
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FAULT-TOLERANTSYSTEMSDESIGNAUTOMATION
AUTOMATIZACE NÁVRHU SYSTÉMŮ ODOLNÝCH PROTI PORUCHÁM

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. JAKUB LOJDA
AUTOR PRÁCE

SUPERVISOR prof. Ing. LUKÁŠ SEKANINA, Ph.D.
ŠKOLITEL

BRNO 2023

Abstract
If a digital system is required to maintain a high level of reliability, it must withstand the
presence of naturally-emerging failures. Many of such systems utilize Field Programmable
Gate Arrays (FPGAs). One of the approaches to increase the system’s reliability is the
insertion of the so-called Fault Tolerance (FT) mechanisms. It is, however, a significant
challenge to design systems to be FT. In this thesis, an approach is designed and researched,
capable of automatically transforming an unhardened design into its FT version. The thesis
emphasizes the generality of such a process, which allows for the reusability of the methods
among various description formats, languages, and abstraction levels. This thesis describes
the proposed method and its main aspects: the source code modification approaches, design
strategies, and acceleration of FT parameters measurement. Last but not least, design flows
that target the minimization of required measurements are proposed, which significantly
accelerates the complete automated design of the FT system.

Several cases were experimentally studied during the research presented in this thesis.
Multiple circuits described in different languages were targeted with various reliability met-
rics to cover multiple scenarios. The first steps use a robot controller written in C++ as
a target for evaluating the source code manipulations and the so-called critical bits repre-
sentation of an FPGA design. After that, our C++ benchmark circuits were used instead
of the robot controller. At first, a strategy based on the Multiple-choice Knapsack Prob-
lem (MCKP) was used to automatically select the most suitable hardening from available
hardening schemes (e.g., Triple Modular Redundancy, or N-modular Redundancy). The
proposed design strategy found a solution with 18% fewer critical bits while even lowering
the design size overhead compared to the previous approach with the static allocation of FT
mechanisms. After that, means of FT mechanism insertion were implemented for VHDL.
VHDL benchmarks were also used with the MCKP strategy to find solutions with the best
Median Time to Failure (a.k.a. t50). For the actual case study, circa 25% savings in the
area were achieved compared to the reference design to which the FT mechanisms were
assigned statically and manually. The method allows the user to constrain the available
chip area and obtain the result optimal on reliability for this given area (under assump-
tions specified in the thesis). Also, system recovery was tested, which further improved
the t50 results by 70%. Finally, a comprehensive case was studied on a real circuit, the
FPGA reconfiguration controller. This presents a method of finding a Pareto-frontier of
optimal designs considering multiple criteria (i.e., power consumption, size, and Mean Time
to Failure – MTTF). The method exploits the principles of dynamic partial reconfiguration.

Abstrakt
Pokud je požadováno, aby digitální systém dosáhl vysoké úrovně spolehlivosti, musí zacho-
vat funkčnost i v případě přítomnosti přirozeně se objevujících poruch. Mnoho takových
systémů využívá hradlová pole FPGA (z angl. Field Programmable Gate Array). Jed-
ním z přístupů ke zvýšení spolehlivosti systému je začlenění mechanismů odolnosti proti
poruchám (OPP; angl. Fault Tolerance). Není však snadné navrhovat systémy tak, aby byly
OPP. V této disertační práci je navržen, prozkoumán a popsán automatický způsob transfor-
mace popisu systému do jeho podoby zvyšující OPP. Prezentovaný výzkum klade důraz na
obecnost tohoto procesu, který umožňuje znovupoužitelnost metod mezi odlišnými formáty
popisu, různými jazyky a úrovněmi abstrakce. Tato práce zkoumá navrhovanou metodu
a její hlavní aspekty: metody úpravy zdrojového kódu, strategie návrhu OPP a akceleraci
měření dosažené úrovně OPP. V neposlední řadě práce prezentuje postup návrhu, který

cílí na minimalizaci požadovaných měření parametrů, což výrazně urychluje automatický
návrh systému OPP.

Během výzkumu prezentovaného v této práci bylo experimentálně studováno několik
případů. Různé obvody popsané v odlišných jazycích byly optimalizovány dle rozdílných
metrik spolehlivosti tak, aby během výzkumu bylo pokryto více scénářů. První kroky ve
výzkumu využívají řídicí jednotku robota napsanou v C++ jako cíl pro vyhodnocení ma-
nipulace se zdrojovým kódem. Optimalizace se zaměřuje na procentuální zastoupení tzv.
kritických bitů (z angl. critical bits) na FPGA. Následně byly místo řídicí jednotky robota
použity naše testovací obvody, rovněž popsané v C++. K automatickému přiřazení nej-
vhodnějších mechanismů OPP (např. třímodulové redundance, z angl. Triple Modular Re-
dundancy – TMR; nebo N-modular Redundancy – NMR) byla nejprve použita strategie za-
ložená na Multiple-choice Knapsack Problem (MCKP). Navrhovaná strategie nalezla řešení
snižující počet kritických bitů o 18% a zároveň snížila velikost obvodu (obojí ve srovnání s
předchozím přístupem se statickou alokací mechanismů OPP). Poté byly implementovány
prostředky pro vkládání mechanismů OPP do VHDL kódů. Testovací obvody popsané ve
VHDL byly použity rovněž se strategií MCKP k nalezení řešení s nejlepším mediánem času
do selhání (též známým jako t50). Pro tuto případovou studii bylo dosaženo cca 25% ús-
pory velikosti obvodu ve srovnání s referenčním návrhem, ve kterém byly mechanismy OPP
přiřazeny staticky a ručně. Prezentovaná metoda totiž umožňuje uživateli omezit oblast na
čipu, která je pro daný systém dostupná a získat výsledek o optimální spolehlivosti pro tuto
danou oblast (za předpokladů blíže specifikovaných v této práci). Rovněž byla testována
obnova systému, která dále zlepšila výsledky t50 o 70%. Nakonec byla provedena komplexní
případová studie na reálném obvodu – řadiči rekonfigurace FPGA. V této případové studii
se v praxi představuje způsob nalezení Paretovy fronty optimálních obvodů zohledňujících
více kritérií, tj. spotřeba energie, velikost a střední doba do poruchy (z angl. Mean Time
to Failure – MTTF). Metoda také umí využít principů dynamické částečné rekonfigurace
FPGA pro obnovu systémů.

Keywords
Fault-tolerant System Design Automation, Electronic Design Automation, Fault-tolerant
System Design Flow, Redundancy Allocation and Insertion, FPGA, VHDL, C++.

Klíčová slova
Automatizace návrhu systémů odolných proti poruchám, automatizace návrhu elektronic-
kých systémů, postup návrhu systémů odolných proti poruchám, alokace a vkládání redun-
dance, FPGA, VHDL, C++.

Reference
LOJDA, Jakub. Fault-Tolerant Systems Design Automation. Brno, 2023. PhD thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor prof. Ing. Lukáš
Sekanina, Ph.D. and doc. Ing. Zdeněk Kotásek, CSc.

3

Fault-Tolerant Systems Design Automation

Declaration
I hereby declare that this Ph.D. thesis was prepared as an original work by the author
under the supervision of Mr. Prof. Ing. Lukáš Sekanina, Ph.D. and Mr. Doc. Ing. Zdeněk
Kotásek, CSc. I have listed all the literary sources, publications and other sources, which
were used during the preparation of this thesis.

. .
Jakub Lojda

April 17, 2023

Acknowledgements
I want to thank Mr. Doc. Ing. Zdeněk Kotásek, CSc., who guided me during the research
for many years and provided valuable information, insights, practical advice, and help.
I also thank him for sharing his wisdom and (not only technical) knowledge.

In 2022, Mr. Doc. Kotásek passed away. I also want to thank Mr. Prof. Ing. Lukáš
Sekanina, Ph.D. for kindly helping me during this difficult time. He became my supervisor
and provided advice during the ongoing research and completion of my Ph.D. thesis, for
which he deserves a big thank you.

Also, thank all the Department of Computer Systems colleagues who provided valuable
feedback and ideas. Last but not least, I would also like to thank my family for their colossal
support. Without any of these, the thesis would not have been created. Thank you!

Contents

1 Introduction 3
1.1 Thesis Goals . 4
1.2 The Proposed Approach . 4
1.3 Thesis Outline . 5

2 Research Background 8
2.1 Field Programmable Gate Arrays . 8

2.1.1 FPGA’s Structure . 9
2.1.2 Single-Event Effects in FPGAs . 10

2.2 Hardware Description and Synthesis for FPGAs 10
2.2.1 Hardware Description Languages . 11
2.2.2 High-Level Synthesis . 12

2.3 Dependable Systems Design . 13
2.3.1 Fault Avoidance . 14
2.3.2 Fault Tolerance . 14
2.3.3 Calculation with Reliability Metrics 16

2.4 Computer-Aided Design of Fault-Tolerant Systems 17
2.4.1 Modifying the Code to Support FT 17
2.4.2 Strategy for Selection of FT Mechanisms 19
2.4.3 Fault Tolerance Evaluation . 19

2.5 Open Problems . 20

3 Research Summary 21
3.1 Methodology . 21
3.2 Fault Tolerance Evaluation Approaches . 22

3.2.1 FT Evaluation Platform utilizing Robot Controller 22
3.2.2 FT Evaluation Framework . 24

3.3 Research and Results . 24
3.3.1 FT Mechanisms Insertion into the C++ Source Code: First Experi-

ments . 24
3.3.2 FT Mechanisms Insertion into the C++ Source Code: Multiple FT

Mechanisms . 28
3.3.3 FT Evaluation: Accelerated Testbeds, FPGA Design Metrics 31
3.3.4 FT Mechanism Selection Strategy: Multiple-Choice Knapsack Problem 36
3.3.5 FT Mechanisms Insertion into the VHDL Source Code: Hardening

Methods . 41
3.3.6 FT Mechanism Selection Strategy: Multiple Objectives, Real System

Case Study . 47

1

3.4 FT Design Automation Overview . 53
3.4.1 Design Flow . 53
3.4.2 FT Mechanisms Insertion . 56
3.4.3 FT Mechanism Selection Strategy 57
3.4.4 FT Evaluation . 58

3.5 Publications . 59
3.5.1 Selected Publications Summary . 59
3.5.2 Author’s Contributions to The Selected Publications 64
3.5.3 Other Topic-Related Publications . 65

3.6 Research Projects, Grants . 68

4 Conclusions 70
4.1 Thesis Main Contributions Summary . 71
4.2 Future Research Possibilities . 71

Bibliography 73

Selected Papers 80

A Data Types and Operations Modifications: a Practical Approach to Fault
Tolerance in HLS 81

B Redundant Data Types and Operations in HLS and their Use for a Robot
Controller Unit Fault Tolerance Evaluation 88

C Majority Type and Redundancy Level Influences on Redundant Data
Types Approach for HLS 95

D FT-EST Framework: Reliability Estimation for the Purposes of Fault-
Tolerant System Design Automation 100

E Automatic Design of Reliable Systems Based on the Multiple-choice Knap-
sack Problem 109

F Automatic Design of Fault-Tolerant Systems for VHDL and SRAM-based
FPGAs 114

G Automatically-Designed Fault-Tolerant Systems: Failed Partitions Re-
covery 119

H Automated Design and Usage of the Fault-Tolerant Dynamic Partial Re-
configuration Controller for FPGAs 128

Appendices 145

I List of Used Abbreviations 146

2

Chapter 1

Introduction

Certain electronic systems are required to maintain a high level of reliability. This is because
their failure might endanger human health, e.g., in the case of medical equipment [25]. Other
electronic systems must remain functional because of substantial economic losses in case
of their potential failure [18]. These include, for example, power grid control. Also, space
probe controllers and space rover computers must remain functional in harsh environments.
After these systems leave our planet, their reparation is nearly impossible, and their failure
can lead to an unnecessary loss of effort and money. It also delays the scientific knowledge
these space probes would discover if they continued to work correctly. This also counts for
cases where the space probe accomplishes its mission, but it would still be interesting to
prolong its operation, as it could lead to another discovery. In other words, an extension of
these electronic systems’ lifetime is always beneficial, such as in the case of the Voyager 1
and 2 spacecrafts [17].

Many of these electronic systems (controllers, accelerators, decoders, etc.), use the so-
called Static Random Access Memory (SRAM) based Field Programmable Gate Arrays (FP-
GAs) in which the configuration information is stored in SRAM [19, 63]. These FPGA chips
hold highly-configurable structures in one package, allowing to implement complex recon-
figurable digital systems. SRAM-based FPGAs thus allow to easily modify or completely
change the implemented circuit by re-programming the FPGA. Various approaches exist
for increasing the robustness and reliability of FPGA designs. This research targets the
so-called Fault Tolerance (FT), which accepts the existing risk of a failure and tries to
isolate and hide (i.e., mask) its impacts in such a way that the system still performs its
function [28].

However, for complex systems, it is a great challenge to consider all the FT approaches
during the design of a system. This is why an effort exists, which exploits the automated
insertion of FT approaches into already existing systems [41, 76, 36]. This thesis presents
research on methods that allow automatic (or semi-automatic) modification of an existing
FPGA design into its FT form. As opposed to existing approaches, the methods presented
in this thesis target the highest-possible generality – the ability to use the presented methods
throughout various description languages and at different levels of abstraction. As a part
of this research, all the techniques needed for such an automated design are implemented
into a newly created toolkit and evaluated. All the emerging limitations are removed on
an ongoing basis with the main research goal: to make the automated design possible and
practically usable. The methods will be experimentally evaluated on various case studies
on an ongoing basis as the method emerges. The first steps will utilize a robot controller.
After that, artificial benchmark circuits will be used. And finally, a real system (the so-

3

called FPGA reconfiguration controller) will be hardened in a case study with optimization
of power consumption and size overhead.

1.1 Thesis Goals
This thesis aims to propose, implement and evaluate methods that allow an automated
(or, at least, semi-automated) modification of an existing FPGA design into a new one
showing requested FT properties. Emerging methods will be experimentally evaluated. To
accomplish this overall objective of the thesis, the following goals are established:

Goal 1. Select at least two languages usable for HW system description. Design the means
to insert FT mechanisms into HW descriptions in these two languages. Implement these
means and thoroughly test them.

Goal 2. Find an algorithmic strategy that suggests selecting the proper FT incorporation
methods to the given places of the description code. Implement and test these strategies.

Goal 3. Design a tool that allows acceleration of the evaluation of FT parameters. This
tool should minimize the needed user interactions and maximize the speed of measurement
(testing).

Goal 4. Use the means from the previous goals to complete an automated design flow for
the transformation of unhardened systems into their hardened versions.

1.2 The Proposed Approach
The approach proposed in this thesis tries to develop, implement and evaluate a method for
automated design of FT systems. In the literature, various approaches target the automated
insertion of FT into existing systems. They are, however, always targeting a specific type
of technology [76], certain language [36] or a given level of abstraction [41] of the circuit
description. At the time of writing and according to the knowledge of the author of the
thesis, none of them was dealing with the automated design of FT systems in a general
way.

Suppose that a system is composed of several components and its description is avail-
able in a Hardware Description Language (HDL). Standard implementations of these com-
ponents do not support any FT mechanism. Various types of FT mechanisms exist, which
can be introduced into a system component by modifying it. When a support for FT is
introduced into a component, its reliability can be increased; however, the implementation
cost is higher. Other design parameters might also be changed, such as power consumption
or heat dissipation. The reliability increase is not always in relation to the implementation
cost (and the other parameters). Thus, the consequences of incorporating an FT mech-
anism into a component must be measured. Numerous possible configurations exist for
the whole system. They typically exhibit different functional and non-functional parame-
ters. Their suitability is highly dependent on the project needs (the optimized parameters).
These configurations must be selected strategically to find the best configuration that
suits the project’s specific needs. To compose such a general method of automated design,
multiple tasks must be fulfilled:

The means to modify the system’s description code are needed to transform the system
into its FT variant. These means will be separately implemented into individual modules of

4

the design method. This allows the design method to support a new description language
by simply adding a new FT insertion module for the new language. These means of FT
incorporation will be used in a smart way to achieve the best result (e.g., best reliability
for a given system size). The optimal selection of the FT incorporation mechanisms will
be performed by strategy modules, which are SW components of the proposed FT design
automation method that allocate FT mechanisms according to optimized parameters. The
generic design of the strategy modules will allow using various modules for FT incorporation
mechanisms (for different description languages) with the same strategy module.

A highly accelerated testing framework is desired as the strategy modules will need
to receive feedback regarding the reliability parameters. In addition, performing these
reliability tests on the target platform greatly maximizes the measurement’s credibility. The
testing framework will include a tool to perform measurements (i.e., tests). It will minimize
the user interactions to fully support the automated design techniques for increasing FT.

The complete automated flow of FT system design will use the FT incorporation mod-
ules and strategy modules alongside the FT measurement tool. A complete design flow is
proposed, which consumes a system description and produces an FT version of the input
system. A simplified diagram of the design flow is in Figure 1.1.

System
Component A

Component C

Component B

Component Variants
Component A with FT Mechanism 1
Component A with FT Mechanism 2

Component B with FT Mechanism 1
Component B with FT Mechanism 2

...

...

Optimal Selection of FT Mechanisms
Component A with FT Mechanism 1

Component B with FT Mechanism 2
Component C with FT Mechanism 1

FT Mechanism
Insertion

FT (and Other) Para-
meters Measurement

...

FT Selection
Strategy

D
es

ig
n

Ex
pl

or
at

io
n

Co
de

M
od

ifi
ca

tio
n

Figure 1.1: The simplified diagram of the proposed FT system design automation with its
main steps.

Part of this thesis is an experimental work to support the research and accomplish
the overall goal of this thesis. All the experimental work is done on a selected type of
FPGA utilizing the Xilinx Virtex 5 technology [79]. However, the complete method is
designed to be independent of the FPGA technology assuming the target technology allows
the measurement of the targeted (i.e., optimized) parameters. For this reason, the FT
measurement tool proposed in this thesis will also have the platform-specific parts isolated
in specific modules to allow its porting by reprogramming only these technology-specific
parts.

1.3 Thesis Outline
This thesis is structured as a collection of selected published research papers, including a
brief summary of the main research results that are important for the thesis goals. Chapter 2
presents a brief introduction to FPGAs, HW description, dependability, and finally, state
of the art for computer-aided design of FT systems. Chapter 3 of this thesis presents the
main research contributions backed by the selected research papers. At the end of this
chapter, these selected papers are also listed alongside the other topic-related papers and

5

grants. Chapter 4 concludes the thesis and presents the recapitulation of the research
contributions, and suggests the possibilities to continue this research.

The research presented in this thesis comprehends several branches, which might be
challenging to follow for a reader. For this reason, a mind map is included in Figure 1.2,
which displays the main goals and results of the research. The research conducted within
the Ph.D. study also led to several publications that are not part of this thesis. Despite
this, they are shown in the presented mind map, as their further investigation and research
might be interesting. These related but not included publications are marked by the blue
hatching on the mind map.

6

Fo
r t

he
 e

va
lu

at
io

n
of

 F
T

of
 S

W
 p

ro
je

ct
s;

al
lo

w
s

re
m

ot
e

ex
ec

ut
io

n
on

 a
 ta

rg
et

 C
PU

ar
ch

. (
pu

bl
is

he
d;

 n
ot

 a
 p

ar
t o

f t
hi

s
th

es
is

).

O
ne

 p
ar

am
. o

pt
im

iz
ed

, o
ne

 c
on

st
ra

in
ed

U
se

s
th

e
m

od
ifi

ed
 M

ul
tip

le
-c

ho
ic

e
K

na
ps

ac
k

Pr
ob

le
m

 s
ol

ve
r t

o
al

lo
ca

te
 th

e
ha

rd
en

in
g

ty
pe

s;
fin

ds
 o

ne
 o

pt
im

al
 s

ol
ut

io
n

(a
t m

ax
.).

So
 fa

r u
se

d
on

ly
 fo

r H
W

, m
ig

ht
 b

e
al

so
 p

os
si

bl
e t

o
us

e f
or

 S
W

-im
pl

em
en

te
d

FT
.

M
ul

ti
pl

e
pa

ra
m

et
er

s
op

ti
m

iz
ed

U
se

s
Pa

re
to

 fr
on

tie
r d

et
ec

tio
n;

(u
su

al
ly

) fi
nd

s
m

ul
tip

le
 o

pt
im

al
 s

ol
ut

io
ns

.
So

 fa
r u

se
d

on
ly

 fo
r H

W
, m

ig
ht

 b
e

al
so

 p
os

si
bl

e t
o

us
e f

or
 S

W
-im

pl
em

en
te

d
FT

.

Fo
r

H
W

 S
yn

th
es

is
U

til
iz

es
 m

od
ifi

ca
tio

n
of

 la
ng

ua
ge

 d
at

a
ty

pe
s

(u
si

ng
 a

 s
pe

ci
fic

al
ly

-c
re

at
ed

 li
br

ar
y)

;
us

ab
le

 w
ith

 th
e

H
ig

h-
le

ve
l S

yn
th

es
is

.

Ea
ch

 e
xt

er
na

l t
oo

l w
hi

ch
 a

llo
w

s
to

ha
rd

en
 o

nl
y

a
pa

rt
 o

f t
he

 s
ys

te
m

 ca
n

be
 u

se
d

w
ith

 th
is

 a
ut

om
at

io
n

m
et

ho
d.

Fo
r t

he
 e

va
lu

at
io

n
of

 F
T

on
 H

W
 F

PG
As

;
hi

gh
ly

 a
cc

el
er

at
ed

.

Po
w

er
 a

nd
 th

er
m

al
 d

is
si

pa
tio

n
an

al
ys

is
.

D
es

ig
n

si
ze

, f
re

qu
en

cy
, e

tc
.

Fo
r

H
W

 S
yn

th
es

is
 (o

nl
y)

Ta
rg

et
s

en
tit

y
in

st
an

tia
tio

ns
;

us
es

 te
m

pl
at

e
sy

st
em

.

Fo
r s

ys
te

m
s

th
at

 a
re

 e
as

ily
 s

ep
ar

at
ed

an
d

ev
al

ua
te

d
on

 a
 p

er
 co

m
po

ne
nt

 b
as

is
.

Fo
r s

ys
te

m
s

th
at

 ca
n

be
ev

al
ua

te
d

on
ly

 a
s

a
w

ho
le

.

Fo
r

SW
-im

pl
em

en
te

d
FT

Ca
n

be
 u

se
d

to
 im

pl
em

en
t a

n
FT

 in
to

 S
W

pr
oj

ec
ts

 (p
ub

lis
he

d;
 n

ot
 p

ar
t o

f t
hi

s
th

es
is

).

In
to

 th
e

C+
+

In
to

 th
e

VH
D

L
Ex

te
rn

al
 T

oo
ls

FT
 In

se
rt

io
n

M
et

ho
ds

Co
m

po
ne

nt
-b

as
ed

Fl
ow

Sy
st

em
-b

as
ed

Fl
ow

D
es

ig
n

Fl
ow

Bi
ts

tr
ea

m
R

el
ia

bi
lit

y
In

di
ca

to
rs

SW
 In

te
gr

ity
Te

st
in

g
(n

ot
 a

pa
rt

 o
f t

hi
s

th
es

is
).

Xi
lin

x
IS

E;
 V

iv
ad

o

Xi
lin

x
XP

ow
er

 A
na

ly
ze

r
Ex

te
rn

al
 T

oo
ls

FT
-E

ST
Fr

am
ew

or
k

Si
ng

le
-o

bj
ec

tiv
e

M
ul

ti-
ob

je
ct

iv
e

FT
 S

el
ec

tio
n

M
et

ho
ds

Pa
ra

m
et

er
s

M
ea

su
re

m
en

t

Fa
ul

t-t
ol

er
an

t S
ys

te
m

D
es

ig
n

Au
to

m
at

io
n

D
et

ai
le

d
an

d
au

to
m

at
ed

 a
na

ly
si

s
of

bi
ts

tr
ea

m
s

(r
el

ia
bi

lit
y

pa
ra

m
et

er
s)

.

Figure 1.2: The mind map of the research made within this Ph.D. thesis; parts hatched
in light blue color were researched, although their results are not included in this thesis,
following their paths might be interesting as future research.

7

Chapter 2

Research Background

The following chapter summarizes the current state of knowledge in relevant research areas
and presents the background context of the research. As the research of this thesis has been
performed with Xilinx’s FPGAs, we will focus on FPGAs of this company.

2.1 Field Programmable Gate Arrays
Field Programmable Gate Arrays (FPGAs) are complex digital circuits containing pro-
grammable logic blocks, various pre-designed components and the programmable intercon-
nection network [37]. FPGA’s structure is generic, and a designer programs its function
after manufacture. Thanks to this approach, FPGAs are a very affordable alternative to
the Application Specific Integrated Circuits (ASICs). The FPGA’s function is derived from
the so-called configuration bitstream, which is stored on the FPGA in the configuration
memory. The configuration bitstream is a data string that holds the configuration of the
internal blocks on the FPGA and the interconnections among them – in other words, the
complete design. The configuration bitstream is synthesized from a design description using
synthesis tools, such as Xilinx Integrated Synthesis Environment (ISE) [80] or Vivado De-
sign Suite [81]. Currently, most design representations are written in the so-called Hardware
Description Language (HDL); however, graphical representations are also possible [22]. A
huge advantage of FPGA is the possibility to modify or completely change its configura-
tion. This allows us to deliver a new upgraded design to an already deployed FPGA or, for
example, evaluate FPGA’s design functionality easily.

The configuration process is held through a configuration interface. Two types can be
distinguished: 1) External Interface, such as Joint Test Action Group (JTAG) interface,
Serial Peripheral Interface (SPI), or Xilinx’s SelectMAP. 2) With the Internal Interface,
reconfiguration is possible from the inside of the FPGA itself. These include, for example,
the Xilinx’s Internal Configuration Access Port (ICAP) [78].

The configuration bitstream of an FPGA can be loaded fully, typically in the case
of the first configuration of an FPGA after its power-on or reset. It can also be loaded
partially, in which only a specific portion of the FPGA’s configuration is re-written with a
prepared partial bitstream. Such an approach also lowers the time needed to transfer the
configuration. This ability of an FPGA is called the partial reconfiguration. Certain FPGA
types also allow the so-called dynamic reconfiguration to modify the configuration memory
while the design part on the FPGA that is not being overwritten is still performing its

8

function. With partial dynamic reconfiguration through the internal interface, an FPGA
design can modify itself from within the FPGA while still performing its function [78].

2.1.1 FPGA’s Structure

A generic structure of an FPGA is constructed of the so-called Programmable Logic
Blocks (PLBs), Input/Output (I/O) blocks, Block Random Access Memories (BRAMs),
Digital Signal Processing (DSP) components, a set of control and management components,
and programmable interconnection fabric [37, 32]. Modern FPGAs contain additional com-
plex components, such as processors, interfaces and acceleration engines (e.g., for Artificial
Intelligence). Together, these components are arranged in a matrix, as shown in Figure 2.1.
Different manufacturers developed different structures of PLBs, such as Altera’s Logic El-
ement (LE) or Xilinx’s Configuration Logic Block (CLB).

Logic
(CLBs)

Memory
(BRAM)

Logic
(CLBs)

Multi-
plier

Logic
(CLBs)

Memory
(BRAM)

Logic
(CLBs)

Multi-
plier

Logic
(CLBs)

Memory
(BRAM)

Logic
(CLBs)

Multi-
plier

Logic
(CLBs)

Memory
(BRAM)

Logic
(CLBs)

Multi-
plier I/O

I/O
I/O

I/O

I/O I/O I/O I/O

I/O
I/O

I/O
I/O

I/O I/O I/O I/O

Figure 2.1: Example of a simplified FPGA structure [37].

In Xilinx FPGAs, CLBs are composed of slices containing Look-Up Tables (LUTs),
storage elements, multiplexers, and carry logic. Specific slices might also support addi-
tional functions, such as storing data using distributed RAM and shifting data with 32-bit
registers [79].

Three approaches to store the configuration are currently used: 1) Static Random
Access Memory (SRAM), which is volatile; 2) antifuse technology, which is non-volatile
and can be programmed only once; and 3) Electrically Erasable Programmable Read-
Only Memory (EEPROM) or Flash technology, which is also non-volatile, but can be re-
programmed [32]. The research presented in this thesis primarily targets FPGAs utilizing
the SRAM to store the configuration, the so-called SRAM-based FPGAs.

9

2.1.2 Single-Event Effects in FPGAs

FPGAs are often utilized in applications with increased demands on reliability. Examples
include medical equipment for ultrasound, MRI, and CT scanners [82, 50]. Other appli-
cations are additionally required to withstand an increased occurrence of faults while still
maintaining increased reliability. Aerospace scientific applications can serve as an exam-
ple [19, 63] that must withstand the cosmic rays and high-energy protons [55].

In such environments, the so-called Single-Event Effects (SEE) can occur. A SEE is
caused by a particle with high energy [55]. To explain the effect of SEE on FPGAs, an
FPGA can be viewed in a double-layer model [57], which is illustrated in Figure 2.2. This
model consists of 1) the user logic layer and 2) the configuration memory layer.

User Logic Layer

Configuration
Memory Layer

Ionising particle

SRAM Cells

FPGA CLBs

FPGA Package

Figure 2.2: The double-layer FPGA model through which an ionizing particle is passing [57].

Both layers from the double-layer model [57] are prone to manifestation of SEEs as
charged particles pass through them. On the user logic layer, a risk of Single-Event Tran-
sients (SETs) [74] exists. SETs introduce transient errors, which appear on signal levels
connecting the components implemented in the user logic. These errors might eventually
be propagated to the primary outputs and observed as incorrect results. If such erroneous
results are not explicitly stored by the circuit implemented on the FPGA, their effects dis-
appear as the circuit continues its work. It is, however, important to note that the design
structure of the implemented user logic is not altered.

A high-energy particle that passes through the FPGA’s configuration memory layer
creates a risk of Single-Event Upset (SEU) [60]. This event results in a bit flip of a con-
figuration bit. This phenomenon possibly results in an instantly altered design, as the
configuration memory stores the implemented design. This affects LUTs contents, Flip-
flop (FF) contents, interconnections, and also contents of the BRAM, which is graphically
illustrated in Figure 2.3.

However, not each SEU (i.e., bit flip) necessarily changes the behavior of the design. This
is because the affected bit might be located in a currently unused part of the configuration
bitstream, or the implemented design might contain redundant components, thus effectively
masking the SEU impacts. From the utilization perspective, the configuration bits can be
classified into 1) un-used and 2) utilized in the design. Another classification is into A) in-
sensitive bits, whose flipping is not observable on components (or FPGA’s) primary outputs,
and B) sensitive (i.e., critical) bits that are susceptible to the SEU phenomenon.

2.2 Hardware Description and Synthesis for FPGAs
Before a bitstream is generated for an FPGA, the target circuit must be described, synthe-
sized and validated. For this purpose, Hardware Description Languages (HDLs) are mainly

10

LUT
FF

M
U

X
M

U
X

M
U

X

BRAM

Configuration Memory

Area prone to a potential SEU (bit flip)

a) b)

Figure 2.3: Places in the configuration bitstream in (a) CLBs and (b) BRAMs in which an
SEU can affect the implemented design (slightly varies among models; illustrated for the
Xilinx Virtex technology) [53].

used. Nonetheless, experimental graphical programming approaches are also available [22].
They, however, internally use textual representation in an HDL.

In recent decades, another approach, the so-called High-Level Synthesis (HLS), gained
popularity. This is mainly because of the growing complexity of digital systems, still sup-
ported by the increasing level of integration on a chip [12]. The HLS aims at shortening the
development and design process to lower the Time to Market and make it error-free and
easier to verify [20]. HLS is enabled by describing the HW in a higher-level programming
language, such as C, C++, or even Python.

2.2.1 Hardware Description Languages

Many HDLs exist; however, the most popular are the VHDL and Verilog [21]. The case
study experiments presented in this research are based on the VHDL. That’s why the
following text will very briefly describe the VHDL principles.

VHDL combines approaches of conventional languages such as Pascal or C, logic descrip-
tion languages such as ABEL-HDL, netlist languages such as EDIF, and additional features
for precise time modeling of events [71]. Because of the dual nature of VHDL, the same
language can be used to describe the design and also create a testbench to simulate sur-
rounding components. This, however, implies that circuit descriptions with correct syntax
exist that can only be simulated and cannot be synthesized into an FPGA design [14].

A design in VHDL can be described as a module with data inputs and outputs. This
module is called entity in the VHDL nomenclature. The design can be further hierarchically
defined by other modules (i.e., entities) with their interconnections. This approach to circuit
description is called structural. At the bottom of the such hierarchy, the entity must be
described directly – with the functional description approach for simpler combinational
logic or the behavioral approach for more complex components [5].

Firstly, a design in HDL starts with a specification, from which the circuit architecture
is later constructed. After writing a module where the circuit is described, the designer
checks the correctness according to the specification. This is performed on a test bench
using a simulation tool. After the verification, the synthesis tool converts the design into

11

a logic-level netlist which is subsequently optimized (logic minimization, timing, etc.). Af-
ter that, the place and route tool is utilized to map the synthesized logic onto available
elements in the FPGA, including their routing, which utilizes the interconnection fabric
switches. After the design is fully placed and routed, timing analysis is performed. The
design is transformed into the configuration bitstream if the timing specification is still
met. The resulting bitstream is stored and eventually written to the FPGA’s configuration
memory to start the FPGA’s operation. Graphical representation of this process is shown
in Figure 2.4 [24].

Design specification

System architecture
selection

VHDL description

Functional simulation

Logic synthesis

Placement and routing

Timing analysis

Timing simulation

Bitstream generation

Bitstream

Figure 2.4: HDL design flow [24].

2.2.2 High-Level Synthesis

Many Higher-Level Programming Languages (HLLs) can be used to describe synthesizable
hardware [52]. Currently, often the C/C++, and rarely Python, Java, or MATLAB lan-
guages are utilized for this purpose [52]. Practically, the ability to use an HLL to describe
hardware depends on the existence of a synthesis design toolkit for the given HLL. Current
design toolkits usually require additional information to be added to the HLL program (i.e.,
a description) to synthesize working designs efficiently. For example, they modify the basic
data types of a description to specify their bit width [66].

Additional design speed and size optimization is achieved by applying the so-called
pipelining and unrolling to specific program loops. In the pipelining process, a loop is
transformed into a pipeline. A new input data set processing is started through the pipeline
during each the so-called Initiation Interval (II). This allows starting a new loop before the
previous cycle has ended. In the unrolling process, a loop can be partially or fully unrolled
(the full unroll applies to static repetitions only). This results in hardware replication and
decreases the number of program cycles needed to execute a loop [20].

The HLS design toolkit transforms the description into an HDL (such approaches then
partly utilize the traditional HDL design synthesis flow) or (rarely) into a bitstream. As

12

the support of the C/C++ language is very common in HLS, the thesis also partly focuses
on C++ in combination with HLS [52].

The HLS design flow begins with a circuit described in HLL. This time, the description is
compiled at first. During this compilation, the Control-Data Flow Graph (CDFG) model is
obtained, which represents the data and control dependencies. Then, the steps of allocation,
binding, and scheduling are carried out. These steps are very tightly entangled. During their
execution the appropriate hardware resources are allocated, their operation is scheduled,
and finally assigned to available hardware resources. As for the latter, the operations are
assigned to functional units, while variables to storage elements and data transfers to buses.
Finally, the Register-Transfer Level (RTL) representation is generated. This HLS design
flow is depicted in Figure 2.5 [16].

Design specification

Compilation

Formal model

Allocation Scheduling
Binding

Generation

RTL architecture

Figure 2.5: HLS design flow [16].

2.3 Dependable Systems Design
Specific electronic systems are required to keep their failure rate at a minimum. There are
many reasons why designers must design these systems with dependability in mind. The
first is the risk of endangering human health and huge financial or tangible and intangible
losses. The economic losses are also the result of a failure of a system whose reparation is not
possible or very difficult to ensure. This is related to space probes especially. For example,
the loss of the on-board computer system of a space probe was involved in circa 6% of failed
investigations launched towards planet Mars between 1960 and 2020 [48]. Such a failure
is very costly, because the mission prices are in the magnitude of billions US Dollars. For
example, the costs of development and launch of the current NASA’s Perseverance Mars
rovers are circa 2.45 billion US Dollars [73]. A premature failure of such a probe is not only
an economic loss but also poses unnecessary delays in scientific progress.

Generally, a system is considered dependable if it allows performing its function as
required and when required; dependability can be used as a term for a time-related quality
characteristic of a system. The dependability property can be divided into availability,
reliability, recoverability, maintainability, and maintenance support performance [30].

Definition 1. Dependability of an item is the ability to perform as and when required.
Dependability includes availability, reliability, recoverability, maintainability, and mainte-

13

nance support performance, and, in some cases, other characteristics such as durability,
safety and security. Dependability is used as a collective term for the time-related quality
characteristics of an item [30].

In this thesis, the focus is directed toward reliability and availability. Reliability is
generally the ability to perform the function as required and without failure for a given
time interval and given conditions.

Definition 2. Reliability of an item is the ability to perform as required, without failure, for
a given time interval, under given conditions. The time interval duration can be expressed
in units appropriate to the item concerned, e.g. calendar time, operating cycles, distance
run, etc., and the units should always be clearly stated. Given conditions include aspects
that affect reliability, such as: mode of operation, stress levels, environmental conditions,
and maintenance [30].

Reliability can be quantified using various metrics, from which the most frequently
used ones in this thesis are Time to Failure (TTF), Mean Time to Failure (MTTF) [30]
and Median Time to Failure (a.k.a. t50) [72]. The t50 parameter defines the time in which
the probability of the fully functioning system is equal to 50%.

Availability expresses the fraction of time a system can operate according to the require-
ment [67].

Definition 3. Availability of an item is the ability to be in a state to perform as required.
Availability depends upon the combined characteristics of the reliability, recoverability, and
maintainability of the item, and the maintenance support performance [30].

The demand for designing a system that will perform the given function under stated
conditions and period is called the System Reliability Problem. Maintaining the function-
ality requires increasing the reliability of the system. Two main approaches to increase
reliability exist: 1) Fault Avoidance (FA) and 2) Fault Tolerance (FT); a combination of
these approaches is usually required in practice, as the FA approach alone is not enough
for the highest reliability requirements [11].

2.3.1 Fault Avoidance

The Fault Avoidance approach targets to avoid faults. This is achieved through the design
of components for a long-lasting life, strict manufacturing standards, and thorough quality
testing after manufacture [11]. Thus, compared to the standard design, the FA approach
differs in selecting highly-reliable components. However, the highly-reliable components are
usually more expensive, and their parameters are worse compared to the currently available
top consumer-grade parts [40]. When using this approach alone, it is unnecessary to alter
the design. Only the parts have to be properly selected.

2.3.2 Fault Tolerance

Fault Tolerance does not avoid the emergence of faults. It masks them instead. After
a potential fault occurs, it is masked. Thus, the fault’s consequences are not observable
through the system outputs, and the system functions according to the specification. The
number of faults the FT approach withstands is usually limited.

Definition 4. A system is considered fault-tolerant if, even during the presence of faults,
all of the following conditions are met:

14

• data processing of the system is not stopped nor altered due to a fault,

• the results provided by the system are correct,

• the results provided by the system are obtained at the specified time [28].

FT is achieved through the systematic incorporation of special structures into the design.
This involves redundancy. Generally, three types of redundancy can be used to achieve FT:
1) spatial, 2) temporal, and 3) information (a.k.a. data) [67].

Spatial Redundancy

The spatial redundancy uses additional components to introduce redundant structures to
the system. During this, the designer has to ensure that the added redundancy effectively
increases the system’s fault tolerance. One of the most common types of FT utilizing spatial
redundancy is the Triple Modular Redundancy (TMR) [47]. Graphical representation of the
TMR structure for a component is in Figure 2.6. The TMR can be applied to a complete
system (or a subsystem); such an approach is called the Coarse-grained TMR (CGTMR).
If the TMR is applied to each component of a system (or a subsystem) individually, the
resulting architecture is called the Fine-grained TMR (FGTMR). A TMR architecture can
be generalized into the n-modular redundancy.

Majority
Voter

Component A
(Copy 1)

Component A
(Copy 2)

Component A
(Copy 3)

TMR-hardened Implementation

Component A

Original Implementation

TMR Hardening Overhead

In
pu

ts

O
ut

pu
ts

In
pu

ts

O
ut

pu
ts

Figure 2.6: Graphical representation of an introduction of TMR mechanisms for a compo-
nent.

To achieve better results, especially for longer mission times, the spatial redundancy
can be improved by using the so-called restore mechanisms (a.k.a. repair or renew). For
example, on FPGAs, the introduction of restore mechanisms eliminates the accumulation
of faults in the bitstream, which is a serious problem. The partial reconfiguration prop-
erty of an FPGA can be used to rewrite and repair the bitstream, which is called con-
figuration memory scrubbing [26]. The reconfiguration can be performed from within the
FPGA design by using the Dynamic Partial Reconfiguration (DPR), for which a reconfig-
uration controller is used. The reconfiguration controller that was designed and developed
previously in our research group is called the Generic Partial Dynamic Reconfiguration
Controller (GPDRC) [69].

15

Temporal Redundancy

The temporal redundancy approach targets the repetition of a computation. The main idea
is that a transient fault disappears after a certain time. Thus, making repetitive equivalent
computations might provide enough results to detect the correct ones (i.e., to dismiss the
erroneous results calculated while a transient fault was present in the system) [6].

Information Redundancy

The information (a.k.a. data) redundancy for FT improvement uses added information,
which is kept in the system. Error-detection codes can detect faults, while error-correction
codes provide the ability to correct an erroneous result eventually [67].

2.3.3 Calculation with Reliability Metrics

The Mean Time to Failure (MTTF) is the most used reliability metric in this thesis. For
a system, it expresses the mean value of time in which the system fails. It is a statistical
value and, thus, it should be calculated from a set of Time to Failure (TTF) measurements
of a representative size [30].

Another reliability metric is the failure rate, denoted as 𝜆. It expresses the probability
of failure. A typical failure rate forms the so-called bathtub curve during a lifetime of a
system, which is depicted in Figure 2.7 [28].

"Infant Mortality"
Stage

Random Failures
Stage

Wearout
Failures

Stage

𝜆(t)

t

Figure 2.7: The failure rate 𝜆 as a function of time t; it forms the so-called bathtub
curve [28].

The failure rate of a complete system can be approximated by the sum of failure rates
of individual components as shown in Equation 2.1.

𝜆𝑠𝑦𝑠 =
∑︁

∀𝑐∈𝐶
𝜆𝑐 (2.1)

It is also possible to convert the mentioned MTTF metric to the failure rate using
Equation 2.2, which will be extensively used in the presented research.

𝑀𝑇𝑇𝐹 =
1

𝜆
(2.2)

16

2.4 Computer-Aided Design of Fault-Tolerant Systems
As the complexity of digital systems grows, new approaches have to be developed to increase
design productivity. The same applies to the design of FT systems. A general approach
has been established in past decades [36], [4]: the system is designed as unhardened (i.e.,
not incorporating any of the FT mechanisms), and the computer-aided design methods are
employed to incorporate FT mechanisms to the design.

Generally, the incorporation of FT into a system consists of three steps: 1) a design
modification enabling to incorporate the FT; 2) a selection of the most suitable FT approach
for a given partition of the system; and 3) measurement of the achieved design parameters
(reliability parameters, area overhead, power consumption etc.).

2.4.1 Modifying the Code to Support FT

Throughout the literature (e.g., [36, 76, 4]), two general approaches to computer-aided
insertion of FT structures into digital systems can be identified. It is possible to distinguish
them as 1) modified synthesis and 2) modified description.

In the case of the modified synthesis approach, the synthesis mechanisms themselves are
modified to produce FT systems on the output, although a description of an unhardened
system is provided on their input. An example of such an approach is the TLegUp [41], which
is an extended version of the LegUp open-source HLS tool, targeting the C language [10].
The flow of utilizing the modified synthesis approach (e.g., the TLegUp) is in Figure 2.8.

Application in C

Modified HLS (e.g., TLegUp)

TMR RTL (e.g, in Verilog)

Synthesis

Mapping

Floorplanning

Place and route

Bitstream

FT verification

Sy
nt

he
si

s
fr

om
 V

er
ilo

g

Desired FT paremeters

Available FT
Techniques

Figure 2.8: TLegUp design flow (i.e., the modified synthesis approach to automated FT
insertion; simplified) [1].

The advantage of this approach is a direct access to the synthesis’s internal represen-
tation of the design. Moreover, the higher control over the optimization processes inside
the synthesis tool is a plus. This is because the optimization process can be modified to
avoid removing the introduced FT mechanisms. However, if a designer decides to extend a
synthesis tool to incorporate FT, he or she quickly encounters a fundamental requirement of
an access to the source code of the synthesis tool software. This is an essential disadvantage

17

for experimental research and development. However, it can be overcome by focusing on
open-source synthesis tools.

The modified description approach instead keeps the components of the design flow in-
tact; however, it adds a new element to the design flow. An example of such a design flow
is in Figure 2.9, in which the added element is highlighted by a red color. An example of
such an approach can be the commercially-available Xilinx TMRTool [76], which modifies
the synthesized design during the design process in the Xilinx ISE flow. Another exam-
ple is the BYU-LANL TMR Tool (BL-TMR) [9]. Similarly, the TMRG [36] modifies the
structures directly in the Verilog language and outputs the Verilog code with FT structures
incorporated. All these mentioned tools focus exclusively on TMR.

Sy
nt

he
si

s
fr

om
 V

H
D

L

Design specification

System architecture
selection

VHDL description

VHDL description modification

VHDL description
with FT incorporeted

Functional simulation

Logic synthesis

Placement and routing

Timing analysis

Timing simulation

Bitstream generation

Bitstream

FT verification

Desired FT paremeters

Available FT
Techniques

Figure 2.9: The modified description approach to the automated FT insertion utilized in
the Xilinx ISE design flow [24].

The method of modifying the description has one advantage. The method’s developer
can treat the design flow steps as black boxes. It is, however, essential to ensure the added
redundancy does not interfere with the optimization processes running the synthesis tool.
In this thesis, the method of modified description is used, as one of the goals is to investigate
the possibilities of supporting multiple description languages and abstraction levels, which
is straightforward to implement if the approach of modified description is used.

18

2.4.2 Strategy for Selection of FT Mechanisms

A system is usually composed of multiple components, each of which might have different
requirements on FT. The suitability of a given FT mechanism is expressed as the gained
reliability improvement compared to the overhead associated with the application of the
FT mechanism. The problem of selecting the best FT mechanism for each component is
called the redundancy allocation problem throughout the literature [42, 83]. This is a hard
optimization problem [13] which is solved by design space exploration methods, for example,
evolutionary algorithms [35].

In [31] and [75], the genetic algorithm to allocate the redundancy, particularly the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) is used. The method utilizing the
Improved Surrogate Constraint approach is proposed in [56], targeting minimization of the
method’s computation requirements. Other approaches include penalty-guided artificial
bee colony algorithm [83], variable neighborhood search meta-heuristic method [42], and
particle swarm optimization algorithm [34]. In [4] the BL-TMR FT mechanisms insertion
tool is extended with design space exploration and parameter optimization.

2.4.3 Fault Tolerance Evaluation

A candidate redundancy allocation must be evaluated during the FT mechanism insertion
to obtain feedback for the design space exploration algorithm. One possibility is to utilize
the so-called functional verification, the aim of which is to run the system with faults
and, through examination of its primary outputs, examine the observability of a fault on
the primary outputs. Simply described, if a fault causes the system to produce incorrect
results or alters the system’s timing, such a system is not tolerant to the given fault.

One possibility to perform functional verification is to simulate the design alongside
simulated faults [8, 54]. However, this approach requires a lot of computation power.
Nonetheless, the simulation allows practically limitless possibilities to simulate fault types
and their unconstrained timing [7]. The accuracy, however, depends on the level of the
simulation. Another possibility for functional verification of FT properties is the execution
of the system on the actual hardware (i.e., FPGA in our case). However, in a standard
environment, waiting for faults to naturally appear in an FPGA during the testing proce-
dure is impossible because of the enormous time demands of such an approach. Thus, the
fault occurrence must be artificially increased to test and examine the candidate solution in
the presence of faults. Such an artificial manifestation of faults is called the fault injection
(a.k.a. SEU injection) [70].

An important advantage in design test and evaluation is if the testing method does
not require modifying the design. Thus, the design under test is equivalent to one later
deployed. This requirement is met by Alderighi et al. [3, 2]. They inject faults into real
hardware utilizing an FPGA. Similarly, in [2], a platform called FLIPPER is presented,
which utilizes two FPGAs, and the test is performed on the target hardware. One FPGA
board controls the experiment process, and the other contains the design under test. Con-
trasted to FLIPPER, [46] presents an approach in which the fault injection is performed
using circuits designed inside the same FPGA. In [65], the method utilizing the Rapid-
Smith library [39] is presented, which is then further demonstrated in [38]. Liu et al. [43]
propose a method for fault injection, which can modify and observe the values of signals in
a design. The communication is performed through the JTAG interface. In [64], multiple
fault models are supported. However, the disadvantage of this approach is that the design
must be modified to inject faults into it. Benso et al. [7] propose the approach of fault

19

modeling combined with design simulation. Similarly, in [8, 54], evaluation platform toolk-
its are presented that also utilize simulation. And finally, in [61], an evaluation platform
is presented, which was designed, and developed previously in our research group. Part of
the platform runs on a personal computer, while the design under test is executed on the
target hardware. This platform targets final design testing while monitoring impacts on
the mechanical parts controlled by the design under test. However, it has to be noted that
massive acceleration of the evaluation is needed, which is not supported by this platform,
to conduct research on automated FT design.

2.5 Open Problems
Although various approaches to automated design of FT systems exist in the literature,
they always target a specific type of technology [76], specific language [36], or a given level
of abstraction [41] of the description. The current state of the research in the field of FT
system design automation brings the following questions:

• According to the author’s knowledge, the effort to solve the problem of automated
FT system design in a general way has not been addressed in the literature. Would
it be possible to propose a uniform approach to frame the automated design flow? If
so, what would this approach look like?

• Is it possible to obtain the solution(s) that is (are) optimal on selected parameters
(e.g., size, power consumption and reliability) automatically (in a finite and reasonable
time)?

• As the measurement of candidate solutions seems to be the most time-consuming part
of the design, is it possible to accelerate the evaluation?

• What is the best trade-off between the number of FT measurements that have to be
accomplished and the quality of FT analysis?

These are the questions that appear behind the research presented in this thesis. And
this thesis tries to answer them through experimental work. It also tries to prove the
possibilities by designing and implementing the method in the form of a toolkit, as presented
in the following chapter.

20

Chapter 3

Research Summary

This chapter describes the methods used to solve the overall thesis goal. The main part
focuses on a summary of the most important results achieved during the research of this
thesis goal.

3.1 Methodology
This thesis aims to design, implement and present a method for the automated transforma-
tion of an unhardened design to its hardened version. The newly-emerging method should
be, however, as general as possible. In other words, it should allow working with various
description languages and levels of abstraction. Moreover, it should be possible to use the
method for different FPGA technologies. For this reason, the main part of this method was
decided to work on the level of description code. To work on the description code level, it
is, however, essential to design and implement means for introducing FT mechanisms into
the code. That’s why in the first stage of research, the means to introduce FT mechanisms
into existing code will be designed and implemented as a library and (or) a tool. C++
language support, in combination with the HLS, was chosen for this. These mechanisms
will be thoroughly evaluated and tested to show their feasibility. Later in this thesis, the
introduction of FT mechanisms into the VHDL code will also be designed and implemented.

Task 1. It will be necessary to design and implement the means for introducing
FT mechanisms into the already-existing description. The C++ and the VHDL
languages were selected as two representative languages.

A selection strategy will be developed to select the best FT mechanism from the available
FT mechanisms. These FT selection strategies implement a way to assign the best FT
mechanism to each part of the description code. We cannot talk about components here,
as, for example, the C++ language does not describe any components, as opposed to VHDL.
Such a design separates the insertion of FT mechanisms (i.e., description code specifics)
from their selection (i.e., reliability and design space exploration specifics). This separation
aims the ability to extend the set of supported languages easily. A new language can be
supported just by providing a new language manipulating module into the design flow while
completely re-using the existing selection strategy methods.

Task 2. Finding and implementing methods for algorithmic selection of the FT
mechanisms per each part of the description code will be necessary.

21

The current approaches to evaluate the level of FT are not prepared for the automated
usage. Their configuration is not straightforward. Moreover, the evaluation is the most
time-consuming part of the automated FT design, according to our first preliminary exper-
iments. For this reason, a new approach that will use all the available acceleration means
must be designed and implemented as a framework. All the technology-specific parts of
this framework (such as the communication interface) will be isolated into specific compo-
nents to allow straightforward porting of this framework to different FPGA technologies of
various manufacturers.

Task 3. A new approach to FT evaluation will be designed and implemented,
which allows a straightforward configuration and utilization of several tech-
niques to accelerate the evaluation.

As a final stage of the research, all the previously mentioned means will be merged into
a design flow. Two design flow types will be presented (i.e., the so-called component-based
flow and system-based flow), and the user’s task will be to select the most appropriate
one based on the structure of the description code. This is because certain description
languages do not allow splitting the design into components (e.g., C++). Other languages
(e.g., VHDL) might allow the separation of the system into components. However, a low
level of code writing discipline might effectively disable the user from separating the system
into individual components.

By proposing the complete design flows, the overall goal of this thesis – a general way
of an automated method for FT systems – will be fulfilled.

Task 4. A new design flow for the automated design of FT systems will be
composed of the previously mentioned modules and tools.

3.2 Fault Tolerance Evaluation Approaches
In this thesis, two design evaluation approaches will be used. In the first research stage, an
external platform for evaluating FT properties will be used (Section 3.2.1). This external
platform targets the evaluation of faults that impact the electro-mechanical systems. It
must simulate the environment for the design under test; thus, the space for acceleration
techniques is limited. Its purpose was to enable the author to start the research and to
present the first results and feasibility of the FT mechanisms insertion methods.

Later in this thesis, the newly created framework for accelerated evaluation will be pre-
sented. This framework does not allow for the simulation of a real-time environment of
the tested circuit; it, however, utilizes several acceleration techniques. One of the essential
acceleration techniques is the autonomous execution of the evaluation and parallel evalu-
ation of multiple design instances on one FPGA. This framework is introduced as part of
the thesis research and, thus, will be presented later with the other results (Section 3.3.3).

3.2.1 FT Evaluation Platform utilizing Robot Controller

This evaluation platform was designed by J. Podivínský [62]. The evaluation platform
includes a prepared maze simulation environment and a reference implementation of a
robot controller in the VHDL language. We are primarily interested in the robot’s controller
implemented in an FPGA. The specific implementation of the robot controller uses the so-
called left-hand algorithm, i.e., the robot chooses the option to turn left at every opportunity

22

to turn in the corridors. However, for the goal to be accessible to the robot, it is necessary
to follow specific rules during the creation of the maze [62].

The evaluation platform uses a robot controller to represent the design under test. The
robot controller is part of a simulated robot aiming to search a path through a maze. The
maze’s structure is not known in advance to the robot controller – the robot must utilize
its simulated sensors to detect obstacles and its simulated motors to navigate the maze in
real time. The evaluation platform functionality is based on the so-called fault injection
and functional verification. This approach executes the design under test and its reference
(i.e., golden) model. An artificial fault is injected into the design under test. At the same
time, its output data is monitored and verified, whether it matches the output data of the
reference model. The tested design must be provided with input data. These are provided
by virtual sensors that are part of a computer simulation.

The environment is divided into two parts. The first part, running on a PC, cares about
starting the experiment, its evaluation (data verification), and the simulation of the design
environment under test. The second part is executed directly on the target FPGA. Both
of these parts are connected using Fast Ethernet and JTAG interfaces. Fault injection into
the design under test uses DPR so that the design can be functional during the injection
(which is suitable for fault injection during the design run). The Ethernet interface is used
to monitor the experimental system. The scheme of the evaluation platform is shown in
Figure 3.1.

PC

Ethernet

JTAG - Fault injection

Input

Output

GPIO

A
ct

iv
a
to

rs FPGA
Ethernet
UDP
Buffers

Functional
 verification
Environment
 simulation
Fault injection

FPGA

Robot
Controller

FS
M

Figure 3.1: The evaluation platform which will be used in the first experiments with FT
insertion methods [62].

During one verification run, the expected data is compared with the data received from
the design under the test. The desired result is computed in the reference model on the
personal computer. After the first difference between the tested system and the golden
model is observed, the time of this failure is recorded. This is marked as an ”electronic
failure.“ Still, the experiment continues to determine whether such a failure also results in
a mechanical manifestation (depending on the tested application, e.g., impact, jam, finding
a target by a different path, etc.).

After verification runs with the evaluation platform are finished, the user obtains a list
of faults injected in each verification run. It also includes the evaluated system’s behavior
under the presence of faults. It separately monitors the precise correctness of the data
received from the robot controller on the FPGA (called the electronic point of view; these
are the results we are interested in this thesis mainly). It also verifies whether the simulated
robot achieved the desired target in the simulated maze (i.e., from the mechanical point of
view). Note that the robot can fulfill its mission from the mechanical point of view even if
some incorrect data are observed from the electronic point of view.

23

3.2.2 FT Evaluation Framework

The approaches to FT evaluation currently available to us are not prepared for usage
with automated design flow. Firstly, the evaluation itself must be automated as much as
possible. It must minimize the user interactions needed during the evaluation. Also, current
approaches do not fully utilize the potential of acceleration techniques. For this reason, a
new approach will be presented later in this thesis to improve the critical properties needed
in the automated design flow. Because the Evaluation Framework (described in Paper D)
is a part of the proposed FT system design automation method, it will be presented with
the other author’s results in Section 3.3.3.

3.3 Research and Results
As the research of FT system design automation covers multiple areas, the results are
divided into 1) FT mechanisms insertion, 2) selection strategy for FT mechanisms, and
3) FT evaluation. These areas were, however, researched in such an order that allowed
the author to systematically and incrementally verify the method proposed in this thesis.
For this reason, the conducted research is presented chronologically. The summary of the
proposed design toolkit is communicated in separate Section 3.4. The research presented
in this chapter is supported by eight publications, which represent the core of the research.

3.3.1 FT Mechanisms Insertion into the C++ Source Code: First Ex-
periments

The following section presents the functionality of the approach to modify a description
code in combination with the selected HLS tool. And also to prove that it is beneficial to
choose the appropriate FT mechanism for each component (of a system) individually, which
is one of the key ideas proposed in this thesis for the automated design of FT systems.

Research Steps

• Choose one of the design synthesis flows for FPGAs and prepare an experimental
system on which the FT insertion mechanisms will be tested.

• Design and implement a method for automated insertion of redundant structures
implementing FT into a design.

• Perform the synthesis and evaluate how the reliability achieved through the FT mech-
anism insertion depends on various synthesis settings.

• Divide the experimental design into smaller parts and evaluate the effect of FT inser-
tion on individual parts separately.

Design Flow for the First Experiments For initial experiments, it is necessary to start
with the choice of synthesis flow. Next, we will incorporate mechanisms into this flow that
modify the design description so that the resulting system is FT. The HLS approach was
chosen for the initial research. The synthesis is performed for the description in the C++
language, and the resulting circuit is then described in the VHDL language at the RTL level.
The specific tool used in this research is the Catapult C University Version (UV) 8.2b [51].
The design flow then looks as shown in Figure 3.2.

24

HLS
(Catapult C)

Fault-Tolerant
RTL Descr.

C++
Description

Fault-Tolerant
C++ Descr.

Modifications

Figure 3.2: The selected flow utilized for the FT insertion in combination with the selected
Catapult C HLS.

Principles of Redundant Data Types In the C++ language description, three tar-
gets of FT mechanism insertion can be generally distinguished: 1) data storage elements
(variables); 2) operations with data (arithmetic and logic operations); and 3) flow control
statements (e.g., if – then – else). The proposed method is based on modifying language
data types, thus the name Redundant Data Types (RDTs). The RDTs target FT insertion
into the storage elements and data operations. The concept of RDTs is very similar to the
Algorithmic C Data Types (AC Datatypes) [66], which are used specifically with HLS to
specify the bit width of synthesized variables and operations. In this case, the principle is
used to specify an FT mechanism on a per-variable basis. Specified FT mechanisms are
inserted into the data path corresponding to hardened variables during the synthesis. It
is important to highlight that it allows targeting FT mechanisms into specific parts of the
code. The simplified example of usage is shown in Figure 3.3.

int a;
int b;
int c;

b = 7;
c = 8;

a = b + c;

/* a = 15 */

int a_x, a_y, a_z;
int b_x, b_y, b_z;
int c_x, c_y, c_z;

b_x = 7; b_y = 7; b_z = 7;
c_x = 8; c_y = 8; c_z = 8;

a_x = b_x + c_x;
a_y = b_y + c_y;
a_z = b_z + c_z;
vote(&a_x, &a_y, &a_z);

/* a_x, a_y and a_z = 15 */

1
2
3

4
5

6

7

triple<int> a;
triple<int> b;
triple<int> c;

b = 7;
c = 8;

a = b + c;

/* a = 15 */

Original code Modified code Preprocessed result (semantically)

Figure 3.3: An example of a C++ program code (a) before and (b) after the incorporation
of RDTs and (c) semantic meaning after preprocessing.

The RDT is seen as a standard data type in the C++ language. For the implementation
of new data types into the C++ language, a unique approach called the C++ templates is
used. Each RDT then represents one FT mechanism (e.g., TMR), while the basic standard
C++ data types can be considered simplex. If we take the TMR as an example, each
RDT triplicates the associated data path and storage elements and adds voters after each
operation with the data type. This is achieved as follows. The variables in the code are
triplicated. Each operation (and its associated operator) can be identified as 1) unary
(e.g., the ++ operator), 2) binary (e.g., the + operator), or 3) ternary (three operands; for
certain cases used to shorten the if – then – else statement). For the unary operators, the
operation is triplicated, and a voter method (in the terminology of C++) is added. For

25

the binary operators, collision of RDTs of the same or different redundancy types might
occur: (a) intra-datatype: two RDTs of the same redundancy type (e.g., TMR RDT +
TMR RDT); (b) inter-datatype: two RDTs of different redundancy types (e.g., TMR RDT
+ duplex RDT); and (c) with original datatype: RDT and a standard data type (e.g., TMR
RDT + simplex). Example of these interconnections is shown in the original Paper A in
Figure 1. 3) For the ternary operator, adding a possibility to cast the stored value to a
Boolean value ensures the possibility to decide the ternary operator.

The Impact of the Synthesis Settings At first, an object of the case study must
be selected. Because the evaluation platform [62] will be used in this preliminary stage
of experiments, the object of the case study will be the robot controller on an FPGA.
This evaluation platform was described previously in Section 3.2.1. A new robot controller
was implemented using HLS, which incorporates the FT mechanisms inserted using the
proposed approach. The choice of the robot system mainly depends on the chosen evaluation
platform.

In the first stage, we monitor the impacts of the HLS pipelining and unrolling techniques
on the resources consumed, which were briefly described in Section 2.2.2. The pipelining and
unrolling techniques are part of the Catapult C [51] HLS tool. The optimization impacts
are monitored for the new robot controller system, which is re-implemented using C++ but
still uses the same navigation algorithm (i.e., the left-hand algorithm). Two versions of the
implementation are prepared: one in which each variable remained intact (i.e., the input
design as a reference) and the identical robot system, in which all variables were transformed
to the TMR RDT (i.e., triplication of data paths). The results were synthesized using the
Catapult C University Version [51] into the VHDL RTL and subsequently into a bitstream
using the Xilinx ISE 14.7 [80] for the Virtex 5 [79]. A comparison of consumed resources for
the Virtex 5 FPGA is in Figure 3.4. The first two noopt variants have neither pipelining nor
unrolling applied. For the noopt-area, the synthesis goal was set to the area minimization,
while the noopt-latency has latency minimized. The pipeline1-area has the main function
pipelined with the initiation interval set to 1 with the minimized area; the unroll2-area has
applied unrolling to the main function with the level of parallel execution set to 2 and area
minimized.

noopt-latency noopt-area pipeline1-area unroll2-area
noft triple noft triple noft triplenoft

Figure 3.4: Comparison of resources consumed for the HLS-generated robot controllers.

26

Figure 3.4 shows that the pipelining and unrolling do not significantly affect the re-
sources consumed compared to the simplex versions of systems. After the application of
the triplication RDT, the noopt and pipelined designs consume 2.2− 2.7 times more LUTs.
The design with unrolling applied stands out in this trend, and the triplication consumes
4.3 times more LUTs. This is because the unrolling executes a loop in parallel. More
resources are required, which deepens even more with the triplication applied.

Lowering the number of failed runs was also examined for the combination of the triplica-
tion RDT and optimization settings. The evaluation platform was used in this experiment,
which was briefly described in Section 3.2.1. The noopt-latency was discarded from the
next experiments, as the latency goal did not affect the synthesized design. Figure 3.5
shows severe impacts on the signal correctness and timing (even a correctly found target is
considered a failure here if the path and timing were different). Note that 1000 verification
runs were performed for each version of the robot controller. In each of them, a single SEU
fault was injected into the utilized parts of LUTs of the design under test before the robot
is instructed to start its movement.

Figure 3.5: The number of failing runs (out of 1000) of the system for each FT implemen-
tation.

The most significant improvement in minimizing the number of failed runs is
achieved for the pipelined design (87.9%), followed by the unrolled design (76.2%) and
noopt-area (64.7%). These experiments show that the RDT method can effectively im-
prove the reliability of a system.

Hardening of System Components Another critical assumption to the FT system
design automation is that one best hardened configuration can be identified for each com-
ponent (which is a part of the description in the C++ source code). In other words, each
allocation of FT mechanism on a component (part of description code) provides a different
improvement in FT parameters for a different price (e.g., size, power consumption, etc.).
This is examined in the following text. At first, the robot controller system was modeled
in the Universal Modeling Language (UML) Activity Diagram (AD) to visualize the parts
of the source code that are relevant. The UML AD of the robot controller can be found
in the original Paper B in Figure 4. Seven blocks in the AD are identified, which can be
considered FT relevant parts of the robot controller.

Each of these parts is identified by a number. Seven versions of a robot controller were
prepared, in which always precisely one part was hardened using the TMR RDT (i.e., RDT
triple). HLS at this time is set to the pipelining with an initiation interval of 1. The

27

reason is that this optimization setting showed the highest percentage decrease of failed
runs in the previous experiment when the RDT is applied to the robot controller. This
time, 2000 verification runs were performed for each version of the experimental system.
During one test (i.e., verification scenario), one artificial SEU is injected before the robot
starts. In our case, evaluation was performed on an FPGA from Xilinx utilizing the Virtex 5
technology [79]. The FPGA is located on the ML506 evaluation board [77]. The results are
summarized in Table 3.1.

Table 3.1: The evaluation of resources overhead, and the improvement in lowering the
number of failed runs compared to the unhardened reference values (of an unmodified
design); an extended version of the table is in Paper B in Table 1.

Robot Version Ref. 1 2 3 4 5 6 7
LUTs bits [–] 21952 17408 55744 12800 15744 47552 15872 35840

Slices [–] 196 147 370 135 165 379 147 250

Failures [h] 33.0h 27.0h 13.5h 30.5h 37.5h 15.5h 29.5h 17.0h
Improvement
in lowering failed
runs number [%]

− 18.2% 59.1% 7.6% -13.6% 53.0% 10.6% 48.5%

Area over-
head [%] − -25.0% 88.8% -31.1% -15.8% 93.4% -25.0% 27.6%

Table 3.1 shows that designs with higher overhead (2, 5, and 7) decreased the number
of failed runs. The remaining designs (1, 3, 4, and 6) are smaller than the reference design.
However, designs 1, 3, and 6 show lowered number of failed runs. This is due to the use
of various pipelining block sizes, which the synthesis selects. Also, as the operations are
associated with variables of different bit widths, the sizes of the resulting design are not
directly proportional to the number of operations hardened, as shown in Table 3.1.

Key Publications

(A) Data Types and Operations Modifications: a Practical Approach to Fault Tolerance
in HLS, LOJDA Jakub, PODIVÍNSKÝ Jakub, KOTÁSEK Zdeněk, KRČMA Martin.
In: Proceedings of IEEE East-West Design & Test Symposium. Novi Sad: IEEE
Computer Society, 2017, pp. 273-278. ISBN 978-1-5386-3299-4.

(B) Redundant Data Types and Operations in HLS and their Use for a Robot Controller
Unit Fault Tolerance Evaluation, LOJDA Jakub, PODIVÍNSKÝ Jakub, KOTÁSEK
Zdeněk. In: Proceedings of IEEE East-West Design & Test Symposium. Novi Sad:
IEEE Computer Society, 2017, pp. 359-364. ISBN 978-1-5386-3299-4.

3.3.2 FT Mechanisms Insertion into the C++ Source Code: Multiple FT
Mechanisms

The next step in this research is to verify the essential parameters of the proposed design
automation method, which were previously chosen only empirically. For example, what
is the impact of using the word-based voter on reliability parameters of the resulting cir-
cuit? Or is the accuracy of measured reliability parameters sufficient? These questions are
answered in the experimental work presented in the following section.

28

Research Steps

• Verify the functionality of the RDT in the case of multiple SEUs and with a fair
measurement reflecting the design size.

• Extend the library of RDTs (i.e., FT mechanisms for C++ algorithms).

• Examine the effect of the type of voter (bit- vs. word-based).

• Examine the precision of the reliability measurement.

Multiple SEUs for a Fair Measurement To design a practically usable FT system,
the added redundancy must be efficiently used to increase its reliability. A question of
how to measure this property emerges. As charged particles cause SEUs, it is essential
to assume that the whole bitstream is subject to the manifestation of SEUs. The rate of
particles achieving the FPGA’s surface is usually given in particles/cm2/s, which is called
the radiation flux [68]. This demonstrates the necessity of considering the design size
throughout the reliability measurement. To illustrate this on a hypothetical example, a
dead area (i.e., component performing a dummy computation) added to a system efficiently
decreases the percentage of critical bits. However, the system’s reliability is not enhanced
in such cases because the absolute number of critical bits remains the same; only the circuit
size increases. To address this, the unit of fault injection intensity in inj/s/bit was proposed
in this part of the research. The unit represents the number of fault injections per time per
circuit size, which is very similar to the radiation flux rate. This unit considers the bitstream
area under the fault injection, i.e., larger designs receive more SEUs with a shorter interval
between and vice versa for equivalent fault injection intensity.

Voter types in RDTs, n-MR Redundancy Techniques In the first steps of the re-
search, a word-based voter was utilized in the RDTs. A question arises about whether a
bit-oriented voter would be smaller in terms of chip area and what consequences would the
bit-based voter have on reliability. Unlike a bit-based voter, which computes the majority
function per each bit of the voted word, a word-based voter selects the results based on
the complete word representation. The latter has, on the contrary, a straightforward im-
plementation in the C++ language. Furthermore, the following experiment implemented
additional FT mechanisms from the n-MR group of approaches into the RDTs.

The following experiment still utilizes the evaluation platform described in Section 3.2.1.
In this experiment, repeated fault injection of a given frequency according to the fault
intensity is performed. Based on preliminary experiments, the fault injection is selected to
2.0 × 10−6 inj/s/bit. The fault injection intensity represents a trade-off between the time
needed to achieve the critical accumulation of faults in the design, measurement accuracy,
and throughput of the fault injector. This is mainly because the evaluation platform used
in this measurement does not allow the clock gating of the tested circuit while a fault is
injected, thus limiting the frequency of fault injections by the real-time throughput of the
injector. This is because of complicated synchronization with the simulated environment.
The number of experiments was set to 0.1 * 𝐿𝑈𝑇𝑠_𝑏𝑖𝑡𝑠, where 𝐿𝑈𝑇𝑠_𝑏𝑖𝑡𝑠 represents the
number of bits of the bitstream used to implement LUTs, as LUTs are the main target
of the fault injection experiments. This is how the number of experiments also reflects
the size of the measured circuit to statistically maintain certain accuracy of the reliability
measurement. Bit sizes, the percentage of failed runs (i.e., showing an electronic failure –

29

runs during which discrepancies were detected on the outputs of the robot control unit), and
the MTTF were measured. Measurements were performed for all the bit- and word-based
voters in combination with the triple (i.e., TMR), quadruple (i.e., 4-MR), and quintuple
(i.e., 5-MR). The results are shown in Table 3.2. A detailed overview of the consumed
resources, including the maximal frequency of the implementations, is listed in the original
Paper C in Table II. The resulting MTTF and the representation of failed runs are visualized
again in Figure 3.6.

Table 3.2: The overview of the parameters of testing and the results obtained.
RDT Applied to

the Robot Controller
Unit Algorithm

Parameters of Testing Results Obtained
LUTs

bits [b]
Num. of
Runs [-]

Fault Rate
[inj/s/bit]

Failed
Runs [%]

MTTF
[s]

noft (no RDT) 19392 1940 2e-6 21.24 131.05

W
or

d
M

aj
or

ity triple 48704 4871 2e-6 18.99 139.40
quadruple 73216 7322 2e-6 20.88 138.14
quintuple 122880 12288 2e-6 21.34 141.06

Bi
t

M
aj

or
ity triple_bit 24480 2448 2e-6 18.91 128.68

quadruple_bit 26784 2679 2e-6 20.87 132.88
quintuple_bit 37632 3764 2e-6 25.05 130.08

Figure 3.6: Reliability parameters for robot units utilizing TMR, 4-MR and 5-MR RDTs
in combination with word- and bit-based majority voters.

As the chart shows for the RDTs with a word-based voter, the TMR RDT decreased
the number of failed runs (i.e., the runs detected as an electronic failure by the evaluation
platform). In the 4-MR RDT, the percentage of failed runs was also reduced (compared
to the reference) but is still higher than for the TMR. This is because the 4-MR occupies
more area yet still requires three out of four results (or bits) to be correct to work correctly.
For the 5-MR, the percentage of failed runs is slightly higher than for the reference unit.
On the other side, for the RDTs utilizing bit-based voters, the TMR RDT achieved the
best percentage of failed runs, only 18.9%. In opposition, its MTTF decreased, suggesting
that the scatter of TTF values is higher in this case. The 4-MR, similarly to the RDT with
the word-based voter, indicates an increased percentage of failed runs due to the nature of
the 4-MR structure. For the 5-MR, the bit-based majority function provides worse results.
The experiments can be concluded that if the percentage of failed runs is essential, the
bit-based voter is more suitable. If the MTTF is important, then the word-based voter

30

achieves higher MTTF values. Each RDT thus provides different performance in terms of
mission time and failure rate percentage.

Measurement Precision The number of measurements was previously set to one-tenth
of the number of tested bits (i.e., 𝑇𝑒𝑠𝑡𝑠_𝑛𝑢𝑚 = 0.1 * 𝐿𝑈𝑇𝑠_𝑏𝑖𝑡𝑠). This was an empiric
selection. For this reason, a retrospective analysis of obtained difference is performed to
decide whether this amount of verification runs is enough. Figure 3.7 shows the percentage
difference between the achieved final measurements (in which the 𝑇𝑒𝑠𝑡𝑠_𝑛𝑢𝑚 = 0.1 *
𝐿𝑈𝑇𝑠_𝑏𝑖𝑡𝑠) and measurements with a lower precision achieved by decreasing the number
of verification runs. The monitored parameter for this analysis is the ratio of runs with
an electronic failure. It is calculated by taking only a certain amount of first results (i.e.,
as if the number of runs was smaller). And the difference is then calculated in percentage
points. In this chart, the number of verification runs is related to the size of the design
(more precisely, its LUT contents, which were the target of SEU fault injection).

Figure 3.7: The retrospectively-calculated differences in the failure rate for smaller numbers
of verification runs.

As can be observed, starting from the ratio of 0.073 (i.e., 0.073 * 𝐿𝑈𝑇𝑠_𝑏𝑖𝑡𝑠), the
differences from all the retrospectively-calculated differences stay below the 0.01% and
remain at a level as the ratio rises to its final value of 0.1. Assuming the average converges
to the ideal value, the number of verification runs is sufficient to ensure that the differences
of results stay below the 0.01%.

Key Publications

(C) Majority Type and Redundancy Level Influences on Redundant Data Types Approach
for HLS, LOJDA Jakub, PODIVÍNSKÝ Jakub, KOTÁSEK Zdeněk, KRČMA Mar-
tin. In: 2018 16th Biennial Baltic Electronics Conference (BEC). Tallinn: IEEE
Computer Society, 2018, pp. 1-4. ISBN 978-1-5386-7312-6.

3.3.3 FT Evaluation: Accelerated Testbeds, FPGA Design Metrics

At this point, the speed of testing has become the limiting factor in continuing the research.
Moreover, for the automation method to be practically applicable, the testing needs to be
faster in orders of magnitude compared to using the previous approach. For this reason,

31

the work on a new testing approach was initiated, targeting explicitly accelerated and
automated measurement of reliability parameters on FPGAs. The main goal is to accelerate
the testing and allow (at least semi-)automated preparation of tests which will be part of
the proposed FT design automation approach. The design automation approach must
evaluate the suitability of the incorporated measures, and using as much information as
possible is essential in this process. This section provides additional details to the evaluation
framework, which was briefly mentioned in Section 3.2.2.

Research Steps

• Design and implement a new FT testing and measurement framework, which will be
suitable for automated testing of candidate designs. It will also significantly accelerate
the evaluation.

• Demonstrate its functionality; primarily focus on measuring the sensitive (i.e., critical)
bits ratio.

• Examine to what extent the bitstream coverage influence the resulting precision.

Fault Tolerance Estimation Framework For FT design automation to be practical
and usable, it is essential to evaluate the candidate solutions quickly. This is especially im-
portant to accelerate the FT system design process, as the evaluation requires non-negligible
periods of time. For this reason, the Fault Tolerance Estimation Toolkit (FT-EST) was de-
signed and implemented as a part of this thesis, which targets the testing of FPGA designs.
It bases on the automated generation of the so-called testbeds. The testbeds are generated
to incorporate several acceleration techniques to minimize the design evaluation and testing
time. Also, testbeds and the FT-EST design use a modular architecture, allowing for easy
extensibility and modifications of its components. A testbed comprises the testing core and
the tested designs (a.k.a. designs under tests).

The complete FT-EST comprises an HW design, executed on an FPGA, and an SW
part, which runs on a PC. Naturally, both parts must be connected, which is abstracted
in a separate communication module, easing to port the communication abilities among
FPGA manufacturers and their specific transfer protocols. The FT-EST incorporates sev-
eral acceleration techniques, including 1) Many instances of a tested design can be evaluated
simultaneously, multiplying the time efficiency. 2) Stimulation data are generated directly
on the FPGA, eliminating communication bottlenecks between the designs under tests and
the stimuli generator. 3) The output data are also examined on the FPGA itself for the
same reason as in point (2).

Besides the acceleration techniques, the FT-EST is also designed to minimize the config-
uration changes needed to adapt the FT-EST to a tested FPGA design. However, specific
parts of the FT-EST might be modified to fine-tune an experiment. For this reason, the
FT-EST is highly modular, and each module is strictly isolated from the rest of the system.
This allows altering the default setup rather straightforwardly.

The testing core is completely written in VHDL, utilizing the so-called VHDL generics
to describe dynamically-generated parts of the testing core. The complete overview of an
FPGA running the FT-EST testbed and the SW on a PC is shown in Figure 3.8. The
complete description of the FT-EST testbed (including its modules) and the SW part
running on a PC is shown in the original Paper D in Sections VI.C and VI.D.

32

IGU OCU

Unit Instantiation Area

eXperiment Control Unit

FSM

Communication
InterFace

Register
Array

CCU

G
o
ld

e
n

U
U

T
 1

U
U

T
 2

U
U

T
 3 ...

U
U

T
 n

Failure Capture
Unit C

tr 1
C

tr 2

C
tr n

...

Read/Write Register Operations

Communication Module
ICON VIO IP Cores

Instance of FT-EST Unit

FPGA

JTAG Programmer

Direct Fault Injection
Through JTAG Interface

USB Interface

JTAG Interface

PC

ChipScope Tcl Engine
Interface + iMPACT

FT-EST SW
Fault Inj.

Exp. Loop

Figure 3.8: Diagram of the FT-EST architecture; the parts highlighted in blue are dynami-
cally and entirely automatically generated; the parts highlighted in red can be modified by
the designer to specify the experiment setup.

First Automatically-Generated Testbeds As the first benchmarking circuits, simple
addition, subtraction, and CRC-8 algorithms are selected and implemented. For their im-
plementation, the C++ language is used in combination with the RDT approach, described
previously in this thesis. A thorough evaluation of such simpler designs allows to further
verify the RDT approach. An overview of the selected benchmarks is in Table 3.3. For
each benchmark, two versions are prepared: 1) the simplex implementation, which does
not incorporate any FT techniques (i.e., as the reference), and 2) the triplicated imple-
mentation utilizing the RDT on each variable. These designs are synthesized using the
Catapult C University Version (UV) 8.2b [51] and after adding the FT-EST core with the
Xilinx ISE 14.7 [80].

The triplication, however, leads to the primary outputs of the design also being trip-
licated. For this reason, a VHDL-implemented voter of a given width is always added to
unite the results. This voter is also subject to fault injections and size measurements, as
illustrated in Figure 3.9.

For each examination of the design under test, precisely one fault injection is performed
into occupied LUTs. This is accomplished until all the bits are tested. The input generation
is configured to cycle through all the possible combinations (i.e., using the counter) with a
step of 43. This step was selected purely empirically based on adequate time requirements

33

Table 3.3: An overview of the benchmarks selected for the purposes of evaluation.
Benchmark Inputs Outputs

Addition A: 16-bit unsigned int. 𝐴+𝐵: 16-bit unsigned int.
B: 16-bit unsigned int.

Subtraction A: 16-bit signed int. 𝐴−𝐵: 16-bit signed int.
B: 16-bit signed int.

CRC-8 A: 32-bit data 𝐶𝑅𝐶8(𝐴): 8-bit checksum

UUT
without FT

IGU OCU

Fault Injection
Area

UUT
with TMR

Fault Injection
Area

V
o
te

r

OCUIGU

(a) (b)

HLS-generated HLS-generated

Figure 3.9: The testing for (a) a simplex component and (b) the component triplicated
using RDTs.

and demands on the toggle rate of the primary input bits (i.e., specific numbers, when
added, do not change the bit values of least significant bits, rendering them untested).
The output comparison monitors each discrepancy, including time shifts in timing. The
experiment control tests each of the LUT-occupied bits, thus allowing us to obtain the
specific list of critical bits (i.e., without statistical approximation). The results are shown
in Table 3.4. The total number of injections and the number of injections that led to a
discrepancy in primary outputs are presented. From these, the percentage of critical bits is
calculated. The application of RDTs led to a lower rate of critical bits for each benchmark.
The reduction of critical bits is very dependent on the benchmarks. For example, for the
CRC-8, RDTs reduced the critical bit percentage from 34% to 13%. Very similar numbers
were obtained for the addition benchmark. However, for the subtraction, the number of
critical bits lowered from 4% to 3%. Nonetheless, the RDTs prove to lower the critical bit
percentage. Please note that the triplication using RDTs is not equivalent to the TMR,
as only the data path is triplicated alongside other specific components. This makes the
resource consumption sometimes smaller than three times the simplex version (as opposed
to the TMR).

SEU Coverage vs. Accuracy As cycling through all the occupied bits is very time-
consuming for larger designs, it should be statistically possible to test only a random portion
of them. This would supposedly lower the accuracy of the measurement; however, it also
significantly reduces the time needed to measure a design. This is why in the next exper-
iment, such an idea is tested. Only a random portion of targeted bits of the bitstream is
covered, while the achieved accuracy is monitored. The accuracy is calculated using the
exact values obtained from the previous full test (i.e., in which all the bits are tested). In
this experiment, the percentage of tested bits is lowered, and bits are selected uniformly at
random to obtain the implication on accuracy. The data is calculated based on 1000 runs

34

Table 3.4: The number of SEUs that caused an output mismatch.
Algorithm FT mechanism LUT bits Num. of inj. Num. of Sensitive

total [b] [-] disturbances [-] bits [%]

Addition none (simplex) 4288 b 4288 890 20.76 %
Addition TMR 8320 b 8320 225 2.70 %
Subtraction none (simplex) 4288 b 4288 178 4.15 %
Subtraction TMR 8320 b 8320 278 3.34 %
CRC-8 none (simplex) 4800 b 4800 1658 34.54 %
CRC-8 TMR 6592 b 6592 879 13.33 %

for each combination of coverage vs. design. Table 3.5 shows the deviation in the detected
percentage of critical bits (i.e., in percentage points).

Table 3.5: The deviation of the estimations for various SEU coverage settings (less is better).
SEU Deviation Range of the Estimation [% points]
cove- Addition Addition Subtraction Subtraction CRC-8 CRC-8
rage simplex TMR simplex TMR simplex TMR

60 % -1.63 – 1.63 -0.40 – 0.46 -0.89 – 0.70 -0.46 – 0.63 -1.94 – 1.71 -0.97 – 1.10
30 % -2.47 – 2.57 -0.78 – 0.98 -1.20 – 1.91 -1.10 – 0.91 -3.64 – 3.38 -2.46 – 1.99
10 % -5.36 – 6.06 -1.50 – 1.74 -2.52 – 2.61 -1.90 – 1.71 -6.21 – 6.29 -3.78 – 4.26
5 % -9.60 – 11.00 -1.98 – 2.58 -3.69 – 4.71 -2.62 – 3.15 -9.54 – 9.63 -5.14 – 5.78
1 % -16.10 – 16.60 -2.70 – 6.91 -4.15 – 12.20 -3.34 – 8.68 -19.96 – 21.70 -11.80 – 18.50

As observed, the accuracy of results estimated with the lower bit coverage is higher for
larger designs. However, this remains true only within one type of tested design. While
the accuracy keeps at a decent level, the time required is significantly lower. Please note
that if only 10% of bits is covered, then only 10% of time is necessary to perform the
measurement. This is important to keep the automated design at a decent level by allowing
the exploration of more candidate solutions and, thus, to find a possibly better solution
during the design.

Extended Methods of Data Analysis and Visualization The number of critical bits
is often used as the indicator of reliability. It is important to study different parameters,
such as critical bit chunk sizes, positions, etc. The number of erroneous transactions per
fault is also an essential factor. This motivated the research to extend further the analysis
of measurements obtained by the FT-EST framework.

The data obtained through the FT-EST are often three-dimensional (depending on the
measurement). For example, for each data stimulus (e.g., binary combination number, one
transaction, etc.) and each bit flip of the bitstream, the number of erroneous results (or
transactions) is measured. From this, the three dimensions can be identified: 1) stimuli
transactions (input number intervals, transaction types, operation types, etc.); 2) bits of
the bitstream to which the fault injection is performed; and 3) the type of erroneous outputs

35

(error types, number of erroneous outputs, number of mismatching bits, etc.). An extended
FT-EST data analysis method is presented in [45]. The author of this thesis developed this
as part of the FT design automation toolkit. However, it is not a part of this thesis to
maintain it less extensive.

Key Publications

(D) FT-EST Framework: Reliability Estimation for the Purposes of Fault-Tolerant Sys-
tem Design Automation, LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej,
PÁNEK Richard, KOTÁSEK Zdeněk. In: Proceedings of the 2018 21st Euromicro
Conference on Digital System Design. Praha: IEEE Computer Society, 2018, pp.
244-251.

3.3.4 FT Mechanism Selection Strategy: Multiple-Choice Knapsack
Problem

In this research stage, the automated insertion of FT mechanisms is accompanied by ac-
celerated measurement of reliability parameters. So far, FT techniques have been applied
to each part of the design based purely on the empirical decision. This is why it’s time to
find an algorithmic method to individually select the proper FT mechanisms for each part
of the design to maximize the FT achieved and minimize the size of the resulting design.
This is an essential part of the automation technique, based on the previously-confirmed
hypothesis that each part of the circuit reacts with a different improvement in reliability
with a given FT mechanism.

Research Steps

• Find and describe a deterministic method to assign the best FT technique to each
part of the design while satisfying a given constraint (e.g., design size).

• Perform theoretical calculations of the number of critical bits in a design with the
selected method.

• Implement this method into the FT design automation toolkit and perform measure-
ments of the number of critical bits in a design on a real HW to prove the concept.

• Compare this method to the previously used approach, in which the same FT tech-
nique was consistently applied to each part of the design.

Using Multiple-choice Knapsack Problem for FT Assignment Let’s find a method
for automated allocation of hardening type to particular components of a system. This must
be performed while one parameter is optimized (e.g., minimization of the number of critical
bits) and another constraint is considered (e.g., available chip area). It is undoubtedly
beneficial if a method has a well-documented formal base. At first sight, this problem is
very similar to the Knapsack Problem (KP) [49]. Let’s suppose we have a hypothetical
knapsack with a maximal load capacity. Also, let’s assume we have a set of items, each
with its profit and weight. We aim to select such items to maximize the sum of profits and
keep the sum of weights under the load capacity of the knapsack. Intuitively, one can see
that the items represent component variants of a system, and the weights are the sizes of
the components. Their profits then represent the benefit of hardening, and the total load

36

capacity of a knapsack is the available area on the chip. However, one can also see that
the KP does not correspond fully to the hardening allocation needed in this research. It
is because the items are in one set in the original KP definition. Thus the solution is not
constrained to select precisely one variant of each system component. A variant of the KP,
called Multiple-choice Knapsack Problem (MCKP) [33], however, exists, which addresses
precisely this issue. The MCKP divides the items into sets, and from each set, precisely
one item must be selected while still searching for the highest sum of profits and keeping
the sum of weights given by the load capacity as the constraint.

To define the MCKP precisely, 𝑚 sets (e.g., classes) of objects 𝑁1 . . . 𝑁𝑚 and a hypo-
thetical knapsack of capacity 𝑐 exist. For each object 𝑗 ∈ 𝑁𝑖, a parameter of weight 𝑤𝑖𝑗 and
profit 𝑝𝑖𝑗 is stated (𝑖 ∈ N, 𝑖 ≤ 𝑚). A solver aims to select precisely one item from each class
of objects 𝑁𝑖, 𝑖 = 1, . . . ,𝑚 while maximizing the sum of profits, subject to the load capacity
𝑐 of the hypothetical knapsack. The binary variable 𝑥𝑖𝑗 is introduced to define the MCKP
formally. The 𝑥𝑖𝑗 takes on value 1 if the 𝑗 is chosen in the class 𝑁𝑖 and 0 otherwise. The
MCKP is then formally defined as the maximization problem by Equation 3.1a, constrained
with Equations 3.1b, 3.1c and 3.1d [33].

maximize

𝑚∑︁

𝑖=1

∑︁

𝑗∈𝑁𝑖

𝑝𝑖𝑗𝑥𝑖𝑗 (3.1a)

subject to
𝑚∑︁

𝑖=1

∑︁

𝑗∈𝑁𝑖

𝑤𝑖𝑗𝑥𝑖𝑗 ≤ 𝑐, (3.1b)

∑︁

𝑗∈𝑁𝑖

𝑥𝑖𝑗 = 1, 𝑖 = 1, . . . ,𝑚, (3.1c)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖 = 1, . . . ,𝑚, 𝑗 ∈ 𝑁𝑖 (3.1d)

Then, the load capacity 𝑐 of the knapsack represents the available area; the item weight
𝑤𝑖𝑗 represents the size of variant 𝑗 of component 𝑖 (𝑗 ∈ 𝑁𝑖; 𝑁𝑖 is a set of variants of
component 𝑖); the item profit 𝑝𝑖𝑗 is the FT mechanism hardening gain. The sets of items 𝑁𝑖

consist of variants of a component (e.g., TMR, duplex, etc.), 𝑖 = 1 . . .𝑚, 𝑚 is the number of
components of the system. One minor implementation detail must be, however, considered.
For the critical bits optimization, minimization of a handicap is more straightforward than
maximizing the profit. This is because the handicap can be directly the number of critical
bits without any need to recalculate the values between flipped intervals. The graphical
representation of the MCKP used to solve the FT mechanism allocation is presented in
Figure 3.10.

Theoretical Calculations To demonstrate the MCKP method, its usage will be divided
into two stages. At first, FT systems will be automatically designed. However, the parame-
ters of these systems presented at the end of this stage are considered only theoretical (i.e.,
obtained by calculations). This is because the MCKP uses approximated parameters cal-
culated from preliminary measurements of individual system components. The parameters
of the resulting circuits are, thus, only an approximation and demonstrate data that the
MCKP uses internally to find the solution. The final parameters of the resulting systems
are obtained after accurate measurements, which are presented later in the next paragraphs
about the practical measurements.

37

Available
Size

(Capacity c)

x x_TMR

x_duplex

x_5MR

y y_TMR

y_duplex

y_5MR

z
z_TMR

z_duplex
z_5MR

Given
Structure

x

z

y

Select the Best Combination that Still Fits Into The Area

Variants of x (set N1)

Variants of z
(set N3)

Variants of y
(set N2)

FPGA

m = 3

Figure 3.10: Graphical representation of hardening allocation mapped to the MCKP.

We have the triple, quadruple and quintuple RDTs to manipulate descriptions in the
C++ language described and designed as a part of this thesis. The target of the following
case study is to demonstrate the usage of an MCKP solver to minimize critical bits number
while keeping the design under a given size constraint. A simple system utilizing serial
and parallel connections between its components is used as a benchmarking system for this
purpose. It performs an artificial task: it calculates the number of one bits in the sum of two
16-bit digits and one constant. It also produces a CRC-8 checksum from the intermediate
results. Each of the components is designed in the C++ language to allow the usage of
RDTs. The system diagram is shown in Figure 3.11.

addition addconst numones

crc8

16 b

16 b

16 b

16 b

16 b 5 b

8 b16 b

Figure 3.11: The benchmarking system used to demonstrate the usage of the MCKP solver
to minimize the number of critical bits.

To accelerate the automated design (further to the techniques already presented in the
previous parts of this thesis), this research shows the possibility of minimizing the number
of measurements needed during the design. This is done by measuring each component
exclusively (including all their hardened variants), which is later used to calculate the
parameter of the overall system completely in SW. This is significantly faster than repeated
measurement of a complete system each time a solver needs to evaluate a new candidate
solution. Thus, in the first phase, critical bits numbers and sizes for each component
(including its hardened variants) are measured on the target HW. And after that, the data
of these components are used to calculate the overall critical bit number and the size of the
resulting system configuration (i.e., according to a candidate hardening allocation during
the design). Data acquired for the calculations within the following case study are shown
in detail in the original Paper E, Table 1.

Such acquired data are subsequently used to calculate critical bits numbers and sizes of
emerging candidate systems by the MCKP solver during its operation. The operation of the
MCKP solver is then very fast, as no further measurements are required. A straightforward

38

MCKP solver, implemented for this purpose by the author1 is used, which performs these
calculations. The solver’s output is the estimated size, the estimated number of critical
bits, and the selection of component variants that meet the given area constraint. The
MCKP solver itself is implemented to always find the optimal solution in a deterministic
way. Nonetheless, the data the solver works with are approximated, which must be kept in
mind. The data obtained from the MCKP solver are visualized in the chart in Figure 3.12.

Figure 3.12: The calculated theoretical values (i.e., implementation size and the number of
critical bits on the y-axis) for the system configurations obtained from the MCKP solver
by changing the available chip area (i.e., max. area on the x-axis).

As seen in Figure 3.12, the x-axis shows the maximal size of the available area that the
MCKP solver was provided with. The yellow color also demonstrates this on the y-axis.
The height of the blue color reflects the size of the resulting (i.e., automatically designed)
system. The size of the system (i.e., blue) must always fit into the available area (i.e.,
yellow). As observed, the solver constantly changes the FT mechanisms allocation after the
available area is enough to provide a better allocation (i.e., allocation with fewer critical
bits). The two shades of blue distinguish between different FT mechanisms allocations,
which are described directly in the corresponding parts of the chart. The red part of the
system size on the y-axis demonstrates the representation of critical bits in the system. It
is desired to minimize this red area, which is paid for by adding more of the blue area.

At first sight, it is evident that the MCKP solver utilizes all the provided area. A critical
observation is that providing more space decreases the absolute number of critical bits. This
is a good indication that the MCKP solver is a promising strategy. Moreover, it can be
seen that the MCKP solver selects to harden only the crc8 and numones components, as
the other two components’ hardening does not bring us closer to the chosen goal of critical
bits minimization.

Practical Measurements After the examination of the theoretical output of the MCKP
solver, it is essential to test the actual results by synthesizing the proposed systems and
measuring the critical bits numbers on the target Virtex 5 platform. These are presented
in the chart in an identical form to the previous theoretical results in Figure 3.13.

1The MCKP solver needs to aggregate the resulting parameters of a current candidate system. Thus,
it was easier to implement a straightforward solver that approximates the target parameters on demand in
specific methods in its program, which allows the user to aggregate various types of metrics. It also allows
the user to set whether a parameter is maximized or minimized.

39

Figure 3.13: The values measured on the real target Virtex 5 platform (i.e., synthesized
implementation size and the measured number of critical bits on the y-axis) for the system
configurations obtained from the MCKP solver by changing the available chip area (i.e.,
max. area on the x-axis).

The first important outcome to notice is a significant difference in a system’s estimated
and final size. It is, however, important that the sizes remain in relation (i.e., a more ex-
tensive system in the theoretical calculation also remained larger after the measurement).
It is assumed that the synthesis, which is a black box for us, works differently for small
components and larger systems. Possibly because the more extensive system provides more
space for optimization; nonetheless, such a discrepancy could be calibrated by applying co-
efficients to the estimation. The measured numbers of critical bits of the resulting designs
also directly relate to the theoretically calculated results. Moreover, the measured repre-
sentations of critical bits are slightly smaller than the theoretically-calculated ones, which
is actually a positive outcome. Again, the precision of the estimation could be calibrated
by applying coefficients to the estimated data. It is essential to notice that the numbers of
critical bits fall (even in the absolute domain), although the system is becoming larger as
the FT mechanisms add more redundancy. Therefore we see that the added redundancy is
used efficiently to increase the FT of the system. This is important for the MCKP design
strategy to be considered correct.

Comparison to the Previous Approach So far, in this thesis, the hardening mecha-
nisms were selected purely empirically. This is why this MCKP solver approach is compared
to a naive approach, always utilizing the same hardening type per component. The com-
parison of approaches is evaluated on the previously-used benchmark, which was presented
in Figure 3.11. The comparison using this benchmark is in Figure 3.14.

The systems on the left side, which always had a constant hardening type per each
component (e.g., triple for each component, quadruple for each component, etc.), have
significant steps in their size among them. This might be a problem for applications where
a designer intends to utilize the available area fully. This is not the case for the systems
designed with the assistance of the MCKP solver (six FT designs were selected for this
comparison, see Figure 3.14 on the right), which increase their size in a very fine-grained
fashion. Moreover, the systems designed by the MCKP solver follow the trend of critical
bit minimization. This is not always true for the naive strategy used to create systems on

40

0

5000

10000

15000

20000

25000

30000

35000

co
m

p
o
se

d
_t

ri
p

le

co
m

p
o
se

d
_q

u
a
d

ru
p

le

co
m

p
o
se

d
_q

u
in

tu
p

le

co
m

p
o

se
d

_s
im

p
le

a
u
to

co
m

p
o
se

d
_1

a
u
to

co
m

p
o
se

d
_2

a
u
to

co
m

p
o
se

d
_4

a
u
to

co
m

p
o
se

d
_3

a
u
to

co
m

p
o
se

d
_5

a
u
to

co
m

p
o
se

d
_6

Redundancy Composition

b
it

s
o
f

th
e
 B

it
st

re
a
m

Implementation Size [b]
Critical bits [b]

Figure 3.14: Selected FT implementations of the benchmarking system from Figure 3.11
created by a naive approach (four FT designs on the left) and MCKP solver (six FT designs
on the right).

the left side of the chart. The results on the right side achieve equivalent or lower numbers
of critical bits, yet their overhead is smaller.

Key Publications

(E) Automatic Design of Reliable Systems Based on the Multiple-choice Knapsack Prob-
lem, LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, PÁNEK Richard,
KRČMA Martin, KOTÁSEK Zdeněk. In: Proceedings - 2020 23rd International
Symposium on Design and Diagnostics of Electronic Circuits and Systems, DDECS
2020. Novi Sad: Institute of Electrical and Electronics Engineers, 2020, pp. 1-4.
ISBN 978-1-7281-9938-2.

3.3.5 FT Mechanisms Insertion into the VHDL Source Code: Hardening
Methods

So far, this research has dealt with designs implemented using the C++ language in com-
bination with the HLS. At this point, it is possible to switch the design language by simply
replacing the part of the design method that modifies the design codes. In the following
demonstration, the VHDL is used. Modifying a design in a VHDL is more complicated
than the previously used C++ codes. It can be slightly simplified by using the so-called
VHDL generics and partly focusing only on the modified structures of the code. Also, the
first possibilities to incorporate the so-called repair mechanisms into the resulting designs
are examined during this research stage.

Research Steps

• Design and develop mechanisms to manipulate the source code in the VHDL language
in order to introduce FT mechanisms into the design description.

• Evaluate the functionality on a benchmark by focusing on the TTF and circuit size
parameters.

• Firstly, detect the diverging components suitable for recovery using the DPR tech-
nology.

41

• Secondly, find and exploit the possibility of utilizing the proposed design method
and toolkit to automatically incorporate self-reparation techniques into the detected
components of the resulting design.

Manipulating the VHDL Code To extend the FT design automation approach pre-
sented in this thesis with the ability to harden VHDL designs, the means to modify VHDL
code must be added. These must insert FT structures into the selected part of the code.
In the following approach, targeting entities (in the sense of the VHDL terminology) was
sufficient. Thus, these entities define partitions of the system, and the system is a cho-
sen top entity within the VHDL project. To specify the desired modification, special code
comments are written around the instantiation of an entity.

After the comments specifying particular FT mechanisms are placed in the VHDL source
code around the entities, an application written explicitly for this purpose is executed,
which modifies the corresponding code to realize the specified FT mechanism. Each time
a file in the project is automatically modified, a backup is created to allow revert. The
modifications are based on a set of templates, each template holding the structure of one
FT mechanism (e.g., TMR, the addition of a DPR controller, etc.). This template-based
design is intentional, as it easily incorporates new FT mechanisms and uses them in the
automated design process. The templates are supplemented by procedures that provide the
necessary information to fill the templates. These procedures search the complete VHDL
project directory and are implemented on a class-based approach. This allows the user to
easily extend them alongside the newly added templates (and potentially newly demanded
variables, which need to be filled in the template).

The code modification process always targets one VHDL file (i.e., top file for a given part
of a system). Multiple executions of the process are needed if multiple files are intended
to be modified. The process starts by dividing the original input VHDL file into the so-
called tokens, each containing a code snippet. These also include metadata, which can
be obtained during the tokenization process, such as identification (i.e., instantiation code
intended for modification, don’t care instantiation, remaining parts of code, etc.). After
that, the instances identified as intended for modification are processed. The corresponding
procedures are called, which correspond to the intended hardening type. These search for
entity declaration, signals, their direction, bit width (which must be enumerated for certain
cases), etc. The clock signal is also detected automatically based on its characteristics and
name. This is important for structures utilizing the clock signal for auxiliary components
(e.g., clocked TMR voter, DPR controller for component renewal, etc.). After all the
required variables are detected, the corresponding template is filled, and a new entity is
created, which contains the original entity and the added structure. This is called the out-
of-place modification, as it makes a new VHDL file containing the new entity. The newly
created entity is then referenced in the place of the original entity, which is called the in-
place modification. Also, the special comments are disabled to avoid chained application of
the same FT technique again – for such cases when the designer executes the modification
flow multiple times per one file. This complete modification flow is graphically illustrated
in Figure 3.15. It is important to note that this method of FT mechanism insertion is
compatible with the previously proposed strategy selection method (i.e., the MCKP-based
strategy, which will be used in the subsequent experimental demonstration) to form a fully
automated toolkit of the complete FT system design.

42

TM
R

TE
M

PL
5M

R
TE

M
PL

FT
 A

rc
hi

te
ct

ur
es

Te
m

pl
at

es
-- autoft inst begin make tmr
I1 : entity work.in1
-- autoft inst end

-- autoft inst begin make 5mr
I2 : entity work.in2
-- autoft inst end Tok

en
 List

 Extr
act

ion

Tok
en

 Clas
sifi

cat
ion

Tok
en

s M
erg

ing

Tem
pla

te
Cop

y -- autoft inst begin made tmr
I1 : entity work.in1_autoft_tmr
-- autoft inst end

-- autoft inst begin made 5mr
I2 : entity work.in2_autoft_5mr
-- autoft inst end

-- autogenerated
I1_1 : entity work.in1
I1_2 : entity work.in1
I1_3 : entity work.in1

O
ri

gi
na

l V
H

D
L

So
ur

ce
 F

ile

Modified VHDL File

Data
 Acqu

isi
tio

n an
d

Tem
pla

te
Fill

Out-of-place Modification

In-place Modification

Cod
e R

e-a
sse

mbly

Created VHDL File

Figure 3.15: The VHDL code modification flow based on the template system and proce-
dures to fill the templates.

First Experiments with VHDL Designs In this case study on the automated design
of the FT system described in the VHDL code, the objective is to maximize the median
of the TTF parameter. The median value of TTF is also called the t50 parameter. It can
also be viewed as the time of the mission, in which the probability that a system is still
correctly functioning is exactly 50% (i.e., no failure is observed on the primary outputs of
a system). In this case, where the TTF parameter is examined, a minor modification in the
measurement and fault injection setup is required. This involves the configuration of the
presented FT-EST toolkit by using the Linear Feedback Shift Register (LFSR) as an input
generator and a register-readable stopwatches in the place of the failure capture unit (one
per each instance of the tested unit). One TTF measurement is stopped after each of the
instances tested in the testbed is in a failure state (i.e., one or more failures were observed
on its primary outputs). After one measurement is stopped, the SW reads the time of the
first failure observation measured by the stopwatches, which is done per each instance of
the tested unit. The SW was set up to fault injection intensity of 2.0× 10−5 inj/s/bit.

The same benchmarking design is implemented in VHDL, which was previously used
to demonstrate the usage of the MCKP solver on system design. Its block diagram is in
Figure 3.11. During the preparation stage of the design (i.e., measurement of reliability
parameters of various versions of a given component), TTF was targeted. The TTF for
each component is presented in the original Paper F in Table 1 and Figure 4.

The parameters of candidate solutions are, again, calculated in the SW using the data
from the measurement of the components. In the case discussed in Section 3.3.4, it was a
simple task, as the number of critical bits was chosen as the only criterion. Now, there is
the t50. Thus, the t50 of a system must be calculated from individual t50 parameters of the
components used in the system. The t50 of the resulting system of dependent partitions is
approximated by equations used to calculate the MTTF. At first, the failure rate (i.e., 𝜆) is
expressed based on previously-presented Equation 2.2 (i.e., the approximation lies mainly
in fact, that the median TTF is used in the place of the mean TTF). After this is performed
for each used component from the set 𝐶𝑢𝑠𝑒𝑑, the individual failure rates are added, as shown
in Equation 2.1. Subsequently, the resulting sum of failure rates is approximated back to
the t50 using the already-utilized Equation 2.2.

This approximation technique was incorporated into the previously-described MCKP
solver to speed up the design space exploration. Three area constraints (i.e., bitstream

43

sizes) were tested with this approach: 20 000 bits, 25 000 bits, and 30 000 bits. Then, three
system configurations were obtained and again measured using the FT-EST to get their
accurate parameters. These parameters are presented in Table 3.6. The table also contains
the measurements for reference systems utilizing a static allocation approach (i.e., the same
hardening type per each component in a system).

Table 3.6: Automatically-designed FT systems (for benchmark in Figure 3.11, reimple-
mented in VHDL) using the VHDL code manipulators and the MCKP solver approach; the
results are compared to the reference manually-designed systems utilizing static allocation;
all the data are measured on Virtex 5 technology, and the measurements are performed
under the fault injection intensity of 2.0× 10−5 inj/s/bit.

System
Name

FT
Techniques Bitstream

Area [b]
t50

[ms]addition addconst crc8 numones
MCKP Approach

auto_20000 simplex simplex 5-MR simplex 18 624 43 198
auto_25000 simplex simplex 5-MR TMR 22 400 49 935
auto_30000 simplex simplex 5-MR 5-MR 25 856 49 675

Static Allocation
ref_simplex simplex simplex simplex simplex 9 152 23 559
ref_TMR TMR TMR TMR TMR 24 704 42 173
ref_5-MR 5-MR 5-MR 5-MR 5-MR 37 376 55 900

Table 3.6 shows that the MCKP solver targeted only the most failure-prone components
(i.e., the crc8 and the numones). The crc8 obtained the highest hardening all the time, as
it was the most failure-prone. Also, the resulting size is slightly smaller than the constraint
enforces. This is because the solver works with the approximation to speed up the design,
thus not continuously synthesizing the complete system per each possible configuration. It
uses the same approach as presented earlier in Section 3.3.4: the size is the sum of the
components sizes. This is, however, not always precise, as the synthesis performs specific
optimizations when the system is larger. The smallest automatically-designed system is
only 75.34% in size of the reference system utilizing TMR for each component. How-
ever, the smaller automatically-designed system achieves yet better t50 time. The second
automatically-created system is still circa 9% smaller, compared to the reference TMR, but
also its t50 is more than 7 s longer. The third automatically-designed system has the t50
nearly equivalent to the second system. It is, however, more extensive. This sub-optimal
configuration is caused by the imprecise approximation of the t50 parameters, leading the
MCKP solver to choose not-so-appropriate variants of components. The accumulation of
faults might also cause this. For a more extensive system, the area exposed to faults is
more significant, thus effectively worsening the problem of accumulation of faults, which
cannot be solved by redundancy only (but also component repair must be implemented).
This third system is, however, not completely bad compared to the reference system, as it
is more than 30% smaller than the reference manually-designed 5-MR system and its t50
is only 11% smaller.

Detection of Diverging Components The FT mechanisms based on increased redun-
dancy effectively increase resiliency against faults but only for shorter mission times. This

44

is because the faults are accumulating in the FPGA configuration bitstream, and logically,
after a certain number of faults, the redundancy ceases to be efficient for masking them.
For this reason, allowing the so-called renewal of the bitstream is interesting. This ap-
proach can repair faults and thus helps to eliminate their accumulation. To maintain the
system functioning, masking is still used, but the flipped bits in the bitstream are searched
and repaired to their previous state using DPR while the masking techniques (e.g., TMR)
perform their function.

The MCKP solver was also extended to provide information on which part of the system
should incorporate the recovery using DPR. This selection is based on the difference from
the average values of the optimized parameter (i.e., t50 in this case). Using the function
avg_param(S), the arithmetic average t50 for all components of a final FT system utilizing
allocated FT mechanisms is calculated, as shown in Equation 3.2. The S is a set of FT
system’s components c that already include selected FT mechanisms. Please note that the
card(S) denotes the cardinality of the set S (i.e., the number of elements in the set; for S it
is the number of components in the system). After that, the user must specify a difference
between the optimized parameter and its average. Using this difference, a significance is
determined, which results in a threshold, and all components crossing this threshold will be
selected to apply recovery mechanisms. The difference is a real number from the interval
of ⟨0; 1⟩, with 0 specifying all the components with their t50 below average for recovery
mechanisms. On the other hand, for example, the difference of 0.5 specifies only such
components to be suitable for recovery mechanisms whose t50 is under half of the average
t50 time. Equation 3.3 demonstrates how to calculate the significance (i.e., sig) from the
difference (i.e., diff). Equation 3.4 selects the proper comparison operator based on whether
the optimization parameter is minimized or maximized. The set R in Equation 3.5 then
contains the parts suitable for the recovery mechanism.

avg_param(𝑆) =
1

card(𝑆)
×

∑︁

∀𝑐∈𝑆
param(𝑐) (3.2)

sig =

{︃
1− 𝑑𝑖𝑓𝑓, if param is maximized,
1 + 𝑑𝑖𝑓𝑓, if param is minimized.

(3.3)

op =

{︃
<, if param is maximized,
>, if param is minimized.

(3.4)

𝑅 = { 𝑐 | 𝑐 ∈ 𝑆, param(𝑐) 𝑜𝑝 sig × avg_param(𝑆) } (3.5)

For the following case study, the difference is empirically set to 0.4 of the average.
Also, in our case study, we maximize the t50 parameter. This means that the significance
parameters will be 0.6, meaning that every partition that has its t50 worse than the 0.6 of
the average t50 for the current system composition is denoted as suitable for recovery using
DPR.

45

Incorporation of a DPR Controller to the Repair The recovery is performed by
adding a new auxiliary component – the reconfiguration controller. Multiple components
might be suitable for recovery. Thus, the reconfiguration controller is arranged only once
to the top module of the hardened system. The controller subsequently implements the
rewrite of chosen parts of the bitstream based on the previously described selection. It also
allows rewriting of the component on demand. This might minimize the system’s power
consumption if the components themselves can self-detect their failure, thus not requiring
permanently rewriting their partial bitstreams. This is usually the case of components
hardened using the n-MR techniques, as a specifically-extended variant of a voter can detect
redundant modules providing different results. The reconfiguration controller also connects
to the internal reconfiguration interface (i.e., ICAP for Xilinx FPGAs) and external storage
to save the bitstreams (e.g., a flash chip). As the research of the reconfiguration controller
itself is not part of this thesis, the description is very brief, and further details can be found
in [69] or publications of my colleague Richard Pánek [59, 58], who is also the co-author of
the publications in which this research was presented.

The DPR controller is responsible for rewriting the bitstream part of a failing component
module (e.g., module 1 of the TMR of component A). Two approaches to DPR repair are
compared: a) The reconfiguration controller is placed on the same FPGA, and thus, the
created system is fully implemented on one FPGA. The reconfiguration controller is then,
however, itself prone to failure. b) The reconfiguration controller is placed outside the
FPGA in a radiation-hardened shell to maintain its operational state. This second case is
simulated in our approach. It still uses the same reconfiguration controller on the FPGA.
However, it is omitted from the size calculations and fault injection, leaving it always
functional. These approaches are graphically demonstrated in the original Paper G in
Figure 6.

In the previous experiment (on the beginning of this Section 3.3.5), the automatically-
designed system that was constrained to the 30 000 bits achieved sub-optimal results. One
of the causes might be the accumulation of faults for a larger system, as a more extensive
system must withstand a higher number of faults (considering absolute numbers) because
a larger area is exposed to the manifestation. This 30 000 bit system is selected because it
demonstrates that the results can be further improved by providing new FT mechanisms
to the FT design automation method (such as component repair).

In Figure 3.16, the impact of various hardening schemes on TTF is demonstrated. The
first three boxes are from the previous experiment (the beginning of this Section 3.3.5) for
reference purposes. These are the systems utilizing static allocation of components. The
automatically-created 30 000 bit system is in the middle part of the chart. For this system,
components significantly deviating in the t50 are determined using Equations 3.2, 3.3, 3.4,
and 3.5. The one marked component is treated using reparation mechanisms in the third
part of Figure 3.16. This is done for (a) a system that self-contains the reconfiguration
controller applied to the one marked component (the crc8) and (b) a system in which
the marked component is repaired using an external always-functioning reconfiguration
controller. In both these cases, the 5-MR of the marked component crc8 was downgraded
to the TMR to save space while the reconfiguration controller repairs the individual modules
of this crc8 component.

As can be observed in Figure 3.16, although the 30 000 bit system without DPR has
nearly equivalent median TTF (i.e., t50) to the system with DPR controller on FPGA, it
has a stronger scatter towards higher values. This is a positive behavior, as the lower TTFs
remain nearly the same. It is important to note that the added DPR controller is also

46

subject to fault injection, and the design of the DPR controller itself does not incorporate
any FT mechanisms. Utilizing a reconfiguration controller outside the fault injection area
is much more efficient in improving MTTF. Also, the TTFs have many outliers towards
higher values, which is also a good message. However, it is essential to highlight that the
DPR repair was still targeted toward only one system component.

400 s

300 s

200 s

100 s

0 s

simplex TMR 5-MR auto_30000 Rec. on
Chip

Rec.
outside

Reference auto_30000
With Recovery

Generated
Without

Recovery

Ti
m

e
To

 F
ai

lu
re

 [s
]

Figure 3.16: TTF values of the system without DPR recovery, with DPR on a chip and
outside of the chip (i.e., outside of fault injection area), and reference measurements for the
static allocation of TMR and 5-MR to each component (all measured on Virtex 5).

Key Publications

(F) Automatic Design of Fault-Tolerant Systems for VHDL and SRAM-based FPGAs,
LOJDA Jakub, PÁNEK Richard, KOTÁSEK Zdeněk. In: Proceedings - 2021 24th
Euromicro Conference on Digital System Design, DSD 2021. Palermo: Institute of
Electrical and Electronics Engineers, 2021, pp. 549-552. ISBN 978-1-6654-2703-6.

(G) Automatically-Designed Fault-Tolerant Systems: Failed Partitions Recovery, LOJDA
Jakub, PÁNEK Richard, KOTÁSEK Zdeněk. In: 2021 IEEE East-West Design and
Test Symposium, EWDTS 2021 - Proceedings. Batumi: Institute of Electrical and
Electronics Engineers, 2021, pp. 26-33. ISBN 978-1-6654-4503-0.

3.3.6 FT Mechanism Selection Strategy: Multiple Objectives, Real Sys-
tem Case Study

In this research stage, the complete flow can be built using the presented components
to automate the design of FT systems. Two important aspects, however, must be yet
addressed to allow its usage in practice. The first is the possibility to optimize multiple
parameters, i.e., not only one reliability parameter and one constraint, as was the case for
the MCKP solver approach. Various parameters, such as reliability, design size, and power
consumption, must be considered in practice. Thus, the method must also support them.
The second aspect is that the method has been used only on an artificial benchmark design.

47

This time, an actual practical design must be used to evaluate the method, which will be
further utilized. And the complete FT design automation method and toolkit, as a result
of detailed experimentations, will be presented in one comprehensive article.

Research Steps

• Extend the method by supporting a multi-objective optimization.

• Present the complete design process in a case study on an actual practical design.

• Test and measure parameters of the automatically-designed system in a real scenario.

• Summarize the complete FT design automation method and its implementation in
the form of the toolkit.

Optimization on Multiple Criteria In practice, the design process must consider mul-
tiple criteria. It is evident that, for example, a space probe has a given power budget (al-
located by its solar panels and battery, etc.). Thus, the design process of systems for such
a space probe must consider the reliability and size of the resulting design and the power
consumption. Multi-objective design space exploration is thus required in the proposed FT
design automation method when a real-world problem is targeted.

For multi-objective optimization, finding only one (i.e., the best) solution is impos-
sible. This is because the objectives are usually conflicting. Hence, a set of so-called
non-dominated solutions is a typical result in the case of multi-objective optimization. A
trade-off must be selected among them. A well-known way to graphically display such a
set of non-dominated solutions is the so-called Pareto-frontier [23].

This research utilizes full design space exploration to perform multi-objective optimiza-
tion and determine an exact solution. Determining the reliability and other parameters of
each candidate solution is unrealistic, as it requires measuring each possible combination
of component variants in the system. However, after this method is combined with the ap-
proach allowing one to approximate the resulting parameters, the evaluations are requested
only in the preliminary stage. After that, all the design-space creation and exploration
are performed purely and very quickly in SW. For example, the MTTF can be approxi-
mated using the already-presented Equations 2.2 and 2.1; the power consumption can be
approximated as a sum of individual parts’ consumption, etc. Of course, some parameters
cannot be easily approximated (e.g., the maximal frequency of an FPGA design). For such
cases, the fastest way to obtain such a parameter has to be examined (e.g., executing the
synthesis process partly and extracting the frequency report from there). This approach to
full design-space exploration will be used in the following case study.

GPDRC as a Design from Practice Generic Partial Dynamic Reconfiguration Con-
troller (GPDRC) is an actual implementation of a reconfiguration controller, which was
previously used in this thesis to demonstrate components recovery. It was implemented
in our research group, and thus, the source codes of the GPDRC are available. At the
same time, the GPDRC is an unhardened component in a repaired system from previous
experiments (Section 3.3.5 and [59]), as none of the FT approaches was implemented into
its structure. This makes it an excellent candidate to demonstrate FT design automation
on it. The GPDRC is used in the following case study, which targets maximization of the
MTTF time while lowering the resulting system’s size and power consumption.

48

The GPDRC consists of 10 components, each of which has a specific function. The
names of the components are self-explanatory. Details of the GPDRC are out of the scope
of this thesis and can be found in [69], or more compactly in Paper H in Section 5.1. The
GPDRC connects to the ICAP interface of a Xilinx FPGA and to a flash memory chip,
in which particular components’ partial bitstreams are prepared. After the GPDRC is
instructed by the Module in Error signal (of a proper bit width according to the number
of modules), the GPDRC fetches the bitstream from the flash and reconfigures the affected
component of the system. The GPDRC must be pre-configured to contain the addresses of
bitstreams in the flash memory. The block diagram of the GPDRC is in Figure 3.17.

Input R
egister

R
ound R

obin

H
ard Error

Error D
ecoder

Address Lookup

Address Counter

Safety W
indow

FIFO

Flash Controller
Finite State Machine

(FSM)

M
odule in Error

(vector of flags)

Flash
Addr./Data/Control

Hard Error Det.Error Index

Synchroni-
zation

Start/End of
Reconfiguration

Control

ICAP

Figure 3.17: Block diagram of the GPDRC design (simplified) [69].

At first, the influences of hardening must be measured per individual components of
the GPDRC. It is, however, challenging to prepare stimuli generators per each component
of the system and correctly simulate the environment for each component. This research
solves this by keeping the system whole and performing multiple system measurements in
which only one component is always hardened. Each component is tested in its natural
environment, and the stimuli generator is implemented only once per the complete system,
as graphically demonstrated in Figure 3.18.

Thus, multiple systems (i.e., GPDRCs in our case study) are prepared, in which always
one component is hardened. In addition, the original (i.e., reference – simplex) system is
added. These systems are then called data-acquisition systems. Please keep in mind that
in the following text, the notation 𝑠𝑦𝑠_𝑎1𝑏1 represents the system in which the component
𝑎 is hardened by the FT mechanism 1 and the component 𝑏 is also hardened by the FT
mechanism 1, while the rest of the system components are without hardening (i.e., original –
simplex). Therefore, using this notation, the previously-mentioned data-acquisition systems
can be marked as 𝑠𝑦𝑠_𝑐𝑚, ∀𝑐 ∈ 𝐶, ∀𝑚 ∈ 𝑀 (where 𝐶 denotes the set of components, and 𝑀
denotes the set of available FT mechanisms). The data-acquisition systems are extended by
the mentioned one original reference simplex system 𝑠𝑦𝑠𝑠𝑖𝑚𝑝𝑙𝑒𝑥. The MTTF is measured for
each of these data-acquisition systems. After this data-acquisition stage of measurements

49

Co
m

po
ne

nt
 A

(s
im

pl
ex

)

Co
m

po
ne

nt
 B

(s
im

pl
ex

)

Co
m

po
ne

nt
 C

(s
im

pl
ex

)

Co
m

po
ne

nt
 D

(s
im

pl
ex

)

Reference simplex system

Co
m

po
ne

nt
 A

(T
M

R
)

Co
m

po
ne

nt
 B

(s
im

pl
ex

)

Co
m

po
ne

nt
 C

(s
im

pl
ex

)

Co
m

po
ne

nt
 D

(s
im

pl
ex

)

Data-Acquisition System 1

Co
m

po
ne

nt
 A

(s
im

pl
ex

)

Co
m

po
ne

nt
 B

(T
M

R
)

Co
m

po
ne

nt
 C

(s
im

pl
ex

)

Co
m

po
ne

nt
 D

(s
im

pl
ex

)

Data-Acquisition System 2

Co
m

po
ne

nt
 A

(s
im

pl
ex

)

Co
m

po
ne

nt
 B

(s
im

pl
ex

)

Co
m

po
ne

nt
 C

(T
M

R
)

Co
m

po
ne

nt
 D

(s
im

pl
ex

)

Data-Acquisition System 3

Co
m

po
ne

nt
 A

(s
im

pl
ex

)

Co
m

po
ne

nt
 B

(s
im

pl
ex

)

Co
m

po
ne

nt
 C

(s
im

pl
ex

)

Co
m

po
ne

nt
 D

(T
M

R
)

Data-Acquisition System 4

Fault Injection Area

Hardened Component

Figure 3.18: Illustration of the data acquisition for more complex systems by testing com-
ponents inside the complete system (overcoming thus the need to model stimuli generators
per each component).

is finished, it is possible to calculate the benefits of each particular modification. For
example, for MTTF, this can be performed in three steps based on well-known equations,
briefly described in the following text.

a) Particular failure rates of the data-acquisition systems, 𝜆𝑠𝑖𝑚𝑝𝑙𝑒𝑥 and 𝜆𝑠𝑦𝑠_𝑐𝑚 , ∀𝑐 ∈ 𝐶,
∀𝑚 ∈ 𝑀 , are calculated using Equation 2.2.

b) It is known, that 𝜆𝑠𝑦𝑠 of a system is a sum of 𝜆𝑐, ∀𝑐 ∈ 𝐶𝑠𝑦𝑠. This is formally
described in Equation 2.1. Using this equation, the differences 𝛿𝜆𝑐𝑚 can be calculated for
each FT mechanism and a system component. This 𝛿𝜆𝑐𝑚 then expresses the failure rate
difference after applying the FT mechanism 𝑚 ∈ 𝑀 to the component 𝑐 ∈ 𝐶.

c) After that, the 𝛿𝜆𝑐𝑚 values are used to calculate the system 𝜆𝑠𝑦𝑠 for systems in
which multiple components are hardened by various FT mechanisms (i.e., not only one, as
in the case of data-acquisition systems). The system failure rate calculation is performed by
adding the sum of differences corresponding to the hardened systems 𝛿𝜆𝑐𝑚 and the 𝜆𝑠𝑖𝑚𝑝𝑙𝑒𝑥.
After that, this failure rate is converted back to the MTTF using Equation 2.2.

In more detail, such a calculation is described in the original Paper H, Section 4.2,
alongside an overview of particular equations used in the analysis, including the error
analysis of the estimation. It is important to note that this approach significantly lowers the
number of measurements. Recall that a smaller number of systems is measured in advance,
and then the SW interpolates all the possible variants. For example, a 10-component
system in which each component can be hardened or unhardened (i.e., two states) would
involve 210 = 1024 evaluations. If the proposed approach is used, only 10 data-acquisition
systems are measured alongside the 1 reference (i.e., simplex) system. Measurement of the
original number of systems would require months or years. With this accelerated approach,
the measurement time is in the magnitude of weeks, thus, making the automated design
possible.

The measured data-acquisition systems are presented in the original Paper H in Ta-
ble 2. Using these data and the described interpolation process, the design space can be
constructed and explored on Pareto-optimal solutions. The entire design space with such
optimal solutions is also shown in the original Paper H in Figure 11. This figure reveals that
the solutions form clusters on the chart. The first combination of parameters (i.e., MTTF

50

vs. power consumption) has 22 Pareto-optimal solutions, which are small or medium in size
(as demonstrated by the color). The second combination (i.e., the MTTF vs. design size)
possesses 26 Pareto-optimal solutions. These solutions are relatively power-efficient. The
third pair (i.e., the power consumption vs. design size) has only 3 optimal solutions. This
is because the size and power consumption are slightly dependent. From these optimal
solutions, one solution was selected to analyze its properties further and test the design
with a real scenario. As the design space construction utilizes the approximated data, the
solution selected was again measured to validate the outcome.

Table 3.7: Configuration of the selected hardened GPDRC and its parameters.

GPDRC
Variant

Configuration of Components

Size
[bits]

MTTF
(Estimated)

[ms]

MTTF
(Measured)

[ms]

Power
Con-

sump.
[mW]

Frequency
[MHz]

in
pu

t_
re

gis
te

r

ro
un

dr
ob

in

er
rd

ec

ha
rd

er
r

sa
fet

yw

lo
ok

up
_e

nt

ad
rc

nt

fif
o_

en
t

fsm

fla
sh

_c
on

tro
lle

r

simplex sim. sim. sim. sim. sim. sim. sim. sim. sim. sim. 18 688 – 24 703 20.47 171.880
selected TMR TMR sim. TMR TMR sim. TMR sim. sim. sim. 33 984 28 934 29 021 25.38 130.016
CGTMR (ref.) The whole GPDRC in coarse-grained TMR 60 672 – 21 485 35.24 170.445

Table 3.7 shows that the difference between the measured and approximated MTTF
value is only 0.3%, which is very promising. Table 3.7 also lists the components on which
the TMR is applied to achieve higher MTTF times. Also, the simplex and CGTMR systems
are added for comparison. The frequency, as a representative of a non-optimized parameter,
shows that the selected system is circa 25% slower than the original simplex system. As
observed, the CGTMR keeps its speed, so the CGTMR approach does not prolong the
critical path.

Testing on a Real Scenario Finally, the hardened GPDRC is built and measured.
Although the measurement was performed on the target FPGA platform, it was estimated
in a faked environment created by the FT-EST stimuli generator. Thus, it is essential to
test the GPDRC in the natural environment. This means running the GPDRC alongside
another system, which the GPDRC will harden (i.e., using bitstream renew). For this
purpose, the benchmarks from the ITC’99 set [15] are used. Specifically, the b01, b05,
and b12 are used based on the available space on the FPGA. The b01 represents an FSM
that compares serial data flows, while the b05 is a circuit elaborating memory contents.
The b12 is a simple guess-a-sequence game. These benchmarks are hardened using the
TMR, and the GPDRC is used to renew their partial bitstreams. The block diagram of the
system, which will be measured on MTTF, is displayed in Figure 3.19. In this case, the
measurement is also performed by the FT-EST, but the renewed system is included this
time, which is equal to the actual scenario of the GPDRC usage.

The measurement of the actual scenarios is shown in Table 3.8. Each measurement
always includes the benchmark circuit in TMR repaired using a simplex version of the
GPDRC. Then, the same benchmark in TMR, but this time repaired using the GPDRC,
automatically hardened using the FT design automation method. Thus, the table allows
comparing the benefits of the hardened GPDRC design. The column MTTF (Testbed)
shows the actual value measured under the fault intensity of 2 × 10−5 inj/s/bit. The col-
umn MTTF (Orbit) presents the approximated MTTF on the orbital trajectory of the
planet Earth in the height of 555.6 km with a 2.5-inch shielding made of aluminum. This
approximation is calculated from the MTTF values measured using the testbed, based on
the information obtained from [27]. Also, the design size corresponds to the GPDRC hard-

51

Be
nc

hm
ar

ki
ng

D
es

ig
n

Co
py

 1

Be
nc

hm
ar

ki
ng

D
es

ig
n

Co
py

 2

Be
nc

hm
ar

ki
ng

D
es

ig
n

Co
py

 3

G
PD

RC

Faulty
Instance Number

System Primary Outputs

System Primary Inputs

Flas
h

IC
AP

Majority Voter

Stor
ag

e

Figure 3.19: Block diagram of the resulting system, which demonstrates the benefits of the
hardened GPDRC.

ening and the mean time between fault injections, which is based on the constant fault
intensity. The best improvement in MTTF was achieved when the hardened GPDRC is
used with the b12 benchmark. In this case, the MTTF increased by 11.7%, while the
design size overhead was 20.1%. Also, the GPDRC effectiveness depends on the target
benchmark that is repaired using the DPR. It is mainly its functionality but also its size,
which is reflected in the results.

Table 3.8: The measurements of the GPDRCs in their natural environment on Virtex 5
technology, alongside the selected benchmark circuits from the ITC’99 set [15].
Benchmark
Name

GPDRC
Version

Size
[bits]

Fault
Intensity

[inj/s/bit]

Mean Time
Between FIs

[ms]

MTTF
(Testbed)

[ms]

MTTF
(Orbit)

[days]

FIs to
Failure

[-]

Difference (simplex)
MTTF

[%]
Size
[%]

FIs to
Fail. [%]

b01 in TMR simplex 21 120 2× 10−5 2 367.4 371 477 17.69 157 – – –
selected 36 224 2× 10−5 1 380.3 388 085 18.48 271 +4.5 +71.5 +79,0

b05 in TMR simplex 61 248 2× 10−5 816.4 85 877 4.09 105 – – –
selected 75 776 2× 10−5 659.8 89 673 4.27 136 +4.4 +23.7 +29.5

b12 in TMR simplex 69 184 2× 10−5 722.7 158 613 7.55 219 – – –
selected 83 072 2× 10−5 601.9 177 149 8.44 294 +11.7 +20.1 +34.2

Next, the improvement in MTTF for future larger systems is presented. Unfortunately,
it is currently impossible to measure larger systems on the Virtex 5 FPGAs utilized in this
research, as space is the main limit factor. For this reason, the results in Table 3.9 are
an extrapolation of the percentage improvement. The extrapolation targets the percentage
improvement instead of the actual MTTF in seconds. This is to abstract from the need
to measure a system with the simplex GPDRC to calculate the actual MTTF in seconds.
Values for hypothetical systems of 100, 250 and 500 kbits are presented. The most important
assumption is that with a larger system, the GPDRC overhead (in percentage) decreases
as the MTTF grows further.

Key Publications

(H) Automated Design and Usage of the Fault-Tolerant Dynamic Partial Reconfigura-
tion Controller for FPGAs, LOJDA Jakub, PÁNEK Richard, SEKANINA Lukáš,
KOTÁSEK Zdeněk. In: Microelectronics Reliability, vol. 2023, no. 144, pp. 1-16.
ISSN 0026-2714.

52

Table 3.9: Extrapolation of the percentage improvement in MTTF for larger designs with
the simplex and hardened GPDRCs, based on the data previously measured on the Xilinx
Virtex 5 FPGA technology.

Hypothetical
Benchmark
Size [bits]

GPDRC
Version

Size with
GPDRC

[bits]

Diff. (simplex)
MTTF

[%]
Size
[%]

100 000 simplex 118 688 – –
selected 133 984 +13.9 +12.9

250 000 simplex 268 688 – –
selected 283 984 +29.1 +5.7

500 000 simplex 518 688 – –
selected 533 984 +54.4 +2.9

3.4 FT Design Automation Overview
This section provides a brief overview of the proposed method devoted to the automated
design of FT systems on FPGAs.

3.4.1 Design Flow

One of the goals of this research was to present an approach to FT design automation that
would be general enough to cover multiple design languages and, thus, various levels of
abstraction. This is why the design flow is currently proposed in two variants based on
the properties of the input (i.e., original) design. Both of these flows, however, use code
modification, FT mechanism selection strategy, and measurement.

It is also important to note that none of these flows use the evaluation of each candi-
date solution on the HW. In the flow representation, it could be said that the candidate
evaluation was partly migrated to the SW. This is important, as it minimizes the number
of measurements for larger systems, as the accurate FT measurement is still the most time-
consuming part of the design. Thus, the automated FT design method is also suitable for
larger systems.

Component-based Design Flow The first design flow targets designs that allow the
separation of its components. This is, for example, a VHDL design, for which each com-
ponent can be separated from the rest of the system without much effort and modification
to the design itself. Moreover, to use this flow, each component must be tested and mea-
sured on all decision parameters separately. This mainly involves preparing multiple stimuli
generators that authentically simulate each component’s environment. Also, it’s required
to measure its size and power consumption (when used as a decision parameter). If these
conditions are met, components are separated and measured individually after the available
hardening mechanisms are applied to them.

Subsequently, data obtained during this measurement are used to model and approx-
imate the individual candidate compositions of the resulting design. The approximated
data serves for the FT mechanism selection strategy, aiming to select one or more optimal
solutions. This approach comes from the finding (presented in Section 3.3.1) that to achieve
a (power-, area-, etc.) efficient FT system, each component of the system must be treated
using the hardening that suits the given component the most. The graphical representa-

53

tion of this design flow is shown in Figure 3.20. This flow corresponds to the one used in
Section 3.3.4.

Inputs of the Design Flow

Outputs of the Design Flow

YesCalculate
Improvements

of Each Compo-
nent Hardening

Data-acquisition Stage Exploration Stage

FT Incorpora-
tion

Selected Optimal
Configurations

Design Build Stage

Improvements
of Pairs (Component/

Hardening) D
ep

en
ds

 o
n

th
e

ch
os

en
 F

T
St

ra
te

gy

FT Incorpora-
tion

Harden the Comp-
lete Component

Data-acquistion
Systems

Measure
Each Component

Decompose the
System

Figure 3.20: Design flow of the component-based approach.

Overview of the Component-based Design Flow
Intended for: Designs that can be separated into individual

components

Advantages and Disadvantages
+ Saves time for measurements (per each component

and hardening, only a component itself is measured)
- More demanding on creation of accurate stimulation

data for components (which is manual work)

Compatibility with Presented Methods
FT Insertion: (From thesis-presented) VHDL; any other method

targeting a component-separable description method
FT Strategy: Single-objective; Multi-objective

Measurement Methods: Reliability (FT-EST for MTTF, t50, critical bits ratio);
power consumption and heat dissipation (external tool:
Xilinx XPower Analyzer [29]);
size (external tool: Xilinx ISE [80])

System-based Design Flow As opposed to the previous, the system-based flow targets
designs whose structure is not easily separated. For example, this might be a complex
design requiring much effort to construct the stimuli generators per each component. Or a
system without a properly structured design that is not easily separated into components.
Last but not least, this flow is also used with systems that utilize the algorithm-based

54

description (e.g., C++ code in combination with HLS), which does not allow for easily
separating the algorithms and functions into components.

This flow keeps the system as a whole. Each part of the system (component, algorithm
function, etc.; the appropriate granularity is left on the user) is hardened with each possible
FT mechanism. The critical fact is that only one selected part is always hardened within the
system. This way, the set of data-acquisition systems is prepared. These are measured, and
the data obtained during these measurements are used to calculate and subsequently model
the other candidate solutions, which already contain multiple parts treated with hardening.
The graphical flow of this approach is in Figure 3.21. This approach was practically used
in Section 3.3.6.

Inputs of the Design Flow

Outputs of the Design Flow

YesCalculate
Improvements

of Each Compo-
nent Hardening

Data-acquisition Stage Exploration Stage

FT Incorpora-
tion

Selected Optimal
Configurations

Design Build Stage

Improvements
of Pairs (Component/

Hardening) D
ep

en
ds

 o
n

th
e

ch
os

en
 F

T
St

ra
te

gy

FT Incorpora-
tion

Select Only
One Component

Select Only
One Component

Data-acquistion
Systems

Measure
Each System

Data-acquistion
Systems

Differences, compared to
the component-based flow

Figure 3.21: Design flow of the system-based approach.

Overview of the System-based Flow
Intended for: Designs that can not be separated into individual

components

Advantages and Disadvantages
+ Saves designer work (no need to analyze and design

stimuli generators per each component)
- More demanding on measurement time (a larger area

is always tested – per each component and hardening
pair, even the rest of the system is tested)

Compatibility with Presented Methods
FT Insertion: (From thesis-presented) C++, VHDL; any other method
FT Strategy: Single-objective; Multi-objective

55

Measurement Methods: Reliability (FT-EST for MTTF, t50, critical bits ratio);
power consumption and heat dissipation (external tool:
Xilinx XPower Analyzer [29]);
size (external tool: Xilinx ISE [80])

3.4.2 FT Mechanisms Insertion

To incorporate resiliency against faults, the design description code must be modified. This
can be performed manually, but such a manual modification of static structures is time-
consuming and increases the risk of incorporating design errors. For this reason, tools
to modify the source code in a given language are presented. This thesis presents the two
following code modifications, which must always be selected based on the language in which
the design is written. This does not rule out the possibility of using an external tool for
other language support.

C++ Code Modification The approach to the C++ code hardening presented in this
thesis is based on data type modifications. These allow the incorporation of FT mecha-
nisms into the C++ on the algorithm-level description. Such a modified algorithm is then
synthesized using the HLS flow, and the resulting design (usually on RTL) is obtained,
which can then be synthesized to the bitstream and uploaded to the FPGA.

The newly-created data types are provided in a library and are easily used by text-
replacing the previously used data types in the code. The user of this approach can then
precisely target the modifications toward a specific part of the code. This approach was
presented in Section 3.3.1.

Overview of FT Insertion into a Design Described in C++
Intended for: Insertion of redundant data paths into an HLS-generated

design

Advantages and Disadvantages
+ Straightforward usage (only data types are modified

in source code, after a special library is added)
- Targets only the data paths, the control path (if, while

constructs, etc.) remains unhardened

Compatibility with Presented Methods
FT Strategy: Single-objective; Multi-objective

Measurement Methods: Reliability (FT-EST for MTTF, t50, critical bits ratio);
power consumption and heat dissipation (external tool:
Xilinx XPower Analyzer [29]);
size (external tool: Xilinx ISE [80])

VHDL Code Modification This code modification targets the designs in VHDL, specif-
ically its entity instantiations. The modifications to the design are written in the form of
special comments around the entity instantiation, which is intended to be hardened. This
way, the hardening is targeted toward specific components. After running the tool, the

56

given entities’ names are changed to reference a newly created project file, which copies the
original entity while inserting the given FT mechanism (e.g., TMR).

The VHDL modification is based on a template system to allow a straightforward exten-
sion of FT mechanisms applicable to the design entities by adding templates and support
modification procedures (if needed). It was implemented in Python 3. The VHDL mod-
ification tries to abstract the context-sensitivity of the VHDL grammar to simplify the
implementation. More details about this approach can be found in Section 3.3.5.

Overview of FT Insertion into a Design Described in VHDL
Intended for: Insertion of redundant structures into VHDL source code

Advantages and Disadvantages
+ Straightforward usage (only comments are inserted into

the source code)
+ Straightforward addition of new approaches

(template-based system)
- Without further extension, it targets mostly spatial

redundancy approaches only

Compatibility with Presented Methods
FT Strategy: Single-objective; Multi-objective

Measurement Methods: Reliability (FT-EST for MTTF, t50, critical bits ratio);
power consumption and heat dissipation (external tool:
Xilinx XPower Analyzer [29]);
size (external tool: Xilinx ISE [80])

3.4.3 FT Mechanism Selection Strategy

The ability to modify a code is not enough to automate the FT design process. This is
because the user still has to decide which hardening mechanism to apply to which compo-
nent or part of a system. The strategies are algorithmic ways to solve this problem. This
thesis presented two approaches, which must be selected based on the number of optimized
parameters (e.g., design reliability, size, heat dissipation, etc.).

Single-objective optimization with Constraints In specific scenarios, the resulting
design is optimized on one parameter (e.g., reliability) and constrained on another param-
eter (e.g., available chip area). For such situations, this approach is preferred. It bases on
the Multiple-choice Knapsack Problem (MCKP), which has a well-known and documented
formal base usable to solve this problem. This method always provides one optimal solution.
Details were presented and discussed in Section 3.3.4.

Overview of the Single-objective Opt. Strategy

Intended for: Designs optimized on only one parameter (e.g., MTTF),
while another parameter is constrained (e.g., size)

Advantages and Disadvantages
+ The one optimal solution is found

57

- In practice, multiple parameters are optimized

Compatibility with Presented Methods
FT Insertion: (From thesis-presented) C++, VHDL; any other method

Measurement Methods: Reliability (FT-EST for MTTF, t50, critical bits ratio);
power consumption and heat dissipation (external tool:
Xilinx XPower Analyzer [29]);
size (external tool: Xilinx ISE [80])

Multi-objective Optimization This strategy approach targets cases in which multiple
parameters are optimized. In most cases, this approach will be used. This is because, in
practice, nearly always multiple objectives are considered (e.g., reliability, power consump-
tion, and size). This method utilizes a full design space search, which always targets optimal
solutions. It is also important to note that for multi-objective optimization, finding only
one (best) optimal solution is almost always impossible. Thus, a set of optimal solutions
is provided by this method, and the user is required to choose a trade-off solution. The
provided solutions are Pareto-optimal, and the user selects the best solution based on their
preferences. This approach was used in Section 3.3.6.

Overview of the Multi-objective Opt. Strategy

Intended for: Designs optimized on multiple parameters
(e.g., MTTF, size and power consumption)

Advantages and Disadvantages
+ Most usable for practice
- Multiple optimal solutions are found, from which the user

must select (given by the fundamental limits
of multi-objective optimization)

Compatibility with Presented Methods
FT Insertion: (From thesis-presented) C++, VHDL; any other method

Measurement Methods: Reliability (FT-EST for MTTF, t50, critical bits ratio);
power consumption and heat dissipation (external tool:
Xilinx XPower Analyzer [29]);
size (external tool: Xilinx ISE [80])

3.4.4 FT Evaluation

Last but not least, the FT level must be measured, which is the most time-consuming part
of the complete flow. For this reason, this thesis proposed an automated testbed generator,
which accepts a design and provides a fully-functional autonomous testbed, runnable on
a target FPGA. Such a testbed is then controlled from a PC, and the measurements are
collected and stored on a PC hard drive. On these measurements, statistical methods are
applied to get relevant results.

To this moment, the measurement of critical bits number, sensitive bits ratio, MTTF,
and the number of erroneous results per bitstream bit flip was measured using this approach.

58

A change of measured parameter is always straightforward, as the complete generic testbed
is written in VHDL with a rich module structure, as was presented in Section 3.3.3.

Overview of the FT Evaluation Method
Intended for: Automated generation of accelerated and autonomous

testbeds for FPGAs

Advantages and Disadvantages
+ Saves time with preparation of measurements
+ Heavily accelerated (multiple instances at once,

at-speed testing, etc.)
- For each design, a suitable stimuli generator must

be prepared manually

Compatibility with Presented Methods
FT Insertion: (From thesis-presented) C++, VHDL; any other method
FT Strategy: Single-objective; Multi-objective

3.5 Publications
During the research on the topic of this thesis, numerous publications were presented,
which were (co-)authored by the author of this thesis. The following section presents the
summary of these publications closely related to the thesis. Subsequently, other publications
still associated with this thesis’s topic, whose results are not directly used in this thesis,
are listed.

3.5.1 Selected Publications Summary

The research presented in this thesis is based on the following selected publications.

Paper A

LOJDA Jakub, PODIVÍNSKÝ Jakub, KOTÁSEK Zdeněk and KRČMA Martin. Data
Types and Operations Modifications: a Practical Approach to Fault Tolerance
in HLS. In: Proceedings of IEEE East-West Design & Test Symposium. Novi Sad: IEEE
Computer Society, 2017, pp. 273-278. ISBN 978-1-5386-3299-4.

Abstract: Some types of electronic systems are working in the environment with an in-
creased occurrence of faults such as space, aerospace or medical systems. Faults in these
systems can lead to the failure of the whole system and can cause high economical losses
or endanger human health. Fault tolerance is one of the techniques, the goal of which is to
avoid such situations. This paper presents an approach to fault-tolerant data-paths design
that is based on the modification of High-level Synthesis (HLS) input specification. The
description and evaluation of the impacts of some HLS optimization methods are demon-
strated in the paper as well. Higher reliability is achieved through the modification of input
description in the C++ programming language, which the HLS synthesis tools are based
on. Our work targets SRAM-based FPGAs that are prone to Single Event Upsets (SEUs).
For the evaluation of the proposed method we use our evaluation platform, which allows

59

us to analyze fault tolerance properties of the Design Under Test (DUT). The evaluation
platform is based on functional verification in combination with fault injection.

Author Participation: 52%

Citations: 2

Conference Rank: unknown

Paper B

LOJDA Jakub, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Redundant Data Types
and Operations in HLS and their Use for a Robot Controller Unit Fault Toler-
ance Evaluation. In: Proceedings of IEEE East-West Design & Test Symposium. Novi
Sad: IEEE Computer Society, 2017, pp. 359-364. ISBN 978-1-5386-3299-4.

Abstract: Some environments (e.g. space, aerospace or medical systems) require electronic
systems to withstand an increased occurrence of faults. Moreover, the failure of these
electronic systems can cause high economical losses or endanger human health. Fault
tolerance is one of the techniques, the goal of which is to avoid such situations. This paper
presents an approach to evaluate the degree of importance of individual system partitions
when High-Level Synthesis (HLS) methodology is used. The importance of individual
partitions was evaluated by the usage of our approach to fault-tolerant data-paths design
which is based on the HLS input specification modification. The partitions are formed by
sets of variables and operations. A brief description of the approach to fault tolerance in HLS
is shown in the paper as well. Our experiments are evaluated using an SRAM-based FPGA
evaluation platform which allows us to analyze fault tolerance properties of the Design
Under Test (DUT). In the evaluation platform, functional verification in combination with
fault injection is utilized.

Author Participation: 57%

Citations: 0

Conference Rank: unknown

Paper C

LOJDA Jakub, PODIVÍNSKÝ Jakub, KOTÁSEK Zdeněk and KRČMA Martin. Majority
Type and Redundancy Level Influences on Redundant Data Types Approach
for HLS. In: 2018 16th Biennial Baltic Electronics Conference (BEC). Tallinn: IEEE
Computer Society, 2018, pp. 1-4. ISBN 978-1-5386-7312-6.

Abstract: Due to the increasing demand for reliable computation in environments that re-
quire electronic systems to withstand an increased occurrence of faults (e.g. space, aerospace
and medicine), new techniques of the so-called Fault Tolerance insertion arise. From another
perspective, today’s systems have become incredibly large and complex. New methodologies
(e.g. High-Level Synthesis) are used to reduce time to market and simplify the verification
of the resulting system. In our research we focus on an implementation of Fault Toler-
ance into complex systems with the usage of High-Level Synthesis. In our approach, we

60

are using newly designed Data Types that introduce redundancy on the functional level
of an algorithm. In this student paper, our previously presented technique is extended by
another means of redundancy and also by a new type of voting component. The systems
incorporating various levels of redundancies using our approach are experimentally tested
on the application of a robot controller. The paper also briefly presents the evaluation
process and investigates its correct settings. The results show that the bit-based majority
function is more suitable for usage with our Redundant Data Types.

Author Participation: 45%

Citations: 0

Conference Rank: unknown

Paper D

LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, PÁNEK Richard and KOTÁSEK
Zdeněk. FT-EST Framework: Reliability Estimation for the Purposes of Fault-
Tolerant System Design Automation. In: Proceedings of the 2018 21st Euromicro
Conference on Digital System Design. Praha: IEEE Computer Society, 2018, pp. 244-251.
ISBN 978-1-5386-7376-8.

Abstract: The complexity of today’s systems is growing along with the level of chip
integration. This results in higher demand for reliability techniques; it also increases the
difficulty of incorporating reliability in such systems. For this purpose, we are working on a
method to automate reliability insertion; however, for this method, it is necessary to have
feedback on the result. In this paper, one component of the automation flow enabling the
estimation of the resulting reliability - Fault Tolerance ESTimation (FT-EST) framework
- is presented along with an improvement for accelerating the time necessary to reach
the estimation. For the purpose of evaluation, we are using our Redundant Data Types
approach, which enables us to intentionally insert reliability in a particular operation. The
estimation utilizes the concept of fault injection. The results indicate, that the concept of
Redundant Data Types is functional, however, also suggest its future improvements (e.g.
for the operation of subtraction).

Author Participation: 35%

Citations: 0

Conference Rank: B1 (Qualis)

Paper E

LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, PÁNEK Richard, KRČMA Mar-
tin and KOTÁSEK Zdeněk. Automatic Design of Reliable Systems Based on the
Multiple-choice Knapsack Problem. In: Proceedings - 2020 23rd International Sym-
posium on Design and Diagnostics of Electronic Circuits and Systems, DDECS 2020. Novi
Sad: Institute of Electrical and Electronics Engineers, 2020, pp. 1-4. ISBN 978-1-7281-
9938-2.

61

Abstract: This paper evaluates the practical usage of the Multiple-choice Knapsack Prob-
lem (MCKP) solver to automatically select the proper fault mitigation method for each
component to maximize the overall fault tolerance of the whole system. The usage of the
MCKP is placed into the context with our fault tolerance automation toolkit, the goal
of which is to completely automate the process of fault-tolerant system design on a very
general level. To achieve our goal, we present our research on Field Programmable Gate
Arrays (FPGAs) for which we have developed the specific components in order to support
their fault-tolerant design automation. In our particular case study, the MCKP method
on the partitioned system was able to find the solution with 18% less critical bits com-
pared to our previous approach, while even lowering the circuit size. The results indicate
that by splitting the system into smaller components and applying the MCKP method,
considerably better results in terms of critical bits representation can be achieved.

Author Participation: 40%

Citations: 1

Conference Rank: B3 (Qualis)

Paper F

LOJDA Jakub, PÁNEK Richard and KOTÁSEK Zdeněk. Automatic Design of Fault-
Tolerant Systems for VHDL and SRAM-based FPGAs. In: Proceedings - 2021
24th Euromicro Conference on Digital System Design, DSD 2021. Palermo: Institute of
Electrical and Electronics Engineers, 2021, pp. 549-552. ISBN 978-1-6654-2703-6.

Abstract: This paper presents and evaluates the possibility of automatic design of fault-
tolerant systems from unhardened systems. We present an overview of our toolkit with
its three main components: 1) fault-tolerant structures insertion (which we call helpers);
2) fault-tolerant structures selection (called guiders); and 3) automatic testbed genera-
tion, incorporating advanced acceleration techniques to accelerate the test and evaluation.
Our approach is targeting complete independence on the HW description language and
its abstraction level, however, for our case study, we focus on VHDL in combination with
fine-grained n-modular redundancy. In the case study part of this paper, we proved that
it is undoubtedly beneficial to select a proper fault tolerance method for each partition
separately. Three experimental systems were developed with the usage of our method.
Two of them achieved better reliability parameter while even lowering their chip area, com-
pared to static allocation of equivalent fault tolerance technique type. In the case study,
we target the best median time to failure, the so-called t50, however, our method is not
dependent on this parameter and arbitrary optimization target can be selected, as soon as
it is measurable.

Author Participation: 60%

Citations: 0

Conference Rank: B1 (Qualis)

62

Paper G

LOJDA Jakub, PÁNEK Richard and KOTÁSEK Zdeněk. Automatically-Designed
Fault-Tolerant Systems: Failed Partitions Recovery. In: 2021 IEEE East-West
Design and Test Symposium, EWDTS 2021 - Proceedings. Batumi: Institute of Electrical
and Electronics Engineers, 2021, pp. 26-33. ISBN 978-1-6654-4503-0.

Abstract: This paper presents and describes our design automation toolkit for automatic
synthesis of fault tolerant systems from unhardened systems. The toolkit is composed of
various parts and tools and its aim is to design its internal algorithms in such way to be
reusable among different HW description languages. In this paper, VHDL description is
used to present the possibilities of the toolkit. The experimental part of the paper presents
automatic synthesis of a benchmark system into a limited chip area. The optimization
goal was to maximize the median time to failure (a.k.a. t50) parameter. The main part
of the experimental activities comprises incorporation of a partial dynamic reconfiguration
controller into the system design to recover the selected component of the system. Two
systems utilizing recovery with the usage of the FPGA dynamic reconfiguration technique
show promising results in terms of reliability. The recovered system, in which the controller
is apart of the FPGA (e.g. in a different radiation-hardened chip), achieves by 70% better
t50 parameter, compared to the system without recovery.

Author Participation: 60%

Citations: 1

Conference Rank: unknown

Paper H

LOJDA Jakub, PÁNEK Richard, SEKANINA Lukáš and KOTÁSEK Zdeněk. Automated
Design and Usage of the Fault-Tolerant Dynamic Partial Reconfiguration Con-
troller for FPGAs. Microelectronics Reliability, vol. 2023, no. 144, pp. 1-16. ISSN
0026-2714.

Abstract: This article presents a new design automation method for Fault-Tolerant (FT)
systems implemented on dynamically reconfigurable Field Programmable Gate Arrays (FP-
GAs). The method aims at minimizing the human interactions needed to incorporate FT
mechanisms into an existing system. It starts with a source code of an original unhardened
circuit. It continues by automated manipulation of the source code, algorithmic strategic
selection of suitable FT techniques, design space exploration of candidate FT implemen-
tations, and selection of the resulting implementation. The method also includes efficient
evaluation of achieved FT parameters performed on the target HW. As a novel approach
working on the level of HW description languages is employed, the code modification is sep-
arated, which differentiates our method from others. The case study utilizing this method
targets the design of an experimental FT dynamic partial reconfiguration controller for
an FPGA. This controller is helpful for the restoration of faulty components due to a
single-event upset on an FPGA. We used the method to generate a set of Pareto-optimal
controllers concerning the design’s Mean Time to Failure (MTTF) parameter, power con-
sumption, and size. Then, the FT controller is connected to several benchmark circuits,
and the reliability parameters are evaluated at the entire system level. Our results show

63

that by replacing the standard reconfigurable controller with our automatically-designed
FT controller for one specific benchmark, the design size increased by 20.1%, and MTTF
increased by 11.7%. However, the efficiency is highly dependent on the target system size,
MTTF, and circuit functionality. We also estimate that a complex system defined by half
a million configuration bits would improve MTTF by more than 50%.

Author Participation: 45%

Citations: 0

Impact Factor: 1.418

3.5.2 Author’s Contributions to The Selected Publications

All the selected publications were created in the Dependable Systems Research Group at the
Department of Computer Systems, the Faculty of Information Technology, Brno University
of Technology. Although the publications were made in cooperation with colleagues, the
author added the main contribution to these selected publications, which is also the main
contribution to this thesis. The following list names the main contributions per each of the
selected publications.

• Paper A – design and implementation of fault tolerance insertion methods and prin-
ciples of their connections for designs written in C++; preparation and performing
the experiments; evaluation of measured data; writing most of the paper.

• Paper B – design, implementation and performing the experiments; evaluation of
measured data; writing most of the paper.

• Paper C – implementation of additional fault tolerance mechanisms for the insertion;
preparation and performing the experiments; evaluation of measured data incl. their
accuracy; design of fault injection unit, which considers the size of the design under
test; writing most of the paper.

• Paper D – design and implementation of the framework for automated creation
of testbeds; preparation of benchmarking circuits; preparation and performing the
experiments; evaluation of measured data; writing most of the paper.

• Paper E – the transformation of the fault tolerance allocation problem to the
multiple-choice knapsack problem; implementation of a simple solver; preparation
and performing the experiments on benchmark circuits; evaluation of measured data
and improvements in critical bits representation; writing most of the paper.

• Paper F – design and implementation of new fault tolerance insertion methods for
designs described in VHDL; preparation and performing the experiments; evaluation
of measured data; writing most of the paper.

• Paper G – preparation and performing the experiments; evaluation of measured
data; writing most of the paper.

• Paper H – summary of the research; incorporation of the power consumption esti-
mation into the method; implementation of the multi-criteria optimization; design of
the concepts of the experimental case study; case study data measurement; writing
most of the paper.

64

3.5.3 Other Topic-Related Publications

The following list contains the rest of the author’s publications. These are thematically
related to the thesis topic. The contributions in them are, however, not fundamental to the
thesis. However, the experiences gained in work on these publications were significant to
progress on the main thesis topic.

2023

• PÁNEK Richard and LOJDA Jakub. The Fault-tolerant Single-FPGA Systems
with a Self-repair Reconfiguration Controller. In: 2023 IEEE 14th Latin Amer-
ica Symposium on Circuits and Systems (LASCAS). Quito: Institute of Electrical and
Electronics Engineers, 2023, pp. 104-107. ISBN 978-1-6654-5705-7.

2021

• LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej and KOTÁSEK Zdeněk. Ac-
celerating Tests of Arithmetic Circuits Through On-FPGA Stimuli Gen-
eration and Their Reduction. In: International Conference on Electrical, Com-
puter, Communications and Mechatronics Engineering, ICECCME 2021. Mauritius:
Institute of Electrical and Electronics Engineers, 2021, pp. 1628-1633. ISBN 978-1-
6654-1262-9.

• PÁNEK Richard, LOJDA Jakub, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Re-
liability Analysis of the FPGA Control System with Reconfiguration Hard-
ening. In: Proceedings - 2021 24th Euromicro Conference on Digital System Design,
DSD 2021. Palermo: Institute of Electrical and Electronics Engineers, 2021, pp.
553-556. ISBN 978-1-6654-2703-6.

• LOJDA Jakub, PÁNEK Richard, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Testing Embedded Software Through Fault
Injection: Case Study on Smart Lock. In: 2021 IEEE 22nd Latin American
Test Symposium, LATS 2021. Punta del Este: Institute of Electrical and Electronics
Engineers, 2021, pp. 80-85. ISBN 978-1-6654-2057-0.

2020

• LOJDA Jakub, PÁNEK Richard, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Analysis of Software-Implemented Fault Tol-
erance: Case Study on Smart Lock. In: 2020 IEEE East-West Design and Test
Symposium, EWDTS 2020 - Proceedings. Varna: Institute of Electrical and Electron-
ics Engineers, 2020, pp. 24-28. ISBN 978-1-7281-9899-6.

• PODIVÍNSKÝ Jakub, LOJDA Jakub, PÁNEK Richard, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Evaluation Platform For Testing Fault Tol-
erance: Testing Reliability of Smart Electronic Locks. In: 2020 IEEE 11th
Latin American Symposium on Circuits & Systems (LASCAS). San José: IEEE Cir-
cuits and Systems Society, 2020, pp. 1-4. ISBN 978-1-7281-3427-7.

• LOJDA Jakub, PÁNEK Richard, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Hardening of Smart Electronic Lock Software

65

against Random and Deliberate Faults. In: Proceedings - Euromicro Conference
on Digital System Design, DSD 2020. Kranj: Institute of Electrical and Electronics
Engineers, 2020, pp. 680-683. ISBN 978-1-7281-9535-3.

• PÁNEK Richard, LOJDA Jakub, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Re-
liability Analysis of Reconfiguration Controller for FPGA-Based Fault Tol-
erant Systems: Case Study. In: 2020 International Symposium on VLSI Design,
Automation, and Test (VLSI-DAT) : proceedings of technical papers. Hsinchu: IEEE
Computer Society, 2020, pp. 121-124. ISBN 978-1-7281-6083-2.

2019

• KRČMA Martin, KOTÁSEK Zdeněk and LOJDA Jakub. Detecting hard
synapses faults in artificial neural networks. In: 20th IEEE Latin American
Test Symposium (LATS 2019). Santiago de Chile: IEEE Computer Society, 2019, pp.
1-6. ISBN 978-1-7281-1756-0.

• PODIVÍNSKÝ Jakub, LOJDA Jakub and KOTÁSEK Zdeněk. Extended Relia-
bility Analysis of Fault-Tolerant FPGA-based Robot Controller. In: 20th
IEEE Latin American Test Symposium (LATS 2019). Santiago: IEEE Computer
Society, 2019, pp. 97-100. ISBN 978-1-7281-1756-0.

• LOJDA Jakub, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Reliability Indica-
tors for Automatic Design and Analysis of Fault-Tolerant FPGA Systems.
In: 20th IEEE Latin American Test Symposium (LATS 2019). Santiago: IEEE Com-
puter Society, 2019, pp. 93-96. ISBN 978-1-7281-1756-0.

• ČEKAN Ondřej, PODIVÍNSKÝ Jakub, LOJDA Jakub, PÁNEK Richard, KRČMA
Martin and KOTÁSEK Zdeněk. Smart Electronic Locks and Their Reliability.
In: Proceedings of the 7th Prague Embedded Systems Workshop. Roztoky u Prahy:
Czech Technical University, 2019, pp. 4-5. ISBN 978-80-01-06607-2.

• ČEKAN Ondřej, PODIVÍNSKÝ Jakub, LOJDA Jakub, PÁNEK Richard, KRČMA
Martin and KOTÁSEK Zdeněk. Testing Reliability of Smart Electronic Locks:
Analysis and the First Steps Towards. In: Proceedings of the 2019 22nd Eu-
romicro Conference on Digital System Design. Kalithea: Institute of Electrical and
Electronics Engineers, 2019, pp. 506-513. ISBN 978-1-7281-2861-0.

2018

• PODIVÍNSKÝ Jakub, LOJDA Jakub and KOTÁSEK Zdeněk. An Experimental
Evaluation of Fault-Tolerant FPGA-based Robot Controller. In: Proceedings
of IEEE East-West Design & Test Symposium. Kazan: IEEE Computer Society, 2018,
pp. 63-69. ISBN 978-1-5386-5710-2.

• LOJDA Jakub and KOTÁSEK Zdeněk. Automatizace návrhu spolehlivých sys-
témů a její dílčí komponenty. In: Počítačové architektury & diagnostika 2018.
Stachy: University of West Bohemia in Pilsen, 2018, pp. 5-8. ISBN 978-80-261-0814-
6.

66

• PODIVÍNSKÝ Jakub, LOJDA Jakub, ČEKAN Ondřej and KOTÁSEK Zdeněk.
Evaluation Platform for Testing Fault Tolerance Properties: Soft-core
Processor-based Experimental Robot Controller. In: Proceedings of the 2018
21st Euromicro Conference on Digital System Design. Praha: IEEE Computer Soci-
ety, 2018, pp. 229-236. ISBN 978-1-5386-7376-8.

• LOJDA Jakub and KOTÁSEK Zdeněk. Fault Tolerance in HLS for the Pur-
poses of Reliable System Design Automation. In: Proceedings of the 6th Prague
Embedded Systems Workshop. Roztoky u Prahy: Faculty of Information Technology,
Czech Technical University, 2018, pp. 31-32. ISBN 978-80-01-06456-6.

• LOJDA Jakub, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Fault Tolerance
Properties of Systems Generated with the Use of High-Level Synthesis. In:
Proceedings of IEEE East-West Design & Test Symposium. Kazan: IEEE Computer
Society, 2018, pp. 80-86. ISBN 978-1-5386-5710-2.

• PODIVÍNSKÝ Jakub, LOJDA Jakub and KOTÁSEK Zdeněk. FPGA-based
Robot Controller: An Experimental Evaluation of Fault Tolerance Prop-
erties. In: INFORMAL PROCEEDINGS 21st IEEE International Symposium on
Design and Diagnostics of Electronic Circuits and Systems. Budapešť, 2018, pp.
9-12.

• PÁNEK Richard, LOJDA Jakub, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk.
Partial Dynamic Reconfiguration in an FPGA-based Fault-Tolerant Sys-
tem: Simulation-based Evaluation. In: Proceedings of IEEE East-West Design
& Test Symposium. Kazaň: IEEE Computer Society, 2018, pp. 129-134. ISBN
978-1-5386-5710-2.

2017

• LOJDA Jakub and KOTÁSEK Zdeněk. A Basic Approach to Fault Tolerance
of Data Paths of HLS-synthesized Systems and its Evaluation. In: Proceed-
ings of the 5th Prague Embedded Systems Workshop. Roztoky u Prahy: Faculty of
Information Technology, Czech Technical University, 2017, pp. 79-80. ISBN 978-80-
01-06178-7.

• LOJDA Jakub and KOTÁSEK Zdeněk. Automatizace návrhu systémů odol-
ných proti poruchám pomocí vysokoúrovňové syntézy. In: Počítačové ar-
chitektury & diagnostika 2017. Smolenice: Slovak University of Technology in
Bratislava, 2017, pp. 59-62. ISBN 978-80-972784-0-3.

• KRČMA Martin, KOTÁSEK Zdeněk and LOJDA Jakub. Comparison of FPNNs
Models Approximation Capabilities and FPGA Resources Utilization. In:
Proceedings of IEEE 13th International Conference on Intelligent Computer Commu-
nication and Processing. Cluj-Nappoca: IEEE Computer Society, 2017, pp. 125-132.
ISBN 978-1-5386-3368-7.

• PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub, ZACHARIÁŠOVÁ Marcela,
KRČMA Martin and KOTÁSEK Zdeněk. Functional Verification Based Plat-
form for Evaluating Fault Tolerance Properties. Microprocessors and Microsys-
tems, vol. 52, no. 5, 2017, pp. 145-159. ISSN 0141-9331.

67

• PODIVÍNSKÝ Jakub, LOJDA Jakub, ČEKAN Ondřej, PÁNEK Richard and
KOTÁSEK Zdeněk. Reliability Analysis and Improvement of FPGA-based
Robot Controller. In: Proceedings of the 2017 20th Euromicro Conference on
Digital System Design. Vídeň: IEEE Computer Society, 2017, pp. 337-344. ISBN
978-1-5386-2145-5.

• KRČMA Martin, LOJDA Jakub and KOTÁSEK Zdeněk. Triple Modular Re-
dundancy Used in Field Programmable Neural Networks. In: Proceedings
of IEEE East-West Design & Test Symposium. Novi Sad: IEEE Computer Society,
2017, pp. 1-6. ISBN 978-1-5386-3299-4.

2016

• LOJDA Jakub and KOTÁSEK Zdeněk. A Systematic Approach to the Descrip-
tion of Fault-tolerant Systems. Proceedings of the 4th Prague Embedded Systems
Workshop. Roztoky u Prahy, 2016.

• KRČMA Martin, KOTÁSEK Zdeněk, LOJDA Jakub and KAŠTIL Jan. Compari-
son of FPNNs models approximation capabilities and resources utilization.
In: Proceedings of the Work in progress Session held in connection with DSD 2016.
Limassol: Johannes Kepler University Linz, 2016, pp. 1-2. ISBN 978-3-902457-46-2.

• PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub and KOTÁSEK Zdeněk.
Functional Verification as a Tool for Monitoring Impact of Faults in
SRAM-based FPGAs. In: Proceedings of the 2016 International Conference on
Field Programmable Technology. Xi’an: IEEE Computer Society, 2016, pp. 293-294.
ISBN 978-1-5090-5602-6.

• LOJDA Jakub, PODIVÍNSKÝ Jakub, KRČMA Martin and KOTÁSEK Zdeněk.
HLS-based Fault Tolerance Approach for SRAM-based FPGAs. In: Pro-
ceedings of the 2016 International Conference on Field Programmable Technology.
Xi’an: IEEE Computer Society, 2016, pp. 301-302. ISBN 978-1-5090-5602-6.

• KRČMA Martin, KOTÁSEK Zdeněk and LOJDA Jakub. Implementation of Fault
Tolerant Techniques into FPNNs. In: Proceedings of the 2016 International
Conference on Field Programmable Technology. Xi’an: IEEE Computer Society, 2016,
pp. 297-298. ISBN 978-1-5090-5602-6.

• PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub and KOTÁSEK Zdeněk. Ver-
ification of Robot Controller for Evaluating Impacts of Faults in Electro-
mechanical Systems. In: Proceedings of the 19th Euromicro Conference on Digital
Systems Design. Limassol: IEEE Computer Society, 2016, pp. 487-494. ISBN 978-1-
5090-2816-0.

3.6 Research Projects, Grants
2020

• Design, Optimization and Evaluation of Application Specific Computer Systems, BUT,
FIT-S-20-6309, 2020-2022, start: 2020-03-01, end: 2022-12-31

68

2019

• Electromobile charger - 4th stage, KPB INTRA s.r.o., 2019, start: 2019-04-01, end:
2019-08-31

2018

• SECREDAS - Product Security for Cross Domain Reliable Dependable Automated
Systems, ECSEL JU, 8A18014, Proposal ID 783119-2, 2018-2021, start: 2018-05-01,
end: 2021-04-30

2017

• Advanced parallel and embedded computer systems, BUT, FIT-S-17-3994, 2017-2019,
start: 2017-03-01, end: 2019-12-31

2016

• IT4Innovations excellence in science, MŠMT CR, LQ1602, 2016-2020, start: 2016-
01-01, end: 2020-12-31

2015

• Algorithms, Design Methods, and Many-Core Execution Platform for Low-Power
Massive Data-Rate Video and Image Processing, Artemis JU, 7H14002, 621439, 2014-
2017, start: 2014-04-01, end: 2017-06-30

• Architecture of parallel and embedded computer systems, BUT, FIT-S-14-2297, 2014-
2016, start: 2014-03-01, end: 2016-12-31

69

Chapter 4

Conclusions

The main goal of this research thesis was to examine the possibilities of automated trans-
formation of digital system descriptions into their hardened versions. The approach was
targeted towards generality. It should apply to various design description languages, design
strategies, and abstraction levels. To achieve the generality of the process, four goals were
defined:

Goal 1. FT Mechanisms Incorporation: To achieve the main research target, a possibil-
ity to automatically modify a design description must exist within the design automation
method (and its toolkit implementation).

The Goal 1 was addressed by creating the Redundant Data Types – particular data types
for the C++ language and HLS, which allow a selection of a hardening mechanism on a per-
variable basis. These new data types were presented in Section 3.3.1 and the corresponding
Paper A. Not only one FT incorporation method was proposed. In Section 3.3.5 of this
thesis and the corresponding Paper F, the approach to modify VHDL descriptions was
presented, which was later practically demonstrated.

Goal 2. FT Strategy Methods: Only the source code modification is not enough. A specific
strategy (or logic) must be incorporated into the design automation method, which selects
the proper modifications based on the target parameters of the design.

This Goal 2 was addressed by implementing two selection strategies. The first strategy
targets cases in which only one target parameter of the design is optimized while another
parameter is constrained (e.g., FT parameters are optimized within a constrained design
size). This strategy uses the MCKP solver internally to select the best solution; it was
presented in Section 3.3.4 and Paper E. The second strategy allows the optimization of
multiple target parameters simultaneously (e.g., FT parameter, size, and power consump-
tion). In such a case, however, multiple optimal solutions might be provided (according to
their Pareto-optimality). This second mechanism of FT selection strategy was presented in
Section 3.3.6 and its corresponding Paper H.

Goal 3. FT Evaluation: To base the automated design on accurate data, measurement of
FT properties on the target platform is critical. It is, however, the most time-consuming
part of the complete design flow. For this reason, the FT evaluation must use all the
available means to accelerate the measurement.

Goal 3 was solved by designing and implementing the FT-EST framework. This frame-
work allows the measurement of FT properties of FPGA designs. The main concept is

70

based on semi-automatically generated testbeds, which are subsequently synthesized and
uploaded to the target FPGA. The testbeds are prepared for communication with the SW
part on a PC, which stores the data. Later, statistical calculations are performed to quan-
tify the achieved level of FT. This FT-EST framework was described in Section 3.3.3 and
its corresponding Paper D.

Goal 4. Design Flow: The complete design flow is proposed based on the previously
mentioned modules. However, specific cases might require using a particular flow variant.

The Goal 4 is straightforward. The decomposition is performed for systems that can
be decomposed (i.e., partitioned) on individual components, and individual component pa-
rameters are measured. Data obtained after the measurement are then used to interpolate
all the possible solutions, thus, eliminating the number of measurements, which signifi-
cantly accelerates the automated design. This approach to design flow was presented in
Section 3.3.5 and Papers F and G. However, partitioning is impossible for certain design
types or code modification approaches. For example, a system implemented as a single unit
in C++ (and synthesized using HLS) does not allow a simple system decomposition. For
this reason, another flow is proposed, which allows for keeping the system as a whole. This
is the design flow used in Section 3.3.6 and Paper H.

4.1 Thesis Main Contributions Summary
The following contributions of this thesis can be considered the most important:

Contribution 1. The automated design method is the first contribution of this thesis.
The automated design method includes various modules which can be used and extended
in further experimentation. Besides this, the method was implemented in the form of a
toolkit.

Contribution 2. Proving that a general approach to the automated design of FT systems is
possible is another significant contribution of this thesis. Multiple approaches to automated
FT design always utilize their specific solutions. Knowing that a unified approach is possible
is beneficial because such an approach allows the re-usability of the incorporated modules
(i.e., design methods).

Contribution 3. Several experimental works and data measurements were performed dur-
ing the design of this method. These experiments provided data needed to complete the
automated process and various other knowledge presented in the included papers.

4.2 Future Research Possibilities
This thesis deals with the automated design of FT systems, a relatively broad concept.
During the research, various branches emerged. Some of them were dead ends. The others
were interesting. However, they moved away from the original target of the research. The
following text presents the noteworthy ones, which I believe would be beneficial to research
further and may lead to interesting results.

1. SW-implemented FT : It might be interesting to utilize this method for the so-called SW-
implemented FT. Specific steps towards this were already performed, which were not part
of this thesis. These include the creation of a testing platform that executes target binaries

71

on a remote system of a possibly different CPU architecture, which was presented in [44].
The design automation toolkit might utilize this testing platform. The redundant data
types approach might be usable for FT mechanism insertion, except their usage would not
be applied in combination with HLS but instead on a program intended for CPU execution.
The strategy selection methods might be reused.

2. Extension of FT mechanisms: It might be interesting to extend the methods of FT
mechanism incorporation by newly emerging approaches that target a specific efficiency
(e.g., area-efficient FT mechanisms).

3. Testing of new FT mechanisms: It would be interesting to find out whether the complete
design automation toolkit could be used differently – to help in the creation and testing of
new means of FT. This is because it includes everything from testing to FT incorporation
mechanisms, which would save a significant amount of work for a beginning researcher.

72

Bibliography

[1] Agiakatsikas, D., Lee, G., Mitchell, T., Cetin, E. and Diessel, O. From C to
Fault-Tolerant FPGA-Based Systems. In: IEEE. 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 2018, p. 212–212. ISBN 978-1-5386-5522-1.

[2] Alderighi, M., Casini, F., d’Angelo, S., Mancini, M., Pastore, S. et al.
Evaluation of Single Event Upset Mitigation Schemes for SRAM-based FPGAs Using
the FLIPPER Fault Injection Platform. In: IEEE. Defect and Fault-Tolerance in
VLSI Systems, 2007. DFT’07. 22nd IEEE International Symposium on. 2007,
p. 105–113. ISBN 978-0-7695-2885-4.

[3] Alderighi, M., D’Angelo, S., Mancini, M. and Sechi, G. R. A Fault Injection
Tool for SRAM-based FPGAs. In: IEEE. On-Line Testing Symposium, 2003. IOLTS
2003. 9th IEEE. 2003, p. 129–133. ISBN 0-7695-1968-7.

[4] Anwer, J., Platzner, M. and Meisner, S. FPGA Redundancy Configurations: An
Automated Design Space Exploration. In: IEEE. 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops. 2014, p. 275–280. DOI:
10.1109/IPDPSW.2014.37. ISBN 978-1-4799-4116-2.

[5] Ashenden, P. J. The VHDL Cookbook, First Edition. University of Adelaide, South
Australia, 1990.

[6] Aviziens, A. Fault-Tolerant Systems. IEEE Transactions on Computers. 1976, C-25,
no. 12, p. 1304–1312. DOI: 10.1109/TC.1976.1674598.

[7] Benso, A., Bosio, A., Di Carlo, S. and Mariani, R. A Functional Verification
based Fault Injection Environment. In: IEEE. Defect and Fault-Tolerance in VLSI
Systems, 2007. DFT’07. 22nd IEEE International Symposium on. 2007, p. 114–122.
ISBN 978-0-7695-2885-4.

[8] Bernardeschi, C., Cassano, L., Domenici, A. and Sterpone, L. Accurate
Simulation of SEUs in the Configuration Memory of SRAM-based FPGAs. In:
IEEE. Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2012
IEEE International Symposium on. 2012, p. 115–120. ISBN 978-1-4673-3044-2.

[9] Brigham Young University. BYU EDIF Tools Homepage [online]. Brigham
Young University [cit. 2022-08-02]. Available at: http://reliability.ee.byu.edu/edif/.

[10] Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A. et al. LegUp: An
open-source high-level synthesis tool for FPGA-based processor/accelerator systems.

73

http://reliability.ee.byu.edu/edif/

ACM Transactions on Embedded Computing Systems (TECS). ACM New York, NY,
USA. 2013, vol. 13, no. 2, p. 1–27.

[11] Carvalho, T. R. de et al. The fault avoidance and the fault tolerance approaches
for increasing the reliability of aerospace and automotive systems. In: SAE Brasil
2005 Congress and Exhibit. 2005, 2005-01-4157.

[12] Cavin, R., Lugli, P. and Zhirnov, V. Science and Engineering Beyond Moore’s
Law. Proceedings of The IEEE - PIEEE. january 2012, vol. 100, p. 1720–1749.

[13] Chern, M.-S. On the computational complexity of reliability redundancy allocation
in a series system. Operations Research Letters. 1992, vol. 11, no. 5, p. 309–315.
DOI: https://doi.org/10.1016/0167-6377(92)90008-Q. ISSN 0167-6377. Available at:
https://www.sciencedirect.com/science/article/pii/016763779290008Q.

[14] Cofer, R. and Harding, B. F. Rapid System Prototyping with FPGAs: Accelerating
the Design Process. Elsevier, 2006. ISBN 978-0-7506-7866-7.

[15] Corno, F., Reorda, M. and Squillero, G. RT-level ITC’99 benchmarks and first
ATPG results. Design and Test of Computers, IEEE. Jul 2000, vol. 17, no. 3,
p. 44–53. DOI: 10.1109/54.867894. ISSN 0740-7475.

[16] Coussy, P., Gajski, D. D., Meredith, M. and Takach, A. An introduction to
high-level synthesis. IEEE Design & Test of Computers. IEEE. 2009, vol. 26, no. 4,
p. 8–17.

[17] Croswell, K. Voyager still breaking barriers decades after launch. Proceedings of
the National Academy of Sciences. National Acad Sciences. 2021, vol. 118, no. 17,
p. e2106371118.

[18] Dalal, S. and Chhillar, R. S. Case studies of most common and severe types of
software system failure. International Journal of Advanced Research in Computer
Science and Software Engineering. Citeseer. 2012, vol. 2, no. 8.

[19] Fallahlalehzari, F. How does the Mars Perseverance rover benefit from FPGAs as
the main processing units? [online]. Aldec, 2021 [cit. 2022-09-13]. Available at:
https://www.aldec.com/en/company/blog/188--how-does-the-mars-perseverance-
rover-benefit-from-fpgas-as-the-main-processing-units.

[20] Fingeroff, M. High-level Synthesis: Blue Book. Xlibris Corporation, 2010.

[21] Foster, H. Part 6: The 2020 Wilson Research Group Functional Verification Study
[online]. Siemens Digital Industries Software, december 2020 [cit. 2022-07-06].
Available at: https://blogs.sw.siemens.com/verificationhorizons/2020/12/16/part-
6-the-2020-wilson-research-group-functional-verification-study/.

[22] FPGAwars. Digital Design for OpenSource FPGAs made easy: icestudio.io [online].
icestudio.io, august 2022 [cit. 2022-09-08]. Available at:
https://github.com/FPGAwars/icestudio.

[23] Grierson, D. E. Pareto multi-criteria decision making. Advanced Engineering
Informatics. 2008, vol. 22, no. 3, p. 371–384. DOI:
https://doi.org/10.1016/j.aei.2008.03.001. ISSN 1474-0346. Collaborative Design and

74

https://www.sciencedirect.com/science/article/pii/016763779290008Q
https://www.aldec.com/en/company/blog/188--how-does-the-mars-perseverance-rover-benefit-from-fpgas-as-the-main-processing-units
https://www.aldec.com/en/company/blog/188--how-does-the-mars-perseverance-rover-benefit-from-fpgas-as-the-main-processing-units
https://blogs.sw.siemens.com/verificationhorizons/2020/12/16/part-6-the-2020-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2020/12/16/part-6-the-2020-wilson-research-group-functional-verification-study/
https://github.com/FPGAwars/icestudio

Manufacturing. Available at:
https://www.sciencedirect.com/science/article/pii/S1474034608000281.

[24] Hauck, S. and DeHon, A. Reconfigurable computing: the theory and practice of
FPGA-based computation. Elsevier, 2010.

[25] Hegde, V. Reliability in the medical device industry. Handbook of Performability
Engineering. Springer. 2008, p. 997–1009.

[26] Heiner, J., Sellers, B., Wirthlin, M. and Kalb, J. FPGA partial reconfiguration
via configuration scrubbing. In: IEEE. 2009 International Conference on Field
Programmable Logic and Applications. 2009, p. 99–104.

[27] Hiemstra, D. M., Battiston, G. and Gill, P. Single Event Upset Characterization
of the Virtex-5 Field Programmable Gate Array Using Proton Irradiation. In: 2010
IEEE Radiation Effects Data Workshop. 2010, p. 4–4. DOI:
10.1109/REDW.2010.5619490.

[28] Hlavička, J., Racek, S., Golan, P. and Blažek, T. Číslicové systémy odolné proti
poruchám. 1st edition, Prague, Published by: ČVUT, 330 s. 1992.

[29] Inc., X. Xilinx XPower Analyzer [online]. Xilinx Inc., 2013 [cit. 2021-12-07]. Available
at: https:
//www.xilinx.com/html_docs/xilinx14_5/isehelp_start.htm#xpa_c_overview.htm.

[30] International Electrotechnical Commission. IEC 60050 - International
Electrotechnical Vocabulary, Area 192: Dependability [online]. International
Electrotechnical Commission, 2022 [cit. 2022-07-08]. Available at:
https://www.electropedia.org/iev/iev.nsf/index?openform&part=192.

[31] Kanagaraj, G., Ponnambalam, S. and Jawahar, N. A Hybrid Cuckoo Search
and Genetic Algorithm for Reliability–Redundancy Allocation Problems. Computers
& Industrial Engineering. Elsevier. 2013, vol. 66, no. 4, p. 1115–1124.

[32] Kastensmidt, F. and Rech, P. FPGAs and parallel architectures for aerospace
applications. In: Soft Errors and Fault-Tolerant Design. Springer, 2016.

[33] Kellerer, H., Pferschy, U. and Pisinger, D. The Multiple-choice Knapsack
Problem. In: Knapsack Problems. Springer, 2004, p. 317–347.

[34] Khalili Damghani, K., Abtahi, A.-R. and Tavana, M. A New Multi-objective
Particle Swarm Optimization Method for Solving Reliability Redundancy Allocation
Problems. Reliability Engineering & System Safety. Elsevier. 2013, vol. 111, p. 58–75.

[35] Kim, H. and Kim, P. Reliability–redundancy allocation problem considering optimal
redundancy strategy using parallel genetic algorithm. Reliability Engineering &
System Safety. Elsevier. 2017, vol. 159, p. 153–160.

[36] Kulis, S. Single Event Effects Mitigation with TMRG Tool. Journal of
Instrumentation. 2017, vol. 12, no. 01, p. C01082. Available at:
http://stacks.iop.org/1748-0221/12/i=01/a=C01082.

75

https://www.sciencedirect.com/science/article/pii/S1474034608000281
https://www.xilinx.com/html_docs/xilinx14_5/isehelp_start.htm#xpa_c_overview.htm
https://www.xilinx.com/html_docs/xilinx14_5/isehelp_start.htm#xpa_c_overview.htm
https://www.electropedia.org/iev/iev.nsf/index?openform&part=192
http://stacks.iop.org/1748-0221/12/i=01/a=C01082

[37] Kuon, I., Tessier, R., Rose, J. et al. FPGA architecture: Survey and challenges.
Foundations and Trends® in Electronic Design Automation. Now Publishers, Inc.
2008, vol. 2, no. 2, p. 135–253.

[38] Kuuhn, J. M., Schweizer, T., Peterson, D., Kuhn, T. and Rosenstiel, W.
Testing Reliability Techniques for SoCs with Fault Tolerant CGRA by Using Live
FPGA Fault Injection. In: IEEE. Field-Programmable Technology (FPT), 2013
International Conference on. 2013, p. 462–465. ISBN 978-1-4799-2198-0.

[39] Lavin, C., Padilla, M., Lundrigan, P., Nelson, B. and Hutchings, B. Rapid
Prototyping Tools for FPGA Designs: RapidSmith. In: Field-Programmable
Technology (FPT), 2010 International Conference on. Dec 2010, p. 353–356. DOI:
10.1109/FPT.2010.5681429.

[40] Lee, D. S. Commercial Field-Programmable Gate Arrays for Space Processing
Applications. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States),
2017.

[41] Lee, G., Agiakatsikas, D., Wu, T., Cetin, E. and Diessel, O. TLegUp: A TMR
code generation tool for SRAM-based FPGA applications using HLS. In: IEEE. 2017
IEEE 25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 2017, p. 129–132. ISBN 978-1-5386-4037-1.

[42] Liang, Y.-C. and Chen, Y.-C. Redundancy Allocation of Series-parallel Systems
Using a Variable Neighborhood Search Algorithm. Reliability Engineering & System
Safety. Elsevier. 2007, vol. 92, no. 3, p. 323–331.

[43] Liu, M., Zeng, Z., Su, F. and Cai, J. Research on Fault Injection Technology for
Embedded Software based on JTAG Interface. In: IEEE. Reliability, Maintainability
and Safety (ICRMS), 2016 11th International Conference on. 2016, p. 1–6. ISBN
978-1-5090-2714-9.

[44] Lojda, J., Pánek, R., Podivínský, J., Čekan, O., Krčma, M. et al. Testing
Embedded Software Through Fault Injection: Case Study on Smart Lock. In: 2021
IEEE 22nd Latin American Test Symposium (LATS). 2021, p. 1–6. DOI:
10.1109/LATS53581.2021.9651770.

[45] Lojda, J., Podivínský, J. and Kotásek, Z. Reliability Indicators for Automatic
Design and Analysis of Fault-Tolerant FPGA Systems. In: 2019 IEEE Latin
American Test Symposium (LATS). 2019, p. 1–4. DOI:
10.1109/LATW.2019.8704593. ISBN 978-1-7281-1756-0.

[46] López Ongil, C., Garcia Valderas, M., Portela García, M. and Entrena, L.
Autonomous Fault Emulation: A New FPGA-based Acceleration System for
Hardness Evaluation. Nuclear Science, IEEE Transactions on. IEEE. 2007, vol. 54,
no. 1, p. 252–261.

[47] Lyons, R. E. and Vanderkulk, W. The use of triple-modular redundancy to
improve computer reliability. IBM journal of research and development. IBM. 1962,
vol. 6, no. 2, p. 200–209.

76

[48] Malaya Kumar Biswal M. and Ramesh Naidu Annavarapu. A Study on Mars
Probe Failures. In: AIAA Scitech 2021 Forum. 2021. DOI: 10.2514/6.2021-1158.
Available at: https://arc.aiaa.org/doi/abs/10.2514/6.2021-1158.

[49] Martello, S. and Toth, P. Knapsack Problems: Algorithms and Computer
Implementations. J. Wiley & Sons, 1990. Wiley-Interscience series in discrete
mathematics and optimization. ISBN 9780471924203.

[50] Mehra, D. R. High Speed CT Image Reconstruction using FPGA. International
Journal of Computer Applications. may 2011, vol. 22, p. 7–10. DOI:
10.5120/2574-3550.

[51] Mentor Graphics. Catapult HLS [online]. Mentor Graphics, july 2022 [cit.
2022-07-08]. Available at:
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/.

[52] Nane, R., Sima, V.-M., Pilato, C., Choi, J., Fort, B. et al. A survey and
evaluation of FPGA high-level synthesis tools. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. IEEE. 2015, vol. 35,
no. 10, p. 1591–1604.

[53] Neuberger, G., Kastensmidt, F. and Reis, R. Improving Fault Tolerance to
Radiation Effects in Integrated Systems. may 2014, p. 1–12.

[54] Nidhin, T., Bhattacharyya, A., Behera, R., Jayanthi, T. and Velusamy, K.
Verification of Fault Tolerant Techniques in Finite State Machines Using Simulation
based Fault Injection Targeted at FPGAs for SEU Mitigation. In: IEEE. Electronics
and Communication Systems (ICECS), 2017 4th International Conference on. 2017,
p. 153–157.

[55] O’Bryan, M. and Campola, M. Single Event Effects [online]. NASA Goddard
Space Flight Center, october 2019 [cit. 2022-07-12]. Available at:
https://radhome.gsfc.nasa.gov/radhome/see.htm.

[56] Onishi, J., Kimura, S., James, R. J. and Nakagawa, Y. Solving the Redundancy
Allocation Problem with a Mix of Components Using the Improved Surrogate
Constraint Method. IEEE Transactions on Reliability. IEEE. 2007, vol. 56, no. 1,
p. 94–101.

[57] Padovani, R. Reconfigurable FPGAs for Space – Present and Future, Presentation
on the MAPLD conference, Washington, DC. 2005.

[58] Pánek, R., Lojda, J., Podivínský, J. and Kotásek, Z. Reliability Analysis of
Reconfiguration Controller for FPGA-Based Fault Tolerant Systems: Case Study.
In: 2020 International Symposium on VLSI Design, Automation, and Test
(VLSI-DAT) : proceedings of technical papers. IEEE Computer Society, 2020,
p. 121–124. DOI: 10.1109/VLSI-DAT49148.2020.9196269. ISBN 978-1-7281-6083-2.
Available at: https://www.fit.vut.cz/research/publication/12101.

[59] Pánek, R., Lojda, J., Podivínský, J. and Kotásek, Z. Reliability Analysis of the
FPGA Control System with Reconfiguration Hardening. In: Proceedings - 2021 24th
Euromicro Conference on Digital System Design, DSD 2021. Institute of Electrical

77

https://arc.aiaa.org/doi/abs/10.2514/6.2021-1158
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://radhome.gsfc.nasa.gov/radhome/see.htm
https://www.fit.vut.cz/research/publication/12101

and Electronics Engineers, 2021, p. 553–556. DOI: 10.1109/DSD53832.2021.00089.
ISBN 978-1-6654-2703-6. Available at:
https://www.fit.vut.cz/research/publication/12489.

[60] Petersen, E. Single Event Effects in Aerospace. John Wiley & Sons, Ltd, 2011.
1-12 p. ISBN 9781118084328. Available at:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118084328.ch1.

[61] Podivínský, J., Lojda, J., Čekan, O. and Kotásek, Z. Evaluation Platform for
Testing Fault Tolerance Properties: Soft-core Processor-based Experimental Robot
Controller. In: IEEE. 2018 21st Euromicro Conference on Digital System Design
(DSD). 2018, p. 229–236. DOI: 10.1109/DSD.2018.00051. ISBN 978-1-5386-7377-5.

[62] Podivínský, J., Čekan, O., Lojda, J., Zachariášová, M., Krčma, M. et al.
Functional Verification Based Platform for Evaluating Fault Tolerance Properties.
Microprocessors and Microsystems. 2017, vol. 52, no. 5, p. 145–159. DOI:
10.1016/j.micpro.2017.06.004. ISSN 0141-9331. Available at:
https://www.fit.vut.cz/research/publication/11318.

[63] Ratter, D. FPGAs on Mars. Xcell J. 1st ed. 2004, vol. 50, no. 8, p. 11.

[64] Rudrakshi, S., Midasala, V. and Bhavanam, S. Implementation of FPGA based
Fault Injection Tool (FITO) for Testing Fault Tolerant Designs. IACSIT
International Journal of Engineering and Technology. 2012, vol. 4, no. 5, p. 522–526.

[65] Schweizer, T., Peterson, D., Kühn, J. M., Kuhn, T. and Rosenstiel, W. A
Fast and Accurate FPGA-based Fault Injection System. In:
IEEE. Field-Programmable Custom Computing Machines (FCCM), 2013 IEEE 21st
Annual International Symposium on. 2013, p. 236–236. ISBN 978-0-7695-4969-9.

[66] Siemens EDA. Algorithmic C (AC) Datatypes Reference Manual [online]. Siemens,
august 2022 [cit. 2022-09-12]. Available at:
https://github.com/hlslibs/ac_types/blob/master/pdfdocs/ac_datatypes_ref.pdf.

[67] Somani, A. K. and Vaidya, N. H. Understanding fault tolerance and reliability.
Computer. 1st ed. IEEE Computer Society. 1997, vol. 30, no. 04, p. 45–50.

[68] SOOS, C. SEU effects in FPGA: How to deal with them?, Presentation on the 1st
Combined R2E Workshop & School-Days, European Organization for Nuclear
Research (CERN). 2009.

[69] Straka, M., Kaštil, J. and Kotásek, Z. Generic Partial Dynamic Reconfiguration
Controller for Fault Tolerant Designs Based on FPGA. In: NORCHIP 2010. IEEE
Computer Society, Nov 2010, p. 1–4. DOI: 10.1109/NORCHIP.2010.5669477. ISBN
978-1-4244-8971-8.

[70] Straka, M., Kaštil, J. and Kotásek, Z. SEU Simulation Framework for Xilinx
FPGA: First Step Towards Testing Fault Tolerant Systems. In: 14th EUROMICRO
Conference on Digital System Design. IEEE Computer Society, 2011, p. 223–230.
ISBN 978-0-7695-4494-6.

[71] Synario Design Automation. VHDL Reference Manual. Synario Design
Automation, 1997.

78

https://www.fit.vut.cz/research/publication/12489
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118084328.ch1
https://www.fit.vut.cz/research/publication/11318
https://github.com/hlslibs/ac_types/blob/master/pdfdocs/ac_datatypes_ref.pdf

[72] Texas Instruments Incorporated. Reliability Terminology [online]. Texas
Instruments Incorporated, 2022 [cit. 2022-07-27]. Available at:
https://www.ti.com/support-quality/reliability/reliability-terminology.html.

[73] The Planetary Society. Cost of Perseverance [online]. The Planetary Society,
2022 [cit. 2022-07-08]. Available at:
https://www.planetary.org/space-policy/cost-of-perseverance.

[74] Velazco, R., McMorrow, D. and Estela, J. Radiation Effects on Integrated
Circuits and Systems for Space Applications. 1st ed. January 2019. ISBN
978-3-030-04659-0.

[75] Wang, Z., Chen, T., Tang, K. and Yao, X. A Multi-objective Approach to
Redundancy Allocation Problem in Parallel-series Systems. In: IEEE. 2009 IEEE
Congress on Evolutionary Computation. 2009, p. 582–589. ISBN 978-1-4244-2959-2.

[76] Xilinx Inc. TMRTool: The Induay’s First Development Tool to Automatically
Generate Triple Module Redundancy (TMR) for Space-grade Re-programmable
FPGAs [online]. Xilinx Inc. [cit. 2021-04-13]. Available at:
https://www.xilinx.com/products/design-tools/tmrtool.html.

[77] Xilinx Inc. ML505/ML506/ML507 Evaluation Platform User Guide [online].
Xilinx Inc., may 2011 [cit. 2022-07-27]. Available at:
https://www.xilinx.com/support/documentation/user_guides/ug347.pdf.

[78] Xilinx Inc. Virtex-5 FPGA Configuration User Guide [online]. Xilinx Inc.,
november 2011 [cit. 2022-09-17]. Available at:
https://www.xilinx.com/support/documentation/user_guides/ug191.pdf.

[79] Xilinx Inc. Virtex-5 FPGA User Guide [online]. Xilinx Inc., march 2012 [cit.
2019-03-26]. Available at:
https://www.xilinx.com/support/documentation/user_guides/ug190.pdf.

[80] Xilinx Inc. ISE Design Suite [online]. Xilinx Inc., july 2022 [cit. 2022-07-08].
Available at:
https://www.xilinx.com/products/design-tools/ise-design-suite.html.

[81] Xilinx Inc. Vivado ML Overview [online]. Xilinx Inc., september 2022 [cit.
2022-09-12]. Available at:
https://www.xilinx.com/products/design-tools/vivado.html.

[82] Xilinx Inc. Xilinx Medical Applications [online]. Xilinx Inc., july 2022 [cit.
2022-07-12]. Available at: https://www.xilinx.com/applications/medical.html.

[83] Yeh, W.-C. and Hsieh, T.-J. Solving Reliability Redundancy Allocation Problems
Using an Artificial Bee Colony Algorithm. Computers & Operations Research.
Elsevier. 2011, vol. 38, no. 11, p. 1465–1473.

79

https://www.ti.com/support-quality/reliability/reliability-terminology.html
https://www.planetary.org/space-policy/cost-of-perseverance
https://www.xilinx.com/products/design-tools/tmrtool.html
https://www.xilinx.com/support/documentation/user_guides/ug347.pdf
https://www.xilinx.com/support/documentation/user_guides/ug191.pdf
https://www.xilinx.com/support/documentation/user_guides/ug190.pdf
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/applications/medical.html

Selected Papers

80

Paper A

Data Types and Operations
Modifications: a Practical
Approach to Fault Tolerance in
HLS

LOJDA Jakub, PODIVÍNSKÝ Jakub, KOTÁSEK Zdeněk, KRČMA Martin

In: Proceedings of IEEE East-West Design & Test Symposium. Novi Sad: IEEE Computer
Society, 2017, pp. 273-278. ISBN 978-1-5386-3299-4.

Available at: https://ieeexplore.ieee.org/document/8110113

81

https://ieeexplore.ieee.org/document/8110113

Data Types and Operations Modifications:
a Practical Approach to Fault Tolerance in HLS

Jakub Lojda, Jakub Podivinsky, Zdenek Kotasek, Martin Krcma
Faculty of Information Technology, Brno University of Technology,

Centre of Excellence IT4Innovations
Bozetechova 2, 612 66 Brno, Czech Republic

{ilojda, ipodivinsky, kotasek, ikrcma}@fit.vutbr.cz

Abstract

Some types of electronic systems are working in the
environment with an increased occurrence of faults such
as space, aerospace or medical systems. Faults in these
systems can lead to the failure of the whole system and
can cause high economical losses or endanger human
health. Fault tolerance is one of the techniques, the
goal of which is to avoid such situations. This pa-
per presents an approach to fault-tolerant data-paths
design that is based on the modification of High-level
Synthesis (HLS) input specification. The description
and evaluation of the impacts of some HLS optimiza-
tion methods are demonstrated in the paper as well.
Higher reliability is achieved through the modification
of input description in the C++ programming language
which the HLS synthesis tools are based on. Our work
targets SRAM-based FPGAs that are prone to Single
Event Upsets (SEUs). For the evaluation of the pro-
posed method we use our evaluation platform, which
allows us to analyze fault tolerance properties of the
Design Under Test (DUT). The evaluation platform
is based on functional verification in combination with
fault injection.

1. Introduction

Nowadays, electronic systems are used in various
devices which play an important role in our everyday
lives. The increase of chip-level integration results in
a higher susceptibility to faults. The number of digi-
tal systems with a high demand on reliability, such as
medicine, space, industry, is growing as well. In these
cases especially, reliability is very important because
the consequences of failure can result in injury or heavy
financial losses or can endanger human health. One of

the main approaches to increase reliability is the so-
called fault tolerance [10]. Fault tolerance accepts the
fact a fault can appear, but the goal of this approach
is to keep the system functional even in the presence
of faults. Techniques based on various types of redun-
dancy are used for this purpose. Many fault tolerance
methodologies exist, which combine and improve these
basic methods (e.g. the HW and temporal redundancy
is combined in approach shown in [9]).

The HLS is a set of methods transforming a digital
circuit description into its RTL representation. The
architecture of a typical HLS-generated circuit is com-
posed of the so-called data-path and control-path (the
controller) [4]. The HLS tools usually allow the de-
signer to explore the state space of various RTL real-
izations very effectively and easily. The main decisions,
such as setting a degree of parallel computation of a
programming loop (unrolling) or pipelining a program-
ming loop, are still the designer’s responsibility. These
two optimization techniques are not nearly all used in
the process of accelerating the resulting system, but
we have chosen these as we believe these are the most
important ones. The unrolling basically allows parallel
execution of individual loop iterations. The parameter
of degree of parallel execution expresses the number of
iterations executed in parallel. The pipelining allows
the designer to create a pipelined version of the loop.
When the pipelining is applied, each Initiation Inter-
val (II) the execution of one iteration is started.

These days a lot of effort in the research of fault
tolerance in HLS is dedicated to data-path hardening.
Specifically modified versions of HLS methodologies are
usually used for this purpose. The method described
in [7] is directed against transient faults that last for
several clock cycles. Another heuristic algorithm based
on two-phase resource binding was published in [8]. A
heuristic-based method that was published in [14] en-

978-1-5386-3299-4/17/$31.00 c©2017 IEEE

IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017 273

ables designers to choose a trade-off between resources
consumed, resulting system latency and redundancy.
The authors of [2] present an approach to error detec-
tion of arithmetic oriented data-paths.

This paper is organized as follows. Our fault tol-
erance method based on data types modifications is
proposed in Section 2. The proposed method is demon-
strated on the robot controller described in Section 3.
The results of our experiments are summarized in Sec-
tion 4. Section 5 concludes the paper and presents
future plans.

2. HLS-based Fault Tolerance Method-
ology

Our approach is to apply modifications to the speci-
fication as the input of HLS. The modifications should
produce the resulting RTL description fault-tolerant.
Our method is based on the modification of the C++
language. There are three types of locations the mod-
ification can be done at the level of C++ language:
1) data types (storage elements); 2) arithmetic and
logic operations and 3) flow control statements.

In this research we focus on the modification of stor-
age elements and operations of the input description.
We developed a new class of Data Types (DTs), which
we call Redundant Data Types (RDTs), that are able
to incorporate redundancy for all the operations and
storages associated with the corresponding variables.
The concept of RDTs is very similar to that of the Al-
gorithmic C Datatypes [11], which are widely used in
HLS as a principle to specify a bit width of a particular
data type. In this case, this concept is used to spec-
ify a redundancy mechanism. This way we were able
to achieve redundancy on certain parts of the input
digital system description only. An RDT is associated
with the previously used DT which we call the orig-
inal DT in relation to the particular RDT. We show
this concept on the Triple Modular Redundancy (TMR)
principle, although it is not limited to TMR only. If a
user intends to add a redundancy to a particular part
of the system, simply replacing the previously used DT
by the RDT of a desired redundancy in this part of the
system is enough. An example of the usage of RDTs is
shown in Figure 1.

In the following text, TMR is used as an example of
the construction principles of the RDTs. Each instance
of the TMR RDT contains three nested instances of the
original DT. If necessary, support methods to extend
the behavior of the operators can be added. In the
case of TMR, one method implementing the voter is
included. In the C++ language, 1) unary, 2) binary
and 3) ternary operators can be distinguished from the

int a;
int b;
int c;

b = 7;
c = 8;

a = b + c;

/* a = 15 */

int a_x, a_y, a_z;
int b_x, b_y, b_z;
int c_x, c_y, c_z;

b_x = 7; b_y = 7; b_z = 7;
c_x = 8; c_y = 8; c_z = 8;

a_x = b_x + c_x;
a_y = b_y + c_y;
a_z = b_z + c_z;
vote(&a_x, &a_y, &a_z);

/* a_x, a_y and a_z = 15 */

1
2
3

4
5

6

7

triple<int> a;
triple<int> b;
triple<int> c;

b = 7;
c = 8;

a = b + c;

/* a = 15 */

Original code Modified code Preprocessed result (semantically)

Figure 1. An example of a C++ program code
before/after its modification and after the
code is preprocessed by a C++ preprocessor.

arity point of view. For each unary operator, a new
operator is constructed that is composed of three op-
erations, each for one of the nested instances. After
that, the voter method is called to choose the major-
ity result, which is then written back to each nested
instance of the original DT. For binary operators there
are three cases to be distinguished when considering
operations with RDTs. These include a) intra-data
type operations – RDT vs. RDT of equivalent redun-
dancy types (e.g. TMR vs. TMR subsystem); b) inter-
data type operations – RDT vs. RDT of different re-
dundancy types – (e.g. TMR vs. duplex subsystem);
and c) original-data type operations – RDT vs. it’s
original (unhardened) DT (e.g. TMR vs. unhardened
subsystem). These three cases are schematically illus-
trated in Figure 2. For the ternary (conditional) op-
erator, it is enough to provide a way to decide which
value should be considered in place of the (conditional)
operator. Therefore, the solution is to add an ability
to cast the RDT to the Boolean DT.

a) b) c)

M1

M2

M3

Fr
om

 T
M

R
su

bs
ys

te
m

M1

M2

M3

Fr
om

 d
up

le
x

C
/S
W

M1

M2

M3

Fr
om

 u
nh

ar
de

ne
d

su
bs

ys
te

m

su
bs

ys
te

m

Figure 2. Three types of cases that can be
distinguished when considering binary oper-
ations, intra-DT operation between two TMR
subsystems (a), inter-DT operation between
system with TMR and duplex hardening (b)
and original-DT operation between TMR and
unhardened subsystems (c).

The advantage of our approach includes the ease
of its use with any HLS tool and its ability to ensure

274 IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017

fault tolerance for a specific part of the system that
corresponds to a particular variable and its associated
operations on the description level. Another benefit
includes an automatic ability to interface fault-tolerant
parts with the unmodified remainder of the system.

The method is intended to be a part of a larger
system that would make the modifications automati-
cally with the impacts of these changes in mind. The
methodology will have to be aware of the importance
of each component to assign the proper fault tolerance
methodology.As the input description is in the form of
an executable code, a possible option could be to in-
volve a profiler tool, which can be used to determine
the frequency of function calls. This might be a good
guide to find out the functions with variables in order
to apply fault tolerance to. Figure 3 shows the pro-
posed flow.

C++
description

Fault-tolerant
C++ descr.

ModificationsProfiler

High-level
synthesis

Fault-tolerant
RTL descr.

Figure 3. The new approach to FT design.

3. Case Study: Robot Controller

To demonstrate and evaluate our approach, an ex-
perimental electro-mechanical system has been devel-
oped which is composed of the robot which searches a
path through a maze and its electronic controller. The
robot controller unit was developed according to the
HLS methodology flow using the C++ language. The
HLS tool we used in our experiments is the Catapult
C University Version [6]. The unit is based on the left
hand algorithm, that is, in case of a crossroad the robot
always follows the wall of the maze on its left side.

In our previous papers (e.g. [13]) the evaluation
platform for checking the impact of faults was pre-
sented. Our evaluation platform uses functional verifi-
cation [12] as a tool for monitoring the impacts of faults
injected into an electronic controller implemented into
FPGA. In case of the fault injection, the verified cir-
cuit must operate in FPGA, so we do not use classical
simulation-based functional verification, but modified
FPGA-based functional verification.

Nowadays, many electronic systems are a part of
electro-mechanical systems, where a mechanical part
is controlled by its electronic controller. The trend
is to move more functionality to electronic controllers

because it results in lower costs on device operation.
As an example, the results published in [3] and [1]
can serve, where moving more functionality to elec-
tronic controllers results in a lower weight of the air-
craft saving costs on aircraft operation. Based on
these facts, our evaluation platform is able to use an
electro-mechanical application as an experimental sys-
tem, which allows us to monitor the impact of faults
not only on electronic controller, but also on the con-
trolled mechanical parts.

The main components which our evaluation plat-
form is composed of, are shown in Figure 4. The two
main parts are a computer and an FPGA development
board. We use the ML506 board with the Virtex 5
FPGA, which allows us to implement a verified elec-
tronic controller in FPGA and inject faults directly into
the FPGA. The fault injector is one of the components
which is running on the computer. Our fault injector
[15] is based on the partial reconfiguration and uses
JTAG interface for communication with the configu-
ration memory. The platform is designed to evaluate
the impact of faults on the electro-mechanical applica-
tion, so the simulation of the mechanical part is im-
portant and also runs on the computer. We use the
Player/Stage [5] simulation environment to simulate
the robot and its environment. The electronic con-
troller implemented into FPGA is connected with the
simulation of mechanical part through Ethernet inter-
face. The software part of the verification environment
also runs on the computer and performs the evaluation
of impacts of injected faults both on the electronic and
mechanical parts.

Computer

Software Part of

Verification

Environment

Fault

Injector

ML506 Virtex 5 FPGA Board

FPGA with Hardware

Part of Verification

Environment

JTAG

Ethernet

Mechanical

Part

Figure 4. The evaluation platform architec-
ture.

4. Experiments and Results

The previously mentioned robot controller imple-
mentation was used as an experimental electronic sys-
tem in our experiments. In the first stage of the ex-
periments, we evaluated the impact of some of the
main optimization and acceleration techniques of the
HLS methods to the resulting system’s susceptibility

IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017 275

to SEUs. The other parameters monitored were the
number of slices, slice registers and slice Lookup tables
(LUTs) occupied.

Parts of Table 1 labeled as noft summarize the re-
source requirements for each of the four robot con-
troller units synthesized with a different parameters
set. The first and the second set of parameters, denoted
as noopt-area and noopt-latency, include area and la-
tency optimizations with no additional requirements
added. As can be seen in Figure 5, the results are al-
most equal, which may be caused by a relatively small
design size. The third one, pipeline1-area, includes the
main loop pipelined with II set to 1 and the overall goal
set to the area. The fourth one, unroll2-area, contains
the main loop partially unrolled with the level of paral-
lel computation set to 2. As can be seen, the unrolled
loop requires more resources as the pipelined one, but
it is slightly faster.

Table 1. Resources consumed for each ver-
sion of the HLS synthesized robot controllers.

Version
Occupied Slice Slice Max. LUT

slices reg. LUTs frequency bits
[−] [−] [−] [MHz] [−]

noopt-latency noft 170 346 381 74.85 19392

noopt-area
noft 170 346 381 74.85 19392
triple 378 638 851 82.01 48704
TMR 546 1038 1143 74.85 58176

pipeline1-area
noft 196 152 405 58.82 21952
triple 411 512 1101 65.81 67264
TMR 540 456 1215 58.82 65856

unroll2-area
noft 399 656 854 59.70 48704
triple 1341 1791 3738 50.48 224256
TMR 1224 1968 2562 59.70 146112

noopt-latency noopt-area pipeline1-area unroll2-area

noft triple noft triple noft triplenoft

Figure 5. Comparison of resources con-
sumed for each version of the HLS synthe-
sized robot controllers.

The first experiments with fault injection were tar-
geted to evaluate the resilience against faults of pro-
posed versions of the robot controller. In these exper-

iments only three versions (noopt-area, pipeline1-area
and unroll2-area) were taken into account, because the
detailed analysis showed that noopt-area and noopt-
latency led to a very similar VHDL description.

The three resulting robot controller units were ex-
amined for their susceptibility to SEUs. Exactly 1000
verification runs were performed with each version of
the three robot controller units. Before the experi-
ments started, a list of configuration bits that were
used as a content of LUTs was generated for each ver-
sion of the robot controller bitstream. These bits were
then used in the processes of SEU injections. The sce-
nario of each verification run was as follows:

1. the robot controller unit was reinstated into its
initial state, the maze map as well as its starting
and target positions were the same for all the
verification runs,

2. the Player/Stage simulation environment was
started, the robot was placed on the starting po-
sition,

3. one SEU was injected into a bit that was utilized
as an LUT content bit, the bit was selected uni-
formly at random from all bits utilized as con-
tents of LUTs, the bit remained in a faulty state
during the whole verification run,

4. the robot was started and the ability of the robot
to reach the target position was monitored and
eventually the reason of its failure was observed.

Results of these experiments are summarized in Ta-
ble 2. The first row shows the number of verifica-
tion runs without any impact on the electronic con-
troller, while the second row indicates the number of
faults that cause discrepancy on the output of the elec-
tronic controller. The third row enumerates the reli-
ability improvement of the units with triplication ap-
plied. The reliability improvement was calculated us-
ing Equation 1 for each pair of units with corresponding
HLS settings set s.

reliab improvs =
fails nofts − fails triples

fails nofts
∗ 100

(1)

Table 2 also shows that electronic failure sometimes
led to “Goal not reached” or “Goal reached”. It should
be noted that sometimes the robot reached the goal po-
sition although its electronic system failed. The table
shows that the noopt-area version of robot controller is

276 IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017

the most prone to injected faults. The number of faults
which led to electronic failure is 51 which is 5.1% of in-
jected faults.

Table 2. Impact of faults on various versions
of robot controller without and with fault tol-
erance method applied.

Monitored impact
noopt-area pipeline1-area unroll2-area

noft triple noft triple noft triple

Electronic OK [−] 949 982 967 996 979 995
Electronic failed [−] 51 18 33 4 21 5
Reliability improvement [%] – 64.7% – 87.9% – 76.2%

Goal not reached [−] 50 16 32 4 19 4
Collision with wall [−] 4 2 5 1 4 1
Goal reach. alth. el. fail. [−] 1 2 1 0 2 1

The next stage of our experiments was targeted to
applying the proposed methodology to each variable of
the robot controller algorithm specification (in tables
and charts labeled as triple version). We evaluated 1)
a resource consumption, 2) a susceptibility of modified
robot controllers to the faults and the comparison of
the results with the versions without any fault toler-
ance modifications.

The comparison of the resource consumption of the
noft and triple versions (with the proposed method ap-
plied) is available in Table 1. The synthesis tool used
was the Xilinx Integrated Synthesis Environment (ISE)
[16]. It is evident that the robot controller hardened by
the proposed methodology consumes more resources.
In comparison with the complete triplication of the
robot controller (rows of Table 1 labeled as TMR) that
were synthesized using three copies of the correspond-
ing noft version, less resources are consumed, although
in some cases such as in the case of the unroll2-area
the resource utilization increased. However, it is im-
portant to keep in mind the complete triplication com-
prises three copies of the control-path, while the pro-
posed method is data-path only.

From the reliability point of view the same exper-
iments were prepared. In this stage, we also injected
one single fault during one verification run. The sce-
nario of each verification run, including the maze map,
was identical to that of the experiments mentioned in
the first phase. Based on 1000 verification runs we can
say that the proposed methodology leads to a lower
sensitivity on injected faults as is shown in Figure 6.
The most significant contribution can be seen in the
case of the pipeline1-area where our methodology led
to an improvement of 87.9%. In case of unroll2-area
the improvement is 76.2%. The smallest improvement
of 64.7% was achieved in case of noopt-area. Based on
these experiments we can conclude that the proposed
methodology leads to improvement of the fault toler-

ance against SEUs with the best efficiency for pipelined
designs. However, this method needs to be combined
with another approach considering the control-path,
which would provide even better resilience to faults.

Figure 6. Number of faults that led to failure
of the electro-mechanical system for each of
the versions.

5. Conclusions and Future Research

In this paper we introduced a newly emerging ap-
proach to easily achieve a certain level of fault tolerance
with the usage of HLS. In our experiments, robot con-
troller system is modeled in the C++ language. After
that, the model is modified using our approach and
synthesized using HLS with selected settings sets. Re-
sulting systems, which have all data-path components
and data elements triplicated, are evaluated using sin-
gle fault injections. The experiments monitor the im-
pacts of injected faults, both on robot controllers with-
out proposed fault tolerance methodology applied, and
also on robot controllers hardened against faults. The
experiments show that single faults injected into uti-
lized LUTs of the hardened robot controller had smaller
impact on the robot controller and its behavior. In
our experiments, resource consumption was also an-
alyzed. The proposed methodology leads to a greater
consumption of resources, the comparison of each of the
versions with the TMR triplication the corresponding
robot controller was provided as well. The objective
of our research is to improve this principle to make it
generally usable and show its usability on other appli-
cations or benchmarks.

The next step in our research would be to involve
the evaluation of the impact of these modifications on
different parts of the system. The main idea is that
each part of the system deserves a different level of re-
liability, based on its function and thus a different level
of fault tolerance. Therefore, it is not necessary to ap-
ply the same level of fault tolerance to every part of the

IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017 277

system and it is very likely that another configuration
of fault tolerance that has at least the same level of
dependability with less resources consumed exists.

Acknowledgements

This work was supported by The Ministry of Educa-
tion, Youth and Sports from the National Programme
of Sustainability (NPU II); project IT4Innovations ex-
cellence in science - LQ1602 and BUT project FIT-S-
14-2297.

References

[1] J. Bennett, A. Jack, B. Mecrow, D. Atkinson,
C. Sewell, and G. Mason. Fault-tolerant Control Ar-
chitecture for an Electrical Actuator. In Power Elec-
tronics Specialists Conference, 2004. PESC 04. 2004
IEEE 35th Annual, volume 6, pages 4371–4377, June
2004.

[2] K. A. Campbell, P. Vissa, D. Z. Pan, and
D. Chen. High-Level Synthesis of Error Detecting
Cores Through Low-Cost Modulo-3 Shadow Datap-
aths. In Proceedings of the 52nd Annual Design Au-
tomation Conference, DAC ’15, pages 161:1–161:6,
New York, NY, USA, 2015. ACM.

[3] S. Cutts. A Collaborative Approach to the More
Electric Aircraft. In Power Electronics, Machines
and Drives, 2002. International Conference on (Conf.
Publ. No. 487), pages 223–228, June 2002.

[4] M. Fingeroff. High-Level Synthesis Blue Book. Xlibris
Corporation, 2010.

[5] B. Gerkey, R. T. Vaughan, and A. Howard. The
Player/Stage Project: Tools for Multi-robot and Dis-
tributed Sensor Systems. In Proceedings of the 11th in-
ternational conference on advanced robotics, volume 1,
pages 317–323, 2003.

[6] M. Graphics. Catapult HLS. <https://www.mentor.

com/hls-lp/catapult-high-level-synthesis/>,
2017. Accessed: 2017-07-07.

[7] T. Inoue, H. Henmi, Y. Yoshikawa, and H. Ichihara.
High-Level Synthesis for Multi-Cycle Transient Fault
Tolerant Datapaths. In 2011 IEEE 17th International
On-Line Testing Symposium, pages 13–18, July 2011.

[8] M. Kaneko and Y. Tsuboishi. Constrained Binding
and Scheduling of Triplicated Algorithm for Fault Tol-
erant Datapath Synthesis. In 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), pages
1448–1451, June 2014.

[9] F. L. Kastensmidt, G. Neuberger, L. Carro, and
R. Reis. Designing and Testing Fault-Tolerant Tech-
niques for SRAM-based FPGAs. In Proceedings of the
1st conference on Computing frontiers, pages 419–432.
ACM, 2004.

[10] I. Koren and C. M. Krishna. Fault-Tolerant Sys-
tems. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2007.

[11] Mentor Graphics. AC Datatypes v3.7. <https://www.
mentor.com/hls-lp/downloads/ac-datatypes>,
June 2016. Accessed: 2016-12-14.

[12] A. Meyer. Principles of Functional Verification. Else-
vier Science, 2003.

[13] J. Podivinsky, O. Cekan, J. Lojda, and Z. Kotasek.
Verification of Robot Controller for Evaluating Im-
pacts of Faults in Electro-mechanical Systems. In
Digital System Design (DSD), 2016 19th Euromicro
Conference on, pages 487–494. IEEE, 2016.

[14] A. Shastri, G. Stitt, and E. Riccio. A Scheduling and
Binding Heuristic for High-Level Synthesis of Fault-
Tolerant FPGA Applications. In 2015 IEEE 26th
International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), pages
202–209, July 2015.

[15] M. Straka, J. Kastil, and Z. Kotasek. SEU Simulation
Framework for Xilinx FPGA: First Step Towards Test-
ing Fault Tolerant Systems. In 14th EUROMICRO
Conference on Digital System Design, pages 223–230.
IEEE Computer Society, 2011.

[16] Xilinx. ISE Design Suite. <https://www.xilinx.com/
products/design-tools/ise-design-suite.html>,
2017. Accessed: 2017-07-07.

278 IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017

Paper B

Redundant Data Types and
Operations in HLS and their Use
for a Robot Controller Unit Fault
Tolerance Evaluation

LOJDA Jakub, PODIVÍNSKÝ Jakub, KOTÁSEK Zdeněk

In: Proceedings of IEEE East-West Design & Test Symposium. Novi Sad: IEEE Computer
Society, 2017, pp. 359-364. ISBN 978-1-5386-3299-4.

Available at: https://ieeexplore.ieee.org/document/8110127

88

https://ieeexplore.ieee.org/document/8110127

Redundant Data Types and Operations in HLS and
their Use for a Robot Controller Unit

Fault Tolerance Evaluation

Jakub Lojda, Jakub Podivinsky, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology,

Centre of Excellence IT4Innovations
Bozetechova 2, 612 66 Brno, Czech Republic
{ilojda, ipodivinsky, kotasek}@fit.vutbr.cz

Abstract

Some environments (e.g. space, aerospace or medi-
cal systems) require electronic systems to withstand an
increased occurrence of faults. Moreover, the failure
of these electronic systems can cause high economical
losses or endanger human health. Fault tolerance is one
of the techniques, the goal of which is to avoid such sit-
uations. This paper presents an approach to evaluate
the degree of importance of individual system partitions
when High-Level Synthesis (HLS) methodology is used.
The importance of individual partitions was evaluated
by the usage of our approach to fault-tolerant data-
paths design which is based on the HLS input specifi-
cation modification. The partitions are formed by sets
of variables and operations. A brief description of the
approach to fault tolerance in HLS is shown in the pa-
per as well. Our experiments are evaluated using an
SRAM-based FPGA evaluation platform which allows
us to analyze fault tolerance properties of the Design
Under Test (DUT). In the evaluation platform, func-
tional verification in combination with fault injection
is utilized.

1. Introduction

In our everyday lives we meet various types of elec-
tronic systems. Some of them are used just for en-
tertainment purposes, others help us to make our life
easier, but some of them are very important and safety
critical because they control processes the failure of
which can result in injury, heavy financial losses or can
endanger human health. Medical equipment, space and
aerospace control systems or automotive safety assis-
tants can serve as examples of safety critical systems.

It is very important to protect these systems against
faults and ensure their reliable operation in every sit-
uation.

The technique called fault tolerance [8] is one of
main approaches to increase electronic systems reliabil-
ity. Fault tolerance accepts the fact a fault can appear,
but the goal of this approach is to keep the system func-
tional even with the presence of faults. Fault tolerance
is a widely used technique which is usually based on
various types of redundancy. The most common are
area and time redundancy. Area redundancy usually
uses n-copies of the same functional unit and a com-
parator to guarantee the proper function. On the other
hand, time redundancy is based on repeated computa-
tion and the results from the independent runs are then
compared.

The main subject of our research in the field of fault
tolerant systems design and evaluation are SRAM-
based Field Programmable Gate Arrays (FPGAs). FP-
GAs are composed of reconfigurable blocks and an in-
terconnection network. The SRAM memory, in which
the configuration bitstream is saved, is sensitive to Sin-
gle Event Upsets (SEUs), which are caused by charged
particles [16]. The goal of the research presented in
this paper is to evaluate the importance of various
high level storage elements and associated operations
using their impact on reliability improvement. Know-
ing the importance of various partitions is essential in
ensuring the highest level of reliability in cases where
the remaining chip-area is limited. The fault tolerance
method is based on the modification of an input algo-
rithm before it is processed by HLS. For the evaluation,
the approach of SEU injections in combination with our
evaluation platform is used.

In this paper, the concept of HLS can be under-
stood as a set of methods transforming a high-level de-

978-1-5386-3299-4/17/$31.00 c©2017 IEEE

IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017 359

scription to its implementation on the Register Trans-
fer Level (RTL). The description is made on a high
level of abstraction, usually in the form of an algo-
rithm described in one of the higher-level programming
languages (e.g. C++). The resulting RTL implemen-
tation is dependent on the configuration of the HLS.
The HLS tools usually incorporate an ability to effec-
tively explore the state space of all possible configura-
tions. There are various parallelization techniques in
HLS, although we only consider the most important
the loop acceleration techniques such as loop pipelining
and loop unrolling. These are usually fully exposed to
the designer. The HLS resulting RTL is usually com-
posed of the so-called control-path, which is usually in
the form of a Finite State Machine (FSM), and the so-
called data-path, which contains all the data processing
hardware such as Arithmetic Logic Units (ALUs).

These days a lot of effort in the research of fault
tolerance in HLS is dedicated to data-path harden-
ing. The authors of [5] present a heuristic algorithm
for searching an optimal assignment of operations to
data-paths while considering the maximal cycle length
of the transient fault. The authors of [14] show that
in most cases, 100% fault coverage is not necessary.
This fact allows them to implement a higher degree of
freedom into the phases of scheduling and binding and
save HW resources. The authors of [7] present a two-
phase resource binding heuristic algorithm with con-
siderable processor time and memory usage reduction
in the phase of system design. An approach to error
detection of arithmetic oriented data-paths is presented
in [1]. The authors of [13] show a method of detect-
ing multi-cycle transient faults while connecting the
higher-level synthesis with the lower (physical) level
and reducing the overhead. A new approach for the
fault-tolerant HLS controller is shown in [6]. The au-
thors of this method show that their approach requires
less overhead resources than using the TMR. All the
methods presented rely on a modification of the HLS
methodology, but in our approach we are trying to
strictly separate from the HLS tool itself while keeping
all the benefits of the HLS.

This paper is organized as follows. An overview of
our fault tolerance method based on data types mod-
ifications is proposed in Section 2. The experimental
system and evaluation platform are presented in Sec-
tion 3. The case study and experimental results are
summarized in Section 4. Section 5 contains the con-
clusion of the paper and presents our plans for future
research.

2. HLS-based Fault Tolerance Ap-
proach

In our approach we modify the input specification of
the HLS to achieve a fault-tolerant system at the out-
put of the HLS methodology. As this approach works
at the level of abstraction of the input specification, it
profits from all the benefits of the HLS. This idea was
already presented in our previous work [10], although
in this paper the method is used to evaluate the im-
portance of various partitions of the DUT.

In the C++ language code, three places to make
modifications can be distinguished: 1) data types;
2) arithmetic and logic operations; and 3) flow control
statements. This research is focused on the data types
(DTs) and operations modifications. The method of
creating new DTs, which we call the Redundant Data
Types (RDTs), will be shown on the well known princi-
ple of the Triple Modular Redundancy (TMR). RDTs
are using already existing (in the following text ref-
erenced as original) DTs, where each RDT expresses
one method of fault tolerance (e.g. the RDT triple ex-
presses TMR). This approach allowed us to modify the
semantics of corresponding DT operations and to im-
plement fault tolerance methods into these operations.
As a result, all the operations whose operands include
at least one RDT are modified according to the partic-
ular fault tolerance method of the RDT(s).

In the phase of a new RDT creation, three types of
operations considering their arity must be addressed:
1) unary ; 2) binary ; and 3) ternary. While in the
case of unary operations there is no need to consider
another DTs existence, in the case of ternary (condi-
tional) operations, however, an ability to cast the RDT
variable to the Boolean DT must be added to provide
the ternary operator with a Boolean value in order to
evaluate the conditional expression. In the case of bi-
nary operations, operands of multiple combinations of
DTs or RDTs may arise. These combinations include:
a) intra-data type operations – RDT vs. RDT of equiv-
alent redundancy types (e.g. TMR vs. TMR subsys-
tem); b) inter-data type operations – RDT vs. RDT
of different redundancy types – (e.g. TMR vs. du-
plex subsystem); and c) original-data type operations
– RDT vs. it’s original (unhardened) DT (e.g. TMR
vs. unhardened subsystem). Examples of the combina-
tions of RDT and DT operations are shown in Figure 1.
Each time a new RDT is added, all existing RDTs must
be updated to address all of the newly arisen inter-data
type operation combinations.

With our approach it is relatively easy to incorpo-
rate fault tolerance into systems already described, al-
though the decision on which RDT to apply to which

360 IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017

a) b) c)

M1

M2

M3

Fr
om

 T
M

R
su

bs
ys

te
m

M1

M2

M3
Fr

om
 d

up
le

x

C
/S
W

M1

M2

M3

Fr
om

 u
nh

ar
de

ne
d

su
bs

ys
te

m

su
bs

ys
te

m

Figure 1. Three types of cases that can be
distinguished when considering binary oper-
ations, intra-DT operation between two TMR
subsystems (a), inter-DT operation between
system with TMR and duplex hardening (b)
and original-DT operation between TMR and
unhardened subsystems (c).

variable might not be a trivial problem in cases where
the whole system contains hundreds or even thousands
of program variables. For such cases, our goal is to de-
velop an automated methodology that would contain
guides to calculate weights for algorithm operations
and thus corresponding variables to estimate the im-
pact of a particular modification of the input code. We
assume that when a limited amount of HW resources
is a concern, the selection of the amount of redundancy
for each component of the system should be in correla-
tion with its importance. To express the changes made
in DTs of the input algorithm, an extension of Ac-
tivity Diagram (AD) from Unified Modeling Language
(UML), which is described in its original form in [2],
could be used. For each action of the AD, the exten-
sion assigns a corresponding set of variable instance
names utilized, their original DTs and eventually the
RDTs replacing them. An example of the extended
AD is shown in Figure 2. The example contains one
action with two corresponding original variables and
their DTs. The corresponding RDT if applied is listed
for each variable on the right side of the vertical line.
In this example of an AD, each variable is hardened
with the triple RDT.

finish detect distance: int
size: unsigned char

triple<int>
triple<unsigned char>

Figure 2. An example of the extended UML AD,
to each action variable instances and corre-
sponding DTs are assigned; RDTs if applied
are listed on the right side of the line.

3. Experimental platform

The objective of our research comprehends not only
the development and improvement of fault tolerance
methodologies, but their evaluation as well. In our
previous papers (e.g. [12]) the evaluation platform for
checking the impact of faults was presented. Our eval-
uation platform uses functional verification [11] as a
tool for monitoring the impact of faults injected into
an electronic controller implemented into an FPGA.
The main task of the functional verification is to check
whether a verified circuit satisfies its specification. It
compares outputs of a verified circuit running in the
RTL simulator with a reference model. When fault in-
jection is required, the DUT must be implemented into
an FPGA. In this case the classical simulation-based
functional verification is not used.

The architecture of our evaluation platform is shown
in Figure 3. The two main parts are a computer and an
FPGA development board with the robot controller.
We use the ML506 board with the Virtex 5 FPGA,
which allows us to inject faults directly into the FPGA.
Another FPGA board (in the middle) serves as a bridge
between the Ethernet interface and the General Pur-
pose Input Output (GPIO) ports. The fault injector is
one of the components running on the computer. Our
fault injector [15] is based on the Partial Dynamic Re-
configuration (PDR) [17]. It reads part of the con-
figuration bitstream from the configuration memory
through the JTAG interface, then the requested num-
ber of specified bits of the bitstream is inverted and
the modified bitstream is configured back to the con-
figuration memory. The evaluation platform is able to
use an electro-mechanical application as an experimen-
tal system, which allows us to monitor the impact of
faults not only on the electronic controller, but also
on the controlled mechanical parts. It should be noted
that the simulation of the mechanical part is important
and also runs on the computer. The electronic con-
troller implemented into the FPGA is connected with
the simulation of the mechanical part through the Eth-
ernet interface. An evaluation of the impact of injected
faults, both on the electronic and mechanical parts, is
performed in the software of the verification environ-
ment, which runs on the computer.

We use a robot for the searching path through a
maze and its electronic controller as an experimental
electro-mechanical system. Our robot controller is im-
plemented in VHDL which can be synthesized and con-
figured in the FPGA. So, there are two possibilities
on how to evaluate the fault tolerance methodologies:
1) apply a fault tolerance methodology to the imple-
mented controller; or 2) create a new robot controller

IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017 361

PC

Ethernet

JTAG - Fault injection

Input

Output

GPIO
A

ct
iv

a
to

rs FPGA
Ethernet
UDP
Buffers

Functional
 verification
Environment
 simulation
Fault injection

FPGA

Robot
Controller

FS
M

Figure 3. The architecture of our evaluation
platform.

according to the evaluated fault tolerance methodol-
ogy. The second approach is used in this work and we
have implemented a new HLS-based robot controller
using the HLS flow.

4. Case Study and Experimental Re-
sults

For the purpose of our approach evaluation, a robot
controller was implemented according to HLS method-
ology. The input specification is written in the C++
language and is based on the so-called left-hand algo-
rithm which in the case of a crossroad in a maze always
follows the wall on its left side. The Player/Stage [3]
simulation environment is used to simulate the robot
which has four sensors on its chassis, each facing one
of the sides of the World.

In this research we are trying to evaluate the impor-
tance of each particular component of the robot con-
troller unit and thus find out components that have
the greatest potential in adding SEU resiliency if made
fault tolerant. Our previous research was targeted to-
wards an evaluation of the robot controller design fully
hardened with our method when considering various
HLS settings, while in this paper, the HLS settings
remain constant and resilience against SEUs is always
evaluated for designs with only one particular partition
hardened.

An RDT named triple, which is based on the TMR
principle, was used. For the purpose of evaluation,
seven new robot controller unit versions were created
using the Catapult C University Version tool [4] and
synthesized with the Xilinx Integrated Synthesis Envi-
ronment (ISE) [18]. Each controller of these versions
has the proposed methodology applied to a different set
of variables. These seven sets of variables are mutually
disjoint. Since placing all of the seven extended ADs for
each of the robot controllers to this paper would be very

space-consuming, Figure 4 shows the extended AD of
the robot controller unit having each variable hardened.
The figure also highlights the seven variable sets with
their proposed modifications. It is important to note
that for each of the seven controller designs, only the
corresponding set of variables was hardened. That is,
for the controller unit version 1, only the set of variables
marked by 1 (i.e. the x goal and the y goal variable)
was hardened, while leaving the remaining variables un-
hardened for a particular design. Similarly, the other
six versions were created. The HLS setup used during
the synthesis is based on the pipeline1-area HLS set-
tings set from our previous research which was submit-
ted to [9]. The pipeline1-area settings comprehend the
whole design pipelined with an Initiation Interval (II)
of 1. As this HLS setup turned out to be the most
sensitive to our approach (i.e. with the best reliability
improvement gain when each variable used the triple
RDT from all of the setups tested), we decided to use
it in this research in order to achieve the best pos-
sible resolution when distinguishing among reliability
improvements of various versions.

set goal

buffer input
data

compute next step

 continue
or first move

get speed

comp. current
x and y coord.

 goal
reached

N

Y

compute
next turn

zero
speed

move

x_goal: ac_int<...>
y_goal: ac_int<...>

triple<ac_int<...>>
triple<ac_int<...>>

valid_dist_{a,b,c}: ac_int<...>
valid_s_{0,1,2,3}: ac_int<...>

triple<ac_int<...>>
triple<ac_int<...>>

{x,y}_max: ac_int<...>
my{a,b,c}: ac_int<...>
app_x: ac_int<...>
num,den: ac_int<...>

triple<ac_int<...>>
triple<ac_int<...>>
triple<ac_int<...>>
triple<ac_int<...>>

dir: direction_t
dir_tmp: direction_t

triple<direction_t>
triple<direction_t>

Y

N

first: ac_int<...>
speed_set: ac_int<...>

triple<ac_int<...>>
triple<ac_int<...>>

spot: map_spot_t
my_pos_{x,y}: ac_int<...>
s{0,1,2,3}: ac_int<...>

triple<map_spot_t>
triple<ac_int<...>>
triple<ac_int<...>>

move_count: ac_int<...>
last_dir: direction_t

triple<ac_int<...>>
triple<direction_t>

1

2

3

4

5

6

7

Figure 4. The extended UML AD of the robot
controller having each variable hardened by
the triple RDT with the variables divided into
seven sets.

For each version of this robot controller, 2 000 eval-

362 IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017

uation runs were performed. The scenario of each run
was as follows:

1. the robot controller unit was reinstated into its
initial state, the maze map as well as its starting
and target positions remained constant for all of
the evaluation runs,

2. the Player/Stage simulation environment was
started, the robot was placed on the starting po-
sition,

3. one SEU was injected into a bit of the bitstream,
the bit was selected uniformly at random from
all bits utilized as LUTs contents, the bit re-
mained in a faulty state during the whole verifi-
cation run,

4. the ability of the robot to reach the target posi-
tion was monitored.

Table 1 shows the comparison of reliability gained
for each robot controller version with the correspond-
ing area overhead, which were calculated using the ref-
erence values of the unhardened version. The table
also shows the numbers of unary, binary and ternary
operations and numbers of inter-, intra- and original-
DT operations associated with the hardened part us-
ing the triple RDT. The reliability improvement and
the area overhead of each unit i were calculated using
Equation 1 and Equation 2, respectively. The reference
values of the unhardened version from our previous re-
search were used for the calculation.

reliab improvi =
failuresref − failuresi

failuresref
∗ 100 (1)

area overheadi =
slicesref − slicesi

slicesref
∗ 100 (2)

As can be seen in Table 1, the designs with the
higher overhead (numbers 2, 5 and 7) have achieved
a higher level of reliability. In the other cases, our
fault tolerant designs are even smaller than the refer-
ence unhardened design. In the cases of 1, 3 and 6, the
smaller designs perform still better than the reference
design. We believe this interesting behavior is caused
by various pipelined settings the HLS tool chooses (i.e.
various sizes of pipelined blocks the buffering registers
are inserted in between). Further research is needed to
find out the exact reason for this behavior, as it leads
to significant reliability improvement when considering
the chip-area consumed. It is important to note that

Table 1. The experimental evaluation of re-
sources overhead, operations hardened and
reliability gained in comparison with the un-
hardened reference values.

Robot Version Ref. 1 2 3 4 5 6 7

LUTs bits [–] 21952 17408 55744 12800 15744 47552 15872 35840
Slices [–] 196 147 370 135 165 379 147 250
Failures [h] 33.0h 27.0h 13.5h 30.5h 37.5h 15.5h 29.5h 17.0h
RDT
ops.
[–]

unary 0 0 7 22 4 4 2 2
binary 0 6 7 32 7 9 5 2
ternary 0 0 0 0 0 0 0 0

RDT
ops.
[–]

inter-DT 0 0 0 0 0 0 0 0
intra-DT 0 0 0 30 4 0 0 2
orig.-DT 0 6 14 24 7 13 7 2

Reliability
improv. [%]

− 18.2% 59.1% 7.6% -13.6% 53.0% 10.6% 48.5%

Area over-
head [%]

− -25.0% 88.8% -31.1% -15.8% 93.4% -25.0% 27.6%

the operations are associated with variables of vari-
ous bit-width lengths, thus the operations complexity
varies. Therefore, the size of the resulting design does
not correlate with the number of operations hardened.
As part of our future research, we would like to try our
approach with a different HLS tool that would allow
us to to specify the synthesis parameters in a more de-
tailed way. Our intention is to also research a method
to estimate the importance of variables from the input
algorithm without the need for the long process of the
synthesis and fault injection.

5. Conclusions and Future Research

In this paper a newly emerging approach to fault
tolerance of HLS-synthesized systems was briefly ex-
plained and evaluated after its application to a robot
controller unit. The robot controller C++ description
was partitioned and into each partition a set of vari-
ables was assigned. Finally, each robot controller ver-
sion, which included the corresponding set hardened by
our approach, was evaluated. The experimental eval-
uation was performed using our evaluation platform,
which incorporates injection into the utilized contents
of FPGA LUTs. The main contribution of the paper
is to demonstrate a way to evalate the importance of
particular operation in HLS.

In the near-future, we would like to try our approach
with a different HLS tool (possibly with some open-
source alternative). As part of our future work, we
would like to incorporate various fault tolerance meth-
ods and evaluate the impact of hardening other places
in the C++ code the fault tolerance could be applied
to (mainly the control statements). And finally, from
the results investigated, we would also like to focus on

IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017 363

the creation of a methodology to automate the whole
process of design modifications and the proper form of
redundancy selection.

Acknowledgements

This work was supported by The Ministry of Educa-
tion, Youth and Sports from the National Programme
of Sustainability (NPU II); project IT4Innovations ex-
cellence in science - LQ1602 and BUT project FIT-S-
14-2297.

References

[1] K. A. Campbell, P. Vissa, D. Z. Pan, and
D. Chen. High-Level Synthesis of Error Detecting
Cores Through Low-cost Modulo-3 Shadow Datap-
aths. In Proceedings of the 52nd Annual Design Au-
tomation Conference, DAC ’15, pages 161:1–161:6,
New York, NY, USA, 2015. ACM.

[2] M. Fowler. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3
edition, 2003.

[3] B. Gerkey, R. T. Vaughan, and A. Howard. The
Player/Stage Project: Tools for Multi-robot and Dis-
tributed Sensor Systems. In Proceedings of the 11th in-
ternational conference on advanced robotics, volume 1,
pages 317–323, 2003.

[4] M. Graphics. Catapult HLS. <https://www.mentor.

com/hls-lp/catapult-high-level-synthesis/>,
2017. Accessed: 2017-07-07.

[5] T. Inoue, H. Henmi, Y. Yoshikawa, and H. Ichihara.
High-Level Synthesis for Multi-Cycle Transient Fault
Tolerant Datapaths. In 2011 IEEE 17th International
On-Line Testing Symposium, pages 13–18, July 2011.

[6] T. Iwagaki, Y. Ishimori, H. Ichihara, and T. Inoue.
Designing Area-Efficient Controllers for Multi-Cycle
Transient Fault Tolerant Systems. In 2015 20th IEEE
European Test Symposium (ETS), pages 1–2, May
2015.

[7] M. Kaneko and Y. Tsuboishi. Constrained Binding
and Scheduling of Triplicated Algorithm for Fault Tol-
erant Datapath Synthesis. In 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), pages
1448–1451, June 2014.

[8] I. Koren and C. M. Krishna. Fault-Tolerant Sys-
tems. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2007.

[9] J. Lojda, J. Podivinsky, Z. Kotasek, and M. Krcma.
Data Types and Operations Modifications: A Prac-
tical Approach to Fault Tolerance in HLS. In Paper
submitted to EWDTS 2017, East-West Design & Test
Symposium 2017.

[10] J. Lojda, J. Podiv́ınský, M. Krčma, and Z. Kotásek.
HLS-based Fault Tolerance Approach for SRAM-
based FPGAs. In Proceedings of the 2016 Interna-
tional Conference on Field Programmable Technology,
pages 297–298. IEEE Computer Society, 2016.

[11] A. Meyer. Principles of Functional Verification. Else-
vier Science, 2003.

[12] J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek.
The Evaluation Platform for Testing Fault-Tolerance
Methodologies in Electro-Mechanical Applications. In
Digital System Design (DSD), 2014 17th Euromicro
Conference on, pages 312–319. IEEE, 2014.

[13] A. Sengupta and D. Kachave. Generating Multi-Cycle
and Multiple Transient Fault Resilient Design Dur-
ing Physically Aware High Level Synthesis. In 2016
IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 75–80, July 2016.

[14] A. Shastri, G. Stitt, and E. Riccio. A Scheduling and
Binding Heuristic for High-Level Synthesis of Fault-
Tolerant FPGA Applications. In 2015 IEEE 26th
International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), pages
202–209, July 2015.

[15] M. Straka, J. Kastil, and Z. Kotasek. SEU Simulation
Framework for Xilinx FPGA: First Step Towards Test-
ing Fault Tolerant Systems. In 14th EUROMICRO
Conference on Digital System Design, pages 223–230.
IEEE Computer Society, 2011.

[16] D. White. Considerations Surrounding Single
Event Effects in FPGAs, ASICs, and Processors.
<http://www.xilinx.com/support/documentation/

white_papers/wp402_SEE_Considerations.pdf>,
Mar. 2012. Accessed: 2016-09-15.

[17] XILINX. Partial Reconfiguration User Guide.
<http://www.xilinx.com/support/documentation/

sw_manuals/xilinx14_1/ug702.pdf>, Apr. 2012.
Accessed: 2016-09-15.

[18] Xilinx. ISE Design Suite. <https://www.xilinx.com/
products/design-tools/ise-design-suite.html>,
2017. Accessed: 2017-07-07.

364 IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017

Paper C

Majority Type and Redundancy
Level Influences on Redundant
Data Types Approach for HLS

LOJDA Jakub, PODIVÍNSKÝ Jakub, KOTÁSEK Zdeněk, KRČMA Martin

In: 2018 16th Biennial Baltic Electronics Conference (BEC). Tallinn: IEEE Computer
Society, 2018, pp. 1-4. ISBN 978-1-5386-7312-6.

Available at: https://ieeexplore.ieee.org/document/8600951

95

https://ieeexplore.ieee.org/document/8600951

Majority Type and Redundancy Level Influences
on Redundant Data Types Approach for HLS

Jakub Lojda, Jakub Podivinsky, Zdenek Kotasek, Martin Krcma
Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations

Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ilojda, ipodivinsky, kotasek, ikrcma}@fit.vutbr.cz

Abstract—Due to the increasing demand for reliable com-
putation in environments that require electronic systems to
withstand an increased occurrence of faults (e.g. space, aerospace
and medicine), new techniques of the so-called Fault Tolerance
insertion arise. From another perspective, today’s systems have
become incredibly large and complex. Methodologies like High-
Level Synthesis are used to reduce time to market and simplify
the verification of the resulting system. In our research we focus
on an implementation of Fault Tolerance into complex systems
with the usage of High-Level Synthesis. In our approach, we are
using newly designed Data Types that introduce redundancy on
the functional level of an algorithm. In this student paper, our
previously presented technique is extended by another means of
redundancy and also by a new type of voting component. The
systems incorporating various levels of redundancies using our
approach are experimentally tested on the application of a robot
controller. The paper also briefly presents the evaluation process
and investigates its correct settings. The results show that the
bit-based majority function is more suitable for usage with our
Redundant Data Types.

Keywords—High-Level Synthesis, Redundant Data Type, Level
of Redundancy, Voter Component, CatapultC, Fault Tolerance.

I. INTRODUCTION

Some electronic systems require a very high level of relia-
bility. The reason may be because the repair of these systems
is very costly or in some cases even impracticable. Another
reason for high reliability demand are systems whose failure
would cause high economical losses or even could endanger
human health. Two main approaches to high reliable systems
construction exist. The first is the so-called Fault Avoidance
(FA) [1], which is based on a strict selection of reliable compo-
nents, thus increasing the overall system reliability. The second
approach is the so-called Fault Tolerance (FT) [2]. The FT
technique accepts that the system is composed of non-reliable
components while trying to hide this fact and propagate the
correct result in a prescribed time, even in the presence of
faults. FT is based on an incrementation of redundancy, which
can be spatial, temporal or information. Basically, a fault
can be distinguished as permanent or transient (i.e. occurring
only for a certain period of time). In our work, we focus on
simulation of permanent faults mainly, as these faults have the
potential to accumulate during the system operation.

As today’s systems are becoming incredibly large and
complex, methodologies such as High-Level Synthesis (HLS)
are becoming popular. The movement to the higher layer of
abstraction helps to reduce time to market and simplify the
verification of the resulting system. HLS in this paper is under-
stood as a collection of methods transforming a description in a
higher-level programming language into its equivalent Register
Transfer Level (RTL) representation. In this research, our goal

is to bring the advantages of using unmodified HLS in the
process of FT systems design. In this paper, the combination
of the spatial and temporal redundancy is used to increase
component reliability. The Catapult C [3] synthesis tool in
collaboration with the Xilinx ISE tool [4] is utilized in this
research. The Catapult C is set up with all optimizations off
(i.e. no loop pipelining or unrolling is active), as the influences
of those settings were, among others, studied in our paper [5].

Generally, two approaches incorporating FT into HLS can
be distinguished: 1) HLS methods modifications; and 2) de-
scription source modifications. The method in [6] focuses on
modified data-paths synthesis with concurrent error detection
ability. The authors of [7] show a method of detecting multi-
cycle transient faults. Another approach to error detection
is presented in [8]. The authors of [9] present a heuristic
algorithm for searching an optimal assignment of operations
to data-paths while considering transient faults. In opposition
to all the methods mentioned, the following approach moves
the problem of reliability to a higher abstraction level (i.e.
the function level). The authors of [10] developed a new
data type that introduces the so-called self-checking (i.e. the
error detection technique) into data-paths of HLS generated
systems. The authors also consider the suitability of moving
such problem to a higher level of abstraction in the context
of the complexity of today’s systems. In the paper [11], the
authors evaluated this method on an application of the FIR
filter. Generally, moving to a higher level of abstraction is
important, as the level of chip-integration rises. In our research,
we focus on developing a reliability insertion approach easily
usable with today’s modern HLS tools.

This paper is organized as follows. An overview of our
FT method based on Redundant Data Types is proposed in
Section II. Our experimental system setup and evaluation
platform are presented in Section III. The experimental results
are summarized in Section IV. Section V concludes the paper
and suggests our plans for future research.

II. REDUNDANT DATA TYPES METHOD

Our method is based on the modification of the input
source code before it is processed by HLS. Newly created
Data Types (DTs) are used as a means of redundancy insertion.
The redundancy is inserted to the source code by replacing the
original DT name with the name of newly created so-called
Redundant Data Type (RDT). RDT then incorporates redun-
dancy to all the operators and storage elements associated with
the corresponding variable instance. Each of RDTs represents
one method of redundancy insertion, for example, the RDT
triple represents the well known Triple Modular Redundancy
(TMR); the RDT quadruple represents Quadruple Modular
Redundancy (4MR); and the quintuple represents Quintuple

978-1-5386-7312-6/18/$31.00 ©2018 IEEE 16th Biennial Baltic Electronics Conference (BEC2018)
Tallinn, Estonia, October 8-10, 2018

Modular Redundancy (5MR). Each RDT is connected to its so-
called original data type, which implements the original data
operations. The original data type is usually (but not limited
to) one of the base types of the programming language used.
In our research, RDTs are implemented using C++ templates.

In our previous work [12], we also used RDTs to evaluate
importance of particular operation groups in a circuit. In our
paper [5], three general types of C++ modifications were iden-
tified: 1) variables (storage elements), 2) operators (arithmetic
and logic operations) and 3) flow control statements. In this
research, we focus on the first two types of modifications.
The storage element multiplication is achieved by instantiating
the variables of the original data type by the desired number
of times. Then for unary operators, one RDT operation is
performed on each instance of the original data type according
to its original implementation. In order to allow automatic
interconnections of subsystems using different reliability meth-
ods (i.e. binary operation of two non-equivalent RDTs, for ex-
ample, the TMR and duplex), three cases must be distinguished
for binary operations: a) intra-data type operations – RDT vs.
RDT of equivalent redundancy types (e.g. TMR vs. TMR);
b) inter-data type operations – RDT vs. RDT of different
redundancy types – (e.g. TMR vs. duplex); and c) original-
data type operations – RDT vs. its original (unhardened)
DT (e.g. TMR vs. unhardened subsystem). These cases are
schematically illustrated in Figure 1. For the ternary operator
(i.e. the conditional operator) compatibility, the RDT must
be able to cast its value to the Boolean data type. Each
operation then includes an additional method that ensures self-
synchronization (e.g. a majority function in the case of xMR).

a) b) c)

M1

M2

M3

Fr
om

 T
M

R
su

bs
ys

te
m

M1

M2

M3

Fr
om

 d
up

le
x

C
/S
W

M1

M2

M3

Fr
om

 u
nh

ar
de

ne
d

su
bs

ys
te

m

su
bs

ys
te

m

Figure 1: Three types of cases that can be distinguished
when considering binary operations, (a) intra-DT operation
between two TMR subsystems; (b) inter-DT operation between
system with TMR and duplex hardening; and (c) original-DT
operation between TMR and unhardened subsystems, [5].

As this approach works at the functional level, it allows
for better compatibility between different HLS tools. It also
benefits from the possibility of validation of implemented
redundancy techniques before the development moves to the
RTL. It is also easier to maintain the source code as the
redundancy techniques are separated from the original code.

III. EXPERIMENTAL PLATFORM

The evaluation platform for testing FT properties presented
in our previous work [13] is used for evaluation of the proposed
methodology. Lots of real electronic systems are working
together with some mechanical part. The mechanical part is
usually controlled by its electronic controller. This is the reason
why our evaluation platform monitors impact of faults not only
on the electronic part, but also on the mechanical part. Our
evaluation platform is based on the concept of the functional
verification in combination with the artificial fault injection.
A verified circuit (Design Under Test – DUT) is operating on
Field Programmable Gate Array (FPGA), which allows us to
inject faults directly into FPGA.

The architecture of the evaluation platform is shown in
Figure 2. An electronic controller running on FPGA com-
municates with the simulation of a mechanical part which
is running on a PC. The communication between FPGA and
PC is accomplished through the Ethernet interface which is
transformed to input signals for DUT. This transformation is
done on the second FPGA. The verification environment which
is also running on the computer monitors the communication
between DUT and the mechanical part. The communication is
compared with the reference model and a fault is reported in
the case of a difference detection.

PC

Ethernet

Fault Injection through JTAG

Input

Output

General Purpose
Input/Output

A
ct

iv
a
to

rs FPGA
Ethernet
UDP
Buffers

Functional
 Verification
Environment
 Simulation
Fault Injection

FPGA

DUT: Robot
Electronic
Controller

FS
M

Figure 2: The architecture of our evaluation platform, [12].

The last tool working on PC is the fault injector. We use
our previously published fault injector [14] which is able to
inject permanent faults into a specified area of the FPGA.
A permanent fault is simulated by flipping a configuration
bit. Currently we are able to find a relation between bits of
bitstream and the functional unit implemented on a specified
place on the FPGA. For the experiments efficiency, it is very
important to just inject faults into the utilized area of FPGA.
Unfortunately, the current approach is only restricted on Look-
up Tables (LUTs), so we just inject faults into the occupied
LUTs. The fault injector is able to inject faults according to the
specified strategy. It is possible to inject single faults during
one run of the system or multiple faults within a various period.
In this paper we use multiple injection with a specified rate.

The robot is exploring the maze in the Player/Stage simu-
lation environment and its electronic controller is implemented
into FPGA. The same experimental system is used in this
paper, however, the robot controller is implemented with
respect to the proposed methodology.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

For our experiments, the robot controller was fully imple-
mented in the C++ language. Three redundancy methods were
selected in combination with two majority function types: the
TMR, 4MR and 5MR. For the purpose of these experiments,
we decided to utilize the word-majority function (i.e selecting
the word with the largest representation) and the bit-majority
function (i.e for a particular bit position the value is selected
by the majority representation). Generally, six RDTs (i.e.
one RDT for each combination of redundancy and majority
function type) were implemented according to the method
previously mentioned in this paper. The overview of the RDTs
used in our experiments can be seen in Table I.

TABLE I: The overview of the RDTs we have implemented
as a part of our experimental work.

Redundancy Method
TMR 4MR 5MR

M
aj

o-
ri

ty

Word triple quadruple quintuple
Bit triple bit quadruple bit quintuple bit

For each RDT, one robot controller unit was synthesized.
Each robot controller unit was created by applying equivalent
RDT to each of 30 variables in the controller’s source code.
Moreover, one reference robot controller unit without our
approach applied (i.e. noft) was synthesized. The resource
consumptions for each synthesized robot controller unit can be
seen in Table II. As can be seen, the units with the bit majority
function in their voter consume significantly less resources than
the units with the word majority.

TABLE II: The overview of resource consumptions for each
synthesized robot controller unit.

RDT Applied to
the Robot Controller

Unit Algorithm

Resource Consumption
Occupied
Slices [-]

Slice
Regs [-]

Slice
LUTs [-]

Max.
f [MHz]

LUTs
bits [b]

noft (no RDT) 338 708 634 249.5 19392

W
or

d
M

aj
or

ity triple 611 999 1109 273.4 48704
quadruple 647 1093 1479 239.2 73216
quintuple 999 1560 2261 195.0 122880

B
it

M
aj

or
ity triple bit 535 982 730 274.7 24480

quadruple bit 530 1102 755 309.3 26784
quintuple bit 596 1357 925 284.6 37632

A. Fault Injection Intensity

Redundancy in a circuit does not necessarily improve its
resilience against faults. If we actually injected one permanent
fault into our DUT per verification run, the results obtained
would potentially be distorted by the occupied area of the
circuit tested. The same situation occurs if we injected a con-
stant number of faults per run. It is obvious that the injection
ratio should reflect the size of the DUT. This corresponds to
the fact that the failure manifestation probability is in direct
proportion with the circuit area occupied. For this reason we
suggest incorporating the size of circuit into the unit of fault
injection rate. For this purpose we chose the unit of bit of the
bitstream as the metrics for the circuit area occupancy. The
resulting fault injection unit is injection/s/bit.

Moreover, in our research it is important to have an ability
to compare results among various versions of experimental
design implementations. For this purpose, we made a series
of experiments to evaluate the impact of failure rate on the
resulting Mean Time To Failure (MTTF). As the experiments’
execution is very time consuming, we set the number of 500
verification runs for the quintuple RDT. The results for the
failure rates of 4.5e-6 to 0.5e-6 can be seen in Figure 3. With a
decreasing failure rate the number of failed runs also decreases
while the MTTF increases slightly.

Figure 3: The impact of various failure rates on the number of
failures and the resulting Mean Time To Failure (MTTF) for
the controller utilizing quintuple RDTs.

As one maze exploration lasts for 204s, we decided to
choose the failure rate of 2.0e-6 inj/s/bit. In this particular case,
the MTTF of 148s was achieved, which is rational considering

it is the 5MR implementation. As can be seen, while the
failure rate is reduced, the number of failed runs decreases thus
resulting in a less precise computation of the MTTF metrics
because each run of the robot was limited to 324s (i.e. 204s
+ 120s) in order to speed up the process of controller circuit
evaluation (e.g. in case the robot is looped). It is important
to note that the failure rate was selected only to make a fair
comparison (according to the resolution scale provided by our
evaluation platform) rather than to precisely simulate a real
failure rate of any environment (e.g. the space).

B. Effect of Redundancy Level and Voter Type

We decided to examine LUTs bitsunit × 0.1 number of
runs per one robot controller unit as we assume that the number
of verification runs should also be in direct proportion with
the size of the DUT. The injection strategy was to inject faults
into LUTs bits with the chosen fault rate of 2e-6 inj/bit/s. Each
fault injection bit was selected uniformly at random from all
the utilized LUTs content bits. The parameters of the testing
with the exact results obtained are shown in Table III.

TABLE III: The overview of the parameters of testing and the
results obtained.

RDT Applied to
the Robot Controller

Unit Algorithm

Parameters of Testing Results Obtained
LUTs

bits [b]
Num. of
Runs [-]

Fault Rate
[inj/s/bit]

Failed
Runs[%]

MTTF
[s]

noft (no RDT) 19392 1940 2e-6 21.24 131.05

W
or

d
M

aj
or

ity triple 48704 4871 2e-6 18.99 139.40
quadruple 73216 7322 2e-6 20.88 138.14
quintuple 122880 12288 2e-6 21.34 141.06

B
it

M
aj

or
ity triple bit 24480 2448 2e-6 18.91 128.68

quadruple bit 26784 2679 2e-6 20.87 132.88
quintuple bit 37632 3764 2e-6 25.05 130.08

For a better illustration, the results obtained are also shown
in the chart in Figure 4. First, it is important to note that, the
larger the circuit is, the more faults per second are injected,
because the fault rate is related to the number of bits of
bitstream, and, thus, the comparison is more fair. However,
the difference between the noft and reliable units looks smaller
from this perspective. As can be seen the results indicate that
for the triple, the number of failed runs is lower which is the
expected situation. For the quadruple, the percentage of failed
runs is lower than for the unhardened unit, but still higher than
for the triple unit. We assume this phenomenon is caused by
the fact the 4MR redundancy occupies more area while the
majority function still has to obtain three correct results (bits)
out of four to select the correct output. The MTTF confirms
this assumption as for the triple and quadruple, the MTTF
is nearly equivalent. For the quintuple robot controller unit,
the percentage of failed runs is slightly higher than for the
noft. The MTTF suggests this is caused by a higher scatter
of values and the fact the robot was tested exactly for the
time period of one maze traversal plus 120 seconds. As can
be seen the triple bit controller unit achieved the failed runs
ratio of 18.91%, which is the best result. In contrast, the
MTTF decreased which would also suggest the scatter of
values is higher in this case. For the quadruple bit, the same
phenomenon of increasing failed runs ratio can be observed.
For the quintuple bit, the percentage of failed runs increased
and the MTTF decreased. In this case the bit-based majority
function does not bring better results although the resulting
circuit is still much smaller than its word majority version.

Figure 4: The overview of the results obtained through exper-
imentation for each robot controller unit.

The conclusion of our experiments is that the bit majority
function is more suitable for the purpose of usage with RDTs
as it causes less overhead while keeping an almost equivalent
reliability. In general, each RDT satisfies different require-
ments in terms of mission time or failure rate percentage.

C. Number of Verification Runs

As the number of verification runs was chosen purely
empirically, we included a retrospective evaluation of the
achieved precision. As a basic method of evaluation, we
assume the higher the number of verification runs is, the more
precise the results are. Therefore, we set the original results
as a reference value and retrospectively calculated the results
we would obtain if we set the number of verification runs
lower. The reference value was then subtracted from each of
the retrospectively calculated failure rates. By examining the
deviation we are then able to get an idea of the achieved
accuracy of our results. The differences in the failure rate ratios
for each controller unit are shown in the chart in Figure 5. The
number of verification runs for each controller unit is related
to its number of LUTs bits (e.g. 0.1 in the chart represents
0.1× LUTs bitsunit verification runs).

Figure 5: The retrospectively calculated failure rate differences
for different numbers of verification runs.

As can be seen in Figure 5, starting from the ratio of 0.073
(i.e. 0.073×LUTs bitsunit runs) the difference from the result
obtained at 0.1 × LUTs bitsunit runs is kept under 0.01%.
The important feature is that the differences stay at the same
level after this point. Assuming the average converges to the
ideal value, this suggests that the number of verification runs
is sufficient considering the purpose of our evaluation.

V. CONCLUSION AND FUTURE RESEARCH

This paper briefly describes the approach of RDTs for
usage with HLS and classifies this method in the context
of other approaches. The main part of this paper evaluates
the effect of the majority function type (i.e. word- and bit-
based). The results show that the bit-based majority function

leads to smaller circuits while keeping reasonable reliability.
In addition, the paper also briefly explains the techniques
utilized behind the process of the evaluation and selection of
the evaluation parameters. The selected number of verification
runs was retrospectively reviewed to verify its suitability.

As a part of our future research, we would like to find a
key to select the proper redundancy method for a particular
subsystem (i.e. function, expression etc.) and automate the
process of this selection and source code modification.

ACKNOWLEDGEMENTS

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustainabil-
ity (NPU II), the project IT4Innovations excellence in science
– LQ1602, the BUT project FIT-S-17-3994 and the JU EC-
SEL Project SECREDAS (Product Security for Cross Domain
Reliable Dependable Automated Systems), Grant agreement
No. 783119.

REFERENCES

[1] J.-C. Geffroy and G. Motet, Design of Dependable Computing Systems.
Kluwer Academic Publishers, 2002.

[2] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[3] M. Graphics, “Catapult HLS,” https://www.mentor.com/hls-lp/catapult-
high-level-synthesis/, 2017, accessed: 2017-07-07.

[4] Xilinx, “ISE Design Suite,” https://www.xilinx.com/products/design-
tools/ise-design-suite.html, 2017, accessed: 2017-07-07.

[5] J. Lojda, J. Podivinsky, Z. Kotasek, and M. Krcma, “Data types and
operations modifications: A practical approach to fault tolerance in
HLS,” in 2017 IEEE East-West Design Test Symposium (EWDTS), Sept
2017, pp. 273–278.

[6] A. Antola, V. Piuri, and M. Sami, “High-level Synthesis of Data Paths
with Concurrent Error Detection,” in Defect and Fault Tolerance in VLSI
Systems, 1998. Proceedings., 1998 IEEE International Symposium on,
Nov 1998, pp. 292–300.

[7] A. Sengupta and D. Kachave, “Generating Multi-Cycle and Multiple
Transient Fault Resilient Design During Physically Aware High Level
Synthesis,” in 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), July 2016, pp. 75–80.

[8] K. A. Campbell, P. Vissa, D. Z. Pan, and D. Chen, “High-Level Syn-
thesis of Error Detecting Cores Through Low-cost Modulo-3 Shadow
Datapaths,” in Proceedings of the 52nd Annual Design Automation
Conference, ser. DAC ’15. New York, NY, USA: ACM, 2015, pp.
161:1–161:6.

[9] T. Inoue, H. Henmi, Y. Yoshikawa, and H. Ichihara, “High-Level
Synthesis for Multi-Cycle Transient Fault Tolerant Datapaths,” in 2011
IEEE 17th International On-Line Testing Symposium, July 2011, pp.
13–18.

[10] C. Bolchini, F. Salice, D. Sciuto, and L. Pomante, “Reliable system
specification for self-checking data-paths,” in Design, Automation and
Test in Europe, March 2005, pp. 1278–1283 Vol. 2.

[11] C. Bolchini, A. Miele, F. Salice, D. Sciuto, and L. Pomante, “Reliable
system co-design: the FIR case study,” in 19th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, 2004. DFT
2004. Proceedings., Oct 2004, pp. 433–441.

[12] J. Lojda, J. Podivinsky, and Z. Kotasek, “Redundant data types and
operations in HLS and their use for a robot controller unit fault tolerance
evaluation,” in 2017 IEEE East-West Design Test Symposium (EWDTS),
Sept 2017, pp. 359–364.

[13] J. Podivinsky, O. Cekan, J. Lojda, and Z. Kotasek, “Verification of
Robot Controller for Evaluating Impacts of Faults in Electro-mechanical
Systems,” in Digital System Design (DSD), 2016 19th Euromicro
Conference on. IEEE, 2016, pp. 487–494.

[14] M. Straka, J. Kastil, and Z. Kotasek, “SEU Simulation Framework
for Xilinx FPGA: First Step Towards Testing Fault Tolerant Systems,”
in 14th EUROMICRO Conference on Digital System Design. IEEE
Computer Society, 2011, pp. 223–230.

Paper D

FT-EST Framework: Reliability
Estimation for the Purposes of
Fault-Tolerant System Design
Automation

LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, PÁNEK Richard, KOTÁSEK
Zdeněk

In: Proceedings of the 2018 21st Euromicro Conference on Digital System Design. Praha:
IEEE Computer Society, 2018, pp. 244-251.

Available at: https://ieeexplore.ieee.org/document/8491824

100

https://ieeexplore.ieee.org/document/8491824

FT-EST Framework: Reliability Estimation for the
Purposes of Fault-Tolerant System Design

Automation

Jakub Lojda, Jakub Podivinsky, Ondrej Cekan, Richard Panek, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations

Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ilojda, ipodivinsky, icekan, ipanek, kotasek}@fit.vutbr.cz

Abstract—The complexity of today’s systems is growing along
with the level of chip integration. This results in higher demand
for reliability techniques; it also increases the difficulty of
incorporating reliability in such systems. For this purpose, we are
working on a method to automate reliability insertion; however,
for this method, it is necessary to have feedback on the result. In
this paper, one component of the automation flow enabling the es-
timation of the resulting reliability – Fault Tolerance ESTimation
(FT-EST) framework – is presented along with an improvement
for accelerating the time necessary to reach the estimation.
For the purpose of evaluation, we are using our Redundant
Data Types approach, which enables us to intentionally insert
reliability in a particular operation. The estimation utilizes the
concept of fault injection. The results indicate, that the concept
of Redundant Data Types is functional, however, also suggest its
future improvements (e.g. for the operation of subtraction).

Keywords—Fault-Tolerant, Fault Tolerance Property Estima-
tion, FT-EST, Verification, High-Level Synthesis, Redundant Data
Type.

I. INTRODUCTION

In recent decades, electronic systems have dominated the
field of controlling many important processes. For example,
autonomous vehicles are becoming more and more popu-
lar. Furthermore, electronic systems handle the processes of
airplane control, space aviation, etc. Many medical systems
are dependent on the reliable operation of their computer
controllers, as a failure of these controllers might endanger
the state of health of the patient. Moreover, as the complexity
of systems used in a critical environment is still growing, it is
important to focus on the aspects of their reliability. Reliability
improvement can be achieved through two main approaches.
The first one, called Fault Avoidance (FA) [1], consists of
the selection of components with prescribed quality, which
enhances the overall reliability of the system. The second
approach – Fault Tolerance (FT) [2] – modifies the architecture
of the system in such way that it becomes reliable; however,
the system remains composed of non-reliable parts.

Today’s systems are designed according to new method-
ologies operating on a high level of abstraction. This helps
designers to abstract from the details and simplify the design
process. High-Level Synthesis (HLS) can serve as an example
of this type of new methodology. In this paper, we use the
term ”HLS” to mean a collection of methods transforming
a description in a higher-level programming language (e.g.

C++) into its equivalent Register Transfer Level (RTL) rep-
resentation in the form of another language (e.g. VHDL).
Field Programmable Gate Arrays (FPGAs), towards which
our method is targeted, are particularly prone to Single Event
Upsets (SEUs). SEUs are caused by charged particles (e.g.
a heavy ion or a proton) [3]. Charged particles traveling
through an FPGA have the potential to change the state of the
SRAM configuration memory, thus disrupting the functionality
of the design. A small change in the SRAM configuration
memory might result in a major change in the behavior of
the design. For this reason, reliable systems operated in a hard
environment must implement measures to eliminate the impact.
The current demands on the FPGA technology tend to lower
the number of bits of the bitstream sensitive to faults.

This paper is organized as follows: Related work is pre-
sented in Section II. An overview of our method for the
verification of the final system is proposed in Section III. Our
Fault Tolerance ESTimation (FT-EST) framework is put into
the context of FT system design automation in Section IV.
The method for inserting redundancy during the HLS, which
is the subject of our experimentation, is presented in Section V.
The proposed FT-EST framework is described in Section VI.
Finally, the experimental setup and the results are summarized
in Section VII. The generator, which is able to produce stimuli,
is presented in Section VIII as a part of our future research.
Section IX concludes the paper and mentions our future plans.

II. RELATED WORK

During the testing of the resilience of systems against
faults, waiting for faults to appear naturally is not feasible.
Therefore, some special techniques were developed in order
to artificially accelerate the fault occurrence. An accurate
simulation method for the emulation of the effects of SEUs in
the configuration memory of FPGAs is presented in [4]. This
approach combines simulation and topological analysis of the
design mapped on the FPGA. An analytical algorithm is able to
identify the electrical effects induced into the resources of the
circuit affected by an SEU. Another simulation-based injection
technique, called ”script-based fault injection technique”, is
presented by the authors of [5]. A TCL script-based automated
fault injection methodology built around the target simulator,
which can take designs in both RTL and netlist levels of
abstraction, is proposed. The use of functional verification for
FT evaluation is presented in [6]. The authors use standard
verification language for fault modeling and faults are injected

244

2018 21st Euromicro Conference on Digital System Design

978-1-5386-7377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/DSD.2018.00053

during the verification run in the simulation environment.
These simulator-based techniques prevent the need for design-
ers to use an expensive FPGA board, but there is the problem
that the design is not evaluated on a real FPGA.

Multi-platform fault injection based on the use of a bound-
ary scan through the Joint Test Action Group (JTAG) interface
is presented in [7]. This technique uses JTAG for observing and
modifying signals in design. An FPGA-based fault injection
tool, which is presented in [8], supports several synthesizable
fault models of digital systems and is implemented using
VHDL. However, the fault injection requires the addition
of some extra gates and wires to the original design, and,
thus, modifying the original VHDL. One weak point of this
approach is the difference between the tested device and the
device which will be manufactured.

In [9], [10], techniques which are based on fault injection
into a real FPGA board without changing the original design
were presented. These techniques are based on Partial Dynamic
Reconfiguration (PDR), which allows them to read the config-
uration bitstream, inverse bits and write the affected bitstream
back to the FPGA. In [10], the authors present FLIPPER.
This fault injection platform is composed of two boards with
FPGAs – the main board and the Design Under Test (DUT)
board. The fault injection is controlled by the main board,
which is driven by the software application running on a PC.
The authors in [11] focus on the speed of the fault impact
evaluation, where the fault injection is fully controlled by a
part of the design on the FPGA. The communication with a PC
is used only for the initial configuration of the fault injection
process. The FPGA-based fault injection method is presented
also by the authors of [12], which is demonstrated in [13].
This technique is implemented in Java and is based on the
RapidSmith library [14]. The authors provide a command line
interpreter that can operate in batch or interactive mode, and a
graphical interface to specify the locations of permanent faults.

III. THE VERIFICATION OF THE FINAL SYSTEM

The evaluation of the impact of faults on an FPGA-based
system lay within the scope of our previous research [15]. We
proposed an evaluation platform based on modified functional
verification. In our evaluation platform, we move the verified
design to the FPGA, which allows us to inject faults directly
into the target device. Together with the evaluation platform, an
evaluation process composed of three phases was developed.
The first phase is classical simulation-based functional veri-
fication. The second phase focuses on monitoring the impact
of faults on the electronic part of a verified system. The third
phase monitors the impact of faults on the mechanical part.
Many electronic systems control some kind of mechanical part,
which is the reason that our evaluation platform allows us
to evaluate the impact of faults on the mechanical part. The
main part of our evaluation platform is a fault injector, which
allows us to inject artificial faults directly into the FPGA. We
use a previously-developed fault injector [16], which is based
on PDR. The faults are injected through the JTAG interface
into a specified bit of the bitstream. The robot in the maze
and its robot controller were used as an experimental electro-
mechanical system in our previous case study. The design
of the whole system allowed us to implement various types
of robot controllers (hard-coded, soft-core processor, neural

network, etc.). Various experiments with various fault-injection
strategies have been done and presented in previous papers.

During the experiments with a developed evaluation plat-
form, we identified some disadvantages which we plan to solve
in our new evaluation approach. The evaluation of impact of
the faults is very time-consuming, as many time-consuming
verification runs must be performed. The evaluation platform
is very advantageous in the case of the final evaluation of the
whole system before it is manufactured. However, a designer
needs an evaluation which is done in a short time during the
development process. At the end of the development cycle, a
final, full evaluation with all parts of the system (electronic
and mechanical) can be performed. We identified the fact
that, during the development process, fast evaluation and the
identification of weakness points in the design are necessary.
The designer must harden these weakness points against faults
and perform another evaluation. These are the reasons why we
present a new evaluation approach.

IV. PARAMETER ESTIMATION FOR THE PURPOSES OF FT
DESIGN AUTOMATION

The general idea of our research is to propose a method
and build a platform to automate the process of the insertion
of FT properties into systems that were designed without
FT principles in mind. The demand for such a platform
is based on the constantly-increasing complexity of modern
electronic systems, which makes it significantly complicated to
incorporate FT properties into these systems. Moreover, chip-
level integration is growing constantly, which increases the
probability of SEU manifestation. This is why our previous
research targeted the areas of HLS and FT, as the combination
of both these principles aims to solve both problems. Our
method allows the insertion of FT properties at the algorithm
level without the need for significant changes of the source
description code. Even given this fact, however, the designer
has to insert its knowledge into the process of the decision as
to which FT method to apply to which component.

A. The General Process of FT System Design

The common approach to FT system design consists of
these stages [17]: 1) delimitation of the desired parameters
of the system, 2) selection of fault detection mechanisms,
3) selection of recovery algorithms, 4) evaluation of the FT
properties. The approach of FT system design starts with
a clear delimitation of the desired reliability parameters,
which are called reliability indicators. First of all, the set
of observed indicators I is determined. A threshold value is
specified for each indicator. The rest are based on an iteration
process, which starts with the nondurable system s0. This
process includes the modification of the current version of
the system si+1 = FTmodif(si) and also the evaluation
of the result for each of the selected reliability indicators
∀j, j ∈ I, rj = indicatorj(si+1). The process of the design
ends with the iteration that produces the system sx, which
fulfills the threshold value for each of the selected reliability
indicators j ∈ I . The actual process is illustrated in Figure 1.

B. FT System Design Automation

The structure of the automation framework will follow the
previously mentioned process of FT system design. The mod-

245

�

�

�

Figure 1: The process of designing an FT system from a
nondurable system.

ification of the system involves text manipulation operations
(on the high-level description), the time requirement of which
is not critical, as well as the synthesis process. These text
modifications can be further simplified by utilizing the power
of the language used for the system description (e.g. for a plain
VHDL, generics can be used; for HLS, C++ templates can be
used; etc.). So far, the process of the evaluation of the resulting
reliability indicators has been the most time-consuming part
of our research. It is also obvious, the evaluation is performed
for each design during each iteration, which implies the need
for the acceleration. In our previous work, we evaluated our
manually modified circuit descriptions (i.e. robot controller
units) by a verification environment that tracks the behavior
of the simulated mechanical part of the system as well. In this
paper, we introduce this new framework that abstracts some
details (e.g. the mechanical part simulation) and introduces
new acceleration techniques such as parallel evaluation or
acceleration of the most evident bottlenecks by moving them
from the PC to the FPGA.

V. IMPLEMENTATION AND USAGE OF REDUNDANT DATA
TYPES

In our previous work [18], we introduced an approach to
introduce an arbitrary level of redundancy into an arbitrary
operation on the algorithm level. The general use of Redundant
Data Types (RDTs) includes: 1) selection of FT methods and
their implementation in the form of RDTs, 2) source code
modification, 3) FT property evaluation.

Each method of FT is implemented in the form of one new
RDT (e.g. Triple Modular Redundancy [TMR] is implemented
as a new RDT called triple). The selection and implementation
of RDTs can be prepared in advance. Then, the method of
using RDTs involves the modification of the HLS input source
code. The transformation of a nondurable system into its FT
version is achieved through the substitution of ordinary Data
Types (DTs) for RDTs. The particular variables to which this
substitution is applied, determine its FT method. This principle
allows us also to modify the operations performed on these
variables, thus allowing us to introduce not only information
redundancy, but also a combination of temporal and spatial

redundancy. As a result, such an RDT has the potential to
introduce almost arbitrary FT method (e.g. various modifica-
tions of the TMR principle, duplex, etc.). With the usage of
RDTs, it is possible to significantly reduce the modifications
needed to make the source code incorporate FT measures and
separate the FT method from the source code. This is useful
not only for the purposes of manual modifications of the source
code, but also for the automated approach. In the case of an
automated approach, RDTs are prepared in advance and the FT
automation tool is then focused on the FT method selection,
while the source code modification involves text substitution
of a specific part of the code.

Each of the RDTs represents one method of FT. To
maintain the functional equivalence of the code, it is necessary
to keep the behavior of the DT that was previously used in
the place of an RDT, which represents the FT method on
the architectural level (i.e. the number of instances and the
interconnections, etc.). In our research, we solve this problem
by parametrization of the RDT – the name of the previously
used DT is passed as a parameter to the RDT. In the context
of a particular RDT instance, we call this previously used
DT an original DT. Different subsystems utilizing different
methods of FT can be interconnected. On the algorithm level,
this is mainly done through an operation execution. To keep
the functionality of the dynamic interconnection of subsystems
according to the FT method, three interconnection possibilities
must be allowed: a) intra-data type – RDT vs. RDT of
equivalent redundancy types (e.g. TMR vs. TMR); b) inter-
data type operations – RDT vs. RDT of different redundancy
types – (e.g. TMR vs. duplex); and c) original-data type
operations – RDT vs. its original (unhardened) DT (e.g. TMR
vs. unhardened subsystem). The interconnections are schemat-
ically illustrated in Figure 2. The rules to establish these
interconnections are part of the binary operator definitions of
the particular language (e.g. in our research, we use the C++
language for its ability to easily incorporate new DTs with the
usage of the C++ templates [19].

a) b) c)

M1
M2

M3

Fr
om

 T
M

R
su

bs
ys

te
m

M1
M2

M3

Fr
om

 d
up
le
x

C/
SW

M1
M2

M3

Fr
om

 u
nh
ar
de
ne
d

su
bs

ys
te

m

su
bs

ys
te

m

Figure 2: Three types of cases that can be distinguished
when considering binary operations: (a) intra-DT operation
between two TMR subsystems; (b) inter-DT operation between
a system with TMR and one with duplex hardening; and (c)
original-DT operation between TMR and unhardened subsys-
tems.

VI. THE ACCELERATION OF FT PARAMETER ESTIMATION

When designing FT systems, the designer (or a design
automation system) needs to have feedback of the reliability
of the current variation of the circuit. The sooner the designer
obtains the information on how the current circuit performs in
the terms of reliability, the better the results have the potential
to be. However, in our research, the evaluation of the circuit has
been the most time-consuming task so far. In the following text,

246

a novel approach we call FT-EST framework is described. The
FT-EST framework utilizes various acceleration techniques to
evaluate the reliability.

A. Iteration Types

For better understanding, let’s introduce the concepts of
iteration types in the FT-EST framework: 1) test cycle: During
the test cycle, all the selected input stimuli are tested against
their golden output values and compared to equivalence. The
output from one iteration of this type is whether A) the
circuit meets its functionality, and, thus, we assume it was
not corrupted by a fault, B) the functionality was corrupted,
and, thus, we definitely know the fault manifested in the form
of a failure. The output from this iteration can also be the
number of failures (i.e. the number of mismatching output
transactions) the fault has caused since the beginning of this
iteration. 2) SEU cycle: During the SEU cycle, each of the
selected bits of the bitstream is attacked by a fault injection,
which we simulate by a bit-flip, and tested by the test cycle
to obtain the effect of the fault. During this cycle, one whole
component is tested.

B. Acceleration Techniques

The framework incorporates acceleration techniques to
accelerate the evaluation of the provided circuit and make the
process of the evaluation more autonomous:

1) The framework is prepared to evaluate many instances of
the circuit simultaneously.

2) It is possible to perform the generation of the stimuli input
data on an FPGA to eliminate any bottlenecks between
the FPGA and the PC.

3) The comparison of the output data is also carried out on
the FPGA.

4) After each test cycle, only the Units Under Test (UUTs)
are refreshed to their original bitstreams, which reduces
the reconfiguration time.

Of course, the acceleration with the usage of multiple
instance evaluations simultaneously is limited by the space
provided on the FPGA, thus, it depends upon the FPGA area
consumption of the UUT. The area of the UUT also directly
specifies the number of bits of the bitstream that correspond
to this unit, and, therefore, have to be tested by an SEU
injection during the SEU cycle. As can be seen, the speed of
the evaluation is in indirect proportion to the size of the circuit
and even in a quadratic ratio. The speed of the evaluation is
also dependent on the number of input transactions the UUT
has to process correctly to be evaluated as resistant to the
particular SEU tested in this particular test cycle.

C. The Hardware Architecture of the Framework

The FT-EST framework HW part is a modular system
written in the VHDL language. A simplified diagram of the
framework is displayed in Figure 3. The FT-EST framework
was designed to require minimal user interactions during the
setup, so it will be usable in the process of automatic FT
system design. The parts of Figure 3 that are highlighted
in red are the only parts of the system that a designer (or
possibly another process) has to modify in order to alter the

experiment flow. The parts of the system highlighted in blue
are dynamically generated based on the configuration, which
includes basic information about the UUT (e.g. the number of
its input and output pins) and the number of instances of the
UUTs the framework has to prepare.

Figure 3: Simplified architecture of the FT-EST system; the
parts highlighted in blue are dynamically and fully automat-
ically generated, while the parts highlighted in red are to be
provided by the designer to specify the experiment setup.

The system is composed of various modules implemented
on the FPGA:

1) Input Generation Unit (IGU): This unit generates the
input stimuli. It is one of the main parts of the experiment
specification, as the selection of stimuli has a significant impact
on the meaning of the experiment. For the simplest UUTs (such
as some proofs of concept), the basic configurations of this
module can include an ordinary counter, which incrementally
generates all the possible values from a given range. Another
possibility is to include a random generation of stimuli. The
maximum-length Linear Feedback Shift Register (LFSR), the
FPGA implementation of which is discussed in [20], can be
used for this purpose, as this variation of the LFSR cycles
through each of the possible bit configurations except all zeros,
thus avoiding the state in which a circuit would be tested for
equivalent stimuli multiple times during one test cycle. Another
possibility is to pre-generate the most suitable set of stimuli on
the PC and utilize a BlockRAM memory to store this set on the
FPGA. However, this approach is dependent on the capacity
of the BlockRAMs available to the FT-EST framework.

2) Unit Instantiation Area (UIA): The UUTs are being
instantiated in this area. The number of instances is config-
urable, and the smallest possible configuration includes one
instance of the UUT and one instance of the golden unit. The
golden unit serves as a reference unit that is not subject to

247

fault injection, and, thus, always provides the correct results.

3) Output Compare Unit (OCU): In this unit, analysis of
outputs of the results obtained from the instantiated UUTs is
performed. It compares the results obtained from the golden
unit and each of the UUTs and creates a vector of differences.
This unit makes the actual decision on whether a particular
UUT failed or passed through the current test stimulus.

4) Failure Capture Unit (FCU): This unit monitors the
vector of differences and records the number of output mis-
matches. It is composed of n counters, where n is equal to the
number of the UUT instances. The counters are addressable
and readable by the Communication InterFace (CIF) module,
which allows the PC SW to continuously read the current stats.

5) eXperiment Control Unit (XCU): Controls the exper-
iment process flow. The configuration of the Finite State
Machine (FSM) contained inside this module is dependent on
the reliability parameters measured. For example, for some
applications, it might be feasible to stop the evaluation after
each of the counters in the FCU module, which detects a
system failure, holds a non-zero value.

6) Communication InterFace (CIF): Serves as a platform-
independent interface to the internal registers holding the
configuration of the experiment. Its platform independence is
the key to the portability of the framework.

7) Communication Module (CM): It contains the inter-
face, which is controlled by the PC. In our specific experi-
mentation, we focus on the Xilinx FPGAs; thus, we used the
Xilinx specific implementation of the JTAG interface utilizing
the ChipScope Pro Integrated CONtroller (ICON) core [21]
and the Virtual Input/Output (VIO) core [22]. These IP cores
connect together and provide data signals inside of the FPGA
controllable from the PC.

D. The Software Part of the Framework

The system is also composed of a PC SW, which con-
trols the HW counterpart through high-level commands issued
through the communication registers:

1) FT-EST Software: On the PC, there is SW we devel-
oped to control the experiment on the HW counterpart and
to report the results. The structure is fully modular, so it is
possible to completely switch the target technology without
impacting the functionality. The only limitation is that the
target platform must support a way to inject faults into the
configuration bitstream, such as PDR [23]. The target platform
must also support partial bitstream creation with its relocation
and also must support a way to communicate with the platform
(such as the Ethernet, JTAG, etc.). The main experiment
controlling loop inside this module has to be adapted according
to the experiment strategy.

2) Fault Injector: We use the previously developed fault
injector [16], which was integrated into the FT-EST SW. In
our case, the fault injection is based on the PDR. Part of our
injector is also a toolkit, which allows us to select particular
parts of the bitstream, based on the location of the instantiated
component and allows us to filter out just the Look-Up Tables
(LUTs) configuration bits.

3) Tcl Engine Interface: To communicate with the HW
part of our solution, we use a ChipScope Engine Tcl Inter-
face [24], which allows us to set the address registers and
read and write data registers of the CIF through the CM on
the HW side. We also use an iMPACT tool to download the
bitstream data and renew the states of the UUTs after each
iteration of the SEU cycle.

E. Making More Instances of Identical Bitstreams

The acceleration techniques of our approach involve,
among others, multiple instantiations of the same UUT. For
this reason, we need to ensure that all of these UUTs are
synthesized equally and that each n-th bit of the partial
bitstream has an equal function between different instances
of the UUT. It is also necessary to transfer the tested design
to the final practical implementation without disturbing its
properties, because the same system synthesized multiple times
might have different properties (e.g. based on the area on
the target FPGA). We believe the solution to this problem
can be solved by using the automated bitstream relocation
technique [25], which would also allow us to transfer the
final realization of the component to the final implementation
without major changes to its architecture even on the lowest
level of abstraction, considering that the same platform is used
for the final implementation.

VII. THE EXPERIMENTS AND RESULTS

For our experiments, we decided to utilize the FT-EST
framework to evaluate our previously presented approach of
RDTs. A specific configuration of the FT-EST platform is
discussed later in this text. For this evaluation, we specified
three testing algorithms, which were afterwards translated into
the VHDL using the HLS and then instantiated in the FT-EST
framework and evaluated.

A. Benchmark Algorithm/Circuit Selection

We decided to put simple unsigned addition and signed
subtraction as the first two algorithms. Each of these operations
is performed on two 16-bit vectors, with the output being 16-
bit as well. This approach should evaluate the correctness of
the principle of a particular RDT operation, as one particular
operation implementation is addressed, and, thus, it is possible
to isolate the other influences, which is not possible in a large
design with multiple operations. For the third algorithm, a
Cyclic Redundancy Check (CRC) was selected. For this test,
we utilized its 8-bit version – CRC-8 – with an input data of
32 bits in length. The overview of the benchmark circuits we
selected is summarized in Table I.

TABLE I: An overview of the algorithms/circuits selected for
the purposes of benchmarking.

Algorithm Inputs Outputs

Addition A: 16-bit unsigned int. A + B: 16-bit unsigned int.
B: 16-bit unsigned int.

Subtraction A: 16-bit signed int. A ∗ B: 16-bit signed int.
B: 16-bit signed int.

CRC-8 A: 32-bit data CRC8(A): 8-bit checksum

248

B. The Synthesis of the Circuits and the HW Platform

At first, the algorithms were implemented in a plain
C++ language. For each algorithm, two implementations were
made: 1) a simplex implementation, which did not involve any
FT techniques to serve as a reference unit, and 2) a TMR
implementation, which had each variable sanitized using the
approach of RDTs. These implementations were then put into
the HLS. In this experiment, we are using the Mentor Graphics
CatapultC University Version (UV) 8.2b [26]. During the HLS,
we turned off all the acceleration techniques, such as pipelining
or unrolling. Also, optimization was turned off, to make sure
the synthesis process does not remove the redundancy we
intentionally inserted into the algorithm code. As a result, we
obtained a VHDL implementation of the algorithms. Before
the evaluation, these VHDL implementations were instantiated
as a UUT in the UIA of the FT-EST unit. For the TMR
implementations a voter was added behind the component to
perform the final voting. For the simplex version, the UUT was
instantiated without additional components. The architectures
for both these cases are shown in Figure 4.

Figure 4: The architecture of the testing for (a) a simplex
component and also for (b) the TMR component utilizing the
concept of RDTs.

Finally, the prepared FT-EST unit was synthesized using
the Xilinx Integrated Synthesis Environment (ISE) 14.7 [27].
The resulting bitstreams were then evaluated on the ML506
board [28] utilizing the Virtex 5 technology.

C. FT-EST Configuration Parameters

During the evaluation, we set the FT-EST framework to
generate a permanent bit-flip for each bit of the utilized
contents of the LUTs. Each of the circuits consumes a 32-
bit width input data, thus, for each SEU, the FT-EST tested
the UUT through a range from 0 to 232 − 1 at a step of
43 resulting in approximately 100 millions of combinations.
This settings was chosen on an experimental basis considering
the amount of faults detected and the time spent. For this
particular experimentation, we omitted the state behavior of
the UUTs, as the UUTs act as combinational circuits. For such
simple circuits, we just omit this fact, as the state space of the
tested stimuli is so large that such a failure state would very
likely manifest itself in a form of a failure (i.e. output data
disruption).

D. FT Property Estimation Results

The experimental results were obtained through the steps
described in the previous text. We focused on the number
of output disturbances. We traced the cases in which, for a
given SEU, the UUT propagated one or more results that
were not equivalent to the results of the golden unit. Table II
shows the actual numbers of injections and also the numbers
of injections that caused an output mismatch as well as the

percentage of sensitive bits. As can be seen, the application of
the RDT approach utilizing a TMR led to a better reliability
(i.e. a lower percentage of sensitive bits) for each benchmark
algorithm. However, the impact of the RDT is dependent on
the operation. For example, in the case of the CRC-8, RDTs
managed to lower the percentage of sensitive bits from 34%
to 13%. Similarly for the addition. Although, in the case
of subtraction, this approach was less efficient lowering the
sensitive bits from 4% to 3%. We believe this dissimilarity is
caused by the fact that the CRC-8 actually uses more than only
one operation to compute, thus, resulting in more opportunities
for the RDT to show its effect. Also, the TMR versions of the
UUTs do not utilize exactly three times the bits of the simplex
versions. This is caused by the approach of RDTs, as it is a
data-path oriented approach, and, thus, it leaves the control-
path untreated.

TABLE II: The number of SEUs that caused an output mis-
match.

Algorithm FT method LUT bits Num. of inj. Num. of Sensitive
total [b] [-] disturbances [-] bits [%]

Addition none (simplex) 4288 b 4288 890 20.76 %

Addition TMR 8320 b 8320 225 2.70 %

Subtraction none (simplex) 4288 b 4288 178 4.15 %

Subtraction TMR 8320 b 8320 278 3.34 %

CRC-8 none (simplex) 4800 b 4800 1658 34.54 %

CRC-8 TMR 6592 b 6592 879 13.33 %

We were interested not only in the number of manifested
failures but we also monitored the number of mismatches each
particular SEU produced (i.e. the number of output mismatches
during one test cycle). For example, various SEUs caused the
CRC-8 simplex UUT to produce various numbers of error
outputs, however, the results show, that the application of
RDTs reduced the median of erroneous outputs per SEU to less
then one half of the median of the simplex unit. One exception
is the subtraction, for which this is not true. However, for this
case, one can see the TMR version produced always nearly
equivalent number of faults. Unfortunately, for now we are not
able to observe the actual data the UUT propagated but the fact
the number of failures is always the same might suggest one
case, the treatment of which would significantly improve the
robustness of the subtraction operation in the RDT. The results
for each UUT are summarized in a boxplot chart in Figure 5.

Figure 5: The distribution of mismatched outputs quantities
caused by one SEU during one test cycle (test cycles that did
not show any output errors are omitted; median value is marked
by a cross).

249

E. The SEU Coverage

As another part of our experiments, we wanted to evaluate
whether the SEU coverage could be lowered without signifi-
cant impact on the precision of the estimation. For example,
if we evaluated only one half of the utilized LUTs content
bits selected uniformly at random from all the bits available,
would the resulting estimation still hold the certain level of
accuracy? For this evaluation, we utilized detailed logs of
the previous experimental runs to simulate this behavior. We
made 1000 runs per benchmark unit and SEU coverage. Each
run simulated one of the selected SEU bit coverages. The
results were compared to determine the spread of the accuracy.
The results in Table III show the dispersion interval of the
deviations. The deviation is calculated in the unit of percentage
points. As can be seen, lowering the SEU coverage impacts
the accuracy of the evaluation but the accuracy might still be
useful as an estimation during the FT design. The estimation
accuracy seems to be higher for larger UUTs, although this
is true only within one type of the algorithm (e.g. FT-EST
achieved better accuracy for the subtraction TMR than for the
subtraction simplex). It is also important to note, that 10% SEU
coverage results in a ten times shorter evaluation time, which
has significant impact on the FT design automation runtime
and allows to explore more configurations of the state space.

TABLE III: The deviation of the estimations for various SEU
coverage settings (less is better).

SEU Deviation Range of the Estimation [% points]
cove- Addition Addition Subtraction Subtraction CRC-8 CRC-8
rage simplex TMR simplex TMR simplex TMR

60 % 1.63 – -1.63 0.46 – -0.40 0.70 – -0.89 0.63 – -0.46 1.71 – -1.94 1.1 – -0.97

30 % 2.57 – -2.47 0.98 – -0.78 1.91 – -1.20 0.91 – -1.1 3.38 – -3.64 1.99 – -2.46

10 % 6.06 – -5.36 1.74 – -1.50 2.61 – -2.52 1.71 – -1.9 6.29 – -6.21 4.26 – -3.78

5 % 11.0 – -9.6 2.58 – -1.98 4.71 – -3.69 3.15 – -2.62 9.63 – -9.54 5.78 – -5.14

1 % 16.6 – -16.1 6.91 – -2.7 12.2 – -4.15 8.68 – -3.34 21.7 – -19.96 18.5 – -11.8

VIII. STIMULI GENERATION METHOD

As part of our future research, we would like to utilize
a method to generate the stimuli for more complex systems
as stimuli generation is a very important process in checking
the correct behavior of any system. Obtaining a stimulus or a
set of stimuli that adequately covers the entire state space can
greatly reduce the overall time for testing the system.

The universal stimuli generator is based on the theory
of grammar systems. For these purposes, we have designed
our own grammar system – probabilistic constrained grammar
(already introduced in the paper [29]), which is based on
probabilistic context-free grammar. Probabilistic context-free
grammar is a common context-free grammar that has a defined
probability for its production rules with which they are applied.
Probabilistic constrained grammar extends the probabilistic
context-free grammar about constraints which are capable of
modifying the probability values during a generation process
(the application of production rules). This makes it possible
to control the application of production rules to ensure the
suitability and validity of the stimulus for the system.

The architecture our universal stimuli generator is based
on two input structures which define grammar and constraints.

The Generator Core performs the leftmost derivations (appli-
cation of production rules) and takes into account/applies the
defined constraints. After replacing all non-terminal symbols
of a defined grammar, the output is a string which contains
only terminal symbols representing the resulting stimulus.

Our probabilistic context-free grammar is described pri-
marily by a set of production rules. Our conventions for
symbols of grammar are as follows: Non-terminal symbols
are in capital letters, while we consider any string in single
quotation marks to be terminal symbols. We always consider a
non-terminal marked with an S character to be a start symbol.
Each production rule always has a non-terminal symbol on
its left side, while its right side consists of a combination of
non-terminal and terminal symbols or ε (eps). The symbols
are separated by spaces. In parentheses after each production
rule, we can specify the percentage value of the probability
with which the rule will be applied. If the probability value
definition is missing, it is automatically calculated with respect
to the other defined probabilities of the rule. Each rule must
end with a dot. For a more efficient write, the production rules
can be merged using a comma. An example of the definition
of production rules for the probabilistic context-free grammar
that generates a simple linear equation is shown below:
S -> LEFT ’ = ’ RIGHT EX .
LEFT -> LEFT OP LEFT, VAL .
RIGHT -> RIGHT OP RIGHT, VAL .

VAL -> NUM, NUM ’x’, NUM ’(’ VAL ’)’ .
EX -> OP ’x’, eps(0%) .
OP -> ’ + ’, ’ - ’ .
NUM -> ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’ ’8’, ’9’ .

The proposed grammar would generate inequality without
the EX non-terminal (2 = 6), therefore, it is necessary to add
a rule that adds the variable x to the equation at any cost.
However, this solution is not ideal, because it decreases the
space of all possible solutions. This means, for example, that
it is not able to generate the equation 2x = 2, because it always
attaches an extra x: 2x = 2 - x. This problem can be solved by
a constraint through which we have expanded this grammar to
gain more expressive power. To add the constraint, we have
already defined the second rule EX replaces with eps in the
grammar, which will serve as the second replacement option.

The constraints are defined by the keyword cons followed
by 5 parameters. The first parameter specifies the activator, a
rule that causes a change of probability after a replacement.
The second parameter is a rule that gets a new probability.
The third parameter is the new probability value. The fourth
parameter specifies a rule that cancels the set probability
through this constraint after a replacement. Through the last
parameter, the number of replacements of the rule under the
forth parameter before the cancellation of set probability can
be specified. For the grammar above, we add this constraint:
cons(VAL -> NUM ’x’,EX -> eps,100);

This constraint has only three parameters which will cause
the EX -> eps rule to have a probability value set to 100% after
the application of the VAL -> NUM ’x’ rule. If x is generated
at any time during the generation process using the rule, the
EX non-terminal symbol will always be replaced by eps. If
this rule is not applied and the variable x is not generated,
the rule EX -> OP ’x’, which will still have the probability at
100%, is used. Using these constraints, we are able to define
and generate more complex input stimuli.

250

IX. CONCLUSIONS AND FUTURE RESEARCH

This paper describes a novel approach, which we call FT-
EST framework, to accelerate the estimation of the impact
of SEUs. The FT-EST framework was used to evaluate the
previously presented approach of RDTs, which serve as an
instrument to incorporate redundancy on the algorithm level
before its processing by the HLS. The size of the UUT is
limited only by the FPGA capacity and by its testability or
how good test coverage is achievable by the chosen stimuli
generator. As for latent faults, the detection is possible through
the bitstream read-back, although, this requires a detailed
information of which bit of the bitstream covers the storage
function, which we do not have implemented at the moment.
The results we obtained indicate that the concept of RDTs is
functional, however, suggests its future improvements (e.g. for
the operation of subtraction). With the ability to evaluate UUTs
at a high speed the development of the FT automation tool will
be much easier. In addition, this paper also briefly explains the
techniques we plan to utilize to generate the stimuli inputs
for systems requiring more complex input transactions. As
a part of our future research, we would like to utilize the
stimuli generation technique and to incorporate the presented
approach to a larger system, which will utilize the outputs of
the evaluation during the FT design automation (i.e. to select
the proper FT method for a particular component or partition).

ACKNOWLEDGEMENTS

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustainabil-
ity (NPU II), the project IT4Innovations excellence in science
– LQ1602 and the BUT project FIT-S-17-3994.

REFERENCES

[1] J.-C. Geffroy and G. Motet, Design of Dependable Computing Systems.
Kluwer Academic Publishers, 2002.

[2] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[3] B. Bridgford, C. Carmichael, and C. W. Tseng, “Single-event Upset
Mitigation Selection Guide,” Xilinx Application Note, XAPP987 (v1.
0), 2008.

[4] C. Bernardeschi, L. Cassano, A. Domenici, and L. Sterpone, “Accurate
Simulation of SEUs in the Configuration Memory of SRAM-based
FPGAs,” in Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2012 IEEE International Symposium on. IEEE, 2012,
pp. 115–120.

[5] T. Nidhin, A. Bhattacharyya, R. Behera, T. Jayanthi, and K. Velusamy,
“Verification of Fault Tolerant Techniques in Finite State Machines
Using Simulation based Fault Injection Targeted at FPGAs for SEU
Mitigation,” in Electronics and Communication Systems (ICECS), 2017
4th International Conference on. IEEE, 2017, pp. 153–157.

[6] A. Benso, A. Bosio, S. Di Carlo, and R. Mariani, “A Functional
Verification based Fault Injection Environment,” in Defect and Fault-
Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE International
Symposium on. IEEE, 2007, pp. 114–122.

[7] M. Liu, Z. Zeng, F. Su, and J. Cai, “Research on Fault Injection
Technology for Embedded Software based on JTAG Interface,” in Re-
liability, Maintainability and Safety (ICRMS), 2016 11th International
Conference on. IEEE, 2016, pp. 1–6.

[8] S. Rudrakshi, V. Midasala, and S. Bhavanam, “Implementation of FPGA
based Fault Injection Tool (FITO) for Testing Fault Tolerant Designs,”
IACSIT International Journal of Engineering and Technology, vol. 4,
no. 5, pp. 522–526, 2012.

[9] M. Alderighi, S. D’Angelo, M. Mancini, and G. R. Sechi, “A Fault In-
jection Tool for SRAM-based FPGAs,” in On-Line Testing Symposium,
2003. IOLTS 2003. 9th IEEE. IEEE, 2003, pp. 129–133.

[10] M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, and
G. R. Sechi, “Evaluation of Single Event Upset Mitigation Schemes for
SRAM-based FPGAs Using the FLIPPER Fault Injection Platform,” in
Defect and Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE
International Symposium on. IEEE, 2007, pp. 105–113.

[11] C. López-Ongil, M. Garcia-Valderas, M. Portela-Garcı́a, and L. Entrena,
“Autonomous Fault Emulation: A New FPGA-based Acceleration Sys-
tem for Hardness Evaluation,” Nuclear Science, IEEE Transactions on,
vol. 54, no. 1, pp. 252–261, 2007.

[12] T. Schweizer, D. Peterson, J. M. Kühn, T. Kuhn, and W. Rosenstiel,
“A Fast and Accurate FPGA-based Fault Injection System,” in Field-
Programmable Custom Computing Machines (FCCM), 2013 IEEE 21st
Annual International Symposium on. IEEE, 2013, pp. 236–236.

[13] J. M. Kuuhn, T. Schweizer, D. Peterson, T. Kuhn, and W. Rosenstiel,
“Testing Reliability Techniques for SoCs with Fault Tolerant CGRA by
Using Live FPGA Fault Injection,” in Field-Programmable Technology
(FPT), 2013 International Conference on. IEEE, 2013, pp. 462–465.

[14] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapid Prototyping Tools for FPGA Designs: RapidSmith,” in Field-
Programmable Technology (FPT), 2010 International Conference on,
Dec 2010, pp. 353–356.

[15] J. Podivinsky, O. Cekan, J. Lojda, M. Zachariasova, M. Krcma, and
Z. Kotasek, “Functional verification based platform for evaluating fault
tolerance properties,” Microprocessors and Microsystems, vol. 52, pp.
145 – 159, 2017.

[16] M. Straka, J. Kastil, and Z. Kotasek, “SEU Simulation Framework
for Xilinx FPGA: First Step Towards Testing Fault Tolerant Systems,”
in 14th EUROMICRO Conference on Digital System Design. IEEE
Computer Society, 2011, pp. 223–230.

[17] J. Hlavička, S. Racek, P. Golan, and T. Blažek, Čı́slicové systémy odolné
proti poruchám. 1st edition, Prague, Published by: ČVUT, 1992, 330 s.

[18] J. Lojda, J. Podivinsky, Z. Kotasek, and M. Krcma, “Data types and
operations modifications: A practical approach to fault tolerance in
HLS,” in 2017 IEEE East-West Design Test Symposium (EWDTS), Sept
2017, pp. 1–6.

[19] D. Vandevoorde and N. M. Josuttis, C++ Templates. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[20] A. K. Panda, P. Rajput, and B. Shukla, “FPGA Implementation of 8, 16
and 32 Bit LFSR with Maximum Length Feedback Polynomial Using
VHDL,” in 2012 International Conference on Communication Systems
and Network Technologies, May 2012, pp. 769–773.

[21] Xilinx Inc., “LogiCORE IP ChipScope Pro Integrated Controller
(ICON) Documentation,” https://www.xilinx.com/support/
documentation/ip documentation/chipscope icon/v1 05 a/
chipscope icon.pdf, Jun. 2011, accessed: 2018-02-15.

[22] Xilinx Inc., “ChipScope Pro VIO Documentation,”
https://www.xilinx.com/support/documentation/ip documentation/
chipscope vio.pdf, Sep. 2009, accessed: 2018-02-15.

[23] Xilinx Inc., “Partial Reconfiguration User Guide,”
http://www.xilinx.com/support/documentation/sw manuals/xilinx14 1/
ug702.pdf, Apr. 2012, accessed: 2016-09-15.

[24] Xilinx Inc., “ChipScope Pro 11.4 Software and Cores User Guide,”
https://www.xilinx.com/support/documentation/sw manuals/xilinx11/
chipscope pro sw cores ug029.pdf, Dec. 2009, accessed: 2018-02-15.

[25] A. Laleve, P. H. Horrein, M. Arzel, M. Hbner, and S. Vaton, “Au-
toReloc: Automated Design Flow for Bitstream Relocation on Xilinx
FPGAs,” in 2016 Euromicro Conference on Digital System Design
(DSD), Aug 2016, pp. 14–21.

[26] M. Graphics, “Catapult HLS,” https://www.mentor.com/hls-lp/catapult-
high-level-synthesis/, 2017, accessed: 2017-07-07.

[27] Xilinx Inc., “ISE Design Suite,” https://www.xilinx.com/products/design-
tools/ise-design-suite.html, 2017, accessed: 2017-07-07.

[28] Xilinx Inc., “Ml506 Evaluation Platform User Guide,” UG347 (v3. 1.2),
2011.

[29] O. Cekan and Z. Kotasek, “A probabilistic context-free grammar based
random test program generation,” in 2017 Euromicro Conference on
Digital System Design (DSD), Aug 2017, pp. 356–359.

251

Paper E

Automatic Design of Reliable
Systems Based on the
Multiple-choice Knapsack Problem

LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, PÁNEK Richard, KRČMA Martin,
KOTÁSEK Zdeněk

In: Proceedings - 2020 23rd International Symposium on Design and Diagnostics of Elec-
tronic Circuits and Systems, DDECS 2020. Novi Sad: Institute of Electrical and Electronics
Engineers, 2020, pp. 1-4. ISBN 978-1-7281-9938-2.

Available at: https://ieeexplore.ieee.org/document/9095576

109

https://ieeexplore.ieee.org/document/9095576

978-1-7281-9938-2/20/$31.00 ©2020 IEEE

Automatic Design of Reliable Systems
Based on the Multiple-choice Knapsack Problem

Jakub Lojda, Jakub Podivinsky, Ondrej Cekan, Richard Panek, Martin Krcma, Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ilojda, ipodivinsky, icekan, ipanek, ikrcma, kotasek}@fit.vutbr.cz

Abstract—This paper evaluates the practical usage of the
Multiple-choice Knapsack Problem (MCKP) solver to auto-
matically select the proper fault mitigation method for each
component to maximize the overall fault tolerance of the whole
system. The usage of the MCKP is placed into the context
with our fault tolerance automation toolkit, the goal of which
is to completely automate the process of fault-tolerant system
design on a very general level. To achieve our goal, we present
our research on Field Programmable Gate Arrays (FPGAs) for
which we have developed the specific components in order to
support their fault-tolerant design automation. In our particular
case study, the MCKP method on the partitioned system was
able to find the solution with 18% less critical bits compared
to our previous approach, while even lowering the circuit size.
The results indicate that by splitting the system into smaller
components and applying the MCKP method, considerably better
results in terms of critical bits representation can be achieved.

Keywords—Fault-Tolerant System Design, Electronic Design
Automation, Multiple-choice Knapsack Problem, Fault Tolerance
Property Estimation, Verification, High-Level Synthesis.

I. INTRODUCTION

As electronic systems penetrate into areas with increased
reliability demand, the pressure on designers to make such sys-
tems reliable arises. Generally, two main approaches to reliable
system design exist: 1) Fault Avoidance (FA) [1], which is
based on the better selection of proper and more reliable com-
ponents and does not change the structure or interconnections
of the system; and 2) Fault Tolerance (FT) [2], which accepts
unreliable components as a fact and tries to solve the problem
of higher reliability with modification of the system structure.
Our research is based on the FT approach. Also, growing
complexity of electronic systems led to strategies and design
flows that maintain the Time To Market (TTM) on a reasonable
level. High-level Synthesis (HLS) is a good example of such
a design flow. Generally, HLS allows a designer to utilize the
description written in one of the higher-level programming
languages and transform it to its Register Transfer Level (RTL)
implementation in VHDL or Verilog. In our research we focus
on FT design automation and also on its combination with
HLS, because our concept of FT design automation is general,
and thus is able to cover different design flows.

So far, our research has been targeting SRAM-based FP-
GAs. SRAM-based FPGAs store their configuration bitstream
in an SRAM memory, and thus are prone to the so-called
Single Event Upset (SEU) bit-flips. A benefit of using FPGAs
is also their good usability in the process of FT design testing,
because the concepts can be easily tested on a real HW with
the usage of the so-called fault injection. During the test of an
FT circuit, the approach of fault injection is usually combined
with the so-called functional verification in order to detect the
failure of the tested unit. The bits that cause a discrepancy on
the output pins during the verification are called critical bits,

sometimes in the literature also referred to as sensitive bits.
The percentage of critical bits in an FPGA design is usually
understood as a quantified measurement of FT of the design.

The usual step in the process of FT design is to assign a
suitable combination of FT techniques to harden individual
blocks against faults that would lead to higher FT of the
whole circuit. Solutions to these reliability allocation problems
can also be found in literature. The Improved Surrogate
Constraint (ISC) method was applied to the system reliability
allocation problems with a mix of components in paper [3].
The authors of [4] proposed the penalty guided artificial
bee colony algorithm. The paper [5] presents the use of the
variable neighborhood search meta-heuristic method. The use
of dynamic self-adaptive multi-objective particle swarm opti-
mization method is proposed in [6]. The usage of the genetic
algorithm was examined in [7] and [8], where the use of
Non-dominated Sorting Genetic Algorithm II (NSGA-II) was
presented. The experiments show that the NSGA-II can find
a number of promising solutions of the reliability allocation
problem. Most of the presented work is a separate solution
to this problem without a broader concept. In our research,
we bring the integration into the complex tool which targets
the automation of FT design process. As the fundamental
algorithm for our experiments, we decided to transform the
problem of redundancy allocation to the MCKP [9].

This paper is organized as follows: Section II introduces the
concept of our FT design automation toolkit. The use of MCKP
for FT strategy selection is proposed in Section III. The case
study and experimental results are presented and discussed in
Section IV. Section V concludes the paper and presents plans
for our future research.

II. FAULT-TOLERANT DESIGN AUTOMATION

In our research, by FT design automation, we mean the
transformation of the so-called unhardened system description
to its FT version. Our aim is to research FT design methods
that allow automatic FT selection and insertion while keeping
the methods as much general as possible, with the ability
to specialize on particular design flow through addition of
special modules. The structure of our platform comes from the
ordinary process of FT system creation, that is: 1) specification
of the required parameters, and 2) iterative modification and
evaluation until the specific requirements are met.

Our FT design automation platform consists of various
components and each component targets particular phase or
task during the transformation of the system. The first is
the component implementing the FT strategy selection, which
is the main topic of this paper. The FT strategy selection
decides which type of FT method to use for which part
of the system. The so-called helpers are used during this
process. The helpers include libraries or possibly modification

scripts, that are able to incorporate redundancy into a particular
component of the system. So far, we have been developing
specific helpers for the usage with HLS, which we call the
Redundant Data Types (RDTs) [10]. The RDTs act as new data
types in the algorithm description and decorate the resulting
system to decrease its critical bit representation. After each
iteration, the draft of the system is evaluated. The evaluation is
performed on the real FPGA HW. We use the Fault Tolerance
ESTimation (FT-EST) framework [11] to automatically build
test-benches. The data obtained through the FT-EST frame-
work can be further examined by the FPGA bitstream-specific
analysis [12] to obtain numeric quantification of FT indicators.

The general overview of the traditional approach with a
designer making manual operations and the connections to our
automatic flow utilizing processes, can be seen in Figure 1.

Desired parameter
definition

Include/modify fault-
detection mechanisms

Include/modify fault-
recovery algorithms

FT property
evaluation

Fulfills
desired

parameters?Yes No

FT
 s

e
le

ct
io

n
&

co
d
e
 m

o
d
ifi

ca
ti

o
n

HDL/other code

Designer's
Inputs

Helpers
Usage

FT-EST Frame-
work + Analysis

It
e
ra

ti
v
e
 d

e
v
e
lo

p
m

e
n

t

Desired
FT Circuit

FT Selection
Strategy

FT
 A

u
to

m
a
ti

o
n
 P

ro
ce

ss
e
s

Processes
and Data

Designer's Operations

Figure 1: Design of FT system from an unhardened system
with the designer’s operations mapped to the processes of our
automation platform.

III. FAULT TOLERANCE STRATEGY SELECTION

For our testing, we decided to map the problem of redun-
dancy selection to the MCKP. The MCKP is a special type of
the Knapsack Problem (KP). KP and its variations belong to
the so-called combinatorial optimization problems [13]. The
KP as an optimization is an NP-hard problem. Let’s suppose
we have a knapsack of a particular load capacity and a set
of objects. Each object has attached the values of the so-
called profit and weight. Then, the KP objective is to solve
the problem of the best selection of the objects to achieve
the best value (i.e. profit) in the knapsack, while keeping the
load below its maximum capacity [14]. The MCKP extends
the original KP by distinguishing the objects into classes.
In addition, in MCKP, exactly one object from each class
must be selected. The general objective is equivalent – to
maximize the profit while keeping the load below the given
capacity [9]. The MCKP can be mapped to the problem of
redundancy selection. However, it is important to note that for
our purposes, we slightly modify the MCKP problem to prefer
the units with the smallest handicap, instead of the highest
profit. The handicap is actually the number of critical bits, in
our terms and the capacity is the chip area available (e.g. bits of
the bitstream). We decided to use critical bits as the metrics, as
their representation determines the SEU resistance of a design.
Other metrics such as time required to compute a result may be
also used for a component, in such case, however, components
in the system would have to use a communication protocol

because of timing differences. Also the final throughput of
the complete system would have to by analyzed separately.
Graphical illustration of the usage of MCKP for redundancy
selection can be seen in Figure 2.

Available
Size s

x x_TMR

x_duplex

x_5MR

y y_TMR

y_duplex

y_5MR

z
z_TMR

z_duplex
z_5MR

Given
Structure

x

z

y

Select the Best One While
Still Comply with The Area

Variants of x

Variants of z

Variants of y

FPGA

Figure 2: The graphical representation of FT system and the
selection strategy based on MCKP.

In our research we chose to evaluate the weights and profits
of each component, and then solve the MCKP fully in SW.
After that, create the composed unit according to the results
obtained from the MCKP solver. This is the reason why our
FT strategy has actually just one iteration on the level of the
FT automation toolkit because the state-space exploration is
performed in the MCKP fully in SW. For this method to work,
it is necessary to evaluate each variant of each component to
obtain the input parameters for the MCKP solver.

IV. THE CASE STUDY AND EXPERIMENTAL RESULTS

In our case study, we designed an electronic system that is
suitable for our demonstration purposes. The system literally
computes the number of 1 bits (i.e. high bits) in the sum of
three numbers, of which one is a static constant. The system
also computes a CRC-8 checksum of data obtained after the
first and second additions. The system can be partitioned
into four components: 1) addition; 2) addition of a constant;
3) number of high bits computation; and 4) CRC-8 checksum
computation. The block diagram can be seen in Figure 3.

Addition Add. Const.
16 b

16 b 16 b

CRC-8 8 b

5 b
16 b

16 b
16 b

Composed Unit

Num. of Ones

Figure 3: The schematic of the system with its components.

A. Components of Benchmark System and Their Implementa-
tion Properties

The component addition sums two 16-bit unsigned num-
bers and provides the result also on 16 bits. The compo-
nent Add. Constant which will be referred to as addconst
further in the text, adds a constant number to its one 16-bit
input. The component crc8 computes the Cyclic Redundancy
Check (CRC) out of the 32 bits wide vector. The output is
8 bits wide. The last component, Number of Ones, provides
an unsigned 5-bit number representing the quantity of high
bits in its 16 bits wide input vector. This component will be
referred to as numones.

For the implementation of the components, we used a
traditional HLS design flow utilizing the C++ language. Each
component was implemented in four variations incorporating
different amount of redundancy in their data-path level using
the RDT approach: 1) simple (no redundancy); 2) triple (data-
path triplicated); 3) quadruple, (four data-paths); and 4) quin-
tuple (five data-paths). Component descriptions were synthe-
sized using the Mentor Graphics Catapult C HLS tool [15].

For each of these circuits, the FT-EST test bench was created.
Test benches were synthesized using the Xilinx Integrated
Synthesis Environment (ISE) 14.7 [16]. After that, each bit of
utilized LUT contents was exhaustively tested on the ML506
evaluation board using Virtex 5 technology. The overview of
the synthesized components can be seen in Table I. As can be
seen, each RDT (i.e. each FT insertion method) has different
efficiency on a component. This property actually suggests that
each unique component suits different FT method that achieves
the best parameters.

TABLE I: Component Variations and Their Properties

Component Name
Number

of Inputs
[b]

Num. of
Outputs

[b]

Used
LUT
bits
[b]

Critical
bits [b]/

KP Han-
dicap [-]

Criti-
cal bits

Repr.
[%]

addition simple 16 b; 16 b 16 b 4288 162 3.78
addition triple 3x 16 b; 3x 16 b 3x 16 b 8320 163 1.96
addition quadruple 4x 16 b; 4x 16 b 4x 16 b 10304 195 1.89
addition quintuple 5x 16 b; 5x 16 b 5x 16 b 14528 232 1.6

addconst simple 16 b 16 b 4224 104 2.46
addconst triple 3x 16b 3x 16 b 8096 130 1.61
addconst quadruple 4x 16b 4x 16 b 9952 171 1.72
addconst quintuple 5x 16b 5x 16 b 14144 198 1.4

crc8 simple 32 b 8 b 4800 977 20.35
crc8 triple 3x 32 b 3x 8 b 6592 819 12.42
crc8 quadruple 4x 32 b 4x 8 b 6976 712 10.21
crc8 quintuple 5x 32 b 5x 8 b 7360 971 13.19

numones simple 16 b 5 b 4096 380 9.28
numones triple 3x 16 b 3x 5 b 4800 122 2.54
numones quadruple 4x 16 b 4x 5 b 5312 125 2.35
numones quintuple 5x 16 b 5x 5 b 5184 120 2.31

To connect components of various redundancy levels,
VHDL bit-based voter was utilized. If there is a requirement
to ensure that no component is shared on the system, pblocks
in the Xilinx PlanAhead software [17] can be used.

B. MCKP Reaction to Area Available on the FPGA

In the first phase of our experiments, the behavior of the
MCKP for various chip area settings was tested. We selected
the number of LUT bits to represent the chip area occupied.
Empirically, the interval from 17500 to 21100 with the step
of 100 bits was selected. For each chip-area threshold, the
MCKP solver was executed and the resulting configuration
was observed. As the granularity of the MCKP reaction to
different thresholds is dependent on the size of available
components, we obtained six different FT configurations. The
results including the actual configurations are shown in Fig-
ure 4. As can be seen, the MCKP tries to completely utilize
the given area. Another important observation is that with
the increasing size of the system, the absolute number of
critical bits decreases, indicating the MCKP strategy targets
the optimal configurations. Especially important observation is
that not only the critical bit representation is lowering but also
the absolute value of critical bits decreases while the circuit
increases in size.

Furthermore, as can be seen, the MCKP selects to harden
only the crc8 and numones components. As you can see in
Table I, this is caused by inefficiency of the selected type
of redundancy methods for the first two components (i.e. the
addition and addconst).

C. Real Implementation Results

From the previous step, six system configurations were
obtained. These systems will be referred to by the name

Figure 4: The theoretical computed values for the system
configurations obtained by changing the available area (i.e.
size) on the chip.

autocomposed 1 to 6. We further added four reference systems
that were composed without the partitioning, just by using
equivalent redundancy method on the complete system. These
units will be further referred to as composed simple, com-
posed triple, composed quadruple and composed quintuple.
In fact, the autocomposed 1 system is equivalent to the com-
posed simple system, as for the smallest chip area setting, only
simple units are selected by the MCKP solver. As a result, 9
unique systems were obtained and evaluated with the usage
of the FT-EST framework on the exhaustive test of all LUT
bits. The results are shown in Table II. As can be seen, after
the synthesis, the autocomposed units utilize less LUT bits
than indicated by the estimated values provided by a sum of
components. Obviously, the synthesis is able to optimize better
for larger systems, compared to the much smaller components.
The numbers of critical bits, however, follow the general trend
and are nearly equivalent to the values determined by the
MCKP-based method.

TABLE II: Parameters of the Synthesized Systems

System Name
Num. of

Inputs
[b]

Num. of
Outputs

[b]

Used
LUT
bits
[b]

Critical
bits [b]/

KP Han-
dicap [-]

Criti-
cal bits

Repr.
[%]

autocomposed 1

16 b;
16 b

5 b;
8 b

9120 1518 16.64
autocomposed 2 9856 1255 12.73
autocomposed 3 10240 1147 11.2
autocomposed 4 11684 1044 8.96
autocomposed 5 12000 968 8.07
autocomposed 6 12416 860 6.93

composed simple 9120 1518 16.64
composed triple 19684 1049 5.34
composed quadruple 24448 1060 4.34
composed quintuple 33056 1261 3.81

As can be seen, the largest autocomposed solution is still
37% smaller than the composition in which the entire system
was hardened with the usage of the triple RDT. For this system,
the number of critical bits is yet 18% smaller. In addition, the
autocomposed units are built of the optimal components that
decrease the number of critical bits with the growing size.
This is not always the case for the unpartitioned units, where
for example the composed quintuple system contains more
critical bits than its smaller counterparts. Important properties
of the autocomposed and naively composed systems after their
synthesis are shown in Figure 5.

Although a significant difference in the estimated and real
sizes can be seen, the important fact for us is that the estimation
of critical bits (i.e. the overall KP handicap) remained nearly
equivalent after the systems were composed and synthesized.

Figure 5: Properties of the synthesized configurations obtained
by changing the available area (i.e. size) on the chip.

D. Comparison of Partitioned vs. Homogeneous FT Selection

As can be observed in Figure 6, systems on which equiv-
alent redundancy method was applied to each component
(i.e. left part of the chart) have significant steps (i.e. low
granularity) in their implementation sizes according to utilized
redundancy method. This increases the overhead of the solu-
tion, as for a given space on an FPGA, implementation that
is smaller than the given space must be selected, resulting in
an unused FPGA area. On the other hand, systems on which
each component can be hardened using different redundancy
method (i.e. right part of the chart) have better granularity
among the resulting sizes of the system. Furthermore, the
automatic method based on the MCKP solver follows the trend
of lowering the absolute number of critical bits, which is not
always the case with the composed units. Also, the assumption,
that each component must be hardened using its most suitable
redundancy method can be also confirmed from the chart. It
is obvious, that the autocomposed units achieve equivalent or
better results while occupying significantly smaller area.

0

5000

10000

15000

20000

25000

30000

35000

co
m

p
o
se

d
_t

ri
p

le

co
m

p
o
se

d
_q

u
a
d

ru
p

le

co
m

p
o
se

d
_q

u
in

tu
p

le

co
m

p
o

se
d

_s
im

p
le

a
u
to

co
m

p
o
se

d
_1

a
u
to

co
m

p
o
se

d
_2

a
u
to

co
m

p
o
se

d
_4

a
u
to

co
m

p
o
se

d
_3

a
u
to

co
m

p
o
se

d
_5

a
u
to

co
m

p
o
se

d
_6

Redundancy Composition

b
it

s
o
f

th
e
 B

it
st

re
a
m

Implementation Size [b]
Critical bits [b]

Figure 6: Comparison of partitioned (i.e. autocomposed) sys-
tems with systems hardened using equivalent redundancy
method (i.e. manually composed systems).

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the possibility to utilize the MCKP solver
to assign redundancy types to components of a system was
presented. The usability was put into the context of the main
goal of our research which is the automation of FT design
process. In our case study, the method was presented on an
artificially created system which was built of four components.
The MCKP solver in combination with our FT design automa-
tion toolkit was able to optimize the selection and its results
contained 18% less critical bits compared to our previous
naive selection. In addition, the circuits assembled according
to the MCKP solver were much smaller because the solver
dismisses the sub-optimal configurations. Furthermore, the re-
sults indicate that dividing the system into smaller components

and searching the best solution for each component leads to
considerably smaller circuit while achieving even better results.

In future, the function blocks of the automation toolkit will
have to be programmably interconnected into a platform be-
cause, at the moment, a designer must execute them separately.
The integration would result in the complete platform, whose
user interactions would be in fact minimal, while still allowing
to replace and use its blocks as in a toolkit.

ACKNOWLEDGEMENTS

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II) project IT4Innovations excellence in science
– LQ1602, the Brno University of Technology under num-
ber FIT-S-20-6309 and the JU ECSEL Project SECREDAS
(Product Security for Cross Domain Reliable Dependable
Automated Systems), Grant agreement No. 783119.

REFERENCES

[1] J.-C. Geffroy and G. Motet, Design of Dependable Computing Systems.
Kluwer Academic Publishers, 2002.

[2] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[3] J. Onishi, S. Kimura, R. J. James, and Y. Nakagawa, “Solving the
Redundancy Allocation Problem with a Mix of Components Using
the Improved Surrogate Constraint Method,” IEEE Transactions on
Reliability, vol. 56, no. 1, pp. 94–101, 2007.

[4] W.-C. Yeh and T.-J. Hsieh, “Solving Reliability Redundancy Allocation
Problems Using an Artificial Bee Colony Algorithm,” Computers &
Operations Research, vol. 38, no. 11, pp. 1465–1473, 2011.

[5] Y.-C. Liang and Y.-C. Chen, “Redundancy Allocation of Series-parallel
Systems Using a Variable Neighborhood Search Algorithm,” Reliability
Engineering & System Safety, vol. 92, no. 3, pp. 323–331, 2007.

[6] K. Khalili-Damghani, A.-R. Abtahi, and M. Tavana, “A New Multi-
objective Particle Swarm Optimization Method for Solving Reliability
Redundancy Allocation Problems,” Reliability Engineering & System
Safety, vol. 111, pp. 58–75, 2013.

[7] G. Kanagaraj, S. Ponnambalam, and N. Jawahar, “A Hybrid Cuckoo
Search and Genetic Algorithm for Reliability–Redundancy Allocation
Problems,” Computers & Industrial Engineering, vol. 66, no. 4, pp.
1115–1124, 2013.

[8] Z. Wang, T. Chen, K. Tang, and X. Yao, “A Multi-objective Approach
to Redundancy Allocation Problem in Parallel-series Systems,” in 2009
IEEE Congress on Evolutionary Computation. IEEE, 2009, pp. 582–
589.

[9] H. Kellerer, U. Pferschy, and D. Pisinger, “The Multiple-choice Knap-
sack Problem,” in Knapsack Problems. Springer, 2004, pp. 317–347.

[10] J. Lojda, J. Podivinsky, Z. Kotasek, and M. Krcma, “Data Types and
Operations Modifications: A Practical Approach to Fault Tolerance in
HLS,” in 2017 IEEE East-West Design Test Symposium (EWDTS), Sept
2017, pp. 1–6.

[11] J. Lojda, J. Podivinsky, O. Cekan, R. Panek, and Z. Kotasek, “FT-EST
Framework: Reliability Estimation for the Purposes of Fault-Tolerant
System Design Automation,” in 2018 21st Euromicro Conference on
Digital System Design (DSD), Aug 2018, pp. 244–251.

[12] J. Lojda, J. Podivinsky, and Z. Kotasek, “Reliability Indicators for
Automatic Design and Analysis of Fault-Tolerant FPGA Systems,” in
2019 IEEE Latin American Test Symposium (LATS), March 2019, pp.
1–4.

[13] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, ser. Algorithms and Combinatorics. Springer Berlin Heidelberg,
2007.

[14] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations, ser. Wiley-Interscience series in discrete mathematics
and optimization. J. Wiley & Sons, 1990.

[15] M. Graphics, “Catapult HLS,” https://www.mentor.com/hls-lp/catapult-
high-level-synthesis/, 2017, accessed: 2017-07-07.

[16] Xilinx Inc., “ISE Design Suite,” https://www.xilinx.com/products/design-
tools/ise-design-suite.html, 2017, accessed: 2017-07-07.

[17] N. Dorairaj, E. Shiflet, and M. Goosman, “PlanAhead Software as a
Platform for Partial Reconfiguration,” vol. 55, no. 84, 2005, pp. 68–71.

Paper F

Automatic Design of
Fault-Tolerant Systems for VHDL
and SRAM-based FPGAs

LOJDA Jakub, PÁNEK Richard, KOTÁSEK Zdeněk

In: Proceedings - 2021 24th Euromicro Conference on Digital System Design, DSD 2021.
Palermo: Institute of Electrical and Electronics Engineers, 2021, pp. 549-552. ISBN 978-
1-6654-2703-6.

Available at: https://ieeexplore.ieee.org/document/9556374

114

https://ieeexplore.ieee.org/document/9556374

Automatic Design of Fault-Tolerant
Systems for VHDL and SRAM-based FPGAs

Jakub Lojda, Richard Panek, Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ilojda, ipanek, kotasek}@fit.vutbr.cz

Abstract—This paper presents and evaluates the possibility
of automatic design of fault-tolerant systems from unhardened
systems. We present an overview of our toolkit with its three
main components: 1) fault-tolerant structures insertion (which we
call helpers); 2) fault-tolerant structures selection (called guiders);
and 3) automatic testbed generation, incorporating advanced
acceleration techniques to accelerate the test and evaluation.
Our approach is targeting complete independence on the HW
description language and its abstraction level, however, for our
case study, we focus on VHDL in combination with fine-grained
n-modular redundancy. In the case study part of this paper,
we proved that it is undoubtedly beneficial to select a proper
fault tolerance method for each partition separately. Three
experimental systems were developed with the usage of our
method. Two of them achieved better reliability parameter while
even lowering their chip area, compared to static allocation of
equivalent fault tolerance technique type. In the case study, we
target the best median time to failure, the so-called t50, however,
our method is not dependent on this parameter and arbitrary
optimization target can be selected, as soon as it is measurable.

Keywords—Fault-Tolerant System Design, Electronic De-
sign Automation, Redundancy Insertion, Redundancy Allocation,
Multiple-choice Knapsack Problem, FPGA, VHDL, t50.

I. INTRODUCTION

Certain types of electronic systems must be able to main-
tain high level of reliability. The various reasons for this exist.
For instance a control system of a medical equipment must
remain stable otherwise a human health would be endangered.
Another group of systems cannot be repaired because it
is difficult or even impossible to access them. This group
includes, for example, satellites, space research probes or space
rovers. The design of all of these systems must, therefore,
reflect the demand for the high reliability. Generally, reliable
systems must be able to perform their task while delivering
correct results in prescribed time. One well-known approach to
reliable system design is the so-called Fault Tolerance (FT) [1].
This approach is based on FT enhancement of the system,
while the components are considered naturally unreliable. The
architecture of the system is, however, designed and configured
in such way, that a failing component does not influence the
correctness of produced results nor their timing requirements.

In our research, we focus primarily on FT of commercially
available Field Programmable Gate Arrays (FPGAs) that are
storing their configuration bitstream in the SRAM memory.
These are, especially in the area with increased radiation,
prone to the so-called Single Event Upsets (SEUs). SEUs
have potential to flip a configuration bit, thus, changing the
implemented design function and possibly the correctness of
results. Primarily, we research the possibilities in the FT design
automation. Our previous publications [2], [3], [4] presented
the possibilities of automatic incorporation of FT structures

into algorithms written in a higher programming language,
synthesized using the High-Level Synthesis (HLS) Design
Flow [5]. In this new paper, we present a new method of incor-
porating FT structures into VHDL language. Description code
modification algorithms are strictly separated from allocation
algorithms. This is different from the related work FT design
automation tools and allows to operate our FT automation
toolkit on various description languages of various levels of
abstraction while re-using most of the toolkit. As opposed to
behavioral-level C++ design in [3], this paper is primarily fo-
cused towards designs described in the structural-level VHDL.
This research aims to abstract from the description language
and bring the FT system design automation in a comprehensive
way, which should also be the contribution of our research.

Tools to insert a particular redundancy method exist. Some
of them are available only commercially, such as the Xilinx
TMRTool [6], which works as a part of the synthesis process,
during which it modifies the synthesized design. Another
tool is the BYU-LANL TMR Tool (BL-TMR) [7], which is
not strictly commercial as the TMRTool. The tool targeting
Verilog, called TMRG [8], works on the description-code level.
It focuses on Triple Modular Redundancy (TMR) exclusively.

Approaches to solve the reliability allocation problem can
also be found in literature. For example, the genetic algorithm
was used for this purpose in [9] and [10], where the use of
Non-dominated Sorting Genetic Algorithm II (NSGA-II) was
used to find a number of promising solutions. The authors
of paper [11] present a combination of previously mentioned
BL-TMR insertion tool with design space exploration, while
targeting various optimization goals.

After a design is hardened, it must be properly tested to
ensure its compliance with its specification. In the papers [12],
[13], techniques of fault injection into a real FPGA board
are shown. There is no need to modify the original design,
which is an important advantage. The paper [13] presents the
platform called FLIPPER. This platform utilizes two FPGAs,
one running the Design Under Test (DUT) and the other acting
as a controller. The paper [14] presents evaluation platform,
which was previously developed in our research group. It runs
on a PC and evaluates data captured from an FPGA. This
platform is, however, more suitable for the final testing, not
for the massively accelerated evaluations, that are necessary in
the process of FT system design automation.

This paper is organized as follows: Section II shows the
principles of our FT design automation toolkit and its main
concepts. The experiments setup and results are presented in
Section III. Finally, the Section IV concludes the paper.

II. FAULT-TOLERANT DESIGN AUTOMATION

The following section presents our FT design automation.
Our approach is based on the traditional flow, which incor-
porates manual iteration-oriented improvement of the system

549

2021 24th Euromicro Conference on Digital System Design (DSD)

978-1-6654-2703-6/21/$31.00 ©2021 IEEE
DOI 10.1109/DSD53832.2021.00088

while addressing its weakest points. In the automated flow,
there is a description of the original system and the target spec-
ification available at the beginning. The specification might
include, for example, the percentage of critical bits of FPGA
bitstream or a Time to Failure (TTF). At first, the system must
be partitioned. At the moment, partitions are created based on
instances of VHDL entities. For the description language, the
so-called helpers are built. These allow to incorporate FT into a
partition of the system. Subsequently, the so-called guider must
select the most appropriate FT technique for each partition,
following the reliability specifications. The last part of the
automated flow is testing. This part is crucial according to our
previous experiences. The testing and parameters measurement
are usually performed in high quantities, making it very
time-consuming part of the design flow. The context of the
traditional and the automated flow can be observed in Figure 1.

Incl. Fault-
Detect. Mech.

Include Fault-
Recov. Alg.

FT
Eval.

Meets
Specif.?

Yes

No

Traditional Designers Flow

R
el

ia
bi

lit
y

Sp
ec

i
ca

tio
ns

In
pu

ts
 o

f t
he

 D
es

ig
n

Fl
ow

H
D

L/
ot

he
r c

od
e

FT Incorpora-
tion Helpers

Strategy
Guiders

Automated Design Flow
FT Eval.
Analysis

and
Meets

Specif.?
Yes

No Es
tim

at
ed

 R
el

ia
bi

lit
y

O
ut

pu
ts

 o
f t

he
 D

es
ig

n
Fl

ow

H
D

L/
ot

he
r c

od
e

Figure 1: Traditional and Automatic Flows for FT System
Design.

A. The Helpers: Fault Tolerance Incorporation

In this paper, we use the newly created helpers for VHDL,
which allow us to harden specific entity instances. We consider
these as partitions, in the sense of the previously established
terminology. Special code comments must be written around
the instantiation, which instruct the helpers to make the spe-
cific modification. Our VHDL helpers are based on a group
of generic templates, which simplifies the addition of new
architectures. These are, however, limited by the encapsulation
of the entity instance, as these are currently considered as black
boxes. The group of templates is supplemented by additional
procedures that search for necessary data and use this data to
fill a generic template. At first, the VHDL helper divides the
original VHDL file into code-block tokens delimited by the
special code comments and identifies the tokens (e.g. instan-
tiation block, don’t care block, etc.). After that, the instances
marked for modification are selected and the whole VHDL
project is searched for basic pieces of the source description
code. These include, for example, entity declarations, signals,
etc. These are then parsed to obtain additional information,
such as signal directions, bit widths etc. for filling the generic
template. Also the clock signal name is detected, in order to
route this signal to an optional auxiliary component, such as a
scrubbing unit, in the template. After the template is filled, the
previous instantiation is modified to refer to this newly filled
template. The modification flow is displayed in Figure 2.

B. The Guiders: Fault Tolerance Strategy

It is important to have a strategy to select proper FT tech-
niques for each partition, while meeting the given constraints
(e.g. chip area). Such strategy, in our toolkit, is called the
guider. The guider basically solves the allocation of redun-
dancy techniques. It selects the appropriate FT techniques for
the partitions, in order to strengthen FT of the system, while
considering one or more constraints. Unachievable constraints
cause the design process to stop without a candidate solution.

TM
R

TE
M

PL
5M

R
TE

M
PL

FT
 A

rc
hi

te
ct

ur
es

Te
m

pl
at

es

-- autoft inst begin make tmr
I1 : entity work.in1
-- autoft inst end

-- autoft inst begin make 5mr
I2 : entity work.in2
-- autoft inst end Tok

en
 List

 Extr
act

ion

Tok
en

 Clas
si

cat
ion

Tok
en

s M
erg

ing

Tem
pla

te
Cop

y -- autoft inst begin made tmr
I1 : entity work.in1_autoft_tmr
-- autoft inst end

-- autoft inst begin made 5mr
I2 : entity work.in2_autoft_5mr
-- autoft inst end

-- autogenerated
I1_1 : entity work.in1
I1_2 : entity work.in1
I1_3 : entity work.in1

O
ri

gi
na

l V
H

D
L

So
ur

ce
 F

ile

Modi ed VHDL File

Data
 Acqu

isi
tio

n an
d

Tem
pla

te
Fill

Out-of-place Modi cation

In-place Modi cation

Cod
e R

e-a
sse

mbly

Created VHDL File

Figure 2: Simplified Code Example with VHDL Modification
Flow, Automated using VHDL Helpers.

In our toolkit, we utilize a form of the so-called Multiple-
Choice Knapsack Problem (MCKP) [15] solver in place of the
main guider. The MCKP is a specific variant of the general
Knapsack Problem (KP). The KP is one of the so-called com-
binatorial optimization problems [16], the target of which is to
maximize the value of items put into a hypothetical knapsack
of a given load capacity. The MCKP variant constrains the
items that are put into the knapsack. The items are divided
to classes and from each class, exactly one item must be
selected. As can be seen, the solution to this problem is
convertible to our problem of FT technique selection: we have
classes of different implementations for each partition. Each
implementation has different value (i.e. benefit in the form
of increased FT) and different weight (i.e. chip area, power
demand, etc.).

C. Fault Tolerance Evaluation

Testing and evaluation of a component or a system is
performed relatively often during the design flow. This makes
it the most time-consuming part of the complete FT design
flow. For this reason, we developed our Fault Tolerance
Estimation (FT-EST) framework [4], in which we stressed
its acceleration possibilities to expedite the evaluation. A test
design consists of a test controller and the tested units. We call
this complete formation a testbed.

The generated testbed has a fixed structure, although the
components are very configurable. The main part of a testbed
includes the so-called Input Generation Unit, which generates
the so-called stimuli for the testing. These can be streams of
data (e.g. generated using a counter or a Linear Feedback Shift
Register (LFSR) unit) or transactions of data. The outputs of
tested units are compared against the golden (i.e. reference)
unit and the differences are captured. The running tested unit is
paused through clock-gating. Fault Injector [17] artificially and
permanently changes utilized bits of Look-Up Tables (LUTs) in
specified times, based on the required fault intensity. Detailed
description of our FT-EST testbed generator can be obtained
from our previous publication [4].

III. THE CASE STUDY AND EXPERIMENTAL RESULTS

In the following section, a case study utilizing our FT
system design automation toolkit will be presented, based
on hardening of an artificially constructed system. Also the
parameters of the resulting systems will be discussed alongside
with the design flow.

A. Toolkit Setup

In our experiments, we prepared the helpers to include
the TMR and 5-Modular Redundancy (5-MR) techniques. We
also utilize the MCKP guider. We focus on the minimization

550

of the median time to failure, also called the t50 parameter.
This parameter defines the time of 50% probability that the
system is still fully functioning. The t50 quantification is more
useful for our measurement, as it tends to remove extreme
values, opposed to the classical Mean Time To Failure (MTTF),
which utilizes the mathematical average. Also, the MTTF (i.e.
the period from system start, for which the fault masking is
possible) tends to lower with the added modular redundancy
for longer mission times [18]. We chose to precisely evaluate
each partition in advance and then estimate the resulting
system parameters inside the MCKP solver. After the solver
finishes, the best matched system is then evaluated precisely.
We use the FT-EST framework to generate our testbeds. As
the test stimuli generator, we use various bit-width variants of
LFSRs utilizing corresponding maximal-length polynomials to
produce a pseudo-random sequence of all the possible combi-
nations. The fault model includes permanent faults of utilized
bits of LUTs. Faults are injected into the precisely selected part
of the FPGA configuration bitstream. Their intensity is derived
from this bitstream size of the tested design, based on the fault
injection intensity unit – injection/s/bit. To measure the results,
testbeds for each partition and each system are synthesized
using the Xilinx Integrated Synthesis Environment (ISE) 14.7
and prepared using the Xilinx PlanAhead 14.7. Testbeds are
run on the ML506 board [19] with the Virtex 5 technology.

B. Toolkit Input: Benchmark System

We prepared a benchmark system composed of four hypo-
thetical partitions: 1) addition, 2) constant addition, 3) Cyclic
Redundancy Check on 8 bits (CRC-8) computation; and
4) number of high bits detection. Connection of these com-
ponents including their input and output bit widths can be
observed in Figure 3. The system was described in VHDL.

addition addconst numones

crc8

16 b

16 b

16 b

16 b

16 b 5 b

8 b16 b

Figure 3: Benchmark System Structure.

C. The Helpers: Variants Generation

With the usage of helpers, we created two hardened variants
for each partition of the system. The overview of the partitions,
including their real measured parameters, can be seen in
Table I. As can be observed, each partition has a different size.
After the application of each technique, the FPGA synthesis
surely optimized the larger partitions better, as the sizes of
hardened partitions do not correspond to the theoretically pre-
dicted overheads (i.e. more than triple for TMR and quintuple
for 5-MR techniques). The so-called majority voters, which
are an integral part for both the TMR and 5-MR architectures,
were both included in the timing analysis and subject to fault
injection (as other parts of the complete component or system).
As can be seen, the t50 parameter improved for each partition
except the addconst TMR version, for which it was nearly 20%
worse, compared to the simplex t50. This might be caused by
the internal structure of the implementation or the nature of the
computation itself. The addconst holds the added constant in its
implementation. This, if hit, results in a logically functioning
design. The results are, however, computed from a different
constant values, rendering them incorrect. As can be seen
from the results, the effectiveness varies among the partitions,
thus supporting the need to methodically select the proper FT
method for each partition.

TABLE I: System Partitions with Their Size and Reliability
Parameters under Fault Injection Intensity of 2e−5 inj/s/bit

Partition
Name

FT
Technique

Bitstream
Area [b]

t50
[ms]

t50 Compa-
red to Simplex

[ms] [%]

addition
simplex 4 288 197 635 + 0 + 0.00
TMR 7 552 208 793 + 11 158 + 5.64
5-MR 9 856 225 042 + 27 407 + 13.87

addconst
simplex 3 264 337 843 + 0 + 0.00
TMR 6 656 271 246 - 66 597 - 19.71
5-MR 9 088 345 745 + 7 902 + 2.34

crc8
simplex 4 800 39 484 + 0 + 0.00
TMR 9 792 47 222 + 7 738 + 19.6
5-MR 14 272 60 227 + 20 743 + 52.54

numones
simplex 3 072 94 549 + 0 + 0.00
TMR 6 848 102 603 + 8 054 + 8.52
5-MR 10 304 119 195 + 24 646 + 26.07

The box plot chart displayed in Figure 4 illustrates the
scatter on the measured values for each partition. As can
be seen, the benefit of an FT technique is very fluctuating
among different circuit types. Also, the simplex minimum
time to failure (i.e. the worst measured case) is always better,
compared to the TMR and 5-MR versions. This means that
the dispersion rates of hardened partitions (at least towards
minimum values) are higher. Also, for the crc8 and numones
partitions, the middle 50% interquartile range is concentrated
nearer the median, indicating lower variability of these results.
This indicates that the TMR and 5-MR work better on these
partitions. The addconst was the only component visibly
deviating in efficiency of FT techniques, specifically for TMR.
As can be seen, the 5-MR version has a slightly better median
value, although the difference is nearly negligible. Nonetheless,
for the 5-MR version of this partition, the variability of the
middle 50% is also smaller, similarly but not so obvious as
for the numones and crc8 partitions.

5 20 50 200 500 2 000

Time To Failure [s]

Figure 4: Box Plot Chart of Time to Failure for Each Partition
and Their Hardened Variants.

D. The Guiders: Automatic Composition of Systems

Three systems were automatically composed using our
methods. Methods were configured to minimize the t50 pa-
rameter while not exceeding a given chip area. These area
limits were based on the bitstream area that was subject to the
fault injection. This was 20 000, 25 000 and 30 000 bits. The
overview of synthesized systems, including their parameters,
can be seen in Table II. We also created two additional

551

homogeneous reference systems, each of which is utilizing one
type of FT technique applied to each partition.

TABLE II: Automatically and Manually Composed Systems
(as a Reference) with Reliability Parameters under Fault In-
jection Intensity of 2e−5 inj/s/bit

System
Name

FT
Techniques Bitstream

Area [b]
t50

[ms]addition addconst crc8 numones

auto 20000 simplex simplex 5-MR simplex 18 624 43 198
auto 25000 simplex simplex 5-MR TMR 22 400 49 935
auto 30000 simplex simplex 5-MR 5-MR 25 856 49 675

ref simplex simplex simplex simplex simplex 9 152 23 559
ref TMR TMR TMR TMR TMR 24 704 42 173
ref 5-MR 5-MR 5-MR 5-MR 5-MR 37 376 55 900

As can be observed, the guider based on the MCKP
solver targeted the mostly failure-prone partitions: the crc8
and the numones. Incorporation of FT techniques into the
remaining two partitions was evaluated as not sufficiently
effective. The crc8 partition was the most error-prone, and
thus the highest hardening was allocated for this partition in all
the three cases. The smallest automatically composed system
occupied approximately 18 kbits, that is only 75.34% size of
the reference system size for which the TMR was manually
assigned to each partition. Despite this, the automatically
composed system shows slightly better t50 parameter than for
the manually created reference, thus, saving circa 25% of area.
The second automatically composed system is still by 9.33%
smaller than the manually created TMR one, yet its t50 is
more than 7 s longer. For the last automatically created system,
the t50 is nearly equivalent to the previous, second one. The
size of the third system is, however, larger. This wrong choice
of partitions by the MCKP solver is apparently caused by
imprecise estimation of system t50 from the components t50
times, thus, confusing to solver to choose sub-optimal selection
of FT techniques. Nevertheless, this third system is still more
than 30% smaller compared to the manually created 5-MR
system and its t50 is only by 11% worse.

IV. CONCLUSIONS

This paper presents a novel approach to FT system design,
which is able to work in various abstraction levels with various
language description formats. We implemented our solution in
the form of a toolkit with each part of the toolkit specializing
on a different task of the FT system design automation.
New template-based approach to helpers for incorporating FT
techniques into VHDL was presented alongside with the usage
of MCKP solver as the guider for the redundancy allocation.
Our automatic testbed generation framework was also briefly
described. We modified it to monitor, detect and report the
time of the first failure observation. The experimental eval-
uation and illustration of our approach was presented in the
Section III. In this section the experimentation is performed on
our artificial benchmark circuit. During our experiments, we
proved that it is undoubtedly beneficial to select FT method
for each partition separately. Three automatically generated
versions of the experimental system were developed with the
usage of our method. Two of them achieved better reliability
parameter while even lowering their chip area, compared to
static allocation of equivalent FT technique type.

ACKNOWLEDGEMENTS

This work was supported by the Brno University of
Technology under number FIT-S-20-6309 and the JU EC-
SEL Project SECREDAS (Product Security for Cross Domain

Reliable Dependable Automated Systems), Grant agreement
No. 783119.

REFERENCES

[1] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[2] J. Lojda, J. Podivinsky, Z. Kotasek, and M. Krcma, “Data Types and
Operations Modifications: A Practical Approach to Fault Tolerance in
HLS,” in 2017 IEEE East-West Design Test Symposium (EWDTS), Sept
2017, pp. 1–6.

[3] J. Lojda, J. Podivinsky, O. Cekan, R. Panek, M. Krcma, and Z. Kotasek,
“Automatic Design of Reliable Systems Based on the Multiple-choice
Knapsack Problem,” in 2020 23rd International Symposium on Design
and Diagnostics of Electronic Circuits Systems (DDECS), 2020, pp.
1–4.

[4] J. Lojda, J. Podivinsky, O. Cekan, R. Panek, and Z. Kotasek, “FT-EST
Framework: Reliability Estimation for the Purposes of Fault-Tolerant
System Design Automation,” in 2018 21st Euromicro Conference on
Digital System Design (DSD), Aug 2018, pp. 244–251.

[5] M. Fingeroff, High-level synthesis blue book. Xlibris Corporation,
2010.

[6] Xilinx Inc., “TMRTool: The Industry’s First Development Tool to Auto-
matically Generate Triple Module Redundancy (TMR) for Space-grade
Re-programmable FPGAs,” https://www.xilinx.com/products/design-
tools/tmrtool.html, accessed: 2021-04-13.

[7] “Byu edif tools homepage,” http://reliability.ee.byu.edu/edif/, accessed:
2021-04-13.

[8] S. Kulis, “Single Event Effects Mitigation with TMRG Tool,” Journal
of Instrumentation, vol. 12, no. 01, p. C01082, 2017. [Online].
Available: http://stacks.iop.org/1748-0221/12/i=01/a=C01082

[9] G. Kanagaraj, S. Ponnambalam, and N. Jawahar, “A Hybrid Cuckoo
Search and Genetic Algorithm for Reliability–Redundancy Allocation
Problems,” Computers & Industrial Engineering, vol. 66, no. 4, pp.
1115–1124, 2013.

[10] Z. Wang, T. Chen, K. Tang, and X. Yao, “A Multi-objective Approach
to Redundancy Allocation Problem in Parallel-series Systems,” in 2009
IEEE Congress on Evolutionary Computation. IEEE, 2009, pp. 582–
589.

[11] J. Anwer, M. Platzner, and S. Meisner, “FPGA Redundancy Config-
urations: An Automated Design Space Exploration,” in 2014 IEEE
International Parallel Distributed Processing Symposium Workshops,
2014, pp. 275–280.

[12] M. Alderighi, S. D’Angelo, M. Mancini, and G. R. Sechi, “A Fault In-
jection Tool for SRAM-based FPGAs,” in On-Line Testing Symposium,
2003. IOLTS 2003. 9th IEEE. IEEE, 2003, pp. 129–133.

[13] M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, and
G. R. Sechi, “Evaluation of Single Event Upset Mitigation Schemes for
SRAM-based FPGAs Using the FLIPPER Fault Injection Platform,” in
Defect and Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE
International Symposium on. IEEE, 2007, pp. 105–113.

[14] J. Podivinsky, J. Lojda, O. Cekan, and Z. Kotasek, “Evaluation Plat-
form for Testing Fault Tolerance Properties: Soft-core Processor-based
Experimental Robot Controller,” in 2018 21st Euromicro Conference on
Digital System Design (DSD), 2018, pp. 229–236.

[15] H. Kellerer, U. Pferschy, and D. Pisinger, “The Multiple-choice Knap-
sack Problem,” in Knapsack Problems. Springer, 2004, pp. 317–347.

[16] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, ser. Algorithms and Combinatorics. Springer Berlin Heidelberg,
2007.

[17] M. Straka, J. Kastil, and Z. Kotasek, “SEU Simulation Framework
for Xilinx FPGA: First Step Towards Testing Fault Tolerant Systems,”
in 14th EUROMICRO Conference on Digital System Design. IEEE
Computer Society, 2011, pp. 223–230.

[18] J.-C. Geffroy and G. Motet, Design of dependable computing systems.
Springer Science & Business Media, 2013.

[19] Xilinx Inc., “Ml506 Evaluation Platform User Guide,” UG347 (v3. 1.2),
2011.

552

Paper G

Automatically-Designed
Fault-Tolerant Systems: Failed
Partitions Recovery

LOJDA Jakub, PÁNEK Richard, KOTÁSEK Zdeněk

In: 2021 IEEE East-West Design and Test Symposium, EWDTS 2021 - Proceedings. Ba-
tumi: Institute of Electrical and Electronics Engineers, 2021, pp. 26-33. ISBN 978-1-6654-
4503-0.

Available at: https://ieeexplore.ieee.org/document/9580996

119

https://ieeexplore.ieee.org/document/9580996

Automatically-Designed Fault-Tolerant
Systems: Failed Partitions Recovery

Jakub Lojda, Richard Panek, Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ilojda, ipanek, kotasek}@fit.vutbr.cz

Abstract—This paper presents and describes our design au-
tomation toolkit for automatic synthesis of fault tolerant systems
from unhardened systems. The toolkit is composed of various
parts and tools and its aim is to design its internal algorithms
in such way to be reusable among different HW description
languages. In this paper, VHDL description is used to present
the possibilities of the toolkit. The experimental part of the
paper presents automatic synthesis of a benchmark system into
a limited chip area. The optimization goal was to maximize
the median time to failure (a.k.a. t50) parameter. The main
part of the experimental activities comprises incorporation of
a partial dynamic reconfiguration controller into the system
design to recover the selected component of the system. Two
systems utilizing recovery with the usage of the FPGA dynamic
reconfiguration technique show promising results in terms of
reliability. The recovered system, in which the controller is apart
of the FPGA (e.g. in a different radiation-hardened chip), achieves
by 70% better t50 parameter, compared to the system without
recovery.

Keywords—Fault-Tolerant System Design, Electronic De-
sign Automation, Redundancy Insertion, Redundancy Allocation,
Multiple-choice Knapsack Problem, FPGA, VHDL, t50.

I. INTRODUCTION

Special types of electronic systems are required to with-
stand certain harsh environments, such as environments with
increased radiation. Such systems must perform their function
without interruption of the data processing and without altering
their behavior. One possibility to treat this problematic is
to incorporate the so-called Fault Avoidance (FA) [1]. This
treatment lies in the usage of reliable components to produce
reliable systems that comply with the specifications. The
selection of components for the designer is limited by the
specifications to such components that are produced for the
given environment – e.g. increased radiation. Such compo-
nents are thoroughly tested and usually do not incorporate
the newest manufacturing process nor a newest architecture.
The other treatment includes the so-called methods of Fault
Tolerance (FT) [2]. FT accepts the fundamental fact that any
component may fail and aims to solve high reliability on the ar-
chitectural level. By incorporating the so-called fault-masking
techniques, the system can appear to be fully functional, while
one or more of its components are in a failed state.

Highly-reliable systems include those, that control poten-
tially dangerous processes or can cause a loss of tangible or
intangible assets. Other systems requiring to maintain high

level of reliability include space probes and other space equip-
ment. Such devices are nearly impossible to repair. Failure
of the electronic control system of such device poses an
incredible-high and very unnecessary risk of failure of the
complete mission. Performance parameters of commercially-
available components are, however, usually significantly bet-
ter, as their design does not involve time-consuming testing.
For example, the National Aeronautics and Space Admin-
istration (NASA) Perseverance rover [3], which landed on
February, 18th 2021 on Mars, carries on board the Ingenuity
helicopter [4], the control systems of which are designed
from common commercially-produced components. One of the
purposes is to test the service life of such components in a such
harsh environment, which the Mars atmosphere surely is.

Certain reliable applications also utilize Field Pro-
grammable Gate Arrays (FPGAs), for their performance and
ability to reconfigure, i.e. reprogram their functionality. A
common FPGA holds the configuration bitstream in its SRAM
memory. The SRAM is subject to the so-called Single-Event
Upsets (SEUs), which have the potential to flip a configuration
bit, thus effectively changing the implementation in the FPGA.
One of the uses of FPGAs for the class of space probe
applications is to perform scientific data processing on board of
remotely-controlled rover. For example, the already-mentioned
Perseverance rover uses Xilinx FPGAs for image processing
and machine-learning algorithms for searching for signs of life
on Mars [5]. Nearly 18-times faster data processing is achieved
with the usage of FPGAs, compared to the previous approach.

The usual approach to fault masking is the so-called Triple
Modular Redundancy (TMR), which triplicates the design and
adds a voter to select the representative result. The TMR can
be applied in two general ways: 1) Triplication of the whole
design, which is called the Coarse-Grained TMR (CGTMR).
With regard to maximal efficiency of chip area usage and
maximal level of FT, the CGTMR is not ideal, as it results in
equivalent amount of redundancy throughout the whole design.
In the 2) approach, the design is partitioned to smaller units,
and thereafter, such smaller units are triplicated. Such approach
is called the Fine-Grained TMR (FGTMR). This allows to
target the redundancy towards certain partitions of the system,
based on their criticality.

The fault masking approach itself is not sufficient. The N-
Modular Redundancy (N-MR) systems tend to decrease the
Mean Time To Failure (MTTF) for longer mission times [1],
as the failed components accumulate. For this reason, the
fault-masking approaches are usually combined with repara-
tion mechanisms. Specifically for FPGAs, such mechanisms
include the so-called Partial Dynamic Reconfiguration (PDR).
Although originally meant to change the FPGA configuration978-1-6654-4503-0/21/$31.00 ©2021 IEEE

26 IEEE EWDTS 2021, September, 10-13, Batumi, Georgia

at a run time, the PDR can also be used to restore the
configuration of the FPGA, which could have been altered
as a result of the SEU. The PDR can be initiated from inside
of the FPGA itself, making a possibility to create a reparation
unit directly on the same FPGA as the electronic system. Of
course, the bitstream restore can be initiated from the outside
of the FPGA as well, for example by a radiation-hardened
microcontroller.

With the increasing number of partitions, and with numer-
ous FT architectures, the number of possible combinations
rises drastically, thus, making the so-called redundancy al-
location problem a great challenge. This creates a pressure
to automate the complete process of FT system design. The
objective of our research is to design such design automation
methods. Further, our research focuses on the FGTMR and
N-MR techniques for FPGA, partially oriented at the data
processing systems. In this paper, the complete overview of
our existing FT design automation toolkit, which was extended
to provide possibility to incorporate mechanisms of reparation
using PDR, is presented alongside with the case study on
automatically-hardened data-processing oriented benchmark
circuit on a real HW FPGA. The research that was previously
presented in [6], is extended in this paper by the identification
of weakest components of the system and the incorporation of
recovery for such components.

II. RELATED WORK AND THE CONTEXT

This work deals with various research themes, nonetheless,
the main themes include 1) Redundancy Insertion, 2) Reliabil-
ity Allocation and 3) Fault Tolerance Testing.

One commercially available redundancy insertion tool, the
so-called Xilinx TMRTool [7], modifies the synthesized design
during the design process. Another possibility to include re-
dundancy, this time at the source-code level, is the TMRG [8].
The TMRG works with systems described in the Verilog
language. It is focused towards creation of the TMR structure
exclusively, as well as the TMRTool. Different option is to
modify the synthesis tool itself, to produce reliable designs. For
example, the TLegUp [9] is based on the modified version of
the High-Level Synthesis (HLS) tool LegUP [10]. It generates
TMR designs directly from the description in the C language.

Reliability Allocation methods exist throughout the lit-
erature as well. For example, in paper [11], the Improved
Surrogate Constraint (ISC) method was examined, targeting
the computational speed of the design method. In [12], the
penalty guided artificial bee colony algorithm was presented.
The use of particle swarm optimization method is proposed
in [13], while the variable neighborhood search meta-heuristic
method was presented in the paper [14].

Waiting for faults to appear naturally is not feasible during
the testing procedure. Therefore, special techniques are used
to increase the fault occurrence in order to examine the
design during the presence of faults. One approach, utilizing
the RapidSmith library [15], is presented in [16] and later
demonstrated in [17]. The paper [18] shows a method of
observing and modifying signals in the design through the
Joint Test Action Group (JTAG) interface. The approach in [19]
supports various fault models. Some extra gates must be added
to the design before testing. Simulation-based evaluation is
also present in literature [20], [21]. In [22], fault modeling
in combination with design simulation is used. In paper [23]

an approach is presented, in which the fault injection is fully
controlled by a component on the FPGA itself, significantly
improving the testing speed. In paper [24], evaluation platform
designed in our research group is presented. The platform is
executed on a PC, which also captures and evaluates data
obtained from an FPGA. Nonetheless, the complete platform is
more suitable for the final verification of reliability parameters.
In this research, however, massively accelerated evaluations are
needed to complete the design task in a reasonable time.

In our research, we target a comprehensive approach to
automate every part of the FT design process. The main goal is
to design most of the components to be reusable. For example,
if the description code manipulation is isolated from the rest
of the system, it must be possible to replace the code manipu-
lation to instantly add support for a new description language.
Nonetheless, it is beneficial if the language supports direct syn-
thesis to an implementation, for example for an FPGA, such as
VHDL or Verilog. Our goal is to research new methods of FT
design automation, implement them and examine their aspects
in practice. So far, we have implemented code manipulation to
include FT on the behavioral level for the C++ language (in
combination with HLS tools) and on the structural-level for
the VHDL (in combination with traditional VHDL synthesis
tools). The selection of FT methods based on combinatorial
optimization problems and massively-accelerated evaluation of
FT properties were also developed. In this paper, we extend
our method with ability to incorporate system recovery with
the usage of PDR and practically evaluate this approach on two
versions of the system: 1) PDR controller on the FPGA itself,
and 2) PDR controller outside the FPGA (e.g. in a radiation-
hardened external chip).

III. FAULT-TOLERANT SYSTEM DESIGN AUTOMATION

Today’s chip integration allows to implement large systems.
These become increasingly complex. The difficulty to incor-
porate FT into such complex systems also grows, as it shows
to be beneficial to split the system into smaller partitions and
select the proper FT method for each partition exclusively.
Such selection is complex and very time-consuming process,
increasing the interest in automated design of FT systems.

Our design flow is based on the traditional process (i.e. the
originally manual design). The input of both these approaches
is a system description, which we call unhardened or also
original. The other input of the development process is the
specification of desired reliability parameters and the method
of their measurement. The traditional process involved iterative
development of the system by addressing its weak points
and modifying them to remove their impact in the case
of a failure. A designer does these modifications based on
previous experiences and judgment. On the other side, the
automated flow performs the so-called state space exploration
of all the possible configurations. This might involve heuristic
approaches, which reduce the number of states needed to
explore. The output of the development is a system, which
incorporates the needed FT techniques and complies with
the reliability specifications. Also, the output system must be
functionally equivalent. The original and automated flows are
displayed side-by-side in Figure 1.

A. Description-code Modifications

In our design flow, the source code modifications are
contained inside the so-called Helpers. These allow to incor-

IEEE EWDTS 2021, September, 10-13, Batumi, Georgia 27

Include/modify fault-
detection mechanisms

Include/modify fault-
recovery algorithms

FT property
evaluation

.V

.C
PP

.V
HD

HDL/other code
Reliability

Specifications

.TXT

FT Incorpora-
tion Helpers

FT Evaluation

Strategy
Guiders

Meets
Specif.?

Yes

No Meets
Specif.?
Yes

No

.V .V .V

.C
PP

.C
PP

.C
PP

.V
HD

.V
HD

.V
HD

HDL/other code

Analysis
and

Tr
ad

iti
on

al
 D

es
ig

ne
rs

 F
lo

w

Au
to

m
at

ed
 D

es
ig

n
Fl

ow

Inputs of the Design Flow
O

ut
pu

ts
 o

f t
he

D
es

ig
n

Fl
ow

Provided by
the Designer

To Final
Verification

Estimated
Reliability

.TXT

Final tuning

Figure 1: FT System Design with the Original and Automated
Design Flows.

porate various FT methods into a specific description code
language. The FT is incorporated throughout the modification
of the system description, thereby isolating the specifics of
the language in helpers. In our current research, we partition
the system based on every entity instantiation in the top-level
design. The project source code must be prepared with this fact
in mind. The top-level VHDL source should contain number
of components, that will be considered partitions in the design
flow. Each helper incorporates one or many FT techniques into
a specified partition of the system. Obviously, the helpers must
be re-designed for a different language. However, the reliability
allocation algorithms can be fully re-used. For example, in
our previous research, we utilized our so-called Redundancy
Data Type (RDT) helpers [25] to incorporate time and spatial
redundancies into C++ algorithms and synthesize them using
HLS. In our more recent work, we designed VHDL helpers
and utilized them in a case study [6].

In the following case study, we use the VHDL helpers as
well. The source description code must be prepared to instruct
proper modifications of the code. This includes a special
prefix and postfix source code comments before and after an
entity instantiation. These store the guiding information for
the helpers. These include the indication of the beginning (or
ending) of the source code, type of FT method (e.g. TMR, 5-
MR, duplex, etc.). Currently, we focus on entity instantiations
exclusively. The proper setup of such guiding comments is the
responsibility of the so-called Guider (which will be described
further in the text). The products of helpers are generally
compatible with existing synthesis tools, as soon as the helpers
modification procedures comply with the synthesizable lan-
guage. In certain scenarios, the inserted logic must also comply
with the target technology (e.g. a PDR controller must keep
communication compatibility with the PDR interface).

The VHDL helpers modify the original source code files
during two basic steps: 1) In-place modifications, and 2) Out-
of-place modifications. At first, for the in-place modification,
an original source file is loaded and the so-called code-block
token list is extracted. Blocks of code in the token list are
classified (e.g. out-of-interest block, apply modification block,
already modified block, etc.). These are later merged into lists
of self-contained objects. One object thus includes its guider
comments (i.e. the prefix and postfix guiding comments) as
well as the body of its instantiation. These objects are already
prepared to apply modifications to, which includes mainly
changing of the VHDL entity name to instantiate a newly
created FT entity. This new entity is prepared during the out-
of-place modification. An architectural template is copied onto
its place and all the important data is filled in the template.
Such data include the name of the original component, the
signal names, their bit widths, etc. These are collected from
the project source files. The VHDL helper execution then stops
by re-assembling the final code of the original file. The flow
is represented graphically in Figure 2. A simplified example
of the VHDL code is also shown in the figure.

TM
R

TE
M

PL
5M

R
TE

M
PL

FT
 A

rc
hi

te
ct

ur
es

Te
m

pl
at

es

-- autoft inst begin make tmr
I1 : entity work.in1
-- autoft inst end

Token List Extraction

Token Classification

Tokens MergingTemplate Copy

Code Re-assembly

-- autoft inst begin made tmr
I1 : entity work.in1_autoft_tmr
-- autoft inst end

-- autogenerated
I1_1 : entity work.in1
I1_2 : entity work.in1
I1_3 : entity work.in1

Original VHDL Source File

Modified VHDL Source FileO
ut

-o
f-p

la
ce

 M
od

ifi
ca

tio
n

In
-p

la
ce

 M
od

ifi
ca

tio
n

VH
D

L
H

el
pe

r F
lo

w

Newly Created
FT Entities

-- autoft inst begin make 5mr
I2 : entity work.in2
-- autoft inst end

-- autoft inst begin made 5mr
I2 : entity work.in2_autoft_5mr
-- autoft inst end

Data Acquisition, Instantiation
Modification and Template Fill

V : entity work.voter

z.v
hd

y.v
hd

x.v
hd The Rest of VHDL

Project Files

Figure 2: VHDL Helpers Code Modification Flow, Including
a Simplified Code Example of Usage.

B. Guidance for the Modifications

In our research the helpers must be properly instructed
using the guiding comments. Their content is provided by the
so-called Guider. The Guider is an essential component of the
FT design automation toolkit. It selects the proper FT methods
based on their effect. Such selection must be performed for
each component (i.e. partition of the system).

In our research we convert the problem of FT method
selection to the so-called Knapsack Problem (KP). The KP
is a well-known combinatorial problem, which aims to select
the items from a given set of items. These are put into a
hypothetical knapsack. Such knapsack has a limited capacity.
The selected items must represent the most valuable selection.

28 IEEE EWDTS 2021, September, 10-13, Batumi, Georgia

A specific modification of this KP is the so-called Multiple-
Choice Knapsack Problem (MCKP). In the MCKP, the set of
all items is classified and exactly one item must be selected
from each class. This is very similar to our FT selection
problem and it is straightforwardly convertible to our problem:
the items in sets are available variants for each partition
(generated with the usage of helpers) and the knapsack ca-
pacity represents the given budget (e.g. FPGA area, power
consumption, etc.). The item value is represented by the benefit
of a certain component (e.g. lowering the number of sensitive
bits of the bitstream, or increasing the Time To Failure (TTF)
parameter). With this conversion, the FT methods can be
selected automatically using the MCKP solver (i.e. a SW that
solves an instance of the MCKP problem).

There are two possibilities how to use the MCKP solver
as a guider: 1) the MCKP solver can call the helpers, design
synthesis and demand the test and evaluation of the synthesized
design. This is useful in cases, when we do not want to
evaluate each combination of FT technique and partition in
advance, as the method can start to compose systems and
evaluate them instantly. The main disadvantage of such ap-
proach is the number of unsatisfactory-reliable systems that are
unnecessarily evaluated and the quantity of which is relatively
large, significantly prolonging the time to obtain the finished
design. 2) The other possibility is to evaluate each partition
separately and in advance and then use such data to operate the
MCKP solver. The disadvantage lies in the necessity of such
preliminary evaluation of each partition. Also, the resulting
parameters of composed systems are slightly inaccurate, as
these are computed inside the MCKP solver. One advantage
is, that the time-consuming evaluation of unsatisfactory com-
positions is eliminated, as their parameters are estimated in
SW during the MCKP solver execution. For example, if the
median time to failure, usually called the t50, is monitored in
the constraint specifications, the resulting t50 of systems with
serially-dependent partitions can be approximated with equa-
tions for the MTTF. The approximation we use in the following
case study is thus based on Equation 1 to approximate the λ
(i.e. the failure rate). After that, Equation 2 can be used to
compute the overall failure rate of the system. Subsequently,
the t50 is approximated using Equation 1 again.

MTTF =
1

λ
(1)

λsys =
∑

∀c∈C
λc (2)

We use this second approach, as it eliminates the unsatis-
factory evaluations. Nonetheless, in other cases, the method 1)
is still usable for smaller system, despite the automated design
then takes longer.

C. System Recovery Mechanisms

The solver is also modified to provide the guidance on
which component (i.e. partition) is a candidate to be hardened
with recovery mechanisms. This guidance is based on the
significance of deviation from the average value. With the
usage of these parameters, we obtain a set of partitions that
should be recovered after their failure occurs.

The function avg param(S) calculates the arithmetic av-
erage for the complete system set (i.e. the already selected
one version of component per each partition of composed
reliable system; these versions are denoted as S), as shown
in Equation 3. The function card(S) denotes the cardinality
(i.e. the number of elements) of the set S. Equations 4 and 5
describe the calculation of significance (i.e. sig) parameter
from the deviation (i.e. dev) and the selection of the proper
comparison operator. This is because in certain cases, the
target parameter is maximized (e.g. in the case of the Time
To Failure (TTF) parameter). In other cases, the parameter is
minimized (e.g. in the case of the percentage of critical bits of
bitstream on an FPGA). The final set of partitions that should
be recovered after their failure is denoted as R. Equation 6
contains such calculation of the set.

avg param(S) =
1

card(S)
×
∑

∀c∈S
param(c) (3)

sig =

{
1− dev, if param is maximized,
1 + dev, if param is minimized.

(4)

op =

{
<, if param is maximized,
>, if param is minimized.

(5)

R = { c | c ∈ S, param(c) op sig × avg param(S) } (6)

We empirically selected the deviation to be 0.4 of the
average. This means that the significance parameter will be 0.6
or 1.4 for maximized or minimized parameters respectively.
Thus, every partition with its parameter being worse than
the average (i.e. for more than the deviation of 0.4) will be
considered suitable for recovery.

The component recovery is provided by adding a Recon-
figuration Controller (RC) component that repairs a faulty
module. The RC can be either internal, on the same FPGA
with the system, or external, on a different FPGA chip. This
principle has been described by the authors of paper [26]. For a
system described in VHDL language, the Generic Partial Dy-
namic Reconfiguration Controller (GPDRC) [27] implemented
directly into the FPGA logic can be used, which is able to
reconfigure any predefined module. The ability to detect a fault
is important. The hardened component must be able to identify
its faulty modules with an erroneous outputs. The information
on faulty modules is provided to the GPDRC, which then reads
the relevant data needed to reconfigure, the so-called golden
bitstream. These are stored in flash memory, which is more
resilient to SEUs. Subsequently, the reconfiguration itself is
performed by sequentially uploading the golden bitstream via
the Internal Configuration Access Port (ICAP) interface.

D. Testing of Fault Tolerance Methods

For the automation of FT system design, it is also important
to test the resulting degree of FT. The testing is, however, held
in huge quantities, depending on the size of the system and the
number of its partitions. The duration of test basically denotes
the time needed to find the solution. As the previous two stages

IEEE EWDTS 2021, September, 10-13, Batumi, Georgia 29

incorporate mainly text manipulations, their time complexity
is nearly negligible.

In our research, we achieved automated generation of
greatly accelerated testbeds by implementing the Fault-
Tolerance Estimation (FT-EST) framework [28] in VHDL
using the so-called VHDL generics. Using this approach, it is
possible to create a fully functional testbed generator, which is
configurable and easily adapts to demands of the tested design.
The FT-EST is configurable in one configuration file, which
holds settings. These include, for example, the bit width of
input and output pins of the tested system. The method of the
test or the test termination conditions are also configurable in
this file using the prepared enumerated-type constants. In one
VHDL file, the tested unit (i.e. a component or a system) is
instantiated and the needed port connections are routed to it.
After the FT-EST is configured, it is possible to synthesize it
with any common VHDL synthesis SW. A part of the solution
is also a script, that prepares the placement of tested units, as
these must be placed properly to avoid their overlap between
themselves or even with the FT-EST controller components.

With FT-EST testbed, it is possible (among others) to
measure the TTF of each run in milliseconds, excluding
the periods in which the clock signal of tested units was
paused. The pausing from the SW during the fault injection
is necessary to simulate higher fault injection intensities, for
which the speed of fault injection during the circuit run time
would not be sufficient. It also eliminates possible collisions
between the bitstream recovery (e.g. the GPDRC) and the fault
injection mechanism. The re-configurable devices are ideal for
testing, as a system failure can be easily triggered through the
bitstream manipulation and the design can be easily repaired
by reverting the bitstream. Our solution performs tests at-speed
and directly on the real FPGA, utilizing the target technology
of the tested system.

The tests are executed autonomously on the HW. The PC
downloads the bitstream to the FPGA and instructs the testbed
to start the test. It is also possible to pause the clock signal of
the tested units, which is useful to modify the design for the
simulation of failure. If the clock signal is paused, such failure
then appears instantly for the tested units. SEUs are injected
using our Fault Injector (FI) [29]. In order to inject faults only
into utilized parts of tested unit, specifically utilized Look-up
Tables (LUTs). Special SW for detection of utilized bits of a
specified block is used. The SW was developed previously in
our research group and is based on the RapidSmith SW [15]. It
is also possible to instantiate multiple equivalent tested units at
the same time, significantly accelerating the whole approach.

The whole test is controlled by the Experiment Con-
trol Unit (XCU), which is formed by a Finite State Ma-
chine (FSM). Tested units alongside with one golden (i.e.
reference) unit, are instantiated in the Unit Instantiation
Area (UIA). The test data are generated by the Input Gen-
eration Unit (IGU). Primarily, the FT-EST does not tolerate
timing deviations caused by a failure, however, this strict
behavior can be adjusted by modifying the Output Compare
Unit (OCU), which compares outputs to the reference ones.
The Failure Capture Unit (FCU) stores the parameters of the
failure, such as the number of deviations or the real time of
the first observation of an output data deviation. All the stored
data, state registers and configuration registers are accessible
through the universal Communication Interface (CI). This is
connected to the Communication Module (CM), holding the

actual vendor-specific communication implementations. In our
project, we use the Xilinx ChipScope Pro Integrated Con-
troller (ICON) core [30] and the Virtual Input/Output (VIO)
core [31] for communication through the USB JTAG interface.
The only technology-dependent specifics are isolated in the
communication and fault injection components. The rest of
the FT-EST testbed compatibility is not bound to a specific
VHDL synthesis tool nor an FPGA technology, as the testbed
is designed in plain VHDL. The structure of generated testbed
is displayed in Figure 3.

Experiment Control Unit (XCU)

IGU OCU FC
U

Communication Interface (CI)

CM

UIA

PC

G 1 2 n... Arrays

Register Arrays

Bistream
Download

Fault
FT-EST SW

FPGA with FT-EST Testbed

Injection

CNTR

Figure 3: Structure of Automatically Generated Testbed Ar-
chitecture, Red Parts are Subject to Fault Injection.

IV. EXPERIMENTS AND RESULTS

As part of our experimental activities, we created an
artificial benchmark system and used our FT system design
automation toolkit to prepare its FT enhanced version to a
limited FPGA area space.

A. Benchmark System

Our benchmark system is composed of four components,
which will also be considered partitions of the system. These
include: 1) addition of two 16-bit unsigned numbers; 2) 16-bit
constant addition to a 16-bit unsigned number; 3) numones,
which calculates the number of high bits in a 16-bit input
data; and 4) Cyclic Redundancy Check (CRC) calculated on
8 bits (i.e. CRC-8) based on 32 bit wide input. The schematic
diagram of the benchmark system can be seen in Figure 4.

addition addconst numones

crc8

16 b

16 b

16 b

16 b

16 b 5 b

8 b16 b

Figure 4: Diagram of the Benchmark System.

B. On-HW Testing Setup

In the following text, various partitions and complete
systems are tested. For this purpose, we utilized our FT-EST
framework and generated a completely autonomous testbed for
each of the tests. The FT-EST was utilizing Linear Feedback
Shift Register (LFSR) as a generator of stimuli during the
test. Different polynomials were used in the implementation,
to always suit the bit width of the tested unit. The FT-
EST was configured to hold the test with a constant fault

30 IEEE EWDTS 2021, September, 10-13, Batumi, Georgia

injection intensity parameter, which we defined in [32]. The
test continues until the tested unit delivers incorrect results
on its output ports. The fault injection intensity determines
the number of randomly-placed fault injections per second,
related to the size of the design. This implies that for a
larger design, faults are injected more frequently, although the
injection intensity parameter remains constant. This is because
the larger component occupies a larger chip area, thus the area
exposed to radiation is also higher. And this must be reflected
to obtain fair results. In our experiments, we empirically chose
the injection intensity of 2e−5 inj/s/bit.

In a real scenario, multiple tested units fit into one FPGA.
As parallel unit execution is supported by the FT-EST, the test
controller actually waits until each of the tested units delivers
incorrect results, while keeping the real time of the first failure
observation (in milliseconds) for each of the tested units. These
TTFs are then downloaded to the control PC. On the PC, the
results are stored in files on a hard drive and further analyzed
to obtain statistical data, mainly the t50 parameter.

C. Partitions Variants

At the beginning of our design flow, various versions of
partitions were created. Variants for a partition are made from
the original version of the partition with the usage of helpers.
As part of our previous research, we created two templates for
our VHDL helpers: the TMR and 5-Modular Redundancy (5-
MR). The number of generated variants for each partition, is
dependent on the helpers that are used. For example, in our
experiments, one TMR and one 5-MR variant is generated to
the original implementation of a partition. Each partition was
then tested on the FT-EST testbed and its t50 parameter was
measured. Resulting parameters of the variants are shown in
Table I. These results were already obtained in our previous
research [6].

TABLE I: Partitions Implementation Versions Including Their
Size and t50 Parameter under Fault Injection Intensity of
2e−5 inj/s/bit [6]

Partition
Name

FT
Technique

Bitstream
Area [b]

t50
[ms]

t50 Compa-
red to Simplex

[ms] [%]

addition
simplex 4 288 197 635 + 0 + 0.00
TMR 7 552 208 793 + 11 158 + 5.64
5-MR 9 856 225 042 + 27 407 + 13.87

addconst
simplex 3 264 337 843 + 0 + 0.00
TMR 6 656 271 246 - 66 597 - 19.71
5-MR 9 088 345 745 + 7 902 + 2.34

crc8
simplex 4 800 39 484 + 0 + 0.00
TMR 9 792 47 222 + 7 738 + 19.6
5-MR 14 272 60 227 + 20 743 + 52.54

numones
simplex 3 072 94 549 + 0 + 0.00
TMR 6 848 102 603 + 8 054 + 8.52
5-MR 10 304 119 195 + 24 646 + 26.07

The results for these variants can be also seen in a box plot
chart in Figure 5. As can be observed, each FT technique has
various impacts, depending on the type and structure of the
partition. Increased redundancy leads to better TTF results,
except of the addconst partition. The TMR version of this
partition is less tolerant to faults, compared to its simplex
(i.e. original) version. We believe that this was caused by the
different structure of this partition, as the addconst is very
dependent on the internally stored constant value, which is
not the case for the otherwise very similar addition partition.

Ti
m

e
To

 F
ai

lu
re

 [s
]

addition addconst crc8 numones

si
m

pl
ex

TM
R

5-
M

R

si
m

pl
ex

TM
R

5-
M

R

si
m

pl
ex

TM
R

5-
M

R

si
m

pl
ex

TM
R

5-
M

R

2 0
00

50
0

20
0

50
20

5

Figure 5: Time to Failure for Each Partition Version on a Box
Plot Chart [6].

D. Generated Systems and Their Parameters

At first, we evaluated the original system, i.e. a system
that was composed of the original (unhardened) partition ver-
sions. Furthermore, we prepared two additional (i.e. reference)
systems, where each of them is composed of TMR and 5-
MR partition versions exclusively. These are measured in the
first part of Table II. Then, with the usage of previously
described guidance method and the modified MCKP solver,
we created another system of components of mixed type.
The guider was set to maximize the TTF parameter, while
limiting the FPGA chip area to 30 000 bits. The reference and
automatically generated systems were presented as a part of
our previous paper [6]. In this follow-up research, however, the
PDR technique is further incorporated, which improves fault
resiliency. With the previously described deviation parameter
being set to 0.4, the guider algorithm also provides the
recommendation on which partition recovery would increase
reliability the most. This is the case for the partition marked
by a dot in the second part of Table II. We, thus, degraded
the FT method to TMR and used the PDR to further harden
the system. Two systems are created: 1) the reconfiguration
controller is on the chip (i.e. it is subject to the fault injection),
and 2) the reconfiguration controller is outside of the injection
area (i.e. it is outside the FPGA, for example on a standalone
radiation-hardened chip). The structure of both the recovered
systems are shown in Figure 6. Results for these systems can
be seen in the third part of Table II.

The system with reconfiguration controller on the FPGA
is significantly larger, because of the controller. The PDR
controller increases the size of the system approximately
by 85%. It, however, even if the large controller is under
equivalent fault injection intensity as the rest of the system,
still achieved nearly equivalent results compared to the vari-
ant without reconfiguration. In this case, the reconfiguration
controller on the same chip does not improve the parameter.
However, this is still a considerable result, as the reconfigu-
ration controller in our tests is not hardened in any manner.
We expect that for larger systems, the efficiency of the on-chip
PDR controller will be significantly better. The system with the

IEEE EWDTS 2021, September, 10-13, Batumi, Georgia 31

addition
(simplex)

addconst
(simplex)

numones
(5-MR)

crc8 (TMR)

16 b

16 b

16 b

16 b

16 b 5 b

8 b
16 bReconfiguration

Controller

Occurrence of Faults

ICAP

3 b Faulty Module

Flash Chip
Radiation-hardened Shell

24 b
addr.

16 b
data

32 b data

1 b WE

addition addconst numones

crc8 (TMR)

16 b

16 b

16 b

16 b

16 b 5 b

8 b
16 b

Reconfiguration
Controller

Occurrence of Faults

Flash Chip
Radiation-hardened Shell
24 b addr.

16 b data

ICAP Voter

32 b data 1 b WE 3 b Faulty Mod.

Voter

(a)

(b)

Figure 6: Recovered Systems with PDR controller (a) Inside
the System on the FPGA; and (b) Outside the FPGA.

TABLE II: Automatically Generated and Manually Created
System Compositions (as a Reference) [6] and the Recovered
System Including the t50 Parameter under Fault Injection
Intensity of 2e−5 inj/s/bit, (partition marked with the dot is
recommended for recovery by the guider algorithm)

System
Name

FT
Techniques Bitstream

Area [b]
t50

[ms]addition addconst crc8 numones

R
ef

er
en

ce simplex simplex simplex simplex simplex 9 152 23 559
TMR TMR TMR TMR TMR 24 704 42 173
5-MR 5-MR 5-MR 5-MR 5-MR 37 376 55 900

auto 30000 simplex simplex 5-MR • 5-MR 25 856 49 675

au
to

30
00

0 +Rec.
On Chip

simplex simplex TMR+Rec.
On Chip

5-MR 48 000 48 584

+Rec.
Outside

simplex simplex TMR+Rec.
Outside

5-MR 29 376 84 631

external reconfiguration controller is, of course, significantly
more reliable. Its t50 parameter is by 70% better, compared
to the automatically generated system without the PDR. In
comparison to the 5-MR reference system, the t50 parameter
is still more than 50% better. This, however, assumes that the
external reconfiguration controller is resilient against failure.
If such external component is available, the guider algorithm
suggests to utilize it. As can be observed, the size of this
system increased slightly, which might look non-intuitive,
considering the replacement of the 5-MR crc8 with the TMR
recovered version. This is because in the case of PDR, the
redundant modules must be strictly separated (e.g. foreign
module signals must be routed outside of the module), further

complicating the synthesis optimization processes and thus
the logic. Also, the voting component inside the crc8 must
be slightly more complicated, as it signalizes the failing crc8
module (i.e. compared to the previous 5-MR without PDR,
which had to select the representative result only).

Figure 7 displays TTF for each of the systems. As can
be observed, the helpers generally work, as the reference
systems increase their t50 with growing redundancy. The auto-
generated system (i.e. the one automatically composed using
the guider) reaches better t50 parameter than the TMR. From
the box plot it is obvious, that the dissipation of TTF is nearly
equivalent to the reference TMR system [6]. Although the
auto-generated variant without PDR and with PDR on chip
achieves nearly equivalent t50 times, the box plot clearly il-
lustrates, that the recovered variant has much higher dissipation
towards (only) higher values of TTF, which might be a positive
feature. The second recovered variant with PDR controller
outside the FPGA achieves the best results. It is important to
note, that only one component, the crc8, was recovered with
the PDR, yet the result is significantly better. This definitely
confirms the benefit of PDR for recovery of FPGA systems.

400 s

300 s

200 s

100 s

0 s

simplex TMR 5-MR auto_30000 Rec. on
Chip

Rec.
outside

Reference auto_30000
With Recovery

Generated
Without

Recovery

Ti
m

e
To

 F
ai

lu
re

 [s
]

Figure 7: Time to Failure for Each of the Systems (i.e.
Reference, Auto-generated [6] and Auto-generated with PDR
Controller) on a Box Plot Chart.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, a description of our FT system design
automation toolkit was presented. The toolkit is composed
of various parts and components and each of them was, at
least briefly, described in this paper. The experimental part
of the paper presents incorporation of PDR controller into
the system design. Two systems utilizing recovery with the
usage of the FPGA PDR technique show promising results
in terms of reliability. The recovered system with the on-
chip PDR controller shows similar results, compared to the
system without recovery. This is because the PDR controller
is relatively large, compared to the system and is also subject to
fault injection with equivalent intensity based on the chip area.
The second recovered system, in which the PDR controller
is apart the FPGA (e.g. in a radiation-hardened chip) shows
significantly better results. Its t50 parameter is by 70% better,
compared to the system without recovery.

32 IEEE EWDTS 2021, September, 10-13, Batumi, Georgia

The future ideas to further extend our FT design automation
toolkit can be directed towards Software-Implemented Fault
Tolerance (SIFT) methods. It would be interesting to use such
approach to harden SW programs and test them on a real HW
during the presence of faults. Such approach, combined with
HW resiliency against faults, could significantly improve the
overall system reliability.

ACKNOWLEDGEMENTS

This work was supported by the Brno University of Tech-
nology under number FIT-S-20-6309.

REFERENCES

[1] J.-C. Geffroy and G. Motet, Design of dependable computing systems.
Springer Science & Business Media, 2013.

[2] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[3] NASA, “Mars 2020 Perseverance Rover,” 2020, accessed: 2021-04-11.
[Online]. Available: https://mars.nasa.gov/mars2020/

[4] NASA, “Mars Helicopter,” 2020, accessed: 2021-04-11. [Online].
Available: https://mars.nasa.gov/technology/helicopter/

[5] Farhad Fallahlalehzari, “How does the Mars Persever-
ance rover benefit from FPGAs as the main pro-
cessing units?” accessed: 2021-04-11. [Online]. Avail-
able: https://www.aldec.com/en/company/blog/188–how-does-the-mars-
perseverance-rover-benefit-from-fpgas-as-the-main-processing-units

[6] J. Lojda, R. Panek, and Z. Kotasek, “Automatic Design of Fault-
Tolerant Systems for VHDL and SRAM-based FPGAs,” in Accepted for
Presentation on: 2021 24th Euromicro Conference on Digital System
Design (DSD), Palermo, Sicily, Sep 2021.

[7] Xilinx Inc., “TMRTool: The Industry’s First Development Tool to Auto-
matically Generate Triple Module Redundancy (TMR) for Space-grade
Re-programmable FPGAs,” https://www.xilinx.com/products/design-
tools/tmrtool.html, accessed: 2021-04-13.

[8] S. Kulis, “Single Event Effects Mitigation with TMRG Tool,” Journal
of Instrumentation, vol. 12, no. 01, p. C01082, 2017. [Online].
Available: http://stacks.iop.org/1748-0221/12/i=01/a=C01082

[9] G. Lee, D. Agiakatsikas, T. Wu, E. Cetin, and O. Diessel, “TLegUp:
A TMR Code Generation Tool for SRAM-Based FPGA Applications
Using HLS,” in 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2017, pp.
129–132.

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. Brown, and J. Anderson, “LegUp: An Open-Source High-Level
Synthesis Tool for FPGA-Based Processor/Accelerator Systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, 09
2013.

[11] J. Onishi, S. Kimura, R. J. James, and Y. Nakagawa, “Solving the
Redundancy Allocation Problem with a Mix of Components Using
the Improved Surrogate Constraint Method,” IEEE Transactions on
Reliability, vol. 56, no. 1, pp. 94–101, 2007.

[12] W.-C. Yeh and T.-J. Hsieh, “Solving Reliability Redundancy Allocation
Problems Using an Artificial Bee Colony Algorithm,” Computers &
Operations Research, vol. 38, no. 11, pp. 1465–1473, 2011.

[13] K. Khalili-Damghani, A.-R. Abtahi, and M. Tavana, “A New Multi-
objective Particle Swarm Optimization Method for Solving Reliability
Redundancy Allocation Problems,” Reliability Engineering & System
Safety, vol. 111, pp. 58–75, 2013.

[14] Y.-C. Liang and Y.-C. Chen, “Redundancy Allocation of Series-parallel
Systems Using a Variable Neighborhood Search Algorithm,” Reliability
Engineering & System Safety, vol. 92, no. 3, pp. 323–331, 2007.

[15] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapid Prototyping Tools for FPGA Designs: RapidSmith,” in Field-
Programmable Technology (FPT), 2010 International Conference on,
Dec 2010, pp. 353–356.

[16] T. Schweizer, D. Peterson, J. M. Kühn, T. Kuhn, and W. Rosenstiel,
“A Fast and Accurate FPGA-based Fault Injection System,” in Field-
Programmable Custom Computing Machines (FCCM), 2013 IEEE 21st
Annual International Symposium on. IEEE, 2013, pp. 236–236.

[17] J. M. Kuuhn, T. Schweizer, D. Peterson, T. Kuhn, and W. Rosenstiel,
“Testing Reliability Techniques for SoCs with Fault Tolerant CGRA by
Using Live FPGA Fault Injection,” in Field-Programmable Technology
(FPT), 2013 International Conference on. IEEE, 2013, pp. 462–465.

[18] M. Liu, Z. Zeng, F. Su, and J. Cai, “Research on Fault Injection
Technology for Embedded Software based on JTAG Interface,” in Re-
liability, Maintainability and Safety (ICRMS), 2016 11th International
Conference on. IEEE, 2016, pp. 1–6.

[19] S. Rudrakshi, V. Midasala, and S. Bhavanam, “Implementation of FPGA
based Fault Injection Tool (FITO) for Testing Fault Tolerant Designs,”
IACSIT International Journal of Engineering and Technology, vol. 4,
no. 5, pp. 522–526, 2012.

[20] C. Bernardeschi, L. Cassano, A. Domenici, and L. Sterpone, “Accurate
Simulation of SEUs in the Configuration Memory of SRAM-based
FPGAs,” in Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2012 IEEE International Symposium on. IEEE, 2012,
pp. 115–120.

[21] T. Nidhin, A. Bhattacharyya, R. Behera, T. Jayanthi, and K. Velusamy,
“Verification of Fault Tolerant Techniques in Finite State Machines
Using Simulation based Fault Injection Targeted at FPGAs for SEU
Mitigation,” in Electronics and Communication Systems (ICECS), 2017
4th International Conference on. IEEE, 2017, pp. 153–157.

[22] A. Benso, A. Bosio, S. Di Carlo, and R. Mariani, “A Functional
Verification based Fault Injection Environment,” in Defect and Fault-
Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE International
Symposium on. IEEE, 2007, pp. 114–122.

[23] C. López-Ongil, M. Garcia-Valderas, M. Portela-Garcı́a, and L. Entrena,
“Autonomous Fault Emulation: A New FPGA-based Acceleration Sys-
tem for Hardness Evaluation,” Nuclear Science, IEEE Transactions on,
vol. 54, no. 1, pp. 252–261, 2007.

[24] J. Podivinsky, J. Lojda, O. Cekan, and Z. Kotasek, “Evaluation Plat-
form for Testing Fault Tolerance Properties: Soft-core Processor-based
Experimental Robot Controller,” in 2018 21st Euromicro Conference on
Digital System Design (DSD), 2018, pp. 229–236.

[25] J. Lojda, J. Podivinsky, Z. Kotasek, and M. Krcma, “Data Types and
Operations Modifications: A Practical Approach to Fault Tolerance in
HLS,” in 2017 IEEE East-West Design Test Symposium (EWDTS), Sept
2017, pp. 1–6.

[26] C. Bolchini, A. Miele, and M. D. Santambrogio, “TMR and Partial
Dynamic Reconfiguration to Mitigate SEU Faults in FPGAs,” in 22nd
IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems (DFT 2007), Sept 2007, pp. 87–95.

[27] M. Straka, J. Kaštil, and Z. Kotásek, “Generic Partial Dynamic Recon-
figuration Controller for Fault Tolerant Designs Based on FPGA,” in
NORCHIP 2010. IEEE Computer Society, Nov 2010, pp. 1–4.

[28] J. Lojda, J. Podivinsky, O. Cekan, R. Panek, and Z. Kotasek, “FT-EST
Framework: Reliability Estimation for the Purposes of Fault-Tolerant
System Design Automation,” in 2018 21st Euromicro Conference on
Digital System Design (DSD), Aug 2018, pp. 244–251.

[29] M. Straka, J. Kastil, and Z. Kotasek, “SEU Simulation Framework
for Xilinx FPGA: First Step Towards Testing Fault Tolerant Systems,”
in 14th EUROMICRO Conference on Digital System Design. IEEE
Computer Society, 2011, pp. 223–230.

[30] Xilinx Inc., “LogiCORE IP ChipScope Pro Integrated Controller
(ICON) Documentation,” https://www.xilinx.com/support/
documentation/ip documentation/chipscope icon/v1 05 a/
chipscope icon.pdf, Jun. 2011, accessed: 2018-02-15.

[31] Xilinx Inc., “ChipScope Pro VIO Documentation,”
https://www.xilinx.com/support/documentation/ip documentation/
chipscope vio.pdf, Sep. 2009, accessed: 2018-02-15.

[32] J. Lojda, J. Podivinsky, Z. Kotasek, and M. Krcma, “Majority Type and
Redundancy Level Influences on Redundant Data Types Approach for
HLS,” in 2018 16th Biennial Baltic Electronics Conference (BEC), Oct
2018, pp. 1–4.

IEEE EWDTS 2021, September, 10-13, Batumi, Georgia 33

Paper H

Automated Design and Usage of
the Fault-Tolerant Dynamic
Partial Reconfiguration Controller
for FPGAs

LOJDA Jakub, PÁNEK Richard, SEKANINA Lukáš, KOTÁSEK Zdeněk

In: Microelectronics Reliability, vol. 2023, no. 144, pp. 1-16. ISSN 0026-2714.

Available at: https://doi.org/10.1016/j.microrel.2023.114976

128

https://doi.org/10.1016/j.microrel.2023.114976

Microelectronics Reliability 144 (2023) 114976

0026-2714/© 2023 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

Automated design and usage of the Fault-Tolerant dynamic partial
reconfiguration controller for FPGAs✩

Jakub Lojda ∗, Richard Panek, Lukas Sekanina, Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, Brno 612 66, Czech Republic

A R T I C L E I N F O

Keywords:
Fault-Tolerant system design
Electronic design automation
Dynamic partial reconfiguration
Redundancy allocation and insertion
FPGA
VHDL

A B S T R A C T

This article presents a new design automation method for Fault-Tolerant (FT) systems implemented on
dynamically reconfigurable Field Programmable Gate Arrays (FPGAs). The method aims at minimizing the
human interactions needed to incorporate FT mechanisms into an existing system. It starts with a source code
of an original unhardened circuit. It continues by automated manipulation of the source code, algorithmic
strategic selection of suitable FT techniques, design space exploration of candidate FT implementations, and
selection of the resulting implementation. The method also includes efficient evaluation of achieved FT
parameters performed on the target HW. As a novel approach working on the level of HW description languages
is employed, the code modification is separated, which differentiates our method from others. The case study
utilizing this method targets the design of an experimental FT dynamic partial reconfiguration controller for
an FPGA. This controller is helpful for the restoration of faulty components due to a single-event upset on
an FPGA. We used the method to generate a set of Pareto-optimal controllers concerning the design’s Mean
Time to Failure (MTTF) parameter, power consumption, and size. Then, the FT controller is connected to
several benchmark circuits, and the reliability parameters are evaluated at the entire system level. Our results
show that by replacing the standard reconfigurable controller with our automatically-designed FT controller
for one specific benchmark, the design size increased by 20.1%, and MTTF increased by 11.7%. However, the
efficiency is highly dependent on the target system size, MTTF, and circuit functionality. We also estimate that
a complex system defined by half a million configuration bits would improve MTTF by more than 50%.

1. Introduction

The ever-growing level of integration allows the implementation
of increasingly complicated systems. However, this complexity makes
designing highly-reliable systems a significant challenge. For this rea-
son, we propose a new method and a toolkit that automates the
transformation of unreliable Field Programmable Gate Array (FPGA)
designs into hardened ones. We cover the complete process of the
design. The proposed method combines (1) manipulation of the source
code description; (2) strategic selection of the available manipulation
techniques to increase the resilience against faults after the described
design is synthesized into the HW; (3) thorough autonomous testing on
the target platform HW and measurement of the critical metrics; (4) in-
terpretation of the measured data and selection of optimal solutions.
Our method combines these approaches to generate hardened systems
by modifying unhardened systems while minimizing user interactions.

✩ This article is dedicated to the memory of Zdenek Kotasek, an outstanding scientist who passed away in 2022 and co-supervised most of this research.
∗ Corresponding author.
E-mail addresses: ilojda@fit.vut.cz (J. Lojda), ipanek@fit.vut.cz (R. Panek), sekanina@fit.vut.cz (L. Sekanina).
URLs: https://www.fit.vut.cz/person/ilojda/ (J. Lojda), https://www.fit.vut.cz/person/ipanek/ (R. Panek), https://www.fit.vut.cz/person/sekanina/

(L. Sekanina), https://www.fit.vut.cz/person/kotasek/ (Z. Kotasek).

Our research has the following contributions.
(1) We target the complete process of Fault Tolerance (FT) de-

sign automation, starting with the unhardened system and providing
multiple optimized hardened versions (in case multiple criteria are opti-
mized) or one hardened version (in case a single criterion is optimized).
This includes the testing methods and estimation of final parameters.

(2) We target toolkit architecture independent of the description
language and its level of abstraction. In fact, most of the methods from
the literature are usable within our approach by implementing them as
toolkit components.

(3) Our testing approaches stress the speed of the test. This is
important as testing is the most time-consuming part of the design.

(4) We support a single-objective and multi-objective design space
exploration optimizing criteria such as power consumption, MTTF, and
design size.

https://doi.org/10.1016/j.microrel.2023.114976
Received 3 June 2022; Received in revised form 27 January 2023; Accepted 28 March 2023

Microelectronics Reliability 144 (2023) 114976

2

J. Lojda et al.

Fig. 1. The relation of the GPDRC to the hardened system.

(5) To demonstrate the automated design flow usage, we present
a case study on a particular design, the Generic Partial Dynamic Recon-
figuration Controller (GPDRC) [1]. The role of GPDRC is to ensure that
dynamic partial reconfiguration of the FPGA is performed as requested.
In the case study, this FPGA component is hardened against faults.
Then, the FT controller is connected to several benchmark circuits, and
the reliability parameters are evaluated at the entire system level.

The rest of this article is structured as follows. Section 2 describes
the concepts of our research. Section 3 deals with the research back-
ground and related work. Our FT design automation flow is described
in Section 4. Section 5 presents our case study circuit, the so-called
reconfiguration controller. A set of Pareto-optimal FT controller im-
plementations is generated. In Section 6, one selected representative
reconfiguration controller is evaluated in detail when connected with
benchmark circuits on the FPGA. Section 7 concludes the article and
presents ideas for future research.

2. Objectives and research concept

Our research goal is the automation of the FT design process for FP-
GAs supporting Dynamic Partial Reconfiguration (DPR). To demonstrate
the automated design flow usage, we present a case study on a GPDRC
circuit, which serves as a starting point. The relation of the GPDRC to
the hardened system is displayed in Fig. 1.

This GPDRC is hardened and later utilized in experimental measure-
ments on a real FPGA HW. To achieve this goal, we propose a design
flow and practically implement tasks of this flow with tools from our
toolkit. An overview of the experimental part presented in this article
is displayed in Fig. 2.

2.1. The proposed approach

Based on the research in the field of FPGA FT systems, we propose
the design approach that will be explained in detail in Section 4 and
practically used in a case study in Section 5. The design automation
can be divided into three main steps, which include generation, design
space construction and exploration, and FT design build. The inputs of the
automated design flow are:

(I) the original unhardened description of an FPGA circuit (e.g., in
VHDL);

(II) a set of monitored parameters, for example, Mean Time to Fail-
ure (MTTF), design size and power consumption;

(III) a set of FT mechanisms that will be used to reach the monitored
parameters, for example, Triple Modular Redundancy (TMR).

Fig. 2. Overview of the experimental part of this article.

During the generation, a set of temporary circuits is generated
using given FT methods. These circuits are generated using scripts
that perform the modifications in commonly used Hardware Description
Languages (HDLs) and insert FT mechanisms into particular parts of the
code. This set of circuits is evaluated in terms of desired parameters,
and the obtained data serve as a base for the next step. Measurement
of FT properties is performed using our unique tool for the automated
generation of testbeds, which runs autonomously on a target FPGA and
utilizes techniques for the massive acceleration of the evaluation.

In the design space construction and exploration, the data ob-
tained in the previous step are used to construct the design space
of possible solutions completely in SW. This is critical, as no further
parameter measurement is needed, significantly accelerating the design
space exploration and, thus, the design automation process.

Through the FT design build, the selected (i.e., the most suitable)
design configurations are built using the scripts for FT mechanism
insertion (which were used in the generation step). Also, corresponding
parameters of the selected solutions are provided to the designer.

Microelectronics Reliability 144 (2023) 114976

3

J. Lojda et al.

Fig. 3. The double-layer FPGA model through which an ionizing particle is passing [7].

2.2. Assumptions

In this article, we target consumer-grade FPGAs with SRAM config-
uration memory. We utilize fault masking in combination with system
component restore, which is achieved through the DPR function of an
FPGA.

The principles of our design automation flow are limited to neither
the target FPGA technology nor the description format. However, the
current implementation in the form of a toolkit targets only systems
and algorithmic logic described in VHDL and C++ languages. This is
because, so far, we have implemented algorithms for language modi-
fications for these two languages. The FPGA used for our case study
is based on the Xilinx Virtex-5 technology. This is because we utilize
specific tools previously implemented in our lab to inject artificial
faults and detect utilized parts of the Xilinx Virtex-5 configuration
bitstream [2]. However, the design automation method is designed
to be independent of the target technology. It is versatile enough, as
it mostly works at the language level. A potential reuse for another
FPGA technology is straightforward as it only requires replacing fault
injection components and FPGA communication protocols according to
the target FPGA family.

3. Background and related work

Many computer systems are data-oriented, meaning they process a
significant amount of data. Scientific applications can serve as an ex-
ample. FPGAs can help to accelerate such data processing. For example,
the National Aeronautics and Space Administration (NASA) Perseverance
rover [3] carries multiple Xilinx FPGAs on board [4]. These accelerate
the data processing throughout the mission of the Perseverance rover,
which is searching for signs of life on Mars.

3.1. Field Programmable Gate Arrays

FPGAs are integrated circuits that can be user-configured after
production with the help of a Hardware Description Language (HDL) [5].
FPGA’s configuration is prepared in the form of the so-called con-
figuration bitstream, which is transferred to FPGA and stored in the
so-called configuration memory [6]. The FPGA can therefore be viewed
in a double-layer model [7]. The first layer represents the user logic,
which consists of Configurable Logic Blocks (CLBs) and a programmable
interconnection network. The central functional units are Look-Up Ta-
bles (LUTs); others include registers, multiplexers, and other more
complex elements, including, for example, memory blocks. The config-
uration bitstream determines the specific setting of this logic, i.e., the
current FPGA configuration. The second layer is the configuration mem-
ory – this memory stores the configuration of the user logic. One
commonly used configuration memory type in commercially-available
FPGAs is the SRAM. A graphical representation of this double-layer
model can be seen in Fig. 3.

The undeniable advantage of FPGAs is the ability to upgrade or
even completely re-program their function, even for already deployed
systems. This process of changing the FPGA configuration is called a
reconfiguration. There are two approaches to reconfiguration; the first
is external, i.e., controlled from the outside, and the second is internal,
i.e., held directly from within the FPGA logic. Advanced applications
might also utilize the so-called Dynamic Partial Reconfiguration (DPR) of
the FPGA [8]. Partial reconfiguration means it is possible to change the
configuration of only a specific part of the circuit on the FPGA. This has
the advantage of a faster change in functionality over reconfiguring the
entire FPGA. This is due to transferring a shorter bitstream to the con-
figuration memory. Dynamic reconfiguration provides the advantage of
changing the FPGA configuration while the implemented circuit runs
continuously. Thanks to DPR, it is possible to change only a particular
part of the implemented circuit while the rest continues to perform
the required function. In addition, the whole process can be controlled
directly from the logic of the FPGA.

FPGAs have various interfaces for accessing the configuration mem-
ory. It is possible to both upload the configuration and read it back
through them. If the FPGA allows it, some are also usable for DPR.
Finally, the FPGA has a special internal interface accessible directly
from its logic, which can only be used for DPR. For example, for Xilinx
Virtex-5 FPGAs, this is Internal Configuration Access Port (ICAP) [9].
Through it, it is possible to transmit a bitstream at a data width of up to
32 bits and with a clock frequency of 100MHz. Therefore, the maximum
transfer rate is 3.2Gbit∕s.

3.2. Single-Event Effects on FPGAs

An ionizing charged particle passing through the FPGA poses a
risk on both layers of the FPGA’s double-layer model in the form of
the so-called Single-Event Effect (SEE). Firstly, it has the potential of
the so-called Single-Event Transient (SET) [10]. In the case of the SET
phenomenon, a transient error appears on signal levels, which connect
the components implemented as the user logic. The errors can also
be propagated to the primary outputs and produce incorrect results.
If the structure of the user logic does not explicitly store the incorrect
result, such an erroneous state disappears over time. Nevertheless, the
structure of the user logic remains intact.

Secondly, an ionizing particle passing through the configuration
memory layer creates a risk of a Single-Event Upset (SEU) [11]. After
an SEU phenomenon, a configuration bit in the FPGA configuration
memory is flipped. This is a severe problem, as a change in the
configuration memory instantly changes the structure of the user logic.
The design implemented in the FPGA is immediately and permanently
altered, and its function thus differs. FPGA configuration bits whose
flipping is observable by inconsistencies on the primary outputs of the
design are called critical or sensitive.

3.3. Mitigation of SETs

In general, the reliability of an FPGA system can be increased by two
main approaches. (1) In Fault Avoidance (FA) [12], the effort to avoid
failures of an FPGA is put into selecting the FPGA type. For example,
specific FPGA product ranges can withstand increased radiation by
utilizing special radiation-hardened packaging. The number of types
of such FPGAs is, however, limited. Moreover, these hardened types’
performance (e.g., the capacity or a maximal clock speed) is usually
worse than the state-of-the-art commercially available types. (2) On the
opposite side, the so-called Fault Tolerance (FT) [13] approach accepts
the risks of possible failures but mitigates the consequences of failing
components through masking. This is usually achieved by inserting
redundant structures, thus creating a form of a backup. The most
popular method of FT is the Triple Modular Redundancy (TMR) [14]
and its variations, which comprise copying the system multiple times
and adding a majority voter to detect the majority result (i.e., the
correct result). Graphical representations of the FA and FT approaches
are shown in Fig. 4(a) and (b), respectively.

Microelectronics Reliability 144 (2023) 114976

4

J. Lojda et al.

Fig. 4. Graphical illustration of (a) FA; (b) FT without restore; and (c) FT with a restore with the usage of the RC.

3.4. Mitigation of SEUs

The number of SEUs maskable by the FT approach is limited.
This is because SEUs accumulate in the system configuration memory,
which is unfavorable for systems with an extended mission time. The
redundancy needed on the user logic layer to maintain a certain level
of FT rises dramatically as the mission time increases. The so-called
restore (i.e., repair) can solve this problem if a failing component is
detectable [15]. During the restoration, the configuration memory layer
below the failing component is returned to its original state, thus
effectively restarting the component and eliminating the SEU effects
accumulated in the user logic layer. The DPR property of the FPGA
is used to implement the restore mechanism. The process of restoring
function on an FPGA is known as memory scrubbing [16]. In the
simplest case, the configuration memory is only cyclically overwritten
by the correct configuration, i.e., the so-called golden bitstream. More
sophisticated approaches use configuration memory readback. In ad-
dition, each configuration must be provided with a correction code.
Thanks to the code calculation, it is possible to determine whether
there is a fault in the given section of the configuration memory
and reconstruct only the affected parts by reconfiguration. A critical
component is the Reconfiguration Controller (RC), which must provide
and manage everything related to FPGA reconfiguration. The RC can
be added to the system or the FPGA itself. A non-volatile memory
type, such as flash memory storage, significantly less sensitive to SEUs,
is utilized to store the golden bitstreams. It is also possible to use
the unused part of the configuration memory of the FPGA itself to
keep the golden bitstream and to reallocate them from one part of the
memory to another for reconfiguration [17]. Fig. 4(c) shows a graphical
representation of the restore principle.

3.5. Testing

The correct functioning of the implemented measures must be tested
during a project’s design and final verification stages. For FPGAs, SEUs
can be artificially inserted into the configuration memory. This is
because waiting for a fault to appear naturally is impossible for time
reasons. Also, the fault manifestation process must be controlled to
ensure a certain testing quality. Such an artificial insertion of faults is
called the Fault Injection (FI). While one or multiple faults are injected,
the system’s output data is viewed to monitor the faults’ impacts. Such
an approach is called the functional verification. Many strategies to
inject faults exist, for example, single fault injection, which is used to
detect the criticality of a bit; periodic injection with a given interval,
etc. Selecting the correct injection strategy to measure the desired
parameter is essential. For example, the radiation effects are simulated
through periodic injection into a randomized bitstream position. The
rate at which particles achieve the FPGA’s external surface is given in
the radiation flux unit, which is in particles/cm2/s [18]. Already from
this unit is evident that the intervals between randomized injections
must be based on the tested chip area. This is because a more extensive
system covers a larger area of the FPGA. Thus particle penetration
and SEU manifestation have a higher probability for a more extensive
system, considering the equivalent environment, i.e., equivalent flux,
device, and exposure time (test length). For this reason, we introduced

the unit inj∕s∕bit [19], which represents the number of injections per
time per size in bits. This takes account of the area (i.e., the configu-
ration size in bits), resulting in a smaller injection interval for larger
designs and vice versa.

Testing is thoroughly discussed in the literature. The authors of [20]
show how to observe and modify signals in the HW-implemented
design. This is performed through the Joint Test Action Group (JTAG)
interface. In [21], various fault models are supported. Additional sup-
port gates must be, however, incorporated into the tested design. A
simulated approach is presented in [22,23]. In [24], the simulation
approach is extended with fault modeling. The authors of [25] utilize
the RapidSmith software [26] and demonstrate their approach in [27].
Another approach, in which faults are injected directly by a component
on an FPGA itself, is presented in [28]. The authors of [29] show
fault injection into a real FPGA HW. Later, in paper [30], the authors
present their platform called FLIPPER. It is a two-FPGA platform, with
one FPGA running the tested design and the other FPGA controlling
the testing procedure. A platform for testing fault-tolerance properties
developed in our group is presented in paper [31]. However, this
platform is suitable for the final testing of resilience against faults.
It runs partially on a PC, and the tested design runs on a target
HW. Nonetheless, to allow automated testing, we developed the FT
Estimation Tool (FT-EST) testbed generator framework [32], which is
intended for use in our design automation toolkit. It allows massively-
accelerated evaluations on multiple FPGAs simultaneously to complete
the test in a reasonable time.

3.6. Computer-aided design of FT systems

The growing complexity of FT system design created pressure to, at
least partially, automate the process. Automation brings new benefits
to the field of FT system design. At first, the automated process is
easier to check on potential algorithmic errors. Secondly, it eliminates
human factor errors, which potentially prolong the design process
before the verification process detects them. Naturally, designing a
complex system to be FT is challenging. The automated design of FT
systems is composed of two main components: (1) manipulation of
the description in such a way as to enhance resilience against faults;
(2) proper allocation of the available manipulation techniques.

The literature suggests two main approaches. (1) One possibility
is manipulating the synthesis tool to produce hardened designs. The
TLegUp [33] can serve as an example. It bases on the High-Level
Synthesis (HLS) tool LegUP [34]. With TLegUp, the user can generate
TMR designs directly from their description in the C language. Another
example is the so-called Xilinx TMRTool [35], which modifies the
design during its synthesis. The advantage of such an approach is the
direct access of the automation algorithms to the internal representa-
tion of the circuit. For example, the optimization algorithms are aware
of the added redundancy, which can be straightforwardly kept in the
internal representation. However, suppose a designer intends to add a
new FT technique or modify the current techniques. In that case, they
immediately find the fundamental requirement to access the synthesis
tool’s source code and modify it to accomplish their intention. This can
be solved by exclusively focusing on open-source equipment, yet still,
modifying such tools remains a great challenge.

Microelectronics Reliability 144 (2023) 114976

5

J. Lojda et al.

(2) As opposed to the previous, this approach enhances a design’s
resiliency by modifying the design’s source description. This method
looks more straightforward as it strictly separates the functionality
and focuses exclusively on source manipulation and technique allo-
cation. Also, one significant advantage of such an approach is the
possibility of achieving (at least partly) independence of the language
and abstraction level. For example, the allocation algorithm can be
reused, while the manipulation and synthesis components are replaced
in the automated FT design toolkit. One crucial requirement is to
precisely manipulate the descriptions in a given language, which is
(as we found in our previous research) rather challenging for par-
ticular languages (e.g., VHDL) and might also be straightforward for
other languages (e.g., C++ with HLS). One representative of such an
approach is the TMRG [36]. It modifies descriptions in the Verilog
language. An alternative is the RASP-TMR [37], which also focuses on
TMR and Verilog. Another representative is the so-called BYU-LANL
TMR Tool (BL-TMR) [38], which is also non-commercial and modifies
structures in the Electronic Design Interchange Format (EDIF). In [39],
an extension that combines this approach with allocation algorithms
was presented. Our previously published VHDL generators [40] also
allow us to modify VHDL entity instantiations and interconnections.
The VHDL generators are based on a templating system, allowing a
straightforward extension of available FT methods. However, these
tools only partially represent the source description modification ap-
proach. This is because these source-code manipulators do not provide
allocation functionality.

The allocation is an essential part of the FT design. It analyzes
the data (e.g., system structure, measurements, etc.). And after that,
each component (or subsystem) is provided with the best setup of code
manipulation to achieve the desired level of reliability. The allocation
of the available resiliency-enhancement techniques is formulated as
an optimization problem in the literature. In [41], the Improved Sur-
rogate Constraint method and its computational speed were presented.
In [42], the so-called Particle Swarm Optimization is proposed to solve
the problem. Another method, the so-called Neighborhood Search Meta-
heuristic method, is proposed in [43]. In [44,45], a genetic algorithm
is used. Specifically, the so-called Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) helps to find promising solutions. The authors of [46]
present the Penalty-guided Artificial Bee Colony Algorithm.

However, none of these has explored a way to completely automate
the FT design process from its beginning to the end, including the
automated measurements on a target HW platform during the design.
This is a highly complex task and requires large-scale implementa-
tion of various components. The research presented in this article,
however, tries its best to address this challenge comprehensively; for
this, it uses the approach of modified description. Table 1 presents
and compares the available methods to the one shown in this article
from their subject elaboration point of view. The first six columns are
self-explanatory. The table’s seventh column (Search Alg.) focuses on
whether the approach provides the exact solution or whether it is a
heuristic method, providing a solution that satisfies the requirements
but might not offer the optimal combinations of parameters. The eighth
column indicates whether the approach is single- or multi-objective.
The upper part of Table 1 targets the codes manipulation tools, while
the center part targets redundancy allocation methods. The last part
deals with approaches combining multiple techniques to achieve the
automated design of FT systems. The generalized approach presented
in this article is characterized in the last row of Table 1. Also, please
note that none of the related research analyzes the resulting designs on
the target HW platform while being easily usable for different platforms
and languages.

4. Automated design of FT systems

Our design flow starts with the specifications of input data. Two
fundamental inputs are requested: (1) the unhardened (i.e., original

or simplex) system which is to be hardened; (2) the information on
which parameters are to be minimized or maximized. This can be, for
example, the MTTF, power consumption, design size, etc. The designer
is then provided with multiple Pareto-optimal system configurations if
multiple criteria are specified or a single solution in the case of a single
criterion.

The automated design flow starts with the unhardened version of
a system. This might be a previously designed system from a project
stage in which the necessity of FT was not considered. It might also be
a newly developed system for which the manual incorporation of FT
would be complex. At the beginning of the design, the designer must
also specify the design objectives (e.g., FT, size, power consumption).
These parameters can be arbitrarily selected based on the project’s re-
quirements and needs. So far in our research, we have been optimizing
the number of critical bits [48], MTTF, the median time to failure [49]
and, in this article, also the power consumption of the resulting design.

After the specification is provided, the automated design can start.
At first, in a process called Generation, our automated flow generates
solutions that serve for data acquisition. In each solution, precisely one
component is hardened using one FT method. In addition, one reference
solution, which corresponds to the original description, is added. These
data-acquisition solutions are analyzed to measure their parameters.
The level of FT can be measured directly on the targeting HW using
our FT Estimation Tool (FT-EST) [32]. External tools are also supported
to provide the necessary information about the candidate solution, such
as estimating the power consumption.

In the following process, called Design Space Construction and Ex-
ploration, data obtained in the previous phase are used to interpolate
the parameters of the other possible configurations. This approach
significantly accelerates the design-space exploration, as no further
measurements are required. This is because the previously measured
data serve as a base for the calculation. Full design space exploration
can be performed. Heuristic approaches of single- or multi-objective
design space exploration can also be utilized for large systems, saving
CPU time. The efficient exploration methods are essential, as the entire
design space contains many sub-optimal solutions.

One or multiple suitable configurations are stored after discovering
them during the design-space exploration. These configurations are
then used to build the actual FT system in the process called FT
Design Build. This uses the same generator scripts as the first process
(i.e., the Generation process). During this stage, any possible final one-
time modifications to the design can also be performed. Our previous
research used this stage to incorporate system repair [49]. Afterward,
the optimal FT solutions are handed over to the designer. The graphical
overview of this flow from the beginning to end, where the final
systems are obtained, can be seen in Fig. 5.

4.1. FT design generation

The automated design flow depends on the possibility of modifying
the source description. In our approach, we stress the re-usability of the
flow components among different HDLs and various levels of abstrac-
tion. For this purpose, components of the flow called generators were
developed. The generators modify the source code description to pro-
duce FT design after the modified code is synthesized using traditional
synthesis methods (e.g., the HDL synthesis) or even new methods, such
as the High-Level Synthesis (HLS). So far, we have been using generators
to modify C++ on the algorithm level [47] and VHDL on the Register-
Transfer Level (RTL) [40]. The nature of these modifications is based
on the abstraction level of the description language. An essential part
of the generator function is the insertion of FT structures. The set of
generators for a given description language might cover various FT
architectures (e.g., TMR, duplex, 5-MR). Another fundamental property
of the generators is targeting the modification towards only a part of
the source code. This allows the construction of design space to select
later the FT methods based on a fine-grained approach.

Microelectronics Reliability 144 (2023) 114976

6

J. Lojda et al.

Table 1
Comparison of the related research; the first part targets code manipulation methods; the second part focuses on redundancy allocation approaches; and the third part describes
approaches that target design automation, including the approach presented in this article, which is on the last row.

Approach name Author Focus FT method Language Search Objectives

Input Output Alg. number

Code
Manipulation

BL-TMR [38] BYUa,
LANLb

Design
Manipulation

TMR EDIF EDIF – –

TMRG [36] CERN Design
Manipulation

TMR Verilog Verilog – –

RASP-TMR [37] A. R. Khatri
et al.

Design
Manipulation

TMR Verilog Verilog – –

VHDL Generators
[40]

J. Lojda
et al.

Design
Manipulation

Not Limited/
templates

VHDL VHDL – –

Redundant Data
Types [47]

J. Lojda
et al.

Design
Manipulation

Not Limited/
templates

C++/HLS C++/HLS – –

Redundancy
Allocation

Improved Surrogate
Constraint [41]

J. Onishi
et al.

Reliability
Allocation

– – – Exact Multiple

Multi-objective
Particle
Swarm Optimization
[42]

K. Khalili-
Damghani
et al.

Reliability
Allocation

– – – Meta-
heuristic

Multiple

Variable
Neighborhood
Search Algorithm
[43]

Y. C. Liang
et al.

Reliability
Allocation

– – – Meta-
heuristic

Single

Cuckoo Search
Genetic
Algorithm [44]

G. Kanagaraj
et al.

Reliability
Allocation

– – – Meta-
heuristic

Multiple

Non-dominated
Sorting
Genetic Algorithm II
[45]

Z. Wang
et al.

Reliability
Allocation

– – – Meta-
heuristic

Multiple

Artificial Bee Colony
Algorithm [46]

W. C. Yeh
et al.

Reliability
Allocation

– – – Meta-
heuristic

Multiple

Multiple-choice
Knapsack
Problem Solver [48]

J. Lojda
et al.

Reliability
Allocation

– – – Exact Single

Design
Automation

TMRTool [35] Xilinx/AMD Part of Synthesis
Flow

TMR NGC NGC – –

TLegUp [33] G. Lee et al. Part of Synthesis
Flow

TMR C Verilog – –

BL-TMR+Space
Explo-
ration+Multiple
Voters [39]

J. Anwer
et al.

Design Mani-
pulation+Reliability
Allocation

TMR (Var.
Voter Types)

EDIF Bitstream Exact Multiple

Fault Tolerant
Design
Automation
Toolkit
(this work)

J. Lojda
et al.

Design Mani-
pulation+Reliability
Allocation

Not Limited/
templates

Not Limited/
modular

Not Limited/
modular

Exact Multiple

aBrigham Young University.
bLos Alamos National Laboratory.

In this article, we practically utilize the generators for VHDL. These
allow targeting the specific FT architecture towards a VHDL entity.
After the generators are executed, the VHDL code is examined, and the
selected parts are modified. Special code comments are used to instruct
a specific FT method. These surround the entity instantiation, and
during one execution of the generators, one or multiple modifications
can be performed. A template system is used to specify FT methods. A
graphical representation of the VHDL generators’ flow can be seen in
Fig. 6.

In the first stage, the data-acquisition systems are generated using
our generators. In these systems, always precisely one component 𝑐 is
hardened using one of the FT methods 𝑚 for each component 𝑐 ∈ 𝐶
and each method 𝑚 ∈ 𝑀 , while 𝐶 is the set of system’s components
and 𝑀 is the set of available FT methods. This results in |𝐶| ⋅ |𝑀|
data-acquisition systems.

4.2. Design space construction and exploration

Another essential component of the design flow is the Design Space
Construction and Exploration. Candidate solutions are explored and eval-
uated in this part. Again, this component is strictly isolated from the
rest of the design flow components. This is useful to achieve the re-
usability of the design space construction and exploration for multiple
description languages on various abstraction levels. The global strategy
of the design flow can be easily modified by replacing exploration
methods. It is helpful to utilize a method with a well-studied and known
mathematical base. This makes it possible to estimate the resulting
quality of the conforming solution in advance.

In practice, a very high number of measurements (assessing relia-
bility parameters) of the candidate solutions would be required. Even
for smaller systems, this might lead to a number of measurements
in the magnitude of thousands, significantly prolonging the design

Microelectronics Reliability 144 (2023) 114976

7

J. Lojda et al.

Fig. 5. The graphical overview of the automated flow for FT systems design.

time. For this reason, attention should be paid to estimating most of
the parameters of candidate solutions from the measurement of the
data-acquisition solutions. This is, however, not possible for specific
parameters, such as the achievable maximal frequency of a design,
which is not easily interpolated. Nonetheless, the maximal frequency
can be read from the synthesis process. However, this prolongs the
design process, as it requires executing the synthesis tool for each
candidate solution. Nevertheless, this applies to designs for which
frequency is essential and is part of the design space construction.

Please note that in the following text, notation 𝑠𝑦𝑠_𝑎1𝑏1 denotes the
system in which the component 𝑎 is hardened by the method 1 and
the component 𝑏 is also hardened by the method 1, while the rest of
the components of the system are left simplex. In the previous stage
(i.e., the generation stage), the data-acquisition systems were prepared.
These data-acquisition systems can be denoted as 𝑠𝑦𝑠_𝑐𝑚, ∀𝑐 ∈ 𝐶,
∀𝑚 ∈ 𝑀 . In addition to them, the simplex solution is also added. The
parameters of these solutions are measured. Let us define a process of
MTTF calculation for each of the remaining candidate solutions whose
MTTF actually was not measured directly. The following procedure is
used.

(a) The resulting failure rates of the simplex and data-acquisition
systems, 𝜆𝑠𝑖𝑚𝑝𝑙𝑒𝑥 and 𝜆𝑠𝑦𝑠_𝑐𝑚 , ∀𝑐 ∈ 𝐶, ∀𝑚 ∈ 𝑀 , are calculated us-
ing Eq. (1).

𝑀𝑇𝑇𝐹 = 1
𝜆

(1)

(b) Let 𝜆𝑠𝑦𝑠 of a system be a sum of 𝜆𝑐 , ∀𝑐 ∈ 𝐶𝑠𝑦𝑠. This is formally
described in Eq. (2).

𝜆𝑠𝑦𝑠 =
∑
∀𝑐∈𝐶

𝜆𝑐 (2)

It is evident that using this relation, the difference 𝛿𝜆𝑐𝑚 can be cal-
culated for each pair of an FT method and a system component, which
expresses the difference in the failure rate after the application of the
FT method 𝑚 to the component 𝑐. Please note that these combinations
are represented by the previously-measured data-acquisition systems,
including the simplex system, which serves as a reference point to
calculate the differences.

(c) These 𝛿𝜆𝑐𝑚 values can be subsequently utilized to calculate
the 𝜆𝑠𝑦𝑠 for systems with multiple components hardened by various FT
methods. This is done by summing the corresponding differences 𝛿𝜆𝑐𝑚
and the 𝜆𝑠𝑖𝑚𝑝𝑙𝑒𝑥. And after that, the resulting failure rate value can be
converted using Eq. (1) back to the MTTF of the candidate system.

The overview of such calculation for the MTTF can be seen in Eq.
(3). Such a calculation is more straightforward for power consumption,
as the overall system consumption is simply a sum of the components’
power requirements.

𝜆𝑠𝑖𝑚𝑝𝑙𝑒𝑥 = 1
𝑀𝑇𝑇𝐹𝑠𝑖𝑚𝑝𝑙𝑒𝑥

(3a)

𝜆𝑠𝑦𝑠_𝑎1 = 1
𝑀𝑇𝑇𝐹𝑠𝑦𝑠_𝑎1

⋮

𝛿𝜆𝑎1 = 𝜆𝑠𝑦𝑠_𝑎1 − 𝜆𝑠𝑖𝑚𝑝𝑙𝑒𝑥 (3b)
𝛿𝜆𝑏1 = 𝜆𝑠𝑦𝑠_𝑏1 − 𝜆𝑠𝑖𝑚𝑝𝑙𝑒𝑥

⋮

𝜆𝑠𝑦𝑠_𝑎1𝑏1 = 𝜆𝑠𝑖𝑚𝑝𝑙𝑒𝑥 + 𝛿𝜆𝑎1 + 𝛿𝜆𝑏1 (3c)

𝑀𝑇𝑇𝐹𝑠𝑦𝑠_𝑎1𝑏1 = 1
𝜆𝑠𝑦𝑠_𝑎1𝑏1

⋮

Such an approach significantly accelerates the design-space explo-
ration, especially if MTTF is measured. For example, in the case of full
design space exploration, 1 FT method and 10-component system, 210 =
1024 solutions would have to be measured. However, only 11 mea-
surements would have to be performed with the in-SW approximation.
This represents only 1% of the required time to measure because the
design space construction and exploration can be considered negligible
compared to the measurement time. This is essential as it allows the
design automation to base on accurate measured data. This would be
impossible without such an approach, as measuring all the candidate
solutions would take months or years. With this approach, the mea-
surement time lies in the magnitude of weeks. And these techniques
make the automated design possible.

It is, however, essential to analyze the precision of such an esti-
mation. Such error analysis of uncertainty comes from the estimation
process. And, because it is necessary to know the limits of the MTTF es-
timation, we focus on the standard error (a.k.a. standard deviation of the
mean) as the common way to enumerate error in measurements [50].
The standard deviation is denoted by 𝜎, while the standard deviation of
the mean is denoted by �̄�. Their relation can be seen in Eq. (4), where
𝑁 equals the number of measurements.

�̄� = 𝜎√
𝑁

(4)

During the error analysis, the calculation of the estimated MTTF is
followed. For each operation with the MTTF, the corresponding proce-
dure is performed with the standard error, which is measured initially
(as well as the MTTF of the data-acquisition systems) and which is
finally estimated (as well as the MTTF of the candidate solutions).

(a) In Eq. (3a), the MTTF of the reference simplex system and the
data-acquisition systems are used to calculate their failure rate (i.e., 𝜆).

Microelectronics Reliability 144 (2023) 114976

8

J. Lojda et al.

Fig. 6. The creation of one candidate solution using the VHDL generators, including a short example of original and modified VHDL code.

This is done by dividing the value 1 by the MTTF value. According
to [50], the standard deviation of a division (for independent measures)
equals the root sum of squares of the individual relative uncertainties.
We use this equation to calculate the standard deviation of the mean
(i.e., standard error). We assume that the 𝑀𝑇𝑇𝐹 > 0 and �̄�𝑀𝑇𝑇𝐹 ≥ 0.
Moreover, we assume that the deviation of a constant (i.e., 1) equals 0.
After the substitution, it can be further simplified into the form shown
in the last part of Eq. (5a).

(b) After that, the failure rate of the simplex system is subtracted
from the failure rates of the data-acquisition systems as shown in Eq.
(3b). According to [50], the standard deviation of a sum (for inde-
pendent measures) equals the root sum of squares of the individual
absolute uncertainties. The deviation for one of the data-acquisition
systems can be seen at the end of Eq. (5b).

(c) And finally, the failure rates are summarized, and the value
is returned to the MTTF. For this operation, the Eqs. (5a) and (5b)
are used again. The result (after simplification) can be seen in Eq.
(5c). Because the inputs of these equations include the MTTF value
itself, naturally, the expected standard error of the measurement can
be calculated only after the input measurement (i.e., data acquisition)
is performed.

𝜎𝑓
𝑓

=

√(𝜎𝑥
𝑥

)2
+
(𝜎𝑦

𝑦

)2
(5a)

�̄�𝜆𝑎
√
𝑁

1
𝑀𝑇𝑇𝐹𝑎

=

√√√√√√
⎛⎜⎜⎝
�̄�𝑀𝑇𝑇𝐹𝑎

√
𝑁

𝑀𝑇𝑇𝐹𝑎

⎞⎟⎟⎠

2

+
(0
1

)2

�̄�𝜆𝑎 =
�̄�𝑀𝑇𝑇𝐹𝑎

𝑀𝑇𝑇𝐹𝑎
2

𝜎𝑓 =
√(

𝜎𝑥
)2 + (

𝜎𝑦
)2 (5b)

…

�̄�𝛿𝜆𝑎1 =

√√√√√
(

�̄�𝑀𝑇𝑇𝐹𝑠𝑖𝑚𝑝𝑙𝑒𝑥

𝑀𝑇𝑇𝐹𝑠𝑖𝑚𝑝𝑙𝑒𝑥
2

)2

+

(�̄�𝑀𝑇𝑇𝐹𝑎1

𝑀𝑇𝑇𝐹𝑎1
2

)2

�̄�𝜆𝑠𝑦𝑠 =
√(

�̄�𝜆𝑠𝑖𝑚𝑝𝑙𝑒𝑥
)2

+
∑

∀𝑐∈ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑

(
�̄�𝛿𝜆𝑐1

)2
(5c)

�̄�𝑀𝑇𝑇𝐹𝑠𝑦𝑠 =
�̄�𝜆𝑠𝑦𝑠
𝜆𝑠𝑦𝑠2

This presented error analysis will be later used in the text to
enumerate the actual standard error values of the estimations.

For multi-objective optimization, deciding which conforming solu-
tion is the best is impossible. For this purpose, a chart with detected
Pareto frontier [51] is plotted. The full design space search or a heuris-
tic method can be utilized in place of the design-space exploration
method. For example, in our previous research [48], we used the
Multiple-choice Knapsack Problem solver to explore the state space.
This approach, however, was limited to only one searched parameter
and one constrained parameter.

4.3. Evaluation of design parameters

Although we try to minimize the number of measurements, we
still need to measure the actual parameters for a smaller number of
systems on the real target hardware. This is to obtain base data for
the design space construction. This includes the evaluation of each
modified variant. Thus at least |𝐶| ⋅ |𝑀| + 1 times, where 𝐶 is the
set of components, and 𝑀 is the set of FT methods implemented in
generators (the +1 is for the reference simplex system). Differences
(i.e., improvement or deterioration) from the original values can be
calculated for each component based on the overall measured values
for the whole system.

We developed the FT-EST framework, which aims to generate the
so-called testbeds automatically. These allow accelerating FT parameters
measurement. Such a testbed is configured into the FPGA alongside the
tested unit and performs accelerated measurement of the tested unit.
Most of the testbed functionality is implemented in HW to maximize the
throughput. Our approach stressed the acceleration of the evaluation,
which is still very important to keep the measurement time at a rea-
sonable level. Parallel unit evaluation of multiple instances is possible,
but depends on the size of the tested unit and the space available
on the FPGA. The testbed can measure the number of critical bits of
a design. It is also able to measure the MTTF. The structure of the
testbed is described in generic VHDL. Modifications and extensions to
the measured parameters are straightforward, thanks to the modular
construction and the abstract data access layer.

The modular structure of the testbed can be seen in Fig. 7. An
essential part of the FT-EST testbed is the Input Generation, which
generates the testing stimuli for the tested units in the Unit Instantiation
Area. The clock signal to this area is gated, allowing the computer
SW to pause a design clock at a given time. This facilitates the fault
injection at the exact time and enables the injection of faults in an
arbitrarily short interval (i.e., even shorter interval than the fault injec-
tion script run time). Results from the tested units are checked against
the reference unit in the Output Compare block. Potential mismatches
are captured in the Failure Capture block. Data from this block are
addressable through the Communication Interface. So are addressable

Microelectronics Reliability 144 (2023) 114976

9

J. Lojda et al.

Fig. 7. Block diagram of the testbed, which is generated using the FT-EST tool.

the status registers and command register, which provide control of
the experiment process. The platform-specific communication is then
isolated in the Communication Module, as each manufacturer offers
different means of communication. For example, in this article, we
use the Xilinx ChipScope Pro Integrated Controller (ICON) [52] and the
Virtual Input/Output (VIO) [53] IP cores for the USB JTAG communi-
cation. On the PC, a script starts the autonomous experiment on the
FPGA and downloads and stores the measured data into a file. For the
artificial creation of faults in the FPGA configuration bitstream, a fault
injector that can inject faults at the FPGA run time is used [2]. It was
previously developed in our research group. Besides the injection, it
also utilizes the RapidSmith software to detect the occupied part of
LUTs in the configuration bitstream. It helps achieve higher accuracy
by accelerating the test, as the unused configuration bits are ignored.
This article uses the FT-EST framework to generate all the FT measuring
testbeds. The FT-EST was explicitly configured to measure the MTTF.

For the parameters unrelated to FT, any external tool can be used
whose output is accessible by a program (i.e., from a script). In this
work, we use the Xilinx XPower Analyzer [54] to estimate the power
consumption. This is a helpful tool, as it precisely calculates the power
consumption based on the accurate 0–1 switch ratio. The analysis for
the switch ratio is obtained in advance by simulating the design in the
Xilinx ISE Simulator (ISim) [55].

5. Case study: Automated design of FT RC

A reconfiguration controller was selected to demonstrate the au-
tomated design of its fault-tolerant version. The goal is to design a
resilient controller with the following features: as fault-tolerant as
possible (i.e., the largest MTTF) and the lowest power consumption.
Pareto-optimal solutions are sought using the previously described tool
for the automated design of an FT system.

The Generic Partial Dynamic Reconfiguration Controller (GPDRC) [1]
was chosen for the experiments. The GPDRC we use in the case study
is representative of a hard-coded controller that can be placed on the
same FPGA with the hardened circuit. However, at the same time,
it is prone to SEU. The susceptibility to SEU of the controller itself
is summarized in [56]. It was found that the original GPDRC has
approximately 8.8% of critical bits. A failed reconfiguration controller
can lead to the failure of the whole system. This is due to its access
to the internal interface for FPGA configuration. Therefore, in a loss, it
may expose incorrect data to this interface, causing unexpected system
behavior. Thus, the FT of the controller itself is crucial for the entire
resilient system.

Fig. 8. Block diagram of the GPDRC with interface.

5.1. GPDRC implementation analysis

At first, we will analyze the circuit design that is an object of our
case study before we use the automated FT design tool. The GPDRC
is directly implemented in FPGA logic. Its block diagram is shown in
Fig. 8. There are 10 basic functional components of which the controller
is composed:

Finite State Machine (FSM) is the fundamental component that con-
trols the operation of the entire controller and, thus, all other
components. This control is provided by responding to incoming
status signals from other components and setting control signals
leading to other components.

Input Register is a component that captures and stores all detected
faults for further processing. The detected fault may also corre-
spond to the reconfiguration request of the given module.

Round Robin provides a step-by-step selection of stored module re-
configuration requests so that they are all serviced.

Hard Error component will identify any faults that cannot be re-
paired. These are so-called permanent (irreparable) configura-
tion memory faults.

Error Decoder converts the selected reconfiguration request to a spe-
cific address in the conversion table.

Address Lookup poses a table with addresses on which individual
bitstreams are stored in memory with golden bitstreams. In our
case, it is an external flash memory.

Address Counter takes care of the sequential issuance of addresses for
reading data from memory with the golden bitstream.

Flash Controller provides an interface for external flash memory with
golden bitstreams. It, therefore, generates the appropriate sig-
nals for reading data from a given memory. This component
must always be adapted to the specific HW used.

FIFO is a component that synchronizes data from memory with golden
bitstreams and then exposes it to the ICAP. As a result, the
reconfiguration is performed, i.e., the relevant configuration is
written to the FPGA configuration memory, and the required
function is restored.

Safety Window is used to provide demanded time for the modules to
be synchronized before reconfiguring the module that was being
restored.

Microelectronics Reliability 144 (2023) 114976

10

J. Lojda et al.

The controller interface is as follows. At the input, the controller
waits for a reconfiguration request via the PRM Error bus. Each request
has its signal, so it is possible to receive multiple requests simulta-
neously. The controller also has two-way communication with flash
memory. Finally, there are outputs necessary for the reconfiguration,
such as data to ICAP and a signal indicating the end of the current
reconfiguration process, i.e., synchronization. Then there are statistical
outputs. These include identifying whether the fault is permanent,
i.e., Hard Error. Reconfiguration start/end signals inform about the actual
reconfiguration process used for recovery. The Error Index indicates
which component is being restored by reconfiguration.

A summary of the controller’s operation based on its interface and
components is as follows. The controller waits for the arrival and subse-
quent selection of the reconfiguration request. Subsequently, the range
of addresses at which the relevant golden bitstream is stored is de-
termined based on the selected request. These addresses are gradually
issued for the memory, and the applicable data are then read from it.
The read bitstream data is used both to store in the FPGA configuration
memory and to control the reconfiguration itself. In addition to the
configuration itself, the bitstream also provides the control instructions
and information about its structure, such as the data size of individual
blocks [57].

5.2. Experiment setup

In our experiments, we search for FT GPDRC designs. We stress
the chip area, the MTTF, and the GPDRC design’s power consumption.
Our GPDRCs are targeting the Xilinx Virtex-5 technology [58]. For the
design stage and evaluation of the designs, we utilize the ML506 eval-
uation boards [59] featuring the XC5VSX50TFF1136 Xilinx FPGA and
JS28F256P30T95 Intel flash memory. This golden bitstream memory,
located directly on the evaluation board, is 16 bits wide and 32MB in
size. We use the FT-EST framework to measure the MTTF of designs. A
periodic FI strategy is used. We empirically selected the fault intensity
to 2 × 10−5 inj∕s∕bit. We keep the fault intensity constant among the
tested designs, making the actual mean time between FIs reflect the
design size. For GPDRC testing, the Input Generation component of the
testbed simulates continuous requests for reconfiguration. The GPDRC
under test is not connected to the FPGA’s internal reconfiguration port.
The interfacing is emulated in an additional component instead. This
is to prevent data inconsistencies if a failing GPDRC would damage
the contents of the FPGA configuration memory, including the FT-EST
testbed core. It also allows testing multiple GPDRCs at once, as the FT-
EST provides parallel design evaluation to accelerate the process, while
the FPGA’s internal reconfiguration port is the only one.

The Xilinx XPower Analyzer estimates the power consumption of
particular designs. Our GPDRC is composed of 10 components. The
FT insertion generators will modify these parts of the source code. In
the experiment, only one generator is used: the TMR. This means that
a component in the GPDRC is either in the simplex version (i.e., the
original description) or a TMR version (created by the generator). The
design space exploration targets the size, MTTF, and power consump-
tion and generates the Pareto frontier of optimal solutions. We generate
the Pareto frontier for each parameter pair to visualize them in the
two-dimensional space.

5.3. Initial data acquisition

During the initial data acquisition, the influences of generators for
each combination generator vs. component must be evaluated. In our
case, we evaluate the complete GPDRC, in which one component is
hardened using generators. The enhancement of parameters gained by
the modification is then compared with the reference original (i.e., un-
hardened) GPDRC. This way, the gain for each parameter is calculated.
Such a procedure is helpful, especially in cases where splitting the
design would require preparing multiple different Input Generators,

which is time-consuming. Moreover, by keeping the tested component
with its surrounding components, we do not risk potential inaccuracy
in the measurement. This is 10 components and 1 TMR generator,
resulting in 10 data-acquisition systems and their evaluations. Besides
these, another 1 evaluation is needed to measure the parameters of the
original simplex GPDRC. For reference purposes, we also created and
measured one extra design, the so-called Coarse-Grained TMR (CGTMR),
in which the GPDRC is triplicated as a whole, i.e., on the system
level, not on the component level. This also had to be measured. Thus
we performed 12 measurements of various GPDRC configurations. The
MTTF is a statistical value. A vast number of FI runs must be done for
one MTTF measurement to obtain a statistically-accurate value. For our
case, we empirically set the number of experiments to equal the number
of the tested unit’s chosen FI bits.

Table 2 summarizes data-acquisition measurements. The TMR gen-
erator efficiency varies among the different components of the GPDRC.
However, the size overhead is not always in direct proportion to the
MTTF, which can be understood as an indicator of FT (i.e., a higher
MTTF represents a higher level of FT). For example, the 1tmr_6, in
which the lookup_ent component is hardened, has the size of 20 608 bits
and the MTTF is 24 234ms. For 1tmr_2 the MTTF is 24 929ms, which
is nearly by 3% better, but its size overhead is even yet smaller by
6%. Another highlight is the 1tmr_5, which achieves the highest gain
in MTTF; however, the design size increase is not the highest one
compared to the rest of the table.

Similarly, as seen in Table 2, the MTTF is not in direct proportion
to the power consumption. Hence, the power consumption is not di-
rectly proportional to the size overhead. This can be best observed by
comparing the simplex and 1tmr_3 and 1tmr_6 systems, in which errdec
and lookup_ent components are hardened. Despite these components
being hardened, their power consumption lowers. We believe that this
is because the static power consumption (e.g., generated by the leakage
current) is not dependent on the active chip area [60]. The current
leaking through ‘‘a stack’’ of transistors depends on the number of
transistors that are currently turned off in this stack; this is the so-
called stacking effect and is, in general, purposefully used to lower the
leakage current [61]. It shows that our measured parameters cannot be
trivially derived from each other. This is why a multi-objective search
of optimized variants is needed in our case. The reference CGTMR is
significantly larger. Yet its MTTF is even smaller than for the other
data-acquisition systems. This is because the TMR can lower the MTTF
for extensive mission times for specific designs. Thus, for this system,
the CGTMR is the worst approach.

Besides the optimized parameters, Table 2 displays the maximum
frequency of a design as a representative of the parameter that was
not optimized throughout the design process. As can be observed, the
frequency remains nearly constant while the components are being
hardened using the TMR. Two exceptions are the roundrobin and errdec
components. They significantly decrease the maximal frequency after
their hardening, which certainly affects the critical path of the design,
thus the frequency.

To analyze the precision of the resulting estimations, standard errors
are calculated using the relations deduced in Eq. (5a). At first, the
chart in Fig. 9 presents the standard errors of the MTTF for each of the
data-acquisition systems. As observed on the chart, the standard errors
remain in the same magnitude. The primary source of the differences
in standard errors are various responses of the components on their
hardening, resulting in different scatters of MTTF values.

However, it is more interesting to examine the standard error of
the MTTF for complete systems. As is obvious from Eqs. (5a), the
MTTF standard error of a system depends on the number of hardened
components in the system. To study this, we examine the standard error
for MTTF of systems in which the first; the first and second; the first,
second, and third, etc., components are hardened. It is 10 components
in total. The systems are named 𝑠𝑦𝑠𝟏−𝐱, in which the 𝑥 is from the
interval ⟨1; 10⟩. As shown in the chart in Fig. 10, the standard error of

Microelectronics Reliability 144 (2023) 114976

11

J. Lojda et al.

Table 2
Measurements of the complete GPDRC components acquired on the real Xilinx Virtex-5 FPGA as a primary base for the decision-making process of the design space exploration
(the 1tmr variants) and a reference (the simplex and CGTMR variants). MTTF was measured using our FT-EST framework, and the power consumption was measured using the
Xilinx XPower Analyzer toolkit.

Tested
GPDRC

Description Size
[bits]

Fault
intensity
[inj∕s∕bit]

Mean time
between FIs
[ms]

Number of
measurements
[-]

MTTF
(Measured)
[ms]

Power
Consumption
[mW]

Frequency
[MHz]

simplex original GPDRC 18 688 2 × 10−5 2 675.5 18 712 24 703 20.47 171.880
1tmr_1 input_register in TMR 19 392 2 × 10−5 2 578.4 19 392 24 760 21.76 171.880
1tmr_2 roundrobin in TMR 19 328 2 × 10−5 2 586.9 19 328 24 929 22.63 136.221
1tmr_3 errdec in TMR 19 136 2 × 10−5 2 612.9 19 136 24 599 17.06 136.631
1tmr_4 harderr in TMR 19 648 2 × 10−5 2 544.8 19 648 24 793 21.15 170.271
1tmr_5 safetyw in TMR 25 536 2 × 10−5 1 958.0 25 536 26 719 20.64 171.880
1tmr_6 lookup_ent in TMR 20 608 2 × 10−5 2 426.2 20 608 24 234 19.65 151.768
1tmr_7 adrcnt in TMR 24 832 2 × 10−5 2 013.5 24 832 26 161 21.08 164.328
1tmr_8 fifo_ent in TMR 30 784 2 × 10−5 1 624.2 30 784 26 415 29.28 171.880
1tmr_9 fsm in TMR 38 976 2 × 10−5 1 282.8 38 976 21 181 23.56 165.413
1tmr_10 flash_controller in TMR 21 632 2 × 10−5 2 311.4 21 632 24 064 27.22 171.880
CGTMR the whole GPDRC

in coarse-grained TMR
60 672 2 × 10−5 824.1 60 676 21 485 35.24 170.445

Fig. 9. Calculated standard error of measured MTTF values for the data-acquisition
systems.

Fig. 10. Calculated standard error of estimated MTTF values for the candidate systems.

the estimated MTTF increases as the number of hardened components
grows. But still, for our experiments, the maximal standard error keeps
below the 1000ms, which is a relatively positive fact for the precision
of the estimated MTTFs.

5.4. Complete design space exploration

Each of the 10 components is exclusively in either simplex (i.e., orig-
inal) or hardened TMR state. This results in 210 = 1024 GPDRC
configurations. The overwhelming majority of them are surely sub-
optimal. But there are certainly such configurations that are perspective
at least by one of the monitored parameters. We monitor the size
overhead, MTTF, and power consumption and explore the whole state-
space of configured solutions. We save time by calculating these values
based on the values obtained during the initial data acquisition. We

show each pair of the parameters in two-dimensional charts in Fig. 11.
The Pareto-optimal solutions are marked in the chart. These solutions
are optimal for a certain application. In the case of multiple criteria,
an appropriate solution must be selected later based on the user’s
preferences (e.g., minimal power consumption or minimal overhead).

As can be observed in Fig. 11, the solutions create clusters on the
chart. The granularity is 10 components and 2 possible configurations
per component (i.e., the original and TMR). The first combination of
parameters (i.e., the MTTF vs. power consumption) reveals 22 Pareto-
optimal solutions. These solutions are small or medium, demonstrated
by the green and yellow colors. In the second chart (i.e., the MTTF
vs. design size), 26 Pareto-optimal solutions were found. In this case,
the clusters are more concentrated. None of these solutions belong to
the power-intensive solutions, as the absence of the red color suggests.
In the third chart (i.e., the power consumption vs. design size), only
three Pareto-optimal solutions were found. This is because the power
consumption is significantly more dependent on the design size. In
this case, the clusters are not so evident. The solution that will be
selected later in this article for further experimentation and the ref-
erence solution simplex are denoted in the charts. In the third chart,
only the reference solution (i.e., simplex) is Pareto-optimal from the
further investigated systems. However, the selected solution’s MTTF is
excellent, as the red color suggests higher values (i.e., better MTTF).

6. Usage of the FT GPDRC

For directly unmanaged missions, it is essential to have control
systems that are highly independent. Such behavior is also required for
the fault correction subsystem itself. Therefore, the RC must take care of
everything related to mitigating faults. In addition, it must be resilient
on its own. We have chosen to detect errors at the application level,
where at the same time, these errors caused by configuration memory
faults are masked by TMR until the correct function is restored.

Our second experiment aims at the practical evaluation of the
previously-designed GPDRC in an experimental system. We assume that
for each system, a certain GPDRC exists that corresponds to the char-
acteristics of the hardened system and the required mission duration.
This makes the effectiveness of each GPDRC highly dependent on the
system that the GPDRC restores. This time, the power consumption will
not be part of the evaluation. This is because the power consumption
measurement in the simulated environment does not work on the
bitstream level, making it impossible to simulate reconfiguration using
the ICAP. Nonetheless, the power consumption was considered during
the search in Section 5.

Microelectronics Reliability 144 (2023) 114976

12

J. Lojda et al.

Fig. 11. The design space of solutions obtained by the exploration method with indicated Pareto-optimal solutions per each combination of the target parameters. The color of
Pareto-optimal and selected solutions always reflects the value of the third parameter (i.e., design size for the first chart), varying from red for the largest through yellow to green
for the lowest value. Please note that for the power consumption and the design size, the lower is better; for the MTTF, the higher is better.

6.1. System preparation for the reconfiguration

Based on FT and other requirements, such as non-interruption of
the system even during repair, reconfiguration cannot be used without
modifying the system itself. In our case, we expect an uninterrupted
system run, i.e., the system will be fully functional even in a fault and
subsequent recovery. TMR is used to mask the fault until the system
recovers. The application of TMR to the system is the first necessary
modification. The modified majority voter is used. Compared to the
standard one, it must be able to determine which of the modules
provides a different value. This information is brought to the GPDRC
input, which must also be added to the FPGA area. This scenario was
tested in our previous research [62], where other issues related to
increasing system FT through reconfiguration were addressed.

Secondly, it is necessary to ensure that the modules are synchron-
ous; therefore, it is possible to determine the majority of their outputs.
The easiest way is to use the reset signal of individual modules, ensuring
that they are reset to the same default state. However, it is not always
possible to use this option. If the modules need to maintain their
internal state, then a reset is unsatisfactory, and synchronization is
required. When synchronizing, the current internal state of the un-
damaged modules must be loaded into the newly repaired module.
Therefore, it is necessary to know the system’s functionality thoroughly
to identify what needs to be synchronized. It is also required to ensure
that the modules can provide these values to others and initialize
themselves with current values. Either the modules themselves must
provide this functionality, or another component must be added to
ensure the process. In our present scenario, all modules are reset to
synchronize them after restoring any of them using reconfiguration.

6.2. The selected GPDRC

In this experiment, we primarily target the MTTF vs. power con-
sumption tradeoffs (i.e., the first chart in Fig. 11). For this reason, we
selected one representative GPDRC from the Pareto-optimal solutions in
this set. This selected solution has the power consumption of 25.38mW,
MTTF of 29 021ms and bitstream size of 33 984 bits. Besides this, we
added the original simplex and the CGTMR versions of GPDRCs as
a reference. The overview of these selected GPDRCs can be seen in
Table 3. The last column of the table displays the maximum frequency
at which the design can be executed as a representative of a parameter
that is not optimized throughout the automated FT design. The selected
solution is nearly 25% slower than the original input design. Surpris-
ingly, the CGTMR version keeps its speed. This means the critical path
is not manifesting in the coarse-grained reference approach. However,
comparing the design size and the MTTF of the CGTMR version to
the others, the CGTMR is significantly below the optimal solutions.
The results would be, however, very different if the optimizations
were targeted towards the frequency, for example. Please note that the
estimated MTTF used during the automated design search is very close
to the actual measured MTTF after the system was synthesized. The
difference from the real measured value is below 0.3%, which is within
the magnitude of the precision expected from the previously presented
error analysis.

6.3. Benchmarking systems

To demonstrate the function of the selected GPDRCs, we need to
utilize benchmarking systems that our selected GPDRCs will harden.

Microelectronics Reliability 144 (2023) 114976

13

J. Lojda et al.

Table 3
Parameters and configuration of components for the selected and simplex GPDRCs and comparison to the CGTMR GPDRC.

GPDRC
variant

Configuration of Components Size
[bits]

MTTF
(Estimated)
[ms]

MTTF
(Measured)
[ms]

Power
Consump.
[mW]

Frequency
[MHz]

input_register roundrobin errdec harderr safetyw lookup_ent adrcnt fifo_ent fsm flash_controller

simplex sim. sim. sim. sim. sim. sim. sim. sim. sim. sim. 18 688 – 24 703 20.47 171.880
selected TMR TMR sim. TMR TMR sim. TMR sim. sim. sim. 33 984 28 934 29 021 25.38 130.016

CGTMR (ref.) The whole GPDRC in coarse-grained TMR 60 672 – 21 485 35.24 170.445

Fig. 12. Block diagram of the benchmarking system, to which the GPDRC controller
was added.

For this, we selected three benchmarks from the ITC’99 benchmarking
design set [63]. We took advantage of the fact that the ITC’99 set
can also be obtained in the VHDL format. The first is the b01, which
implements a finite-state machine that compares serial data flows. With
the FI size of only 704 configuration bits, this is representative of a
relatively small design. The second selected benchmark is the b05,
which implements a circuit elaborating memory contents. It spreads
over 12 736 bits. The third selection is the b12, which implements a
simple game, the guess a sequence for one player. This benchmark
represents a more extensive system, as the size of 16 384 bits suggests.

6.4. Experiment setup

To implement a restoration mechanism into the system, we must
first incorporate redundant blocks into the system. This redundancy
serves as a masking mechanism for the failing block and thus serves as
a backup until the failing block is restored. In our case, we also utilize
the TMR method. The primary outputs of the triplicated blocks are com-
pared in the voter component, and the failing block is detected based
on the results of the majority function. The GPDRC is then requested to
reconfigure the failing block, effectively restoring its function. Most of
the designs, however, hold an internal state. This is why it is necessary
to synchronize all the blocks before the system is considered in fault-
less condition again. In our case, we utilize the reset signal to keep the
benchmarking designs in a synchronized state. The already-described
VHDL generator tool produces the TMR version of the benchmarking
system. The overview of the system with the GPDRC incorporated
can be seen in Fig. 12. After the systems are created, again, we use
the FT-EST framework to generate testbeds and set the fault intensity
to 2 × 10−5 inj∕s∕bit. The ML506 evaluation boards are again used to
execute the tests on the real HW. The testbed features the tested system
that incorporates the GPDRC controller. The FT-EST’s golden system
does not include any DPR restore mechanism, serving only for reference
purposes. The GPDRC-hardened system is under fault injection, which
outputs data that is then compared to the original unhardened reference
system with the clock-precise timing.

6.5. Results

For our measurement of the MTTF value, we selected the number
of experiments to equal one-tenth of the number of the selected FI
bits (i.e., area). The results of the measured MTTF parameter for the
selected benchmarks with selected GPDRCs can be seen in Table 4 in
column MTTF (Testbed). The estimated value for an orbital trajectory
in the height of 555.6 km with 2.5-inch aluminum shielding is shown
in column MTTF (Orbit). These values are estimated based on the
information presented in [64]. The design size reflects the size of the
GPDRC, as observed. So does the mean time between FI, which depends
on the total system size. The results are divided into three main parts,
depending on the benchmarking system. For the b01 benchmarking
system with the reference simplex GPDRC, the MTTF is 371 s. Using
the selected GPDRC, the design size increased by 71.5%, while the
MTTF increased by 4.5%. It is important to note that the GPDRC is
nearly 23 times larger than the b01 benchmark system. For the b05
benchmark, the hardened GPDRC also proves to be beneficial. The
23.7% overhead in design size increases MTTF by 4.4%. As can be seen,
the best enhancement in MTTF was achieved for the b12 benchmark.
The MTTF increased by 11.7%, while the design size increased by
20.1% after the selected GPDRC was incorporated in place of the sim-
plex one. Also, each measurement shows the mean values of absolute
injection numbers leading to a failure. These keep in the magnitude of
hundreds for our benchmarks. As can be observed, one GPDRC brings
various effectiveness, which is dependent on the characteristics of the
benchmark (e.g., its size and functionality).

We also want to estimate the resulting improvement for future
larger systems. However, the exact measurement is not currently pos-
sible, as we are limited by the FPGA area currently available on
our equipment. For this reason, we extrapolate the percentage im-
provement of MTTF in Table 5. This extrapolation is calculated for
hypothetical 100, 250 and 500 kbit systems. The critical fact is that, with
larger systems, the GPDRC overhead percentage decreases, while the
MTTF is yet expected to increase.

7. Conclusions and future work

This article presented a new automated flow for FT systems design
on dynamically reconfigurable FPGAs. Subsequently, the practical us-
age of our implemented automation toolkit was shown. In the first part
of the experimental case study, we utilized the automation flow to pre-
pare a set of RCs that are Pareto-optimal concerning the MTTF, power
consumption, and size parameters. Then, one selected solution was
evaluated in benchmark systems on a real HW. For this, benchmarking
designs from the ITC’99 set were utilized.

The results show that by changing a standard RC with our automati-
cally-designed FT version, for one specific application, the design size
increased by 20.1%, and the MTTF increased by 11.7%. However, the
efficiency is highly dependent on the target system size, MTTF, and
function. Our experiments demonstrate the suitability of GPDRCs for
shorter mission times. We also estimate that a complex system defined
by half a million configuration bits would gain an MTTF improvement
of more than 50%.

As a part of our future research, we would like to repeat this process
for an RC of a different structure, for example, a simple microprocessor

Microelectronics Reliability 144 (2023) 114976

14

J. Lojda et al.

Table 4
Parameters of the simplex and selected hardened GPDRCs, measured on benchmark systems on the Xilinx Virtex-5 FPGA technology and estimated for equivalent technology with
a 2.5-inch Al shielding on 555.6 km-high orbital trajectory.

Benchmark
name

GPDRC
version

Size
[bits]

Fault
intensity
[inj∕s∕bit]

Mean time
between FIs
[ms]

MTTF
(Testbed)
[ms]

MTTF
(Orbit)
[days]

FIs to
failure
[-]

Difference (simplex)

MTTF
[%]

Size
[%]

FIs to
Fail. [%]

b01 in TMR simplex 21 120 2 × 10−5 2 367.4 371 477 17.69 157 – – –
selected 36 224 2 × 10−5 1 380.3 388 085 18.48 271 +4.5 +71.5 +79,0

b05 in TMR simplex 61 248 2 × 10−5 816.4 85 877 4.09 105 – – –
selected 75 776 2 × 10−5 659.8 89 673 4.27 136 +4.4 +23.7 +29.5

b12 in TMR simplex 69 184 2 × 10−5 722.7 158 613 7.55 219 – – –
selected 83 072 2 × 10−5 601.9 177 149 8.44 294 +11.7 +20.1 +34.2

Table 5
Extrapolated values for larger designs with the simplex and hardened GPDRCs, based
on previously measured data on the Xilinx Virtex-5 FPGA technology.

Hypothetical
benchmark
size [bits]

GPDRC
version

Size with
GPDRC
[bits]

Diff. (simplex)

MTTF
[%]

Size
[%]

100 000 simplex 118 688 – –
selected 133 984 +13.9 +12.9

250 000 simplex 268 688 – –
selected 283 984 +29.1 +5.7

500 000 simplex 518 688 – –
selected 533 984 +54.4 +2.9

core with a program code. This would extend the set of available RCs.
Also, such experiments would yield the knowledge needed to select the
proper RC for a given system and target environment. We also want to
design a new GPDRC that allows renewing itself using the same DPR
technology. This would supposedly provide even better results. This
is because the GPDRCs themselves are prone to the accumulation of
failures.

CRediT authorship contribution statement

Jakub Lojda: Conceptualization, Methodology, Software, Valida-
tion, Formal analysis, Investigation, Data curation, Writing – origi-
nal draft, Visualization. Richard Panek: Software, Validation, Inves-
tigation, Data curation, Writing – original draft, Visualization. Lukas
Sekanina: Resources, Writing – review & editing, Supervision, Funding
acquisition. Zdenek Kotasek: Resources, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the Brno University of Technology,
Czechia under project number FIT-S-23-8141 and the Czech Science
Foundation Project 21-13001S.

References

[1] M. Straka, J. Kastil, Z. Kotasek, Generic partial dynamic reconfiguration con-
troller for fault tolerant designs based on FPGA, in: NORCHIP 2010, 2010, pp.
1–4, http://dx.doi.org/10.1109/NORCHIP.2010.5669477.

[2] M. Straka, J. Kastil, Z. Kotasek, SEU simulation framework for xilinx FPGA: First
step towards testing fault tolerant systems, in: 14th EUROMICRO Conference on
Digital System Design, IEEE Computer Society, 2011, pp. 223–230.

[3] NASA, Mars 2020 Perseverance Rover, NASA, 2020, URL https://mars.nasa.gov/
mars2020/. (Accessed 11 April 2021).

[4] F. Fallahlalehzari, How does the Mars perseverance rover benefit
from FPGAs as the main processing units? Aldec (2021) URL https:
//www.aldec.com/en/company/blog/188--how-does-the-mars-perseverance-
rover-benefit-from-fpgas-as-the-main-processing-units. (Accessed 11 April
2021).

[5] I. Kuon, R. Tessier, J. Rose, FPGA Architecture: Survey and Challenges, in:
Foundations and trends in electronic design automation, 2008, Published,
sold, and distributed by now Publishers, URL https://books.google.cz/books?id=
AdK2OWDP7L0C.

[6] P. Athanas, Embedded Systems Design with FPGAs, Springer, New York, 2013.
[7] R. Padovani, Reconfigurable FPGAs for Space – Present and Future, Presentation

on the MAPLD Conference, Washington, DC, 2005.
[8] K. Vipin, S.A. Fahmy, FPGA dynamic and partial reconfiguration: A survey of

architectures, methods, and applications, ACM Comput. Surv. 51 (4) (2018)
http://dx.doi.org/10.1145/3193827.

[9] Xilinx Inc., Partial reconfiguration user guide, 2013, https://www.xilinx.
com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf. (Accessed: 15
September 2021).

[10] R. Velazco, D. McMorrow, J. Estela, Radiation Effects on Integrated Circuits and
Systems for Space Applications, Springer, 2019, http://dx.doi.org/10.1007/978-
3-030-04660-6.

[11] E. Petersen, Single Event Effects in Aerospace, John Wiley & Sons, Ltd,
2011, pp. 1–12, http://dx.doi.org/10.1002/9781118084328.ch1, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/9781118084328.ch1. URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/9781118084328.ch1.

[12] J.-C. Geffroy, G. Motet, Design of Dependable Computing Systems, Springer
Science & Business Media, 2013.

[13] I. Koren, C.M. Krishna, Fault-Tolerant Systems, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2007.

[14] R.E. Lyons, W. Vanderkulk, The use of triple-modular redundancy to improve
computer reliability, IBM J. Res. Dev. 6 (2) (1962) 200–209.

[15] C. Bolchini, A. Miele, M.D. Santambrogio, TMR and partial dynamic reconfigu-
ration to mitigate SEU faults in FPGAs, in: 22nd IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems, DFT 2007, 2007, pp. 87–95.

[16] J. Heiner, B. Sellers, M. Wirthlin, J. Kalb, FPGA partial reconfiguration via con-
figuration scrubbing, in: 2009 International Conference on Field Programmable
Logic and Applications, 2009, pp. 99–104, http://dx.doi.org/10.1109/FPL.2009.
5272543.

[17] R. Giordano, D. Barbieri, S. Perrella, R. Catalano, G. Milluzzo, Configuration
self-repair in Xilinx FPGAs, IEEE Trans. Nucl. Sci. 65 (10) (2018) 2691–2698,
http://dx.doi.org/10.1109/TNS.2018.2868992.

[18] C. SOOS, SEU effects in FPGA: how to deal with them?, in: Presentation on the
1st Combined R2E Workshop & School-Days, European Organization for Nuclear
Research (CERN), 2009.

[19] J. Lojda, J. Podivinsky, Z. Kotasek, M. Krcma, Majority type and redundancy
level influences on redundant data types approach for HLS, in: 2018 16th
Biennial Baltic Electronics Conference, BEC, 2018, pp. 1–4, http://dx.doi.org/
10.1109/BEC.2018.8600951.

Microelectronics Reliability 144 (2023) 114976

15

J. Lojda et al.

[20] M. Liu, Z. Zeng, F. Su, J. Cai, Research on fault injection technology for
embedded software based on JTAG interface, in: Reliability, Maintainability and
Safety (ICRMS), 2016 11th International Conference on, IEEE, 2016, pp. 1–6.

[21] S. Rudrakshi, V. Midasala, S. Bhavanam, Implementation of FPGA based fault
injection tool (FITO) for testing fault tolerant designs, IACSIT Int. J. Eng.
Technol. 4 (5) (2012) 522–526.

[22] C. Bernardeschi, L. Cassano, A. Domenici, L. Sterpone, Accurate simulation of
SEUs in the configuration memory of SRAM-based FPGAs, in: Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2012 IEEE International
Symposium on, IEEE, 2012, pp. 115–120.

[23] T. Nidhin, A. Bhattacharyya, R. Behera, T. Jayanthi, K. Velusamy, Verification
of fault tolerant techniques in finite state machines using simulation based fault
injection targeted at FPGAs for SEU mitigation, in: Electronics and Communi-
cation Systems (ICECS), 2017 4th International Conference on, IEEE, 2017, pp.
153–157.

[24] A. Benso, A. Bosio, S. Di Carlo, R. Mariani, A functional verification based fault
injection environment, in: Defect and Fault-Tolerance in VLSI Systems, 2007.
DFT’07. 22nd IEEE International Symposium on, IEEE, 2007, pp. 114–122.

[25] T. Schweizer, D. Peterson, J.M. Kühn, T. Kuhn, W. Rosenstiel, A fast and accurate
FPGA-based fault injection system, in: Field-Programmable Custom Computing
Machines (FCCM), 2013 IEEE 21st Annual International Symposium on, IEEE,
2013, p. 236.

[26] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, B. Hutchings, Rapid prototyping
tools for FPGA designs: RapidSmith, in: Field-Programmable Technology (FPT),
2010 International Conference on, 2010, pp. 353–356, http://dx.doi.org/10.
1109/FPT.2010.5681429.

[27] J.M. Kuuhn, T. Schweizer, D. Peterson, T. Kuhn, W. Rosenstiel, Testing reliability
techniques for SoCs with fault tolerant CGRA by using live FPGA fault injection,
in: Field-Programmable Technology (FPT), 2013 International Conference on,
IEEE, 2013, pp. 462–465.

[28] C. López-Ongil, M. Garcia-Valderas, M. Portela-García, L. Entrena, Autonomous
fault emulation: A new FPGA-based acceleration system for hardness evaluation,
IEEE Trans. Nucl. Sci. 54 (1) (2007) 252–261.

[29] M. Alderighi, S. D’Angelo, M. Mancini, G.R. Sechi, A fault injection tool for
SRAM-based FPGAs, in: On-Line Testing Symposium, 2003. IOLTS 2003. 9th
IEEE, IEEE, 2003, pp. 129–133.

[30] M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, G.R. Sechi,
Evaluation of single event upset mitigation schemes for SRAM-based FPGAs using
the FLIPPER fault injection platform, in: Defect and Fault-Tolerance in VLSI
Systems, 2007. DFT’07. 22nd IEEE International Symposium on, IEEE, 2007,
pp. 105–113.

[31] J. Podivinsky, J. Lojda, O. Cekan, Z. Kotasek, Evaluation platform for testing fault
tolerance properties: Soft-core processor-based experimental robot controller, in:
2018 21st Euromicro Conference on Digital System Design, DSD, 2018, pp.
229–236, http://dx.doi.org/10.1109/DSD.2018.00051.

[32] J. Lojda, J. Podivinsky, O. Cekan, R. Panek, Z. Kotasek, FT-EST framework:
Reliability estimation for the purposes of fault-tolerant system design automation,
in: 2018 21st Euromicro Conference on Digital System Design, DSD, 2018, pp.
244–251, http://dx.doi.org/10.1109/DSD.2018.00053.

[33] G. Lee, D. Agiakatsikas, T. Wu, E. Cetin, O. Diessel, Tlegup: A TMR code
generation tool for SRAM-based FPGA applications using HLS, in: 2017 IEEE 25th
Annual International Symposium on Field-Programmable Custom Computing
Machines, FCCM, 2017, pp. 129–132, http://dx.doi.org/10.1109/FCCM.2017.57.

[34] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. Brown,
J. Anderson, Legup: An open-source high-level synthesis tool for FPGA-based
processor/accelerator systems, ACM Trans. Embed. Comput. Syst. (TECS) 13
(2013) http://dx.doi.org/10.1145/2514740.

[35] Xilinx Inc., TMRTool: The industry’s first development tool to automatically gen-
erate triple module redundancy (TMR) for space-grade re-programmable FPGAs,
2021, https://www.xilinx.com/products/design-tools/tmrtool.html. (Accessed 13
April 2021).

[36] S. Kulis, Single event effects mitigation with TMRG tool, J. Instrum. 12 (01)
(2017) C01082, URL http://stacks.iop.org/1748-0221/12/i=01/a=C01082.

[37] A.R. Khatri, A. Hayek, J. Borcsok, RASP-TMR: An automatic and fast synthesiz-
able verilog code generator tool for the implementation and evaluation of TMR
approach, Int. J. Adv. Comput. Sci. Appl. 9 (8) (2018).

[38] BYU EDIF tools homepage, 2021, http://reliability.ee.byu.edu/edif/. (Accessed
13 April 2021).

[39] J. Anwer, M. Platzner, S. Meisner, FPGA redundancy configurations: An auto-
mated design space exploration, in: 2014 IEEE International Parallel Distributed
Processing Symposium Workshops, 2014, pp. 275–280, http://dx.doi.org/10.
1109/IPDPSW.2014.37.

[40] J. Lojda, R. Panek, Z. Kotasek, Automatic design of fault-tolerant systems for
VHDL and SRAM-based FPGAs, in: 2021 24th Euromicro Conference on Digital
System Design, DSD, 2021, pp. 549–552, http://dx.doi.org/10.1109/DSD53832.
2021.00088.

[41] J. Onishi, S. Kimura, R.J. James, Y. Nakagawa, Solving the redundancy allocation
problem with a mix of components using the improved surrogate constraint
method, IEEE Trans. Reliab. 56 (1) (2007) 94–101.

[42] K. Khalili-Damghani, A.-R. Abtahi, M. Tavana, A new multi-objective parti-
cle swarm optimization method for solving reliability redundancy allocation
problems, Reliab. Eng. Syst. Saf. 111 (2013) 58–75.

[43] Y.-C. Liang, Y.-C. Chen, Redundancy allocation of series-parallel systems using
a variable neighborhood search algorithm, Reliab. Eng. Syst. Saf. 92 (3) (2007)
323–331.

[44] G. Kanagaraj, S. Ponnambalam, N. Jawahar, A hybrid cuckoo search and genetic
algorithm for reliability–redundancy allocation problems, Comput. Ind. Eng. 66
(4) (2013) 1115–1124.

[45] Z. Wang, T. Chen, K. Tang, X. Yao, A multi-objective approach to redun-
dancy allocation problem in parallel-series systems, in: 2009 IEEE Congress on
Evolutionary Computation, IEEE, 2009, pp. 582–589.

[46] W.-C. Yeh, T.-J. Hsieh, Solving reliability redundancy allocation problems
using an artificial bee colony algorithm, Comput. Oper. Res. 38 (11) (2011)
1465–1473.

[47] J. Lojda, J. Podivinsky, Z. Kotasek, M. Krcma, Data types and operations
modifications: A practical approach to fault tolerance in HLS, in: 2017 IEEE
East-West Design and Test Symposium, EWDTS, 2017, pp. 1–6, http://dx.doi.
org/10.1109/EWDTS.2017.8110113.

[48] J. Lojda, J. Podivinsky, O. Cekan, R. Panek, M. Krcma, Z. Kotasek, Automatic
design of reliable systems based on the multiple-choice knapsack problem, in:
2020 23rd International Symposium on Design and Diagnostics of Electronic Cir-
cuits Systems, DDECS, 2020, pp. 1–4, http://dx.doi.org/10.1109/DDECS50862.
2020.9095576.

[49] J. Lojda, R. Panek, Z. Kotasek, Automatically-designed fault-tolerant systems:
Failed partitions recovery, in: 2021 IEEE East-West Design and Test Symposium,
EWDTS, 2021, pp. 1–8, http://dx.doi.org/10.1109/EWDTS52692.2021.9580996.

[50] J. Taylor, Introduction to Error Analysis: The Study of Uncertainties in Physical
Measurements, University Science Books, 1997, URL https://books.google.cz/
books?id=giFQcZub80oC.

[51] C. Coello, C. Dhaenens, L. Jourdan, Advances in Multi-Objective Nature Inspired
Computing, Vol. 272, Springer, 2009, http://dx.doi.org/10.1007/978-3-642-
11218-8.

[52] Xilinx Inc., LogiCORE IP ChipScope Pro Integrated Controller (ICON) Documen-
tation, Xilinx Inc., 2011, https://www.xilinx.com/support/documentation/ip_
documentation/chipscope_icon/v1_05_a/chipscope_icon.pdf. (Accessed 15 Febru-
ary 2018).

[53] Xilinx Inc., ChipScope pro VIO documentation, 2009, https://www.xilinx.
com/support/documentation/ip_documentation/chipscope_vio.pdf. (Accessed 15
February 2018).

[54] Xilinx Inc., Xilinx XPower Analyzer, Xilinx Inc., 2013, https://www.xilinx.
com/html_docs/xilinx14_5/isehelp_start.htm#xpa_c_overview.htm. (Accessed 07
December 2021).

[55] Xilinx Inc., ISim User Guide, Xilinx Inc., 2012, https://www.xilinx.com/support/
documentation/sw_manuals/xilinx14_7/plugin_ism.pdf. (Accessed 07 December
2021).

[56] R. Panek, J. Lojda, J. Podivinsky, Z. Kotasek, Reliability analysis of reconfig-
uration controller for FPGA–based fault tolerant systems: Case study, in: 2020
International Symposium on VLSI Design, Automation and Test, VLSI-DAT, 2020,
pp. 1–4, http://dx.doi.org/10.1109/VLSI-DAT49148.2020.9196269.

[57] Xilinx Inc., Virtex-5 FPGA Configuration User Guide, Xilinx Inc., 2017, https:
//www.xilinx.com/support/documentation/user_guides/ug191.pdf. (Accessed 22
November 2017).

[58] Xilinx Inc., Virtex-5 FPGA User Guide, Xilinx Inc., 2012, https://www.xilinx.
com/support/documentation/user_guides/ug190.pdf. (Accessed 26 March 2019).

[59] Xilinx Inc., ML506 Evaluation Platform User Guide, 2011, UG347 (V3. 1.2).
[60] A. Razzaq, A. Ye, Static power model for CMOS and FPGA circuits, IET

Comput. Digit. Tech. 15 (4) (2021) 263–278, http://dx.doi.org/10.1049/cdt2.
12021, arXiv:https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/cdt2.
12021. URL https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cdt2.
12021.

[61] S. Mukhopadhyay, C. Neau, R.T. Cakici, A. Agarwal, C.H. Kim, K. Roy, Gate
leakage reduction for scaled devices using transistor stacking, IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 11 (4) (2003) 716–730.

[62] R. Panek, J. Lojda, J. Podivinsky, Z. Kotasek, Reliability analysis of the FPGA
control system with reconfiguration hardening, in: 2021 24th Euromicro Confer-
ence on Digital System Design, DSD, 2021, pp. 553–556, http://dx.doi.org/10.
1109/DSD53832.2021.00089.

Microelectronics Reliability 144 (2023) 114976

16

J. Lojda et al.

[63] F. Corno, M. Reorda, G. Squillero, RT-level ITC’99 benchmarks and first ATPG
results, IEEE Des. Test Comput. 17 (3) (2000) 44–53, http://dx.doi.org/10.1109/
54.867894.

[64] D.M. Hiemstra, G. Battiston, P. Gill, Single event upset characterization of the
Virtex-5 field programmable gate array using proton irradiation, in: 2010 IEEE
Radiation Effects Data Workshop, 2010, p. 4, http://dx.doi.org/10.1109/REDW.
2010.5619490.

Jakub Lojda (Ph.D. student, FIT BUT) was born in 1991. In
2015 he graduated (MSc.) at the Department of Computers
Systems of the Faculty of Information Technology, Brno
University of Technology (BUT). In 2015 he started his
Ph.D. studies at the Department of Computers Systems
(DCSY). His scientific research is focused on the design
of fault-tolerant systems on FPGAs. His research target is
the automation of the complete fault-tolerant system design
process.

Richard Panek (Ph.D. student, FIT BUT) was born in 1990.
In 2015 he graduated (MSc.) at the Department of Comput-
ers Systems of the Faculty of Information Technology, Brno
University of Technology (BUT). There, in 2016, he obtained
another MSc degree. In the same year, he started his Ph.D.
studies at the Department of Computers Systems (DCSY).
His scientific research is focused on fault-tolerant control
systems that utilize the dynamic partial reconfiguration of
FPGAs.

Lukas Sekanina (Senior Member, IEEE) received the Ing.
and Ph.D. degrees from the Brno University of Technology,
Brno, Czech Republic, in 1999 and 2002, respectively. He
was a Visiting Professor with Pennsylvania State University,
Erie, PA, USA, in 2001. He received the Fulbright Schol-
arship to work with the NASA Jet Propulsion Laboratory,
Caltech, in 2004. He is currently a Full Professor and the
Head of the Department of Computer Systems, Faculty of
Information Technology, Brno University of Technology.
He has coauthored over 200 papers, mainly on evolvable
hardware, evolutionary computation, and approximate com-
puting, and one patent. He served as an Associate Editor for
the IEEE Transactions on Evolutionary Computation, from
2011 to 2014, the Genetic Programming and Evolvable Ma-
chines Journal, and the International Journal of Innovative
Computing and Applications.

Zdenek Kotasek (Senior Member, IEEE) was born in 1947.
He received his MSc. and Ph.D. degrees (in 1969 and
1991) from Brno University of Technology (BUT), both
in computer science. Between 1969 and 2001, he worked
at the Department of Computer Science of the Faculty of
Electrical Engineering and Computer Science, since 2002
at the Department of Computer Systems (DCSY) of the
Faculty of Information Technology, both at BUT. He was
an Associate Professor at BUT since 2000, he was in the
position of the DCSY head from 2005 till 2015. His research
interests include digital circuit diagnostics and testing, testa-
bility analysis and design and synthesis for testability and
reliability, fault-tolerant system design. He was an IEEE
senior member (since 2015).

Appendices

145

Appendix I

List of Used Abbreviations

AD Activity Diagram

ASIC Application Specific Integrated Circuit

BL-TMR Brigham Young University and Los Alamos National Laboratory TMR Tool

BRAM Block Random Access Memory

CDFG Control-Data Flow Graph

CGTMR Coarse-grained TMR

CLB Configuration Logic Block

DPR Dynamic Partial Reconfiguration

DSP Digital Signal Processing

DUT Design Under Test

EEPROM Electrically Erasable Programmable Read-Only Memory

FA Fault Avoidance

FF Flip Flop

FGTMR Fine-Grained Triple Modular Redundancy

FPGA Field Programmable Gate Array

FT Fault Tolerance

FT-EST Fault Tolerance Estimation Toolkit

GPDRC Generic Partial Dynamic Reconfiguration Controller

HDL Hardware Description Language

HLL Higher-Level Programming Language

HLS High-Level Synthesis

146

ICAP Internal Configuration Access Port

II Initiation Interval

ISE Integrated Synthesis Environment

I/O Input/Output

JTAG Joint Test Action Group

KP Knapsack Problem

LE Logic Element

LFSR Linear Feedback Shift Register

LUT Look-Up Table

MCKP Multiple-choice Knapsack Problem

MTTF Mean Time to Failure

NSGA-II Non-Dominated Sorting Genetic Algorithm II

PLB Programmable Logic Block

RDT Redundant Data Type

RTL Register-Transfer Level

SEE Single-Event Effect

SET Single-Event Transient

SEU Single-Event Upset

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

TMR Triple Modular Redundancy

TTF Time to Failure

t50 Median Time to Failure

UML Universal Modeling Language

147

	Introduction
	Thesis Goals
	The Proposed Approach
	Thesis Outline

	Research Background
	Field Programmable Gate Arrays
	FPGA's Structure
	Single-Event Effects in FPGAs

	Hardware Description and Synthesis for FPGAs
	Hardware Description Languages
	High-Level Synthesis

	Dependable Systems Design
	Fault Avoidance
	Fault Tolerance
	Calculation with Reliability Metrics

	Computer-Aided Design of Fault-Tolerant Systems
	Modifying the Code to Support FT
	Strategy for Selection of FT Mechanisms
	Fault Tolerance Evaluation

	Open Problems

	Research Summary
	Methodology
	Fault Tolerance Evaluation Approaches
	FT Evaluation Platform utilizing Robot Controller
	FT Evaluation Framework

	Research and Results
	FT Mechanisms Insertion into the C++ Source Code: First Experiments
	FT Mechanisms Insertion into the C++ Source Code: Multiple FT Mechanisms
	FT Evaluation: Accelerated Testbeds, FPGA Design Metrics
	FT Mechanism Selection Strategy: Multiple-Choice Knapsack Problem
	FT Mechanisms Insertion into the VHDL Source Code: Hardening Methods
	FT Mechanism Selection Strategy: Multiple Objectives, Real System Case Study

	FT Design Automation Overview
	Design Flow
	FT Mechanisms Insertion
	FT Mechanism Selection Strategy
	FT Evaluation

	Publications
	Selected Publications Summary
	Author's Contributions to The Selected Publications
	Other Topic-Related Publications

	Research Projects, Grants

	Conclusions
	Thesis Main Contributions Summary
	Future Research Possibilities

	Bibliography
	Selected Papers
	Data Types and Operations Modifications: a Practical Approach to Fault Tolerance in HLS
	Redundant Data Types and Operations in HLS and their Use for a Robot Controller Unit Fault Tolerance Evaluation
	Majority Type and Redundancy Level Influences on Redundant Data Types Approach for HLS
	FT-EST Framework: Reliability Estimation for the Purposes of Fault-Tolerant System Design Automation
	Automatic Design of Reliable Systems Based on the Multiple-choice Knapsack Problem
	Automatic Design of Fault-Tolerant Systems for VHDL and SRAM-based FPGAs
	Automatically-Designed Fault-Tolerant Systems: Failed Partitions Recovery
	Automated Design and Usage of the Fault-Tolerant Dynamic Partial Reconfiguration Controller for FPGAs
	Appendices
	List of Used Abbreviations

