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BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ
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Abstract

The thesis investigates into keyword spotting and spoken term detection (STD), that are
considered as sub-sets of spoken document retrieval. It deals with two-phase approaches
where speech is first processed by speech recognizer, and the search for queries is per-
formed in the output of this recognizer. Standard large vocabulary continuous speech
recognizer (LVCSR) with fixed vocabulary is tested first, and its main drawback – inca-
pability of detecting out-of-vocabulary words (OOV) is discussed. Subword systems that
rely on phones or other subword units are also investigated, with the accent on subword
units automatically inferred using constrained phone multigram approach. The next step
is the creation of a hybrid spoken term detection system combining both word and sub-
word parts in one recognition network. Extensive experiments investigating into different
variants of this approach are performed, and the results (in terms of spoken term detection
precision, speed, and necessary computing resources) are reported on standard data from
NIST STD 2006 evaluation. The accuracy of the hybrid system was found marginally
inferior to the combination of individual word and subword systems but this drawback is
largely compensated by the simplicity and efficiency of the proposed system. The final
tests were performed in combination with real indexing and search engine.
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Abstrakt

Tato disertačńı práce se zabývá detekćı kĺıčových slov (keyword spotting) a fráźı (spoken
term detection – STD), které jsou považovány za podmnožinu vyhledáváńı v řečových
dokumentech (spoken document retrieval). Týká se dvoufázových př́ıstup̊u, ve kterých
je řeč nejprve přepsána rozpoznávačem, vyhledáváńı dotaz̊u pak prob́ıhá ve výstupu to-
hoto rozpoznávače. Na začátku testujeme standardńı rozpoznávač spojité řeči s velkým
a fixńım slovńıkem (large vocabulary continuous speech recognizer – LVCSR), a diskutu-
jeme jeho hlavńı nevýhodu – neschopnost detekovat slova mimo slovńık (out-of-vocabulary
words – OOV). Zkoumáme rovněž systémy založené na pod-slovńıch jednotkách (sub-
word), d̊uraz klademe na jednotky, které jsou automaticky určeny pomoćı fonémových
multigramů s omezuj́ıćımi podmı́nkami. Daľśım krokem je tvorba hybridńıho systému pro
vyhledáváńı dotaz̊u – ten kombinuje obě části (slovńı i pod-slovńı) v jedné rozpoznávaćı
śıti. V experimentech testujeme r̊uzné varianty tohoto př́ıstupu, výsledky (přesnost de-
tekce fráźı, rychlost, spoťreba výpočetńıch prosťredk̊u) uvád́ıme na standardńıch datech
z NIST STD 2006 evaluace. Přesnost hybridńıho systému je o něco menš́ı než u kom-
binace samostatného slovńıho a pod-slovńıho systému, tato nevýhoda je však převážena
jednoduchost́ı a efektivitou námi navrženého př́ıstupu. Konečné testováńı je provedeno v
kombinaci se skutečným enginem pro indexováńı a vyhledáváńı v řeči.

Kĺıčová slova

detekce kĺıčových slov, detekce fráźı v řeči, mı́ry konfidence, rozpoznáváńı spojité řeči s
velkým slovńıkem, kombinovaný slovńı-podslovńı systém, slova mimo slovńık
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Chapter 1

Introduction

Speech is natural and the most wide spread way of information exchange among people.
Many technologies were invented to allow better, faster and longer distance communication
using speech, as telephones, radio and television. All of these techniques allow us to com-
municate (in one or both directions), but usually cannot store the speech communication
for later processing. If the speech contained an important information, we usually cannot
search for it after the speech communication finished. And if the speech communication
was recorded, one has to listen to the whole recording to find the requested information.
This is very expensive in terms of time and human resources. Our goal is to build a
system for efficient and precise retrieval and fast access to the information in the stored
“speech communication”. On contrary to the speech search, textual data is accessible and
search-able very quickly.

Firstly we need to understand what speech is. Speech is a way to transmit an informa-
tion from one person to others. Speech contains a lot of information which can be divided
to the following categories:

What was said Usually the most important information in speech. People speak for
information exchange. This information can be split to two parts. The first one (the
major and more important) can be transcribed to a sequence of words. The second
one is hidden in speaker’s prosody. The meaning of an utterance can be changed by
the prosody sometimes.

Who said it Speaker’s voice characteristics. We can identify person’s age, gender, edu-
cation or place of childhood just by his/her voice.

This thesis will target the ”What was said” type of information without prosody in-
formation. The information is of discrete value (e.g. ”green – color of an object”) and
is encoded into a sequence of (discrete) units (words and sentences) in speaker’s brain.
These units are then realized by muscle movements in our vocal tract. The result are
continuous, very small and fast changes of air pressure going out of our mouth (speech).
These air-pressure changes are transmitted in our environment until they arrive to lis-
tener’s ear. They are converted to electrical impulses there. These are interpreted by the
listener’s brain as a sequence of units building up a (discrete) information. Information in
listener’s mind is not necessarily the same as in speaker’s mind. If a difference appears, it
is misunderstanding of information. For more details about speech production, language,
listening and psychoacoustics see for example [DP73] and [HAH00].

13



14 1. Introduction

We conclude that information exchange among people consists of:

Information is discrete and is what we want to “say”.

Words are discrete units. Information is encoded into sequences which consist of words.

Phones are discrete units. Words can be converted to sequences of phones. Phone is
elementary unit1 which can be mapped to a certain muscle movements in vocal
tract.

Speech are continuous air-pressure changes which are produced by muscle movements in
vocal tract. Speech is transmitted from speaker to listener(s) through air.

Our goal is to efficiently store the information for later search. The only way how to
get the information is from speech, because only speech is available “outside” the speaker.
But, the information can be realized by many different sequences of words. Each of these
sequences can be realized by infinite number of ways (speech air-pressure changes). There
is other information incorporated in speech. Some of it has no direct link to speech
like characteristics of speaker’s voice or environment noise. The other has direct link
to the information in speech as voice stress or prosody and can change the meaning of
(information in) speech.

The process of information retrieval from speech can be split to several steps:

Recording and signal processing Contains recording of speech, storing of speech sig-
nal and basic signal processing operations as sampling, quantization and filtering.
The input is spoken speech and the output is filtered digital signal.

Automatic speech recognition Once we have recorded speech, we can apply speech
recognition to “discretization/tokenization” of speech to sequence of phones, words
and their scores. Other information such as speed, loudness, stress, pitch and dialect
can be also estimated. The output of speech recognizer is a data structure containing
one or more hypothesis in parallel (lattice).

Indexing Techniques for space-optimal storing and fast access to the recognizer’s output.
Allows for search over large set of spoken documents in very short time.

Keyword spotting/Spoken term detection Algorithms which search recognizer’s
output for a given word or term. The output is a sequence of putative occurrences
and their confidences. Position of the systems in the information retrieval chain is
illustrated in figure 1.1.

Spoken document retrieval The output of spoken document retrieval system is a set of
relevant documents according to given query. Spoken document retrieval is similar
to Internet textual searchers (for example Google). The system should have very
fast response and should handle large amounts of spoken data (documents).

Information retrieval Receives a “question” and tries to find an “answer” from in-
formation stored in a pool of documents. It can use output of speech recognizer,
keyword spotter/term detector and other sources (speed, stress, pitch, etc.). It can
also combine other modalities as textual search, video search (face detection, object
detection and classification, etc.).

1In fact, an allophone is elementary acoustic unit of speech. Several allophones are mapped to one

phone. The phone is logical unit and if a phone changes into another phone within the scope of a word,

the meaning of the word changes too (or is meaning-less). If an allophone is changed to another within

the scope of the same phone, then the word sounds different but has the same meaning.
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Figure 1.1: Role of Keyword spotting/Spoken term detection in Information retrieval from speech.

The input (red) is processed by the chain of algorithms (gray) which produces occurrences of terms

(green).

The research field of this thesis is spoken term detection. The corner stone
of this thesis is search of out-of-vocabulary terms which are not present in dictionary of
word-based speech recognizer. Also, topics as term confidence measures, weighted finite
state transducers, indexing of spoken documents and phone multigram units are touched.

The motivation of this thesis is practical solution of search of out-of-vocabulary terms in
spoken data. One important occasion was NIST spoken term detection evaluation2 in 2006.
Another occasions were our participation several large European projects: M4 3, AMI 4 and
AMIDA5. A fast, accurate and robust approach of term search containing possibly out-
of-vocabulary words was needed. Our previous research was aimed at combination of
independent in-vocabulary (word) and out-of-vocabulary (subword) search. This led to
the hybrid approach, which is investigated later in this thesis.

1.1 Scope of chapters

This work is organized as follows:

Chapter 2 describes bases of spoken term detection. Terminology and methods
are described in this chapter. This chapter also contains spoken term detection survey
which deals with recently published approaches. It concludes with the definition of terms as
Term posterior probability, Lattice, Term score estimation and Term confidence estimation.

Chapter 3 contains description of evaluation data and metrics. Brief description
of used tools is in the end of this chapter.

2http://www.itl.nist.gov/iad/mig/tests/std/2006/index.html
3http://www.dcs.shef.ac.uk/spandh/projects/m4/index.html
4http://www.amiproject.org/
5http://www.amiproject.org/ami-scientific-portal
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Chapter 4 is related to description of used large vocabulary continuous speech
recognizer. Training data and used techniques are listed there. Also, baseline experiment
results are presented.

Chapter 5 deals with phone-based subword recognition. Baseline spoken term de-
tection experiments are stated there.

Chapter 6 focuses on phone multigrams-based subword recognition. Firstly, the
definition of phone multigram is provided. Section describing experiments for estimation of
the best parameters of multigrams follows. Also, two new constrained multigram training
techniques are proposed.

Chapter 7 investigates into hybrid word-subword recognition. The hybrid word-
subword recognition network is described at the beginning of this chapter. Large set of
experiments aiming at search for optimal hybrid combination of words and subwords is
presented.

Chapter 8 describes indexing and search experiments with the hybrid word-
subword recognizer. Several impacts of using hybrid word-subword lattices in the indexing
and search engine for spoken term detection are outlined.

Chapter 9 concludes and discusses the results of this thesis.

1.2 Original claims of the thesis

The goal of this thesis is to investigate into combination of word and subword approaches
to get the best search accuracy (especially for out-of-vocabulary words) having the highest
search speed and the lowest memory consumptions. The original claims are as follows:

• Proposal and evaluation of subword-based spoken term detector. Improved
phone multigram units are used. Constraints applied during training of multigrams
improved the accuracy.

• Subword system evaluation. Dependency of the accuracy on computational re-
sources and size of indices is studied.

• Proposal of hybrid word-subword recognizer with higher order language model
over phone multigram subword units.

• Using the output of hybrid word-subword recognizer for open-vocabulary spoken
term detection task. However, this is not completely new approach in general.
Akbacak et al. [AVS08] converted subword units back to words and indexed only
words. On contrary, we let the subword units in the word index, converted out-of-
vocabulary terms to subword units and searched them in the index.

• Evaluation of hybrid word-subword based spoken term detection accuracy
as function of computational resources and size of indices.

• Evaluation of real speech indexing and search application using the hybrid
word-subword approach.

• Upper-bound scoring method for OOV terms based on NIST’s Term Weighted
Value
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Chapter 2

Bases of spoken term detection

Short definition of important terms is placed in the following paragraph to avoid confusion
of the reader of this thesis. We define the differences between keyword, term, query,
keyword spotting and spoken term detection.

Keyword is understood as a single word within the scope of this thesis (e.g. "SOMETHING",
"DETECTION" or "IGOR"). It is used within acoustic keyword spotting context. In
fact, the keyword can be also sequence of consecutive words "IGOR SZÖKE" in context
of acoustic keyword spotting. It is why these consecutive words can be processed as
one keyword "IGORSZÖKE".

Term is defined as one or multiple words in sequence like "KEYWORD", "KEYWORD

DETECTION" or "THE PRESIDENT GEORGE BUSH". It is used within spoken term
detection context. If the term consists of one word, there is no difference between
term and keyword. For terms containing multiple words, the exact logic of how the
words can be connected needs to be defined by the spoken term detector. For exam-
ple, the "KEYWORD DETECTION" term can mean words "KEYWORD" and "DETECTION"

in sequence where silence between them is shorter than 1s. Another words can be
allowed between these two words. These conditions are defined in the spoken term
detection system.

Query is defined as one or multiple words consisting of terms and operators "(’IGOR

SZÖKE’ near THESIS) and ’KEYWORD SPOTTING’ not BIOLOGY". The operators
should define the semantic information. The query is usually used in context of
spoken document retrieval or information retrieval.

Keyword spotting system is a system for spotting (searching) given keywords in speech
data. It understands the keyword as one object despite the number of words the
keyword list might consist of. Keyword spotting system can be based on speech
recognizer but it can be also “standalone” system which spots only given keywords
and does not “understand” surrounding speech.

Spoken term detection system is also a system for spotting (searching) given terms
in given speech data. On contrary to the keyword spotter, spoken term detector
somehow parses and splits multiple word terms and searches for term candidates
according to defined criteria (distance for example). The spoken term detection
system is usually built-up on speech recognizer (and depends on it).

The topic of this thesis is aimed to Spoken Term Detection – STD. The STD system
takes a set of terms and output of a speech recognizer and produces a list of putative hits
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of given term. The term is understood as sequence of one or more consecutive words. Only
short silence is allowed between these particular words. Term definition is discussed more
thoroughly in section 3.1. Our spoken term detector is based on a large vocabulary
continuous speech recognizer – LVCSR. It takes the output of speech recognizer and
provides search of terms. The speech recognizer is mainly taken “as is” and is described
in chapter 4. The output list of putative hits of given term can be viewed by human or
processed by a system (information retrieval or spoken document retrieval) allowing for
search for more complex queries.

The complexity of spoken term detector depends on the output of speech recognizer.
Such output can be a 1-best output (simple text string, spoken term detection is then
simple text search), an N -best output or a graph of parallel hypothesis so called lattice
(for definition see section 2.3). The recognizer can recognize word units or subword units
(syllables, phones, etc.).

Out-of-vocabulary (OOV) words handling is also important in case of word-recognition.
Words which are not present in word recognizer dictionary should be detected. Normal-
ization is useful for scaling and shifting of term confidences. Each term should have the
confidence normalized, so that one global threshold can be used for decision of accep-
tance/rejection of terms. Speed and computational requirements are also important from
practical point of view.

Search accuracy depends on recognition accuracy of used speech recognizer. We need
only 1-best (single string) output in a case of 100% reliable speech recognizer. Nowadays,
the state of the art word recognizers achieve about 10% – 20% word error rate (WER) and
about 5% – 10% lattice word error rate (section 3.2) on broadcast news and conversation
telephone speech (CTS) [Le04]. This gives very good search results in combination with
lattice search [FAGD07]. But the language is an evolving thing and each day many new
words appear. There can be hardly a speech recognizer having all words in the dictionary.
Information theory also states that the least frequent words carry most of the information.
That is why we aim at out-of-vocabulary words.

The problem of OOVs can be solved by recognizing subword units (syllables or phones).
The drawback of this approach is absence of strong word n-gram language model and strong
acoustic model of words which are both included in large vocabulary continuous speech
recognizer (LVCSR). That is why subword recognition does not achieve so good accuracies.
Phone recognition is quite sensitive to pronunciation errors for example. These possible
errors should be taken into account in the search. On the other hand, LVCSR contains
only a close set of words to be recognized and word language model prefers likely word
sequences off the “exotic” ones (probably carrying higher information). Also it is shown
that if an OOV appears, it usually causes no 1 word error, but approximately 2 – 4 word
errors [BN05a]. This is a justification of an investigation into subword recognition.

2.1 Keyword spotting techniques

The following sections deal with brief overview of spoken term detection / keyword spotting
methods. Keyword spotting approaches can be classified into two main categories. The
first one is acoustic (“direct”) keyword spotting and the second is spoken term detection
and (“indirect”) keyword spotting which is based on the output of a speech recognizer.
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2.1.1 Acoustic keyword spotting

Before we start formal and mathematical description of spoken term detection, simple
informal principle of keyword spotting will be demonstrated on acoustic keyword spotter.
The acoustic keyword spotter was proposed in 1989 [RRRG89]. The principle is in the
detection of defined set of keywords in utterances and in attaching a confidence score to
each detection. The confidence score should be independent on the keyword and data.

Keyword spotting system contains several parts (figure 2.1). Speech signal is
parametrized to stream of features. Parametrization is out of the scope of this the-
sis (see reference books [You99] or [HAH00] for details).

Stream of features is then used as the input of models. One model is modeling
keyword(s) and the other is modeling the general speech (so-called background model).
The outputs of the keyword and background models are likelihoods.

Then the likelihoods are divided and a score (likelihood ratio) of a particular oc-
currence of the keyword is obtained. Why the score is calculated as likelihood ratio is
discussed in section 2.2.1.

A set of putative detections of keywords are obtained by thresholding of the score. A
trade-off between more or less detections is obtained by setting of the threshold.

The confidence score estimation can be inserted between ”Likelihood ratio” and
”Filtering” box. The confidence score should be normalized and take into account the
length of keyword, phones of which keyword consists, prior probabilities and other factors
which make scores of different keywords from different parts of the utterance comparable.
This is important for real applications and evaluation metrics (DET curve (section 3.3.2)
or TWV (section 3.3.3)) where one global threshold is set. Normalization is also important
for evaluation metrics or applications where each keyword has its own threshold (FOM
(section 3.3.1)).

Figure 2.1: General scheme of acoustic keyword spotting system.

2.1.2 Spoken term detection

The generic scheme of a spoken term detection system (figure 2.2) is similar to that of
acoustic keyword spotter (figure 2.1). The spoken term detection system is built on speech
recognizer, which usually encapsulates also the feature extraction. The speech recognizer
produces textual strings or so-called lattices (section 2.2.2) which contain transcribed
speech in words labels. The lattices are searched for the given terms or keywords.

The estimation of the term score is done in different way compared to the acoustic
keyword spotting, but the theoretical background is the same. The goal is to calculate
the score as the proportion of scores of the term and background. Mathematically it is
described in section 2.2.1.
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The following steps are the same as are in the acoustic keyword spotting: confidence
score estimation and the filtering of hypothesis of terms according to given threshold.

Figure 2.2: General scheme of spoken term detector.

Figure 2.3: General model of acoustic keyword spotting system.

2.1.3 Keyword spotting score estimation

Simplified explanation of the keyword score estimation is done on acoustic keyword spotter.
Figure 2.3 shows a general recognition network for keyword detection based on phone
models without any language model. Parts denoted A and C are filler models (phone
loops) which model non-keyword parts of utterance. Part B is linear model for given
keyword created by concatenation of keyword phone models. Part D is the background
model (also phone loop) which models the same part of utterance as the keyword model.
The loop-back from model D to model A is added for ability to detect more than one
keyword per utterance.

The utterance is modeled using model A-B-C concatenated of models A, B and C, and
using model A-D-C concatenated of models A, D and C. We have to do an assumption, that
models B and D will recognize exactly the same part of utterance. So, the final likelihood
of model A-B-C (LABC) and A-D-C (LADC) should differ only because of models B and D.
If the part of utterance beneath model B is not a keyword, the likelihood of the model B
should be low (bad match to the keyword model), but the likelihood of the model D will
be high (good match to the phone loop). In the opposite case, when the part of utterance
beneath model B is the keyword, the likelihood will be high and so will the likelihood
of model D (the likelihoods will be the same in ideal case). Now, we compute the ratio
of likelihoods A-D-C and A-B-C: LRatio = LADC/LABC . If there is a keyword beneath
model B, LRatio will approach 1 and will be lower for non-keywords. If a noise appears in
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the speech, both likelihoods LABC and LADC will be lower, but because of the likelihood
ratio, the influence of noise should be limited.

2.1.4 Comparison of keyword spotting techniques

Figure 2.4: An example of acoustic keyword spotting network.

Acoustic keyword spotting is a search for a keyword in parametrized spoken data.
Searched word(s) in textual form is converted to sequence of units. These units cor-
respond to acoustic models (monophones, triphones, etc.). Specialized recognition
network (keyword spotting network) is then created and speech is recognized. The
output is not a classical word or phone string or lattice, but a list of putative key-
word candidates. Acoustic keyword spotting can be very simple, fast and inaccurate
(monophones models without any language model) but also more complex, slower
and more accurate (triphones, at least simple word language model). An example
of an acoustic keyword spotting network is in figure 2.4. Advantages of this method
are its speed and on-line functionality. Simple keyword spotter (having hundreds of
words) can be easily attached to a telephone line and can rise alarms with no more
than 0.2-2s delay. Drawbacks are absence (or simplicity) of word language model and
“hard-wired” set of keywords. Simpler language model leads to lots of false alarms
(especially for short keywords). The detector can detect only the keywords which are
built in the recognition network. Once the set of keywords is changed, the network
has to be rebuild. If a new keyword is to be searched in already recorded data, the
keyword spotting process must be rerun over the stored data. This is considerably
time consuming even if the acoustic keyword spotter is faster than real-time. That
is why this approach is not suitable for fast STD. On the other hand, acoustic key-
word spotting does not suffer from the out-of-vocabulary problem. The qualities of
acoustic keyword spotting approach are summarized in table 2.1.

Spoken term detection (indirect keyword spotting) is based on the output of a
speech recognizer. It is a two step method where the first step consists of the
time consuming speech recognition and the second one consists of a fast spoken
term/keyword search. The method inherits main characteristics of the recognizer
used. Input term/keyword must be converted to a sequence of units similar to rec-
ognizer’s output units (e.g. words, syllables, phones, etc.). Then the sequence is
searched in the output of the recognizer. The recognizer (usually the slowest step of
whole STD) is run only once. The STD or keyword spotter is run each time a term
or keyword has to be found. In comparison to the acoustic keyword spotting, the
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search is very fast because it is done over “textual data” (output of speech recog-
nizer). Advantages of STD are the speed of search and detection accuracy (depends
on recognizer’s accuracy). Searching speed can be optimized by techniques known
in information retrieval, such as inverted indices, caching etc. to achieve searching
times less than 10−3s/hr/term. The disadvantages are off-line processing (especially
LVCSR is complex and time consuming) and closed unit vocabulary. The recognizer
has finite and closed vocabulary of units it can recognize. Once the recognition is
done, the spoken term detector will “find” only units which were recognized by the
recognizer. This is a drawback if a word recognizer is used. STD approach can be
split according to used recognizer to word-based and subword-based. The word-based
STD has very high accuracy (having phone models “organized” in words and strong
word language model) but limited vocabulary. The subword-based STD approach
has unlimited vocabulary (search word must be converted to a sequence of subword
units) but has lower accuracy (missing word acoustic models and word language
model). The qualities of STD approaches (word and subword) are summarized in
table 2.1.

Direct Indirect
Property

Acoustic keyword spotting Word-based STD Subword-based STD

Recognition speed Slow Slow

Search speed
Slow

Fast Fast

Search in Raw speech Words (text) Subwords (text)

Vocabulary Open1 Closed Open

Accuracy Low – Average Average – High Low – Average

Mode On-line or Off-line Off-line Off-line

Table 2.1: Advantages and drawbacks of different keyword spotting techniques.

2.2 Bayesian probability

This section deals with the principles of spoken term detection and term score and con-
fidence estimation from mathematical point of view. Correct and reliable estimation of
the term / keyword score is crucial part of spoken term detection (or keyword spotting).
Two main confidence measures were proposed in the literature (see section 2.4.6). It is
the Hypothesis Testing which is the key technique of frequentist statistical inference and
the Posterior Probability which is based on the Bayesian view of the probability.

Hypothesis testing approach is based on the test of null hypothesis H0 against alterna-
tive hypothesis H1. For example, the null hypothesis means that the keyword exists and is
correctly recognized in a portion of speech. The alternative hypothesis means that there
is no keyword or the keyword is incorrectly recognized. According to the Neyman-Pearson
Lemma, the optimal solution of hypothesis testing is the likelihood-ratio test.

The Bayesian view of probability is considered as more general, Bayesians describe
probabilities in terms of beliefs and degrees of uncertainty. In the field of pattern recog-
nition (speech recognition), it is helpful to have a more general notion of probability such
as the Bayesian is [Bis06].

1Open – Recognition step must be run again for a keyword which is not in the keyword list.
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In general, speech recognition is based on Bayesian view of probability. Speech rec-
ognizer, spoken term detector, speaker recognition system and other systems work in
probabilistic domain. Recognized hypothesis (word, term, speaker) have always probabili-
ties assigned. Several following paragraphs are adopted from Bishop’s Pattern Recognition
and Machine Learning book [Bis06].

Let us define w as recognized sequence of M units (words or phones)
w = {w1, w2, . . . , wM} in given utterance u. The utterance u is represented by observed
data. This data is processed into sequence of N feature vectors D = {o1, . . . ,oN}. The
observed data D is expressed through the conditional probability p(D|w). Bayes’ theorem,
which takes the form

p(w|D) =
p(D|w)p(w)

p(D)
(2.1)

then allows us to evaluate the uncertainty in w after we have observed D in the form of
the posterior probability p(w|D).

The quantity p(D|w) on the right-hand side of Bayes’ theorem is evaluated for the
observed data set D and can be viewed as a function of the sequence of units w, in which
case it is called the likelihood function. It expresses how likely the observed data set is
for different recognized sequences of units w. Note that the likelihood is not a probability
distribution over w, and its integral with respect to w does not equal one.

Given this definition of likelihood, we can state Bayes’ theorem in words

posterior ∝ likelihood × prior, (2.2)

where all of these quantities are viewed as functions of w. The denominator in 2.1 is the
normalization constant, which ensures that the posterior distribution on the left-hand side
is a valid probability density and integrates to one. Indeed, integrating both sides of 2.1
with respect to w, we can express the denominator in Bayes’ theorem in terms of the prior
distribution and the likelihood function

p(D) =

∫

p(D|w)p(w)dw. (2.3)

2.2.1 Speech recognition and posterior probability

Conventional automatic speech recognition algorithm uses the maximum a posteri-
ori (MAP) decision rule to find the most likely sequence of units ŵ which achieves the
maximum posterior probability p(w|D) given acoustic observation D

ŵ = arg max
w∈W

p(w|D), (2.4)

where W is the set of all permissible unit sequences. This equation can be rewritten using
Bayes formula (equation 2.1) to form:

ŵ = arg max
w∈W

p(D|w)p(w)

p(D)
, (2.5)

where p(D|w) is the likelihood of observing D by assuming that w is the underlaying
sequence of units. The likelihood p(D|w) can modeled by Gaussian mixtures hidden
Markov model for example. p(w) is the prior probability of w and is modeled by language
model (LM). And finally, p(D) is the probability of observing the acoustic data D. Because
p(D) is constant across different unit sequences, most automatic speech recognition systems
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simply ignore it. The formula for simplified likelihood of unit sequence (it is not probability
yet, p(w|D) ≈ L(w)) follows:

L(w) = p(D|w)p(w) (2.6)

The non-normalized raw score (likelihood L(w)) does not represent the absolute quan-
titative measure of the match between D and w. Reliable confidence measure can be
accomplished by normalization of the score by p(D). Theoretically, p(D) should be com-
puted as follows:

p(D) =
∑

w′∈W

p(D|w′)p(w′), (2.7)

where w′ denotes any hypothesis of all possible hypothesis of unit sequences W (combi-
nations of words, phones, silences etc.), without any other constraint. It is impossible to
enumerate all these hypothesis. Some approximations must be done to estimate p(D).

One possibility is to use so-called background model for estimation of p(D). The back-
ground model can be realized for example by all-phone recognition or “catch-all” model.
This approach is mainly used in acoustic keyword spotting. It is the A-D-C model stated
in previous section 2.1.

In case of 1-best output of the LVCSR system, it is not straightforward to calculate
the posterior probability (normalized scores) attached to hypothesized sequence of units.
This has to be done internally in the decoder by using anti-models, background models or
other techniques. However, with multi-hypothesis decoders the estimation of p(D) is more
straightforward:

Decoders producing lattices are nowadays standard. Detailed description of a lattice
is in the following section 2.3. The lattice is a compact representation of N most likely
hypothesis W ′. If the N is sufficiently large, the lattice approximates space of all possible
hypothesis of unit sequences W. The approximated form of equation 2.7 is simply

p(D) =
∑

w′∈W ′

p(D|w′)p(w′). (2.8)

In practice, the calculation of p(D) (equation 2.7) is well approximated by so-called
forward-backward algorithm for given set of hypothesis W ′ defined by the lattice. Descrip-
tion of the forward-backward algorithm is provided in following section 2.3 dealing with
STD in lattices.

2.2.2 Spoken term detection

In the previous section, speech recognition task was described using the Bayesian frame-
work. In STD, we are not “asking” for the most likely sequence of units ŵ according to
the acoustic observation D, but we “ask” for the posterior probability p(termte

tb
) of occur-

rence of the term term from time tb to time te. The sequence of units w is constrained
to w(termte

tb
) which contain the term in given time. By application of the MAP decision

rule, the equation 2.4 is rewritten to

ŵ(termte
tb

) = arg max
w(term

te
tb

)∈W(term
te
tb

)

p(w(termte
tb

)|D), (2.9)

where W(termte
tb

) is the set of all permissible sentences having the term in defined time.
Applying the Bayes formula 2.1 and equation 2.7, we get

ŵ(termte
tb

) = arg max
w(term

te
tb

)∈W(term
te
tb

)

p(D|w(termte
tb

))p(w(termte
tb

))
∑

w′∈W p(D|w′)p(w′)
. (2.10)
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In practice, direct implementation of formula 2.10 is difficult. We do not know the time
of occurrence tb and te of the term term. Again, an approximation must be used to
hypothesize tb and te. The time of the term can be suggested from W. To avoid having size
of W infinite, W is approximated by lattice similarly as at the end of previous section 2.2.1.

So, the real spoken detection task has two steps. The set of the most likely hypoth-
esis W ′ is generated using formula 2.5. Then occurrences of searched terms are found
in W ′ and estimation of term posterior probability p(termte

tb
) is:

p(termte
tb

) =
p(D|w(termte

tb
))p(w(termte

tb
))

∑

w′∈W ′ p(D|w′)p(w′)
. (2.11)

2.3 Search in lattice

This section presents the “implementation” of the calculation of term posterior probability
stated in equation 2.11 in the previous section. Lattice (figure 2.5) are nowadays used as
the multiple hypothesis output of speech recognizer.

Figure 2.5: An example of word lattice. X-axis represents time.

The lattice is an acyclic oriented graph. Each node n represents a time. An arc a
connects two nodes n1, n2 and represents a speech unit2 u = U(a) and set of two likeli-
hoods L(a) (acoustic LAc(a) and language LLM (a)). Start time tb(a) and end time te(a)
of arc a representing unit U(a) correspond to the time of start node t(nb(a)) and end
node t(ne(a)) of the arc a:

t(nb(a)) = tb(a)

t(ne(a)) = te(a).

The LAc(a) ∝ p(D|w(atb
te

)) and LLM (a) ∝ p(w(atb
te

)). According to equation 2.6, we
can write L(a) = LAc(a) LLM (a).

The best hypothesis (the most likely path) can be derived from lattice. The best
path through the lattice is also known as 1-best or string output. N most likely paths
through the lattice are known as N -best output. Lattice can be understood as compact
representation of the N -best output where the N is a large number.

Searching for a term in the string output (1-best) is straightforward. An algorithm
goes through the string of units and compares each term to a sequence of units. If the
comparison is successful, time boundaries and likelihood of units are stored to a list of
term detections. The drawback of this approach is the absence of normalization. Term
scores, which are derived from likelihoods of units (L(u)) according to equation 2.6, are
sensitive to background noises. The term detector is not robust in this case.

2Another possibility is to represent speech unit as end node of the arc, then the arc represents only

time information and likelihoods.
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On the other hand, searching for the term in the lattice is more robust. Having the
lattice, we have the W ′ and we can estimate the posterior probability of term according to
equation 2.11. The posterior probability gives confidence of term for particular occurrence
of term (represented by arc a) in time tb(a), te(a).

However, one more problem should be solved. Assume, that we also hypothesized
occurrence a′ of the term, which is slightly shifted but still overlapped with the original
one. The problem is: is the probability of the original occurrence affected by the fact that
several overlapped occurrences of the same term exist? This leads to “alternative” formula
estimating the posterior probability of the term in time t: t(term) = termt. The occur-
rence of term in time t(term) is defined by condition tb(term) ≤ t(term) ≤ te(term).

These two points of view are defined in this thesis in the following way:

1. The term score. The term score is the posterior probability p(termte
tb

) of particular
term hypothesis in the lattice from time tb to time te (figure 2.6). It does not consider
other overlapped occurrences of the term in the time. Section 2.3.1 deals with the
computation of the term score.

2. The term confidence. On the other hand, term confidence is the posterior prob-
ability c(termt) = p(termt) of existence of the term in the lattice at given time t
(figure 2.6). It takes into account several overlapped particular term hypothesis in
the lattice. Section 2.3.2 deals with estimation of the term confidences.

Figure 2.6: Example of a term occurrences in a lattice. “Term scores” denote different values

of the posterior probability p(termte

tb
) for particular term occurrence. “Term confidence” denotes

evolution of posterior probability p(termt) of existence of the term in the lattice at given time t.

2.3.1 Term score estimation

Let us define likelihood Lα(n) from the beginning b of a lattice to node n and let it be
called forward likelihood. The likelihood from node n to the end e of the lattice is denoted
Lβ(n). We can also imagine this as the likelihood from the end of a lattice e to node n
and call it backward likelihood. These two likelihoods (Lα and Lβ) mean, how likely is to
go from the beginning of the lattice to a node, or from a node to the end of the lattice.
All possible hypothesis (paths) should be taken into account in evaluation of forward and
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backward likelihoods. The mathematical definition is the following:

Lα(n) =
∑

w∈W ′n

b

N
∏

i=1

L(wi) (2.12)

Lβ(n) =
∑

w∈W ′e
n

N
∏

i=1

L(wi) (2.13)

where W ′n
b is a set of all possible paths from beginning of the lattice to node n. W ′e

n is a set
of all possible paths from node n to the lattice end. wi is the i-th arc of path w having N
arcs (units). In practice, equation 2.12 is approximated by so-called forward-backward
algorithm, which can be easily implemented and is not computationally expensive.

Let us have a term which consists of only one unit (for example one word term). This
term is represented by one arc in the lattice. The likelihood of all paths in the lattice latt
containing (going through) this term term is defined:

Llatt(term) = Lα(nb(term))L(term)Lβ(ne(term)). (2.14)

More generally, the likelihood of all paths in the lattice latt containing (going through)
a certain term term consisting of more consecutive units is defined:

Llatt(term) = Lα(nb(term1))

[

M
∏

i=1

L(termi)

]

Lβ(ne(termM )) (2.15)

and holds for ne(termi) = nb(termi+1), and where the term term consists of M units
{term1, term2, . . . , termM} which can be either words or phones.

If we look back to the section 2.2 aimed to spoken term detection from Bayesian view,
the Llatt(term) can be understood as likelihood of term term in lattice latt which is equal
to p(D|w(termte

tb
))p(w(termte

tb
)) (eq. 2.10).

Actually p(D) must be evaluated (equations 2.1 and 2.8) to get correct posterior prob-
ability (equation 2.11 of the unit sequence w(termte

tb
). Equation 2.8:

p(D) =
∑

w′∈W ′

p(D|w′)p(w′) (2.16)

can be easily “implemented” in the lattice by:

Lα(ne(latt)) =
∑

w∈W ′e

b

N
∏

i=1

L(wi), (2.17)

which means: sum likelihood of all possible paths through the lattice.
Finally, the complete form of the term posterior probability p(termte

tb
) estimated over

the lattice latt is:

platt(termte
tb

) =

Lα(nb(term1))

[

M
∏

i=1
L(termi)

]

Lβ(ne(termM ))

Lα(ne(latt))
(2.18)

The posterior probability platt(termte
tb

) means ratio of the likelihood of going through the
term term to the likelihood of going through all possible paths in the lattice latt. The
following notation of the term term will be used further in this section for simplicity. But
it can represent both one word long term (term) and a sequence of words (term).
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2.3.2 Term confidence estimation

Previous section 2.3.1 deals with estimation of posterior probability platt(termte
tb

) of a

particular occurrence of the term termte
tb

in lattice latt. We decided to denote, that

platt(termte
tb

) is the term score. In this section, we aim at posterior probability platt(termt)
of the term in the lattice at given time t, that we denote as term confidence. The notation
c(termt) is define for better distinction between term score p(term) and term confidence
c(term). We assume that all operations are performed over one given lattice. That is why,
the index latt is dropped in the following formulae.

Wessel [WSMN01] proposed 3 methods of evaluation of term confidence:

1. Sum of scores of all particular term occurrences which are overlapped with selected
term occurrence in time.

2. Sum of scores of all particular term occurrences which are overlapped with selected
term occurrence in mid-time (time of the center of the term occurrence).

3. Sum of scores of all particular term occurrences which are overlapped with selected
term occurrence in particular time. The final score is maximum of all particular
scores during the time of the selected term. This term confidence was denoted and
is known as Cmax.

Figure 2.7: Different confidence estimation approaches of a term in a lattice. Given term detection

is noted by thick red line and red nodes. Another candidates of the term are in black. If the

candidate is considered for confidence estimation of the term, then it is in red.

In this thesis, these three approaches and a baseline approach are evaluated. These
methods are denoted:

LP – Link Posterior Posterior probability of term candidate link (sequence of links) is
assigned as the confidence of term candidate. The same term detections overlapping
with the candidate have no effect on the candidate confidence (figure 2.7a). This is
the baseline method.

cLP (termt) = p(termte
tb

), tb ≤ t ≤ te (2.19)

SOLP – Sum of Overlapped Link Posteriors Sum of posterior probabilities of all
term detections which are overlapped with the term candidate in time (figure 2.7b).

cSOLP (termt) =
∑

term′∈T

p(term′te
tb

), (2.20)
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where T is set of terms term′ containing all terms from the lattice satisfying condi-
tions:

tb(term
′) < te(term) and (2.21)

te(term
′) > tb(term). (2.22)

SCOLP – Sum of Center Overlapped Link Posteriors Sum of posterior probabil-
ities of all term detections which are overlapped time with the center of the term
candidate in time (figure 2.7c).

cSCOLP (termt) =
∑

term′∈T

p(term′te
tb

), (2.23)

where T is set of terms term′ containing all terms from the lattice satisfying condi-
tions:

tb(term
′) < tc(term) and (2.24)

te(term
′) > tc(term), (2.25)

tc = tb + (te − tb)/2 is the center time of the term.

Cmax – Maximum of frame-by-frame overlapped link posteriors sum Sum of
posterior probabilities of all term detections which are overlapped with the x-th
frame of term candidate in time. This calculation is evaluated for all frames of
the candidate and then the maximum is chosen and set as the term candidate
confidence. This approach is widely denoted by Cmax [WSMN01] (figure 2.7d).

cmax(termt) = arg max
t∈(tb(term),te(term))

∑

term′∈T

p(term′te
tb

), (2.26)

where T is set of terms term′ containing all terms from the lattice satisfying condi-
tions:

tb(term
′) < te(term) and (2.27)

te(term
′) > tb(term) (2.28)

After the confidence estimation is applied, only the candidate with the best confidence
in the overlapped group of term detections is reported.

Comparison of these confidence estimation techniques is given in sections 4.4 and 6.5.1.
If not stated else, the cLP confidence will be used further in this thesis.

2.4 Survey of spoken term detection

Overviews of spoken term detection techniques and close domains are presented in this
section. Brief history of the keyword spotting and spoken term detection – STD is de-
scribed first. This section is followed by a section on spoken document retrieval – SDR.
Although, the out-of-vocabulary words and recognition errors were not found “dangerous”
from accuracy point of view of the SDR task, there are still several areas where the out-
of-vocabulary words can cause serious deterioration of accuracy. Section Do we need OOV
handling? concludes these facts.
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Basic methods of handling out-of-vocabulary words in queries and terms are briefly
outlined in section How to handle OOV. Part of these methods are aimed to spoken
document retrieval task but they can be also applied in spoken term detection. Special
set of methods proposing the use of hybrid word-subword language models is discussed in
section Hybrid language model.

The final part of this section (Confidence measures) describes and concludes on ap-
proaches for confidence estimation of words and terms.

Note: the terms “term score” and “term confidence” are taken from the cited paper in
this survey. The meaning can differ from the definition in the previous section.

2.4.1 History and present of keyword spotting

The problem of detecting a keyword in running speech has been approached in several
different ways. Bridle [Bri73] originally introduced dynamic programming techniques
for whole-word template matching. Every keyword template is matched against every
portion of input speech and a score is computed using dynamic programming in these
systems. Keyword detections are established by thresholding of the score. Higgins and
Wohlford [HW85] proposed template-based dynamic time warping speech recognition sys-
tem. They defined filler template to represent out-of-vocabulary speech. One of the first
hidden Markov model based keyword spotters was proposed by Rohlicek et. al. [RRRG89]
in 1989. The keyword spotter consists of a keyword model and a filler model. Computation
of keyword score is based on maximum likelihood approach presented by Bahl [BJM83].
That inspired Rose and Paul [RP90] for keyword spotting system based on continuous
speech recognition model. Filler model contains word models in this case.

Keyword spotters based on Rohlicek et. al. [RRRG89] are usually called acoustic
keyword spotters. This approach can be used either as on-line keyword spotter or as
off-line one. Possible improvement of the output of acoustic keyword spotting can be done
by post-processing of detected keywords. One possible approach of such post-processing
is acoustic modeling of keywords [GNR92], estimation of keyword confidence or using
anti-models.

Another approach to keyword spotting is to search output of a speech recognizer. Two
types of recognizers have been used: word recognizers and subword (phone or syllable)
recognizers. A large vocabulary continuous speech recognizer (LVCSR) falls into
the word recognizers category. Keyword spotting on single string output of LVCSR or
subword recognizer is similar to a textual search. The difference is only in the likelihood (or
confidence) attached to each word recognized by the LVCSR. Considering the likelihood,
keyword spotter can estimate the confidence of the keyword. Keyword spotting based
on LVCSR has a critical drawback in dropping keywords which are not in the LVCSR
vocabulary, so called out-of-vocabulary words – OOV words. Phone lattice search
overcomes OOV problem, but the accuracy deteriorates. The accuracy deterioration can
be reduced by implementation of modeling of phone insertion, substitution and deletion
errors [PSPH08]. A mapping of phones to phonetic groups was proposed in [AES01] to
overcome the errors in phone string search. Another drawback of subword based keyword
spotting is in production of more false alarms compared to LVCSR based keyword spotting.

Important improvement in accuracy of keyword spotting systems was brought by a
multi-hypothesis decoder. First multi-hypothesis decoders generated N -best hypothesis.
A keyword which was not in the 1-best output of the recognizer can appear in the parallel
hypothesis. Another advantage of parallel hypothesis is modeling of the search space which
can be used for confidence estimation. Keyword spotting utilizing the N -best output of
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LVCSR system was proposed by Weintraub [Wei95]. It was based on a log-likelihood ratio
approach. The next step to improve the output of recognizer for better keyword spotting
and better modeling of the background model is to generate lattices. Keyword spotting
based on phone lattice search was proposed by James [Jam95].

Keyword spotters based on LVCSR output give actually better accuracy than acoustic
keyword spotters. However, the problem of out-of-vocabulary words leads to proposing
system combinations. A paper written by Saraclar et al. [SS04] deals with different com-
binations of results obtained with word and subword lattice searching. Word, phone and
syllable lattice searcher combinations were proposed in [LMD02]. Experiments in [JFJY96]
showed improvement of combined word and phone lattice search system. More references
on spoken term detectors based on the output of recognizer and their combination are
given below in the spoken document retrieval section.

Another way to increase spoken term detection accuracy is the use of discriminatively
trained models or anti-models. These approaches are usually used for on-line keyword
spotting applied in dialog systems. For example, Rose in [Ros92] proposed discriminative
training (using MMI – Maximum Mutual Information) of keyword models to achieve more
precise keyword models. Choice of a good and reliable confidence measure can also sig-
nificantly improve spoken term detection. This topic is described below in section 2.4.6
dealing with confidence measures.

A fraction of spoken term detection papers also deal with speed-up and optimization
of STD. Knill et al. in [KY96] proposed a technique for optimization of acoustic keyword
spotting. They used pre-calculation of background model (by Viterbi best path), reduc-
ing the number of features, Gaussian selection and clustering. We have also proposed
[SSB+05] a speed-up method for off-line acoustic keyword spotting. This approach uses
a matrix of monophone posterior probabilities and speed-up was based on masking this
matrix by phone lattice. This leads to speed-up of about 30%.

Interesting way to detect keywords is using weighted automata (such as finite state
automata and transducers). Lattices can be also seen as automata. Spoken term detections
can be found by a composition of the term-automata and lattice-automata. Automata
can be also indexed. Allauzen et al. presented a general algorithm for the indexation of
weighted automata in [AMS04]. The index is represented by a deterministic transducer
which should be optimal for search. The search algorithm should achieve linear time
complexity (depending on size of indices). Parlak et al. [PS08] proposed spoken term
detection system using indexing and search based on weighted finite state machines.

2.4.2 Spoken document retrieval

As computers have stored information and people have used computers for searching in it,
a discipline called Information Retrieval (IR) was developed. A specialized branch of the
information retrieval is so-called document retrieval aiming to search in documents. The
answer to given textual query must be found in textual documents and the most relevant
documents should be returned. As spoken documents started to be accessible, a branch
dealing with spoken documents called Spoken Document Retrieval (SDR) developed from
the document retrieval task.

One of the first spoken document retrieval application was Video Mail Retrieval sys-
tem presented by Young at Cambridge University [BFJ+96]. It was based on searching
spoken e-mail for approximately 20 keywords. Later, it was extended to unlimited search
vocabulary. Another application was proposed by Witbrock in [WH97]: spoken docu-
ment retrieval used to digital video library access using word and phonetic search. An
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automatic processing of lectures for information retrieval was presented by Park [PHG05].
Another example is SpeechFind, the SDR system for a National Gallery of the Spoken
Word developed by Hansen [HHZ+05].

Because the search in spoken data started to be applicable, NIST decided to include
spoken document retrieval to TREC evaluations3 as a new track. The goal of TREC eval-
uations is annual evaluation of search systems in large text collections. The TREC-SDR
aimed to examine the behavior of information retrieval approaches on erroneous output of
speech recognizers. Four TREC-SDR NIST evaluations were organized in years 1997–2000.
The TREC-SDR evaluation data was broadcast news split to a set of documents. Partic-
ipants processed the data by their speech recognizers to produce a textual output. Then
the SDR systems had to find relevant documents to given queries in the recognizers out-
put. The TREC-SDR task was declared as solved problem at TREC-9 in the 2000 [VH01].
The accuracies of SDR on recognizers’ output were nearly the same as on reference human
transcripts.

Several Ph.D. thesis deal with SDR. One of the first implementations of a spoken
document retrieval system based on the output of conventional speech recognizer was
proposed by James [Jam95]. James used keyword spotting technique based on word lattices
with incorporation of language model. Another thesis written by Siegler [Sie99] deals
with incorporating continuous speech recognizer uncertainty into information retrieval
system. Spoken document retrieval using search in phone strings using probabilistic string
matching was described in Wechsler’s thesis [Wec98]. Subword based (phones, broad
phonemic classes and syllables) approach for spoken document retrieval was investigated
by Ng [Ng00b].

Finally, a recent Ph.D. thesis by Dong Wang [Wan10] is aimed at modeling of uncer-
tain pronunciation of OOV terms. These terms are searched in pruned phone lattices.
The pronunciation model was based on stochastic joint-multigrams. Next, Dong Wang
proposed “term-dependent discriminative decision” which integrates multiple informative
decision factors into a classification posterior probability. Finally, a direct posterior confi-
dence based on multi-layer perceptron is addressed to compute the acoustic confidence of
an OOV detection.

2.4.3 Do we need out-of-vocabulary handling?

Many people have been trying to overcome the problem of out-of-vocabulary words in
LVCSR. The investigated techniques include hybrid word-subword decoders, hybrid lan-
guage models, OOV detectors, background models or combination of word and subword
outputs. Bisani and Ney [BN05a] claimed that an OOV word will never be recognized,
but will be substituted by in-vocabulary word. This will also harm neighboring words and
they will be also miss-recognized. OOV words are often content words so we loose a lot
of information by miss-recognizing them. Also, they claimed that later processing stages
(translation, understanding, SDR) cannot recover from OOV errors.

However, several experiments [VH98, GAV00], showed that for example SDR can han-
dle non 100% accurate ASR. The results of the TREC-9 2000 SDR evaluation [GLV00]
showed that retrieval performance for sites on their own recognizer transcripts was virtu-
ally the same as their performance on the human reference transcripts. Therefore, retrieval
of excerpts from broadcast news using automatic speech recognition for transcription was
deemed to be a solved problem – even with word error rates of 30%. This result was cited
and disputed by Yu and Seide in [YS04b]. They claimed that most TREC-SDR benchmark

3http://trec.nist.gov/
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systems use well-tuned domain-specific recognizers to generate text transcripts followed
by information retrieval. Using ASR systems with low word error rate (∼ 20%) and
redundancy in audio and queries, retrieval accuracies similar to using human reference
transcripts are achieved. They however conclude that ”But this approach is not suitable
for conversational-speech scenarios with unpredictable vocabulary and language domain,
and where queries are usually one word long.”.

Summary: Errors caused by out-of-vocabulary words in automatic speech recognition
need not be serious problem for certain applications, for example SDR on broadcast news.
This is caused by relatively long documents, where a query can be spoken several times.
This increases the probability of correct retrieval of the document. SDR targets on relevant
document retrieval. The user does not need to detect precisely all occurrences of a query.
But there is another set of applications, for which errors caused by OOVs are a serious
problem. For example, spoken term detection in security domain. Here, all term (queries)
have to be correctly detected and a term spoken only once can be more important than a
term spoken several times.

2.4.4 How to handle out-of-vocabulary words

Several papers suggesting different solutions of the problem of out-of-vocabulary words are
reviewed in this section. A popular solution of searching an OOV is to recognize the whole
utterance to subword units (phones, syllables etc.). Queries or terms (including possible
OOVs) are then also transcribed to subword units. N -best variants generated from phone
confusion matrices can be used to overcome phone recognition errors. The examples of
the above mentioned approach are thesis of Wechsler [Wec98] and Ng [Ng00b]. Lee et.
al. [LTI05] proposed sub-phoneme units and built an SDR system based on these units.
The drawback is that it was tested only on a Japanese broadcast new corpus.

Another approach is a linear combination of word and subword systems used in SDR
for retrieval of queries containing OOV words. Techniques published by Ng [Ng00a] expand
an OOV word to phone string and then concatenate phones to overlapped phone n-grams.
Word transcripts are also converted to phone n-grams. Several SDR systems were built
having different lengths of n-gram. After that, standard information retrieval was applied
for each system separately and finally, scores of retrieved documents (for each system)
were combined. This approach is applicable on SDR and was evaluated on TREC-SDR
data but its application on spoken term detection is limited.

Dharanipragada et al. [DFR98] proposed a two pass system for OOV queries for SDR
and evaluated it also on TREC-SDR data. They use a phone recognizer for transformation
of speech to phone n-grams which are indexed. They find probable places of a query
(converted to phones) using indexed phone n-grams in the first pass. A fast keyword
spotter is then used for more precise acoustic match between the query and hypothesized
place.

In general, the drawbacks of subword-based approach are in increased number of false
alarms. The problem is also in the search for several variants per OOV which leads to
higher search time. Having another subword index costs also more disk and memory space.

Another set of solutions is based on bypassing the subword recognition. One approach
is to use query expansion and stemming as it is used for information retrieval in textual
data [RJ97]. Woodland et al. [WJJJ00] use query expansion for solving the OOV problem
in SDR. The query expansion uses an additional set of documents from a different source to
find relevant words instead of an OOV word. This approach is good for retrieval of relevant
documents, but not for search for exact match of a spoken term. Also, this approach fails
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in case of OOV proper names and it requires a corpus for query expansion.
Witbrock et al. [WH97] published an approach for search of OOV in the output of a

word recognizer. It was done within Informedia project, dealing with a large collection of
video and audio material. They convert word lattices to phone lattices by replacing words
by their phone representations. These phone lattices were indexed (phone 3–6 grams).
Input term was also converted to phone string and searched in the index. This approach
is evaluated in this thesis in section 5.2.

Logan et al. [LT02] proposed a method which is based on substitution of out-of-
vocabulary words by in-vocabulary words. The OOV word or phrase is transcribed to
one phone string using a pronunciation dictionary or automatic transcriber. A lattice
or N -best list of expanded query is generated by a modified Viterbi algorithm, which
maps the phone string of original query to a sequence of words from LVCSR dictionary
according to “acoustic” and language score. The acoustic score is a score from confusion
matrix which quantifies the acoustic mismatch between two phones. Then the expanded
queries are searched in word lattices generated by the LVCSR system. This approach
was compared to the one published by Witbrock et al. [WH97] with just slightly worse
results. Finally, both these approaches were linearly combined (addition of scores) with
overall better results. Logan et al. also concluded that their approach is quite sensitive
to grapheme-to-phoneme conversion errors. Witbrock’s approach is more robust because
there is high chance that a part of the phone string is correctly transcribed.

Saraclar et al. [SS04] proposed a method for spoken utterance retrieval (on the bound-
ary of spoken document retrieval and spoken term detection). They claimed that indexing
of lattices brings better retrieval results than indexing textual output, while textual output
can be used when ASR output is mostly correct and documents are long enough. They
claimed that 1-best output can be used for ASR error rates lower than 20%. Multiple
hypothesis are required for higher error rates. Experiments were run on broadcast news
(HUB4) and conversational telephone speech (Switchboard) corpora. They show lattice
indexing superiority over 1-best output of ASR at first. Better retrieval results were ob-
tained on lattices obtained by conversion of word lattices to phone lattices (similar to
Witbrock [WH97]) rather than on phone lattices generated by a phone recognizer. Three
experiments were done in case of word/phone combination:

1. Score combination of word and phone results (searched in parallel) gave the worst
accuracy.

2. Search in vocabulary cascade. In-vocabulary queries are searched in words, out-of-
vocabulary queries are searched in phones. This approach gave intermediate accu-
racy.

3. Search cascade: The query is searched in words and if no results are found than the
query is searched in subwords. The results of this search cascade was found as the
most accurate.

The authors have also shown that lattice based search is much better than 1-best search.
The word and phone combination gave another improvement to word lattice based search.
Saraclar concludes that the spoken utterance retrieval for broadcast news has different
characteristics than spoken utterance retrieval for conversational speech.

Bisani and Ney [BN05a] proposed a different way of OOV handling. They built a hybrid
(word-subword recognizer). The dictionary of standard LVCSR system was expanded by
a set of subword units (phone multigrams). Then, several tests were done on Wall Street
Journal with good results. The best results were obtained with multigram strings 1 to 4
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characters long. The drawback of this method is that it leaves undetermined where word
boundaries should be placed.

Another approaches to build hybrid recognizer were investigated by Yu and Seide
in [YS04b]. The first approach was so-called posterior combination which means combina-
tion of output posterior probabilities of two systems (phone and word). The second and
third approaches were so-called prior combination. Two lattices were created and then
combined on word level (the second approach) or utterance level (the third approach). On
LDC Voicemail corpus, they have shown that prior combination on utterance level does
not work due to different likelihoods between word and phone lattices. On the other hand,
they obtained good improvement from word-level prior combination (word-phone lattices).

Summary: OOV handling in spoken document retrieval and spoken term detection
can be classified to four categories.

• Spoken data are processed by two stand-alone recognizers, word and subword. Out-
of-vocabulary words are transcribed to subword units and searched in subword in-
dices. The drawbacks are longer processing (two recognizers), high memory require-
ments, longer search times and higher number of false alarms.

• Subword transcriptions of spoken documents are generated from word recognizer
output. Out-of-vocabulary words are transcribed to subword units and searched in
the subword indices. The advantages are faster processing (only one recognizer), and
lower number of false alarms. On the other hand, the accuracy can be negatively
affected by the word-to-subword conversion.

• Out-of-vocabulary transformation to in-vocabulary. This method is not so widely
used. The OOVs are converted to strings of in-vocabulary words which are likely to
be recognized instead of OOVs. The drawback is higher number of false alarms.

• Hybrid word-subword recognizer. The recognizer generates word transcripts and only
on parts of speech containing an OOV it switches to subword units. This should be
the optimal way. The following section deals with this approach in more depth.

2.4.5 Hybrid language model

The solution of OOV problem can be viewed from a different point. Several researchers
have tried to design a universal word-phone recognizer. This was applied for robust speech
recognition or in a dialog-system to overcome failures caused by OOV.

Bazzi et al. [BG00] proposed a hybrid language model consisting of two branches.
One branch was standard word language model and the second branch was a phone
loop (with n-gram phone model) connected with the word model in parallel. The re-
sults were 3% relative deterioration of WER and 1.3% false alarms of OOV while they
correctly detected 47% OOVs. The transitions between word and subword parts are con-
trolled by an OOV penalty. They stated that there are three problems associated with
OOV words:

1. Detection of presence of OOV in recognized utterance. Task called “detection of
out-of-vocabulary words” aims at this problem.

2. Accurate recognition of the underlaying sequence of subword units.

3. Conversion of subword unit sequence to the actual word, so that it can be understood
semantically.
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The authors pointed out, that for domain-dependent tasks (telephone weather forecast
system), syllables were better than phones.

Later, Bazzi [Baz02] wrote the thesis aimed at hybrid word-subword recognition. The
main point he investigated was the out-of-vocabulary detection task. Its impacts on word
recognition and word confidence score were studied. He used hybrid word-subword recog-
nition network where the word language model contained a symbol substituting OOV
words. The OOV words were modeled by phone sequences (bigram phone LM). He also
proposed modeling of OOV words by variable-length phone sequences (multigrams), which
brought significant improvement of OOV detection accuracy.

Yazgan et al. [YS04a] (inspired by [Gal03]) proposed a different word-subword hybrid
language model for LVCSR. The subword units of this language model are phones or
syllables. The language model is built in the following way: A dictionary sorted by counts is
created on a language model data. First X most frequent words are kept in the dictionary.
Words below X are transcribed to subwords. Then the language model is built. Subword
“pronunciations” are added to the recognizer’s dictionary. According to the authors, this
approach has several advantages. There is no need for special insertion penalties. Also,
”word to subword” and ”subword to subword” prior probabilities are trained on rare
words which is more natural. Experiments are evaluated on Switchboard database. Each
sequence of phones longer than 3, without corresponding form in pronunciation dictionary
of LVCSR, is denoted as OOV. Recognizer outputs are both 1-best and lattice. The
conclusion is that the word-phone model is always better and has very low impact on
word error rate (in several cases, it has no impact). The authors also obtained about 15%
improvement of OOV detection.

One of the state-of-the-art approaches to handling the OOV terms using hybrid word-
subword recognizer was proposed by Akbacak et al. [AVS08]. They used similar principle
as Yazgan [YS04a]. The difference is in used subword units and in the way of OOV term
detection. They used so-called graphones as subword units. A graphone [BN05b] is a pair
of letter sequence and a phone sequence of possibly different lengths. Graphone units are
trained on pronunciation dictionary. Information about word boundaries is incorporated
into the graphones. This allows for easy reconstruction of word labels from graphones.
OOV words in corpora for language model training are substituted by corresponding gra-
phone sequences and the hybrid language model is trained. A hybrid index is created
after the recognition. The hybrid index is then converted to regular word index by post-
processing step that joins graphones back into words. No OOV word handling is needed
in the search phase. The OOV word should appear in the post-processed word index.

Summary: Hybrid word-subword recognizer is a very promising approach for the
solution of the OOV problem. Hybrid recognizer can produce hybrid lattice in one decoding
step. The in-vocabulary speech should be transcribed by words and only OOV parts should
be transcribed by subword units. Both should save time and space. Also, the word and
subword scores should be comparable. We chose the hybrid word-subword recognition as
our primary approach to open-vocabulary spoken term detection. Also, graphone units
seem to be promising.

2.4.6 Confidence measures

Lot of progress has been done also in the field of confidence measures. The goal of con-
fidence measure is to estimate the reliability of recognition result. Speech can be noisy
and/or non-keyword utterances may appear in the speech. A recognizer must be able to
spot keywords with other speech or sounds in background. Also, speech that does not
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include any of the valid keywords, should be rejected. Likelihoods (state, phone, word,
etc.) generated by a standard recognizer depend on speaker, channel, environment, etc. A
confidence measure should suppress this dependency. The original purpose of confidence
measure is to reject miss-recognized words or utterances for dialog or speech understanding
systems [PSG98].

Detection of parts of utterance where OOVs are spoken is another application of confi-
dence measures. Rejection of miss-recognized words or out-of-grammar sentences is called
Utterance Verification. The confidence measure is usually based on hypothesis testing
theory or on posterior probability. Utterance verification is often used as post-processing
stage of recognition. Several papers also tried to incorporate confidence measures (utter-
ance verification) directly in the decoder.

Hypothesis testing approach usually uses discriminatively trained anti-models which
should compete with the original models. The alternative hypothesis can also be provided
by N -best algorithm [TGT01]. Simple solution is a garbage model (background model) or
an anti-model. “On-line” garbage model or anti-model can be used for applications with
low computational resources.

A paper surveying confidence measures was written by Jiang [Jia05]. Confidence mea-
sures can be used to automatically label individual hypothesized words in the output of
ASR system as either correct or incorrect. Algorithms for estimation of confidence measure
can be classified into three major categories [CCW06]:

Feature-based: These approaches assess the confidence on some selected features, such
as language model probability, acoustic score, word duration, number of phones,
etc. [YZS06, SL96].

Explicit model-based: These approaches treat confidence measures as hypothesis test-
ing problem and need to model extra alternative hypotheses. These techniques usu-
ally use background models or anti-models [KL99, MJ99, TGT01, JRH97, KLC02,
RCAC96, SL96].

Posterior probability-based: The posterior probability estimated according to the
standard Maximum a Posteriori (MAP) framework is a good candidate [Jia05] for
confidence measures. It has a well bounded range between 0 and 1 and strong
background model. Superior performance of the posterior probability has been
demonstrated by using it as the confidence measure in [WSMN01, CCW06, BFHC03,
KVBB06].

Posterior normalization using Maximum Entropy Criterion was proposed by Yu et al.
in [YZS06]. The methods were evaluated on small conversational telephone speech and
interview corpora (1h each). They proposed a feature-based function mapping raw poste-
rior probability and keyword length to the confidence. The entropy of mapping function
is maximized. Keywords are split to several classes (according to number of phones per
keyword) and then several parameters of mapping function are trained. But comparison
of different feature functions is missing in the paper. The authors also mentioned that
posterior pruning of lattices can have small impact on word error rate but large impact
on confidence because pruning can lead to unnormalized posteriors.

Wessel et al. [WMN99, WSMN01] proposed 3 methods to estimate confidence mea-
sure: sum over all arcs overlapping with a term, sum over all arcs overlapping with me-
dian time of a term and maximum of sum of arcs overlapping with given frame within a
term (found to be the best). Confidence measures proposed by Wessel were verified by
Chen et al. [CCW06] but all three approaches gave nearly the same results (evaluated on
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Mandarin broadcast news corpus). Chen extended Wessel’s confidence measures by the
entropy information and obtained another improvement. Wessel [WMN99] also verified,
that confidence measure based on word posterior probability in lattice is more accurate
than N -best and alternative confidence measures as acoustic stability and hypothesis test-
ing. The evaluation was done on CTS corpora.

Koo and Lee [KL99] proposed three different approaches for word confidence measure
based on phone confidence. They used arithmetic mean, geometric mean and harmonic
mean of phone confidences. The geometric mean gives the best results (tested on Korean
telephone corpora including stock-exchange information). Also, they investigated phone
confidence given by log-likelihood ratio of phone model and anti-model (based on model
trained on given phone cohort) scaled by sigmoid.

Later, Benayed et al. [BFHC03] proposed similar confidence measure of a word based on
means of phone confidences. They used also arithmetic, geometric and harmonic means
plus they tried to normalize phone confidence by its length. Finally, all three means
were combined using a support vector machine (SVM) to get the final confidence. Their
results showed that geometric mean was the worst. The arithmetic mean was the best
for time non-normalized phone confidence and harmonic mean for time normalized phone
confidence. Benayed’s systems were evaluated on French SpeechDat.

Moreau et al. [MJ99] proposed frame-level anti-models training on a corpus corre-
sponding to a specific type of error (substitution, out-of-vocabulary and noise). They
found out that the best anti-model is trained only on out-of-vocabulary and noise data.
An anti-model trained on the “substitution error” data achieved only small improvement of
the substitution error but the accuracy degraded significantly on the “out-of-vocabulary“
and “noise error” data. The experiments were evaluated on French telephone corpus of
surnames.

Junkawitch et al. [JRH97] proposed a confidence measure for acoustic keyword spot-
ting which can be incorporated directly to the decoder. They proposed two methods. The
first is based on normalization of frame emitting state likelihood by sum of the likelihood
of all states in HMM. This is equal to posterior probability of the HMM state. The second
one does not take into account the emitting state likelihood for the normalization. This is
comparable to the hypothesis testing (i.e. likelihood ratio) of the HMM state. They also
proposed new decoding algorithm based on Viterbi decoding. This algorithm takes into
account the length of keyword and does the time normalization directly during the decod-
ing. The conclusion is that time-normalized decoding is better. Using the time-normalized
decoding, Junkawitch et al. found the second confidence measure (the likelihood ratio)
better. On the other hand, the difference of accuracies was not significant (tested on
German SpeechDat corpus). This is interesting, because the posterior probability based
confidence is expected to be better.

Tan et al. [TGT01] proposed a confidence measure based on N -best list for fast on-line
recognizers. Their approach is based on switching between on-line garbage model and
second-best likelihood ratio depending on N -best homogeneity measure.

Kim et al. [KLC02] claimed that the dynamic of a confidence measure depends on the
keyword. That is why certain keywords can be systematically rejected for a certain confi-
dence threshold. They proposed a hybrid confidence measure for domain-specific keyword
spotting. The phone confidence is defined as likelihood of the recognized phone minus
likelihood of phone anti-model, normalized by phone length. The word confidence is a
non-trivial combination (similar to geometric mean) of phone confidences. They proposed
new normalized confidence measure based on normalization of phone confidence to unit
variance and mean. This is motivated by the fact that each phone has different confidence
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statistics. Their hybrid confidence measure is a linear combination of normalized confi-
dence and of anti-model based on background model. They evaluated on 10h of 10 male
speakers and concluded that hybrid confidence measure was the best. The normalized
confidence was significantly better than the baseline (non-normalized) confidence.

Ketabdar et al. [KVBB06] proposed confidence measure based on summing up the
deterministic decisions (1 or 0). The decision is made on probability of being in a given
keyword at a certain time t knowing to be in a certain state at the same time t. The
information of being in the state is based on state posterior probability. The method was
evaluated on telephone corpus of connected digits.

Garcia-Mateo et al. [GMRO99] proposed several combinations of posterior based con-
fidence measures and hypothesis testing based confidence measures for isolated proper
name recognition in telephone data. The hypothesis testing is based on standard phone
model/anti-model principle. Ratio between the best word occurrence (of overlapped oc-
currences) and sum of all other words overlapped with this word is taken as the posterior
probability-based confidence. Authors proposed three combination techniques: addition,
multiplication and a perceptron. The best one of the single confidences is the posterior
probability based confidence measure, and the best combinations are the perceptron and
the addition (the perceptron is slightly better).

Summary: Many papers [KLJ01, RLJ97, KLJ98, RLJ97, SL96, SSJ96, RCAC96]
deal with confidence measures using hypothesis testing (likelihood ratio). The majority of
these papers deal with different types of anti-models. Hypothesis testing approaches were
widely applied on-line with the usual application being a telephone dialog system. This
kind of applications used small vocabulary and required on-line processing. Paper [KLJ01]
concluded, that anti-models do not play a strong role in rejecting unlikely hypothesis during
decoding as the number of vocabulary word is increased, which is our case in this thesis.

Several papers point out superiority of posterior probability over hypothesis testing
based confidences. This is supported by a possibility to generate more output hypothe-
sis: the more hypothesis, the better estimation of background normalization for posterior
probability. That is why lattices outperform N -best lists. The spoken term detection task
is an off-line process in our case, so posterior probabilities based on lattices are suitable
confidence measure. We want to separate the process of recognition (lattice generation)
and spoken term detection (confidence estimation and word-subword combination).

Discriminative training techniques were also found beneficial. In case of lattice gen-
eration, the discriminative training can be incorporated directly to the acoustic models
instead of the anti-model.

Several papers deal with correct estimation of posterior probability of a group of over-
lapped words. This should be taken into account for STD. A part of this thesis deals with
keyword confidence measure estimation. The idea of using mean and variance normaliza-
tion of confidence was found interesting and is evaluated in this thesis.

2.5 Application areas

The results and conclusion of this thesis should also have practical impact. Our research
group participates in several large projects and actively cooperates with several business
partners that are interested in the conclusions of this thesis.

One important application area of this thesis is in research. The topic of this thesis was
partly initiated by the NIST Spoken Term Detection evaluations in 2006. We have planned
to evaluate proposed approaches in the following STD evaluation. But unfortunately, the
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next evaluation has been postponed several times. The outcome of the thesis was also
used in DIRAC project4 as an OOV detector.

We have shown that hybrid system can be easily used in existing indexing and search
systems for spoken documents. Only a module which will convert out-of-vocabulary terms
to multigram representation is needed in the searcher.

The demand for spoken term detection applications is growing. The results are usable
in commercial domain (call-centers or operators).

The security domain can profit from proposed subword or hybrid systems, too. Errors
caused by OOVs are serious problem in security area. Here, all term (queries) have to
be correctly detected and a term spoken only once can be more important than a term
spoken several times. That is why accurate and “open vocabulary” spoken term detector
is needed. We successfully used proposed hybrid system in our project5 aimed to spoken
term detection for security. The problem caused by OOVs is even more important for
inflectional languages (like Slavic languages) due to large size of vocabulary (milions of
words).

A way how to easily add new words to the LVCSR will be shown in the experiment with
HybridOracle system (section 7.3). A minimalistic LVCSR-based spoken term detector can
be built on small LVCSR (5k words for example). The searched terms which are OOVs
can be added in system start-up into the recognition network in the same way as is in
the HybridOracle. This can not be used in document indexing and search but it can be
an interesting alternative to the acoustic keyword spotting, where lots of data is searched
once or few times and the processing time must be fast.

An experimental tool (section 3.5.5) was implemented for searching given sequences
in lattices and estimation of its confidences. This software is freely available for research
purposes6.

4http://www.diracproject.org
5Project VD20072010B16 of Czech Ministry of Interior.
6http://speech.fit.vutbr.cz/en/software/lattice-spoken-term-detection-toolkit-latticestd



Chapter 3

Evaluation

Clear definition of evaluation setup is important to correctly compare different systems
and to make conclusions. This chapter aims at the description of evaluation data and
metrics used in this thesis.

3.1 Evaluation data

Well defined evaluation data is important for objective evaluation and comparison of dif-
ferent systems. Unfortunately, each published spoken term detection system was evaluated
on different data and with different term set. There were 4 TREC NIST evaluations in
years 1997–2000. The TREC evaluations had only partial overlap with spoken term detec-
tion task. The goal of TREC was Spoken Document Retrieval (TREC-SDR) on broadcast
news. The broadcast news recordings were recognized by Automatic Speech Recognizer
and then processed by Document Retrieval system. The goal was to find the relevant
document, but not to find all term occurrences. The TREC-SDR was declared a solved
problem at TREC-9 in 2000. There were no spoken term detection evaluations organized
by NIST from year 2000 till 2006. New evaluation track was announced by NIST in 2006.
It was called Spoken Term Detection (STD) evaluation1.

The goal of the first NIST STD (2006) evaluation was to explore promising new ideas
in spoken term detection and measuring the performance of this technology [FAD06]. The
spoken term detection system should consist of two parts:

• The first part is an indexing sub-system. It processes all input speech data (audio
signal) into indices. This step can take longer time (hours of processing time per
hour of speech data) and is run on the data only once.

• The second part is a search sub-system. It should find a given term as fast as possible
(milliseconds of processing time per one term) in the indices.

The results and experiences were discussed at post-evaluation workshop. The NIST
organizers stated that this was a pilot evaluation for overview of available techniques.
The conclusion of NIST STD 2006 workshop was the opinion that nowadays spoken term
detection systems are relatively accurate but still too slow and resources consuming. They
are still inapplicable for large-scale data (more than 106h of speech).

The STD 2006 evaluation task was to find all of the occurrences of a specified term
in a given corpus of speech data. The “term” is a sequence of one, two, three or four

1http://www.itl.nist.gov/iad/mig/tests/std/2006/index.html
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words. The words in a term have to be said by the same speaker, channel and file. The
gap between adjacent words must not be longer than 0.5s. Terms are specified only by
orthographic representation so ”wind” (moving air) will match ”wind” (twist) but ”cat”
will not match ”catalog”. The evaluations ran for 3 different domains and 3 languages,
see table 3.1.

Domain \ Language English Arabic Mandarin

Broadcast News (BCN) ∼ 3 hours ∼ 1 hour ∼ 1 hour

Telephone Conversations (CTS) ∼ 3 hours ∼ 1 hour ∼ 1 hour

Round-table Meetings (MTG) ∼ 2 hours No No

Table 3.1: Durations of indexed audio for both, the DevSet and the EvalSet.

NIST provides three data sets. A Development set (DevSet), a Dry Run set
(DryRunSet) and an Evaluation set (EvalSet). The DevSet was offered for system
development. It contains speech data, reference transcripts and a list of 1099 terms. The
DryRunSet differs from DevSet only in different term list (1099 terms). The dry run was
just for evaluation of participant competence to use NIST scoring tools and to generate
correct result files.

The EvalSet contains different speech data and a different term list (1099 terms).
Unfortunately, NIST decided not to publish reference transcriptions. The EvalSet will be
reused for next evaluations due to lack of speech data. This complicates evaluation of STD
systems, because there is only the DevSet.

Using round-table meeting data (MTG) and conversational telephone speech (CTS)
brings more objectivity, because it is more natural form of speech (in comparison to broad-
cast news data (BCN)). Meeting or telephone dialog participants speak informally and the
speech is spontaneous containing lots of hesitations, crosstalk, smacks and background
noises. This data is closer to the security domain.

With regards to our participation in European projects M42, AMI3 an its follow-up
AMIDA4, we are experienced with automatic processing of conversational speech (both
meeting and telephone). These projects concentrate on processing of round table meetings.
However, in this thesis, we decided to use the CTS data because the MTG data consisted
of several different subsets, recorded at different sites. This could negatively influence the
evaluation by a hidden error caused by inaccurate adaptation of the recognizer.

The CTS data of NIST STD 2006 DevSet is used in this thesis for STD evaluation.
As because the speech recognizer (chapter 4) is taken as a “black box” and NIST released
only the DevSet, several system coefficients are tuned on the DevSet: unit (word, phone
or multigram) insertion penalty and language model or acoustic model scaling factors. We
assume that tuning of these parameters has no impact on the correctness of the results
and conclusions.

3.1.1 Term set modification and vocabulary reduction

The original term set for English part of NIST STD 2006 evaluations is not representative
for our experiments, because it contains low number of out-of-vocabulary (OOV) words.

2http://www.dcs.shef.ac.uk/spandh/projects/m4/index.html
3http://www.amiproject.org/
4http://www.amiproject.org/ami-scientific-portal
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We decided to make several changes to the STD term list and our speech recognizer
vocabulary to achieve higher OOV rate. Distribution of term occurrences among data sets
and numbers of in-vocabulary and out-of-vocabulary terms with the original recognizer’s
vocabulary are summarized in table 3.1.1. The in-vocabulary (IV) term contains all words
which are in the speech recognizer vocabulary. The out-of-vocabulary (OOV) term contains
at least one word which is not in the speech recognizer vocabulary.

Term CTS

length [words] count terms occur.

IV OOV IV OOV

1 555 44 4800 18

2 346 54 126 8

3 66 19 10 2

4 9 6 1 0

sum 976 123 4937 28

Table 3.2: Distribution of terms for full LVCSR 50k vocabulary. The second and third columns

give the numbers of IV or OOV terms in the term list. The last two columns represent the numbers

of occurrences of IV and OOV terms in CTS set.

First of all, all terms containing true OOV words or 1 phone long5 were omitted. The 1
phone long term is not a big problem for word-based STD, but serious problem for phone
based STD (huge number of detections).

Then a set of “artificial” OOV words is defined – these are originally in the recognition
vocabulary, but deleted for future experiments to create more OOVs. Their selection is
done in the following way: Word counts are collected over the DevSet. Based on these
counts, a suitable set of OOVs was selected: The word had to have several occurrences,
but generally less than 10. Only 5 OOVs have more than 10 occurrences. In total, 880
words were deleted in this way, of which 440 do appear in NIST dev-set transcriptions.
Another 440 words which do not appear in the transcriptions were simply selected from
the LVCSR vocabulary. They are of no use in this these, but reserved for future work.

A limited LVCSR system was created (denoted by WRDRED which means “reduced
vocabulary”) where these 880 words were omitted from the vocabulary. This system has
reasonably high OOV rate on the NIST STD06 DevSet. The term set has 975 terms of
which 481 are in-vocabulary (IV) terms and 494 are out-of-vocabulary OOV terms (terms
containing at least one OOV) for the reduced system. The number of occurrences is 4737
and 196 for IV and OOV terms respectively. We can detect all the “artificial” OOV terms
by the original full vocabulary LVCSR (denoted as WRD) and evaluate the “oracle”
OOV term detection accuracy.

Reference transcription of the NIST STD 2006 DevSet has 32002 tokens. Defined
“artificial” OOVs appear 799 times in the corpus. So the OOV rate is 2.5%, which is close
to real tasks.

Table 3.1.1 summarizes the numbers of terms and term occurrences for different term
length and data types in DevSet.

It holds in this thesis, that all systems with reduced vocabulary (denoted with suffix
RED) are derived from the corresponding full dictionary systems. All parameters are the

5term ”A.”
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Term CTS

length [words] count count terms occur.

IV OOV IV OOV IV OOV

1 309 245 214 76 4640 156

2 149 197 42 30 92 34

3 21 45 5 5 5 5

4 2 7 0 1 0 1

sum 481 494 261 112 4737 196

Table 3.3: Distribution of terms for reduced LVCSR 50k vocabulary – WRDRED system. The

second and third columns give the numbers of IV or OOV terms in the term list. The next two

columns summarize the numbers of the terms appearing in the CTS. The last two columns represent

the numbers of occurrences of IV and OOV terms in CTS set. The true OOV terms and 1 phone

long terms are omitted.

same (pruning, penalties, etc.), only the vocabulary is reduced, unless it is mentioned
otherwise.

3.2 Recognition evaluation metrics

Standard metrics are used for evaluation of underlying recognizers. Two different kinds of
outputs and two different kinds of units are evaluated. The outputs can be either 1-best
(string) or lattice. The units can be either words or phones. The 1-best string output is
represented in the lattice – it is the best path through the lattice.

Recognized and reference strings are compared for evaluation of recognition accuracy.
The two strings are matched using dynamic programming. The goal is to minimize the
error between these two strings. Several cases can happen:

Match M : Recognized unit is the same as the reference unit. Cost = 0

Substitution S : Recognized unit is different from the reference unit. Cost = 1

Insertion I : A unit is recognized but it cannot be compared to any of reference units.
This happens in case of more recognized units then reference ones. Cost = 1

Deletion D : There is a reference unit but no unit is recognized. This happens in case
of more reference units then recognized units. Cost = 1

The dynamic programming must minimize the overall cost of recognized/reference
strings alignment. The number of units in the reference string is denoted N . Having
the numbers of M , S, I, D and N , the accuracy Acc and the error rate ER can be
calculated as:

Acc =
M − I

N
(3.1)

ER = 1 − Acc (3.2)

If the units are words, we are speaking about the word error rate – WER or word accu-
racy – WAC, if the units are phones we are speaking about the phone error rate – PER
or phone accuracy – PAC.
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WER/WAC and PER/PAC are metrics for 1-best string level comparison of recogniz-
ers. Lattice error rate – LER or so-called Oracle error rate can be defined on lattice
output. Lattice contains lots of hypothesis and some of them are more or less accurate.
An error rate can be assigned to each path in the lattice. Lattice error rate is the error
rate of the closest path to the reference string. The difference between LER and WER
tells us, how much of the information is hidden in parallel hypothesis against the 1-best
output. We should be able to detect 100% occurrences of terms in case of lattice error
rate LER = 0%.

The lattice error rate variants of WER/WAC and PER/PAC are denoted as WLER
or WLAC and PLER or PLAC in this thesis.

3.3 Spoken Term Detection evaluation metrics

This section presents evaluation metrics which are used for spoken term detection and
keyword spotting task. Each detected term has a confidence attached. The confidence is a
continuous value quantifying, how sure the spoken term detector is about the detection of
the term. Some users of spoken term detection application expect hard YES/NO decision
whether a term is present or not. Another users expect only YES decision (rising of
an alarm). NO decision is the complement to YES decision over input speech data.
Confidence thresholding is used mapping of confidence to hard binary YES/NO decision.
Let us assume that the term confidence is based on term posterior probability. The
higher confidence value the higher probability of correct term detection. Let us set the
threshold thr to a certain value. The term confidence c(termt) thresholding is defined by:

Decision(c(termt), thr) =

{

Y ES, c(termt) > thr
NO, c(termt) <= thr

(3.3)

where Decision function returns the hard decision whether the term is found or not. Sev-
eral cases can occur in comparison of detected terms against reference detections (tran-
scription):

1. The decision is YES (alarm is raised) and there is a reference term overlapped with
the detected term in time (figure 3.1a). This case is denoted as HIT. We want to
maximize the number of hits.

2. The decision is YES (alarm is raised) and there is no reference term overlapped with
the detected term in time (figure 3.1b). This case is denoted as false alarm – FA.
We want to minimize the number of false alarms.

3. There is a reference term in utterance but no overlapped term is detected at that
place (figure 3.1c) or overlapped detected term is marked by NO decision (no alarm
is raised at the same time). This case is denoted as a false rejection – FR or a
MISS. We need also to minimize the number of false rejections.

The definition of “overlapped” for reference and detected term varies for different evalua-
tion metrics. It is defined as:

• The mid-point of reference term is between start and end times of detected term
for the figure-of-merit – FOM metric (section 3.3.1) calculated by HTK (sec-
tion 3.5.1). Also, if several detections overlap with one reference, all of them are
considered as HIT in HTK implementation (figure 3.1a).
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• The mid-point of detected term is less than or equal to 0.5s from the time span of
reference term for term weighted value – TWV metric [FAD06] (section 3.3.3)
used in NIST STD 2006 evaluations. If more detections overlap with one reference,
only one is considered as HIT and the others are considered as FAs (figure 3.2).

Figure 3.1: Examples of HIT, FA and MISS. Overlap of HIT and reference is implemented in

HTK. If two detections overlap with one reference, both are considered as HITs.

Figure 3.2: Example of HIT and reference overlap defined by NIST for STD evaluation and TWV

metric. If two detections overlap one reference, only one is considered as HIT and the other is

considered as FA.

The level of threshold can be set for each term. More HITs (and also more FAs) and
less FRs are received by lowering the threshold, less HITs (and also less FAs) and more
FRs are received by increasing the threshold. The numbers of HITs and FAs are correlated
and as number of HITs rises so does the number of FAs. The user must set the threshold
to obtain the desired system behavior (high number of HITs or low number of FAs). The
accuracy of a term detection system rises as rises the separability of HITs and FAs. A
system will have 100% of HITs and 0% of FAs for a certain threshold in an ideal case of the
best accuracy. Setting of optimal threshold is nontrivial especially if one global threshold
applied over a large set of terms.

The probability of correct detections pHIT , false rejections pMISS and incorrect detec-
tions pFA can be calculated by the following formulas. Let us denote:

• term searched term

• thr set threshold

• Ntarget(term) the number of all correct occurrences of term in the data set

• NHIT (term, thr) the number of detections having Decision(c(term), thr) = Y ES
which are classified as HIT

• Nnontarget(term) the number of all non-occurrences of term in the data set

• NFA(term, thr) the number of detections having Decision(c(term), thr) = Y ES
which are classified as FA
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The Nnontarget(term) means all places, where false alarms of the term can occur. This
value is used by DET curve and TWV metric and it is discussed in section 3.3.3.

The probability of HIT is defined as:

pHIT (term, thr) =
NHIT (term, thr)

Ntarget(term)
(3.4)

The probability of MISS is defined as:

pMISS(term, thr) = 1 − pHIT (term, thr) = 1 −
NHIT (term, thr)

Ntarget(term)
(3.5)

The probability of False Alarm is defined as:

pFA(term, thr) =
NFA(term, thr)

Nnontarget(term)
(3.6)

The performance of spoken term detection system is defined by the trade-off be-
tween pHIT and pFA. As this is not a scalar value, different systems can not be easily
compared according to pHIT and pFA. That is why several metrics have been proposed for
calculation of one scalar value from pHIT and pFA. Some of them are used for comparison
of detectors in this thesis. Their brief description and definition follows in sections below.

3.3.1 Receiver operating curve and figure-of-merit

A receiver operating curve (ROC ) for one term is term’s pHIT (term, thr) as function
of NFA(term, thr) per hour. An example of ROC is shown in figure 3.3.

Spoken term detection evaluation metric called Figure-of-Merit (FOM ) was defined
by NIST [NIS91]. The following definition is adopted from HTKBook [You99]. Figure-
of-Merit is an upper-bound estimate on spoken term detection accuracy averaged over 1
to 10 false alarms per hour. The FOM estimation assumes that the total duration of the
test speech is T hours. For each term, all detections are sorted by confidence. The hits
probability p′HIT (term, i) of term term found before the i’th false alarm are calculated
for i = 1 . . . N + 1 where N is the first integer ≥ 10T − 0.5. The figure of merit is then
defined as

FOM(term) =
1

10T
(p′HIT (term, 1) + p′HIT (term, 2) + . . . +

p′HIT (term,N) + ap′HIT (term,N + 1)) × 100% (3.7)

where a = 10T − N is a factor that interpolates to 10 false alarms per hour. The overall
FOM is computed as the average of FOM(term) over all terms from a term-list. The
FOM can be understand as area under ROC from 0 to 10 false alarms per hour (see
figure 3.3).

However, the FOM metric is “artificial” and has several drawbacks. It considers only
a part of threshold domain (to 10 FAs per hour). The overall FOM is estimated as
average of single term’s FOM. That is why each term is thresholded separately. One
global threshold is usually needed for end-user applications. Also, FOM is sensitive to the
term-list selection [SV05].
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Figure 3.3: An example of Receiver Operating Curve (ROC): Dependency of successfully detected

terms on number of false alarms per hour. The gray area represents Figure-of-Merit.

3.3.2 Detection error trade-off curve – DET

Detection error trade-off (DET) curve is dependency of term miss probability
pMISS(term, thr) (y-axis) and false alarm probability pFA(term, thr) (x-axis) on thresh-
old thr. DET curve is also widely used in other evaluations such as Speaker Recognition
(SRE) or Language Recognition (LRE). The DET curve is a plot for all possible values of
the threshold (on contrary to ROC). The definition of DET used in this thesis is adopted
from NIST STD 2006 evaluations [FAD06]. DET is defined as pMISS(thr) (y-axis) as
function of pFA(thr) (x-axis) with thr as parameter:

pMISS(thr) = average
term

{pMISS(term, thr)} (3.8)

pFA(thr) = average
term

{pFA(term, thr)}. (3.9)

The number of non-target occurrences of term is defined as:

Nnontarget(term) = Tspeech − Ntarget(term) (3.10)

where Tspeech is the length of speech test data in seconds. This definition of
Nnontarget(term) assumes that a false alarm can occur every second.

The pMISS and pFA are evaluated for each term which has at least one occurrence in
test data (pMISS(term, thr) is defined). As DET curve is not a scalar value, two systems
can be compared using DETs only by their relative position, shape and slope. An example
of DET is in figure 3.4. Every point of DET corresponds to a particular operating point
of the detection system. The better DET, the closer to bottom left corner. Unlike the
speaker recognition or language recognition DET curves (figure 3.5), the STD DET curve
does not lead to the very bottom right corner of the graph. The right end of DET means
the lowest level of threshold. The system cannot detect more terms than it does at this
point.

3.3.3 Term-weighted value – TWV

The drawback of DET curve is the impossibility of comparison of two systems by one
number. That is why NIST defined two scalar metrics for comparison of spoken term
detection systems: Occurrence-Weighted Value and the Term-Weighted Value. The term-
weighted value (TWV ) is used further in this thesis, because it was selected as the
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Figure 3.4: Example of detection error trade-off curve of one of our spoken term detection system.

The blue star denotes operating point, where term weighted value is maximized. This point

corresponds to threshold −0.923.

primary metric for NIST STD 2006 evaluations. The definition is the following:

TWV (thr) = 1 − average
term

{pMISS(term, thr) + βpFA(term, thr)} (3.11)

where

β =
C

V
(Pr−1

term − 1). (3.12)

C is the cost of incorrect detection (FA), V is value of correct detection (HIT), Prterm is
the prior probability of the term. C/V was set to 0.1 and Prterm was set to 10−4 for NIST
STD 2006 evaluations. Then, the β is constant equal to 999.9. An example of the TWV
and DET curve is in figure 3.4.

Let us theoretically analyze the behavior of TWV for a term. The probability of false
alarm pFA(term, thr) depends on number of false alarms NFA(term, thr) and number
of non-target trials (possible places for rising a false alarm) Nnontarget(term). Accord-
ing to (3.10), Nnontarget(term) depends on Tspeech and Ntarget(term). Tspeech is equal
to 3 × 60 × 60 = 10800 for 3 hours of test data (the length of NIST STD test
data). The average Ntarget(term) is between 1 and 700 with mean ≈ 15. Because
Tspeech ≫ Ntarget(term), Nnontarget(term) primarily depends on Tspeech, which is con-
stant (for certain data set). That is why pFA(term, thr) depends “linearly” only on the
number of false alarms. Each false alarm has approximately the same cost independently
on number of reference term occurrences Ntarget(term).

On the other hand, the cost of miss is highly dependent on the number of occurrences
of reference term Ntarget(term). pMISS(term, thr) depends on NHIT (term, thr) divided
by Ntarget(term) according to (3.5). For example, if a term has Ntarget(term) = 2 and the
system misses one detection NHIT (term, thr) = 1, the pMISS(term, thr) is equal to 0.5.
The cost of one miss (by TWV point of view) is 0.5 according to (3.11). If a term has
Ntarget(term) = 100, the cost of one miss (by TWV point of view) is 0.01.

Conclusion on TWV: A miss is much more expensive for less occurring terms than for
frequently occurring terms. On the other hand, a false alarm is equally expensive for less
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Figure 3.5: Example of detection error trade-off curve of one of our language recognition system.

as well as for widely occurring terms. The global TWV is averaged over each term’s TWV,
therefore each term has equal weight. That’s why TWV “forces” to lower the threshold for
less occurring terms. It is better to “pay a bit” for several false alarms than to “pay a lot”
for one miss (especially for less occurring words). This leads to dependency of threshold
on the number of term occurrences.

NIST offered a scoring tool providing the DET curves and computation of TWV.
The scoring tool produces two values: an Actual TWV (ATWV) and a Maximum TWV
(MTWV). The Actual TWV is TWV for the threshold set by STD system and this value
was used as the primary metric for system comparison in NIST STD 2006 evaluation.
Maximum TWV is maximized TWV and does not depend on the threshold of the STD
system. MTWV is used further in this thesis to overcome dependency of system accuracy
on the selected threshold. MTWV is further denoted as TWV for simplifying the notation.

3.3.4 Upper bound term-weighted value – UBTWV

One feature of TWV metric is its one global threshold for all terms. This is good for
evaluation for end-user environment. On the other hand, it leads to uncertainty in com-
parison of different experimental system setups. We do not know if the difference is caused
by different systems or different normalization and global threshold estimation. This is
reason for our definition of Upper Bound TWV (UBTWV). The difference to TWV
is in individual threshold per each term. The ideal threshold for each term is found to
maximize term’s TWV:

thrideal(term) = arg max
thr

TWV (term, thr), (3.13)

and UBTWV is then defined as:

UBTWV = 1 − average
term

{pMISS(term, thrideal(term)) + βpFA(term, thrideal(term))}

(3.14)
This is equivalent to shifting the score of each term, so that maximum TWV (term) is
obtained at threshold 0.0. Two systems can be compared by UBTWV without any in-
fluence of normalization and ideal threshold level estimation in systems producing TWV
score. The actual and maximal values are equal for UBTWV and both are denoted by
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UBTWV. An example of DET and UBTWV are shown in figure 3.6. However, due to
the fact that each term has its ideal threshold, DET curve for such ideal system has not
much sense. Only the point corresponding to the ideal threshold is important. This point
is supplied by the UBTWV. That is why only UBTWV values without DET curves are
reported in this thesis.

Figure 3.6: Example of detection error trade-off curve of one of our spoken term detection system

when term score calibration was used. The blue star denotes the threshold level 0.000 where the

UBTWV is calculated.

3.4 Other Evaluation Criteria

System time and computational requirements are usually not taken into account in evalu-
ation of accuracy of a system. Primary scoring criteria are aimed to the pure accuracy as
word accuracy, DET curves, term weighted value, FOM, equal error rates etc. But compu-
tational requirements are also important in practical use of the system. If one of two STD
systems is only 0.5% less accurate but 5 times faster then the other, the computational
requirements can be more important than the accuracy for customer.

3.4.1 Lattice Size

The output of the speech recognition system presented in this thesis is a lattice. Lattices
are indexed in STD applications which should handle lots of data and should provide fast
search. The size of lattice is the important value. Lattice size can be easily expressed by
the number of links, nodes or gzipped file size. However, this expression does not reflect
what is happening during lattice indexing. The size of index is more important than the
number of nodes. Our lattice size (denoted as SIZE ) reflects the size of index created
during indexing of the lattice.
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The procedure of lattice size calculation is the following:

1. Groups of the same overlapped words are found in the lattice.

2. Each group is substituted by one candidate and this is the count in the index size.
This reflect things happening during the term indexing and search. Exactly the same
process is done during term confidence estimation described in section 2.3.2. This
holds however only for word lattices. The size of word lattice is denoted wrdSIZE.

Indexing of phone lattices cannot be done by direct indexing of phones. Because of
low number of phones (45 in our case) and large number of phone occurrences, the index
would be unbalanced and the search slow. Considering the past research of subword unit
indexing [Ng00b], the optimal way to index phones seems to index phone trigrams. We
reflect this fact also in phone lattice size calculation. Phone trigrams are generated first,
then the same procedure is applied as is for the word lattices. Groups of the same phone
trigrams are identified and each of this group is substituted by one candidate. Then these
candidates are counted and represent the lattice size. The size of phone lattice is denoted
phnSIZE.

The number of indexed tokens (words or phone trigrams) is usually in millions in
our experiments. That is why, all reported values of wrdSIZE and phnSIZE are given in
millions (1 × 106) in tables or graphs.

3.4.2 Decoder Requirements

Computational requirements are also important for the practical use of a STD system.
On the other hand this is not the primary evaluation criterion. We do not evaluate the
real-time factor6 or memory consumption of each system. We use this information just for
different systems to show if there is an essential difference in speed or memory consump-
tion. The RTF is evaluated on IntelR© Xeon R© CPU, model E5345 at frequency 2.33GHz
processor with sufficient size of RAM.

3.5 Used Tools

Taking into account that spoken term detection is a complex task, we used several software
toolkits in our work. Brief description of used programs and toolkits is mentioned in this
section. We used standard and well known toolkits and several “in house” programs. All
software is public and freely available for research purposes. All experiments were done
on Linux operating system.

3.5.1 Hidden Markov Model Toolkit – HTK

Hidden Markov Model Toolkit – HTK 7 was developed by Steve Young et al. at Ma-
chine Intelligence Laboratory (formerly known as the Speech Vision and Robotics Group)
of Cambridge University Engineering Department (CUED). This toolkit is freely usable for
research. The following description was taken from the project web page and HTKBook.

6Real-time factor: amount of CPU time needed to process certain amount of speech. Higher RTF means

slower system.
7HTK: http://htk.eng.cam.ac.uk/
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HTK is a toolkit for building Hidden Markov Models (HMMs). HMMs can
be used to model any time series and the core of HTK is similarly general-
purpose. However, HTK is primarily designed for building HMM-based speech
processing tools, in particular recognizers. Thus, much of the infrastructure
support in HTK is dedicated to this task. HTK contains both, the HTK train-
ing (feature extraction, tool for discriminative training and feature transforma-
tions) and the HTK recognition tools (large vocabulary decoder).

In this thesis, HTK is mainly used for feature extraction. Our STK (section 3.5.4) is
then used for training and recognition step.

3.5.2 SRILM toolkit

The SRI Language Modeling Toolkit – SRILM 8 has been under development by
Andreas Stolcke et al. in the SRI Speech Technology and Research Laboratory since 1995.

SRILM is a toolkit for building and applying statistical language models (LMs), pri-
marily for use in speech recognition, statistical tagging and segmentation, and machine
translation. The toolkit supports creation and evaluation of a variety of language model
types based on N-gram statistics, as well as several related tasks, such as statistical tag-
ging and manipulation of N-best lists and word lattices. SRILM can be used freely for
non-profit purposes.

We use SRILM for estimation of n-gram language models from textual corpora.

3.5.3 OpenFST library

We are using Open Finite State Transducers – OpenFST 9 library for building the
recognition network. The following description was taken from the project web page:

This library was developed at Google Research (M. Riley, J. Schalkwyk,
W. Skut) and NYU’s Courant Institute (C. Allauzen, M. Mohri). OpenFST
is a library for constructing, combining, optimizing, and searching weighted
finite-state transducers (WFSTs). Weighted finite-state transducers are au-
tomata where each transition has an input label, an output label, and a weight.
WFSTs have key applications in speech recognition and synthesis, machine
translation, optical character recognition, pattern matching, string processing,
machine learning, information extraction and retrieval among others. Often a
weighted transducer is used to represent a probabilistic model (e.g., an n-gram
model, pronunciation model). WFSTs can be optimized by determinization
and minimization, models can be applied to hypothesis sets (also represented as
automata) or cascaded by finite-state composition, and the best results can be
selected by shortest-path algorithms. It is intended to be comprehensive, flex-
ible, efficient and scale well to large problems. It is an open source project
distributed under the Apache license.

Finite state transducers framework is widely used for building static recognition net-
work for speech recognition. We use this library in the same way. Language model and
pronunciation dictionary are converted into weighted finite state transducers and using a
composition operation, the network is built.

8SRILM: http://www.speech.sri.com/projects/srilm/
9OpenFST: http://www.openfst.org/
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3.5.4 STK toolkit

Speech recognition software (decoder) used in this thesis is part of the HMM Toolkit
STK10. The STK was used also for discriminative training of acoustic models. STK is
publicly available under the GNU General Public License.

STK is a set of HMM-tools created at Speech@FIT, Brno University of Technology,
Faculty of Information technology (FIT BUT) in closed connection to EU-funded projects
M411, AMI12 and AMIDA13. STK was inspired by HTK (section 3.5.1) which has become
a popular tool for almost all people involved in speech processing research and applications
that have anything to do with Hidden Markov models (HMMs). On the other hand, we
identified several problems of HTK:

• HTK, even if composed of libraries and associated executables, is quite hard to be
modified by a person exterior to Cambridge University HTK team.

• People often consider HTK to be a black-box . . . what’s not possible with HTK, is
not possible at all.

• There are serious license issues (limited exploitation of the standard tools and some
tools, such as HDecode not available at certain times).

• One learns often better by writing his/her own software rather by analyzing and
modifying other’s one.

This lead us to build a home-made toolkit for the work with HTK. All the code was
written at FIT BUT although we to stay compatible with HTK especially on the level
of model-definition files and command-line interface. New features the toolkit brings in
comparison to HTK are:

• The possibility to use and train linear transforms at different places in the set of
HMMs.

• Static Viterbi decoder working with generally built recognition networks.

3.5.5 LatticeSTD

The Lattice Spoken Term Detection – LatticeSTD14 tool is written by the author of
this thesis. It is used in majority of reported STD experiments. This tool searches given
lattices for a set of terms. Each term is defined as a pair Output label and Input labels,
for example Term01 PRESIDENT GEORGE BUSH or IGOR SZÖKE ih g oh r s z ow k eh.
If the Input labels sequence is found in lattice, confidence is estimated and the output
label is written to the output. This tool searches for exact sequence of links (or nodes)
representing the output label. No other links (or nodes) are allowed to be among the
searched link sequence. LatticeSTD tool allows estimation of several types of confidence
measures, filtering of detections and substitutions/insertions/deletions of phones in case
of phone lattices search.

The LatticeSTD tool is publicly available under the GNU General Public License.

10STK: http://speech.fit.vutbr.cz/en/software/hmm-toolkit-stk
11M4: http://www.dcs.shef.ac.uk/spandh/projects/m4/
12AMI: http://www.amiproject.org/
13AMIDA: http://amidaproject.org/
14LatticeSTD: http://speech.fit.vutbr.cz/en/software/lattice-spoken-term-detection-toolkit-latticestd
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3.5.6 LSE

Lattice Search Engine – LSE 15 has been developed by Michal Fapšo at BUT. LSE was
used in the NIST STD evaluation in 2006 as an application providing indexing and fast
search.

LSE indexer indexes lattices produced by speech recognizer. Several types of indices
are stored and accessed by LSE searcher. The searcher searches for occurrences of given
queries in the indices. The queries can be composed of single or multiple words. A query
can also contain time constrains – maximal allowed time distance between words. Phone
trigram based STD was implemented in LSE as subword version for OOV word search.
LSE can identify OOV parts of query and search them in phone lattices. Finally the IV
and OOV results are combined together into results fulfilling the time constrains. LSE
allows also to interconnect query words with surrounding words using indexed lattices.
Detailed description of the engine was published in [Fap07] and it is over the scope of this
thesis.

The LSE is publicly available under the GNU General Public License.

3.5.7 G2P

Grapheme to phoneme – G2P converter was developed by Speech@FIT student
Stanislav Kontár. Unfortunately, he left our laboratory without publishing a paper about
the approach he used. A brief description of the method is provided in appendix B. The
G2P system was trained on pronunciation vocabulary used in here presented LVCSR sys-
tem (chapter 4). The 50k word vocabulary was split to 9/10 used for training and 1/10
used for test. The accuracy of generated pronunciation was: 73% correctly generated word
pronunciations and 16% word pronunciation having error only in one phone.

15LSE: http://speech.fit.vutbr.cz/en/software/lattice-search-engine-lse
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Chapter 4

Word recognition

This section deals with the description of our large vocabulary continuous speech recog-
nition system (LVCSR) used for experiments stated in this thesis. Presented LVCSR is
a state-of-the-art system derived from AMI LVCSR1 [HWB+07]. The AMI LVCSR sys-
tem was slightly modified and used in the NIST STD 2006 evaluation. The decoder was
changed from HTK HDecode to “in-house” STK SVite in the third (final) pass and pro-
duced lattices are directly used for STD. In the AMI LVCSR, the lattices were expanded
by fourgram language model and confusion networks were applied.

The reason for the decoder replacement is in the principle of decoding. The HTK
HDecode is a dynamic decoder whereas STK SVite is static decoder. By the term dynamic,
we mean that the decoder loads n-gram language model, pronunciation dictionary and
acoustic models (GM-HMMs) and builds the recognition network on-line. This is optimal
from the computational resources point of view. Only promising parts of the network
(search space) can be built according to words spoken in the decoded utterance.

By the term static decoder, we mean that the decoder loads already “compiled” net-
work and acoustic models. The decoder is just a “simple” machine which propagates
tokens through the network and evaluates the acoustic models according to given utter-
ance. The disadvantage is in required resources, because complete recognition network
must be loaded into memory. Depending on the utterance, considerable part of the net-
work is not used (no token passes through) during decoding. On the other hand, advanced
techniques and optimizations can be applied during the network compilation, especially
if finite state machines (FSM) framework is used (section 4.2). The most important ad-
vantage of building the recognition networks outside of the decoder is in generating the
networks for hybrid word-subword recognition (section 7.1.1).

4.1 The recognizer

The input data (conversational telephone speech) is first converted to linear coding 16-bits
per sample and 8kHz. The data is then segmented to speech/silence according to energy
in channels and by a neural net based phone recognizer [SMČ04]. All phone classes are
linked to “speech” class.

The data is split into shorter segments on silences (output of speech/non-speech de-
tector) longer than 0.5s. If the speaker changes, the data is also split. Segments longer
than 1 minute are split into 2 parts in silence closest to the center of the segment. This

1The LVCSR was developed in cooperation with AMI-project partners, see

http://www.amiproject.org.
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is done to overcome long segments and accompanying problems during decoding (long
decoding time and high memory consumption).

The large vocabulary continuous speech recognition system (LVCSR) system used in
this thesis is a simplified version of AMI LVCSR system used for NIST RT 2006 evalua-
tions [HBD+06]. The system operates in 3 passes (figure 4.1):

Figure 4.1: Schema of 3-pass recognition system used in this thesis. The system is derived from

AMI LVCSR.

In the first pass – P1, the front-end converts the segmented recordings into fea-
ture streams, with vectors comprised of 12 Mel-Frequency Perceptual Linear Prediction
(MF-PLP) features and raw log energy. First and second order derivatives are added.
After, Cepstral Mean and Variance Normalization (CMN/CVN) is performed on a per
channel basis. The first decoding pass yields initial transcripts that are subsequently used
for estimation of Vocal Tract Length Normalization (VTLN) warp factors. The feature
vectors and CMN and CVN are recomputed after the application of VTLN.

The second pass – P2 processes the new features and its output is used to adapt mod-
els with Maximum Likelihood Linear Regression (MLLR). Bigram lattices are produced
and re-scored by trigram and fourgram language model.

In the third pass – P3, posterior features [GKKČ07] are generated. The output from
the second pass is used to adapt models with Constrained MLLR (CMLLR) and MLLR.
In the original AMI LVCSR, bigram lattices were produced by HDecode decoder and re-
scored by fourgram language model. In this thesis, the output of the third pass are the
features which are processed by SVite decoder.
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4.1.1 Feature extraction

The CTS system uses standard cross-word tied states HMM using MF-PLP’s generated
in classical way with 15 filterbank channels. The resulting number of cepstral coefficients
is always 13.

The following techniques are used in HMM training:

• CMN/CVN is applied per speaker.

• VTLN warping factors are computed using Brent search method and features are
re-computed.

• Deltas, double- and triple-deltas are added into the basic PLP feature stream, so that
the feature vector has 52 dimensions. Heteroscedastic Linear Discriminant Analysis
(HLDA) is estimated with Gaussian components as classes [KGS+06]. HLDA is
estimated to reduce the dimensionality to 39.

• Bottle-neck [GKKČ07] LC-RC [SMČ04] posterior system splits 310ms temporal con-
text in each filterbank output into two halves and each half is processed by one
neural net producing phone posteriors. These are merged by a third neural net (the
merger). It is 5-Layer NN with middle layer containing 35 neurons only. Nonlin-
early compressed information here is used as the output. The HLDA is estimated
to de-correlate and to reduce dimensionality from 35 to 25. Again, the resulting
features are concatenated with PLP features (25 + 39 = 64) and mean and variance
normalized. This procedure is shown in figure 4.2.
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Figure 4.2: Scheme of feature extraction during the third pass P3 in the recognition system.

Partly reproduced from [Gré07].
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4.1.2 Acoustic model

Training of posterior features At first, the neural network training is done on 30h
data used for training of LVCSR acoustic models. The data has cepstral mean and
variance normalization and VTLN. Using these nets, full features are generated on
all the data. The outputs are concatenated with PLP VTLN HLDA feature stream.
The CMN/CVN are re-computed again and the models are trained by single-pass
re-training. Further, the models are re-clustered and trained by mix-up procedure
from 1 to N Gaussians. The optimal number of Gaussians per state is tuned to 26.

Speaker-adaptive training One single Constrained MLLR (CMLLR) transform is
trained per each conversation-size. Features are mapped to unique Speaker-Adaptive
Training (SAT) space by CMLLR and 8 iterations of Maximum Likelihood (ML)
training (standard Baum-Welch) are run. After, new CMLLR transforms are trained,
features transformed and 8 ML-iterations followed. And once more, so that the num-
ber of CMLLR+re-training macro-iterations is 3.

Discriminative training The models are re-trained in 15 iterations of Minimum Phone-
Error (MPE) training [Pov03]. The alternative hypotheses for MPE are generated
by much simpler system including just ML-trained models on PLP+HLDA without
any adaptation. In case of SAT-MPE-training, we do not re-train the CMLLR
transforms.

Pass 1 HLDA

Pass 2 VTLN HLDA MPE

Pass 3 VTLN Bottleneck-LC-RC SAT MPE

Table 4.1: Brief overview of techniques used for acoustic models in each pass.

The ctstrain04 corpus containing about 278 hours of well transcribed speech data from
Switchboard I, II and Call Home English is used for the training. It is a subset of h5train03
set defined at Cambridge University as a training set for Conversation Telephone Speech
(CTS) recognition systems [HBD+05]. The Hungarian SpeechDat-E [PČB+00] data is
used for the speech/silence detector (phone recognizer).

4.1.3 Word language model

The training of 4-gram language models was done within the framework of AMI project
at University of Edinburgh by Vincent Wan. Table 4.2 shows the training data used. The
perplexity was maximized for the CTS task. A closed vocabulary bigram language model
is used for generating the final lattices.

4.1.4 Open vocabulary word language model

Experiments in chapter 7 are aimed to combined word-subword recognition. We need
open vocabulary language model with a symbol which will represent OOV words for these
experiments. Vincent Wan created and sent us corpora and training scripts for building
open vocabulary language models. The description of the corpora is in table 4.3. All words
which are not present in the target vocabulary (LVCSR vocabulary) are marked as <unk>
symbol (unknown word).
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Corpus # of words

Swbd/CHE 3.5M

Fisher 10.5M

Web (Swbd) 163.0M

Web (Fisher) 484.0M

Web (Fisher topics) 156.0M

BBC-THISL 33.0M

HUB4-LM96 152.0M

SDR99-Newswire 39.0M

Enron email 152.0M

ICSI/ISL/NIST/AMI 1.5M

Web (ICSI) 128.0M

Web (AMI) 100.0M

Web (CHIL) 70.0M

Sum 1492.5M

Table 4.2: Corpora and number of words per corpus used for language model training.

4.2 Building a recognition network

Not only the language model is needed for the word recognition. Also, a word dictionary
mapping word labels to pronunciation forms is incorporated in the recognizer. If the
context-dependent phones (triphones) are used as acoustic models, usually a “tied-list” is
needed. The number of all triphones is theoretically Ntriphones = N3

phones. Many of the
triphones are rare or even never occur. So a mapping (tying) of these rare triphones to
similar more frequent triphones is used during the acoustic model training.

The recognition done by the decoder is driven by the recognition network. The
components needed to build such a network are language model, pronunciation dic-
tionary and tied-list. The compiled network contains connections of words with proba-
bilities given by the language model, and mapping from words to pronunciations down to
decomposition of context-dependent phones to tied states. The recognition is then done

Corpus # of words

CMU+ICSI+NIST meetings 153.0M

Fisher 600.0M

AMI 1.0M

h5etrain03v1 4.0M

ICSI 0.8M

ISL 0.1M

lm96 148.0M

NIST 0.1M

rt06s-AMI-CMU-NIST 70.0M

Sum 977.0M

Table 4.3: Corpora used for the open vocabulary language model training.
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by token-passing within this network.
Standard decoders, such as HTK HDecode build the network internally and in dynamic

way. However, our work requires full control over the creation of the network. That is
why we used our static decoder SVite and compiled the network off-line.

Theoretical finite state machine framework can be used for building the recognition
networks. The recognition network can be seen as a weighted finite state transducer
(WFST ) which maps a sequence of hidden Markov models to a sequence of word labels
accepted by a language model (weighted finite state acceptor – WFSA). WFSTs provide
a natural representation of hidden Markov models, pronunciation dictionary and language
model [MPR08] in automatic speech recognition.

The weighed finite state transducer is a finite state machine that encodes a mapping
between input and output symbol sequences. Weighted transducer associates weights such
as probabilities, durations, penalties or any other quantities that accumulate linearly along
paths, to each pair of input and output symbol sequence. Weighted determinization and
minimization algorithms optimize their time and space requirements, and a weight pushing
algorithm distributes the weights along the paths of a weighted transducer optimally for
speech recognition.

Consider a pronunciation lexicon and take its Kleene closure by connecting an
ǫ-transition from each final state to the initial state. The resulting pronunciation lexi-
con can transcribe any sequence of words from the vocabulary to the corresponding phone
sequence.

Consider a language model G and a pronunciation lexicon L. The composition of these
two WFSTs,

L ◦ G, (4.1)

gives a transducer that maps from phones to word sequences while assigning a language
model score to each such sequence of words. Incorporating context-dependent triphone
models is a simple matter of composing

C ◦ L ◦ G, (4.2)

where C represents the mapping from context-dependent to context-independent phonetic
units. Then, incorporating HMM models H:

H ◦ C ◦ L ◦ G, (4.3)

results in a transducer capable of mapping distributions to word sequences restricted to
the language model G.

We are using the OpenFST library (section 3.5.3) for building the word-recognition net-
work. Thorough description of WFST framework and its application in speech processing
was given by M. Mohri et al. in [MPR08].

4.3 Word recognition results and tuning of decoder param-

eters

Before we start STD experiments, we must find optimal parameters of the decoder: word
insertion penalty, language model scale factor, beam pruning and maximum active models.
Of course, we should experiment with pruning off or as little as possible, but the lattices
would be huge, decoding would take to much time and search in the lattices would re-
quire prohibitive times. Optimal choice of parameters can speed-up decoding significantly
without any significant loss of accuracy.
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The recognition system produces word lattices. Lattice size can be controlled by beam
pruning parameter (Pr) and maximum active models parameter (MAM ) in the SVite
decoder. Pruning parameters have standard “HTK behavior”: all tokens with likelihood
lower than the best one minus Pr are killed. The MAM limits the number of active models
(models having a token) per each frame. This parameter has influence on the lattice width.
If the decoder is uncertain in a part of utterance, it can produce very wide lattices. This
can usually happen in OOV, non-English or non-speech parts of utterances. MAM can
effectively reduce the size of these lattice parts. The word insertion penalty and language
model scale factor are tuned to maximize UBTWV2.

Also, the language model has significant impact on speed and memory consumption
during decoding. As SVite is a static decoder, it loads the whole recognition network
into memory. The size of language model can be reduced by pruning of low probable
bigrams3. The impact of language model pruning on the lattices and recognition results
(word accuracy, word lattice accuracy and UBTWV) is shown in table 4.4. We can see that
the language model can be reduced down to one third of bigrams without any significant
loss of accuracy. If the pruning is higher than 2× 10−9, word accuracy and UBTWV start
to decrease.

LM wrdSIZE WAC WLAC Word # bigrams

Pruning UBTWV-ALL

none 0.506 70.84 88.22 0.793 10121k

1 × 10−10 0.506 70.84 88.21 0.793 7542k

1 × 10−9 0.509 70.81 88.23 0.793 4409k

2 × 10−9 0.510 70.78 88.22 0.794 3369k

5 × 10−9 0.512 70.59 88.21 0.789 2311k

1 × 10−8 0.513 70.50 88.24 0.783 1715k

Table 4.4: Different lattice size, word accuracy, word lattice accuracy and UBTWV depending on

word language model pruning (MAM 5000, Pr 260).

The following set of experiments aimed to find the optimal pruning parameters. We
tune the pruning and the MAM parameters and watch the wrdSIZE of produced lattices,
word accuracy, word lattice accuracy and UBTWV. The values are plotted for better
readability (figure 4.3).

The UBTWV accuracy does not significantly depend on MAM for both 220 and 260
pruning factors. The effect of MAM is more important for higher pruning factor (fig-
ure 4.3). MAM saturates around 5000 maximum active models for pruning 220 and 260.
The word accuracy and word lattice accuracy improve only negligibly for MAM higher
than 5000. The lattice size has saturating tendency too.

The accuracies do not saturate so clearly depending on pruning. They still slowly
increase when the pruning is lowered. We can find optimal pruning factor lying close
to 260 for UBTWV and WAC. The WLAC has rising tendency for the whole tested range
of the pruning factor. The lattice size rises more than linearly depending on the pruning
factor. Selected decoding parameters are maximum active models 5000 and pruning 260
for word lattices on conversational telephone speech STD task in this thesis.

2Word insertion penalty and language model scale factor for maximizing word accuracy or UBTWV

are different.
3We use only bigram word language model
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Figure 4.3: Dependency of word accuracy, word oracle accuracy, upper bound term weighted value

and lattice size on pruning factor (for 3 different maximum active models factors).

4.4 Comparison of confidence estimations for word system

Several approaches for estimation of term confidence were proposed in section 2.3.2.
UBTWV and TWV metrics used for evaluation of STD were described in section 3.3.
The WRD system is used for evaluation of different term confidences. The influence of
confidence measure is summarized in table 4.5. The results show, that SOLP and Cmax

confidence measures gave about 0.030 better results than the baseline LP on the TWV
metric. The different term confidences are comparable for the UBTWV. As the UBTWV
has individual threshold per each term, the difference in the UBTWV accuracy should be
caused only by shifting possible hits and false alarms within the term detections. Signifi-
cant accuracy improvement is seen, if the confidence estimation methods are evaluated by
the TWV. The TWV has one global threshold, so the candidate score is also important
in comparison to other terms.

This led to the conclusion, that SOLP and Cmax confidence measures are better and
produce scores that result in comparable accuracies. In experiments related to comparison
of confidence measures, we stick with SOLP as computational requirements are higher for
Cmax.

Evaluation metric Word TWV Word UBTWV

Confidence measure ALL IV OOV ALL IV OOV

LP 0.552 0.529 0.719 0.793 0.773 0.840

SOLP 0.580 0.579 0.717 0.795 0.777 0.838

SCOLP 0.540 0.513 0.719 0.787 0.764 0.840

Cmax 0.580 0.580 0.717 0.795 0.777 0.838

Table 4.5: Comparison of different methods of term confidence estimation and its influence on

the TWV and UBTWV scores for the WRD system.

The results in table 4.5 also show, that UBTWV accuracies of LP, SOLP and Cmax

confidence measures are nearly the same. In section 2.3.2, we stated that the LP confi-
dence measure will be used further in this thesis – if the UBTWV metric is used, the LP
confidence should be “good enough”; the advantage is its computational simplicity.
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4.5 Baseline word recognition systems

Selected LVCSR system parameters are LM pruning 2 × 10−9, Pr = 260 and
MAM = 5000. System with these parameters achieved very good accuracy, small size
of lattices and low decoding time. It is important to note, that this was original AMI CTS
system with closed vocabulary language model. This baseline closed vocabulary LVCSR
system was denoted as WRD. Word recognition system with reduced vocabulary (derived
from WRD system) was used in two following chapters 5 and 6. It was WRD system
where 880 words were omitted from the vocabulary. Details of vocabulary reduction were
given in section 3.1.1. This system was denoted as WRDRED. Both these baseline systems
were compared in the upper part of table 4.6.

However, open vocabulary language model is needed for our later experiments in chap-
ter 7. This language model was trained on data stated in section 4.1.4. The open vocab-
ulary language model had to be trained “from scratch” (not only by omitting 880 words)
in order to correctly estimate the probabilities of the “out-of-vocabulary” symbol <unk>.
The optimal language model pruning 3−9 was found for the open vocabulary LM in the
same way as was presented in this chapter. This LM has 1.95M of bigrams. We also
found the pruning Pr = 260 too soft in hybrid word-subword recognition experiments.
Pruning Pr = 220 was found more practical for hybrid recognition in chapter 7.

To make the systems comparable, we created WRDforHYB system, which should be
comparable to baseline open vocabulary word recognition systems presented in chapter 7.
The WRDforHYB system used Pr = 220 and LM pruning 1 × 10−8 because it is close to
the open vocabulary LM in terms of number of bigrams: The accuracies of WRDforHYB
system are presented in the bottom part of table 4.6.

System Decoder LM wrdSIZE WAC WLAC Word UBTWV

Pruning Pruning ALL IV OOV

WRD 260 2 × 10−9 0.510 70.78 88.22 0.795 0.777 0.838

WRDRED 260 2 × 10−9 0.507 68.41 85.75 0.522 0.747 0.000

WRDforHYB 220 1 × 10−8 0.252 69.04 83.21 0.738 0.734 0.746

Table 4.6: Comparison of lattice size, word accuracy, word lattice accuracy and UBTWV of

different baseline LVCSR systems. WRD is the “full” vocabulary baseline, WRDRED is the

reduced vocabulary baseline and WRDforHYB is “full” vocabulary baseline comparable to open

vocabulary LVCSR in terms of LM size and decoder pruning.
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Chapter 5

Subword recognition – phones

This chapter deals with comparison of baseline subword techniques for the spoken term
detection task. The subword units are used for detection of out-of-vocabulary words
which are not present in the word recognizer vocabulary. Subword recognition system
architecture and training corpora are described at the beginning of this chapter. Then
phone units are evaluated. We experimented with phones generated by a standard “free
phone loop” and also phones produced by the LVCSR system. The following chapter deals
with multigrams. Phone multigram units are built-up by concatenation of phones.

5.1 Subword recognition baseline system

Presented subword recognizers (phone, phone multigram, etc.) are based on the third pass
of the LVCSR recognizer. The structure is the same and it uses the same features and
models as the LVCSR. The difference is only in the recognition network. The schema of
subword recognizer is in figure 5.1.

5.1.1 Training data for subword language model

ctstrain04 corpus (278h of conversation telephone speech, subset of h5train03 cor-
pus [HBD+05] defined on Cambridge University) is used for estimation of subword lan-
guage model. The corpus has phone alignments and it is used for training of acoustic
models. The ctstrain04 corpus contains 11.5M phones. The corpus is searched for ut-
terances containing out-of-vocabulary words and these utterances are omitted (denoted
LnoOOV ). This is done to remove OOV words from subword models training data (to
prevent cheating by knowing the OOVs). Corpus denoted as LOOV and having the same
size as LnoOOV is derived from ctstrain04 to produce results for comparison. The sizes
of corpora are summarized in table 5.1.

Notation # of utterances # of phones # of phones

(incl. sil) (w/o sil)

ctstrain04 300.5k 11.21M 9.97M

LnoOOV 237.2k 6.40M 5.60M

LOOV 169.1k 6.26M 5.60M

Table 5.1: Comparison of corpora used for training of subword systems.
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Figure 5.1: Schema of 3-pass recognition system used for phone or subword lattice generation.

5.1.2 Phone Loop

The phones are used as the most general subword units. Our phone recognizer uses
the LVCSR acoustic models. They are cross-word context-dependent phones (cross-word
triphones). These phone models are connected into a phone loop, which is simple in
comparison to complex word recognition network in the LVCSR. The output of this phone
recognizer is a string of phones or a phone lattice. The phone lattice is used for further
experiments. Better STD accuracy is expected due to parallel hypothesis in the lattices.

Phone recognition is based on the same features and acoustic models as the LVCSR.
The decoder parameter tuning of the phone system is done in similar manner to the LVCSR
system. The bigram language model is trained on LOOV corpus (see table 5.1) for this
experiment.

We tune the beam pruning Pr and the maximum active models MAM parameter
and regard the size of produced lattices phnSIZE, phoneme accuracy PAC, phoneme lattice
accuracy PLAC and UBTWV. The values are plotted for better readability in figure 5.2.

Phone accuracy does not depend much on the Pr and MAM parameters. UBTWV
and PLAC do not saturate for higher Pr and MAM (in contrast to words). The main goal
is therefore to obtain reasonably small phone lattices. That is why pruning Pr = 180 and
maximum active models MAM = 5000 are chosen.

After we fixed the basic decoder parameters, we concentrated on phone language model.
Experiment evaluating dependency of the accuracy on language model training corpora and
the degree of n-gram language model is done. The corpora for language model training
are described in section 5.1.1. Phone system results are summarized in table 5.2. We
conclude that absence of OOV in the language model training corpora has no influence on
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Figure 5.2: Dependency of phone accuracy PAC, lattice phone accuracy PLAC, upper bound term

weighted value UBTWV and lattice size phnSIZE on pruning factor Pr (for 3 different maximum

active models factors MAM).

the accuracy. The trigram LM provides the best phone accuracy. The STD accuracy is
equal for bigram and trigram language models. The phone lattice size generated by the
trigram are about 3 times smaller in comparison with the bigram. On the other hand,
the recognition network is 7 times bigger compared to the bigram network, and also the
decoding is significantly slower.

Corpus LM Phone

n-gram PAC UBTWV-ALL phnSIZE

LOOV 1 53.85 0.365 16.93

LOOV 2 58.40 0.483 14.81

LOOV 3 59.75 0.481 5.07

LnoOOV 1 53.83 0.362 17.02

LnoOOV 2 58.42 0.483 14.92

LnoOOV 3 59.66 0.483 4.88

Table 5.2: Comparison of training corpora and order of n-gram language model on accuracy for

phone based experiments. Decoding parameters: beam pruning Pr = 180 and maximum active

models MAM = 5000.

5.2 Phones from words

The second phone-based system generates phone lattices from the LVCSR. Generating
phone lattices from an LVCSR system has already been done by Witbrock et al. [WH97].
They stated that it achieved better accuracy than the free phone loop system in subword
STD task. We used full LVCSR system, only the decoder was set to produce model labels
(phones) instead of word labels as the output. The decoder (Pr and MAM) settings are the
same as for the word decoding (Pr = 260 and MAM = 5000). Language model scaling
factor and insertion penalty used for “word” decoding, and LM scale factor and insertion
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penalty used for STD are tuned to achieve maximal accuracy.
The results are summarized in table 5.3. Note the impact of missing OOV words on

the recognized phone sequences. This leads to drop of the UBTWV-OOVby 0.263.

Data type WRDtoPHN WRDREDtoPHN

PAC 67.28 65.40

UBTWV-ALL 0.634 0.540

UBTWV-IV 0.575 0.554

UBTWV-OOV 0.771 0.508

phnSIZE 3.80 4.34

Table 5.3: Phone accuracy and UBTWV for system where phone lattices are generated by full

vocabulary and reduced vocabulary LVCSR systems.

5.2.1 Correction of language model likelihoods in phone lattices gener-

ated by word system

Phone lattices generated by the LVCSR system can be easily produced using SVite decoder.
SVite internally produces phone lattices containing also word labels. The choice whether
a word or a phone lattice is produced is set by an SVite switch and the lattice is modified
after the decoding. One problem occurs in phone lattice generated in this way. The
recognition network contains word language model which remains in the lattice. The
phone lattice contains word language model likelihoods. These are pushed by a weight
pushing along the whole recognition network during the construction of the network by
OpenFST. This is why these pushed likelihood appear also in the phone lattices. If a term
represented by a sequence of phones is searched, it can appear across several word parts,
and the total language model likelihood is incorrect. This was corrected by replacing the
“bad” word LM likelihoods by correct phone bigram language model likelihoods. The
impact of replacing language model likelihoods on the accuracies is shown in table 5.4.

Data set LM type PAC PLAC Phone UBTWV

ALL IV OOV

WRDtoPHN (Original) LVCSR 67.28 94.71 0.634 0.575 0.771

WRDtoPHN (Replaced) Phone 62.66 94.71 0.559 0.490 0.718

WRDREDtoPHN (Original) LVCSR 65.40 95.30 0.540 0.554 0.508

WRDREDtoPHN (Replaced) Phone 61.28 95.30 0.483 0.473 0.506

Table 5.4: Comparison of phone accuracy, phone lattice accuracy and UBTWV depending on

language model probabilities (word or phone) and the type of LVCSR.

We conclude that phone lattices generated by the LVCSR system with word language
model likelihoods achieve higher overall accuracy. The phone accuracy deterioration is
about 4% absolutely when the word language model is replaced by phone language model
in the lattices. The overall spoken term detection accuracy also deteriorated. UBTWV
deterioration (about 0.070) for full dictionary system has a reason. The word language
model is better for word recognition (and spoken term detection). The deterioration
for out-of-vocabulary terms (for reduced dictionary system – WRDRED) is negligible
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(about 0.002) on the other hand. This proves that word language probabilities attached
to the phones for OOV terms are not correct, but not so bad, because the OOV terms
with correct phone probabilities have approximately the same score.

5.3 Comparison of word and phone based systems

This section aims at overall comparison of the phone loop based systems. We compare word
system (denoted as WRD), phone system from phone loop (denoted as PHN ) and phone
system derived from the LVCSR (denoted as WRDtoPHN ). We also aim to evaluate the
accuracies of systems on OOVs. That is why we use the LVCSR with reduced vocabulary
(see section 3.1.1 for description of this system). The systems with reduced vocabulary are
denoted as WRDRED and WRDREDtoPHN respectively. Table 5.5 compares the results.

Data type WRD WRDRED WRDtoPHN WRDREDtoPHN PHN

WAC 70.78 68.41 - - -

WLAC 88.22 85.75 - - -

PAC - - 67.28 65.40 59.65

PLAC - - 94.71 95.30 94.11

UBTWV-ALL 0.794 0.522 0.634 0.540 0.481

UBTWV-IV 0.775 0.747 0.575 0.554 0.453

UBTWV-OOV 0.841 0.000 0.771 0.508 0.542

wrdSIZE 0.51 0.51 - - -

phnSIZE - - 3.80 4.34 4.40

Table 5.5: Word, phone 1-best and lattice accuracies, STD accuracies (overall, IV and OOV) for

different systems. PHN system is trained on LnoOOV, trigram LM and beam pruning Pr = 175

(to achieve comparable lattice size to WRDREDtoPHN system). The UBTWV for WRD and

WRDRED systems is the Word UBTWV. The UBTWV for WRDtoPHN, WRDREDtoPHN and

PHN systems is the Phone UBTWV.

We see the impact of out-of-vocabulary words on spoken term detection accuracy. We
lose about 0.028 of the UBTWV accuracy on in-vocabulary words for LVCSR systems,
which is caused by the OOVs. Similar trend is seen in WRDtoPHN systems (from 0.575
to 0.554). Important fact is that an STD system based on directly generated phone lattices
PHN detects better the out-of-vocabulary terms. The PHN system has modified pruning
to achieve comparable phone lattice size to the WRDREDtoPHN system. The conclusion
is that there is no need for using phone lattices generated by the LVCSR system
for spoken term detection. In-vocabulary terms which can be detected more accurately
by WRDtoPHN system can be detected even more accurately by the LVCSR. Out-of-
vocabulary terms, which can not be detected by the LVCSR are better to be detected in
directly generated phone lattices than by a system converting word-to-phone lattices. The
only advantage of WRDtoPHN system is the higher overall phone accuracy, which is not
really interesting for the user.
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Chapter 6

Subword recognition – phone

multigrams

This chapter deals with theoretical description and experimental evaluation of multigram
units. Recognizer used for multigrams is the same as is for the phones.

Examples of other subword units [Ng00b] besides phones are syllables, phone n-grams,
phone multigrams, broad phone classes. All these units are based on phones. Phone
recognition and search using such units has its advantages and drawbacks. The advantage
of phone recognition (using simple phone loop) is its relative simplicity and presence of
minimum constraints. Produced phone string precisely reflects a spoken word or term.
This holds if the acoustic models are highly accurate and the word (or term) was uttered
correctly. Then phone string produced by the phone recognizer perfectly matches the
searched phonetic word form. But these two conditions are rarely fulfilled.

The drawbacks of phones are the following: If the model is not 100% accurate, the
speaker does not pronounce well, or there is a background noise, recognized phones do
not match the speech well. Also, decoding from free phone loop with higher order of n-
gram language model is computationally more expensive than the decoding from LVCSR
network1. Longer units should be more robust for incorrect pronunciation of a term too.
Finally, phone n-grams with fixed length n must be used for indexing of phone strings or
lattices. The optimal length of phone n-grams was found to be 3 in [Ng00b]. In our prior
work [SFL+08], we have also used sequences of overlapped 3-grams for search. However,
out-of-vocabulary words shorter than 3 phones were dropped.

The disadvantage of the fixed length sequences is that the frequencies of phone se-
quences are not taken into account. Some phone trigrams are more frequent than the
others. Variable length sequences can be used to overcome this problem: a rare sequence
is split into more frequent shorter sequences while a frequent sequence can be represented
as the whole unit. The other advantage is that variable length phone units can reflect
word sequences and compensate for missing word language model.

6.1 Definition of multigrams

Variable length sequences of phones are denoted as phone multigrams. The multigram
language model was proposed by Deligne et al. [DB95]. Multigram model is a statistical

1All phone acoustic models must be evaluated in the phone loop approach, while words and word

language model reduce the search space significantly. This leads to evaluation of limited set of phone

acoustic models and lower computational requirement.
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model having sequences with variable number of units. The definition of multigram model
and its parameter estimation follows:

Let w = {w1, w2, . . . , wN} denote a string of N units, and let s denote a possible
segmentation of w into q sequences q ≤ N of units s = {s1, s2, . . . , sq}. The n-multigram
model computes the joint likelihood L(w, s) of the corpus w associated to segmentation s
as the product of the probabilities p of the successive sequences, each of them having a
maximum length of n:

L(w, s) =

q
∏

i=1

p(si) (6.1)

Denoting as S the set of all possible segmentations of w into sequences of units, the
likelihood of w is:

Lbest
mgr(w) = max

s∈S
L(w, s) (6.2)

A n-multigram model is fully defined by a set of parameters P consisting of the prob-
ability of each unit sequence si ∈ D in a dictionary D = {s1, s2, . . . sm} that contains all
the sequences which can be formed by combination of 1, 2, . . . , n units:

P = (pi)
m
i=1 where pi = p(si) and

m
∑

i=1

pi = 1 (6.3)

Maximum likelihood estimates of P can be computed through Viterbi algorithm iter-
atively. Let s∗(k) denote the most likely segmentation of w with given parameters Pk at
iteration k:

s∗(k) = arg max
s∈S

L(s|w,Pk) (6.4)

According to [DB95], the re-estimation formula of ith parameter (sequence) at itera-
tion k + 1 is intuitive:

Pk+1
i =

c(si, s
∗(k))

c(s∗(k))
, (6.5)

where c(si, s) is the number of occurrences of sequence si in segmentation s and c(s) is
the total number of sequences in s.

The set of parameters P is initialized with the relative frequencies of all occurrences
of units up to length n in the training corpus. To avoid overlearning, it is advantageous
to discard low probable sequences: by setting pi = 0 to all c(si) ≤ c0. The c0 parameter
is denoted as multigram pruning parameter. Sequences of length n = 1 are excluded
from pruning to ensure that each sequence is segmentable. If a unit with length n = 1
has 0 occurrences in s, then it’s probability is set to a very low number.

The following definition of multigram model and parameter estimation using Maxi-
mum Likelihood estimation and Viterbi algorithm is adopted from [DB95]. The training
algorithm can be both Viterbi or EM (Expectation-Maximization). The use of a Viterbi
training instead of an EM training does not have a large impact on the performances ac-
cording to [DB95]: here the Viterbi algorithm built a unit dictionary about 10% larger than
EM algorithm and the perplexity of “Viterbi” units was about 1% relative higher for both
training and test data. We decided to use Viterbi algorithm due to easier implementation
and nearly the same perplexity.
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The principle of building-up the multigram model is the following:

1. Initial statistics of all possible multigrams are collected on training corpora.

2. Probabilities P1 of units are calculated.

3. Training corpora is segmented s∗(k) according to parameters Pk.

4. Multigram statistics are collected on segmented training corpora s∗(k).

5. Pruning of less frequent units is applied.

6. Probabilities Pk+1 of units are calculated.

7. If no convergence, go to step 3, else finish.

When the set of parameters P is estimated, any phone string can be segmented into
sequence of phone multigrams. The process of segmentation is straightforward. All pos-
sible segmentations, according to the inventory of phone multigrams, are created. Then,
probability of each segmentation is evaluated according to the probabilities of multigram
units. The best (most probable) segmentation is considered as the segmentation of given
phone string by the set of phone multigrams. The process of phone string segmentation
to phone multigrams is implemented also by the Viterbi algorithm.

6.2 Multigram training data

The phone multigrams are trained on phone strings. The training procedure has 2 steps.
Multigram dictionary and unit probabilities are estimated in the first step. Standard n-
gram language model is estimated in the second step. The multigram language model
training data are the same as used for phone language models (LnoOOV and LOOV ), see
section 5.1.1. Due to size of LOOV and the iterative multigram training procedure, the
data used for estimation of multigram dictionary is reduced to 3.75M phones to achieve
reasonable training time (several hours). This corpus is denoted as MOOV. The corre-
sponding corpus derived from LnoOOV is also created and denoted as MnoOOV. The
sizes of above mentioned corpora are summarized in table 6.1.

Notation # of utterances # of phones # of phones

(incl. sil) (excl. sil)

ctstrain04[HBD+05] 300.5k 11.21M 9.97M

LnoOOV 237.2k 6.40M 5.60M

LOOV 169.1k 6.26M 5.60M

MnoOOV 143.5k 3.82M 3.35M

MOOV 106.4k 3.75M 3.35M

Table 6.1: Comparison of corpora used for multigram dictionary (M*) and language model (L*)

training.

Word or subword recognizer produces lattices where terms appear as sequences of
words or subwords. However, the recognizer (SVite decoder) can be switched to produce
phone lattices even if it is word/multigram recognizer. We can evaluate phone accuracy
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and detection of search terms as phone strings even if such phone lattice is produced by an
LVCSR system. Beside Word UBTWV and Phone UBTWV, we define Mgram UBTWV
which means the UBTWV in case terms are searched in multigram form.

Our multigram system is evaluated by the following metrics:

• PAC Phone 1-best accuracy – The decoder is switched to produce phone lattices
instead of multigram lattices. It is similar to phone lattices generated by the LVCSR
described in section 5.2.

• Mgram UBTWV – Spoken term detection task is applied on multigram lattices.
Terms are converted from word form to multigram form. Units in lattices are multi-
grams.

• Phone UBTWV – Spoken term detection task is applied on phone lattices generated
by multigram system. Terms are converted from word form to phone form. Units in
lattices are phones.

• wrdSIZE / phnSIZE Lattice size – Size of lattices is measured by the number of
indexed tokens. See section 3.4.1 for more precise description. Multigram unigrams
are indexed in case of multigram lattices (denoted as wrdSIZE ), which is similar to
indexing word lattices. Phone trigrams are indexed in case of phone lattices (denoted
as phnSIZE ).

Note, that searched terms must be converted from words to sequences of multigrams,
too. Each term has appropriate phone sequence which is searched in phone lattices. This
phone sequence is segmented into phone multigrams. The multigram sequence is only the
most likely segmentation of given phone string in this thesis, otherwise it is stated. For
more details about term conversion from words to multigrams see section 6.5. Produced
sequence of multigram units is searched in multigram lattices.

6.3 Tuning of multigram parameters

Several parameters must be known to build the inventory of multigram phone sequences.
The parameters are maximal length of multigram – lmgram and multigram prun-
ing – c0. For the multigram-based subword system, we must also set the order of n-gram
language model and decoding parameters as maximum active models MAM, beam prun-
ing factor Pr, word insertion penalty and language model scaling factor. We have 7 pa-
rameters which must be tuned to find the best results. Some of these parameters depend
on each other. The following procedure is used to find approximately the best setup.

The baseline multigram dictionary is estimated on MOOV corpus and the n-gram
language model is trained on LOOV corpus. Multigram parameters are set to lmgram = 5
and c0 = 2. Order of n-gram language model over multigram units is set to 3. Similarly to
previous experiments, word insertion penalty and language model scaling factor are tuned
to the best accuracy.

1. MAM and Pr are tuned to find reasonably good results depending on the size of
lattices in the first step. It is found that MAM and Pr have no effect on the phone
accuracy. Both the Mgram UBTWV and Phone UBTWV saturate close to Pr = 220
and MAM = 5000. So these values are fixed for further experiments.



6.3 Tuning of multigram parameters 79

2. Different multigram pruning factors c0 are tried in range between 2 and 200. De-
pendencies of PAC, Mgram UBTWV and Phone UBTWV are plotted in figure 6.1.
Phone accuracy is not significantly (0.5%) affected by the pruning. PAC saturates
for multigram pruning c0 = 20. UBTWVs are affected more significantly, especially
the Mgram UBTWV. Both UBTWVs saturate close to c0 = 50. That is why the
multigram pruning factor is chosen c0 = 50 in the following experiments.

3. Maximal length of multigram units lmgram is tested next. The accuracies are plotted
in figure 6.2. We conclude that the PAC is not affected much and UBTWVs saturates
for multigram length 5. The value lmgram = 5 is fixed.

4. Finally, different orders of n-gram language model are used (see table 6.3 for details).
The conclusion is that trigram language model brings usually the best accuracy.

Figure 6.1: Comparison of phone accuracy (dashed), Mgram UBTWV-ALL (solid) and Phone

UBTWV-ALL (dot-dashed) for multigrams of length lmgram = 5 and different multigram pruning

factors c0.

Figure 6.2: Comparison of phone accuracy (dashed), Mgram UBTWV-ALL (solid) and Phone

UBTWV-ALL (dot-dashed) for multigrams of different length lmgram and multigram pruning fac-

tor c0 = 50.
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word sil YEAH I MEAN IT IS sil INTERESTING

xwrd sil-y-eh-ax ay-m-iy-n ih-t-ih-z-sil ih-n-t-ax-r eh-s-t-ih-ng

nosil sil y-eh-ax ay-m-iy-n ih-t-ih-z sil ih-n-t-ax-r eh-s-t-ih-ng

noxwrd *sil* *y-eh-ax* *ay* *m-iy-n* *ih-t* *ih-z* *sil* *ih-n t-ax-r-eh-s t-ih-ng*

Table 6.2: Examples of different multigram segmentations. The first line is word transcript. The second line is unconstrained multigram segmentation.

The third line is constrained multigram segmentation where silence is forbidden inside a multigram unit. The fourth line is constrained multigram

segmentation where silence and word boundary * are forbidden inside a multigram unit.

6.4 Constrained multigram units

The baseline process of building multigram unit inventory is without any constraints (denoted xwrd). The corpus of phone strings is taken
as is. An example of an utterance segmented by such unconstrained units is in table 6.2 line 2. A multigram unit can be placed across
word boundaries and also across silences (sil). Incorporation of word boundaries (cross-word multigrams) into multigram units means, that
multigrams also somehow reflect the word language model. The question is whether this is good or not. The same question can be asked
about the silence sil. By incorporating silence into multigrams, the units are learned to remember parts of speech where silence is usual
and where it is not. Two experiments with constrained training of multigram inventory are done to evaluate the influence of cross word
multigrams and silence inside multigram units:

6.4.1 No silence in multigram

Inventories of multigram units which do not contain silence are trained in this experiment (denoted nosil). The unigram sil is the only one
multigram unit which contains silence. This is needed to make utterances segmentable. An example of utterance segmented by this method
is in table 6.2 line 3. Building of this nosil multigram inventory is done by a modification in the first step of multigram training procedure.
After the statistics of all n-grams appearing in the training corpus are collected, all n-gram units containing sil are omitted (except the
unigram sil). Then, the initial probabilities of units are re-normalized and the iterative training algorithm is run.
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6.4.2 Non-cross-word multigrams

In this experiment, word boundaries are marked in the training corpus, and the following
rule is incorporated into the training algorithm: word boundary will appear at most at
the beginning or at the end of a multigram unit. Only two units with the word boundary
marker can be put besides each other during the segmentation. If the first unit contains
word boundary marker at the end, then the following boundary must contain the word
boundary marker at the beginning. This system is denoted as noxwrd. An example of
utterance segmented by noxwrd multigrams is in table 6.2 line 4. The word boundary
marker is denoted by a star symbol.

6.4.3 Results

The multigram parameters for the following experiments are: maximum multigram
length lmgram = 5, multigram pruning c0 = 50, multigram training corpus MnoOOV
and language model training corpus LnoOOV. The decoder parameters are the same as
for the previous multigram experiments.

The results comparing multigrams trained with different constraints are summarized
in table 6.3. Three different orders of n-gram language model are trained for each of
these three systems. The “Phone” column contains results when the multigram decoder
is switched to produce phone lattices.

System LM Phone Multigram

n-gram PAC PLAC UBTWV-ALL phnSIZE UBTWV-ALL wrdSIZE

xwrd 1 60.33 95.91 0.519 20.0 0.537 3.5

xwrd 2 63.13 95.54 0.533 9.4 0.568 2.0

xwrd 3 65.25 95.32 0.547 3.6 0.559 1.4

nosil 1 60.38 96.06 0.531 21.6 0.546 3.2

nosil 2 63.25 95.61 0.551 9.3 0.592 1.8

nosil 3 65.42 95.41 0.547 4.1 0.584 1.2

noxwrd 1 59.30 95.84 0.501 20.3 0.535 7.3

noxwrd 2 62.87 95.44 0.528 7.6 0.613 3.1

noxwrd 3 65.10 95.19 0.541 3.7 0.630 1.7

Table 6.3: Comparison of accuracies of xwrd, nosil and noxwrd multigram systems. All systems

have maximal multigram length lmgram = 5, multigram pruning c0 = 50 and are trained on

MnoOOV and LnoOOV corpora.

We conclude that multigrams perform better on the “multigram” level than on the
phone level in the STD task. The best accuracy is achieved by noxwrd trained multigrams
with trigram language model. The best phone accuracy is achieved by nosil trained multi-
grams and trigram language model. The constrains during the training have no significant
effect on the phone accuracy. On the other hand, the nosil units perform slightly better.
Significant impact is on the STD task, where the improvement of Mgram UBTWV-ALL
is about 0.06 (10% relative).

Comparison of multigram systems trained with and without out-of-vocabulary words
is in table 6.4. Excluding OOVs from training (which is the real scenario) causes a hit
of 0.8% relative on the phone accuracy and up to 0.044 on the Mgram UBTWV-ALL.
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System trained on Phone Multigram

PAC UBTWV-ALL UBTWV-ALL

xwrd OOV 64.32 0.561 0.566

nosil OOV 65.84 0.576 0.603

noxwrd OOV 65.50 0.556 0.674

xwrd noOOV 65.25 0.547 0.559

nosil noOOV 65.42 0.547 0.584

noxwrd noOOV 65.10 0.541 0.630

Table 6.4: Comparison of accuracy of xwrd, nosil and noxwrd multigram systems trained on

corpora including (MOOV, LOOV ) and excluding (MnoOOV, LnoOOV ) the OOVs. All systems

have maximal multigram length lmgram = 5, multigram pruning c0 = 50 and trigram language

model.

6.5 Segmentation of searched terms

Terms must be converted from words to multigram sequences for multigram based STD.
Only the most likely segmentation was used in all previous experiments. The following
experiment evaluates the dependency of STD accuracy on the number of multigram seg-
mentations of terms. The terms are converted from words to phones. These phone strings
are next segmented to multigram sequences which are searched in multigram lattices. We
modify the segmenting algorithm to produce n-best segmentations of terms’ phone strings.

The multigram system with maximal multigram length lmgram = 5, multigram prun-
ing c0 = 50 and noxwrd constraint is used for the evaluation. We also evaluate the
dependency on the order of language model and training corpora (with OOVs or without
OOVs). We generate 1, 2, 3, 5, 10 and 20 best segmentations of the terms. The Mgram
UBTWV-ALL are shown in figure 6.3.

Corpora MOOV-LOOV MnoOOV-LnoOOV

LM order 1-gram 2-gram 3-gram 1-gram 2-gram 3-gram

UBTWV-ALL UBTWV-ALL IV OOV

1-best 0.524 0.634 0.674 0.535 0.613 0.630 0.647 0.593

3-best 0.525 0.638 0.675 0.536 0.618 0.644 0.648 0.636

Table 6.5: Comparison of Mgram UBTWV-ALL for 1-best and 3-best segmentation of searched

terms. The multigram system is trained on corpora including (MOOV, LOOV ) and excluding

(MnoOOV, LnoOOV ) the OOVs. 3 different orders of n-gram language model are used. The

multigram inventory has maximal length of lmgram = 5, multigram pruning c0 = 50 and noxwrd

constraint. The Mgram UBTWV-IV and UBTWV-OOV is shown for 3-gram LM and “noOOV”

trained multigrams.

We conclude that the Mgram UBTWV-ALL accuracy saturates for 3-best segmenta-
tions of the terms. The exact values are summarized in table 6.5. The largest improvement
(0.014) caused by the n-best segmentation is reached for the system trained on corpora
without OOVs (MnoOOV-LnoOOV) and trigram language model. The improvement is
caused by improvement on OOV terms, Mgram UBTWV-OOV improved by 0.043. No sig-
nificant improvement due to the number of segmentations is observed for systems trained
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Figure 6.3: Comparison of Mgram UBTWV-ALL depending on n-best segmentations of searched

terms for different multigram systems. The multigram systems are trained on corpora including

(MOOV, LOOV ) and excluding (MnoOOV, LnoOOV ) the OOVs. 3 different orders of n-gram

language models are used. The multigram inventory has maximal length of lmgram = 5, multigram

pruning c0 = 50 and noxwrd constraint.

on OOVs. We do not see any improvement of accuracy on IV or OOV subsets. The
search for the 3-best variants is slower on the other hand. Each term must be searched
3 times (without any optimization). That is why we concluded that searching for the 1-best
segmentation is optimal for further experiments.

6.5.1 Comparison of confidence estimations for multigram system

In this section, we compare confidence estimation methods for multigram system in similar
manner as we did in section 4.4 for word system. The confidence measures are compared
for noxwrd system with trigram language model and decoding beam pruning lowered
to Pr = 300. We lower the pruning to achieve larger lattices for better posterior probability
and confidence estimation.

Evaluation metric Mgram TWV Mgram UBTWV

Confidence measure ALL IV OOV ALL IV OOV

LP 0.178 0.234 0.294 0.658 0.667 0.637

SOLP 0.228 0.325 0.301 0.690 0.712 0.641

SCOLP 0.148 0.194 0.297 0.651 0.658 0.637

Cmax 0.224 0.319 0.302 0.696 0.719 0.641

Table 6.6: Comparison of different term confidences and its influence on the Mgram TWV and

UBTWV scores for the multigram noxwrd system with trigram LM. The multigram inventory has

maximal length lmgram = 5, multigram pruning c0 = 50. Beam pruning is set to Pr = 300.
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Results summarized in table 6.6 show, that the best accuracy is achieved again (see
section 4.4) by SOLP and Cmax confidence measures. On contrary to the word system,
the confidence measures have significant impact on UBTWV. The difference between LP
and SOLP is 0.032. It is interesting to note, that more “correct” confidence estimation
has more significant influence on short terms. The IV subset contains large portion of
one word terms in comparison to OOV subset. This is probably caused by the fact, that
subword system produces more overlapped hypothesis of each term than the word system.
In case of SOLP, these are taken into account of term confidence and improve the accuracy.
Similar trend is seen also for multigram TWV.

6.6 Conclusion

Table 6.7 compares word, phone and phone multigram based systems from phone and
spoken term detection accuracy point of view. The WRDREDtoPHN is the WRDRED
LVCSR switched to produce phone lattices. The best phone accuracy is achieved by the
multigram nosil constrained system. However, better STD accuracy is achieved by the
noxwrd constrained multigrams. It is important to mention that multigram lattices are
significantly smaller and the recognition network is approximately of the same size com-
pared to phone system. The multigram system has maximal multigram length lmgram = 5
and multigram pruning c0 = 50. The terms are segmented only to 1-best multigram
variant.

Unit System LM PAC UBTWV SIZE

n-gram ALL IV OOV

Word WRDRED 2 - 0.514 0.734 0.000 0.56w

Word WRDREDtoPHN 2 65.40 0.540 0.554 0.508 4.34p

Phone LnoOOV 3 59.66 0.483 0.453 0.552 6.38p

Mgram xwrd 3 65.25 0.559 0.552 0.577 1.4w/3.6p

Mgram nosil 3 65.42 0.584 0.578 0.597 1.2w/4.1p

Mgram noxwrd 3 65.10 0.630 0.647 0.593 1.7w/3.7p

Table 6.7: Comparison of word, phone and multigram systems from phone accuracy, lattice size

and Word, Mgram and Phone UBTWVpoint of view. 0.56w means wrdSIZE and 4.34p means

phnSIZE.



Chapter 7

Combined word-subword spoken

term detection

We investigate into the use of different combination of word and subword STD systems.
Let us have a term "Igor Szöke". The term is first split into in-vocabulary (IV) and out-
of-vocabulary (OOV) parts. Let us assume, that the name Igor is in-vocabulary word igor

and the surname Szöke is an out-of-vocabulary word. If we choose phones as the subword
units, the out-of-vocabulary part is decomposed into sequence of phones s eh k eh. The
combination of a word and subword based spoken term detection is needed to spot both,
in-vocabulary and out-of-vocabulary parts of the term.

Figure 7.1: Scheme of word-subword recognition. The decoder produces hybrid lattice which is

searched for the terms.

The combination of word and subword STD can be done in two ways. The first way of
word-subword combination is a hybrid word-subword decoding1, where the combined
word-subword recognition is done directly during the decoding. A scheme of the word-
subword combination during the recognition (decoding) is in figure 7.1. The output of the
recognizer is a hybrid word-subword lattice, which is searched for terms [Baz02, YS04a].
An example of a hybrid word-subword lattice is in figure 7.2.

1Denoted as the prior combination in [YS04b].
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Figure 7.2: Example of word-subword lattice.

The second way is combination after the decoding2. The “after the decoding”
combination can be done in several approaches. One possible approach is the combination
in the lattice level. The word and subword lattices are generated separately and, then
combined together [YS04b] to a hybrid lattice (scheme in figure 7.3).

In both hybrid word-subword decoding and lattice level combination approaches, in-
vocabulary (IV) and out-of-vocabulary (OOV) terms are directly searched in the lat-
tices. In our example, the term "igor s eh k eh" is directly searched in the hybrid
lattice. The drawback of the lattice level combination after the decoding (reported by
Yu et. al. [YS04b]) is in the need to balance scores between words and subwords. This can
happen particularly in case of largely different systems (GMM-based word recognizer and
neural net-based subword recognizer).

Figure 7.3: Scheme of combination after the decoding on the lattice level, where word and subword

lattices are generated separately and then combined into a hybrid word-subword lattice. The hybrid

lattice is then searched for the terms.

The combination after the decoding may be done later, on the search level. The
term’s word and subword parts are search separately in the appropriate lattice (scheme
in figure 7.4). We used this approach in NIST STD 2006 evaluations [ČSF+07]. The IV
part of term (igor) is searched in word lattice and the OOV part of term (s eh k eh)

2Denoted as the posterior combination in [YS04b].
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is searched in the subword lattice. Last, the candidates are combined. Only pairs of
candidates where word and subword parts satisfy time constrains (s eh k eh directly
follows igor) are returned as the term detection. The drawback of this approach is that
we need two standalone systems.

Figure 7.4: Scheme of combination after the decoding on the level of term detection, where word

and subword lattices are generated separately. The term is split into IV and OOV parts and these

are searched separately. Finally, the IV and OOV part candidates are combined.

7.1 Combined word-subword recognition via hybrid recog-

nition network

Doing the combination of word and subword STD during the recognition (decoding) is the
most straightforward approach. A hybrid word-subword language model is the only thing
which is needed for the decoding.

The word recognizer is considered as a strong recognizer. It has strong acoustic model
(word models) and language model (word bigrams). The subword recognizer is considered
as a weak recognizer. It has weak acoustic model (phone or phone multigram units) and
relatively weak language model (phone n-grams).

The combination of word and subword recognizer should allow to traverse between
words and subwords in any time. If traversing penalties and other parameters are set
correctly, the word part of the recognizer should well represent in-vocabulary speech.
Out-of-vocabulary parts of speech may be highly unlikely for the strong word recognizer.
However these OOV parts are not so unlikely for the subword part of the recognizer. This
leads the recognizer to switch from the word part to the subword part. The result is
the hybrid word-subword lattice where OOV parts of speech are represented by phone
sequences and IV parts of speech by word sequences.
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We decided to use an approach similar to [Baz02]. Bazzi investigated the out-of-
vocabulary detection3, its impacts on word recognition and word confidence score. He
used hybrid word-subword recognition network. The word language model (network) con-
tained a symbol substituting an OOV word. The OOV word was modeled by a phone
sequence (bigram phone LM). He also proposed variable length phone sequences (multi-
grams), which brought significant improvement of OOV detection accuracy. This work
was not aimed at using/post-processing the output of OOV (subword) model. Only phone
accuracy of recognized phone sequences was evaluated.

On contrary to Bazzi [Baz02], we aim at the investigation of STD accuracy and the
practical application for searching in spoken documents. We fully use the information
produced by the OOV (subword) model for search of the OOV terms. We evaluate the
accuracy of STD and word accuracy. We investigate in more depth “which subword model
should be the best”:

• The impact of subword model and hybrid network scaling parameters to the accuracy.

• The speed of the system and size of the index.

• Search for the system configuration suitable for practical use.

• Evaluation of the hybrid system in conjunction with indexing and search engine for
spoken term detection.

7.1.1 Building combined word-subword hybrid recognition network

We use the same decoder (SVite from STK toolkit) as is used for the baseline experiments
in word and phone recognition (chapters 4, 5, 6). Because the SVite is a static decoder,
the hybrid decoding is possible by modification of recognition network (figure 7.5).
No other changes are needed in the decoder.

Brief description of how a word recognition network is built is given in section 4.2.
The hybrid word-subword recognition network is built in similar way. Only the language
model automaton G and the lexicon L are modified in the composition (equation 4.3 in
section 4.2):

H ◦ C ◦ L ◦ G, (7.1)

The word language model represented by WFSA G is created as open vocabulary
language model and contains an <unk> symbol. The <unk> symbol represents any out-
of-vocabulary word, see figure 7.6. The new open-vocabulary language model represented
by WFSA in denoted as Gword. This <unk> symbol is substituted by a subword language
model (figure 7.7). The subword language model is converted to WFST Gsubword. The
hybrid “language model” is created by composition of word and subword language models

Gsubword ◦ Gword. (7.2)

The substitution is illustrated in figure 7.8. The red part of network is the <unk> in
figure 7.6 substituted by the subword model in figure 7.7.

The word dictionary L mapping words to phones is joint with the subword dictionary
mapping subword labels to phones. Then this dictionary is converted to WFST represent-
ing the hybrid lexicon. Modified composition of the hybrid recognition network is written
as:

H ◦ C ◦ (Lword ∪ Lsubword) ◦ Gsubword ◦ Gword, (7.3)

3The OOV detection aims at detection of parts of speech containing out-of-vocabulary words. But it

usually does not deal with the content (what was the OOV word).
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Figure 7.5: Schema of 3-pass recognition system used for hybrid word-subword lattice production.

where H represents the HMM (tied-list) and C represents the mapping from context-
dependent to context-independent phonetic units, Lword is the pronunciation dictionary
mapping phones to words, Lsubword maps phones to subword units (eg. syllables, multi-
grams or phones). Gsubword is a weighted transducer created from the subword language
model and Gword represents the word language model (weighted acceptor).

The <unk> and <silsp> nodes in the hybrid network (figure 7.8) produce an output
label. The <unk> node produces symbol <unk> which is used as a marker of the beginning
of subword section in the output. The <silsp> node produces symbol <silsp> which is
used as a marker of the end of subword section in the output and also represents a sil/sp
model4.

Parameters such as word insertion penalty and acoustic or language model scaling
factors are tuned to control the recognition accuracy and output of the LVCSR system.
However, the hybrid network is considered as one object by the SVite decoder. The same
penalty and scaling factor apply to both word and subword parts. That is why three
different parameters are incorporated into the combined network during its building. The
first parameter is subword language model scaling factor SLMSF. This parameter
exponentiates the likelihood5 assigned to the subword LM transitions. The second param-
eter is subword word insertion penalty SWIP. It is a constant which multiplies each
transition’s likelihood6 value leading to a word node. The last parameter is subword cost

4The silence/short pause is attached to each word model by default in each word network. This is used

for modeling of possible silences following the words.
5In practice, log likelihoods are used. So the SLMSF multiplies the log likelihoods of subword part.
6In practice, log likelihoods are used. So the SWIP is added to the log likelihoods of subword part.
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Figure 7.6: Example of open vocabulary language model. The <unk> states for the out-of-
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Figure 7.7: Example of a subword (phone) language model.

SC. It is a constant which multiplies the <unk> symbol likelihood7 and represents a cost of
going to the whole subword model. Figure 7.9 illustrates example of the above mentioned
parameters.

Important note: From practical point of view, the SLMSF scales the probabilities of
subword LM to corresponds to word LM, while SWIP modifies word insertion penalty set in
the decoder to be applicable also in the subword part. “Word” insertion penalty can differ
largely for systems with different type of units (words, phones or multigrams). SLMSF
and LM are factors which should scale and shift the subword LM to have comparable
probabilities to the word LM. The SC penalizes only entering the subword model. This
can be understood as a factor which modifies the prior probability of observation of OOV
word (represented by <unk> symbol in the word LM).

The LM log probabilities (negative values) are represented as positive values in the
WFST. But we did not change sign of SWIP in our implementation, so the meaning of
SWIP value is reversed. This constant is subtracted in the decoder. So, if the reported
SWIP value is negative (−1.6), it means that positive value (+1.6) is added to accumulated
log likelihood in each token passing through the subword unit label.

7.2 Baseline systems

In comparison to previous experiments with word recognizer (chapter 4), we modify the
language model and the dictionary. The language model must contain the OOV symbol for
correct modeling of speech with possible OOVs. We took several corpora (section 4.1.4)
used for language model estimation (section 4.1.3) and trained two new open vocabulary
language models:

• The first one is used as reference baseline LM (denoted WRDunk). It is an open

7In practice, log likelihoods are used. So the SC is added to the <unk> symbol log likelihood.
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Figure 7.8: Example of hybrid word-subword language model.

vocabulary LM with full 50k words vocabulary. The <unk> symbol represents all
words appearing in the corpora beyond the 50k vocabulary.

• Then the vocabulary is reduced by the 880 words (see section 3.1.1). The sec-
ond open vocabulary LM is estimated with the reduced vocabulary (denoted WR-
DREDunk). So the OOV set of words is enlarged by the omitted 880 words.

The baseline experiments are summarized in table 7.1. The beam pruning is set
to Pr = 220 and maximum active models is set to MAM = 5000.

System WAC Word UBTWV wrdSIZE

ALL IV OOV

WRDforHYB 69.04% 0.738 0.734 0.746 0.252

WRDunk 69.20% 0.724 0.727 0.715 0.190

WRDREDunk 66.50% 0.486 0.694 0.000 0.190

Table 7.1: Comparison of closed vocabulary baseline word recognizer WRDforHYB with full

WRDunk and reduced WRDREDunk open vocabulary language model. OOVs caused significant

deterioration of the accuracy in the WRDREDunk system.

Obviously both word and STD accuracy dropped. Dropping of STD accuracy is caused
by the out-of-vocabulary words, which deteriorate (−0.033) also the STD accuracy of the
in-vocabulary words. Negative influence of OOVs has significant impact of −2.7% on
WAC.

Besides the baseline system for word accuracy and in-vocabulary term detection,
we need also baseline system for out-of-vocabulary term detection. The best accuracy
(UBTWV-OOV) on the OOV terms was achieved by phone multigram based systems (see
section 6.6). Multigram systems giving the best Mgram UBTWV-OOV accuracy proposed
in section 6.4 are summarized in table 7.2. The best Mgram UBTWV-OOV accuracy is
achieved by unigram language model for all three systems. The UBTWV-OOV accuracy
is similar across different constrained multigram system. According to UBTWV-OOV and
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Figure 7.9: Example of parameters used for scaling the subword part in the hybrid network.

lattice size, we decided to use the xwrd multigram system with unigram language model
as baseline system for OOV term detection.

System LM Mgram UBTWV wrdSIZE

order ALL IV OOV

xwrd 1 0.537 0.492 0.642 3.5

nosil 1 0.546 0.508 0.636 3.2

noxwrd 1 0.535 0.492 0.637 7.3

Table 7.2: Comparison of multigram based systems giving the best UBTWV-OOV. The multigram

inventory is estimated on MnoOOV and the unigram language model is trained on LnoOOV (see

section 6.2 for more details).

7.3 Oracle hybrid system

An oracle hybrid word-subword system is built to estimate hybrid system upper-bound
accuracy. The goal is to estimate deterioration of the accuracy (compared with WRDunk
system) by using the (<unk>) symbol for modeling the “out-of-vocabulary” parts of speech.
The subword part is replaced by the 880 OOV words with unigram language model. The
unigram probabilities are taken from the WRDunk language model.

Two different systems are built for the estimation of upper-bound word accuracy. An
example of 1-best output of these two systems is in table 7.3 (the word EXAMPLE is chosen
as the OOV word).

• The HybridOracle system produces word transcripts without marking any of OOV
parts. The word accuracy of HybridOracle shows the upper-bound word accuracy
deterioration (0.48% absolutely against baseline WRDunk system, see table 7.4)
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System 1-best output example

WRDunk THIS IS AN EXAMPLE OF RECOGNIZER OUTPUT

WRDREDunk THIS IS AMEX APPLE OF RECOGNIZER OUTPUT

HybridOracle THIS IS AN EXAMPLE OF RECOGNIZER OUTPUT

HybridOracleunk THIS IS AN <unk> OF RECOGNIZER OUTPUT

Table 7.3: Example of the 1-best output of the standard and hybrid systems. The word EXAMPLE

is set as OOV (omitted from vocabulary) in WRDREDunk and added into the OOV model in

HybridOracle and HybridOracleunk systems. The HybridOracle system recognizes and outputs

EXAMPLE, the HybridOracleunk system recognizes EXAMPLE but outputs <unk>.

when the OOV words are modeled by <unk> and unigram probability in comparison
to standard “in-vocabulary” bigram modeling.

• The HybridOracleunk system produces word transcripts with marking the OOV
parts by the <unk> symbol. So each time the decoder passed through OOV subpart,
only the <unk> is written out, although the OOV subpart contains the 880 OOVs.
This should lead to one substitution error in the evaluation of word accuracy. The
word accuracy of HybridOracleunk shows the upper-bound word accuracy improve-
ment (1.07% absolutely against WRDREDunk, see table 7.4) when the OOV words
are modeled.

The optimal scaling parameters must be estimated for subword (OOV model) part of
the hybrid system. All three parameters (SLMSF, SWIP and SC ) are tuned separately.
The SWIP and SLMSF have the greatest influence on the word accuracy. The word accu-
racy (WAC) depending on the SLMSF, SWIP and SC parameters is plotted in figure 7.10
for the oracle systems. The Word UBTWV depending the SLMSF, SWIP and SC param-
eters is plotted for in-vocabulary words in figure 7.11. The conclusion is that the SWIP
and SLMSF parameters have the greatest influence.

Figure 7.10: Dependency of the HybridOracle (solid black) and HybridOracleunk (dashed black)

systems word accuracy on the SWIP, SLMSF and SC parameters.

After tuning SLMSF, SWIP and SC parameters separately, these parameters are tuned
together to found the best accuracy. However, we find that this has no significant impact on
the accuracy. The word accuracy improved by 0.05% and the Word UBTWV-IV improved
by 0.005. The Word UBTWV-IV improvement can be seen significant, but the lattice size
wrdSIZE increased by 10%, which negates the improvement. We decided to tune only the
SWIP parameter for further experiments. This gives nearly the same results, while the
system tuning for the following experiments is simpler. In table 7.4, the best word and
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Figure 7.11: Dependency of the HybridOracle systems Word UBTWV-IV accuracy on the SWIP,

SLMSF and SC parameters.

UBTWV-IV accuracies achieved by tuning all three parameters (marked by blue) and only
the SWIP parameter (marked by red) are shown.

System WAC Word UBTWV SLMSF SWIP SC wrdSIZE

IV

WRDunk 69.20% 0.727 - - - 0.190

WRDREDunk 66.50% 0.694 - - - 0.190

HybridOracle 68.72% 0.714 1.0 4.5 0.0 0.216

HybridOracleunk 67.57% 0.719 1.0 4.0 0.0 0.196

HybridOracle 68.43% 0.722 1.0 3.0 0.0 0.202

HybridOracle 68.77% 0.718 1.1 5.0 0.0 0.215

HybridOracle 68.53% 0.727 1.0 4.5 1.0 0.228

Table 7.4: Comparison of accuracies of baseline word recognizers with full and reduced open vo-

cabulary language model, and hybrid oracle recognizers on different settings of tuned parameters

SLMSF, SWIP and SC. Value in bold means that this accuracy is maximized by tuning of param-

eters. Systems where only SWIP parameter was tuned are marked in color red. Systems where all

three parameters were tuned are marked in color blue.

The HybridOracle system suggests an easy way of inserting new words into the recog-
nizer. A minimalistic LVCSR based spoken term detector can be built on small LVCSR
(5k words for example). The searched terms which are OOV can be added on system
start-up into the recognition network in the same way as is in the HybridOracle. This can
not be used in document indexing and search. However, it can be used in the security
domain, where lots of data is searched once or few times and the processing time must be
fast. This can be also an interesting alternative to the acoustic keyword spotting.

7.3.1 Accuracy depending on the lattice size

The saturation of accuracy is visualized for certain values of the parameters for the Hy-
bridOracle system in figure 7.10. But as the “weight” of the OOV part of the network
changes, the lattice size varies. Because the size of the lattice is one of important param-
eter in the spoken term detection task, we analyze the accuracy related to the lattice size.
Note however, that lattice size and accuracy depend on system parameters (beam pruning,
penalties, scaling parameters, SLMSF, SWIP, SC etc.).
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In this section, the independent variables are SLMSF, SWIP or SC parameters for
the hybrid systems (HybridOracle). Other parameters are fixed. Pruning is fixed to the
values Pr = 220, MAM = 5000. On the other hand, there are no SLMSF, SWIP or
SC parameters in WRDunk and WRDREDunk systems. We must modify the lattice size
by setting the decoder pruning Pr in this case. The Pr is the independent variable, and
accuracy and lattice size depend on the Pr for WRDunk and WRDREDunk systems.

The dependency of WAC or Word UBTWV-IV accuracy and lattice size wrdSIZE on
the SLMSF, SWIP or SC parameters is plotted in figures 7.12 and 7.13 respectively. The
baseline WRDunk and WRDREDunk systems are plotted in red. So both, the accuracy
on Y-axis and the lattice size on X-axis are dependent variables on the SLMSF, SWIP or
SC (or beam pruning Pr for the baseline).

Figure 7.12: Dependency of the WAC and the lattice size wrdSIZE of HybridOracle systems while

parameters SWIP, SLMSF and SC are tuned. The accuracy and lattice size of baseline systems

WRDunk and WRDREDunk are modified by pruning factor Pr compared to the HybridOracle

system.

Figure 7.13: Dependency of the Word UBTWV-IV and the lattice size wrdSIZE of HybridOracle

systems while parameters SWIP, SLMSF and SC are tuned. The lattice sizes of baseline systems

WRDunk and WRDREDunk are modified by pruning factor Pr compared to the HybridOracle

system.

The conclusion is, that if the lattices produced by baseline system (WRDunk and
WRDREDunk) and the hybrid system are of the same size, better accuracy can be achieved
by the baseline system rather than by the hybrid system for certain values of SLMSF, SWIP
or SC parameters. If the SC parameter is set to 5, the Word UBTWV-IV is 0.700 for
the HybridOracle system and 0.694 for the WRDREDunk system (0.006 improvement).
On the other hand, if the WRDREDunk system is tuned to produce comparable size of
the lattices, then the Word UBTWV-IV is 0.705 and the HybridOracle system is 0.005
worse. The improvement of HybridOracle system is valid only for SLMSF, SWIP or
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SC parameter ranges where accuracy curves lie above the baseline WRDREDunk curve
(figures 7.12 and 7.13).

7.4 Hybrid system with subword out-of-vocabulary model

While previous section described a “cheating” oracle system that was used to investigate
the influence of different parameters, here we start with a real hybrid system containing
subword OOV model.

We use two different subword models for modeling the out-of-vocabulary words. The
first is the phone loop (chapter 5) and the second is the phone multigrams (chap-
ter 6). The phone loop is evaluated just to validate the results published in [Baz02]. Only
the SWIP parameter is used for tuning in the hybrid subword experiment. We did the
experiment also with SLMSF and SC parameters, but the SWIP is found to be the most
important.

The out-of-vocabulary terms should be searched in a word-multigram form (IV words
as words, OOV words as subwords). Let us suppose that term ”TERM EXAMPLE” is an OOV
term, where word EXAMPLE is the OOVword. The OOV term should be searched correctly
in form ”TERM ih g z ae m p el”. Unfortunately, the LatticeSTD tool (description
in section 3.5.5) does not support the word-subword forms. So the OOV terms must be
searched in full subword form ”t er m ih g z ae m p el”. Experiments with correct
word-subword forms of OOV terms are possible with our LSE – indexing and search
engine (description in section 3.5.6). Spoken term detection experiments using LSE are
summarized later in chapter 8.

However, using of the indexing and search engine for all experiments is not optimal
due to large number of experiments. Therefore we decided to use the LatticeSTD tool for
all following experiments and the OOV terms are searched entirely in the subword form.
The UBTWV-OOV accuracy is negatively influenced by this decision. The deterioration
is 0.008 (see table 8.1 in section 8 for more details) and is not so large, but it should be
taken in mind.

The in-vocabulary terms are searched in two variants. Expect that term ”TERM
EXAMPLE” is IV term. All words are let in word forms and also are converted to sub-
word form: TERM EXAMPLE, t er m ih g z ae m p el. The reason for the subword form
is in errors caused by OOV word on surrounding IV words. Influence of this decision is
also evaluated more deeply later in chapter 8.

The following experiment is done as a proof of hypothesis, that the IV terms are
searched in both variants (word and subword). Phone multigram hybrid system used in this
section will be fully described later. The subword part of the hybrid system contains phone
multigram units trained on LVCSR pronunciation vocabulary (HybridMgramDictLVCSR
system). More detailed description of this multigram system is in section 7.7.2 below.

We compare the upper bound term weighted value for in-vocabulary terms (UBTWV-
IV) in only word (HybridMgram-Wrd), only subword (HybridMgram-Swrd) and both
word and subword forms (HybridMgram-Wrd&Swrd). The comparison is shown in
figure 7.14. The dotted black line denotes a system where IV terms are converted to
multigram sequences (HybridMgram-Swrd) and detected by the OOV subsystem. The
dashed black line denotes system where IV terms are kept in word forms (HybridMgram-
Wrd) and detected by the LVCSR subsystem. The solid black line denotes combined
system (HybridMgram-Wrd&Swrd). The terms were in both variants, word and multi-
gram. The combined HybridMgram-Wrd&Swrd approach is slightly better for reasonable
range of SWIP. The highest improvement 0.014 caused by the combination is achieved
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for SWIP = 1.3. That is why we use combined word and subword form for search of IV
terms in the following experiments.

Figure 7.14: Comparison of UBTWV-IV accuracy for in-vocabulary terms searched in word

(dashed black), subword (dotted black) and combined (word and subword) form (solid black). The

baseline is in red color.

7.5 Phone hybrid system

The out-of-vocabulary part is modeled by the phone loop in this system. We experi-
mented with the use unigram and bigram language models over the phones (see chapter 5).
The unigram LM is significantly better. The hybrid phone system with unigram LM is
denoted as HybridPhn. Dependencies of word accuracy and UBTWV on the SWIP are
plotted in figure 7.15. Dependencies of UBTWV on the lattice size for different SWIP
parameter values are plotted in figure 7.16.

Figure 7.15: Dependency of word accuracy and UBTWV for different SWIP parameter values for

HybridPhn system. The red color denotes baseline systems.

The word accuracy of HybridPhn is improved by 0.55% (see table 7.5). Disadvantage
of HybridPhn system is the size of produced subword index. This system produces phones,
so it should be indexed as phone trigrams to fulfill optimal conditions for storing in index.
The UBTWV-OOV phnSIZE ratio is significantly lower than for the baseline (section 7.2)
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Figure 7.16: Dependency of UBTWV accuracies and lattice sizes depending on different SWIP

parameter values for HybridPhn system. The red color denotes baseline systems.

System WAC UBTWV SWIP wrdSIZE phnSIZE

ALL IV OOV

HybridPhn 67.05 0.542 0.674 0.233 1.3 0.195 2.05

WRDREDunk 66.50 0.486 0.694 – – 0.190 –

Table 7.5: Comparison of baseline word recognizer with reduced vocabulary WRDREDunk and

hybrid system with the unigram phone LM as subword model HybridPhn. The HybridPhn is tuned

to provide best WAC and the best UBTWV-ALL.

xwrd system with unigram language model (see figure 7.16c). The overall UBTWV-ALL
accuracy is comparable to the WRDREDunk system (figure 7.16a), which means that the
HybridPhn is not better than a system that has no OOV handling at all.

7.6 Phone multigram hybrid system

Variable length phone sequences are the second type of subword units we tested in the
hybrid recognition system. Two categories of multigram units are trained. The first one is
taken from the subword STD experiments using multigrams (chapter 6). These are trained
on a large set of phone sequences.

The second category of multigrams is trained only on the pronunciation vocabulary.
This approach is similar to that one proposed in Bazzi’s thesis [Baz02], where LVCSR
pronunciation dictionary is used for training the phone multigrams.

7.6.1 Hybrid system using constrained multigrams

The “constrained multigrams” which provide the best results on the multigram based
subword STD chosen for combination into hybrid system. Multigram systems giving the
best Mgram UBTWV-OOV accuracy proposed in section 6.4 are summarized in table 7.6.
These systems were also considered as candidates for baseline system in section 7.2.

Results

The results of hybrid constrained multigram systems are summarized in figures 7.17
and 7.18. The systems are comparable from the word accuracy point of view. Slightly
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System LM Mgram UBTWV wrdSIZE

order ALL IV OOV

xwrd 1 0.537 0.492 0.642 3.5

nosil 1 0.546 0.508 0.636 3.2

noxwrd 1 0.535 0.492 0.637 7.3

Table 7.6: Comparison of multigram based systems giving the best UBTWV-OOV. The multigram

inventory is estimated on MnoOOV and the unigram language model is trained on LnoOOV (see

section 6.2 for more details).

better UBTWV-ALL accuracy is achieved by the xwrd system. The xwrd also achieves
the best Mgram UBTWV-OOV accuracy depending on the subword lattice size. The
conclusion is, that constrained multigrams are not significantly better. Only the nosil sys-
tem achieves slightly better word accuracy and UBTWV-IV depending on the lattice size.
However, the xwrd system is chosen as the best according to the Mgram UBTWV-OOV
accuracy.

Figure 7.17: Dependency of the HybridMgram systems word accuracy and UBTWV accuracy on

the parameter SWIP. The red color denotes the baseline systems WRDunk and WRDREDunk.

The xwrd, nosil and noxwrd subword models are used for OOV modeling.

7.7 Hybrid system using dictionary multigrams

Compared to “constrained multigrams” (Chapter 6), the “dictionary multigrams” are
trained only on the pronunciation dictionary. The multigram training data are pronun-
ciations of words. Each pronunciation variant is taken as one utterance (phone string).
The language model built over the multigrams is also estimated on the segmented (by
multigrams) pronunciation dictionary. The difference between “constrained multigrams”
and “dictionary multigrams” is in the size of training data and especially in the prior
information of frequency of word occurrences. This should lead to a better hybrid model.
In our opinion, word frequencies should be modeled by the word language model. The
subword model should model only the pronunciations of unknown words. The subword
model will not work properly if the information of word frequencies is incorporated in the
subword model, however this happens in “constrained multigrams” hybrid systems and
phone hybrid system.
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Figure 7.18: Dependency of the HybridMgram systems word accuracy and UBTWV accuracy

on the lattice size while parameter SWIP is tuned. The red color denotes the baseline systems

WRDunk and WRDREDunk. The xwrd, nosil and noxwrd subword models are used for OOV

modeling.

We trained the subword system on several different dictionaries and with different
parameters. Our baseline for these experiments is similar to [Baz02]. The “dictionary
multigrams” are trained on the WRDRED dictionary.

We used also a dictionary automatically created by grapheme to phoneme (G2P)
conversion. The word labels are collected from the training corpora of open vocabulary
language model (section 4.1.4). Our goal is to evaluate which parameter significantly
influences the hybrid system accuracy.

7.7.1 Grapheme to phoneme conversion

Our grapheme to phoneme (G2P) system was briefly introduced in section 3.5.7, deeper
description is attached as appendix B. The G2P rules are trained on 90% of randomly
selected of the 50k WRD pronunciation dictionary. The rest 10% is used for evaluation
of G2P accuracy. Only the best pronunciations are considered in the test. 73% of test
words are correctly converted to phones and 16% of test words have one phone incorrectly
converted in the generated pronunciation.

7.7.2 Multigrams trained on hand-made LVCSR dictionary

Multigrams trained on the LVCSR dictionary are used in [Baz02]. We did the same
experiment for better comparison. The WRDRED pronunciation dictionary is taken and
multigrams (maximal multigram length lmgram = 5, multigram pruning c0 = 5) are trained
on the word pronunciations. Hybrid system using the WRDRED dictionary trained multi-
grams is denoted as HybridMgramDictLVCSR. The advantage of WRDRED dictio-
nary is in its correctness, the pronunciations are carefully hand-checked.

We also process the WRDRED dictionary word labels by the G2P system. Hybrid
system using this subword model (denoted as HybridMgramDictG2P) evaluates the
influence of G2P conversion accuracy on the word or STD accuracy. Comparison of these
two systems is in figures 7.19 and 7.20.

We conclude, that the G2P conversion has no significant negative influence on the
accuracy. UBTWV-IV is influenced slightly negatively, on the other hand the Mgram
UBTWV-OOV is influenced positively for certain values of SWIP parameter. The Hy-
bridMgramDictLVCSR will be used in several further experiments because we want to be
comparable to Bazzi [Baz02].
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Figure 7.19: Dependency of the HybridMgram systems WAC and UBTWV on the parameter

SWIP. The red color denotes the baseline systems WRDunk and WRDREDunk. Pronunciations

of words of HybridMgramDictLVCSR system are taken from the WRD dictionary. Pronunciations

of words of HybridMgramDictG2P system are generated automatically by the G2P tool.

Figure 7.20: Dependency of the HybridMgram systems WAC, UBTWV and lattice size on the pa-

rameter SWIP is tuned. The red color denotes the baseline systems WRDunk and WRDREDunk.

Pronunciations of words of HybridMgramDictLVCSR system are taken from the WRD dictionary.

Pronunciations of words of HybridMgramDictG2P system are generated automatically by the G2P

tool.

7.7.3 Multigrams trained on automatically built LVCSR dictionary

In the previous section, we concluded that the G2P used for generating of pronunciation
variants has no significant effect on the accuracy of the hybrid system. In this section,
we try to answer the question, whether the number of unseen low frequent words has the
impact on the accuracy.

System denoted as HybridMgramDictLarge is built using automatically generated
pronunciation variants of large number of words. A large set of word label is collected
from the corpora used for open vocabulary word language model estimation (section 4.3).

Dictionary parameters

The open vocabulary word language model corpora contains 1.2M unique word labels. A
part of this word list is “garbage” (words ”AAAAHHHH, 92’, ETC.”), so we perform several
steps to clean the word list:
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• We omit the WRDunk dictionary. This leads to:

1. Our OOV words become unseen words for the subword model.

2. We omit also the IV words so the subword model should not be biased by the
IV words.

• We omit words with counts lower or equal than C, where C is a parameter. This
filters out the senseless “garbage” words.

• We omit words which have label length shorter or equal than L characters, where L
is a parameter. We want to model longer words. Also, the short words are usually
“garbage” abbreviations.

• The automatically trained G2P tool (section 3.5.7) produces the pronunciation vari-
ant and the posterior probability is attached to the variant. We compare the poste-
rior probability to the threshold V P and the probability has to be greater than V P ,
where V P is a parameter. This should filter out words with “uncertain” pronuncia-
tion.

The original size 1.2M of word list is reduced to value in range between 360k words for
L = 2, C = 2, V P = 0.0 down to 14k words for L = 4, C = 50, V P = 0.9 depending on
the set of parameters L, C and V P .

We “tune” parameters C, L and V P (denoted as dictionary parameters) separately
and observe their influence on the accuracy. The overall effect of dictionary parameters on
the accuracy is small (tenths of percent). Therefore, we decided to put figures and brief
description related to this experiment to appendix A. The best accuracy is achieved with
dictionary parameters C = 2, L = 4 and V P = 0.8.

Multigram pruning parameter

In this experiment, we tune the pruning parameter of the multigram units trained on the
dictionary. We set multigram pruning to values P = 2, 5, 10, 20, 50. Dependencies of the
accuracy on SWIP and lattice size are plotted in figures 7.21 and 7.22. The multigram
pruning parameter has greater influence on the accuracy than the dictionary parameters
from the previous section. We conclude that the UBTWV-OOV accuracy saturates for
multigram pruning 5 and 10. We decided to use multigram pruning P = 5 in further work.

Our conclusion of this section aimed to the HybridMgramDictLarge system is,
that the best accuracy of the hybrid system estimated on the large dictionary is achieved
with parameters C = 2 (word counts), L = 4 (word length), V P = 0.8 (pronunciation
variant posterior probability) and c0 = 5 (multigram pruning) for the hybrid system where
the phone multigrams are estimated on the large dictionary. This system (denoted as
HybridMgramDictLarge) uses parameters tuned in this section for further experiments.

7.7.4 Hybrid systems based on manually versus automatically built dic-

tionary

We compare the accuracies for hybrid system based on the LVCSR dictionary (HybridM-
gramDictLVCSR) and hybrid system based on the large dictionary (HybridMgramDict-
Large). Both multigram systems are trained with multigram pruning parameter c0 = 5.

Our conclusion is, that both systems are comparable. The HybridMgramDictLVCSR
system is slightly better on UBTWV-IV and word accuracy, the HybridMgramDictLarge
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Figure 7.21: Dependency of the HybridMgram systems word accuracy and UBTWV accuracy on

the parameter SWIP. The red color denotes the baseline systems WRDunk and WRDREDunk. The

multigram pruning parameter of trained multigrams c0 is set from 2 up to 50. Fixed parameters:

maximal length of multigrams is lmgram = 5, dictionary parameters C = 2, L = 4 and V P = 0.8.

Figure 7.22: Dependency of the HybridMgram systems word accuracy and UBTWV accuracy

on the lattice size while parameter SWIP is tuned. The red color denotes the baseline systems

WRDunk and WRDREDunk. The multigram pruning parameter of trained multigrams c0 is set

from 2 up to 50. Fixed parameters: maximal length of multigrams is c0 = 5, dictionary parameters

C = 2, L = 4 and V P = 0.8.

is slightly better on the Mgram UBTWV-OOV and achieves smaller size of the lattices for
comparable word accuracy and UBTWV-IV. Figures 7.23 and 7.24 compare these systems.

7.7.5 Subword model with bigram language model

Our approach to build hybrid word-subword recognition networks allows to use subword
language model with higher order than unigrams. We tested bigram subword language
model8. We compare both, the HybridMgramDictLVCSR and the HybridMgramDictLarge
systems. The results are summarized in figures 7.25 and 7.26. From the word accuracy
point of view, the HybridMgramDictLVCSR bigram system has slightly lower maximum
accuracy than the unigram system. The HybridMgramDictLarge bigram system is slightly
better than the unigram system on the word accuracy.

The UBTWV-ALL of bigram systems are comparable. Only UBTWV-OOV of Hybrid-

8We are unable to compile the network for the trigram model due the memory limitations.
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Figure 7.23: Dependency of the hybrid multigram systems WAC and UBTWV accuracy on the

SWIP parameter for two different subword models. The HybridMgramDictLVCSR is trained on the

hand made LVCSR WRDRED dictionary. The HybridMgramDictLarge is trained on dictionary

created by G2P tool automatically trained on large word list derived from the word corpora.

The red color denotes the baseline systems WRDunk and WRDREDunk. The multigram pruning

parameter of trained multigrams is c0 = 5 for both systems.

MgramDictLarge is significantly higher for certain range of SWIP parameter. UBTWV-IV
of bigram systems are slightly lower for higher values of SWIP compared to the unigram
systems. On the other hand, UBTWV-OOV are significantly higher. The greatest dif-
ferences between unigram and bigram subword systems are seen on accuracy related to
the same lattice size (figure 7.26). We can see, that the bigram systems have lattice sizes
significantly reduced. The lattice size does not grow so fast with increasing accuracy while
the SWIP is tuned.

Although HybridMgramDictLVCSR2gr and HybridMgramDictLarge2gr are compara-
ble, we decide to select HybridMgramDictLarge2gr according to the higher Mgram
UBTWV-OOV accuracy.

7.7.6 Beam pruning in the decoder

The following experiment compares the behavior of the selected hybrid system (Hybrid-
MgramDictLarge2gr) while beam pruning parameter of the decoder changed. We try to
soften the beam pruning from baseline value Pr = 220 to {250, 300, 350, 400}. We look
at the changes of accuracy and lattice size for several values of SWIP. Results of this
experiment are summarized in figure 7.27.

The hybrid system word accuracy follows the WRDREDunk baseline as the lattice size
grows. Softening the beam pruning has no negative influence on the improvement of WAC
achieved by the hybrid system.

Changes of beam pruning have greater and more complex influence to the UBTWV
accuracy. The choice of SWIP parameter depends on the beam pruning. The highest
improvement of UBTWV-IV is achieved for beam pruning Pr = 300. The improvement
on the Mgram UBTWV-OOV for the same pruning is about 0.130 absolute. On the other
hand, it must be mentioned, that the best accuracy of standalone subword system is not
reached. The dash-dotted red line denotes the best standalone subword system according
to Mgram UBTWV-OOV in the right part of figure 7.27. It is the xwrd system with
unigram language model (denoted xwrd1gr).

As the decoder beam pruning is softened (lattice size grows), the UBTWV-IV accuracy
does not increase so fast compared to the WRDREDunk baseline. The accuracy is worse
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Figure 7.24: Dependency of the hybrid multigram systems WAC, UBTWV accuracy and lattice

size on the SWIP parameter for two different subword models. The HybridMgramDictLVCSR is

trained on the hand made LVCSR WRDRED dictionary. The HybridMgramDictLarge is trained

on dictionary created by G2P tool automatically trained on large word list derived from the word

corpora. The red color denotes the baseline systems WRDunk and WRDREDunk. The multigram

pruning parameter of trained multigrams is c0 = 5 for both systems.

Figure 7.25: Dependency of the hybrid multigram systems word accuracy and UBTWV accuracy

on the subword model. The HybridMgramDictLVCSR and the HybridMgramDictLarge systems

are evaluated also with bigram language model in the subword part (* 2gr). The red color denotes

the baseline systems WRDunk and WRDREDunk.

than the baseline for beam pruning values softer than Pr = 350.

The Mgram UBTWV-OOV accuracy was better with softer beam pruning (increasing
lattice size) compared to the WRDREDunk baseline. The saturation tendency can be seen
in figure 7.27. The saturated value of hybrid system Mgram UBTWV-OOV accuracy is
around 0.630, but the saturation of the xwrd1gr baseline is about 0.650. This means that
hybrid system looses about 0.020 of the best possible accuracy compared to the baseline.

From the STD accuracy point of view, it is important to note, that by tuning the SWIP
parameter, we obtained better UBTWV-IV at the price of decreasing Mgram UBTWV-
OOV and vice-verse. Two system configurations marked with square and circle are plotted
in figure 7.27. While the “circle” system is tuned to provide better UBTWV-IV, the
Mgram UBTWV-OOV is worse. The “square” system is tuned to achieve better Mgram
UBTWV-OOV.

The other point of view – the index size – indicates that hybrid system achieves a
significant improvement. If our goal is to be better than the IV baseline (WRDREDunk) in
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Figure 7.26: The dependency of the hybrid multigram systems word accuracy and UBTWV

accuracy on the lattice size while parameter SWIP is tuned. The HybridMgramDictLVCSR and

the HybridMgramDictLarge systems are evaluated also with bigram language model in the subword

part (* 2gr). The red color denotes the baseline systems WRDunk and WRDREDunk.

Figure 7.27: The dependency of the HybridMgramDictLarge2gr systems WAC UBTWV accura-

cies and lattice size on the parameter SWIP while decoder beam pruning changed. The red color

denotes the baseline systems WRDunk (solid), WRDREDunk (dashed) and xwrd with unigram

LM (dash-dotted). The color (black, green, blue, magenta and cyan) lines correspond to the beam

pruning factors. The yellow lines connect “points” with the same SWIP parameter value (for

better orientation).

the UBTWV-IV/wrdSIZE ratio, we achieve also significant improvement in the UBTWV-
OOV/wrdSIZE ratio. We choose the “star” system as the best hybrid system.

The “star” system configuration is HybridMgramDictLarge2gr (HybridMgram-
DictLarge with bigram subword LM), decoder beam pruning Pr = 350, subword scaling
parameters SLMSF = 1.0, SWIP = −0.8 and SC = 0.0. This system achieves UBTWV-
IV accuracy close to the baseline WRDREDunk having the same word index size. It
improves the Mgram UBTWV-OOV accuracy by 0.110 keeping the same subword index
size, or reduces subword index size to one half keeping the same UBTWV-OOV accuracy.

Finally, we also tried to tune decoder language scaling factor and word insertion
penalty, but these did not improve the “star” hybrid system significantly.

7.8 Memory and speed

Memory consumption and system speed (decoding time) are important factors for prac-
tical use. We evaluate the real-time factor9 – RT factor and memory allocated by
the decoder after loading the recognition network and acoustic model. Real-time factors

9Proportion of the time of 1 CPU core needed to decode a portion of acoustic data to the time length

of the portion of acoustic data.
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are measured without feature extraction which has a constant RT factor and is the same
in all experiments. Also, time consumed by spoken term detection algorithm is not in-
cluded into RT factor, because it represents only fraction of the time. Both RT factor
and allocated memory depend on the implementation of the decoder, so they can vary
for different decoders. Decoding speed is tested on IntelR© Xeon R© CPU, model E5345 at
frequency 2.33GHz processor with sufficient size of RAM.

Table 7.7 compares hybrid systems to the baseline systems from memory and index size,
accuracy and speed points of view. The first part of the table compares baseline systems
with fixed beam pruning Pr = 220. We see that both multigram systems (xwrd and
noxwrd) are significantly (up to 8 times) slower and produce significantly larger indexes
(up to 18 times) compared to WRDunk. On the other hand, the multigram xwrd system
with unigram LM consumes only tenth of RAM compared to the other systems. The
multigram xwrd system was chosen as the baseline system of OOV terms detection because
it reaches the highest UBTWV-OOV accuracy.

The baseline hybrid systems (HybridMgramDictLarge and HybridMgramDict-
Large2gr) with beam pruning Pr = 200 run relatively fast (RT = 2) and provide UBTWV-
IV close to the WRDREDunk system. The UBTWV-OOV accuracy is about the half of
xwrd system, but the index size is one tenth.

A combined baseline system is combination of baseline systems (WRDREDunk and
xwrd) after the decoding, on the search level (see figure 7.4). “Combined” UBTWV-IV
accuracy is the accuracy of WRDREDunk system, UBTWV-OOV accuracy is the accuracy
of xwrd system. RT factor and index size are sums of word and sub-word systems.

Bottom three parts of table 7.7 present more precise comparison of hybrid and com-
bined baseline system. We took 3 hybrid systems (HybridMgramDictLarge2gr, HybridM-
gramDictLarge and HybridMgramDictLVCSR2gr) and tuned the combined baseline sys-
tems to produce comparable UBTWV accuracy. Then these systems can be compared
from speed and index size point of view.

The first system is the “star” system from the previous section. It is HybridMgram-
DictLarge2gr system with decoder beam pruning Pr = 350, subword scaling parameters
SLMSF = 1.0, SWIP = −0.8 and SC = 0.0. This system was chosen as the system which
produces the best UBTWV-OOV having UBTWV-IV and word index size comparable
with the baseline WRDREDunk in the previous section. Here we see, that apart from
the best accuracy, this system is not much usable in practice. The real time factor is
RT = 28.4 which is two time slower than the combined baseline system with real time
factor sum RT = 14. One advantage of this system is the index size which is about 40%
smaller.

HybridMgramDictLarge system with the same subword scaling parameters is chosen
as the second hybrid system. The beam pruning Pr = 250 is set in this case. The real
time factor RT = 5.25 of the combined baseline improves to RT = 4.15, which is 20%
faster. Also, the hybrid index size is 38% smaller than the sum index size of the combined
baseline system.

The last system is HybridMgramDictLVCSR2gr system with Pr = 270 and subword
scaling parameters SLMSF = 1.0, SWIP = −1.3 and SC = 0.0. Compared to Hybrid-
MgramDictLarge2gr, this hybrid system with bigram subword language model consumes
about 500MB less RAM. The UBTWV accuracy is close to saturated accuracies of the
combined baseline system. If the baseline systems are tuned to produce comparable ac-
curacy, this hybrid system is 9% faster and achieves only 34% of the index sizes of the
baseline systems. The UBTWV-OOV accuracy deterioration is 0.027 against the “reason-
ably” saturated xwrd multigram baseline 0.647. The UBTWV-IV accuracy deterioration
is 0.031 against the “reasonably” saturated WRDREDunk baseline 0.754.



System LM # WRDn-grams # SWRD n-grams RAM Pr RT UBTWV wrdSIZE

order 1 2 1 2 (3) ALL IV OOV sum wrd swrd

WRDunk 2 50.0k 2.0M – – 550MiB 220 1.36 0.724 0.727 0.715 0.190 0.190 –

WRDREDunk 2 49.2k 1.6M – – 470MiB 220 1.32 0.486 0.694 – 0.190 0.190 –

xwrd 1 – – 3.0k – 22MiB 220 7.11 0.537 0.492 0.642 3.540 – 3.540

noxwrd 3 – – 3.0k 451k (161k) 315MiB 220 10.75 0.630 0.647 0.593 1.740 – 1.740

HybridMgramDictLarge 2 + 1 49.2k 1.6M 7.8k – 685MiB 220 2.00 0.592 0.708 0.320 0.335 0.200 0.135

HybridMgramDictLarge2gr 2 + 2 49.2k 1.6M 7.8k 136.8k 2310MiB 220 2.40 0.608 0.701 0.391 0.337 0.198 0.138

WRDREDunk 2 49.2k 1.6M – – 470MiB 330 7.79 0.528 0.754 – 0.950 0.950 –

xwrd 1 – – 3.0k – 22MiB 210 6.19 0.528 0.489 0.619 2.960 – 2.960

HybridMgramDictLarge2gr 2 + 2 49.2k 1.6M 7.8k 136.8k 2310MiB 350 28.37 0.713 0.753 0.620 2.400 1.000 1.400

WRDREDunk 2 49.2k 1.6M – – 470MiB 226 1.67 0.499 0.714 – 0.210 0.210 –

xwrd 1 – – 3.0k – 22MiB 160 3.58 0.481 0.470 0.500 1.400 – 1.400

HybridMgramDictLarge 2 + 1 49.2k 1.6M 7.8k – 685MiB 250 4.15 0.651 0.715 0.501 1.000 0.340 0.660

WRDREDunk 2 49.2k 1.6M – – 470MiB 260 3.24 0.512 0.723 – 0.380 0.380 –

xwrd 1 – – 3.0k – 22MiB 210 6.19 0.528 0.489 0.619 2.960 – 2.960

HybridMgramDictLVCSR2gr 2 + 2 49.2k 1.6M 4.0k 42.3k 1855MiB 270 8.62 0.691 0.723 0.615 1.100 0.440 0.700

Table 7.7: Comparison of memory and CPU requirements of hybrid systems. Column order denotes the order of used language models. 2 + 1 means

bigram word and unigram subword LM. The following 4 columns contain the numbers of particular unigrams/bigrams. The number in brackets is the

number of trigrams for the noxwrd system. Occupied memory after the recognition network is loaded by the decoder is in column RAM. Acoustic model

is not included. Its size is constant for all experiments: 190MB. Pr denotes chosen beam pruning. RT is the estimated real time factor. Columns UBTWV

and wrdSIZE denote the accuracies and index sizes of particular systems. The first part of the table (the first 6 rows) compares baseline and hybrid

systems having beam pruning Pr = 220. The following 3 parts of the table show three different hybrid systems and appropriate baseline systems having

comparable UBTWV accuracy. The real time factor is estimated on Intel R© Xeon R© CPU, at frequency 2.33GHz.
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The analysis of CPU and memory or disk consumptions of hybrid systems shows that
hybrid systems are faster and reduce needed disk space for storage of the indexes. However,
a hybrid system tuned to achieve accuracy comparable to “saturated” combined baseline
system is about two times slower. If the accuracy is not the most important quality of
STD system, hybrid system can provide very good performance. The needed decoding
time can be reduced by 10% and the index size by 66% at the cost of 5% deterioration of
UBTWV accuracy (HybridMgramDictLVCSR2gr system).

We conclude, that hybrid system based on LVCSR vocabulary (HybridMgram-
DictLVCSR2gr) is faster and consumes less memory than the HybridMgramDictLarge2gr
system. This is caused by about two times smaller subword part. Also, the decoder can
influence the RT factor. We noticed that the RT of HybridMgramDictLarge2gr system for
higher beam pruning increased significantly more than linearly. This was not observed in
case of WRDREDunk system.

7.9 Comparison of confidence estimations for hybrid system

This section deals with the influence of confidence measures on the accuracy of the hybrid
system. Confidence measures for standalone word and multigram systems were evaluated
in sections 4.4 and 6.5.1. We found that SOLP10 confidence measure provides the best
accuracy. So the following experiments investigate only the SOLP and LP11 confidence
measures. The LP has been used in all hybrid experiments.

In this experiment, the hybrid system configuration is the large dictionary trained with
bigram subword LM, and decoder beam pruning Pr = 350: HybridMgramDictLarge2gr.
The configurations of baseline systems (word and subword) are taken from the previous
section 7.8 (table 7.7). The word system WRDREDunk has beam pruning set to Pr = 330
and the subword system xwrd1gr (with unigram LM) has beam pruning set to Pr = 210
to achieve comparable accuracy on UBTWV. We also evaluate the subword system with
bigram LM (denoted xwrd2gr) to see the influence of bigram LM to the TWV accuracy.
The beam pruning is set to Pr = 240 in the case of xwrd2gr system.

The TWV accuracies for different confidence estimators are summarized in table 7.8.
Terms are searched in word and subword part (denoted HybridWRDMGRAM), only
in word part (denoted HybridWRD) and only in subword part (denoted HybridM-
GRAM).

The choice of confidence measure has significant impact also in case of hybrid system.
The SOLP provides significant improvement in comparison to LP confidence for both
UBTWV and TWV.

If the hybrid HybridMgramDictLarge2gr – wrdmgram and baseline WRDREDunk sys-
tems are compared from the IV terms point of view, it is interesting that we loose TWV-IV
accuracy with the hybrid system. The UBTWV-IV are comparable, baseline LP is 0.756
against hybrid LP 0.759. However, the baseline WRDREDunk LP TWV-IV 0.471 is
about 0.030 higher than the hybrid LP UBTWV-IV which is 0.442. The deterioration of
hybrid system is 0.020 for SOLP compared to WRDREDunk.

On the other hand, the hybrid system improves the TWV-OOV accuracy. The base-
line system is xwrd1gr in this case. The UBTWV-OOV are nearly comparable, baseline
LP is 0.619 against hybrid LP 0.624. The baseline LP TWV-OOV is only 0.135 and is
about 0.217 lower that the hybrid LP UBTWV-OOV which is 0.352. The SOLP confidence

10SOLP: Sum of Overlapped Link Posterior probabilities
11LP: Link Posterior probability
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System CM TWV UBTWV wrdSIZE

ALL IV OOV ALL IV OOV

WRDREDunk LP 0.330 0.471 – 0.529 0.756 – 0.96

WRDREDunk SOLP 0.388 0.554 – 0.542 0.775 – 0.96

xwrd1gr LP 0.065 0.094 0.135 0.528 0.489 0.619 2.96

xwrd1gr SOLP 0.099 0.138 0.137 0.533 0.495 0.620 2.96

xwrd2gr LP 0.162 0.189 0.235 0.578 0.562 0.615 2.37

xwrd2gr SOLP 0.193 0.236 0.250 0.588 0.577 0.613 2.37
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WRD LP 0.307 0.439 – 0.531 0.758 – 1.00

WRD SOLP 0.350 0.501 – 0.533 0.762 – 1.00

mgram LP 0.099 0.025 0.352 0.452 0.378 0.624 1.40

mgram SOLP 0.106 0.026 0.363 0.449 0.372 0.630 1.40

wrdmgram LP 0.365 0.442 0.352 0.718 0.759 0.624 2.40

wrdmgram SOLP 0.417 0.533 0.363 0.732 0.777 0.630 2.40

Table 7.8: Comparison of two different term confidence estimators. LP – Link Posterior, SOLP

Sum of Overlapped Link Posteriors. Beam pruning of HybridMgramDictLarge2gris set to Pr =

350, beam pruning of baseline systems is set to achieve comparable UBTWV accuracy. “WRD”

means search only in word part, “mgram” means search only in subword part and “wrdmgram”

means search in both word and subword parts.

improvement is 0.226.
If we compare the subword baseline with bigram LM – xwrd2gr the difference is

about 0.117, which is very large.
The improvement of TWV-IV caused by incorporation of IV terms searched also in

subword variant (HybridMgramDictLarge2gr – mgram) is only 0.003 in case of LP measure.
If the confidence is SOLP, the TWV-IV improves by 0.032 (from 0.501 to 0.533). This is
larger improvement than in the case of UBTWV-IV where the difference is 0.015. This
means that the IV term detected also in subword form contains information important for
better estimation of robust confidence allowing for comparison of terms according to one
global threshold.

The SOLP outperforms the LP term confidence estimation in most experiments. From
the TWV point of view, hybrid system deteriorates about 0.030 on IV terms but improves
the TWV accuracy on OOV terms by about 0.117 (compared to xwrd2gr system). This
points out, that the word model provides more robust term confidence across different
terms.

Similar trend was seen also in other configurations of hybrid system.

7.10 Conclusion

Conclusions of hybrid word-subword systems are given in this section. Theoretically, we
should obtain better IV and OOV accuracy with equal or smaller lattice size (index size)
with the hybrid system than is achieved by the combination of standalone systems at the



7.10 Conclusion 111

level of term detection. Our experiments have however shown, that this can be achieved
only for a certain range of system parameter settings (beam pruning, hybrid network
penalties and scales). If standalone systems are tuned to the best accuracy (separately),
this combination is not overcome by the hybrid system presented in this thesis. We can
only make it smaller and faster, but still with little deterioration of accuracy.

It is interesting to notice, that the UBTWV-OOV of pure subword multigram system
(xwrd) is not outperformed by the hybrid systems, while for UBTWV-IV the hybrid
systems show superiority. This can be explained by the inaccuracy of estimated place of
out-of-vocabulary words (represented by <unk>).

Our explanation, why UBTWV-OOV is not better for the hybrid than for pure subword
multigram system, is the following: the strong word-model in the hybrid system can cause
that for an OOV, the sub-word model is not activated at all – the system does not enter
the <unk> part of the recognition network. In this case, the system actually misses the
OOV without any chance to recover it, resulting in a miss. This problem does not occur
in subword systems where the whole utterance is recognized in subwords (so no misses are
produced).

On the other hand, a false alarm of OOV occurrence does not necessarily cause that
the IV term (overlapped with the OOV false alarm) is not detected. In this case, the IV
can be still converted to subwords and searched in the subword form.

This leads to conclusion, that it is important not to miss the OOV parts of utterances
for hybrid systems. The position of <unk> must be estimated accurately.
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Chapter 8

Indexing and search with hybrid

system

In the previous section, we searched parameters and configurations of hybrid system with
the best accuracy as criterion. According to these experiments, we chose the HybridM-
gramDictLarge2gr system with beam pruning Pr = 350, SLMSF 1 = 1.0, SWIP 2 = −0.8
and SC 3 = 0.0. In this section, the system is indexed by our indexing and search system
to evaluate how to convert terms to word-subword form.

Our Lattice Search Engine – LSE (section 3.5.6) was used in the NIST STD eval-
uation in 2006. Detailed description of the engine was published in [Fap07] and it is
out of the scope of this thesis. Only the most important features of LSE are presented
in the following paragraphs. The search engine indexes lattices produced by a decoder.
Terms defined by user are searched after the lattices are indexed. The term is a sequence
of “word” labels appearing in the lattices. The sequence of words can be searched as
“quoted” (”Igor Szöke”) or “unquoted” (keyword spotting thesis). Only the quoted
variant is taken into account in this thesis (according to NIST STD 2006). Another feature
is the option of search with or without a verification in the lattice.

The following steps are performed in the case of search without verification:

1. Groups of overlapped units (words or phone multigrams) are identified in the lattice,
these are substituted by the best candidate and indexed.

2. The input term is decomposed into sequence of units and each unit is searched in
the index.

3. Then term candidates are collected from unit candidates by applying time constraints
on the unit candidates. The time constraint stipulates that two adjacent words must
be closer than 0.5 second in time (according to NIST STD 2006). Term candidates
which satisfy time constraint are finally filtered for overlapping candidates (only the
best one is taken). The term posterior probability is approximated from posterior
probabilities of units.

The “with verification” mode includes one more step in the processing of a term.
The existence of term is verified in the lattice. Sequence of links and nodes corresponding
to the term must exist in the lattice, and “precise” term posterior probability is estimated.

1SLMSF : Subword language scale factor.
2SWIP : Subword word insertion penalty.
3SC : Subword cost (global penalty of going to subwords).

113
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The disadvantage of verification is the need of storing not only the index but also the
lattice. That is why the search speed and size of index are negatively affected by the
verification step. In NIST STD 2006 evaluations, we found, that the verification has no
significant impact on the accuracy.

8.1 Term in a hybrid form

Because the hybrid system produces hybrid word-subword lattices, we need to know which
word-subword variant of term should be searched to achieve the best accuracy. It is also
good to remind that in our case, the IV term contains only IV words. The OOV term
contains at least one OOV word (but it can contain also some IV words).

The term list is built in several different ways for the hybrid word-subword spoken
term detection task:

• All words are searched only as word forms (denoted IVwrd) in the IV term.
”TERM EXAMPLE”

• All words are converted and searched only as subword forms (denoted IVmgram)
in the IV term. ”t-er-m ih-g-z-ae-m p-el”

• IV term is searched in two variants (denoted IVwrdmgram). All words are let in
word forms and also are converted to subword form. This approach is used only in
one baseline experiment. ”TERM EXAMPLE”, ”t-er-m ih-g-z-ae-m p-el”

• IV term is searched in all possible word-subword variants (denoted IVhybrid).
”TERM EXAMPLE”, ”t-er-m ih-g-z-ae-m p-el”, ”TERM ih-g-z-ae-m p-el”,
”t-er-m EXAMPLE”

• All words (IV and OOV) are converted and searched only as subword forms (denoted
OOVmgram) in the OOV term. ”t-er-m ih-g-z-ae-m p-el” – EXAMPLE is OOV

• IV words are searched as word forms and OOV words are converted and
searched as subword form (denoted OOVwrdmgram) in the OOV term.
”TERM ih-g-z-ae-m p-el” – EXAMPLE is OOV

• OOV term is searched in all possible word-subword variants (denoted OOVhy-
brid). IV words are searched as word or subword forms, OOV words are searched
only as subword forms. ”TERM ih-g-z-ae-m p-el”, ”t-er-m ih-g-z-ae-m p-el”
– EXAMPLE is OOV

We built several term lists with different forms of IV and OOV words in IV and OOV
terms. The results are summarized in table 8.1. The tested system is HybridMgramDict-
Large2gr with Pr = 350, SLMSF = 1.0, SWIP = −0.8 and SC = 0.0.

The baseline results are produced by the LatticeSTD tool. This tool was used for all
past STD experiments in this thesis.

The LSE denotes results are produced by the Lattice Search Engine. Lattices produced
by the hybrid system are first indexed by LSE. The list of terms is built and processed
by a search module in LSE. The confidence is computed as LP – link posterior because
Cmax is not implemented in LSE. Produced results are scored in the same manner as the
baseline.

In table 8.1, the rows LSE IVwrd and LSE IVmgramOOVmgram compare the LSE
system to the baseline IVwrd and baseline IVmgramOOVmgram. The termlists are the
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System Verif. TWV UBTWV

ALL IV OOV ALL IV OOV

baseline

IVwrd
yes 0.305 0.436 - 0.527 0.753 -

baseline

IVmgramOOVmgram
yes 0.103 0.029 0.340 0.453 0.381 0.620

baseline

IVwrdmgramOOVmgram
yes 0.363 0.441 0.345 0.713 0.753 0.620

LSEIVwrd no 0.313 0.447 - 0.530 0.757 -

LSEIVwrd yes 0.303 0.433 - 0.523 0.748 -

LSEIVmgramOOVmgram no 0.113 0.030 0.383 0.434 0.343 0.646

LSEIVmgramOOVmgram yes 0.105 0.030 0.351 0.452 0.380 0.620

LSEIVwrdOOVwrdmgram no 0.368 0.447 0.436 0.735 0.757 0.682

LSEIVwrdOOVwrdmgram yes 0.355 0.433 0.377 0.712 0.748 0.628

LSEIVwrdOOVhybrid no 0.370 0.447 0.453 0.735 0.757 0.682

LSEIVwrdOOVhybrid yes 0.358 0.433 0.395 0.712 0.748 0.628

LSEIVhybridOOVhybrid no 0.378 0.459 0.453 0.737 0.761 0.682

LSEIVhybridOOVhybrid yes 0.363 0.441 0.395 0.717 0.755 0.628

Table 8.1: Summary of different forms of IV and OOV words in IV and OOV terms. The baseline

systems are produced by LatticeSTD. Systems below denote standard experiments with the LSE.

same for both experiments. The results are similar for both LSE and baseline systems.
Theoretically, the results should be exactly the same, because both systems are based on
the same formula. However the implementation is different which leads to small differences
in floating point numbers.

It is interesting to notice, that the search without verification achieves better accuracy
in all experiments. Explanation of this fact is given in the following section.

Using hybrid form of OOV terms (remember that here, IV words from OOV terms are
in both word and multigram forms) brings no further improvement of UBTWV-OOV. The
aim of this analysis was to see if the presence of an OOV does not hurt the recognition
of preceding IV word, when a hybrid recognizer is used. Decomposition of IV into multi-
grams would then probably allow to correct some errors caused by an OOV (for example,
recognizer entering the OOV part of the recognition network too soon). The fact that we
did not see any improvement documents that the OOV model is activated correctly only
in OOV parts of speech.

A slight improvement of accuracy of about 0.004 is achieved, when the IV terms are
searched in their hybrid form. This improvement is not significant to make explicit con-
clusion, but could be explained by activation of OOV model in some sentences that are
unlikely for the word language model.

We conclude that this experiment using real indexing & search system verified results
achieved by the LatticeSTD. If OOV term is searched with verification, expanding the
OOV term from multigram form OOVmgram (the whole term in multigram form) to word–
multigram form OOVwrdmgram (IV words in word form and OOV words in multigram
form) brings only small improvement in accuracy.
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8.2 N-best multigram term variants

The second experiment done with LSE indexing and search engine aimed at the expansion
of 1-best to n-best multigram variants of OOV words. Similar experiment was done in
section 6.5, where each word of the term list is segmented by multigrams to n-best variants.
The conclusion was that the accuracy saturates for 3-best variants with an improvement
of 0.014 for UBTWV-OOV.

The LSE IVwrdOOVwrdmgram system is used. OOV words in OOV terms are seg-
mented to 1 (baseline), 2, 3 and 5-best variants. The results are summarized in table 8.2.
Significant improvement can be seen in experiments with verification. The n-best variants
have no influence to systems without verification.

This clarifies why systems with verification are worse than without verification. The
multigram subword model is not 100% accurate. It produces several possible multigram
sequences representing the underlying speech. An OOV part of speech contains searched
multigrams (representing an OOV word), but these multigrams are not properly connected.
That is why systems without verification found this OOV while systems with verification
failed. If several multigram segmentation variants are generated and searched, the prob-
ability that a different variant exists in the lattice increases and gives better chance that
the term will be verified.

Similarly to the experiment in section 6.5, the accuracy saturates for 3-best variants.
On the other hand, n-best variants slow the search times. If a term has 2 OOV words and
we search for 3-best variants, we must search for 6 variants of the term which can be very
time expensive.

System Mgram n-best Verif. UBTWV

variants ALL IV OOV

LSE IVwrdOOVwrdmgram 1 no 0.735 0.757 0.682

LSE IVwrdOOVwrdmgram 1 yes 0.712 0.748 0.628

LSE IVwrdOOVwrdmgram 2 no 0.735 0.757 0.682

LSE IVwrdOOVwrdmgram 2 yes 0.719 0.748 0.654

LSE IVwrdOOVwrdmgram 3 no 0.735 0.757 0.682

LSE IVwrdOOVwrdmgram 3 yes 0.722 0.748 0.663

LSE IVwrdOOVwrdmgram 5 no 0.735 0.757 0.682

LSE IVwrdOOVwrdmgram 5 yes 0.722 0.748 0.663

Table 8.2: Dependency of the UBTWV accuracy on the n-best multigram segmentation of OOV

words. Positive impact on the accuracy of more segmentations of an OOV word to sequences of

multigrams can be seen on systems with verification.

8.2.1 Out-of-vocabulary conversion by grapheme-to-phoneme

In all experiments up to now, the OOV word pronunciation variants have been taken
from the full 50k WRD dictionary. This is done to obtain the results not influenced
by possible errors in generated OOV pronunciations. Here, we applied the G2P tool
(section 3.5.7) on the OOV word labels and produced the pronunciations which corresponds
to real deployment of the system. Only the best pronunciation variant is taken. Then the
generated pronunciations are segmented to multigrams (also only the 1-best multigram
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segmentation is taken), and searched by the LSE indexing and search tool. The results are
summarized in table 8.3. With pronunciations generated by G2P, the OOV term accuracy
deteriorates by 0.008. We also did an experiment with generating 2-best pronunciation
variants per word by the G2P tool. However, this had no effect on the accuracy.

System Mgram n-best Verif. UBTWV

variants ALL IV OOV

LSE IVwrdOOVwrdmgram LVCSR 1 no 0.735 0.757 0.682

LSE IVwrdOOVwrdmgram LVCSR 1 yes 0.712 0.748 0.628

LSE IVwrdOOVwrdmgram G2P 1 no 0.733 0.757 0.675

LSE IVwrdOOVwrdmgram G2P 1 yes 0.709 0.748 0.620

Table 8.3: Comparison of hybrid system where OOV pronunciations are taken from the LVCSR

dictionary (LSE IVwrdOOVwrdmgram LVCSR) or generated automatically by G2P (LSE IVwr-

dOOVwrdmgram G2P).
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Chapter 9

Conclusion and discussions

9.1 Summary

The thesis deals with spoken term detection. The corner stone of this thesis is search of out-
of-vocabulary terms which are not present in dictionary of word-based speech recognizer.
We investigate into combination of word and subword approaches to get the best search
accuracy (especially for out-of-vocabulary words) having the highest search speed and the
lowest memory consumptions.

Several systems were described and tested in this thesis. We aimed at evaluation of
spoken term detection accuracy. The accuracy was evaluated on 3h of conversational
telephone speech. We searched for nearly 400 terms (having up to 4 words) where about
one third contains at least one out-of-vocabulary word.

The Upper-Bound-Term-Weighted-Value (UBTWV) was used as the primary evalua-
tion metric. We derived this metric from Term-Weighted-Value (TWV) defined by NIST.
The difference is in calibration of terms’ scores to one global threshold. The UBTWV
shifts the terms confidences to maximize term’s TWV for threshold 0. Terms are then
pooled and average upper-bound TWV is calculated. By this, we can effectively bypass
the calibration of scores and concentrate on the actual system’s accuracy.

We also evaluated word accuracy and size of output produced by systems. The size of
the output is important from the practical point of view.

The baseline LVCSR system was used to demonstrate the effect of missing words in the
vocabulary. We have shown a deterioration of spoken term detection and word recognition
accuracy. The baseline recognizer was also used to demonstrate tuning the recognizer to
“reasonably best” accuracy. Term confidence estimation techniques were studied as well.
We found that sum of link posteriors (SOLP) and Cmax confidences are the best. This fact
was also validated for subword and hybrid systems. However, we chose link posterior (LP)
confidence for majority of experiments due to its simplicity (large difference between LP
and SOLP was observed only for phone multigram system). SOLP confidence estimation
was however used to validate the important conclusions in this thesis.

The first set of subword systems were the phone systems. We trained the phone
system up to phone trigram, but there was no large difference between bigram and trigram
language models. We primarily evaluated the approach of producing phone lattices from
word lattices published by Witbrock and Hauptmann [WH97]. The conclusion is, that
this approach has no advantage for spoken term detection of out-of-vocabulary terms.

The second set of subword systems were phone multigram systems. We adopted the
approach of phone multigrams published by Deligne and Bimbot [DB95]. First, we found
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the optimal configuration of phone multigram model according to spoken term detection
accuracy. We proposed two new multigram models with constraints (nosil and noxwrd).
These constrained phone multigrams were found superior to the baseline multigrams. Be-
side the evaluation of term confidences, we evaluated also the influence of number of
out-of-vocabulary term segmentations to multigrams. It was found, that this number of
segmentations has significant impact only on the accuracy of out-of-vocabulary term de-
tection. The conclusion is that constrained multigrams significantly overcome standard
multigrams and phones. This system is more accurate, faster and produces smaller lattices.

The third set were hybrid word-subword systems. A framework based on WFST was
defined for construction of hybrid word-subword language models. We first evaluated
“oracle” systems (subword model was substituted by out-of-vocabulary words). We in-
vestigated also the dependency of size of lattices and accuracy on parameters of hybrid
language model. A hybrid system can achieve higher accuracy than a word system having
comparable size of produced lattices.

The first two subword systems “plugged” into hybrid system framework were the
phones and constrained multigrams. It was shown, that these hybrid systems did not
bring any interesting improvement. The explanation of this was that these subword models
were trained on whole sentences and contain “word” priors. Plugged into hybrid, subword
model competes with the word model, and decreases the accuracy on in-vocabulary words.

Therefore, we trained phone multigram model only on pronunciation vocabulary. The
baseline hybrid system was based on pronunciation multigrams derived from LVCSR dic-
tionary (similarly as proposed by Bazzi [Baz02]). We extended this baseline system further
by training the multigram model on large dictionary of out-of-vocabulary words. This sys-
tem achieved slightly better accuracy. We tested the influence of automatic grapheme-to-
phoneme production of pronunciations of out-of-vocabularies on the spoken term detection
accuracy. The influence was not significant.

The second extension was incorporation of bigram language model over multigrams in
the subword part of the hybrid recognizer. The effect of stronger subword model becomes
evident on the accuracy of out-of-vocabulary terms and smaller lattice size.

The hybrid systems were also evaluated with different beam pruning in the decoder.
We found performance of in-vocabulary term detection to be instable in this experiment.
The hybrid system started to deteriorate compared to word baseline for low beam pruning.
Also, we were not able to overcome the best out-of-vocabulary term detection accuracy
achieved by the baseline multigram system. The hybrid system was evaluated from the
lattice size and computational speed points of view. This should ensure practical appli-
cability of the proposed system. We found that hybrid system can achieve slightly worse
accuracy with significant reduction of lattice size and the same speed compared to the
combined word and multigram systems. From pure accuracy point of view, this could be
considered a failure of the proposed approach, but in our opinion, this drawback is largely
compensated by its simplicity and efficiency – keep in mind that in the combination of
word and multigram systems, the data must be processed separately by both systems
which is much more complicated.

The final test of the hybrid system was in combination with a real indexing and search
engine. The advantage of proposed word-multigram hybrid system is that the output
hybrid lattices can be indexed by the existing system. There is no need for overlapped
phone n-grams that are usually used in phone-based indexing systems.

We have also investigated the verification of terms. The verification is a two step
process, where existence of candidates hypothesized by the indexing and search engine
is validated in the lattice and more precise confidence is estimated. Our conclusion is
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that the search is more accurate without verification. The explanation is that even if the
requested path of subword units does not exist in the lattice, the indexing and search
engine (that is looking only for sequence of subword units properly ordered in time) has
a chance to detect it. We have proven this in experiments searching for more than one
possible multigram segmentations of terms – in this case, turning verification in lattice on
did not deteriorate the results significantly.

9.2 Future work

The main problem of our hybrid approach is in the requirement of correct scaling of word
and subword language models. In the case of incorrectly scaled language models, produced
lattices can contain too high or too low number of subword units. The accuracy will not
be optimal.

An approach published by Yazgan and Saraclar [YS04a] based on estimation of hybrid
language model on hybrid textual corpora could be more robust. There is no need of any
scaling of word-subword parts of the LM. The “scaling” parameters are directly estimated
on the data. On the other hand, our approach can be used in cases where we do not have
much LM training data, or we want to adapt the system to a different domain.

We could build an LM containing several different types of OOV symbol as <unk-name>,
<unk-street>, <unk-city> and <unk-other> for each domain. Then, each domain-
dependent subword language model could be estimated separately. <unk-name> on names
of people, <unk-street> on names of streets, etc. In a new scenario, where the set of
names radically differs from the set used for training of the previous <unk-name> model,
only the new <unk-name> would need to be be trained and hybrid network recompiled. As
the corpora for the subword language models are in “dictionary” format, building them
is easy. The approach based on hybrid textual corpora can not be so easily adapted to
the new set of names. The names appearing in the hybrid corpora would need to be
substituted by the new names and the whole hybrid language model would need to be
retrained.

This work could be also highly beneficial for applications, where adding new words
to the system is requested. Having the <unk-name>, <unk-street>, <unk-city>,
<unk-other> etc. symbols in the recognition network would actually create the neces-
sary place-holders, where appropriate new words could be added off- or even on-line.

It would be also very interesting to evaluate the phone multigram model proposed by
Bisany and Ney [BN08] and compare it to our approach. Their multigram model is defined
theoretically more correctly and should achieve better results. It would be also interesting
to assess the improvement in the hybrid system and in a standalone multigram system.

In the proposed constrained multigrams, we could also improve dealing with the silence,
that is currently considered as an independent unit. The silence models (sil and sp) could
be placed to the end of each multigram unit in the same way as it is done in LVCSR.

A big step forward would be to implement a “hybrid-friendly” decoder. It can be
difficult to precisely tune hybrid language model parameters to achieve balanced word
and subword performance. In the current setup, there is a danger that the hybrid system
switches completely to the word or sub-word modes. The decoder should guarantee, for
example, at least one token surviving in each part all the time.

From the experimental point of view, it would be interesting to investigate the perfor-
mance of our approach on out-of-language (OOL) parts of speech – such parts can appear
for example in meeting data or broadcast news.
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Another future work is linked with using the hybrid system as OOV detector and
comparing its performances with the detector based on strong vs. weak posteriors, as it
was proposed at JHU workshop in 20071 by Hermansky et al. [HBS+07]. Efforts in this
direction are already running within the European DIRAC project [ČH10].

1http://www.clsp.jhu.edu/ws2007/groups/rmimsr/
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Dictionary parameters

In section 7.7.3, we tried to find out, if the accuracy of hybrid system was influenced by
the size of the dictionary. A large set of 1.2M word labels was collected from the corpora
used for open vocabulary word language model estimation (section 4.3). We performed
several steps to clean the word list of “garbage” (words ”AAAAHHHH, 92’, etc.”):

• We omit the WRDunk dictionary. This leads to:

1. Our OOV words become unseen words for the subword model.

2. We omit also the IV words so the subword model is not be biased by the IV
words.

• We omit words with counts lower or equal than C, where C is a parameter. This
filters out the senseless “garbage” words.

• We omit words which have label length shorter or equal than L characters, where L
is a parameter. We want to model longer words. Also, the short words are usually
“garbage” abbreviations.

• The automatically trained G2P tool (section 3.5.7) produces the pronunciation vari-
ant and the posterior probability is attached to the variant. We compare the poste-
rior probability to the threshold V P , where V P is a parameter. Pronunciations with
probability less than V P are omitted. This should filter out words with “uncertain”
pronunciations.

The original size 1.2M of word list is reduced to value in range between 360k words for
L = 2, C = 2, V P = 0.0 down to 14k words for L = 4, C = 50, V P = 0.9 depending on
the set of parameters L, C and V P .

We “tune” parameters C, L and V P (denoted as dictionary parameters) separately
and observe their influence on the accuracy. The overall effect of dictionary parameters
on the accuracy is small (tenths of percent).

The C parameter (minimum count) is set to values 2, 10 and 50 (figures A.1 and A.2).
Small accuracy improvement is observed for word accuracy and UBTWV-IV for C = 50,
on the other hand, significant improvement of UBTWV-OOV is observed for C = 2. We
selected minimum count parameter C = 2 for further experiments according to better
accuracy on OOV words.

The L parameter (minimum length) is set to values 2, 3 and 4 (figures A.3 and A.4).
No significant accuracy improvement is observed. UBTWV-OOV is slightly better for
L = 4. We selected minimum length parameter L = 4 for further experiments.
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Figure A.1: The dependency of the HybridMgram systems WAC and UBTWV accuracy on the

parameter SWIP. The red color denotes the baseline systems WRDunk and WRDREDunk. The

dictionary parameter C (minimum count) is set to 2, 10 and 50. Fixed parameters: maximum

length of multigrams is lmgram = 5, multigram pruning c0 = 5, dictionary parameters L = 3 and

V P = 0.8.

Figure A.2: The dependency of the HybridMgram systems WAC, UBTWV accuracy and the

lattice size on parameter SWIP. The red color denotes the baseline systems WRDunk and WR-

DREDunk. The dictionary parameter C (minimum count) is set to 2, 10 and 50. Fixed parameters:

maximum length of multigrams is lmgram = 5, multigram pruning c0 = 5, dictionary parameters

L = 3 and V P = 0.8.

The V P parameter (minimum posterior probability of variant) is set to values 0.1, 0.2
up to 0.9 (figures A.5 and A.6). No consistent and significant improvement is observed.
We selected the minimum posterior probability of pronunciation variant V P = 0.8 for
further experiments.
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Figure A.3: The dependency of the HybridMgram systems WAC and UBTWV accuracy on the

parameter SWIP. The red color denotes the baseline systems WRDunk and WRDREDunk. The

dictionary parameter L (minimum length) is set to 2, 3 and 4. Fixed parameters: maximum

length of multigrams is lmgram = 5, multigram pruning c0 = 5, dictionary parameters C = 3 and

V P = 0.8.

Figure A.4: The dependency of the HybridMgram systems WAC, UBTWV accuracy and the

lattice size on parameter SWIP. The red color denotes the baseline systems WRDunk and WR-

DREDunk. The dictionary parameter L (minimum length) is set to 2, 3 and 4. Fixed parameters:

maximum length of multigrams is lmgram = 5, multigram pruning c0 = 5, dictionary parameters

C = 3 and V P = 0.8.

Figure A.5: The dependency of the HybridMgram systems WAC and UBTWV accuracy on the

parameter SWIP. The red color denotes the baseline systems WRDunk and WRDREDunk. The

dictionary parameter V P (minimum posterior probability of variant) is set to 0.1, 0.2 up to 0.9.

Fixed parameters: maximum length of multigrams is lmgram = 5, multigram pruning c0 = 5,

dictionary parameters C = 2 and L = 4.



126 A. Dictionary parameters

Figure A.6: The dependency of the HybridMgram systems WAC, UBTWV accuracy and the

lattice size on parameter SWIP. The red color denotes the baseline systems WRDunk and WR-

DREDunk. The dictionary parameter V P (minimum posterior probability of variant) is set to 0.1,

0.2 up to 0.9. Fixed parameters: maximum length of multigrams is lmgram = 5, multigram pruning

c0 = 5, dictionary parameters C = 2 and L = 4.



Appendix B

Grapheme-to-phoneme converter

The grapheme to phoneme system used in this thesis works in the following steps. In the
training, it takes pronunciation vocabulary (words mapped to phoneme strings) and it
produces set of rules. When pronunciation variants of words are needed, the input is word
labels (graphemes) and a set of rules. The output is generated pronunciation vocabulary
with probabilities assigned to produced variants.

Phoneme grouping

At first, it is expected that every grapheme can be mapped at most to one phoneme.
If some words have more graphemes than phonemes, two phonemes are mapped to one
pseudo phoneme: "X" → "k s", "U" → "y uh". So it is necessary to find these phoneme
groups. The fastest way to perform this step for any language is to find words that have
more phonemes than graphemes. We look at them and derive common phoneme groups.

INSECURITY -> ih n s ih k "y uh" r ax t iy

INTRAMURAL -> ih n t r ax m "y uh" r ax l

JANUARY -> jh ae n "y uw" eh r iy

INTOXICATED -> ih n t aa "k s" ax k ey t ax d

KLUX -> k l ah "k s"

LARYNX -> l ae r ih ng "k s"

New pseudo phonemes are made using character *. The new pseudo phonemes look
as: "k s" → "k*s" or "y uw" → "y*uw".

Creating variants

In the second step, all possible mappings of graphemes to phonemes (pseudo phonemes)
are produced for every word in the dictionary.
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D A Y T O N

- - d ey t en

- d - ey t en

d - - ey t en

- d ey - t en

d - ey - t en

d ey - - t en

- d ey t - en

d - ey t - en

d ey - t - en <= We would like to get this in next step

d ey t - - en

- d ey t en -

d - ey t en -

d ey - t en -

d ey t - en -

d ey t en - -

Creating rules

In the third step, all possible rewriting rules are generated. A probability is attached
to each rule according to how many times it was used. The probabilities of rules are
normalized, so that the probability of rules for one grapheme sums to 1.0.

A->- 0

A->aa 0.0385445688875768

A->ae 0.129970293558684

A->ah 0.00129158440504087

...

A->w 0.0140782700149455

A->y 0.0010148163182464

A->y*ax 0.00276768086794472

A->y*uw 0.00079340184881082

A->z 0.0116427108511541

A->zh 0.00112552355296419

...

Selecting the best variants

In the fourth step, all mapping variants are evaluated for each word. This is done with
consideration of having as small rule set as possible. Probabilities of rules are sums for
each variant, and the one with the highest score is used. The most probable mapping rules
are estimated in this step.

D A Y T O N

d ey - t - en

In this case, the correct (the most probable) variant is chosen.
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Table of rules

We obtained correct grapheme to phoneme mappings in the previous step. These will
be used as the training set. Final rewriting rules are derived from the mappings. The
probability of a rule is the probability of applying this grapheme to phoneme mapping
conversion according to right and left contexts of the given grapheme.

|A| => - 0.142501

|A| => aa 0.078082

|A| => ae 0.269577

...

|B| => b 0.955423

...

|A|A => aa 0.450000

|A|A => ae 0.200000

...

|A|D => aa 0.050602

...

O|N|G => - 0.528736

O|N|G => n 0.103448

O|N|G => ng 0.333333

...

+++S|A|DIST+ => ey 1.000000

+++S|A|DISTI => ax 1.000000

...

The character + marks the end of a word. This table of rules is stored and can be used
for estimation of pronunciation variants.

Using table of rules

This step aims at estimation of pronunciations from input words labels. For every
grapheme in the word, we can find the longest possible context in the table of rules.
All pronunciation variants (phoneme strings) are generated for each word label (grapheme
string). Score is calculated for each variant by multiplying the probabilities of each used
rule. The best variant (the highest score) is presented as the estimated pronunciation of
the given word label. It is also possible to produce n-best pronunciation variants. The
last step is the deletion of the * character defining the pseudo phonemes.

GARFIELD 1.0 g aa r f iy l d

BATTLESHIP 1.0 b ae t el sh ih p

STANISLAV 0.2371969778976 s t ae en ih s l aa v

STANISLAV 0.1778974221024 s t ae n ih s l aa v
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[ČH10] J. Černocký and H. Hermansky. Report on identification of repeatedly occur-
ring out-of-vocabulary words, deliverable no: D2.12, DIRAC project. Techni-
cal report, Brno University of Technology, Czech Republic, 2010.
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eroscedastic linear discriminant analysis and LCRC posterior features in meet-
ing data recognition. Lecture Notes in Computer Science, 2006(4299):275–284,
2006.

[KL99] M. W. Koo and S. J. Lee. An utterance verification system based on subword
modeling for a vocabulary independent speech recognition system. In Proceed-
ings of Eurospeech, volume 1, pages 287–290, Budapest, September 1999.

[KLC02] J. Kim, J. Lee, and S. Choi. Hybrid confidence measure for domain-specific
keyword spotting. In Proceedings of The 15th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems, pages 736–745, London, UK, 2002. Springer-Verlag.

[KLJ98] T. Kawahara, C. H. Lee, and B. H. Juang. Flexible speech understanding
based on combined key-phrase detection and verification. IEEE Transactions
on Speech and Audio Processing, 6(6):558–568, November 1998.

[KLJ01] M. W. Koo, C. H. Lee, and B. H. Juang. Speech recognition and utterance
verification based on a generalized confidence score. IEEE Transactions on
Speech and Audio Processing, 9(8):821–832, November 2001.

[KVBB06] H. Ketabdar, J. Vepa, S. Bengio, and H. Bourlard. Posterior based keyword
spotting with a priori thresholds. In Proceedings of ICSLP, Pittsburgh, USA,
2006. IDIAP-RR 06-67.

[KY96] K. M. Knill and S. J. Young. Fast implementation methods for Viterbi-based
word-spotting. In Proceedings of ICASSP, pages 1–4, 1996.

[Le04] A. Le. NIST’s workshop presentation on STT, NIST RT 2004, November 2004.

[LMD02] B. Logan, P. Moreno, and O. Deshmukh. Word and sub-word indexing ap-
proaches for reducing the effect of OOV queries on spoken audio. In Pro-
ceedings of Human Language Technology Conference, pages 31–35, San Diego,
California, USA, March 2002.

[LT02] B. Logan and J. M. Van Thong. Confusion-based query expansion for OOV
words in spoken document retrieval. In Proceedings of ICSLP, September 2002.

[LTI05] S. Lee, K. Tanaka, and Y. Itoh. Combining multiple subword representations
for open-vocabulary spoken document retrieval. In Proceedings of ICASSP,
volume 1, pages 505–508, 2005.



Bibliography 135

[MJ99] N. Moreau and D. Jouvet. Use of a confidence measure based on frame level
likelihood ratios for the rejection of incorrect data. In Proceedings of Eu-
rospeech, volume 1, pages 291–294, Budapest, September 1999.

[MPR08] M. Mohri, F. Pereira, and M. Riley. Speech Recognition with Weighted Finite-
state Transducers. Springer Handbook on Speech Processing and Speech Com-
munication, Part E: Speech recognition. Springer-Verlag, Heidelberg, Ger-
many, 2008.

[Ng00a] K. Ng. Information fusion for spoken document retrieval. In Proceedings of
ICASSP, 2000.

[Ng00b] K. Ng. Subword-Based Approaches for Spoken Document Retrieval. PhD thesis,
Massachusetts Institute of Technology, USA, February 2000.

[NIS91] ”The Road Rally Word-Spotting Corpora (RDRALLY1), NIST Speech Disc
6-1.1”. September 1991.
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