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Abstract

Matching of regular expressions (regexes) is widely used, e.g., for searching, data
validation, parsing, finding and replacing, data scraping, or syntax highlighting in many
programming languages. It is a computationally intensive process often applied on large
texts. Predictability of its efficiency has a significant impact on the overall usability
of software applications in practice. A problem is that standard approaches for regex
matching suffer from high worst case complexity. An unlucky combination of a regex
and text may increase the matching time by orders of magnitude. This can be a doorway
for the so-called Regular expression Denial of Service (ReDoS) attack in which
the attacker causes a denial of service by providing a specially crafted regex or text.
Automata-based matchers are the most efficient regex matching engines used nowa-

days in practice, especially in performance-critical industrial applications. There
are years of empirical evidence showing that their performance is much more sta-
ble than that of the more traditional backtracking-based matchers. But automata
matchers may run into troubles too. Bounded repetition, i.e., expressions such as
[ab]{100} with a specified number of repetitions of a certain pattern, has been recog-
nised as a major source of problems for even the fastest matchers. This thesis studies
this issue systematically.
In this thesis, we present a large-scale study of vulnerability of automata-based

matching focused on bounded repetition. To this end, we propose a new ReDoS
generator. It is the first generator capable of utilising bounded repetition to attack
automata-based matchers, in fact the first generator that can attack them at all. We
were then able to prove experimentally that bounded repetition indeed poses a serious
security threat, for automata-based as well as backtracking-based matchers.
We then propose a solution to the problem of efficient matching of regexes

with bounded repetition. The approach is to compile the regexes into nondeterministic
counting automata (CAs) and then to determinise them. The main problem is to find
a succinct deterministic representation that can perform fast matching (naive determin-
isation builds a deterministic finite automata (DFAs) exponentially large to the size
of the regex and of the repetition bounds in it). In the first step, we propose a determini-
sation algorithm based on general subset construction that generates deterministic CAs.
They are exponentially more succinct than the corresponding DFAs. The main contribu-
tion of this thesis was then obtained when we elaborated the determinisation using the
idea representing many counters with counting sets. We propose succinct transformation
of a CA into a deterministic counting-set automaton (CsA), an automaton with a special
type of registers that can hold a set of integer values. We also propose a novel compilation
of regexes to CAs that generalizes the Antimirov’s derivative construction. We design
a framework for matching based on CsA simulation and the Antimirov’s derivative
construction. We compare the speed of matching of individual matching engines on
a comprehensive set of real-world regexes with bounded repetition. We found that our
algorithm is much more robust, outperforms the state-of-the-art matchers on regexes
with bounded repetition, and is not dependent on the size of repetition bounds. It easily
solves most cases in which the existing matchers struggle due to bounded repetition.
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Abstrakt

Vyhledávání podle regulárních výrazů (regexové vyhledávání) je široce využívaný
prostředek např. pro vyhledávání informací, ověřování dat, vyhledávání a nahrazování,
získávání dat nebo zvýrazňování syntaxe v mnoha programovacích jazycích. Jedná
se o výpočetně náročný proces, který se často aplikuje na rozsáhlé texty. Jeho
předvídatelnost a stabilita má v praxi významný dopad na celkovou použitelnost
softwarových aplikací. Problémem je, že standardní přístupy pro regexové vyhledávání
mají vysokou složitost a nešťastná kombinace regexu a textu může dobu vyhledávání
řádově prodloužit. To může být vstupní branou pro tzv. ReDoS útoky, což je
závažný bezpečnostní problém, kdy útočník způsobí odepření služby pomocí speciálně
vytvořeného regexu nebo textu.
Automatové regexové vyhledávače jsou v současné době nejefektivnějšími nástroji

pro regexové vyhledávání používanými v praxi, zejména v průmyslových výkonnostně
kritických aplikacích. Dlouholeté empirické studie ukazují, že tyto přístupymajímnohem
stabilnější výkonnost, než jakou mají existující nástroje pro regexové vyhledávání
založené na zpětném prohledávání. Nicméně i automatové regexové vyhledávače se
mohou dostat do potíží. Omezená opakování, např. [ab]{100}, představují hlavní
zdroj problémů i pro nejrychlejší nástroje pro regexové vyhledávání. Tato práce se touto
problematikou zabývá systematicky.
V této práci jsme nejprve představili rozsáhlou studii zranitelnosti nástrojů pro

regexové vyhledávání založených na konečných automatech. Za tímto účelem jsme
navrhli nový ReDoS generátor. Jedná se o první generátor schopný využívat omezené
opakování ke generování útoků pro automatové regexové vyhledávače. Dále jsme byli
schopni experimentálně prokázat, že omezená opakování skutečně představují vážnou
bezpečnostní hrozbu, jak pro automatové regexové vyhledávače, tak pro ty založené na
zpětném prohledávání.
Dále jsme navrhli řešení problému efektivního regexové vyhledávání s omezeným

opakováním. Obecný přístup je založen na kompilaci regexů do nedeterministických
čítačových automatů a jejich následné determinizaci. Hlavním problémem je najít struč-
nou deterministickou reprezentaci, která dokáže provádět rychlé regexové vyhledávání
(naivní determinizace vytváří deterministické konečné automaty exponenciálně velké
k velikosti regexu a k maximům mezí opakování, které se v nich nachází). Nejprve jsme
navrhli determinizační algoritmus vycházející z klasické podmnožinové konstrukce,
který generuje deterministické čítačové automaty. Tyto automaty jsou exponenciálně
stručnější než odpovídající deterministické konečné automaty. Hlavní přínos této práce
jsme pak získali, když jsme determinizaci rozpracovali pomocí myšlenky čítacích
množin. Navrhli jsme stručnou transformaci čítačového automatu na deterministický
automat se speciálním typem registrů, které mohou obsahovat množinu celočíselných
hodnot. Představili jsme také novou kompilaci regexů na čítačové automaty, která
zobecňuje Antimirovu derivatovou konstrukci. Vytvořili jsme aplikační rámec za-
ložený na simulaci automatů s čítačovými registry a Antimirově derivatové konstrukci.
Porovnali jsme rychlost vyhledávání jednotlivých nástrojů na rozsáhlé sadě reálných
regexů s omezeným opakováním. Zjistili jsme, že náš algoritmus je mnohem ro-
bustnější, překonává nejmodernější nástroje pro regexové vyhledávání na regexech
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s omezeným opakováním a není závislý na velikosti mezí opakování. Snadno řeší
většinu případů, ve kterých mají stávající nástroje pro regexové vyhledávání problém
s omezeným opakováním.

Klíčová slova

Vyhledávání podle regulárních výrazů, omezené opakování, ReDoS, determinizace,
Antimirovy derivativy, čítačové automaty.
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‘When information overload occurs, pattern recognition is
how to determine truth.’

Marshall McLuhan

1
Introduction

Managing large quantum of information is a problem faced by almost everyone. Social
media, e-mails, etc. all spill data into our lives daily. To be able to make quick decisions,
a person or a machine needs to identify patterns in text information.
One of the most widely used techniques is to use regular expressions (regexes).

Regexes offer a sweet spot in the following sense. On one hand, they are simple,
compact, human readable, and can be efficiently mechanized. On the other hand,
they provide a good expressive power. Regex matching is therefore widely used, e.g.,
for searching, data validation, parsing, data scraping, or syntax highlighting, and also in
less known applications, such as bioinformatics, where it is used to discover specified
gene sequences which may cause particular diseases or to extract information from
clinical reports [81]. It is natively supported in most programming languages [19].
For instance, about 30–40% of Java, JavaScript, and Python software use regex matching
(as reported in multiple studies, see, e.g., [25]). Regexes are often used in high-risk
applications where it is critical to ensure stability, predictability, and quick evaluation,
and avoid crashes and security vulnerabilities, e.g., in network processing or various
security applications. For example, regexes are used to validate user input to prevent
SQL injection attacks. Network intrusion detection systems deploy regex matching to
monitor networks for malicious activity or policy violations.
Regex matching is a computationally intensive process often applied to large texts.

Predictability of its efficiency has a significant impact on the overall usability of software
applications. The worst case complexity of matching is high (super-linear to the text or
exponential to the size of the regex, depending on the matching algorithm). This can
be exploited by an attacker who can provide vulnerability-triggering text to increase
the matching time by orders of magnitude. Such an attack is known as the so-called
ReDoS (regular expression denial of service) attack. Unfortunately, developers are often
unaware of security risks that can occur when using regexes. Very specific and rare
texts may be needed to trigger an extreme behaviour and thus vulnerable regexes are
easily missed by testing, and satisfactory analytical means for distinguishing vulnerable
regexes do not exist.
The traditional backtracking matchers are considered most susceptible to ReDoS

attacks. Performance critical applications are therefore using automata-based algorithms
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which are indeed the most efficient regex matching engines used nowadays in practice,
i.e., implemented in Google’s RE2, grep, SRM, the standard matcher of Rust, or
Hyperscan [42, 32, 82, 31, 54]. There are years of empirical evidence showing that
their performance is much more stable than that of the backtracking-based matchers.
However, automata matchers may run into troubles too. Bounded repetition (or bounded
quantifier/counting operator), i.e., used in expressions of such as ‘[ab]{100}’, has been
recognised as a major source of problems for even the fastest matchers. The running
time of automata-based matchers is in fact linear to the repetition bounds. This makes
matching with already moderately high quantifier bounds (in the order of hundreds)
prone to significant slowdowns and ReDoS vulnerabilities. In practice, the repetition
bounds are often high. In extreme, repetition bounds used in real life XML schemas
may reach the order of tens of millions [10]. This thesis studies this issue systematically
and proposes a solution.

1.1 Examples of ReDoS in History

As we already mentioned, regexes are often used in high-risk areas where vulnerable
regexes represent a doorway for a ReDoS. Throughout the history, there have been
numerous ReDoS attacks and their frequency is still on the rise [90] (e.g., in 2018,
ReDoS exploits increased by 143 %). The following examples of recent incidents may
serve as evidence of severity of this problem.
In 2019, Cloudflare has been experiencing a catastrophic outage caused by a web

application firewall rule that contained a poorly written regex that ended up creating
excessive backtracking and exhausted the CPU power used for HTTP/HTTPS serv-
ing [44]. The regex that caused the outage was ‘(?:(?:\"|’|\]|\}|\\|\d|(?:nan
|infinity|true|false|null|symbol|math) |\‘|\-|\+)+[)]*;?((?:\s|-|
~|!|{}|\|\||\+)∗.∗ (?:.∗=.∗)))’. The key part of the vulnerable regex was
‘.*.*=.*’ which seams to be a very simple regex, but for a backtracking matcher it
takes 45 steps to match an input ‘x=xxx’ and the number of steps grows super-linearly
with an increasing number of ‘x’ at the end.
In 2016, a malformed post with a vulnerable regex caused a high consumption of

CPU on the StackOverflow web page [33]. The regex was ‘^[ \s \u200c]+|[ \s
\u200c]+$’, and it was intended to trim unicode spaces from the start and the end of
the line. The simplified version of this regex, ‘\s+$’, would expose the same issue.
The post was in the homepage list and the vulnerable regex was thus called on each
homepage view. The main issue was that a simple backtracking matcher had to match
the regex against the malformed post containing around 20,000 consecutive whitespaces
on a comment line that started with ‘– play happy sound for player to enjoy’. It caused
a catastrophic backtracking which forced the matcher to perform a 199,990,000 steps.
Thus, instead of a happy smile, the post caused horror among developers.
Even express.js, the most popular web framework for node.js, does not manage to

eliminate the possibility of a ReDoS attack. In 2016, there was found a flaw in a module
that is used in express.js [6]. The identified flaw relied on the express app using a feature
called acceptsLanguages() commonly used for determining the preferred language
of the client. Providing a specially crafted Accept-Language header, an attack could
trigger catastrophic backtracking.
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1.2 Existing Approaches to Pattern Matching

Let us now introduce the existing approaches to pattern matching. The most com-
mon approach is backtracking. Matching algorithms based on backtracking are
used in the regex engines of wide-spread programming languages, e.g., .NET [65],
Python [36], Perl [96], PHP [45], Java [30], JavaScript [21], or Ruby [11]. Back-
tracking is a recursive procedure that descends the syntactic tree of the regex while
reading the text from the left to the right, matching its characters against subexpres-
sions of the regex. The basic backtracking algorithm is simple and easily exten-
sible with advanced features, however, it is at worst exponential in the text length.
Regexes prone to extreme running times are easily constructed and found in prac-
tice [26]. ReDoS analyzers can often find triggering texts for regexes that are used
in practice, and even some analytical methods for identifying regexes vulnerable to
backtracking were proposed [109, 76, 107, 60].
The other major family of regular matching engines are automata-based match-

ers. A basic automata-based matching algorithm is the offline DFA-simulation [85].
In the ideal case, the DFA is pre-computed; matching can then be linear in the text
length, with each input symbol processed in constant time. The major drawback of
offline DFA-simulation is that the DFA construction may explode, rendering the method
unusable in practice. Most of automata-based matchers that alleviate this problem
evolved from the Thompson’s algorithm [86] aka the NFA-simulation. In essence,
the algorithm is a breadth-first exploration of the runs of the NFA along the input.
In combination with caching, it becomes an on-the-fly subset construction of a part of
the DFA needed to match the given word, also called the online DFA-simulation. Forms
of the online DFA-simulation are implemented in the Google’s RE2 library [42], the stan-
dard GNU grep program [32], the Rust standard regex matcher [31], or the Symbolic
Regex Matcher (SRM) [82].1 Intel’s Hyperscan [20] uses a variation of NFA-simulation
algorithm as one of its components, among a number of other techniques.
The automata-based approaches are harder to implement, less flexible, and it is

not clear how to extend them with advanced regex features such as back-references.
On the other hand, they are more stable and less prone to ReDoS attacks and therefore
overwhelmingly preferred when avoiding regex vulnerabilities is a priority. They are
now prevailing in industrial applications such as network intrusion detection [63, 35]
and credentials scanning [66].

1.3 Regexes with Bounded Repetition

Asmentioned earlier, this thesis focuses on the Achilles heel of automata-based matchers,
which are regexeswith bounded repetition. Such expressions are very common in practice
(cf. [10]), e.g., in the RegExLib library [78], which collects expressions for recognising
URIs, markup code, pieces of Java code, or SQL queries; in the Snort rules [63] used
for finding attacks in network traffic; or in real-life XML schemas, with the repetition
bounds being as large as 10 million [10]. Repetition constraints may also naturally arise
in other contexts, such as for automata-based verification approaches (e.g. [87]) for

1SRM is based on symbolic Antimirov’s derivatives [4] constructed on the fly, also in the spirit of online
DFA construction.
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Figure 1.1: Numbers of regexes with/without bounded repetition in selected classes
of regexes: Snort—network intrusion detection systems [63], TrustPort—detection of
security breaches [97], and real-world regexes from software projects at GitHub [27].

describing runs with some number of iterations of a loop.
We analyzed over 500k real-world regexes obtained in the study performed by Davis

et al. [27] and other sources. Figure 1.1 shows a ratio of regexes with/without bounded
repetition in selected classes of regexes. Over 40k regexes out of the 500k above
mentioned ones contain the bounded repetition.

Example 1.3.1. To illustrate the principal difficulty with matching bounded repetitions,
especially when combined with a high degree of nondeterminism, consider the regex
‘.*a.{𝑘}’ where 𝑘 ∈ N (the regex denotes strings where the symbol ‘a’ appears
𝑘 positions from the end of the word). Already the NFA will have at least 𝑘 states,
which is exponential in the regex size because 𝑘 is written in decimal. Due to
the inherent nondeterminism of this regex, determinisation then adds a second level
of the exponential explosion. Indeed, the minimal DFA accepting the language has
2𝑘+1 states because it must remember all the positions where the symbol ‘a’ was seen
during the last 𝑘 + 1 steps. This requires a finite memory of 𝑘 + 1 bits and thus 2𝑘+1
reachable DFA states. Determinising the NFA explicitly is thus out of the question
for even moderate values of 𝑘 .

Generally, the worst-case complexity of a regex match depends on the size of the regex
|𝑅 | (resp. the size of the underlying automaton), as it is shown in Example 1.3.1,
and length of the input text |𝑤 |. As 𝑤 is normally supposed to be large and 𝑅 small,
|𝑤 | is the more important parameter in the complexity. As we already mentioned,
the worst-case complexity of matching using backtracking is exponential in |𝑤 | and it is
even higher if we use the regexes with bounded repetition.
Matching of regexeswith bounded repetition is however problematic even for automata-

based matchers. A simple way of translating such regexes to NFAs is to unfold
the bounded repetition first and then use some of the well known regex-to-NFA-
translations, such as Glushkov’s, Thompson’s, or Antimirov’s algorithm [40, 86, 4].
These algorithms produce from a regex without bounded repetition an NFA with a linear
number of states and roughly quadratic number of transitions. However, the unfolding of
bounded repetition increases the size of the regex Θ((max𝑅)cnt𝑅 ) times, with the worst-
case occurring when 𝑅 is a cnt𝑅-fold application of a bounded repetition with the upper
bound max𝑅 on some base regex 𝑆. Hence, the NFA for the regex with bounded

4



repetition has then Θ( |𝑅 |.(max𝑅)cnt𝑅 ) states, or Θ( |𝑅 |.max𝑅) states if 𝑅 has flat
counting (bounded repetition that is not nested), and quadratically as many transitions.
The offline DFA-simulation compiles 𝑅 to NFA, determinises it, and follows the DFA

run over 𝑤, all in time and spaceΘ(2 |𝑅 |2 + |𝑤 |). While the technique of online DFA sim-
ulation reduces the complexity to Θ(min(2 |𝑅 |2 + |𝑤 |, |𝑤 |.|𝑅 |2)), where |𝑤 |.|𝑅 |2 comes
from that every step may incur construction of a new DFA state and transition in time
Θ( |𝑅 |2). The case of extended regexes is more problematic since the size of the underly-
ing NFA depends at least linearly (in the case of flat counting) onmax𝑅 and thus exponen-
tially on |𝑅 |. Hence, the worst-case complexity of DFA-simulation includes the factor
2( |𝑅 |.(max𝑅)cnt𝑅 )2 , double-exponential in the size of the regex (or worse in the case of
nested counting). This makes matching with already moderately high repetition bounds
(in the order of hundreds) prone to significant slowdowns and ReDoS vulnerabilities.
Finding a matching algorithm that would run in time independent of the repetition

bounds has been an open problem for decades (as noted also in [92]). A number of
proposals has been published [38, 10, 51, 56, 88, 55], but they are rather unsatisfactory,
due to their cost super-linear in the length of the text (e.g. [55]) or exponential in repetition
bounds (e.g. [88]) or due to a restricted class of supported regexes (e.g. [38]).

1.4 Existing Approaches to ReDoS Detection

The fact that ReDoS is indeed a common and serious threat is argued not only by
our examples but also by several works such as [25, 26]. Therefore, stress-testing of
regex matchers, one of the the topics of this thesis, is an active research area. Several
methods and tools have been developed that attempt to determine whether a given regex
is vulnerable to a ReDoS and to generate a triggering text.
The state-of-the-art ReDoS detectors [77, 107, 109, 83] focus only on regex matchers

that are based on the backtracking algorithm. They search for regexes that cause
the backtracking-based matching engines to run in super-linear time.
The detectors are either static, dynamic, or a combination of both based on whether

actual regex matching is conducted. Static ReDoS generators (RegexCheck [109],
RegexStatic [108]) are based purely on the analysis of an NFA obtained from a regex.
They can be sound and complete for certain class of regexes but the major disadvantage
of these detectors is that, in general, they suffer from poor accuracy.
Dynamic ReDoS generators (SlowFuzz [74], RXXR2 [76, 77]) use some kind of

evolutionary-search-based algorithms. They conduct actual regex matching and use
the profiling results to improve next iterations of the algorithm. Thus, they report only
true positive ReDoS. Moreover, they may handle regex extensions. The main drawback
of the dynamic generators is that they do not scale and thus, they may miss ReDoS
vulnerabilities in case of complex regexes due to the time or space limits.
Another family of ReDoS generators (e.g. Rescue [83], Revealer [60]) combine

dynamic and static techniques. They use the static information about the regex
in a form of an extended NFA to guide the subsequent genetic search or to simulate
the matching process of a regex.
None of these detectors aims to detect vulnerable regexes for automata-based

algorithms and focus on exploiting repetition for backtracking algorithms (they are
indeed not efficient as we show in our experiments in Section 5.3).
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1.5 Contributions of the Thesis

In this thesis, we achieved the following contributions:

The first large-scale study of vulnerability of automata-based matching. It has
been recognized that regexes with bounded repetition can suffer from performance
problems both in backtracking and automata-based matchers. Until now, this problem
has never been studied systematically, and possibilities of exploiting it for ReDoS
have not been analyzed. We evaluate a set automata-based regex matchers (RE2,
grep, Hyperscan, SRM) as well as standard library backtracking matchers of .NET,
Python, Perl, PHP, Java, etc. on a comprehensive database of regexes. We confirm
that regexes with bounded repetition are potentially vulnerable to ReDoS attacks not
only for backtacking matchers but also for automata-based matchers even though
they are considered more robust. We further find that if a regex does not contain
bounded repetition, it mostly cannot be used to perform a ReDoS attack on automata-
based matchers. Thus, bounded repetition seems to be almost the only source of
performance problems for the automata-based approach (not considering advanced
features such as back-references).

A new method for discovering ReDoS vulnerabilities. The state-of-the-art ReDoS
detectors focus only on backtracking regex matchers leaving the automata-based
regex engines unnoticed. We present a methodology for generating evil texts that
targets automata-based matchers and regexes with bounded repetition. It is based on
the observation that automata-based regex engines generate a part of the state space of
the DFA. We aim at forcing them to generate a large number of large states.
We perform an extensive experimental evaluation of our ReDoS generator against other

state-of-the-art ReDoS generators, on a large set of practical regexes, with a comprehen-
sive set of automata-based and backtracking matchers. We also discover ReDoS attack
vectors on state-of-the-art real-world security applications represented by Snort using
Hyperscan and the HW-accelerated regex matching engine on the NVIDIA BlueField-2
card. The experiments show that our generator is significantly more successful in cre-
ating ReDoS attacks on regexes than the current state-of-the-art ReDoS generators,
especially on automata-based matchers and on regexes with bounded repetition.

Efficient algorithm for matching bounded repetition. The existing automata-based
techniques are constructed by compiling a regex to an NFA and subsequent determinisa-
tion of the NFA into a DFA. The problem is that in the case of regexes with bounded
repetition, the worst-case complexity of the DFA simulation is exponential in the length
of the text and double-exponential in the size of the regex.
We aim to find a solution of efficient matching for a class of highly nondeterministic

regexes with bounded repetition by using counting automata (CAs). First, a regex is
converted into a nondeterministic CA which is then determinised. The main hurdle,
however, is to find a succinct deterministic representation that can be used to implement
fast matching. This has been an open problem (whose importance was stressed, e.g.,
in [92]) that a number of other works, such as [51, 56], have attempted to solve, but they
could only cope with very restricted fragments or alleviate the problem only partially,
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yielding solutions of limited practical applicability only. For example, the naive
determinisation of CAs which encodes counter values as parts of control states can
easily lead to a state explosion.
We make the first step towards succinct determinisation of CA using the generalized

subset construction. Our algorithm can produce deterministic CAs exponentially more
succinct than the corresponding DFAs. We also develop a simplified and faster version
of the general algorithm for the sub-class of so-called monadic CAs (MCAs), i.e., CAs
with counting loops on character classes, which are common in practice. Its worst-case
complexity is only polynomial in the maximum values of counters.
We elaborate these ideas into a succinct transformation of CAs into deterministic

counting-set automata (CsAs). We propose a novel compilation of regexes to CAs
which generalizes the Antimirov’s derivative construction. It is cheap and produces
automata without 𝜖-transitions whose size is independent of the repetition bounds and
linear in the size of the regex. The CA is then determinised into a deterministic CsA—
a deterministic automata with a special type of registers which can hold the so-called
counting sets, i.e., a set of bounded integer values. The counting sets support a limited
selection of simple set operations that can be implemented to run in constant time
regardless of the size of the set. The main advantage of this workflow is that the size
of the produced CsAs is independent of the repetition bounds and matching is linear
in the length of the text.
We design a framework for matching based on CsA simulation that is applicable

to a relatively large sub-class of regexes. The results of our experimental evaluation
show that our framework handles the majority of regexes with bounded repetition found
in practice. Moreover, it is much more stable and outperforms the state-of-the-art
matchers regardless of the sizes of the repetition bounds.

1.6 Publications

The following lists the published papers the text of this thesis is based on.

APLAS’19. In [49], we proposed an efficient algorithm for determinising CAs into
deterministic CAs. The algorithm avoids unfolding bounded repetition into control states,
unlike the naive approach, and thus produces much smaller deterministic automata.

OOPSLA’20. In [98], we aimed to reduce the representation of regexes with bounded
repetition even more using counting sets. The algorithm determinises the CAs into
CsAs instead of deterministic CAs. The size of CsAs is independent of the repetition
bounds and the matching is linear in the length of the input text.

USENIX Security’22. In [100], we studied the performance characteristics of automata-
based regex matchers and their vulnerability against ReDoS attacks. We focused
especially on regexes that use bounded repetition. We proposed a new ReDoS generator
that can generate attacks on automata-based matchers. We achieved a slowdown of
regex matching engines on regexes with bounded repetition by orders of magnitude and
showed evidence that the bounded repetition is indeed a serious security issue even
for automata-based matchers.

7



Other publications. Further, I published papers that are not directly related to
the topic of this thesis.
In [68], we explored a possibility of improving existing methods for verification of

parallel systems. We particularly concentrated on safety properties of well-structured
transition systems. We experimented with a simple refinement algorithm based
on analysing minimal runs and succeeded in generating significantly more succinct
invariants than the state-of-the-art methods.
In [101], we proposed a refined version of the Parikh image abstraction of finite

automata to resolve string length constraints. We integrated this abstraction into
the string solver SLOTH. The experimental results showed that our extension of SLOTH
has good results on simple benchmarks, as well as on complex benchmarks that are
real-word combinations of transducers and concatenation constraints.

1.7 Outline of the Thesis

Chapter 2 contains preliminaries on regexes, finite automata and existing approaches
to pattern matching and conversion of a regex to an automaton. Chapter 3 presents
the results of [49]. In Chapter 4, we introduce the contributions from [98]. The results
of [100] are discussed in Chapter 5. Chapter 6 concludes the thesis and discusses
the future work.
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‘Mathematics takes us into the region of absolute necessity,
to which not only the actual word, but every possible word,
must conform.’

Bertrand Russell

2
Preliminaries

In this chapter, we define basic notions used later in the thesis, in particular regular
expressions and languages, extended regular expressions and finite automata. Then
we introduce the existing approaches to pattern matching and conversion of regular
expressions to automata.

2.1 Kleene Regular Expressions and Languages

The notion of regular expressions was first described in 1956 by S. C. Kleene in his
seminal paper [58] on finite automata theory. In his paper, he presented a theorem
which states that any regular language is accepted by a finite automaton and conversely
that any language accepted by a finite automaton is regular.
Let us now formally defined a notion of regular expressions (regexes). Let Σ be

alphabet of characters/symbols. Words are sequences of symbols 𝑎1 . . . 𝑎𝑛 ∈ Σ∗. We
use 𝜖 to denote the empty word. Languages are sets of words. The concatenation of
words 𝑢 and 𝑣 is denoted as 𝑢 · 𝑣 (often abbreviated to 𝑢𝑣) and is lifted to sets as usual.
We call 𝑎 ∈ Σ the head of the word 𝑎.𝑤 and 𝑤 ∈ Σ∗ its tail. Furthermore, we write 𝐿𝑛
for the 𝑛-th power of 𝐿 ⊆ Σ∗ with 𝐿0 def= {𝜖} and 𝐿𝑛+1 def= 𝐿𝑛 · 𝐿. The syntax of regexes
is the following:

𝑅 ::= 𝜀 | 𝑎 | (𝑅) | 𝑅 𝑅 | 𝑅|𝑅 | 𝑅*.
The language of a regex 𝑅, 𝐿 (𝑅), is constructed inductively to the structure of 𝑅,
from its atomic sub-expressions using the language operations denoted by the regex
combinators. They are understood as usual:

• 𝐿 (𝜖) def= 𝜖 ,

• 𝐿 (𝑎) def= {𝑎} for 𝑎 ∈ Σ,

• 𝐿 (𝑅1𝑅2)
def
= 𝐿 (𝑅1) · 𝐿 (𝑅2),

• 𝐿 (𝑅1 |𝑅2)
def
= 𝐿 (𝑅1) ∪ 𝐿 (𝑅2), and

• 𝐿 (𝑅∗) def= 𝐿 (𝑅)∗.
𝑅 is nullable if 𝜖 ∈ 𝐿 (𝑅).
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2.2 Extended Regular Expressions

Extended regular expressions (ERE) enrich the basic regexes with special operators.
They increase the succinctness and expressive power of the basic regexes. ERE are
supported by most of the programming languages, including Java, Python, Perl, or
JavaScript. Even though there have been several attempts at standardisation of ERE, none
has been unanimously accepted by the regex-engine developer community. The most
common standards of ERE are the Perl Compatible Regular Expression (PCRE) [47]
and the POSIX Extended Regular Expressions [5]. They have common core semantics
but differ in extended features. The most of the programming languages support PCRE
syntax and semantics. It is used by many open source projects including PHP, Apache,
R, Postfix, KDE etc. We will now describe the main extensions defined by PCRE:

• Bounded repetition (or bounded quantifier/counting operator): Bounded
repetition is the main focus of this thesis. A bounded repetition of a regex 𝑅 is
denoted as:

𝑅{n,m}

where 𝑛, 𝑚 ∈ N, 0 ≤ 𝑛, 0 < 𝑚, 𝑛 ≤ 𝑚. It specifies concatenations of 𝑛 to 𝑚
strings that conform to 𝑅, formally:

𝐿 (𝑅{𝑛, 𝑚}) def=
𝑚⋃
𝑖=𝑛

(𝐿 (𝑅))𝑖 .

For example ‘(Help!){2,10}’ represents all words where ‘Help!’ appears 2–10
times.

In this thesis, by regex we will usually mean the basic syntax of regexes ex-
tended with the bounded repetition and custom and build-in character classes
discussed below.

• Custom character classes: Custom character classes represent sets of characters.
Character classes are most often of the form ‘[a-z]’ denoting an interval of
characters, ‘[^a-z]’ denoting a complement of the interval of characters, and
‘a’ denoting a singleton containing the character 𝑎 ∈ Σ. The intervals can be
subtracted from each other and are in general closed under Boolean operations.

• Build-in character classes: Build-in character classes are standard designation
of selected, frequently used sets of characters. They are represented by escaped
characters. For example, ‘\d’ represents a decimal digit, or ‘\s’ represents
a white space character. A special and most used build-in character class is
the class of all characters, denoted by ‘.’.

• Capturing groups: Subexpressions closed in parenthesis are called capturing
groups. They are relevant to a special mode of matching when the matching
engine returns an array of parts of the match where each item corresponds to one
of the capturing groups. The groups can be numbered and later reference with
backreferences (discussed below).
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• Non-capturing groups: Non/capturing groups are subexpressions of the form
‘(?:exp)’. The subexpression functions as a single unit but does not save
the matched string in the results array.

For example, a regex ‘(?:Marry|John)\s(.*?)\s(?:Jones|Williams)’ ma-
tches the fist name, ‘(?:Marry|John)’, the second name, ‘(.*?)’, and the fam-
ily name, ‘(?:Jones|Williams)’, without saving the first or family names
in the results array.

• Back-references: Back-references are regexes commands which refer to the pre-
vious matched subexpressions designated with capturing groups. They are
represented by a backslash followed by a digit greater than 0.

For example, ‘<([A-Z])>.*?</\1>’ would match a pair of opening and closing
HTML tags with the text in between, i.e, <B>bold text</B>.

It is known that the matching problem of regexes with backreferences is NP-
complete [3], and decision problems (e.g. equivalence, universality or inclusion)
are undecidable [37]. Back-references extend the power of regexes beyond regu-
larity.

• Greedy and lazy quantifiers: The operators ?, +, *, {n}, or {n, m} are called
quantifiers. By default, the quantifiers are interpreted as greedy. If a greedy
quantifier is used, then the quantified subexpression is matched as many times
as possible. On the other hand, if a lazy quantifier is used, then the quantified
subexpression is matched the minimal number of times.

For example the greedy quantifier in the regex ‘".+"’ used against the input text

"Begin at the beginning", the King said gravely, " and go on till you come to
the end: then stop."
would return the whole input text. The lazy quantifier in a regex ‘".+?"’ would
match only "Begin at the beginning".

• Curet and dollar metacharacters: The metacharacter ‘^’ represents the begin-
ning of a string/line. If there is no ‘^’ at the beginning of the regex then the match
can appear anywhere in the input string. The metacharacter ‘$’ represents the end
of a string/line. Regexes with ‘^’ at the beginning or ‘$’ at the end are said to be
anchored patterns.

Character classes and different character encoding standards. In practice, differ-
ent character encodings are used. Different encodings influence how different regexes
are interpreted. There are two main character encodings Unicode and ASCII.

American Standard Code for Information Interchange (ASCII) was first used in 19811
by the International BusinessMachinesCorporation (IBM) to facilitate the representation,
storing, and interchange of data among computers and other devices [18]. Every bit
of the 7-bit binary vector represents a single character. ASCII is able to encode a set
of 128 characters–95 graphic symbols, such as (upper and lower case of) alphabet,
digits, math signs, punctuation marks and 33 control symbols, such as ‘\n’,‘\r’,

1When my supervisor was born.
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‘\t’, etc. [43]. It was widely used until December 2007, when UTF-8 has become
the most used encoding [28].

Unicode is a universal character encoding standard that assigns to each character
a unique code (a code point) [105]. Unicode can potentially produce over 1 million code
points, however, the Unicode standard now encompasses 144,076 characters. While
ASCII can represent only the letters, digits, and punctuation, Unicode supports all
characters used in almost every language in the world including favorite emojis [53].
Unicode can be implemented by different character encodings.
The most widely used encoding is the 8-bit Unicode Transformation Format UTF-8—

used by 97.5 % of all the websites whose character encoding is known [104]. UTF-8
is a byte oriented format with a variable length. It represents a symbol by a 1–4 byte
code. For example, a symbol ‘@’ is represented by a code ‘\x40’. UTF-8 is backward
compatible with ASCII.
The difference between these two encodings is most evident in the interpretation of

build-in character classes. In our experiments, it makes comparison of the matching
engines difficult. For example, the expression ‘\w’ represents in ACSII a character
class ‘[a-zA-Z0-9_]’. In Unicode, ‘\w’ represents a wider character class which is not
precisely specified. It includes a character class ‘[a-zA-Z0-9]’, connector punctuation
(like the underscore), diacritics, such as ‘∼’, most characters that can be part of a word
in any language (Thai letters, Greek letters, etc.), and the modifier letters, which are
generally used to add auxiliary markings to letters [1, 36]. Hence, ‘\w{8}’ would match
with ‘čipmánek’ in UNICODE encoding while in ASCII encoding not.

2.3 Finite Automata

We consider nondeterministic finite automata (NFA) over the alphabet Σ of the form
𝐴 = (𝑄, 𝛿, 𝑞0, 𝐹) where

• 𝑄 is a finite set of states,

• 𝛿 is a set of transitions of the form 𝑞−{𝑎}→ 𝑟 with 𝑞, 𝑟 ∈ 𝑄,

• 𝑎 ∈ Σ, 𝑞0 ∈ 𝑄 is the initial state, and

• 𝐹 ⊆ 𝑄 is the set of final states.

The language of the automaton, denoted 𝐿 (𝐴), is the set of all words 𝑎1 . . . 𝑎𝑛,
𝑛 ≥ 1, for which the automaton has an accepting run, a sequence of transitions
𝑞0−{𝑎1}→𝑞1−{𝑎2}→ · · ·−{𝑎𝑛}→𝑞𝑛 with 𝑞𝑛 ∈ 𝐹. The empty sequence is a run with 𝑞0 = 𝑞𝑛
over 𝜖 .
The automaton is deterministic (DFA) if for every state 𝑞 and symbol 𝑎, 𝛿 has at most

one transition 𝑞−{𝑎}→ 𝑟 . Any NFA can be determinised by the subset construction, which
creates the DFA 𝐴′ = (𝑄 ′, 𝛿′, 𝑞′0, 𝐹 ′) with

• 𝑄 ′ = 2𝑄, i.e., with subsets of 𝐴 as the new states,

• the singleton {𝑞0} as the initial state 𝑞′0,

• with sets intersecting with 𝐹 being final, i.e., 𝐹 ′ = {𝑆 ⊆ 𝑄 | 𝑆 ∩ 𝐹 ≠ ∅}, and
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• with the successor of a state 𝑆 ⊆ 𝑄 under a symbol 𝑎 constructed as the set of
𝑎-successors of the NFA states in 𝑆, i.e. 𝑆−{𝑎}→ 𝑆′ ∈ 𝛿′ for 𝑆′ = {𝑠′ | 𝑠 ∈ 𝑆∧
𝑠−{𝑎}→ 𝑠′ ∈ 𝛿}.

2.4 Pattern Matching

Pattern matching is the process of checking whether an input string/or its part belongs
to the language described by a regex.

• Partial match. If only a substring of the input string is required to be in
the language of the regex, then we refer to it as a partial match. In other words,
it is checked whether the input string 𝑤 can be written as a concatenation 𝑥.𝑣.𝑦
such that 𝑣 ∈ 𝐿 (𝑅), i.e., 𝑤 ∈ 𝐿 (.* 𝑅 .*).

• Exact match. If the entire input string is required to be in the language of
the regex, then we refer to it as an exact match. In other words, it is checked
whether the input string 𝑤 is in 𝐿 (𝑅).

As already mentioned in Section 2.2, some extended regexes consist of anchors–‘^’
at the start of the regex and ‘$’ at the end of the regex. The anchors are interpreted
in different matching modes (single or multi-line mode) differently. Let an input string
consist of several lines. In a single-line mode, ‘^’ is considered the beginning of
the input string and ‘$’ the end. In a multi-line mode, ‘^’ represents the beginning of
the line and ‘$’ the end. The anchors are used to find an exact match in a single-line
mode.

Example 2.4.1. Let us have an input string ‘Today is Saturday!\nTommorow is Sunday!’
and the regex ‘^To.*day!$’. In the multi-line mode, ‘^’ matches before the first
and second occurrence of T. ‘$’ matches between the first ‘!’ and ‘\n’, and also after
the second ‘!’. In the single-line mode, ‘^’ matches only before the first ‘T’, and ‘$’
matches only after the second ‘!’. □

Next, we will provide an overview of approaches to pattern matching. The approaches
are classified into backtracking and automata-based.

Backtracking. Backtracking [86] in its simplest form is a recursive procedure that
descends the syntactic tree of the regex while reading the text from the left to the right
and matching its characters against subexpressions of the regex. Since disjunction
and iteration offer a choice, the recursion tries the longest path through the NFA and
if the matching fails, it backtracks to the last unexplored choice. It is in fact very
similar to a depth-first exploration of all runs following the input line through an NFA
corresponding to the regex.

Example 2.4.2. Let us have a regex ‘unit|unicode|unicorn’ and an input string ‘It
is a unicorn!’ (see Figure 2.1). First, the matcher tries to match ‘I’ from the input string
and ‘u’ from the regex. It fails to match, as well as the 2nd letter ‘t’ of the input string.
The matcher unsuccessfully continues in attempts to match until it matches the 10th
letter of the input string ‘u’. At this point, there are three alternative paths through
NFA–matching ‘unit’, ‘unicode’ or ‘unicorn’.
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input text pattern match input text pattern match
Saturday day yes days day yes
Saturday ^day no days ^day yes
Saturday day$ yes days day$ no
Saturday ^day$ no days ^day$ no

Table 2.1: Having an input string ‘Saturday’, ‘^day’ and ‘^day$’ do not match it since
‘day’ does not match at the beginning of the input string. Having an input string ‘days’,
the last two options ‘day$’ and ‘^day$’ do not match it since ‘day’ does not match at
the end of the input string.

A backtracking matcher usually processes the alternatives from left to right. First, it
tries to match ‘unit’, concretely ‘u’ from the regex and ‘u’ from the input string. Since
these letters match, it continues. Also ‘n’ and ‘i’ from the input string match. The next
c does not match and since there were other alternatives, the matcher backtracks to
the 9th letter of the input string and tries to match ‘unicode’. It matches ‘u’, ‘n’, ‘i’, ‘c’,
and ‘o’, then it fails while matching ‘r’. The matcher backtracks to the same point as in
the previous case and tries the last alternative ‘unicorn’ when it finds a match. □

Figure 2.1: Example of backtracking
approach.

Backtracking algorithms are probably
the most often implemented ones, e.g., in the
standard libraries of .NET, Python, Perl,
PHP, Java, and JavaScript. Backtrack-
ing matchers are conceptually very simple
(a basic implementation takes a few lines
of functional code, e.g. [76]) and they are
processing a single path through the NFA at
a time. Thus, they are flexible and amenable
to easy extensions with features such as
priority of matched sub-expressions, sub-
matching, or back-references.
Backtracking needs almost no preprocess-

ing, since the preprocessing phase involves
only compilation of a regex. Nonetheless, as
the number of NFA runs over a single line
is in the worst case exponential in its length,
the worst-case complexity of matching us-
ing a backtracking matcher is exponential in
the length of the text. Hence, backtracking-
based algorithms may easily require a pro-
hibitively large time, and are quite prone to
ReDoS attacks, cf. [72]. Extreme match-
ing times do not occur often if regexes are
written defensively, and modern implemen-
tations are fast, especially when an accepting path is guessed early. However, overlooking
a dangerous regex is easy and writing such a regex intentionally is even more so. For

14



(a) NFA for the regex ‘(unit|unicode|unicorn)’

(b) DFA for the regex ‘(unit|unicode|unicorn)’

Figure 2.2: NFA for regex ‘^(unit|unicode|unicorn)$’ has 17 states. A corre-
sponding DFA is created using a subset construction and has only 9 states.

instance, when run on the regex ‘(a|b|ab)*bc’ against the input string ‘(𝑎𝑏)𝑛𝑎𝑐’ with
𝑛 = 50, standard matchers in Java, Python, .NET become unresponsive [76].

Offline DFA-similation. A basic automata-based alternative to backtracking is offline
DFA-simulation. Offline DFA-simulation is based on construction of the DFA up
front in the preprocessing phase. Having the DFA at hand is the best scenario for
matching since every character is then processed in constant time by simply following
the unique transition from the current DFA state to the successor. Figure 2.2 illustrates
the difference between NFA and DFA for a regex ‘^(unit|unicode| unicorn)$’.
An issue with determinisation is that it may explode exponentially, rendering matching
slow or unfeasible (the matcher may time out already during the DFA construction).
Moreover, it is hard to extent them with features such as back-references. This approach
is therefore seldom used in practice.

NFA-simulation. A viable alternative to the offline DFA-simulation is based on
Thompson’s algorithm [86] aka the NFA-simulation, which determinises only the part
of the given NFA used to match the given word. Hence, the preprocessing cost is low.
The NFA-simulation essentially differs from the backtracking algorithm by replacing
the depth-first NFA exploration strategy by a breadth-first search strategy. Reading
each symbol 𝑎 of the input string means updating the set of all NFA states reached by
runs over the so-far processed prefix of the string. The time needed to process a single
symbol is thus linear to the size of the NFA (an iteration through all 𝑎-transitions starting
in the current set), and the entire matching is only linear in the length of the string.
An advanced implementation of the NFA simulation is a part of Intel’s Hyperscan

[20] (among a number of other techniques such as advanced use of the Boyer-
Moore algorithm [14] for string-matching, innovative parallelisation, or specialised
processor instructions).

15



However, the overhead during matching using NFA-simulation might be significant,
and the construction can still explode on some strings.

Online DFA-simulation. Online DFA-simulation is based on the NFA-simulation.
A crucial optimization on top of NFA-simulation is caching. The reached sets of
NFA states are actually states of the DFA constructed by the subset construction,
while a DFA state and its successor reached after reading a symbol constitute a DFA
transition. The encountered DFA states and transitions are cached. The management
of the cache may be the following (as implemented in RE2 [42]): (i) When the cache
exceeds some size, it is reset and (ii) if the cache utilization is too low or is reset too
often, the matcher disables the cache completely and reverts to pure NFA-simulation.
The online DFA-simulation may run into trouble from two reasons:

1. Many states. If many new states are discovered, the matcher cannot use
the precomputed states from the cache and many cache misses occur.

2. Large states. It is time consuming to compute large states.

When the matching algorithm stays inside the cache, it is exactly the same as the offline
DFA-simulation, with constant per-character complexity. Hence, the online DFA-
simulation can achieve much better performance and especially stability and resilience
against ReDoS than NFA-simulation. The disadvantage is perhaps a less straightforward
implementation, which implies lower flexibility. It is not clear how to extend online DFA-
simulation with advanced regex features such as back-references. Well-known examples
of industrial matchers based on the DFA-simulation include RE2 [42], grep [32],
SRM [82], or the regex matcher in Rust [31].

2.5 Conversion of Regular Expressions to Automata

Several methods of converting a regex to a corresponding automaton have been proposed.
The basic methods are McNaughton and Yamada’s, Thompson’s algorithm, Glushkov’s
algorithm, or algorithms based on Brzozowski or Antimirov’s derivatives [64, 86, 40,
13, 13, 4]. Many papers were published proposing their optimization. In the following
paragraph, we will present only a brief overview of these algorithms and then we will
focus on the constructions based on derivatives which we build on in this thesis.
The Thompson’s algorithm converts a given regex into an abstract syntax tree and

then builds a corresponding NFA by traversing the tree bottom-up from the leaf nodes to
the root of the tree. The resulting NFA has Θ(𝑛) states where 𝑛 is the length of the regex.
The McNaughton and Yamada’s NFA is constructed from a linearized version of a given
regex, that is, one in which the symbols are distinguished according to their position in
the regex. The number of states of the NFA isΘ(𝑠) where 𝑠 is the number of occurrences
of the symbols in the regex. The Glushkov’s construction produces NFA with Θ(𝑛)
states. The NFA is also constructed from a linearized version of a given regex. First, it
inductively computes three sets of symbols—First, Last and Follow: the sets of the first
letters, last letters, and letters that follow the first letters for the linearized regex. Then it
constructs the equivalent NFA directly from these sets. The output of the Glushkov’s
algorithm is similar to the Thompson’s construction, once the 𝜖-transitions are removed.
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Regexes and their derivatives. In 1964, Brzozowski introduced word derivatives
of regexes [13] and suggested an algorithm which converts a regex into a DFA where
the word derivatives serve as states of the DFA. His approach easily supports also regexes
extended with Boolean operations such as complement or conjuction. The notion of
derivative was generalized to partial derivatives by Antimirov [4]. The Antimirov’s
construction yields a succinct NFA of the size linear to the number of states and
quadratic to the number of transitions. It was proven by [16] that the Antimirov’s NFA
is the quotient of the Glushkov automaton for some equivalence relation. Antimirov’s
derivatives have been recently extended to unrestricted regexes (regexes extended to
complementation and intersection) [15]. The difference between Antimirov’s and
Brzozowski approaches can be seen in Figure 2.3.

Definition 2.1. Let Σ be an alphabet. The derivative of a language 𝐿 ⊆ Σ∗ with respect
to a string 𝑢 ∈ Σ∗ is defined in [73] to be:

𝜕𝑢 (𝐿) = {𝑣 | 𝑢𝑣 ∈ 𝐿}.

In other words, the derivative of 𝐿 with respect to 𝑢 is the set of strings 𝑣 whose
concatenation with 𝑢 as the prefix belongs to 𝐿. For example, let us have a regex
𝑅 = ‘(unit|unicode|unicorn)’ with a language 𝐿 (𝑅) = {unit, unicode, unicorn}.
Derivatives of 𝐿 (𝑅) with respect to a string ‘u’ is a set of strings 𝜕𝑢 (𝐿 (𝑅)) = {nit,
nicode, nicorn}.

Definition 2.2. Let Σ be an alphabet, 𝐿 ⊆ Σ∗ is a language and 𝑅, 𝑆 are regexes over
Σ, i.e., 𝐿 (𝑅), 𝐿(𝑆) ⊆ Σ∗. We say that 𝑅 and 𝑆 are equivalent, written 𝑅 ≡ 𝑆, if 𝐿 (𝑅) =
𝐿 (𝑆). We write [𝑅]≡ for the set {𝑆 | 𝑅 ≡ 𝑆}, the equivalence class of 𝑅 under ≡.

Brzozowski derivatives provide an elegant approach for converting a regex directly into
a DFA. Efficient determinisation based on Brzozowski derivatives was first investigated
in [8]. They can be used not only for efficient matching [73, 34] but also match
generation [82]. An on-the-fly Brzozowski derivative construction is implemented
for example in SRM [82].
The relation between the derivatives of a language and Brzozowski derivatives of

a regex is that for each regex 𝑅 and a symbol 𝑎 it holds that 𝜕𝑎 (𝐿 (𝑅)) = 𝐿 (𝜕𝐵𝑎 (𝑅)). Let
Σ be an alphabet, 𝐿 ⊆ Σ∗ is a language, 𝑎, 𝑏 ∈ Σ and 𝑅, 𝑆 are regexes over Σ. The Br-
zozowski derivatives of regex with respect to a symbol 𝑎 are defined as follows [73]:

• 𝜕𝐵𝑎 (𝜖) = ∅,

• 𝜕𝐵𝑎 (𝑎) = 𝜖 ,

• 𝜕𝐵𝑎 (𝑏) =
{
∅ for 𝑏 ≠ 𝑎,

𝑎 for 𝑏 = 𝑎,

• 𝜕𝐵𝑎 (∅) = ∅,

and derivatives of regexes that use operators are:

• if 𝜖 ∉ 𝐿 (𝑅): 𝜕𝐵𝑎 (𝑅 · 𝑆) = 𝜕𝐵𝑎 (𝑅) · 𝑆,

• if 𝜖 ∈ 𝐿 (𝑅): 𝜕𝐵𝑎 (𝑅 · 𝑆) = 𝜕𝐵𝑎 (𝑅) · 𝑆 | 𝜕𝐵𝑎 (𝑆),
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(a) DFA constructed using Brzozowski
derivatives

(b) NFA constructed using Antimirov’s
derivatives

Figure 2.3: Construction of FA for a regex ‘a[ab]*(bc)*’ using Brzozowski and
Antimirov’s derivatives. The result of the Brzozowski derivatives (Figure 2.3a) is a DFA.
The result of Antimirov’s derivatives (Figure 2.3b) is an NFA.

• 𝜕𝐵𝑎 (𝑅∗) = 𝜕𝐵𝑎 (𝑅) · 𝑅∗,

• 𝜕𝐵𝑎 (𝑅 | 𝑆) = 𝜕𝐵𝑎 (𝑅) | 𝜕𝐵𝑎 (𝑆).

Given a regex 𝑅 the Brzozowski derivatives induce a DFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹).
States 𝑄 include [𝑅]≡ and the equivalence classes of all regexes that arise in derivatives
constructed from 𝑅 by repeated derivation wrt Σ. The initial state is 𝑞0 = [𝑅]≡,
the transition function is defined by 𝛿( [𝑆]≡, 𝑥) = [𝜕𝐵𝑥 (𝑆)]≡ for all 𝑥 ∈ Σ, [𝑆]≡ ∈ 𝑄, and
the set of final states is 𝐹 = {[𝑆]≡ ∈ 𝑄 | 𝜖 ∈ 𝐿 (𝑆)}. Then 𝐴 recognizes the language
𝐿 (𝑅). Brzozowski proved that there are finely many derivative classes of a regex, which
guarantees the termination of the DFA construction.

Antimirov’s derivatives are a generalisation of Brzozowski derivatives to NFAs.
In the classical setting, Antimirov derivatives are used to construct NFAs from
regexes, and may in some cases result in exponentially more succinct automata
than the corresponding DFAs constructed with Brzozowski derivatives. The An-
timirov’s construction has also been generalized to regexes extended to complementation
and intersection [15, 13].
The relation between the derivatives of a language and Antimirov’s derivatives of

a regex is that for each a regex 𝑅 it holds that
⋃

𝑅𝑖 ∈𝜕𝐴
𝑎 (𝑅) 𝐿 (𝑅𝑖) = 𝜕𝑎 (𝐿 (𝑅)). The An-

timirov’s derivatives of a regex with respect to a symbol are defined as follows [13]:
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• 𝜕𝐴
𝑎 (𝑎) = {𝜖},

• 𝜕𝐴
𝑎 (𝑏) =

{
∅ for 𝑏 ≠ 𝑎,

{𝜖} for 𝑏 = 𝑎,

• 𝜕𝐴
𝑎 (𝜖) = ∅,

• 𝜕𝐴
𝑎 (𝑅∗) = {𝑅′ · 𝑅∗ | 𝑅′ ∈ 𝜕𝐴

𝑎 (𝑅)},

• 𝜕𝐴
𝑎 (𝑅 | 𝑆) = 𝜕𝐴

𝑎 (𝑅) ∪ 𝜕𝐴
𝑎 (𝑆),

• if 𝜖 ∈ 𝐿 (𝑅): 𝜕𝐴
𝑎 (𝑅 · 𝑆) = {𝑇 · 𝑆 | 𝑇 ∈ 𝜕𝐴

𝑎 (𝑅)} ∪ 𝜕𝐴
𝑎 (𝑆),

• if 𝜖 ∉ 𝐿 (𝑅): 𝜕𝐴
𝑎 (𝑅 · 𝑆) = {𝑇 · 𝑆 | 𝑇 ∈ 𝜕𝐴

𝑎 (𝑅)}.

Given a regex 𝑅 the Antimirov’s derivatives induce an NFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹).
States 𝑄 include [𝑅]≡ and the equivalence classes of all regexes that arise in derivatives
constructed from 𝑅 by repeated derivation wrt Σ. Given a state represented by a regex
[𝑅]≡, for each 𝑎 ∈ Σ and each partial derivative 𝑅𝑖 ∈ 𝜕𝑎 ( [𝑅]≡), there is a transition
[𝑅]≡−{𝑎}→[𝑅𝑖]≡ of 𝐴. 𝐴 has the initial state 𝑞0 = [𝑅]≡ and the set of final states
𝐹 = {[𝑆]≡ ∈ 𝑄 | 𝜖 ∈ 𝐿 (𝑆)}.
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‘Pure mathematics is, in its way, the poetry of logical ideas.’
Albert Einstein

3
Succinct Determinisation of Counting

Automata via Sphere Construction

As we already mentioned in the introduction, matching of regexes with bounded
repetition is a challenge for all existing regex matchers. The worst-case complexity
of matching based on DFA-simulation is linear in the length of the text, but double-
exponential in the size of the regex—exponential to the repetition bounds. Therefore,
we aim at designing alternative representation less dependent on the repetition bounds
that still allows matching in time linear in the length of the text.
We propose a solution based on representing bounded repetition in automata symbol-

ically via counters. Several such finite automata counterparts of counting constraints
have appeared in the literature (e.g. [51, 56, 89, 92]), all essentially boiling down to
variations on counter automata with counters limited to a bounded range of values.
In this thesis, we will define our variant that we call counting automata (CAs). First,
a regex is converted into a nondeterministic CA with 𝑂 ( |𝑅 |) states where |𝑅 | is the size
of the regex. The main hurdle, however, is to convert the CA to a succinct deterministic
machine that could be simulated fast in matching. The naive determinisation of CAs
using the standard subset construction wastes the succinctness of counters and can easily
lead to state explosion causing the approach to fail. For example, the NFA from Exam-
ple 1.3.1 will have at least 𝑘 states with 𝑘 being the upper bound of the counter, which
is exponential in the regex size, and the minimal DFA will have 2𝑘+1 states. A more
sophisticated method of determinisation is needed.
In this section, we present our first steps towards this end which we published first

in [49]. We propose an algorithm that can produce deterministic CAs exponentially
more succinct than the corresponding DFAs. We also propose a version of the al-
gorithm restricted to repetition of character classes, called monadic counting here
(e.g., ‘[ab]{10}’ is monadic while ‘(ab){10}’ is not). The worst-case complexity
of this specialised algorithm is only polynomial in the maximum counter bounds (in
contrast to the exponential naive construction).
We have implemented the monadic CA determinisation and evaluated it on real-life

datasets of regexes with monadic counting. The experiments confirmed that our resulting
deterministic CAs can bemuch smaller thanminimalDFAs, are less prone to explode, and
that our algorithm, though not optimised, is overall faster than the naive determinisation
that unfolds counters. We also confirmed that monadic regexes present an important
subproblem, with over 95% of regexes in the explored datasets being of this type.
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𝑞⊤ 𝑟 {𝑐 = 𝑘}
l = a, 𝑐′ = 0

⊤ 𝑐 < 𝑘, 𝑐′ = 𝑐 + 1

Figure 3.1: A CA for the regex ‘.*a.{k}’ with 𝑘 ∈ N, 𝐼 : s = 𝑞, 𝐹 : s = 𝑟 ∧ 𝑐 = 𝑘 ,
and Δ : 𝑞−{⊤,⊤}→𝑞 ∨ 𝑞−{l=a,𝑐′=0}→𝑟 ∨ 𝑟−{𝑐<𝑘,𝑐′=𝑐+1}→𝑟 .

Running example. To illustrate our algorithms, consider the regex ‘.*a.{k}’, 𝑘 ∈ N
from Example 1.3.1. The regex corresponds to the nondeterministic CA of Figure 3.1.
In the transition labels, the predicates over the variable l constrain the input symbol,
the predicates over 𝑐 constrain the current value of the counter 𝑐, and the primed
variant of 𝑐, i.e., 𝑐′, stands for the value of 𝑐 after taking the transition. The initial
value of 𝑐 is unrestricted, and the automaton accepts in the state 𝑟 if the value of 𝑐
equals 𝑘 . Our monadic determinisation algorithm, presented in Section 3.4, then
outputs the deterministic CA (DCA) of Figure 3.3 (for 𝑘 = 1). Intuitively, it uses
𝑘 + 1 counters to remember how far back the last 𝑘 + 1 occurrences of 𝑎 appeared.
Depending on 𝑘 , the resulting DCA has 𝑘 + 2 states, 4(𝑘 + 1) + 1 transitions, and
𝑘 + 1 counters. That is, its size is linear to 𝑘 in contrast to the factor 2𝑘 in the size
of the minimal DFA (Figure 3.2). □

Outline. In Section 3.1, we introduce the state of the art on automata and regexes
with bounded repetition. Section 3.2 contains preliminaries on labelled transitions
systems and counting automata. In Section 3.3, we introduce an algorithm for de-
terminising counting-automata. Section 3.4 presents a simplified and more efficient
version of the determinisation algorithm that targets regexes with counting limited
to character classes. In Section 3.5, we present the results of our experimentation
where we compare the proposed approach with the naive determinisation. Section 3.6
concludes the results of this chapter.

3.1 Related Work

In this section, we will introduce the state of the art on automata and regexes with
bounded repetition, which is relevant also for Chapter 4.

Automata with counting. The use of counters has been investigated in [10] for
regexes with bounded repetition, building on the formalism of counter automata called
CNFAs [38]. CAs in this thesis are essentially a symbolic generalization of CNFAs with
some small technical differences, such as counters being 0-based as opposed to 1-based
in CNFAs. The latter difference is mainly due to our use of a generalized Antimirov’s
construction of CAs, discussed in Chapter 4, as opposed to a generalized Glushkov
construction used in [38], which is algorithmically quite different. The work [10] focuses
mostly on deterministic regexes and on a different problem than pattern matching as we
defined it, namely, the so-called incremental matching in the context of database queries
(a query is repeatedly evaluated on a gradually changing word). For standard matching,
it uses a variant of the NFA-simulation applied directly on a CA instead of an NFA
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(hence the translation of the regex to an automaton does not depend on the counter
bounds, but each character of the text is processed with the same cost as with the original
NFA-simulation, at worst linear to the size of the NFA and the counter bounds). This
algorithm is indeed fast on deterministic regexes from practice but can slow down
significantly on nondeterministic ones (which we witnessed in several experiments with
the prototype implementation of [10] on several of our regexes).
The work in [55] is a theoretical study of matching regexes with bounded repetition. It

proposes a matching algorithm based on dynamic programming that runs in time at worst
quadratic in the length of the text (while determinisation and NFA-simulation-based
algorithms run in time linear in the text length). The experimental comparison of [10]
with their variant of NFA-simulation suggests that the matching algorithm of [55] is
indeed not competitive in practice.
Extended FAs (XFAs) augment classical automata with a scratch memory of bits [88,

89] that can represent counters. Regexes are compiled into deterministic XFAs by first
using an extended version of the NFA-simulation, followed by an extended version of
the classical powerset construction and minimization. Although a small XFA may exist,
the determinisation algorithm incurs an intermediate exponential blowup of the search
space for inputs such as ‘.*a.{k}’.
𝑅-automata [2] are also related to our CAs, but their counters need not have upper

bounds and cannot be tested or compared. Further, there are various notions of
extended finite state machines whose expressive power goes beyond regular languages,
e.g., [59, 84, 89, 7]. Such automata are, however, not suitable for the problem of pattern
matching considered in this thesis.

Regexes with bounded repetition. Regexes with bounded repetition are also dis-
cussed in [56]. The automata with counters used in [51], called FACs, are close to our
CAs, but we allow symbolic character predicates and more kinds of counter updates.
The conversion from regexes to FACs proposed in [51] uses a variant of Glushkov
automata [40] and the first-last-follow construction [9, 12].
There are also works on regexes with bounded repetition that translate deterministic

regexes to CAs and work with different notions of determinism [51, 38, 17]. A central
result in [51] is that counter-1-unambiguous regexes can be compiled into deterministic
FACs and that checking determinismof FACs can be done in polynomial time. The related
work in [52] studies membership in regexes with bounded repetition. None of these
papers addresses the problem of determinising nondeterministic CAs.

3.2 Preliminaries

We useN to denote the set of natural numbers {0, 1, 2, . . .}. Given a function 𝑓 : 𝐴→ 𝐵,
we refer to the elements of 𝑓 using 𝑎 ↦→ 𝑏 (when 𝑓 (𝑎) = 𝑏). Given a set of variables 𝑉
and a set of constants 𝑄 (disjoint with N), we define a 𝑄-formula over 𝑉 to be
a quantifier-free formula 𝜑 of Presburger arithmetic extended with constants from 𝑄
and Σ, i.e., a Boolean combination of (in-)equalities 𝑡1 = 𝑡2 or 𝑡1 ≤ 𝑡2 where 𝑡1 and 𝑡2
are constructed using +, N, and 𝑉 , and predicates of the form 𝑥 = 𝑎 or 𝑥 = 𝑞 for 𝑥 ∈ 𝑉 ,
𝑎 ∈ Σ, and 𝑞 ∈ 𝑄. An assignment 𝑀 to free variables of 𝜑 is a model of 𝜑, denoted as
𝑀 |= 𝜑, if it makes 𝜑 true.
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Figure 3.2: DFA simulation using subset construction constructs for a regex ‘.*a.{k}’
a DFA with 2𝑘+1 states. It unwinds the counter values to separate states.

Given a formula 𝜑 and a (partial) map 𝜃 : terms (𝜑) → 𝑆, where terms (𝜑) denotes
the set of terms in 𝜑 and 𝑆 is some set of terms, 𝜑[𝜃] denotes a term substitution,
i.e., the formula 𝜑 with all occurrences of every term 𝑡 ∈ dom (𝜃) replaced by 𝜃 (𝑡).
As usual, replacing a larger term takes priority over replacing its subterms (we treat
primed variables and parameters as atomic terms, hence (𝑝′ = 1) [{𝑝 ↦→ 𝑞}] is still
𝑝′ = 1). The substitution formula 𝜑𝜃 of 𝜃 is defined as the conjunction of equalities
𝜑𝜃

def
=
∧

𝑡 ∈dom (𝜃) (𝜃 (𝑡) = 𝑡).

Labelled transition systems. We will introduce our counting automata as a speciali-
sation of the more general model of labelled transition systems. This perspective and
related notation allows for a more abstract and concise formulation of our algorithms
than the more standard approach, in which one would define counting automata in a more
straightforward manner as an extension of the classical finite automata. A labelled
transition system (LTS) over Σ is a tuple 𝑇 = (𝑄,𝑉, 𝐼, 𝐹,Δ) where:

• 𝑄 is a finite set of control states,

• 𝑉 is a finite set of configuration variables,

• 𝐼 is the initial 𝑄-formula over 𝑉 ,

• 𝐹 is the final 𝑄-formula over 𝑉 , and

• Δ is the transition𝑄-formula over𝑉∪𝑉 ′∪{l} with𝑉 ′ = {𝑥 ′ | 𝑥 ∈ 𝑉},𝑉∩𝑉 ′ = ∅,
and l ∉ 𝑉 .

We call l the letter/symbol variable and allow it as the only term that can occur within
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a predicate l = 𝑎 for 𝑎 ∈ Σ, called an atomic symbol guard.1 Moreover, l is also not
allowed to occur in any other predicates in Δ.
A configuration is an assignment 𝛼 : 𝑉 → N ∪ 𝑄 that maps every configuration

variable to a number from N or a state from 𝑄.
Let C be the set of all configurations. The transition formula Δ encodes the transition

relation JΔK ⊆ C×Σ×C such that (𝛼, 𝑎, 𝛼′) ∈ JΔK iff 𝛼∪{𝑥 ′ ↦→ 𝑘 | 𝛼′(𝑥) = 𝑘}∪{l ↦→
𝑎} |= Δ. We use |Δ| to denote the size of JΔK. For a word 𝑤 ∈ Σ∗, we define inductively
that a configuration 𝛼′ is a 𝑤-successor of 𝛼, written 𝛼 𝑤−→ 𝛼′, such that 𝛼

𝜖−→ 𝛼

for all 𝛼 ∈ C, and 𝛼 𝑎𝑣−−→ 𝛼′ iff 𝛼
𝑎−→ �̄�

𝑣−→ 𝛼′ for some �̄� ∈ C, 𝑎 ∈ Σ, and 𝑣 ∈ Σ∗.
A configuration 𝛼 is initial or final if 𝛼 |= 𝐼 or 𝛼 |= 𝐹, respectively. The language 𝐿 (𝑇)
of 𝑇 is the set of all words that 𝑇 accepts.

Outcome. The outcome of 𝑇 on a word 𝑤 is the set out𝑇 (𝑤) of all 𝑤-successors of
the initial configurations, and𝑤 is accepted by𝑇 if out𝑇 (𝑤) contains a final configuration.

Counting variable. A counting variable (counter) is a configuration variable 𝑐 whose
value ranges over N and which can appear (within Δ, 𝐼, and 𝐹) only in atomic counter
guards of the form 𝑐 ≤ 𝑘, 𝑐 ≥ 𝑘 , (using <, =, > as syntactic sugar) or term equality tests
𝑡1 = 𝑡2, and in atomic counter assignments 𝑐′ = 𝑡 with 𝑡, 𝑡1, 𝑡2 being arithmetic terms
of the form 𝑑 + 𝑘 or 𝑘 with 𝑘 ∈ N and 𝑑 being a counter. A control state variable is
a variable s whose value ranges over states 𝑄 and appears only in atomic state guards
s = 𝑞 and atomic state assignments s′ = 𝑞 for 𝑞 ∈ 𝑄. A Boolean combination of atomic
guards (counter, state, or symbol) is a guard formula and a Boolean combination of
atomic assignments is an assignment formula.

Nondeterministic counting automaton. A (nondeterministic) counting automaton
(CA) is a tuple 𝐴 = (𝑄,𝐶, 𝐼, 𝐹,Δ) such that (𝑄,𝑉, 𝐼, 𝐹,Δ) is an LTS with the follow-
ing properties:

1. The set of configuration variables 𝑉 = 𝐶 ∪ {s} consists of a set of counters 𝐶
and a single control state variable s s.t. s ∉ 𝐶.

2. The transition formula Δ is a disjunction of transitions, which are conjunctions
of the form s = 𝑞 ∧ 𝑔 ∧ f ∧ s′ = 𝑟, denoted by 𝑞−{𝑔,f }→𝑟, where 𝑞, 𝑟 ∈ 𝑄, 𝑔 is
the transition’s guard formula over 𝑉 ∪ {l}, and f is the transition’s counter
assignment formula, a conjunction of atomic assignments to counters, in which
every counter is assigned at most once.

3. There is a constant max𝐴 ∈ N such that no counter can ever grow above that
value, i.e., ∀𝑐 ∈ 𝐶 ∀𝑤 ∈ Σ∗ ∀𝛼 ∈ out𝑇 (𝑤) : 𝛼 |= 𝑐 ≤ max𝐴.

The last condition in the definition of CAs is semantic and can be achieved in different
ways in practice. For instance, regular expressions can be compiled to CAs where
assignment terms are of the form 𝑐 + 1, 0, or 𝑐 only, and every appearance of 𝑐 + 1

1To handle large or infinite sets of symbols symbolically, the predicates l = 𝑎 may be generalised to
predicates from an arbitrary effective Boolean algebra, as in [23].
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is paired with a guard containing a constraint 𝑐 ≤ 𝑘 for some 𝑘 ∈ N. In this case,
max𝐴 = 𝐾 + 1 where 𝐾 is the maximum constant used in the guards of the form 𝑐 ≤ 𝑘 .
We will often consider the initial and final formulae of CAs given as a disjunction∨
𝑞∈𝑄 (s = 𝑞 ∧ 𝜑𝑞) where 𝜑𝑞 is a formula over counter guards, in which case we
write 𝐼 (𝑞) or 𝐹 (𝑞) to denote the disjunct 𝜑𝑞 of the initial or final formula, respectively.
An example of a CA is given in Figure 3.1.

Deterministic counting automata. A deterministic counting automaton (DCA) is
a CA 𝐴 where 𝐼 has at most one model and, for every symbol 𝑎 ∈ Σ, every reachable
configuration 𝛼 has at most one 𝑎-successor (equivalently, the outcome of every word
in 𝐴 is either a singleton or the empty set). Finally, in the special case when 𝐶 = ∅,
the CA is a (classical) nondeterministic finite automaton (NFA), or a deterministic finite
automaton (DFA) if it is deterministic.

3.3 Determinisation of Counting Automata

In this section, we discuss an algorithm for determinising CAs. A naive determinisation
converts a given CA 𝐴 into an NFA by hard-wiring counter configurations as a part of
control states, followed by the classical subset construction to determinise the obtained
NFA (the NFA is finite due to the bounds on the maximum values of counters).
The state space of the obtained DFA then consists of all reachable outcomes of 𝐴. By
determinising 𝐴 in this way, the succinctness of using counters is lost, and the size
of the DFA can explode exponentially not only in the number of control states of 𝐴
but also in the number of reachable counter valuations, which makes the construction
impractical. Instead, our construction will retain counters (though their number may
grow) and represent possible word outcomes as configurations of the resulting DCA.

Spheres. In particular, the outcome of a word 𝑤 ∈ Σ∗ in a CA 𝐴 = (𝑄,𝐶, 𝐼, 𝐹,Δ)
can be represented as a formula 𝜑 over equalities of the form 𝑐 = 𝑘 and s = 𝑞 where
𝑞 ∈ 𝑄, 𝑐 ∈ 𝐶, 𝑘 ∈ N. Intuitively, disjunctions can be used to obtain a single formula
for the possibly many configurations reachable in 𝐴 over 𝑤. For example, the outcome
of the word ‘aab’ in Figure 3.1 is 𝜑 : s = 𝑞 ∨ (s = 𝑟 ∧ (𝑐 = 1 ∨ 𝑐 = 2)). Generally,
the outcome of ‘aab𝑖’, for 0 ≤ 𝑖 < 𝑘 , assuming 𝑘 > 2, is 𝜑𝑖 : s = 𝑞 ∨ (s = 𝑟 ∧ (𝑐 =
𝑖 ∨ 𝑐 = 𝑖 + 1)).
A crucial notion for our construction is then the notion of sphere. A sphere 𝜓 arises

from an outcome 𝜑 by replacing the constants from N by parameters drawn from
a countable set P (disjoint from N, 𝑉 , 𝑄, and {l, s}). In the example above, the sphere
obtained from the 𝜑 is 𝜓 : s = 𝑞 ∨ (s = 𝑟 ∧ (𝑐 = 𝑝0 ∨ 𝑐 = 𝑝1)), and the same sphere
arises from all outcomes 𝜑𝑖 with 0 ≤ 𝑖 < 𝑘 .
Spheres will play the role of the control states of the resulting DCA. The idea of

the construction is that the outcome of every word 𝑤 in a DCA 𝐴𝑑 will contain a single
configuration (𝐴𝑑 is deterministic) consisting of a sphere 𝜓 as the control state and
a valuation of its parameters 𝜂 : P → N. The construction will ensure that 𝜓 [𝜂] models
the outcome out 𝐴(𝑤) of 𝑤 in 𝐴. In our example, the outcome of ‘aab’ in 𝐴𝑑 would
contain the single configuration {s ↦→ 𝜓, 𝑝0 ↦→ 1, 𝑝1 ↦→ 2}, and the outcome of each
𝜑𝑖 , for 0 ≤ 𝑖 < 𝑘 , would contain the single configuration {s ↦→ 𝜓, 𝑝0 ↦→ 𝑖, 𝑝1 ↦→ 𝑖 + 1}.

25



{𝑞 ↦→ 1}⊤ {𝑞 ↦→ 1, 𝑟 ↦→ 1}{𝑝0 = 1} {𝑞 ↦→ 1, 𝑟 ↦→ 2}{𝑝1 = 1}

l ≠ 𝑎

l = 𝑎
𝑝′0 = 0

l ≠ 𝑎, 𝑝0 < 1
𝑝′0 = 𝑝0 + 1

l = 𝑎
𝑝0 = 1, 𝑝′0 = 0

l = 𝑎, 𝑝0 < 1
𝑝′0 = 0

𝑝′1 = 𝑝0 + 1

l ≠ 𝑎
𝑝0 = 1

l ≠ 𝑎, 𝑝1 < 1
𝑝′0 = 𝑝0 + 1
𝑝′1 = 𝑝1 + 1

l = 𝑎
𝑝1 = 1,𝑝′0 = 0
𝑝′1 = 𝑝0 + 1

l ≠ 𝑎
𝑝1 = 1

𝑝′0 = 𝑝0 + 1

Figure 3.3: The DCA generated from the CA of Figure 3.1 for 𝑘 = 1 by our algorithm
for determinisation of monadic CA (Section 3.4).

The example shows the advantage of our construction. Every outcome 𝜑𝑖 would be
a control state of the naively determinised automaton, with a 𝑏-transition from each
𝜑 𝑗 to 𝜑 𝑗+1, for 0 ≤ 𝑗 < 𝑘 − 1. In contrast to that, all these states and transitions will
be in 𝐴𝑑 replaced by a single control state 𝜓 with a single 𝑏-labelled self-loop that
increments both 𝑝0 and 𝑝1. This structure can be seen in Figure 3.3 (states are spheres,
labelled by their multiset representation introduced in Section 3.4).

Determinisation by sphere construction. We now provide a basic version of our
sphere-based determinisation, which can also be viewed as an algorithm that constructs
parametric versions of the subsets used in subset-based determinisation. For this
basic algorithm, termination is not guaranteed, but it serves as a basis on which we
will subsequently build a terminating algorithm. Let us first introduce some needed
additional notation.
Given a formula 𝜑, we denote by at (𝜑) and by num (𝜑) the sets of assignment

terms and numerical constants, respectively, appearing in 𝜑. We will use the set
P ′ = {𝑝′ | 𝑝 ∈ P} and the substitution 𝜃unprime = {𝑝′ ↦→ 𝑝 | 𝑝 ∈ P}. We say that
a formula over variables 𝑉 ∪𝑉 ′ ∪ {l} ∪ P is factorised wrt guards if it is a disjunction∨𝑛

𝑖=1(𝑔𝑖) ∧ (u𝑖) of factors, each consisting of a guard 𝑔𝑖 over𝑉 ∪ {l} ∪P and an update
formula u𝑖 over atomic assignments such that the guards of any two different factors
are mutually exclusive, i.e., 𝑔𝑖 ∧ 𝑔 𝑗 is unsatisfiable for any 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛.2 For a set of
variables𝑈, we denote by ∃∃∃𝑈 : 𝜑 a formula obtained by eliminating all variables in𝑈
from 𝜑 (i.e., a quantifier-free formula equivalent to ∃𝑈 : 𝜑).3

2A Boolean combination of atomic guards and updates can be factorised through (1) a transformation to
DNF, yielding a set of clauses 𝑋; (2) writing each clause 𝜑 ∈ 𝑋 as a conjunction of a guard formula
𝑔𝜑 and an assignment formula 𝑓𝜑 ; (3) computing minterms of the set {𝑔𝜑 | 𝜑 ∈ 𝑋}; (4) creating one
factor (𝑔) ∧ ( 𝑓 ) from every minterm 𝑔 where 𝑓 is the disjunction of all the assignment formulae 𝑓𝜑
with 𝜑 ∈ 𝑋 compatible with 𝑔 (i.e., such that 𝑔 ∧ 𝑓𝜑 is satisfiable).

3We note that we only need to use a specialised, simple, and cheap quantifier elimination. In particular,
we only need to eliminate counter variables 𝑐 from formulae such that, in clauses of their DNF, 𝑐
always appears together with a predicate 𝑐 = 𝑝 where 𝑝 is a parameter. Eliminating 𝑐 from such a DNF
clause is then done by simply substituting occurrences of 𝑐 by 𝑝. We do not need complex algorithms
such as the general quantifier elimination for Presburger arithmetic.
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Algorithm 1: Sphere-based CA determinisation (non-terminating)
Input: A CA 𝐴 = (𝑄,𝐶, 𝐼, 𝐹,Δ).
Output: A DCA 𝐴𝑑 = (𝑄𝑑 , 𝑃, 𝐼𝑑 , 𝐹𝑑 ,Δ𝑑) s.t. 𝐿 (𝐴) = 𝐿 (𝐴𝑑).

1 𝑄𝑑 ←Worklist ← ∅; Δ𝑑 ← ⊥;
2 𝜓𝐼 ← 𝐼 [𝜃const ] for some total injection 𝜃const : num (𝐼) → P;
3 𝐼𝑑 ← s = 𝜓𝐼 ∧ 𝜑𝜃const ;
4 add 𝜓𝐼 to 𝑄𝑑 and toWorklist ;
5 while Worklist ≠ ∅ do
6 𝜓 ← pop (Worklist);
7 Let

∨𝑛
𝑖=1(𝑔𝑖) ∧ (u𝑖) be the formula ∃∃∃ 𝐶, s : 𝜓 ∧ Δ factorised wrt guards;

8 foreach 1 ≤ 𝑖 ≤ 𝑛 do
9 𝜓𝑖 ← u𝑖 [𝜃at ] [𝜃unprime ] for a total injection 𝜃at : at (u𝑖) → P ′;

10 add 𝜓−{𝑔𝑖 ,𝜑𝜃at }→𝜓𝑖 to Δ𝑑;
11 if 𝜓𝑖 ∉ 𝑄

𝑑 then add 𝜓𝑖 to 𝑄𝑑 and toWorklist ;
12 𝑃← all parameters found in 𝑄𝑑;
13 𝐹𝑑 ← ∨

𝜓∈𝑄𝑑 s = 𝜓 ∧ ∃∃∃ 𝐶, s : 𝜓 ∧ 𝐹;
14 𝐼𝑑 ← ground (𝐼𝑑);Δ𝑑 ← ground (Δ𝑑);
15 return 𝐴𝑑 = (𝑄𝑑 , 𝑃, 𝐼𝑑 , 𝐹𝑑 ,Δ𝑑);

The algorithm. The core of our determinisation algorithm is the sphere construction
described in Algorithm 1. It builds a DCA 𝐴𝑑 = (𝑄𝑑 , 𝑃, 𝐼𝑑 , 𝐹𝑑 ,Δ𝑑) whose control
states 𝑄𝑑 are spheres. Its counters are parameters from the set 𝑃 that is built during
the run of the algorithm. The initial formula 𝐼𝑑 defined on Line 3 assigns to s the initial
control state 𝜓𝐼 (obtained on Line 2), which is a parametric version of 𝐼 with integer
constants replaced by parameters according to the renaming 𝜃const . Moreover, 𝐼𝑑
also equates the parameters in 𝜓𝐼 with the constants they are replacing in 𝐼. Hence,
the formula 𝜓𝐼 [𝜃−1const ] models exactly the initial configurations of 𝐴.

Example 3.3.1. In the running example (Figure 3.1), whenever referring to some variable
that is assigned multiple times during the run of the algorithm, we use superscripts to
distinguish the different assignments during the run. On Lines 1–4, the initial sphere 𝜓𝐼

is assigned the formula s = 𝑞, and the initial formula 𝐼𝑑 is set to s = 𝜓𝐼 , which specifies
that 𝜓𝐼 is indeed the initial control state only (𝐼 does not constrain counters, hence 𝐼𝑑
does not talk about parameters). □

The remaining states of 𝑄𝑑 and transitions of Δ𝑑 are computed by a worklist
algorithm on Line 5 with the worklist initialised with 𝜓𝐼 . Every iteration computes
the outgoing transitions of a control state 𝜓 ∈ Worklist as follows: On Line 7, after
eliminating 𝐶 ∪ {s} from the formula 𝜓 ∧ Δ, which describes how the next state and
counter values depend on the input symbol and the current values of parameters, it is
transformed into a guard-factorised form.

Example 3.3.2. When 𝜓𝐼 is taken from Worklist as 𝜓1 on Line 6, its processing
starts by factorising ∃∃∃ {𝑐, s} : 𝜓1 ∧ Δ on Line 7. Here, 𝜓1 ∧ Δ is the formula
s = 𝑞 ∧ (𝑞−{⊤,⊤}→𝑞 ∨ 𝑞−{l=a,𝑐′=0}→𝑟 ∨ 𝑟−{𝑐<𝑘,𝑐′=𝑐+1}→𝑟), which can be also written as:

s = 𝑞 ∧ (s′ = 𝑞 ∨ (l = a ∧ 𝑐′ = 0 ∧ s′ = 𝑟)) .
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The elimination of {𝑐, s} gives the formula s′ = 𝑞 ∨ (l = a ∧ 𝑐′ = 0 ∧ s′ = 𝑟). This
formula is factorised into the following two factors:

(𝐹1) (l = a) ∧ (s′ = 𝑞 ∨ (𝑐′ = 0 ∧ s′ = 𝑟)),
(𝐹2) (l ≠ a) ∧ (s′ = 𝑞). □

In the for-loop on Line 8, every factor (𝑔𝑖) ∧ (u𝑖) is turned into a transition with
the guard 𝑔𝑖; the mutual incompatibility of the guards guarantees determinism. The for-
mula u𝑖 describes the target sphere in terms of the parameters of the source sphere
𝜓, updated according to the transition relation. That is, it is a Boolean combination
of assignments of the form 𝑐′ = 𝑝 + 𝑘 or 𝑐′ = 𝑘 for 𝑐 ∈ 𝐶, 𝑝 ∈ P, and 𝑘 ∈ N.
Line 9 creates a sphere by substituting each of the assignment terms (of the form 𝑝 + 𝑘
or 𝑘) with a parameter and replacing primed variables by their unprimed versions.4
The corresponding assignment term substitution 𝜃at records how the values of the new
parameters are obtained from the original values of the parameters occurring in 𝜓.
It is used to define the assignment formula of the new transition that is added to Δ𝑑

on Line 10. The argument justifying that the construction preserves the language is
the following: if reading 𝑤 ∈ Σ∗ takes 𝐴𝑑 to 𝜓 with a parameter valuation 𝜂 such that
𝜓 [𝜂] is equivalent to out 𝐴(𝑤), then reading a next symbol 𝑎 using a transition newly
created on Line 10 takes 𝐴𝑑 to 𝜓 ′ with the parameter valuation 𝜂′ such that 𝜓 ′[𝜂′]
models out 𝐴(𝑤𝑎).

Example 3.3.3. Factor 𝐹1 of Example 3.3.2 above is processed as follows. A possible
choice for 𝜃1at on Line 9 is the assignment {0 ↦→ 𝑝0}. Its application followed by
𝜃unprime creates:

𝜓1
1 : s = 𝑞 ∨ (𝑐 = 𝑝0 ∧ s = 𝑟).

From 𝜃1at , we get the substitution formula 𝜑𝜃1at
: (𝑝′0 = 0) on Line 10, and so the

transition added to Δ𝑑 is (s = 𝑞)−{l=a, 𝑝′0=0}→ (s = 𝑞 ∨ (𝑐 = 𝑝0 ∧ s = 𝑟)) . The target 𝜓1
1

of the transition is added to 𝑄𝑑 and toWorklist on Line 11. Next, Factor 𝐹2 generates
the self-loop (s = 𝑞)−{l≠a,⊤}→ (s = 𝑞), which ends the first iteration of the while-loop.
Let us also walk through a part of the second iteration of the while-loop, in which 𝜓1

1
is taken fromWorklist as 𝜓2 on Line 6. The formula 𝜓2 ∧ Δ from Line 7 is:

((s = 𝑟 ∧ 𝑐 = 𝑝0) ∨ s = 𝑞) ∧ (𝑞−{⊤,⊤}→ 𝑞 ∨ 𝑞−{l=a,𝑐′=0}→ 𝑟 ∨ 𝑟−{𝑐<𝑘,𝑐′=𝑐+1}→ 𝑟),
(3.1)

which is equivalent to:

(s = 𝑞 ∧ (s′ = 𝑞 ∨ (l = a ∧ 𝑐′ = 0 ∧ s′ = 𝑟))) ∨(
s = 𝑟 ∧ 𝑐 = 𝑝0 ∧ 𝑐 < 𝑘 ∧ 𝑐′ = 𝑐 + 1 ∧ s′ = 𝑟

)
. (3.2)

The elimination of {𝑐, s} on Line 7 then gives the formula:(
s′ = 𝑞 ∨ (l = a ∧ 𝑐′ = 0 ∧ s′ = 𝑟)

)
∨ (𝑝0 < 𝑘 ∧ 𝑐′ = 𝑝0 + 1 ∧ s′ = 𝑟), (3.3)

which is factorised into the following four factors:

4The choice of the parameters in the image of 𝜃at : at (u𝑖) → P ′ on Line 9 is arbitrary, although, in
practice, it would be sensible to define some systematic parameter naming policy and reuse existing
parameters whenever possible.
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(𝐹3) (l = a ∧ 𝑝0 < 𝑘) ∧ (s′ = 𝑞 ∨ (𝑐′ = 0 ∧ s′ = 𝑟) ∨ (𝑐′ = 𝑝0 + 1 ∧ s′ = 𝑟)),
(𝐹4) (l ≠ a ∧ 𝑝0 < 𝑘) ∧ (s′ = 𝑞 ∨ (𝑐′ = 𝑝0 + 1 ∧ s′ = 𝑟)),
(𝐹5) (l = a ∧ 𝑝0 ≥ 𝑘) ∧ (s′ = 𝑞 ∨ (𝑐′ = 0 ∧ s′ = 𝑟)), and
(𝐹6) (l ≠ a ∧ 𝑝0 ≥ 𝑘) ∧ (s′ = 𝑞).
In the for-loop on Line 8, Factor 𝐹3 is processed as follows. Let the chosen substitution
𝜃2at on Line 9 be {𝑝0+1 ↦→ 𝑝1, 0 ↦→ 𝑝0}. Its application followed by 𝜃unprime generates:

𝜓2
1 : s = 𝑞 ∨ (𝑐 = 𝑝0 ∧ s = 𝑟) ∨ (𝑐 = 𝑝1 ∧ s = 𝑟).

The substitution formula 𝜑𝜃2at
on Line 10 is 𝑝′1 = 𝑝0 + 1 ∧ 𝑝′0 = 0, and so Δ𝑑

gets the new transition 𝜓1
1−{l=a∧𝑝0<𝑘,𝑝′1=𝑝0+1∧𝑝′0=0}→𝜓2

1 . The evaluation of the while-
loop would continue analogously. □

In the final stage of the algorithm, when (and if) the while-loop terminates, Line 12
collects the set 𝑃 of all parameters used in the constructed parametric spheres of 𝑄𝑑

as new counters of 𝐴𝑑 . Further, Line 13 derives the new final formula by considering
all computed spheres, restricting them to valuations where the original final formula
is satisfied, and quantifying out the original counters. This way, final constraints on
the original counters get translated to constraints over parameters in 𝑃.

Example 3.3.4. In our running example, for the spheres discussed above, we would
have 𝐹 (𝜓1) : ⊥, 𝐹 (𝜓1

1) : 𝑝0 = 1, and 𝐹 (𝜓2
1) : 𝑝0 = 1 ∨ 𝑝1 = 1. □

Finally, Line 14 applies the function ground on the initial formula and the transition
formula of the constructed automaton before returning it. This step is needed in
order to avoid nondeterminism on unused and unconstrained counters. The function
ground conjuncts constraints of the form 𝑝 = 0 with the initial formula and with
the guard of every transition for every parameter 𝑝 ∈ 𝑃 that is so far unconstrained in
the concerned formula. Moreover, it will introduce a reset 𝑝′ = 0 to the assignment
formula of every transition for every counter 𝑝 ∈ 𝑃 that is so far not assigned on
the concerned transition. The while-loop of Algorithm 1 needs, however, not terminate,
as witnessed also by our example.5

Example 3.3.5. Continuing in Example 3.3.4, the DCA in Figure 3.3 would be a part
of the DCA constructed by Algorithm 1, its states being the spheres 𝜓1, 𝜓1

1, 𝜓
2
1 from

the left, but the while-loop would not terminate, with 𝜓2
1. Instead, it would eventually

generate a successor of 𝜓2
1, the sphere:

𝜓3
1 : s = 𝑞 ∨ (𝑐 = 𝑝0 ∧ s = 𝑟) ∨ (𝑐 = 𝑝1 ∧ s = 𝑟) ∨ (𝑐 = 𝑝2 ∧ s = 𝑟),

i.e., a sphere similar to 𝜓2
1 but extended by a new disjunct with a new parameter 𝑝2.

Repeating this, the algorithm would keep generating larger and larger spheres with more
and more parameters. □

5For this step to preserve the language of the automaton, we need to assume that the input CA does not
assign nondeterministic values to live counters. We are refering to the standard notion: a counter is
live at a state if the value it holds at that state may influence satisfaction of some guard in the future.
Any CA can be transformed into this form, and CAs we compile from regular expressions satisfy this
condition by construction.
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Example 3.3.6. We illustrate the way Algorithm 1 works on the CA presented in
Figure 3.1. Whenever referring to some variable that is assigned multiple times during
the run of the algorithm, we use superscripts to distinguish the different values of
the variable. The algorithm first gives us 𝜓𝐼

def
= (s = 𝑞) and 𝐼𝑑 def

= (s = 𝜓𝐼 ). When 𝜓𝐼 is
taken fromWorklist as 𝜓1, its processing starts by factorising ∃∃∃ {𝑐, s} : 𝜓1 ∧ Δ. Here,
𝜓1 ∧Δ is the formula s = 𝑞 ∧ [𝑞−{⊤,⊤}→𝑞 ∨ 𝑞−{l=𝑎,𝑐′=0}→𝑟 ∨ 𝑟−{𝑐<𝑘,𝑐′=𝑐+1}→𝑟], which can
be rewritten to the formula s = 𝑞∧ (s′ = 𝑞∨ (l = 𝑎∧𝑐′ = 0∧s′ = 𝑟)). The elimination
of {𝑐, s} gives the formula s′ = 𝑞 ∨ (l = 𝑎 ∧ 𝑐′ = 0 ∧ s′ = 𝑟). This formula can be
factorised to the following two factors: (l = 𝑎) ∧ (s′ = 𝑞 ∨ (𝑐′ = 0 ∧ s′ = 𝑟)) and
(l ≠ 𝑎) ∧ (s′ = 𝑞).
We start by processing the first factor. A possible choice for 𝜃1at is the assignment {0 ↦→

𝑝1}. Its application followed by 𝜃unprime creates 𝜓1
1

def
= (s = 𝑞 ∨ (𝑐 = 𝑝1 ∧ s = 𝑟)).

From 𝜃1at , we get the substitution formula 𝜑𝜃1at

def
= (𝑝′1 = 0), and so the transition

added to Δ𝑑 is (s = 𝑞)−{l=𝑎 ,𝑝′1=0}→ (s = 𝑞 ∨ (𝑐 = 𝑝1 ∧ s = 𝑟)). The target of the tran-
sition is added to 𝑄𝑑 and to Worklist . The other factor generates the self-loop
(s = 𝑞)−{l≠𝑎,⊤}→ (s = 𝑞).
The algorithm goes on by processing 𝜓1

1 taken fromWorklist as 𝜓2. In this case,
the formula 𝜓2 ∧ Δ is ((s = 𝑟 ∧ 𝑐 = 𝑝1) ∨ s = 𝑞) ∧ [𝑞−{⊤,⊤}→𝑞 ∨ 𝑞−{l=𝑎,𝑐′=0}→𝑟 ∨
𝑟−{𝑐<𝑘,𝑐′=𝑐+1}→𝑟], which is equivalent to the formula (s = 𝑞 ∧ (s′ = 𝑞 ∨ (l = 𝑎 ∧ 𝑐′ =
0∧s′ = 𝑟)))∨ (s = 𝑟∧𝑐 = 𝑝1∧𝑐 < 𝑘∧𝑐′ = 𝑐+1∧s′ = 𝑟). The elimination of {𝑐, s} then
gives the formula (s′ = 𝑞∨ (l = 𝑎∧ 𝑐′ = 0∧s′ = 𝑟)) ∨ (𝑝1 < 𝑘 ∧ 𝑐′ = 𝑝1 +1∧s′ = 𝑟).
This formula can be factorised to the following four factors:

• (l = 𝑎 ∧ 𝑝1 < 𝑘) ∧ (s′ = 𝑞 ∨ (𝑐′ = 0 ∧ s′ = 𝑟) ∨ (𝑐′ = 𝑝1 + 1 ∧ s′ = 𝑟)),
• (l ≠ 𝑎 ∧ 𝑝1 < 𝑘) ∧ (s′ = 𝑞 ∨ (𝑐′ = 𝑝1 + 1 ∧ s′ = 𝑟)),
• (l = 𝑎 ∧ 𝑝1 ≥ 𝑘) ∧ (s′ = 𝑞 ∨ (𝑐′ = 0 ∧ s′ = 𝑟)), and
• (l ≠ 𝑎 ∧ 𝑝1 ≥ 𝑘) ∧ (s′ = 𝑞).

We proceed by processing the first factor. A possible choice for the substitution 𝜃2at is
{𝑝1 + 1 ↦→ 𝑝1, 0 ↦→ 𝑝2}. Its application followed by 𝜃unprime generates:

𝜓2
1 : (s = 𝑞 ∨ (𝑐 = 𝑝1 ∧ s = 𝑟) ∨ (𝑐 = 𝑝2 ∧ s = 𝑟)) .

The substitution formula 𝜑𝜃2at
is: (𝑝′1 = 𝑝1+1∧ 𝑝′2 = 0), so the transition added to Δ𝑑 is

𝜓1
1−{l=𝑎 ∧𝑝1<𝑘,𝑝′1=𝑝1+1∧𝑝′2=0}→𝜓2

1 .

Later on, Algorithm 1 would in a similar manner from 𝜓2
1 generate the sphere:

𝜓3
1 : (s = 𝑞 ∨ (𝑐 = 𝑝1 ∧ s = 𝑟) ∨ (𝑐 = 𝑝2 ∧ s = 𝑟) ∨ (𝑐 = 𝑝3 ∧ s = 𝑟)) ,

i.e., a sphere similar to 𝜓2
1 but extended by a new disjunct with a new parameter 𝑝3.

When continued, more and more parameters would be introduced, obtaining bigger
and bigger spheres, and the algorithm would never terminate. The reasons why this
nontermination happens and a way how to tackle it are discussed in the next section. □
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Ensuring termination of the sphere construction. In this section, we will discus
reasons for possible non-termination of Algorithm 1 and a way to tackle them. The main
reason is that the algorithm may generate unboundedly many parameters that correspond
to different histories of a counter 𝑐 when processing the input word (including also
impossible ones in which the counter exceeds the maximum value). The algorithm
indeed “splits” a parameter appearing in a sphere into two parameters in the successor
sphere when the transitions of 𝐴 update the counter in two different ways.
In our terminating version ofAlgorithm1, we build on the following: (1) distinguishing

between histories that converge in the same counter value is not necessary, they can
be “merged”, and (2) the number of different reachable counter values is bounded (by
the definition of CAs). We thus enforce the invariant of every reachable configuration
of 𝐴𝑑 that all parameters in the configuration have distinct values. The invariant is
enforced by testing equalities of parameters and merging parameters with equal values
on transitions of 𝐴𝑑 . All transitions of 𝐴𝑑 entering spheres with more than max𝐴 + 1
parameters can then be discarded because the invariant implies that they cannot be taken
at any configuration of 𝐴𝑑 . Furthermore, we will also ensure that the algorithm does
not diverge because of generating semantically equivalent but syntactically different
spheres (because of different names of parameters or different formulae structure).
A terminating determinisation of CAs is obtained from Algorithm 1 by replacing

Lines 9–11 by the code in Algorithm 2. In order to ensure that parameters have pairwise
distinct values, the transitions of 𝐴𝑑 test equalities of the values assigned to parameters
and ensure that two parameters are never used to represent the same value. Different
histories of counters are thus merged if they converge into the same value. To achieve this,
Algorithm 2 enumerates all feasible equivalences of the assignment terms ofu𝑖 onLine 16
and generates successor transitions for each of them separately. When deciding whether
an equivalence ∼ on the assignment terms is feasible, the algorithm performs two tests:

1. The formula:

𝜑∼
def
=

∧
𝑡1∼𝑡2,𝑡1,𝑡2∈at (u𝑖)

(𝑡1 = 𝑡2) ∧
∧

𝑡1≁𝑡2,𝑡1,𝑡2∈at (u𝑖)
(𝑡1 ≠ 𝑡2)

is tested for satisfiability, meaning that the equivalence is not trying to merge
terms that can never be equal (such as, e.g., 𝑝 and 𝑝 + 1).

2. The number of equivalence classes should be at most max𝐴 + 1 since this is
the maximum number of different values that the counters can reach due to
the requirement that the values must be between 0 and max𝐴.

Line 17 builds a term assignment replacement 𝜃at that maps all ∼-equivalent terms
to the same (future) parameter, and Line 18 computes the target sphere, reflecting
the given merge. The test on Line 19 checks whether the target sphere is equal to
some already generated sphere up to a parameter renaming (represented by a bijection
𝜃rename : P ↔ P). If so, the created sphere is discarded, and a new transition going to
the old sphere is generated on Line 20; we need to rename the primed parameters used
in the transition’s assignment appropriately according to

𝜃 ′rename = {𝑝′0 ↦→ 𝑝′1 | 𝑝0 ↦→ 𝑝1 ∈ 𝜃rename }.
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Algorithm 2: Ensuring termination of sphere-based CA determinisation
16 foreach equivalence ∼ on at (u𝑖) s.t. sat(𝜑∼) and |at (u𝑖)/∼ | ≤ max𝐴 + 1 do
17 let 𝜃at : at (u𝑖) → P ′ be an injection;
18 𝜓𝑖 ← u𝑖 [𝜃at ] [𝜃unprime ];
19 if ∃𝜃rename : P ↔ P ∃𝜎 ∈ 𝑄𝑑 : 𝜓𝑖 [𝜃rename ] ⇔ 𝜎 then
20 add 𝜓−{𝑔𝑖∧𝜑∼ [𝜃at ]𝜑𝜃at [𝜃′rename ]}→, 𝜎 to Δ𝑑;
21 else
22 add 𝜓−{𝑔𝑖∧𝜑∼ [𝜃at ],𝜑𝜃at }→𝜓𝑖 to Δ𝑑;
23 add 𝜓𝑖 to 𝑄𝑑 and toWorklist ;

Otherwise, a transition into the new sphere is added on Line 22, and the new sphere
is added to 𝑄𝑑 andWorklist . In both cases, the guard of the generated transition is
extended by the formula 𝜑∼ [𝜃at ], which encodes the equivalence ∼, and hence explicitly
enforces that ∼ holds when the transition is taken.
Note that the test on the maximum number of equivalence classes can be optimised

if finer information about the maximum reachable values of the individual counters is
available. Such information can be obtained, e.g., by looking at the constants used in
the guards of the transitions where the different counters are increased. For any counter,
one should then not generate more parameters representing its possible values than what
the upper bound on that counter is (plus one).

Theorem 1. Algorithm 1 with the modification presented in Algorithm 2 terminates and
produces a DCA with 𝐿 (𝐴) = 𝐿 (𝐴𝑑) and |𝑄𝑑 | ≤ 2 |𝑄 | · (max𝐴+1) |𝐶 | .

Proof (sketch). The fact that the algorithm indeed constructs a DCA is because Line 7
of Algorithm 1 generates pairwise incompatible guards on transitions only. It is also
easy to show by induction on the length of the words that the language is preserved.
The termination then follows from the facts that (1) the algorithm has a bound on
the maximum number of parameters in spheres (ensured by the condition over ∼ on
Line 16 ofAlgorithm2) and (2) no spheres equal up to renaming are generated (ensured by
the check on Line 19). The bound on the size follows from the structure of spheres. □

The number of equivalences generated on Line 16 of Algorithm 2 (and therefore
also the number of transitions leaving 𝜓) may be large. Many of them are, however,
infeasible (cannot be taken in any reachable configuration of 𝐴𝑑), and could be removed.
In most cases, the majority of such infeasible transitions may be identified locally, taking
advantage of the invariant of all reachable configurations of 𝐴𝑑 enforced by Algorithm 2:
namely, values of distinct parameters are always pairwise distinct. Therefore, before
building a transition for an equivalence ∼, we ask whether the ∼-equivalent assignment
terms may indeed be made equivalent assuming that the constructed transition guard 𝑔𝑖
and—importantly—also the distinctness invariant hold right before the transition is
taken. Technically, we create new transitions only from those equivalences ∼ such that:

sat(
∧

𝑝1, 𝑝2∈𝑃𝜓 ,dist (𝑝1, 𝑝2)
(𝑝1 ≠ 𝑝2) ∧ 𝑔𝑖 ∧ 𝜑∼)

where 𝑃𝜓 is the set of parameters of 𝜓 and dist (𝑝1, 𝑝2) holds iff 𝑝1 and 𝑝2 are
distinct parameters.
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Example 3.3.7. From the CA in Figure 3.1, Algorithm 2 would generate the DCA shown
in Figure 3.3, with the addition of the parameter equivalence tests on the self-loops on
the right-most state. Each of the self-loops would exist in two variants, with 𝑝′0 = 𝑝

′
1 and

𝑝′0 ≠ 𝑝′1. The optimisation that takes advantage of the distinctness invariant discussed
above would prune away the possibilities with 𝑝′0 = 𝑝′1, hence the generated DCA
would be identical to the one in Figure 3.3 up to the additional guard 𝑝′0 ≠ 𝑝′1 on
the self-loops of the right-most state. □

Reachability-restricted CA determinisation. Above, we have described a terminating
algorithm for CA determinisation. While it is witnessed by our experiments that
the algorithm often generates much smaller automata than what could be obtained by
transforming the automata into NFAs and determinising them, a natural question is
whether the generated DCA is always smaller or equal in size to the DFA built by getting
rid of the counters and using classical determinisation. Unfortunately, the answer to
this question is no. The reason is that the transformation to a DCA needs not recognise
that some generated transitions can never be executed and that some spheres are not
reachable. To see this, it is enough to imagine a transition setting some counter 𝑐 to
zero and the only successor transition testing whether 𝑐 is positive. The latter transition
would not be executed when generating the DFA due to working with concrete values of
counters, but it would be considered when constructing the DCA (since the construction
does not know the values of the counters).
In our experiments with CAs obtained from real-life regexes, the above was not

a problem, but we note that, for the price of an increased cost of the construction,
one could further improve the algorithm by taking into account some reachability
information. In an extreme case, one could first generate the DFA corresponding to
the given CA and then use it when generating the DCA (as a hopefully more compact
representation of the DFA). In particular, whenever adding some new sphere into
the DCA being built, the algorithm can check whether there is a subset of states in
the original CA represented as a state of the DFA that is an instance of the sphere.
If not, the sphere is not added. The resulting DCA can then never be bigger than
the DFA since each control state of the DFA (i.e., a subset of states of the original
CA) is represented by a single sphere only, likewise each transition of the DFA is
represented by a single transition of the DCA, and there are not any unreachable spheres
or transitions that cannot be executed.
Notice that the reachability pruning is an alternative to Algorithm 2. Algorithm 1

equipped with the reachability analysis is guaranteed to terminate. For example, when
run on the CA in Figure 3.1, it would generate a DCA isomorphic to that from Figure 3.3.

3.4 Monadic Counting

We now provide a simplified and more efficient version of the determinisation al-
gorithm. The simplified version targets CAs that naturally arise from monadic
regexes, i.e., regular expressions extended with counting limited to character classes.
Their abstract syntax is:

𝑅 ::= ∅ | 𝜀 | 𝜎 | 𝑅1𝑅2 | 𝑅1 | 𝑅2 | 𝑅* | 𝜎{𝑛, 𝑚}
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where 𝜎 is a predicate denoting a set of alphabet symbols, i.e., a character class
(𝜎 will be used to denote character classes from now on), and 𝑛, 𝑚 ≥ 0 are integers.
The semantics is defined as usual, with 𝜎{𝑛, 𝑚} denoting a string 𝑤 with 𝑛 ≤ |𝑤 | ≤ 𝑚
symbols satisfying 𝜎.
The specialised determinisation algorithm is of a high practical relevance since

the monadic class is very common, as witnessed by our experiments, where it covers
over 95% of the regexes with counting that we found (cf. Section 3.5).

Monadic counting automata. Monadic regexes can be easily compiled to non-
deterministic monadic CAs satisfying certain structural properties summarised be-
low.6 In particular, a (nondeterministic) monadic counting automaton (MCA) is a CA
𝐴 = (𝑄,𝐶, 𝐼, 𝐹,Δ) where the following holds:

1. The set 𝑄 of control states is partitioned into a set of simple states 𝑄𝑠 and a set of
counting states 𝑄𝑐, i.e., 𝑄 = 𝑄𝑠 ⊎𝑄𝑐.

2. The set of counters 𝐶 = {𝑐𝑞 | 𝑞 ∈ 𝑄𝑐} consists of a unique counter 𝑐𝑞 for every
counting state 𝑞 ∈ 𝑄𝑐.

3. All transitions containing counter guards or updates must be incident with
a counting state in the following manner. Every counting state 𝑞 ∈ 𝑄𝑐 has a single
increment transition, a self-loop 𝑞−{𝜎∧𝑐𝑞<max𝑞 ,𝑐′𝑞=𝑐𝑞+1}→𝑞 with the value of 𝑐𝑞
limited by the bound max𝑞 of 𝑞, and possibly several entry transitions of the form
𝑟−{ �̄�∧𝑐′𝑞=0}→𝑞, which set 𝑐𝑞 to 0. As for exit transitions, every counting state is
either exact or range, where exact counting states have exit transitions of the form
𝑞−{𝜎∧𝑐𝑞=max𝑞 }→𝑠, and range counting states have exit transitions of the form
𝑞−{𝜎,⊤}→𝑠 with 𝑠 ∈ 𝑄 s.t. 𝑠 ≠ 𝑞. That is, an exact counting state may be left only
after exactly max𝑞 repetitions of the incrementing transition (it corresponds to
a regular expression ‘𝜎{k}’), while a range counting state may be left sooner
(it corresponds to a regular expression ‘𝜎{0,k}’). We denote the set of range
counting states 𝑄𝑟 and the set of exact counting states 𝑄𝑒, with 𝑄𝑐 = 𝑄𝑟 ⊎𝑄𝑒.

4. The initial condition 𝐼 is of the form

𝐼 :
∨
𝑞∈𝑄𝐼

𝑠

s = 𝑞 ∨
∨
𝑞∈𝑄𝐼

𝑐

(s = 𝑞 ∧ 𝑐𝑞 = 0)

for some sets of initial simple and counting states 𝑄𝐼
𝑠 ⊆ 𝑄𝑠 and 𝑄𝐼

𝑐 ⊆ 𝑄𝑐,
respectively, with the counters of initial counting states initialised to 0.

5. The final condition 𝐹 is of the form

𝐹 :
∨

𝑞∈𝑄𝐹
𝑠 ∪𝑄𝐹

𝑟

s = 𝑞 ∨
∨

𝑞∈𝑄𝐹
𝑒

(s = 𝑞 ∧ 𝑐𝑞 = max𝑞)

6We note that we restrict ourselves to range sub-expressions of the form ‘𝜎{𝑛, 𝑛}’ or ‘𝜎{0, 𝑛}’ only.
This is without loss of generality since a general range expression ‘𝜎{𝑚, 𝑛}’ can be rewritten as
‘𝜎{𝑚, 𝑚}.𝜎{0, 𝑛 − 𝑚}’.
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where 𝑄𝐹
𝑠 ⊆ 𝑄𝑠 is a set of simple final states, 𝑄𝐹

𝑟 ⊆ 𝑄𝑟 is a set of final range
counting states, and 𝑄𝐹

𝑒 ⊆ 𝑄𝑒 is a set of final exact counting states. That is, final
conditions on final states are the same as counter conditions on exit transitions.7

Determinisation of MCAs. Algorithm 2 can be simplifiedwhen specialised tomonadic
CAs. The simplification is based on the following observations. Observation 1. Counters
are dead outside their states. To simplify the representation of spheres, we use the fact
that every counter 𝑐𝑞 of an MCA is “active” in the state 𝑞 only, while 𝑐𝑞 is “dead” in
other states (i.e., its current value has no influence on runs of the MCA that are not in 𝑞).
To represent different variants of 𝑐𝑞, we use parameters of the form 𝑐𝑞 [𝑖] obtained by
indexing 𝑐𝑞 by an index 𝑖, for 0 ≤ 𝑖 ≤ max𝑞, while enforcing the invariant that, for
distinct indices 𝑖 and 𝑗 , 𝑐𝑞 [𝑖] and 𝑐𝑞 [ 𝑗] always have different values. Since the value
of 𝑐𝑞 ranges from 0 to max𝑞, at most max𝑞 + 1 variants of 𝑐𝑞 are needed.8 Since
spheres only need parameters to remember values of live counters, every sphere can be
equivalently written in the normal form:

𝜓
def
=

∨
𝑞∈𝑄′𝑠

s = 𝑞 ∨
∨
𝑞∈𝑄′𝑐

(
s = 𝑞 ∧

∨
0≤𝑖≤max′𝑞

𝑐𝑞 = 𝑐𝑞 [𝑖]
)

for some 𝑄 ′𝑠 ⊆ 𝑄𝑠, 𝑄 ′𝑐 ⊆ 𝑄𝑐, and max′𝑞 ≤ max𝑞. That is, a sphere 𝜓 records which
states may be reached in the original MCA when 𝜓 is reached in the determinised MCA
and also which variants of the counter 𝑐𝑞 may record the value of 𝑐𝑞 when 𝑞 is reached.

Observation 2. Variants of exact counting states can be sorted. For dealing with
any exact counting state 𝑞 ∈ 𝑄𝑒, we may use the following facts: (1) If executed,
the increment transition of 𝑞 increments all variants of 𝑐𝑞 whose values are smaller
thanmax𝑞 . (2) New variants of 𝑐𝑞 are initialised to 0 by the entry transitions. (3) Variants
whose value is max𝑞 can take an exit transition, after which they become dead and
their values do not need to be propagated to the next configuration. It is therefore
easy to enforce that the values of the variants 𝑐𝑞 [𝑖] stay sorted, so that 𝑖 < 𝑗 implies
𝛼(𝑐𝑞 [𝑖]) < 𝛼(𝑐𝑞 [ 𝑗]) in every configuration 𝛼 of 𝐴𝑑 . The sortedness invariant implies
that the variant of 𝑐𝑞 with the highest index, called highest variant, has the highest value.
This, together with the invariant of boundedness by max𝑞 and mutual distinctness of
values of variants of 𝑐𝑞, means that the highest variant is the only one that may satisfy
the tests 𝑐𝑞 = max𝑞 on exit transitions or fail the test 𝑐𝑞 < max𝑞 on the incrementing
transition. Hence, the deterministic MCA does not need to test all variants of 𝑐𝑞 but
the highest one only.

Observation 3. Only the smallest variants of range counting states are important.
For range counting states, we adapt the simulation pruning technique from [39].
The technique optimizes the standard subset-construction-based determinisation of
NFAs by exploiting a simulation relation [29] such that any macrostate (which has
the form of a set of states of the original NFA) obtained during the determinisation can

7Notice that the guards 𝑐𝑞 < max𝑞 on the incrementing self-loops of exact counting states could be
removed without affecting the language since when 𝑐𝑞 exceeds max𝑞 , then the run can never leave 𝑞
and has thus no chance of accepting. We include these guards only to conform to the condition on
boundedness of counter values in the definition of CAs.

8Notice that maintaining a fixed association of a parameter to a counter is a difference from Algorithms 1
and 2, where one parameter may represent different counters.
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be pruned by removing those NFA states that are simulated by other NFA states included
in the same macrostate. The pruning does not change the language: the resulting
DFA is bisimilar to the one constructed without pruning. For our DCA construction,
we use the simulation that implicitly exists between configurations 𝛼 and 𝛼′ of 𝐴
with the same range counting state 𝑞 = 𝛼(s) = 𝛼′(s), where 𝛼(𝑐𝑞) ≥ 𝛼′(𝑐𝑞) implies
that 𝛼′ simulates 𝛼.9 Hence, the spheres only need to remember the smallest possible
counter value for every range counting state 𝑞, which may be always stored in 𝑐𝑞 [0],
and discard all other variants.
Observations 1–3 above allow for representing spheres using a simple data structure,

namely, a multiset of states. By a slight abuse of notation, we use 𝜓 for the sphere itself
as well as for its multiset representation 𝜓 : 𝑄 → N. The fact that 𝜓(𝑞) > 0 means that
𝑞 is present in the sphere (i.e., s = 𝑞 is a predicate in the normal form of 𝜓), and for
a counting state 𝑞, the counters 𝑐𝑞 [0], . . . , 𝑐𝑞 [𝜓(𝑞) − 1] are the 𝜓(𝑞) variants of 𝑐𝑞
tracked in the sphere (i.e., 𝜓(𝑞) − 1 = max′𝑞 in the normal form of 𝜓).
The MCA determinisation is then an analogy of Algorithm 1 that uses the multiset

data structure and preserves the sortedness and uniqueness of variants of exact counters.
The initial sphere 𝜓𝐼 assigns 1 to all initial states of 𝐼, and the initial configuration
𝐼𝑑 assigns 0 to 𝑐𝑞 [0] for each counting state 𝑞 in 𝐼. Further, we modify the part of
Algorithm 1 after popping a sphere 𝜓 fromWorklist in the main loop (Lines 7–11).
Let Δ𝜓 denote the set of transitions of 𝐴 originating from states 𝑞 with 𝜓(𝑞) > 0.

Processing of 𝜓 starts by removing guard predicates of the form 𝑐𝑞 < max𝑞 from
increment transitions of exact counting states in Δ𝜓 (since they have no semantic effect
as mentioned already above). Subsequently, we compute minterms of the set of guard
formulae of the transitions in Δ𝜓. Each minterm 𝜇 then gives rise to a transition
𝜓−{𝑔,f }→𝜓 ′ of 𝐴𝑑 . The guard formula 𝑔, assignment formula f , and the target sphere 𝜓 ′
are constructed as follows.
First, the guard 𝑔 is obtained from the minterm 𝜇 by replacing, for all 𝑞 ∈ 𝑄𝑐, every

occurrence of 𝑐𝑞 by 𝑐𝑞 [𝜓(𝑞)], i.e., the highest variant of 𝑐𝑞. Intuitively, the counter
guards of transitions of Δ𝜓 present in 𝜇 will on the constructed transition of 𝐴𝑑 be
testing the highest variants of the counters. This is justified since (a) only the highest
variant of 𝑐𝑞 needs to be tested for exact counting states, as concluded in Observation 2
above, and (b) we keep only a single variant of 𝑐𝑞 for range counting states (which is
also the highest one), as concluded in Observation 3.
We then initialise the target multiset 𝜓 ′ as the empty multiset {𝑞 ↦→ 0 | 𝑞 ∈ 𝑄} and

collect the set Δ𝜇 of all transitions from Δ𝜓 that are compatible with the minterm 𝜇

(recall that increment self-loops of exact states in Δ𝜓 have counter guards removed,
hence counter guards do not influence their inclusion in Δ𝜇). The transitions of Δ𝜇 will
be processed in the following three steps.

Step 1 (simple states). Simple states with an incoming transition in Δ𝜇 get 𝜓 ′(𝑞) = 1.
Step 2 (increment self-loops). For exact states with the increment self-loop in Δ𝜇,

𝜓 ′(𝑞) is set to 𝜓(𝑞) − 1 if an exit transition of 𝑞 is in Δ𝜇, and to 𝜓(𝑞) otherwise. Indeed,
if (and only if) an exit transition of 𝑞 is included in Δ𝜇, and Δ𝜇 is enabled in some
sphere, then the highest variant of 𝑐𝑞 has reached max𝑞 in that sphere, and the self-loop

9The fact that this relation is indeed a simulation can be seen from that both the higher and lower value of
𝑐𝑞 can use any exit transition of 𝑞 at any moment regardless of the value of 𝑐𝑞 , but the lower value of
𝑐𝑞 can stay in the counting loop longer.
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cannot be taken by the highest variant of 𝑐𝑞. The lower variants of 𝑐𝑞 always have
values smaller than max𝑞, and hence can take the self-loop. The assignment f then
gets the conjunct 𝑐𝑞 [𝑖] ′ = 𝑐𝑞 [𝑖] + 1 for each 0 ≤ 𝑖 < 𝜓 ′(𝑞) since the variants that take
the self-loop are incremented. For range states with the increment self-loop in Δ𝜇, we
set 𝜓 ′(𝑞) to 1, and 𝑐𝑞 [0] ′ = 𝑐𝑞 [0] + 1 is added to f (only one variant is remembered).

Step 3 (entry transitions). For each counting state 𝑞 with an entry transition in Δ𝜇,
𝜓 ′(𝑞) is incremented by 1 and the assignment 𝑐𝑞 [0] ′ = 0 of the fresh variant of 𝑐𝑞
is added to f . If the new value of 𝜓 ′(𝑞) exceeds max𝑞 + 1, then the whole transition
generated from 𝜇 is discarded, since 𝑐𝑞 cannot have more than max𝑞 + 1 distinct values.
Otherwise, if 𝑞 is an exact counting state, then f is updated to preserve the invariant of
sorted and unique values of 𝑐𝑞: the increments of older variants of 𝑐𝑞 are right-shifted
to make space for the fresh variant, meaning that each conjunct 𝑐𝑞 [𝑖] ′ = 𝑐𝑞 [𝑖] +1 in 𝑓 is
replaced by 𝑐𝑞 [𝑖 + 1] ′ = 𝑐𝑞 [𝑖] + 1. If 𝑞 ∈ 𝑄𝑟 , then if the assignment 𝑐𝑞 [0] ′ = 𝑐𝑞 [0] + 1
is present in f , it is removed (as the fresh variant has the smallest value 0).

Example 3.4.1. Determinising the CA from Figure 3.1 using the algorithm described
in this section would result in the DCA shown in Figure 3.3. □

Themonadic determinisation has a much lower worst-case complexity than the general
algorithm. Importantly, the number of states depends on max𝐴 only polynomially,
which is a major difference from the exponential bounds of the naive determinisation
and our general construction.

Theorem 2. The specialised monadic CA determinisation constructs a DCA with
|𝑄𝑑 | ≤ (max𝐴 + 1) |𝑄 | and |Δ𝑑 | ≤ |Σ | · (4 · (max𝐴 + 1)) |𝑄 |.

Proof (sketch). The bound on the number of states is given by the number of functions
𝑄 → {0, . . . ,max𝐴}. The bound on the number of transitions is given by the fact, that
if a sphere multiset maps a state 𝑞 to 𝑛, then the successors of the sphere can map 𝑞
to 0 (when 𝑞 is not a successor), 𝑛 − 1, 𝑛, or 𝑛 + 1. Therefore, for every symbol from Σ

and every macrostate from at most (max𝐴 + 1) |𝑄 | many of them, there are at most 4 |𝑄 |
successors, and |Σ | · (max𝐴 + 1) |𝑄 | · 4 |𝑄 | = (4 · (max𝐴 + 1)) |𝑄 |. □

3.5 Experimental Evaluation

The main purpose of our experimentation was to compare the proposed approach
with the naive determinisation and confirm that our method produces significantly
smaller automata and mitigates the risk of the state space explosion causing a complete
failure of determinisation (and the implied impossibility to use the desired deterministic
automaton for the intended application, such as pattern matching). To this end, we
extended the Microsoft’s Automata library [67] with a prototype support for CAs,
implemented the algorithm from Section 3.4 (denoted Counting in the following), and
compared it to the standard determinisation already present in the library (denoted as
DFA). For the evaluation, we collected 2,361 regexes from a wide range of applications—
namely, those used in network intrusion detection systems (Snort [63]: 741 regexes,
Yang [110]: 228 regexes, Bro [80]: 417 regexes, HomeBrewed [102]: 55 regexes),
the Microsoft’s security leak scanning system (Industrial: 17 regexes), the Sagan
log analysis engine (Sagan [95]: 14 regexes), and the pattern matching rules from
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RegExLib (RegExLib [78]: 889 regexes). We only selected regexes that contain
an occurrence of the counting operator, and from these, we selected only monadic ones
(there were over 95% of them, confirming the fragment’s importance). All benchmarks
were run on a Xeon E5-2620v2@2.4GHz CPU with 32GiB RAM with a timeout of
1 min (we take the mean time of 10 runs). In the following, we use 𝜇, 𝑚, and 𝜎 to
denote the statistical indicators mean, median, and standard deviation, respectively.
All times are reported in milliseconds.
The number of timeouts was 110 for Counting, and 238 for DFA. The two methods

were to some degree complementary, there were only 62 cases in which both timed out.
This confirms that our algorithm indeed mitigates the risk of failure due to state space
explosion in determinisation. The remaining comparisons are done only with respect to
benchmarks for which neither of the methods timed out.
In Figure 3.4, we compare the running times of the conversion of an NFA for

a given regex to a DFA (the DFA axis) and the determinisation of the CA for the same
regex (the Counting axis). If we exclude the easy cases where both approaches
finished within 1ms, we can see that Counting is almost always better than DFA.
Note that the axes are logarithmic, so the advantage of Counting over DFA grows
exponentially wrt the distance of the data point from the diagonal. The statistical
indicators for the running times are 𝜇 = 110, 𝑚 = 0.17, 𝜎 = 1, 177 for DFA and
𝜇 = 0.23, 𝑚 = 0.13, 𝜎 = 0.09 for Counting.
In Figure 3.5, we compare the number of states of the results of the determinisation

algorithms (DCA for Counting and DFA for DFA). Also here, Counting significantly
dominates DFA. The statistical indicators for the numbers of states are 𝜇 = 4, 543,
𝑚 = 41, 𝜎 = 57, 543 for DFA and 𝜇 = 241, 𝑚 = 13, 𝜎 = 800 for Counting. To
better evaluate the conciseness of using DCAs, we further selected 184 benchmarks
that suffered from state explosion during determinisation (our criterion for the selection
was that the number of states increased at least ten-fold in DFA) and explored how
the CA model can be used to mitigate the explosion. Figure 3.6 shows histograms of
how DCAs were more compact than DFAs and also how much the number of counters
rose during the determinisation. From the histograms, we can see that there are indeed
many cases where the use of DCAs allows one to use a significantly more compact
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representation, in some cases by the factor of hundreds, thousands, or even tens of
thousands. Furthermore, the other histogram shows that, in many cases, no blow-up
in the number of counters happened; though there are also cases where the number of
counters increased by the factor of hundreds.
In terms of numbers of transitions, the methods compare similarly as for numbers of

states, as shown in Figure 3.7. We obtained 𝜇 = 14, 282, 𝑚 = 77, 𝜎 = 213, 406 for DFA
and 𝜇 = 2, 398, 𝑚 = 23, 𝜎 = 8, 475 for Counting. (We emphasize the number of states
over the number of transitions in our comparisons since the performance and complexity
of automata algorithms is usually more sensitive to the number of states, and large
numbers of transitions are amenable for efficient symbolic representations [48, 23, 79].)
Benefits of the Counting method were the most substantial on the Industrial dataset.

For the regex ‘.*A[^AB]{0,800}C[D-G]{43,53}DFG[^D-H]’ (which was obtained
from the real one, which is confidential, by substituting the used character classes by
characters ‘A’–‘H’), the obtained DFA contains 200,132 states, while the DCA contains
only 12 states (and 2 counters), which is 16,667 times less. When minimised, the DFA
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still has 65,193 states. There were other regexes where Counting achieved a great
reduction, in total two regexes had a reduction of over 10,000, three more regexes had
a reduction of over 1,000, and 45 more had a reduction of over 100.
Additionally, we also compared our approach against the naive determinisation

followed by the standard minimisation. Due to the space restrictions and since
minimisation is not relevant to our primary target (preventing failure due to state space
explosion during determinisation), we present the results only briefly. Minimisation
increased the running times of DFA by about one half (𝜇 = 150, 𝑚 = 0.35, 𝜎 = 1, 582
for the running times of DFA followed by minimisation). The minimal DFAs were on
average about ten times smaller than the original DFAs, and about ten times larger than
our DCAs (𝜇 = 385, 𝑚 = 29, 𝜎 = 4, 195 for the numbers of states of the minimal DFAs).

3.6 Conclusion

We presented a novel procedure for determinising CA based on generalized subset
construction. Our algorithm has a potential to produce deterministic CAs exponentially
more succinct than the corresponding DFAs. We also developed a simplified and faster
version of the general algorithm for the sub-class of so-called monadic CAs (MCAs).
We confirmed that monadic regexes present an important subproblem, with over 95 %
of regexes in the explored datasets being of this type. The worst-case complexity of
the specialised algorithm is only polynomial in the maximum values of repetition bounds
(in contrast to the exponential naive construction).
We have implemented the monadic CA determinisation and evaluated it on real-

life datasets of regexes with monadic counting. The experiments confirmed that our
algorithm produces significantly smaller automata, which are less prone to explode, and
that our algorithm, though not optimised, is overall faster than the naive determinisation
that unfolds counters. Furthermore, we show large speedups over translation to and
subsequent determinisation of symbolic NFAs. Most importantly, we were able to
significantly reduce the number of timeouts, thus being able to translate a larger fraction
of these datasets into automata.
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‘Mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what
we are saying is true.’

Bertrand Russell

4
Regex Matching with Counting-Set

Automata

In this chapter, we take the ideas from Chapter 3 a significant step further. In Chap-
ter 3, we proposed a general determinisation of CAs without explicit application
to pattern matching which can produce exponentially more succinct automata than
the naive determinisation but its worst-case complexity is at best polynomial in
the maximum values of counters.
We notice that many counters of the deterministic automata computed by the algorithm

in Chapter 5 can be represented as a single data structure. Thus, we introduce a succinct
and fast deterministic machine, called the counting-set automaton (CsA), a deterministic
finite automaton with a special type of registers that can hold values called counting
sets, sets of bounded integer values, and support a limited selection of simple set
operations. Crucially for the efficiency of our approach, we show that, using a suitable
data structure, all the set operations can be implemented to run in constant time regardless
of the size of the set.
Our compilation from a regex to a CsA proceeds in two steps. First, we convert

the regex into a nondeterministic CA.We proposed a novel compilationwhich generalizes
the Antimirov’s derivative construction [4]. Its advantage is that it is absent of 𝜖-
transitions and succinct. The main technical problem we solve in this chapter is
a succinct transformation of a (nondeterministic) CA into a deterministic CsA. Our
algorithm produces a CsA in time independent of the repetition bounds and its simulation
is linear in the size of the input text.
We have carried out an extensive experimental evaluation of our algorithm on a large

sample of regexes used for pattern matching in various applications. The experiments
show that our algorithm, although also limited to a sub-class of regexes, handles over
90% of regexes with bounded repetition we collected. The obtained data confirm that
our CsAs are indeed far smaller and can be constructed faster than corresponding DFAs.
We have implemented a regex matcher called GadgetCA based on our generalized

Antimirov’s algorithm and simulation of CsA obtained by our CA-to-CsA determini-
sation1. The matcher is efficient and applicable to a relatively large class of regexes.

1We use a pre-computed deterministic CsA. While on-the-fly determinisation is also possible, it was not
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We compared it with several state-of-the-art matchers, namely, grep [32], RE2 [42],
SRM [82], and .NET [65]. Our results show that problematic highly nondeterministic
regexes with bounded repetition indeed appear in practice and can also be easily crafted
as a ReDoS attack, and that CsAs can efficiently solve most of such problematic cases.
For instance, the regex (_a){64999}_a from [27] can cause state-of-the-art matchers
exceed any reasonable time limit (when searching for the pattern anywhere on the line,
with the implicit ‘.*’ in front). Already with the repetition bounds lowered to 1,000,
the matchers take from 6 to 34 seconds on 500KB of text, but our algorithm needs only
1 second even with the original bound 64,999.
We summarize the technical contributions of this chapter as follows:

1. A novel Antimirov’s style translation from a regex with bounded repetition to a CA.

2. A novel notion of the counting-set automaton, a deterministic machine that allows
for succinct representation of repetition constraints and fast matching.

3. CA-to-CsA determinisation that runs in time independent of repetition bounds,
the main contribution of this thesis.

4. A regex-matching algorithm interconnecting the above, efficient regardless
of repetition bounds especially on regexes that combine bounded repetition
with nondeterminism.

5. Implementation and extensive experimental evaluation of the above.

Outline. In Section 4.1, we give a brief overview of our conversion of a regex
into a deterministic CsA. Section 4.2 contains preliminaries on effective Boolean
algebras, symbolic automata, and counting automata. In Section 4.3, we introduce
a generalization of the Antimirov’s partial derivative construction to symbolic counting.
In Section 4.4, we describe a determinisation algorithm from counting automata to
counting-set automata. In Section 4.5, we present the results of our experimentation
where we evaluated pattern matching capabilities of our tool Chipmunk against other
state-of-the-art regex matchers on patterns that use the repetition operator. In Section 4.6,
we discuss some important implementation details related to the implementation of
algebras, and their role in the CA determinization algorithm. Section 4.7 concludes
the chapter and proposes further direction of the research.

4.1 Overview

We give a brief overview of our conversion of a regex with bounded repetition into
a deterministic CsA. We use the example regex 𝑅 =.*a.{100} from Example 1.3.1
which represents strings where the symbol a appears 100 positions from the end, with
the corresponding minimum DFA having 2101 states. The conversion proceeds in two
steps. First, 𝑅 is translated into a nondeterministic CA (Figure 4.1a), denoted as CA(𝑅);
second, CA(𝑅) is converted into a deterministic CsA (Figure 4.1b). The size of both is
independent of the repetition bounds (both of the automata will have 2 states only).

needed in our experimentation since we have not witnessed problems with CsA state space explosion.
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𝑞 :.*a.{100} 𝑠 :.{100}
{𝑐 ≥ 100}

𝑐 := 0

.
a

.∧ 𝑐 < 100/𝑐 := 𝑐 + 1

(a) The CA for the regex.*a.{𝑘}

{𝑞} {𝑞, 𝑠} {Max(𝑐) ≥ 100}
𝑐 := {0}

[^a]
a

a/𝑐 := {0} ∪ 𝑐 + 1

[^a] ∧Min(𝑐) < 100/
𝑐 := 𝑐 + 1

[^a] ∧Min(𝑐) ≥ 100/
𝑐 := {0}

(b) The CsA from determinisation of (a)

Figure 4.1: The nondeterministic CA and the deterministic CsA for.*a.{100}.
The transitions are labeled by their guard, which gives the character class (in
the standard POSIX regex notation, where, e.g., ‘.’ stands for “any character”) and
possibly restricts counter values, delimited by ‘/’ from the counter update. If a counter
does not have the update specified, then the transition does not change its value.
In Figure 4.1b, the notation 𝑐 + 1 stands for the set of values obtained by incrementing
each value in 𝑐 and then removing values larger than the upper bound 100 of
the counter. The edges denoting initial states are labelled with initial values of the coun-
ters. Final states are labelled with an acceptance condition, e.g. {𝑐 ≥ 100} in Figure 4.1a.

The formal counter operations op𝑐 presented later in Section 4.3.3 are in Fig-
ure 4.1a shown as follows: the guard of op𝑐 is shown in conjunction with the character
guard 𝛼 on the left of the ‘/’, the update of op𝑐 is shown on the right of ‘/’ in the form
of an assignment to 𝑐, where incr𝑐 appears as the right value 𝑐 + 1, exit as 0, exit1
as 1, and noop is omitted.

Counting-set data structure. Before looking into the conversion from regular ex-
pressions to CsAs it is useful to first understand why the resulting CsA can be used
efficiently for matching in the first place. The main enabler behind this is the use of
our counting-set data structure, say 𝑐, representing sets 𝑆𝑐 ⊆ {0, . . . ,max𝑐} where
the upper bound max𝑐 is a fixed positive integer. A runtime value of 𝑐 is a tuple (𝑜, ℓ)
where 𝑜 ∈ N is called an offset and ℓ is a queue of strictly increasing natural numbers
such that 𝑆𝑐 = {𝑜 − 𝑛 | 𝑛 ∈ ℓ}.
The data structure supports constant-time implementations of the following operations,

assuming constant-time access to the first and the last element of the queue (the queue
may be implemented as a doubly-linked list).

• The minimum and the maximum of 𝑆𝑐 are obtained as 𝑜 − last(ℓ) and 𝑜 −
first(ℓ), respectively.

• Insert 0: if 𝑜− last(ℓ) > 0, then append 𝑜 at the end of ℓ (similarly for inserting 1).

• Increment all, up tomax𝑐: 𝑜 := 𝑜+1; if 𝑜−first(ℓ) > max𝑐, then remove first(ℓ).

• Reset to {0}: ℓ := 0; 𝑜 := 0 (similarly for reset to {1}).

The independence of the running time of these operations of max𝑐 enables our ma-
jor achievement:

The independence of the running time of pattern matching of the repetition bounds.
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Let us now illustrate how this data structure works during matching. We run the CsA
in Figure 4.1b., assuming the meaning of the operations provided above, over the sample
input word 𝑎𝑎0(10)𝑎𝑎𝑏 (87)𝑑𝑓 𝑎.

prefix state (𝑜, ℓ) 𝑆𝑐

𝜖 {𝑞} (0, [0]) {0}
𝑎 {𝑞, 𝑠} (0, [0]) {0}
𝑎𝑎 {𝑞, 𝑠} (1, [0, 1]) {1, 0}
𝑎𝑎0(10) {𝑞, 𝑠} (11, [0, 1]) {11, 10}
𝑎𝑎0(10)𝑎𝑎 {𝑞, 𝑠} (13, [0, 1, 12, 13]) {13, 12, 1, 0}
𝑎𝑎0(10)𝑎𝑎𝑏 (87) {𝑞, 𝑠} (100, [0, 1, 12, 13]) {100, 99, 88, 87}
𝑎𝑎0(10)𝑎𝑎𝑏 (87)𝑑 {𝑞, 𝑠} (101, [1, 12, 13]) {100, 89, 88}
𝑎𝑎0(10)𝑎𝑎𝑏 (87)𝑑𝑓 {𝑞, 𝑠} (102, [12, 13]) {90, 89}
𝑎𝑎0(10)𝑎𝑎𝑏 (87)𝑑𝑓 𝑎 {𝑞, 𝑠} (103, [12, 13, 103]) {91, 90, 0}

The configurations of the automaton after processing prefixes of the word are shown in
the table: the control state, the counting-set run-time configuration (𝑜, ℓ), and the value
𝑆𝑐 it represents. The state {𝑞, 𝑠} fulfills the accepting condition after processing the 6th
and the 7th prefix since the maximum of 𝑆𝑐 at these points is indeed at least 100.

From a nondeterministic CA to a deterministic CsA. The idea of our CA-to-CsA
determinisation is best explained by comparison with the naive determinisation of
a CA, which would create a DFA by the explicit textbook-style subset construction.
The states of the DFA would then be sets of runtime configurations of the CA where
each CA-configuration would consist of a control state and a counter valuation. Counter
valuations would hence be “unfolded”—they would become an explicit part of the DFA
control states—and the succinctness provided by counters would be lost. For instance,
the run of the CA in Figure 4.1a on the word 𝑎𝑎0 . . . generates “powerstates”:

{(𝑞, 𝑐 = 0)}, {(𝑞, 𝑐 = 0), (𝑠, 𝑐 = 0)}, {(𝑞, 𝑐 = 0), (𝑠, 𝑐 = 0), (𝑠, 𝑐 = 1)}, {(𝑞, 𝑐 = 0),

(𝑠, 𝑐 = 1), (𝑠, 𝑐 = 2)}, . . .

which are essentially subsets of {𝑞, 𝑠} × {0, . . . , 100}. In the worst case, the size
of the DFA would be exponential in repetition bounds because 𝑠 can be paired with
any subset of {0, . . . , 100} recording possible values of 𝑐. In contrast to this, as
illustrated above, our CsA represents the counter valuations implicitly: it computes them
dynamically on the fly and stores them as counting sets—i.e., the valuation of a counter
changes from an integer to a set of integers. The counter valuations are hence not a part
of control states, and their overall number influences neither the size of the CsA nor
the time needed to build them.
Figure 4.1b. shows the CsA obtained from determinisation of the CA in Figure 4.1a.

The runtime configurations of the CsA reached for the word 𝑎𝑎0 are:

({𝑞}, 𝑐= {0}), ({𝑞, 𝑠}, 𝑐= {0}), ({𝑞, 𝑠}, 𝑐= {0, 1}), ({𝑞, 𝑠}, 𝑐= {1, 2}).

They encode the first three states reached by the sample DFA run above. Namely,
the control states are kept in the first component and the counter values are in the second
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component, i.e., the set 𝑆𝑐 given by the run-time values of the counting-set 𝑐. In this
encoding, the value of the counting-set is not relevant for the states where the counter
is never active (state 𝑞 in our example). The counter’s value in these states is always
implicitly 0. In the example, the value 𝑆𝑐 of the counting-set therefore only records
the values of 𝑐 at state 𝑠 and is thus relevant only in the CsA state {𝑞, 𝑠}. We note that
for simplicity, we initialise all counting-sets uniformly with {0}, even if their value is
initially irrelevant, as in the case of the CsA state {𝑞} in the example.
We note that some DFA powerstates cannot be encoded as CsA configurations due to

the involved Cartesian abstraction: essentially, any state in the powerset is paired with
any counter value from the counting set. Hence, our approach does not handle the full
class of regexes. Fortunately, as our empirical evidence shows, regexes that fall out
from the supported class are rare in practice.

From regexes to nondeterministic CAs. To translate a regex into a CA, we propose
a generalization of the Antimirov’s derivative construction [4] to symbolic counting.
In Antimirov’s setting, a derivative of a regex 𝑅 wrt a character class 𝛼 is a set of
regexes that together capture all tails of words in 𝐿 (𝑅) whose head character is from 𝛼.
In particular, according to [82], which generalizes [4] to explicit counting, the derivatives
of the regex 𝑅 =.*a.{100} wrt the classes a and [^a] are {𝑅,.{100}} and {𝑅},
respectively. Further, for 1 ≤ 𝑘 ≤ 100, the derivative of.{𝑘} wrt both a and [^a] is
{.{𝑘 − 1}}. The derivatives become the states of the resulting NFA, with 𝑅 itself being
initial and.{0} final, and with 𝛼-transitions from each regex to all its 𝛼-derivatives (for
𝛼 being either a or [^a]). The obtained NFA is already quite large, it has 102 states.
In our new construction, the counting is kept implicit using symbolic counters. Instead

of modifying the counter bound of the derivative (by, e.g., deriving.{99} from.{100}),
we keep the original bound unchanged and use a counter 𝑐 to keep track of the difference
between the original value and the current value. Our conditional derivative operator
𝜕𝛼 (·) then equips the produced derivatives with conditional counter updates to keep
the counters up-to-date. For instance, 𝜕a(.{100}) returns the same regex.{100}, but it
is paired with conditional counter updates for 𝑐, namely, “if 𝑐 < 100, then increment 𝑐;
and if 𝑐 ≥ 100, then exit the counting loop”. The CA we obtain this way is shown in
Figure 4.1a, where the first conditional update translates to the self loop on the state
.{100} and the second to the acceptance condition. The size of the CA does not depend
on the repetition bounds.

4.2 Preliminaries

We cast our definitions in the framework of symbolic automata [24]. In this section, we
introduce basic notions later used in this chapter.

Effective Boolean algebras. Dealing with large alphabets (such as Unicode) requires
succinct representations of automata with many transitions between a pair of states.
Symbolic automata (systematically studied, e.g., in [24]) use symbolic transitions
of the form 𝑞−{𝛼}→𝑟 where 𝛼 is a character class, which represent a set of ordinary
explicit transitions {𝑞−{𝑎}→ 𝑟 | 𝑎 ∈ 𝛼}. The notion of determinism on symbolic
automata then refers to the represented set of ordinary transitions. Determinisation of
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symbolic automata may also be done in a sophisticated way that preserves the succinct
representation. Symbolic automata work over alphabets equipped with a so-called
effective Boolean algebra, which defines the needed interface for handling large sets of
labels on automata transitions.
An effective Boolean algebra A has components (Σ,Ψ, [[_]] ,⊥,⊤,∨,∧,¬) where

Σ is a universe of underlying domain elements, Ψ is a set of unary predicates closed
under the Boolean connectives:

• ∨,∧ : Ψ × Ψ→ Ψ

• and ¬ : Ψ→ Ψ; and

• ⊥,⊤ ∈ Ψ are the false and true predicates.

Values of the algebra are sets of domain elements, and the denotation function [[_]] :
Ψ→ 2Σ satisfies that:

• [[⊥]] = ∅,

• [[⊤]] = Σ, and for all 𝜑, 𝜓 ∈ Ψ,

• [[𝜑 ∨ 𝜓]] = [[𝜑]] ∪ [[𝜓]] ,

• [[𝜑 ∧ 𝜓]] = [[𝜑]] ∩ [[𝜓]] , and

• [[¬𝜑]] = Σ \ [[𝜑]] .

For 𝜑 ∈ Ψ, we write sat(𝜑) when [[𝜑]] ≠ ∅, and we say that 𝜑 is satisfiable.
We require that sat as well as ∨, ∧, and ¬ are computable as a part of the definition of

an effective Boolean algebra. We write 𝑥 |= 𝜑 for 𝑥 ∈ [[𝜑]] and we use A as a subscript
of a component when it is not clear from the context, e.g., [[_]]A : ΨA → 2ΣA .

Words and regexes. The basic building blocks of regexes are predicates from
an effective Boolean algebra CharClass of character classes. Let Σ = ΣCharClass.
The semantics of a regex 𝑅 is defined as a subset of Σ∗ similarly as defined in Section 2.1
with the difference that 𝐿 (𝛼) def= [[𝛼]] . 𝑅1 · 𝑅2 is called a concat node and 𝑅1 |𝑅2 is
called a choice node.
We will also need to refer to the number of character-class leaf nodes of a regex 𝑅,

denoted by#Ψ (𝑅) and defined as follows:

• #Ψ (𝜀) = 0,

• #Ψ (𝛼) = 1,

• #Ψ (𝑅1 · 𝑅2) = #Ψ (𝑅1 |𝑅2) = #Ψ (𝑅1) +#Ψ (𝑅2),

• #Ψ (𝑅{𝑛, 𝑚}) = #Ψ (𝑅∗) = #Ψ (𝑅).
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Minterms. Let Π𝑅 be the set of all predicates that occur in a regex 𝑅, and let
Minterms(𝑅) denote the set of minterms of Π𝑅. Intuitively, Minterms(𝑅) is a set of
non-overlapping predicates that can be treated as a concrete finite alphabet. Each
minterm is essentially a region in the Venn diagram of the predicates in 𝑅: it is
a satisfiable conjunction

∧
𝜓∈Π𝑅

𝜓 ′ where 𝜓 ′ ∈ {𝜓,¬𝜓}. For example, if:

𝑅 = [0-z]{4}[0-8]{5},

then
Π𝑅 = {[0-8], [0-z]}

and
Minterms(𝑅) = {[0-8], [9-z], [^0-z]}.

Formally, if 𝛼 ∈ Minterms(𝑅), then Sat(𝛼) and ∀𝜓 ∈ Π𝑅:

[[𝛼]] ∩ [[𝜓]] ≠ ∅ ⇒ [[𝛼]] ⊆ [[𝜓]] .

Note that although the number of minterms of a general set 𝑋 of predicates may be
exponential in |𝑋 |, it is only linear if 𝑋 consists of intervals of symbols used in regexes,
such as [a-zA-Z] or [^a-zA-Z] (the former denotes two intervals while the latter their
complement, which is equivalent to the union of three intervals). Intervals of numbers
generate only a linear number of minterms.

Symbolic automata. We use symbolic finite automata (FAs), whose alphabet is
given by an effective Boolean algebra, as a generalization of classical finite automata.
Formally, an FA is a tuple 𝐴 = (I, 𝑄, 𝑞0, 𝐹,Δ) where I is an effective Boolean algebra
called the input algebra, 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is the initial state, 𝐹 ⊆ 𝑄 is
the set of final states, and Δ ⊆ 𝑄 × ΨI × 𝑄 is a finite set of transitions. A transition
(𝑞, 𝛼, 𝑟) ∈ Δ will be also written as 𝑞−{𝛼}→𝑟 .
A run of 𝐴 from a state 𝑝0 over a word 𝑎1 · · · 𝑎𝑛 is a sequence of transitions
(𝑝𝑖−1−{𝛼𝑖 }→𝑝𝑖)𝑛𝑖=1 with 𝑎𝑖 ∈ [[𝛼𝑖]] ; the run is accepting if 𝑝𝑛 ∈ 𝐹. The language of 𝐴
from a state 𝑞, denoted L𝐴(𝑞), is the set of words over which 𝐴 has an accepting run
from 𝑞. The language of 𝐴, denoted 𝐿 (𝐴), is L𝐴(𝑞0). A classical finite automaton
can be understood as an FA where the basic predicates have singleton set semantics,
i.e., when for each concrete letter 𝑎 there is a predicate 𝛼𝑎 such that [[𝛼𝑎]] = {𝑎}. 𝐴 is
deterministic iff for all 𝑝 ∈ 𝑄 and all transitions 𝑝−{𝛼}→𝑞 and 𝑝−{𝛼′}→𝑟, it holds that if
𝛼 ∧ 𝛼′ is satisfiable, then 𝑞 = 𝑟.

Counter algebra. A counter algebra is an effective Boolean algebra C associated
with a finite set 𝐶 of counters. The counters play the role of bounded loop variables
associated with a lower bound min𝑐 ≥ 0 and an upper bound max𝑐 > 0 such that
min𝑐 ≤ max𝑐. ΣC is the set of interpretations 𝔪 : 𝐶 → N, called counter memories
such that 0 ≤ 𝔪(𝑐) ≤ max𝑐 for all 𝑐 ∈ 𝐶. ΨC contains Boolean combinations of basic
predicates canExit𝑐 and canIncr𝑐, for 𝑐 ∈ 𝐶, whose semantics is given by:

𝔪 |= canExit𝑐 ⇐⇒ 𝔪(𝑐) ≥ min𝑐, 𝔪 |= canIncr𝑐 ⇐⇒ 𝔪(𝑐) < max𝑐 .
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Counting automata. In this chapter, we use a slightly different (more straightforward)
notation for counting automaton than in Chapter 3.
A counting automaton (CA) is a tuple 𝐴 = (I, 𝐶, 𝑄, 𝑞0, 𝐹,Δ) where I is an effective

Boolean algebra called the input algebra, 𝐶 is a finite set of counters with an associated
counter algebra C, 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is the initial state, 𝐹 : 𝑄 → ΨC is
the final-state condition, andΔ ⊆ 𝑄×ΨI×(𝐶 → O)×𝑄 is the (finite) transition relation,
where O = {exit, incr, exit1, noop} is the set of counter operations. The component
𝑓 of a transition 𝑝−{𝛼, 𝑓 }→𝑞 ∈ Δ is its (counter) operator. We often view 𝑓 as a set of
indexed operations op𝑐 to denote the operation assigned to the counter 𝑐, 𝑓 (𝑐) = op.

grd (noop𝑐)
def
= ⊤C upd (noop) def= 𝝀𝑛.𝑛

grd (incr𝑐)
def
= canIncr𝑐 upd (incr) def

= 𝝀𝑛.𝑛 + 1
grd (exit𝑐)

def
= canExit𝑐 upd (exit) def

= 𝝀𝑛.0

grd (exit1𝑐)
def
= canExit𝑐 upd (exit1) def= 𝝀𝑛.1

Semantics of CAs. The se-
mantics of the CA 𝐴 is defined
through its configuration au-
tomaton FA(𝐴), an FA whose
states are 𝐴’s configurations,
i.e., pairs (𝑞,𝔪) ∈ 𝑄×ΣC con-
sisting of a state 𝑞 and a counter memory 𝔪. To define FA(𝐴), we must first define
the semantics of counter operators 𝑓 , which occur on transitions. For this, we as-
sociate with each (indexed) operation op𝑐 a counter guard grd (op𝑐) and a counter
update upd (op) as shown on the right. Intuitively, the operation noop does not modify
the counter’s value and is always enabled. The operation incr increments the counter
and is enabled if the counter has not yet reached its upper bound. The operation
exit resets the counter to 0 on exit from the counting loop and is enabled when
the counter reaches its lower bound. The operation exit1 executes exit followed by
incr. The guard of a counter operator 𝑓 : 𝐶 → O is then a predicate 𝜑 𝑓 ∈ ΨC over
counter memories, and its update f : ΣC ∪ {⊥} → ΣC ∪ {⊥} is a counter-memory
transformer:

𝜑 𝑓
def
=

∧
op𝑐 ∈ 𝑓

grd (op𝑐) (4.1)

f (𝔪) def=
{
𝝀𝑐.upd ( 𝑓 (𝑐)) (𝔪(𝑐)) if 𝔪 |= 𝜑 𝑓

⊥ otherwise (4.2)

Intuitively, f updates all counters in a counter memory 𝔪 by their corresponding
operations if 𝔪 satisfies the guard, otherwise the result is ⊥.
Let 𝑝−{𝛼, 𝑓 }→𝑞 ∈ Δ and 𝑐 ∈ 𝐶. We use 𝜑𝑐

𝑓
to denote a guard for a counter 𝑐 inside 𝜑 𝑓 .

Let 𝑘 ∈ 𝑁 . We use 𝑘 |= 𝜑𝑐
𝑓
to denote that 𝑘 satisfies the guard for a counter 𝑐.

We now define the configuration automaton of 𝐴, denoted as FA(𝐴), which defines
the language semantics of the CA 𝐴. The states of FA(𝐴) are the configurations
of 𝐴 (there are finitely many of them), and the initial state of FA(𝐴) is the initial
configuration (𝑞0, {𝑐 ↦→ 0 | 𝑐 ∈ 𝐶}) of 𝐴. A state (𝑝,𝔪) of FA(𝐴) is final iff
𝔪 |= 𝐹 (𝑝). The transition relation ΔFA(𝐴) of FA(𝐴) is defined as:

ΔFA(𝐴) = {(𝑝,𝔪)−{𝛼}→ (𝑞, f (𝔪)) | 𝑝−{𝛼, 𝑓 }→ 𝑞 ∈ Δ,𝔪 |= 𝜑 𝑓 }.
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Deterministic and simple CAs. 𝐴 is deterministic iff the following holds for every
state 𝑝 ∈ 𝑄 and every two transitions 𝑝−{𝛼1, 𝑓1}→𝑞1, 𝑝−{𝛼2, 𝑓2}→𝑞2 ∈ Δ: if both 𝛼1 ∧ 𝛼2
and 𝜑 𝑓1 ∧ 𝜑 𝑓2 are satisfiable, then 𝑓1 = 𝑓2 and 𝑞1 = 𝑞2. It follows from the definitions
that, if 𝐴 is deterministic, then FA(𝐴) is deterministic too. 𝐴 is simple if for any two
transitions 𝑞−{𝛼, 𝑓 }→𝑟 and 𝑞′−{𝛼′, 𝑓 ′}→𝑟 ′, either 𝛼 = 𝛼′ or J𝛼K∩ J𝛼′K = ∅. That is, different
character guards do not overlap and can be mostly treated as plain symbols. We also
require that all guards are satisfiable. CAs constructed from regexes by the algorithm in
Section 4.3 will be simple.

Example 4.2.1. Figure 4.1a shows a CA in an intuitive notation, with the initial state 𝑞
and final conditions 𝐹 (𝑞) = ⊥, 𝐹 (𝑠) = exit𝑐, where min𝑐 = max𝑐 = 100. The same
notation is used in Figure 4.2. Figure 4.3a shows a CA in a notation following the formal
development more closely. □

4.3 From Regexes to CAs via Conditional Partial Derivatives

We introduce a generalization of the Antimirov’s partial derivative construction [4]
to symbolic counting, which allows one to replace a verbose NFA by a succinct
CA. The difference between the older variant of [4] with explicit counting [82] and
our new version was already illustrated in Section 4.1. To recall it briefly using
the example of the regex.{100}: from 100 partial derivatives 𝜕.(.{i}) =.{i-1},
1 ≤ 𝑖 ≤ 100, and an NFA with 100 states and transitions.{i}−{.}→.{i-1}, the new
construction will take us to the single derivative 𝜕.(.{100}) = {.{100}} associated with
a conditional counter update which induce an NFA with a single state and the transition
.{100}−{𝛼,incr𝑐 }→.{100}.
We apply the construction on regexes that are normalized using the below rules where

𝑋 ; 𝑌 denotes that 𝑋 is rewritten to 𝑌 :

• All nested concat nodes are rewritten to the flattened right-associative list
form, which is always maintained throughout the construction, using the rules:
(𝑋 · 𝑌 ) · 𝑍 ; 𝑋 · (𝑌 · 𝑍), 𝜀 · 𝑍 ; 𝑍 , and 𝑍 · 𝜀 ; 𝑍 .

• If 𝑆 is nullable, then 𝑆{ℓ, 𝑘} ; 𝑆{0, 𝑘}. Moreover, in the nullable context
𝑆{0, 𝑘}, 𝑆 can be considered as if it was not nullable.

Observe that the normalization does not increase the size of the regex (it may
decrease the size).
Let 𝑅 be a fixed normalized regex. A subexpression of 𝑅 that is of the form

𝑋 = 𝑆{ℓ, 𝑘} is called a counting loop. We consider each counting loop to represent
a counter whose name is the counting loop itself and whose upper bound is max𝑋 = 𝑘

and lower bound is min𝑋 = ℓ. For example, (.{9})* contains the counter 𝑋 =.{9}
with min𝑋 = max𝑋 = 9. In the following, let 𝐶 stand for the set of all counters that
occur in 𝑅, also denoted by Counters(𝑅).
We use the convention that the juxtaposition 𝑋𝑌 of normalized regexes 𝑋 and 𝑌 is

again a normalized regex of the equivalent concat node 𝑋 · 𝑌 : e.g., if 𝑋 = 𝑎 · 𝑏 and
𝑌 = (𝑎 · 𝑏)∗, then 𝑋𝑌 = 𝑎 · (𝑏 · (𝑎 · 𝑏)∗). Observe in particular that 𝑋𝜀 = 𝑋 . In other
words, we treat concatenated elements as sequences, and a singleton sequence equals to
the element itself.
Our construction will work over the set Σ = Minterms(𝑅) of minterms of 𝑅 and

produce simple CA that use minterms of Σ on transitions.
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4.3.1 Parametric Languages

We define the language of a normalized regex starting with a counting loop relative to
a counter value. For that, we lift the definition of languages to be parametric in counter
memories 𝔪, but regexes other than the above are treated as before with the memory 𝔪
passed through unchanged.

L𝔪 (𝜀)
def
= {𝜖} (4.3)

L𝔪 (𝜓𝑍)
def
= [[𝜓]] · L𝔪 (𝑍) (4.4)

L𝔪 ((𝑊 |𝑌 )𝑍)
def
= L𝔪 (𝑊𝑍) ∪ L𝔪 (𝑌𝑍) (4.5)

L𝔪 (𝑆∗𝑍)
def
= L𝔪 (𝑆)∗ · L𝔪 (𝑍) (4.6)

L𝔪 (𝑆{ℓ, 𝑘}𝑍)
def
= L𝔪 (𝑆) · Lincr𝑆{ℓ,𝑘} (𝔪) (𝑆{ℓ, 𝑘}𝑍) ∪ (4.7)

Lexit𝑆{ℓ,𝑘} (𝔪) (𝑍)

L⊥(𝑋)
def
= ∅ (for all 𝑋) (4.8)

Recall that if 𝑓 is a counter operator and 𝔪 a counter memory, then f (𝔪) denotes
the appropriately updated memory where f (𝔪) = ⊥ when 𝑓 is not enabled in𝔪. Below,
if there is a single counter 𝑐 ∈ 𝐶 such that 𝑓 (𝑐) ≠ noop, we sometimes identify 𝑓
with op𝑐 and use op𝑐 (𝔪) to represent the updated memory f (𝔪). Specifically, incr𝑋
(if enabled) increments the counter value of 𝑋 by 1, and exit𝑋 (if enabled) resets
the counter value of 𝑋 to 0. Let 𝔪 be a counter memory. Then Cases (4.3)–(4.8) define
the parametric languages of regexes. The intuition behind Case (4.6) is that all counters
that may be present in 𝑆 are inactive on the level of 𝑆∗. Note also that Case (4.7) is
well-defined since, for 𝑋 = 𝑆{ℓ, 𝑘} and 𝔪′ = incr𝑋 (𝔪), 𝑘 − 𝔪′(𝑋) < 𝑘 − 𝔪(𝑋) if
𝔪(𝑋) < 𝑘 , and 𝔪′ = ⊥ if 𝔪(𝑋) = 𝑘 . Let 0 def

= 𝝀𝑐.0 denote the initial memory that
maps all counters to 0.
We need the following additional notions in order to reason about correctness of

the construction of CAs from regexes via conditional partial derivatives stated in
Theorem 4. Let 𝑅 be a normalized regex. A counter 𝑋 is visible in 𝑅, denoted
𝑋 ∈ Visible(𝑅), if either 𝑅 = 𝑌𝑍 and 𝑋 = 𝑌 , or else if 𝑋 does not occur in 𝑌 and 𝑋 is
visible in 𝑍 , i.e., 𝑋 ∈ Visible(𝑍) \ Counters(𝑌 ). In other words,

Visible(𝑅) =

∅, if 𝑅 = 𝜀;
{𝑆{ℓ, 𝑘}} ∪ (Visible(𝑍) \ Counters(𝑆)), else if 𝑅 = 𝑆{ℓ, 𝑘}𝑍;
Visible(𝑍) \ Counters(𝑌 ), otherwise, where 𝑅 = 𝑌𝑍 .

Let Hidden(𝑅) def= Counters(𝑅) \ Visible(𝑅). A counter memory 𝔪 is valid for 𝑅 if
𝔪(𝑋) = 0 for all 𝑋 ∈ Hidden(𝑅), otherwise 𝔪 is invalid for 𝑅. Intuitively, every
hidden counter in 𝑅 must have the initial value 0 in any valid memory. We only consider
counter memories 𝔪 that are valid for 𝑅 in the context of L𝔪 (𝑅).

Example 4.3.1. Let 𝑋 = a{3}. Then 𝑋 is visible in 𝑋 · 𝑋∗ but hidden in 𝑋∗ · 𝑋 . A
counter memory 𝔪 such that 𝔪(𝑋) = 2 is valid for 𝑋 · 𝑋∗ but invalid for 𝑋∗ · 𝑋 . □

Example 4.3.2. Let 𝑋 be the regex (a(bc){7}d){8}. Then 𝑋 and 𝑌 = (bc){7} are
both counters in 𝑋 but only 𝑋 is visible in 𝑋 . Now consider the regex 𝑌d𝑋 , or more pre-
cisely𝑌 · (d · 𝑋) to emphasize the normalized form. In this case Visible(𝑌d𝑋) = {𝑋,𝑌 }.
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the visible counters of c𝑌d𝑋 are {𝑋,𝑌 }. In fact, as shown below, {⟨incr𝑋, 𝑌d𝑋⟩} is
the (conditional) a-derivative of 𝑋 and {⟨incr𝑌 , c𝑌d𝑋⟩} is the b-derivative of 𝑌d𝑋 .
These are in fact the only possible regexes that arise here through derivation starting
with 𝑋 . the c-derivative of c𝑌d𝑋 is {⟨𝝀𝑥.𝑥,𝑌d𝑋⟩}, and the d-derivative of 𝑌d𝑋 is
{⟨exit𝑌 , 𝑋⟩}. All other derivatives are empty. □

We use the following lemma in the correctness theorem of partial derivatives. If 𝐸 is
a set of counters, then 𝜌(𝐸) resets the values of all counters in 𝐸 to 0. Observe that
𝜌({𝑐}) is in general different from exit𝑐 because exit𝑐 (𝔪) = ⊥ when 𝔪 ̸ |= canExit𝑐.
In the proof of the lemma (and also multiple further proofs), we will need the

notion of the size of a regex 𝑅, denoted by #(𝑅), which corresponds to the number
of nodes in the abstract syntax tree of 𝑅 (apart from the case when 𝑅 is 𝜖) and which
we define as follows:
#(𝜀) = 0 #(𝛼) = 1 #(𝑅1 · 𝑅2) = #(𝑅1) +#(𝑅2) + 1
#(𝑅1 |𝑅2) = #(𝑅1) +#(𝑅2) + 1 #(𝑅{𝑛, 𝑚}) = #(𝑅) + 1 #(𝑅∗) = #(𝑅) + 1

Lemma 4.1. If 𝑋 and 𝑌 are normalized regexes and 𝔪 is valid for 𝑋𝑌 then

L𝔪 (𝑋𝑌 ) = L𝔪 (𝑋) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 ).

Proof. By induction over the pair (#(𝑋), 𝑛) where 𝑛 = max𝑐 − 𝔪(𝑐) if 𝑋 starts
with a counter 𝑐 or else 𝑛 = 0. Let (𝑚′, 𝑛′) < (𝑚, 𝑛) iff either 𝑚′ < 𝑚 or
else 𝑚′ = 𝑚 and 𝑛′ < 𝑛.

Base case 𝑋 = 𝜀 Then 𝜌(Visible(𝜖)) (𝔪) = 𝔪 and L𝔪 (𝜀) = {𝜖}.

Induction case 𝑋 = 𝑆{ℓ, 𝑘}𝑍 Let 𝑐 = 𝑆{ℓ, 𝑘}, 𝔪0 = exit𝑐 (𝔪) and 𝔪1 = incr𝑐 (𝔪).

• Case 𝔪(𝑐) = max𝑐. Then 𝔪1 = ⊥ and 𝔪0 is valid for 𝑍𝑌 because 𝔪 is valid for
𝑋𝑌 and 𝔪0(𝑐) = 0. (Observe that if 𝑑 ∈ Hidden(𝑍𝑌 ) then either 𝔪0(𝑑) = 0 if
𝑑 = 𝑐 or else 𝔪(𝑑) = 0 because then 𝑑 ∈ Hidden(𝑋𝑌 ).) It follows that

L𝔪 (𝑋𝑌 )
(𝔪1=⊥)
= L𝔪0 (𝑍𝑌 )
(IH)
= L𝔪0 (𝑍) · L𝜌(Visible(𝑍)) (𝔪0) (𝑌 )

(𝔪1=⊥)
= L𝔪 (𝑋) · L𝜌(Visible(𝑍)) (exit𝑐 (𝔪)) (𝑌 )
= L𝔪 (𝑋) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )

where the last equality holds becauseVisible(𝑋) = {𝑐}∪(Visible(𝑍)\Counters(𝑆))
and 𝔪(𝑑) = 0 for all 𝑑 ∈ Counters(𝑆) because 𝔪 is valid for 𝑋 . Hence
𝜌(Visible(𝑍)) (exit𝑐 (𝔪)) = 𝜌(Visible(𝑋)) (𝔪).

• Case 𝔪(𝑐) < min𝑐: Then 𝔪0 = ⊥. Here 𝔪1 is valid for 𝑋𝑌 because 𝔪 is valid
and 𝑐 ∈ Visible(𝑋𝑌 ). Also, the (IH) applies because 𝑘 −𝔪1(𝑐) < 𝑘 −𝔪(𝑐).

L𝔪 (𝑋𝑌 )
(𝔪0=⊥)
= L𝔪 (𝑆) · L𝔪1 (𝑋𝑌 )
(IH)
= L𝔪 (𝑆) · L𝔪1 (𝑋) · L𝜌(Visible(𝑋)) (𝔪1) (𝑌 )

(𝑐∈Visible(𝑋))
= L𝔪 (𝑆) · L𝔪1 (𝑋) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )

(𝔪0=⊥)
= L𝔪 (𝑋) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )
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• Case min𝑐 ≤ 𝔪(𝑐) < max𝑐. Then 𝔪0 ≠ ⊥ and 𝔪1 ≠ ⊥. This case is
a combination of the above two cases where the IH is applied twice under
similar conditions.

L𝔪 (𝑋𝑌 ) = L𝔪 (𝑆) · L𝔪1 (𝑋𝑌 ) ∪ L𝔪0 (𝑍𝑌 )
(2×IH)
= L𝔪 (𝑆) · L𝔪1 (𝑋) · L𝜌(Visible(𝑋)) (𝔪1) (𝑌 ) ∪ L𝔪0 (𝑍) ·

L𝜌(Visible(𝑍)) (𝔪0) (𝑌 )
= L𝔪 (𝑆) · L𝔪1 (𝑋) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 ) ∪ L𝔪0 (𝑍) ·

L𝜌(Visible(𝑋)) (𝔪) (𝑌 )
= (L𝔪 (𝑆) · L𝔪1 (𝑋) ∪ L𝔪0 (𝑍)) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )
= L𝔪 (𝑋) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )

Induction case 𝑋 = 𝜓𝑍 Trivially Visible(𝑋) = Visible(𝑍).

L𝔪 (𝑋𝑌 ) = [[𝜓]] · L𝔪 (𝑍𝑌 )
(IH)
= [[𝜓]] · L𝔪 (𝑍) · L𝜌(Visible(𝑍)) (𝔪) (𝑌 )
= L𝔪 (𝑋) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )

Induction case 𝑋 = (𝐴|𝐵)𝑍 Let 𝑋1 = 𝐴𝑍 and 𝑋2 = 𝐵𝑍 . Here Visible(𝑋) =
Visible(𝑍) \ Counters(𝐴|𝐵). Thus, for all 𝑐 ∈ Counters(𝐴|𝐵), 𝔪(𝑐) = 0 because
𝔪 is valid for 𝑋 . Therefore, if 𝑐 ∈ Visible(𝑋𝑖) then either 𝑐 ∈ Visible(𝑋) or else
𝑐 ∈ Counters(𝐴|𝐵) and 𝔪(𝑐) = 0. Hence 𝜌(Visible(𝑋𝑖)) (𝔪) = 𝜌(Visible(𝑋)) (𝔪).

L𝔪 (𝑋𝑌 ) = L𝔪 (𝑋1𝑌 ) ∪ L𝔪 (𝑋2𝑌 )
(2×IH)
= L𝔪 (𝑋1) · L𝜌(Visible(𝑋1)) (𝔪) (𝑌 ) ∪ L𝔪 (𝑋2) · L𝜌(Visible(𝑋2)) (𝔪) (𝑌 )
= L𝔪 (𝑋1) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 ) ∪ L𝔪 (𝑋2) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )
= (L𝔪 (𝑋1) ∪ L𝔪 (𝑋2)) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )
= L𝔪 (𝑋) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )

Induction case 𝑋 = 𝑆∗𝑍 Clearly 𝔪 is valid for 𝑍 because it is valid for 𝑋 . Here
Visible(𝑋) = Visible(𝑍) \Counters(𝑆). So if 𝑐 ∈ Visible(𝑍) then either 𝑐 ∈ Visible(𝑋)
or else 𝔪(𝑐) = 0. Thus 𝜌(Visible(𝑍)) (𝔪) = 𝜌(Visible(𝑋)) (𝔪).

L𝔪 (𝑋𝑌 ) = L𝔪 (𝑆)∗ · L𝔪 (𝑍𝑌 )
(IH)
= L𝔪 (𝑆)∗ · L𝔪 (𝑍) · L𝜌(Visible(𝑍)) (𝔪) (𝑌 )
= L𝔪 (𝑆)∗ · L𝔪 (𝑍) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )
= L𝔪 (𝑋) · L𝜌(Visible(𝑋)) (𝔪) (𝑌 )

the statement follows by the induction principle. □

The following theorem, relates L𝔪 (𝑅) with the non-parametric definition of regu-
lar languages.
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Theorem 3. Let 𝑅 be a normalized regex. Then L0(𝑅) = 𝐿 (𝑅).

We first prove Lemma 4.2 that states a property used in the proof of Theorem 3. Note
that 0 is trivially valid for any regex 𝑅. Let 𝑆{0, 0} def= 𝜀 and let 𝑚 ⊖ 𝑛 def= max(𝑚 − 𝑛, 0).

Lemma 4.2. Let 𝑋 = 𝑆{ℓ, 𝑘} be a normalized counting loop and let 𝔪 be valid for 𝑋 .
Then

L𝔪 (𝑋) =
𝑘−𝔪 (𝑋)⋃

𝑖=ℓ⊖𝔪 (𝑋)
L0(𝑆) (𝑖) .

Proof. By induction over 𝑘 − 𝑛 where 𝑛 = 𝔪(𝑋). Let𝔪1 = incr𝑋 (𝔪). Let 𝐿 = L0(𝑆).

Base case 𝑛 = 𝑘 Then 𝔪1 = ⊥ and so L𝔪 (𝑋) = Lexit𝑋 (𝔪) (𝜀) = {𝜖} because ℓ ≤ 𝑘
and so 𝔪 |= canExit𝑋 and, by definition, 𝐿 (0) = {𝜖} for any 𝐿.

Induction case 𝑛 < 𝑘 Here 𝑚1 ≠ ⊥ and L𝔪 (𝑆) = L0(𝑆) = 𝐿 because Visible(𝑋) =
{𝑋}.

L𝔪 (𝑋) = L𝔪 (𝑆) · L𝔪1 (𝑋) ∪ Lexit𝑋 (𝔪) (𝜀)
= 𝐿 · L𝔪1 (𝑋) ∪ {𝜖 | ℓ ≤ 𝑛}

(IH)
= 𝐿 · (

𝑘−(𝑛+1)⋃
𝑖=ℓ⊖(𝑛+1)

𝐿 (𝑖)) ∪ {𝜖 | ℓ ≤ 𝑛}

= (
𝑘−𝑛⋃

𝑖=(ℓ⊖(𝑛+1))+1
𝐿 (𝑖)) ∪ {𝜖 | ℓ ≤ 𝑛} =

𝑘−𝑛⋃
𝑖=ℓ⊖𝑛

𝐿 (𝑖)

The last two equalities use standard rules of set theory and theory of sequences. □

We can now prove Theorem 3.

Proof of Theorem 3. By induction over#(𝑅). the base case 𝑅 = 𝜀 is trivial. the main
induction case is 𝑅 = 𝑆{ℓ, 𝑘}𝑍 . Then

L0(𝑅)
(Lemma 4.1)

= L0(𝑆{ℓ, 𝑘}) · L0(𝑍)
(Lemma 4.2)

= (
𝑘⋃
𝑖=ℓ

L0(𝑆) (𝑖)) · L0(𝑍)

(2×IH)
= (

𝑘⋃
𝑖=ℓ

𝐿 (𝑆) (𝑖)) · 𝐿 (𝑍)

= 𝐿 (𝑆{ℓ, 𝑘}) · 𝐿 (𝑍)
= 𝐿 (𝑅)

the remaining cases follow by induction. □
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4.3.2 Conditional Derivation

In Section 2.5, we present a general definition for derivative construction. Now we will
introduce our conditional derivative construction for regexes with a counter operator
formally. A partial conditional derivative is a pair ⟨ 𝑓 , 𝑋⟩ where 𝑓 is a counter operator
and 𝑋 a normalized regex. Given a counter memory𝔪, we let ⟨ 𝑓 , 𝑋⟩ define the language
L𝔪 (⟨ 𝑓 , 𝑋⟩)

def
= Lf (𝔪) (𝑋). In other words, 𝑓 is first applied to the counter memory 𝔪

and then the regex is evaluated in the updated memory. If 𝑓 is not enabled in 𝔪, then
the denoted language is empty.
A conditional derivative is a finite set of partial conditional derivatives. The language

defined by a conditional derivative 𝐷 in a counter memory 𝔪 is defined as the union of
the languages of the partial conditional derivatives in 𝐷: L𝔪 (𝐷)

def
=
⋃

𝑑∈𝐷 L𝔪 (𝑑).
To define how conditional derivatives of a given regex looks like, we need a notion of

a sequential composition of conditional derivatives 𝐷 ⊗ 𝐸 def
= {⟨ 𝑓 ; 𝑔, 𝑋 ·𝑌⟩ | ⟨ 𝑓 , 𝑋⟩ ∈

𝐷, ⟨𝑔,𝑌⟩ ∈ 𝐸, 𝑓 ; 𝑔 ≠ ⊥} where 𝑓 ; 𝑔 ≠ ⊥ is the composed counter operator such that
f ; g(𝔪) = g(f (𝔪)). The case when 𝑓 ; 𝑔 = ⊥ is discussed later on.

𝜕𝛼 (𝜀)
def
= ∅

𝜕𝛼 (𝜓𝑍)
def
=

{
{⟨id, 𝑍⟩} if 𝛼 ∧ 𝜓 is satisfiable
∅ otherwise

𝜕𝛼 ((𝑊 |𝑌 )𝑍)
def
= 𝜕𝛼 (𝑊𝑍) ∪ 𝜕𝛼 (𝑌𝑍)

𝜕𝛼 (𝑆∗𝑍)
def
= 𝜕𝛼 (𝑆) ⊗ {⟨id, 𝑆∗𝑍⟩} ∪ 𝜕𝛼 (𝑍)

𝜕𝛼 (𝑋𝑍)
def
= 𝜕𝛼 (𝑆) ⊗ {⟨incr𝑋, 𝑋𝑍⟩} ∪
{⟨exit𝑋, 𝜀⟩} ⊗ 𝜕𝛼 (𝑍)

Conditional derivatives of a normalized regex are defined as shown on the right
assuming that concatenations 𝑋 ·𝑌 are normalized to the list form explained above,
𝛼 ∈ Σ, id denotes the identity function 𝝀𝑥.𝑥, and 𝑋 = 𝑆{ℓ, 𝑘} is a counting loop.
Observe that, in 𝜕𝛼 (𝑆) ⊗ {⟨incr𝑋, 𝑋𝑍⟩}, the operation incr𝑋 gets composed with
noop𝑋, yielding incr𝑋 again, because 𝑆{ℓ, 𝑘} cannot occur in 𝑆. It is possible that in
{⟨exit𝑋, 𝜀⟩} ⊗ 𝜕𝛼 (𝑍), 𝑋 is in scope of 𝑍 (e.g., 𝑍 starts with 𝑋). The composition can
then contain the operation exit𝑋; incr𝑋 that corresponds to exit1𝑋 because incr𝑋 is
trivially enabled when the counter value of 𝑋 is 0. The only other possible composition
of individual operations that can appear in this case is exit𝑋; exit𝑋. If min𝑋 = 0,
exit𝑋; exit𝑋 = exit𝑋, which is well-defined because exit𝑋 is always enabled for
min𝑋 = 0. If min𝑋 > 0, then exit𝑋; exit𝑋 is undefined, and exit𝑋; exit𝑋 does not
contribute anything to the composition. However, this is correct since 𝑋 is not nullable,
and the second exit𝑋 is not enabled after the counter value of 𝑋 is reset to 0. Intuitively,
the second occurrence of 𝑋 cannot be exited without iterating 𝑋 at least once.

Example 4.3.3. Consider the regex 𝑅 =.*a{1,3}a{1,3}a. Let 𝑋 be the counting
loop a{1,3}. 𝑅 has two minterms a and [^a]. We get the following conditional
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c:=0

•c<9/c++,

•c≥9/c:=1

•/c:=1

(.{9})*

F: ꓔ

.{9}(.{9})*

F: c≥9

Figure 4.2: A counting automaton for the regex (.{9})*.

derivatives of 𝑅, starting with the case for 𝜕𝛼 (𝑆∗𝑍) due to the normal form assumption:

𝜕a(𝑅) = 𝜕a(.) ⊗ {⟨id, 𝑅⟩} ∪ 𝜕a(𝑋𝑋a)
= {⟨id, 𝑅⟩, ⟨incr𝑋, 𝑋𝑋a⟩, ⟨exit1𝑋, 𝑋a⟩}

𝜕a(𝑋𝑋a) = 𝜕a(a) ⊗ {⟨incr𝑋, 𝑋𝑋a⟩} ∪ {⟨exit𝑋, 𝜀⟩} ⊗ 𝜕a(𝑋a)
= {⟨incr𝑋, 𝑋𝑋a⟩} ∪ {⟨exit𝑋, 𝜀⟩} ⊗
{⟨incr𝑋, 𝑋a⟩, ⟨exit𝑋, 𝜀⟩}

= {⟨incr𝑋, 𝑋𝑋a⟩, ⟨exit1𝑋, 𝑋a⟩}
𝜕a(𝑋a) = 𝜕a(a) ⊗ {⟨incr𝑋, 𝑋a⟩} ∪ {⟨exit𝑋, 𝜀⟩} ⊗ 𝜕a(a)

= {⟨incr𝑋, 𝑋a⟩, ⟨exit𝑋, 𝜀⟩}
𝜕a(a) = 𝜕a(.) = 𝜕[^a](.) = {⟨id, 𝜀⟩}

𝜕[^a](a) = ∅

Above, the composition exit𝑋; exit𝑋 in 𝜕a(𝑋𝑋a) is undefined and thus removed. We
also get that 𝜕[^a](𝑅) = {⟨id, 𝑅⟩} where 𝜕[^a](a) = ∅ and consequently 𝜕[^a](𝑋𝑋a) =
∅ and 𝜕[^a](𝑋a) = ∅.
If we now consider, for example, the language defined by 𝜕a(𝑋a) in a valid counter

memory 𝔪, it is the union of the languages Lincr𝑋 (𝔪) (𝑋a) and Lexit𝑋 (𝔪) (𝜀). These
correspond to the cases of continuing to iterate the loop 𝑋 (if the counter value of 𝑋 is
below 3) or exiting the loop (if the counter value of 𝑋 is at least 1) and accepting {𝜖}. □

Example 4.3.4. Consider the regex (.{9})*, whose CA is in Figure 4.2. Here, ‘.’ is
the only input predicate and denotes the set of all characters. We explain the use of some
of the counter operations in the CA of Figure 4.2 by showing how they arise through
the partial-derivative-based construction of CAs as discussed above. The initial state is
the regex itself. The (only) partial derivative of the state (.{9})* is.{9}(.{9})*where
the body of the counting loop is exited but also incremented once, so exit1 is applied
to 𝑐 under the guard canExit𝑐 (which is shown as 𝑐 ≥ 9/𝑐:=1 in the figure). The state
.{9}(.{9})* has two cases of partial derivatives both leading back to.{9}(.{9})*.
The first case is when 𝑐 < 9 (canIncr𝑐 holds), in which case 𝑐 is incremented

(shown as 𝑐 < 9/𝑐++ in the figure). The second case is when the counting loop is
conditionally nullable and is exited under the condition canExit𝑐 (i.e. 𝑐 ≥ 9), the value
of 𝑐 is reset to 0, and then 𝑐 is incremented as a result of taking the partial derivative of
(.{9})*. Thus, exit1 arises as a sequential composition of exiting the loop, followed
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by resetting the counter to 0, and then incrementing it. Therefore, canExit𝑐 must
hold, while the increment condition holds trivially after a reset to 0. The initial state is
unconditionally final in Figure 4.2, while the other state is final only when canExit𝑐
holds as marked by “𝐹 :”. □

We now state the correctness theorem of conditional derivatives. For that, we define
canExit𝑅 as the predicate shown above for a normalized regex 𝑅, assuming that 𝑋
stands for a counting loop.

canExit𝑅
def
=


⊤C if 𝑅 = 𝜀,
canExit𝑍 else if 𝑅 = 𝑌𝑍 and 𝑌 is nullable,
canExit𝑋 ∧ canExit𝑍 else if 𝑅 = 𝑋𝑍 ,
⊥C otherwise.

Note that 𝑌 above may also be a counting loop. However, since it is nullable,
min𝑌 must be 0, and then canExit𝑌 is always true. (If min𝑌 > 0, then 𝑌 cannot be
nullable as 𝑅 is normalized.)

Theorem 4. Let 𝑅 be a normalized regex and let Σ = Minterms(Θ) where Θ is some
finite superset of Π𝑅. If 𝔪 is valid for 𝑅, then L𝔪 (𝑅) =

⋃
𝛼∈Σ [[𝛼]] ·L𝔪 (𝜕𝛼 (𝑅)) ∪ {𝜖 |

𝔪 |= canExit𝑅}.

Proof. By induction over#(𝑅).

Base case 𝑅 = 𝜀. Holds because 𝜕𝛼 (𝜀) = ∅ and 𝔪 |= ⊤ for any 𝔪.

Base case 𝑅 = 𝜓𝑍 Here 𝑅 is not nullable. We use the assumption that Σ is a set of
minterms which implies that [[𝜓]] = [[∨ Γ]] for some Γ ⊆ Σ and 𝜓 ∧ 𝛼 is unsatisfiable
for all 𝛼 ∈ Σ \ Γ.

L𝔪 (𝜓𝑍) = [[𝜓]] · L𝔪 (𝑍)

=
⋃
𝛼∈Σ
[[𝛼]] ·

{
L𝔪 ({⟨id, 𝑍⟩}) if 𝛼 ∧ 𝜓 is satisfiable
∅ otherwise

=
⋃
𝛼∈Σ
[[𝛼]] · L𝔪 (𝜕𝛼 (𝜓𝑍))

canExit𝑅=⊥
= (

⋃
𝛼∈Σ
[[𝛼]] · L𝔪 (𝜕𝛼 (𝜓𝑍))) ∪ {𝜖 | 𝔪 |= canExit𝑅}

Induction case 𝑅 = 𝑋𝑍 where 𝑋 = 𝑆{ℓ, 𝑘} is a counting loop Let𝔪1 = incr𝑋 (𝔪)
and let 𝔪0 = exit𝑋 (𝔪). Observe that 𝔪1 = ⊥ iff 𝔪(𝑋) = 𝑘 and 𝔪0 = ⊥ iff 𝔪(𝑋) < ℓ.
Note also that if 𝔪1 = ⊥ then 𝔪0 ≠ ⊥ because ℓ ≤ 𝑘 . So 𝔪0 is valid for 𝑍 because
𝔪 is valid for 𝑋𝑍 . Also, since 𝔪 is valid for 𝑅, if 𝑆 contains a counter 𝑐 then 𝑐 is not
visible 𝑅 and thus 𝔪(𝑐) = 0. Thus, 𝔪 is also valid for 𝑆.
Assume first that 𝑆 is not nullable. It follows that, since 𝔪(𝑐) = 0 for all 𝑐 ∈

Counters(𝑆) because 𝔪 is valid for 𝑅 and, unless canExit𝑆 = ⊥, there must be at least
one counter c such thatmin𝑐 > 0 and canExit𝑆 contains the conjunct canExit𝑐 and so

𝔪 ̸ |= canExit𝑆 (4.9)
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It is also true that

𝔪0 ≠ ⊥ and 𝔪0 |= canExit𝑍 ⇐⇒ 𝔪 |= canExit𝑋 and exit𝑋 (𝔪) |= canExit𝑍
⇐⇒ 𝔪 |= canExit𝑋𝑍

(4.10)
because Visible(𝑋𝑍) = {𝑋} ∪ (Visible(𝑍) \ Counters(𝑆)), so only the counters in
{𝑋} ∪ Counters(𝑆) could interfere (if they occur in the scope of 𝑍) but their value is 0
in 𝔪0 by validity of 𝔪. Let

𝐸 = {𝜖 | 𝔪 |= canExit𝑋𝑍 }.

We get the following (observe that if 𝔪0 = ⊥, then L𝔪0 (𝑍) = ∅):

L𝔪 (𝑋𝑍) = L𝔪 (𝑆) · L𝔪1 (𝑋𝑍) ∪ L𝔪0 (𝑍)
(2×IH)
= (

⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑆)) ∪ {𝜖 | 𝔪 |= canExit𝑆}) · L𝔪1 (𝑋𝑍) ∪⋃
𝛼

[[𝛼]] · L𝔪0 (𝜕𝛼 (𝑍)) ∪ {𝜖 | 𝔪0 ≠ ⊥ and 𝔪0 |= canExit𝑍 }

((4.9),(4.10))
= (

⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑆))) · L𝔪1 (𝑋𝑍) ∪
⋃
𝛼

[[𝛼]] · L𝔪0 (𝜕𝛼 (𝑍))

∪𝐸
=

⋃
𝛼

[[𝛼]] · (L𝔪 (𝜕𝛼 (𝑆)) · L𝔪1 (𝑋𝑍) ∪ L𝔪0 (𝜕𝛼 (𝑍))) ∪ 𝐸

=
⋃
𝛼

[[𝛼]] · (L𝔪 (𝜕𝛼 (𝑆)) · L𝔪 (⟨incr𝑋, 𝑋𝑍⟩)︸                                   ︷︷                                   ︸
(★) =

L𝔪 (𝜕𝛼 (𝑆) ⊗ {⟨incr𝑋, 𝑋𝑍⟩})

∪L𝔪 ({⟨exit𝑋, 𝜀⟩} ⊗

𝜕𝛼 (𝑍))) ∪ 𝐸
=

⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑆) ⊗ {⟨incr𝑋, 𝑋𝑍⟩} ∪ {⟨exit𝑋, 𝜀⟩}

⊗𝜕𝛼 (𝑍)) ∪ 𝐸
=

⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑋𝑍)) ∪ 𝐸

We show next that (★) holds. Let ⟨ 𝑓 ,𝑊⟩ ∈ 𝜕𝛼 (𝑆). It suffices to show that

L𝔪 (⟨ 𝑓 ,𝑊⟩) · L𝔪 (⟨incr𝑋, 𝑋𝑍⟩) = Lincr𝑋 ( 𝑓 (𝔪)) (𝑊𝑋𝑍)

holds which is the same as:

Lincr𝑋 ( 𝑓 (𝔪)) (𝑊𝑋𝑍) = L 𝑓 (𝔪) (𝑊) · Lincr𝑋 (𝔪) (𝑋𝑍) (4.11)

Since 𝔪 is valid for𝑊𝑋𝑍 , incr𝑋 ( 𝑓 (𝔪)) is also valid for𝑊𝑋𝑍 because the potential
updates to 𝔪 only affect visible counters. It follows that

Lincr𝑋 ( 𝑓 (𝔪)) (𝑊𝑋𝑍)
(Lemma 4.1)

= Lincr𝑋 ( 𝑓 (𝔪)) (𝑊) ·
·L𝜌(Visible(𝑊)) (incr𝑋 ( 𝑓 (𝔪))) (𝑋𝑍)

(𝑋∉Counters(𝑊))
= L 𝑓 (𝔪) (𝑊) ·

·L𝜌(Visible(𝑊)) (incr𝑋 ( 𝑓 (𝔪))) (𝑋𝑍)
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We have that Visible(𝑊) ⊆ Counters(𝑊) ⊆ Counters(𝑆) by construction of derivatives
and 𝑓 only affects values of counters in Visible(𝑊). Since 𝔪 is valid for 𝑅 and
Counters(𝑆) ⊆ Hidden(𝑅) it follows that 𝔪(𝑐) = 0 for all 𝑐 ∈ Visible(𝑊), and
𝑋 ∈ Visible(𝑅) \ Counters(𝑆). Therefore 𝜌(Visible(𝑊)) (incr𝑋 ( 𝑓 (𝔪))) = incr𝑋 (𝔪),
i.e., the reset cancels the effect of 𝑓 , and so

L𝜌(Visible(𝑊)) (incr𝑋 ( 𝑓 (𝔪))) (𝑋𝑍) = Lincr𝑋 (𝔪) (𝑋𝑍)

This completes the proof of Theorem 4.11 and (★), and thus the induction case under
the condition that 𝑆 is not nullable. Under the condition that 𝑆 is nullable, it follows
that ℓ = 0 because 𝑅 is normalized. But we can pretend that 𝑆 is not nullable because
ℓ = 0 makes 𝑋 nullable and the proof remains unchanged.

Induction case 𝑅 = 𝑆∗𝑍 Observe that 𝔪 |= canExit𝑅 iff 𝔪 |= canExit𝑍 because
𝑆∗ is nullable and𝔪(𝑐) = 0 for all 𝑐 ∈ Counters(𝑆). Assume without loss of generality
that 𝑆 is not nullable. In this case 𝔪 ̸ |= canExit𝑆 . Let 𝐸 = {𝜖 | 𝔪 |= canExit𝑅}.

L𝔪 (𝑆∗𝑍) = L𝔪 (𝑆)∗ · L𝔪 (𝑍)
= L𝔪 (𝑆) · L𝔪 (𝑆∗𝑍) ∪ L𝔪 (𝑍)

(2×IH)
= (

⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑆)) ∪ {𝜖 | 𝔪 |= canExit𝑆}) · L𝔪 (𝑆∗𝑍) ∪⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑍)) ∪ {𝜖 | 𝔪 |= canExit𝑍 }

=
⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑆)) · L𝔪 (𝑆∗𝑍) ∪
⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑍)) ∪ 𝐸

=
⋃
𝛼

[[𝛼]] · (L𝔪 (𝜕𝛼 (𝑆)) · L𝔪 (𝑆∗𝑍) ∪ L𝔪 (𝜕𝛼 (𝑍))) ∪ 𝐸

=
⋃
𝛼

[[𝛼]] · (
⋃

⟨ 𝑓 ,𝑊 ⟩∈𝜕𝛼 (𝑆)
L 𝑓 (𝔪) (𝑊) · L𝔪 (𝑆∗𝑍) ∪ L𝔪 (𝜕𝛼 (𝑍))) ∪ 𝐸

(★★)
=

⋃
𝛼

[[𝛼]] · (
⋃

⟨ 𝑓 ,𝑊 ⟩∈𝜕𝛼 (𝑆)
L 𝑓 (𝔪) (𝑊𝑆∗𝑍) ∪ L𝔪 (𝜕𝛼 (𝑍))) ∪ 𝐸

=
⋃
𝛼

[[𝛼]] · (L𝔪 (𝜕𝛼 (𝑆) ⊗ {⟨id, 𝑆∗𝑍⟩}) ∪ L𝔪 (𝜕𝛼 (𝑍))) ∪ 𝐸

=
⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑆) ⊗ {⟨id, 𝑆∗𝑍⟩} ∪ 𝜕𝛼 (𝑍)) ∪ 𝐸

=
⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑆∗𝑍)) ∪ 𝐸

Equality (★★) holds by using Lemma 4.1 because 𝜌(Visible(𝑊)) ( 𝑓 (𝔪)) = 𝔪 since
𝔪(𝑐) = 0 for 𝑐 ∈ Counters(𝑆) and Visible(𝑊) ⊆ Counters(𝑊) ⊆ Counters(𝑆) by
definition of conditional derivatives.

Induction case 𝑅 = (𝑌1 |𝑌2)𝑍 In this case 𝔪 |= canExit𝑌𝑖𝑍 iff 𝑌𝑖 is nullable and
𝔪 |= canExit𝑍 because 𝔪(𝑐) = 0 for 𝑐 ∈ Counters(𝑌𝑖).
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L𝔪 ((𝑌1 |𝑌2)𝑍) = L𝔪 (𝑌1𝑍) ∪ L𝔪 (𝑌2𝑍)
(2×IH)
=

⋃
𝑖=1,2

(
⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑌𝑖𝑍)) ∪ {𝜖 | 𝔪 |= canExit𝑌𝑖𝑍 })

=
⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 (𝑌1𝑍) ∪ 𝜕𝛼 (𝑌2𝑍)) ∪ {𝜖 | 𝔪 |= canExit𝑌1𝑍 ∨

canExit𝑌2𝑍 })
=

⋃
𝛼

[[𝛼]] · L𝔪 (𝜕𝛼 ((𝑌1 |𝑌2)𝑍)) ∪ {𝜖 | 𝔪 |= canExit𝑅})

The last equality uses that 𝔪 |= canExit𝑌1𝑍 ∨ canExit𝑌2𝑍 iff 𝔪 |= canExit(𝑌1 |𝑌2)𝑍 .
The statement follows by the induction principle. □

4.3.3 Constructing CAs from Conditional Derivatives

We convert a normalized regex 𝑅 to the counting automaton CA(𝑅) whose set of
states is the smallest set containing 𝑅 as the initial state and all those regexes that arise
in conditional derivatives constructed from 𝑅 by repeated derivation wrt Σ. Given
a state represented by a regex 𝑆, for each 𝛼 ∈ Σ and each partial conditional derivative
⟨ 𝑓 , 𝑇⟩ ∈ 𝜕𝛼 (𝑆), there is a transition 𝑆−{𝛼, 𝑓 }→𝑇 in CA(𝑅). The final condition 𝐹 (𝑆) of
a state 𝑆 of CA(𝑅) is canExit𝑆 . Observe that 𝐹 (𝑆) = ⊥C when 𝑆 is not nullable and
has no visible counters, which corresponds to the classical case.

Theorem 5. Let 𝑅 be a normalized regex and 𝐴 = FA(CA(𝑅)). Then, for all
⟨𝔪, 𝑆⟩ ∈ 𝑄𝐴, L𝐴(⟨𝔪, 𝑆⟩) = L𝔪 (𝑆).
Proof. The following fundamental equation is a characterization of the language
of a state 𝑞:

L𝐴(𝑞) = (
⋃

(𝑞,𝛼,𝑝) ∈Δ𝐴

[[𝛼]] · L𝐴(𝑝)) ∪ {𝜖 | 𝑞 ∈ 𝐹} (4.12)

(i.e., 𝜖 ∈ L𝐴(𝑞) iff 𝑞 ∈ 𝐹). We write L(𝑞) for L𝐴(𝑞) when 𝐴 is clear from the context.
Let 𝑅 be fixed. We prove the following statement by induction over the length of 𝑤:

∀⟨𝔪, 𝑆⟩ ∈ 𝑄𝐴 : 𝑤 ∈ L𝐴(⟨𝔪, 𝑆⟩) ⇐⇒ 𝑤 ∈ L𝔪 (𝑆)

Base case 𝑤 = 𝜖 Fix 𝑞 = ⟨𝔪, 𝑆⟩ ∈ 𝑄𝐴. Then 𝜖 ∈ L𝐴(𝑞) iff (by Equation 4.12)
𝑞 ∈ 𝐹𝐴 iff (by definition of 𝐹CA(𝑅) ) 𝔪 |= canExit𝑆 iff (by Theorem 4) 𝜖 ∈ L𝔪 (𝑆).

Induction case𝑤 = 𝑎𝑣 Fix ⟨𝔪, 𝑆⟩ ∈ 𝑄𝐴. Choose the unique𝛼 ∈ Σ such that 𝑎 ∈ [[𝛼]] .

𝑎𝑣 ∈ L𝔪 (𝑆)
(Theorem 4)
⇐⇒ 𝑎𝑣 ∈ [[𝛼]] · L𝔪 (𝜕𝛼 (𝑆))
⇐⇒ ∃⟨ 𝑓 , 𝑇⟩ ∈ 𝜕𝛼 (𝑆) : 𝑣 ∈ L 𝑓 (𝔪) (𝑇)
(IH)
⇐⇒ ∃⟨ 𝑓 , 𝑇⟩ ∈ 𝜕𝛼 (𝑆) : 𝑣 ∈ L𝐴(⟨ 𝑓 (𝔪), 𝑇⟩)
⇐⇒ ∃⟨𝔪, 𝑆⟩−{𝛼}→⟨ 𝑓 (𝔪), 𝑇⟩ ∈ Δ𝐴 : 𝑣 ∈ L𝐴(⟨ 𝑓 (𝔪), 𝑇⟩)
(4.12)
⇐⇒ 𝑎𝑣 ∈ L𝐴(⟨𝔪, 𝑆⟩)

the statement follows by the induction principle. □
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The construction of CA(𝑅) terminates, and the number of states of CA(𝑅) is
linear in#Ψ (𝑅).

Theorem 6. Let 𝑅 be a normalized regex. Then |𝑄CA(𝑅) | ≤ #Ψ (𝑅) + 1.

To prove Theorem 6 we first introduce the following notions. Let 𝜕+(𝑅) denote
the set of all regexes arising through partial derivatives applied recursively starting from
a normalized regex 𝑅. Formally, let:

𝜕 (𝑅) def= {𝑊 | ∃𝛼, 𝑓 : 𝛼 ∈ Minterms(𝑅), ⟨ 𝑓 ,𝑊⟩ ∈ 𝜕𝛼 (𝑅)},

then 𝜕+(𝑅) is the least fixed point of the following equations, where 𝐿 is a set of
normalized regexes:

𝜕+(𝑅) = 𝜕 (𝑅) ∪ 𝜕+(𝜕 (𝑅)), 𝜕+(𝐿) =
⋃
𝑅∈𝐿

𝜕+(𝑅).

We first prove the following lemma where given a set of normalized regexes 𝐿 and
a normalized regex 𝑍 we let 𝐿𝑍 denote the set {𝑊𝑍 | 𝑊 ∈ 𝐿} of normalized regexes.
Observe that 𝜕+(𝑅) is the set of regexes reached after one or more derivations, whichmay
but need not include 𝑅 itself, e.g., 𝜕+(b(ab){9}) = {(ab){9}, b(ab){9}} includes
the start regex while 𝜕+(ab) = {b, 𝜀} does not. We write 𝑆⋄ for a counting loop 𝑆{ℓ, 𝑘}
or loop 𝑆∗.

Lemma 4.3. Let 𝑋 and 𝑍 be any normalized regexes. Then 𝜕+(𝑋𝑍) = 𝜕+(𝑋)𝑍∪𝜕+(𝑍)
and if 𝑋 is a (counting) loop 𝑆⋄ then 𝜕+(𝑋) = 𝜕+(𝑆)𝑋 .

Proof. We prove by induction over#(𝑋) that 𝜕+(𝑋𝑍) = 𝜕+(𝑋)𝑍 ∪ 𝜕+(𝑍). The base
case 𝑋 = 𝜀 follows immediately because 𝜕 (𝜀) = ∅.
Induction case 𝑋 = 𝜓𝑌 :

𝜕+(𝑋𝑍) = {𝑌𝑍} ∪ 𝜕+(𝑌𝑍)
𝐼𝐻
= {𝑌𝑍} ∪ 𝜕+(𝑌 )𝑍 ∪ 𝜕+(𝑍)
= ({𝑌 } ∪ 𝜕+(𝑌 ))𝑍 ∪ 𝜕+(𝑍)
= 𝜕+(𝑋)𝑍 ∪ 𝜕+(𝑍)

Induction case 𝑋 = (𝑋1 |𝑋2)𝑌 :

𝜕+(𝑋𝑍) = 𝜕+(𝑋1𝑌𝑍) ∪ 𝜕+(𝑋2𝑌𝑍)
2×𝐼𝐻
= 𝜕+(𝑋1𝑌 )𝑍 ∪ 𝜕+(𝑋2𝑌 )𝑍 ∪ 𝜕+(𝑍)

2×𝐼𝐻
= (𝜕+(𝑋1)𝑌 ∪ 𝜕+(𝑌 ))𝑍 ∪ (𝜕+(𝑋2)𝑌 ∪ 𝜕+(𝑌 ))𝑍 ∪ 𝜕+(𝑍)
= (𝜕+(𝑋1)𝑌 ∪ 𝜕+(𝑋2)𝑌 ∪ 𝜕+(𝑌 ))𝑍 ∪ 𝜕+(𝑍)
= (𝜕+(𝑋1 |𝑋2)𝑌 ∪ 𝜕+(𝑌 ))𝑍 ∪ 𝜕+(𝑍)
(★)
= 𝜕+(𝑋)𝑍 ∪ 𝜕+(𝑍)

In (★), if 𝑌 = 𝜀, the equality holds by definition of derivatives of a choice node. If
𝑌 ≠ 𝜀, then 𝑋1 |𝑋2 is smaller than 𝑋 , and one can apply the IH on (𝑋1 |𝑋2)𝑌 with 𝑋1 |𝑋2
as 𝑋 and 𝑌 as an instance of the universal variable 𝑍 in the lemma.
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Induction case of 𝑋 = 𝑆⋄𝑌 where 𝑆⋄ is either a counting loop or a ∗-loop. the proof
step uses the property that, for any normalized𝑊 :

𝜕+(𝑆⋄𝑊) = 𝜕+(𝑆)𝑆⋄𝑊 ∪ 𝜕+(𝑊) (4.13)

holds. Equation 4.13 is proved as follows:

𝜕+(𝑆⋄𝑊) = 𝜕+(𝑆𝑆⋄𝑊) ∪ 𝜕+(𝑊)
(IH)
= 𝜕+(𝑆)𝑆⋄𝑊 ∪ 𝜕+(𝑆⋄𝑊) ∪ 𝜕+(𝑊)
(lfp)
= 𝜕+(𝑆)𝑆⋄𝑊 ∪ 𝜕+(𝑊)

where (lfp) holds because 𝜕+(𝑆⋄𝑊) ⊆ 𝜕+(𝑆)𝑆⋄𝑊 ∪𝜕+(𝑊) that can be shown separately.
It follows that:

𝜕+(𝑋𝑍) = 𝜕+(𝑆⋄(𝑌𝑍))
(4.13)
= 𝜕+(𝑆)𝑆⋄𝑌𝑍 ∪ 𝜕+(𝑌𝑍)
𝐼𝐻
= 𝜕+(𝑆)𝑆⋄𝑌𝑍 ∪ 𝜕+(𝑌 )𝑍 ∪ 𝜕+(𝑍)
= (𝜕+(𝑆)𝑆⋄𝑌 ∪ 𝜕+(𝑌 ))𝑍 ∪ 𝜕+(𝑍)
(4.13)
= 𝜕+(𝑆⋄𝑌 )𝑍 ∪ 𝜕+(𝑍)
= 𝜕+(𝑋)𝑍 ∪ 𝜕+(𝑍)

The statement follows by the induction principle. Observe that Lemma 4.13 implies
the second part of the lemma by letting𝑊 = 𝜀. □

Now are ready to prove Theorem 6. Recall that |𝑆 | is the cardinality of a set 𝑆,
and #(𝑅) is the size of a regex 𝑅 that is the number of abstract syntax tree nodes
of 𝑅 (up to the case of 𝑅 = 𝜖 where the size is 0), and #Ψ (𝑅) is the number of
predicates nodes in 𝑅.

Proof of Theorem 6. We first prove, by induction over#(𝑅), that Theorem 4.14 holds.

|𝜕+(𝑅) | ≤ #Ψ (𝑅) (4.14)

Base case 𝑅 = 𝜀 Then 𝜕+(𝑅) = ∅ and #Ψ (𝑅) = 0. Theorem 4.14 holds trivially.
Induction case 𝑅 = 𝜓𝑍 This gives us 𝜕+(𝑅) = {𝑍} ∪ 𝜕+(𝑍). Thus

|𝜕+(𝑅) | ≤ |𝜕+(𝑍) | + 1
IH
≤ #Ψ (𝑍) + 1 = #Ψ (𝑅).

Induction case 𝑅 = (𝑋 |𝑌 )𝑍 This gives us 𝜕+(𝑅) = 𝜕+(𝑋𝑍) ∪ 𝜕+(𝑌𝑍). Then,
by Lemma 4.3,

𝜕+(𝑋𝑍) ∪ 𝜕+(𝑌𝑍) = 𝜕+(𝑋)𝑍 ∪ 𝜕+(𝑌 )𝑍 ∪ 𝜕+(𝑍)

which implies that (observe that, trivially, |𝐿𝑍 | = |𝐿 | for any set 𝐿 and regex 𝑍)

|𝜕+(𝑅) | ≤ |𝜕+(𝑋) | + |𝜕+(𝑌 ) | + |𝜕+(𝑍) |
IH
≤ #Ψ (𝑋) +#Ψ (𝑌 ) +#Ψ (𝑍) = #Ψ (𝑅).
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Induction case 𝑅 = 𝑆⋄𝑍 Here 𝜕+(𝑅) = 𝜕+(𝑆)𝑆⋄𝑍 ∪ 𝜕+(𝑍) by using Lemma 4.13 in
Lemma 4.3. Thus,

|𝜕+(𝑅) | ≤ |𝜕+(𝑆) | + |𝜕+(𝑍) |≤𝐼𝐻#Ψ (𝑆) +#Ψ (𝑍) = #Ψ (𝑅).

Equation 4.14 follows by the induction principle. Theorem 6 follows from Theorem 4.14
because 𝑄CA(𝑅) = 𝜕+(𝑅) ∪ {𝑅} and thus |𝑄CA(𝑅) | ≤ |𝜕+(𝑅) | + 1 ≤ #Ψ (𝑅) + 1. □

We get the following final correctness result as a corollary of Theorem 5, Theorem 3,
and Theorem 6.

Corollary 1. Let 𝑅 be a normalized regex. Then 𝐿 (𝑅) = 𝐿 (CA(𝑅)).

Proof. First,𝑄CA(𝑅) is finite, and thus well-defined by using Theorem 6. Use Theorem 5
with ⟨𝔪, 𝑆⟩ as the initial state ⟨0, 𝑅⟩ of 𝐴. It follows that 𝐿 (𝐴) = L0(𝑅). Then use
Theorem 3 for L0(𝑅) = 𝐿 (𝑅) and 𝐿 (CA(𝑅)) = 𝐿 (𝐴) holds by definition. □

A further important aspect of CA(𝑅) is that, although the number of input minterms
may potentially be exponential in the number of predicates in 𝑅, in the case of predicates
being represented as a finite union of intervals (as is done typically for character classes),
the size of a single predicate representation can be estimated to be proportional to
the number of interval borders in the union. In this case, the total size of all the minterms
remains linear in the total size of all the predicates because the total number of interval
borders will remain the same in minterms as in the original set of predicates. In other
words, mintermization based on character classes does not blow up the number of
transition in CA(𝑅). We have also validated this fact experimentally.

4.4 From Counting Automata to Counting-Set Automata

CAs obtained through conditional derivatives as shown in Section 4.3.3 are nondeter-
ministic. As the major contributions of this thesis, we now propose an approach for
determinising them into a form that can be used efficiently for regex matching.
The approach from which we start and to which we contrast our new method is

the naive determinisation of CAs to DFAs. The given CA is first converted to its
underlying NFA, by making the counter memories an explicit part of control states.
The NFA is in turn determinised by the textbook subset construction.
Already the first step, the construction of the NFA, oftentimes explodes since it

sacrifices the succinctness of symbolic counters (it is linear to the counter bounds). This
initial blow-up is then much amplified in the subset construction, which is exponential
to the size of the NFA and hence also to the repetition bounds (as, e.g., in the case of
the regex.*a.{𝑘} with its CA in Figure 4.1a).
Our answer to this problem is a direct determinisation of the CA into a novel type of

automata, which we call counting-set automata (CsAs). Control states of counting-set
automata produced by our determinisation are essentially the states of the corresponding
DFA but with the counter memories removed. In order to be able to simulate a run of
the DFA, they are equipped with special registers that can hold sets of integers, and they
use them to compute the right counter memories at runtime. This completely avoids
the state space explosion of the naive construction caused by wiring counter memories
into control states. Moreover, the simulation is fast because all the manipulations
with a counting set can be done in constant time.
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4.4.1 Counting-Set Automata

We now formalize the idea of counting-set automata outlined above. We use the notion
of a combined Boolean algebra I×S, which allows us to manipulate pairs of predicates
from the input algebra I and the counting-set algebra S. For the purposes of this thesis,
we assume that predicates in ΨI×S have the form 𝛼 ∧ 𝛽 where 𝛼 ∈ ΨI and 𝛽 ∈ ΨS.
The conjuction (𝛼 ∧ 𝛽) ∧I×S (𝛼′ ∧ 𝛽′) has the usual meaning of (𝛼 ∧I 𝛼′) ∧ (𝛽 ∧S 𝛽′)
and 𝛼 ∧ 𝛽 is satisfiable if both 𝛼 and 𝛽 are satisfiable in their respective algebras.

Counting sets. We consider a set-based interpretation of counters where the value of
a counter 𝑐 is a finite set rather than a single value. A counter under such an interpretation
is referred to as a counting set. A (counting-)set memory for 𝐶 is a function 𝔰 : 𝐶 →
Pfin(N) such that, for all 𝑐 ∈ 𝐶, Max(𝔰(𝑐)) ≤ max𝑐.2 Observe that the set of
all set memories for 𝐶 is finite. Counting-set predicates over 𝐶 form an effective
Boolean algebra S𝐶 called the counting-set algebra over 𝐶, also denoted just S when
𝐶 is clear from the context, whose domain ΣS is the set of all set memories for 𝐶.
The set of predicates ΨS is the Boolean closure of the basic predicates canIncr𝑐 and
canExit𝑐, hence syntactically the same as in the counter algebra C, but with a different
semantics under S:

𝔰 |= canExit𝑐 ⇐⇒ Max(𝔰(𝑐)) ≥ min𝑐 and 𝔰 |= canIncr𝑐 ⇐⇒ Min(𝔰(𝑐)) < max𝑐

where Min(·) andMax(·) are the set minimum and maximum, respectively. Intuitively,
the conditions test existence of a set element satisfying the same counter condition.

Counting-set automata. A counting-set automaton (CsA) is a tuple 𝐴 = (I, 𝐶, 𝑄, 𝑞0,
𝐹,Δ) where: I is an effective Boolean algebra called the input algebra. 𝐶 is a finite set of
counters associated with the counting-set algebra S. 𝑄 is a finite set of stateswith 𝑞0 ∈ 𝑄
being the initial state. 𝐹 : 𝑄 → ΨS is the final-state condition. Δ ⊆ 𝑄 × ΨI×S × (𝐶 →
P(O)) ×𝑄 is a finite set of transitions. The second component is its guard. The third
component is the counting-set operator in which O = {Incr,Noop,Rst,Rst1} is
the set of counting-set operations. They are essentially counter operations lifted to sets
(note the use of the larger initial letters to distinguish them from the counter operations).
We also use the different names Rst and Rst1 for the lifting of exit and exit1 to stress
their different usage (not only for exiting a loop but also for initialisation when entering
the loop as will become clear in Equation 4.18).
TheCsA 𝐴 is deterministic iff the following holds for every two transitions 𝑝−{𝜓1, 𝑓1}→𝑞1

and 𝑝−{𝜓2, 𝑓2}→𝑞2 in Δ: if 𝜓1 ∧ 𝜓2 is satisfiable, then 𝑓1 = 𝑓2 and 𝑞1 = 𝑞2.

Semantics of CsAs. The semantics of an indexed counting-set operation op𝑐 ∈ O is
the set transformer upd (op𝑐) defined as follows:

upd (Incr𝑐) = 𝝀𝑆.{𝑛 + 1 | 𝑛 ∈ 𝑆 ∧ 𝑛 < max𝑐} upd (Rst𝑐) = 𝝀𝑆.{0}
upd (Noop𝑐) = 𝝀𝑆.𝑆 upd (Rst1𝑐) = 𝝀𝑆.{1}

2We write Pfin (𝑋) for the powerset of 𝑋 restricted to finite nonempty sets.
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Then, the counting-set operator 𝑓 : 𝐶 → P(O) is assigned the counting-set-memory
transformer f : ΣS → ΣS defined as follows:

f (𝔰) def= 𝝀𝑐.

{ ⋃
op∈ 𝑓 (𝑐) upd (op𝑐) (𝔰(𝑐)) if 𝑓 (𝑐) ≠ ∅
{0} if 𝑓 (𝑐) = ∅ (4.15)

That is, (1) if 𝑓 (𝑐) ≠ ∅, then the value 𝔰(𝑐) of each counting set 𝑐 is transformed
into the union of the counting sets that result from applying the operations from 𝑓 (𝑐)
on 𝔰(𝑐), and (2) if 𝑓 (𝑐) = ∅, then 𝑐 is implicitly reset to {0} (an implicit Rst). Our
determinisation procedure creates such transitions when the value of 𝑐 is irrelevant
(when 𝑐 is a dead variable). Let 𝜏 ∈ Δ. We use f𝜏 (𝔰) to denote that the transformer is
applied only on the counter-set operator of a transition 𝜏.
Note that, unlike counter operators of a CA, a counting-set operator 𝑓 does not induce

any guard. The guard is rather a separate component of the transition. This is because
CsA transitions produced in the CA-to-CsA determinisation need guards that are partially
independent of the operations of 𝑓 . In particular, we will we need to distinguish cases
such as ¬canExit𝑐 ∧ canIncr𝑐, canExit𝑐 ∧ ¬canIncr𝑐, or canExit𝑐 ∧ canIncr𝑐.
The guard hence cannot be induced by 𝑓 alone.
Note also that, unlike in CAs, the updates are defined for indexed operations.

The reason is that the semantics of the Incr operation is restricted to never produce
values greater than max𝑐.
Finally, the language of the CsA 𝐴 is defined through its underlying configuration FA,

FA(𝐴), as 𝐿 (𝐴) := 𝐿 (FA(𝐴)). The states of FA(𝐴) are configurations of 𝐴, namely,
tuples of the form (𝑞, 𝔰) ∈ 𝑄 × ΣS consisting of a state 𝑞 and a counting-set memory 𝔰.
There are finitely many such configurations. The initial state of FA(𝐴) is the initial
configuration (𝑞0, {𝑐 ↦→ {0}}𝑐∈𝐶) of 𝐴. A transition 𝜏 = 𝑝−{𝛼∧𝛽, 𝑓 }→𝑞 ∈ Δ is enabled
in a configuration (𝑝, 𝔰) iff 𝛼 is satisfiable and 𝔰 ∈ [[𝛽]]S, meaning that 𝔰 satisfies
the counter guard 𝛽. If 𝜏 is enabled in (𝑝, 𝔰), then FA(𝐴) contains the transition
(𝑝, 𝔰)−{𝛼}→(𝑞, f (𝔰)). Finally, a state (𝑞, 𝔰) of FA(𝐴) is final iff 𝔰 |= 𝐹 (𝑞).

Runtime efficiency of counting sets. A major reason for choosing CsAs as the target
kind of machine for determinisation of CAs is that pattern matching with CsAs is
fast. As explained in Section 4.1, the counting-set data structure can be implemented
efficiently. Here, it remains to point out that the counting-set algebra and its operations
can be implemented directly over that data structure. Namely, all counting-set tests
and updates, and their combinations—canIncr𝑐, canExit𝑐, Noop, Incr, Rst, and
Rst1—can easily be implemented through the operations of the counting-set data
structure and can then run in constant time, regardless of the size of the counting set and
the value max𝑐 (assuming constant-time complexity of integer arithmetic operations).

Example 4.4.1. An example of a CsA is in Figure 4.1b. It uses intuitive notations that
were also introduced in Section 4.1 as abbreviations for the operations of the counting-
set data structure. Counting-set operators are depicted as assignments to 𝑐, Rst is
represented as {0} on the right of the assignment, Rst1 is represented by {1}, Incr by
𝑐 + 1, and Noop by 𝑐. Multiple transitions between the same states and with the same
updates are merged into one with a simplified guard. An example whose notation closely
follows the formal development is in Figure 4.3. □
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When processing a single letter of some text in pattern matching, tests and up-
dates of one counting set then take O(1) time, which in turn gives O(|𝐶 |) for all
counting sets. This is our major achievement: the independence of the running time
from the repetition bounds.

4.4.2 Encoding DFA Powerstates as CsA Configurations

In order to build intuition needed for understanding our determinisation algorithm,
we will first concretize how the configurations of a CsA can encode states of a DFA
corresponding to the NFA FA(𝐴) underlying a given CA 𝐴 = (I, 𝐶, 𝑄, 𝑞0, 𝐹,Δ). First,
recall that, since 𝐴 is converted into FA(𝐴) by making the counter memories explicit
parts of control states, the states of FA(𝐴) are pairs (𝑝,𝔪) consisting of a state 𝑝
of 𝐴 and a counter memory 𝔪. Second, assume that FA(𝐴) is determinised using
the textbook subset construction.3 We denote the result as DFA(𝐴) from now on.
Then, the states of DFA(𝐴) are sets of states of FA(𝐴), i.e., sets of pairs (𝑝,𝔪), which
we will call powerstates. The control states of the CsA 𝐴′ built by our CA-to-CsA
determinisation will be subsets of the set 𝑄 of states of the CA 𝐴. The configurations
of 𝐴′ will thus be pairs (𝑅, 𝔰) where 𝑅 ⊆ 𝑄 is a CsA control state, i.e., a set of states of
𝐴, and 𝔰 : 𝐶 → Pfin(N) is a counting-set memory. Let us now consider how 𝔰 can be
interpreted in this context.

Naive encoding. A naive interpretation of a CsA configuration (𝑅, 𝔰) is a DFA state
containing all pairs (𝑟,𝔪) such that 𝑟 ∈ 𝑅 and, for all 𝑐 ∈ 𝐶, 𝔪(𝑐) can be any value
from 𝔰(𝑐). The set of the counter memories 𝔪 is then isomorphic to the Cartesian
product

∏
𝑐∈𝐶 𝔰(𝑐) of the sets 𝔰(𝑐) assigned to the counters, and the entire powerstate

is the Cartesian product 𝑅 × 𝔪 of the set of states and the set of counter memories.
The naive interpretation, however, is too impractical as it cannot express any dependence
of a counter memory on the CA state (every state can be paired with each considered
memory) nor any mutual dependence of values of different counters within a counter
memory (every possible value of a counter 𝑐 can be paired with every possible value of
any other counter 𝑑). Most DFAs compiled from real-life regexes do not fit into this
representation. For instance, the DFA configuration {(𝑞, 𝑐 = 0), (𝑠, 𝑐 = 0), (𝑠, 𝑐 = 1)}
of the CA from Figure 4.1 in Section 4.1 could not be represented by a CsA configuration
because 𝑞 and 𝑠 appear with different sets of counter values.

Encoding with counter scopes. Our key observation how to resolve the above
problem (at least for many real-life scenarios) is to take advantage of that not every
counter is “used” at every CA state. In fact, the value of a counter is usually implicitly 0
at most states except a few. If these states are known, the implicit zeros do not have
to be remembered explicitly in the counting sets, and the encoding becomes much
more flexible. To formalize this, we introduce the notion of the scope of a counter that
over-approximates the set of states where a counter 𝑐 can have a non-zero value and

3The DFA produced by the textbook subset construction from a simple FAA = (I, 𝑄, 𝑞0, 𝐹,Δ) will have
P(𝑄) as the set of states, transitions 𝑆−{𝛼}→{𝑟 ∈ 𝑄 | 𝑠−{𝛼}→𝑟 ∈ Δ, 𝑠 ∈ 𝑆}, the initial state {𝑞0}, and as
the final states all those intersecting 𝐹. We note that to determinise a CA which is not simple, one
could start from the more sophisticated version of the subset construction for symbolic automata of
[103], which avoids explicit generation of all minterms.
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that is easy to compute.4 The scope is defined inductively as the smallest set of states
𝜎(𝑐) as follows:

1. 𝑞 ∈ 𝜎(𝑐) if there is a transition to 𝑞 with either incr𝑐 or exit1𝑐, or

2. there is a transition to 𝑞 from a state in 𝜎(𝑐) with the noop𝑐 operation.

In other words, the scope of 𝑐 spreads from an increment of 𝑐 along the transition
relation until a transition with exit𝑐.
The DFA powerstate encoded by a CsA configuration (𝑅, 𝔰) can then be formally

defined as the set (𝑅, 𝔰)DFA of configurations (𝑟,𝔪) of the CA 𝐴 such that 𝑟 ∈ 𝑅 and,
for all 𝑐 ∈ 𝐶, 𝔪(𝑐) ∈ 𝔰(𝑐) if 𝑐 ∈ 𝜎(𝑟), else 𝔪(𝑐) = 0. We call the powerstates of
DFA(𝐴) that can be encoded by CsA configurations Cartesian, and call the entire DFA
Cartesian if all its powerstates are Cartesian.

Example 4.4.2. The powerstates of the DFA(𝐴) of the CA 𝐴 from Figure 4.1a are
indeed Cartesian (as discussed in Section 4.1) because 𝑞0 is not in the scope of 𝑐.
The encoding of powerstates by CsA configurations is also illustrated in Section 4.1 and
later also in Example 4.4.3. □

The Cartesian encoding still cannot express all kinds of DFA powerstates. In par-
ticular, it cannot express more subtle dependencies of counter values on the state,
and dependencies of counter values of different counters on each other, which mainly
concerns CAs with nested counting loops compiled from regexes with nested counting
sub-expressions. Example 4.4.4 discusses a regex that leads to a non-Cartesian CA.
However, we later present a strong empirical evidence that a significant majority of
real-life regexes lead to Cartesian CA.

4.4.3 Generalized Subset Construction

We will now describe the core of our CA-to-CsA determinisation. It is built on top of
the textbook subset construction for NFAs. We use the CA from Figure 4.3a as a running
example through the section. We make a simplifying assumption that the input CAs are
simple (different character classes on their transitions do not overlap). This is satisfied
by CAs generated by the derivative construction from Section 4.3 since their transitions
are labeled by minterms of the original regex. The assumption could be dropped and
the construction could be relatively easily generalized in the style of symbolic automata
determinisation of [103].
Let 𝐴 = (I, 𝐶, 𝑄, 𝑞0, 𝐹,Δ) be a simple CA with the scope function 𝜎 : 𝑄 →
P(𝐶). The algorithm produces the deterministic CsA 𝐴′ = (I, 𝐶, 𝑄 ′, 𝑆0, 𝐹 ′,Δ′) whose
components are constructed as described below. Namely, control states of 𝐴′, called
powerstates, are subsets of 𝑄, i.e., 𝑄 ′ ⊆ P(𝑄). The initial powerstate is 𝑆0 = {𝑞0}.
A powerstate 𝑆 ∈ 𝑄 ′ is final iff the final condition holds for some of its elements, i.e.,

4Computing the precise set of states where a counter 𝑐 can have a non-zero value would require
a reachability analysis in the general case (since some of the transitions may never be executable—think
of simultaneously counting with counters 𝑐 and 𝑑 such that canIncr𝑐 < canExit𝑑 , then the exit
transition for 𝑑 will never be taken). For the CAs coming from our derivative construction, the scope,
however, corresponds to this set precisely—indeed, no transitions that would never be executable are
generated.
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𝐹 ′(𝑆) def= ∨
𝑞∈𝑆 𝐹 (𝑞). The sets Δ′ and 𝑄 ′ are constructed by a fixpoint computation that

explores the state space reachable from 𝑆0. During the construction, transitions starting
from previously reached powerstates are constructed and included together with their
target states into Δ′ and 𝑄 ′, respectively, until no new powerstates can be reached.
Transitions starting from a given control state 𝑅 of the CsA 𝐴′ are constructed

to update the runtime values of counting sets such that they simulate transitions of
the DFA corresponding to the CA 𝐴. Assume a CsA configuration (𝑅, 𝔰) and a DFA
transition (𝑅, 𝔰)DFA−{𝛼}→𝑃 from the DFA powerstate encoded by (𝑅, 𝔰) over an input
minterm 𝛼. The simulating CsA transition must transform (𝑅, 𝔰) into (𝑅′, 𝔰′) with
(𝑅′, 𝔰′)DFA = 𝑃. The simulated DFA transition was constructed from 𝛼-transitions
of the NFA FA(𝐴) that are actually instantiations of the CA 𝛼-transitions enabled in
configurations (𝑟,𝔪) ∈ (𝑅, 𝔰)DFA. The simulating CsA transition will be constructed
from these CA transitions. They can be identified by (1) their source state, which
must be in 𝑅, (2) an alphabet minterm 𝛼 ∈ Σ where Σ is the set of minterms over
all input predicates in the CA 𝐴, and (3) their compatibility with a particular set of
enabled/disabled counter guards. This set of guards belongs to the set of minterms Γ𝑅,𝛼

of the set of counter guards on the 𝛼-transitions originating in 𝑅:

Γ𝑅,𝛼
def
= Minterms({grd (op𝑐) | 𝑟−{𝛼, 𝑓 }→ 𝑠 ∈ Δ, 𝑟 ∈ 𝑅 ∧ 𝑐 ∈ 𝜎(𝑟), op𝑐 ∈ 𝑓 }) (4.16)

Hence, the CsA will have a transition leaving 𝑅 for each 𝛼 ∈ Σ and 𝛽 ∈ Γ𝑅,𝛼, and
the transition will be built from the set of CA 𝛼-transitions originating in 𝑅 and consistent
with 𝛽:

Δ𝑅,𝛼,𝛽
def
= {𝑟−{𝛼, 𝑓 }→ 𝑠 ∈ Δ | 𝑟∈𝑅, Sat(𝜑 𝑓 ∧ 𝛽)}. (4.17)

The target of the transition is the set 𝑇 of all target states of the transitions in Δ𝑅,𝛼,𝛽,
and its guard is 𝛼 ∧ 𝛽.5
The remaining component is the counting-set operator 𝑔. It must summarize

the updates of the counter values on transitions of Δ𝑅,𝛼,𝛽 as updates of the respective
counting sets. The values of counters that are out of scope, hence implicitly zero, will
not be tracked in counting sets. Tracking the value of a counter hence starts when 𝐴′
simulates a transition of 𝐴 entering the scope of the counter, and ends when no state
from the scope is present in the target CsA state.

csop( op𝑐 , 𝑐)
def
=



Noop if op𝑐 = noop ∧ 𝑝 ∈ 𝜎(𝑐)
Incr if op𝑐 = incr ∧ 𝑝 ∈ 𝜎(𝑐)
Rst if op𝑐 = noop ∧ 𝑝 ∉ 𝜎(𝑐)
Rst1 if op𝑐 = incr ∧ 𝑝 ∉ 𝜎(𝑐)
Rst if op𝑐 = exit
Rst1 if op𝑐 = exit1

(4.18)

Let Δ𝑅,𝛼,𝛽 (𝑐) be the set of transitions in Δ𝑅,𝛼,𝛽 with the target state in the scope
of 𝑐. The counting-set operator 𝑔 is built in the form:

𝑔(𝑐) def= {csop( 𝑓 (𝑐), 𝑐) | ∃𝑝, 𝑞, 𝛼 : 𝑝−{𝛼, 𝑓 }→ 𝑞 ∈ Δ𝑅,𝛼,𝛽 (𝑐)}. (4.19)

5Recall that the predicates in ΨC and ΨS are syntactically the same.
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F: ꓔ

(a) CA(.*a.{4,8}a)

[^a]¬ξ(c)ι(c)/INCR(c),

[^a]ξ(c)ι(c)/INCR(c),

a¬ξ(c)ι(c)/INCR(c), RST(c)
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a¬ξ(c)ι(c)/INCR(c), RST(c)

aξ(c)ι(c)/INCR(c), RST(c),

aξ(c)¬ι(c)/RST(c)

[^a]ξ(c)¬ι(c)

a/RST(c)[^a]ξ(c)¬ι(c)

[^a]

aξ(c)ι(c)/INCR(c), RST(c),

aξ(c)¬ι(c)/RST(c)

{q₀}

{q₀,q₁}

{q₀,q₁,q₂}

F: ꓔ

(b) Determinisation of the CA into a CsA

Figure 4.3: From a regex via a CA to a deterministic CsA.We are using a notation closely
following the formal development. We only use op(𝑐) instead of op𝑐 and abbreviate
canExit𝑐 by 𝜉 (𝑐) and canIncr𝑐 by 𝜄(𝑐).

Here, csop( 𝑓 (𝑐), 𝑐) denotes the counting-set operation that, given a CA transition
𝜏 = 𝑝−{𝛼, 𝑓 }→𝑞, transforms the set of possible values of the counter 𝑐 at the state 𝑝 to
the set of values obtained at 𝑞 after taking the transition. It is defined in Equation 4.18
on the right. The set operation induced by the CA transition corresponds to the counter
operation on the transition. In the third and fourth case, when the CA transition comes
from out of the scope, it is certain that the counter can only have the value 0, which is the
same value as produced by exit (or exit1 when the counter is immediately incremented).
The resulting CsA transition is therefore 𝑆−{𝛼∧𝛽,𝑔}→𝑇 . Note that 𝑔(𝑐) ends up empty
when the target powerstate is fully out of the scope of 𝑐, which semantically corresponds
to the implicit reset to {0}.
Let 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ𝑅,𝛼,𝛽 . We denote a counting-set operator for 𝑟−{𝛼, 𝑓 }→𝑟 ′ as:

f cs (𝑐) = csop( 𝑓 (𝑐)). (4.20)

Observe that 𝐴′ is deterministic since, for any two distinct transitions 𝑆−{𝛼1, 𝑓1}→𝑆1
and 𝑆−{𝛼2, 𝑓2}→𝑆2, the condition 𝛼1 ∧ 𝛼2 is unsatisfiable by virtue of minterms.

Lemma 4.4. For the CA 𝐴 and the CsA 𝐴′ above, we have 𝐿 (𝐴′) ⊇ 𝐿 (𝐴) and
|𝑄 ′ | ≤ 2 |𝑄 |.

Proof (idea). Wewill later provide under additional assumptions a full proof of language
equivalence. The language inclusion is proved by showing that the configuration automa-
ton 𝐹𝐴(𝐴′) of 𝐴′ simulates DFA(𝐴), more concretely, that each configuration (𝑅, 𝔰) of
𝐴′, a state of 𝐹𝐴(𝐴′), simulates the powerstate (𝑅, 𝔰) ofDFA(𝐴). The bound on the size
of the state space follows from that states of the CsA are sets of states of the CA. The proof
of the language inclusion is embedded in the proof of the language equivalence. □

Example 4.4.3. Consider the CA in Figure 4.3a that has states 𝑞0, 𝑞1, and 𝑞2. The state
𝑞0 is initial, the final condition of 𝑞2 is ⊤, and it is ⊥ for 𝑞0 and 𝑞1. The set of
counters is 𝐶 = {𝑐} with 𝜎(𝑐) = {𝑞1} (i.e., 𝑐 is not used and hence implicitly 0 in 𝑞0
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and 𝑞2). Finally, Σ = {a, [^a]}. In Figure 4.3a, we compactly represent transitions
over all minterms from Σ using ‘.’. The determinisation starts exploring the CsA
from its initial state 𝑆0 = {𝑞0}.
Let us focus on the transitions for the input minterm 𝛼 = a. There are two transitions

leaving 𝑞0, namely 𝛿1 = 𝑞0−{a,noop𝑐 }→𝑞0 and 𝛿2 = 𝑞0−{a,noop𝑐 }→𝑞1, both with no guard
on 𝑐, so we have that Γ𝑆0,𝛼 = {⊤}. The guard ⊤ is thus the only choice for the counter
minterm 𝛽. The set Δ𝑅,𝛼,𝛽 of transitions consistent with 𝛼 and 𝛽 then contains both
a-transitions 𝛿1 and 𝛿2 originating from 𝑞0. Since 𝛿2 is entering the scope of 𝑐, it
generates the counting-set operation Rst𝑐 according to the third case of Equation 4.18.
Since 𝛿1 stays out of the scope, it does not generate any counting-set operations.
We obtain the counting-set operator 𝑔(𝑐) = {Rst𝑐} and generate the CsA transition
𝜏1 = {𝑞0}−{a∧𝛽, {Rst𝑐 }}→{𝑞0, 𝑞1}.
Next, let us focus on the a-transitions from 𝑆1 = {𝑞0, 𝑞1}. Here, Γ𝑆1,a has the fol-

lowing three satisfiable elements: canExit𝑐 ∧ canIncr𝑐, ¬canExit𝑐 ∧ canIncr𝑐,
and canExit𝑐 ∧ ¬canIncr𝑐 (the guard ¬canExit𝑐 ∧ ¬canIncr𝑐 is excluded as it is
never satisfied for non-empty sets of positive integers). Let us generate a transition for
the second case, 𝛽 = ¬canExit𝑐 ∧ canIncr𝑐. We obtain Δ𝑆1,a,𝛽 = {𝑞0−{a,noop𝑐 }→𝑞0,
𝑞0−{a,noop𝑐 }→𝑞1, 𝑞1−{a,incr𝑐 }→𝑞1}. As before, the first transition does not contribute to 𝑔
as it stays out of the scope, and the second transition adds Rst𝑐. The third transition
adds Incr𝑐 (the second case of Equation 4.18). The resulting CsA transition is thus
𝜏2 = 𝑆1−{a∧¬canExit𝑐∧canIncr𝑐 , {Incr𝑐 ,Rst𝑐 }}→𝑆1. The rest of the construction is analogous.
Last, let us also illustrate the simulation ofDFA(𝐴) by the constructed CsA transitions.

On the word 𝑎𝑎, the DFA would execute the run {(𝑞0, 𝑐 = 0)}−{a}→{(𝑞0, 𝑐 = 0), (𝑞1, 𝑐 =
0)}−{a}→{(𝑞0, 𝑐 = 0), (𝑞1, 𝑐 = 0), (𝑞1, 𝑐 = 1)}. The simulating run of our CsA
would start in the initial configuration {{𝑞0}, 𝑐 ∈ {0}}. The transition 𝜏1 would
produce the configuration {{𝑞0, 𝑞1}, 𝑐 ∈ {0}} (since Rst({0}) = {0}) from where 𝜏2
would produce {{𝑞0, 𝑞1}, 𝑐 ∈ {0, 1}} (since Incr({0}) = {1} and Rst({0}) = {0}).
The sequence of configurations precisely encodes the sequence of the DFA powerstates.
Indeed, we obtain the sequence of DFA powerstates ({𝑞0}, 𝑐 ∈ {0})DFA = {(𝑞0, 𝑐 = 0)};
({𝑞0, 𝑞1}, 𝑐 ∈ {0})DFA = {(𝑞0, 𝑐 = 0), (𝑞1, 𝑐 = 0)}; and ({𝑞0, 𝑞1}, 𝑐 ∈ {0, 1})DFA =

{(𝑞0, 𝑐 = 0), (𝑞1, 𝑐 = 0), (𝑞1, 𝑐 = 1)} (recall that 𝑞0 is not in the scope of 𝑐 hence 𝑐 has
implicitly the value 0 there). □

4.4.4 Uniformity: A Sufficient Semantic Correctness Criterion

Given a CA 𝐴, we produce a CsA 𝐴′ that may overapproximate 𝐴 in terms of the language.
We explain how this may happen and present conditions under which the language stays
unchanged. In particular, the overapproximation is caused by non-Cartesian powerstates
of DFA(𝐴). (Recall that, in a Cartesian powerstate, states in the scope of a counter must
appear with the same set of values of that counter.) A configuration of the CsA cannot
encode a non-Cartesian powerstate precisely, it can only overapproximate it. A larger
powerstate may then accept a larger language.

Example 4.4.4. Take 𝑅 = (a|aa){5} and the CA(𝑅) shown in Figure 4.4. After reading
the word ‘𝑎𝑎’, DFA(CA(𝑅)) reaches the powerstate {(𝑞0, 𝑐 = 1), (𝑞0, 𝑐 = 2), (𝑞1, 𝑐 =
2)}, which is not Cartesian because both states are in the scope of the counter 𝑐 but
are paired with different counter values. Our CsA would reach the configuration

69



Figure 4.4: CA((a|aa){5}).

({𝑞0, 𝑞1}, 𝑐 ∈ {1, 2}), which encodes the larger powerstate {(𝑞0, 𝑐 = 1), (𝑞0, 𝑐 =

2), (𝑞1, 𝑐 = 1), (𝑞1, 𝑐 = 2)} where both states appear with both counter values. □

Uniformity. We now introduce the so-called uniformity of a CA as a property under
which determinisation preserves the language. Uniformity prevents creation of non-
Cartesian powerstates. It includes two conditions.
The first condition prevents the kind of scenario from Example 4.4.4. It requires

that for each DFA transition 𝜏′, every CA state 𝑞 in the scope of a counter 𝑐 within
the target DFA state receives the same set of values of 𝑐. It requires testing for each
such CA state 𝑞, that its incoming transitions from which 𝜏′ is built induce the same
CsA operations for 𝑐.
The second condition prohibits two counters being active at once, a scenario which

arises from regexes with nested counting. The relation between values of two simultane-
ously active counters may easily become more intricate then what can be expressed by
a Cartesian product of two sets (consider e.g. the regex a?(a{1}a){2} and the word
aaa). The condition requires testing that no state appears in the scope of two counters.
Formally, given a CsA transition 𝜏′ = 𝑆−{𝛼∧𝛽,𝑔}→𝑇 , a counter 𝑐, and a CA state

𝑞 ∈ 𝜎(𝑐), we define the set 𝑔𝑞 (𝑐) of incoming CsA operations for 𝑐 induced by
the incoming transitions of 𝑞 from which 𝜏′ is built (𝛼-transitions consistent with 𝛽
originating in 𝑆) as follows:

𝑔𝑞 (𝑐)
def
= {csop( 𝑓 (𝑐), 𝑐) | ∃𝑝, 𝛼 : 𝑝−{𝛼, 𝑓 }→ 𝑞 ∈ Δ𝑆,𝛼,𝛽 (𝑐) } .

We call the transition 𝜏′ uniform iff, for each counter 𝑐 ∈ 𝐶, any two states
𝑞, 𝑟 ∈ 𝜎(𝑐) ∩ 𝑇 have the same sets of incoming CsA operations, i.e., 𝑔𝑞 (𝑐) = 𝑔𝑟 (𝑐).
The CA 𝐴 is then uniform if all transitions of 𝐴′ are uniform and no state appear in
the scope of two counters.

Lemma 4.5. If an automaton is uniform, then all its states are Cartesian.

Proof (sketch). By definition CsA, the initial state of CsA is Cartesian (all counters
are set to 0). Uniformity implies that the subsequent of a Cartesian configuration is
a Cartesian configuration. □

Theorem 7. If a CA 𝐴 is uniform, then 𝐿 (𝐴) = 𝐿 (𝐴′).

Uniformity can be checked on the fly, while constructing 𝐴′. It is also au-
tomatically implied when the CA is constructed from certain classes of regexes,
as discussed in Section 4.4.5.
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Proof of Theorem 7

Let 𝐴 = (I, 𝐶, 𝑄, 𝑞0, 𝐹,Δ) be a CA. The determinisation algorithm produces the de-
terministic CsA 𝐴′ = (I, 𝐶, 𝑄 ′, 𝑆0, 𝐹 ′,Δ′). The language of the CsA 𝐴′ is defined
through its underlying configuration FA, FA(𝐴′), as 𝐿 (𝐴′) := 𝐿 (FA(𝐴′)). The states
of FA(𝐴′) are configurations of 𝐴′. The result of determisation of FA(𝐴) using
the textbook subset construction is DFA(𝐴). In this section, we denote DFA(𝐴) as
the automaton 𝐴d = (I, 𝐶, 𝑄d , 𝑞0

d , 𝐹d ,Δd ) and the configuration automaton FA(𝐴′)
as 𝐴c = (I, 𝐶, 𝑄c , 𝑞0

c , 𝐹c ,Δc).
Theorem 7 can be proven by showing bisimilarity between states of FA(𝐴′), 𝐴c , i.e.,

configurations of the CsA 𝐴′ and powerstates 𝑞DFA of DFA(𝐴), 𝐴d . First, we define
what is a bisimulation.

Definition 4.1. Let 𝐴1 = (I, 𝐶, 𝑄1, 𝑞10, 𝐹
1,Δ1) and 𝐴2 = (I, 𝐶, 𝑄2, 𝑞20, 𝐹

2,Δ2) be
automata. ≈ is a bisimulation iff for all 𝑞 ∈ 𝑄1, 𝑟 ∈ 𝑄2, if 𝑞 ≈ 𝑟, then the following
three conditions hold:

1. ∀𝑞′, 𝛼, 𝑓 : iff 𝑞−{𝛼, 𝑓 }→𝑞′ ∈ Δ1, then there exists 𝑟 ′ such that 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ2 and
𝑞′ ≈ 𝑟 ′,

2. ∀𝑟 ′, 𝛼, 𝑓 : iff 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ2, then there exists 𝑞′ such that 𝑞−{𝛼, 𝑓 }→𝑞′ ∈ Δ1 and
𝑟 ′ ≈ 𝑞′, and

3. 𝑞 is a final state iff 𝑟 is a final state.

States 𝑞 and 𝑟 are bisimilar iff there exists a bisimulation ≈ such that 𝑞 ≈ 𝑟.

It is well-known that bisimulation applies equivalence.

Lemma 4.6. For automata 𝐴1 = (I, 𝐶, 𝑄1, 𝑞10, 𝐹
1,Δ1) and 𝐴2 = (I, 𝐶, 𝑄2, 𝑞20, 𝐹

2,Δ2),
𝐿 (𝐴1) = 𝐿 (𝐴2) if 𝑞10 is bisimilar to 𝑞20.

Let us recall that the powerstates of 𝐴d encode the states of 𝐴c , as mentioned in
Section 4.4.2. The encoding defines the bisimulation relation. The configurations (𝑅, 𝔰)
of CsA 𝐴c , where 𝑅 is a set of states of 𝐴 and 𝔰 is a counting-set memory, are decoded
as the set (𝑅, 𝔰)DFA of pairs {(ri ,𝔪i )}1 ≤i≤n consisting of a state 𝑟𝑖 ∈ 𝑅 and a counter
memory 𝔪𝑖 such that for all 𝑐 ∈ 𝐶, 𝔪(𝑐) ∈ 𝔰(𝑐) if 𝑐 ∈ 𝜎(𝑟), alse 𝔪(𝑐) = 0.
A state𝑈 = {(ri ,𝔪i )}1 ≤i≤n is encoded as the CsA configuration

enc (𝑈) = (𝑅, 𝔰)

where 𝔰(𝑐) = {𝔪𝑖 (𝑐) | 𝑞𝑖 ∈ 𝜎(𝑐) ∧ (𝑟𝑖 ,𝔪𝑖) ∈ 𝑈} and 𝑅 = {𝑟𝑖 | (𝑟𝑖 ,𝔪𝑖) ∈ 𝑈}.
In general, the encoding is not injective (it is ambiguous). A set of number-

interpretations appearing with the state 𝑞 is broken down to sets of values of individual
counters, as also explained in Section 4.4.4. When restricted to Cartesian DFA states,
enc is injective and decoding is its inversion.
We define the relation of encoding, ≺cod ⊆ 𝑄d ×𝑄c , so that for𝑈 ∈ 𝑄d and 𝑇 ∈ 𝑄c ,

𝑈≺cod𝑇 , iff enc (𝑈) = 𝑇 .
Now we prove using Lemma 4.6 that 𝐿 (𝐴d ) = 𝐿 (𝐴c) by proving that:
a) 𝑞0d≺cod 𝑞0c , and

b) ≺cod is bisimulation.
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Showing (a) is straightforward from the definition of the initial configurations of
the automata. We can show easily that 𝑞0c = {(𝑞0, {𝑐 ↦→ {0}}𝑐∈𝐶)} and enc (𝑞0c) =
({𝑞0}, { 𝑐 ↦→ {0} | 𝑐 ∈ 𝐶 }) which is obviously the initial state of 𝐴d .
To show (b) we have to prove that:

1. For all 𝑇 ∈ 𝑄c and 𝛼-transitions 𝑇−{𝛼}→𝑇 ′ in Δc , if 𝑇≺cod𝑈 where𝑈 ∈ 𝑄d , there
is𝑈−{𝛼}→𝑈 ′ in Δd such that 𝑇 ′≺cod𝑈 ′.

2. For all 𝑈 ∈ 𝑄d and 𝛼-transitions 𝑈−{𝛼}→𝑈 ′ in Δd , if 𝑈≺cod𝑇 , there is 𝑇−{𝛼}→𝑇 ′
in Δc such that𝑈 ′≺cod𝑇 ′.

3. 𝑇 is a final state iff𝑈 is a final state.

Let 𝑈 be a state of 𝑄d and a symbol 𝛼 ∈ Σ. The transitions of 𝐴d are built from
the set of 𝛼-transitions of CA 𝐴 leading from U defined as:

Δ𝛼,𝑈 = {𝑟−{𝛼, 𝑓 }→ 𝑟 ′ ∈ Δ | ∃𝔪 : 𝔪 |= 𝜑 𝑓 ∧ (𝑟,𝔪) ∈ U }. (4.21)

Let 𝑇 = (𝑅, 𝔰) and 𝑇 ′ = (𝑅′, 𝔰′) be states of 𝑄c and 𝑇−{𝛼}→𝑇 ′ ∈ Δc . Let us recall
that the transition is build from a transition of CsA, 𝑅−{𝛼∧𝛽,𝑔}→𝑅′, which is constructed
from a set:

Δ𝑅,𝛼,𝛽 = {𝑟−{𝛼, 𝑓 }→ 𝑟 ′ ∈ Δ | 𝑟∈𝑅, Sat(𝜑 𝑓 ∧ 𝛽)},

where, according to Equation 4.17, 𝛽 represents a minterm from the set of minterms:

Γ𝑅,𝛼 = Minterms({grd (op𝑐) | 𝑟−{𝛼, 𝑓 }→ 𝑟 ′ ∈ Δ, 𝑟 ∈ 𝑅 ∧ 𝑐 ∈ 𝜎(𝑟), op𝑐 ∈ 𝑓 }),

defined in Equation 4.16.

Lemma 4.7. Let 𝑇 = (𝑅, 𝔰) be a state of 𝑄c , 𝛼 ∈ Σ and 𝛽 ∈ Γ𝑅,𝛼. The 𝛼-successor of
T in 𝐴c is:

T ′ = (𝑅′, 𝔰′),

where
𝑅′ = {𝑟 ′ | 𝑟−{𝛼, 𝑓 }→ 𝑟 ′ ∈ Δ𝑅,𝛼,𝛽} (4.22)

and
𝔰′ =

⋃
𝑟−{𝛼, 𝑓 }→𝑟′∈Δ𝑅,𝛼,𝛽

f cs (𝔰). (4.23)

The union is computed componentwise, ∀𝑐 ∈ 𝐶,∀𝔰1, 𝔰2 : 𝔰1 ∪ 𝔰2(𝑐) = 𝔰1(𝑐) ∪ 𝔰2(𝑐).

Proof. It follows from the definition of Equation 4.17. □

Lemma 4.8. For some 𝑅 ⊆ 𝑄, 𝛼 ∈ Σ, 𝛽 ∈ Γ𝑅,𝛼 and a transition 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ𝑅,𝛼,𝛽:

csop( 𝑓 (𝑐), 𝑐) (𝔰(𝑐)) = { 𝑓 (𝑐) (𝑘) | 𝑘 ∈ 𝔰(𝑐) ∧ 𝑘 |= 𝜑𝑐𝑓 }.

Proof. It follows from the definition of csop 4.18 and semantic of CA and CsA. □

Lemma 4.9. Let 𝐴d be a Cartesian DFA,𝑈 ∈ 𝑄d and 𝑇 = (𝑅, 𝔰) be a state of 𝑄c such
that 𝑇≺cod 𝑈. Let 𝛼 ∈ Σ and 𝛽 ∈ Γ𝑅,𝛼. Then Δ𝑅,𝛼,𝛽 = Δ𝛼,𝑈 .
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Proof. Let us recall that 𝛽 is a conjunction of counter guards 𝜑 on the 𝛼-transitions 𝜏
originating in 𝑅 or their negations. Let 𝜏 = 𝑟−{𝛼, 𝑓 }→𝑟 ′ be a transition of Δ. Since 𝔰 |= 𝛽,
it holds that 𝔰 |= 𝜑 𝑓 for 𝜏 ∈ Δ𝑅,𝛼,𝛽 and 𝔰 |= ¬𝜑 𝑓 for 𝜏 ∉ Δ𝑅,𝛼,𝛽 .
Let 𝜏 ∈ Δ𝑅,𝛼,𝛽. Therefore, for each counter 𝑐 ∈ 𝐶 there is a value 𝑘𝑐 ∈ 𝔰(𝑐) such

that 𝑘𝑐 |= 𝜑𝑐𝑓 for a guard 𝜑 𝑓 appearing in a conjunction 𝛽 and 𝑘𝑐 |= ¬𝜑𝑐𝑓 for all guards
𝜑 𝑓 such that their negation appears in 𝛽. Let 𝔪 be a memory such that for each counter
𝑐 ∈ 𝐶, 𝔪(𝑐) = 𝑘𝑐 if 𝑐 ∈ 𝜎(𝑟), else 𝔪(𝑐) = 0. From the definition of decoding, since
it creates a Cartesian DFA state, it holds that there is a configuration (𝑟,𝔪) ∈ 𝑈. By
the definition of 𝔪, 𝜏 is enabled in (𝑟,𝔪) (because 𝔪 |= 𝜑 𝑓 ). Therefore, 𝜏 ∈ Δ𝛼,𝑈 .
Let 𝜏 ∉ Δ𝑅,𝛼,𝛽. Therefore, there is a counter 𝑐 ∈ 𝐶 such that for all 𝑘𝑐 ∈ 𝔰(𝑐),

𝑘𝑐 ̸ |= 𝜑𝑐𝑓 for a guard 𝜑 𝑓 appearing in a conjunction 𝛽 or 𝑘𝑐 ̸ |= ¬𝜑𝑐𝑓 for at least one guard
𝜑 𝑓 such that its negation appears in 𝛽. From the definition of decoding, it holds that
there is no (𝑟,𝔪) ∈ 𝑈 such that𝔪 |= 𝜑 𝑓 . Therefore, 𝜏 is not enabled in any (𝑟,𝔪) ∈ 𝑈
and hence, 𝜏 ∉ Δ𝛼,𝑈 . □

Now, we finally prove that ≺cod is bisimulation. Let 𝑇 = (𝑅, 𝔰) and 𝑇 ′ = (𝑅′, 𝔰′)
be states of 𝑄c , 𝐴d be a Cartesian DFA, 𝑈 ∈ 𝑄d , 𝛼 ∈ Σ and 𝛽 ∈ Γ𝑅,𝛼. We will first
prove the point (1) of the definition of the bisimulation, that is, that for all𝑈 ∈ 𝑄d and
an 𝛼-transition𝑈−{𝛼}→𝑈 ′ in Δd , if𝑈≺cod𝑇 , that is, enc (𝑈) = 𝑇 , there is 𝑇−{𝛼}→𝑇 ′ ∈ Δc

such that𝑈 ′≺cod𝑇 ′, that is, enc (𝑈 ′) = (𝑅′, 𝔰′) = 𝑇 ′.
ByLemma4.7, we have that 𝑅′ = {𝑟 ′ | 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ𝑅,𝛼,𝛽} and𝔰′ =

⋃
𝑟−{𝛼, 𝑓 }→𝑟′∈Δ𝑅,𝛼,𝛽

f cs (𝔰). By the definition of encoding, we have that 𝑅′ = { 𝑟 ′ | 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ𝛼,𝑈 }.
By Lemma 4.9, 𝑅′ = { 𝑟 ′ | 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ𝑅,𝛼,𝛽} = 𝑅′ = { 𝑟 ′ | 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ𝛼,𝑈 }. It
remains to be shown that 𝔰′ = 𝔰′.
To do that, because of 4.23, we have to show that for all 𝑐 ∈ 𝐶, ⋃𝑟−{𝛼, 𝑓 }→𝑟′∈Δ𝑅,𝛼,𝛽

f cs (𝑐) (𝔰(𝑐)) = 𝔰′(𝑐). Let us fix 𝑐 ∈ 𝐶. First, we will show that if there is 𝜏 =

𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ𝑅,𝛼,𝛽 such that 𝑛′ ∈ f cs (𝑐) (𝔰(𝑐)), then there is 𝑛′ ∈ 𝔰′(𝑐). Lemma 4.8
and the definition of f cs implies that:

f cs (𝑐) (𝔰(𝑐)) = csop( 𝑓 (𝑐), 𝑐) (𝔰(𝑐)) = { 𝑓 (𝑐) (𝑘) | 𝑘 ∈ 𝔰(𝑐) ∧ 𝑘 |= 𝜑𝑐𝑓 }. (4.24)

Therefore, since 𝑛′ ∈ f cs (𝑐) (𝔰(𝑐)), there must be some 𝑛 ∈ 𝔰(𝑐) such that 𝑛 |= 𝜑𝑐
𝑓
and

applying 𝑓 (𝑐) on 𝑛 we get 𝑛′, that is, 𝑓 (𝑐) (𝑛) = 𝑛′. From the definition of encoding,
if there is 𝑛 ∈ 𝔰(𝑐), there must exist some (𝑟,𝔪) ∈ 𝑈 such that 𝔪(𝑐) = 𝑛. Because
𝜏 ∈ Δ𝑅,𝛼,𝛽 , from Lemma 4.9, we have that 𝜏 ∈ Δ𝛼,𝑈 . By the definition of Δ𝛼,𝑈 , since
𝜏 ∈ Δ𝛼,𝑈 there must be some (𝑟,𝔪1) ∈ 𝑈 where 𝔪1 |= 𝜑 𝑓 . Since 𝐴c is uniform,
we know, from Lemma 4.5, that all its states are Cartesian. Therefore, we know that
there is some (𝑟,𝔪2) ∈ 𝑈 where 𝔪2 is the same as 𝔪1 except for 𝔪2(𝑐) = 𝑛. From
the definition of CA, since 𝜑 𝑓 is a conjuction of unary predicates over counters, then
𝔪2 |= 𝜑 𝑓 . Since 𝔪2(𝑐) = 𝑛 and 𝑓 (𝑐) (𝑛) = 𝑛′, it means that 𝑓 (𝑐) (𝔪2(𝑐)) = 𝑛′. Hence,
by Equation 4.24, 𝑛′ ∈ 𝔰′(𝑐).
Second, we will show that if there is 𝑛′ ∈ 𝔰′(𝑐), then there is 𝜏 = 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ𝑅,𝛼,𝛽

such that 𝑛′ ∈ f cs (𝑐) (𝔰(𝑐)). By the definition of Δ𝛼,𝑈 , since 𝑛′ ∈ 𝔰′(𝑐), there must be
some 𝜏 = 𝑟−{𝛼, 𝑓 }→𝑟 ′ ∈ Δ𝛼,𝑈 such that 𝑓 (𝑐) (𝔪(𝑐)) = 𝑛′. Since 𝜏 ∈ Δ𝛼,𝑈 , then there
must be some (𝑟,𝔪) ∈ 𝑈 such that 𝔪 |= 𝜑 𝑓 and 𝔪(𝑐) = 𝑛 such that 𝑓 (𝑐) (𝑛) = 𝑛′. By
the definition of decoding, if there is (𝑟,𝔪) ∈ 𝑈, then the must be 𝑛 ∈ 𝔰(𝑐). Because
𝜏 ∈ Δ𝛼,𝑈 , from Lemma 4.9, we have that 𝜏 ∈ Δ𝑅,𝛼,𝛽. Since 𝑛 ∈ 𝔰(𝑐), 𝑛 |= 𝜑𝑐

𝑓
and

applying 𝑓 (𝑐) on 𝑛 we get 𝑛′, then there must be 𝑛′ ∈ f cs (𝑐) (𝔰(𝑐)), that is 𝑓 (𝑐) (𝑛) = 𝑛′.
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Now we prove the point (2) of the definition of the bisimulation, that is, that for all
𝑇 ∈ 𝑄c and an 𝛼-transition 𝑇−{𝛼}→𝑇 ′ in 𝐴c , if 𝑇≺cod𝑈, there is 𝑈−{𝛼}→𝑈 ′ in Δd such
that 𝑇 ′≺cod𝑈 ′. The argument is analogous and very similar to point (1).
Finally, we prove the point (3) of the definition of the bisimulation, that is, that𝑈 is

a final state iff 𝑇 is a final state. 𝑈 is final iff (𝑟,𝔪) ∈ 𝑈 such that 𝔪 |= 𝐹 (𝑟). 𝑇 is final
iff 𝔰 |= ∨

𝑞∈𝑅 𝐹 (𝑞). Therefore, by the definition of encoding, it holds that 𝔪 |= 𝐹 (𝑟) iff
𝔰 |= 𝐹 (𝑟) and hence 𝑇 is final.
This concludes the proof of Theorem 7.

4.4.5 Syntactic Correctness Criteria

Uniformity is only a semantic property. Below, we show examples of actual regexes that
do and do not lead to uniform CAs and discuss some simple syntactic classes of regexes
that imply uniformity. A detailed study of syntactic classes of regexes that guarantee
uniformity is, however, beyond the scope of this thesis and a part of our future work.
The regexes that induce non-uniform CAs are often those where, intuitively, there is

a position in some input text that may either be matched against the first character of
a counted sub-expression or against some inner character of the same sub-expression.
In such a situation, there may be two runs of the induced CA: one that increments
the associated counter (the increment happens) at that position and moves to some
state 𝑞, and the other that leaves the counter as it is, while in its scope, and moves into
a different state 𝑟. The counter value then depends on the state: it is different in 𝑞 and
in 𝑟 . The corresponding DFA state is then non-Cartesian and the CA is non-uniform.

Example 4.4.5. We present several commented examples of regexes with non-uniform
CAs where our determinisation overapproximates the language of the obtained CsA.

• (a|ab|ba){5}— the string ‘𝑎𝑏𝑎’ could be matched as a followed by ba, having
incremented the counter twice, or as ab that is followed by the prefix a of ab,
having incremented the counter once only.

• .*(aa){6}— assuming a sequence of 𝑎’s on the input, the counter may be either
incremented on odd characters and left unchanged on even ones, or the other way
around. As the counter values depend on the position within the aa (and hence
on the CA state), the CA cannot be uniform. Note that the prefix.* is quite usual
as it corresponds to searching for the regex (aa){6} anywhere in the input string.
Nested counting is often problematic, however, many of such examples may still
be solved quite efficiently by unfolding one of the counters.

• .*(a{2}){2}— after reading ‘𝑎𝑎’, if the value of the outer counter is 1, then
the value of the inner counter must be 0. This is a non-trivial relation between
the values of the two counters, which is not Cartesian.

• .*.(ab){2}— assuming a sequence of 𝑎’s (exactly 𝑛+1 of then) on the input,
the counter may be either incremented reading the first 𝑎 from (𝑎𝑏) moving
from 𝑞 to 𝑟, or set to 0 reading a symbol from.before the brackets entering 𝑞.
Therefore, we can be in 𝑞 with increasing value of the counter, even in the original
CA is set to 0. □
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Table 4.1: Statistics for the graphs in Section 4.5 (times are given in seconds). For
Chipmunk, we provide several times: “total” is the total time, “CA” is the time for
translating a regex into a (nondeterministic) CA, “CsA” is the time of determinisation
of the CA into a CsA, and “match” is the time spent when matching the input text.

RE2 grep .NET SRM Chipmunk
total CA CsA match

mean 36.11 34.38 9.12 26.78 1.73 0.05 0.23 0.69
median 0.10 0.70 0.76 0.73 1.03 0.03 0.04 0.68
std. dev 157.05 147.17 52.10 106.16 7.27 0.29 2.73 0.29
timeouts 1 11 8 16 0

Syntactic classes of regexes that guarantee uniformity. The syntactic class of
regexes that guarantees uniformity includes monadic regexes (since there is only one
state in the scope of a counter) and can be extended beyond the monadic regexes. Here
we give an example of another class that covers all the above mentioned examples.
The regexes of this class are of the form:

𝛼0(𝛼1 . . . 𝛼𝑛){ℓ, 𝑘} or ^(𝛼1 . . . 𝛼𝑛){ℓ, 𝑘}

s.t. J𝛼0K and J𝛼1K is disjoint from every J𝛼𝑖K, 1 < 𝑖 ≤ 𝑛.

Intuitively, the disjointness with 𝛼1 ensures that the generated CA will only be able
to process 𝛼1 through an increment transition at the beginning of a new iteration of
the loop, with no possibility of having a conflicting noop transition that could read
the same symbol inside the body of the counting loop (which is exactly what happens
with the second symbol 𝑎 in Example 4.4.4). The condition of disjointness of 𝛼0 is
important in the last example of Example 4.4.5.
Nonetheless, the class of regexes where our determinisation preserves the language

seems to be much larger. For instance, it includes the regexes ((aa)|(bb))*aa((aa)|
(bb)){𝑘} and.*((Natasha)|(Yurij)|(banza{8}j!)){5}, despite that the latter
even uses nested counting.

4.5 Experimental Evaluation

We have implemented the approach described in the previous sections in a C# prototype
called Chipmunk available at [99] and evaluated its pattern matching capabilities
against other state-of-the-art regex matchers on patterns with bounded repetition.
We focused on comparison against Google’s RE2 library [42]6, an automata-based
matcher designed to be fast, predictable, and resilient against ReDoS attacks. We
also include other three efficient matchers into the comparison, namely the standard
GNU grep program [32] (version 3.3), the .NET standard library regex matcher from
System.Text.RegularExpressions [65], and Symbolic Regex Matcher (SRM) [82].
6We used the version 2019-01-01 of RE2 via the command line interface re2g from https://github
.com/akamai/re2g.
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We run our benchmarks on a machine with the Intel(R) Xeon(R) CPU E3-1240
v3 @ 3.40GHz running Debian GNU/Linux (we use the Mono platform [75] to run
.NET tools). To avoid issues with generating exact matches, which might differ for
different tools, the tools were run in the setting where they counted the number of lines
matching7 the given regex (e.g. the -c flag of grep).

4.5.1 ReDoS Resiliency

Our main experiment focuses on the resilience of the regex matching engines against
ReDoS attacks. The regexes used for this experiment were selected (1) from the database
of over 500,000 real-world regexes coming from an Internet-wide analysis of regexes
collected from over 190,000 software projects [27]; (2) from databases of regexes used
by network intrusion detection systems (NIDSes), in particular, Snort [63], Bro [80],
Sagan [95], and, moreover, the academic papers [110, 102]; (4) the RegExLib database
of regexes [78]; and (5) industrial regexes from Chapter 5, originally used for security
purposes. From these, we created our set of benchmarks by the following steps:

(1) We selected regexes that contained counting loops whose sum of upper bounds
was larger than 20. This let us focus on regexes where the use of counting makes
sense (there are surprisingly many regexes occurring in practice where the use of
a counting loop is unnecessary, e.g., regexes containing sub-expressions similar
to a{0,1} or even just a{1}). Moreover, we also removed all except 26 regexes
with counters bigger than 1,000, which cannot be handled by RE2. We left the 26
regexes as representatives of “large” counters. This left us with 5,000 regexes.

(2) Then, we selected regexes 𝑅 such that CA(𝑅) was uniform (cf. 4.4.4), i.e., the CsA
produced by our algorithm was precise. After this step, a vast majority, 4,429 of
the regexes, remained.

(3) For the regexes that remained, we used a lightweight ReDoS generator designed
to exploit counting (cf. 4.5.3) to generate ∼10MiB long input texts. In particular,
we managed to generate “adversarial” input texts for 1,789 regexes (for the rest of
the regexes, either the underlying state space was too small, so the generator could
not construct the text, or the generation hit the timeout of 600 s). Our benchmark
data set is available at [50].

We ran all tools on the generated benchmarks (counting the number of lines of
the input text matching the regex) and give scatter plots comparing the running times
of the tools in Figure 4.5 and Figure 4.6 (the timeout was 600 s). On the bottom and
the left-hand side of every plot, there are rug plots illustrating the distribution of the data
points. Note that the axes are logarithmic, so the difference between data points grows
as these points are away from zero (in particular, differences of values smaller than
1 s are negligible). The semantics of regexes supported by grep differs from the one
supported by other tools, so we only considered the cases when the number of matches
was the same when comparing with grep). In the plots, the data points between

7We consider the standard semantics of “matching” used by grep, i.e., a line matches a regex 𝑅 if it
contains a string that is in 𝐿 (𝑅), unless it contains start-of-line (ˆ) or end-of-line ($) anchors, in which
case the matched string needs to occur at the start and/or at the end of the line respectively.
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Figure 4.5: The comparison of running times of Chipmunk and RE2 on our benchmark
set (Chipmunk wins: 287/1,789). Note that the axes are logarithmic, the dashed lines
denote the timeout (600 s), and the data points between the dashed lines and the edge of
a plot represent benchmarks where the tool did not run successfully.

the dashed lines and edges of the plots represent errors, e.g. due to the regex being
rejected (for counters >1,000 for RE2) or being interpreted using a different semantics
(in the case of grep).
In Figure 4.5, we compare Chipmunk with RE2. We wish to point out the following

interesting observations. Although RE2 wins more often on the whole benchmark set
(our prototype does not include the many advanced optimizations present in RE2), there
is a number of benchmarks (287) where its performance significantly deteriorates, and
Chipmunk is faster. In particular, there are 89 benchmarks where the time of RE2 is
bigger than 10 s, i.e., its speed drops below 1MiB/s (we consider this speed of processing
denotes a successful ReDoS attack, even though the limit may be significantly larger in
practice8). For Chipmunk, the number of benchmarks that took over 10 s was only 22; in
fact, all except 3 benchmarks finished within 100 s—the blow-up in these 3 benchmarks
is not caused by the counters but rather by many ‘|’ and ‘?’ operators, so over 70% of
the total time is spent by constructing the CsA. If used, e.g., in an NIDS, the CsA would
be created only once and then used for matching giga-/terabytes of data, so the initial
overhead could be neglected.
Comparing with the other tools (Figure 4.6) and also clearly visible in the corre-

sponding rug plots and the statistics in Table 4.1, we can observe that the performance
of Chipmunk is much more robust than the performance of the other tools; the mean
time and standard deviation of Chipmunk is significantly lower than the rest of the tools.
In particular, from the benchmarks where Chipmunk was faster than RE2, the time of
Chipmunk on all except two benchmarks was almost the same (including them, the stan-
dard deviation was 0.37). We provide four times for Chipmunk: “total”: the total user
time of matching (measured using the GNU time utility), “CA”: the time for translating

8The required processing speed depends on the application. NIDSes performing deep packet inspection
may require a line-processing speed of units or tens of GiB/s [102], while application servers validating
user inputs may suffice with units or tens of MiB/s.
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(a) Chipmunk wins: 862/1,425
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(b) Chipmunk wins: 708/1,789
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(c) Chipmunk wins: 345/1,789

Figure 4.6: The comparison of running times of Chipmunk with grep, .NET, and SRM
on our benchmark set. Note, that the axes are logarithmic, the dashed lines denote
the timeout (600 s), and the data points between the dashed lines and the edge of a plot
represent benchmarks where the tool did not run successfully.

the input regex into a CA, “CsA”: the time it took to determinise the CA into a CsA,
and “match”: the time of matching the input text with the CsA. Note that, in the tables,
there is a noticeable discrepancy between the sum “CA” + “CsA” + “match” and “total”,
which is due to the .NET Framework overhead, such as just-in-time compilation and (in
particular) the garbage collector.
In Table 4.7, we give a selection of interesting benchmarks. These contain benchmarks

that are difficult for usually more than one tool. We emphasize the benchmarks
coming from the NIDSes Snort and Bro. Notice that, for most of them, matching
using RE2 (and also other tools) gets extremely slow. Slow matching over these
regexes can have disastrous consequences for network security, potentially completely
eliminating a given NIDS.
The CsAs produced by Chipmunk were also much smaller than the corresponding

DFAs. The CsAs have on average 29 states (median: 7) and 306 transitions (median: 11).
On the other hand, classical NFAs constructed from the regexes have on average 112
states (median: 52), and when determinised, the resulting DFAs have on average 2,802
states (median: 67) and 10,384 transitions (median: 107). Using CsAs significantly
lowers the chance that determinisation explodes.
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Figure 4.7: Selection of interesting benchmarks. ‘TO’ denotes a timeout (600 s) and
‘—’ denotes an error. Due to space constraints, in the ‘Regex’ column, ‘. . . ’ denotes
omitted parts of the regexes (we tried to preserve the parts containing occurrences of
the counter operator) and ‘∼’ denotes breaking a regex into two lines.

The effect of nondeterministic counting. We say that a regex contains nondetermin-
istic counting if, when translated into a CA 𝐴 using the algorithm in Section 4.3, there
is a word 𝑤 such that 𝐴 can over 𝑤 reach two configurations with different values of
some counter.
Regexes with nondeterministic counting are themain focus of our benchmark. Namely,

they constitute 67% of the 1,789 regexes used. From the 1,284 regexes that were at least
slightly problematic for some of the other tools except Chipmunk (it took some tool ≥
1 s), 73% of them were with nondeterministic counting. From the 454 regexes that were
significantly problematic for some of the other tools (it took some tool ≥ 10 s), 85%
of them had nondeterministic counting. From the 109 regexes that were problematic
for all other tools (≥ 1 s), 100% were with nondeterministic counting. As shown in
the results above, our approach can deal with nondeterministic counting quite well.

Adversarial regexes. Another ReDoS scenario is when the attacker can control
the regex to be used for matching. Creating a counting regex causing efficiency prob-
lems for a given text is easier than generating adversarial texts. For instance, the regex
[a-zA-Z().,’ ]*[a-zA-Z ] [a-zA-Z(),̇’ ]{250} was obtained as a modifica-
tion of the running example.*a.{𝑘} (where a appears 𝑘 positions from the end).
When run on a ∼4MiB English text with sufficiently long lines, RE2 took 86 s, grep
took 26 s, while Chipmunk took only 1.1 s. Similar examples could be obtained from
regexes from Section 4.5.1 for which some specific difficult text can be generated,
namely by widening their character classes. Our approach solves a large class of
the dangerous cases, allowing one to significantly alleviate restrictions put on the user
for security/efficiency reasons.
We admit that similarly difficult regexes could be crafted to fall out from the fragment

we handle: they could for instance use nesting of counters. Nevertheless, our approach
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Figure 4.8: Running times of the tools on the regex (_a ){𝑘}_awhere 𝑘 is a parameter.

still solves a large class of such dangerous cases, allowing to significantly alleviate
restrictions put on the user from security/efficiency reasons, and improve guarantees.
RE2 currently allows counting up to 1000, grep only up to 250, and this still does not
exclude harmful uses of counting, as we showed above. On the contrary, when using
our approach, anything withing the fragments described in Section 4.4.4 can be allowed
with any counter bounds and with strong performance guarantees.

4.5.2 Robustness wrt Counter Values

In our next experiment, we measured the ability of the tools to cope with increasing
counter bounds. For this, we selected the regex (_a ){𝑘}_a where 𝑘 is a parameter
(the original regex (_a ){64999}_a comes from [27]) and measured the time the tools
took on a ∼500KiB text created by our generator for increasing values of 𝑘 . We give
the results in Figure 4.8.
With the increasing value of 𝑘 , the time needed by Chipmunk stays constant, around

0.35 s, while the time needed by other tools grows. In particular, .NET and SRM have
cubic trends wrt the value of 𝑘 , while RE2 and grep grow linearly. Notice that, for
RE2 and grep, their matching time is low (around 0.01 s) until they reach a threshold
from which they start behaving linearly. This corresponds to the situation when
the size of the cache for storing states of the NFA-to-DFA construction is not enough
to accommodate the DFA states exercised by the input adversarial text. This yields
repeated flushing of the cache, making it ineffectual.

4.5.3 Adversarial Text Generation

RE2 and grep store powerstates of the NFA-to-DFA construction in a cache. In typical
cases, the amount of cache misses is low and almost the entire text is processed using
the cache, which is extremely fast. If the cache, however, exceeds a given size, it is
flushed. If the input text is such that the DFA run sees many different states, then
cache misses are frequent, so large powerstates need to be constructed often, and
the performance of the matching drops.
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Therefore, we focus on generating texts that force exploration of many new large
powerstates. In essence, we explore the configuration space of the CsA with the goal
of finding as many large configurations as possible, with the focus on generating large
counting sets. We partially drive the search towards loops in the CsA structure that
have a potential to create large counting sets: the loops use counters with large bounds,
do not contain exits, and contain Rst or Rst1 operations. We will give the details and
elaborate on this in Chapter 5.

4.5.4 A Note on the Maturity of the Tools

The aim of our experiments is comparing algorithms rather than tools, and it should be
noted that Chipmunk is much less optimized than the rest. This holds especially for RE2
and grep, which have both been actively developed for over 10 years and the amount
of engineering effort invested into making them fast is substantial. The optimizations
are both high-level, such as using the Boyer-Moore algorithm for skipping sections
of the input text, and low-level, such as using C/C++, on-the-fly determinisation, or
optimizing memory accesses [22, 46]. On the other hand, although there have been
some optimizations done in Chipmunk (such as finding a start of a match), their nature
is still quite simple. The three tools are, however, all based on the same principle of
using deterministic automata, and many of the optimizations and heuristics in RE2
and grep (at least all of those mentioned above) could be directly re-applied in our
setting. SRM builds on the .NET framework and reuses the .NET regex parser while
replacing the built-in backtracking back-end matcher with a matching engine based on
Brzozowski-style symbolic derivatives to create the DFA on the fly. In fact, Chipmunk
builds on the open-source codebase of SRM and extends it with counters.

4.6 Implementation

We discuss some important implementation details of our matcher Chipmunk relating
to the implementations of I, C, S, and the product algebra I×S, and their role in the CA
determinization algorithm. All algorithms are implemented in C# using the open source
Microsoft.Automata library [67].

BDD algebra. We use an effective Boolean algebra B that we call a BDD algebra
with universe N. The basic predicates of B have the form 𝛽𝑖 where 𝑖 ≥ 0 is a bit
position and [[𝛽𝑖]]B is the set of all 𝑛 whose 𝑖’th bit in binary is 1. ΨB consists of BDDs
and its Boolean operations are corresponding BDD operations. We write | for ∨B , &
for ∧B , and 𝜓 for ¬B𝜓.

Algebras C and S. We use B to encode predicates over a given collection of counters
𝑐𝑖 for 0 ≤ 𝑖 ≤ 𝑘 as follows. We represent the condition canExit𝑖 with the B-predicate
𝛽2𝑖 and the condition canIncr𝑖 with the B-predicate 𝛽2𝑖+1. Thus, assuming 𝑐𝑖 is
in its valid range, in C,

• 𝛽2𝑖&𝛽2𝑖+1 represents the case min𝑖 ≤ 𝑐𝑖 < max𝑖 ,

• 𝛽2𝑖&𝛽2𝑖+1 represents the case 𝑐𝑖 = max𝑖 ,

• 𝛽2𝑖&𝛽2𝑖+1 represents the case 𝑐𝑖 < min𝑖 .
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The predicate 𝛽2𝑖&𝛽2𝑖+1 represents the impossible condition that 𝑐𝑖 < min𝑖 and
max𝑖 ≤ 𝑐𝑖. Therefore, the predicate 𝛽2𝑖 |𝛽2𝑖+1 is used to elimiate the impossible case
and is always asserted in conjunction with any counter predicate for 𝑐𝑖 . Analogously for
S because we work with nonempty sets.

Input algebra I. Given a collection of character classes, obtained from a regex 𝑅,
we first compute all the minterms over those character classes. Let the minterms be
Σ = {𝛼𝑖}𝑖<𝑘 . It turns out that not only is there no explosion in the size of Σ but in
almost all cases 𝑘 ≤ 64. Due to the low value of 𝑘 , each minterm 𝛼𝑖 in ΨI is represented
internally by the number 2𝑖 and conjunction of predicates is bit-wise-and, complement is
bit-wise-complement of numbers, where the type of those numbers is typically UInt64.

Product algebra I×S. We lift the algebra B into a multi-terminal BDD algebra, whose
terminal algebra is a I. This lifting gives us the implementation of the Cartesian product
I×S of Iwith S, and allows us to work seamlessly, and parametrically with input predicate
conditions in combination with counter conditions. This allows us to leverage symbolic
automata algorithms over the alphabet I×S. In particular, the basic implementation of
the determinization algorithm of CAs uses several underlying support algorithms of
symbolic automata modulo I×S. In particular, during the main step of the algorithm,
mintermization is localized to powerstates, e.g., some powerstate may have a local
minterm such as (𝛼1 ∨ 𝛼7)∧⊤S if the different cases do not matter locally. However,
the determinization algorithm for symbolic automata can not be used “as is” because
it will not be able to ditinguish between counter minterms and will overapproximate
target powerstates.

4.7 Conclusion and Future Work

We have presented a framework for efficient pattern matching of regexes with bounded
repetition, which includes a derivative construction to compile regexes to counting
automata, their subsequent determinisation into novel counting-set automata, and a fast
matching algorithm. The resources needed to build the CsAs are independent of
repetition bounds. It handles a majority of regexes with bounded repetition found in
practice, with a much more stable performance than other matchers.
In the future, we intend to explore the limits of the idea of counting sets to enlarge

and clearly delimit the class of regexes and counting automata that can be succinctly
determinised while preserving fast matching. We also plan to explore possible usage of
CsAs as a replacement of classical automata in other applications where automata are
used, for instance, as symbolic representations of state spaces. For this, we intend to
develop CsA counterparts of essential automata techniques, such as Boolean operations
and minimization/size-reduction techniques. We also wish to elaborate on our method
for generating texts for stress-testing matchers on regexes with bounded repetition.
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‘A password is like a toothbrush. You should not share it
with anyone.’

unknown

5
Counting in Regexes Considered Harmful

Several methods and tools have been developed that attempt to determine whether
a given regex is vulnerable to a ReDoS and to generate a triggering text (also referred
to as evil text hereafter). Existing ReDoS analyzers [77, 107, 109, 83, 60] focus on
the most common family of matchers: those based on the backtracking algorithm. Until
now, the automata-based regex engines went unnoticed.
In this chapter, we present the first systematic large-scale study of vulnerability of

automata-based matching focused on bounded repetition. We propose a methodology
for generating evil texts based on the lightweight ReDoS generator, outlined in Chapter 4.
We target mainly matchers based on online DFA-simulation, but our techniques can
also be effective with other kinds of automata-based matchers, such as Hyperscan
(Section 5.3). Our experiments confirm that our generator is the first one effective in
finding evil texts for automata-based matchers.
As an example, consider the regex ‘%[^\x0d\x0a]{1000}’ (from the database of

regexes of the intrusion detection system Snort [63]), which tells the matcher that when
it sees ‘%’, it can accept after seeing exactly 1,000 non-space characters. It is a variation
of the regex ‘.*a.{𝑘}’ from Example 1.3.1 used in practice. The NFA of the regex
is heavily non-deterministic and has more than 1,000 states. The minimal DFA has
more than 21000 states (it needs to always “remember” all positions of the character
‘%’ within the last seen 1,000 characters). A text on which the DFA would reach many
of the DFA states is highly problematic for most matchers, backtracking, as well as
online DFA-based. Such a text is, however, also highly specific and the probability of
generating it randomly is low (the text must contain sub-strings of the length 1,000 with
many different placements of ‘%’). Our generator is the only automated tool we know
that can discover such a text.
Our generator is based on heuristics that generate expensive runs of the DFA of

the regex. Besides a general algorithm applicable to any regex, it features a heuristic
specialising on bounded repetition, based on an analysis of the counting-set au-
tomata (presented in Chapter 4). Especially with extended regexes such as the regex
‘%[^\x0d\x0a]{1000}’ from above, it is capable of forcing creation of many large
DFA states—the number of these states may be exponential and their size may be linear
in the repetition bound, dramatically increasing the matching time.1

1Bounded repetition may be expressed without the counting, by simply repeating the pattern the needed
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We evaluated our generator on a comprehensive database of regexes (from software
projects at GitHub [27], network intrusion detection systems [63, 80, 95], detec-
tion of security breaches [97], academic papers [110, 102], posts on Stack Over-
flow [71], and the RegExLib database [78]). We used a set of major industrial
regex matchers (RE2, grep, Hyperscan [42, 32, 20], standard library matchers of
.NET, Python, Perl, PHP, Java, JavaScript, Rust, and Ruby), and our matcher
GadgetCA. We compared the performance of our generator against existing ReDoS
generators (RXXR2 [77], RegexStatic [107], RegexCheck [109], Rescue [83], and
Revealer [60]). The results of the evaluation substantiate the following conclusions,
which are also the main contributions of this chapter:

1. Bounded repetition is an Achilles heel of automata-based matchers and our novel
generator is the only one that can effectively generate ReDoS texts for them.

2. On the other hand, without bounded repetition, ReDoS generators have none or
negligible success with automata-based matchers.

3. Our new ReDoS generator can indeed generate attacks on practical applications
where the performance of regex matching is critical, namely on Snort 3 with
enabled Hyperscan [63], as well as hardware accelerated regex matching on
the NVIDIA BlueField-2 DPU [69]. For both technologies, we achieved a slow-
down of regex matching engines by a few orders of magnitude, tested on regexes
from real-world Snort rulesets.

Outline. Section 5.1 contains state of the art on ReDoS detection. In Section 5.2, we
present our main technical contribution, the ReDoS generator targeting automata-based
matchers. This chapter also analyses weaknesses of online DFA-simulation and gives
grounds to develop our novel ReDoS generator based on analysing the regex’s DFA.
Section 5.3 details the experiments, giving evidence of vulnerability of automata-based
matching against bounded repetition, including concrete practical implications, and
Section 5.4 suggests possibilities of mitigating the implied security risks. Section 5.5
concludes the results.

5.1 Related Work on ReDoS Detection

ReDoS is a form of attack based on a super-linear evaluation of matching regex against
a malign text. Several methods and tools have been developed that attempt to determine
whether a given regex is vulnerable to a ReDoS and to generate a triggering text (also
referred to as evil text hereafter). ReDoS [72] vulnerabilities have typically been at-
tributed to excessive use of backtracking, as discussed in depth in [26, 25]. Backtracking

number of times, leading to the same DFA. This is, however, impractical and almost never used.
The pitfalls of counting show even in the worst case complexity of the DFA and matching algorithms.

In contrast to basic regexes, where the DFA is exponential and the matching time is linear to the size of
the regex (when matching by automata algorithms such as online DFA simulation), bounded repetition
leads to a doubly exponential DFA and singly exponential matching time. This is because the DFA for
a bounded repetition is exponential in the repetition bounds (or their multiple in the case of nested
bounded repetitions, as in ‘((a{10}){10}){10}’), which is again exponential in the size of their
decadic numerals.
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is commonly used in matching engines [91] in order to increase expressiveness at
the expense of performance predictability. Backtracking regex matching engines are
essentially Turing complete (cf. [62]) and therefore most analysis questions about them
are difficult or undecidable. All prior research on ReDoS generators has focused on
methods that attempt to generate inputs that essentially cause excessive backtracking
at runtime, effectively causing non-termination of matching. Here we summarize
main such approaches.
The generator can be either static, dynamic or combination of both based on whether

actual regex matching is conducted. Static ReDoS generators are primarily based on
the NFA representation of regexes [57] and exploit different techniques, such as pumping
analysis [57, 76], transducer analysis [94], adversarial automata construction [109],
and NFA ambiguity analysis [108]. Such techniques can be sound and even complete
for certain classes of regexes. Their main disadvantages are high rate of false positives
and ineffectiveness against non-backtracking regex matching engines.
While, dynamic ReDoS generators conduct actual regexmatching and use the profiling

results to improve next iteration of text generating, e.g., fuzzing [41]. However,
the main drawback of the dynamic generators is that they are much more time and
space consuming so they may miss ReDoS vulnerabilities in case of complex regexes
due to the time or space limits.

RegexStatic. The first representative of the static generators is RegexStatic [108].
It supports also nonregular features like back-references. It transforms the given regex
into a prioritized-NFA (pNFA) with prioritized transition function. The prioritized
function adds priorities on 𝜖-transitions to indicate the order in which a backtracking
matcher will traverse them. Then it performs a kind of subset construction when it
keeps in a given state track of the states that are reachable with higher priority paths
on the same input. The key insight is that a backtracking matcher first tries to match
input string using higher priority 𝜖-transition and when a backtracking matcher fails to
match, it backtracks to take the lower priority 𝜖-transitions. Thus, some states are not
reachable and make the analysis imprecise and can be removed.
To determine the worst-case matching time, it takes the pNFA and constructs

a backtracking tree that simulates the matching process of a backtracking engine.
The growth in size of these backtracking trees, in relation to the length of the input
string, models the rate of growth of the matching time. The worst-case simulation cost
for a regex on an input is then considered as linear, polynomial, or exponential based on
how the depth-first search tree is predicted to evolve during backtracking.
It also constructs an attack automaton to recognise the language of all exploit strings

for a regex causing a backtracking matcher to run super-linear in the length of the text.
For example for a regex 𝐸1(𝐸2|𝐸3)∗𝐸4 automata 𝐴𝑝, 𝐴𝑐 and 𝐴𝑠 are created such that
𝐿 (𝐴𝑝) = 𝐿 (𝐸1), 𝐿 (𝐴𝑐) = 𝐿 (𝐸2) ∩𝐿 (𝐸3) and 𝐿 (𝐴𝑠) = 𝐿 ((𝐸2|𝐸3)∗𝐸4), where 𝐿 (𝐸)
is used to denote the complement of the language 𝐿 (𝐸). The resulting attack automata 𝐴𝑎

is formed by using 𝐴𝑝, 𝐴𝑐 and 𝐴𝑠, such that 𝐿 (𝐴𝑎) = 𝐿 (𝐴𝑝) · (𝐿 (𝐴𝑐))+ · 𝐿 (𝐴𝑠) [106].

RegexCheck. The next tool based on the static analysis is RegexCheck [109]. It has
limited support for extended (nonregular) features. Like RegexStatic, it identifies
if a regex has linear, super-linear, or exponential time complexity based on its NFA.
The NFA is vulnerable if there exists a string such that the number of distinct matching
paths from the initial state to a rejecting state is exponential in the length of the string.
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It also constructs an attack automaton capturing all those strings that trigger the worst-
case behaviour. An automaton 𝐴𝐸 = 𝐴𝑝 · (𝐴1 ∩ 𝐴2) · 𝐴𝑠. and the evil string of
the automata 𝐴 is then of the form 𝑠1 · 𝑠𝑘 · 𝑠2 such that 𝑠1 ∈ 𝐿 (𝐴1), 𝑠 ∈ 𝐿 (𝐴1 ∩ 𝐴2)
and 𝑠2 ∈ 𝐿 (𝐴2). It combines static and dynamic analysis to avoid false positives when
for each regex is determined a lower bound on the length 𝑘 where the shortest string 𝑠
exceeds the time limit 𝑡.

RXXR2. RXXR2 [76, 77] constructs an NFA from a given regex and then it searches
for instances of a pattern in the NFA using an efficient pattern matching algorithm.
Like the tools mentioned above, it is based on the fact that a regex is vulnerable for
a backtracking matcher if there exists more than one path through a corresponding
NFA for its subexpression. It searches all sub-expressions for exponential vulnerability
in a form of 𝑒1𝑒∗2𝑒3 where 𝑒1 is a prefix expression, 𝑒3 is a suffix expression, and 𝑒

∗
2

is a vulnerable expression. The result is an attack string 𝑥𝑦𝑛𝑧 such that 𝑥 ∈ 𝐿 (𝑒1),
𝑦 ∈ 𝐿 (𝑒3) and 𝑥𝑦𝑛𝑧 ∉ 𝐿 (𝑒1𝑒∗2𝑒3).
Since not all states of NFA can be reached during the backtracking matching (a match

can be found sooner than all states are discovered) it performs also extended analysis to
determine which states “may” and which “must” be reached to avoid false positives.
RXXR2, similarly to RegexCheck, is unable to parse extended regexes (except from
backreferences, non-capturing groups, greedy quantifiers and lazy quantifiers).

SlowFuzz. A representative of the dynamic fuzzing tools is SlowFuzz [74]. It is
based on an evolutionary fuzzer [61] that searches for those inputs that can trigger
a large number of edges in the control flow graph of the program under testing. However,
it lacks knowledge of regex structures, which may lead to false negatives. The results
in [74] compare matching slowdown among individual iterations of the algorithm. Out
of the tools mentioned here, it is the most general tool for generating evil texts, since it
can handle most of the extended features supported in regexes.
We note that we do not include SlowFuzz into the evaluation since we were not able

to run it in our test environment. According to [83], Rescue, which we do include, is
more effective than SlowFuzz.

Rescue. One of the tools that combine dynamic and static techniques is Rescue [83].
It uses a genetic search algorithm as a guide. The aim is to find an input string that
maximizes the number of matching steps using regex search profiling data. Like
SlowFuzz, Rescue can handle also extended grammar (except from set operations
and conditionals).
Rescue is based on a three-phase gray-box analytical technique which finds for

a given regex a timeout-triggering input string:

• In the seeding phase, given a regex and corresponding NFA a genetic (seeding)
algorithm searches for a diverse set of strings that cover as many NFA states
as possible regardless of the search time. For each string, an effective prefix
and redundant suffix is kept to guide the cross-over operation and mutation in
the incubating phase. The effective prefix is a prefix of the string 𝑠 with a maximal
number of characters in 𝑠 that have been matched and the redundant suffix is
the rest of the string 𝑠.
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• In the incubating phase, a genetic algorithm searches for candidates with
a maximal ratio between the matching steps and their length. The new candi-
dates are created applying mutation and crossing over operations to the seed
strings from the seeding phase.

• In the pumping phase, the best candidate with the highest cost-effective ratio are
searched. First, all ReDoS-irrelevant characters are removed from the selected
string. Then, the algorithm searches for a substring such that its pumping increases
the number of matching steps the most. Finally, the best substring is pumped as
many times as possible to create a string of the given length 𝑙.

For each regex, the maximum length is set to 𝑙 = 128. An output ReDoS string
successfully exploiting the ReDoS vulnerability if it takes more than 108 matching steps.

Revealer. Another tool that combines static and dynamic techniques isRevealer [60].
It is inspired by [109]. It converts a regex into an NFA to locate vulnerable subexpres-
sions. Then it dynamically exploits the potential vulnerability by generating attack
strings. Unlike fuzzing, it does not mutate input seeds but simulates the matching process
of a regex on top of a simplified representation of NFA (E-Tree). It tries to generate
a common match string for several different paths through the E-Tree. The maximal
length of the attack string is limited to 128 characters. Finally, it validates if the attack
string takes super-linear matching steps to exclude any false positives.
Finally, let us note that existing generators sometimes aim at extremely severe

vulnerabilities, for instance, where a backtracking-based matcher gets completely stuck
on a text hundreds of characters long (e.g. [83]). Automata-based matchers do not exhibit
vulnerabilities this severe, but they can still be slowed down by orders of magnitude,
for which they need a long-enough input text (in the order of megabytes). These are
the vulnerabilities that we target.

5.2 ReDoS Generation
We now discuss our ReDoS generator, i.e., a tool that generates an evil text for a given
regex. We target primarily automata-based matchers, mainly those based on online DFA-
simulation (although, as we show in Section 5.3, our technique works for backtracking
matchers as well, and it can be tweaked to cause significant troubles also to Hyperscan,
which uses NFA-simulation). The generator, combined with a technique that exploits
counting presented subsequently in Section 80, is the main technical contribution of
this chapter.

Hypothetical matcher. We first discuss a hypothetical matcher, which will serve as
a model target for our ReDoS generator described later. The model was created by
studying the implementations of the regex matchers in grep, Rust, SRM, and RE2. It
uses online DFA-simulation with a specific management of the DFA cache, similarly to
the mentioned matchers. It uses online DFA-simulation with a specific management of
the DFA cache. The matcher does not take into account specific advanced optimizations
and implementation techniques used in real performance-oriented matchers. Taking
them into account might, of course, improve the performance of the generator for
a specific matcher, but our goal is a ReDoS generator that is universal and simple, and
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therefore we use a model that captures only the most important common aspects. Despite
that, the matchers grep, RE2, and the standard matcher in Rust are quite close to this
hypothetical matcher (while Hyperscan, which uses the most radical innovations and
only NFA-simulation instead of online DFA simulation, is related to it more loosely).

The matching algorithm and its complexity. The hypothetical matcher implements
the online DFA simulation with the following management of the cache:

(i) When the cache exceeds some size, it is reset and

(ii) if the cache utilization is too low or is reset too often, the matcher disables the
cache completely and reverts to pure NFA-simulation.

Algorithm 3 describes the hypothetical matcher in pseudocode. It simulates a run of
the DFA obtained by subset construction from the input NFA 𝐴 = (𝑄, 𝛿, 𝑞0, 𝐹) along
the input word 𝑤. In order to do this without constructing the entire DFA up-front, it uses
the class DFA, which constructs DFA transitions and encountered DFA states lazily, on
demand, and saves them for further use. Namely, it stores integer IDs of the encountered
DFA states (subsets of 𝑄) in a hash table state2id , paired with the inverse mapping
id2state of the DFA states back to their IDs. A discovered DFA state is identified with
the number of the so far identified states plus one (Line 40). The ID of the target state
of each used DFA transition is saved in the map successor , accessible under the ID of
the source state and the symbol on the transition. The map final records whether an ID
belongs to a final state.
The 𝑖-th character 𝑤 [𝑖] of the input line is processed in a single iteration of the for

loop on Line 26. The cost of the iteration depends on whether the DFA transition is in
the cache or not. If yes, then successor [𝑞, 𝑤 [𝑖]] on Line 45 simply returns the ID 𝑞′ of
the successor of the current state ID 𝑞. The lookup has a small constant cost (accessing
the index 𝑤 [𝑖] of an array of successors associated with 𝑞).
On the other hand, if the DFA transition is not cached, then it must be constructed,

which is expensive: The construction requires to iterate through all 𝑤 [𝑖]-transitions
originating from the NFA states in the current DFA state 𝑆 (Line 48). The cost of
this iteration depends on the size of 𝑆 and the number of the used NFA transitions,
both of which can be bounded by |𝐴| (the size of 𝐴, |𝐴| = |𝑄 | + |𝛿 |). Furthermore,
the book-keeping costs of the cache of DFA states, paid after every cache miss on
Line 45, is also significant (although dominated by the cost of constructing the transition
on Line 48). Looking up a DFA state on Line 37 and adding a DFA state on Line 49
both take time proportional to the size of the DFA state.
The complexity of matching with a high utilization of the cache is therefore ap-

proaching O(|𝑤 |), but in the worst case, with a low cache utilisation, it increases to
O(|𝑤 | · |𝐴|). The multiplicative factor |𝐴| may be especially high with extended regexes
with the bounded repetition operator, where the size of |𝐴| is linearly dependent on
the repetition bounds (this is exponential in the size of the regex, assuming that the bound
is given as a decadic or similar numeral). For instance, the NFA for the regex ‘.*a.{k}’
needs 𝑘 + 1 states and the DFA obtained by the subset construction has 2𝑘+1 states, each
of them a set of up to 𝑘 + 1 states of the NFA.2

2The ‘.*’ in the regex is included for clarity, but note that it is redundant in the absence of anchors.

88



Algorithm 3: Hypothetical matcher
Input: NFA 𝐴 = (𝑄, 𝛿, 𝑠0, 𝐹), word 𝑤
Output: ⊤ iff 𝑤 ∈ 𝐿 (𝐴), otherwise ⊥

24 dfa ← new DFA()
25 𝑞 ← dfa .init({𝑠0})
26 for 𝑖 ← 1 to |𝑤 | do // O(|𝑤 | · |𝐴|)
27 if dfa .final [𝑞] then return ⊤
28 𝑞′← dfa .get_successor_id(q,w[i]) //O(|𝐴|)
29 𝑞 ← 𝑞′

30 if dfa .big() then 𝑞 ← dfa .init(dfa .id2state [𝑞])
31 if dfa .ineffective() then disable DFA caching
32 return ⊥
33 class DFA:
34 state2id : 2𝑄 → N; id2state : N→ 2𝑄;
35 successor : N × Σ→ N; final : N→ {⊤,⊥}
36 method get_state_id(𝑆 ⊆ 𝑄):
37 𝑞 ← state2id [𝑆] // O(|𝑆 |)
38 if 𝑞 = None then
39 𝑞 ← state2id .cardinality + 1
40 state2id [𝑆] ← 𝑞 // O(|𝑆 |)
41 id2state [𝑞] ← 𝑆

42 final [𝑞] ← (𝑆 ∩ 𝐹 ≠ ∅)
43 return 𝑞
44 method get_successor_id(𝑞 ∈ N, 𝑎 ∈ Σ):
45 𝑞′← successor [𝑞, 𝑎] // O(1)
46 if 𝑞′ = None then
47 𝑆 ← id2state [𝑞]
48 𝑆′← {𝑠′ | 𝑠 ∈ 𝑆, 𝑠−{𝑎}→𝑠′ ∈ 𝛿} // O(|𝐴|)
49 𝑞′← get_state_id(𝑆′) // O(|𝑆′ |)
50 successor [𝑞, 𝑎] ← 𝑞′

51 return 𝑞′

52 method init(𝑆 ⊆ 𝑄):
53 id2state ← state2id ← successor ← final ← ∅
54 return get_state_id(𝑆)

The algorithm manages limited resources available for the cache on Lines 30, 31.
The cache is reset on Line 30 if it grows beyond some predefined bound (given by
the method dfa .big(), whose implementation would be matcher-specific). The size of
the cache is computed as the sum of sizes of cached DFA states plus the number of cached
transitions,

∑{|𝑆 | : DFA.state2id [𝑆] ≠ None}+|{(𝑖𝑑, 𝑎) : successor [id , a] ≠ None}|
(note that larger DFA states hence contribute more to the size of the cache). Line 31
may then entirely disable caching if the cache is reset too often or if its utilisation is too
low (given by a matcher specific implementation of dfa .ineffective()). Disabling
the cache means reverting to NFA-simulation in which every step must iterate through
all NFA states in the current set and all their transitions with the current letter.
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Multi-line mode. The matcher described above works in the single-line mode. In
the multi-line mode, the for loop on Line 26 is wrapped in an iteration over all lines and
every matched line is reported. Importantly, the DFA cache is not reset after processing
one line, but is re-used when processing subsequent lines.

ReDoS generation algorithm. As follows from the analysis above, our best shot to
stress the hypothetical matcher is to attempt to increase its runtime close to O(|𝑤 | · |𝐴|)
by rendering the cache ineffective and forcing construction of many large DFA states
and expensive transitions. For that, recall that every newly discovered DFA state 𝑆 ⊆ 𝑄
is searched for and inserted into the cache, with a cost linear to its size, and subsequently
causes a cache miss and forces the construction of a transition on Line 48, with a cost
linear to the number of 𝑤 [𝑖]-transitions starting in 𝑆. The size of 𝑆 also determines
the cost of looking up and inserting DFA states to the cache on Lines 37, 49. The cost
of creating the DFA transition, that is, the number of the NFA transitions, is usually
strongly correlated with the size of the source state 𝑆 (even though it is not precisely
determined by it since it depends on the transition relation).
Our aim therefore is to produce a text that discovers many different large DFA states

as fast as possible. In other words, we want to force a DFA run (or sequence of runs in
the case of multi-line matching) with a high ratio of the sum of sizes of newly discovered
DFA states and the text length. We will call this ratio evilness of the text. Highly evil
texts cause a low cache hit/miss ratio, the cache also fills in quickly and must be reset
frequently, and there is a high chance that the utilisation of the cache drops to the point
where it is completely disabled.

ReDoS generator overview. Our ReDoS generator constructs a text 𝑤 with high
evilness as a concatenation of lines 𝑤1 · · ·𝑤𝑛, each 𝑤𝑖 constructed along a run 𝜌𝑖 of
the DFA from the initial state. Every run 𝜌𝑖 first takes a shortest possible path through
the already visited part of the DFA to a largest discovered but so-far unvisited start state,
from where it navigates to new unvisited DFA states through DFA transitions chosen
according to some successor selection criterion. The run 𝜌𝑖 is thus a concatenation
𝜌1
𝑖
.𝜌2

𝑖
of a prefix 𝜌1

𝑖
through visited states and a suffix 𝜌2

𝑖
through unvisited states.

The criterion for navigating the second phase, that is, for selecting unvisited successors
while constructing the suffix, is a parameter of the algorithm. The basic strategy, called
Greedy, simply selects the largest unvisited successor (alternatives will be discussed
later). This drives the exploration towards large new states. The run 𝜌𝑖 then ends when
it cannot continue to any unvisited and non-final state.
Avoiding final states has the following rationale. Obviously, continuing a line after

reaching a final state would be counterproductive because the matcher has already
returned true. Avoiding final states altogether additionally means that we generate only
non-matching lines, which is motivated by the fact that we ideally want texts that are
hard for online DFA-simulation-based as well as backtracking matchers. Non-matching
lines are generally harder for backtracking matchers. They cannot terminate early after
finding a single accepting NFA run but are forced to explore the entire tree of runs
over the input line.
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Algorithm 4: DFA-based text generation
Input: An NFA 𝐴 = (𝑄, 𝛿, 𝑠0, 𝐹), successor selection criterion Strategy
Output: evil text 𝑤 (concatenation of several lines)

55 𝑞0 ← DFA.init(𝐴);
56 unvisited .enqueue (𝑞0);
57 dist (𝑞0) ← 0;
58 visited ← ∅;
59 𝑤 ← 𝜖 ;
60 while unvisited ≠ ∅ do
61 𝑞 ← unvisited .dequeue_nearest_largest ();
62 visited .add (𝑞);
63 𝑤 ← 𝑤 · prefix (𝑞);
64 while ⊤ do
65 succ ← ∅;
66 for 𝑎 ∈ Σ do
67 𝑝 ← DFA.get_successor_id[𝑞, 𝑎];
68 if DFA.final [𝑝] ∨ 𝑝 ∈ visited then break;
69 succ.add (𝑝, 𝑎);
70 unvisited .enqueue (𝑝);
71 if dist (𝑞)+1<dist (𝑝)∨dist (𝑝)=None then
72 (dist (𝑝), 𝑎(𝑝), pre (𝑝)) ← (dist (𝑞)+1, 𝑎, 𝑞)
73 if succ = ∅ then break ;
74 (𝑞′, 𝑎) ← succ.choose (Strategy);
75 unvisited .remove (𝑞′);
76 visited .add (𝑞′);
77 𝑞 ← 𝑞′;
78 𝑤 ← 𝑤 · 𝑎;
79 𝑤 ← 𝑤 · \n;
80 return 𝑤;

ReDoS generator in detail. We present the algorithm in detail as Algorithm 4. Since
constructing the entire DFA may be infeasible due to its size, the algorithm again uses
the implicit DFA that is a part of the hypothetical online DFA matcher in Algorithm 3
and thus constructs only those parts of the DFA used to process the generated text.
Every iteration of the while-loop on Line 60 generates one line of the text, the 𝑖th

iteration generates 𝑤𝑖 by constructing the run 𝜌𝑖 . The algorithm maintains a set visited
of identities of DFA states that were visited by some run 𝜌𝑖, and a set unvisited of
identities of discovered but yet unvisited states. The while loop terminates when
there are no states remaining in unvisited . To select the starting state 𝑞 of a run 𝜌𝑖
(Line 61) and construct the shortest run to 𝑞 quickly (by the function prefix on Line 63),
the algorithm uses a mechanism analogous to that used by the Dijkstra’s algorithm
for computing the shortest paths from a given source. Every discovered DFA state
𝑝 ∈ visited ∪unvisited remembers the last transition in the shortest discovered run to it,
namely, the predecessor state pre (𝑝) on the run and the symbol 𝑎(𝑝) on its last transition.
It also remembers the length (distance) dist (𝑝) of the shortest run. The values of
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pre (𝑝), dist (𝑝), and 𝑎(𝑝) are updated whenever a transition to the state 𝑝 is taken
(Lines 71, 72). If the run ending by that transition is shorter than the current shortest run
the function prefix (𝑞) can then construct the shortest discovered run to 𝑞 in the form
𝑞1−{𝑎1}→𝑞2 . . . 𝑞𝑛−1−{𝑎𝑛}→𝑞𝑛 by taking 𝑞𝑛 = 𝑞, 𝑞𝑖 = pre (𝑞𝑖+1) and 𝑎𝑖 = 𝑎(𝑞𝑖) for all
𝑖 : 1 ≤ 𝑖 < 𝑛, and return the word 𝑎1 . . . 𝑎𝑛 read along this run. The starting state identity
𝑞 is chosen (on Line 61). From those which identify the largest DFA states (the state is
obtained as DFA.id2state [𝑞]), we take one with the smallest distance dist (𝑞).
The suffix of the run, 𝜌′

𝑖
, is where the text supposed to increase the cost of matching

is generated. The algorithm navigates through the unexplored DFA states according
to the strategy given by the input parameter Strategy until the current state 𝑞 has
unexplored and non-final successors 𝑝 (Line 73). Namely, the for-loop on Line 66
collects into succ all transitions leading to non-final and not yet visited DFA states from
the current state 𝑞 (as pairs consisting of the target state 𝑝 and symbol 𝑎). The particular
transition is selected from there according to the criterion Strategy on Line 74.

Exploration strategies. The algorithm is parameterized by the strategy of exploration
of the unvisited DFA state space, represented by the successor selection criterion
Strategy. We will consider three variants.
First, Random picks a random successor. This produces mostly random but still

‘reasonable’ texts where reasonable stands for that matching a line never returns false
before the line ends as the generated DFA run never leaves the space of useful DFA
states. We use the random strategy as a baseline to confirm that the reasoning behind our
other two selection criteria, supposed to generate highly evil texts, works, and indeed
produces much more evil texts.
The simpler of the two, Greedy, navigates the search towards large DFA states

by always choosing the largest successor. The more complex strategy Counting is
then optimized towards generating texts for regexes with bounded repetition, and it is
discussed in the following section.

ReDoS generation for bounded repetition. We will now discuss the specialisation
of the ReDoS generator from Section 4 for regexes with bounded repetition. That
is, we will specify the successor selection criterion Counting used as a parameter
Strategy of Algorithm 4.
DFAs of regexes with bounded repetition tend to have extremely many extremely

large states. This shows even in the worst case complexity of online DFA-simulation
(as well as of NFA-simulation), which becomes exponential in the size of the regex
(linear in the repetition bounds). The general idea of generating evil texts for bounded
repetition is the same as for normal regexes—to force many different and large DFA
states. We propose an optimized strategy for navigating towards them.

Counting automata. We build the strategy based on the observations of NCA
from Chapter 4. Let us recall that a run of an NCA over a word goes through a sequence
of configurations, pairs of the form (𝑞, 𝜈) where 𝑞 is a control state and 𝜈 is a counter
valuation, a mapping of counters to their integer values.
For instance, one of the NCA runs from Figure 5.1a on the word ‘𝑎100’ generates

configurations (𝑞, 𝑐 = 0), (𝑠, 𝑐 = 0), (𝑠, 𝑐 = 1), . . . , (𝑠, 𝑐 = 99), but the NCA can postpone
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𝑞 :.*a.{100} 𝑠 :.{100}
{𝑐 ≥ 100}

𝑐 := 0

.
a

.∧ 𝑐 < 100/𝑐 := 𝑐 + 1

(a) NCA for ‘.*a.{100}’

{𝑞} {𝑞, 𝑠} {Max(𝑐) ≥ 100}
𝑐 := {0}

[^a]
a

a/𝑐 := {0} ∪ 𝑐 + 1

[^a] ∧Min(𝑐) < 100/
𝑐 := 𝑐 + 1

[^a] ∧Min(𝑐) ≥ 100/
𝑐 := {0}

(b) CsA from determinisa-
tion of (a)

0

997
1

997.5
2

998
3

998.5
4

999

5

999.5
6

1000
7

0

𝑐 := {0} ^ H O S

T

\x09 / 𝑐:=𝑐∪{1}[^\x09\x20] ∧Min(𝑐)<1000 / 𝑐:={1}∪𝑐+1

[^\x09\x20] / 𝑐:=𝑐∪{1}

\x09 ∧Min(𝑐)<1000/𝑐:={1}∪𝑐+1[^\x20] ∧Min(𝑐)<1000/𝑐:=𝑐+1

(c) CsA with weights for the regex ‘^HOST\x09*[^\x20]{1000}’

Figure 5.1: NCA and CsA. The transitions are labeled by their guard, which specifies
the input character class (‘.’ stands for “any character”) and possibly restricts counter
(or counting set) values, separated by ‘/’ from the counter update (an unspecified update
means that the value stays the same). In (b) and (c), the notation {0} ∪ 𝑐 + 1 stands
for the set of values obtained by incrementing each value in 𝑐, adding 0, and removing
values larger than the upper bound of the counter, 100 for (b) and 1000 for (c). The edges
denoting initial states are labelled with initial values of the counters. Final states are in
(a) and (b) labelled with an acceptance condition on counters, e.g. {𝑐 ≥ 100} in (a). In
(c), the final condition at states 6 and 7 is Max(𝑐) = 1000.

the transition into 𝑠 arbitrarily, leading to different values of 𝑐. It is easy to see that
one can construct an NFA whose set of states is the set of reachable configurations of
an NCA; the runs of such an NFA would go precisely through the same configurations
as the runs of the NCA over the same word.
The naive determinisation of the NCA then produces a standard DFA that would be

obtained by the subset construction from the induced NFA described above. The states
of the DFA are thus sets of the configurations. For the example from Figure 5.1a, a run
of the DFA on the word ‘𝑎100’ would traverse through the following sequence of DFA
states (recall that each set of configurations is one state of the DFA):

{(𝑞, 𝑐 = 0)},
{(𝑞, 𝑐 = 0), (𝑠, 𝑐 = 0)},
{(𝑞, 𝑐 = 0), (𝑠, 𝑐 = 0), (𝑠, 𝑐 = 1)},
. . .

{(𝑞, 𝑐 = 0), (𝑠, 𝑐 = 0), (𝑠, 𝑐 = 1), . . . , (𝑠, 𝑐 = 99)}.
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Our ReDoS generator therefore navigates through a space of such DFA states. The states
may be extraordinarily large especially when the NCA configurations within them have
many distinct counter values, such as in our example, where the run on the word ‘𝑎100’
ends in a DFA state where the control state 𝑠 is paired with 100 values.

Counting-set automata. Our heuristic for navigating through such DFAs towards
large states attempts to increase the number of counter values. To do that, we take
advantage of our earlier work on determinisation of NCAs into the counting-set automata
(CsAs) (discussed in Section 4).
An example of a CsA is the automaton obtained by determinising the NCA from

Figure 5.1a, shown in Figure 5.1b. Let us recall that its run on the word ‘𝑎100’ would
generate the following sequence of configurations:

({𝑞}, 𝑐= {0}),
({𝑞, 𝑠}, 𝑐= {0}),
({𝑞, 𝑠}, 𝑐= {0, 1}),
. . .

({𝑞, 𝑠}, 𝑐= {0, . . . , 99}).

Note that the sets of values for 𝑐 precisely correspond to the values of 𝑐 that 𝑠 appear with
in the run of the DFA shown above. The run-time configurations of a run of a CsA are (en-
codings of) states of the DFA that would be generated by a run reading the same word.

Navigation towards large counting sets. Since CsA are still small (relative to
the DFA), they can be pre-computed and analysed as a whole. We use such an analysis
to obtain guiding criteria that lead a run through their configuration space towards
configurations with many different counter values. Since runs of CsA simulate runs of
DFA, such guiding criteria may be directly used to navigate runs of DFA, as the successor
selection criterion Counting.
Particularly, in the CsA for the regex, we try to navigate towards cycles that are likely

to create large counting sets. For every counter 𝑐, every cycle is assigned a weight
weight𝑐 that represents an estimate of the maximum counting set for 𝑐 that iteration of
the cycle can generate. The number reflects the following intuitions:
First, since the counting set 𝑐 can contain only values between 0 andmax𝑐, it can have

at mostmax𝑐 +1 elements. Second, the cycle is pumping up the set if 1) it does not reset
it, 2) it adds 0 or 1 and also increments the elements of the set (without the increment, it
would be only repeatedly adding 0/1’s to a set already containing it). Third, it is better
if only few increments happen in between additions of 0/1’s. For instance, a cycle
that increments the counting set 4 times per every addition of 0/1 is actually filling it
with multiples of 4, hence it can generate a set of the size at most max𝑐+1

4 . In summary,
the weight of the cycle for the counter 𝑐 is non-zero only if the cycle does not reset 𝑐 and
increments 𝑐 at least once, and then it equals max𝑐 multiplied by the number add_cnt𝑐
of additions of 0/1 to 𝑐 divided by the number inc_cnt𝑐 of increments of 𝑐, i.e.

weight𝑐 =
(max𝑐 + 1) · add_cnt𝑐

incr_cnt𝑐
.
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{(1, 𝑐=0)}
𝑑:0, 𝑠:1, 𝑤:997.5

{(2, 𝑐=0)}
𝑑:1, 𝑠:1, 𝑤:998

{(3, 𝑐=0)}
𝑑:2, 𝑠:1, 𝑤:998.5

{(4, 𝑐=0)}
𝑑:3, 𝑠:1, 𝑤:999

{(5, 𝑐=0)}
𝑑:4, 𝑠:1, 𝑤:999.5

{(7, 𝑐=1)}
𝑑:5, 𝑠:1, 𝑤:0

{(6, 𝑐=1)}
𝑑:5, 𝑠:1, 𝑤:1000

{(7, 𝑐=2)}
𝑑:6, 𝑠:1, 𝑤:0

{(7, 𝑐=3)}
𝑑:7, 𝑠:1, 𝑤:0

{(7, 𝑐=999)}
𝑑:1003, 𝑠:1, 𝑤:0

{(7, 𝑐=1), (7, 𝑐=2)}
𝑑:6, 𝑠:2, 𝑤:0

{(6, 𝑐=1), (6, 𝑐=2)}
𝑑:6, 𝑠:2, 𝑤:1000

{(7, 𝑐=2), (7, 𝑐=3)}
𝑑:7, 𝑠:2, 𝑤:0

{(7, 𝑐=998), (7, 𝑐=999)}
𝑑:1003, 𝑠:2, 𝑤:0

{(7, 𝑐=1), (7, 𝑐=2), (7, 𝑐=3)}
𝑑:7, 𝑠:3, 𝑤:0

{(7, 𝑐=997), (7, 𝑐=998), (7, 𝑐=999)}
𝑑:1003, 𝑠:3, 𝑤:0

{(6, 𝑐=1), . . . , (6, 𝑐=999)}
𝑑:1003, 𝑠:999, 𝑤:1000

H O S T

a

\x09

a

a

b

b

\x09

c

Figure 5.2: DFA states explored by Algorithm 4 on the regex
‘^HOST\x09*[^\x20]{1000}’.

The final weight of a cycle is then computed as a sum of weights for individual counters∑︁
𝑐∈𝐶

weight𝑐

with 𝐶 being the set of all counters used in the automaton.
The weights of cycles are assigned to states and propagated through the transitions of

the CsA. Initially, all states have weight 0. We then process the cycles in the CsA one by
one. For each of them, first the weights of all states in the cycle are set to the maximum
of their previous weight and the weight of the cycle. The weight of the cycle is then
propagated through paths reaching the cycle. Namely, the weight of state 𝑟 , weight (𝑟),
propagates through a transition 𝑞−{𝑎}→ 𝑟 so that weight (𝑞) is assigned the maximum
of weight (𝑞) and weight (𝑟) − 0.5. This is iterated as long as some weight can be
increased. In the end, the transitions with heavy target states point in the direction of
short paths towards heavy cycles (the shortness is achieved through the subtraction of
0.5 for every transition that weight of the cycles is propagated through).

Example 5.2.1. Consider the CsA for the regex ‘^HOST\x09*[^\x20]{1000}’ (a sim-
plified regex from Snort [63]) in Figure 5.1c. States of the CsA have assigned weights
according to the algorithm described above. Figure 5.2 shows the tree of DFA states
obtained by Algorithm 4.
The underlying NFA would look similar as the CsA in Figure 5.1c, with the difference

that there are copies of states 6 and 7 for each value of counter 𝑐 between 1 and 1000
(and there is a nondeterministic choice over ‘\x09’ in states (6, 𝑐=𝑖) whether to stay in
(6, 𝑐=𝑖) or go to (6, 𝑐=𝑖 + 1)).
If traversed using the Greedy strategy (assuming that whenever there is a choice

in Figure 5.2 between two DFA states with the same sizes, the strategy picks the left
one, e.g., when choosing between {(7, 𝑐=1)} and {(6, 𝑐=2)}, Greedy would choose
{(7, 𝑐=1)}) the traversal would first select the branch that goes to state 7 as soon as
possible with DFA states of size 1 (the left-most branch), then it would select the branch
with DFA states of size 2 (the second branch from the left), etc., generating the text:

HOSTaaa . . . a\n
HOST\x09bbb . . . b\n
HOST\x09\x09ccc . . . c\n
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. . .
HOST\x09\x09 . . . \x09yy\n
HOST\x09\x09 . . . \x09\x09z\n
HOST\x09\x09 . . . \x09\x09\x09\n

The generated text is sub-optimal because it first targets “easy” DFA states of size 1 and
explores the most difficult path (with the longest sequence of ‘\x09’) only as the last one.
On the other hand, the Counting strategy avoids this by using the weights computed

for the DFA states, which causes that the paths are explored in the reversed order,
preferring state 6 because it has a higher weight:

HOST\x09\x09 . . . \x09\x09\x09\n
HOST\x09\x09 . . . \x09\x09z\n
HOST\x09\x09 . . . \x09yy\n
. . .
HOST\x09\x09ccc . . . c\n
HOST\x09bbb . . . b\n
HOSTaaa . . . a\n

Indeed, in our experiments, for this regex, RE2 took 23 times longer to process the text
generated by Counting than the text generated by Greedy. □

5.3 Experimental Results

We have implemented our approach in a C# prototype called GadgetCA and evaluated
its capability of generating text causing efficiency problem (ReDoS attack) for the state-
of-the-art regex matchers especially with regexes that contain a bounded repetition and
compared with existing ReDoS generators.

Matchers. We experiment with the matchers introduced in Figure 5.1. We have
automata-based matchers grep [32] (version 3.3), RE2 [42], SRM [82], and the standard
regex matcher in Rust [31], all four based on online DFA-simulation, Hyperscan [20],
which uses NFA simulation, and also the prototype matcher Chipmunk from Chapter 4,
based on counting set automata (Section 80), which specialises in handling bounded
quantifiers (Chipmunk implements offline CsA-simulation, i.e., it simulates a pre-
constructed deterministic CsA on the input text). Then, representing backtracking
matchers, we have standard library regex matching engines of a wide spectrum of
programming languages: .NET [65], Python [36], Perl [96], PHP [45], Java [30],
JavaScript [21], and Ruby [11]. We note that grep, RE2, Rust, and Hyperscan are
performance-oriented matchers containing many high- and low-level optimizations.
In Section 5.3, we also experiment with the NIDS Snort [63], which internally uses
Hyperscan, and with the hardware-accelerated regex matching engine on the NVIDIA
BlueField-2 [69] card.
Except the experiments in Section 5.3, we run our benchmarks on a machine with

the Intel(R) Xeon(R) CPU E3-1240 v3@3.40GHz running Debian GNU/Linux (we
run .NET tools on the Mono platform [75]).
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Size of ReDoS text. In order to avoid low-level noise in the measured times of
matchers, we generate texts of the size ∼50MB. We use this value since we observed
that at around 50MB, the ratio between the performance of a matcher on a random text
and on a generated ReDoS candidate start to stabilize for many of the used matchers.
Larger text sizes may still increase the slowdown, but using them would rise the cost of
our experiments beyond what we can manage.

GadgetCA. Our generator GadgetCA generates a text for a potential ReDoS attack
using our approach presented in Section 5.2. In particular, we run the ReDoS text
generator for 10mins or until it completely explores the state space. (We emphasize
that generating the ReDoS texts is not a time critical task, since they can be prepared in
advance before an attack.) Then, we take the obtained text and copy it as many times as
needed in order to obtain a ∼50MB long text.
The particular ReDoS generation algorithm used depends on the chosen search

strategy: Greedy, Counting, Random, or OneLine (which is yet another strategy
used to target Snort’s Hyperscan in Section 5.3).

Other generators. We compared GadgetCA against state-of-the-art generators, which
are mainly focused on backtracking matchers (indeed, as far as we know, GadgetCA
is the first generator targeting nonbacktracking matchers), namely RXXR2 [77], Regex-
Static [107], RegexCheck [109], Rescue [83], andRevealer [60].3 These generators
use different algorithms to generate a ReDoS text. The generatorsmay consume excessive
time while analysing the regex and generating a ReDoS text, hence, we limited their
running time to 10mins (the same as for our generator). Note that all of these tools are
research prototypes, so they do not support all regex features. The generators generate
a ReDoS text template in the form of a triple (prefix , pump, suffix ) so that a concrete
ReDoS text can be obtained by instantiating prefix ·pump𝑘 ·suffix for some 𝑘 . Therefore,
we set 𝑘 for each of the ReDoS texts so that |prefix | + |pump | · 𝑘 + |suffix | ≈ 50MB.

Dataset. The regexes that we targeted in the experiment were selected from the fol-
lowing sources: (a) the database of over 500,000 real-world regexes coming from
an Internet-wide analysis of regexes collected from over 190,000 software projects [27];
(b) the databases of regexes used by network intrusion detection systems (NIDSes),
in particular, Snort [63], Bro [80], Sagan [95], and the academic papers [110, 102];
(c) the RegExLib database of regexes [78], which is a website dedicated to regexes for var-
ious domain-specific languages (DSLs); (d) regexes from posts on Stack Overflow [71];
(e) industrial regexes from Microsoft used for security purposes from Chapter 5; and
(f) industrial regexes from TrustPort [97] for detecting security breaches. This gave us
a set of 609,992 regexes that we denote as ALL. We then categorized the regexes in ALL
into several classes as follows:

SUPPORTED (443,265) is a subset of ALL that contains regexes without features not
supported by our tool—e.g., containing look-arounds, back-references, etc.—and regexes

3We do not include SlowFuzz [74] into the evaluation since we were not able to run it in our test
environment. According to [83], Rescue, which we do include, is more effective than SlowFuzz.

97



that are not syntactically correct. Moreover, our tool also does not support regexes with
the bounded repetition that yield a non-uniform NCA4 (there were 101 such regexes).

COUNTERS (47,513) is a subset of SUPPORTED containing regexes with bounded
repetition. The rest of SUPPORTED is in NOCOUNTERS (395,752).

ABOVE20 (8,099) is a subset of COUNTERS with regexes where the sum of upper
bounds of bounded repetition is above 20 (i.e., regexes where the use of bounded
repetition may potentially lead to state space explosion). The rest of COUNTERS is
put into BELOW20 (39,414).

Methodology. Let us now elaborate on the criteria we use to classify ReDoS attacks.
In the literature, we found the following used criteria:

• Shen et al. [83] generate strings of length at most 128 symbols and consider
a string a ReDoS if Java’s regex library matcher makes at least 108 steps on it.

• Davis et al. [26] generate strings of lengths 100 kB–1MB and call a string a ReDoS
if the matcher takes more than 10 s to match it.

• Staicu and Pradel [93] generate pairs of random and crafted strings of an increasing
length and measure the differences of the times the matcher takes for the random
and the crafted string in each pair, obtaining a sequence 𝑑1, 𝑑2, . . . , 𝑑𝑛. They
consider a crafted string a ReDoS if 𝑑1 < 𝑑2 < · · · < 𝑑𝑛.

• Rathnayake and Thielecke [77], Wüstholz et al. [109], and Weideman et al. [108]
define that a regex is ReDoS-vulnerable if it meets some condition that causes
super-linear behaviour (they do not examine the run time of the matchers in detail).

We base our ReDoS criteria on the criteria in [26], but normalize it w.r.t. the signifi-
cantly lower average matching times for automata-based matchers ([26] only considers
backtracking matchers). Our ReDoS criteria are the following:

• >>>10s: the matching takes over 10 s, (corresponds to the throughput of <5MB/s),

• >>>100s: the matching takes over 100 s (corresponds to the throughput of
<0.5MB/s),

• >>>100×××AVGREGEX: the matching takes at least 100 times more than the time
for matching of a random ∼50MB-long text on the given regex (computed
as the average of times of 10 different random texts) by the given matcher
(the motivation for this is that a user has some idea about the average performance
of the matcher on a regex he created and tested), and

• >>>100×××AVGMATCHER: the matching takes at least 100 times more than the average
time for matching a random ∼50MB-long text on the given matcher across all
regexes without the ‘ˆ’ and ‘$’ anchors (regexes with such anchors allow to
quickly determine non-match and skip the rest of the text). Average matching
times (in seconds) for the matchers are given in Table 5.1.

4Due to the technical difficulty of characterizing such regexes and the relatively small number of regexes
affected by this, we refer the interested reader to the description in [98, Section 6.4].
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Table 5.1: The average matching time [s] of a random 50MB-long text for each of the
matchers (averaged over all regexes).

grep hyper-
scan re2 srm ca rust ruby php perl python java node .NET

0.04 0.07 0.14 1.02 1.32 0.07 2.13 3.10 0.09 0.69 1.11 0.93 2.59

Table 5.2: Numbers of regexes from ABOVE20 for which various generators successfully
generated >>>100s-ReDoS texts. Red (darker) colour emphasizes higher numbers. For
each ReDoS criterion, matchers are split into groups based on their types.

>>>100s-ReDoS attacks
Generators grep re2 rust srm hyper-

scan ca ruby php perl python java java-
Script .NET

Greedy 192 72 76 238 0 61 1087 1408 56 200 215 210 390
Counting 216 110 96 272 0 45 1724 1979 89 218 242 211 419
Random 126 28 48 123 0 46 682 885 60 160 181 111 334

G
a
d
g
e
t
C
A

OneLine 192 17 32 23 0 56 333 40 187 433 414 378 584
RXXR2 7 0 2 0 0 1 24 0 4 30 11 11 34

RegexCheck 14 0 2 0 0 0 7 1 1 9 8 4 16
RegexStatic 34 1 5 0 0 8 160 63 69 262 253 243 285
Rescue 12 0 3 0 0 2 23 3 4 23 13 12 27
Revealer 16 1 1 5 0 4 38 14 22 56 50 46 71
random text 52 4 11 17 0 82 33 47 23 109 162 36 231

Summary of results. Let us quickly summarize results obtained in our experimental
evaluation, described in detail in the following sections:

R1: Regexes with bounded repetition with higher bounds are potentially vulnerable to
ReDoS attacks even for automata-based matchers.

R2: If a regex does not contain counting, it mostly cannot be used to perform a ReDoS
attack on automata-based matchers.

R3: Our informed exploration strategy Counting is better at generating ReDoS texts
than the (less informed) strategies Greedy and Random.

R4: Other state-of-the-art ReDoS generators are not able to generate ReDoS text for
automata-based matchers.

R5: Our techniques can be used to attack mature real-world security solutions.

R1: Vulnerability of counting regexes. In our first experiment, we confirmed that
the use of bounded repetition with a higher bound in regexes creates a possible
attack surface for ReDoS even for online DFA-simulation-based matchers. We used
the ABOVE20 set of regexes and tried to generate ReDoS attacks using GadgetCA and
other matchers using the methodology described above.
First, see Table 5.2, which shows how many successful >>>100s-ReDoS texts different

settings of GadgetCA were able to generate for online DFA-simulation-based matchers.
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Table 5.3: Numbers of regexes from ABOVE20 for which various generators successfully
generated >>>10s-ReDoS texts.

>>>10s-ReDoS attacks
Generators grep re2 rust srm hyper-

scan ca ruby php perl python java java-
Script .NET

Greedy 1058 703 274 311 1 135 5050 6580 837 1027 485 955 2629
Counting 1181 1116 295 391 3 121 5440 6289 1294 1503 532 1317 3000
Random 713 135 259 242 1 106 4405 5389 361 523 385 410 2025

G
a
d
g
e
t
C
A

OneLine 576 17 78 30 6 130 540 69 402 678 637 485 1448
RXXR2 11 0 2 0 0 1 26 0 5 33 12 13 35

RegexCheck 25 0 3 0 1 0 7 3 7 18 15 9 36
RegexStatic 78 1 9 0 0 19 182 70 78 287 274 254 333
Rescue 11 0 3 0 0 4 24 2 5 26 13 13 28
Revealer 24 1 7 0 0 14 51 19 31 69 61 51 75
random text 153 10 70 27 2 137 175 47 147 272 255 228 698

Notice that we were able to generate 216 ReDoS texts for grep, 110 ReDoS texts for RE2,
96 ReDoS texts for Rust, and 272 ReDoS texts for SRM (using the Counting strategy).
Next, in Table 5.3, you can see data for the weaker ReDoS criterion>>>10s. The number

of generated successful ReDoS-texts is significantly higher: 1,181 for grep, 1,116 for
RE2, 295 for Rust, and 391 for SRM (all using the Counting strategy).
Under both ReDoS criteria above, the Counting strategy achieves the best results

for online DFA-simulation-based matchers and, moreover, for the >>>10s criterion also
for backtracking matchers. Further, note that Greedy also obtains significantly better
results thanRandom, proving that our informed search strategies are better in generating
hard text than uninformed search, giving the positive answer to R3. In the following,
we will therefore only consider the Counting strategy. The table also shows that
Hyperscan, SRM, and Chipmunk are more robust towards being attacked by our ReDoS
texts: SRM has a special support for counters and Chipmunk is a matcher that uses
counting set automata (Section 80). We will discuss Hyperscan in Section 5.3.
In Table 5.4 or Figure 5.4, we provide a comparison of the number of >>>100×××AVG

MATCHER-ReDoS texts generated by the tools. Again, note that a slowdown of >100
times wrt. the global average for the matcher was achieved on many regexes for online
DFA-simulation-based matchers (2,457 for grep, 742 for RE2, 1,016 for Rust, and
300 for SRM). Since the global average matching time for PHP was 3.1 s and we used
the timeout of 300 s for matchers, in this table, the PHP column contains the number of
timeouts instead. A more detailed analysis for other slowdown ratios is in Figure 5.3.
Notice that although Hyperscan looks almost invincible in the results in Table 5.2, we
are able to slow it down by a factor of 10–50 in many instances (543).
On the other hand, Table 5.5 or Figure 5.5 compare the numbers of generated

>>>100×××AVGREGEX-ReDoSes. In this case, a slowdown of >100 times wrt. the average
time for the matcher and the regex was also achieved often for online DFA-simulation-
based matchers (1,157 for grep, 1,465 for RE2, 1,066 for Rust, and 279 for SRM).
We conclude that many counting regexes can be successfully attacked using ReDoS

texts created by our generator.
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Table 5.4: Numbers of regexes with successfully generated >>>100×××AVGMATCHER texts.

>>>100×××AVGMATCHER-ReDoS attacks
Generators grep re2 rust srm hyper-

scan ca ruby php perl python java java-
Script .NET

Greedy 1744 15 19 96 20 44 261 39 382 368 330 316 433
Counting 2457 742 300 1016 5 67 1355 1596 1473 277 279 258 416
OneLine 1796 17 99 23 20 53 322 34 441 448 405 379 521

G
a
d
g
e
t
C
A

Random 2033 120 122 289 3 46 348 388 412 176 177 117 258
RXXR2 13 0 0 2 0 1 24 0 5 30 10 10 34

RegexCheck 104 0 0 5 1 0 7 1 7 11 8 4 14
RegexStatic 93 1 0 9 1 7 159 50 80 263 253 243 279
Rescue 12 0 0 3 0 2 23 2 5 23 13 12 26
Revealer 24 1 0 7 0 3 37 11 32 59 50 46 62

Table 5.5: Numbers of regexes with successfully generated >>>100×××AVGREGEX-ReDoS
texts.

>>>100×××AVGREGEX-ReDoS attacks
Generators grep re2 rust srm hyper-

scan ca ruby php perl python java java-
Script .NET

Greedy 878 14 57 12 23 0 164 9 174 232 190 194 203
Counting 1157 1465 1066 279 2 3 1085 796 1252 407 142 140 171
Random 1066 320 292 130 0 0 153 156 266 91 63 60 72

G
a
d
g
e
t
C
A

OneLine 966 15 57 16 23 0 199 9 208 277 232 228 238
RXXR2 1 0 2 0 0 0 10 0 4 22 8 8 20

RegexCheck 4 0 4 0 0 0 3 0 0 4 3 2 2
RegexStatic 47 5 5 0 0 0 80 14 49 137 125 134 90
Rescue 1 2 4 0 0 1 12 2 6 15 7 6 14
Revealer 2 0 2 0 0 0 8 0 8 18 6 19 13

R2: Regexes without counting. The second experiment shows that when targeting
automata-based matchers, it is indeed important to exploit counting.
Since the set SUPPORTED is too large for us to run a ReDoS generator for each regex,

we use a quick filter based on the intuition that ReDoS in these matchers is caused by
generating many large DFA states. Hence we run DFA construction for each regex from
the set. If the construction terminates with less than 1,000 states, we consider the regex
safe. After 1,000 DFA states, the construction is stopped, and the regex is marked as
possibly vulnerable. This test is quick, since constructing 1,000 DFA states is fast, and
the vast majority of the regexes have even much smaller DFAs.
To assess the accuracy of the test in predicting that a regex is not vulnerable for

automata-based matchers, we apply the test on the regexes from ABOVE20 for which we
did manage to generate a ReDoS text for automata-based matchers (cf. the experiment
in R1). From ∼2,000 of them, only grep and Rust had cases with DFA smaller than
1,000 states, namely 24 cases, 6 for grep and 18 for Rust (RE2, Chipmunk, Hyperscan,
and SRM had none). These counterexample cases witness that our filter is not always
right, at least for grep and Rust, and ReDoS with automata-based matchers might be
possible even with small DFA. Still, the scarcity of these cases confirms that the test is
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Figure 5.3: Histogram of ratios between times of matchers for random and ReDoS text
generated by GadgetCA.

a good predictor even for grep and Rust.5
Running the test on SUPPORTED resulted in the following numbers of regexes with

DFAs with >1,000 states:

NOCOUNTERS BELOW20 ABOVE20
175 (0.04%) 343 (0.8%) 1,600 (20%)

We then used GadgetCA to generate ReDoS candidates for the regexes inNOCOUNTERS
∪ BELOW20 whose DFAs had more than 1,000 states. Only 7 regexes caused >>>100s-
ReDoS for automata-based matchers, two for grep— ‘\^.{20}\$’ and ‘\^_.{19}\$’
(note that both also contain “higher bounds” for the quantifiers)—and 5 for SRM.
A >>>10s-ReDoS was caused by 24 regexes for grep and ∼6 regexes for each of RE2,
Rust, and SRM. The relative sizes of the sets indicate that regexes without higher
repetition bounds are much less vulnerable to ReDoS for automata-based matchers
(518 vulnerable from 435,166 in NOCOUNTERS ∪ BELOW20 while 1,600 vulnerable
from 8,099 in ABOVE20).

R4: Comparison with other generators. Our next experiment confirms that our
generator can create new ReDoS attacks much more effectively than existing tools.
First, compare the middle part of the left- and right-hand side of Figure 5.2. For other

generators, the ten-fold stronger >>>100s-ReDoS criterion makes almost no difference:
they cannot find and exploit the features of the regex that make the matchers slow
down (both for automata-based and backtracking matchers). The same holds for
the >>>100×××AVGMATCHER and >>>100×××AVGREGEX-ReDoS criteria in Figure 5.4.
Second, compare the bottom part (random text) with the middle part of the table.

For counting regexes, a random text is in the majority of cases actually better in
creating a ReDoS than current state-of-the-art ReDoS generators (only RegexStatic
can keep up with the random text on some matchers). Relating this to GadgetCA in

5The 24 cases are probably caused by specific implementation techniques or different interpretation of
the regexes. The 18 cases of Rust seem to be related to handling of large character classes (\w appears
in all 18 cases).
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the top part of the table reveals that the numbers of successfully attacked regexes for
the two criteria differ significantly, hence GadgetCA indeed succeeds in exploiting
the critical feature of the regex.
Third, the comparison of the top part with the middle part of the table shows that
GadgetCA significantly outperforms other matchers on online DFA-simulation-based
matchers and most of the other generators even on backtracking matchers (the only
exception being RegexStatic, which is comparable on some backtracking matchers).

Figure 5.4: Histogram of numbers of regexes with successfully generated
>>>100×××AVGMATCHER.

Figure 5.5: Histogram of numbers of regexes with successfully generated
>>>100×××AVGREGEX.

R5: Real-world security solutions. Our final experiment asks whether the results
obtained in R1 carry over to real-world security solutions, which should be prepared
for being targeted by (Re)DoS. We carried out an extensive evaluation of the abilities
of Snort 3 [63], a popular and often used NIDS, which internally uses Hyperscan,
to withstand ReDoS attacks generated by GadgetCA. Instead of using some of the pre-
viously introduced datasets, which might contain regexes created by people unaware
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of the dangers of ReDoS, we used regexes from rulesets provided with Snort, which
are written by security experts and tested in production. In particular, we used regexes
from the following four rulesets: (i) Emerging Threats Pro, (ii) Emerging Threats
3CORESec (versions 157 and 164), and (iii) Talos LightSPD (version 2021-03-11-001).
We call the obtained set of 1,112 PCRE regexes SNORT (from the original 22,425
original regexes we removed 16,094 regexes not supported by our tool, and then filtered
the 1,112 regexes with quantifier bounds at least 20). The experiment was run in two
different settings: (i) on a commodity x86_64 machine with Snort using Hyperscan
and (ii) on a computer with an NVIDIA BlueField-2 card [70], which provides its own
hardware-accelerated regex matching solution.

Modified ReDoS generator. In this experiment, we use a modified version of our
ReDoS generator for the reason that although Hyperscan, used within Snort, can
be counted as an automata-based matcher, it is not based on online DFA-simulation.
Experiments discussed in the previous sections indeed show that our ReDoS generator,
which targets mainly online DFA-simulation, is only mildly successful with Hyperscan.
We therefore use here a modification of GadgetCA tailored for Hyperscan.
We specifically target the following coarse abstraction of Hyperscan’s matching

algorithm: the regex is split into a sequence of sub-strings (not containing any regex
operator) and sub-regexes (or a choice of such sequences) so that a word is matched
if it is a concatenation 𝑤 = 𝑣1 · · · 𝑣𝑛 of the sub-strings of the given regex and words
matched by the sub-regexes. The first phase of matching tests whether 𝑤 contains
all the sub-strings in the right order, by an extension of the Boyer-Moore algorithm.
The second phase tests whether the remaining sub-words are matched by the respective
sub-regexes. The opportunity for slowing Hyperscan down is in the second phase,
which uses NFA-simulation to match the sub-expressions.6
We therefore aim at generating evil texts that contain the needed sequence of sub-

strings and therefore pass the first phase of matching, and where the second phase is also
hard. To do that, we use our generator to get a single evil word 𝑢 over a run that takes
the CsA from the initial to a final state. The word is essentially generated by the first
iteration of the while-loop on Line 64 of Algorithm 4 parameterised with the strategy
Counting (a single CsA run that aims at maximising the sizes of counting sets).
The word 𝑢 is then iterated to get the output text 𝑤 = 𝑢𝑢𝑢𝑢 . . . of the required length.
A word 𝑤 generated this way is likely to be evil for the following two reasons: (i) every

occurrence of 𝑢 in 𝑤 contains all sub-strings, generating many possible splits of 𝑤 into
the sub-strings and the parts to be matched by the sub-regexes; (ii) the word 𝑢, generated
by our generator, is likely to force large DFA states, expensive for NFA simulation.
Note also that, unlike for online DFA simulation, it does not matter that the encountered
DFA states are likely to be found repeatedly in the repeating instances of 𝑢 since NFA
simulation is not caching the DFA.

6Our abstraction of Hyperscan is obviously coarse, but simple and sufficient for our needs: to show that
methods similar to those for online DFA-simulation can be used to find vulnerabilities of Hyperscan
too. A specialised ReDoS generator based on a more thorough analysis of Hyperscan’s algorithm
might yield better results, but is already out of the scope of this thesis.
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(a) Snort 3@Hyperscan
(1,500B)

(b) Snort 3@Hyperscan
(9,000B) (c) NVIDIA BlueField-2

Figure 5.6: Histograms of slowdowns for Snort 3 with Hyperscan (packet sizes 1,500B
and 9,000B) and BlueField-2 regex matching for ReDoS texts over random texts.

Snort with Hyperscan on x86_64. We installed Snort 3 with enabled performance
monitor and Hyperscan on a commodity x86_64 machine (we used Intel i7-10510U
CPU@1.80GHz with 4 Hyper-Threading cores). Then, we were running Snort on
100MB-large PCAP files with random and ReDoS IPv4 traffic that we generated and
captured the processing time of the regex matching engine, as provided in the output
of the performance monitor module. We ran two experiments with two different
sizes of IP packets for two selected Ethernet frames’ MTUs: 1,500B and 9,000B
(we note that bigger sizes of the payload could be used to attack Snort with TCP
reassembly turned on). See Figures 5.6a and 5.6b for the slowdown that we achieved
with our ReDoS text over random text.
The histograms clearly show the Snort rulesets we used contain many possibilities

for slowing Snort down (see Section 5.3 for the most vulnerable regexes). In particular,
using packet size of 1,500B, in 43 cases we achieved a slowdown of over 40×, with
2 regexes slowing the matcher down over 100×. The number of vulnerable regexes is
even higher for the packet size 9,000B: 91 regexes yield a slowdown of over 50× and
32 regexes over 100×.
We contacted the development team of Snort and did the responsible disclosure of

the discovered vulnerable regexes. Snort development team stated that the vulnerability
is stemming from the Hyperscan library, and they mitigate it by restricting the length of
packets on which the matching is performed as well as by using timeouts (the standard
configuration of Snort comes with the backtracking-based PCRE engine enabled,
which is, however, even more prone to attacks). This might, however, lead to skipping
themalicious content that can be presented at the end of the packet/data, making theNIDS
ineffective: malicious packets may get passed to applications behind the NIDS.

NVIDIA BlueField-2. In the second part of this experiment, we used an NVIDIA
BlueField-2 data processing unit (BF2) MBF2H332A-AEEOT [69], which integrates
eight 64-bit ARMv8 Cortex-A72 cores and houses two 25GbE interfaces. BF2 provides
hardware-accelerated regex matching capabilities, accessible via NVIDIA’s data plane
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development kit (DPDK) [70]: in our experiments, we used the regex compiler rxpc
and the testbed for the regex matching engine called rxpbench. In this experiment, we
ran rxpbench on blocks of random and ReDoS texts of the length 100GB (this time,
we did not need to chunk the texts into packets and provided the text directly in memory)
and measured the throughput of the matcher. We measured that the regex matching
engine itself enables in-memory processing at ∼40Gbps. For the evaluation, we used
a subset of SNORT rules containing 617 regexes that we name SNORT-BF2 (we took all
regexes from SNORT that could be compiled by rxpc, which does not support some
advanced features of PCRE, such as negative look-ahead).
See Figure 5.6c for histograms of slowdowns we obtained with our ReDoS text as

compared to random text. Observe that we obtained a slowdown of more than 100×
on the ReDoS text in over 92 cases. Moreover, for 16 cases, we obtained a slowdown
over 500× (with the highest slowdown ratio being 2,194×). See Section 5.3 for a list of
regexes on which we obtained the largest slowdown. We have reported the vulnerability
to NVIDIA, which confirmed it to be caused by a conceptual limitation of their regex
matching engine. We plan to cooperate on a possible mitigation.
Our results indicate that ReDoS attacks are in general successful in slowing down

the throughput of the most recent hardware utilized for NIDS in the industry. Moreover,
we emphasize that for a successful ReDoS attack on an NIDS, it suffices to have a single
vulnerable rule in the used rulesets.

Attacks on real-world security solutions. In Tables 5.6 and 5.7, we provide ex-
amples of regexes for which we managed to obtain a significant slowdown of Snort
(with Hyperscan as the regex matching engine) and the NVIDIA BlueField-2 DPU
respectively.

5.4 Mitigation Techniques

Standard techniques for mitigation of ReDoS attacks are the following: (i) setting
a resource limit (e.g., a timeout) and (ii) limiting the size of the input (e.g., to the first
100 characters) of the regex matcher. Although such techniques can avert the scenario
of a server becoming unresponsive, they leave a part of the input traffic not classified
and potentially harmful or unnecessarily dropped. A mitigation specific for regexes with
the counting operator is to substitute it by the star ‘*’ operator, which over-approximates
the language of the original regex (this might yield other issues, such as increasing
the number of false positives in an NIDS).
There are, however, two ways how users of regex matchers can mitigate the attacks

without the mentioned disadvantages:

1. Use our ReDoS generator GadgetCA to evaluate whether a regex is ReDoS-
vulnerable.

2. Use amatching algorithm that can handle counting efficiently, the one implemented
in the tool CA or possibly also SRM (these matchers are still too immature to be
used in production, but an efficient implementation of the techniques they use
within RE2 or Hyperscan should give rise to a robust regex matching solution).
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5.5 Conclusion

We have shown that nonbacktracking automata-based regex matchers, which are some-
times suggested as amitigation ofReDoS, are still ReDoS-vulnerable. We have developed
a method for constructing inputs for these matchers that make them perform poorly and
cause significant slowdown on a large class of regexes, in particular those with counting.
In future, we plan to focus on developing robust regex matchers that could prevent

these kinds of attacks. A first proof of concept is the matcher CA from Chapter 5, but
the class of counting regexes it support is quite restricted; we will therefore explore
formal models that can deal with more general classes of counting regexes efficiently.
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Table 5.6: Slowdown of regex matching in Snort3 with Hyperscan on x86_64.

SID Slowdown
(MTU=9000B)

Slowdown
(MTU=1500B) Regex

46310 213.95 78.89 [?&]u=[^&\s]{35}
31068 172.32 50.49 <hostname>.{0,250}[\x60\x3b\x7c\x24\x28\x26]

2644 165.81 65.57 \(\s*TIMESTAMP\s*(\s*(\x27[^\x27]+’|\x22[^\x22]+\x22)
\s*,)\s*((\x27[^\x27]{1000,})|(\x22[^\x22]{1000,}))

13364 163.52 71.15 src\s*\x3D(3D)?\s*[’"][^’"]{244}
19925 160.95 58.7 value\s*=\s*[\x27\x22][^\x27\x22]{257}

2102614 157.95 52.68 TIME_ZONE\s*=\s*((\x27[^\x27]{1000,})|(\x22[^\x22]
{1000,}))

17659 157.41 79.18 \s*\x28(\x27[^\x27]{64}|\x27[^\x27]*\x27\s*,\s*\x27[^\x27]
{64})

2611 157.39 49.67 USING\s*((\x27[^\x27]{1000})|(\x22[^\x22]{1000}))
46309 152.34 65.7 [?&]p=[^&\s]{260}
39982 145.5 55.61 [?&]sn=[^&]{129}

2651 140.95 51.26 NUMTO(DS|YM)INTERVAL\s*\(\s*\d+\s*,\s*((\x27[^\x27]
{1000,})|(\x22[^\x22]{1000,}))

2102699 138.15 49.25 TO_CHAR\s*\(\s*SYSTIMESTAMP\s*,\s*(\x27[^\x27]{256}
|\x22[^\x22]{256})((

19121 136.82 63.89 SET\s*EXPLAIN\s*FILE\s*TO\s*[\x22\x27][^\x22\x27]{927}

2640 135.24 56.41 \(\s*(\x27[^\x27]*’|\x22[^\x22]+\x22)\s*,\s*(true|false)\s*,\s*
((\x27[^\x27]{1000,})|(\x22[^\x22]{1000,}))

15114 135.06 51.46 embed src=\s*(\x27[^\x27]{1000}|\x22[^\x22]{1000}|[^\s\x22
\x27]{1000})

16516 121.4 44.42 sys\x2eolapimpl\x5ft\x2eodcitablestart\x28[^\x2c]+
\x2c[^\x2c]+\x2c\s* \x27?[^\x2c\x27]{303}

29184 120.92 54.3 encoding\x3D[\x22\x27][^\x22\x27]{1024}
14991 120.65 61.81 select\s+xmlquery\s*\x28\s*(\x27|\x22)[^\x27\x22]{512}
43005 120.52 35.49 [?&]psk=[^&]{256}
29185 118.76 50.13 version\x3D[\x22\x27][^\x22\x27]{1024}
33310 117.95 54.87 \x3C\x21ENTITY\s+.*\s+\x22\x26[^\x22] {700}
27808 110.1 29.94 \x2f\?[a-f0-9]{60,66}
42078 108.17 43.24 [?&](cmd|pwd|usr)=[^&]{64}
2488 106.01 43.94 name=\s*[^\r\n\x3b\s\x2c]{300}

108



Table 5.7: Slowdown of regex matching at an NVIDIA BlueField-2 card.

SID
Thourghput on
Random Text

[Gbs]

Thourghput on
Redos Text

[Gbs]
Slowdown Regex

2046 41.24 0.02 2,193.76 /\sPARTIAL.*BODY\.PEEK\[[^\]]\1024\/
19213 41.19 0.02 1,681.04 /Subject\x3a\x20[^\n]*\x3fQ\x3f[^\n]{512}/
17367 40.30 0.03 1,174.83 /\d{3}\s+[^\n]{1019}/
6507 41.09 0.04 957.74 /\x2fnds[^\r\n]{1000}/
1021 41.21 0.04 956.06 /\s{230,}\.htr/
20241 40.66 0.04 947.72 /Oid\x3D[^\x0D\x0A]{1000}/

15489 40.58 0.04 920.28 /\x3cimg[^\x3e]*src\x3d(\x22|\x27)?[^\x22\x27\s]
{300}/

3547 40.79 0.05 829.08 /php.*\x3f[^\n]{256}/
25586 41.03 0.06 732.67 /host=[^&]{1024}/
8060 41.31 0.06 728.49 /GET\s\x2f[^\r\n]{900}/
31354 41.14 0.06 656.15 /\x28\x3f\x3d[^)]{300}/

3149 41.22 0.06 655.34 /object\s[^>]*type\s*=\s*[\x22\x27][^\x22\x27]*
\x2f{32}/

17568 41.11 0.06 641.29 /\w{3}\x25\x30\x30[^\r\n]{2000}/
4127 41.15 0.08 545.82 /\x2fnds\x2f[^&\r\n\x3b]{500}/
38287 40.97 0.08 543.40 /akey=[^&]{500}/
18484 41.14 0.08 536.42 /https?\x3a\x2f\x2f[^\n\r]{1000}/
43545 41.22 0.08 485.54 /-group[^\r\n\s]{1280}/
33310 40.96 0.09 469.76 /\x3C\x21ENTITY\s+.*\s+\x22\x26[^\x22]{700}/
2701 41.20 0.09 434.18 /sid=[^&\x3b\r\n]{255}/
2107 41.21 0.10 427.53 /\sCREATE\s[^\n]{1024}/
18579 41.18 0.10 426.76 /(Context|Action)\x3D[^\x26\x3b]{1024}/

20889 40.87 0.10 419.58 /<\s*valitem[^>]*\s(value|name)\s*=\s*([\x22
\x27])[^\x22\x27]{104}/

2826 41.28 0.10 416.17

/(\(\s*(\x27[^\x27]*\x27|\x22[^\x22]+\x22)\s*,
\s*(\x27[^\x27]{1075,}|\x22[^\x22]{1075,})
|\(\s*(\x27[^\x27]{1075,}|\x22[^\x22]{1075,})|

\(\s*((\x27[^\x27]*\x27|\x22[^\x22]+\x22)
\s*,\s*){2}(\x27[^\x27]{1075,} |\x22[^\x22]
{1075,}))/

2826 40.73 0.10 410.57

/(\(\s*(\x27[^\x27]*\x27|\x22[^\x22]+\x22)\s*,
\s*(\x27[^\x27]{1075,}|\x22[^\x22]{1075,})

|\(\s*(\x27[^\x27]{1075,}| \x22[^\x22]{1075,})|
\(\s*((\x27[^\x27]*\x27|\x22[^\x22]+\x22)\s*,\s*)
{2}(\x27[^\x27]{1075,}|\x22[^\x22]{1075,}))/

21671 41.16 0.10 403.94 /zip\x3a\x2f\x2f[^\x0A\x20\x09\x0B\x0C\x85
\x3E\x3C]{400}/

20240 41.20 0.11 375.87 /Template\x3D[^\x0D\x0A]{1000}/
27940 41.08 0.11 374.44 /password=[^\x26]{1024}/
2103070 41.00 0.11 361.25 /\sFETCH\s[^\n]{500}/
36195 41.21 0.12 338.07 /actserver=[^&]{982}/
36196 40.86 0.12 335.47 /actserver=[^&]{987}/
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6
Conclusions and Future Directions

Here, we give a final summary of the main points of this thesis and discuss briefly
possible further research directions.

6.1 Summary of the Contributions

We investigated the problem of efficient pattern matching, especially ReDoS attacks,
from both side—from the side of users who want to protect their systems and have their
services still available, and from the side of attackers who want to discover vulnerabilities
of systems that use regex matchers. We studied the ways of fast matching and the ways
of detecting vulnerability of existing regex matchers. We focused on automata-based
matchers, especially on those based on online DFA-simulation, which are considered
most robust and efficient regex matching engines used nowadays in practice. Namely,
we investigated one of the known potential sources of performance problems which are
considered regular expressions with bounded repetition.
We presented the first systematic large-scale study of vulnerability of automata-based

matching focused on bounded repetition. To this end, we proposed a new ReDoS
generator, called GadgetCA, that can generate attacks on automata-based matchers used
in practice. It is based on the observation that automata-based regex engines generate
a part of the state space of DFAs. The algorithm forces them to generate an enormously
large state spaces. The study revealed that bounded repetition indeed poses a serious
security threat formata-based as well as backtracking matchers. It showed that our
generator GadgetCA is indeed significantly more successful in creating ReDoS attacks
on the given regexes than current state-of-the-at ReDoS generators. We also found that
if a regex does not contain bounded repetition, it mostly cannot be used to perform
a ReDoS attack on automata-based matchers.
We worked towards improving the matching technique based on online DFA-

simulation to handle also regexes with bounded repetition which allows for algorithms
running reliably in time linear to the length of the text and independent of the repetition
bounds. The general approach is based on first compiling the regexes into nondeter-
ministic CAs and then its determinisation. The main problem is to find a succinct
deterministic representation that can perform fast matching linear to the length of the text
and independent of repetition bounds.
We made the first step towards succinct determinisation of CAs to deterministic CAs

based on generalized subset construction. Our algorithm can produce deterministic CAs
exponentially more succinct than the corresponding DFAs. We also developed a simpli-
fied and faster version of the general algorithm for the sub-class of so-called monadic
CAs. This class is of particular practical relevance since we discovered that most of the
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regular expressions with bounded repetition used in practice are of this form. The worst-
case complexity of the specialised algorithm is only polynomial in the maximum values
of repetition bounds (in contrast to the exponential naive construction). The experiments
confirmed that our algorithm produces significantly smaller automata and mitigates the
risk of the state space explosion causing a complete failure of determinisation.
The main contribution of this thesis was obtained when we elaborated the determinisa-

tion using the idea representing many counters with counting sets. We proposed succinct
transformation of a CA into a deterministic CsA, an automaton with a special type of
registers which can hold a set of integer values, so-called counting sets. The counting
sets support a limited selection of simple set operations that can be implemented to run
in constant time regardless of the size of the set. Thus the algorithm produces CsA
whose size is independent of the counter bounds and the matching is linear to the length
of the input text. Moreover, we proposed a novel compilation of regexes to CAs which
generalizes the Antimirov’s derivative construction. It is cheap and produces automata
without 𝜖-transitions whose size is independent of the repetition bounds and linear in
the size of the regex. We have implemented the matching algorithm based on CsA
simulation into a prototype tool Chipmunk. We conducted an extensive experimental
evaluation. We targeted a wide range of regexes with bounded repetition coming
from various real-life applications. We compared the speed of matching of individual
matching engines, namely, grep, RE2, SRM, and .NET. We found that Chipmunk is
much more robust, outperforms the state-of-the-art matchers on regexes with bounded
repetition and is not dependent on the size of repetition bounds. It easily solves most of
cases in which the existing matchers struggle due to bounded repetition.

6.2 Further Directions

There is a number of interesting directions of further work. We have already started to
work in some of these directions. We intend to explore the limits of the idea of counting
sets to enlarge and clearly delimit the class of regexes and counting automata that can
be succinctly determinised while preserving fast matching. We also plan to explore
possible usage of CsAs as a replacement of classical automata in other applications
where automata are used, for instance, as symbolic representations of state spaces. For
this, we intend to develop CsA counterparts of essential automata techniques, such as
Boolean operations and minimization, size-reduction techniques or language emptiness.
In case of ReDoS detectors, we see a possibility to further specialize detection of ReDoS
attack for specific matchers.
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