
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

APPLICATIONS OF FORMAL METHODS
IN APPROXIMATE COMPUTING
VYUŽITÍ FORMÁLNÍCH METOD V PŘIBLIŽNÉM POČÍTÁNÍ

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. JIŘÍ MATYÁŠ
AUTOR PRÁCE

SUPERVISOR doc. RNDr. MILAN ČEŠKA, Ph.D.
ŠKOLITEL

CO-SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
ŠKOLITEL SPECIALISTA

BRNO 2023



Abstract
As the Moore’s Law ceases to hold, the ever increasing demand for high performance
and lower power computer systems leads to the emergence of novel alternative computing
paradigms. One of these paradigms is the so called approximate computing – a technique
aiming to increase the efficiency of computations by introducing some errors into the com-
puted results. This paradigm is mainly applicable in the error resilient applications – a class
of applications where the absolute precision of the result is not critical, the most prominent
of which include neural networks, multimedia and signal processing, or data mining. Nat-
urally, techniques for approximate computing developed at various levels of the computing
system architectures - the hardware, memory, operating system and software levels.

This thesis aims at the search-based design techniques for approximate arithmetic cir-
cuits. Circuit approximation is a crucial domain of approximate computing, as the approx-
imate circuits can serve as the basic building blocks for larger systems and applications.
We focus on the automated search-based approaches, which often work iteratively: in each
iteration they 1) create the approximate candidates (synthesizer component), 2) evaluate
their error with respect to the correct solution (analyser component). To successfully ap-
proximate complex circuits, the search based approaches usually need to perform a high
number of iterations. Therefore, efficient synthesizer and analyser components are essential.

In order to improve the performance of the approximation process, we employ formal
verification methods in both the synthesizer and analyser components of a circuit design
loop implemented using Cartesian Genetic Programming. The evaluator component is ac-
celerated with the utilisation of a novel construction of the specialised intermediate circuits
called the approximation miters. The miters allow us to translate the error quantification
procedure to a decision problem that can be evaluated using a SAT solver. We further en-
hance the performance of the search algorithm by integrating it with a verifiability driven
strategy that guides the search towards promptly verifiable circuits and thus performs a
significantly higher number of iterations, leading to a better quality of the final approxi-
mate solutions. We also improve the performance of the synthesizer component using an
integration of satisfiability based local sub-circuit optimisation with the search algorithm.
This effectively allows the search strategy to escape local optima and to further improve
the quality of the solution. Finally, we propose a novel mutation operator tailored to circuit
approximation that improves the overall performance of the approximation process.

The research presented in this thesis fundamentally improves the capabilities of the
current search-based circuit approximation techniques and thus allows us to design approx-
imate circuits with large bit-widths and complex structure (e.g. 32-bit multipliers or 128-bit
adders) with the best known trade-offs between the power consumption and approximation
error.
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Abstrakt
V minulosti se výkon počítačových systémů zvyšoval hlavně díky tzv. Mooreovu zákonu –
každé dva roky se počet transistorů na čipu přibližně zdvojnásobí. V současné době tento
zákon přestává platit a tak se objevují a vyvíjí nové alternativní výpočetní přístupy, které
mají za úkol zrychlit a zefektivnit výpočetní systémy. Jedním z těchto přístupů je tzv.
aproximované počítání, které se snaží urychlit a zefektivnit výpočty za cenu přijatelných
nepřesností ve výsledcích. Tento přístup je aplikovatelný hlavně v oblastech, které jsou
přirozeně odolné vůči chybám – např. neuronové sítě nebo zpracování multimédií. Techniky
pro aproximované počítání se postupně vyvinuly na všech úrovních výpočetních systémů.

V rámci této práce se zaměřujeme na prohledávací algoritmy pro přibližný návrh hard-
warových aritmetických obvodů. Aproximace aritmetických obvodů má velký potenciál,
protože tyto obvody slouží jako základní stavební kameny větších systémů. Automati-
zované prohledávací aproximační algoritmy často pracují iterativně. V každé iteraci se
nejprve vytvoří kandidátní aproximovaná řešení (pomocí komponenty zvané syntetizér), a
poté se vyhodnotí jejich chyba vzhledem ke správnému řešení (komponenta analyzátor).
Pro získání kvalitních aproximovaných obvodů musí prohledávací algoritmy vykonat velké
množství těchto iterací. Proto je nutná vysoká efektivita syntetizéru i analyzátoru.

Abychom zvýšili výkonnost těchto komponent, zapojujeme do prohledávacího algoritmu
založeném na Kartézském genetickém programování (CGP) metody formální verifikace.
Analyzátor je akcelerován za použití speciálního obvodu zvaného aproximační miter, který
nám umožňuje převést vyhodnocení chyby obvodu na rozhodovací problém a tento problém
vyřešit pomocí nástrojů zvaných SAT solvery. Další zrychlení aproximačního algoritmu
přináší nově navržená strategie, která uvaluje limit na prostředky, které může SAT solver
využít při vyhodnocování chyby kandidátních řešení. Díky tomuto limitu je evoluční algo-
ritmus motivován hledat rychle verifikovatelná řešení. Výsledkem je větší množství iterací
prohledávacího algoritmu a tím pádem také vyšší kvalita výsledných aproximovaných ob-
vodů. Použitý evoluční algoritmus se může během aproximace "zaseknout" v tzv. lokálních
optimech. Navržené vylepšení syntetizéru integruje CGP a optimalizaci pod-obvodů využí-
vající SAT solver umožňuje evolučnímu algoritmu uniknout z lokálních optim. Díky tomu
může algoritmus dále zlepšovat řešení i v případech, v nichž by se původní varianta CGP
již dále nezlepšila. Dalším navrženým vylepšením syntetizéru je nový mutační operátor pro
CGP, vytvořený speciálně pro co nejefektivnější aproximaci obvodů.

Výsledky prezentované v rámci této dizertační práce výrazně vylepšují výkonnost prohle-
dávacích algoritmů pro aproximaci aritmetických obvodů. Díky tomu můžeme získat aproxi-
mace obvodů velkých bitových šířek se složitou vnitřní strukturou (např. 32bitové násobičky
nebo 128bitové sčítačky), které poskytují doposud nejlepší známý poměr mezi aproximační
chybou a spotřebou elektrické energie.
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Rozšířený abstrakt
V současné době přestává platit Mooreův zákon, a tak se objevují a vyvíjí nové alternativní
výpočetní přístupy, které mají za úkol zrychlit a zefektivnit výpočetní systémy. Jedním z
těchto přístupů je tzv. aproximované počítání, které se snaží urychlit a zefektivnit výpočty
za cenu přijatelných nepřesností ve výsledcích. Aplikace, ve kterých je tento přístup nejlépe
aplikovatelný, se nazývají přirozeně odolné vůči chybám. Mezi tyto oblasti patří především
zpracování signálu a multimédií, dolování z dat nebo neuronové sítě. Techniky pro aproxi-
mované počítání se postupně vyvinuly na všech úrovních výpočetních systémů – na úrovni
výpočetního hardware, pamětí i počítačových programů.

V rámci této práce se zaměřujeme na aproximaci hardwarových aritmetických obvodů.
Cílem aproximace je nalézt takové aritmetické obvody, které poskytují co nejlepší rovnováhu
mezi chybou výpočtu a úsporou elektrické energie. Aproximace aritmetických obvodů má
velký potenciál, protože tyto obvody slouží jako základní stavební kameny mnoha počí-
tačových systémů. Pomocí menších efektivních aproximovaných komponent je tak možné
sestavit komplexní aproximovaný systém.

V minulosti byly přibližné obvody navrhovány především manuálně. Manuální návrh
ale není dostačující, protože vyžaduje expertní znalosti konkrétní implementace daného
obvodu, a často neposkytuje adekvátní úspory vzhledem k velikosti chyb výpočtů. Proto
se stále více rozvíjejí automatizované aproximační algoritmy, které si kladou za cíl rychle,
efektivně, a bez nutnosti externích zásahů tvořit kvalitní aproximace hardwarových obvodů,
a to bez ohledu na jejich funkci, implementaci a velikost. Předmětem této práce jsou tzv.
prohledávací aproximační algoritmy. Převážná většina těchto algoritmů pracuje iterativně.
V každé iteraci se nejprve vytvoří kandidátní aproximovaná řešení (pomocí komponenty
zvané syntetizér), a poté se vyhodnotí jejich chyba vzhledem ke správnému řešení (kompo-
nenta analyzátor). Pro získání kvalitních aproximovaných obvodů musí prohledávací algo-
ritmy vykonat velké množství těchto iterací. Proto je nutná vysoká efektivita syntetizéru i
analyzátoru.

Jako základ pro prohledávací algoritmus pro aproximaci obvodů slouží v rámci této
práce specializovaná varianta evolučních algoritmů, tzv. Kartézské genetické programování
(CGP), do níž integrujeme metody formální verifikace. Analyzátor, který vyhodnocuje
chybu aproximovaného řešení, je akcelerován pomocí speciálního obvodu zvaného aprox-
imační miter. Tento obvod nám umožňuje převést vyhodnocení chyby aproximovaného
řešení na problém splnitelnosti Booleovské formule, který je řešitelný pomocí moderních,
vysoce efektivních programů zvaných SAT solvery. V rámci našeho výzkumu jsme navrhli
optimalizované implementace miterů pro vyhodnocení maximální absolutní a maximální
relativní chyby obvodu. Díky použití SAT solverů můžeme implementovat také další nově
navrženou prohledávací strategii, která uvaluje limit na prostředky, které může SAT solver
využít při vyhodnocování chyby kandidátního řešení. Díky tomuto limitu je evoluční al-
goritmus motivován hledat rychle verifikovatelná řešení. Výsledkem těchto vylepšení je
zrychlení prohledávacího algoritmu a jeho lepší škálovatelnost vzhledem k velikosti aprox-
imovaných obvodů. Navržená prohledávací strategie je první svého druhu, která dokáže
úspěšně aproximovat složité obvody velkých bitových šířek (např. 32bitové násobičky) s
formální zárukou na velikost aproximační chyby.

V další fázi našeho výzkumu jsme rozšířili strategii, která bere v potaz verifikovatelnost
kandidátních řešení, o adaptivní složku. Díky tomu nemusí vývojář pevně stanovit limit
prostředků pro vyhodnocení kandidátního řešení. Naopak, evoluční algoritmus sám dokáže
určit nejvhodnější limit podle aktuálního průběhu evoluce. V rozsáhlém experimentálním
vyhodnocení jsme ukázali, že adaptivní složka prohledávací strategie umožňuje dosáhnout



lepších aproximovaných řešení než pevné nastavení limitu, a to bez ohledu na typ a velikost
aproximovaného obvodu a velikost aproximační chyby. Adaptivní strategie dále posouvá
možnosti aproximačních algoritmů směrem k automatické aproximaci obecných obvodů.

Použitý prohledávací algoritmus se může během aproximace "zaseknout" v tzv. lokálních
optimech. V lokálním optimu evoluce nedokáže pomocí dostupných mutačních operací najít
vylepšení aktuálního kandidátního řešení a v dalších generacích již nepřináší žádná zlepšení.
Navržené vylepšení syntetizéru, které integruje CGP a optimalizaci pod-obvodů využívající
SAT solver, umožňuje evolučnímu algoritmu uniknout z lokálních optim. Díky tomu může
algoritmus dále zlepšovat řešení i v případech, v nichž by se původní varianta CGP již dále
nezlepšila. Prokládáním CGP aproximace a optimalizace pod-obvodů jsme dosáhli výrazně
vyšších úspor během dlouhých aproximačních běhů.

V poslední fázi této práce jsme zkoumali mutační operátory pro CGP dostupné v lit-
eratuře a jejich výkonnost při aproximaci aritmetických obvodů. Na základě získaných
znalostí jsme syntetizér vylepšili o nový mutační operátor pro CGP, vytvořený speciálně
pro co nejefektivnější aproximaci obvodů. Tento operátor kombinuje dva operátory známé
z literatury: 1) pro náš účel nejefektivnější obecný mutační operátor SAGM (Single active
gene mutation – mutace jednoho aktivního genu) a 2) operátor který se v jednom kroku
snaží eliminovat části aproximovaného obvodu. Dohromady tyto dva operátory tvoří kom-
binaci, která z počátku rychle eliminuje části obvodu, které nejsou potřebné k zachování
požadované funkcionality, a poté kandidátní řešení dále vylepšuje pomocí náhodných mu-
tací. Prezentované experimentální vyhodnocení demonstruje, že nově navržený mutační
operátor výrazně (a statisticky významně) předčí výkonnost dosud známých operátorů.

Výsledky prezentované v rámci této dizertační práce výrazně vylepšují výkonnost prohle-
dávacích algoritmů pro aproximaci aritmetických obvodů. Díky tomu můžeme získat aproxi-
mace obvodů velkých bitových šířek se složitou vnitřní strukturou (např. 32bitové násobičky
nebo 128bitové sčítačky), které poskytují doposud nejlepší známý poměr mezi aproximační
chybou a spotřebou elektrické energie.
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Chapter 1

Introduction

The following chapter contains a brief introduction to the doctoral thesis which is the result
of the author’s studies at the Brno University of Technology during the years 2017-2023.
First, we provide the current technical background and motivation for the research efforts.
Afterwards, we identify the research goals and objectives to be achieved in the scope of the
thesis. At the end, we briefly outline the contents of the rest of the document.

1.1 Motivation
In the past, the performance of computer systems had been steadily increased according to
the Moore’s Law. Thanks to the shrinking feature size of the complementary metal-oxide-
semiconductor (CMOS) components, the number of transistors on a chip roughly doubled
every two years. This led to a decrease of the chip’s voltage and current and subsequently
to increased working frequencies. However, with the sizes of transistors reaching the units
of nanometers, power dissipation has become a significant barrier that prevents this scaling
from continuing.

At the same time, the recent years saw the energy efficiency of computer systems become
one of the biggest challenges in the computer industry. The prolongation of the battery
life of mobile devices is one of the critical concerns for consumer electronics. Similarly, the
energy consumption of data centres accounts for a major part of their operational costs.

To satisfy the high demand for computer systems with increased computing performance
and power efficiency, various new paradigms have been researched. These new methodolo-
gies usually exploit specific features of the targeted applications to increase the throughput
and reduce the energy consumption. The paradigms have been developed at all levels of
the computer systems – the circuit, architecture, operating system, and software levels.

Approximate computing has been established as an emerging research field whose prin-
cipal goal is to increase the computational performance and reduce the system resource
demands. It achieves this goal by relaxing the requirement that its underlying computa-
tions are always performed correctly. Approximate computing makes use of the fact that
some applications are error resilient, that is, producing acceptable results even though the
computations are performed with a certain measure of error. Error resilient applications
are often related to human perception or have statistical nature – generally areas where
the exactness of results tends to not be critical. Prominent applications for approximate
computing include image and multimedia processing, signal processing, data mining, ma-
chine learning, neural networks, and scientific computations. In error resilient applications,
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the error can be used as a design metric and traded for the area on the chip, power con-
sumption, or runtime. Chippa et al. [22] claim that almost 80% of the runtime is spent in
procedures that could be approximated.

Several major approaches for approximate computing have been proposed, the most
prominent of which include: CPU voltage reduction lowering the power consumption at
the expense of causing sporadic arithmetic errors, approximate storage working with ap-
proximate data representation, or software approximation employing code simplification
techniques or randomised algorithms.

The research efforts described in this thesis build mainly on an approximation technique
called the functional approximation. The key idea of this approach is to implement the sys-
tem with a functionality that slightly differs from the original specification, provided that
the error is acceptable and the resource consumption (e.g. power consumption or circuit
size) is reduced adequately. Such an approximate solution is usually obtained by a pro-
cedure that modifies the original (hardware or software) implementation. We will further
focus on functional approximation in the context of combinational hardware circuits, which
is the research focus of this thesis. Combinational circuits, such as adders or multipliers,
are especially interesting for approximation, because they are widely used in almost every
computer system. Approximate versions of the these circuits can serve as the basic building
blocks of larger approximate systems used in many different applications. For example, ap-
proximate combinational circuits have recently been utilised in the acceleration of hardware
neural networks [3], image compression [1], and digital signal processing [131].

Originally, the functional approximation was performed manually and required an ex-
pert knowledge of the initial exact circuit. The expert modified the non-critical parts of the
circuit to obtain resource savings at the cost of the introduction of some errors into the cir-
cuit’s behaviour. Since manual redesign of complex circuits is very demanding and usually
does not produce adequate results, automated methods have been designed to function-
ally approximate both combinational and sequential hardware circuits. These automated
methods typically consist of two core components: (i) a synthesizer generating candidate
designs approximating the original circuit, and (ii) an analyser evaluating the quality of
the candidates, namely, quantifying the approximation error. The goal of the functional
approximation is to find a set of solutions that feature different trade-offs between the error
and other design metrics. The set should ideally closely approximate the so-called Pareto
optimal front.

With regards to the synthesizer and analyser components, we can generally define the
fundamental research challenges as follows. A high quality automated approximation pro-
cedure requires a synthesizer that generates suitable candidate solutions and can explore a
wide range of possible solutions at the same time. To be efficient, the procedure also needs
an analyser that can quickly evaluate the error of the candidate solutions and scales well
for larger problem instances.

Several systematic methods in hardware design have recently been developed to approx-
imate energy-critical hardware components. These methods represent different approaches
to the synthesizer component. They build on specially designed heuristic procedures that
iteratively modify the original correct solution to obtain Pareto fronts of solutions repre-
senting the trade-offs between the error and the design metrics. The most well known
systematic methodologies are SALSA [125], SASIMI [124] and ABACUS [81]. Generally,
these methodologies use heuristic procedures that try to identify the parts of the system
that are redundant or can be approximated. However, the space of approximate solutions
reachable this way is quite limited.
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Recent research has demonstrated [119] that evolutionary and search-based synthesizers
are well capable of generating high-quality Pareto fronts of approximate solutions. However,
a great number of candidate solutions has to be generated and evaluated in the process. A
new solution is usually promptly generated, while the candidate evaluation takes most of
the computational time. Therefore, it is essential to evaluate the quality of the candidate
solution as quickly as possible. An exact evaluation of the candidate solutions for complex
systems is usually replaced by statistical testing [49]. However, as shown in [21, 132],
many safety-critical applications favour provable error bounds on the resulting approximate
circuits, and thus the statistical testing is not sufficient.

To be able to provide bounds on the approximation error, one can, in theory, simulate
the circuit on all possible inputs. Unfortunately, such an approach does not scale beyond
circuits with more than 12-bit operands even when exploiting modern computing architec-
tures [78]. A similar scalability problem does, in fact, emerge even when using evolutionary
optimisation of circuits while preserving their precise functionality. To solve the problem
in that case, applications of formal verification methods [24, 92, 115] have been proposed.
Naturally, attempts to use formal verification methods – including binary decision diagrams
(BDDs) [114], Boolean satisfiability (SAT) solving [126], model checking [20], or symbolic
computer algebra employing Gröbner bases [34] – have appeared in the design of approxi-
mate circuits too. However, these approaches did still not scale beyond approximation of
multipliers with 8-bit operands and adders with 16-bit operands.

Overall, there is a decent amount of specialised ad hoc solutions for approximate circuit
design offering good results in narrow fields. Only a few general methodologies have been
developed but usually they do not supply the designer with satisfactory approximate designs
or have a very limited scalability.

1.2 Research Objectives
The principal aim of this thesis is to improve the automated search-based methods for
designing high-quality approximate arithmetic circuits. We will focus on enhancing of both
of the key steps affecting the performance of the design process:

1. improvements of the synthesizer (the algorithm that creates the candidate approx-
imate solutions), and

2. improvements of the analyser (the procedure that evaluates the quality of a given
candidate approximate solution).

The synthesizer should generate solutions that provide a good trade-off between the
approximation error and resource savings, and quickly converge to high quality solutions.
With an improved synthesizer, the search based algorithm should require a lower amount
of iterations needed to converge to an acceptable solution. While it is not possible for
a stochastic search based algorithm to always reach the same high quality solution, the
algorithm with a good synthesizer should consistently reach solutions with similar quality.

The analyser should be able to quickly and efficiently evaluate the approximation error
of various circuit instances. Ideally, the analyser should support multiple commonly used
error metrics and its evaluation speed should scale well for larger bit widths. A powerful
analyser allows us to perform more iterations of the search-based method and therefore find
better solutions.
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The improvements of both synthesizer and analyser should bring us closer to the ideal
approximation method: one that is fully automated, can produce high quality approxi-
mations quickly, can approximate various circuit instances, scales well for larger circuit
instances, and consistently finds solutions of similar quality.

1.3 Author’s Contribution
The author’s research contributions that were created in the course of their doctoral studies
are summarised below. For each item of the list, we also provide the ranking or impact
factor of the corresponding conference or journal in the year of publication. The publications
comprise the core of this thesis. The author of this thesis took an important part in the
formulation of the research ideas, designing methodological approaches, and writing of the
articles below. The author played an essential role in the implementation and experimental
evaluation of the proposed methodologies.

Conference papers

[13] M. Češka, J. Matyáš, V. Mrazek, L. Sekanina, Z. Vasicek and T. Vojnar. Approxi-
mating Complex Arithmetic Circuits with Formal Error Guarantees: 32-
bit Multipliers Accomplished. In: Proceedings of the 36th IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 416–423. IEEE (2017).
Rank A in CORE2017. (60 citations according to Google Scholar in March 2023.)

[16] M. Češka, J. Matyáš, V. Mrazek and T. Vojnar. Satisfiability Solving Meets Evo-
lutionary Optimisation in Designing Approximate Circuits. In: Proceedings
of the 23rd International Conference on Theory and Applications of Satisfiability
Testing (SAT), pages 481–491. Springer International Publishing (2020). Rank A in
CORE2020.

[18] M. Češka, M. Češka sr., J. Matyáš, A. Pankuch and T. Vojnar. Approximating
Complex Arithmetic Circuits with Guaranteed Worst-Case Relative Error.
In: Proceedings of the 17th International Conference on Computer Aided Systems
Theory (Eurocast), pages 482–490. Springer Verlag (2020). Rank B3 in Qualis.

[12] M. Češka, J. Matyáš, V. Mrazek and T. Vojnar. Designing Approximate Arith-
metic Circuits with Combined Error Constraints. In: Proceedings of the 24th
Euromicro Conference on Digital System Design (DSD), pages 785–792. IEEE (2022).
Rank B in CORE2021.
This work was finished and published during the writing of this thesis and further
extends some of its topics. For the sake of brevity and better coherence, we do not
include the results published in this paper in the thesis.

Journal papers

[15] M. Češka, J. Matyáš, V. Mrazek, L. Sekanina, Z. Vasicek and T. Vojnar. Adaptive
verifiability-driven strategy for evolutionary approximation of arithmetic
circuits. In: Applied Soft Computing, Volume 95, Number 106466. Elsevier (2020).
Impact Factor 6.65 (Web of Science, 2020) and quartile Q1 according to SJR.
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[17] M. Češka, J. Matyáš, V. Mrazek, L. Sekanina, Z. Vasicek and T. Vojnar. SagTree:
Towards Efficient Mutation in Evolutionary Circuit Approximation. In:
Swarm and Evolutionary Computation, Volume 69, Number 100986. Elsevier (2022).
Impact Factor 10.26 (Web of Science, 2022) and quartile Q1 according to SJR.

Tool papers

[14] M. Češka, J. Matyáš, V. Mrazek, L. Sekanina, Z. Vasicek and T. Vojnar. ADAC:
Automated Design of Approximate Circuits. In: Proceedings of the 30th
International Conference on Computer Aided Verification (CAV), pages 612–620.
Springer International Publishing (2018). Rank A* in CORE2018.

1.4 Thesis Outline
In this section, we briefly outline the structure of the thesis:

Chapter 2 contains a summary of the background knowledge for the area of approx-
imate computing. The chapter overviews the various existing approaches to approximate
computing, such as voltage overscaling, approximate storage, and approximate software. A
major part of the chapter is dedicated to the focus of this thesis – the field of approximate
arithmetic circuits and their design methodologies. These approaches range from manually
designed circuits to advanced automatic approaches, e.g. Boolean rewriting or netlist trans-
formation methods. Subsequently, the chapter focuses on both non-functional metrics (e.g.
circuit area, delay, etc.) and functional metrics (also error metrics, e.g. Hamming distance,
error rate) of approximate arithmetic circuits. Finally, we discuss the existing techniques
for error metric evaluation that include full simulation, partial simulation, and utilisation
of formal verification techniques (binary decision diagrams, satisfiability solving, etc.).

In Chapter 3, we introduce the techniques that aim at the improvement of the exist-
ing error evaluation approaches based on Boolean satisfiability solving (SAT). We present
novel miter constructions for the evaluation of the worst case absolute error and the worst
case relative error using SAT and a newly designed verifiability driven search strategy. We
implement the presented techniques into a framework based on the Cartesian Generic Pro-
gramming and show that they significantly improve the capabilities of the search based
approximate arithmetic circuit design. This chapter is based mainly on our work published
in [13, 18].

In Chapter 4, we continue the development of scalable approximation algorithms with
SAT-based error evaluation by introducing the adaptive verifiability driven search strategy.
This strategy is meant to provide a good performance in the approximation of arithmetic
circuits independently of the actual type and size of the approximated circuit. We pro-
pose several settings for the adaptive approximation framework, choose the best ones and
then present an extensive experimental evaluation of the verifiability driven strategies. The
evaluation is performed on both the traditional and more complex arithmetic circuits of
various bit widths. Finally, we show the improvements in the quality of the approximate so-
lutions the adaptive strategy brings in comparison to the research presented in the previous
chapter. This chapter contains the work published in [15].

Chapter 5 contains a description of the ADAC tool, which implements the algorithms
and techniques shown in Chapters 3 and 4 and is utilised for the presented experimental
evaluations. ADAC is an extension of the academic hardware synthesis and verification tool
ABC and makes use of the ABC’s internal circuit representation structures and powerful
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solving algorithms. After a description of the ADAC structure and inner workings, the
chapter also contains a short experimental section showing the speed of the various error
evaluation methods available in ADAC. A tool paper about ADAC was published in [14].

In Chapter 6, we present another extension of the CGP based approximation algo-
rithm. We combine a satisfiability based exact synthesis optimisation approach with the
approximation techniques described in Chapters 3 and 4. The exact optimisation rewrites
parts of the approximated circuit and helps the evolutionary algorithm to escape local opti-
mums, thus allowing for further improvements of the quality of the approximate solutions.
The material in this chapter is based on our work [16].

Chapter 7 contains our work that also tries to improve the approximation algorithm,
albeit by different means than the other chapters. While in Chapters 3 and 4, we aimed at
the speed up of the error evaluation part of the approximation process, in this chapter we try
to improve the mutation operators utilised in the CGP algorithm. We firstly summarise the
various CGP mutation operators utilised in the literature and then propose a novel operator
tailored to the task of arithmetic circuit approximation. In the experimental evaluation, we
focus both on the speed of convergence of the mutation operators as well as on the quality
of the final approximate solutions. The contents of this chapter are based on our work
published in [17].

Chapter 8 summarises the contents of the thesis and also mentions some promising
research directions for the future work.
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Chapter 2

State of the Art in Approximate
Computing

In this chapter, we provide an introduction of the state of the art of the various tech-
niques and approaches used in the area of approximate computing. After this initial broad
overview, we focus more closely on the topics crucial to this thesis, namely the functional
approximation and search based methods for the design of the approximate arithmetic cir-
cuits. The performance of these methods is directly affected by the performance of the
candidate circuits evaluation. Therefore, in the following sections, we also survey existing
methods for the evaluation of the error of approximate circuits – simulation as well as
alternative approaches based on formal methods.

Various approaches have been proposed to address the problem of rapidly growing energy
consumption of modern computer systems. As one of the most promising energy-efficient
computing paradigms, approximate computing has been introduced [73]. Approximate
computing intentionally introduces errors into the computing process in order to improve
its energy-efficiency. This technique targets especially applications featuring an intrinsic
error resilience property where significant energy savings can be achieved. The inherent
error resilience means that it is not always necessary to perform the precise and usually
resource-expensive computations. Instead, much simpler approximate computations may
be used to solve a given problem without any significant degradation in the output quality.
Multimedia signal processing and machine learning represent typical examples that allow
the quality to be traded for power, but approximate computing is not limited to those
applications only.

2.1 Overview of Approximate Computing Methodologies
Many fundamentally different approaches have recently been introduced under the term of
approximate computing. The literature on the subject covers the whole computing stack,
integrating areas of microelectronics, circuits, components, architectures, networks, oper-
ating systems, compilers, and applications. Approximations are conducted for embedded
systems, ordinary computers, graphics processing units, and even field-programmable gate
arrays. A good survey of existing techniques can be found, for example, in [73, 130].
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2.1.1 Approximate Storage

Approximate RAM: the techniques belonging to this category modify the parameters and
behaviour of RAM modules to decrease their energy consumption. As a result of these
changes, the values retrieved from the memory are not guaranteed to exactly correspond
to the values stored. The work published in [99] presents an energy saving SRAM cache
using lowering voltage supply and power-gating. Another work [23] focuses on eDRAM and
proposes a technique for saving the refresh energy in the frame buffers for video applica-
tions. The technique trades off pixel data accuracy for energy savings in the frame buffers.
Similarly, another approach [65] divides the data into critical and non-critical parts, which
are stored in different memory modules. The module with the non-critical data can feature
a lower refresh rate that consumes less energy but can introduce errors into the stored data.

Load value approximation: rather than approximating the stored values themselves,
with this approach, the approximation happens when a load miss in a cache occurs. After
such a miss, the data would need to be fetched from the next level cache or memory, which is
a time consuming operation. Instead of waiting for the data to load, an estimator provides
a predicted block of data. Load value approximation hides the cache miss latency and
allows the processor to continue without waiting for the data to load. The technique was
successfully employed in various applications for both CPUs and GPUs [69, 108].

2.1.2 Approximate Software

The loop perforation approach reduces the computational complexity of programs by skip-
ping some iterations of selected loops. Several common computational patterns suitable for
loop perforation were identified in [100]. These patterns include Monte Carlo simulation,
iterative refinement and search space enumeration. The loop perforation algorithm explores
the combinations of possible loop skipping in the source program and tries to maximise the
performance within acceptable result quality bounds.

Skipping tasks and memory accesses: these approaches selectively skip tasks, memory
accesses or input portions to achieve better efficiency while not breaching the bounds on
the quality of results. An example of such approach is Paraprox [90] – pattern-based ap-
proximation for data parallel applications. In the publication, the authors examine six
common programming patterns (scatter/gather, map, scan, reduction, stencil, and parti-
tion) suitable for execution on multi-core architectures. For example, the reduction pattern
is approximated using sampling and its output is therefore computed using only a subset
of the original data. Similarly, in the scan pattern, the scan is performed only on the be-
ginning of the input array to produce an intermediate result and the final result is then
computed from the intermediate one without considering the rest of the input.

Multiple inexact program versions: in [5] and [91] the authors present techniques to
create approximate versions of programs for general CPUs and GPUs, respectively. Using
the correct versions of the program and the desired result quality as inputs, the approaches
first generate multiple versions of the approximated program using e.g. loop perforation or
fusion of CUDA threads. Then a training and optimisation algorithm examines the quality
and efficiency of the created approximations and improves and identifies the ones providing
the best trade-offs. During runtime, the frameworks periodically monitor the quality of the
computed approximate results and update the approximate program if the result quality
falls below a user defined threshold.

Neural network based accelerators [31] expose the neural network’s (NN) parallelism
and can be used to increase the efficiency of the accelerated operations. The accelerators
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work by identifying the approximable parts of the code and then training a suitable neural
network to mimic the functionality of the code region. NN accelerators can be executed
on general purpose CPUs or specialised hardware components (neural processing units) for
increased efficiency.

2.1.3 Frequency and Voltage Scaling

Frequency and voltage scaling utilise the correctly working digital circuits and cause inac-
curacies in the computations by tuning the frequency and voltage parameters. In voltage
over-scaling, the inaccuracies are introduced by scaling the supply voltage of the logic gates
of the circuit. A lower voltage supply causes timing errors in some non critical paths of the
circuit, creating acceptable approximate results. The main disadvantage of this approach
is, that the error characteristic of such approximate operation is affected by parametric
variations and is therefore nondeterministic.

Most of the works published in this area provide methods designed to approximate
computations in specific applications. In [44, 98], the authors approximate digital filters.
To improve the energy versus quality of results trade-off, these works utilise error correction
mechanisms (e.g., specialised error correction blocks or redundant components). In [43],
the authors focus on approximation of arithmetic units. Instead of utilising dedicated logic
to mitigate the approximation errors, the quality of the result is controlled using expert
knowledge of the statistical properties of arithmetic operands. While these publications
promise good trade-offs between energy savings and result quality, they are only applicable
in their specific domains and cannot be easily modified to fit other applications.

In [67], the authors present a more general methodology to approximate any sequen-
tial circuits using voltage scaling. The designer controls the maximum acceptable error by
defining the maximum error probability at each register of the given circuit. The frame-
work then examines the paths of the circuit, determines which paths fail at which voltage
and finally estimates the error occurrence probability in the circuit’s registers. Using this
information, the framework can infer voltage supply levels for each timing path.

Frequency upscaling works on similar principles to voltage scaling, but instead of lower-
ing the voltage supply, this approach investigates the performance of circuits subjected to a
higher input frequency. The increase of the input frequency can lead to an improvement of
the overall processing speed of the system. However, when the input frequency exceeds the
maximal operational frequency of the circuit, timing violations can be introduced along the
circuit’s longest paths. In [60], the authors experimented with full adder cells and examined
the errors at their outputs when the input frequency was increased beyond the maximal
correctly operating frequency. The error rate of the sum and carry bits gradually grew with
growing input frequency. The work published in [47] extends this approach and proposes a
mathematical model that analyses the behaviour of adders under frequency upscaling.

2.1.4 Functional Approximation of Hardware Circuits

In the previous section, we have seen that the frequency and voltage scaling approaches
make use of correctly working circuits and introduce errors into the computations by chang-
ing the external parameters of voltage supply or frequency of inputs. The approximate
circuits take the approximate computing paradigm one step further – their principal goal
is to design circuits whose function differs from the original specification. This approach is
also often called the functional approximation of hardware circuits.
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Functional approximation is an approach where the original circuit is replaced by a less
complex one which exhibits some errors but improves the non-functional circuit parameters
such as power consumption or chip area. Circuit approximation can be formulated as a
multi-objective optimisation problem where the error and non-functional circuit parameters
are the conflicting design objectives. Since the resulting approximate circuits are still com-
mon circuits, they can be implemented using the standard circuit design flow. In contrast
to the frequency and voltage scaling, the approximate circuits designed using functional
approximation feature deterministic error characteristics. This allows an easier analysis of
the behaviour of the approximate circuits in the target application.

Functional approximation of circuits can be performed manually, but the current trend is
to develop fully automated functional approximation methods that can be integrated into
computer-aided design tools for digital circuits. The fully-automated methods typically
employ various heuristics to identify the circuit parts suitable for approximation.

Even though almost any hardware circuit can be approximated, much of the research
effort focuses on the approximate arithmetic circuits. Such circuits can be used as the
basic building blocks in key applications relevant for approximate computing. Prominent
examples are signal, image, and video processing circuits (such as filters, discrete transforms,
and motion estimation blocks [97]), or the multiply-accumulate-transform structures of
artificial neurons in neural networks (consuming about 50% of the total power in neural
network accelerators [53]).

In this section, we provided an overview of the state of the art in the area of approximate
computing and put the main focus of this work – the functional approximation of arithmetic
circuits – into the context of this research field. In the next section, we will study the
approximate circuits and the various approaches to their design in greater depth.

2.2 Approaches to Design of Approximate Circuits
There are many diverse approaches to designing approximate circuits based on the various
goals of the designers and target applications. A survey published in [51] provides a broad
overview of methods utilised in the design of approximate circuits, as well as the char-
acterisation of multiple classes of approximate circuits and their performance in various
applications. While some existing approaches try to design approximate circuits manually,
this technique becomes impractical as the research moves to larger and more complex cir-
cuits. This leads to a growing interest in the area of automatic methods for the design
of approximate circuits (also called approximate logic synthesis – ALS). An ideal design
method would be able to approximate a wide range of different circuits while being fully
automated. A recent survey on approximate computing [93] divides the current research
efforts in approximate logic synthesis into three categories: (1) approximate high level syn-
thesis, (2) Boolean rewriting, and (3) netlist transformation. In the following subsections,
we will first take a look at the inner workings of the basic arithmetic circuits. Afterwards,
we explain the basic concepts of the common approaches to approximate circuit design and
mention some of the key research works in the area.

2.2.1 Preliminaries – Arithmetic Circuits

The arithmetic circuits that are most often approximated in literature are undoubtedly
the binary adders and multipliers. The basic building blocks for these circuits are the so
called half adder (HA) and full adder (FA). The gate level schematic of HA is visualised in
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Figure 2.1: A gate level representation of a half adder.
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Figure 2.2: A gate level representation of a full adder.

Fig. 2.1 and the schematic of FA is shown in Fig. 2.2. A HA computes the sum of two single
binary digits, a FA computes the sum of three input single binary digits. The result of both
circuits is represented by a 2-bit binary number. The lower bit of the result is denoted as
sum (𝑠), the higher bit is denoted as carry (𝑐).

The basic circuit designs used to add two n-bit binary numbers 𝑎 and 𝑏 are the ripple-
carry adder (RCA) and the carry lookahead adder (CLA). An n-bit RCA is constructed by
connecting n full adders. The FA on i-th position performs the sum of the 𝑖-th bits of input
– 𝑎𝑖 and 𝑏𝑖 and the carry output of the previous FA 𝑐𝑖−1. If the input carry of the addition
operation is expected to be zero, we can substitute the first FA with a HA. The structure
of RCA is rather simple, as can be seen in Fig. 2.3. However, RCAs are relatively slow,
because each FA has to wait for the carry of the previous FA to be computed. The critical
path of the circuit spans from the inputs of the first HA to the outputs of the last FA.

To reduce the delay of the adder circuit, a faster way to add two binary digits was
designed in the form of CLA. The CLA structure computes two signals 𝑃 and 𝐺 for each
bit position. Depending on the values of 𝑃 and 𝐺 for each position, the carry in that
position is either 1) generated (both signals are in logical 1), 2) propagated from the less
significant position (exactly one signal is 1), or 3) killed (both signals are 0). Once 𝑃 and 𝐺
signals are computed, we can determine the carry values in each position and subsequently
compute the result. The structure of CLA is more complex than that of RCA, but the added
complexity leads to a lower computational delay. The delay and circuit size of RCA increase
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Figure 2.3: A 4-bit ripple carry adder consisting of full adder and half adder blocks.
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Figure 2.4: A drawing of the partial product accumulation and final addition in a 4-
bit array multiplier. The multiplier is composed of half adder and full adder blocks. The
generation of the partial products is omitted from the figure – the partial products generated
using AND gates serve as the inputs in the drawing.

proportionally with 𝑛 (𝑂(𝑛)). On the other hand, the delay of CLA is roughly logarithmic
(𝑂(𝑙𝑜𝑔(𝑛))), while its size is linearithmic (𝑂(𝑛 * 𝑙𝑜𝑔(𝑛))). For input widths exceeding 32
bits, the classic CLA structure becomes inefficient due to the increasing fan-in of the gates
computing the 𝑃 and 𝐺 signals. Therefore, lookahead structures with multiple levels have
been introduced to increase the speed and reduce the circuit area. Prominent examples
of these CLA implementations are the Kogge-Stone adder [58] and Brent-Kung adder [8].
Other adder designs include e.g. carry-skip adder, carry-save adder or carry-select adder.
The inner workings and characteristics of these adders are thoroughly addressed in [30].

The other most commonly approximated arithmetic circuit is the binary multiplier.
Multipliers exists in both signed and unsigned variants, in this work, we focus mainly on
the latter. An 𝑛-bit binary multiplier is an arithmetic circuits that takes two 𝑛-bit binary
numbers 𝑎 and 𝑏 and computes their product – a 2𝑛-bit binary number – as the result. A
slower multiplier variant with a less complex structure is the shift-and-add multiplier, that
iteratively shifts and accumulates partial results. Such a multiplier requires multiple cycles
to compute the result. On the other hand, the faster single cycle multiplier is a purely
combinational circuit. In a typical combinational multiplier, the multiplication process
consists of three steps: partial product generation, partial product accumulation, and carry
propagate addition. The partial products (𝑃𝑃 ) can be computed by simply using an AND
gate (𝑃𝑃𝑖,𝑗 = 𝑎𝑖 𝑎𝑛𝑑 𝑏𝑗). The partial product accumulation is the most costly operation of
the three steps and takes up most of the multiplier’s area. The structures commonly used
to achieve partial product accumulation are: 1) adder array [82], 2) Wallace tree [128], and
3) Dadda Tree [25].

The structure of the multiplier with adder array is based on the shift-and-add algorithm.
Because an 𝑛-bit multiplier has to complete the computation in one cycle, it needs 𝑛 adders
to accumulate the partial products. The carry signals propagate through the adder array
in a diagonal direction. An example array multiplier is visualised in Fig. 2.4. We can see
that the area of the multiplier is quadratic in the number of input bits (𝑂(𝑛2). The delay
of array multiplier is roughly linear in 𝑛 (𝑂(𝑛)).
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Figure 2.5: An illustrative diagram of approximate carry select adder.

To reduce the time needed to accumulate the partial products, tree structures of adders
were implemented in Wallace and Dadda multipliers. These structures reduce the number
of partial products until there are only two numbers left, which are then accumulated using
a conventional adder. The tree structure reduces the circuit’s delay, but requires a larger
amount of gates, resulting in a bigger circuit area and power consumption.

2.2.2 Manually Designed Approximate Circuits

The original works in the area of approximate circuits focused on manual circuit design.
The researchers selected a specific hardware circuit, usually an arithmetic circuit such
as adder, multiplier, or divider and then tried to change the structure of the circuit in
such a way, that only slightly modifies the functionality while bringing significant resource
savings. The result of these research efforts was either a single inexact version of the original
arithmetic unit (e.g. approximate 2-bit multiplier), or an approximate implementation with
configurable bit width (e.g. k-bit approximate adder).

The simplest approach to designing approximate adders and multipliers is circuit trun-
cation. The truncated circuit only computes n most significant bits of the result and the
rest are hard wired with logical zeros. The logic evaluating the omitted lower bits can be
eliminated from the circuit. Additionally, the eliminated logic can instead be substituted
with a simpler correction / compensation logic that reduces the truncation error.

Approximate Adders

The literature contains many approximate adder designs. The smallest approximable arith-
metic circuit units are the half adder (providing the sum of two input bits), and the full
adder (computing the sum of three input bits). The half and full adders serve as a basic
building block for more complex arithmetic circuits. The authors of [85] propose several
manually designed gate-level implementations of an approximate full adder. The approxi-
mate full adder cells can be used to construct an optional bit width approximate adder. For
example, one of the proposed designs is based on the structure of RCA. For an n-bit approx-
imate adder of this design, the lower 𝑘 bits of the result are computed using approximate
FAs, while the higher (𝑛− 𝑘) bits are computed using standard FAs [66].
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Larger approximate adders can be divided into categories based on the method used
to modify the circuit structure and shorten its critical path. These categories include
speculative adders, segmented adders and approximate carry select adders [49]. Speculative
adders [127] exploit the fact that the length of the carry chain utilised in most computations
is much shorter than the whole bit width of the adder. Therefore, the carry bits for each
sum bit can be predicted using a certain number of lower bits. This introduces some extra
logic but at the same time significantly shortens the critical path of the circuit. The scheme
used in segmented adders [74] divides the n-bit adder into a number of smaller sub-adders.
During the addition, the sub-adders operate in parallel with their carry inputs either fixed,
or generated by some auxiliary logic. The approximate carry select adders [28, 57] utilise
the structure of a carry select adder, illustrated in Fig. 2.5. Similarly to segmented adders,
the 𝑛-bit circuit is also divided into 𝑚 smaller 𝑘-bit adder blocks. The addition in each
block is performed twice – each of the blocks contains two 𝑘-bit adders, one with input
carry equal to 1, the other with input carry 0. A multiplexor then selects which of the
results is correct using a selection signal 𝑠𝑒𝑙. The value of 𝑠𝑒𝑙 is determined by the carry
prediction logic of the previous block. The structure of the prediction logic is similar to
the carry generation logic of the carry lookahead adder. Again, this technique shortens
the critical path of the circuit while introducing errors in computations where the carry
prediction is inaccurate.

Approximate Multipliers

Multiplier circuits usually consist of three stages – partial product generation, partial prod-
uct accumulation and final addition. One can introduce approximations in the generation of
the partial products [59, 66], in the tree used for the accumulation of the partial products [6],
or in the components [63] that accumulate the partial products.

In [66], the authors create an algorithmic approach to approximate the partial product
accumulation of an array multiplier. The resulting approximate implementations are called
Broken Array Multipliers (BAMs). The BAM approach is similar to truncation and can be
applied to multipliers of universal bit widths. The designer can select the target approxima-
tion error by specifying the horizontal breaking level and vertical breaking level parameters,
both with values between zero and the multiplier’s bit width. The least significant bits (the
ones below the breaking level) of the partial products are then omitted in both vertical and
horizontal fashion, resulting significant in power and area savings. Fig. 2.6 illustrates the
structure of a 7-bit multiplier with horizontal breaking level 2 and vertical breaking level
5. Each circle of the figure represents a single adder cell accumulating the partial products.
The adder cells omitted from the final approximate circuit are coloured red, the cells present
in the final circuit have green colour. The outputs of all excluded cells are considered to be
0. With increasing horizontal and vertical breaking level values, more adder cells are left
out from the circuit, resulting in a smaller approximate multiplier with a larger approxi-
mation error. A similar technique can be used to build approximate multipliers from other
basic multiplier implementations (such as Wallace and Dadda multipliers).

More complex approximate circuits can be constructed by using the composition of
approximate elementary blocks. For example, a 2-bit multiplier was approximated in [59]
and then used as a building block of more complex multipliers. This strategy can be
improved, e.g., by configurable lossy compression of the partial product rows based on their
progressive bit significance [84]. Similarly, approximate full adders were composed to create
large approximate adder implementations in [85].
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Figure 2.6: A diagram of the structure of a Broken Array Multiplier with horizontal
breaking level = 2 vertical breaking level = 5.

Quality Configurable Circuits

All the circuits mentioned so far in this section featured constant behaviour with known
error characteristics. However, in some applications, a dynamic adjustment of the approxi-
mation error and power consumption might be desirable. The concept of quality configurable
circuits uses elementary circuits composed in such a way that their error can be modified
online using several configuration bits in order to dynamically reduce the power consump-
tion. The configuration bits can (dis)connect some pre-selected parts of the circuit. The
main advantage of the quality configurable adders [96] and multipliers [97] is the fact, that
the circuit can behave as a correct implementation and can also dynamically change the
approximation error based on the currently desired quality of result.

2.2.3 Boolean Rewriting and Approximate High Level Synthesis

Boolean rewriting and approximate high level synthesis (AHLS) are automated approaches
to approximate logic synthesis with a higher level of abstraction. These methods do not
rely on any electrical components or implementation technology and thus are more abstract
than i.e. a gate level representation. We will provide only a brief overview of these methods,
as they are not the principal aim of this thesis. For further information, readers should
refer to e.g. the survey [93].

To utilise the Boolean rewriting techniques in circuit approximation, we first need to
describe the functionality of the circuit using a formal Boolean representation – for ex-
ample a Boolean formula, binary decision diagram (BDD), or and-inverter graph (AIG).
This representation is then modified by the rewriting algorithm to create an approximate
representation. Optionally, the approximate version can then be mapped into a target tech-
nology to precisely determine its non-functional parameters, such as circuit area or power
consumption.
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The Systematic methodology for Automatic Logic Synthesis of Approximate circuits
(SALSA) [125] is one of the first approaches that address the problem of approximate
synthesis using Boolean optimisation. The authors mapped the problem of approximate
synthesis into an equivalent problem of the traditional logic synthesis: the don’t care-based
optimisation. The approach introduced in SALSA was extended in ASLAN [86] to also
include sequential circuits, where the error behaviour of the approximate circuit has to be
computed over multiple sequential cycles.

Logic rewriting using BDDs [35] and AIGs [21] starts by transforming the circuit rep-
resentation into BDD or AIG, respectively. BDD rewriting then tries to identify nodes
of the diagram that can be replaced by other nodes, or hardwired logical ’1’ or ’0’ while
still satisfying the desired quality of results. Iterative application of these transformations
gradually reduces the size of the BDD. Similarly, the AIG rewriting approach also achieves
size reduction by replacing parts of the graph (the so called cuts) by their approximate
versions.

Logic rewriting using Boolean matrix factorisation was introduced in BLASYS [42]. In
this approach, the circuit’s function is represented by a matrix 𝑀 that contains the truth
values of the circuit’s outputs. Matrix 𝑀 is then factored into two smaller matrices 𝐵 and
𝐶, whose product approximates the original matrix. The sizes of 𝐵 and 𝐶 (and thus the
amount of approximation) are controlled by the factorisation degree parameter. Matrices
𝐵 and 𝐶 are then used to synthesise the approximate solution.

The goal of approximate high-level synthesis is to implement efficient approximations
of circuits described using hardware design languages, such as Verilog or C. One of the
most well known methodologies for AHLS is ABACUS [80]. ABACUS first parses the
input Verilog design to create an internal abstract representation. Then it tries to simplify
and approximate the design by using several transformation operators: (1) truncating least
significant bits of signals, (2) replacing exact arithmetic operations with approximate ones,
(3) transformation of arithmetic expressions, (4) replacing variables with constants, and
(5) transformation of loops. As the enumeration of the whole state space of transformation
applications is not feasible, ABACUS executes the transformations in a random fashion
and creates multiple approximate designs. In the end, a Pareto front of designs providing
the best trade-offs between their accuracy and power consumption can be identified.

Another example of AHLS is autoAx [76], which utilises a library of approximate com-
ponents to build approximate implementations of filters and accelerators. AutoAx provides
an effective search algorithm that can select and combine approximate components to create
high quality approximate designs.

2.2.4 Netlist Transformation

The netlist transformation methods for approximate logic synthesis change the structure
of the hardware circuits similarly to the manual design approaches we described earlier.
However, as netlist transformation is a part of ALS, one of its main aims is full automation.
Also, the general-purpose approximation methods aim at automatically approximating cir-
cuits independently of their structure.

In this family of approaches, the Boolean function we want to approximate is already
mapped in a netlist, which is a directed acyclic graph with electronic components as nodes
and wires as edges. The netlist mapping can be obtained by one of the existing tools for
hardware synthesis (e.g. Yosys – an open source hardware synthesis and verification tool).
One of the most commonly used types of netlists is the gate-level netlist – a forward prop-
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Figure 2.7: An example of netlist transformation.

agating network of logical gates such as AND, OR, NOT, etc. The methods for netlist
transformation can remove gates of the netlist, add new gates, or even change the intercon-
nections between the gates. An example netlist and its transformed variant are shown in
Fig. 2.7.

The design objective of netlist transformation is usually defined as follows: given an
original, correctly working circuit 𝑐 and an error threshold 𝑇 , find an approximate circuit
(or a set of approximate circuits) 𝑐′ that satisfies the error threshold 𝑇 and provides area
or energy savings with regards to 𝑐. For pruning methods, the netlist of 𝑐′ is a subgraph
of 𝑐, as some of the gates (nodes) and connections (edges) were pruned. Other approaches
are able to create new structures in the netlist during the approximation process, so the
subgraph assertion of pruning does not necessarily hold.

Netlist Pruning

Netlist pruning methods try to simplify the approximated circuit by removing some of its
gates. An example of the netlist pruning approaches is Gate-Level Pruning (GLP) [94].
GLP employs a greedy approach to gate elimination. The decision to prune a certain gate
is based on two parameters of the gate: significance and activity. The significance is first
assigned to the circuit’s outputs (the most significant bit has the highest significance) . The
netlist is then traversed from the outputs to inputs and the significance of each gate is com-
puted as the sum of the significance of its successors. The gate’s activity is obtained through
gate-level simulation on a representative sample of the circuit’s inputs. The algorithm iter-
atively removes the gate with lowest significance-activity-product. After each gate removal,
the approach evaluates the functional parameters of the circuit and examines, whether the
approximate implementation satisfies a predetermined error threshold. Once the threshold
is reached, the algorithm terminates and produces the final approximate solution.

Another proposed netlist pruning method called Circuit Carving [2] disposes of the
iterative approximation approach. Instead, it enumerates all the possible pruned versions
of the original circuit and tries to find the version satisfying the error threshold with a
minimal number of gates. To explore the design space, the algorithm utilises a binary
search tree to represent the subgraphs of the original circuit. The nodes in each level of the
tree correspond to a single gate. The edges leading from nodes are labeled 1 and 0. Edge 1
denotes inclusion of the corresponding gate in the subgraph, while edge 0 denotes exclusion
of the gate from the subgraph. The paths from the root of the tree to the leaves enumerate
all possible subsets of gates of the original circuit. Since the number of the subsets is
exponential in the original number of gates, the authors employ several methods to reduce
search space. These are (1) exclude the subsets that violate error threshold and (2) exclude
the subgraphs that cannot be minimal (there exists smaller circuit with the same error
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Figure 2.8: Illustration of signal substitution and simplification performed by SASIMI.
TS denotes the target signal, SS denotes the substitute signal.

or better error). Although the reduction methods prune the search tree considerably, the
approach is still not able to enumerate the whole search space for larger designs.

Greedy Netlist Transformation

The Substitute-And-SIMplIfy (SASIMI) [124] approach is a step further from the pruning
techniques. SASIMI also removes parts of the approximated netlist to achieve area and
energy savings, but also creates new gate interconnections in the process. The approach
tries to identify signal pairs in the circuit that exhibit the same value with a high probability,
and substitutes one (substitute signal) for the other (target signal). These substitutions
introduce functional approximations. The unused logic that was previously exclusively
used to compute the target signal can be eliminated from the circuit, which results in
area and power savings. When selecting the signal to substitute, the algorithm takes into
account the potential error caused by the substitution and the potential resource savings.
Also, the substitutions must not create cycles in the circuit logic. An example of a signal
substitution and the resulting circuit simplification is visualised in Fig. 2.8 An extension
of the described substitution approach can be utilised to design configurable approximate
circuits with multiple quality modes (one of these modes might even be accurate).

Search Based Netlist Approximation

The main limitation of the techniques based on the variants of probabilistic or deterministic
pruning is the inability to generate novel circuit structures. None of the previously described
techniques allows one to replace a part of the original circuit with a sub-circuit that does
not form a part of the original circuit. This limitation considerably restricts the space of
the possible solutions as shown in [77]. In order to address this issue and improve the
quality of the obtained approximate circuits, various artificial intelligence techniques have
been applied to design the approximations.

In order to approximate gate-level digital circuits, Sekanina and Vasicek employed a
specialised variant of the Cartesian Genetic Programming [116, 119]. As shown in [77], this
approach is able to produce high-quality approximate circuits that are unreachable by the
traditional approximation techniques. As a result, a comprehensive library EvoApproxLib
consisting of 8-bit adders and multipliers was built using multi-objective CGP.

Statistically Certified Approximate Logic Synthesis (SCALS) [64] represents another
search based netlist approximation approach. The framework creates approximate versions
of an original circuit by applying exact and approximate transforms to its netlist. The
exact transforms include balancing, refactoring and rewriting of a part of the netlist. The
approximate transformations can remove gate interconnections, change gate functionality
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or even add new gates to the netlist. After some transformations are applied, the framework
performs hypothesis testing of the error constraints, providing statistical guarantees on the
approximation error.

The proposed search-based approaches share a common idea — they map the problem
of approximate synthesis to a search-based design problem. An automated circuit approx-
imation procedure is seen as a multi-objective search process. In the process, a circuit
satisfying user-defined constraints (describing the desired trade-off between the quality and
other electrical parameters) is sought within the space of all possible implementations. The
approximation process typically starts with a fully-functional circuit and a target error. A
heuristic procedure (e.g. an evolutionary algorithm) then gradually modifies the original
circuit. This procedure is typically repeated iteratively in order to improve the current
approximate implementation in the subsequent steps.

The modification can affect either the node function (e.g. an AND node can be modified
to an inverter or vice versa), node input connection, or primary output connection. It is thus
able to not only disconnect gates but also to introduce new gates (by activating redundant
gates). Both can happen by changing either the primary output connection or node input
connection or by changing the node function resulting in an increase/decrease of its arity.

2.2.5 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP), mentioned in the previous section as one of the
search based methods for netlist transformation, is one of the key focuses of this thesis.
Therefore, we provide a detailed introduction of CGP in this section. CGP is a form of
genetic programming where the candidate solutions are represented as a string of integers
of a fixed length that is mapped to a directed acyclic graph [71]. This integer representation
is called a chromosome. CGP can efficiently represent common computational structures
including mathematical equations, computer programs, neural networks, and digital cir-
cuits. The candidate solutions are typically represented in a two-dimensional array of
programmable two-input nodes.

Since its introduction, CGP remains one of the most powerful techniques in the domain
of evolutionary-based logic synthesis and optimisation [71, 72]. Its adoption in the area of
approximate computing seems to be natural because circuit approximation can be formu-
lated as a multi-objective optimisation problem where the error and non-functional circuit
parameters are the conflicting design objectives [119, 77].

Algorithm Parameters

CGP models a candidate circuit having 𝑛𝑖 primary inputs and 𝑛𝑜 primary outputs as a two
dimensional array with 𝑟 rows and 𝑐 columns and thus 𝑟 * 𝑐 = 𝑛𝑛 configurable nodes. Each
node has 𝑛𝑎 inputs and represents a single gate with up to 𝑛𝑎 input connections. Two-input
and single-output nodes are typically used. To avoid feedback connections, the inputs can
be connected either to the output of a node placed in the previous 𝐿 columns, for some
given 𝐿, or directly to primary inputs. The function of a node can be chosen from a set Γ
consisting of |Γ| = 𝑛𝑓 functions. Depending on the function of a node, some of its inputs
may become redundant. In addition to that, some of the nodes may become redundant
because they are not referenced by any node connected to a primary output. The fixed
number of nodes 𝑛𝑛 does not mean that all the nodes are effectively used. This property is
a direct consequence of the redundant encoding used in CGP, which enables the existence of
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Figure 2.9: Full adder represented by CGP. Chromosome: (0, 2, 2) (0, 1, 0) (1, 3, 2)
(3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8), node functions: AND (0), OR (1), XOR (2), NOT (3).
The adder is encoded as five active nodes, gate 7 does not participate in in the computation
of the circuit’s outputs – it is inactive.

neutral mutations. According to many studies, this neutrality is important for an effective
search in CGP [123].

Circuit Representation

The candidate circuits are encoded as follows. Each primary input as well as each node is
associated with a unique index. Each node is encoded using 𝑛𝑎 + 1 integers (𝑥1, · · · , 𝑥𝑛𝑎 , 𝑓)
where the first 𝑛𝑎 integers denote the indices of its fan-ins, and the last integer determines
the function of that node. Every candidate circuit is encoded using 𝑛𝑛(𝑛𝑎 +1)+𝑛𝑜 integers
where the last 𝑛𝑜 integers specify the indices corresponding with each primary output.
Fig. 2.9 illustrates the CGP encoding on an example full adder circuit.

Search Algorithm

The most common search technique used in connection with the CGP is inspired by the
(1 + 𝜆) evolutionary strategy [71] where 𝜆 corresponds with the number of new candidate
solutions generated from a single parental solution. In circuit optimization and approxima-
tion, the initial population is seeded by the original circuit to be optimized or approximated.
Every new population consists of the best circuit chosen from the previous population and
its 𝜆 offspring created using a mutation operator. Either point or probabilistic mutation
is used in the standard CGP. Point mutation is typically preferred because it is easier to
implement and more efficient than using a probabilistic mutation [72]. Crossover is not used
in the standard CGP because it was found that crossover has little effect on the efficiency
of CGP [72].

The selection of the individuals is based on a fitness function evaluating the quality
of the candidate circuits, i.e. the precision of the circuit and its size. An individual with
the best fitness is selected as the new parent. In the case that there are more individuals
with the same fitness, the individual that has not served as a parent will be selected as
the new parent. This procedure is typically repeated for a predefined number of iterations
(also known as generations). The CGP algorithm written in pseudocode is included in
Algorithm 1.

Problem Formulation

Various approximation strategies have been developed in the context of the evolutionary-
based approximate computing [95]. The majority of the currently available methods are
error-oriented in the sense that all logic optimizations leading to an approximate solution
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Algorithm 1 Cartesian Genetic Programming pseudocode.
Input: CGP configuration parameters, fitness function, initial solution 𝑝, termination cri-

terion.
Output: The highest scoring solution 𝑝 found.

1: while <termination condition is not satisfied> do
2: 𝑃 ← {𝑝} ∪ {𝜆 offspring of 𝑝 created by mutation}
3: evaluatePopulation(P)
4: 𝑏← selectHighestScoringCandidate(𝑃 )
5: if fitness(𝑏) ≤ fitness(𝑝) then
6: 𝑝← 𝑏

7: return The best candidate found 𝑝.

are constrained by a predefined error criterion. It means that the error determining the
quality of candidate approximate circuits is used as a design constraint. Only the non-
functional circuit parameters such as power consumption, delay, or area on the chip are
subject to the optimization and are considered in the cost function. Depending on the
application, the error can be expressed by various metrics such as the error magnitude, the
average error magnitude, error probability, or Hamming distance [95].

The majority of the work in the literature formulates the design of approximate circuits
as a single-objective optimization problem despite its multi-objective nature [87]. The multi-
objective CGP is a very promising approach due to its ability to identify non-dominated
solutions in each CGP generation and the possibility to provide many useful compromise
solutions [119]. In practice, however, we are typically interested in several (predefined)
design targets only; for example, approximate implementations have to be developed for
a few error levels known in advance. Then it is usually computationally less expensive to
execute a single objective CGP optimizing a given parameter several times and having the
remaining ones as the constraints [95].

Given a candidate circuit 𝐶, the fitness function 𝑓(𝐶) of the single-objective error-
oriented method is defined as follows:

𝑓(𝐶) =

{︃
cost(𝐶) if error(𝐺,𝐶) ≤ 𝒯 ,
∞ otherwise.

(2.1)

Here, cost(𝐶) denotes the cost of the candidate approximate circuit 𝐶 in terms of electrical
properties that are of interest in a particular context (for example, in our experiments, we
use the area on a chip) and error(𝐶) is the value of an error metric that reflects the quality
of the approximation with respect to the original accurate implementation 𝐺. The values of
cost and error have to be evaluated in each CGP generation for every new candidate solution.
Since CGP only performs slight changes in the candidate solutions in each generation, the
algorithm needs a high number of generations to converge to solutions with significant
resource savings [118]. It is therefore critical for the performance of the approximation
process that the error and cost computation is as efficient as possible. The notions of cost
and error of the candidate circuit will be described in greater detail in the following sections.

24



2.3 Non-functional Circuit Metrics
The goal of approximate circuit design is to introduce inaccuracies into the circuit’s func-
tionality to improve the non-functional characteristics of the circuit. These characteristics
often include non-functional metrics such as circuit area, delay, or power consumption.
The non-functional metrics depend heavily on the target technology chosen to implement
the circuit – the delay and power consumption of the same functionality implemented in
FPGAs, 500 nm CMOS (complementary metal-oxide semiconductors) and 45 nm CMOS
technologies will vary enormously. The target fabrication technology is chosen by the
circuit manufacturer based on multiple criteria such as price, availability, required perfor-
mance, etc.

Given a circuit description (e.g. a netlist), current hardware synthesis tools (also elec-
tronic design automation – EDA tools) can map the description to an implementation in
the chosen target technology. Each target technology usually describes a library of basic
components (logic gates, half adders, full adders, etc.) from which EDA tools build the
circuits. Moreover, the synthesis tools are also able to provide multiple implementations,
often with various trade-offs between the circuit delay and power consumption. These vari-
ants can be suitable for different target applications – high performance (low delay) circuits
are desired in real-time machine learning systems [46], while the power efficient variants
aim at embedded and mobile devices to provide longer battery life. To identify the over-
all most efficient implementations, various compound metrics have been proposed, such as
power-delay product (PDP), area-delay product (ADP), and energy-delay product (EDP).

The automated approaches for circuit approximation mentioned in the previous section
have to determine the non-functional metrics of the proposed approximate solutions in
order to identify the best solution. As these approaches (such as SASIMI or CGP) often
work iteratively, the non-functional metrics have to be evaluated in each iteration of the
approximation process. The circuit area and delay can be accurately estimated using EDA
tools such as Synopsys DC and PrimeTime-PX. However, the estimation process using EDA
tools is computationally intensive and time consuming. Utilisation of EDA tools in each
iteration would slow down the iterative approximation techniques, significantly reducing
the explored search space and therefore the quality of resulting approximate solutions.

To avoid this problem, the iterative approaches make use of less accurate, but much
faster estimations of the solution’s non-functional parameters. The simplest estimation of
the circuit area is to count the number of components the circuit contains (i.e. number of
gates in case of gate level netlist transformation). This approach relies on the assumption,
that if the netlist of the approximate solution contains less gates than the original circuit,
its representation in the target technology will also be smaller. The estimation can be
further refined by selecting a specific target technology and taking into account its library
of components. The library usually specifies the size and delay of its components and these
parameters can differ wildly among the components – a NOT gate can be many times
smaller than a XOR gate. We can therefore estimate the size of an approximate circuit’s
netlist as the sum of the sizes of its gates in the target technology.

Analogously to the area estimation, we can predict the delay of an approximate circuit
by counting the number of gates along its critical path (longest path from the inputs to the
outputs). Again, this estimation can be further improved by considering the component
delay in a given target technology. More advanced estimation methods include for example
the simulation of the circuit’s netlist and counting the switching activity of its gates to
predict the circuit’s power consumption [79].
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The estimation methods for determination of the non-functional parameters are less ac-
curate because they do not take into account the various optimisations and transformations
performed by the hardware synthesis tools. However, they allow us to significantly speed
up the approximation process.

2.4 Error Metrics
Accurately assessing the error of an approximate solution is one of the key steps of ap-
proximate logic synthesis. Moreover, different target applications of approximate circuits
require different approximate behaviour. Therefore, various metrics describing the error
of approximate circuits have been proposed and shown suitable for different application
domains. The error metrics can be divided into two categories: (1) general error metrics,
such as Hamming Distance or error rate, and (2) arithmetic error metrics, such as mean
absolute error or worst case absolute error. The general error metrics are more suitable
for general logic approximation, while arithmetic error metrics are mainly utilised in the
approximation of arithmetic circuits. In this section, we will summarise the various error
metrics employed in the literature to design approximate circuits.

The first step of the evaluation of the error of an approximate solution with regards to
the correctly working solution is to evaluate the error for a single input combination. For
a correct circuit 𝐺, further denoted as the golden circuit, which computes a function 𝑓𝐺,
and its approximation 𝐶, computing a function 𝑓𝐶 , where 𝑓𝐺, 𝑓𝐶 : {0, 1}𝑛 → {0, 1}𝑚, we
compute the error 𝑒𝑥 for an input combination 𝑥 ∈ {0, 1}𝑛 as follows:

𝑒𝑥 = ||𝑓𝐺(𝑥)− 𝑓𝐶(𝑥)|| (2.2)

where the minus sign represents the difference between the outputs of the two functions.
From this formula, we can derive an equation for input independent error metric 𝐸, which
is computed from the values of 𝑒𝑥 across all possible inputs 𝑥.

2.4.1 General Error Metrics

The metrics belonging to the general category view the inputs and outputs of the golden
circuit and the approximate circuit as sequences of bits and do not give them any further
interpretation. These metrics also usually treat all the output bits as having the same
importance (also sometimes called weight).

The error rate (ER, also known as error probability) is a basic error metric that measures
the ratio of input vectors for which the output of the approximate circuit is inaccurate (the
approximate output differs from the correct output). This metric does not take into account
the number of different bits – outputs differing in one bit or multiple bits all contribute the
same to the error value. Error rate can be computed as follows:

ER(𝐶,𝐺) = 2−𝑛
∑︁

𝑥∈{0,1}𝑛

{︃
1 if 𝑓𝐶(𝑥) ̸= 𝑓𝐺(𝑥),

0 otherwise.
(2.3)

In many cases, a more suitable metric is the Hamming Distance (HD). This error metric
counts the number of flipped bits in the corresponding approximate and exact outputs.
We can measure either the worst case Hamming Distance (𝐻𝐷𝑤𝑐) which represents the
maximum number of flipped bits for a single input combination:
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HD𝑤𝑐(𝐶,𝐺) = 𝑚𝑎𝑥𝑥∈{0,1}𝑛
𝑚∑︁
𝑖=1

(𝑓𝐶(𝑥)⊕ 𝑓𝐺(𝑥))𝑖, (2.4)

or the average Hamming Distance (𝐻𝐷𝑎𝑣𝑔), which gives us the average number of
inaccurate bits in the outputs across all input combinations:

HD𝑎𝑣𝑔(𝐶,𝐺) =

∑︀
𝑥∈{0,1}𝑛

∑︀𝑚
𝑖=1(𝑓𝐶(𝑥)⊕ 𝑓𝐺(𝑥))𝑖

2𝑛
(2.5)

The average Hamming Distance was utilised to design approximate circuits by the
authors of [125, 42].

2.4.2 Arithmetic Error Metrics

The outputs of arithmetic circuits (adders, multipliers, etc.) are interpreted as signed or
unsigned integers. Therefore, when approximating such circuits, the general error metrics
are not sufficient to accurately express the difference in the behaviour of the golden and
approximate solutions. For example, an output with a single bit flip in the most significant
bit has a Hamming Distance of 1 from the correct output, but when interpreted as unsigned
integers, the difference is 50 % of the output range.

Methods for approximation of arithmetic circuits often utilise arithmetic error metrics
to obtain high-quality approximate solutions. There exist several arithmetic error metrics
characterising different types of errors such as the worst-case error or the mean error. The
worst-case error is essential when guarantees on the worst behaviour of the approximate
circuits are required. On the other hand, the mean error better describes the overall error
behaviour of the approximate solution. Since the values of some of these metrics can be
very large for circuits with wide outputs, the error values are sometimes relativized by the
range of the output (e.g. divided by 232 for a 16-bit multiplier).

The worst-case behaviour is typically captured either by the worst-case absolute er-
ror (WCAE) or by the worst-case relative error (WCRE). The worst-case absolute error
measures the maximum difference between the outputs of the candidate and the golden
solution across all input combinations. We define its relativized variant as follows:

WCAE(𝐶,𝐺) =
max𝑥∈{0,1}𝑛 |int(𝑓𝐺(𝑥))− int(𝑓𝐶(𝑥))|

2𝑚
(2.6)

where int(𝑥) denotes the integer representation of a bit vector 𝑥 and |𝑖| denotes the absolute
value of an integer 𝑖. With the above relativized metrics definition, we can measure the
error value in per cent relative to the function’s output range.

The worst-case relative error is similar to WCAE, but relates the error value for a given
input combination by the magnitude of the expected (correct) output. The definitions of
WCRE slightly differ in the literature – depending on the behaviour in the cases where the
expected output is equal to 0. To avoid division by zero, such cases can be either ignored,
or the denominator is set to 1. We define WCRE as follows:

WCRE(𝐶,𝐺) = max
𝑥∈{0,1}𝑛

|𝑖𝑛𝑡(𝑓𝐺(𝑥))− 𝑖𝑛𝑡(𝑓𝐶(𝑥))|
𝑚𝑎𝑥(𝑖𝑛𝑡(𝑓𝐺(𝑥)), 1)

(2.7)

The mean absolute error (MAE) is an average based metric similar to WCAE. Unlike
WCAE, MAE averages the values of arithmetic error across all input combinations. It
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therefore captures the overall error behaviour of the approximate circuit.

MAE(𝐶,𝐺) =

∑︀
𝑥∈{0,1}𝑛 |int(𝑓𝐺(𝑥))− int(𝑓𝐶(𝑥))|

2𝑛
(2.8)

The mean squared error (MSE) is similar to MAE, but squares the computed error value
for each input combination. The squaring of the error values results in weighing large error
values more than small ones (i.e. MSE prefers solutions featuring small errors for multiple
input combinations to solutions with large errors for a few inputs).

MSE(𝐶,𝐺) =

∑︀
𝑥∈{0,1}𝑛(int(𝑓𝐺(𝑥))− int(𝑓𝐶(𝑥)))2

2𝑛
(2.9)

Similarly to the worst case metrics, where WCAE has its relative counterpart WCRE, we
can use the relative error distance to modify the MAE equation to define the mean relative
error (MRE). As with WCRE, we use 1 in the denominator for the input combinations
where 𝑓𝐺(𝑥) = 0.

MRE(𝐺,𝐶) = 2−𝑛
∑︁

𝑥∈{0,1}𝑛

|𝑖𝑛𝑡(𝑓𝐺(𝑥))− (𝑓𝐶(𝑥))|
𝑚𝑎𝑥(𝑖𝑛𝑡(𝑓𝐺(𝑥)), 1)

(2.10)

In addition to the above mentioned metrics that measure the error magnitude, we can
also examine other properties of the approximate solution’s error distribution. One of them
is the mean of the error distribution. The mean tells us, whether the approximate solution
tends to under or overapproximate the correct result. When the error distribution mean
is close to 0, the error introduced over multiple approximate computation steps has the
potential to average out. For example, truncated multipliers always underapproximate the
correct result and therefore their error distribution is heavily biased.

Avg(𝐶,𝐺) =

∑︀
𝑥∈{0,1}𝑛(int(𝑓𝐺(𝑥))− int(𝑓𝐶(𝑥)))

2𝑛
(2.11)

Another property important especially for approximate multipliers is the ability to pro-
duce correct results when one of the input operands is 0. Approximate multipliers with
this quality have been shown to provide superior performance in applications such as neu-
ral networks [78], where the majority of approximate operations is multiplication by 0, or
image processing filters.

Acc0(𝐺,𝐶) =

{︃
1 if ∀𝑥 ∈ {0, 1}𝑛 : 𝑓𝐺(𝑥) = 0⇒ 𝑓𝐶(𝑥) = 0

0 otherwise.
(2.12)

2.5 Error Metrics Evaluation
The success of approximate design methods depends on many aspects. Among others, the
efficiency and accuracy of the procedure evaluating the quality of candidate approximate
circuits generated by a chosen heuristic procedure has a substantial impact on the overall
efficiency. The quality of approximate circuits is typically expressed using one or several
error metrics, which were introduced in the previous section. The error metrics formulas
compute the error values by enumerating all possible input combinations. The number of
input combinations grows exponentially with the number of the circuit’s input bits. There-
fore, the error evaluation slows down considerably as we move from simple to more complex
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circuits. For large input bit widths, the enumeration of all possible input combinations is
computationally infeasible. To mitigate this problem, two main groups of approaches have
been utilised in the literature: (1) estimating the error value using a subset of input combi-
nations or probabilistic error analysis and (2) using formal verification methods to evaluate
or place bounds on the approximation error. These approaches will be further introduced
in this section.

2.5.1 Simulation

Conceptually, the simplest approach to obtain precise error bounds of an approximate
arithmetic circuit (AAC) is to simulate its function on all possible inputs. The time needed
for such an evaluation can be significantly lowered on modern processors where 𝑛 inputs
can be evaluated in parallel (with 𝑛 being the width of the word of the processor). Due to
that, the approach has been successfully employed in the synthesis of small and mid-size
AACs [121, 77]. However, even on state-of-the-art computer architectures, this approach
has principal scalability limitations causing that it cannot be used to synthesise approximate
circuits with more than 12-bit operands [78].

The search-based synthesis is, in general, computationally expensive (hundreds of thou-
sands of iterations are typically evaluated). Hence, the error evaluation needs to be fast as
it has a great impact on the scalability of the whole design process. In order to maintain
reasonable scalability and avoid a computationally expensive exhaustive simulation, many
authors simplify the problem and evaluate the quality of the approximate circuits by ap-
plying a subset of all possible input vectors. Monte Carlo simulation is typically utilised to
measure the error of the output vectors with respect to the original solution [124, 80, 49].
Unfortunately, a small fraction of the total number of all possible inputs vectors is typically
used. For example, 103 vectors were used to evaluate a perceptron classifier and less than
104 vectors were employed for a 16x16 block matcher in [80]; 108 vectors were used to
evaluate 16-bit adders in [49].

It is clear that this approach cannot provide any guarantee on the error and makes it
difficult to predict the behaviour of the approximate circuit under different conditions. Not
only the obtained error value strongly depends on the chosen vectors but this approach
may also lead to overfitting. Alternatively, the circuit error can be calculated using a
statistical model constructed for elementary circuit components and their compositions [61,
68]. However, reliable and general statistical models can only be constructed in some specific
situations.

2.5.2 Formal Methods for Error Evaluation

While formal methods of (exact) equivalence checking have been studied for decades, only
a few formal approximate checking methods have been used in circuit approximation tools.
Depending on the particular error metric (e.g., the mean error or the worst-case error), the
error calculation is transformed to a decision problem and solved by means of SAT solving
or binary decision diagrams (BDDs).

Recently, various applications of formal methods have been intensively studied in order
to improve the scalability of the design process of correct as well as approximate circuits.
For designing correct circuits (where one insists on preserving the original functionality
but tries to optimize non-functional parameters), one can consider combinational equiv-
alence checking based on modern SAT solvers, efficient BDD representations of circuits,
or algebraic computation techniques combining polynomial representation of circuits with
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Figure 2.10: An example Boolean function represented by a) a truth table, b) a BDD and
c) a reduced BDD. The green / red arrows visualise connections between parent and low /
high successors, respectively. The internal nodes 𝑎, 𝑏 and 𝑐 represent Boolean variables.

logic reductions [24, 92]. For designing AACs, a more challenging notion of relaxed or
approximate equivalence checking is needed. This notion requires the formal verification
technique to quantify the approximation error or, alternatively, prove whether the error is
below a certain threshold.

BDD-based Evaluation

Determining whether two Boolean functions are functionally equivalent is a classic problem
solved by formal verification techniques. Many of the current formal verification approaches
are based on the Binary Decision Diagrams [10] (BDDs). BDDs represent a Boolean func-
tion as a rooted, directed, connected, acyclic graph, which consists of internal Boolean
decision nodes and Boolean result leaf (terminal) nodes. Each decision node 𝑛 is labelled
by a Boolean variable 𝑥 and has two successors: the so called low successor 𝑙 and high
successor ℎ. The edge from 𝑛 to high successor ℎ represents the assignment of Boolean 1 to
variable 𝑥. Similarly, the edge from 𝑛 to 𝑙 represents the assignment of Boolean 0 to 𝑥. The
terminal nodes are labelled with Boolean values 0 and 1. A path from the root node to a
terminal node describes a variable assignment for which the represented Boolean function
has value corresponding to the label of the terminal node. An example Boolean function
represented by a truth table and a BDD is illustrated in Fig. 2.10.

A generic BDD can be transformed into ordered BDD (OBDD) by enforcing an ordering
on the BDD’s Boolean variables along all paths from the root to the leaves. Additionally, a
BDD is called reduced BDD (RBDD) if there are no two nodes with identical successors and
no two non-identical isomorphic subtrees in the BDD. A reduced ordered BDD (ROBDD)
is a canonical representation of a Boolean function (for a given ordering, the ROBDD
representing the Boolean function is unique).

The BDD representation provides effective ways to perform Boolean operations on
Boolean functions, checking properties of Boolean functions (satisfiability, validity, etc.),
and checking equivalence of Boolean functions. A significant advantage of BDDs is, that
the operations on BDDs can be done without decompressing the represented functions.
The operations on Boolean functions are performed via the apply(op, f, g) function. The
function takes two ROBDDs 𝑓 and 𝑔 and a binary operator 𝑜𝑝 and returns a new ROBDD
representing the function 𝑓 𝑜𝑝 𝑔. Another operation on ROBDDs, SAT-count, computes
the number of input assignments, for which the Boolean function results in logical 1. The
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Figure 2.11: The schema of a miter for checking exact equivalence. The two circuits 𝑐
and 𝑐′ are functionally equivalent if and only if the output 𝑒 has value 0 for all possible
inputs 𝑥.
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Figure 2.12: The schema of a miter for checking the arithmetic error of the approximate
circuit. The SUB circuit is a subtractor that interprets the outputs 𝑦 and 𝑦′ as integer
values and computes their difference.

SAT-count of an ROBDD can be computed in linear time with respect to the size of the
diagram, which is a very important characteristic for circuit design.

BDDs have been traditionally used for exact equivalence checking during hardware
synthesis and verification. Given two combinational circuits 𝑐 and 𝑐′ with 𝑚 inputs and
𝑛 outputs, we name the inputs of both circuits 𝑥1, ..., 𝑥𝑛, and the outputs 𝑦1, ..., 𝑦𝑚 and
𝑦′1, ..., 𝑦

′
𝑚, respectively. To determine whether 𝑐 and 𝑐′ are functionally equivalent, we

construct an auxiliary circuit called miter. The miter consist of the two examined circuits,
has inputs 𝑥1, ..., 𝑥𝑛 and 𝑚 outputs 𝑧 computed as 𝑧𝑖 = 𝑦𝑖 ⊕ 𝑦′𝑖. Each of the outputs 𝑧𝑖
can be represented by an ROBDD. The question of circuit equivalence is transformed to
checking the SAT-count of the ROBDDs. If the ROBDD for 𝑧𝑖 has SAT-count greater than
0, it means that there exists an assignment for which the output bits 𝑦𝑖 and 𝑦′𝑖 are different
and therefore 𝑐 and 𝑐′ are not equivalent. One the other hand, 𝑐 and 𝑐′ are functionally
equivalent, if and only if all of the ROBDDs have no satisfying assignments. Additionally,
the BDDs for 𝑧𝑖 can be combined together using the OR operation to create a single BDD
representing the whole miter. The structure of such miter is visualised in Fig. 2.11.

The approach from strict equivalence checking on BDDs can be expanded to approxi-
mate equivalence checking to effectively evaluate the approximation error of an approximate
circuit. The authors of [120] propose an algorithm to compute the Hamming Distance of
an approximate circuit by summing the SAT-count values for each of the 𝑧𝑖 ROBDDs. In a
similar manner, the authors of [104] build on the concepts of approximation miter to design
algorithms to determine the worst case and average error of an approximate circuit using
ROBDDs. An example of the approximate miter computing the arithmetic error between
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Figure 2.13: The schema of a miter that checks whether the worst case error of the
approximate circuit 𝑐′ exceeds a given error threshold value T. Parameter T is provided as
an integer value and the CMP component compares it to the absolute value of the error.

the accurate and approximate circuit is shown in Fig. 2.12. The miter utilises a subtractor
circuit to compute the difference between 𝑦 and 𝑦′. An absolute value circuit then computes
the absolute value of the difference. Such a miter allows BDD based verification techniques
to evaluate both the worst-case and average-case error of the approximate circuit. An effi-
cient BDD-based approach allowing one to guarantee the worst-case and the average-case
arithmetic error of approximate adders up to 16-bit operands was proposed in [114]. An
alternative approach that uses BDDs representing characteristic functions was employed
in [21].

The canonical nature of ROBDDs makes them inefficient when representing certain
classes of functions. Their efficiency is also very sensitive to the chosen variable ordering [27]
– the size of the BDD representation of a function can vary dramatically based on the
used ordering. Since finding an optimal variable ordering is an NP-hard problem, various
heuristics are used to find high-quality orderings. Nevertheless, there exist certain functions
for which the number of nodes is always exponential, independent of the chosen variable
ordering, the most prominent one being the multiplication function [110]. Other examples
of such functions include integer division, remainder and square root.

SAT-based Evaluation

Since BDDs have been shown to be inefficient in representing multiplication and some other
functions, hardware designers utilise SAT solvers to verify the circuits representing these
functions. There exist many powerful SAT solving tools able to prove the unsatisfiability
of large Boolean formulae. The problem of circuit equivalence is translated to deciding
whether a given Boolean formula is satisfiable or not.

In the strict equivalence checking scenario, a SAT solver is utilised to prove the func-
tional equivalence of two circuits using the miter construction from Fig. 2.11. The miter
circuit has a single output and can therefore be converted to a corresponding Boolean logic
formula, usually in Conjunctive Normal Form. For a given input assignment, the evalua-
tion of the formula corresponds to the value of the output bit. The two circuits composing
the miter are functionally equivalent, if and only if the corresponding Boolean formula is
unsatisfiable, i.e., there is no input assignment for which the outputs of the circuits differ.
The answer is obtained by solving the formula using a SAT solver.

The advances in SAT solver performance led researchers to utilise them in approximate
circuit design as well. While SAT solvers are able to handle larger approximate circuit
instances than BDDs, they can be used only when a binary output is sufficient. This is
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typically done for the worst-case error where one can ask whether the produced error is
under a bound (error threshold) given by the designer as a parameter [78]. To answer
this question, the approximation miters introduced earlier have to be modified to feature a
single output. This is achieved by the inclusion of a comparator block, which compares the
computed arithmetic error with the given error threshold value. An example of such miter
circuit is shown in Fig. 2.13.

The exact value of a circuit’s worst-case error can be evaluated by performing a binary
search of the circuit’s output range, i.e. running multiple SAT evaluations with various
threshold values. In its basic form, the SAT based approach is unable to determine error
metrics that aggregate the error value across all input combinations, such as mean average
error or error rate.

The number of inputs for which an approximate circuit returns an incorrect result can
be quantified using SAT counting methods (so-called #SAT solvers), that count the number
of satisfying assignments of a given formula. The #SAT solving approach allows one to
compute the error rate of a circuit using the miter construction from Fig. 2.11. However,
despite the recent progress in the area of #SAT solvers (see, e.g., [19]), the #SAT problems
encoding the error quantification are currently beyond the capabilities of state-of-the-art
#SAT tools for more than small circuit instances.

Algebraic Polynomial Representation

An alternative method to arithmetic circuit verification was proposed in [36]. The authors
design an approach to detect and diagnose errors in logic synthesis process by modelling the
circuit using symbolic computer algebra. The method is based on representing the signals
of the circuit in an algebraic polynomial representation and then computing differences
between the polynomials. A non-zero resulting difference indicates a functional difference
in the behaviour of the circuits.

This approach was extended in [34] to relax the strict requirements on the functional
equivalence. The modified method can be used during an approximation process to deter-
mine, whether an approximate solution satisfies some bound on the approximation error.
The computation of the error metric value is based on Gröbner Basis reduction. The golden
circuit and the approximate circuit are represented as symbolic algebra polynomials. The
specification polynomial is then divided by the approximate circuit polynomial, giving us
the remainder 𝑅. When 𝑅 = 0, the two polynomials are functionally equivalent. Other-
wise, 𝑅 represents the difference in behaviour between the polynomials and can be used to
determine the approximation error. The authors of this approach utilise SMT (satisfiability
modulo theories) solvers to compute the worst case error from 𝑅 or solve a pseudo-Boolean
formula constructed from 𝑅 to quantify the mean squared error.
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Chapter 3

Scalable SAT-based Approximate
Equivalence Checking

This chapter is based on our work published in [13, 18]. In this part of the research, we
try to improve the speed and scalability of the error evaluation phase of the approximation
process. We focus mainly on the worst-case absolute error (WCAE) and worst-case relative
error (WCRE) metrics and their evaluation using SAT solving techniques. To achieve
better scalability, we propose novel approximation miter constructions as well as a new
modification of the search algorithm called the verifiability driven search strategy. The
chapter is structured as follows. Firstly, we introduce the concept of the verifiability driven
search. Afterwards, we describe the improved miter construction for WCAE evaluation and
show its performance in a detailed experimental evaluation. Finally, we extend the idea
of the WCAE miter to evaluate the WCRE metric and follow with another experimental
evaluation.

3.1 Motivation
In this chapter, we present a new method for designing complex approximate arithmetic
circuits with formal bounds on the approximation error. The method uniquely integrates
new formal techniques for approximate equivalence checking into search-based circuit opti-
misation by means of Cartesian Genetic Programming (CGP). The key idea is to employ
a novel search strategy driving the search towards promptly verifiable approximate circuits.
We have implemented the strategy within the ABC tool (see Chapter 5) and extended
the underlying equivalence checking algorithm to support queries on the worst-case error.
This extension builds on a new effective construction of miters, i.e. auxiliary circuits inter-
connecting the original correct circuit and its approximation such that their approximate
equivalence can be checked.

In the first part of this chapter, we decided to optimise for the WCAE metric since
its exact value can be important in time-critical and dependable systems (e.g., inverse
kinematics in robot control [39]) or when complex approximate arithmetic circuits are
constructed using less complex approximate building (circuit) blocks. The final error then
depends on how the worst case error is propagated from low-level blocks to the result.
Moreover, even in not so critical applications such as image processing, low average error
but excessive worst-case error can produce unacceptable results [56]. Finally, our results
suggest that there is also a high correlation between WCAE error and the mean absolute
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error (MAE, Section 3.4). In the second part of this chapter, we extend the proposed
approach to optimise the WCRE of approximate circuits.

While our primary motivation is to automatically approximate complex multipliers, our
method is directly applicable to other arithmetic circuits too. The method is capable of
providing Pareto fronts showing high-quality compromises between the circuit error and
non-functional circuit parameters. Results are presented for approximate multipliers (with
up to 32-bit operands) and adders (with up to 128-bit operands) and compared with several
approximate circuits available in the literature. This is for the first time when such complex
approximate arithmetic circuits with formally guaranteed error bounds have been presented.

Contributions The contributions presented in this chapter can be summarised as follows:

• We propose new WCAE and WCRE miter constructions allowing for efficient approxi-
mate equivalence checking tailored for search-based approximation of complex arithmetic
circuits.

• We design a novel search strategy for synthesis of approximate circuits with formal error
guarantees that integrates Cartesian Genetic Programming and the proposed approx-
imate equivalence checking. Using a resource-limited verifier, the strategy drives the
search towards promptly verifiable candidates and thus provides scalable approximation
of complex circuits.

• We develop an implementation of the miter construction and the search strategy within
the ABC tool and perform extensive experimental evaluation of our approach on large
circuits including the approximation of 128-bit adders and 32-bit multipliers.

• Within several hours, we are able to construct high-quality Pareto sets of 128-bit adders
and 32-bit multipliers with WCAE guarantees that represent the trade-offs between the
circuit error and non-functional circuit parameters.

3.2 Search-Based Design of AACs
In this section, we present our novel approach to the search-based design of AACs combining
the principles of CGP with the verifiability-driven search strategy that employs a fitness
function based on the approximate equivalence checking.

3.2.1 Problem Formulation

First, we formalise the problem of designing approximate arithmetic circuits as a single-
objective optimisation problem. Recall that the aim of the circuit approximation process is
to improve the non-functional characteristics (such as the chip area, energy consumption,
or delay) of the given circuit by introducing an error in the underlying computation.

The non-functional characteristics of the circuit depend on the target technology the
circuit is synthesised for. Computing these characteristics precisely for every candidate
solution would introduce a significant computation burden for the approximation process.
Therefore, we approximate these characteristics by an estimated size of the circuit computed
as follows. We assume that we are given a list of gates that can be used in the circuit and
that each gate is associated with a constant characterising its size. The size of the particular
gate is specified by the users and should respect the target technology (see Table 3.1 for
the gates and their sizes used in our numerical trials). For a candidate circuit 𝐶, we then
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define its size, denoted size(𝐶), as the sum of the sizes of the gates used in 𝐶. As shown
in [78, 113, 114], size(𝐶) typically provides a good estimate for the chip area as well as for
the power consumption.

The problem of finding the best trade-offs between the circuit size and the approximation
error can be naturally seen as a multi-objective optimisation problem. In our approach, we,
however, treat it as a series of single-objective problems where we fix the required values
of the approximation error. This approach is motivated by the fact that the magnitude of
the approximation error is usually given by the concrete application where the approximate
circuits are deployed. Moreover, as shown in the study [118], optimising the chip size for a
fixed error allows one to achieve significantly better performance compared to more general
multi-objective optimisation producing Pareto fronts. The performance directly affects the
time required to find high-quality approximation and is essential to scale to complex circuits
such as 16-bit multipliers and beyond.

The key optimisation problem we consider is formalised as follows:

Problem: For a given golden circuit 𝐺, error metric 𝐸𝑟𝑟𝑜𝑟 and an error threshold 𝒯 , our
goal is to find a circuit 𝐶* with the minimal size such that the Error(𝐺,𝐶*) ≤ 𝒯 .

For the functionality given by the golden circuit 𝐺, the optimisation attempts to find the
minimum total size of active gates and the corresponding connections, represented by the
approximate circuit 𝐶*, that guarantee the desired level of accuracy 𝒯 .

We emphasise that our aim is not to provide a complete algorithm that guarantees the
optimality of 𝐶*: such an algorithm clearly exists as the number of circuits with a given
size is finite, and one can, in theory, enumerate them one by one. We rather design an
effective search strategy that is able to provide high-quality approximations for complex
arithmetic circuits having thousands of gates in the order of hours.

3.2.2 Cartesian Genetic Programming

CGP is a form of genetic programming where the candidate solutions are represented as a
string of integers of a fixed length that is mapped to a directed acyclic graph [71]. This inte-
ger representation is called a chromosome. CGP can efficiently represent common computa-
tional structures including mathematical equations, computer programs, neural networks,
and digital circuits. The candidate solutions are typically represented in a two-dimensional
array of programmable two-input nodes.

In circuit approximation, the evolution loop starts with a parent representing a correctly
working circuit. New candidate circuits are obtained from the parent using a mutation
operator which performs random changes in the candidate’s chromosome in order to obtain
a new, possibly better candidate solution. In the next step, the algorithm evaluates the
quality of each solution using a specified metric, called the fitness function. This function
assesses important correctness and performance aspects of circuits. The candidate with
the best fitness value is chosen as the parent of the next generation, the other solutions
are removed and the evolution continues the next iteration by creating a new generation
of candidate circuits. The whole loop is repeated until a termination criterion is met. For
more details of CGP, refer to Section 2.2.5 or see [71].
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Figure 3.1: The main steps of the proposed verifiability-driven search scheme using CGP.

3.2.3 Verifiability-Driven Search Strategy

Our verifiability-driven search strategy can be viewed as a general concept improving the
scalability of evolutionary design techniques. We presume the utilisation of SAT-based
approximate equivalence checking to evaluate the approximation error in the evolution-
ary process. The problem formulation from Section 3.2.1 allows us to define the fitness
function 𝑓 in the following way:

𝑓(𝐶) =

{︃
size(𝐶) if Error(𝐺,𝐶) ≤ 𝒯 ,
∞ otherwise

where size(𝐶) denotes the size of the circuit 𝐶. Since the procedure deciding whether
Error(𝐺,𝐶) ≤ 𝒯 (further denoted as SAT solver) represents the most time consuming part
of the design loop, we avoid calling the procedure as much as possible. Therefore, we only
call SAT solver for circuits 𝐶 satisfying size(𝐶) ≤ size(𝐵) where 𝐵 is the best solution with
an acceptable error (i.e., Error(𝐺,𝐵) ≤ 𝒯 ) that we have found so far. Our experiments
show that, during the evolution process, a significant set of candidate designs 𝐶 does not
satisfy the condition size(𝐶) ≤ size(𝐵) and thus their fitness can be easily assessed without
calling the SAT solver.

Our experiments further indicate that a long sequence of candidate circuits 𝐵𝑖 improving
the size and having an acceptable error has to be typically explored to obtain a solution that
is sufficiently close to 𝐶*. Therefore, both the SAT and the UNSAT queries to SAT solver
have to be as brief as possible. To this end, we use an additional criterion for the evaluation
of the circuit 𝐶, namely, the ability of SAT solver to prove that Error(𝐺,𝐶) ≤ 𝒯 with a given
limit 𝐿 on the resources available to the underlying decision procedure. If the procedure
fails to prove Error(𝐺,𝐶) ≤ 𝒯 within the limit 𝐿, we set 𝑓(𝐶) = ∞ and generate a new
candidate. The overall design loop using the verifiability-driven search strategy is illustrated
in Fig. 3.1.

The inputs of the design process include: (1) the golden model 𝐺, (2) the threshold on
the approximation error 𝒯 , (3) the initial circuit 𝐵 having an acceptable error (it can be
either the golden model or a suitable approximation we want to start with), and (4) the time
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limit on the overall design process. The loop exploits the CGP principles; namely, it uses
mutations to generate new candidate circuits 𝐶 from the candidate circuit 𝐵 representing
the best approximation of the circuit 𝐶* that we have found so far. The circuit 𝐶 is then
evaluated using the fitness function 𝑓 as described above. If the candidate 𝐶 belongs to
the improving sequence (i.e., size(𝐶) ≤ size(𝐵) and Error(𝐺,𝐶) ≤ 𝒯 ), we replace 𝐵 by 𝐶.
The design loop terminates if the time limit is reached and 𝐵 is returned as the output of
the design process.

In our verifiability-driven search scheme, we use the resource limit 𝐿 (as a parameter of
the design loop) to drive the search towards candidates that can be promptly evaluated. We
intentionally throw away improving candidates 𝐵𝑖 that require greater resources and thus
longer, but still feasible, verification time. The reason for this is the fact that by mutating
these candidates we would most likely obtain solutions that would require the same or even
longer verification times and thus finding the whole improving sequence would become time-
infeasible. Instead, we require that every improving candidate 𝐵𝑖 has to be verifiable using
the resource limit 𝐿 and thus drive the search towards candidates 𝐵𝑖 that, for a given time
limit on the overall design process, lead to longer improving sequences. Our experiments
indicate that these sequences lead to candidate circuits that are closer to 𝐶*. Since we are
able to evaluate a much larger set of candidate circuits, we have a better chance to find a
long improving sequence within the given time provided that it exists for the limit 𝐿.

The obvious disadvantage is that we possibly cut improving sequences that would lead
to good solutions within the given design time. It can also happen that, for the limit 𝐿, no
improving sequence exists, while it exists for a slightly greater resource limit. Despite of
this limitation, our results clearly show that the proposed verifiability-driven search strategy
allows us to utilise the given design time in a more efficient way compared to the standard
evolution schemes.

3.3 SAT-based WCAE Evaluation
Various metrics describing the error of AACs have been proposed and shown suitable for dif-
ferent application domains. The most popular error metrics relevant especially to arithmetic
circuits are the worst-case absolute error (WCAE) and the mean absolute error (MAE).
For a correct circuit 𝐺, further denoted as the golden circuit, which computes a function
𝑓𝐺, and its approximation 𝐶, computing a function 𝑓𝐶 , where 𝑓𝐺, 𝑓𝐶 : {0, 1}𝑛 → {0, 1}𝑚,
these metrics, relativized by the range of the output, are defined as follows:

WCAE(𝐺,𝐶) =
max𝑥∈{0,1}𝑛 |int(𝑓𝐺(𝑥))− int(𝑓𝐶(𝑥))|

2𝑚
,

MAE(𝐺,𝐶) =

∑︀
𝑥∈{0,1}𝑛 |int(𝑓𝐺(𝑥))− int(𝑓𝐶(𝑥))|

2𝑛
,

where int(𝑥) denotes the integer representation of a bit vector 𝑥 and |𝑖| denotes the absolute
value of an integer 𝑖.

3.3.1 Checking Worst Case Absolute Error

To compute whether the WCAE is violated, we can adopt the concept of the approximation
miter introduced in [126]. The general configuration of the approximation miter is shown
in Fig. 3.2. The miter consists of the inspected approximate circuit 𝐶, the golden circuit 𝐺
which serves as the specification, a subtractor, an absolute value block, and a comparator
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which checks whether the error introduced by the approximation is greater than a given
threshold 𝒯 . The output of the miter is a single bit which evaluates to 1 if and only if the
error is violated, i.e. WCAE(𝐺,𝐶) > 𝒯 .

For a given input vector 𝑥, the subtractor calculates the difference between the output
of the golden circuit, i.e. 𝑓𝐺(𝑥), and the output of the approximate circuit, i.e. 𝑓𝐶(𝑥). Let
𝑑 = int(𝑓𝐺(𝑥)) − int(𝑓𝐶(𝑥)) be the error magnitude. A direct computation of the WCAE
according to its definition leads to evaluating the expression 𝑒 = |𝑑|, i.e. the absolute
difference of the error magnitude, which is performed by the absolute value block. The
absolute difference is can be calculated for example by the means of a common two’s
complement subtractor (implemented using 𝑚 full-adders with the first carry-in set to 1
and inverting each bit of the subtrahend) followed by a circuit determining the absolute
value (computed using 𝑚 half-adders and 𝑚 XOR gates).

A
b
so

lu
te

 
v
a
lu

e |  | |  |

Figure 3.2: Approximation miter for the worst case absolute error analysis. Showing a
typical scenario where 𝑒(𝑥) = |𝑓𝐺(𝑥)− 𝑓𝐶(𝑥)|.

3.3.2 The Proposed Miter Construction

Miters so far used in the literature compute the absolute value of the difference between
𝑓𝐺 and 𝑓𝐶 (|𝑓𝐺 − 𝑓𝐶 |). The computation is usually performed in two steps. Firstly, a
subtractor with a signed output evaluates 𝑓𝐺 − 𝑓𝐶 . Secondly, the absolute value has to be
computed. The circuit performing such a task contains XOR chains which are a known
cause of poor performance of the state-of-the-art SAT solvers [41]. The main reasons are
that unlike AND/OR gates, the Boolean constraint propagation over XOR gates is limited,
and the XOR operations cause the CNF form of the formulae to grow rapidly.

In order to avoid long XOR chains at the output of the miter which slow down the
decision process, we propose to employ a different approach. The key idea is to compare
the result of the subtractor with both the positive and negative value of the threshold and
thus avoid the expensive evaluation of the absolute value. For a given threshold 𝒯 on
the worst-case absolute error WCAE, it holds that 𝑒 > 𝒯 is satisfied if and only if 𝑑 is
positive and 𝑑 > 𝒯 , or 𝑑 is negative and −𝑑 > 𝒯 . As we typically deal with numbers in the
two’s complement, the second condition is equal to ¬𝑑 > (𝒯 − 1). Hence, we can use the
two’s complement representation and examine the positive and negative values separately
to avoid usage of the absolute difference of the output.

Since the threshold 𝒯 is fixed during the design process, we can easily avoid the standard
comparator consisting of a long chain of XOR gates. This helps us to further simplify the
miter and improve the performance of the decision procedure. In particular, we replace the
sequential comparison of the particular bits of the operands implemented as
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Figure 3.3: The proposed approximation miter for the worst-case absolute error analysis:
an example for 𝒯 = 5, 𝑁 = 6.

𝐴 > 𝐵 ≡
⋁︁

0≤𝑖≤𝑁−1

⎛⎝𝐴𝑖 ∧ ¬𝐵𝑖

⋀︁
𝑖<𝑗≤𝑁−1

𝐴𝑗 ⊕𝐵𝑗

⎞⎠ ,

for 𝐵 being a constant bit vector representing the threshold 𝒯 , by a simpler procedure
implemented as

𝐴 > 𝐵 ≡
⋁︁

0≤𝑖≤𝑁−1 ∧ 𝐵𝑖=0

⎛⎝𝐴𝑖

⋀︁
𝑖<𝑗≤𝑁−1 ∧ 𝐵𝑗=1

𝐴𝑗

⎞⎠ .

As is evident, the resulting formula does not contain any XOR gate. Note that 𝑑 is
represented as an 𝑚+ 1 bit number in the two’s complement—hence, 𝐴 corresponds to the
𝑁 least significant bits of 𝑑 where 𝑁 = 𝑚. The (𝑚 + 1)-th bit is reserved for the sign and
employed for determining whether 𝑑 encodes a positive or negative number. The miter for
𝒯 = 5, 𝑓𝐶 and 𝑓𝐺 with 6-bit outputs is illustrated in Fig. 3.3.

The proposed construction, compared to the construction using the absolute value and
full comparators, allows us to obtain smaller and structurally less complex miters. Such
miters can be efficiently used in the SAT-based approximate equivalence checking pro-
cedures, resulting in a significant acceleration of the candidate circuit evaluation. Our
experiments show that, in the case of arithmetic circuits having 64 output bits (e.g. 32-bit
multipliers), the proposed construction improves the size of the miters (in terms of the
number of And-Inverter Graph (AIG) nodes representing the circuit) by about 25–35%
depending on the value of 𝒯 , where 𝒯 ranged from 0.0001% to 0.5% of the maximal value
at the output (i.e. 264) in our experiment.
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3.4 WCAE Experimental Evaluation
In order to evaluate the proposed verifiability driven search with the novel miter con-
struction, we primarily focused on complex approximate multipliers as they are the most
challenging benchmark problems. Since only 8-bit multipliers with guaranteed error bounds
were presented in the literature so far, there are no solutions available for a direct compari-
son in the case of 16-bit and more complex approximate multipliers. Hence, (1) we compare
the 16-bit approximate multipliers that we generated using our method with 16-bit multi-
pliers (available in the literature) whose error was determined using simulation, and then
(2) we present Pareto fronts (the error and key circuit parameters) for 20-bit, 24-bit, 28-bit,
and 32-bit approximate multipliers and up to 128-bit approximate adders to demonstrate
the scalability of the proposed method.

3.4.1 Experimental Setup

We implemented our approach, including the miter construction and verifiability-driven
evolution, within the ABC tool [7]. Array multipliers and ripple carry adders composed of
2-input gates were employed as the initial (golden) circuits for CGP. The set of the utilised
gate functions consists of the common two-input logic gates and the inverter gate.

The performance of CGP for particular application domains can be tuned by various
parameters. The most relevant CGP parameters for our case are the following: the num-
ber of offspring (𝜆), the frequency of mutations, and the CGP grid size and the L-back
parameter (i.e. connectivity in the chromosome). In the experimental evaluation presented
in this chapter, we choose the CGP parameters as discussed in the following paragraphs.
For a more in-depth discussion of the CGP parameter values, see Section 4.3.2.

The literature shows that, for a fixed number of generated and evaluated candidate
solutions, CGP-based circuit optimisation (i.e. when circuits are not evolved from scratch)
with a smaller value of 𝜆 usually leads to better fitness values than CGP using larger values
of 𝜆 [112]. To keep the settings simple and also allow for a long chain of improving solutions,
we set the number of offspring 𝜆 = 1.

Regarding the mutation frequency, the literature (see, e.g. [78]) observes that the number
of mutations performed between each generation should be small. This way, the evolution
gradually alters the candidate solutions in small steps. Otherwise, for a high mutation
frequency, the function of a new solution is usually heavily altered and the evolutionary
algorithm starts to resemble a random search. Given these observations, we configure the
CGP to mutate 1 to 5 genes in each generation.

Finally, we set the dimensions of the chromosome gate matrix as 1×𝑊 where 𝑊 equals
the number of gates in the correct circuit (i.e. all the gates of the original circuit are in one
row) and use L-back = 𝑊 , i.e. we allow the maximum connectivity of the chromosomes.
This setting gives the evolutionary algorithm maximal freedom with respect to the candidate
solutions that can be created. This fact is desirable in case of area optimisation we aim
at [71, 118].

For each target WCAE, we performed 30 independent runs of CGP to obtain statistically
significant results. Each CGP run was executed for 2 hours on an Intel Xeon X5670 2.4 GHz
processor using a single core. Note that the individual CGP runs are independent and thus
we executed them in parallel using a cluster of these processors to accelerate the design
process.
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For purposes of the fitness evaluation, the circuit size is estimated as the sum of the
relative area of the two-input gates used, where the sizes of each gate are taken from
the technology library. The sizes for each gate type are shown in Table 3.1. At the end
of the evolution, the 5 most fitting circuits for each WCAE were synthesised using the
Synopsys Design Compiler (high-effort compiling for a better quality of the results) for a
45 nm technology library in order to obtain the non-functional parameters like the area and
power-delay product (PDP). The accurate implementations were created by the means of
Verilog * and + operators and synthesised in the same way as approximate circuits.

Table 3.1: The sizes of the gates used in the numerical trials. The sizes are in 𝜇𝑚2 and
correspond to the 45nm technology.

Gate INV AND OR XOR NAND NOR XNOR
Size 1.40 2.34 2.34 4.69 1.87 2.34 4.69

3.4.2 16-bit Approximate Multipliers

Evaluation of the verifiability-driven search In the first experiment, we approxi-
mated the golden 16-bit multiplier for 9 target values of WCAE from the set {0.1, 0.2, 0.5,
1, 2, 5, 10, 15 and 20%} and evaluated the performance of the proposed method with three
different settings of the resource limit 𝐿 controlling the maximal number of conflicts for
one AIG node during the SAT solving procedure: (1) no limits, i.e., 𝐿=∞, (2) 𝐿=160𝐾,
and (3) 𝐿=20𝐾. Note that the limits 𝐿=160K and 𝐿=20K roughly correspond to the time
limit of 120 sec. and 3 sec., respectively, on 16-bit multipliers.

Fig. 3.4 shows that, for WCAE ≥ 2%, the resource limit 𝐿 has a marginal impact on
the PDP and area of the final approximations. However, with a decreasing target WCAE,
the limit 𝐿=20K provides significantly better results. For example, if WCAE=0.1% and
𝐿=20K, 22,050 SAT calls were produced and 11% of them were terminated on average
because of the termination condition. In the case of 𝐿=160K, 856 SAT calls were produced
only (15% terminated). The average number of SAT calls (across all target errors) that
were forced to terminate is 6.28% (for 𝐿=160K) and 8.84% (for 𝐿=20K). If 𝐿=∞, 170 SAT
calls were evaluated for WCAE=0.1% only. Despite the fact that some potentially good
candidate circuits are quickly rejected, the aggressive resource limits allowed us to generate
and evaluate significantly more candidate circuits and thus to substantially improve the
quality of the achieved results. Box plots in Fig. 3.4 also show that independent runs
with L=20K lead to circuits having very similar parameters (low inter-quartile distances).
Hence, the resource limit 𝐿=20K will be used in the following experiments to approximate
adders and multipliers of various bit widths.

Note that the parameters of some approximate multipliers shown in Fig. 3.4 are worse
than for the accurate multiplier. The reason is that the relative area is the only non-
functional circuit parameter optimized by CGP while the PDP and area are computed at
the end of the optimization using the Synopsys Design Compiler. We have never observed
this discrepancy for the limit 𝐿=20K.

Comparison with other multipliers Next, we generated 16-bit approximate multipli-
ers using the setup described in the previous section and compared them with approximate
multipliers available in the literature. In order to perform a fair comparison (the error of
the published multipliers was originally estimated using random simulation), we modified
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Figure 3.4: PDP and area of approximate 16-bit multipliers for 9 target errors obtained
using 3 different resource limits 𝐿 on the SAT solver. The red line shows the PDP and area
of the accurate multiplier.

our method and applied a binary search strategy to determine their WCAE exactly. In
addition to WCAE, we also provide MAE obtained using simulation (109 vectors).

The following 16-bit approximate multipliers were considered in this study:
M1 Approximate configurable multipliers from the lpACLib library [96]. In this case, the

multiplication is recursively simplified using two different variants (denoted as Lit and
V1 ) of an elementary block representing a 2-bit multiplier. The partial results are
summed using accurate adders. We implemented 32 different architectures consisting
of four 8-bit multipliers where each of these multipliers is configurable as exact/ap-
proximate (24 configurations) and can be built using either Lit (M1Lit) or V1 (M1V1)
blocks.

M2 The approximate multiplier employing the bit-significance-driven logic compression as
introduced in [84].

M3 Approximate multipliers obtained from exact multipliers using the bit-width reduction.
The reduction replaces 16-bit multipliers by accurate 𝑥-bit multipliers (for 𝑥 < 16). It
ignores the LSBs of the operands and leaves the LSBs of the result zero.

43



103 104 105 106 107 108 109

Mean absolute error

0

2

4

6

8

10

P
D

P
[1

0−
1
2
W
s]

10−4 10−3 10−2 10−1 100 101 102

Worst case absolute error [%]

0

2

4

6

8

10

P
D

P
[1

0−
1
2
W
s]

Proposed method
M1Lit (ConfMult16x16Lit)
M1V1 (ConfMult16x16V1)
M2 (BSDLC)

M3 (Bit-width truncation)
M4 (Kulkarni 2x2)
M5 (EvoApproxLib8)
Accurate multiplier

Figure 3.5: Parameters of 16-bit approximate multipliers considered in our study.

M4 The approximate multiplier composed of approximate 2-bit multipliers as proposed
in [59].

M5 Approximate multipliers composed of 8-bit multipliers that are available in the EvoAp-
proxLib library [77]. The construction principle is taken from [59].

For all considered multipliers, the value of PDP is plotted against WCAE and MAE in
Fig. 3.5 (only Pareto fronts are visualized). While the bit-width reduction provides the
same quality of results as our method for large target errors (up to 20% WCAE), it is
significantly outperformed by our approach for small target errors. Despite the fact that
the existing approximate multipliers typically exhibit good tradeoffs between the error and
PDP in specific applications (as demonstrated in the relevant literature), Fig. 3.5 clearly
shows that these multipliers are considerably Pareto-dominated by the multipliers obtained
using our approach. These results were, in fact, expected as the proposed method is based
on a global holistic optimization approach while the other approximate multipliers were
composed of smaller ones and the composition procedure always introduces some overhead.
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Figure 3.6: Pareto fronts showing parameters of evolved approximate multipliers. 100%
refers to parameters of the accurate multiplier for a given bit width.

Finally, it is an interesting observation that MAE follows the trend of WCAE. It seems
that WCAE can be used as a good indicator of MAE.

3.4.3 Complex Multipliers

The main aim of our further experiments is to show that the proposed method is scalable and
can approximate complex multipliers. We present the results of the approximation process
on 12-bit, 16-bit, 20-bit, 24-bit, 28-bit, and 32-bit multipliers. The target WCAEs were
adapted accordingly to respect the range of values in the different considered bit widths.
We used the same setup as in the previous sections but increased the time of optimization
to 4 hours for the 24-bit multiplier and 6 hours for larger multipliers. The reason is that the
search space becomes much bigger. Note that while the exact 12-bit multiplier contains 850
two-input gates, the 32-bit exact multiplier requires over 6,300 gates. We obtained (as the
result of evolution) over 1190 unique multipliers. Because of this huge number and for the
sake of clarity, Fig. 3.6 shows parameters of approximate multipliers occupying the Pareto
fronts only.

In the experiments, we observed that, in the case of 12-bit multipliers, 2.4% of SAT calls
were terminated on average due to the resource limit 𝐿=20K only. However, this number
increased to 36.9% in the case of approximate 32-bit multipliers. For all bit widths, the
MAE is around 30% of the worst-case error, which again demonstrates that WCAE is
a good indicator of MAE. Fig. 3.6 also shows that the obtained approximations cover the
whole range (up to 100%) of the Area axis. However, this is not the case for PDP. The
reason is that we optimize the relative area and PDP is computed after the synthesis.

All Pareto fronts shown in Fig. 3.6 follow the trend of the presented fronts for the 16-bit
multipliers. Since our 16-bit approximate multipliers prove to be highly competitive, we
believe that the tradeoffs between the circuit error and size obtained for more complex
multipliers are very good and thus the corresponding circuits represent the cutting edge of
approximate multipliers and can serve as a new benchmark set for approximate computing.

3.4.4 Approximate Adders

In order to demonstrate that the proposed method is applicable for other complex arith-
metic circuits, we constructed Pareto fronts for approximate adders with 20-bit to 128-bit
operands. Approximation of adders is much easier than approximation of multipliers since
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Figure 3.7: Pareto fronts showing the parameters of the evolved approximate adders.
100% refers to parameters of the accurate adder for a given bit width.

adders are structurally less complicated and the number of outputs is lower. For example,
the exact 20-bit adder requires 140 two-input gates and the 128-bit adder consists of 1,000
gates.

The approximate adders were constructed using the same setup as in the previous
section. A single CGP run took 2 hours for all bit widths. Fig. 3.7 shows parameters
of approximate adders occupying the corresponding Pareto fronts. We report 16 to 18
non-dominated implementations of 24-bit, 28-bit, and 32-bit adders in terms of PDP and
WCAE. For 64-bit and 128-bit adders, 12 tradeoffs are reported only because we have
restricted the number of target error levels.

3.5 SAT-based WCRE Evaluation
In the second part of this chapter, we extend the algorithm towards the worst-case relative
error (WCRE) that represents another important error metric capturing the worst-case
behaviour of approximate circuits. Bounds on WCRE, in contrast to WCAE, require that
the approximate circuits provide results that are close to the correct values even for small
input values. This is essential for many application domains including, e.g., approximation
of neural network hardware architectures [53]. Designing approximate circuits with WCRE
bounds, however, represents a more challenging problem (when compared to WCAE) as the
approximation has to preserve a larger part of the circuit logic and the circuit evaluation
requires a more complicated procedure. To mitigate these challenges, we propose a novel
construction of the approximation miter enabling an efficient SAT-based circuit evaluation
against WCRE bounds. We integrate this evaluation procedure into the verifiability-driven
circuit optimisation and thus significantly extend the existing capabilities of automated
techniques for the circuit approximation. Our experiments on circuits with up to 32-bit
operands show that, in many cases, the proposed approach offers a superior scalability
compared to alternative methods.

For an original golden circuit 𝐺 computing a function 𝑓𝐺 and its approximation 𝐶
computing a function 𝑓𝐶 , both having 𝑛-bit inputs, we define WCRE as follows:
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Figure 3.8: A comparison of 8-bit multipliers approximated for WCRE and WCAE. The
top plot shows the trade-off between circuit area and WCRE, the bottom plot shows the
trade-off between area and WCAE.
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Figure 3.9: The novel approximation miter construction for WCRE evaluation.

WCRE(𝐺,𝐶) = max
𝑥∈{0,1}𝑛

|𝑖𝑛𝑡(𝑓𝐺(𝑥))− 𝑖𝑛𝑡(𝑓𝐶(𝑥))|
𝑖𝑛𝑡(𝑓𝐺(𝑥))

Fig. 3.8 illustrates the difference between the approximation process targeting at WCAE
and WCRE. This difference, in fact, motivates the work presented in this section. The fig-
ure shows two sets of circuits approximating 8-bit multipliers optimised for WCRE (green
squares) and WCAE (red circles), respectively. The plots show the trade-off between the
circuit area (directly effecting the power consumption) and WCRE (top) and WCAE (bot-
tom), respectively. First, we observe that circuits optimised for WCAE have very bad
WCRE and vice versa. Second, the plots demonstrate that when optimising 8-bit multipli-
ers circuits for WCAE, we achieve about 50 % area reduction with WCAE = 1 % while we
need to set WCRE = 40 % to obtain similar area improvements when optimising for WCRE.
This is indeed caused by the fact that a larger part of the circuit logic has to be preserved
to obtain approximations with low WCRE.

3.5.1 Checking Worst Case Relative Error

To evaluate whether the given approximate circuit meets the required bound on WCRE,
we adapt and extend the miter we designed for WCAE. The miter interconnects the golden
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circuit 𝐺 and the candidate approximate circuit 𝐶 that both share identical inputs. The
subtractor and absolute value blocks allow us to quantify the absolute value of the ap-
proximation error between 𝐶 and 𝐺. Here, we need to utilise additional components that
compute the worst-case relative error from the absolute approximation error and compare it
to the threshold value. Namely, we need to check the satisfiability of the following formula:

max
𝑥∈{0,1}𝑛

|𝑖𝑛𝑡(𝑓𝐺(𝑥))− 𝑖𝑛𝑡(𝑓𝐶(𝑥))|
𝑖𝑛𝑡(𝑓𝐺(𝑥))

> 𝑇

Note that we do not need to find the maximum of the left-hand side of the formula,
but rather determine if there exists a single input combination for which the bound 𝑇 is
violated. Therefore, we can replace the previous formula by the following constraint

∃𝑥 ∈ {0, 1}𝑛 : |𝑖𝑛𝑡(𝑓𝐺(𝑥))− 𝑖𝑛𝑡(𝑓𝐶(𝑥))| *𝑚𝑒 > 𝑓𝐺(𝑥) *𝑚𝐺

where 𝑇 = 𝑚𝐺/𝑚𝑒. Based on this formula, we build a general WCRE miter using two
multipliers by a constant and a generic comparator. The structure of the miter is visualised
in Fig. 3.9.

Finally, the error is compared to a given threshold value 𝑇 , and the output of the
comparator is set to logical 𝑡𝑟𝑢𝑒 if and only if the threshold 𝑇 is violated. Thus the miter
construction allows us to evaluate whether 𝑊𝐶𝑅𝐸(𝐶,𝐺) > 𝑇 in a single SAT query. Note
that, for a given approximation scenario, the threshold 𝑇 is constant and can therefore be
built into the structure of the comparator.

3.5.2 Variants of the WCRE Miter

Observe that the resulting WCRE miter is larger and more complex than the WCAE
miter. This indeed slows down its evaluation and thus reduces the overall performance of
the approximation process. To improve the performance and scalability with respect to the
circuit complexity, we simplify the general WCRE miter and propose three variants of the
miter that are smaller but can be used for certain values of the bound 𝑇 only.

As we work with the binary representation of integers, multiplication by the powers
of 2 is identical to a bit shift operation. Thus, each of the constants 𝑚𝐺 and 𝑚𝑒 can be
expressed using two values: 𝑚𝑐𝑥 denoting a multiplicative constant and 𝑏𝑠𝑥 denoting a
number of shifted bits. The subscript 𝑥 ∈ {𝑒,𝐺} denotes whether the constant in question
is used to compute 𝑚𝐺 or 𝑚𝑒. The original values of 𝑚𝐺 and 𝑚𝑒 are then computed as:

𝑚𝐺 = 𝑚𝑐𝐺 * 2𝑏𝑠𝐺 𝑚𝑒 = 𝑚𝑐𝑒 * 2𝑏𝑠𝑒

In combinational circuits, a shift by a constant number of bits is represented by a re-
connection of wires only and does not contain any logical gates. This setting allows us
to remove one or even both of the constant multiplications for a subset of target WCRE
error bounds 𝑇 . If we restrict the values of 𝑚𝑔 and 𝑚𝑒 to powers of two, we suffice with
utilising bit shifts only. This restricts the obtainable values of 𝑇 to 1/2𝑏𝑠𝑒 , e.g., 50 %, 25 %,
or 12.5 %. Adding one multiplier by a constant significantly broadens the range of sup-
ported target values. These can be expressed by one of the formulas: 2𝑏𝑠𝐺/(𝑚𝑐𝑒 * 2𝑏𝑠𝑒) or
(𝑚𝑐𝐺 * 2𝑏𝑠𝐺)/2𝑏𝑠𝑒 . However, the constants should be kept small. Using higher values leads
to larger bit widths representing the compared numbers, and therefore a more complex
comparator, thus negating the contribution of this optimisation.
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Table 3.2: Numbers of AIG nodes for different miters and WCAE bounds 𝑇 .

Bit shifts One multiplier Two multipliers
T [%] 12.5 25.0 50.0 10.0 33.3 66.7 80.0 30.0 42.9 71.4 85.7

add8 226 228 233 324 327 342 360 447 510 506 519
add16 497 501 502 770 755 773 756 1079 1225 1181 1220
add32 1120 1090 1114 2074 2116 2084 2106 3125 3249 3315 3354
mult4 268 267 273 335 347 356 347 464 499 492 513
mult8 1175 1177 1183 1393 1421 1436 1414 1685 1833 1803 1841
mult12 2617 2621 2622 3032 3057 3060 3051 3512 3748 3726 3756

3.6 WCRE Experimental Evaluation
We have integrated the proposed WCRE miters into the verifiability driven search in our
tool ADAC [14] (more information in Chapter 5) and evaluated its performance on a bench-
mark of circuit approximation problems.

3.6.1 Comparison of the WCRE Miters

In Table 3.2, we compare the size of the proposed WCRE miters. We select three target
WCRE bounds 𝑇 for the bit-shift variant and four target error values for one and two
multiplier miter designs. The table shows the average sizes of the different variants of the
miter obtained for the three chosen bit widths in adder and multiplier approximation. The
size is measured in the number of nodes in the and-inverter graph (AIG) representation of
the miter. AIG is a basic representation of circuits in ABC and is directly used as the input
for the SAT solving procedure. A larger size of AIGs negatively affects the performance of
the solver. We can see that the bit-shift variant is about a factor 2 smaller than the general
construction using two multipliers. For approximation of multipliers, the differences in the
size between the variants are less significant as the circuits themselves form a bigger part
of the miter. Note that the average size of the WCAE miter for a 32-bit adder and 12-bit
multiplier is 810 and 2437 AIG nodes, respectively, which is smaller than even the bit-shift
variant of the WCRE miters for the corresponding circuits. This clearly indicates that the
evaluation against WCRE is considerably harder.

Figure 3.10 illustrates how the size of the miters affects the performance of the candidate
circuit evaluation. In particular, it shows the average number of evaluations per second
(taken from 20 independent runs) when the approximation of adders (top) and multipliers
(bottom) with different bit-widths (the 𝑥-axis) is performed. We also compare the miter-
based methods with full simulation and WCAE miter evaluation.

We can observe that the simulation is considerably faster for small bit-widths, how-
ever, its performance significantly drops for circuits with operands larger than 10-bits. The
proposed SAT-based approach scales much better. For the adders, it provides very good
performance (around 100 evaluations per second) even for 32-bit operands. For the mul-
tipliers (representing structurally more complex circuits), the performance is much lower
and drops to 10 evaluations per second for 12-bit operands. As expected, the speed of the
miter evaluation slows down with increasing miter complexity—the bit-shift variant is the
fastest while the version with two multipliers is the slowest. The difference in the evaluation
speed is negligible for smaller circuits but becomes more significant for larger bit-widths.
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Figure 3.10: The performance of the circuit evaluation using different WCRE miters, the
WCAE miter, and simulation. Top: Adders. Bottom: Multipliers.

Note that the evaluation of the WCAE miters is significantly faster due their smaller sizes
(e.g. 4-times smaller for the 32-bit adders and 1.5-times smaller for the 12-bit multipliers
in comparison to the two multiplier implementation).

For larger miters, the bounds on the SAT solver resources introduced by our verifiability
driven search get applied. A small number of circuit evaluation tasks is skipped, e.g., for
the WCRE miters, 0.7 % for the 32-bit adders and 6 % for the 12-bit multipliers.

3.6.2 Circuit Approximation

In this section, we study how the proposed SAT-based WCRE evaluation can be leveraged
in circuit approximation. The optimisation is formulated as a single-objective optimisation,
i.e., for a given threshold on the WCRE bound 𝑇 , the approximation seeks for a circuit
satisfying the bound and having the smallest circuit area. For every value of 𝑇 , we run a 2-
hours-long approximation process. To take into account the randomness of the evolutionary
optimisation, we report the median of the circuit area obtained from 20 independent runs.
Figures 3.11 and 3.12 illustrate the quality of the obtained approximate circuits for the
16-bit/28-bit adders and the 8-bit multipliers, respectively. The circuits form a Pareto
front that captures the trade-offs between the area and the approximation error. The red
line shows the area of the golden circuit.

For the adders, the proposed approximation method works well and is able to success-
fully approximate circuits up to 16-bit operands. Fig. 3.11 (top) shows that, for 16-bit
adders, the most interesting solutions in the terms of accuracy and area savings are located
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Figure 3.11: The median circuit area of 16-bit (top) and 28-bit (bottom) approximate
adders approximated for WCRE. The red line indicates the area of the original circuit.

in the interval between 30 % and 60 % WCRE. For smaller target error values, the reduction
of the circuit size is negligible. On the other hand, the solutions with larger approximation
errors do not feature further improvements. We can also observe a dramatic area reduction
between 40 % and 50 % WCRE. For adders with larger bit widths, the method is still able
to find some approximations, however, the final solutions do not form a high quality Pareto
front. As seen in Fig. 3.11 (bottom), the median solution for 50 % WCRE is actually
smaller than the solution for the 60 % error threshold for 28-bit adders. This is caused
by the complexity of the miter for 60 % which needs two multipliers by constant. The
algorithm also did not find any significant improvements for the 40 % WCRE solutions.

Approximation of the multipliers represents a significantly harder problem. Recall that
the size of multipliers (and thus also of the miters) grows quadratically with respect to
their bit-widths. Therefore, the design space is larger and candidate evaluation is more
complicated as discussed in the previous section. Fig. 3.12 compares the approximate 8-
bits multipliers obtained using the simulation-based and SAT-based evaluation procedure.
The SAT-based approach slightly lags behind the simulation mainly in the interval between
25 % and 40 % WCRE. This can be explained by the worse performance of the SAT-based
evaluation on the 8-bit multipliers (recall Fig. 3.10 (bottom)).

As the performance of the simulation-based evaluation is very low beyond 10-bit mul-
tipliers, the approximation process is not able to provide a good approximation of these
circuits within a 2-hours-long run. Although the SAT-based approach (namely the bit-shift
solution) is able to evaluate around 10 candidates per second (for the 12-bit multipliers),
the approximation process also fails to provide good Pareto sets. This is probably caused
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Figure 3.12: The median circuit area of 8-bit approximate multipliers approximated for
WCRE. The red line indicates the area of the original circuit.

by the candidates that are skipped during the evaluation due to the resource limits on the
underlying SAT solver. Note that this behaviour was not observed for the WCAE approxi-
mation that works very well even for 16-bit multipliers despite many skipped solutions. This
again indicates that the WCRE approximation is very challenging, and future research is
necessary in this area.

3.7 Conclusion
In this chapter, we introduced the verifiability driven search scheme that extends the Carte-
sian Genetic Programming. This novel search scheme opens new possibilities for SAT-based
approximation procedures and allows us to successfully approximate circuits of unprece-
dented bit widths. We also proposed two novel approximation miter constructions that
allow us to efficiently evaluate the WCAE and WCRE of approximate circuits.

The presented techniques represent an important step towards automated design of ap-
proximate circuits with formal error guarantees, which is a landmark of provably-correct
construction of energy-efficient systems. When approximating circuits with the WCAE met-
ric, our method shows excellent scalability and is able to construct high-quality Pareto sets
of 32-bit multipliers and 128-bit adders. In case of WCRE approximation, we reached good
results for 16-bit approximate adders, but the SAT-based approach lags behind simulation
evaluation for 8-bit multipliers.
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Chapter 4

Adaptive Verifiability Driven
Search Strategy

The contents of this chapter are based on our work published in [15]. We extend the notion
of the verifiability-driven search with an adaptive strategy that monitors the progress made
by the evolution and modifies the resource restrictions accordingly. We also provide a
detailed experimental evaluation that features multiple common arithmetic circuits with
various bit widths.

4.1 Motivation
In this chapter, we further improve the concept of the verifiability-driven search introduced
in Chapter 3. Recall that we restrict the resources (running time) available to the SAT
solver when evaluating a candidate solution. If no decision is made within the limit, a
minimal score is assigned to the candidate circuit. Shortening of the evaluation time allows
our strategy to increase the number of candidate designs that can be evaluated within
the time given for the entire CGP run. As shown in Section 3.4, compared with existing
approximation techniques, our approach is able to discover circuits that have much better
trade-offs between the precision and energy savings.

To mitigate the negative effects caused by the shortening of the evaluation time, we
propose in this chapter an adaptive control procedure that dynamically adapts the limit
on resources available to the SAT solver during the evolution. It allows the verification
procedure to use more time when needed (typically at the end of the evolution) in order to
discover solutions requiring a longer verification time and that would be rejected with a fixed
resource limit. On the other hand, the verification time can also be shortened (typically,
though not only, at the beginning of the evolution) when many suitable candidate designs
are produced.

We have implemented the adaptive strategy in ADAC [14] (for more details see Chap-
ter 5), our tool for automated design of approximate circuits, that is now able to discover
complex arithmetic circuits such as 32-bit approximate multipliers, 32-bit approximate
multiply-and-accumulate (MAC) circuits, and 24-bit dividers providing high quality trade-
offs between the approximation error and energy savings. Such circuits have been approxi-
mated by a fully-automated approach with guaranteed error bounds for the first time.
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Contributions

We propose and implement the adaptive search scheme that considerably improves the orig-
inal verifiability-driven strategy. In particular, it improves the overall performance, and,
more importantly, it ensures that our approach is versatile, i.e. in contrast to the method
described in Chapter 3, it works well for a wide range of arithmetic circuits and approxi-
mation scenarios without manual tuning of the parameters of the evolutionary algorithm.
The adaptivity is an important methodological improvement as the versatility is indeed
essential for applying the approximation process into automated circuit design.

We also significantly extend the numerical evaluation to demonstrate the impact of the
features described above. The evaluation newly includes approximate circuits (with dif-
ferent bit-widths) for multiplier–accumulators and dividers representing structurally more
complex circuits when compared to the adders and multipliers typically used in the litera-
ture. It should be noted that especially MACs play an important role in many energy-aware
applications – for example, MACs represent highly energy demanding components in neural
network hardware architectures [52].

4.2 Adaptive Verifiability-driven Optimisation
In this section, we propose the adaptive strategy that is integrated into our optimisation
scheme. The optimisation scheme now consist of four parts:

1. A generator of candidate solutions that builds on Cartesian Genetic Programming
(Section 2.2.5).

2. An evaluator that evaluates the approximation error of candidate solutions by lever-
aging the SAT-based verification methods (Section 3.3).

3. A verifiability-driven search that integrates the cost of the circuit evaluation into the
fitness function (Section 3.2.3).

4. An adaptive strategy that adjusts the allowed cost of the evaluation of candidate
solutions on-the-fly during the approximation process. We describe the strategy in
the rest of this section.

Adaptive resource limit strategy

In the previous Chapter 3, we performed a preliminary evaluation of the verifiability-driven
search strategy studying how the limit 𝐿 on the maximal number of backtracks in the
SAT decision procedure affects the performance of the approximation process applied on
multipliers and adders of various bit-widths. In particular, we considered 20K, 160K, and
unboundedly many backtracks. The results clearly demonstrated that the evolutionary
algorithm found the best solutions for the lowest of these three limit settings for a wide
range of circuits. However, the question whether a still lower SAT limit would improve the
performance even further remained open. Likewise, there remained a question what limits
would be appropriate for circuits and bit widths other than those considered in the trials.

Apparently, the lower the limit is the faster the evaluation of each candidate solution will
be. This results in the processing of a higher number of generations in a given time interval,
hopefully leading to better results. On the other hand, aggressive limit settings reduce the
search space of candidate solutions that can be evaluated within the given limit. A too tight
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restriction might prevent the candidate solutions from diverting from the original solution
and reaching significant improvements (most of the newly generated candidates will likely
be skipped due to exceeding the evaluation limit). Also, the type and complexity of the
approximated circuit and the approximation error can play a significant role in choosing
the ideal limit settings. Thus, to reach the best performance of the method, each new
instance of the problem would require an evaluation of different limit values. Moreover, a
fixed limit value might not be optimal during the course of the evolutionary process even
if it is optimal in some of its phases.

Therefore we propose a new adaptive strategy that alters the limit within the evolution-
ary run and tries to set it to the most suitable value with regards to the recently achieved
progress. We designed the strategy scheme based on our previous observations that the
limit should be kept low in the early stages of the evolution so that the clearly redundant
logic can be quickly eliminated. Later in the evolutionary process, the algorithm converges
to a locally optimal solution and improvements in the fitness of the candidates cease to
occur. When such a stage is reached, the limit needs to be increased in order to widen
the space of feasible candidate solutions at the expense of a slower candidate evaluation.
Moreover, once some more significantly changed solution is found, it may again be possible
to reduce the resource limit needed for the evaluation, and the process of extending and
shrinking the resource limit may repeat (as witnessed also in our numerical trials).

Algorithm 2 Adapting the time limit for evaluating candidates
1: 𝑙𝑎𝑠𝑡𝐺𝑒𝑛𝑠← 0
2: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡← 0
3: function updateLimit(limit, improvement)
4: 𝑙𝑎𝑠𝑡𝐺𝑒𝑛𝑠← 𝑙𝑎𝑠𝑡𝐺𝑒𝑛𝑠 + 1
5: if 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 then
6: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡 + 1

7: if 𝑙𝑎𝑠𝑡𝐺𝑒𝑛𝑠 mod 𝑝𝑒𝑟𝑖𝑜𝑑 = 0 then
8: if 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡 > 𝜏𝑑𝑒𝑐 then
9: 𝑙𝑖𝑚𝑖𝑡← 𝑙𝑖𝑚𝑖𝑡− 𝛿 * 𝑙𝑖𝑚𝑖𝑡

10: else if 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡 < 𝜏𝑖𝑛𝑐 then
11: 𝑙𝑖𝑚𝑖𝑡← 𝑙𝑖𝑚𝑖𝑡 + 𝛿 * 𝑙𝑖𝑚𝑖𝑡

12: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡← 0
13: 𝑙𝑎𝑠𝑡𝐺𝑒𝑛𝑠← 0
14: else if 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡 > 𝜏𝑟𝑒𝑠 then
15: 𝑙𝑎𝑠𝑡𝐺𝑒𝑛𝑠← 0
16: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡← 0
17: 𝑙𝑖𝑚𝑖𝑡← 𝑙𝑖𝑚𝑖𝑡− 𝛿 * 𝑙𝑖𝑚𝑖𝑡

18: 𝑙𝑖𝑚𝑖𝑡← 𝑚𝑎𝑥(𝑙𝑖𝑚𝑖𝑡,𝑚𝑖𝑛𝐿𝑖𝑚𝑖𝑡)
19: 𝑙𝑖𝑚𝑖𝑡← 𝑚𝑖𝑛(𝑙𝑖𝑚𝑖𝑡,𝑚𝑎𝑥𝐿𝑖𝑚𝑖𝑡)
20: return limit

Our strategy is described in pseudocode in Algorithm 2. The strategy changes the limit
during the evolution process and is driven by four main parameters and two additional limit
values with the following semantics:

• 𝑝𝑒𝑟𝑖𝑜𝑑: the number of generations after which a periodic check whether the evaluation
limit should be changed is triggered.
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• 𝛿: the increase/decrease ratio which says by what fraction of the current limit is the
limit increased/decreased when such a change is considered useful.

• 𝜏𝑑𝑒𝑐: if the number of improvements that occur in a period is above this threshold,
the resource limit for the evaluation will be decreased.

• 𝜏𝑖𝑛𝑐: if the number of improvements that occur in a period is below this threshold,
the resource limit for the evaluation will be increased.

• 𝜏𝑟𝑒𝑠: if this threshold is hit, an immediate decrease of the resource limit and a reset
of the generation counter is triggered. This threshold applies when the limit becomes
clearly too high, which can happen as witnessed by our computations.

• 𝑚𝑖𝑛𝐿𝑖𝑚𝑖𝑡: a minimum limit bound that restricts the possible values of the resource
limit achievable by the adaptive strategy from below.

• 𝑚𝑎𝑥𝐿𝑖𝑚𝑖𝑡: a maximum limit bound that restricts the possible values of the resource
limit achievable by the adaptive strategy from above.

Algorithm 2 allows the strategy to track the current progress of the evolutionary al-
gorithm and adapt the resource limit accordingly. The key purpose of the algorithm is to
keep the limit low while the evolutionary process achieves improvements in the candidate
solutions, and to increase the available resources once the progress is seemingly stalled by
the imposed limit. The algorithm tracks the number of improvements made in the last
𝑙𝑎𝑠𝑡𝐺𝑒𝑛 generations in the global variable 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡. In every generation, the
algorithm calls the function 𝑢𝑝𝑑𝑎𝑡𝑒𝐿𝑖𝑚𝑖𝑡 that accepts two parameters: an integer value
𝑙𝑖𝑚𝑖𝑡 that represents the current resource limit value and a Boolean value 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡
that records whether an improvement occurred in the current generation. If the number
of the current improvements exceeds the value of 𝜏𝑟𝑒𝑠, the limit is immediately decreased.
Otherwise, the algorithm waits until the 𝑝𝑒𝑟𝑖𝑜𝑑 number of generations is reached (the con-
dition on line 7 is true, where mod denotes the modulo operation) and then either increases,
decreases or keeps the limit value based on the comparison of the 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡 and
the thresholds 𝜏𝑖𝑛𝑐 or 𝜏𝑑𝑒𝑐, respectively.

The value of the increment/decrement of the resource limit is relative to the current
limit value. This allows the strategy to both delicately alter small limit values and reach
high limit values in reasonable time. The limit value is restricted to stay within the interval
⟨𝑚𝑖𝑛𝐿𝑖𝑚𝑖𝑡,𝑚𝑎𝑥𝐿𝑖𝑚𝑖𝑡⟩. This ensures that we do not get too small limit values that would
reject all candidates nor too big limit values that would feature a very long evaluation time,
which would effectively stop the approximation process.

4.3 Evaluation of the Proposed Adaptive Search Approach
In this section, we present a detailed numerical evaluation of the proposed method for the
evolutionary-driven circuit approximation. We first describe the computational setting and
briefly discuss the CGP parameters we used in the evaluation. Afterwards, we present a
thorough evaluation of the adaptive feature of our approach as well as a detailed comparison
of our approach with other existing approaches. In particular, our computations focus on
answering the following questions:

Q1 Can the adaptive strategy reduce the randomness of the evolution-based approxima-
tion process?

56



Q2 Can the adaptive strategy efficiently handle different circuit approximation problems
– is it more versatile than the fixed-limit strategies?

Q3 Can the adaptive strategy outperform the best fixed-limit strategy for a given circuit
approximation problem?

Q4 Does the proposed method significantly outperform other circuit approximation tech-
niques?

4.3.1 Computational Setup

The proposed adaptive search strategy was implemented in our tool ADAC (Chapter 5).
In the computations, we consider the following circuits for evaluating the performance of
the proposed method1:

• 16-bit multipliers (the input is two 16-bit numbers) having 1525 gates (501 xors and
logic depth 34),

• 24-bit multipliers having 3520 gates (1157 xors and logic depth 40),

• 24-bit multiply-and-accumulate (MAC) circuits (the input is two 12-bit numbers and
one 24-bit number) having 1023 gates (321 xors and logic depth 39),

• 32-bit MAC circuits having 1788 gates (565 xors and logic depth 44),

• 20-bit squares (the input is one 20-bit number, the result is the second power of the
input) with 2213 gates (789 xors and logic depth 38),

• 28-bit squares with 4336 gates (1547 xors and depth 40).

• 23-bit dividers (the input is 23-bit and 12-bit numbers) having 1512 gates (253 xors
and logic depth 455),

• 31-bit dividers with 2720 gates (465 xors and depth 799).

It should be noted that the number of gates directly affects the complexity of the
approximation process—the more gates a circuit has, the harder the approximation problem
is. The number of XOR gates is especially important as they are difficult for the current
SAT solvers to deal with. We further report the depth of the circuits as another important
structural characteristic. It should also be noted that we use the synthesised gate level
implementations (i.e. the golden models) as the seeding circuit (i.e. the initial B-circuit)
for the evolutionary approximation.

Recall that we consider the circuit size as the key non-functional characteristic we want
to improve by allowing an error in the circuit computation. To estimate the circuit size,
we use the gate sizes listed in Table 3.1. These sizes correspond to the 45nm technology
which we consider in Section 4.3.7 when comparing the power-delay product (PDP)2 of our
resulting circuits with state-of-the-art solutions.

1Gate-level implementations of the considered multipliers, MACs and squares were designed using the
Verilog “*” and “+” operators and subsequently synthesised by the Yosys hardware synthesis tool using the
gates listed in Table 3.1. Gate-level representations of the dividers were created according to [89].

2Power-delay product is a standard characterisation capturing both the circuit power consumption and
performance.
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Justification for the selected benchmark set:
Approximation of 16-bit multipliers represents the cutting edge of circuit approximation

techniques due to the circuit size (i.e. the number of gates) and structural complexity (i.e.
the presence of carry chains), especially when some formal error guarantees are expected
from the approximation method [50]. We use such multipliers in Section 4.3.7 to compare
our approach with state-of-the-art techniques. The other circuits we consider go beyond this
edge: MACs have a more complicated structure and the error of the involved multiplication
is further propagated in the consequent accumulation. Square circuits computing the second
power of the input represent a specialised version of multipliers. While these circuits feature
less inputs than other examined instances, their internal structure is much more complex
than the structure of arithmetic circuits with comparable input bit widths. Approximation
of dividers represents a true challenge since they are structurally more complicated, much
deeper, and significantly less explored (e.g. when compared with multipliers).

For all 8 circuits, we consider various WCAE values, namely, we let WCAE range from
10−4% to 1%. The given bound on the WCAE value determines permissible changes in the
circuit structure (i.e. a small error allows only smaller changes in the circuit). Therefore,
different WCAE values lead to significantly different approximation problems. We also
consider two time limits (1 and 6 hours) for the approximation process. It should be noted
that the time limit also considerably affects the approximation strategy as the given time
has to be effectively used with respect to the complexity of the approximation problem.

In our evaluation, we explore all three dimensions characterising the circuit approxima-
tion problems: i) the circuit type reflecting both the size and the structural complexity, ii)
the error bound, and iii) the approximation time. In total, we examine more than 70 in-
stances of the approximation problems that sufficiently cover practically relevant problems
in the area of arithmetic circuit approximation. Therefore, the considered benchmark allows
us to answer the research questions and, in particular, to robustly evaluate the versatility
of the adaptive strategies and their benefits with respect to the fixed-limit strategies.

It should be noted that we exclude adders from the present evaluation as they represent
a much simpler approximation problem – comparing to 16-bit multipliers, 128-bit adders
have only around two thirds of the gates and are structurally less complex. Therefore,
the miter-based error evaluation can handle these circuits without leveraging the resource
limits.

4.3.2 CGP Parameters

The performance of CGP for a given application domain can heavily rely on the various
CGP parameters. The following parameters are especially relevant in the case of circuit
approximation:

• the number of offspring (𝜆),

• the frequency of mutations, and

• the CGP grid size and the L-back parameter (i.e. connectivity in the chromosome).

We now briefly discuss our choice of the values of these parameters that will later be used
for the main part of the evaluation of the proposed method.

As shown in [112], for a fixed number of generated and evaluated candidate solutions,
CGP-based circuit optimisation with a smaller value of 𝜆 usually leads to a better fitness
values than CGP using larger values of 𝜆.
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Figure 4.1: The impact of the number of offspring (𝜆) and mutation frequency (𝑋) on
the final circuit area of approximated 16-bit multipliers obtained by CGP with a fixed time
limit for each evolutionary run.

Aside from the population size, we also examine the effect of the mutation frequency on
the performance of circuit approximation. Each time the mutation operator is applied, it
alters a single integer in the chromosome. When we generate a new candidate from a parent,
we apply the mutation operator up to 𝑀 times, 𝑀 = 0.01 *𝑋 * 𝑔𝑎𝑡𝑒𝑠(𝐺) where 𝑋 is the
mutation frequency parameter and 𝑔𝑎𝑡𝑒𝑠(𝐺) is the number of gates of the golden solution
𝐺 that is approximated. In the particular trial of 16-bit multiplier approximation, in which
𝑔𝑎𝑡𝑒𝑠(𝐺) = 1525, the performance was evaluated for 𝑋 ∈ ⟨0.5, 10⟩, i.e. 𝑀 ∈ ⟨8, 153⟩
mutations per chromosome.

Fig. 4.1 provides the results of the approximation of a 16-bit multiplier with 0.1 %
WCAE using different combinations of 𝜆 and 𝑋 (the 𝑥-axis). The 𝑦-axis characterises the
estimated size (obtained as the sum of gate sizes) of the best candidate found in every
2-hour run. The SAT resource limit was set to 100. We do not present results for other
approximate circuits as they exhibit similar patterns. The boxplots are grouped by mutation
frequency. We can see that the performance within each group is very similar and lower
mutation frequencies perform better than higher mutation frequencies. We also applied
Friedman and Nemenyi statistical tests [26, 33, 83] to evaluate these results. According
to the Nemenyi post hoc test, the differences between various 𝜆 values within the same
mutation frequency are not significant at 𝛼 = 0.05. Mutation frequencies 𝑋 = 0.5 and
𝑋 = 2 are equivalent and perform significantly better than 𝑋 = 4 and 𝑋 = 10, according
to the statistical tests.

The numerical trials confirm the general observations known from the literature (see,
e.g. [78]): the number of mutations should be small. This way, the mutations perform
slight changes between the generations only. Otherwise, for a high mutation frequency, the
function of a new solution is usually completely altered. Such a solution is then rejected
with a high probability, the search gets close to a random one, and its efficiency deteriorates.
Therefore, in the following computations, we choose the mutation frequency 𝑋 = 0.5 %. As
population size does not seem to significantly matter, we choose the simplest 𝜆 = 1 scheme.
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As for the chromosome dimensions and the L-back parameter, we use the same settings
as presented in Section 3.4.1. Namely, we arrange all the gates of the chromosome gate
matrix in a single row (dimensions 1×𝑊 where 𝑊 equals the number of gates in the correct
circuit) and use L-back = 𝑊 , which allows for maximum connectivity.

4.3.3 Comparison of Adaptive Strategies

In the next cycle of simulations, we examine the different versions of the adaptive strategy.
Each version corresponds to a different instantiation of the adaptive scheme presented in
Section 4.2. The goal of this phase is to select the best adaptive strategies that efficiently
work for a wide class of approximation problems. These strategies are further thoroughly
evaluated and compared with fixed limit strategies on the selected benchmark.

Based on our experience with the limit values used in Chapter 3, we consider five versions
of the adaptive strategy given by the parameter values listed in Table 4.1. These versions
have been chosen to adequately cover the space of adaptive strategies and thus they range
from strategies that try to promptly react to changes in the evolutionary process (𝑎𝑑𝑎1,
𝑎𝑑𝑎3) to strategies that evaluate the progress of the evolution over longer periods of time
(𝑎𝑑𝑎2). The remaining strategies (𝑎𝑑𝑎4, 𝑎𝑑𝑎5) lie in the middle of the range.

The strategies differ mainly in two basic aspects: the length of the period with which the
adaptation happens and the thresholds used for the adaption (𝜏𝑑𝑒𝑐, 𝜏𝑖𝑛𝑐, 𝜏𝑟𝑒𝑠). Larger values
of the thresholds with respect to the 𝑝𝑒𝑟𝑖𝑜𝑑 mean that the resource limit will more likely be
increased. Strategies with such thresholds (𝑎𝑑𝑎1, 𝑎𝑑𝑎3 and 𝑎𝑑𝑎5) are faster to magnify the
limit once the evolution seemingly gets stuck in a local optimum. Thus, the possible search
space is broadened, but each candidate evaluation is likely to take longer time. On the
other hand, strategies 𝑎𝑑𝑎2 and 𝑎𝑑𝑎4 try to keep the resource limit as low as possible, and
each evaluation is therefore very fast. However, once there are no improvements possible
with the current limit value, these strategies are slower to react.

The minimal limit value 𝑚𝑖𝑛𝐿𝑖𝑚𝑖𝑡 and the maximum limit value 𝑚𝑎𝑥𝐿𝑖𝑚𝑖𝑡 are set to
500 and 15,000, respectively, based on the experience we gained from our previous work
(see Chapter 3).

Table 4.1: Adaptive strategy parameters.

Strategy 𝜏𝑑𝑒𝑐 𝜏𝑖𝑛𝑐 𝜏𝑟𝑒𝑠 period minLimit maxLimit
ada1 4 2 10 1000 500 15000
ada2 2 1 5 15000 500 15000
ada3 4 4 8 3000 500 15000
ada4 1 1 3 5000 500 15000
ada5 5 4 8 5000 500 15000

We evaluate the performance of the described strategies on the approximation scenario
of 16-bit multipliers with a total of 8 target WCAE values ranging from 10−4% to 1% with
50 independent 1 hour and 6 hour long evolutionary runs. The quality of the obtained final
solutions was evaluated using Friedman and Nemenyi statistical tests with results illustrated
in Table 4.2. In the table, we report the pairwise p-values of the Nemenyi statistical test
and the average rank values. The rank value for a single run experiment is computed as
follows. First, we perform a single evolutionary run for each adaptive strategy. Then, we
sort the final solutions from the best (smallest size) to the worst and the best solution is
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assigned rank 1, the second best rank 2, etc. In the table, we report the average rank,
which is computed as the average of rank values over 50 independent evolutionary runs. A
smaller average rank indicates, that the strategy tends to provide better solutions than the
strategies with a higher average rank.

For 1h runs, strategy 𝑎𝑑𝑎5 performs the best, but its performance is statistically equiv-
alent to 𝑎𝑑𝑎4 and 𝑎𝑑𝑎3. This group of strategies is significantly better than 𝑎𝑑𝑎1 and
𝑎𝑑𝑎2.

For 6h runs, 𝑎𝑑𝑎2 significantly outperforms the rest of strategies, followed by 𝑎𝑑𝑎4 which
also significantly outperforms its successors.

In the overall evaluation, the performance of strategies 𝑎𝑑𝑎2, 𝑎𝑑𝑎4, and 𝑎𝑑𝑎5 is statisti-
cally equivalent and significantly better than the performance of strategies 𝑎𝑑𝑎1 and 𝑎𝑑𝑎3.
As we aim to acquire the best solutions that our method can provide, we select the strategies
𝑎𝑑𝑎2 and 𝑎𝑑𝑎4 as representatives of adaptive strategies for the following computations.

Table 4.2: Pairwise p-values of Nemenyi statistical test and average rank values for 1h
trials, 6h trials and both trials combined.

1h runs 𝑎𝑑𝑎1 𝑎𝑑𝑎2 𝑎𝑑𝑎3 𝑎𝑑𝑎4 𝑎𝑑𝑎5

𝑎𝑑𝑎2 0.74708 - - - -
𝑎𝑑𝑎3 6.50E-06 0.00155 - - -
𝑎𝑑𝑎4 4.30E-07 0.00019 0.98709 - -
𝑎𝑑𝑎5 9.20E-13 4.10E-09 0.09467 0.27627 -
Rank 3.4275 3.2925 2.87125 2.815 2.59375

6h runs 𝑎𝑑𝑎1 𝑎𝑑𝑎2 𝑎𝑑𝑎3 𝑎𝑑𝑎4 𝑎𝑑𝑎5

𝑎𝑑𝑎2 2.00E-16 - - - -
𝑎𝑑𝑎3 0.28188 4.90E-14 - - -
𝑎𝑑𝑎4 5.40E-14 0.01082 3.10E-12 - -
𝑎𝑑𝑎5 0.00013 6.50E-14 0.12034 9.10E-06 -
Rank 3.6275 2.23125 3.4075 2.5925 3.14125

Overall 𝑎𝑑𝑎1 𝑎𝑑𝑎2 𝑎𝑑𝑎3 𝑎𝑑𝑎4 𝑎𝑑𝑎5

𝑎𝑑𝑎2 6.10E-14 - - - -
𝑎𝑑𝑎3 9.00E-06 1.80E-05 - - -
𝑎𝑑𝑎4 5.20E-14 0.9483 3.60E-07 - -
𝑎𝑑𝑎5 5.30E-14 0.6686 0.0053 0.2326 -
Rank 3.5275 2.761875 3.139375 2.70375 2.8675

We further show how the adaptive strategies 𝑎𝑑𝑎2 and 𝑎𝑑𝑎4 change the resource limits
during the approximation process. Fig. 4.2 shows how the limits change (increase as well as
decrease) over the time during the approximation of the 16-bit multipliers with target 0.1 %
WCAE. The approximation ran for 6 hours, and the plot shows the maximum number of
SAT backtracks (i.e. the resource limit) that was allowed to be used during the verification
of candidate circuits in particular generations of the evolutionary optimisation. The top
two plots of the figure illustrate five selected runs for both strategies, and the bottom plot
shows the aggregated results for 50 independent runs. It shows the median of the resource
limits plotted by the full lines and quartiles Q1 and Q3 plotted by the dashed lines. The
information about largest and smallest limit values is omitted for better readability.

The figure confirms our expectations: in the initial stages of the approximation, the
limit is kept low because improvements are found frequently. We can also see that the
limit increases as well as decreases, and a closer evaluation of our data reveals that both
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Figure 4.2: The resource limits chosen by the adaptive strategies 𝑎𝑑𝑎2 and 𝑎𝑑𝑎4 during
the approximation of the 16-bit multiplier. The top two plots illustrate five selected runs
for each strategy. The bottom plot shows the medians (full lines) and the quartiles Q1 and
Q3 (dashed lines) over 50 approximation runs.

the periodic and immediate decreases are used. Furthermore, it should be noted that
𝑎𝑑𝑎4 increases the limit much sooner than 𝑎𝑑𝑎2, and the rate of the increase is also much
steeper. This fact allows 𝑎𝑑𝑎4 to use more time out of the total time available for the entire
evolutionary run for evolving and evaluating solutions that need larger resource limits for
their verification. On the other hand, the higher limit slows the evolutionary process down
significantly—we see that none of the 𝑎𝑑𝑎4 runs reaches the number of 1.2*106 generations
in this numerical trial. The particular runs of the strategies also demonstrate that 𝑎𝑑𝑎4
exhibits more changes (including periodic drops of the limits) compared with the more
stable strategy 𝑎𝑑𝑎2. The impact of these differences on the quality of the obtained final
solutions will be evaluated in the further subsections of this section.
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Figure 4.3: The resource limits chosen by the adaptive strategies 𝑎𝑑𝑎2 and 𝑎𝑑𝑎4 during
the approximation of a 23-bit divider. The plot shows the median values (full lines) and
the quartiles Q1 and Q3 (dotted lines) over 50 runs.

Finally, Fig. 4.3 shows the aggregated results for approximation of 23-bit dividers (with
the same WCAE) representing a very different approximation scenario. We observe that
the approximation of the dividers requires higher resource limits (i.e. more time for the
verification of the candidate solutions) when compared with the multipliers: this is due to
the structural complexity of the circuits. For example, in the 400K-th generation, 𝑎𝑑𝑎4 sets
the limit to about 2K for the multipliers and to about 12K for the dividers. The difference
is, however, less significant in the case of 𝑎𝑑𝑎2.

4.3.4 Reduction of Randomness (Q1)

Evolutionary algorithms involve a significant amount of randomness, and the quality of the
final solutions produced by independent runs can considerably vary. One of the goals of the
newly designed adaptive strategies is to reduce the amount of the involved randomness and
ensure that most of the approximation runs will lead to high-quality solutions. In these
numerical trials, we analyse the quality and variability of sets of 50 independent evolutionary
runs for the adaptive strategies as well as for various fixed limit resource settings.

For the following simulations, we denote the fixed resource limit strategies as 𝑙𝑖𝑚100,
𝑙𝑖𝑚2𝐾, 𝑙𝑖𝑚10𝐾, 𝑙𝑖𝑚20𝐾, and 𝑙𝑖𝑚50𝐾 for the resource limits of 100, 2000, 10000, 20000,
and 50000 backtracks on a single variable, which are used through the whole evolutionary
process. We chose these values to represent small, mid range and large values. Recall that
in the previous chapter, we used 𝑙𝑖𝑚20𝐾 as the standard resource limit setting.

The plots in Figures 4.4 and 4.5 demonstrate how the size of the candidate solutions
decreases during the evolutionary runs. In particular, the dashed red lines show the best
and the worst run; and median, first (Q1) and third (Q3) quartile are illustrated by the full
blue line and the red lines, respectively.

Fig. 4.4 shows that the adaptive strategies as well as the strategies with lower resource
limit values are significantly more stable than the strategies with higher limits. This is
caused by the fact that the evolution sometimes has to explore solutions requiring a long
verification time. Such solutions are immediately refused by the lower resource limits (100,
2𝐾) and by the adaptive strategies but more likely accepted by the other strategies (10𝐾,
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Figure 4.4: Convergence curves for resource limit strategies showing the estimated area
for the best, worst, Q1, Q3, and median solutions during 16-bit multiplier approximation.
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Figure 4.5: Convergence curves for resource limit strategy 𝑎𝑑𝑎2 showing the estimated
area for the best, worst, Q1, Q3, and median solutions during 23-bit divider approximation.

20𝐾, and 50𝐾). The long evaluation time is inherited from parents to offspring. The
strategies with higher limit settings are therefore much slower to converge to a near op-
timum solution. The previously described slowdown of the evolution also leads to higher
variation in the candidate quality throughout the evolution, which can be observed as the
wide interquartile range (IQR) for limits 10𝐾, 20𝐾, and 50𝐾. Other strategies feature a
narrow IQR—a desirable attribute of a good resource limit strategy. The convergence of
the strategy 𝑙𝑖𝑚50𝐾 is so slow that we exclude this strategy from the rest of the simulations
to save computational time.

We obtained similar observations for other WCAE values and bit-width settings for
multipliers, MACs and square circuits. The difference between the strategies is even more
pronounced for smaller approximation errors which represent a harder optimisation prob-
lem. On the other hand, large approximation errors diminish the differences.

The approximation of dividers represents another class of optimisation problems with
a different behaviour. The variance of the solutions is very similar for all resource limit
settings. As an example, the variance for approximation of a 23-bit divider with the strategy
𝑎𝑑𝑎2 is illustrated in Figure 4.5. Plots for other resource limit strategies are omitted as
they feature almost identical variance. What differs between the strategies is the quality
of the final solutions that can be obtained. This is described in greater detail in the next
section.

Summary for Q1: For a wide class of circuits, the adaptive strategies as well as the low-
limit strategies are significantly more stable than other fixed limit strategies (i.e. the effect
of the randomness is smaller). All strategies show good stability for the approximation of
dividers, however, the low-limit strategies provide considerably smaller reductions of the
circuit area.
Note: Since it would be very difficult to present our results while also showing the random-
ness of the evolutionary runs at the same time, we present only the quality of the median
solutions in the rest of this chapter when not stated otherwise.

4.3.5 Versatility of Adaptive Strategies (Q2)

The key feature of circuit approximation strategies is versatility, an ability to provide ex-
cellent performance for various approximation scenarios including different circuits, WCAE
values and time limits. Although the verifiability-driven strategy itself leads to unprece-
dented performance and scalability of circuit approximation [13], the fixed-limit resource
limits do not ensure versatility. This fact is demonstrated in Fig. 4.6 where we fix WCAE to
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0.1 % for multipliers, squares, MACs, and dividers, and explore the progress of the approx-
imation process. The right part of each plot illustrates the quality of the final solutions.
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Figure 4.6: Convergence plots of the median solutions calculated from 50 independent
evolutionary runs for various combinational circuits.

When comparing the performance of the fixed-limit strategies on the approximation
of 16-bit multipliers, we can see that the strategy 𝑙𝑖𝑚100 dominates in the first hour of
the approximation process since it provides the fastest convergence. Strategies 𝑎𝑑𝑎2, 𝑎𝑑𝑎4,
and 𝑙𝑖𝑚2𝐾 converge slower, but around after the first hour their median solutions outper-
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form 𝑙𝑖𝑚100 which cannot achieve further improvements due to the tight resource limit.
Strategies 𝑙𝑖𝑚10𝐾 and 𝑙𝑖𝑚20𝐾 provide a significantly slower convergence: 𝑙𝑖𝑚10𝐾 needs
around 2.5 hours to provide solutions that are comparable to the aforementioned strategies,
𝑙𝑖𝑚20𝐾 is too slow and its final solution lags behind.

Table 4.3: Relative sizes in % of the median solutions with respect to the size of the golden
solution for multiplier approximation. The left column shows the target WCAE threshold.

16-bit multiplier
1h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.001 % 82.2 85.8 95.7 98.1 82.4 81.1
0.01 % 61.1 60.4 88.6 96.7 59.3 57.9
0.1 % 37.7 37.0 58.9 86.2 36.8 36.7

1 % 18.8 17.9 20.2 43.5 18.6 17.7
6h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.001 % 74.0 72.8 77.6 82.4 72.5 71.5
0.01 % 56.4 55.4 56.8 63.2 55.0 54.0
0.1 % 35.5 33.4 34.6 38.5 33.2 33.5

1 % 17.4 15.7 16.4 17.2 15.7 15.9

24-bit multiplier
1h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.001 % 91.2 87.6 96.7 97.7 89.0 87.2
0.01 % 32.1 59.7 89.3 94.4 32.8 31.5
0.1 % 19.0 19.8 78.7 86.3 18.4 18.5

1 % 9.2 8.6 21.1 79.9 9.1 8.9
6h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.001 % 43.0 40.4 79.3 82.6 41.8 41.0
0.01 % 27.1 27.1 30.2 42.7 26.8 26.3
0.1 % 16.3 15.9 18.1 23.4 15.9 16.0

1 % 8.7 7.6 7.6 8.6 7.4 7.4

Similar trends among the inspected strategies are observed for the 32-bit MACs (see
the second plot in Fig. 4.6). It should be noted that, in general, the convergence is much
slower because this circuit is larger and represents a harder optimisation problem compared
with the multipliers. Moreover, we observe a larger diversity among the strategies.

The progress tendencies for 28-bit square circuit (see the third plot in Fig. 4.6) signif-
icantly differ. The strategies 𝑙𝑖𝑚10𝐾 and 𝑙𝑖𝑚20𝐾 provide an extremely slow convergence
and even after 6-hours runs they significantly lag behind the other strategies. The strat-
egy 𝑙𝑖𝑚2𝐾 also converges much slower than the remaining strategies, which show similar
performance. After an 1-hour run, 𝑙𝑖𝑚2𝐾 returns circuits that are about two-times larger
than the circuits provided by the strategy 𝑙𝑖𝑚100, however, after 5 hours it catches up with
the other strategies.

The bottom part of Fig. 4.6 illustrates the results for the dividers. We observe a very
different trend in the approximation process. In particular, all strategies converge very
quickly to a sub-optimal solution, but the fixed-limit strategies with small resource limits
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Table 4.4: Relative sizes in % of the median solutions with respect to the size of the golden
solution for MAC approximation. The left column shows the target WCAE threshold.

24-bit MAC
1h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.0001 % 96.7 96.9 97.7 97.8 96.7 97.1
0.001 % 94.3 93.7 95.0 95.3 94.0 93.9
0.01 % 91.3 82.1 83.0 95.5 90.0 93.9
0.1 % 73.1 67.8 93.2 92.6 65.8 64.1

1 % 38.2 28.9 45.4 67.9 31.1 28.5
6h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.0001 % 95.9 96.2 95.8 96.2 95.5 95.8
0.001 % 92.3 90.4 89.4 89.4 88.7 88.5
0.01 % 84.9 76.0 75.0 78.7 76.6 75.2
0.1 % 59.1 56.7 61.2 65.6 53.1 53.0

1 % 31.8 27.3 26.1 26.9 24.7 24.9

32-bit MAC
1h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.0001 % 94.6 95.7 98.7 98.9 95.0 94.8
0.001 % 94.3 94.0 97.5 97.6 93.8 93.6
0.01 % 87.1 81.2 90.0 95.5 85.5 89.3
0.1 % 87.1 57.8 85.7 90.8 77.3 86.2

1 % 24.8 19.1 32.0 58.3 19.4 19.7
6h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.0001 % 93.7 88.9 93.7 94.3 91.2 88.0
0.001 % 91.9 78.0 83.4 80.8 80.5 76.9
0.01 % 61.1 60.4 55.6 62.5 57.9 62.7
0.1 % 39.7 34.0 39.1 54.8 37.4 35.1

1 % 20.3 17.1 16.4 16.4 15.5 15.3

(𝑙𝑖𝑚100 and 𝑙𝑖𝑚2𝐾) are not able to achieve any further improvements, and they signifi-
cantly lag behind the other strategies in the final solutions. We further observe that the
strategy 𝑙𝑖𝑚20𝐾, which performs very poorly on the previous circuits, is the best strategy
in this case. The proposed adaptive strategies inherit the initial fast convergence using
a small limit, but they adapt the limit after the first hour and arrive to results comparable
with the strategy 𝑙𝑖𝑚10𝐾.

Fig. 4.6 indicates that the performance of the particular fixed-limit strategies fundamen-
tally varies for different circuits under approximation. For example, the strategy 𝑙𝑖𝑚2𝐾
gives the best results for the MACs, but it behaves very poorly on the dividers, which clearly
require a very high resource limit. In Tables 4.3 – 4.6, depicting the results for particular
circuits, we show that the selection of the best strategy also depends on the required WCAE
and on the bit-width of the particular circuits. The tables list the relative size reductions of
the median solutions with respect to the golden circuit obtained using different strategies
after 1 and 6 hours for various circuit types, bit-widths and WCAEs. The best solution for
each target approximation error is highlighted in bold text. For instance, Table 4.3 shows
that the median solution for 16-bit multipliers with 0.01 % WCAE obtained by 𝑎𝑑𝑎4 in 6
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Table 4.5: Relative sizes in % of the median solutions with respect to the size of the golden
solution for divider approximation. The left column shows the target WCAE threshold.

23-bit divider
1h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.05 % 76.8 76.6 76.4 74.2 76.7 76.6
0.1 % 72.7 71.1 66.7 65.1 71.3 68.4
0.5 % 51.4 48.2 43.1 43.4 48.9 46.0

1 % 42.3 37.2 33.2 34.6 39.8 35.7
6h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.05 % 73.7 74.3 72.4 69.9 72.6 72.5
0.1 % 66.5 67.8 63.9 61.4 62.7 62.8
0.5 % 47.8 44.0 38.6 39.9 40.1 39.8

1 % 39.0 32.2 29.4 30.2 30.3 31.0

31-bit divider
1h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.05 % 62.4 62.5 63.1 60.5 62.3 62.3
0.1 % 55.8 56.0 53.3 51.1 55.8 55.2
0.5 % 42.5 38.4 31.6 29.8 38.3 36.8

1 % 33.9 28.3 21.6 22.6 31.5 29.7
6h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.05 % 61.8 62.0 60.5 58.2 59.1 59.0
0.1 % 55.1 55.2 51.8 47.5 51.2 50.4
0.5 % 37.9 37.2 27.8 26.9 30.6 28.2

1 % 30.4 26.0 19.1 19.0 22.0 20.3

hours has the area of 54 % of the original 16-bit multiplier. The quality of this solution
dominates the solutions obtained by other strategies for this problem setup.

In order to effectively evaluate the overall performance and versatility of the different
strategies, we introduce a versatility score. For each selected problem setting, we set the
versatility score of the strategy 𝐵 that found the best solution to 100 %, and other strategies
𝑆 are assigned the score of 𝑎𝑟𝑒𝑎(𝑆)/𝑎𝑟𝑒𝑎(𝐵) * 100 %. In other words, this measure shows
how many per cent larger the solution obtained by the given strategy is with respect to the
best solution for the trial (i.e. a lower score is better). As before, we compute the score
from the median solutions produced by 50 independent evolutionary runs.

Table 4.7 shows the versatility scores of the inspected strategies computed for the par-
ticular circuits considering 1 and 6 hours runs. These scores aggregate the results presented
in Tables 4.3–4.6 and give us a better comparison among the strategies. The right-most col-
umn of Table 4.7 contains the versatility scores aggregated over all numerical trials. These
scores allow us to answer the research question 𝑄2, namely, we can compare the versatility
of the fixed limit strategies and the selected adaptive strategies.

The best versatility is achieved by the adaptive strategy 𝑎𝑑𝑎4. The score 106.3 shows
that a median solution produced by this strategy is on average by about 6 percentage points
worse than a median solution produced by the best strategy for a given scenario. Strategy
𝑎𝑑𝑎4 is closely followed by 𝑎𝑑𝑎2 which is roughly by 2 percentage points worse. The best
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Table 4.6: Relative sizes in % of the median solutions with respect to the size of the golden
solution for square approximation. The left column shows the target WCAE threshold.

20-bit square
1h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.0001 % 92.7 97.6 98.8 99.3 94.6 93.4
0.001 % 81.8 93.4 98.5 98.9 85.7 80.6
0.01 % 40.2 82.6 95.7 97.8 71.4 51.2
0.1 % 29.4 25.4 90.3 89.2 25.7 26.9

1 % 13.4 10.5 9.3 9.0 13.1 12.2
6h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.0001 % 70.1 82.9 92.2 97.6 70.5 68.8
0.001 % 54.6 61.2 94.5 96.0 55.1 54.3
0.01 % 38.6 37.4 51.1 81.4 38.0 36.3
0.1 % 22.8 22.6 31.4 21.9 21.9 21.1

1 % 12.2 7.9 7.1 7.2 7.7 7.3

28-bit square
1h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.0001 % 95.0 97.0 98.4 98.6 95.8 96.2
0.001 % 90.4 91.0 96.6 97.9 90.3 92.3
0.01 % 50.6 81.2 96.4 97.2 60.2 62.6
0.1 % 30.2 67.2 95.1 95.8 19.0 30.1

1 % 9.0 16.3 9.1 6.6 9.9 8.6
6h runs 𝑙𝑖𝑚100 𝑙𝑖𝑚2𝐾 𝑙𝑖𝑚10𝐾 𝑙𝑖𝑚20𝐾 𝑎𝑑𝑎2 𝑎𝑑𝑎4

0.0001 % 56.1 77.1 93.0 96.8 67.5 70.4
0.001 % 31.4 40.1 81.0 87.9 32.0 32.3
0.01 % 20.6 22.7 73.9 86.4 21.0 20.5
0.1 % 12.3 16.0 57.9 43.3 12.2 12.0

1 % 6.5 4.6 4.1 4.0 4.8 4.2

performance from fixed-limit strategies is provided by 𝑙𝑖𝑚100 that has the versatility score
of 114.1.

However, since the final values are computed as averages, the final ranking is skewed
by 𝑙𝑖𝑚2𝐾’s poor performance for some problem instances in the square circuit approxima-
tion (see Table 4.6: 1h runs for 0.01% WCAE). If we excluded these trials from the final
evaluation, 𝑙𝑖𝑚2𝐾 would perform considerably better than 𝑙𝑖𝑚100.

We further perform the Friedman statistical test with Nemenyi post hoc analysis to
assess the significance of the results we obtained. In particular, we analyse the statisti-
cal significance of the versatility scores for particular approximation strategies across all
conducted trials. Friedman test returns chi-squared = 71.39 and p-value < 5.2E-14.
These values clearly demonstrate that the versatility scores for particular strategies are not
statistically equivalent. Therefore, we use Nemenyi post hoc analysis to identify the groups
of statistically equivalent strategies. Table 4.8 shows the pair-wise 𝑝-values for all strategy
pairs. It should be noted that these values take into consideration the evaluation over all
strategies and conducted trials. Fig. 4.7 illustrates the average ranks (with respect to the
versatility scores) of the examined strategies and also visualises the groups that are not sig-
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Table 4.7: Overall versatility scores for the considered strategies aggregated over the
considered bit-widths for each of the circuits.

Multiplier Divider MAC Square
time limit 1h 6h 1h 6h 1h 6h 1h 6h AVG
𝑙𝑖𝑚100 104.1 106.9 121.7 124.1 109.8 114.4 116.3 115.4 114.1
𝑙𝑖𝑚2𝐾 113.7 101.3 113.6 117.2 102.2 104.5 160.9 117.7 116.4
𝑙𝑖𝑚10𝐾 201.7 118.8 102.6 103.0 126.3 106.0 196.7 206.6 145.2
𝑙𝑖𝑚20𝐾 322.2 136.0 101.2 100.8 151.1 113.2 193.5 208.2 165.8
𝑎𝑑𝑎2 102.5 101.1 116.6 106.4 108.0 102.6 120.2 106.6 108.0
𝑎𝑑𝑎4 100.6 100.5 111.9 104.2 108.8 101.7 118.7 103.6 106.3

Table 4.8: Pair-wise p-values obtained using Nemenyi post-hoc test evaluated over all
strategies and conducted trials.

lim100 lim2K lim10K lim20K ada2
lim2K 3.90E-14 - - - -
lim10K 0.278 8.50E-11 - - -
lim20K 0.021 2.00E-16 2.10E-06 - -
ada2 2.00E-16 5.30E-14 2.00E-16 2.00E-16 -
ada4 2.00E-16 2.00E-16 2.00E-16 2.00E-16 4.40E-13

nificantly different at 𝛼 = 0.05 We can conclude that strategy 𝑎𝑑𝑎4 is highly significantly
better (p-value < 0.01) than all examined fixed limit strategies.

The statistical methods are rank based and thus they do not suffer from excessive sensi-
bility to a few trials with major differences in performance. Interestingly, the final placings
in Fig. 4.7 (rank based) and Table 4.7 (average based) are identical with the exception of
𝑙𝑖𝑚100. 𝐿𝑖𝑚100 provides decent solutions for each problem instance, hence scores well in
the average based versatility score. On the other hand, it is slightly outperformed in each
case by other strategies and so its rank is even worse than that of 𝑙𝑖𝑚10𝐾. Except for a few
trials, 𝑙𝑖𝑚2𝐾 places among the top strategies and comes third in the rank based rankings.

Summary for Q2: The adaptive strategies, in contrast to the fixed-limit strategies, are
able to provide very good performance for a wide class of approximation problems. This is
demonstrated by the highest versatility score as well as by the statistical significance tests.

4.3.6 A Comparison of Adaptive and Fixed-limit Strategies (Q3)

We saw that the adaptive strategies provide the best versatility score as well as rank score
which indicates that they can effectively handle various approximation scenarios. In this
section, we look closer at the results presented in Tables 4.3–4.6 and focus on interesting data
points revealing the weak and strong properties of the adaptive strategies. In particular,
we will discuss if a single adaptive strategy can outperform the best fixed-limit strategy for
a given circuit approximation problem.

Table 4.3 shows that the adaptive strategies dominate in almost all approximation sce-
narios for multipliers. In two scenarios, the strategy 𝑙𝑖𝑚2𝐾 slightly outperforms the adap-
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Figure 4.7: The average rank values and pair-wise comparison of all strategies obtained by
Nemenyi test. Groups of strategies that are not significantly different (at p-value = 0.05)
are connected.

tive strategies, however, it significantly lags behind for 1 hour runs and selected WCAEs
(i.e. 24-bit version and 0.001 % WCAE).

On the other hand, the adaptive strategies lag behind the best strategies mainly in two
sets of trials: MACs in 1 hour evolution and dividers in 1 hour evolution (see Tables 4.4).
Their performance is similar to that of 𝑙𝑖𝑚100, and they are outperformed by strategies
with higher limit values. Since the adaptive strategies are designed to keep the limit as low
as possible while still achieving some improvements in the candidate solutions, they do not
increase their limit value during the first hour of the numerical evaluation. Our numerical
trials show that even with a low resource limit, the strategies find improvements, but many
of the candidate solutions are rejected because they cannot be evaluated within the limit.
The difference in performance is reduced as the optimisation process continues and the
adaptive strategies increase their resource limit. After 6 hours, the adaptive strategies
outperform the other strategies for MACs and come close to the performance of 𝑙𝑖𝑚10𝐾
and 𝑙𝑖𝑚20𝐾 for dividers.

In case of the square circuit approximation, the adaptive strategies always produce a
solution that is either the best or close to the best solution found. The exceptions are 1-
hour runs for 0.01% WCAE, and 6-hour run for 28-bit version and 0.0001% WCAE, where
𝑙𝑖𝑚100 significantly outperforms the other strategies.

Summary for Q3: The adaptive strategies provide the best performance (or are very close)
for a wide class of approximation problems except for MACs with short approximation time
where low-limit strategies are slightly better due to faster convergence, and for dividers
where high-limit strategies are better, due to the initial phase of the adaptive strategies.

4.3.7 Comparison with State-of-the-art Techniques (Q4)

In this section, we demonstrate that our adaptive approach generates approximate circuits
that significantly outperform circuits obtained using the state-of-the-art approximation
techniques. In particular, we show that our circuits provide significantly better trade-offs
between the precision and energy consumption. We focus on multipliers since their approx-
imation represents a challenging and widely studied problem – see, e.g. the comparative
study of [49]. On the other hand, the existing literature does not offer a sufficient number
of high-quality approximate MACs or dividers to carry out a fair comparison.

In the comparison, we consider two approximate architectures for multipliers that are
known to provide the best results, namely truncated multipliers (TMs) that ignore the values
of least significant bits and broken-array multipliers (BAMs) [32]. TMs and BAMs can be
parameterised to produce approximate circuits for the given bit-width and the required
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Figure 4.8: A comparison of the 16-bit approximate multipliers obtained using the pro-
posed approach and other state-of-the-art approximation techniques. The plots show the
solutions and their trade-offs between the precision and the power-delay-product (PDP) –
the top plot depicts WCAE while the bottom plot depicts the mean absolute error (MAE).
The filled marks represent solutions providing the best PDP for the given precision.

error. In contrast to our search-based approach, these circuits are constructed using a
simple deterministic procedure based on simplifying accurate multipliers. However, the
method is applicable for the design of approximate multipliers only. To demonstrate the
practical impact of the proposed adaptive strategy, we also consider circuits presented in
Chapter 3 obtained using verifiability-driven approximation with a fixed limit strategy –
this is a prominent representative of the search-based strategies.

Fig. 4.8 shows the parameters of the resulting circuits belonging to the Pareto front.
For each circuit, the figure illustrates the trade-off between the precision and the power-
delay-product (PDP) that adequately captures both the circuit’s energy consumption and
its delay. The top plot of the figure illustrates the WCAE–PDP trade-offs. We also eval-
uated the mean absolute error (MAE) [20] of the solutions since MAE represents another
important circuit error metric. The results are presented in the bottom plot of the figure.

The orange boxes represent circuits obtained using the adaptive strategy 𝑎𝑑𝑎4. The
green boxes represent the circuits that were presented in Chapter 3 and obtained using
the fixed limit strategy 𝑙𝑖𝑚20𝐾. In both cases, the circuits were generated as follows:
we selected 15 target values of WCAE (10 values for the strategy 𝑙𝑖𝑚20𝐾) and for each
of these values, we executed 50 independent 2-hour runs using 𝜆 = 1 and the mutation
frequency 0.5 %. The 10 best solutions for each WCAE were selected and synthesised to
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the target technology. It should be noted that the strategy 𝑙𝑖𝑚20𝐾 provides a much smaller
reduction of the chip area when very small values of WCAE are required and thus these
small target values were not reported in Chapter 3.

As we have already shown in the previous chapter, the fixed-limit verifiability-driven
approach leveraging SAT-based circuit evaluation is able to significantly outperform both
TMs and BAMs and represents a state-of-the-art approximation method for arithmetic
circuits. Still, Fig. 4.8 shows that the proposed adaptive strategy improves our previously
obtained results even further – given the same time limit, it generates circuits having
significantly better characteristics.

Summary for Q4: The proposed approach combining the SAT-based candidate evaluation
with the adaptive verifiability-driven search strategy provides a fundamental improvement
of the performance and versatility over existing circuit approximation techniques.

4.4 Conclusion
In this chapter, we presented the novel adaptive strategy, that extends and improves the
idea of the verifiability driven search introduced in Chapter 3. In particular, the adaptive
strategy improves the overall performance, and, more importantly, it ensures that our ap-
proach is versatile, i.e. in contrast to the method described in the previous chapter, it works
well for a wide range of arithmetic circuits and approximation scenarios without a manual
tuning of the parameters of the evolutionary algorithm. We also thoroughly examined the
impact of various resource limit settings on the progress of the evolutionary algorithm in
a wide range of approximation scenarios. The extensive experimental evaluation showed,
that the adaptive strategy significantly outperforms the verifiability driven search with fixed
resource limit settings.
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Chapter 5

ADAC - a Framework for
Automatic Approximation

In this chapter, we present ADAC – a framework for automated design of approximate
circuits. The framework contains implementations of the methods and algorithms proposed
in Chapters 3 and 4 and serves as the tool support for our experimental evaluations. The
contents of this chapter are based on the tool paper [14] published at the 30th International
Conference on Computer Aided Verification (CAV 2018).

The ADAC framework implements a design loop including (i) a generator of candidate
solutions employing genetic search algorithms, (ii) an evaluator estimating non-functional
parameters of a candidate solution, and (iii) a verifier checking that the candidate solution
does not exceed the permissible error. ADAC is integrated as a new module into the ABC
tool – a state-of-the-art and widely used system for circuit synthesis and verification [7].
The framework takes as the inputs:

• a golden combinational circuit in Verilog implementing the correct functionality,

• an error metric (such as worst-case absolute error, mean absolute error, etc.),

• a threshold on the error metric representing the maximal permissible error,

• a time limit on the overall design process, and

• a file specifying sizes of gates available to the design process.

With these inputs, ADAC searches for an approximate circuit satisfying the error thresh-
old and having the minimal estimated chip area. Previous works [13, 78, 113, 114] confirmed
that the chip area is a good optimisation objective as it highly correlates with power con-
sumption, which is a crucial target in approximate computing.

The results of [119] clearly demonstrate that search algorithms based on Cartesian
Genetic Programming (CGP) [71] are well capable of generating high-quality approximate
circuits. For complex circuits, however, a high number of candidate solutions has to be
generated and evaluated, which significantly limits the scalability of the design process. Our
framework implements several approaches for error evaluation suitable for different error
metrics and application domains. They include both SAT and BDD-based techniques for
approximate equivalence checking providing formal error guarantees as well as a bit-parallel
circuit simulation utilising the computing power of modern processors. The performance
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of the approximation with SAT-based error evaluation is further improved by the adaptive
verifiability driven search scheme presented in Chapter 4.

As such, the framework offers a unique integration of techniques based on simulation,
formal reasoning, and evolutionary circuit optimisation. Our extensive experimental evalu-
ation presented in Chapter 4 demonstrates that ADAC offers an outstanding performance
and scalability compared with the existing methods and tools and paves a way towards an
automated design process of complex provably-correct circuit approximations.

5.1 Architecture and Implementation
The ADAC framework has a modular architecture illustrated in Fig. 5.1.

Before the approximation process can begin, there is a setup phase which is responsible
mainly for converting the golden circuit into a chromosome representation that can be
optimised using CGP. The input circuit is given in a high-level Verilog format, which
is first translated to a gate-level representation using the tool Yosys [129], and then the
chromosome representation is obtained using our built-in Verilog to chromosome converter.
The setup phase is also responsible for generating a configuration file controlling the main
design loop. It is generated from the user inputs and optional parameters that can further
fine-tune CGP and the search strategies.
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Figure 5.1: A scheme of the ADAC architecture.

The design loop consists of three components: (i) a generator of candidate designs,
(ii) an evaluator of non-functional parameters of the candidate circuit (in our case estimating
the chip area), and (iii) a verifier evaluating the candidate error. Optionally, the adaptive
resource limit strategy can be utilised when using SAT based error verifier.

The chip area and the error form a basis of the fitness function, whose value is minimised
via our search strategy. In particular, the fitness is infinity if the circuit error exceeds the
given threshold, and the chip area otherwise. As an additional feature, ADAC can also
utilise the error verifier to quantify the difference (in the given metric) between two given
circuits.

The real values of non-functional parameters, such as the chip area or the power-delay
product (PDP), depend on the target technology, and the synthesis of an optimal implemen-
tation of the given circuit using the target technology is highly time-consuming. Therefore,
our design loop uses the chip area as the sole non-functional parameter. The chip area is
estimated as the sum of the sizes of the gates of the circuit, which are given as one of the
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inputs of ADAC. The output of ADAC (in the gate-level Verilog format) can be passed
to industrial circuit design tools to obtain accurate circuit parameters for the target tech-
nology. In our experiments, we report PDP for the 45 nm technology synthesised by the
Synopsys Design Compiler [109].

5.1.1 Integration to the ABC Tool.

The ABC tool allows us to support an important subset of the Verilog specification and
implementation language. We also utilise ABC to translate the circuits among different
intermediate representations used for constructing miters. We employ the iprove engine
in our SAT-based method for evaluating the WCAE and WCRE. Note that iprove uses
MiniSat [106] as the SAT solver. Despite the fact that ABC supports a BDD-based circuit
representation and manipulation, we implemented our own BDD component (based on the
BuDDy library [11]) that is tailored for evolutionary circuit approximation.

5.2 Error Evaluation Methods
We now briefly describe the three methods for error evaluation that are supported in ADAC.

5.2.1 Bit-parallel Circuit Simulation

The bit-parallel circuit simulation supports all common error metrics, including the worst-
case absolute error (WCAE), the mean absolute error (MAE), the error rate representing
the number of inputs leading to an incorrect output, and the Hamming distance. It utilises
the power of modern processors by simulating the circuit on multiple input vectors (e.g.
64 inputs for 64-bit processors) in a single pass through the circuit [121]. Even though the
parallel processing significantly accelerates the simulation, the error evaluation still becomes
slow for circuits with arguments of larger bit-widths (beyond 12 bits). When such circuits
are simulated on all possible input combinations, the performance of the approximation
process declines, and it is unable to find good solutions in acceptable time bounds. To
alleviate this issue, we can utilise the partial simulation, i.e., evaluate the error on a subset
of input vectors to speed up the evaluation. However, partial simulation only provides
statistical guarantees on the approximation error.

5.2.2 BDD-based Evaluation

The BDD-based evaluation also supports all common error metrics, and, unlike simulation,
it is able to provide formal error guarantees for circuits with larger input bit-widths. For
the purpose of the evaluation, the original correct circuit and its approximation are inter-
connected into an auxiliary circuit called a miter such that the error can be deduced from
its output (e.g. to compute the error rate, the outputs of the golden and candidate circuits
are subtracted, and the result is compared with 0). The miter is encoded as a BDD on
which the circuit error is evaluated using efficient BDD operations [114, 120] (e.g. the error
rate is evaluated via counting the number of satisfying solutions). On the other hand, this
technique does not scale well with the complexity of the circuits in terms of the number
of their gates as the resulting BDD representation becomes prohibitively huge. Hence, this
approach works well for large adders and similar circuits, but, it fails, e.g., for multipliers
beyond 12-bits.
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5.2.3 SAT-based Evaluation

The SAT-based evaluation supports only two error metrics – WCAE and WCRE, but
provides formal guarantees and a superior performance to the BDD-based technique. ADAC
implements a novel miter construction based on subtracting the output of the golden and
approximate circuit, followed by a comparison with the error threshold (as described in
Chapter 3). The construction is optimised for SAT-based evaluation by avoiding long XOR
chains known to cause poor performance of state-of-the-art SAT solvers [20, 41]. This
allows us to exploit the ABC engine iprove, designed originally for miter-based exact
circuit equivalence checking, to quickly evaluate the approximation error.

The SAT-based evaluation is further powered by the verifiability driven search with
adaptive resource limits. The strategy uses a limit 𝐿 on the resources available to the
underlying SAT decision procedure. The limit effectively controls the time the SAT solver
can use. We require that every improving candidate has to be verifiable using the resource
limit 𝐿. Therefore the strategy drives the search towards candidates that improve the
fitness and can be promptly evaluated. As the result, we can evaluate a much larger set of
candidate circuits in the given time. As shown in the previous chapter, approximation of
various problem instances can require various resource limits. This is solved by the adaptive
resource limit strategy that is able to adjust the limit and provide good performance in a
variety of approximation scenarios.

Table 5.1: A comparison of the average times of simulation, BDD (WCAE), BDD (MAE)
and SAT (WCAE) error evaluation in approximation of adders with bit widths ranging
from 4 to 16 bits. The best time for evaluation of WCAE and MAE for each bit width is
highlighted.

Adders w = 4 w = 6 w = 8 w = 10 w = 12 w = 14 w = 16

Simulation 44 𝜇𝑠 210 𝜇𝑠 36 𝑚𝑠 76 𝑚𝑠 1.46 𝑠 31.23 𝑠 —–

BDD 𝑒𝑤𝑐𝑎𝑒 83 𝜇𝑠 350 𝜇𝑠 2.1 𝑚𝑠 12 𝑚𝑠 86 𝑚𝑠 0.38 𝑠 2.09 𝑠

speedup 0.53× 0.59× 1.79× 6.04× 17.02× 80.74× —–

BDD 𝑒𝑚𝑎𝑒 74 𝜇𝑠 370 𝜇𝑠 2.9 𝑚𝑠 13 𝑚𝑠 0.16 𝑠 0.79 𝑠 2.47 𝑠

speedup 0.60× 0.59× 1.27× 5.72× 8.81× 38.94× —–

SAT 𝑒𝑤𝑐𝑎𝑒 630 𝜇𝑠 920 𝜇𝑠 1.1 𝑚𝑠 1.4 𝑚𝑠 1.6 𝑚𝑠 1.7 𝑚𝑠 2.2 𝑚𝑠

speedup 0.07× 0.23× 3.24× 53.7× 941× 18468× —–

5.3 Error Evaluation Performance
In this section, we compare the performance of the different methods of circuit error evalu-
ation supported in ADAC. For that, we use the results from adder approximation obtained
from 10 runs, each for 5 minutes. Table 5.1 shows average run times of a single error evalu-
ation using the bit-parallel simulation, the BDD-based miter solution, and the SAT-based
miter solution. The reported speedups are computed with respect to the simulation-based
evaluation. We can see that the simulation provides the best performance for small bit-
widths, but does not scale well for larger bit widths and thus can provide only statisti-
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cal guarantees for larger circuits. The SAT-based method offers the best scalability and
dominates for larger circuits, but supports the WCAE and WCRE evaluation only. The
BDD-based method, like simulation, supports all metrics, including the mean absolute er-
ror (MAE), and significantly outperforms the simulation for larger circuits. Note that, for
more complex circuits such as multipliers, we would observe similar results with a worse
relative performance of the BDD-based approach.

There also exist other known methods for computing approximation errors for arithmetic
circuits, including methods based on BDDs [21] or SAT-based miter solutions [20]. Compar-
ing to ADAC, these methods are less scalable, which is demonstrated by the fact that they
have been used for approximating multipliers limited to 8-bit operands and adders limited
to 16-bit operands only. Apart from that, there are efficient methods for exact equivalence
checking based on algebraic computations [24, 92]. However, they are so far not known for
approximate equivalence checking.
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Chapter 6

StS-based Synthesis for Exact and
Approximate Circuits

The contents of this chapter are based on our work Satisfiability Solving Meets Evolutionary
Optimisation in Designing Approximate Circuits published in [16]. In this part of the thesis,
we examine the satisfiability-based exact circuit synthesis for the design of approximate
circuits and combine it with evolutionary circuit approximation. The exact optimisation
rewrites parts of the approximated circuit and helps the evolutionary algorithm to escape
local optimums, thus allowing further improvements of the quality of the final approximate
solutions.

6.1 Motivation
Previously, we have defined two main challenges related to the evolutionary-driven circuit
approximation: (1) improvements of the analyser (providing a fast and reliable evaluation
of candidate solutions) and (2) improvements of the synthesizer (generating approximate
circuits that quickly converge to a high-quality solution).

In this chapter, we aim at the second challenge. Inspired by the recent advances in SAT-
based exact synthesis [40, 105] (the problem of finding the optimum logic representation of
a given Boolean function), we investigate whether a search strategy based on satisfiability
solving (StS) – i.e. SAT or SMT solving – can improve the state-of-the-art methods for
designing complex approximate circuits.

Complex circuits typically have hundreds or even thousands of gates and thus a mono-
lithic approach, i.e. representing the circuit approximation problem as a single StS query, is
not tractable. Instead, we build on an iterative approach where sub-circuits are optimised
(i.e. the sub-circuit logic is minimised while the original functionality is preserved) [103] or
approximated (i.e. the functionality of the sub-circuit is not preserved and the error of the
whole circuit is increased).

In the iterative optimisation, the sub-circuit is replaced by a (potentially) smaller sub-
circuit implementing the equivalent logic and thus the optimisation preserves the overall
circuit functionality. In the iterative approximation, the sub-circuit is replaced by a smaller
sub-circuit approximating the logic and thus the error of the whole circuit is typically
introduced or increased.

Despite the enormous progress in satisfiability solving, our experiments clearly show that
the purely StS-based approximation significantly lags behind the standard evolutionary
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approximation. Although the StS-based approximation performs informed (and thus in
some sense more useful) changes in the candidate circuits, the overhead caused by calling
the solver does not pay off compared to the uninformed but very cheap genetic mutations.
Put differently, in the same time interval, the evolution can perform over 100-times more
approximation attempts which is enough to overcome the benefit of the informed changes.

In order to leverage the benefits of the informed changes, we propose a combined ap-
proach. We interleave the evolutionary approximation and the StS-based optimisation.
The evolutionary approximation typically quickly converges to a sub-optimal solution. Af-
ter the progress of the evolution decreases below a certain threshold, we run the StS-based
optimisation. It further reduces the circuit size, but, more importantly, it introduces new
reconnections in the circuit causing that the subsequent evolution is able to escape a lo-
cal minimum and further explore the design space. Our experimental results show that
the combined approach considerably outperforms the state-of-the-art circuit approxima-
tion techniques. In particular, for a given error, it improves the chip area by up to 19 %.

6.2 StS-based Circuit Approximation
In this section, we propose three different approaches for StS-based circuit approximation.

6.2.1 A Monolithic Approach

The monolithic approach builds a single formula encoding the following synthesis problem:
For a given golden circuit 𝐺𝐶, the size 𝑆 of its currently best-known approximation, and
an error bound 𝑇 , synthesise an approximating circuit 𝐴𝐶 whose size is smaller than 𝑆
and that satisfies the constraint that 𝑒𝑟𝑟𝑜𝑟(𝐺𝐶,𝐴𝐶) ≤ 𝑇 .

The formula has to encode the following features: (1) the possible designs of the circuit
(i.e. possible interconnections and functionality of the gates), which must be encoded using
free variables whose suitable values are to be found by the solver, thus fixing a certain
design of the circuit; (2) the way the error of the circuit is to be checked; and (3) the way
the circuit size is to be evaluated.

In our approach, we use the circuit representation that also serves as the chromosome
encoding in Cartesian Genetic Programming. The designed circuit is encoded as a forward-
propagating network of two-input gates. Each gate is represented by three integers. The
first two represent the inputs of the gate, and they can refer to some of the primary inputs or
to the output of one of the gates (which we identify with the gate itself). The third integer
then encodes the gate’s functionality that is chosen from a predefined set of operations.
The gate representation of each operation has a predefined size given by the target chip
architecture. To ensure that the size of the synthesised circuit 𝐴𝐶 is smaller than the size
𝑆 of the currently best approximation, we add a constraint on the sum of the sizes of the
gates forming 𝐴𝐶. We investigate and compare (see Section 6.3) the below presented three
ways of encoding the structure and functionality of 𝐴𝐶.

The first encoding is purely SAT-based although we present it using both Boolean and
integer variables – those are, however, bit-blasted away. Assume we have 𝑘 types of (binary)
gates, use 𝑙 gates in the circuit, and have 𝑚/𝑛 primary input/output bits, respectively. For
each gate 𝑔 ∈ 𝐺 = {1, ..., 𝑙}, we use the integer variables 𝑖𝑛𝑔,1 and 𝑖𝑛𝑔,2 to denote the first
and second input of 𝑔. These variables range over the domain 𝑊 = {1, ...,𝑚 + 𝑙} of all
wires in the circuit where the first 𝑚 wires carry the primary inputs and the next 𝑙 wires
carry the outputs of the circuit’s gates. For 𝑔 ∈ 𝐺, we also use the integer variable 𝑓𝑔 to
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denote its type with the domain 𝐹 = {1, ..., 𝑘}. Let I = {0, 1}𝑚 denote the different input
combinations. For 𝑢 ∈𝑊 , we use the Boolean variable 𝑏𝐼𝑢 to hold the value of the wire 𝑢 for
a primary input 𝐼 ∈ I. We encode all possible circuits by the conjunction of the formulae
(𝑖𝑛𝑔,1 = 𝑢 ∧ 𝑖𝑛𝑔,2 = 𝑣 ∧ 𝑓𝑔 = 𝑓)→

⋀︀
𝐼∈I(𝑏

𝐼
𝑚+𝑔 = 𝑏𝐼𝑢 𝑜𝑝𝑓 𝑏𝐼𝑣) that are generated for all gates

𝑔 ∈ 𝐺, all possible types 𝑓 ∈ 𝐹 of 𝑔, and all wires 𝑢, 𝑣 ∈𝑊 that may be used as the inputs
of 𝑔. In particular, we require that 𝑢 < 𝑔 and 𝑣 < 𝑔 to prevent backward connections in
the circuit (e.g. the input of 𝑔4 cannot be connected to the output of 𝑔6). In the formula,
𝑜𝑝𝑓 denotes the Boolean operation implemented by gates of the type 𝑓 ∈ 𝐹 .

We also need to link the concrete input combinations with the input wires, which is done
by the conjunction

⋀︀
𝐼∈I

⋀︀
𝑗∈{1,...,𝑚} 𝑏

𝐼
𝑗 = 𝐼[𝑗] where 𝐼[𝑗] denotes the 𝑗-th bit of 𝐼. Finally,

for each output 𝑜 ∈ 𝑂 = {1, ..., 𝑛}, we introduce the integer variable 𝑜𝑢𝑡𝑜, which ranges over
the domain of wires 𝑊 and says from where the output 𝑜 is taken, and the Boolean variable
𝑜𝑢𝑡𝐼𝑜 carrying the value of the output 𝑜 for the primary input 𝐼 ∈ I (this variable will be
compared with the appropriate output of the golden circuit). These variables are connected
with the rest of the circuit using the conjunction of the formulae 𝑜𝑢𝑡𝑜 = 𝑢→

⋀︀
𝐼∈I 𝑜𝑢𝑡

𝐼
𝑜 = 𝑏𝐼𝑢

generated for every output 𝑜 ∈ 𝑂 and every wire 𝑢 ∈𝑊 . The solver then chooses a concrete
circuit by fixing the values of the variables 𝑖𝑛𝑔,1, 𝑖𝑛𝑔,2, and 𝑓𝑔 for every 𝑔 ∈ 𝐺 as well as
the values of the variables 𝑜𝑢𝑡𝑜 for every 𝑜 ∈ 𝑂.

Second, using a theory of arrays, we simplify the above encoding by using an ar-
ray 𝑏

𝐼
: 𝑊 → {0, 1} for each 𝐼 ∈ I to hold the values of the wires in 𝑊 for the in-

put 𝐼. Then, the conjuncts describing the structure of the circuit may be simplified
to 𝑓𝑔 = 𝑓 →

⋀︀
𝐼∈I(𝑏

𝐼
[𝑚 + 𝑔] = 𝑏

𝐼
[𝑖𝑛𝑔,1] 𝑜𝑝𝑓 𝑏

𝐼
[𝑖𝑛𝑔,2]). The input formula is changed to⋀︀

𝐼∈I
⋀︀

𝑗∈{1,...,𝑚} 𝑏
𝐼
[𝑗] = 𝐼[𝑗] and similarly for the output. Finally, third, using a theory

of arrays with quantifiers, one suffices with a single array 𝑏, simplifying the formulae de-
scribing the structure of the circuit to 𝑓𝑔 = 𝑓 → 𝑏[𝑚 + 𝑔] = 𝑏[𝑖𝑛𝑔,1] 𝑜𝑝𝑓 𝑏[𝑖𝑛𝑔,2]), adding
the universal quantification ∀𝑖1, ..., 𝑖𝑚 over the entire formula, using the input formula⋀︀

𝑗∈{1,...,𝑚} 𝑏[𝑗] = 𝑖𝑗 , and handling the output accordingly.
Using our encodings of 𝐴𝐶, we can easily add a constraint on the required error that

compares the WCAE between the result coming from 𝐴𝐶 (using the 𝑜𝑢𝑡𝑜 variables) and
the expected result for all input combinations.

A comparison to existing encoding schemes for exact synthesis. Our encoding of
circuits is quite similar to other works such as [105]. The authors of [105] do not consider a
predefined set of gates. Instead, they synthesise the internal functionality of the gates (e.g.
in the form of look-up-tables) too. The work [105] and other existing approaches use SAT-
based encodings only. Further, they consider uniform gate sizes only, and thus the circuit
size is given by the number of gates. Our more general formulation using non-uniform gate
sizes leads to more complex problems (proving the minimality of a given circuit requires
more difficult UNSAT queries). As in [102], we use simplifications and symmetry-pruning
techniques to reduce the complexity of the underlying StS queries.

6.2.2 Sub-circuit Approximation

As discussed in [40], the monolithic approach for exact synthesis is feasible only for small
circuits with up to 8 input bits (depending on the complexity of the synthesised func-
tion). Our experiments confirm similar scalability limits also for circuit approximation (see
Section 6.3), and thus we focus on an iterative approach that approximates selected sub-
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circuits. We focus on approximation wrt. Hamming Distance as arithmetic metrics are not
suitable for sub-circuits. Note that there is no effective method allowing us to determine
how the error introduced in the sub-circuit affects the overall circuit error.

In every iteration, we select a single gate (either randomly or by enumeration, depend-
ing on the circuit size) and perform a breadth-first search starting from the selected gate to
identify a sub-circuit of a suitable size. Note that, in our approach, we consider multi-input
and multi-output sub-circuits. The size of the sub-circuits is indeed essential: Considering
only very small sub-circuits prevents the approximation from doing more complicated and
non-local changes that are crucial for finding high-quality approximate circuits. On the
other hand, approximation of larger sub-circuits introduces a significant overhead causing
that only a small number of iterations can be done within the given time limit. Regarding
the encoding of sub-circuit approximation, we consider the same schemes as in the mono-
lithic approach discussed above. After every sub-circuit approximation, we need to evaluate
the error of the whole circuit. If it satisfies the error bound, we accept the circuit as the
new candidate solution, otherwise the next iteration continues with the circuit before the
approximation.

6.2.3 Evolutionary Approximation with StS-based Optimisation

Evolutionary algorithms, in particular Cartesian Genetic Programming (CGP), have achie-
ved excellent results in approximation of complex circuits [13]. The key idea is similar
to sub-circuit approximation, but here CGP performs random changes in the candidate
solution instead of utilising satisfiability solving. Unlike finding an optimal sub-circuit
approximation, random changes are very fast, and the success of CGP is typically achieved
by a large number of small changes. CGP is also able to accumulate a large change in the
candidate circuit via the so-called inactive mutations [71] – a chain of changes where only
the last change directly affects the circuit functionality. Although CGP usually quickly
converges to a sub-optimum solution, it can get stuck in this solution for a long time. On
the other hand, the StS-based approach is able to systematically search for improvements
that are hard to find for CGP.

We hence propose a combined approach leveraging the benefits of both techniques. In
particular, we interleave the evolutionary search by iterative StS optimisation. In contrast
to StS-based approximation, StS-based optimisation minimises the size of the selected sub-
circuit by changing the internal structure while preserving its functionality. The rationale
behind this is based on the observation that a large portion of approximated sub-circuits
are rejected as they cause that the WCAE error of the whole circuit gets above the allowed
bound. Compared with CGP, the cost of each approximation operation is too high – in
our scenarios, CGP is about 100-times faster. Therefore, the combined approach uses
CGP to introduce changes affecting the functionality, and the StS-based optimisation to
minimise the logic. The minimisation often leads to an improving solution. Further, we
also explore different encoding schemes (based on the ideas discussed in Section 6.2.1) for
the optimisation problem.

The interleaving is controlled in the following way. If CGP gets stuck in a local optimum
– no improvement of the candidate solution was achieved for a given number of iterations –
we switch to the iterative StS optimisation that has a time budget depending on the given
overall time for the approximation. Once the budget is spent, we continue with CGP again.
Our experiments show that the optimisation helps CGP to escape the local optimum and
to further effectively explore the space of candidate circuits.
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6.3 Experimental Evaluation
We ran all our experiments on a server with an Intel(R) Xeon(R) CPU at 2.40GHz. Al-
though the search-based approximation can naturally benefit from a simple task paralleli-
sation, we use a single-core computation to simplify the interpretation of the results.

A Comparison of different encoding schemes and satisfiability solvers. We con-
sider a set of formulae relevant for the monolithic as well as for the iterative approach.
The set includes both SAT and UNSAT instances including a full adder, 2-bit adder, 2-bit
multiplier, 4-1 multiplexor, and some randomly generated 4-input functions, for a total of
48 different formulae. We compare the total time needed to solve all the formulae with
a 3 hour time limit. We do not include any additional penalty for timing out. The Z3
solver [75] and the quantified array encoding proved to be the fastest combination of the
encoding and the solver. Z3 with separate arrays for different input combinations is about
2 times slower, and the Glucose solver [4] with the purely SAT-based encoding is about 3
times slower. Z3 with the purely SAT-based encoding as well as its SMT variant without
bit-blasting were roughly 5 times slower. Other tested solvers – MathSAT [9], Minisat [29],
Sadical [45], and Vampire [88]—were all more than 5 times slower. The precise values for
each examined solver and method are presented in Table 6.1. Based on these observations,
we use Z3 with the quantified array encoding in all further StS-based queries.

Table 6.1: A comparison of the performance of different encoding schemes and satisfiability
solvers. We report the total time needed to solve all 48 formulae, along with the number of
formulae that timed out (TO) – were not solved within the 3 hour time limit. We do not
include any penalty for timing out.

Rank Method Number of TOs Total time [s] Relative to best
1 Z3-quant 0 4633 —
2 Z3-arr 0 8839 1.91×
3 Glucose 1 15656 3.38×
4 Z3-sat 1 21028 4.54×
5 Z3-smt 2 23041 4.97×
6 MathSAT 1 23235 5.01×
7 Minisat 2 23642 5.10×
8 Vampire 13 141386 30.51×
9 Vampire-arr 19 213713 46.12×
10 Sadical 21 230050 49.65×

The monolithic approach. The monolithic approach was able to find optimal approx-
imations of 2-bit adders and multipliers as well as randomly generated functions with 4
inputs and 2 outputs. Approximation of larger circuits (e.g. 4-bit adders and multipliers)
proved to be infeasible, i.e. most instances timed out within the given limit of 3 hours.

We compare the performance of our monolithic approach with Cirkit [101], a state-of-
the-art tool for exact synthesis. As expected, Cirkit is able to achieve a better performance
and scalability: It is significantly faster on 4-bit functions and it can also synthesize in
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minutes optimal solutions for some 6-bit and 8-bit functions. On the other hand, there are
also some hard 6-bit instances that are infeasible for Cirkit.

The better performance of Cirkit is mainly caused by the following factors: (1) Our
formulation of circuit approximation is more complicated due to the non-uniform gate sizes
and the error quantification. (2) Cirkit uses different circuit representations (such as AIGs,
MIGs, or n-bit look-up tables) that proved to be more efficient for some exact synthe-
sis problems [102]. (3) Cirkit implements various optimisations and symmetry breaking
methods [40]. Some of these methods are problem- and representation-specific and thus
not directly applicable to our approximation problem. We are, however, aware that our
current prototype implementation could be improved by adapting some of the methods.
We emphasise that such improvements would indeed not change the practical limits of the
monolithic approach (arithmetic circuits beyond 4-bit operands).

In the following subsections, we will examine and compare three strategies for approxi-
mation of complex circuits: (1) CGP: the state-of-the-art evolutionary approximation im-
plemented in our tool ADAC (Chapter 5). (2) StS: the sub-circuit approximation described
in Section 6.2.2. (3) COMB: the combined approach described in Section 6.2.3 using the fol-
lowing interleaving strategy: In every iteration, we first run the CGP-based approximation
until no improvement is achieved for 100K iterations. Afterwards, we switch to the StS-
based sub-circuit optimisation with the time budget of 10 % of the overall approximation
time. After that, a new iteration starts.

Based on our preliminary experiments, we use sub-circuits with 5 gates (recall the
discussion in Section 6.2.2) in all StS-based sub-circuit approximation and optimisation
queries. We also introduce a hard time limit (depending on the size of the circuit) on every
such query. It prevents the solver to spend a prohibitively long time in complex queries
and thus to significantly slow down the approximation process.

6.3.1 Performance on Small Circuits

We first consider small circuits (a 4-bit multiplier with 67 gates and an 8-bit adder with
49 gates) to understand performance aspects of the search strategies. We report the area
savings (as the percentage of the size of the golden circuit) for selected WCAE error bounds
and the approximation time limit of 1 hour.

Table 6.2 (top) shows the results obtained from 15 independent approximation runs for
each combination of the approximation method, circuit, and target error. For the 8-bit
adder, the combined approach wins in all 45 evolutionary runs. On average, the combined
approach saves 7.6 % more than the pure CGP and 29 % more than the pure StS-based
approach. For the 4-bit multiplier, the combined strategy provides on average 3.27 % better
savings than the pure CGP and 19.6 % more than the pure StS-based approach. It also
wins 37 out of 45 comparisons.

These experiments show that the pure StS approximation is not competitive, and it is
not considered in the following approximation of complex circuits.

6.3.2 Performance on Complex Circuits

In this subsection, we focus on our key research question: Can the combined strategy improve
the performance of the approximation of complex circuits?

We consider approximation of (1) a 32-bit adder representing a circuit with a simpler
logic (the golden model has 235 gates) but a large input domain, and (2) a 16-bit multi-
plier representing a circuit with a complex logic including carry chains (the golden model

85



Table 6.2: The average resulting size of the approximate circuits, obtained using the
proposed approximation strategies, expressed as the percentage of the size of the golden
circuits (top) and of the size of the best known approximations presented in Chapter 3
(bottom).

8-bit adders 4-bit multipliers
Err[%] CGP StS COMB CGP StS COMB

1 64.8 83.5 54.5 78.4 90.5 74.6
2 52.6 78.0 44.9 69.3 82.6 67.1
5 37.1 57.4 32.3 53.4 77.0 49.7

32-bit adders 16-bit multipliers
Err[%] CGP COMB Err[%] CGP COMB
10−5 100.0 81.5 10−3 97.9 91.4
10−4 100.0 81.3 0.01 97.6 91.1
10−3 100.0 81.1 0.1 95.0 90.1

has 1,525 gates) but a smaller input domain. To evaluate the potential of the combined
strategy, we start with state-of-art approximate circuits we obtained in Chapter 3 by a
pure evolutionary search strategy. For each target error, we take two best 32-bit adders
(obtained by 2-hour approximation runs) and two best 16-multipliers (obtained by 8-hour
approximation runs). From each of these circuits (seeds), we perform 2 pure CGP runs and
2 combined strategy runs. For the 32-bit adders, we consider 10 hour runs; and, for 16-bit
multipliers, we consider 75 hour runs. Table 6.2 (bottom) shows the results. The following
paragraphs summarise the key observations.

32-bit adders. Each pure CGP run performs around 10 million iterations within the
given 10 hours but achieves no improvements at all. This demonstrates that the CGP
reached a local optimum and it is not able to further explore the design space. The sub-
circuit optimisation, however, introduces changes in the circuit structure, which allow CGP
to escape the local optimum and perform further improvements. In total, the combined
strategy saves roughly 19 % of the seeding circuit area – 11 % was achieved by the CGP
approximation and 8 % by the StS optimisation. This supports our claim that the StS opti-
misation successfully helps CGP to leave the local optima reached during the approximation
process.

16-bit multipliers. As illustrated in Fig. 6.1, which shows the progress of the two ap-
proximation strategies for different target errors, the pure CGP approximation improves the
candidate slowly and achieves only marginal improvements after 45 hours. The combined
strategy is able to significantly improve the candidate solution during the whole 75-hour
run—after this time, it saves 4–6 % more than the pure CGP. Compared to 32-bit adders,
the approximation of the 16-bit multipliers is significantly more complex. The 8-hour CGP
run computing the seed performs around 230K iterations, which is around 13-times less
than the 2-hour run for the 32-bit adder. Hence, the pure CGP run requires a much longer
time to reach the local optimum. We can see that the combined strategy would most likely
keep improving the solution even after the 75 hours.
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Figure 6.1: Progress of the area reduction for the 16-bit multiplier and target WCAEs:
red = 10−1%, green = 10−2%, blue = 10−3%. The y axis shows the ratio of the area of
candidate solution to the area of the seeding solution.

6.4 Conclusion
In this chapter, we examined the possible applications of StS-based exact synthesis in
the area of approximate circuit design. We proposed three different techniques: 1) the
monolithic approach, 2) the StS-based sub-circuit approximation, and 3) the combination
of evolutionary approximation and StS-based optimisation.

The monolithic synthesis approach is only applicable to small circuit instances and
does not scale for synthesis and approximation of relevant arithmetic circuits. The StS-
based sub-circuit approximation is able to introduce error into the candidate solution and
gradually reduce its area. However, the speed of the area reduction significantly lags behind
the classic evolutionary based approximation. The proposed fusion of StS-based sub-circuit
optimisation and evolutionary approximation leads to a new circuit approximation strategy
that is able to effectively escape local optima and thus to explore the design space more
effectively than pure evolutionary search strategies.
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Chapter 7

Novel Mutation Operator for
Approximate Circuit Design

The contents of this chapter are based on our work published in [17]. In this chapter, we try
to enhance the performance of search based circuit approximation by further improving the
synthesizer component. First, we examine the various CGP mutation operators available
in literature and evaluate their performance in various circuit approximation scenarios.
Second, we propose a novel operator tailored to the task of arithmetic circuit approximation.
In the experimental evaluation, we focus both on the speed of convergence of the mutations
operators as well as on the quality of the final approximate solutions.

7.1 Motivation
There are two main challenges related to the CGP-driven circuit approximation: (1) Fast
and reliable evaluation of candidate solutions that is essential for CGP to drive the explo-
ration towards high-quality solutions. (2) Convergence of the search that directly deter-
mines the overall performance of the approximation process and thus the resulting scalabil-
ity and applicability. While several circuit evaluation techniques, including parallel circuit
simulation [121], formal methods [13], or statistical methods [64], have been proposed and
successfully applied, dedicated search strategies or mutation operators have not yet been
adequately addressed. Instead, state-of-the-art circuit approximation techniques based on
CGP typically use a standard CGP mutation operator to generate the offspring from the
parent. At the same time, specific search operators and search strategies have been pro-
posed for various other applications of CGP (see, e.g., [70, 55, 37, 38, 48, 54]). However,
these operators are not suitable for circuit approximation as they leverage various specific
features of the domains for which they were introduced.

In this chapter, we first thoroughly study the impact of the standard mutation operators
for CGP on the performance of the circuit approximation process. In the past, these opera-
tors were investigated in the context of evolutionary circuit design (from scratch) [122, 117,
107] or evolutionary circuit optimization (aiming at minimizing the number of gates) [115,
112]. Both of these tasks were previously targeted for relatively simple circuits. This chap-
ter addresses a different problem—namely, an efficient mutation mechanism for CGP-based
approximation of complex circuits where the evolutionary process has to primarily remove
some gates and possibly re-connect the remaining ones. In particular, we focus on the
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strategy that identifies the genes to be mutated and the new values of the altered genes,
the mutation frequency, and the role of explicitly neutral mutations.

Further, we explore in which scenarios the so-called deactivation operations that only
remove parts of the circuit can effectively drive the evolution towards high-quality circuit
approximation. Note that removing a part of the circuit is a typical operation for non-
evolutionary circuit approximation techniques like SALSA [125] and thus it seems promising
to suitably leverage the deactivation in the mutation operator.

Finally, based on a very detailed experimental evaluation, we select the best mutation
and deactivation strategy and propose a novel combined operator, called SagTree, that
incorporates sub-tree deactivation into the mutation process.

In order to assess the performance and practical impact of the SagTree operator with
respect to the existing operators, we consider a broad set of circuit approximation problems
including several structurally different arithmetic circuits as well as various bit widths and
target precisions. In total, our experiments include 39 approximation problems and over
14,000 approximation runs. We go beyond the standard analysis of the final approximate
circuit and also assess the speed of convergence.

Using a rigorous statistical evaluation as well as a detailed analysis of selected results,
we demonstrate that the SagTree operator provides a very robust and versatile circuit
mutation strategy that significantly outperforms other existing operators used in the CGP-
based approximation so far [95]. In particular, there are some hard approximation problems
where our newly proposed operator is the only one able to achieve the required reduction
within the given limit of 1 million generations. Moreover, for many problems, the SagTree
operator improves the performance (due to reducing the number of required generations) by
more than one order of magnitude. As such, the proposed mutation operator significantly
improves the performance of the state-of-the-art approximation techniques.

7.2 Mutation Operators in CGP
The standard CGP uses either point mutation or probabilistic mutation. The point mutation
randomly modifies up to ℎ genes of a parent genotype to create an offspring. The number
of genes can be specified as the percentage of the total number of genes or as an absolute
number depending on the particular implementation [71]. In probabilistic mutation, every
gene is considered for mutation according to a user-defined probability. Point mutation
is easier to implement and more efficient than using a probabilistic mutation as one does
not need to linearly walk through the genes to decide which ones to mutate. On the other
hand, probabilistic mutation is continuous and allows one to choose very low mutation
probabilities. In [48], the authors study the performance of these operators in the context of
evolutionary circuit design (i.e. the design from scratch). In the area of circuit optimisation
and approximation starting from a known circuit implementation, the existing techniques
utilise the point mutation only [119].

Considering the CGP encoding, a single mutated gene causes either re-connection of
a node, re-connection of a primary output, or change in the function of a node. Due to
the presence of redundant genes, the mutation may occur in the redundant part, which
means that the mutated genotype has the same phenotype as its parent. Such a mutation
is sometimes denoted as neutral since the fitness value remains unchanged. In such a case,
one does not need to carry out the fitness evaluation. It is theorised, however, that while
neutral mutations may not actively contribute to an individual’s fitness, future non-neutral
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mutations might result in beneficial phenotypical traits as a consequence of past neutral
mutations [111, 133].

To avoid wasted fitness evaluations, several mutation strategies have been proposed [37,
72]. One possibility is to detect the neutral mutations and skip the time-consuming fitness
evaluation procedure. To avoid the mutation parameters whose optimal value is hard to
determine in advance, Goldman and Punch introduced a parameter-less mutation strategy
denoted as Single Active Mutation (SAM) [37]. The SAM operator mutates the offspring
until one active gene is changed. The performance of this operator was close to the best
performance of the other strategies [72] when evaluated in the evolutionary design of some
small logic circuits. This operator has never been applied in the context of the evolutionary
design of approximate circuits.

In [54], two mutation operators explicitly addressing the active and inactive nodes have
been introduced. One operator activates the inactive nodes, the second one deactivates the
active nodes. The latter operator alters connections to an active node so that the node
becomes inactive. More detailed experimental studies are required to confirm benefits of
these operators in the context of approximate circuit design.

7.3 Towards Efficient Mutation
In this section, we first discuss candidates for the best mutation and deactivation strategy
and then propose a novel combined operator.

7.3.1 Single Active Gene Mutation Operators

To analyze the importance of explicitly neutral mutations in the task of circuit approxima-
tion, we propose to evaluate two variants of the SAM operator.

The Single Active Gene Mutation (SAGM) performs a single mutation to the active
genes and does not alter the inactive genes. This operator suppresses the explicitly neutral
mutations, but it still enables the implicit neutrality which refers to mutations affecting
active genes and therefore leading to a change in the phenotype but without causing a
change in fitness.

Single Active Gene and Explicitly Neutral Mutation (SAGENM) is an extension of the
SAGM operator. Except for the one active mutation, it also performs mutations of the
inactive part of the chromosome. The frequency of the inactive mutations is controlled
by a parameter 𝑃𝑁 . Similarly to the probabilistic mutation, SAGENM operator iterates
over all inactive genes and mutates each of them with probability 𝑃𝑁 . The differentiation
between SAGM and SAGENM should allow us to better examine the contributions of the
explicitly neutral mutations in the task of circuit approximation.

Due to performing a single mutation, the SAG family of operators has the potential
to better solve problems that require small incremental changes—circuit approximation
starting from a golden model typically belongs to such a category of problems. How-
ever, introducing large changes into the golden model can be sometimes very beneficial.
SAGENM operators can achieve this by connecting inactive parts of the chromosome to
the active part in a single mutation.
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7.3.2 Node Deactivation Operators

Circuit pruning based on the deletion of a part of the circuit represents one of the conven-
tional heuristic techniques used in approximate computing [62]. This technique is based on
the assumption that the approximate circuit needs a part of the original circuit structure
only to provide the required quality. As the standard mutation operators would typically
require multiple iterations to remove a larger part of the circuit, we propose two variants
of mutation operators that are able to eliminate a part of the circuit in a single step.

The Active Node Deactivation (NodeDeact) operator deactivates a single active node.
The deactivation is implemented as follows. Firstly, a single active node 𝑁 is chosen
randomly. Then, the inputs of all nodes that are connected to this node are reconnected (i.e.
substituted) to one of the inputs of 𝑁 . The inputs are selected randomly and individually
for each substitution.

The Active Subtree Deactivation (TreeDeact) represents a generalization of the previous
operator. The operator randomly selects an active node 𝑁 and identifies a sub-circuit 𝑆 at
the level of the phenotype, i.e. 𝑆 has the root node 𝑁 and depth up to 𝑑 levels. Then, the
operator disconnects the whole sub-circuit. The disconnection is implemented as follows.
The inputs of all nodes outside of 𝑆 that are connected to any node belonging to 𝑆 are
reconnected (i.e. substituted) to one of the inputs of 𝑆. The substitution works in the same
way as in the case of the NodeDeact operator.

Note that 𝑆 can have more than one output connection to the preserved active nodes.
Several changes can happen in the chromosome as a consequence of a single TreeDeact
mutation. This is illustrated in Figure 7.1 where inputs of four active nodes need to be
reconnected.

Primary inputs

Primary outputs

Primary inputs

Primary outputs

Figure 7.1: An example phenotype of a circuit before (left) and after (right) a TreeDeact
mutation. An active gate is chosen (red), and the sub-circuit of the depth of 2 is identified.
In the mutation, the outgoing connections of the subtree (blue) are randomly reconnected
to the inputs of the subtree (orange). After the application of the mutation operator, the
nodes of the subtree are inactive.
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7.3.3 Combined Mutation Operators

The idea of combined mutation operators in the circuit approximation is very natural: the
deactivation operations are able to quickly identify and eliminate redundant logic while
the random mutation operators can find some novel node interconnections that preserve
the required circuit functionality and reduce the circuit area. Although the elimination is
typically more efficient at the beginning of the approximation process and, on the other
hand, the mutation at the end of the process, we emphasize that it is also very beneficial
to interleave these two operations. Exploring new interconnections at the beginning is
important to decrease the probability that the elimination will get stuck in a local optimum
by removing some useful logic. Enabling the elimination in the later phases is useful as the
new interconnections can create some redundant logic.

Therefore, we consider combined operators that perform, in every generation, a gene-
oriented mutation operation 𝑀 with a probability 𝑃𝑀 and a deactivation-oriented operation
𝑅 with the probability 𝑃𝑅 = 1−𝑃𝑀 . This approach leads to various combined operators de-
noted as 𝐴−𝐵, each controlled by the parameter 𝑃𝑀 (e.g. 𝑃𝑜𝑖𝑛𝑡−𝑇𝑟𝑒𝑒𝐷𝑒𝑎𝑐𝑡(𝑃𝑀 = 0.50),
𝑆𝐴𝐺𝑀 −𝑁𝑜𝑑𝑒𝐷𝑒𝑎𝑐𝑡(𝑃𝑀 = 0.75)). Our strategy for selecting the best combined operator
is based on a detailed experimental evaluation of the purely mutating and deactivating op-
erations. As shown in the next section, the experiments unequivocally identify the SAGM
and TreeDeact as the most vital operators for building the combined operator.

7.4 Experimental Setup
The presented mutation operators were implemented in our tool ADAC (Automatic Design
of Approximate Circuits, Chapter 5). ADAC provides several techniques for evaluating
various error metrics of approximate circuits. In particular, it provides an efficient SAT-
based evaluation of WCAE (Section 3.3), one of the most commonly used error metrics,
which we consider in the following experimental evaluation. CGP is driven by the fitness
function defined by Equation 2.1. To estimate the size of the evolved circuits, we employ
the heuristic described in Section 3.4.1 (the size of the circuit is estimated as the sum of
the circuit’s gate sizes). We use the gate sizes presented in Table 3.1.

In order to thoroughly assess the performance and practical impact of the proposed
mutation operators, we consider a broad set of circuit approximation problems including
several structurally different arithmetic circuits as well as various bit widths and target
precisions. In the experimental evaluation, we use circuits characterised in Table 7.11.

We consider various WCAE values as the given bound directly determines permissible
changes in the circuit structure (i.e. a small error allows one to perform smaller changes in
the circuit only). Therefore, different WCAE values lead to significantly different approxi-
mation problems.

In our experimental evaluation, we explore all three dimensions characterising the circuit
approximation problems: (i) the circuit type reflecting both the size and the structural
complexity, (ii) the error bound, and (iii) the approximation time. In total, we examine
more than 39 instances of the approximation problems that sufficiently cover practically
relevant problems in the area of arithmetic circuit approximation. Therefore, the considered
benchmark allows us to robustly evaluate the versatility of the proposed mutation operators
and their benefits with respect to the existing operators.

1All circuits can be downloaded from https://github.com/ehw-fit/sagtree-seeds. These circuits can
be used in the future as a new benchmark suite for the area of evolutionary circuit approximation.
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Table 7.1: Arithmetic circuits used as a benchmark: the 2nd column gives the computed
function where 𝑖𝑛 denotes an 𝑛-bit operand, #PI/#PO give the numbers of primary input-
s/outputs, and the last column gives the number of gates in the accurate implementation
used as the seeding circuit.

Circuit Function #PI #PO # gates

Adders 𝑖8 + 𝑖8 16 9 54
𝑖16 + 𝑖16 32 17 115

Multipliers 𝑖8 × 𝑖8 16 16 346
𝑖16 × 𝑖16 32 32 1525

MAC (𝑖8 × 𝑖8) + 𝑖16 32 17 473
(𝑖16 × 𝑖16) + 𝑖32 64 33 1788

Square (𝑖8)
2 8 16 317

(𝑖16)
2 16 32 1394

Dividers 𝑖15/𝑖8 23 8 648
𝑖31/𝑖16 47 16 2720

7.5 Experimental Results
We divide our experimental results into three parts:

1. Evaluation of the existing mutation operators allowing us to choose the best candidates
for the new combined operator:

• The point operator with the maximum number of mutations set to 0.5 % of the num-
ber of gates of the original circuit—the standard operator for circuit approximation
further denoted as 𝑃𝑜𝑖𝑛𝑡(𝑃𝐺 = 0.005);

• the SAGM operator;
• the SAGENM operator with the neutral mutation probability set to [0.1 %, 1 %, 3 %],

denoted, e.g., as 𝑆𝐴𝐺𝐸𝑁𝑀(𝑃𝑁 = 0.001); and
• the probabilistic operator with the mutation probabilities set to [0.1 %, 0.5 %, 1 %],

denoted, e.g., as 𝑃𝑟𝑜𝑏(𝑃 = 0.001).

2. Evaluation of the purely deactivating operators with respect to the performance and
convergence of the standard operators:

• the single-gate NodeDeact operator and
• the TreeDeact operator with a variable tree depth chosen randomly from the interval

[1, 5].

3. Evaluation of the proposed combined operator SAGM-TreeDeact (further denoted as
𝑆𝑎𝑔𝑇𝑟𝑒𝑒) in three versions that perform the SAGM mutation with the probability 𝑃𝑀

set to [25 %, 50 %, 75 %]. We denote them, e.g., as 𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.25).

In order to provide a clear and succinct presentation of the experimental results includ-
ing over 14,000 evolutionary runs (29 independent evolutionary runs with 106 generations
for each circuit type, bit width, and approximation error), we use three types of result
visualisation:
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1. Complete statistical evaluation over all evolutionary runs using the Friedmann statis-
tical test along with the Nemenyi post-hoc analysis. Based on the analysis, we report
the ranks of the operators for all approximation runs (Figure 7.2). The ranks are ob-
tained using the results of the approximation process (i.e. the reduction of the circuit
area) taken at 1k, 5k, 10k, 50k, 100k, 250k, 500k, and 1M generations. The results
thus take into consideration the performance of the operators during the whole approx-
imation process. Note that the post-hoc analysis defines the Critical Difference (CD)
on the ranks guaranteeing a statistically significant difference between two operators
with confidence 95 %. Moreover, we provide Table 7.2 which also contains the results
of the Friedmann and Nememyi tests, but this time performed at chosen points of the
evolutionary process separately. The table demonstrates how the ranks of the particular
operators change during the course of the approximation.

2. Figure 7.4 shows, for selected approximation problems, the time course of the approxima-
tion runs (i.e. convergence of the area reduction) using a particular mutation operator.
The figures show the median of the aggregated runs for each operator.

3. Figure 7.3 shows the median of the number of generations required by the particular
mutation operator to achieve the given area reduction for different circuits and WCAE
bounds. The figure includes only the more complex approximation problems requiring
a considerable number of generations. The white places represent the situation where
the required area reduction (bottom x-axis) has not been achieved in at least 50 % of
the approximation runs using the respective mutation operator.

12345678910111213
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SAGENM(PN = 0.001) (8)

SAGENM(PN = 0.01) (7)

(1) SagTree(PM = 0.50)

(2) SagTree(PM = 0.25)

(3) SagTree(PM = 0.75)

(4) TreeDeact

(5) NodeDeact

(6) SAGM

CD

Figure 7.2: An overall rank comparison using the results at 1k, 5k, 10k, 50k, 100k, 250k,
500k, 750k, 1M generations. Groups where the difference in performance is not statistically
significant (the difference is smaller than the critical difference) are joined.

7.5.1 Existing Mutation Operators

The statistical results (see Figure 7.2 and Table 7.2) clearly show that the operators based on
single gene mutation outperform the other existing mutation operators (namely the Point
operator for circuit approximation as well as the different variants of the probabilistic
mutation) across the whole set of experiments. The single gene mutation has the best
ranks with statistical significance for both the particular generation counts and the overall
evaluation. In the following paragraphs, we briefly comment the results.

The probabilistic operators heavily rely on the size of the chromosome: the larger the
chromosome is, the more mutations the probabilistic operators perform. It is known that
a large number of mutations negatively effects the performance of CGP [37]. This means
that, for large circuits, the mutation frequency has to be set very low (i.e. 𝑃 = 0.001)
to achieve any improvements. Figure 7.3 demonstrates that, for higher frequencies, the
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Table 7.2: A rank comparison of the tested mutation operators using the results obtained
solely at various points of the evolutionary process. Values in the table cells show the
placing of the operator and its average rank (in the bracket). The value of the critical
difference of the ranks is 0.46.

Generation 1 000 10 000 100 000 1 000 000

𝑃𝑜𝑖𝑛𝑡(𝑃𝐺 = 0.005) 10 (9.1) 10 (8.9) 10 (8.7) 8 (7.4)
𝑆𝐴𝐺𝐸𝑁𝑀(𝑃𝑁 = 0.001) 6 (7.7) 7 (7.2) 7 (6.8) 7 (5.6)
𝑆𝐴𝐺𝐸𝑁𝑀(𝑃𝑁 = 0.01) 7 (7.8) 8 (7.3) 8 (6.8) 6 (5.5)
𝑆𝐴𝐺𝐸𝑁𝑀(𝑃𝑁 = 0.03) 9 (7.9) 9 (7.5) 9 (6.9) 5 (5.4)

𝑆𝐴𝐺𝑀 8 (7.8) 6 (7.1) 6 (6.6) 4 (5.0)
𝑃𝑟𝑜𝑏(𝑃 = 0.001) 11 (9.9) 11 (9.9) 11 (9.6) 9 (8.3)
𝑃𝑟𝑜𝑏(𝑃 = 0.005) 12 (11.7) 12 (11.6) 12 (11.3) 12 (10.6)
𝑃𝑟𝑜𝑏(𝑃 = 0.01) 13 (12.2) 13 (12.3) 13 (12.2) 13 (12.0)
𝑁𝑜𝑑𝑒𝐷𝑒𝑎𝑐𝑡 3 (3.2) 4 (3.9) 5 (5.9) 11 (9.4)
𝑇𝑟𝑒𝑒𝐷𝑒𝑎𝑐𝑡 1 (2.3) 2 (3.4) 4 (5.3) 10 (9.0)

𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.25) 2 (3.0) 1 (3.4) 2 (3.7) 3 (4.9)
𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.50) 4 (3.6) 3 (3.8) 1 (3.5) 2 (4.1)
𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.75) 5 (4.9) 5 (4.8) 3 (3.7) 1 (3.9)

operator is not able to achieve (within 1M generations) the required reductions for most
of the approximation problems—it works well for small circuits such as 16-bit adders only
(see Figure 7.4A). Even for the low frequency, the operator is significantly worse (in terms
of performance and success rate) than the other operators on larger circuits (see, e.g.,
Figure 7.3, region I). This indicates that the probabilistic mutation paradigm is not very
suitable for general circuit approximation.

The Point operator performs slightly better than 𝑃𝑟𝑜𝑏(𝑃 = 0.001). It breaks the
purely probabilistic paradigm by considering an interval [1,X] on the number of mutations
(X depends on the circuit size). Our results, however, clearly demonstrate that the single
gene mutations are more efficient and outperform the Point operator, especially for more
complicated approximation problems.

Finally, we observe that the difference between SAGM and various neutral mutation
frequencies of SAGENM is in most cases not statistically significant. We can therefore
reason that neutral mutations do not bring any positive effect in circuit approximation.
The same conclusion can be deduced from Figure 7.3 where these operators feature almost
identical numbers of generations to reach the saving thresholds.

7.5.2 Mutation vs. Deactivation Operators

In this section, we aim at the essential question: how can the deactivation operators im-
prove the circuit approximation process and where their limitation is. Recall that the main
advantage of the deactivation operators is the quick and effective elimination of the redun-
dant circuit logic. By redundant logic, we mean the parts of the original circuit that are
not necessary to implement the approximate functionality. However, after all such logic
is removed from the candidate solution, these operators are unable to provide any fur-
ther improvements. This is crucial for approximation of smaller circuits (see Figures 7.4A
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Figure 7.3: Median of the number of generations required to achieve given area reductions
(x-axis) for the tested mutation operators and the given circuits and maximal allowed worst-
case arithmetic errors. Lower values are better; white places represent the situation where
more than a half of the runs did not achieve the target area reduction. The regions marked
by the Roman numerals are further discussed in the text.

and 7.4B) where deactivation operators quickly converge to local optima (all redundant
logic is removed) and then are significantly outperformed by the standard mutation opera-
tors in the later stages of the evolution. For more complex circuits (see the approximation
of the 16-bit multiplier in Figure 7.4C), the deactivation operators provide much faster con-
vergence than the standard mutations and are competitive even in the later stages. For very
complex approximation problems (see the approximation of 31-bit dividers in Figure 7.4D),
the deactivation operators dominate across the whole approximation process.

Similar trends can also be observed in Table 7.2. After 1k generations, the TreeDeact
and NodeDeact operators are ranked first and third, respectively, and both still place in the
top five after 10k and 100k generations. However, at the end of the evolution, most of the
other operators surpass the solution provided by solely deactivating operators—TreeDeact
places tenth and NodeDeact eleventh.

We refine these observations and add more quantitative results in the following analysis
comparing the best standard mutation operator SAGM with the best deactivation operator
TreeDeact on selected circuit approximation problems:

• 16-bit adder (Figure 7.4A): SAGM outperforms TreeDeact after approximately 25k gen-
erations. In the end, the solution provided by SAGM is about 11 % better.

• 16-bit MAC (Figure 7.4B): SAGM outperforms TreeDeact after approximately 180k
generations. In the end, the solution provided by SAGM is 8.5 % better.

• 16-bit multiplier (Figure 7.4C): SAGM outperforms TreeDeact after roughly 750k gen-
erations. In the end, the solution provided by SAGM is only 0.5 % better. However,
after 50k generations, TreeDeact is 10.8 % better than SAGM.

• 31-bit divider (Figure 7.4D): TreeDeact outperforms SAGM in all stages of the evolution.
The difference is 5.9 % after 50k generations and 3.1 % at the end of the evolution.
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Figure 7.4: Progress of the median solution areas for selected approximate circuits. Or-
ange lines show the proportional area savings with respect to the original solution.

To conclude these experiments, the deactivation operators perform better in the initial
stages of the evolution. The standard genetic mutation operators have the potential to
provide better improvements if given enough generations. The larger the circuit (and the
harder the approximation problem), the longer it takes the standard operators to catch up
with the deactivation operators.

7.5.3 The Combined Operator SagTree

The two previous Sections justified our strategy for building the combined operator SagTree
that has the merits of the best deactivation operator TreeDeact and the best random
mutation operator SAGM. SagTree ensures quick convergence to a near optimal solution
using the aggressive sub-circuit deactivation. In the early stages of the evolution, the
progress of SagTree is only slightly slower than the progress of the deactivation operators.
When the purely deactivating operators get stuck in a local optimum and struggle to provide
additional improvements, SagTree quickly takes over and further optimizes the circuit using
random mutations.

We first compare different variants of the SagTree operator varying in the frequency
of the deactivation operators. As expected from the previous experiments, increasing the
probability of a deactivation operation is beneficial in the earlier stage of the approximation
process as it improves the convergence. This claim is also supported by Table 7.2. After 1k
and 10k generations, the ranks of the SagTree operators are ordered by the frequency 𝑃𝑀

in an ascending order. On the other hand, after 1M generations, the order is reversed (the
deactivation operations reach their limit, and only the gene-oriented mutations are able to
bring improvements in the solution), and 𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.75) overcomes the performance
of the other operators. We also observe that 𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.25) is typically slightly faster
for small area reductions but significantly lags behind 𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.75) for large area
reductions (see, e.g., Figure 7.3, region II).

The following analysis provides a more detailed comparison with existing operators:

• 16-bit adder (Figure 7.4A): SagTree is better than TreeDeact already after 10k gen-
erations, and the gap steadily increases. SAGM almost (but not quite) catches up
with SagTree mutations in the second half of the evolutionary runs.
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• 16-bit MAC (Figure 7.4B): SagTree mutations overcome the deactivation operators
after roughly 100k generations. The SAGM mutation equals the performance of
𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.50) and 𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.75) after about 500k generations but
does not manage to overcome the savings provided by 𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.25).

• 16-bit multiplier (Figure 7.4C): after 400k generations, all SagTree frequencies are
better than the deactivation operators. SagTree is also better than SAGM throughout
the whole course of evolution, although at the end the difference between the two
operators is about 1 % only.

• 31-bit divider (Figure 7.4D): SagTree mutations are better after about 350k gener-
ations. Again, the SagTree mutations outperform SAGM in the whole evolutionary
process; at the end, the difference in the final chip area is 4.5 %.

Finally, we summarise the outcomes of the experimental evaluation presented in Fig-
ure 7.3. For many instances, the purely deactivating operators fail to achieve large reduc-
tions within 1M generations (e.g. Figure 7.3, regions III). For many instances, the combined
operators improve the performance (reduce the number of generations) by more than one
order of magnitude compared with the existing genetic operators (e.g. Figure 7.3, regions
IV). There are some hard approximation problems where only the combined operators are
able to achieve the required reduction within the approximation process limited to 1M
generations (e.g. Figure 7.3, regions V).

To conclude the experimental results, we recall the overall statistical evaluation in Fig-
ure 7.2, where we compare the ranks of the mutation operators across multiple points in
the approximation process. The overall best-performing operator is 𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.50),
closely followed by 𝑆𝑎𝑔𝑇𝑟𝑒𝑒(𝑃𝑀 = 0.25). All other operators significantly lag behind.

7.6 Conclusion
In this chapter, we have discussed the existing mutation operators available in the litera-
ture in the context of CGP-based circuit approximation. We have demonstrated that the
mutation operator for CGP has a fundamental impact on the performance and convergence
of the evolution-driven circuit approximation. Using a thorough experimental evaluation,
we have showed that the classical Point CGP operators known from the literature can be
significantly improved by dedicated deactivation operations eliminating the redundant cir-
cuit logic. We have designed a new mutation operator that combines the single active gene
mutation with circuit sub-tree deactivation and significantly outperforms existing operators
on a wide and practically relevant set of circuit approximation problems.
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Chapter 8

Conclusion

Approximate computing is an emerging paradigm with the potential to achieve significant
resource savings in many application domains. Approximate computing can be performed
on on various system levels ranging from approximate storage and software to dedicated
approximate circuits. Approximate arithmetic circuits are especially interesting since such
circuits can serve as the basic building blocks of various more complex applications. Since
manual design of larger approximate arithmetic circuits is a very complex problem, various
automatic approaches have been proposed in the literature.

The main goal of this thesis was to improve the performance and scalability of search-
based arithmetic circuit approximation. Specifically, the thesis focuses on approximation of
circuits using the Cartesian Genetic Programming. This variant of evolutionary algorithm
is well suited for circuit approximation and has been successfully used to evolve approximate
circuits in the past. However, CGP also suffers from scalability issues when approximating
larger circuit instances. There are two main areas that can be improved in order to enhance
the overall performance of based approximation: (i) the analyser, that evaluates the error
of candidate solutions, and (ii) the synthesizer, that generates new candidates.

Since CGP usually needs many iterations to find high-quality approximate solutions, it
is crucial that error evaluation is as quick as possible. We aimed at the improvements of the
analyser component with the goal of evaluation acceleration in Chapters 3 and 4. We utilised
satisfiability based WCAE and WCRE error evaluation with an improved miter construction
to accelerate the circuit approximation. We further proposed and employed the verifiability
driven strategy with adaptive resource limit settings. We evaluated the performance of the
proposed approximation framework on a wide range of approximation problems – various
arithmetic circuits with different bit widths and multiple error thresholds. When compared
to the current state of the art approximate solutions, the proposed method was able to create
approximate multipliers of unprecedented complexity and quality. The experiments showed,
that Cartesian Genetic Programming currently represents one of the best approaches to
search based design of approximate circuits.

In Chapter 5, we briefly introduced our tool called ADAC – a framework for automated
design of approximate circuits. The framework is implemented as a module of the ABC
hardware design and verification tool. It utilises ABC’s optimised circuit representation
structures as well as the powerful satisfiability solving engine iprove. ADAC contains all
the techniques and algorithms presented in Chapters 3 and 4 and was also used for all the
experimental evaluations presented in these chapters.

Improvements of the synthesizer component represent an orthogonal approach to the
enhancement of the error evaluation algorithms. We aimed at the improvements of the
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synthesizer in Chapters 6 and 7. In Chapter 6, we explored the possibilities of approximation
using satisfiability-based exact and approximate synthesis. We also combined the exact
synthesis optimisation with the evolutionary approximation to improve the quality of the
final solutions obtained in long approximation runs. In Chapter 7, we focused on the
mutation operators utilised in CGP. We first provided a detailed experimental evaluation
of the existing operators, and, based on the presented results, we proposed a novel combined
mutation operator called SagTree. The evaluation performed on an extensive approximation
benchmark showed how the SagTree operator offers an overall better convergence when
compared to the existing operators.

Overall, the results presented in the thesis significantly enhance the capabilities of the
state-of-the-art search based circuit approximation. The improvements made to the syn-
thesizer and analyser components allow us to efficiently find approximations of various
arithmetic circuits – scaling up to 32-bit multipliers and 128-bit adders – with high-quality
trade-offs between the approximation error and the resource savings.

Future Research Directions

As we have shown in this thesis, the approximate computing methodologies can greatly ben-
efit from the utilisation of formal verification techniques. Although we have investigated
mainly the improvements brought by SAT and SMT solving, there exist other techniques
yet to be more deeply embedded in the approximate circuit design. The newly emerging
techniques that could be extended towards approximate equivalence checking include veri-
fication techniques based on polynomial representations (Gröbner Basis) [34, 92] or #SAT
(counting SAT) [19].

Nevertheless, future research in the area of the automated approximate circuit design
(and approximate computing in general) includes many other interesting directions as well.
One of them is the detailed examination of the correlation of various error metrics. Such
knowledge could lead to designing circuits with a quality trade-off between non-functional
parameters and multiple error metrics important for the target application. One work
in this research direction was published in [12], a paper co-authored by the author of this
thesis. In this work, we examined how various error metrics relate to each other and how the
more complex error constraints affect the performance of the evolutionary design algorithm
and the quality of the final solutions.

Another direction that needs a deeper research effort is circuit approximation tailored to
the given application (e.g. signal processing [131], neural networks [3], etc.). The specialised
approximate circuits can take into account the input distribution specific for the target
application and can be approximated with regards to the most suitable error metrics. Such
circuits have the potential to provide better performance in the target application than the
generic approximate circuits. To enable a more widespread usage of approximate circuits in
NNs, it is crucial to improve the techniques that simulate the performance of approximate
circuits in NNs and also allow to train NNs using approximate circuits.

For some complex application domains (e.g. arithmetic circuits of large bit widths, se-
quential circuits, etc.), there still remains a need for better scalability and further automa-
tion of the approximation algorithms. Higher scalability and more effective synthesising
algorithms open the possibilities to approximate larger parts of the computation systems,
leading to better resource savings, more possible applications and wider usage.

101



Bibliography

[1] Almurib, H., Kumar, T.N., Lombardi, F.: Approximate DCT image compression
using inexact computing. IEEE Transactions on Computers 67, 149–159 (2018)

[2] Ansaloni, I.S.G., Pozzi, L.: Circuit carving: A methodology for the design of
approximate hardware. In: Proc. of DATE’18. pp. 545–550. IEEE (2018)

[3] Ansari, M.S., Mrazek, V., et al.: Improving the accuracy and hardware efficiency of
neural networks using approximate multipliers. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 28, 317–328 (2020)

[4] Audemard, G., Simon, L.: On the Glucose SAT solver. International Journal on
Artificial Intelligence Tools 27, 1–25 (2018)

[5] Baek, W., Chilimbi, T.M.: Green: A framework for supporting energy-conscious
programming using controlled approximation. In: Proc. of PLDI’10. pp. 198–209.
ACM (2010)

[6] Bhardwaj, K., Mane, P.S., Henkel, J.: Power- and area-efficient approximate
Wallace Tree Multiplier for error-resilient systems. In: Proc. of ISQED’14. pp.
263–269. IEEE (2014)

[7] Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proc. of CAV’10. pp. 24–40. Springer (2010)

[8] Brent, R.P., Kung, H.T.: A regular layout for parallel adders. IEEE Transactions on
Computers C-31, 260–264 (1982)

[9] Bruttomesso, R., Cimatti, A., et al.: The MathSAT 4 SMT solver. In: Proc. of
CAV’08. pp. 299–303. Springer-Verlag (2008)

[10] Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

[11] BuDDy: A BDD package. http://buddy.sourceforge.net/manual/main.html,
online; March 2023

[12] Češka, M., Matyáš, J., Mrázek, V., Vojnar, T.: Designing approximate arithmetic
circuits with combined error constraints. In: Proc. of DSD’22. pp. 785–792. IEEE
(2022)

[13] Češka, M., Matyáš, J., Mrazek, V., et al.: Approximating complex arithmetic
circuits with formal error guarantees: 32-bit multipliers accomplished. In: Proc. of
ICCAD’17. pp. 416–423. IEEE (2017)

102

http://buddy.sourceforge.net/manual/main.html


[14] Češka, M., Matyáš, J., et al.: ADAC: Automated design of approximate circuits. In:
Proc. of CAV’18. pp. 612–620. Springer (2018)

[15] Češka, M., Matyáš, J., et al.: Adaptive verifiability-driven strategy for evolutionary
approximation of arithmetic circuits. Applied Soft Computing 95, 1–17 (2020)

[16] Češka, M., Matyáš, J., et al.: Satisfiability solving meets evolutionary optimisation
in designing approximate circuits. In: Proc. of SAT’20. pp. 481–491. Springer
International Publishing (2020)

[17] Češka, M., Matyáš, J., et al.: SagTree: Towards efficient mutation in evolutionary
circuit approximation. Swarm and Evolutionary Computation 69, 1–10 (2022)

[18] Češka, M., Češka, M., Matyáš, J., Pankuch, A., Vojnar, T.: Approximating complex
arithmetic circuits with guaranteed worst-case relative error. In: Proc. of
Eurocast’19. pp. 482–490. Springer Verlag (2020)

[19] Chakraborty, S., Meel, K.S., et al.: Approximate probabilistic inference via
word-level counting. In: Proc. of AAAI’16. pp. 3218–3224. AAAI Press (2016)

[20] Chandrasekharan, A., Soeken, M., Große, D., Drechsler, R.: Precise error
determination of approximated components in sequential circuits with model
checking. In: Proc. of DAC’16. pp. 129:1–129:6. ACM (2016)

[21] Chandrasekharan, A., Soeken, M., et al.: Approximation-aware rewriting of AIGs
for error tolerant applications. In: Proc. of ICCAD’16. pp. 1–8. IEEE (2016)

[22] Chippa, V.K., Chakradhar, S.T., Roy, K., Raghunathan, A.: Analysis and
characterization of inherent application resilience for approximate computing. In:
Proc. of DAC’13. pp. 1–9. IEEE (2013)

[23] Cho, K., Lee, Y., et al.: eDRAM-based tiered-reliability memory with applications
to low-power frame buffers. In: Proc. of ISLPED’14. pp. 333–338. IEEE (2014)

[24] Ciesielski, M., Yu, C., et al.: Verification of gate-level arithmetic circuits by function
extraction. In: Proc. of DAC ’15. pp. 52:1–52:6. ACM (2015)

[25] Dadda, L.: Some schemes for parallel multipliers. Alta Frequenza 34, 349–356
(1965)

[26] Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research 7, 1–30 (2006)

[27] Drechsler, R., Becker, B.: Binary Decision Diagrams - Theory and Implementation.
Springer (1998)

[28] Du, K., Varman, P., Mohanram, K.: High performance reliable variable latency
carry select addition. In: Proc. of DATE’12. pp. 1257–1262. EDA Consortium (2012)

[29] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. of SAT’04. pp. 502–518.
Springer (2004)

[30] Ercegovac, M.D.: Two-operand addition. In: Digital Arithmetic, pp. 50–135.
Morgan Kaufmann (2004)

103



[31] Esmaeilzadeh, H., Sampson, A., et al.: Neural acceleration for general-purpose
approximate programs. In: Proc. of MICRO’12. pp. 449–460. IEEE (2012)

[32] Farshchi, F., Abrishami, M.S., Fakhraie, S.M.: New approximate multiplier for low
power digital signal processing. In: Proc. of CADS’13. pp. 25–30. IEEE (2013)

[33] Friedman, M.: A comparison of alternative tests of significance for the problem of 𝑚
rankings. The Annals of Mathematical Statistics 11, 86–92 (1940)

[34] Froehlich, S., Große, D., Drechsler, R.: Approximate hardware generation using
symbolic computer algebra employing Grobner basis. In: Proc. of DATE’18. pp.
889–892. IEEE (2018)

[35] Froehlich, S., Große, D., Drechsler, R.: Error bounded exact BDD minimization in
approximate computing. In: Proc. of ISMVL’17. pp. 254–259. IEEE (2017)

[36] Ghandali, S., Yu, C., et al.: Logic debugging of arithmetic circuits. In: Proc. of
ISVLSI’15. pp. 113–118. IEEE (2015)

[37] Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in Cartesian Genetic
Programming. In: Proc of EuroGP’13. pp. 61–72. Springer-Verlag (2013)

[38] Goldman, B.W., Punch, W.F.: Analysis of Cartesian Genetic Programming’s
evolutionary mechanisms. IEEE Transactions on Evolutionary Computation 19,
359–373 (2015)

[39] Grigorian, B., Reinman, G.: Dynamically adaptive and reliable approximate
computing using light-weight error analysis. In: Proc. of AHS’14. pp. 248–255. IEEE
(2014)

[40] Haaswijk, W., Mishchenko, A., Soeken, M., Micheli, G.D.: SAT based exact
synthesis using DAG topology families. In: Proc. of DAC’18. pp. 1–6. ACM (2018)

[41] Han, C., Jiang, J.: When Boolean satisfiability meets Gaussian elimination in a
simplex way. In: Proc. of CAV’12. pp. 410–426. Springer (2012)

[42] Hashemi, S., Tann, H., Reda, S.: BLASYS: Approximate logic synthesis using
Boolean matrix factorization. In: Proc. of DAC’18. pp. 1–6. ACM (2018)

[43] He, K., Gerstlauer, A., Orshansky, M.: Controlled timing-error acceptance for low
energy IDCT design. In: Proc. of DATE’11. pp. 1–6. IEEE (2011)

[44] Hegde, R., Shanbhag, N.R.: Soft digital signal processing. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 9, 813–823 (2001)

[45] Heule, M., Kiesl, B., Biere, A.: Encoding redundancy for satisfaction-driven clause
learning. In: Proc. of TACAS’19. pp. 41–58. Springer (2019)

[46] Huang, G., Zhu, Q., Siew, C.: Real-time learning capability of neural networks.
IEEE Transactions on Neural Networks 17, 863–878 (2006)

[47] Huang, J., Kumar, T., et al.: Approximate computing using frequency upscaling.
IET Circuits, Devices & Systems 13, 1018–1026 (2019)

104



[48] Husa, J., Kalkreuth, R.: A comparative study on crossover in Cartesian Genetic
Programming. In: Proc. of EuroGP’18. pp. 203–219. Springer (2018)

[49] Jiang, H., Han, J., Lombardi, F.: A comparative review and evaluation of
approximate adders. In: Proc. of GLSVLSI’15. pp. 343–348. ACM (2015)

[50] Jiang, H., Liu, L., et al.: Approximate arithmetic circuits: Design and evaluation.
In: Approximate Circuits, Methodologies and CAD, pp. 67–98. Springer (2019)

[51] Jiang, H., Santiago, F.J.H., et al.: Approximate arithmetic circuits: A survey,
characterization, and recent applications. Proceedings of the IEEE 108, 2108–2135
(2020)

[52] Jouppi, N., Young, C., et al.: In-datacenter performance analysis of a tensor
processing unit. In: Proc. of ISCA’17. pp. 1–12. IEEE (2017)

[53] Judd, P., Albericio, J., et al.: Proteus: Exploiting numerical precision variability in
deep neural networks. In: Proc. of ICS’16. pp. 1–12. ACM (2016)

[54] Kalkreuth, R.: Two new mutation techniques for Cartesian Genetic Programming.
In: Proc. of ECTA’19. pp. 82–92. SciTePress (2019)

[55] Kaufmann, P., Platzner, M.: Advanced techniques for the creation and propagation
of modules in Cartesian Genetic Programming. In: Proc. of GECCO’08. pp.
1219–1226. ACM (2008)

[56] Khudia, D.S., Zamirai, B., et al.: Rumba: An online quality management system for
approximate computing. In: Proc. of ISCA’15. pp. 554–566. ACM (2015)

[57] Kim, Y., Zhang, Y., Li, P.: An energy efficient approximate adder with carry skip
for error resilient neuromorphic VLSI systems. In: Proc. of ICCAD’13. pp.
130––137. IEEE (2013)

[58] Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general
class of recurrence equations. IEEE Transactions on Computers C-22, 786–793
(1973)

[59] Kulkarni, P., Gupta, P., Ercegovac, M.D.: Trading accuracy for power in a
multiplier architecture. Journal of Low Power Electronics 7, 490–501 (2011)

[60] Kumar, H.J.N.T., et al.: Simulation-based evaluation of frequency upscaled
operation of exact/approximate ripple carry adders. In: Proc. of DFT’17. pp. 1–6.
IEEE (2017)

[61] Li, C., Luo, W., et al.: Joint precision optimization and high level synthesis for
approximate computing. In: Proc. of DAC’15. pp. 1–6. ACM (2015)

[62] Lingamneni, A., Enz, C., et al.: Energy parsimonious circuit design through
probabilistic pruning. In: Proc. of DATE’11. pp. 1–6. IEEE (2011)

[63] Liu, C., Han, J., Lombardi, F.: A low-power, high-performance approximate
multiplier with configurable partial error recovery. In: Proc. of DATE’14. pp. 1–4.
IEEE (2014)

105



[64] Liu, G., Zhang, Z.: Statistically certified approximate logic synthesis. In: Proc. of
ICCAD’17. pp. 344––351. IEEE (2017)

[65] Liu, S., Pattabiraman, K., et al.: Flikker: Saving DRAM refresh-power through
critical data partitioning. In: Proc. of ASPLOS’11. pp. 213–224. ACM (2011)

[66] Mahdiani, H.R., Ahmadi, A., et al.: Bio-inspired imprecise computational blocks for
efficient VLSI implementation of soft-computing applications. IEEE Transactions on
Circuits and Systems 57, 850 – 862 (2010)

[67] May, D., Stechele, W.: Voltage over-scaling in sequential circuits for approximate
computing. In: Proc. of DTIS’16. pp. 1–6. IEEE (2016)

[68] Mazahir, S., Hasan, O., et al.: Probabilistic error modeling for approximate adders.
IEEE Transactions on Computers 66, 515–530 (2017)

[69] Miguel, J.S., Badr, M., et al.: Load value approximation. In: Proc. of MICRO’14.
pp. 127–139. IEEE (2014)

[70] Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using
a Cartesian Genetic Programming approach. In: Proc. of GECCO’99. pp.
1135–1142. Morgan Kaufmann Publishers Inc. (1999)

[71] Miller, J.F.: Cartesian Genetic Programming. Springer-Verlag (2011)

[72] Miller, J.F.: Cartesian Genetic Programming: its status and future. Genetic
Programming and Evolvable Machines 21, 129–168 (2020)

[73] Mittal, S.: A survey of techniques for approximate computing. ACM Computational
Survey 48, 62:1–33 (2016)

[74] Mohapatra, D., Chippa, V.K., et al.: Design of voltage-scalable meta-functions for
approximate computing. In: Proc. of DATE’11. pp. 1–6. IEEE (2011)

[75] Moura, L.D., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of TACAS’08. pp.
337–340. Springer-Verlag (2008)

[76] Mrazek, V., Hanif, M.A., et al.: AutoAx: An automatic design space exploration
and circuit building methodology utilizing libraries of approximate components. In:
Proc. of DAC’19. pp. 1–6. ACM (2019)

[77] Mrazek, V., Hrbacek, R., et al.: EvoApprox8b: Library of approximate adders and
multipliers for circuit design and benchmarking of approximation methods. In:
Proc. of DATE’17. pp. 258–261. EDAA (2017)

[78] Mrazek, V., Sarwar, S.S., et al.: Design of power-efficient approximate multipliers
for approximate artificial neural networks. In: Proc. of ICCAD’16. pp. 81:1–81:7.
ACM (2016)

[79] Najm, F.N.: A survey of power estimation techniques in VLSI circuits. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 2, 446–455 (1994)

[80] Nepal, K., Hashemi, S., et al.: Automated high-level generation of low-power
approximate computing circuits. IEEE Transactions on Emerging Topics in
Computing 7, 18–30 (2019)

106



[81] Nepal, K., Li, Y., Bahar, R.I., Reda, S.: ABACUS: A technique for automated
behavioral synthesis of approximate computing circuits. In: Proc. of DATE’14.
pp. 1–6. IEEE (2014)

[82] Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford
University Press, Inc. (1999)

[83] Pohlert, T.: The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR)
(2014), R package

[84] Qiqieh, I., Shafik, R., et al.: Energy-efficient approximate multiplier design using bit
significance-driven logic compression. In: Proc. of DATE’17. pp. 7–12. EDAA (2017)

[85] Ramasamy, M., Narmadha, G., Deivasigamani, S.: Carry based approximate full
adder for low power approximate computing. In: Proc. of ICSCC’19. pp. 1–4. IEEE
(2019)

[86] Ranjan, A., Raha, A., et al.: ASLAN: Synthesis of approximate sequential circuits.
In: Proc. of DATE’14. pp. 1–6. IEEE (2014)

[87] Reda, S., Muhammad, M.: Approximate Circuits – Methodologies and CAD.
Springer (2019)

[88] Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Communications 15, 91–110 (2002)

[89] Ruiz, A.L., Morales, E.C., et al.: Algebraic Circuits, pp. 159–215. Springer-Verlag
(2014)

[90] Samadi, M., Jamshidi, D.A., et al.: Paraprox: Pattern-based approximation for data
parallel applications. In: Proc. of ASPLOS’14. pp. 35–50. ACM (2014)

[91] Samadi, M., Lee, J., et al.: SAGE: Self-tuning approximation for graphics engines.
In: Proc. of MICRO’13. pp. 13–24. ACM (2013)

[92] Sayed-Ahmed, A., Große, D., et al.: Formal verification of integer multipliers by
combining Grobner basis with logic reduction. In: Proc. of DATE’16. pp.
1048–1053. IEEE (2016)

[93] Scarabottolo, I., Ansaloni, G., et al.: Approximate logic synthesis: A survey.
Proceedings of the IEEE 108, 2195–2213 (2020)

[94] Schlachter, J., Camus, V., et al.: Design and applications of approximate circuits by
gate-level pruning. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 25, 1694–1702 (2017)

[95] Sekanina, L., Vasicek, Z., Mrazek, V.: Automated search-based functional
approximation for digital circuits. In: Approximate Circuits, pp. 175–203. Springer
(2019)

[96] Shafique, M., Ahmad, W., et al.: A low latency generic accuracy configurable adder.
In: Proc. of DAC’15. pp. 86:1–86:6. ACM (2015)

107



[97] Shafique, M., Hafiz, R., et al.: Invited: Cross-layer approximate computing: From
logic to architectures. In: Proc. of DAC’16. pp. 1–6. IEEE (2016)

[98] Shim, B., Sridhara, S.R., Shanbhag, N.R.: Reliable low-power digital signal
processing via reduced precision redundancy. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 12, 497–510 (2004)

[99] Shoushtari, M., BanaiyanMofrad, A., Dutt, N.: Exploiting partially-forgetful
memories for approximate computing. IEEE Embedded Systems Letters 7, 19–22
(2015)

[100] Sidiroglou-Douskos, S., S. Misailovic, S., et al.: Managing performance vs. accuracy
trade-offs with loop perforation. In: Proc. of ESEC/FSE’11. pp. 124–134. ACM
(2011)

[101] Soeken, M.: Cirkit (version 3). https://github.com/msoeken/cirkit (2023),
online; March 2023

[102] Soeken, M., Amarù, L.G., et al.: Exact synthesis of majority-inverter graphs and its
applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 36, 1842–1855 (2017)

[103] Soeken, M., De Micheli, G., Mishchenko, A.: Busy man’s synthesis: Combinational
delay optimization with SAT. In: Proc. of DATE’17. pp. 830–835. IEEE (2017)

[104] Soeken, M., Große, D., Chandrasekharan, A., Drechsler, R.: BDD minimization for
approximate computing. In: Proc. of ASP-DAC’16. pp. 474–479. IEEE (2016)

[105] Soeken, M., Haaswijk, W., et al.: Practical exact synthesis. In: Proc. of DATE’18.
pp. 309–314. IEEE (2018)

[106] Sorensson, N., Een, N.: MiniSat v1.13 – a SAT solver with conflict-clause
minimization. In: Proc. of SAT’05. pp. 1–2. Springer (2005)

[107] de Souza, L.A.M., da Silva, J.E.H., et al.: A benchmark suite for designing
combinational logic circuits via metaheuristics. Applied Soft Computing 91, 1–12
(2020)

[108] Sutherland, M., Miguel, J.S., Jerger, N.E.: Texture cache approximation on GPUs.
In: Proc. of WAX’15. pp. 1–3 (2015)

[109] Synopsys design compiler. https://www.synopsys.com/, online; March 2023

[110] Thathachar, J.: On the Limitations of Ordered Representations of Functions, pp.
232–243. Springer Berlin Heidelberg (1998)

[111] Turner, A., Miller, J.F.: Neutral genetic drift: an investigation using Cartesian
Genetic Programming. Genetic Programming and Evolvable Machines 16, 531–558
(2015)

[112] Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of
inputs and thousands of gates. In: Proc. of EuroGP’15. pp. 139–150. Springer (2015)

108

https://github.com/msoeken/cirkit
https://www.synopsys.com/


[113] Vasicek, Z., Mrazek, V., Sekanina, L.: Evolutionary functional approximation of
circuits implemented into FPGAs. In: Proc. of SSCI’16. pp. 1–8. IEEE (2016)

[114] Vasicek, Z., Mrazek, V., Sekanina, L.: Towards low power approximate DCT
architecture for HEVC standard. In: Proc. of DATE’17. pp. 1576–1581. EDAA
(2017)

[115] Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for
post-synthesis evolutionary optimization in evolvable hardware. Genetic
Programming and Evolvable Machines 12, 305–327 (2011)

[116] Vasicek, Z., Sekanina, L.: Evolutionary design of approximate multipliers under
different error metrics. In: Proc. of DDECS’14. pp. 135–140. IEEE (2014)

[117] Vasicek, Z., Sekanina, L.: How to evolve complex combinational circuits from
scratch? In: Proc. of ICES’14. pp. 133–140. IEEE (2014)

[118] Vasicek, Z., Sekanina, L.: Circuit approximation using single- and multi-objective
Cartesian GP. In: Proc. of EuroGP’15. pp. 217–229. Springer (2015)

[119] Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits
design. Transactions on Evolutionary Computation 19, 432–444 (2015)

[120] Vasicek, Z., Sekanina, L.: Evolutionary design of complex approximate
combinational circuits. Genetic Programming and Evolvable Machines 17, 169–192
(2016)

[121] Vasicek, Z., Slany, K.: Efficient phenotype evaluation in Cartesian Genetic
Programming. In: Proc. of EuroGP’12. pp. 266–278. Springer-Verlag (2012)

[122] Vassilev, V.K., Job, D., Miller, J.F.: Towards the automatic design of more efficient
digital circuits. In: Proc. of EH’00. pp. 151–160. IEEE (2000)

[123] Vassilev, V.K., Miller, J.F.: The advantages of landscape neutrality in digital circuit
evolution. In: Proc. of ICES’00. pp. 252–263. Springer (2000)

[124] Venkataramani, S., Roy, K., Raghunathan, A.: Substitute-and-simplify: a unified
design paradigm for approximate and quality configurable circuits. In: Proc. of
DATE’13. pp. 1367–1372. EDAA (2013)

[125] Venkataramani, S., Sabne, A., et al.: SALSA: systematic logic synthesis of
approximate circuits. In: Proc. of DAC’12. pp. 796–801. ACM (2012)

[126] Venkatesan, R., Agarwal, A., Roy, K., Raghunathan, A.: MACACO: Modeling and
analysis of circuits for approximate computing. In: Proc. of ICCAD’11. pp. 667–673.
ACM (2011)

[127] Verma, A.K., Brisk, P., Ienne, P.: Variable latency speculative addition: A new
paradigm for arithmetic circuit design. In: Proc. of DATE’08. pp. 1250–1255. IEEE
(2008)

[128] Wallace, C.S.: A suggestion for a fast multiplier. IEEE Transactions on Electronic
Computers EC-13, 14–17 (1964)

109



[129] Wolf, C.: Yosys open synthesis suite. https://yosyshq.net/yosys/, online; March
2023

[130] Xu, Q., Mytkowicz, T., Kim, N.S.: Approximate computing: A survey. IEEE Design
and Test 33, 8–22 (2016)

[131] Yoo-Joo, J., Lim, D., et al.: 6.4 a 56gb/s 7.7mw/gb/s PAM-4 wireline transceiver in
10nm FinFET using MM-CDR-based ADC timing skew control and low-power DSP
with approximate multiplier. In: Proc. of ISSCC’20. pp. 122–124. IEEE (2020)

[132] Yu, C., Ciesielski, M.: Analyzing imprecise adders using BDDs – a case study. In:
Proc. of ISVLSI’16. pp. 152–157. IEEE (2016)

[133] Yu, T., Miller, J.F.: Neutrality and the evolvability of Boolean function landscape.
In: Proc. of EuroGP’01. pp. 204–217. Springer (2001)

110

https://yosyshq.net/yosys/

	Introduction
	Motivation
	Research Objectives
	Author's Contribution
	Thesis Outline

	State of the Art in Approximate Computing
	Overview of Approximate Computing Methodologies
	Approximate Storage
	Approximate Software
	Frequency and Voltage Scaling
	Functional Approximation of Hardware Circuits

	Approaches to Design of Approximate Circuits
	Preliminaries – Arithmetic Circuits
	Manually Designed Approximate Circuits
	Boolean Rewriting and Approximate High Level Synthesis
	Netlist Transformation
	Cartesian Genetic Programming

	Non-functional Circuit Metrics
	Error Metrics
	General Error Metrics
	Arithmetic Error Metrics

	Error Metrics Evaluation
	Simulation
	Formal Methods for Error Evaluation


	Scalable SAT-based Approximate Equivalence Checking
	Motivation
	Search-Based Design of AACs
	Problem Formulation
	Cartesian Genetic Programming
	Verifiability-Driven Search Strategy

	SAT-based WCAE Evaluation
	Checking Worst Case Absolute Error
	The Proposed Miter Construction

	WCAE Experimental Evaluation
	Experimental Setup
	16-bit Approximate Multipliers
	Complex Multipliers
	Approximate Adders

	SAT-based WCRE Evaluation
	Checking Worst Case Relative Error
	Variants of the WCRE Miter

	WCRE Experimental Evaluation
	Comparison of the WCRE Miters
	Circuit Approximation

	Conclusion

	Adaptive Verifiability Driven Search Strategy
	Motivation
	Adaptive Verifiability-driven Optimisation
	Evaluation of the Proposed Adaptive Search Approach
	Computational Setup
	CGP Parameters
	Comparison of Adaptive Strategies
	Reduction of Randomness (Q1)
	Versatility of Adaptive Strategies (Q2)
	A Comparison of Adaptive and Fixed-limit Strategies (Q3)
	Comparison with State-of-the-art Techniques (Q4)

	Conclusion

	ADAC - a Framework for Automatic Approximation
	Architecture and Implementation
	Integration to the ABC Tool.

	Error Evaluation Methods
	Bit-parallel Circuit Simulation
	BDD-based Evaluation
	SAT-based Evaluation

	Error Evaluation Performance

	StS-based Synthesis for Exact and Approximate Circuits
	Motivation
	StS-based Circuit Approximation
	A Monolithic Approach
	Sub-circuit Approximation
	Evolutionary Approximation with StS-based Optimisation

	Experimental Evaluation
	Performance on Small Circuits
	Performance on Complex Circuits

	Conclusion

	Novel Mutation Operator for Approximate Circuit Design
	Motivation
	Mutation Operators in CGP
	Towards Efficient Mutation 
	Single Active Gene Mutation Operators
	Node Deactivation Operators
	Combined Mutation Operators

	Experimental Setup
	Experimental Results
	Existing Mutation Operators
	Mutation vs. Deactivation Operators
	The Combined Operator SagTree

	Conclusion

	Conclusion
	Bibliography

