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Chapter 1

Introduction

The research field of this thesis is spoken term detectior chnmner stone of this
thesis is search of out-of-vocabulary terms which are nes@nt in dictionary of
word-based speech recognizer. Also, topics as term comidereasures, weighted
finite state transducers, indexing of spoken documents hndgomultigram units
are touched.

Short definition of important terms is placed in the follogiparagraph to avoid
confusion of the reader of this thesis. We define the diffeesrbetweekeyword ,
term , query , keyword spotting andspoken term detection

Keyword is understood as a single word within the scope of this tHesis"IGOR"
or "DETECTION"). It is used withinacoustic keyword spottingcontext. In
fact, the keyword can be also sequence of consecutive W@@GR SZOKE"
In context ofacoustic keyword spotting. It is why these consecutive words can
be processed as one keywdtG6ORSZOKE".

Term is defined as one or multiple words in sequence'likEYWORD,"KEYWORD
DETECTION"or "THE PRESIDENT GEORGE BUSHIt is used within
spoken term detectioncontext. If the term consists of one word, there is no
difference betweeterm andkeyword. For terms containing multiple words,
the exact logic of how the words can be connected needs toflmeddy the
spoken term detector. For example, theeYWORD DETECTIONErm can
mean wordSKEYWORD'and"DETECTION" in sequence where silence be-
tween them is shorter thars. Another words can be allowed between these
two words. These conditions are defined in the spoken teratten system.

Query is defined as one or multiple words consisting of terms andaipes"('IGOR
SZOKE’ near THESIS) and 'KEYWORD SPOTTING’ not BIOLOGY" .
The operators should define the semantic information. Tleeyois usually
used in context of spoken document retrieval or informateineval.



Keyword spotting system is a system for spotting (searching) given keywards i
speech data. It understands the keyword as one object eldbpitnumber
of words the keyword list might consist of. Keyword spottisigstem can be
based on speech recognizer but it can be also “standalos&msywhich spots
only given keywords and does not “understand” surroundpegsh.

Spoken term detectionsystem s also a system for spotting (searching) given terms
in given speech data. On contrary to #egword spotter, spoken term detector
somehow parses and splits multiple word terms and searohdasrin candi-
dates according to defined criteria (distance for exampldle spoken term
detection system is usually built-up on speech recognaed (lepends on it).

The topic of this thesis is aimed ®poken Term Detection— STD. The STD
system takes a set of terms and output of a speech recogniz@raduces a list of
putative hits of given term. The term is understood as secpiefione or more con-
secutive words. Only short silence is allowed between thasicular words. Term
definition is discussed more thoroughly in section 2. Ourkepaterm detector is
based on #arge vocabulary continuous speech recognizer LVCSR. It takes the
output of speech recognizer and provides search of ternesspeech recognizer is
mainly taken “as is” and is described in chapter 3. The outpudf putative hits of
given term can be viewed by human or processed by a systeanr(iafion retrieval
or spoken document retrieval) allowing for search for marmplex queries.

The complexity of spoken term detector depends on the owofiageech recog-
nizer. Such output can belabest output (simple text string, spoken term detection
Is then simple text search), aw-best output or a graph of parallel hypothesis so
calledlattice (for definition see section 1.2). The recognizer can recogword
units or subword units (syllables, phones, etc.).

Out-of-vocabulary (OOV) words handling is also important in case of word-
recognition. Words which are not present in word recogntietionary should
be detected. Normalization is useful for scaling and stufiof term confidences.
Each term should have tlwenfidencenormalized, so that one global threshold can
be used for decision of acceptance/rejection of terms. Gpee computational
requirements are also important from practical point ofwie

Search accuracy depends on recognition accuracy of usedtspecognizer. We
need onlyl-best (single string) output in a caseloh% reliable speech recognizer.
Nowadays, the state of the art word recognizers achievetal®da — 20% word
error rate (WER) and abot® — 10% lattice word error rate on broadcast news
andconversation telephone speech (CTS) [12]. This gives very good search results
In combination with lattice search [7]. But the languagenseaolving thing and
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each day many new words appear. There can be hardly a speegmizer having
all words in the dictionary. Information theory also statkat the least frequent
words carry most of the information. That is why we aim at ofsi*ocabulary
words.

The problem of OOVs can be solved by recognizing subwordsuygsitllables or
phones). The drawback of this approach is absence of strordjwvgram language
model and strong acoustic model of words which are both deadun large vocabu-
lary continuous speech recognize€¥CSR). That is why subword recognition does
not achieve so good accuracies. Phone recognition is cenmgts/e to pronuncia-
tion errors for example. These possible errors should bentakto account in the
search. On the other hand, LVCSR contains only a close sebafsno be recog-
nized and word language model prefers likely word sequeoitdise “exotic” ones
(probably carrying higher information). Also it is showrathf an OOV appears, it
usually causes nb word error, but approximatelg — 4 word errors [2]. This is a
justification of an investigation into subword recognition

1.1 Spoken term detection

The generic scheme of a spoken term detection system is efigli. The spoken

term detection system is built on speech recognizer, whsclally encapsulates also
the feature extraction. The speech recognizer producésaiestrings or so-called

lattices (figure 1.2) which contain transcribed speech indsdabels. The lattices

are searched for the given terms or keywords.

Thre;shold
Termlist- = = = = = = c e e e e e e o - T \ ;
1 1 |
| 1 |
\ 4 Y Y
Feature Speech Lattice - —
Normalization Filterin )M
M extraction > recognizer > search > > 9
Signal Features Lattices or Scores Confidences Term
strings detection

candidates

Figure 1.1:General scheme of spoken term detector.

Spoken term detection (indirect keyword spotting) is basedhe output of a
speech recognizer. It is a two step method where the first abegists of the
time consuming speech recognition and the second one t®wdia fast spoken
term/keyword search. The method inherits main charatiesisf the recognizer
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used. Input term/keyword must be converted to a sequenceitsf similar to rec-
ognizer’'s output units (e.g. words, syllables, phones).efthen the sequence is
searched in the output of the recognizer. The recognizerallysthe slowest step
of whole STD) is run only once. The STD or keyword spotter is gach time
a term or keyword has to be found. In comparison to the acoksirword spot-
ting, the search is very fast because it is done over “texdatd” (output of speech
recognizer). Advantages of STD are the speed of search dectd® accuracy (de-
pends on recognizer’s accuracy). Searching speed can imeizgad by techniques
known in information retrieval, such as inverted indiceaclting etc. to achieve
searching times less than—3s/hr /term. The disadvantages are off-line process-
ing (especially LVCSR is complex and time consuming) and&tbunit vocabulary.
The recognizer has finite and closed vocabulary of unitsntreaognize. Once the
recognition is done, the spoken term detector will “find”ypahits which were rec-
ognized by the recognizer. This is a drawback if a word recagns used. STD ap-
proach can be split according to used recognizer to woréddard subword-based.
The word-based STD has very high accuracy (having phone Is6deyanized”
in words and strong word language model) but limited vocayul The subword-
based STD approach has unlimited vocabulary (search wost Ineuconverted to a
sequence of subword units) but has lower accuracy (missarg acoustic models
and word language model).

In STD, we “ask” for the posterior probability(termig) of occurrence of the
termterm from timet;, to timet.. A sequence of unite is constrained ttw(termig)
which contain the term in given time:

D), (1.1)

w(termy) = argmax  p(w(termy)
W(termiz )EW(termiz)

whereW(termig) is the set of all permissible sentences having the term imelefi
time andD is the observed data. Applying the Bayes formula, we get

p(D \W(termii))p(w(termii)) (1.2)

W (termlc) = arg max
' w(termii)eW(termiZ) ZW’EW p(D |W/)p(W/)

In practice, direct implementation of formula 1.2 is difficu/e do not know the
time of occurrence; andt, of the termterm. Again, an approximation must be
used to hypothesizg andt.. The time of the term can be suggested fravn To
avoid having size otV infinite, W is approximated by lattice.

So, the real spoken detection task has two steps. The setahdist likely
hypothesisW’ is generated. Then occurrences of searched terms are fodNd i
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and estimation of term posterior probabiljtyterm;:) is:

p(terms) — PP Dtermsp(witermy)
" > wew P(D[wW)p(w’)

(1.3)

1.2 Searchin lattice

This section presents the “implementation” of the caleakabf term posterior prob-
ability stated in equation 1.3 in the previous section. icat{figure 1.2) are nowa-
days used as the multiple hypothesis output of speech reamgn

Figure 1.2:An example of word lattice. X-axis represents time.

The lattice is an acyclic oriented graph. Each nadepresents a time. An arc
a connects two nodes,, n, and represents a speech tnit= U(a) and set of
two likelihoodsZ(a) (acousticL 4.(a) and languagé.;;(a)). Start timet,(a) and
end timet.(a) of arca representing unit/(a) correspond to the time of start node
t(ny(a)) and end nodeé(n.(a)) of the arca:

t(np(a)) = ty(a)
t(ne(a)) = te(a).

The L.(a) o p(Dlw(af’)) andLras(a) o p(w(aj?)).

The best hypothesis (the most likely path) can be deriveu fadtice. The best
path through the lattice is also known &hest or string output. N most likely
paths through the lattice are known &sbest output. Lattice can be understood as
compact representation of tié-best output where th&’ is a large number.

Searching for a term in the string outputigest) is straightforward. An algorithm
goes through the string of units and compares each term mueesee of units. If the
comparison is successful, time boundaries and likelihdaohits are stored to a list
of term detections. The drawback of this approach is theradesef normalization.

L Another possibility is to represent speech unit as end néteecarc, then the arc represents only time information
and likelihoods.
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Term scores, which are derived from likelihoods of uniig«)), are sensitive to
background noises. The term detector is not robust in thes.ca

On the other hand, searching for the term in the lattice issmmobust. Having
the lattice, we have th&’ and we can estimate the posterior probability of term
according to equation 1.3. The posterior probability gigesfidence of term for
particular occurrence of term (represented by@rin time¢,(a), t.(a).

However, one more problem should be solved. Assume, thatsoehspothe-
sized occurrence of the term, which is slightly shifted but still overlappedtfvthe
original one. The problem is: is the probability of the ongl occurrence affected
by the fact that several overlapped occurrences of the sarmeexist? This leads
to “alternative” formula estimating the posterior prolapiof the term in timet:
t(term) = term;. The occurrence of term in timgterm) is defined by condition
ty(term) < t(term) < t.(term).

These two points of view are defined in this thesis in the failhg way:

1. Theterm score The term score is the posterior probabibiiyermig) of par-
ticular term hypothesis in the lattice from timgto timet, (figure 1.3). It does
not consider other overlapped occurrences of the term itirtte

2. Theterm confidence On the other hand, term confidence is the posterior
probabilityc(term;) = p(term;) of existence of the term in the lattice at given
time ¢ (figure 1.3). It takes into account several overlapped @adr term
hypothesis in the lattice.

term confidence

: O/WO

T ter'm T
1 S 1
. term score 2 <2l 3

| ten |
o Scorg I

-

A

t, te time

Figure 1.3:Example of a term occurrences in a lattice. “Term scores’btedifferent values of the poste-
rior probability p(termﬁz) for particular term occurrence. “Term confidence” denotedgion of posterior
probability p(term;) of existence of the term in the lattice at given time
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Chapter 2

Evaluation

Well defined evaluation data is important for objective aaéibn and comparison of
different systems. Unfortunately, each published spoken tetection system was
evaluated on different data and with different term set. rélveere4d TREC NIST
evaluations in year$997 — 2000. The TREC evaluations had only partial overlap
with spoken term detection task. The goal of TREC ®aaken Document Retrieval
(TREC-SDR) on broadcast news. The broadcast news recardiage recognized
by Automatic Speech Recognizer and then processed IDocument Retrieval system.
The goal was to find the relevant document, but not to find athteccurrences.
The TREC-SDR was declared a solved problem at TREC2000. There were
no spoken term detection evaluations organized by NIST fyear2000 till 2006.
New evaluation track was announced by NISTR2006. It was calledSpoken Term
Detection (STD) evaluatioh.

The goal of the first NIST STD2006) evaluation was to explore promising
new ideas in spoken term detection and measuring the peafarenof this tech-
nology [6]. The spoken term detection system should con$isto parts:

e The first part is anndexing sub-system. It processes all input speech data
(audio signal) into indices. This step can take longer tihmufs of processing
time per hour of speech data) and is run on the data only once.

e The second part is search sub-system. It should find a given term as fast as
possible (milliseconds of processing time per one termhéindices.

The STD2006 evaluation task was to find all of the occurrences of a spékcifie
term in a given corpus of speech data. The “term” is a sequehaore, two, three
or four words. The words in a term have to be said by the samakspechannel
and file. The gap between adjacent words must not be longetha. Terms are

Lhttp://www.itl.nist.gov/iad/mig/tests/std/2006/inde x.html
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specified only by orthographic representation so "wind” ying air) will match
"wind” (twist) but "cat” will not match "catalog”. The evaktions ran foi3 different
domains and languages, see table 2.1.

| Domain\ Language | English | Arabic | Mandarin|
Broadcast News (BCN) ~ 3 hours| ~ 1 hour| ~ 1 hour
Telephone Conversations (CTS)» 3 hours| ~ 1 hour| ~ 1 hour
Round-table Meetings (MTG) | ~ 2 hours No No

Table 2.1:Durations of indexed audio for both, the DevSet and the EBtalS

NIST provides three data sets. Development set (DevSe), a Dry Run set
(DryRunSet) and anEvaluation set (EvalSef). The DevSet was offered for sys-
tem development. It contains speech data, reference tiptssand a list 0fl099
terms. TheDryRunSet differs from DevSet only in different term list (099 terms).
The dry run was just for evaluation of participant competetecuse NIST scoring
tools and to generate correct result files.

TheEvalSet contains different speech data and a different term 1324 terms).
Unfortunately, NIST decided not to publish reference tcaipsions. The EvalSet
will be reused for next evaluations due to lack of speech.ddtas complicates
evaluation of STD systems, because there is only the DevSet.

Using round-table meeting data (MTG) and conversational telephone speech
(CTS) brings more objectivity, because it is more naturatfof speech (in compar-
Ison tobroadcast news data (BCN)). Meeting or telephone dialog participants speak
informally and the speech is spontaneous containing loteesitations, crosstalk,
smacks and background noises. This data is closer to thetyebamain.

The CTS data of NIST STR006 DevSet is used in this thesis for STD evalu-
ation. As because the speech recognizer (chapter 3) is takarfblack box” and
NIST released only thBevSet, several system coefficients are tuned on the DevSet:
unit (word, phone or multigram) insertion penalty and laage model or acoustic
model scaling factors. We assume that tuning of these paeasi@as no impact on
the correctness of the results and conclusions.

2.1 Term set modification and vocabulary reduction

The original term set for English part @006 NIST STD evaluations is not repre-
sentative for our experiments, because it contains low rasrabout-of-vocabulary
(OOV) words. We decided to make several changes to the ST lisr and our
speech recognizer vocabulary to achieve higher OQV ratest Bf all, all terms

13



containing true OOV words ar phone long were omitted. Thé phone long term
Is not a big problem for word-based STD, but serious problenphone based STD
(huge number of detections).

Then a set of “artificial” OOV words is defined — these are ordly in the
recognition vocabulary, but deleted for future experinsetat create more OOVSs.
Their selection is done in the following way: Word counts aadlected over the
Dev&et. Based on these counts, a suitable set of OOVs was seledtedvdrd had
to have several occurrences, but generally less tifarOnly 5 OOVs have more
than10 occurrences. In totak80 words were deleted in this way, of whidd0 do
appear in NIST dev-set transcriptions. AnotHét words which do not appear in
the transcriptions were simply selected from the LVCSR Ywodary. They are of
no use in this these, but reserved for future work.

A limited LVCSR system was created (denoted WWRDRED which means
“reduced vocabulary’) where these&80 words were omitted from the vocabulary.
This system has reasonably high OOV rate on the NIST STDO&BEVI he term
set ha9)75 terms of which481 are in-vocabulary (IV) terms and94 are out-of-
vocabulary OQV terms (terms containing at least one OOV)Hereduced system.
The number of occurrences4337 and196 for IV and OOV terms respectively. We
can detect all the “artificial” OOV terms by the originfalll vocabulary LVCSR
(denoted a¥VRD) and evaluate the “oracle” OOV term detection accuracy.

Reference transcription of the NIST STID06 DevSet has2002 tokens. De-
fined “artificial” OOVs appeair99 times in the corpus. So the OOV rate2$%),
which is close to real tasks.

Table 2.1 summarizes the numbers of terms and term occ@sdnc different
term length and data types in DevSet.

2.2 Spoken Term Detection evaluation metrics

This section presents evaluation metrics which are useddoken term detection
and keyword spotting task. Each detected term has a conédattached. The
confidence is a continuous value quantifying, how sure tlo&esp term detector is
about the detection of the term. Some users of spoken terecto@t application
expect hard/lES/NO decision whether a term is present or not. Another usersaxpe
only YESdecision (rising of an alarmNO decision is the complement ¥&cS deci-
sion over input speech data. Confidence thresholding isms@ging of confidence
to hard binary YES/NO decision. Let us assume that the temfidence is based

2term "A.”
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Term CTS

length [words] count count terms occur.
IV |OOV | IV | OOV | IV |O0oV
1 309 | 245 || 214| 76 | 4640| 156
2 149 197 || 42 | 30 92 34
3 21 | 45 5 5 5 5
4 2 7 0 1 0 1
sum 481 | 494 || 261 | 112 || 4737| 196

Table 2.2: Distribution of terms faeduced LVCSR 50k vocabulary —WRDRED system.
The second and third columns give the numbers of IV or OOV semthe term list. The next two
columns summarize the numbers of the terms appearing inTise The last two columns represent
the numbers of occurrences of IV and OOV terms in CTS set. filee@OV terms and phone long
terms are omitted.

on term posterior probability. The higher confidence value lhigher probability
of correct term detection. Let us set the threshadldto a certain value. The term
confidence:(term;) thresholding is defined by:

YES, c(termy) > thr

NO, c(termy) <= thr (2.1)

Decision(c(termy), thr) = {
whereDecision function returns the hard decision whether the term is faumnabt.
Several cases can occur in comparison of detected termssagefierence detections
(transcription):

1. The decision I¥ES (alarm is raised) and there is a reference texmer |apped
with the detected term in time. This case is denotedHBE. We want to
maximize the number of hits.

2. The decision i¥ES(alarm is raised) and there is no reference tevarlapped
with the detected term in time. This case is denotethbs® alarm — FA. We
want to minimize the number of false alarms.

3. There is a reference term in utterance butomerlapped term is detected at
that place ooverlapped detected term is marked YO decision (no alarm is
raised at the same time). This case is denotedfatsa rejection— FR or a
MISS. We need also to minimize the number of false rejections.

The definition of ‘bverlapped” for reference and detected term varies for dif-
ferent evaluation metrics. In our case, the mid-point oedetd term is less than
or equal to0.5s from the time span of reference term term weighted value —
TWV metric [6] used in NIST STD 2006 evaluations. If more detawsi overlap
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with one reference, only one is considered as HIT and theotre considered as
FAs (figure 2.1).

[ 0.55 § Reference  0.55
[ A I A I 1
| ; |
! HIT !

FA

-
-

time

Figure 2.1:Example of HIT and reference overlap defined by NIST for STBI@ation and TWV metric. If
two detections overlap one reference, only one is congidaseH|T and the other is considered as FA.

The level of threshold can be set for each term. More HITs @sd more FAS)
and less FRs are received by lowering the threshold, less EHitd also less FAS)
and more FRs are received by increasing the threshold. Timbexs of HITs and
FAs are correlated and as number of HITs rises so does theanohBAs. The user
must set the threshold to obtain the desired system beh@igir number of HITs
or low number of FAs). The accuracy of a term detection sysieas as rises the
separability of HITs and FAs. A system will have0% of HITs and0% of FAs for
a certain threshold in an ideal case of the best accuraagyn&eft optimal threshold
Is nontrivial especially if one global threshold applieceoa large set of terms.

The probability of correct detections; ;r, false rejection®,;;55 and incorrect
detection 4 can be calculated by the following formulas. Let us denote:

e term Searched term
e thr set threshold
® Niuget(term) the number of all correct occurrencestefm in the data set

e Nyr(term,thr) the number of detections havitd@ecision(c(term), thr) =
Y ES which are classified as HIT

® Nyuontarget(term) the number of all non-occurrencestefm in the data set

e Np4(term,thr) the number of detections havir@ecision(c(term), thr) =
Y ES which are classified as FA

The Ny ontarget(term) means all places, where false alarms ofthen can occur.
The probability of HIT is defined as:

Nyr(term, thr)
Niarget(term)

prrr(term,thr) = (2.2)
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The probability of MISS is defined as:
Ny r(term, thr)

t thr) =1— t thr) =1— 2.3
purss(term, thr) prrr(term,thr) Nporgua(Eerm) (2.3)
The probability of False Alarm is defined as:
Npg(t th
pra(term,thr) = ralterm, thr) (2.4)

Nnontarget (term)

The performance of spoken term detection system is definetthdyrade-off
betweenpy;r andpr4. As this is not a scalar value, different systems can not be
easily compared according 1g;;7 andpr4. That is why several metrics have been
proposed for calculation of one scalar value frogy; andpr4. Some of them are
used for comparison of detectors in this thesis. Their laigsfcription and definition
follows in section below.

2.2.1 Upper bound term-weighted value — UBTWV

One feature of TWV metric is its one global threshold for atihs. This is good for
evaluation for end-user environment. On the other haneaiti$ to uncertainty in
comparison of different experimental system setups. Weald&mow if the differ-
ence is caused by different systems or different normadimaind global threshold
estimation. This is reason for our definition Opper Bound TWV (UBTWV).
The difference to TWV is in individual threshold per eachmeiThe ideal threshold
for each term is found to maximize term’s TWV.:

thrigea(term) = arg max TWV (term, thr), (2.5)
thr

and UBTWV is then defined as:

UBTWYV = 1—average{parrss(term, thrigeq(term))+Bpra(term, thrigeq(term))}

term (26)
This is equivalent to shifting the score of each term, soatimum7 WV (term)
Is obtained at threshol@l0. Two systems can be compared by UBTWYV without any
influence of normalization and ideal threshold level estiomain systems producing
TWV score. Theactual andmaximal values are equal for UBTWV and both are
denoted byyBTWYV . However, due to the fact that each term has its ideal thidsho
DET curve for such ideal system has not much sense. Only tiné gmresponding
to the ideal threshold is important. This point is suppligctre UBTWYV. That is
why only UBTWYV values without DET curves are reported in tthssis.
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Chapter 3

Word recognition

This section deals with the description of our large vocatyutontinuous speech
recognition system (LVCSR) used for experiments statethimthesis. Presented
LVCSR is a state-of-the-art system derived from AMI LVC'SRO0]. The AMI
LVCSR system was slightly modified and used in the NIST STD&&@luation.
The decoder was changed from HHDecode to “in-house” STKSwvite in the third
(final) pass and produced lattices are directly used for Sifihe AMI LVCSR, the
lattices were expanded by fourgram language model and smmfunetworks were
applied.

3.1 The recognizer

The input data (conversational telephone speech) is firstezted to linear coding
16-bits per sample and kHz. The data is then segmented to speech/silence ac-
cording to energy in channels and by a neural net based plecogmizer [14]. All
phone classes are linked to “speech” class.

The data is split into shorter segments on silences (outigpgeech/non-speech
detector) longer thaf.5s. If the speaker changes, the data is also split. Segments
longer thanl minute are split intd2 parts in silence closest to the center of the
segment. This is done to overcome long segments and accgmgasroblems
during decoding (long decoding time and high memory congiomp

The large vocabulary continuous speech recognition sy$I&@SR) system
used in this thesis is a simplified version of AMI LVCSR systesed for NIST RT
2006 evaluations [9]. The system operatesipasses (figure 3.1):

In thefirst pass— P1, the front-end converts the segmented recordings into fea-
ture streams, with vectors comprisedlaf Mel-Frequency Perceptual Linear Pre-
diction (MF-PLP) features and raw log energy. First and second atdavatives

1The LVCSR was developed in cooperation with AMI-projecttpars, sedittp://www.amiproject.org

18



I 1-best
Data > PP VTN ]—»[ CMN/CVN f»f HDecode

VTLN
Estim.
1. pass

[ i
2 Y L-best
-—->| PLP VTLN I CMN/CVN ]—»[ MLLR I—» HDecode 4-gram | 1-bes
Expansion

MPE Lattices
LN HLDA

2-gram

2. pass

L 1] creEVTLN m cat )| CMLLR Features
Decoder

3. pass
SAT
MPE POSTER,

Figure 3.1: Schema of3-pass recognition system used in this thesis. The systerariged from AMI
LVCSR.

Lattices
Spoken Term Detection

are added. AfterCepstral Mean and Variance Normalization (CMN/CVN) is per-
formed on a per channel basis. The first decoding pass yielii transcripts that
are subsequently used for estimatiorMotal Tract Length Normalization (VTLN)
warp factors. The feature vectors and CMN and CVN are recdetpafter the
application of VTLN.

Thesecond pass- P2 processes the new features and its output is used to adapt
models withMaximum Likelihood Linear Regression (MLLR). Bigram lattices are
produced and re-scored by trigram and fourgram languagesmod

In the third pass — P3, posterior features [8] are generated. The output from
the second pass is used to adapt models ®Wahstrained MLLR (CMLLR) and
MLLR. In the original AMI LVCSR, bigram lattices were produced by HDecode
decoder and re-scored by fourgram language maddeéhisthesis, the output of the
third pass are the features which are processed by SVitedldeco

3.2 Baseline word recognition systems

Selected LVCSR system parameters |k pruning 2 x 107, Pr = 260 (beam
pruning) andM AM = 5000 (maximum active models). System with these param-
eters achieved very good accuracy, small size of latticdd@m decoding time. It

Is important to note, that this was original AMI CTS systenthndlosed vocabulary
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language model. This baseline closed vocabulary LVCSResystas denoted as
WRD. Word recognition system with reduced vocabulary (derifredch WRD sys-
tem) was used in following chapter 4. It wadRD system wher&80 words were
omitted from the vocabulary. Details of vocabulary redoictivere given in sec-
tion 2.1. This system was denoted\WRDRED. Both these baseline systems were
compared in the upper part of table 3.1.

However, open vocabulary language model is needed for ¢err éxperiments
in chapter 5. The open vocabulary language model had to inetrafrom scratch”
(not only by omitting880 words) in order to correctly estimate the probabilities of
the “out-of-vocabulary” symbotunk> .

To make the systems comparable, we cres@®DforHYB system, which should
be comparable to baseline open vocabulary word recogrstystems presented in
chapter 5. ThaVRDforHYB system used’r = 220 and LM pruningl x 103
because it is close to the open vocabulary LM in terms of nurabkigrams: The
accuracies oYWRDforHYB system are presented in the bottom part of table 3.1.

System Decoder| LM wrdSIZE | WAC | WLAC Word UBTWV
Pruning | Pruning ALL IV | OOV
WRD 260 2 x107Y 0.510 | 70.78| 88.22 | 0.795| 0.777| 0.838
WRDRED 260 2x107° 0.507 | 68.41| 85.75 | 0.522| 0.747| 0.000
WRDforHYB 220 1x 1078 0.252 | 69.04| 83.21 | 0.738| 0.734| 0.746

Table 3.1:Comparison of lattice size, word accuracy, word latticeusacy and UBTWYV of different baseline
LVCSR systems. WRD is the “full” vocabulary baseline, WRORE the reduced vocabulary baseline and
WRDforHYB is “full” vocabulary baseline comparable to opeocabulary LVCSR in terms of LM size and
decoder pruning.
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Chapter 4

Subword recognition — phone multigrams

This chapter deals with theoretical description and expenital evaluation of multi-
gram units.

Examples of other subword units [13] besides phonessgtables, phone n-
grams, phone multigrams, broad phone classes. All these units are based on phones.
Phone recognition and search using such units has its ay@sand drawbacks.
The advantage of phone recognition (using simple phone) lsoits relative sim-
plicity and presence of minimum constraints. Produced prgiring precisely re-
flects a spoken word or term. This holds if the acoustic modedshighly accurate
and the word (or term) was uttered correctly. Then phonagtproduced by the
phone recognizer perfectly matches the searched phonetid ferm. But these
two conditions are rarely fulfilled.

The drawbacks of phones are the following: If the model isiot% accurate,
the speaker does not pronounce well, or there is a backgroaise, recognized
phones do not match the speech well. Also, decoding fromgheme loop with
higher order of n-gram language model is computationallyenexpensive than the
decoding from LVCSR network Longer units should be more robust for incorrect
pronunciation of a term too. Finally, phone n-grams with dixengthn must be
used for indexing of phone strings or lattices. The optireabth of phone n-grams
was found to be in [13]. In our prior work [15], we have also used sequences of
overlapped-grams for search. However, out-of-vocabulary words srattan3
phones were dropped.

The disadvantage of the fixed length sequences is that thedneies of phone
sequences are not taken into account. Some phone trigransaae frequent than
the others. Variable length sequences can be used to overttasrproblem: a rare
seqguence is split into more frequent shorter sequence \ahitequent sequence

LAll phone acoustic models must be evaluated in the phoneapppoach, while words and word language model
reduce the search space significantly. This leads to evatuat limited set of phone acoustic models and lower compu-
tational requirement.
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can be represented as the whole unit. The other advantabatisdriable length
phone units can reflect word sequences and compensate f&ingwgord language
model.

4.1 Definition of multigrams

Variable length sequences of phones are denoted as photigramak. The multi-
gram language model was proposed by Deligne et al. [5]. §haltn model is a
statistical model having sequences with variable numbenads. The definition of
multigram model and its parameter estimation follows:

Letw = {wy, ws, ..., wy} denote a string oN units, and let denote a possible
segmentation ofv into ¢ sequencesg < N of unitss = {si,s9,...,5,}. Then-
multigram model computes the joint likelihoddw, s) of the corpus~ associated
to segmentation as the product of the probabilitiesof the successive sequences,
each of them having a maximum lengthrof

q

L(w,s) = [ p(s:) (4.1)

1=1
Denoting as the set of all possible segmentationssointo sequences of units, the
likelihood of w is:

Lt (w) = max L(w, s) (4.2)

mar CISHS

A n-multigram model is fully defined by a set of paramet&rsonsisting of the
probability of each unit sequeneg € D in a dictionaryD = {s1, s9, ...s,;,} that
contains all the sequences which can be formed by combmatib 2, . . ., n units:

P=(pi)it, where p;=p(s;) and sz’ =1 (4.3)
i—1

Maximum likelihood estimates @& can be computed through Viterbi algorithm
iteratively. Lets**) denote the most likely segmentationvefiith given parameters
Pk at iterationk:

“*) — arg max L(s|w, P¥) (4.4)

ses

According to [5], the re-estimation formula &f' parameter (sequence) at iteration
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k + 1 is intuitive:

c(s;, "))
c(s*(k))

wherec(s;, s) is the number of occurrences of sequencen segmentatios and

c(s) is the total number of sequencessin

The set of parameter® is initialized with the relative frequencies of all oc-
currences of units up to length in the training corpus. To avoid overlearning,
it is advantageous to discard low probable sequences: bynget = 0 to all
c(s;) < ¢g. Thecy parameter is denoted asultigram pruning parameter. Se-
quences of length = 1 are excluded from pruning to ensure that each sequence is
segmentable. If a unit with length= 1 has0 occurrences iB, then it's probability
Is set to a very low number.

When the set of parametebsis estimated, any phone string can be segmented
into sequence of phone multigrams. The process of segnantatstraightfor-
ward. All possible segmentations, according to the invgntd phone multigrams,
are created. Then, probability of each segmentation isuatedl according to the
probabilities of multigram units. The best (most probalsieymentation is consid-
ered as the segmentation of given phone string by the setowfepimultigrams. The
process of phone string segmentation to phone multigranmgemented by the
Viterbi algorithm.

Pt = (4.5)

4.2 Constrained multigram units

The baseline process of building multigram unit inventerwithout any constraints
(denotedxwrd). The corpus of phone strings is taken as is. An example oftan u
terance segmented by such unconstrained units is in tablené.2. A multigram
unit can be placed across word boundaries and also acressed $il ). Incor-
poration of word boundaries (cross-word multigrams) inteltngram units means,
that multigrams also somehow reflect the word language motleé question is
whether this is good or not. The same question can be asked thigosilencesil

By incorporating silence into multigrams, the units areea to remember parts
of speech where silence is usual and where it is not. Two @xpets with con-
strained training of multigram inventory are done to evéduhe influence of cross
word multigrams and silence inside multigram units:
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144

word sil YEAH | MEAN IT IS sil INTERESTING

xwrd sil-y-eh-ax ay-m-iy-n ih-t-ih-z-sil ih-n-t-ax-r| eh-s-t-ih-ng
nosil sil y-eh-ax ay-m-iy-n ih-t-ih-z sil | ih-n-t-ax-r| eh-s-t-ih-ng
noxwrd | *sil* | *y-eh-ax* | *ay* | *m-iy-n* | *ih-t* | *ih-z* | *sil* | *ih-n | t-ax-r-eh-g| t-ih-ng*

Table 4.1: Examples of different multigram segmentatiohke first line is word transcript. The second line is uncaisgd multigram
segmentation. The third line is constrained multigram saggation where silence is forbidden inside a multigram.umihe fourth line is
constrained multigram segmentation where silence and owtdary« are forbidden inside a multigram unit.

Unit System LM PAC uBTwv SIZE
n-gram ALL | IV | OOV
Word WRDRED 2 0.514| 0.734| 0.000| 0.56w

65.40| 0.540| 0.554| 0.508| 4.34p
59.66| 0.483| 0.453| 0.552| 6.38p
65.25| 0.559| 0.552| 0.577| 1.4w/3.6p
65.42| 0.584| 0.578| 0.597| 1.2w/4.1p
65.10| 0.630| 0.647| 0.593| 1.7w/3.7p

Word | WRDREDtoPHN
Phone | LhoOOV

Mgram | xwrd

Mgram | nosil

Mgram | noxwrd

W W WwN

Table 4.2:Comparison of word, phone and multigram systems from phaceracy, lattice size and Word, Mgram and Phone UBTWVpofnti@w.
0.56w means wrdSIZE and.34p means phnSIZE.



4.2.1 No silence in multigram

Inventories of multigram units which do not contain silerage trained in this ex-
periment (denotedosil). The unigranmsil is the only one multigram unit which
contains silence. This is needed to make utterances seghhentAn example of
utterance segmented by this method is in table 4.1 din@uilding of this nosil
multigram inventory is done by a modification in the first stépnultigram training
procedure. After the statistics of all n-grams appearinthatraining corpus are
collected, all n-gram units containirggl are omitted (except the unigrasi ).
Then, the initial probabilities of units are re-normalizaxd the iterative training
algorithm is run.

4.2.2 Non-cross-word multigrams

In this experiment, word boundaries are marked in the tngimiorpus, and the fol-
lowing rule is incorporated into the training algorithm: s@dooundary will appear
at most at the beginning or at the end of a multigram unit. @ty units with the
word boundary marker can be put besides each other duringetpmentation. |f
the first unit contains word boundary marker at the end, therdllowing boundary
must contain the word boundary marker at the beginning. $ystem is denoted as
noxwrd. An example of utterance segmented by noxwrd multigrams iable 4.1
line 4. The word boundary marker is denoted by a star symbol.

4.3 Conclusion

Table 4.2 comparesord, phone and phone multigram based systems frophone
and spoken term detection accuracy point of view. The WRDREDtoPHN is the
WRDRED LVCSR switched to produce phone lattices. The beshplaccuracy is
achieved by the multigram nosil constrained system. Howéetter STD accuracy
Is achieved by the noxwrd constrained multigrams. It is ingo@t to mention that
multigram lattices are significantly smaller and the reatbgn network is approx-
imately of the same size compared to phone system. The mauttigystem has
maximal multigram lengtld,, .., = 5 and multigram pruning, = 50. The terms
are segmented only tbbest multigram variant.
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Chapter 5

Combined word-subword spoken term
detection

We investigate into the use of different combination of wandl subword STD sys-
tems. Letus have atertigor Sz 0ke" . The termis first split into in-vocabulary
(IV) and out-of-vocabulary (OOV) parts. Let us assume, thathnamdgor is in-
vocabulary wordgor and the surnam@zoke is an out-of-vocabulary word. If we
choose phones as the subword units, the out-of-vocabutattygpdecomposed into
sequence of phones eh k eh . The combination of a word and subword based
spoken term detection is needed to spot both, in-vocabalaayout-of-vocabulary
parts of the term.

Theword recognizer is considered as a strong recognizer. It has strong acoustic
model (word models) and language model (word bigrams).stibeord recogni zer
Is considered as a weak recognizer. It has weak acousticlr(jaaene or phone
multigram units) and relatively weak language model (phomgams).

The combination of word and subword recognizer should aliowaverse be-
tween words and subwords in any time. If traversing persatiied other parameters
are set correctly, the word part of the recognizer should reeresent in-vocabulary
speech. Out-of-vocabulary parts of speech may be highlkelglfor the strong
word recognizer. However these OQV parts are not so unlilalthe subword part
of the recognizer. This leads the recognizer to switch froewvord part to the sub-
word part. The resultis the hybrid word-subword lattice veh®OV parts of speech
are represented by phone sequences and |V parts of speedrigeguences.

On contrary to Bazzi [1], we aim at thevestigation of STD accuracy and the
practical application for searching in spoken documents. We fully use the infor-
mation produced by the OOV (subword) model for search of tk/@erms. We
evaluate the accuracy of STD and word accuracy. We invdstigamore depth
“which subword model should be the best”:
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e The impact of subword model and hybrid network scaling patans to the
accuracy.

e The speed of the system and size of the index.
e Search for the system configuration suitable for practisal u

e Evaluation of the hybrid system in conjunction with indexiand search en-
gine for spoken term detection.

5.1 Building combined word-subword hybrid recognition net
work

We use the same decod&u/te from STK toolkit) as is used for the baseline exper-
iIments in word and phone recognition (chapters 3, 4). Bez#husS\ite is a static
decoder, the hybrid decoding is possiblerbgdification of recognition network.
No other changes are needed in the decoder.

The hybrid word-subword recognition network is built in gian way as the word
recognition network. Only the language model automatoand the lexicorl. are
modified in the composition:

HoCoLoG, (5.1)

WRD_B

Figure 5.1:Example of open vocabulary language model. ¥hek> states for the out-of-vocabulary words.

The word language model represented by WKSK created as open vocabulary
language model and contains<eumk> symbol. The<unk> symbol represents any
out-of-vocabulary word, see figure 5.1. The new open-voleaiplanguage model
represented by WFSA in denoted@s,,;. This<unk> symbol is substituted by a
subword language model (figure 5.2). The subword languagkehi® converted to
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Figure 5.2:Example of a subword (phone) language model.

WFST Guword- The hybrid “language model” is created by composition ofavo
and subword language models

Gsubword o Gword . (5 2)

The substitution is illustrated in figure 5.3. The red pamefwork is the<unk> in
figure 5.1 substituted by the subword model in figure 5.2.

The word dictionaryl. mapping words to phones is joint with the subword dictio-
nary mapping subword labels to phones. Then this dictiorsargnverted to WFST
representing the hybrid lexicon. Modified composition of tiybrid recognition
network is written as:

Ho C o (Lword U Lsubword) O Gsubword O Gword, (53)

whereH represents the HMM (tied-list) arid represents the mapping from context-
dependent to context-independent phonetic units,, is the pronunciation dictio-
nary mapping phones to words,,;...« maps phones to subword units (eg. syl-
lables, multigrams or phones):,.,..-¢ IS @ weighted transducer created from the
subword language model add,,,.; represents the word language model (weighted
acceptor).

The<unk> and<silsp> nodes in the hybrid network (figure 5.3) produce an
output label. Thecunk> node produces symbealnk> which is used as a marker
of the beginning of subword section in the output. Hstlsp> node produces
symbol<silsp> which is used as a marker of the end of subword section in the
output and also representsiiisp modef.

Parameters such asrd insertion penalty andacoustic or language model scal-
ing factors are tuned to control the recognition accuracy and output@il/CSR
system. However, the hybrid network is considered as onecbbjyy theSite de-
coder. The same penalty and scaling factor apply to both wonddsubword parts.
That is why three different parameters are incorporateal i combined network
during its building. The first parameterssibword language model scaling factor

Thesilence/short pause is attached to each word model by default in each word netwidnis is used for modeling
of possible silences following the words.
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Figure 5.3:Example of hybrid word-subword language model.

S.MSF. This parameter exponentiates the likelihood assignebddstibword LM
transitions. The second parametesuoword word insertion penalty SMP. Itis a
constant which multiplies each transition’s likelihoodusleading to a word node.
The last parameter mubword costSC. It is a constant which multiplies theunk>
symbol likelihood and represents a cost of going to the wkalavord model.

5.2 Hybrid recognition using multigrams trained on hand-made
LVCSR dictionary

Multigrams trained on the LVCSR dictionary are used in [1]e Wd the same ex-
periment for better comparison. The WRDRED pronunciatianiahary is taken
and multigrams (maximal multigram lengt,, .., = 5, multigram pruning: = 5)
are trained on the word pronunciations. Hybrid system ugieg/VRDRED dictio-
nary trained multigrams is denoted ldgbridMgramDictLVCSR . The advantage
of WRDRED dictionary is in its correctness, the pronuncias are carefully hand-
checked.

We also process the WRDRED dictionary word labels by@2@ system. Hy-
brid system using this subword model (denotedigbridMgramDictG2P ) evalu-
ates the influence @2P conversion accuracy on the word or STD accuracy. Com-
parison of these two systems is in figures 5.4 and 5.5.

We conclude, that th&2P conversion has no significant negative influence on
the accuracy. UBTWV-IV is influenced slightly negativelyy the other hand the
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Figure 5.4:Dependency of the HybridMgram systems WAC and UBTWYV on thaipaterSMP. The red
color denotes the baseline systems WRDunk and WRDREDukwRciations of words of HybridMgram-
DictLVCSR system are taken from the WRD dictionary. Pronatiegns of words of HybridMgramDictG2P
system are generated automatically by @& tool.

Mgram UBTWV-OOV is influenced positively for certain valuet SMP param-
eter. The HybridMgramDictLVCSR will be used in several het experiments
because we want to be comparable to Bazzi [1].

5.3 Memory and speed

Memory consumption and system speed (decoding time) arertard factors for
practical use. We evaluate theal-time factor? — RT factor and memory allocated
by the decoder after loading the recognition network andustto model. Real-
time factors are measured without feature extraction whaha constant RT factor
and is the same in all experiments. Also, time consumed blgespterm detection
algorithm is not included into RT factor, because it repnés@nly fraction of the
time. Both RT factor and allocated memory depend on the implgation of the
decoder, so they can vary for different decoders. Decodiegd is tested on Intél
Xeor® CPU, model B345 at frequency2.33GHz processor with sufficient size of
RAM.

Table 5.1 compares hybrid systems to the baseline systemmsrfremory and
index size, accuracy and speed points of view. The first gaheotable compares
baseline systems with fixed beam pruniRg = 220. We see that both multigram
systems (xwrd and noxwrd) are significantly (up&dimes) slower and produce
significantly larger indexes (up tt8 times) compared to WRDunk. On the other

2Proportion of the time of CPU core needed to decode a portion of acoustic data to tkeeldingth of the portion
of acoustic data.
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Figure 5.5: Dependency of the HybridMgram systems WAC, UBTWV and lattsize on the parameter
SWIP is tuned. The red color denotes the baseline systems WRDwhM@RDREDunk. Pronunciations of
words of HybridMgramDictLVCSR system are taken from the WRittionary. Pronunciations of words of
HybridMgramDictG2P system are generated automaticallthbys2P tool.

hand, the multigram xwrd system with unigram LM consumegy ¢o@hth of RAM
compared to the other systems. The multigram xwrd systemahasen as the
baseline system of OOV terms detection because it reackdsighest UBTWV-
OQV accuracy.

The baseline hybrid systems (HybridMgramDictLarge and titiNMgramDict-
Large2gr) with beam pruningr = 200 run relatively fast 7" = 2) and provide
UBTWV-IV close to the WRDREDunk system. The UBTWV-OOV acacy is
about the half of xwrd system, but the index size is one tenth.

A combined baseline systens combination of baseline systems (WRDREDunk
and xwrd) after the decoding, on the search level. “CombBitd8ITWV-1V accu-
racy is the accuracy of WRDREDunk system, UBTWV-OQV accynacthe ac-
curacy of xwrd system. RT factor and index size are sums ofivamd sub-word
systems.

Bottom three parts of table 5.1 present more precise cosgranf hybrid and
combined baseline system. We tadkybrid systems (HybridMgramDictLarge2gr,
HybridMgramDictLarge and HybridMgramDictLVCSR2gr) andhied the combined
baseline systems to produce comparable UBTWYV accuracy: fhiese systems can
be compared from speed and index size point of view.

The first system is the “star” system from the previous sectio is HybridM-
gramDictLarge2gr system with decoder beam prunihg= 350, subword scaling
parameterSdMSF = 1.0, SMP = —0.8 andSC = 0.0. This system was cho-
sen as the system which produces the best UBTWV-OOV havingWw 1V and
word index size comparable with the baseline WRDREDunk enghrevious sec-
tion. Here we see, that apart from the best accuracy, thtemsyis not much usable
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in practice. The real time factor BT = 28.4 which is two time slower than the
combined baseline system with real time factor suniRT" = 14. One advantage of
this system is the index size which is abd0¥; smaller.

HybridMgramDictLarge system with the same subword scapagameters is
chosen as the second hybrid system. The beam pruhing 250 is set in this case.
The real time factoR1T = 5.25 of the combined baseline improves Y’ = 4.15,
which is20% faster. Also, the hybrid index size 38% smaller than the sum index
size of the combined baseline system.

The last system is HybridMgramDictLVCSR2gr system with = 270 and sub-
word scaling paramete 9. MSF = 1.0, SMP = —1.3 andSC = 0.0. Compared
to HybridMgramDictLargeZ2gr, this hybrid system with bigrasubword language
model consumes abod®OMB less RAM. The UBTWYV accuracy is close to satu-
rated accuracies of the combined baseline system. If thidibasystems are tuned
to produce comparable accuracy, this hybrid syste@¥idaster and achieves only
34% of the index sizes of the baseline systems. The UBTWV-OOVimy deteri-
oration is0.027 against the “reasonably” saturated xwrd multigram basélif47.
The UBTWV-IV accuracy deterioration {031 against the “reasonably” saturated
WRDREDunk baseling.754.

The analysis of CPU and memory or disk consumptions of hydystiems shows
that hybrid systems are faster and reduce needed disk spastwfage of the in-
dexes. However, a hybrid system tuned to achieve accuranpa@ble to “satu-
rated” combined baseline system is about two times slowehelaccuracy is not
the most important quality of STD system, hybrid system ceovide very good
performance. The needed decoding time can be reduced%yand the index
size by66% at the cost ob% deterioration of UBTWV accuracy (HybridMgram-
DictLVCSR2gr system).

We conclude, that hybrid system based on LVCSR vocabulayppiifMgram-
DictLVCSR2qr) is faster and consumes less memory than tHaielylgramDict-
Large2gr system. This is caused by about two times smallevstd part. Also, the
decoder can influence the RT factor. We noticed that the RTybfidMgramDict-
Large2gr system for higher beam pruning increased signifiganore than linearly.
This was not observed in case of WRDREDunk system.
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System LM |[ # WRDn-grams|| # SWRD n-grams|| RAM Pr| RT UBTWV wrdSIZE

order| 1 | 2 1 [ 203 ALL [ IV | OOV | sum | wrd | swrd

WRDunk 2 50.0k | 2.0M - - 550MiB | 220 | 1.36 || 0.724 | 0.727 | 0.715 || 0.190 | 0.190 -

WRDREDunk 2 49.2k | 1.6M - - 470MiB | 220 | 1.32 || 0.486 | 0.694 — 0.190 | 0.190 -
xwrd 1 — - 3.0k - 22MiB | 220 | 7.11 | 0.537 | 0.492 | 0.642 || 3.540 - | 3.540
noxwrd 3 - - 3.0k | 451k (161k) || 315MiB | 220 | 10.75 || 0.630 | 0.647 | 0.593 || 1.740 - 1.740
Hybridvigrampictiarge || 2+ 1 || 49.2K | 1.6M 7.8k — 685MiB | 220 | 2.00 || 0.592 | 0.708 | 0.320 || 0.335 | 0.200 | 0.135
HybridgrambictLargezer || 2 + 2 || 49.2K | 1.6M 7.8k 136.8k 2310MiB | 220 | 2.40 || 0.608 | 0.701 | 0.391 || 0.337 | 0.198 | 0.138

WRDREDunk 2 49.2k | 1.6M - - 470MiB | 330 | 7.79 || 0.528 | 0.754 — 0.950 | 0.950 -
xwrd 1 — — 3.0k — 22MiB | 210 | 6.19 | 0.528 | 0.489 | 0.619 || 2.960 - 12960
HybridvgrampictLargezar || 2 + 2 || 49.2K | 1.6M 7.8k 136.8k 2310MiB | 350 | 28.37 || 0.713 | 0.753 | 0.620 || 2.400 | 1.000 | 1.400

WRDREDunk 2 49.2k | 1.6M — — A70MIB | 226 | 1.67 || 0.499 | 0.714 - 0.210 | 0.210 -
xwrd 1 — — 3.0k - 22MiB | 160 | 3.58 || 0.481 | 0.470 | 0.500 || 1.400 - 1.400
Hybridvgramdictiarge || 2 + 1 || 49.2k | 1.6M 7.8k — 685MiB | 250 | 4.15 || 0.651 | 0.715 | 0.501 || 1.000 | 0.340 | 0.660

WRDREDunk 2 49.2k | 1.6M — — 470MiB | 260 | 3.24 || 0.512 | 0.723 - 0.380 | 0.380 -
xwrd 1 — — 3.0k — 22MiB | 210 | 6.19 | 0.528 | 0.489 | 0.619 || 2.960 - 12960
Hybridvigrampictvesregr || 2+ 2 || 49.2K | 1.6M || 4.0k 42.3k 1855MiB | 270 | 8.62 || 0.691 | 0.723 | 0.615 || 1.100 | 0.440 | 0.700

Table 5.1: Comparison of memory and CPU requirements ofih@yistems. Columorder denotes the order of used language models.1
means bigram word and unigram subword LM. The followihgolumns contain the numbers of particular unigrams/bigraithe number

in brackets is the number of trigrams for the noxwrd systeracupied memory after the recognition network is loaded leydbcoder is in
columnRAM. Acoustic model is not included. Its size is constant foreaberiments190MB. Pr denotes chosen beam pruning. RT is the
estimated real time factor. Columns UBTWYV and wrdSIZE dertbe accuracies and index sizes of particular systems. mhért of the
table (the first rows) compares baseline and hybrid systems having beanmgréty = 220. The following3 parts of the table show three
different hybrid systems and appropriate baseline systeavisig comparable UBTWYV accuracy. The real time factor tswested on Inte®
Xeor® CPU, at frequencg.33GHz.




5.4 Conclusion

Conclusions of hybrid word-subword systems are given ia faction. Theoreti-
cally, we should obtain better IV and OOV accuracy with equasmaller lattice

size (index size) with the hybrid system than is achievedHg dombination of

standalone systems at the level of term detection. Our erpats have however
shown, that this can be achieved only for a certain range stkgy parameter set-
tings (beam pruning, hybrid network penalties and scaldsjtandalone systems
are tuned to the best accuracy (separately), this combmeginot overcome by the
hybrid system presented in this thesis. We can only makeallsmand faster, but
still with little deterioration of accuracy.

It is interesting to notice, that the UBTWV-OQV of pure subrdanultigram
system (xwrd) is not outperformed by the hybrid systems levior UBTWV-IV
the hybrid systems show superiority. This can be explainethb inaccuracy of
estimated place of out-of-vocabulary words (represenyedumnk> ).

Our explanation, why UBTWV-OQV is not better for the hybritan for pure
subword multigram system, is the following: the strong wanddel in the hybrid
system can cause that for an OQV, the sub-word model is nivaged at all — the
system does not enter tk@eink> part of the recognition network. In this case, the
system actually misses the OOV without any chance to redbvegsulting in a
miss. This problem does not occur in subword systems wherg/tiole utterance
Is recognized in subwords (so no misses are produced).

On the other hand, a false alarm of OOV occurrence does nessadly cause
that the IV term (overlapped with the OOV false alarm) is netistted. In this case,
the IV can be still converted to subwords and searched inthe/grd form.

This leads to conclusion, that it is important not to miss@@V parts of utter-
ances for hybrid systems. The position<aink> must be estimated accurately.



Chapter 6

Conclusion and discussions

The thesis deals with spoken term detection. The corneesibihis thesis is search
of out-of-vocabulary terms which are not present in diciignof word-based speech
recognizer. We investigate into combination of word andmgartol approaches to get
the best search accuracy (especially for out-of-vocapwards) having the highest
search speed and the lowest memory consumptions.

Several systems were described and tested in this thesiaiiéel at evaluation
of spoken term detection accuracy. The accuracy was eealwat3h of conversa-
tional telephone speech. We searched for nefityterms (having up ta words)
where about one third contains at least one out-of-vocapulard.

The Upper-Bound-Term-Weighted-Value (UBTWYV) was used las primary
evaluation metric. We derived this metric from Term-Weggivalue (TWV) de-
fined by NIST. The difference is in calibration of terms’ sesto one global thresh-
old. The UBTWV shifts the terms confidences to maximize terfWWV for thresh-
old 0. Terms are then pooled and average upper-bound TWV is edézll By this,
we can effectively bypass the calibration of scores and ewinate on the actual
system’s accuracy.

We also evaluated word accuracy and size of output produgeydiems. The
size of the output is important from the practical point afwi

The baseline LVCSR system was used to demonstrate the effectsing words
in the vocabulary. We have shown a deterioration of spoken tietection and word
recognition accuracy. The baseline recognizer was alst taseéemonstrate tuning
the recognizer to “reasonably best” accuracy.

One of set of subword systems were phone multigram systene.adtipted
the approach of phone multigrams published by Deligne amabBt [5]. First, we
found the optimal configuration of phone multigram modeladmg to spoken
term detection accuracy. We proposed two new multigram fsosligh constraints
(nosil and noxwrd). These constrained phone multigramgWmd superior to the
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baseline multigrams. Beside the evaluation of term confidenwe evaluated also
the influence of number of out-of-vocabulary term segmematto multigrams. It
was found, that this number of segmentations has significapact only on the
accuracy of out-of-vocabulary term detection. The conolugs that constrained
multigrams significantly overcome standard multigrams aimones. This system is
more accurate, faster and produces smaller lattices.

The last set were hybrid word-subword systems. A framewadeld on WFEST
was defined for construction of hybrid word-subword languagpdels. We inves-
tigated also the dependency of size of lattices and accaraparameters of hybrid
language model. A hybrid system can achieve higher accuharya word system
having comparable size of produced lattices.

We trained phone multigram model only on pronunciation \otary. The base-
line hybrid system was based on pronunciation multigramei@ from LVCSR
dictionary (similarly as proposed by Bazzi [1]). We exteddkis baseline system
further by training the multigram model on large dictionanfyout-of-vocabulary
words. This system achieved slightly better accuracy. \&tetkthe influence of au-
tomatic grapheme-to-phoneme production of pronunciatafrout-of-vocabularies
on the spoken term detection accuracy. The influence wasgrofisant.

The second extension was incorporation of bigram languaggehover multi-
grams in the subword part of the hybrid recognizer. The ¢fiéstronger subword
model becomes evident on the accuracy of out-of-vocabiganys and smaller lat-
tice size.

The hybrid system was evaluated from the lattice size andoatational speed
points of view. This should ensure practical applicabibfythe proposed system.
We found that hybrid system can achieve slightly worse asmuwith significant
reduction of lattice size and the same speed compared toothbined word and
multigram systems. From pure accuracy point of view, thisldde considered
a failure of the proposed approach, but in our opinion, thentback is largely
compensated by its simplicity and efficiency — keep in mirat th the combination
of word and multigram systems, the data must be processeataely by both
systems which is much more complicated.

6.1 Future work

The main problem of our hybrid approach is in the requirentdrdorrect scaling
of word and subword language models. In the case of incdyrectled language
models, produced lattices can contain too high or too lowlemof subword units.
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The accuracy will not be optimal.

An approach published by Yazgan and Saraclar [16] basedtonat®n of hy-
brid language model on hybrid textual corpora could be moleist. There is no
need of any scaling of word-subword parts of the LM. The “saglparameters are
directly estimated on the data. On the other hand, our apprcan be used in cases
where we do not have much LM training data, or we want to adagsystem to a
different domain.

We could build an LM containing several different types of D8&ymbol as
<unk-name> , <unk-street> , <unk-city>  and<unk-other> for each
domain. Then, each domain-dependent subword languagd noude be estimated
separately. <unk-name> on names of peoplesunk-street> on names of
streets, etc. In a new scenario, where the set of names ligdidéers from the set
used for training of the previousunk-name> model, only the newunk-name>
would need to be be trained and hybrid network recompiledth&scorpora for the
subword language models are in “dictionary” format, buntglthem is easy. The ap-
proach based on hybrid textual corpora can not be so easyted to the new set
of names. The names appearing in the hybrid corpora would toelee substituted
by the new names and the whole hybrid language model wouldltod®e retrained.

This work could be also highly beneficial for applicationsiese adding new
words to the system is requested. Having thmk-name> , <unk-street> |,
<unk-city> , <unk-other> etc. symbols in the recognition network would
actually create the necessary place-holders, where apapi@®pew words could be
added off- or even on-line.

It would be also very interesting to evaluate the phone muatn model proposed
by Bisany and Ney [3] and compare it to our approach. Theirtigmaim model is
defined theoretically more correctly and should achievéebegsults. It would be
also interesting to assess the improvement in the hybrigsyand in a standalone
multigram system.

In the proposed constrained multigrams, we could also ingd®aling with the
silence, that is currently considered as an independemt Uiie silence models
(sil  andsp) could be placed to the end of each multigram unit in the sameas
itis done in LVCSR.

Another future work is linked with using the hybrid system@©V detector and
comparing its performances with the detector based ongtwenweak posteriors,
as it was proposed at JHU workshop in 200y Hermansky et al. [11]. Efforts in
this direction are already running within the European DORgroject [4].

Lhttp://www.clsp.jhu.edu/ws2007/groups/rmimst/
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