the risk of infection [122].

Such approaches lead to a reduction of operative time and improved patient re-

sults [110].

Provided that precise enough tissue segmentation is obtained from the CT data,

the process of computer-aided design (CAD) of PSIs remains the most important

step that affects the final quality and reproducibility of PSIs [125]. This presents

a challenging and tedious task for the clinician or engineer designing the PSI. To

ensure correct healing and prevent complications, the PSI must fit precisely to the

defect border without any steps and with gaps of less than 0.8mm between the

60
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CNN 1

CNN 2
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Figure 8.1: The proposed skull reconstruction method fully automatically produces a bi-

nary shape of the missing part of the skull using sliding-window approach

with coarse-resolution middle step.

implant and remaining tissue [86]. Furthermore, smoothness and symmetry of the

anatomy should be preserved to ensure a correct aesthetic result [12]. The first step

of the implant design is a correct reconstruction of the missing shape of the skull

anatomy from which the PSI is then derived.

contributions In this work, we design a cascaded CNN architecture for the

estimation of a high-resolution 3D anatomy shape conditioned on the input defec-

tive skull. Although symmetry is used in the proposed method as an additional

guiding signal, the method can successfully reconstruct defects reaching into both

sides of the skull as well as into more complex anatomical regions such as orbitals.

To the authors’ best knowledge, this is the first deep learning-based method of

3D shape reconstruction that reaches a high enough resolution to be clinically vi-

able for the skull reconstruction task. To address the issue of multiple possible

correct solutions, we also experiment with a probabilistic generative version of the

proposed model. Finally, in order to improve the reproducibility of research in

the area of automatic skull reconstruction, we introduce an open dataset of skull

shapes with synthetic defects. The dataset mimics the variability in shape, position,

and bone resorption present among real patients and we show that a CNN model

trained on this synthetic dataset also performs well on challenging real patient

cases without any further pre-processing.
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8.2 materials

For training and validation of the proposed method, we used the Skullbreak

dataset described in Section 6. The synthetic dataset was split into 179 training

and 10 testing skulls, resulting in 895 training and 50 testing defect shapes in

total. To evaluate the ability of our approach to generalize, we also utilized an

internal dataset of 9 real defective patients. For these patients, ground-truth skull

reconstructions made by a clinician experienced in cranial implant design were

available. Several samples from both datasets are shown in Figure 6.1.

8.3 methods

We formulate the skull reconstruction task as finding the missing part of the

anatomy represented by binary volume Y = Xhealthy −Xdefective. Thus, we look

for the function f(·) with parameters θ that maps the defective skull to an esti-

mated shape Ŷ = fθ(Xdefective) from distribution P(Ŷ|Xdefective) of shapes that

correctly complete it.

8.3.1 Reconstruction Model Architecture

We use a combination of two CNN models with a 3D U-net [101] backbone to

approximate the function f, with parameters θ being the trainable weights of the

CNN. The individual models differ from the original 3D U-net in several ways.

Instead of up-convolutions, we use nearest-neighbor up-sampling followed by reg-

ular convolution in the decoder part of the model, as this has been shown to im-

prove the model training process and performance in some cases [66]. The number

of down-sampling and up-sampling layers is such that the bottleneck tensor has

spatial dimensions of 43 as shown in Figure 8.2. This ensures that the output neu-

rons of the CNN have a sufficient receptive field to correctly model the shape of

missing anatomy in the case of defects with a large surface area.

Each of the models operates on a different resolution. The first model denoted

fLo takes an input volume down-sampled to 643 voxels and is trained to output

an estimate of missing anatomy ŶLo = fLo(XLodefective) on an equivalent resolu-

tion of 3.2mm per voxel. While this resolution is too low to model anatomy with

enough precision, it can provide an initial estimate of the missing shape. The sec-

ond model denoted fHi then takes a 128 × 128 × 128 crop of the input data at

the original high resolution concatenated to an up-sampled output of the first

model. This model is trained to output the corresponding patch of the final miss-

ing anatomy estimate ŶHi = fHi(ŶLo,XHidefective), which can be viewed as a super-
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Figure 8.2: Overview of the 3D CNN backbone architecture example for an input of size

643. Note that for an input of size 1283, the CNN is deeper and the bottleneck

tensor has 384 channels.

resolution of the initial missing anatomy estimate conditioned on the remaining

part of the skull at full resolution.

During inference, the first model provides enough contextual information about

the overall shape of the defective skull while the second model can ensure precise

contact at the defect border. The final estimate can be inferred by first comput-

ing the coarse estimate ŶLo and then computing the final estimate ŶHi using the

sliding window approach, substantially reducing the memory footprint.

symmetrised input The chosen U-net architecture in the low-resolution

CNN is in fact not well suited for transferring information from one side of the

volume to the opposing side as this transfer can only happen in the deeper layers

of the model where the shape information is already compressed. However, the

ability to preserve anatomical symmetry is a critical part of the method. To this

end, we concatenated a sagitally flipped copy of the volume to the low-resolution

CNN input. This makes it easier to propagate the symmetry information using

convolutional kernels and skip connections of the U-net architecture. The effect of

symmetrizing input is demonstrated in Section 8.4.

8.3.2 Optimization

We optimize the CNNs using training batches of size 2, which fully utilize the avail-

able GPU. An Adam optimizer is used as it is currently one of the most widely

used optimization algorithms suitable for most deep learning applications [119].

Although we train both CNNs with their respective loss functions LLo and LHi,

we train the cascade in an end-to-end manner. The training samples for the first
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Figure 8.3: Overview of the proposed 3D CNN cascade. The symmetrized low-resolution

input XLo is fed into the first model fLo to produce the missing shape estima-

tion ŶLo. Then, it is concatenated to the high-resolution input XHi and fed into

the second model fHi to produce the final high-resolution missing shape ŶHi.

Discriminator CNNs d(·) and latent vectors z are only used in the generative

model.

model (YLo,XLodefective) and the random training crops for the second model

(YHi,XHidefective) are always sampled from the same skull volume.

discriminative model We first assume that the skull reconstruction task

has a single correct ground-truth solution given by the original missing anatomy

shape Y. This allows us to use a reconstruction loss similar to a segmentation task.

We chose the soft Dice loss [94] due to its good performance in dealing with class

imbalance. The two losses are defined as

LLoDice = Dice(Y
Lo, fLo(XLodefective)), (8.1)

LHiDice = Dice
(
YHi, fHi

(
fLo(XLodefective),X

Hi
defective

))
, (8.2)

and we optimize them iteratively for 300, 000 training steps. While it is possible

to optimize the whole cascade using only the LHi loss, we found that using the

auxiliary loss LLo is necessary for correct model behaviour.

generative model To make the described reconstruction model generative,

we make two modifications well known from GAN literature [45] to both CNNs.

Namely, we add the adversarial loss function LAdv in the form of a discriminator

CNN d(·), which allows the model to learn the distribution P(Ŷ|Xdefective), and

inject a random latent vector into the reconstruction CNNs, which allows them to

randomly sample from this distribution. We concatenate the random latent vector

with the bottleneck tensor of both CNNs as shown in Figure 8.3. The discrimi-

nator CNNs have the same architecture as the encoder part of the reconstruction

CNNs with additional dense layers that output the discriminator scores. We use
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the improved Wasserstein GAN formulation with gradient penalty [48] during

the training. Given a combination of the defective skull shape and the missing

anatomy shape, the discriminator is trained to assign a low score d(Y,Xdefective)

to the ground-truth missing shape and a high score to the reconstructed missing

shape d(Ŷ,Xdefective) at both a low and high resolution, using the low-resolution

discriminator dLo and high-resolution discriminator dHi. To optimize the recon-

struction CNNs in this case, we use a combination of the reconstruction and adver-

sarial loss, similarly to Wang et al.[130]. The losses of the reconstruction CNNs, in

this case, are defined as

LLo = LLoDice +αL
Lo
Adv, (8.3)

LHi = LHiDice +αL
Hi
Adv, (8.4)

where α is set to 10−2. We again optimize dLo, fLo, dHi and fHi iteratively for

300, 000 training steps. For an overview of our method and both discriminative

and generative models, see Figure 8.3.

8.4 experimental results

The experiments discussed in this section were run on a system with 11GB Titan

Xp GPU and a quad-core i5 processor with 24GB RAM. The complete training of

the models took approximately 8 days. After the model is trained, the method is

able to fully reconstruct each skull in under 5 seconds, which is important for its

efficient use in clinical practice. This is achieved by first inferring the low-resolution

model on the full down-sampled volume and then sequentially inferring the high-

resolution model on positions where the low-resolution model predicted a defect

until the whole estimated defect area is processed. For visualization, the voxel grid

was converted into a polygonal mesh which was then smoothed using a two-step

smoothing algorithm [14].

We measured the precision of each method as the average symmetric unsigned

distance between the surface voxels of the output reconstruction and the original

anatomy shape which we considered to be ground-truth. We only measured the

error on the outer surface of the skull because the inner surface is not relevant for

cranial implant design in clinical practice. To get more insight into the performance

of our method, we divided the evaluation into four groups. The unilateral-parietal,

unilateral-frontal and bilateral defect groups are described in Section 8.2 and the

combined group includes all the defects, including random ones. Table 8.1 contains

the average surface error for all models tested on each defect group.

We first evaluated the performance of the discriminative model and the effect of

the symmetrized input on the error distribution in the testing set. The model with

a simple input was able to reconstruct each testing skull successfully. However, we
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Figure 8.4: The overall performance of the discriminative model on different groups of

testing defective skulls. Average surface error [mm] for a simple input (green)

and symmetrised input (blue).

noticed that the errors in unilateral groups reached similar values as the bilateral

group. This is in conflict with the expectation that while bilateral defects could

allow for some variability in correctly completed shapes, the unilateral defects

should be more directly constrained by the condition of symmetry and thus yield

lower surface reconstruction errors. The effect of symmetrizing input as described

in Section 8.3 was that the average measured error of the reconstructed unilat-

eral defects dropped from 0.69mm to 0.48mm for parietal and from 0.69mm to

0.60mm for frontal defects. As expected, the bilateral defects group was less af-

fected by the symmetrized input, although the error still slightly decreased since

some bilateral defects are in fact partly constrained by the symmetry. The overall

performance of the discriminative model for both simple and symmetrized input is

shown in Figure 8.4. The overall average surface error of the discriminative model

with a symmetrized input for the whole testing set was 0.59± 0.21mm. Several

examples of the discriminative model reconstructions are shown in Figure 8.5.

In order to explore the relationship between the discriminative model perfor-

mance and the area of the reconstructed defects, we created an extra set of nine

cranial defects in each of the ten designated test skulls. The defects were created

by subtracting the same shape with different scales from each skull (see Figure 8.7

for their illustration). The surface area of the resulting skull defects ranged from

10 to 140 cm2. The resulting surface errors of the discriminative model outputs are

shown in Figure 8.6 in the form of a scatter plot. While there is an apparent corre-

lation between the measured surface error and the reconstructed surface area, the
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Figure 8.5: Examples of results of the discriminative model reconstructions for parietal,

frontal, bilateral and random defects, respectively. From top to bottom: Surface

error maps, input synthetically broken skulls and reconstructed skull shapes.

Note that the majority of the reconstructed surface reaches errors of less than

one millimeter in all cases.

average surface error was under 0.7mm for all defects up to an area of 100 cm2.

For even larger defects, the average surface error exceeded 1mm in several cases.

However, for the majority of the cases, the surface errors of the results were still

well under this value.

Next, we evaluated the performance of the generative model with symmetrized

input volumes and random input latent vectors z. The overall average surface er-

ror was 0.68± 0.28mm. For each defect group, the error of the generative model

was higher than that of the discriminative model. However, it should be noted

that since now we consider multiple correct reconstructions for a single skull de-

fect, the error measured against the ground-truth shape might not be a good in-

dicator of the method’s performance. The generative model allows us to sample

multiple different outputs for a single input defective skull by changing the input

latent vectors. Therefore, we also experimented with generating multiple recon-

structions and measuring the best achieved result. The overall average surface er-

ror when measuring the best-of-five sampled reconstructions for each testing skull

was 0.56± 0.21mm. The results for individual defect groups, as seen in Figure 8.8,

were similar to the discriminative model in this case. However, a reduction of the

error can be noticed in the bilateral group, with the error reduced from 0.73mm

to 0.65mm when compared to the discriminative model. This might once again

be explained by the fact that due to weaker symmetry constraints in this group,
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Figure 8.6: The performance of the discriminative model in the context of a reconstructed

surface area. While the variability of the model output errors increases with

larger defects, the results are within an acceptable range even for a majority of

the larger defects.
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Figure 8.7: Examples of results of the discriminative model reconstructions for a set of

defects with different scales on a single test skull. An area where the model

output deviates from the original shape by more than 2mm can be observed in

the last case.
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Figure 8.8: The overall performance of the generative model on different groups of testing

defective skulls. Average surface error [mm] for reconstruction with random

latent vector (green) and for best-of-five reconstructions (blue).

the variability of acceptable reconstructions is greater. Therefore, generating subse-

quent different samples constrained on the same input increases the probability of

generating at least one sample close to the original ground-truth shape.

To further illustrate the behavior of the generative model, we also conducted

an experiment with latent space interpolation for one bilateral defect. We set both

latent vectors for low-resolution zLo and high-resolution zHi to only contain con-

stant values c/10 and we generated samples for c = 1, 2 . . . 9. Our experiments

showed that the generative model responds to these changes in total latent vector

energy the most and we leave investigation into the limits of achievable anatomical

variability in the output for future work. The resulting reconstructions of the gen-

Table 8.1: Average surface error [mm] for individual defect groups.

Method Synthetic defects Real defects

UP UF Bi Total

Statistical shape models [41] 0.47 - - - -

Discriminative 0.69 0.69 0.78 0.68 -

Discriminative + symmetrised 0.48 0.60 0.73 0.59 0.80

Generative + symmetrised (random) 0.63 0.71 0.81 0.68 -

Generative + symmetrised (best of 5) 0.46 0.62 0.65 0.56 0.69
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Figure 8.9: The input defective skull (first row, left) and original skull shape (second row,

left) and examples of output reconstructions resulting from linear interpolation

in the latent space superimposed onto the input defective skull. Surface dis-

tance from the original shape can be seen decreasing in the middle part of the

defect, however, it increases in areas near the defect border where errors are

unacceptable for aesthetic reasons.

erative model along with the ground-truth original shape are shown in Figure 8.9.

We also reported the measured surface errors against the ground-truth shape for

each sample. It can be seen that the model is able to sample from the learned man-

ifold of solutions, allowing for manipulating the reconstructed shape while still

keeping a seamless connection to the original bone.

Finally, in order to evaluate the ability of our approach to generalize, we also

tested the performance of the models trained exclusively on our synthetic dataset

on an internal dataset of real defective patients without any fine-tuning of the

model. Both models reconstructed the real defects mostly successfully. However,

there was an expected increase in the surface error in both the discriminative model

output and the best-of-five generative model output. In some cases, there were also

visible faults such as slight depressions or even holes as seen in Figure 8.10.

This could be partly attributed to the fact that the real testing patients come

from a different geographic location, in which the anatomical variability of the

skull is different [56]. Specifically, the differences in average shapes of the two

datasets aligned using the same alignment method are illustrated in Figure 8.12.
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Figure 8.10: Example outputs of the discriminative model for real patient data. Although

some reconstruction faults can be seen in the last two cases, suggesting that

real training data of target population should be added to the model in the fu-

ture, the reconstruction is usually correct. The surface distance to the original

shape is well below one millimeter on average.
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Figure 8.11: Comparison of performance of the models’ average surface error [mm] for

reconstruction of synthetic defects and real defects. Results shown for dis-

criminative model (green) and for best-of-five outputs of generative model

(blue).
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Figure 8.12: Superimposed frontal (left) and axial (right) projections of the segmented

skulls. The 10 testing cases of the synthetic dataset rendered in blue and the

7 testing cases of the internal dataset in red. A difference in several shape

characteristics of the skulls can be observed.

The fact that these basic shape characteristics are learned by the low-resolution

reconstruction model may lead to the wrong estimation of the cranial volume in

the frontal part of the skull and even holes in parts that extend significantly beyond

the anatomical variability observed in the training dataset. Overall, the outcome

of this experiment is encouraging, although real defective patient scans from the

target population should be added to the training process before evaluating the

method performance in a real clinical setting.

8.5 discussion

For the deployment of reconstruction methods into the clinical workflow, several

conditions must be met. First, symmetry of the skull should be preserved as well as

possible, including in cases where the patient’s skull itself is partly asymmetric and

where the defect reaches partly into both sides of the skull. Second, the automatic

reconstruction should fit very precisely to the defect borders. Although the models

presented in this work will occasionally produce a slightly asymmetric result or

fail to avoid some depressions around the defect border, our results show that the

proposed method can achieve an overall satisfactory performance in this regard,

as illustrated by example reconstructions in Figures 8.5 and 8.10. The measured

average surface errors shown in Figures 8.4 and 8.6 also show how the performance

is affected by different shapes and sizes of the defects, including bilateral defects,

orbital area reconstructions, and defects with a surface area of over 100 cm2. The
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implications of these results for the future implementation of the method into

clinical practice should now be assessed by clinicians with experience in this area.

In the context of the current state of the art in the area of skull reconstruction,

our approach differs from conventional mirroring-based and interpolation-based

methods by its ability to reconstruct an arbitrary part of the skull present in the

described dataset without requiring any parameter adjusting. Its ability to gener-

alize to unseen skulls is, however, fully dependent on the variability of the train-

ing dataset used for model optimization. Figure 8.11 demonstrates how using the

model on a population where shapes of the skulls come from different distribution

causes occasional faults and a slight increase in the average surface error of the re-

constructions. Nevertheless, this issue will be mitigated by introducing cases from

the target population into the dataset and retraining the reconstruction model in

the near future.

Methods based on statistical shape models also possess this dependency on train-

ing dataset variability and the potential ability to model any part of the skull. This

makes them very similar to the approach proposed in this work in terms of pos-

sible target use cases. Fuessinger et al. [41] achieved an average surface error of

0.47mm when reconstructing unilateral spherical defects of the cranial area with a

radius of 5 cm. This could be compared to the performance of our discriminative

and generative models reaching 0.48 and 0.46mm average surface error, respec-

tively, on the unilateral parietal defect group. In contrast, our method does not

require any manual cleaning of the defect border as the seamless fit of the recon-

structed part to the rest of the skull is handled by the CNN model. It would be

interesting to see the performance of the statistical shape model on more challeng-

ing parts of the introduced dataset such as defects of the orbital area and larger

bilateral defects.

A more general comparison is currently limited by the lack of standardized

datasets and methodology to evaluate the anatomical reconstruction methods. Es-

pecially in the case of bilateral defects in which symmetry cannot be used to

uniquely define the correct output, we argue that although the absolute distance

from the ground-truth shape might give an adequate estimate of how well a

method performs, it should not be used as the single criterion of correct recon-

struction. In addition to variability in cranium shape, modeling structures such as

skull protuberances, sutures, or uneven surface is unnecessary for means of PSI

design. Therefore, the most relevant metric to measure the reconstruction method

performance would be the amount of time required by the operating expert to

design clinically acceptable PSI from the initial reconstruction. However, this is

infeasible without the method being deployed into clinical practice.
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Since the discriminative model outputs reach lower average surface error than

the randomly sampled outputs of the generative model, it can be concluded that

it is more suitable for a completely automatic setting. However, the generative

model could alternatively be used in a semi-automatic setting. In case the initial re-

construction is not satisfactory for further processing, several subsequent samples

from the generative model could be offered to the expert to increase the chance of

avoiding falling back to a less efficient conventional workflow.

Finally, the reconstruction method is not limited to the skull reconstruction task

or anatomical reconstruction in general. The method can potentially be applied

to any shape completion task where both global contextual information, as well

as fine structural details, need to be taken into account during the data volume

reconstruction.

8.6 conclusions

This work presented a multi-scale cascaded CNN architecture for general shape

completion applied to the reconstruction of missing skull anatomy in a fully au-

tomatic manner. We also showed that symmetrized input can increase the perfor-

mance in this task and that both discriminative and generative models can be used

successfully. The proposed method reaches enough precision and robustness to

be considered in clinical practice. Validation was done on a synthetic dataset that

closely mimics real patient cases and this dataset was made public.

The model trained exclusively on synthetic data also performs well on real de-

fective patient cases, but adding samples from the real target population to the

training should be considered in order to improve the results. Further testing with

more patient data in a clinical setting is now required to fully confirm its efficacy

and identify any limitations.

Currently, the method is constrained to the cranial and orbital areas. We plan

to extend the method and the dataset to include maxilla and zygomatic bones as

well in the future. Adapting the method for alternative data representations, such

as point clouds or graphs, could also be explored as a way to improve processing

speed and precision.
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A U T O I M P L A N T C H A L L E N G E M E T H O D S U B M I S S I O N

This chapter presents the paper “Cranial Defect Reconstruction using Cascaded

CNN with Alignment” that describes a challenge submission to the MICCAI 2020

AutoImplant challenge [73]. The method reached 3rd place out of 11 participating

teams in both challenge tracks. The text was edited by removing the section with

related work which can be found in Section 3.2

9.1 introduction

Craniectomy is a procedure during which a specific part of the skull is resected

and eventually replaced with a cranial implant. When designing the implant, the

correct skull shape reconstruction is critical for a satisfactory patient outcome. The

shape of the implant should make it possible to restore the protective and aesthetic

function of the skull and also fit very precisely along the border [68, 69]. A success-

fully reconstructed skull should be mostly indistinguishable from a healthy skull.

The original skull shape before the resection is therefore often used as the golden

standard of the target reconstructed shape [72].

This paper presents a BUT submission to the MICCAI 2020 AutoImplant Chal-

lenge [73]. The proposed method is an adaptation of the cascaded reconstruction

CNN architecture that has been recently applied to the SkullBreak dataset [63]. Fur-

thermore, the method is extended by an automatic landmark-based registration

and a detail-preserving morphological post-processing step. In our experiments,

we show how different components of the method affect the reconstruction accu-

racy on a validation dataset of defective skulls. Finally, we report the results on the

full testing dataset of the AutoImplant Challenge.

9.2 proposed method

The proposed method consists of several steps as illustrated in Figure 9.1. The

landmark detection step and the skull reconstruction step are handled by a 3D

CNN model.

75
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(a) (b) (c)

(d) (e) (f)

Figure 9.1: Overview of the proposed method. In the input skull volume (a) 4 landmarks

are detected (b). The skull is transformed (c) so that the detected landmarks

(red) are registered to the reference landmarks (green). Then, the skull is re-

constructed by estimating the missing shape (d). Finally, the result is post-

processed (e) and transformed back into the original skull coordinates (f).

9.3 skull alignment

The defects in the AutoImplant dataset are generated on a static position inside

the data volumes and the variability in their shapes and positions comes from the

variability of positions of the skulls. When reconstructing the shapes with a vol-

umetric CNN model, this introduces some difficulties. The reconstruction model

needs to implicitly learn rotational and translational invariance and it also makes

it cumbersome to exploit the symmetric properties of the skulls. To address this,

we use scale and rigid transformations to normalize the scale and the position of

the skulls.

Unlike the parameters of the scale transform that are known from the CT acqui-

sition process, the parameters of the rigid transformation need to be inferred from

the data. We use the positions of four anatomical landmarks, namely the left and

right auditory meatus and left and right supraorbital notch (see Figure 9.1 b), to

compute the transform. This allows us to avoid possible complications of using

conventional registration methods, such as issues with substantial differences in

initial positions of the data volumes and different anatomical regions present in

the data.

We trained a simple 3D CNN model for landmark detection with a U-net archi-

tecture using the heatmap regression approach [103]. The detection model is illus-

trated in Figure 9.2 (left) and its training is further described in Section 9.6. After
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detecting the landmarks, we find the rigid transform that moves these landmarks

onto reference landmarks placed on the xy plane using singular value decompo-

sition [15]. Even if one landmark is not detected either because of the detection

model failure or because of a skull defect, such missing detection can usually be

identified [35] and the missing landmark position can be computed from the other

three landmarks.

9.4 skull reconstruction

The skull reconstruction model takes the aligned binary defective skull data as an

input and produces the missing part of the skull as an output. The model consists

of two 3D CNNs with modified U-net architecture that are trained using the soft

Dice loss. Both networks have additional max-pooling and up-sampling steps as

compared to U-net to increase the field of view of the output neurons and only

one convolutional layer at each resolution as shown in Figure 9.2 (right).

The first network takes a full data volume at a reduced resolution as input and

produces an estimate of the missing shape with the corresponding resolution. A

laterally flipped copy of the volume is also concatenated to the input of this net-

work to facilitate easier propagation of information from one side of the skull

to the other [63]. The second network takes a single patch of the original resolu-

tion input concatenated to the up-sampled patch of the low-resolution estimate

at the corresponding position and produces the final missing shape estimate in

this patch. Both networks are trained using their respective resolution ground-

truth. Each training step comprises two updates. First, the low-resolution network

weights are updated using the low-resolution ground truth. Next, both low- and

high-resolution network weights are updated using the high-resolution ground

truth. The patches are chosen randomly during the training. Evaluating the sec-

ond network using a window sliding over all the positions in the low-resolution

estimate produces the full missing shape at the original resolution.

The architecture of both of the reconstruction networks is shown in Figure 9.2

(right) and the training details can be found in Section 9.6. The reconstruction

model is described in further detail by Kodym et al. [63].

9.5 shape post-processing

The reconstruction model will occasionally produce outputs that contain noise,

such as disjoint objects or protuberances covering the healthy part of the skull as

shown in Figure 9.3 (left). We make an assumption that the missing shapes should

only consist of a single compact object. First, to isolate only the main missing
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Figure 9.2: Architectures of the 3D CNN models used for landmark detection (left) and

shape reconstruction (right).

Figure 9.3: Example of the detail-preserving morphological post-processing of the esti-

mated missing shape. Note that the undesired protuberance is removed while

the fine details are preserved along the object border.

shape, we use connected component analysis and discard all objects except the

largest one. Second, we use a morphological opening operation to remove any

shape protuberances with less than desired minimum shape thickness.

However, the opening operation also tends to produce overly smooth shapes

along the defect edges where it is desirable to keep the fine details produced by

the reconstruction model. To address this, we keep both the original and morpho-

logically open shapes. We then apply an additional morphological dilation to the

open shape, producing a mask that is slightly bigger than the original shape but

does not include the protuberances. Masking the original shape with such a mask

results in a shape with the original fine details but without the larger protuber-

ances as shown in Figure 9.3 (right).
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9.6 experiments

In this section, we describe the experiments and show the effect of individual

method components on the reconstruction outputs. All the experiments were run

on a system with Titan Xp GPU with 12GB GRAM.

9.6.1 Landmark Detection

We manually annotated the four landmarks in all 100 training skull volumes. We

trained the landmark detection CNN model on 90 samples, leaving 10 skulls for

validation. The model was trained for 100, 000 iterations using Adam optimizer

with training step 10−4 and the dataset was strongly augmented using random

rotations to ascertain that the model is able to detect the landmarks in cases of

arbitrary patient positions inside the scanner.

The results of the landmark detection on the 10 validation cases can be seen in

Figure 9.4 (left). The auditory meatus landmarks were detected with an error of

1.22± 0.70 mm while the supraorbital notch landmarks achieved a slightly higher

error of 1.84± 1.03 mm. An important observation is that the trained model also

succeeded in the detection of all four landmarks in all the 110 testing cases as

well, and every skull could be aligned fully automatically without any manual

intervention at test time.

9.6.2 Missing Shape Inference

Similar to the landmark detection model, the reconstruction networks were also

trained on 90 training samples. For the ablation experiments in this work, both

low- and high-resolution networks were trained on batches of 4 samples using

Adam optimizer with training step 10−4 for 50, 000 iterations using a resolution

of 3.2 mm per voxel and 0.4 mm per voxel, respectively. All data volumes were

padded to dimensions 512× 512× 512 which means that the corresponding low-

resolution samples had dimensions 64× 64× 64. Random lateral flips were used

to augment the dataset.

We trained three different reconstruction models. The basic cascade model is

trained on the originally provided challenge data. The mirrored input channel

is not used in the low-resolution network of this model as the sagittal plane is not

known. The aligned model is trained on the data that have been previously aligned

using the detected landmark positions. This also allows us to use the mirrored

channel in this model. The aligned and augmented model is also trained on addi-

tional defective skulls that have been created from the training complete skulls.
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Figure 9.4: Accuracy of the landmark detection (left) and the reconstruction models (right)

on the validation cases.

Five defects were created on each skull using random shapes, similar to the Skull-

Break dataset, resulting in additional 450 training cases. We also created 10 addi-

tional validation cases using the same process.

The results of the reconstruction model on the validation cases are shown in

Figure 9.4 (right). The basic cascade model had the worst performance on the

validation cases, achieving an average Dice score of 0.835. Simply aligning the data

and adding the mirrored input to the low-resolution network in the aligned model

had a substantial effect on the model performance, reaching 0.895 Dice score and

showing the benefit of reducing the degrees of freedom of the defects during the

reconstruction. However, both models overfit strongly to the training dataset with

specific shape and position of the defects and were unable to generalize to the

additional augmented validation cases where the distribution of defect shapes and

positions is different. The aligned and augmented model trained on the additional

defective cases, on the other hand, was able to both reconstruct the additional

validation cases and increase the original data accuracy to a Dice score of 0.903.

9.7 results

We aligned both subsets of the final 110 test cases of the AutoImplant challenge

using the landmark detection model. For reconstruction, we used the aligned and

augmented model that had been trained for 120, 000 iterations. We also increased

the first reconstruction network resolution to 1.6 mm per voxel, resulting in low-

resolution volumes of dimensions 128 × 128 × 128 voxels in the final evaluated



9.8 conclusion 81

Table 9.1: The results of the proposed method on the AutoImplant Challenge test dataset

in terms of Dice score and Hausdorff distance.

Test case (100) Test case (10) Overall (110)

Mean DSC 0.920 0.910 0.919

Mean HD 4.137 4.707 4.189

model. To discard the occasional artifacts, we used the post-processing method

described in Section 9.5. Both standard and additional subsets of the test dataset

were reconstructed completely automatically without any manual interactions. The

landmark detection model, the aligned training dataset, and the augmented train-

ing dataset are publicly available1.

The results of the proposed method on the challenge test dataset in terms of

Dice coefficient and Hausdorff distance are shown in Table 9.1. Several qualitative

examples of the reconstruction output on the standard subset, the additional sub-

set, and also the augmented validation dataset are shown in Figure 9.5 where one

case of reconstruction failure on the additional test set can also be observed.

9.8 conclusion

Our experiments showed that the skull alignment and data augmentation tech-

niques we used increased the accuracy of the skull reconstruction. These are gen-

eral concepts that could be applied to any other reconstruction model. Although

we only encountered one failure case in our experiments, it hints at the fact that

more defect shape augmentations should be used to increase the robustness of the

reconstruction model. It is currently unknown whether the achieved accuracy in

terms of the Dice coefficient and Hausdorff distance could warrant clinical applica-

bility of the method. However, visual inspection of the reconstructed defects shows

no visible artifacts in most cases.

While the reconstruction method reaches good accuracy, the final shape will

usually have to be further edited by an experienced clinician in medical practice.

Therefore, it would be beneficial to explore ways to include interactivity in the im-

plant design method, possibly drawing inspiration from interactive convolutional

networks that have been successfully applied to segmentation tasks. Another inter-

esting research direction is leveraging different data representations such as point

clouds or level sets.

1 https://github.com/OldaKodym/BUT_autoimplant_public

https://github.com/OldaKodym/BUT_autoimplant_public
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Figure 9.5: Examples of the reconstruction results. From top row to bottom: The standard

test set, the additional test set and the augmented validation set. Reconstruction

failure could be observed in the last case of the additional test set in red color.



10
G O I N G F R O M S Y N T H E T I C T O R E A L PAT I E N T D ATA

This chapter presents the article “Deep Learning for Cranioplasty in Clinical Prac-

tice: Going from Synthetic to Real Patient Data” currently in the review process of

the Computers in Biology journal. The work deals with the reconstruction of real

patient data and with the design of directly printable cranial implants.

10.1 introduction

Cranioplasty is a procedure that restores the aesthetic, mechanical, and protec-

tive function of a defective skull by implanting material into the defect area. Al-

though autologous bone or titanium meshes can be used as implants, 3D printable

implants have been shown to be more versatile and to have several other advan-

tages, such as lower risk of complications or lower chance of requiring a secondary

surgery [44, 32]. Manufacturing these implants requires modeling their shape in

computer-assisted design (CAD) software as the first step. This virtual reconstruc-

tion, however, requires the human operator to have sufficient knowledge of skull

anatomy as well as skill in 3D modeling. Even if these requirements are met, cor-

rectly modeling the implant is time-consuming even for a skilled operator, espe-

cially in cases of defects reaching into both lateral sides of the skull [25]. Automati-

cally producing fast and precise estimations of the implant shapes could therefore

mean increased standardization and efficiency of cranioplasty clinical workflow.

Most recent (semi-)automatic skull reconstruction methods aim to solve the task

of finding the exact shape of the missing part of the skull. We refer to this type

of reconstruction output as a skull patch in this article. The main criteria for a suc-

cessful skull patch estimation is an anatomically plausible, symmetric shape with

a smooth and seamless fit along the defect border. In clinical practice, this allows

the operator to use the estimated skull patch as a template for the final cranial

implant design in CAD software. Conventional skull reconstruction methods use

mirroring the healthy side of the skull onto the defective side [23], surface inter-

polations [24, 127] or their combination [88] to estimate the skull patch. Statistical

shape models [89] greatly expanded the range of skull defects that can be recon-

structed automatically [112, 41, 42]. In recent years, the research focus shifted to vol-

umetric convolutional neural networks (CNNs) which have shown great promise

in fast and robust skull patch reconstruction[98, 63, 91] and became the method of

83
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Figure 10.1: The proposed multi-branch architecture makes use of multi-task learning on

different skull reconstruction datasets. In addition to higher overall accuracy

and ability to directly output cranial implant shapes, the skull patch output of

the multi-branch model also better fits the shape to complex defect borders in

real clinical data.

choice in the 2020 AutoImplant challenge [73]. The CNN-based methods are usu-

ally trained and evaluated using synthetic defects created by removing some part

of healthy, resulting in a virtually infinite amount of different samples.

The final shape of the cranial implant (referred to simply as implant in the re-

mainder of this article) differs from the shape of the skull patch in several ways

(see Figure 10.2). The implants have a constant thickness different from the orig-

inal bone and have some spatial tolerance along the defect border to account for

scar tissue and continuing bone growth, ensuring implantability. The shape of the

implant can also be estimated directly by a CNN model, provided that sufficient

training data is available for training. Although it is more difficult to edit this kind

of shape in CAD software due to fine details along the defect border, it has the

potential to be used in a fully automatic setting when no human operator or not

enough time for manual design is available, for example in intra-operative rapid

manufacturing of cranial implants [128].

Synthetic datasets for automatic estimation of skull patches recently became

available because they are easy to create from public databases of healthy skulls,

such as CQ500 [28]. However, they do not necessarily fully cover the defective

skull shape distribution of target clinical data (i. e. different anatomical variability

of the target population, defect shapes and sizes, complex morphology of defect

border), which may affect the resulting reconstruction quality in practice [63]. Real

clinical data with expert-designed implant models are, on the other hand, difficult

to obtain. Furthermore, in our experience, the distribution of available clinical data
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is often biased towards simple uni-lateral defect cases and not easily extendable

by synthetic defect and implant shapes. The more challenging bilateral and fronto-

orbital defects are less common, yet it is in these challenging cases where correct

automatic skull patch reconstruction or implant design can have the largest impact

on clinical practice.

The main contribution of this article is proposing a multi-branch CNN architec-

ture capable of learning from the two types of cranioplasty data simultaneously.

Given a defective skull, the model estimates the shapes of both the skull patch and

the implant during inference, as illustrated in Figure 10.1. We compare the pro-

posed multi-branch model to two baseline models trained on synthetic-only and

clinical-only datasets and show that both outputs of the proposed multi-branch

model reach comparatively higher quality and contain a lower amount of arti-

facts, which is crucial for deployment in clinical practice. Although a similar effect

could possibly be achieved by collecting a vast amount of well-distributed clinical

data or by perfectly matching their distribution by meticulously tailoring synthetic

data, we believe that the proposed approach of combining a large amount of im-

perfect synthetic data and a limited set of target clinical data is generally simpler

and easily extendable to different types of cranioplasty data (i. e. different popula-

tion, additional defect areas such as the orbital floor or zygomatic bone, different

preferences for the final implant shape). In addition to quantifying reconstruction

quality using common binary shape reconstruction metrics such as Dice coefficient

and surface distance, we also propose a new metric based on Gaussian curvature

to quantify surface imperfections that have a direct impact on aesthetic patient

outcome.

10.2 materials and methods

10.2.1 Datasets

We use two different cranioplasty datasets in this work. The SkullBreak dataset [64]

is a synthetic skull shape reconstruction dataset adapted from the CQ500 public

database of head CT scans [28]. The CT scans were rigidly aligned and segmented

to provide normalized shapes of healthy skulls. Then, synthetic defects were cre-

ated by subtracting random shapes from several regions in each skull. Morpho-

logical operations were additionally used to mimic some degree of bone healing

processes along the defect borders. The dataset contains 570 training and 100 test-

ing pairs of defective skulls and corresponding skull patches.

The second, in-house dataset was provided by the TESCAN Medical company.

It contains a total of 387 real patient cases indicated for cranioplasty. Each pa-
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Figure 10.2: Axial slices through samples from the datasets used in this work. From left to

right: skull patch sample from a synthetic dataset, manually designed implant

shape sample from an in-house clinical dataset, manually designed skull patch

sample from an in-house clinical dataset.

tient case consists of CT data with manual skull segmentation and a mesh model

corresponding to an expert-designed cranial implant. 75 of these cases addition-

ally contain expert-designed mesh models of patches covering the full area of the

defects that were used as the initial template for the final implant design by the

expert. Although these expert-designed patches have a different thickness from the

original bone, their outer surface can be used as a reference for the outer surface

of automatically reconstructed patches. This naturally led us to split the in-house

dataset correspondingly into 312 training cases and 75 test cases, ensuring that a

real clinical test set of reasonable size is available for evaluation of both the skull

patch shape estimation and the final implant shape estimation tasks. All implant

and patch mesh models in the clinical in-house dataset were rasterized into voxel

grids and the data were rigidly aligned to conform with the SkullBreak data. Sev-

eral examples from all datasets can be seen in Figure 10.2.

The two datasets also differ in several more aspects. Because they come from ge-

ographically distant sources, the average size and the anatomical variability of the

skulls differ [106]. The scale and positional variability of the defects is also different.

While the Skullbreak dataset was created specifically to contain a balanced amount

of unilateral, bilateral, and fronto-orbital defects, the clinical in-house dataset con-

tains a higher amount of uni-lateral defects with larger sizes and reaching farther

into lower parts of temporal and sphenoid bones. Although some of these dif-

ferences could be addressed by tailoring the synthetic defects in the Skullbreak

dataset to fit the distribution of clinical data more closely, some aspects such as

skull shape variation and defect border complexity cannot be precisely emulated.
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Figure 10.3: Illustration of the multi-branch CNN cascade training process. Inputs and out-

puts of the network in light and dark green colors, respectively, and ground-

truth shapes in blue. In each training step, the coarse network weights are first

updated using the sum of the coarse losses, and then both coarse and high-

resolution network weights are updated using the sum of the high-resolution

losses.

10.2.2 Baseline CNN Models for Shape Estimation

We use the same baseline reconstruction method for both the skull patch estima-

tion and the implant estimation tasks, with the only difference being the data used

for training. The method is based on a cascade of two U-net-like volumetric CNNs

proposed in our previous work [63]. The first, coarse CNN takes a binary shape

of the defective skull in coarse resolution and produces an initial output shape

estimate with the same resolution. The second, high-resolution CNN then takes a

single crop of upscaled coarse shape estimate and corresponding crop of the high-

resolution defective skull and produces a high-resolution shape estimate of that

crop, effectively performing super-resolution of the coarse shape estimate locally

conditioned on the high-resolution defective skull. The coarse CNN model addi-

tionally uses a mirrored copy of the input volume, which was shown to improve

lateral symmetry of output shapes [63].

We use 12 initial feature channels and an input volume size of 128× 128× 128
for both the coarse and high-resolution CNNs. The final output is created by first

inferring the coarse shape estimate and then inferring the high-resolution CNN

in a sliding window manner. Both the original input and the final high-resolution

output volumes have a size of 512× 512× 512 voxels with a resolution of 0.4 mm

per voxel. We train the CNN cascade for 300, 000 steps on mini-batches of size 4
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using the soft Dice loss [94]. Each training step consists of propagating gradients

of loss computed on coarse resolution through the coarse resolution CNN and

propagating gradients of loss computed on one high-resolution crop through both

the coarse and high-resolution CNNs. More details about the CNN architecture

and training procedure can be found in the original work [63].

10.2.3 Multi-branch CNN Model for Joint Shapes Estimation

To facilitate training of both tasks on the two datasets simultaneously using a single

CNN cascade model, we make the following changes to the baseline architecture.

For the coarse CNN, instead of producing the output directly from the last layer

of the U-net-like backbone, we branch the network into two separate shape estima-

tion branches. The skull patch estimation branch is trained to output coarse shape

estimates of the skull patch using the training samples from the SkullBreak dataset.

Conversely, the implant estimation branch is trained to output coarse estimation

of the shape of implants using the training samples from the in-house dataset. The

two outputs are concatenated and used as an input for the high-resolution CNN.

The high-resolution CNN output is again split into skull patch estimation and

implant estimation branches trained on the corresponding dataset samples.

Each shape estimation branch is formed by a single conv-ReLU-conv-softmax

block, with both convolutional layers having the same number of features as the

last U-net layer. This means that while the shape estimation branches allow two

slightly different outputs to be estimated by the CNN, the shared U-net-like back-

bone is forced to learn to extract meaningful local features that are suitable for

correct shape estimation on both datasets.

During the training of the multi-branch CNN cascade, we use mixed mini-

batches containing two samples from the Skullbreak dataset and two samples from

the in-house dataset. Accordingly, two loss components are computed for both the

coarse and high-resolution CNNs: one for the skull patch estimation branch output

using the SkullBreak samples and one for the implant estimation branch output us-

ing the in-house dataset samples. These loss components are then added together

before updating the according CNN weights. The multi-branch model overview is

shown in Figure 10.3.

10.2.4 Metrics

For the sake of the quantitative evaluation, we assume that the expert-designed

shapes in the test set represent the only correct solution to the shape estimation

tasks. This means that the quality of the output can be quantified using segmen-
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tation metrics such as volumetric overlaps (i.e. Dice coefficient) and surface dis-

tance [135]. However, note that the shape reconstruction task is specific in allow-

ing some variability in the reconstructed shape in some cases, as long as there are

no imperfections along the fit of the reconstructed shape to the input shape. See

Section 11 for an illustration of how different segmentation metrics correlate with

a subjective quality score of an expert implant designer. For these reasons, we eval-

uate the automatic reconstruction outputs using multiple different metrics in this

work.

In the case of implant shape evaluation, we use the Dice coefficient and average

surface distance for quantification of the estimated implant shape quality, similarly

to recent relevant works [41, 91, 72]. In the case of skull patch shape evaluation,

however, the expert-designed ground-truth patches and model outputs have dif-

ferent characteristics and this prevents us from using these metrics directly (see

Figure 10.2). Because the thickness of the ground-truth patch is different from the

thickness of the original bone in the SkullBreak dataset, we measure average sur-

face error only at outer surface voxels of the skull.

We pay special attention to the quality of fit along the defect border of the skull

patches. Similarly to other authors [41], we report the outer surface distance com-

puted along the defect border. However, this metric may not precisely convey some

types of common errors of skull reconstruction which have impact on the aesthetic

outcome of cranioplasty, such as slight trenches or bumps on the surface along

the defect border. To this end, we compare approximate Gaussian curvatures of

reconstructed skulls and reference skulls along the defect border to supply this

information.

Gaussian curvature is routinely used in 3D model surface analysis litera-

ture [134]. For simplification, we chose to approximate the Gaussian curvature

error of the reconstructed skull shapes by first smoothing the binary images of

skull shapes with a Gaussian blur with σ = 5, then normalizing back to range

between 0 and 1 and computing the Gaussian curvature Ki at each voxel i using

the following equation:

Ki = −

∣∣∣∣∣∣ Hi(F) ∇F
T
i

∇Fi 0

∣∣∣∣∣∣
|∇Fi|4

(10.1)

where F is the blurred volume, ∇F is its gradient and H is Hessian matrix. The

resulting Gaussian curvature volumes are then compared directly by computing

voxel-wise squared error and we report the mean of this error computed along the

defect border voxels as

MSEK =
1

NB

∑
i∈B

(Krefi −Kpredi )2 (10.2)
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Figure 10.4: Implant estimates of the baseline implant model (top) and the multi-branch

model (bottom).

where B is the set of outer border voxels of the predicted patch and NB is their

count. Although the exact result of this method is partially dependent on voxel

resolution, value σ and on the absolute distance between the reconstructed and

the reference skull surfaces, it eliminates the need for finding exact vertex corre-

spondences and our experiments show that high resulting values correspond to

dented or uneven parts of the surfaces.

10.3 results

The baseline implant model was trained using the 312 training implant shapes

from the in-house dataset and the baseline skull patch model was trained using

the 570 Skullbreak training data samples. Because we noticed that the average size

of the SkullBreak skulls differs from the average size of the in-house test skulls,

we trained another baseline skull patch model on a modified version of the Skull-

Break dataset that was rescaled to match the average height, length, and breadth

of the in-house skulls. The multi-branch model was trained using a combination

of the in-house and the rescaled Skullbreak dataset. Outputs of all models were

morphologically denoised by removing smaller connected components and shape

artifacts [62] before comparing them to the reference expert-designed shapes in the

in-house test set.

10.3.1 Implant Shape Estimation Performance

The implant shapes produced by the baseline implant model reached an average

Dice coefficient of 0.85± 0.10 and average surface error of 0.77± 0.44 mm, confirm-

ing that it is possible to learn the direct mapping of defective skull shapes to the

final cranial implant shapes using the CNN cascade. However, because central and
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fronto-orbital defects are not well represented in the in-house training dataset, the

baseline implant model fails to correctly estimate implant shapes in these cases, as

shown in Figure 10.4. This issue may be amplified by the fact that, due to the data

imbalance, the coarse CNN model learns to rely too much on the mirrored input

to provide initial information about the missing shape due to overfitting, leading

to the inability to correctly deal with bilateral defects.

The implant estimates of the multi-branch model reached an average Dice co-

efficient of 0.88± 0.07 and an average surface error of 0.65± 0.33 mm, showing

an increase in accuracy and decreased variability of output shape quality. Closer

inspection of the outputs reveals increased success rate of bilateral and fronto-

orbital implant shape estimation. This can be attributed to better generalization

of the U-net backbone which needs to account for more diverse defect positions

in the SkullBreak dataset. Several example implant shape estimates from both the

baseline implant model and the multi-head model implant estimation branch are

shown in Figure 10.4. The distribution of Dice coefficients and average surface

distances achieved by both models can be found in Figure 10.7.

10.3.2 Skull Patch Estimation Performance

The skull patches produced by the baseline skull patch model trained on the origi-

nal SkullBreak data resulted in an average outer surface error of 0.98± 0.45 mm on

the in-house test set. Rescaling the Skullbreak training skulls to match the average

size of the in-house skulls decreased the error by 15% to 0.83± 0.38 mm, support-

ing the hypotheses that the model learns the average skull shape of the training

data. However, the skull patch estimates still produced shapes with high surface

error and occasional artifacts such as holes and uneven surfaces, especially in cases

of large defects. One of the causes may be the fact that the defects in the SkullBreak

dataset do not fully cover the lower areas of the skull. This could be addressed by

extending the dataset with additional synthetic defects, but Figures 10.5 and 10.6

show that there are multiple different sources of error.

The skull patch estimates produced by the multi-branch CNN model further de-

creased the average surface error to 0.67± 0.37 mm. In addition to a lower amount

of visible holes and artifacts in the estimated shapes, the multi-branch model also

predicted the skull patches with overall lower outer surface distance from the ref-

erence expert-designed patches, as shown in Figure 10.5. The distributions of all

error metrics for the three models are shown in Figure 10.8.

Interestingly, the multi-branch model output also reached a lower defect bor-

der surface error of 0.75 mm, compared to 0.96 mm and 0.94 mm for the baseline

models trained on the original and the rescaled SkullBreak dataset, respectively.
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Figure 10.5: Estimated skull patches of the baseline skull patch model (top) and the multi-

branch model (bottom).

Similarly, the Gaussian curvature errors of the baseline skull patch model trained

on the original Skullbreak and on the rescaled SkullBreak datasets also did not

differ significantly, but the curvature error decreased by around 12% in the case of

the multi-branch model skull patch branch outputs. This suggests that the multi-

branch model learned to better fit the reconstructed skull patches to the more

complex borders of the in-house defective skulls, despite only seeing the corre-

sponding implant shapes with spatial tolerance along the border during training

(see Figure 10.2). Figure 10.6 shows how the Gaussian curvature error reacts to

different types of surface errors compared to the distance-based metrics, helping

to visually identify problematic regions of the skull patch shape reconstruction

outputs.

10.4 discussion and conclusions

CNN-based skull reconstruction methods are becoming a hot topic in medical

imaging. One of the major drawbacks in the current research is that the reconstruc-

tion outputs are most often evaluated on a held-out synthetic dataset in which

similar anatomical variability and defect shape and type distribution can be en-

sured. One of the goals of this study was to illustrate the behavior of a CNN-based

skull reconstruction models trained on an easily accessible synthetic dataset on

real patient data. Our experiments showed that the transfer of the trained CNN

model to a different population can negatively affect the reconstruction quality.

Furthermore, by looking at differences in Gaussian curvature, we found that the

shape complexity of the defect border in real clinical data can cause faults in the

smoothness of the resulting surface.

We showed that when training the model on real clinical patient data, synthetic

data can be effectively leveraged using the proposed multi-branch CNN model to
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Figure 10.6: Three example pairs of baseline skull patch model outputs and a multi-branch

model skull patch outputs, respectively, with color-coded Gaussian curvature

error. The 3D models were rendered using marching cubes algorithm and

post-processed using quadratic decimation and normal smoothing. The multi-

branch model can produce smoother results with lower curvature error.
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Figure 10.7: Boxplots showing the error distributions of the evaluated models trained on

corresponding datasets (Skullbreak - SB, in-house - IH). Average surface error

and Dice coefficient of the implant estimates.

significantly improve the model performance and compensate for common issues

of clinical patient datasets (i. e. data scarcity and imbalance). The error of the

outer surface of reconstructed skulls achieved by the proposed method is higher

than some other recent works evaluated on synthetic defects [63, 41]. However, we

believe that factors such as the higher average area of the defects in our test set

may be the cause and that the results are overall very promising.

The synthetic and clinical datasets used in this work contained different types

of ground truths: the original missing skull patch shape and final cranial implant

shapes. This allowed us to automatically produce 3D printable and directly im-

plantable shapes for the first time, although this use case will require further

evaluation of the clinical applicability in cooperation with experienced implant de-

signers. More importantly, the general ability of the model to combine cranioplasty

data from different sources and of different types can accelerate the adoption of the

automatic reconstruction methods by allowing training on specific target datasets

while exploiting the advantages of available synthetic datasets.

To our best knowledge, this was the first study that evaluated CNN-based skull

reconstruction on a real clinical dataset of this size. The proposed multi-branch

CNN cascade increased the reconstructed shape quality by allowing training on

more data when compared to the individual baseline models. Although the results
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of this study are promising from a quantitative perspective, they will next need to

be evaluated by an experienced implant designer to ascertain their clinical value.



11
C O R R E L AT I O N A N A LY S I S O F Q U A N T I TAT I V E

R E C O N S T R U C T I O N M E T R I C S

This chapter illustrates how well can the quantitative segmentation metrics predict

usability of automatic skull reconstruction results in clinical practice. It is currently

under review in the Computers in Biology journal in form of an appendix to the

article presented in the previous section.

We created a dataset of automatically reconstructed defective skulls and submit-

ted it to an expert with experience in the field of skull reconstruction and implant

design for subjective quality evaluation. Comparing these subjective expert scores

with metrics of similarity between the reconstructed and the original shape can

give an idea of what to look for when evaluating the reconstructions.

11.1 skull data and reconstruction

The skull data come from the SkullBreak and SkullFix datasets [64], so the ground

truth original shapes are available. A CNN-based reconstruction of the missing

shape [63] was performed on each skull. Because for this analysis we would ideally

want to cover the whole quality spectrum from bad reconstructions to very good

reconstructions, we included the following types of reconstructed cases:

• SkullFix test case reconstructions

• SkullFix additional test case reconstructions

• SkullBreak test case reconstructions

• SkullBreak training case reconstructions (to include several close-to-perfect

reconstructions)

• SkullBreak test case reconstructions using generative model [63] (to include

multiple different reconstructions for a single case, including visibly bad

ones)

This resulted in a total of 35 skulls. The expert assigned a score on a scale from

zero to ten to each of the reconstructions, where zero corresponded to unacceptable

reconstruction and ten to a nearly perfect result.
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11.2 global metrics

We first computed correlation coefficients between the subjective expert score and

routinely used segmentation metrics, including volumetric Dice coefficient and av-

erage symmetric surface distance. We also included the surface distance computed

at the outer surface of the skull, since it is the most important aspect for subse-

quent implant modeling steps [85]. The outer surface was used in the evaluation

of some previous works [41] and we used it in this work because of the shape

characteristics of the ground truth data.

Figure 11.1 shows that these global metrics correlate with the expert subjective

score with correlation coefficients around 0.6, confirming that they are appropriate

for the comparison of different reconstruction methods. However, it can be noted

that their correlation is weak in regions of higher subjective expert scores, making

it impossible to use them for discrimination between good and perfect results.

Also, several cases satisfy the quantitative metrics while being seen as low-quality

by the expert and vice versa (see cases highlighted in red in Figure 11.1).

11.3 defect border metrics

The smoothness of the surface closest to the defect border has a significant impact

on the aesthetic outcome of cranioplasty. We study two metrics that focus on this

area: outer surface distance of the defect border and mean square error of Gaussian

curvature. The defect border is defined as a set of outer surface voxels of the

reconstructed skull patch shape in direct contact with the defective skull.

Figure 11.3 shows that both of these metrics correlate with the subjective expert

score similarly or slightly more than the global metrics. Most importantly, it can

be seen that the border metrics indeed convey different information. Although the

quantitative border metrics also do not always agree with the subjective quality

score, the correlation with the expert score was higher in the cases where the

correlation of the global metrics was low.

This study was performed using only one type of automatic reconstruction

method and the results were evaluated by a single implant design expert, which

leaves much room for more extensive studies. However, it can be concluded that to

best gauge the quality of results of automatic skull reconstruction, different types

of quantitative metrics should be combined together, and both global and border

metrics should be taken into account.
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Figure 11.1: Plots of the three global quantitative metrics plotted against the corresponding

expert subjective score. Note that in some cases (highlighted by red arrows),

the metrics failed to estimate practical usability of the reconstruction result.
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tive score. The same cases are highlighted as in the Figure 11.1.
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expert subjective score. The same cases are highlighted as in the Figures 11.1

and 11.2, showing that the border metrics convey different yet relevant infor-

mation about the reconstruction result.
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C O N C L U S I O N

The primary goal of this thesis was streamlining the clinical workflow of cranio-

plasty PSI design which will lead to higher quality and accessibility of state-of-

the-art cranial implants. This task was approached by addressing two main bottle-

necks of the current workflow: skull segmentation and virtual reconstruction. In

both cases, novel approaches based on deep learning were proposed and imple-

mented to reduce the amount of required human operator interaction during the

design process. Combined with automatic skull alignment, the proposed methods

form a complete cranioplasty PSI design system (see Figure 12.1). Although out-

puts of individual system components can be edited by a human operator in case

of suboptimal results, the system is designed to be fully automatic.

Based on feedback from the experts of the TESCAN Medical company, the auto-

matic CutCNN skull segmentation method already provides significant improve-

ment and decreased time cost in practice when compared to the previously avail-

able set of conventional segmentation tools, although these can still be used to

correct errors of the automatic method. This allows for more efficient creation

of anatomy models for surgical planning or patient education, as well as pre-

processing data for subsequent virtual skull reconstruction.

The automatic skull shape reconstruction is being experimentally implemented

into the computer-assisted implant design practice as of the time of writing this

thesis and therefore the feedback on the practical impact on clinical practice is lim-

ited. However, the approach was shown to achieve promising results. It ranked 3rd

in the AutoImplant 2020 challenge, achieving highly competitive results in terms

of Dice coefficient. It was also the only fully 3D, high-resolution approach, which

allowed it to avoid some visible artifacts that can result from 2D slice-by-slice pro-

cessing or resampling to lower resolution. A comprehensive expert evaluation is

currently not available. However, 4 real cranioplasty test cases were evaluated by

an expert in the same manner that was described in Section 11. All of the evaluated

cases were labeled as bringing some practical utility to the design process (i. e. the

expert would be willing to use them as a template for subsequent modeling). In 3

of the 4 reconstructed cases, the expert assigned a subjective score of 7 or more to

the automatic skull reconstruction result, hinting at overall high quality.

The current research of automatic virtual skull reconstruction methods is limited

by several factors. These include a lack of structured and standardized cranioplasty

datasets and a lack of consensus regarding the use of quantitative metrics. Addi-
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Figure 12.1: Overview of the implant design workflow proposed in this thesis.
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tionally, little attention is given to the variability of feasible implant shapes. To

address these issues, this thesis has several secondary contributions.

The SkullBreak dataset opened access to standardized virtual skull reconstruc-

tion data that could be used for development, reproducible evaluation, and com-

parison of automatic reconstruction methods. It was designed to focus on anatom-

ical variability and variability of defect shapes and allows for the identification

of strong and weak points of the reconstruction approaches by containing sets of

strictly unilateral and bilateral defects, and also sets of cranial and orbital defects.

The dataset is being used in the current edition of the AutoImplant challenge1,

serving as a benchmark for a variety of state-of-the-art skull reconstruction meth-

ods.

The discrepancy in the choice of quantitative metrics to be used for the evalua-

tion of skull reconstruction methods does not have a straightforward solution. The

single user study presented in Section 11 did not identify a single best quantitative

metric. Instead, it was concluded that several different metrics should be combined

to gauge the clinical usability of the skull reconstruction outputs. This work also

expanded the pool of available metrics by the novel Gaussian curvature estimation

error which can help visually identify bumps and trenches along the skull defect

border.

Finally, this work briefly addressed the task of generating multiple reconstructed

shape hypotheses for a single defective skull by using generative models. Although

the achieved shape variability was limited and the option of generating multiple

reconstructions is currently not required for medical practice, it is a promising area

that could be explored further in the future.

Several additional topics should be addressed in future work. From an evalu-

ation point of view, an extensive user study needs to be performed to ascertain

the clinical impact of the proposed automatic cranioplasty pipeline. Two main

sources of feedback will likely be available in near future: first, the experts from

the TESCAN Medical will have access to the experimental implementation of the

proposed framework, and second, the current edition of the AutoImplant challenge

will include an evaluation dataset of real cranioplasty data which will be rated by

experienced clinicians skilled in PSI design.

From a methodological point of view, future research will need to address short-

comings of the currently proposed automatic methods identified by the evaluating

experts. Independently of what these shortcomings may be, one major topic could

be incorporating user input into the inference mechanism of deep learning models.

One possible approach proposed in Section 8 consists of generating a continuous

spectrum of shape hypotheses and letting the user choose the most appropriate

1 https://autoimplant2021.grand-challenge.org/Task1/

https://autoimplant2021.grand-challenge.org/Task1/


conclusion 106

one. However, more sophisticated approaches could also be explored, such as ex-

panding the proposed model to respond to user inputs in form of clicks or scribbles

in 2D slices or operations defined in the 3D domain. Such a method would pro-

vide a powerful interactive tool capable of generating optimal PSIs with minimum

time cost and almost no manual skill requirements, contributing greatly to the PSI

quality as well as accessibility.
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