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Keywords: keyword spotting, spoken term detection, confidence measures, large
vocabulary continuous speech recognition, combined word-subword system, out-
of-vocabulary

Rukopis disertǎcńı práce je ulǒzen na Fakulťe informǎcńıch technologíı Vysokého
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Chapter 1

Introduction

The research field of this thesis is spoken term detection. The corner stone of this
thesis is search of out-of-vocabulary terms which are not present in dictionary of
word-based speech recognizer. Also, topics as term confidence measures, weighted
finite state transducers, indexing of spoken documents and phone multigram units
are touched.

Short definition of important terms is placed in the following paragraph to avoid
confusion of the reader of this thesis. We define the differences betweenkeyword ,
term , query , keyword spotting andspoken term detection .

Keyword is understood as a single word within the scope of this thesis(e.g."IGOR"
or "DETECTION" ). It is used withinacoustic keyword spottingcontext. In
fact, the keyword can be also sequence of consecutive words"IGOR SZÖKE"
in context ofacoustic keyword spotting. It is why these consecutive words can
be processed as one keyword"IGORSZÖKE".

Term is defined as one or multiple words in sequence like"KEYWORD", "KEYWORD
DETECTION" or "THE PRESIDENT GEORGE BUSH". It is used within
spoken term detectioncontext. If the term consists of one word, there is no
difference betweenterm andkeyword. For terms containing multiple words,
the exact logic of how the words can be connected needs to be defined by the
spoken term detector. For example, the"KEYWORD DETECTION"term can
mean words"KEYWORD"and"DETECTION" in sequence where silence be-
tween them is shorter than1s. Another words can be allowed between these
two words. These conditions are defined in the spoken term detection system.

Query is defined as one or multiple words consisting of terms and operators"(’IGOR
SZÖKE’ near THESIS) and ’KEYWORD SPOTTING’ not BIOLOGY" .
The operators should define the semantic information. The query is usually
used in context of spoken document retrieval or informationretrieval.
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Keyword spotting system is a system for spotting (searching) given keywords in
speech data. It understands the keyword as one object despite the number
of words the keyword list might consist of. Keyword spottingsystem can be
based on speech recognizer but it can be also “standalone” system which spots
only given keywords and does not “understand” surrounding speech.

Spoken term detectionsystem is also a system for spotting (searching) given terms
in given speech data. On contrary to thekeyword spotter, spoken term detector
somehow parses and splits multiple word terms and searches for term candi-
dates according to defined criteria (distance for example).The spoken term
detection system is usually built-up on speech recognizer (and depends on it).

The topic of this thesis is aimed toSpoken Term Detection– STD. The STD
system takes a set of terms and output of a speech recognizer and produces a list of
putative hits of given term. The term is understood as sequence of one or more con-
secutive words. Only short silence is allowed between theseparticular words. Term
definition is discussed more thoroughly in section 2. Our spoken term detector is
based on alarge vocabulary continuous speech recognizer– LVCSR. It takes the
output of speech recognizer and provides search of terms. The speech recognizer is
mainly taken “as is” and is described in chapter 3. The outputlist of putative hits of
given term can be viewed by human or processed by a system (information retrieval
or spoken document retrieval) allowing for search for more complex queries.

The complexity of spoken term detector depends on the outputof speech recog-
nizer. Such output can be a1-best output (simple text string, spoken term detection
is then simple text search), anN -best output or a graph of parallel hypothesis so
called lattice (for definition see section 1.2). The recognizer can recognize word
units or subword units (syllables, phones, etc.).

Out-of-vocabulary (OOV) words handling is also important in case of word-
recognition. Words which are not present in word recognizerdictionary should
be detected. Normalization is useful for scaling and shifting of term confidences.
Each term should have theconfidencenormalized, so that one global threshold can
be used for decision of acceptance/rejection of terms. Speed and computational
requirements are also important from practical point of view.

Search accuracy depends on recognition accuracy of used speech recognizer. We
need only1-best (single string) output in a case of100% reliable speech recognizer.
Nowadays, the state of the art word recognizers achieve about 10% – 20% word
error rate (WER) and about5% – 10% lattice word error rate on broadcast news
andconversation telephone speech (CTS) [12]. This gives very good search results
in combination with lattice search [7]. But the language is an evolving thing and
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each day many new words appear. There can be hardly a speech recognizer having
all words in the dictionary. Information theory also statesthat the least frequent
words carry most of the information. That is why we aim at out-of-vocabulary
words.

The problem of OOVs can be solved by recognizing subword units (syllables or
phones). The drawback of this approach is absence of strong word n-gram language
model and strong acoustic model of words which are both included in large vocabu-
lary continuous speech recognizer (LVCSR). That is why subword recognition does
not achieve so good accuracies. Phone recognition is quite sensitive to pronuncia-
tion errors for example. These possible errors should be taken into account in the
search. On the other hand, LVCSR contains only a close set of words to be recog-
nized and word language model prefers likely word sequencesoff the “exotic” ones
(probably carrying higher information). Also it is shown that if an OOV appears, it
usually causes no1 word error, but approximately2 – 4 word errors [2]. This is a
justification of an investigation into subword recognition.

1.1 Spoken term detection

The generic scheme of a spoken term detection system is in figure 1.1. The spoken
term detection system is built on speech recognizer, which usually encapsulates also
the feature extraction. The speech recognizer produces textual strings or so-called
lattices (figure 1.2) which contain transcribed speech in words labels. The lattices
are searched for the given terms or keywords.

Figure 1.1:General scheme of spoken term detector.

Spoken term detection (indirect keyword spotting) is basedon the output of a
speech recognizer. It is a two step method where the first stepconsists of the
time consuming speech recognition and the second one consists of a fast spoken
term/keyword search. The method inherits main characteristics of the recognizer

8



used. Input term/keyword must be converted to a sequence of units similar to rec-
ognizer’s output units (e.g. words, syllables, phones, etc.). Then the sequence is
searched in the output of the recognizer. The recognizer (usually the slowest step
of whole STD) is run only once. The STD or keyword spotter is run each time
a term or keyword has to be found. In comparison to the acoustic keyword spot-
ting, the search is very fast because it is done over “textualdata” (output of speech
recognizer). Advantages of STD are the speed of search and detection accuracy (de-
pends on recognizer’s accuracy). Searching speed can be optimized by techniques
known in information retrieval, such as inverted indices, caching etc. to achieve
searching times less than10−3s/hr/term. The disadvantages are off-line process-
ing (especially LVCSR is complex and time consuming) and closed unit vocabulary.
The recognizer has finite and closed vocabulary of units it can recognize. Once the
recognition is done, the spoken term detector will “find” only units which were rec-
ognized by the recognizer. This is a drawback if a word recognizer is used. STD ap-
proach can be split according to used recognizer to word-based and subword-based.
The word-based STD has very high accuracy (having phone models “organized”
in words and strong word language model) but limited vocabulary. The subword-
based STD approach has unlimited vocabulary (search word must be converted to a
sequence of subword units) but has lower accuracy (missing word acoustic models
and word language model).

In STD, we “ask” for the posterior probabilityp(termte
tb
) of occurrence of the

termterm from timetb to timete. A sequence of unitsw is constrained tow(termte
tb
)

which contain the term in given time:

ŵ(termte
tb
) = arg max

w(termte
t
b
)∈W(termte

t
b
)

p(w(termte
tb
)|D), (1.1)

whereW(termte
tb
) is the set of all permissible sentences having the term in defined

time andD is the observed data. Applying the Bayes formula, we get

ŵ(termte
tb
) = arg max

w(termte
tb

)∈W(termte
tb

)

p(D|w(termte
tb
))p(w(termte

tb
))

∑

w
′∈W

p(D|w′)p(w′)
. (1.2)

In practice, direct implementation of formula 1.2 is difficult. We do not know the
time of occurrencetb andte of the termterm. Again, an approximation must be
used to hypothesizetb andte. The time of the term can be suggested fromW. To
avoid having size ofW infinite, W is approximated by lattice.

So, the real spoken detection task has two steps. The set of the most likely
hypothesisW ′ is generated. Then occurrences of searched terms are found in W ′
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and estimation of term posterior probabilityp(termte
tb
) is:

p(termte
tb
) =

p(D|w(termte
tb
))p(w(termte

tb
))

∑

w
′∈W′ p(D|w′)p(w′)

. (1.3)

1.2 Search in lattice

This section presents the “implementation” of the calculation of term posterior prob-
ability stated in equation 1.3 in the previous section. Lattice (figure 1.2) are nowa-
days used as the multiple hypothesis output of speech recognizer.

Figure 1.2:An example of word lattice. X-axis represents time.

The lattice is an acyclic oriented graph. Each noden represents a time. An arc
a connects two nodesn1, n2 and represents a speech unit1 u = U(a) and set of
two likelihoodsL(a) (acousticLAc(a) and languageLLM(a)). Start timetb(a) and
end timete(a) of arca representing unitU(a) correspond to the time of start node
t(nb(a)) and end nodet(ne(a)) of the arca:

t(nb(a)) = tb(a)

t(ne(a)) = te(a).

TheLAc(a) ∝ p(D|w(atb
te
)) andLLM(a) ∝ p(w(atb

te
)).

The best hypothesis (the most likely path) can be derived from lattice. The best
path through the lattice is also known as1-best or string output. N most likely
paths through the lattice are known asN -best output. Lattice can be understood as
compact representation of theN -best output where theN is a large number.

Searching for a term in the string output (1-best) is straightforward. An algorithm
goes through the string of units and compares each term to a sequence of units. If the
comparison is successful, time boundaries and likelihood of units are stored to a list
of term detections. The drawback of this approach is the absence of normalization.

1Another possibility is to represent speech unit as end node of the arc, then the arc represents only time information
and likelihoods.
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Term scores, which are derived from likelihoods of units (L(u)), are sensitive to
background noises. The term detector is not robust in this case.

On the other hand, searching for the term in the lattice is more robust. Having
the lattice, we have theW ′ and we can estimate the posterior probability of term
according to equation 1.3. The posterior probability givesconfidence of term for
particular occurrence of term (represented by arca) in time tb(a), te(a).

However, one more problem should be solved. Assume, that we also hypothe-
sized occurrencea′ of the term, which is slightly shifted but still overlapped with the
original one. The problem is: is the probability of the original occurrence affected
by the fact that several overlapped occurrences of the same term exist? This leads
to “alternative” formula estimating the posterior probability of the term in timet:
t(term) = termt. The occurrence of term in timet(term) is defined by condition
tb(term) ≤ t(term) ≤ te(term).

These two points of view are defined in this thesis in the following way:

1. Theterm score. The term score is the posterior probabilityp(termte
tb
) of par-

ticular term hypothesis in the lattice from timetb to timete (figure 1.3). It does
not consider other overlapped occurrences of the term in thetime.

2. The term confidence. On the other hand, term confidence is the posterior
probabilityc(termt) = p(termt) of existence of the term in the lattice at given
time t (figure 1.3). It takes into account several overlapped particular term
hypothesis in the lattice.

Figure 1.3:Example of a term occurrences in a lattice. “Term scores” denote different values of the poste-
rior probability p(termte

tb
) for particular term occurrence. “Term confidence” denotes evolution of posterior

probabilityp(termt) of existence of the term in the lattice at given timet.
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Chapter 2

Evaluation

Well defined evaluation data is important for objective evaluation and comparison of
different systems. Unfortunately, each published spoken term detection system was
evaluated on different data and with different term set. There were4 TREC NIST
evaluations in years1997 − 2000. The TREC evaluations had only partial overlap
with spoken term detection task. The goal of TREC wasSpoken Document Retrieval
(TREC-SDR) on broadcast news. The broadcast news recordings were recognized
by Automatic Speech Recognizer and then processed byDocument Retrieval system.
The goal was to find the relevant document, but not to find all term occurrences.
The TREC-SDR was declared a solved problem at TREC-9 in 2000. There were
no spoken term detection evaluations organized by NIST fromyear2000 till 2006.
New evaluation track was announced by NIST in2006. It was calledSpoken Term
Detection (STD) evaluation1.

The goal of the first NIST STD (2006) evaluation was to explore promising
new ideas in spoken term detection and measuring the performance of this tech-
nology [6]. The spoken term detection system should consistof two parts:

• The first part is anindexing sub-system. It processes all input speech data
(audio signal) into indices. This step can take longer time (hours of processing
time per hour of speech data) and is run on the data only once.

• The second part is asearch sub-system. It should find a given term as fast as
possible (milliseconds of processing time per one term) in the indices.

The STD2006 evaluation task was to find all of the occurrences of a specified
term in a given corpus of speech data. The “term” is a sequenceof one, two, three
or four words. The words in a term have to be said by the same speaker, channel
and file. The gap between adjacent words must not be longer than 0.5s. Terms are

1http://www.itl.nist.gov/iad/mig/tests/std/2006/inde x.html
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specified only by orthographic representation so ”wind” (moving air) will match
”wind” (twist) but ”cat” will not match ”catalog”. The evaluations ran for3 different
domains and3 languages, see table 2.1.

Domain\ Language English Arabic Mandarin

Broadcast News (BCN) ∼ 3 hours ∼ 1 hour ∼ 1 hour
Telephone Conversations (CTS)∼ 3 hours ∼ 1 hour ∼ 1 hour
Round-table Meetings (MTG) ∼ 2 hours No No

Table 2.1:Durations of indexed audio for both, the DevSet and the EvalSet.

NIST provides three data sets. ADevelopment set (DevSet), a Dry Run set
(DryRunSet) and anEvaluation set (EvalSet). The DevSet was offered for sys-
tem development. It contains speech data, reference transcripts and a list of1099

terms. TheDryRunSet differs from DevSet only in different term list (1099 terms).
The dry run was just for evaluation of participant competence to use NIST scoring
tools and to generate correct result files.

TheEvalSet contains different speech data and a different term list (1099 terms).
Unfortunately, NIST decided not to publish reference transcriptions. The EvalSet
will be reused for next evaluations due to lack of speech data. This complicates
evaluation of STD systems, because there is only the DevSet.

Using round-table meeting data (MTG) and conversational telephone speech
(CTS) brings more objectivity, because it is more natural form of speech (in compar-
ison tobroadcast news data (BCN)). Meeting or telephone dialog participants speak
informally and the speech is spontaneous containing lots ofhesitations, crosstalk,
smacks and background noises. This data is closer to the security domain.

The CTS data of NIST STD2006 DevSet is used in this thesis for STD evalu-
ation. As because the speech recognizer (chapter 3) is takenas a “black box” and
NIST released only theDevSet, several system coefficients are tuned on the DevSet:
unit (word, phone or multigram) insertion penalty and language model or acoustic
model scaling factors. We assume that tuning of these parameters has no impact on
the correctness of the results and conclusions.

2.1 Term set modification and vocabulary reduction

The original term set for English part of2006 NIST STD evaluations is not repre-
sentative for our experiments, because it contains low number of out-of-vocabulary
(OOV) words. We decided to make several changes to the STD term list and our
speech recognizer vocabulary to achieve higher OOV rate. First of all, all terms
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containing true OOV words or1 phone long2 were omitted. The1 phone long term
is not a big problem for word-based STD, but serious problem for phone based STD
(huge number of detections).

Then a set of “artificial” OOV words is defined – these are originally in the
recognition vocabulary, but deleted for future experiments to create more OOVs.
Their selection is done in the following way: Word counts arecollected over the
DevSet. Based on these counts, a suitable set of OOVs was selected: The word had
to have several occurrences, but generally less than10. Only 5 OOVs have more
than10 occurrences. In total,880 words were deleted in this way, of which440 do
appear in NIST dev-set transcriptions. Another440 words which do not appear in
the transcriptions were simply selected from the LVCSR vocabulary. They are of
no use in this these, but reserved for future work.

A limited LVCSR system was created (denoted byWRDRED which means
“ reduced vocabulary”) where these880 words were omitted from the vocabulary.
This system has reasonably high OOV rate on the NIST STD06 DevSet. The term
set has975 terms of which481 are in-vocabulary (IV) terms and494 are out-of-
vocabulary OOV terms (terms containing at least one OOV) forthe reduced system.
The number of occurrences is4737 and196 for IV and OOV terms respectively. We
can detect all the “artificial” OOV terms by the originalfull vocabulary LVCSR
(denoted asWRD) and evaluate the “oracle” OOV term detection accuracy.

Reference transcription of the NIST STD2006 DevSet has32002 tokens. De-
fined “artificial” OOVs appear799 times in the corpus. So the OOV rate is2.5%,
which is close to real tasks.

Table 2.1 summarizes the numbers of terms and term occurrences for different
term length and data types in DevSet.

2.2 Spoken Term Detection evaluation metrics

This section presents evaluation metrics which are used forspoken term detection
and keyword spotting task. Each detected term has a confidence attached. The
confidence is a continuous value quantifying, how sure the spoken term detector is
about the detection of the term. Some users of spoken term detection application
expect hardYES/NO decision whether a term is present or not. Another users expect
only YES decision (rising of an alarm).NO decision is the complement toYES deci-
sion over input speech data. Confidence thresholding is usedmapping of confidence
to hard binary YES/NO decision. Let us assume that the term confidence is based

2term ”A.”
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Term CTS
length [words] count count terms occur.

IV OOV IV OOV IV OOV
1 309 245 214 76 4640 156
2 149 197 42 30 92 34
3 21 45 5 5 5 5
4 2 7 0 1 0 1

sum 481 494 261 112 4737 196

Table 2.2: Distribution of terms forreduced LVCSR 50k vocabulary – WRDRED system.
The second and third columns give the numbers of IV or OOV terms in the term list. The next two
columns summarize the numbers of the terms appearing in the CTS. The last two columns represent
the numbers of occurrences of IV and OOV terms in CTS set. The true OOV terms and1 phone long
terms are omitted.

on term posterior probability. The higher confidence value the higher probability
of correct term detection. Let us set the thresholdthr to a certain value. The term
confidencec(termt) thresholding is defined by:

Decision(c(termt), thr) =

{

Y ES, c(termt) > thr

NO, c(termt) <= thr
(2.1)

whereDecision function returns the hard decision whether the term is foundor not.
Several cases can occur in comparison of detected terms against reference detections
(transcription):

1. The decision isYES (alarm is raised) and there is a reference termoverlapped
with the detected term in time. This case is denoted asHIT . We want to
maximize the number of hits.

2. The decision isYES (alarm is raised) and there is no reference termoverlapped
with the detected term in time. This case is denoted asfalse alarm – FA. We
want to minimize the number of false alarms.

3. There is a reference term in utterance but nooverlapped term is detected at
that place oroverlapped detected term is marked byNO decision (no alarm is
raised at the same time). This case is denoted as afalse rejection– FR or a
MISS. We need also to minimize the number of false rejections.

The definition of “overlapped” for reference and detected term varies for dif-
ferent evaluation metrics. In our case, the mid-point of detected term is less than
or equal to0.5s from the time span of reference term forterm weighted value –
TWV metric [6] used in NIST STD 2006 evaluations. If more detections overlap
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with one reference, only one is considered as HIT and the others are considered as
FAs (figure 2.1).

Figure 2.1:Example of HIT and reference overlap defined by NIST for STD evaluation and TWV metric. If
two detections overlap one reference, only one is considered as HIT and the other is considered as FA.

The level of threshold can be set for each term. More HITs (andalso more FAs)
and less FRs are received by lowering the threshold, less HITs (and also less FAs)
and more FRs are received by increasing the threshold. The numbers of HITs and
FAs are correlated and as number of HITs rises so does the number of FAs. The user
must set the threshold to obtain the desired system behavior(high number of HITs
or low number of FAs). The accuracy of a term detection systemrises as rises the
separability of HITs and FAs. A system will have100% of HITs and0% of FAs for
a certain threshold in an ideal case of the best accuracy. Setting of optimal threshold
is nontrivial especially if one global threshold applied over a large set of terms.

The probability of correct detectionspHIT , false rejectionspMISS and incorrect
detectionspFA can be calculated by the following formulas. Let us denote:

• term searched term

• thr set threshold

• Ntarget(term) the number of all correct occurrences ofterm in the data set

• NHIT (term, thr) the number of detections havingDecision(c(term), thr) =
Y ES which are classified as HIT

• Nnontarget(term) the number of all non-occurrences ofterm in the data set

• NFA(term, thr) the number of detections havingDecision(c(term), thr) =
Y ES which are classified as FA

TheNnontarget(term) means all places, where false alarms of theterm can occur.
The probability of HIT is defined as:

pHIT (term, thr) =
NHIT (term, thr)

Ntarget(term)
(2.2)
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The probability of MISS is defined as:

pMISS(term, thr) = 1 − pHIT (term, thr) = 1 −
NHIT (term, thr)

Ntarget(term)
(2.3)

The probability of False Alarm is defined as:

pFA(term, thr) =
NFA(term, thr)

Nnontarget(term)
(2.4)

The performance of spoken term detection system is defined bythe trade-off
betweenpHIT andpFA. As this is not a scalar value, different systems can not be
easily compared according topHIT andpFA. That is why several metrics have been
proposed for calculation of one scalar value frompHIT andpFA. Some of them are
used for comparison of detectors in this thesis. Their briefdescription and definition
follows in section below.

2.2.1 Upper bound term-weighted value – UBTWV

One feature of TWV metric is its one global threshold for all terms. This is good for
evaluation for end-user environment. On the other hand, it leads to uncertainty in
comparison of different experimental system setups. We do not know if the differ-
ence is caused by different systems or different normalization and global threshold
estimation. This is reason for our definition ofUpper Bound TWV (UBTWV).
The difference to TWV is in individual threshold per each term. The ideal threshold
for each term is found to maximize term’s TWV:

thrideal(term) = arg max
thr

TWV (term, thr), (2.5)

and UBTWV is then defined as:

UBTWV = 1−average
term

{pMISS(term, thrideal(term))+βpFA(term, thrideal(term))}

(2.6)
This is equivalent to shifting the score of each term, so thatmaximumTWV (term)

is obtained at threshold0.0. Two systems can be compared by UBTWV without any
influence of normalization and ideal threshold level estimation in systems producing
TWV score. Theactual andmaximal values are equal for UBTWV and both are
denoted byUBTWV . However, due to the fact that each term has its ideal threshold,
DET curve for such ideal system has not much sense. Only the point corresponding
to the ideal threshold is important. This point is supplied by the UBTWV. That is
why only UBTWV values without DET curves are reported in thisthesis.
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Chapter 3

Word recognition

This section deals with the description of our large vocabulary continuous speech
recognition system (LVCSR) used for experiments stated in this thesis. Presented
LVCSR is a state-of-the-art system derived from AMI LVCSR1 [10]. The AMI
LVCSR system was slightly modified and used in the NIST STD 2006 evaluation.
The decoder was changed from HTKHDecode to “in-house” STKSVite in the third
(final) pass and produced lattices are directly used for STD.In the AMI LVCSR, the
lattices were expanded by fourgram language model and confusion networks were
applied.

3.1 The recognizer

The input data (conversational telephone speech) is first converted to linear coding
16-bits per sample and8 kHz. The data is then segmented to speech/silence ac-
cording to energy in channels and by a neural net based phone recognizer [14]. All
phone classes are linked to “speech” class.

The data is split into shorter segments on silences (output of speech/non-speech
detector) longer than0.5s. If the speaker changes, the data is also split. Segments
longer than1 minute are split into2 parts in silence closest to the center of the
segment. This is done to overcome long segments and accompanying problems
during decoding (long decoding time and high memory consumption).

The large vocabulary continuous speech recognition system(LVCSR) system
used in this thesis is a simplified version of AMI LVCSR systemused for NIST RT
2006 evaluations [9]. The system operates in3 passes (figure 3.1):

In thefirst pass– P1, the front-end converts the segmented recordings into fea-
ture streams, with vectors comprised of12 Mel-Frequency Perceptual Linear Pre-
diction (MF-PLP) features and raw log energy. First and second orderderivatives

1The LVCSR was developed in cooperation with AMI-project partners, seehttp://www.amiproject.org .
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Figure 3.1: Schema of3-pass recognition system used in this thesis. The system is derived from AMI
LVCSR.

are added. After,Cepstral Mean and Variance Normalization (CMN/CVN) is per-
formed on a per channel basis. The first decoding pass yields initial transcripts that
are subsequently used for estimation ofVocal Tract Length Normalization (VTLN)
warp factors. The feature vectors and CMN and CVN are recomputed after the
application of VTLN.

Thesecond pass– P2 processes the new features and its output is used to adapt
models withMaximum Likelihood Linear Regression (MLLR). Bigram lattices are
produced and re-scored by trigram and fourgram language model.

In the third pass – P3, posterior features [8] are generated. The output from
the second pass is used to adapt models withConstrained MLLR (CMLLR) and
MLLR. In the original AMI LVCSR, bigram lattices were produced by HDecode
decoder and re-scored by fourgram language model.In this thesis, the output of the
third pass are the features which are processed by SVite decoder.

3.2 Baseline word recognition systems

Selected LVCSR system parameters areLM pruning 2 × 10−9, Pr = 260 (beam
pruning) andMAM = 5000 (maximum active models). System with these param-
eters achieved very good accuracy, small size of lattices and low decoding time. It
is important to note, that this was original AMI CTS system with closed vocabulary
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language model. This baseline closed vocabulary LVCSR system was denoted as
WRD. Word recognition system with reduced vocabulary (derivedfrom WRD sys-
tem) was used in following chapter 4. It wasWRD system where880 words were
omitted from the vocabulary. Details of vocabulary reduction were given in sec-
tion 2.1. This system was denoted asWRDRED. Both these baseline systems were
compared in the upper part of table 3.1.

However, open vocabulary language model is needed for our later experiments
in chapter 5. The open vocabulary language model had to be trained “from scratch”
(not only by omitting880 words) in order to correctly estimate the probabilities of
the “out-of-vocabulary” symbol<unk> .

To make the systems comparable, we createdWRDforHYB system, which should
be comparable to baseline open vocabulary word recognitionsystems presented in
chapter 5. TheWRDforHYB system usedPr = 220 and LM pruning1 × 10−8

because it is close to the open vocabulary LM in terms of number of bigrams: The
accuracies ofWRDforHYB system are presented in the bottom part of table 3.1.

System Decoder LM wrdSIZE WAC WLAC Word UBTWV
Pruning Pruning ALL IV OOV

WRD 260 2 × 10−9 0.510 70.78 88.22 0.795 0.777 0.838
WRDRED 260 2 × 10−9 0.507 68.41 85.75 0.522 0.747 0.000
WRDforHYB 220 1 × 10−8 0.252 69.04 83.21 0.738 0.734 0.746

Table 3.1:Comparison of lattice size, word accuracy, word lattice accuracy and UBTWV of different baseline
LVCSR systems. WRD is the “full” vocabulary baseline, WRDRED is the reduced vocabulary baseline and
WRDforHYB is “full” vocabulary baseline comparable to openvocabulary LVCSR in terms of LM size and
decoder pruning.
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Chapter 4

Subword recognition – phone multigrams

This chapter deals with theoretical description and experimental evaluation of multi-
gram units.

Examples of other subword units [13] besides phones aresyllables, phone n-
grams, phone multigrams, broad phone classes. All these units are based on phones.
Phone recognition and search using such units has its advantages and drawbacks.
The advantage of phone recognition (using simple phone loop) is its relative sim-
plicity and presence of minimum constraints. Produced phone string precisely re-
flects a spoken word or term. This holds if the acoustic modelsare highly accurate
and the word (or term) was uttered correctly. Then phone string produced by the
phone recognizer perfectly matches the searched phonetic word form. But these
two conditions are rarely fulfilled.

The drawbacks of phones are the following: If the model is not100% accurate,
the speaker does not pronounce well, or there is a backgroundnoise, recognized
phones do not match the speech well. Also, decoding from freephone loop with
higher order of n-gram language model is computationally more expensive than the
decoding from LVCSR network1. Longer units should be more robust for incorrect
pronunciation of a term too. Finally, phone n-grams with fixed lengthn must be
used for indexing of phone strings or lattices. The optimal length of phone n-grams
was found to be3 in [13]. In our prior work [15], we have also used sequences of
overlapped3-grams for search. However, out-of-vocabulary words shorter than3
phones were dropped.

The disadvantage of the fixed length sequences is that the frequencies of phone
sequences are not taken into account. Some phone trigrams are more frequent than
the others. Variable length sequences can be used to overcome this problem: a rare
sequence is split into more frequent shorter sequences while a frequent sequence

1All phone acoustic models must be evaluated in the phone loopapproach, while words and word language model
reduce the search space significantly. This leads to evaluation of limited set of phone acoustic models and lower compu-
tational requirement.
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can be represented as the whole unit. The other advantage is that variable length
phone units can reflect word sequences and compensate for missing word language
model.

4.1 Definition of multigrams

Variable length sequences of phones are denoted as phone multigrams. The multi-
gram language model was proposed by Deligne et al. [5]. Multigram model is a
statistical model having sequences with variable number ofunits. The definition of
multigram model and its parameter estimation follows:

Letw = {w1, w2, . . . , wN} denote a string ofN units, and lets denote a possible
segmentation ofw into q sequencesq ≤ N of units s = {s1, s2, . . . , sq}. Then-
multigram model computes the joint likelihoodL(w, s) of the corpusw associated
to segmentations as the product of the probabilitiesp of the successive sequences,
each of them having a maximum length ofn:

L(w, s) =

q
∏

i=1

p(si) (4.1)

Denoting asS the set of all possible segmentations ofw into sequences of units, the
likelihood ofw is:

Lbest
mgr(w) = max

s∈S

L(w, s) (4.2)

A n-multigram model is fully defined by a set of parametersP consisting of the
probability of each unit sequencesi ∈ D in a dictionaryD = {s1, s2, . . . sm} that
contains all the sequences which can be formed by combination of 1, 2, . . . , n units:

P = (pi)
m
i=1 where pi = p(si) and

m
∑

i=1

pi = 1 (4.3)

Maximum likelihood estimates ofP can be computed through Viterbi algorithm
iteratively. Lets∗(k) denote the most likely segmentation ofw with given parameters
Pk at iterationk:

s
∗(k) = arg max

s∈S

L(s|w, Pk) (4.4)

According to [5], the re-estimation formula ofith parameter (sequence) at iteration

22



k + 1 is intuitive:

P
k+1
i =

c(si, s
∗(k))

c(s∗(k))
, (4.5)

wherec(si, s) is the number of occurrences of sequencesi in segmentations and
c(s) is the total number of sequences ins.

The set of parametersP is initialized with the relative frequencies of all oc-
currences of units up to lengthn in the training corpus. To avoid overlearning,
it is advantageous to discard low probable sequences: by setting pi = 0 to all
c(si) ≤ c0. Thec0 parameter is denoted asmultigram pruning parameter . Se-
quences of lengthn = 1 are excluded from pruning to ensure that each sequence is
segmentable. If a unit with lengthn = 1 has0 occurrences ins, then it’s probability
is set to a very low number.

When the set of parametersP is estimated, any phone string can be segmented
into sequence of phone multigrams. The process of segmentation is straightfor-
ward. All possible segmentations, according to the inventory of phone multigrams,
are created. Then, probability of each segmentation is evaluated according to the
probabilities of multigram units. The best (most probable)segmentation is consid-
ered as the segmentation of given phone string by the set of phone multigrams. The
process of phone string segmentation to phone multigrams isimplemented by the
Viterbi algorithm.

4.2 Constrained multigram units

The baseline process of building multigram unit inventory is without any constraints
(denotedxwrd ). The corpus of phone strings is taken as is. An example of an ut-
terance segmented by such unconstrained units is in table 4.1 line 2. A multigram
unit can be placed across word boundaries and also across silences (sil ). Incor-
poration of word boundaries (cross-word multigrams) into multigram units means,
that multigrams also somehow reflect the word language model. The question is
whether this is good or not. The same question can be asked about the silencesil .
By incorporating silence into multigrams, the units are learned to remember parts
of speech where silence is usual and where it is not. Two experiments with con-
strained training of multigram inventory are done to evaluate the influence of cross
word multigrams and silence inside multigram units:
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word sil YEAH I MEAN IT IS sil INTERESTING
xwrd sil-y-eh-ax ay-m-iy-n ih-t-ih-z-sil ih-n-t-ax-r eh-s-t-ih-ng
nosil sil y-eh-ax ay-m-iy-n ih-t-ih-z sil ih-n-t-ax-r eh-s-t-ih-ng
noxwrd *sil* *y-eh-ax* *ay* *m-iy-n* *ih-t* *ih-z* *sil* *ih-n t-ax-r-eh-s t-ih-ng*

Table 4.1: Examples of different multigram segmentations.The first line is word transcript. The second line is unconstrained multigram
segmentation. The third line is constrained multigram segmentation where silence is forbidden inside a multigram unit. The fourth line is
constrained multigram segmentation where silence and wordboundary* are forbidden inside a multigram unit.

Unit System LM PAC UBTWV SIZE
n-gram ALL IV OOV

Word WRDRED 2 - 0.514 0.734 0.000 0.56w
Word WRDREDtoPHN 2 65.40 0.540 0.554 0.508 4.34p
Phone LnoOOV 3 59.66 0.483 0.453 0.552 6.38p
Mgram xwrd 3 65.25 0.559 0.552 0.577 1.4w/3.6p
Mgram nosil 3 65.42 0.584 0.578 0.597 1.2w/4.1p
Mgram noxwrd 3 65.10 0.630 0.647 0.593 1.7w/3.7p

Table 4.2:Comparison of word, phone and multigram systems from phone accuracy, lattice size and Word, Mgram and Phone UBTWVpoint of view.
0.56w means wrdSIZE and4.34p means phnSIZE.
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4.2.1 No silence in multigram

Inventories of multigram units which do not contain silenceare trained in this ex-
periment (denotednosil). The unigramsil is the only one multigram unit which
contains silence. This is needed to make utterances segmentable. An example of
utterance segmented by this method is in table 4.1 line3. Building of this nosil
multigram inventory is done by a modification in the first stepof multigram training
procedure. After the statistics of all n-grams appearing inthe training corpus are
collected, all n-gram units containingsil are omitted (except the unigramsil ).
Then, the initial probabilities of units are re-normalizedand the iterative training
algorithm is run.

4.2.2 Non-cross-word multigrams

In this experiment, word boundaries are marked in the training corpus, and the fol-
lowing rule is incorporated into the training algorithm: word boundary will appear
at most at the beginning or at the end of a multigram unit. Onlytwo units with the
word boundary marker can be put besides each other during thesegmentation. If
the first unit contains word boundary marker at the end, then the following boundary
must contain the word boundary marker at the beginning. Thissystem is denoted as
noxwrd. An example of utterance segmented by noxwrd multigrams is in table 4.1
line 4. The word boundary marker is denoted by a star symbol.

4.3 Conclusion

Table 4.2 comparesword, phone andphone multigram based systems fromphone
and spoken term detection accuracy point of view. The WRDREDtoPHN is the
WRDRED LVCSR switched to produce phone lattices. The best phone accuracy is
achieved by the multigram nosil constrained system. However, better STD accuracy
is achieved by the noxwrd constrained multigrams. It is important to mention that
multigram lattices are significantly smaller and the recognition network is approx-
imately of the same size compared to phone system. The multigram system has
maximal multigram lengthlmgram = 5 and multigram pruningc0 = 50. The terms
are segmented only to1-best multigram variant.
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Chapter 5

Combined word-subword spoken term
detection

We investigate into the use of different combination of wordand subword STD sys-
tems. Let us have a term"Igor Sz öke" . The term is first split into in-vocabulary
(IV) and out-of-vocabulary (OOV) parts. Let us assume, thatthe nameIgor is in-
vocabulary wordigor and the surnameSzöke is an out-of-vocabulary word. If we
choose phones as the subword units, the out-of-vocabulary part is decomposed into
sequence of phoness eh k eh . The combination of a word and subword based
spoken term detection is needed to spot both, in-vocabularyand out-of-vocabulary
parts of the term.

Theword recognizer is considered as a strong recognizer. It has strong acoustic
model (word models) and language model (word bigrams). Thesubword recognizer
is considered as a weak recognizer. It has weak acoustic model (phone or phone
multigram units) and relatively weak language model (phonen-grams).

The combination of word and subword recognizer should allowto traverse be-
tween words and subwords in any time. If traversing penalties and other parameters
are set correctly, the word part of the recognizer should well represent in-vocabulary
speech. Out-of-vocabulary parts of speech may be highly unlikely for the strong
word recognizer. However these OOV parts are not so unlikelyfor the subword part
of the recognizer. This leads the recognizer to switch from the word part to the sub-
word part. The result is the hybrid word-subword lattice where OOV parts of speech
are represented by phone sequences and IV parts of speech by word sequences.

On contrary to Bazzi [1], we aim at theinvestigation of STD accuracy and the
practical application for searching in spoken documents. We fully use the infor-
mation produced by the OOV (subword) model for search of the OOV terms. We
evaluate the accuracy of STD and word accuracy. We investigate in more depth
“which subword model should be the best”:
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• The impact of subword model and hybrid network scaling parameters to the
accuracy.

• The speed of the system and size of the index.

• Search for the system configuration suitable for practical use.

• Evaluation of the hybrid system in conjunction with indexing and search en-
gine for spoken term detection.

5.1 Building combined word-subword hybrid recognition net-
work

We use the same decoder (SVite from STK toolkit) as is used for the baseline exper-
iments in word and phone recognition (chapters 3, 4). Because theSVite is a static
decoder, the hybrid decoding is possible bymodification of recognition network.
No other changes are needed in the decoder.

The hybrid word-subword recognition network is built in similar way as the word
recognition network. Only the language model automatonG and the lexiconL are
modified in the composition:

H ◦ C ◦ L ◦ G, (5.1)

<unk>

backoff

psi

WRD_B

WRD_B

<unk>

WRD_B

</s>
</s>

WRD_A

WRD_A

<unk>

psi

</s>
WRD_A

psi WRD_B

0 <s>
<s>

psi

WRD_B

WRD_A

Figure 5.1:Example of open vocabulary language model. The<unk> states for the out-of-vocabulary words.

The word language model represented by WFSAG is created as open vocabulary
language model and contains an<unk> symbol. The<unk> symbol represents any
out-of-vocabulary word, see figure 5.1. The new open-vocabulary language model
represented by WFSA in denoted asGword. This<unk> symbol is substituted by a
subword language model (figure 5.2). The subword language model is converted to
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Figure 5.2:Example of a subword (phone) language model.

WFSTGsubword. The hybrid “language model” is created by composition of word
and subword language models

Gsubword ◦ Gword. (5.2)

The substitution is illustrated in figure 5.3. The red part ofnetwork is the<unk> in
figure 5.1 substituted by the subword model in figure 5.2.

The word dictionaryL mapping words to phones is joint with the subword dictio-
nary mapping subword labels to phones. Then this dictionaryis converted to WFST
representing the hybrid lexicon. Modified composition of the hybrid recognition
network is written as:

H ◦ C ◦ (Lword ∪ Lsubword) ◦ Gsubword ◦ Gword, (5.3)

whereH represents the HMM (tied-list) andC represents the mapping from context-
dependent to context-independent phonetic units,Lword is the pronunciation dictio-
nary mapping phones to words,Lsubword maps phones to subword units (eg. syl-
lables, multigrams or phones).Gsubword is a weighted transducer created from the
subword language model andGword represents the word language model (weighted
acceptor).

The<unk> and<silsp> nodes in the hybrid network (figure 5.3) produce an
output label. The<unk> node produces symbol<unk> which is used as a marker
of the beginning of subword section in the output. The<silsp> node produces
symbol<silsp> which is used as a marker of the end of subword section in the
output and also represents asil/sp model1.

Parameters such asword insertion penalty andacoustic or language model scal-
ing factors are tuned to control the recognition accuracy and output of the LVCSR
system. However, the hybrid network is considered as one object by theSVite de-
coder. The same penalty and scaling factor apply to both wordand subword parts.
That is why three different parameters are incorporated into the combined network
during its building. The first parameter issubword language model scaling factor

1Thesilence/short pause is attached to each word model by default in each word network. This is used for modeling
of possible silences following the words.
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Figure 5.3:Example of hybrid word-subword language model.

SLMSF. This parameter exponentiates the likelihood assigned to the subword LM
transitions. The second parameter issubword word insertion penalty SWIP. It is a
constant which multiplies each transition’s likelihood value leading to a word node.
The last parameter issubword costSC. It is a constant which multiplies the<unk>
symbol likelihood and represents a cost of going to the wholesubword model.

5.2 Hybrid recognition using multigrams trained on hand-made
LVCSR dictionary

Multigrams trained on the LVCSR dictionary are used in [1]. We did the same ex-
periment for better comparison. The WRDRED pronunciation dictionary is taken
and multigrams (maximal multigram lengthlmgram = 5, multigram pruningc0 = 5)
are trained on the word pronunciations. Hybrid system usingthe WRDRED dictio-
nary trained multigrams is denoted asHybridMgramDictLVCSR . The advantage
of WRDRED dictionary is in its correctness, the pronunciations are carefully hand-
checked.

We also process the WRDRED dictionary word labels by theG2P system. Hy-
brid system using this subword model (denoted asHybridMgramDictG2P ) evalu-
ates the influence ofG2P conversion accuracy on the word or STD accuracy. Com-
parison of these two systems is in figures 5.4 and 5.5.

We conclude, that theG2P conversion has no significant negative influence on
the accuracy. UBTWV-IV is influenced slightly negatively, on the other hand the
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Figure 5.4:Dependency of the HybridMgram systems WAC and UBTWV on the parameterSWIP. The red
color denotes the baseline systems WRDunk and WRDREDunk. Pronunciations of words of HybridMgram-
DictLVCSR system are taken from the WRD dictionary. Pronunciations of words of HybridMgramDictG2P
system are generated automatically by theG2P tool.

Mgram UBTWV-OOV is influenced positively for certain valuesof SWIP param-
eter. The HybridMgramDictLVCSR will be used in several further experiments
because we want to be comparable to Bazzi [1].

5.3 Memory and speed

Memory consumption and system speed (decoding time) are important factors for
practical use. We evaluate thereal-time factor2 – RT factor and memory allocated
by the decoder after loading the recognition network and acoustic model. Real-
time factors are measured without feature extraction whichhas a constant RT factor
and is the same in all experiments. Also, time consumed by spoken term detection
algorithm is not included into RT factor, because it represents only fraction of the
time. Both RT factor and allocated memory depend on the implementation of the
decoder, so they can vary for different decoders. Decoding speed is tested on IntelR©

XeonR© CPU, model E5345 at frequency2.33GHz processor with sufficient size of
RAM.

Table 5.1 compares hybrid systems to the baseline systems from memory and
index size, accuracy and speed points of view. The first part of the table compares
baseline systems with fixed beam pruningPr = 220. We see that both multigram
systems (xwrd and noxwrd) are significantly (up to8 times) slower and produce
significantly larger indexes (up to18 times) compared to WRDunk. On the other

2Proportion of the time of1 CPU core needed to decode a portion of acoustic data to the time length of the portion
of acoustic data.
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Figure 5.5: Dependency of the HybridMgram systems WAC, UBTWV and lattice size on the parameter
SWIP is tuned. The red color denotes the baseline systems WRDunk and WRDREDunk. Pronunciations of
words of HybridMgramDictLVCSR system are taken from the WRDdictionary. Pronunciations of words of
HybridMgramDictG2P system are generated automatically bytheG2P tool.

hand, the multigram xwrd system with unigram LM consumes only tenth of RAM
compared to the other systems. The multigram xwrd system waschosen as the
baseline system of OOV terms detection because it reaches the highest UBTWV-
OOV accuracy.

The baseline hybrid systems (HybridMgramDictLarge and HybridMgramDict-
Large2gr) with beam pruningPr = 200 run relatively fast (RT = 2) and provide
UBTWV-IV close to the WRDREDunk system. The UBTWV-OOV accuracy is
about the half of xwrd system, but the index size is one tenth.

A combined baseline systemis combination of baseline systems (WRDREDunk
and xwrd) after the decoding, on the search level. “Combined” UBTWV-IV accu-
racy is the accuracy of WRDREDunk system, UBTWV-OOV accuracy is the ac-
curacy of xwrd system. RT factor and index size are sums of word and sub-word
systems.

Bottom three parts of table 5.1 present more precise comparison of hybrid and
combined baseline system. We took3 hybrid systems (HybridMgramDictLarge2gr,
HybridMgramDictLarge and HybridMgramDictLVCSR2gr) and tuned the combined
baseline systems to produce comparable UBTWV accuracy. Then these systems can
be compared from speed and index size point of view.

The first system is the “star” system from the previous section. It is HybridM-
gramDictLarge2gr system with decoder beam pruningPr = 350, subword scaling
parametersSLMSF = 1.0, SWIP = −0.8 andSC = 0.0. This system was cho-
sen as the system which produces the best UBTWV-OOV having UBTWV-IV and
word index size comparable with the baseline WRDREDunk in the previous sec-
tion. Here we see, that apart from the best accuracy, this system is not much usable
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in practice. The real time factor isRT = 28.4 which is two time slower than the
combined baseline system with real time factor sumRT = 14. One advantage of
this system is the index size which is about40% smaller.

HybridMgramDictLarge system with the same subword scalingparameters is
chosen as the second hybrid system. The beam pruningPr = 250 is set in this case.
The real time factorRT = 5.25 of the combined baseline improves toRT = 4.15,
which is20% faster. Also, the hybrid index size is38% smaller than the sum index
size of the combined baseline system.

The last system is HybridMgramDictLVCSR2gr system withPr = 270 and sub-
word scaling parametersSLMSF = 1.0, SWIP = −1.3 andSC = 0.0. Compared
to HybridMgramDictLarge2gr, this hybrid system with bigram subword language
model consumes about500MB less RAM. The UBTWV accuracy is close to satu-
rated accuracies of the combined baseline system. If the baseline systems are tuned
to produce comparable accuracy, this hybrid system is9% faster and achieves only
34% of the index sizes of the baseline systems. The UBTWV-OOV accuracy deteri-
oration is0.027 against the “reasonably” saturated xwrd multigram baseline0.647.
The UBTWV-IV accuracy deterioration is0.031 against the “reasonably” saturated
WRDREDunk baseline0.754.

The analysis of CPU and memory or disk consumptions of hybridsystems shows
that hybrid systems are faster and reduce needed disk space for storage of the in-
dexes. However, a hybrid system tuned to achieve accuracy comparable to “satu-
rated” combined baseline system is about two times slower. If the accuracy is not
the most important quality of STD system, hybrid system can provide very good
performance. The needed decoding time can be reduced by10% and the index
size by66% at the cost of5% deterioration of UBTWV accuracy (HybridMgram-
DictLVCSR2gr system).

We conclude, that hybrid system based on LVCSR vocabulary (HybridMgram-
DictLVCSR2gr) is faster and consumes less memory than the HybridMgramDict-
Large2gr system. This is caused by about two times smaller subword part. Also, the
decoder can influence the RT factor. We noticed that the RT of HybridMgramDict-
Large2gr system for higher beam pruning increased significantly more than linearly.
This was not observed in case of WRDREDunk system.
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System LM # WRDn-grams # SWRD n-grams RAM Pr RT UBTWV wrdSIZE
order 1 2 1 2 (3) ALL IV OOV sum wrd swrd

WRDunk 2 50.0k 2.0M – – 550MiB 220 1.36 0.724 0.727 0.715 0.190 0.190 –
WRDREDunk 2 49.2k 1.6M – – 470MiB 220 1.32 0.486 0.694 – 0.190 0.190 –

xwrd 1 – – 3.0k – 22MiB 220 7.11 0.537 0.492 0.642 3.540 – 3.540
noxwrd 3 – – 3.0k 451k (161k) 315MiB 220 10.75 0.630 0.647 0.593 1.740 – 1.740

HybridMgramDictLarge 2 + 1 49.2k 1.6M 7.8k – 685MiB 220 2.00 0.592 0.708 0.320 0.335 0.200 0.135
HybridMgramDictLarge2gr 2 + 2 49.2k 1.6M 7.8k 136.8k 2310MiB 220 2.40 0.608 0.701 0.391 0.337 0.198 0.138

WRDREDunk 2 49.2k 1.6M – – 470MiB 330 7.79 0.528 0.754 – 0.950 0.950 –
xwrd 1 – – 3.0k – 22MiB 210 6.19 0.528 0.489 0.619 2.960 – 2.960

HybridMgramDictLarge2gr 2 + 2 49.2k 1.6M 7.8k 136.8k 2310MiB 350 28.37 0.713 0.753 0.620 2.400 1.000 1.400

WRDREDunk 2 49.2k 1.6M – – 470MiB 226 1.67 0.499 0.714 – 0.210 0.210 –
xwrd 1 – – 3.0k – 22MiB 160 3.58 0.481 0.470 0.500 1.400 – 1.400

HybridMgramDictLarge 2 + 1 49.2k 1.6M 7.8k – 685MiB 250 4.15 0.651 0.715 0.501 1.000 0.340 0.660

WRDREDunk 2 49.2k 1.6M – – 470MiB 260 3.24 0.512 0.723 – 0.380 0.380 –
xwrd 1 – – 3.0k – 22MiB 210 6.19 0.528 0.489 0.619 2.960 – 2.960

HybridMgramDictLVCSR2gr 2 + 2 49.2k 1.6M 4.0k 42.3k 1855MiB 270 8.62 0.691 0.723 0.615 1.100 0.440 0.700

Table 5.1: Comparison of memory and CPU requirements of hybrid systems. Columnorder denotes the order of used language models.2 + 1
means bigram word and unigram subword LM. The following4 columns contain the numbers of particular unigrams/bigrams. The number
in brackets is the number of trigrams for the noxwrd system. Occupied memory after the recognition network is loaded by the decoder is in
columnRAM. Acoustic model is not included. Its size is constant for allexperiments:190MB. Pr denotes chosen beam pruning. RT is the
estimated real time factor. Columns UBTWV and wrdSIZE denote the accuracies and index sizes of particular systems. The first part of the
table (the first6 rows) compares baseline and hybrid systems having beam pruning Pr = 220. The following3 parts of the table show three
different hybrid systems and appropriate baseline systemshaving comparable UBTWV accuracy. The real time factor is estimated on IntelR©

XeonR© CPU, at frequency2.33GHz.



5.4 Conclusion

Conclusions of hybrid word-subword systems are given in this section. Theoreti-
cally, we should obtain better IV and OOV accuracy with equalor smaller lattice
size (index size) with the hybrid system than is achieved by the combination of
standalone systems at the level of term detection. Our experiments have however
shown, that this can be achieved only for a certain range of system parameter set-
tings (beam pruning, hybrid network penalties and scales).If standalone systems
are tuned to the best accuracy (separately), this combination is not overcome by the
hybrid system presented in this thesis. We can only make it smaller and faster, but
still with little deterioration of accuracy.

It is interesting to notice, that the UBTWV-OOV of pure subword multigram
system (xwrd) is not outperformed by the hybrid systems, while for UBTWV-IV
the hybrid systems show superiority. This can be explained by the inaccuracy of
estimated place of out-of-vocabulary words (represented by <unk> ).

Our explanation, why UBTWV-OOV is not better for the hybrid than for pure
subword multigram system, is the following: the strong word-model in the hybrid
system can cause that for an OOV, the sub-word model is not activated at all – the
system does not enter the<unk> part of the recognition network. In this case, the
system actually misses the OOV without any chance to recoverit, resulting in a
miss. This problem does not occur in subword systems where the whole utterance
is recognized in subwords (so no misses are produced).

On the other hand, a false alarm of OOV occurrence does not necessarily cause
that the IV term (overlapped with the OOV false alarm) is not detected. In this case,
the IV can be still converted to subwords and searched in the subword form.

This leads to conclusion, that it is important not to miss theOOV parts of utter-
ances for hybrid systems. The position of<unk> must be estimated accurately.
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Chapter 6

Conclusion and discussions

The thesis deals with spoken term detection. The corner stone of this thesis is search
of out-of-vocabulary terms which are not present in dictionary of word-based speech
recognizer. We investigate into combination of word and subword approaches to get
the best search accuracy (especially for out-of-vocabulary words) having the highest
search speed and the lowest memory consumptions.

Several systems were described and tested in this thesis. Weaimed at evaluation
of spoken term detection accuracy. The accuracy was evaluated on3h of conversa-
tional telephone speech. We searched for nearly400 terms (having up to4 words)
where about one third contains at least one out-of-vocabulary word.

The Upper-Bound-Term-Weighted-Value (UBTWV) was used as the primary
evaluation metric. We derived this metric from Term-Weighted-Value (TWV) de-
fined by NIST. The difference is in calibration of terms’ scores to one global thresh-
old. The UBTWV shifts the terms confidences to maximize term’s TWV for thresh-
old 0. Terms are then pooled and average upper-bound TWV is calculated. By this,
we can effectively bypass the calibration of scores and concentrate on the actual
system’s accuracy.

We also evaluated word accuracy and size of output produced by systems. The
size of the output is important from the practical point of view.

The baseline LVCSR system was used to demonstrate the effectof missing words
in the vocabulary. We have shown a deterioration of spoken term detection and word
recognition accuracy. The baseline recognizer was also used to demonstrate tuning
the recognizer to “reasonably best” accuracy.

One of set of subword systems were phone multigram systems. We adopted
the approach of phone multigrams published by Deligne and Bimbot [5]. First, we
found the optimal configuration of phone multigram model according to spoken
term detection accuracy. We proposed two new multigram models with constraints
(nosil and noxwrd). These constrained phone multigrams were found superior to the
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baseline multigrams. Beside the evaluation of term confidences, we evaluated also
the influence of number of out-of-vocabulary term segmentations to multigrams. It
was found, that this number of segmentations has significantimpact only on the
accuracy of out-of-vocabulary term detection. The conclusion is that constrained
multigrams significantly overcome standard multigrams andphones. This system is
more accurate, faster and produces smaller lattices.

The last set were hybrid word-subword systems. A framework based on WFST
was defined for construction of hybrid word-subword language models. We inves-
tigated also the dependency of size of lattices and accuracyon parameters of hybrid
language model. A hybrid system can achieve higher accuracythan a word system
having comparable size of produced lattices.

We trained phone multigram model only on pronunciation vocabulary. The base-
line hybrid system was based on pronunciation multigrams derived from LVCSR
dictionary (similarly as proposed by Bazzi [1]). We extended this baseline system
further by training the multigram model on large dictionaryof out-of-vocabulary
words. This system achieved slightly better accuracy. We tested the influence of au-
tomatic grapheme-to-phoneme production of pronunciations of out-of-vocabularies
on the spoken term detection accuracy. The influence was not significant.

The second extension was incorporation of bigram language model over multi-
grams in the subword part of the hybrid recognizer. The effect of stronger subword
model becomes evident on the accuracy of out-of-vocabularyterms and smaller lat-
tice size.

The hybrid system was evaluated from the lattice size and computational speed
points of view. This should ensure practical applicabilityof the proposed system.
We found that hybrid system can achieve slightly worse accuracy with significant
reduction of lattice size and the same speed compared to the combined word and
multigram systems. From pure accuracy point of view, this could be considered
a failure of the proposed approach, but in our opinion, this drawback is largely
compensated by its simplicity and efficiency – keep in mind that in the combination
of word and multigram systems, the data must be processed separately by both
systems which is much more complicated.

6.1 Future work

The main problem of our hybrid approach is in the requirementof correct scaling
of word and subword language models. In the case of incorrectly scaled language
models, produced lattices can contain too high or too low number of subword units.
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The accuracy will not be optimal.
An approach published by Yazgan and Saraclar [16] based on estimation of hy-

brid language model on hybrid textual corpora could be more robust. There is no
need of any scaling of word-subword parts of the LM. The “scaling” parameters are
directly estimated on the data. On the other hand, our approach can be used in cases
where we do not have much LM training data, or we want to adapt the system to a
different domain.

We could build an LM containing several different types of OOV symbol as
<unk-name> , <unk-street> , <unk-city> and <unk-other> for each
domain. Then, each domain-dependent subword language model could be estimated
separately. <unk-name> on names of people,<unk-street> on names of
streets, etc. In a new scenario, where the set of names radically differs from the set
used for training of the previous<unk-name> model, only the new<unk-name>
would need to be be trained and hybrid network recompiled. Asthe corpora for the
subword language models are in “dictionary” format, building them is easy. The ap-
proach based on hybrid textual corpora can not be so easily adapted to the new set
of names. The names appearing in the hybrid corpora would need to be substituted
by the new names and the whole hybrid language model would need to be retrained.

This work could be also highly beneficial for applications, where adding new
words to the system is requested. Having the<unk-name> , <unk-street> ,
<unk-city> , <unk-other> etc. symbols in the recognition network would
actually create the necessary place-holders, where appropriate new words could be
added off- or even on-line.

It would be also very interesting to evaluate the phone multigram model proposed
by Bisany and Ney [3] and compare it to our approach. Their multigram model is
defined theoretically more correctly and should achieve better results. It would be
also interesting to assess the improvement in the hybrid system and in a standalone
multigram system.

In the proposed constrained multigrams, we could also improve dealing with the
silence, that is currently considered as an independent unit. The silence models
(sil andsp ) could be placed to the end of each multigram unit in the same way as
it is done in LVCSR.

Another future work is linked with using the hybrid system asOOV detector and
comparing its performances with the detector based on strong vs. weak posteriors,
as it was proposed at JHU workshop in 20071 by Hermansky et al. [11]. Efforts in
this direction are already running within the European DIRAC project [4].

1http://www.clsp.jhu.edu/ws2007/groups/rmimsr/
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