
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FAULTTOLERANTFIELDPROGRAMMABLENEURAL
NETWORKS
FIELD PROGRAMMABLE NEURAL NETWORKS ODOLNÁ PROTI PORUCHÁM

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. MARTIN KRČMA
AUTOR PRÁCE

SUPERVISOR doc. Ing. VLADIMÍR DRÁBEK, CSc.
ŠKOLITEL

BRNO 2022

Abstract
This thesis focuses on the Field Programmable Neural Networks concept intended to make
implementation of neural networks in FPGAs less resource demanding. The thesis intro-
duces and discusses several types of Field Programmable Neural Networks which provide
different trad-offs between the resource consumption and the accuracy of the implemented
neural network approximation. This thesis also introduces and discusses methods of harden-
ing the Field Programmable Neural Networks against faults with and without redundancy.

Abstrakt
Tato práce se zaměřuje na koncept Field Programmable Neural Networks jehož cílem je
učinit implementaci umělých neuronových sítí v hradlových polích méně náročnou jejich
prostředky. Za tímto účelem práce konept rozvíjí a představuje několik jeho různých typů
jež se vyznačují různými poměry mezi spotřebou zdrojů hradlových polí a přesností s jakou
aproximují původní neuronovou síť jíž implementují. Teze díle rozšiřuje koncept o metody
zabezpečení proti poruchám s využitím redundance a také bez ní.

Keywords
Field Programmable Neural Networks, fault tolerance, neural networks, FPGAs

Klíčová slova
Field Programmable Neural Networks, odolnost proti poruchám, neuronové sítě, FPGA

Reference
KRČMA, Martin. Fault tolerant Field Programmable Neural Networks. Brno, 2022. PhD
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor doc.
Ing. Vladimír Drábek, CSc.

Fault tolerant Field Programmable Neural Net-
works

Declaration
I hereby declare that this Ph.D. thesis was prepared as an original work by the author
under the supervision of Mr. doc. Ing. Zdeněk Kotásek CSc. and Mr. doc. Ing. Vladimír
Drábek CSc. I have listed all the literary sources, publications and other sources, which
were used during the preparation of this thesis.

. .
Martin Krčma

August 31, 2022

Acknowledgements
I would like to thank Mr. doc. Ing. Zdeněk Kotásek CSc. for his leadership and many
years of professional support. Moreover, I would like to thank him for the wisdom and the
life experiences he shared with me. I would also like to thank Mr. doc. Ing. Vladimír
Drábek CSc. for his kind willingness to step in and take the role of my supervisor during
a difficult time and to provide me the support I needed to finish this thesis.

Contents

1 Introcution 3

2 Neural networks 4
2.1 Neurons . 4
2.2 Activation functions . 4
2.3 Threshold . 5
2.4 Basic topology . 6
2.5 Learning of neural networks . 7

2.5.1 Supervised learning . 8
2.5.2 Unsupervised learning . 8
2.5.3 Backpropagation . 8

3 Fault tolerance of neural networks 11
3.1 Possible faults in neural networks . 11
3.2 Hardening neural networks using learning 14

3.2.1 Methods based on faults injection 14
3.2.2 Methods based on restricting the weights 16
3.2.3 Methods based on activation and basis functions modifications . . . 17
3.2.4 Methods using relearning . 18
3.2.5 Other learning-based methods . 19

3.3 Methods based on redundancy . 19
3.3.1 Triple modular redundancy . 19
3.3.2 Inserting new neurons . 21
3.3.3 Temporal redundancy . 21

4 Field Programmable Neural Arrays 23
4.1 Field Programmable Neural Network . 24

4.1.1 The computation . 25

5 Research progress 31
5.1 Approximation capabilities . 32

5.1.1 FPNNs with a single operator per link 33
5.1.2 Reduced and Full FPNNs . 35

5.2 Fault tolerance . 36
5.2.1 Identity operators and mapping . 36
5.2.2 Triple modular redundancy . 38
5.2.3 Detecting hard synapses fault . 39
5.2.4 The FPNNs robustness . 40

1

5.2.5 Recovery using partial dynamic reconfiguration 42
5.3 List of Publications Related to the Thesis 43

5.3.1 Author’s contributions to papers related to The Thesis 45
5.4 List of Other Publications, unrelated to the Thesis 45
5.5 Research Projects and Grants . 47

6 Conclusions 49
6.1 Contributions . 51
6.2 Possibilities of Future Research . 52

Bibliography 53

A Mapping trained neural networks to FPNNs 62

B Comparison of FPNNs models approximation capabilities and FPGA re-
sources utilization 67

C Comparison of FPNNs Approximation Capabilities 76

D Detecting hard synapses faults in artificial neural networks 79

E Fault tolerant Field Programmable Neural Networks 86

F Triple modular redundancy used in field programmable neural networks 91

G Fault tolerant Field Programmable Neural Networks 98

H Implementation of fault tolerant techniques into FPNNs 105

I Fault tolerance of different Field Programmable Neural Networks types109

2

Chapter 1

Introcution

It was the year 1943 when Warren McCulloch and Walter Pitts introduced the first math-
ematical description of a neuron in their A Logical Calculus of Ideas Immanent in Nervous
Activity [40] paper. Their neuron was behaving as a logic switch, and they proved that
an interconnected network composed of such neurons is able to calculate any operation
of propositional logic. Donald Hebb followed their ideas and introduced the first learn-
ing algorithms for such neural networks in his book The Organization of Behavior [24] in
1949. Eight years later, Frank Rosenblat introduced perceptron [64], a generalized model
of a neuron that worked with real numbers. He developed a learning algorithm for neural
networks based on his model. The algorithm was able to calculate the desired configura-
tion of the network in finite time and independently from the initial state of the network.
With this algorithm in hand, Rosenblat constructed the very first neuro-computer, which he
named Mark Perceptron I. The computer was able to recognize characters and its successful
presentation attracted first serious attention and interest in neural networks.

The beginning of the seventies came with the first model of a binary associative neural
network developed by Karl Steinbuch [70]. At the end of that decade, Marvin Minsky
and Seymour Papert pointed out in their Perceptrons [43] book that the logical exclusive
disjunction operation is impossible with only a single perceptron. The authors admitted
that it was possible to realize the said operation with a network of three perceptrons
organized into two layers. Unfortunately, no known algorithm could guide such a network
to learn the operation at that time. From that, they incorrectly concluded that no such
algorithm could exist. This unfortunate conclusion, together with a lack of new fresh ideas,
led to a significant drop in interest in neural networks and caused cuts in funding for the
research. Despite that, the research quietly continued and got the attention back when
John Hopfield presented a new model of an associative neural network that worked as a
memory in 1982 [25]. The same year brought another important model of neural networks
- the Kohonen’s networks [32].

David Rumelhart, Geo Rey Hinton, and James McClelland published one of the most
used and essential learning algorithms - the backpropagation algorithm [65]. The algorithm
was based on the iterative improvement of the network based on propagating the value of
the network output error back through the network while modifying its weights. The first
significant conference focused solely on neural networks, the IEEE International Conference
on Neural Networks, was held in San Diego in 1987 and the neural networks have remained
in the academic, research and software engineering communities’ interest ever since.

3

Chapter 2

Neural networks

Neural networks generally are abstract mathematical structures inspired by the human
brain even though artificial neural networks are massively simplified and more specifically
focused compared to their original archetype. Just like the brain, artificial neural networks
are composed of neurons. Similar to their biological counterparts, artificial neurons are
interconnected by synaptic interconnections or for short, synapses. Synapses represent
channels through which information flows between neurons while being modified by the
synapses’ parameters. Those parameters are generally called weights, and they represent
the strength of the connection between neurons. It is the values of these weights that hold
the knowledge that the particular neural network gained during its learning process.

2.1 Neurons
If we refer to Equation 2.1 representing a general model of an artificial neuron we can see
that the neuron 𝑛 has 𝑥1, ..., 𝑥𝑛 inputs representing all the incoming synaptic interconnec-
tions equipped with weights 𝑤1, ..., 𝑤𝑛 accordingly. The data modified by the weights then
enter the function 𝑓 which computes the output value 𝑦 of the neuron that would be send
through outgoing synapses to connected neurons (2.2). This function is called an activation
function. The input of the activation function is generated by a function called basis func-
tion which transforms the set of input data 𝑥1, ..., 𝑥𝑛 and corresponding weights 𝑤1, ..., 𝑤𝑛

into a value called the neuron’s potential or net. This value then serves as the input to the
activation function. One of the most common basis functions is a weighted sum (2.1).

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑛𝑒𝑡 =
𝑛∑︁

𝑖=1

𝑥𝑖𝑤𝑖 (2.1)

𝑦 = 𝑓(𝑛𝑒𝑡) (2.2)

2.2 Activation functions
In Section 2.1 we said it is the activation function of a neuron that generates its output
which then serves as an input to other neurons or as the output data of the neural network
itself. The activation function is, therefore, a core element of a neuron. Different types

4

Figure 2.1: General inside structure of a neuron

and models of neural networks utilize different activation functions or even combinations
of different functions. An activation function is often an increasing continuous and dif-
ferentiable function. Discontinuous functions can also be used, but their downside is that
neural networks utilizing such a function cannot be learned with a learning algorithm based
on differentials such as the Backpropagation algorithm described in section 2.5.3. The the
most frequently used activation functions are for instance the sigmoid function (2.3), the
uni-polar step function (2.5), bi-polar step function (2.6), hyperbolic tangent (2.4) which
are defined as follows:

𝑓(𝑥) = sigmoid(𝑥) =
1

1 + 𝜖−𝜃𝑥
(2.3)

𝑓(𝑥) = tanh(𝑥) =
2

1 + 𝜖−2𝑥
− 1 (2.4)

𝑓(𝑥) = unipolar_step(𝑥) =

{︂
0 for 𝑥 ≤ 0
1 for 𝑥 > 0

(2.5)

𝑓(𝑥) = bipolar_step(𝑥) =

{︂
−1 for 𝑥 ≤ 0
1 for 𝑥 > 0

(2.6)

Fig. 2.2 illustrates the graphs of the said functions.

2.3 Threshold
The threshold is a way to improve neural network capabilities by affecting a particular
neuron’s activation function independently. Originally the term threshold referred to an
actual threshold that guarded the neuron output. It was a minimum limit that the neuron
potential had to reach for the neuron to ”fire,“ i.e., to produce an output. The neuron
output would remain null if the potential did not cross this threshold. Even though this
specific behavior can be achieved with a threshold as it is used in artificial neural networks,
it is another variable that enters the computation of the neuron’s potential rather than a
limit imposed on it.

5

Figure 2.2: Activation functions

𝑦 = 𝑓(𝑛𝑒𝑡+ 𝜃) (2.7)

Mathematically, a threshold 𝜃 is a value that is added to the neuron’s potential as
shown in equation (2.7). It is figuratively a hidden weight with a constant input data of
the value of one. The value of this virtual weight then enters the weighted sum of the
potential as another element. By adding the threshold to the potential, every input of the
activation function is shifted on the 𝑥 axis by the same offset. The activation function of
the particular neuron itself then appears to be shifted permanently on 𝑥 axis. Furthermore,
since the threshold is effectively just another weight, it can be determined together with
the rest of the weights during the learning process.

2.4 Basic topology
When Marvin Minsky and Seymour Papert derived that the logical function of exclusive
disjunction can be realized by a network of three perceptrons, they also implied the most
prominent building blocks of neural network architectures. That is, layers. Just like their
three perceptrons network was composed of two successive layers, the following research
also worked with neural networks like structures organized into layers. A neural network
can be composed of a single layer, but usually, it is more. When a neural network has more

6

than one layer, then we call the first layer the input layer and the last layer the output
layer. If the network has more layers than these two, then we speak of hidden layers. The
number of neurons in each layer can differ from one another. The layers can have only
one dimension in the form of a row of neurons, but any higher number of dimensions is
possible. The neural networks working with image data usually have two-dimensional layers
of neurons, for instance. A basic illustration of a one-dimensional neural network with one
hidden layer can be seen in Fig. 2.3.

Another topological property of neural networks is the direction of the information flow.
In other words, whether a feedback loop exists somewhere in the network. Usually, neural
networks are feed-forward networks with information flowing from the input layer through
hidden layers to the output layer and the outside world. It is also possible, however, to
take a part of the output data vector and feed it back to the input layer. The Hopfield
networks are an example of this topology. Similar feedback loops can exist between hidden
layers as well. We can call the network with this property recurrent networks as opposed
to feed forward networks.

Figure 2.3: Backpropagation model

2.5 Learning of neural networks
At the core of learning, algorithms lay the basic principle of how neural networks store
their knowledge. It is the set of the particular network weights that stores that knowledge.
Similar to the human brain, the weights represent the strength of connections between
particular neurons and, therefore, the way how the information flow through different parts
of the network. Just like the human brain ”wires“ itself to create neural paths that realize all
our memories and skills, the artificial neural networks also basically realize their capabilities
using the fact that the weights implement the way how the particular network is effectively
wired.

7

Therefore, when we speak about a network learning to perform a specific task, we
practically speak about setting the network’s weights. The learning process sets the weights
to make the information flow from the network’s input through the neurons, transforming
the input data to produce the desired results.

Bearing this principle in mind, we can say that the learning process creates a function
or a map that connects desired output vectors to the inputs. This map is not a strict
one, however. The relations between inputs and outputs that neural networks gains during
their learning phase are not necessarily one-to-one. The relations are soft and indirect.
Furthermore, in that fact lies the true strength of artificial neural networks. They are able
to discover and generalize the relations between data vectors during learning and then apply
this generalized knowledge to new and previously unseen input data vectors.

Moreover, if the network’s knowledge is robust and general enough, it will be able to
infer the correct relation and present a correct output data vector. To put this into a
practical example, a neural network that has learned to recognize images of cars using a
set of pre-prepared images. If the learning is sufficient, then the network will correctly
recognize even an image of a car it has never seen before.

The learning process is then a process of determining the values of weights. The net-
work usually starts with a randomized set of weights. This set is continuously modified
in the learning process to bring the network to the desired operation step by step. Many
algorithms can take the network through this process, and we generally recognize basic
types - supervised learning and unsupervised learning.

2.5.1 Supervised learning

Supervised learning is based on an idea of a supervisor - a figurative entity that has knowl-
edge of the task it wants the neural network to learn to do. Practically that means that the
input data set intended to be used in the learning process has its desired-output data set
counterpart. There is a known desired output data vector for every pre-prepared input data
vector. The supervisor can then judge the output the network produces in response to the
input data vectors and use this judgment in the consequent modifications to the network
weights set to lead to the desired behavior. The backpropagation described in subsection
2.5.3 algorithm is a typical example of this type of learning method.

2.5.2 Unsupervised learning

Unsupervised learning is, as the name suggests, a type of learning process that does not
use a supervisor. That means it does not rely on pre-determined knowledge of how the
network should ideally operate. Instead, it relies on the network to learn in a way that
makes it discover the correct output by itself. In other words, unsupervised learning leads
the network to discover patterns and features in the presented data and generalize the
discovered relations. Deep learning is a typical example of unsupervised learning.

2.5.3 Backpropagation

The backpropagation algorithm was published by David Rumelhart, Geo Rey Hinton, and
James McClelland [65] in 1986. It is a gradient descent-based learning algorithm for a feed-
forward neural network with multiple layers with all neurons in a layer, except the input
layer, connected to all neurons in the previous layer. The layers are fully interconnected.
It is a supervised learning algorithm based on presenting pre-prepared input data vectors

8

to the network, comparing the produced output vectors to corresponding correct output
vectors, and calculating the difference. This difference is what drives the modification of
the weights in the subsequent phase when the difference is propagated back to the network,
from the output layer through the hidden layers back to the input layer. This is where the
algorithm got its name. Because many methods discussed in the further parts of this work
reference this algorithm, it is worth exploring it a little deeper.

The algorithm

In this method, the supervisor feeds 𝑗 number of input vectors 𝑥1, ..., 𝑥𝑗 . For every vector
𝑥𝑛 the network calculates the output vector 𝑦𝑛. The supervisor calculates the difference
between both vectors from the calculated vector and the expected and desired value 𝑡𝑛.
When all the input vectors are presented to the network and all the differences collected,
the supervisor calculates the sum of all the differences squared to determine the value of
the error function 𝐸, as described by Equation (2.8):

𝐸 =
1

2

∑︁

𝑗

(𝑡𝑗 − 𝑦𝑗)2 (2.8)

The algorithm’s goal is to gradually reduce the error function’s value and evolve the
network closer to the desired configuration. Because it is the non-optimal value of the
weights that cause the network to calculate differently than desired, we can clearly say that
the error function is the function of the weights. In order to bring the network where the
supervisor wants it to be, it is necessary to find the minimum of the error function. That
can be done using simulated annealing or, more commonly, using gradient descent methods.
Using gradient descend [45] we can derive the equation (2.9) for calculating the necessary
weights modification in hidden layers and in the output layer:

𝑤
(𝑛+1)
𝑖𝑗 = 𝑤

(𝑛)
𝑖𝑗 +∆𝑤

(𝑛)
𝑖𝑗 (2.9)

Where:

∆𝑤
(𝑛)
𝑖𝑗 = 𝜂𝛿𝑗𝑜𝑖 + 𝛼∆𝑤

(𝑛−1)
𝑖𝑗 (2.10)

Equation (2.9) describes modification of the wights by adding a difference value calcu-
lated using equation (2.10). The 𝜂 and 𝛼 values in the equation are positive real numbers
that can be set at will as there is no preset way to calculate them. These values influence
the algorithm’s performance, and it is possible to modify them on the run to achieve better
and quicker convergence.

If the activation function is the sigmoid function (2.3) and the network utilizes thresh-
olds, using the function differential [45] we can define the 𝛿𝑗 for the output layer:

𝛿𝑗 = (𝑡𝑗 − 𝑜𝑗) 𝑜𝑗 (1− 𝑜𝑗) (2.11)

Where 𝑜𝑗 is the output value of the neuron 𝑗 and 𝑡𝑗 is its desired value - the particular
element in the desired output data vector. Similarly, we can calculate the 𝛿𝑗 for the hidden
layers:

𝛿𝑗 = 𝑜𝑗 (1− 𝑜𝑗)
∑︁

𝑘

𝛿𝑘𝑤𝑗𝑘 (2.12)

9

Where 𝑘 refers to the particular neuron in the output layer which back-propagated its
𝛿𝑘 value calculated using the equation (2.11) to the neuron 𝑗 in the hidden layer.∑︀

𝑘 is a sum of all the differences sent back from the output layer and multiplied by the
corresponding weights.

These deltas then propagate back to the preceding hidden layer, which calculates their
on deltas using the same equation (2.12).

10

Chapter 3

Fault tolerance of neural networks

The fact that neural networks are distributed, redundant, and relatively homogeneous com-
putational models had the researcher think about their fault tolerance. By nature, neural
networks seem to have the potential to be inherently robust. A system composed of many in-
terconnected components that are similar to each other and compute simultaneously might
be able to tolerate a fault in one or even several of them. However, the layered structure
of neural networks makes neurons dependent on the computation of all the neurons that
proceed them in the previous layers. Should any of them produce erroneous results, the
error might propagate and escalate in the following layers. The question of how robust the
neural network can really be and whether this robustness can be improved has attracted
research efforts throughout the years.

3.1 Possible faults in neural networks
When we want to evaluate possible faults in neural networks, we must consider different
ways of viewing them because different faults can occur on different levels of abstraction
and can be recovered using different methods. The natural way is to approach a neural
network as a whole entity, a computation component. On this general point of view, there
are two basic types of errors that can occur in a network’s operation:

• Computation error - the network generates erroneous outputs

• Communication error - the network does not communicate properly with the rest of
the system

A problem or a fault within the network would most probably cause the first type of
error. The second type may be caused either by a fault inside the network or by an incor-
rect design of the network, its implementation, communication protocol, or implementation
incompatibility with the rest of the system. A synchronization discordance and incompat-
ibility of communication interfaces or protocols would be the most obvious suspects.

When we look closer at the composition of a neural network, we see that several types of
faults can occur in the computation components that make the network. From the general
point of view, a neural network is composed of neurons interconnected with synapses. Both
can be seen as individual components, and both can suffer from different kinds of faults:

• The component’s output is permanently stuck on a constant value. This type of fault
can also represent a missing component, considering its output is stuck at zero.

11

• The component’s output is erroneous. The output is affected by a value ∆. The error
can be additive (the ∆ is added to the output value) or multiplicative (the output
value is multiplied by ∆).

Based on these possibilities, we can distinguish a set of possible faults regarding partic-
ular components:

Loss of a neuron By a loss of a neuron, we distinguish a situation when a neuron is
permanently removed from the network or its output value is stuck at zero. The neuron
does not participate in the following neurons’ computation in both cases.

Loss of a synapse By losing a synapse, we distinguish a situation when a synapse is
permanently removed from the network or its output value is stuck at zero. This can also
be caused by an error in the corresponding weight that is stuck at a zero value. Another
cause might be a problem with the corresponding neuron input.

Saturated neuron By a saturated neuron, we distinguish a situation when a neuron out-
put is permanently stuck on one of the extrema values of the activation function codomain,
the range of all its possible values. In the case of bipolar sigmoid activation function, the
saturated neuron would have the output value 1 or −1.

Saturated synapse By a saturated synapse, we distinguish a situation when a synapse
output is permanently stuck on one of the extrema values of the particular data type.

Stuck neuron By a stuck neuron, we distinguish a situation when a neuron output is
permanently stuck on a constant value 𝑐. This problem can also be caused by an error in
the neuron arithmetic unit, the following registers or memory cells, or the output bus.

Stuck synapse By a stuck synapse, we distinguish a situation when a synapse output
is permanently stuck on a constant value 𝑑. This can also be caused by an error in the
corresponding weight that is stuck at the value 𝑑. Another cause might be a problem with
the corresponding neuron input.

Transparent synapse By transparent synapse, we distinguish a situation when a synapse
becomes transparent to the data passing through it. It does not perform the computation
it is supposed to but its output is not stuck, it let the data coming to its input to pass to
its output. Effectively, this means that the data are not multiplied by the particular weight
as they are supposed to. This can be caused by bypassing the computation components.
The reason to bypass them might be to recover the network from a fault detected in the
computation components.

Noisy neuron By a noisy neuron, we distinguish a situation when a neuron output is
affected by a value ∆. This situation can be caused by a transient error in the memory
that participates in the neuron computation.

12

Noisy synapse By a noisy synapse, we distinguish a situation when a synapse output
is affected by a value ∆. This situation can be caused by a transient error in the memory
that holds the corresponding weight. Another cause might be a noise in the corresponding
neuron input.

Restricted neuron and synapse By a restricted neuron or synapse, we distinguish a
situation when the output value of the neuron or the synapse is artificially limited in a
particular range that is smaller than the activation function codomain (the range of all its
possible values) or the used datatype. This situation can be caused by a permanent error in
one of the memory cells that hold a particular weight or a result of the neuron computation.

For several reasons, it can be helpful to distinguish these fault types on the level of the
components that make the neural network. The first reason is that we can select a particular
type of fault, or a group of types, and harden the affected component against them while
disregarding others to save resources or simplify the implementation. Moreover, we can also
choose to harden only a particular selected set of components that we consider essential.
We can also use an enhanced learning algorithm to harden the selected components to
harden the network during the learning process. In this context, we can refer to two groups
of components:

Critical neuron or synapse By a critical neuron or a synapse, we understand a com-
ponent in which erroneous computation would have a significant impact on the quality of
the results of the entire neural network. A fault in a critical component could cause the
inability of the network to provide correct results.

Non-critical neuron or synapse By a non-critical neuron or a synapse, we understand
a component in which erroneous computation would not have a significant impact on the
quality of the results of the entire neural network. Even with the fault in the non-critical
component, the network would still primarily provide correct or close to correct results.

We can also take a more detailed look beyond the abstract component and focus on
the structure and building blocks of neurons. Like other computation component, those
that build up into neurons and neural networks are prone to possible low-level faults like
Single Event Upset (SEU) and others. Given the functionality of neurons, we can expect
the design to utilize some of the following components:

• Adders that are collecting potential.

• Multipliers for multiplying by weights.

• Adders, multipliers, and other arithmetic units for computing the activation function.

• Registers and memory cells involved with the computation components and transfer-
ring data.

When we take a look at these components, we can predict a possible impact of faults
occurring in them:

• Fault in the components computing the activation function would generally lead to the
activation function changing its shape and therefore into an erroneous computation
and output results.

13

• A fault in the adder responsible for computing the neuron potential would cause
erroneous data to enter the activation function making all the following computations
incorrect. This component’s permanent fault would shift the activation function on
the 𝑥 axis.

• A fault in the multiplier responsible for multiplying the input data with corresponding
weights would also cause erroneous data to enter the activation function. It could
potentially lead to saturation or generate noise.

We can consider several approaches based on different principles to counter the possible
faults on different levels of neural network design or enhance the neural networks’ inherent
robustness granted by their naturally redundant structure. We can increase network re-
dundancy by adding more neurons, duplicating them, creating backup neurons, duplicating
entire layers, or deploying techniques based on the majority principle like the Triple Modu-
lar Redundancy technique. We can introduce redundancy into the underlying components
or even communication buses.

Different methods can be based on utilizing the learning process to harden the network
naturally. If we set up a goal to learn the network to be more fault-tolerant, we can do so by
modifying the learning algorithm or the condition in which they operate. In this approach,
we can also focus on particular types of faults and errors.

3.2 Hardening neural networks using learning
Methods of hardening neural networks using learning are based on one of the known learning
algorithms that were modified and expanded in a way that during the learning process, the
neural network would not only learn to operate in the desired way but also learn to be fault-
tolerant. These methods take into account different scenarios of possible fault occurrence
and are designed to mitigate the impact of those scenarios using learning.

3.2.1 Methods based on faults injection

The methods based on fault injections utilize the fact that in the learning process, the
neural network would gradually converge to the desired state regardless of its initial state
or whether its state is externally changed. Given that the learning algorithm and the
data used for learning are robust enough, the neural network would converge even when
faults are introduced into its configuration. These faults would influence the quality of
the network’s output vector, increasing the error function. The faults would then become
other variables in the error function, and their impact would be gradually reduced in the
consequent learning. The learning phase would then naturally harden the network.

Methods based on this principle would use different types of faults to inject. They can
remove neurons or synapses from the network in order to simulate their failure. They can
also inject errors into network data, usually to the weights. It was shown that injecting
faults into neural network weights during the learning phase would not only harden the
network against faults causing errors in the weights but it would also improve the network
generalization capabilities [15]. The injected faults would figuratively disrupt the network’s
convergence to the desired state the learning algorithm leads it to. The learning would be
slower and harder so it would naturally force the network to discover deeper patterns in
the input data. Therefore it would force the network to learn better potentially.

14

The first possible method based on this principle is a random faults injection into neu-
rons weights in the hidden layers, one neuron at a time [7, 68]. In every iteration of the
learning algorithm, a single random faults would be injected into a different neuron. The
network would therefore learn to tolerate a single fault occurring in one of its neurons. We
can also inject faults into more than one neuron or more than one weight in each iteration in
order to harden the neural network against faults in multiple neurons. The fault injection,
however, negatively impacts the error function, and it is possible to prevent the network
from converging to the desired state at all by injecting too many faults during the learning
process and therefore making it to fail.

Another method utilizing fault injection can be based on accounting for all the possible
faults in a selected neuron [6, 7]. This method also uses fault injection during each iteration
of the backpropagation learning algorithm. Suppose we have pre-prepared 𝑃 input data
vectors, and the hidden layer (suppose a single hidden layer in this description) is composed
of 𝑁 neurons. Then during each iteration of the learning algorithm, every input data vector
is introduced to the network 𝑁 times, with a fault being injected into a different neuron
every time. The errors the fault injection caused in the output data are measured and a
set of 𝑁 errors are determined for every input vector, one for every neuron. The errors
are then summarized into a single error value and propagated back through the network
in the learning step of the backpropagation algorithm. Errors caused by faults in every
particular neuron are part of the backpropagation algorithm’s error function. By getting
the error values for all neurons and including them in the backpropagation learning step,
the network naturally learns to tolerate faults in all neurons in the hidden layer.

This method can be modified to teach the network to tolerate faults in more than
one neuron. We can present each of the input data vectors 𝑁𝑚 times and inject 𝑁𝑚

combinations of faults when 𝑚 is the number of faulty neurons we want the network to be
able to tolerate. However, the number of injected faults can increase rapidly with rising 𝑚.
As we mentioned earlier, it is possible to slow down the network convergence by injecting
too many faults or events to prevent it from being able to learn at all.

These methods can be expanded to work with a neural network with more than one
hidden layer. The methods must be applied to all the hidden layers in the described way..
It is also possible to select a subset of layers or neurons to be hardened while leaving the
network vulnerable to faults in the others.

Another method of injecting multiple faults into a hidden layer is based on injecting an
entire vector of faults. [28] In every iteration of the learning algorithm, a vector composed
of 𝑛 faults with 𝑛 being equal to or lower than the number of neurons in the particular
layer. The number of fault vectors is also 𝑛, and the 𝑥−𝑡ℎ element of the 𝑥−𝑡ℎ fault vector
has a fixed value. Every vector, therefore, has one fixed value on the position corresponding
to the vector index in the dataset. The rest of the element values are chosen randomly. By
having a fixed value in each vector on the different indexes, the method assures that every
neuron in the layer (or in the selected subset) is injected with a fault while also injecting
random faults into the rest of the layer. While iterating over the set of the fault vectors,
the method always injects at least one fault and a random number of random additional
faults. The random generation of the additional faults is supposed to give the network a
better chance to converge with its learning process because the authors presume that the
injection of a fixed set of pre-selected have a chance to disrupt the network convergence.

Another approach to include hardening into the backpropagation learning algorithm is
to construct a set of faults we want the network to harden against specifically and then
use a modified backpropagation algorithm [80] utilizing a modified error function 𝐸. The

15

modified algorithm would evaluate the impact of all the faults in the set on the overall value
of the error function ahead of learning. Then it would incorporate the error value caused
by the faults into the error function during the learning process.

It is also possible to go beyond just a fault injection. Method published in [10] is
based on fault injection and modification of the network structure. In each iteration of
this algorithm, a random set of a fixed number of neurons is selected. Half of the selected
neurons are then figuratively removed from the network by setting their outputs to zero,
while the rest have their outputs artificially saturated. After that, a small set of synapses is
randomly selected, and their weights are injected with random faults by adding a random
number from a ⟨−1, 1⟩ interval to the weight value. The network then learns to tolerate
multiple types of faults - lost neurons, saturated neurons, and lost or noisy synapses.

In order to harden a network against faulty synapses, the authors suggested proceeding
to modifications of the network structure. After the network learned its task, each neuron’s
impact on the network performance was measured by removing it from the network, followed
by testing the network. The testing data vectors were introduced to the network’s input,
and the difference between the new output data vectors and the initial data vectors was
measured. Suppose removal of the neuron proves to cause a less significant difference in the
output data (the authors accepted differences up to ten percent). In that case, the neuron
is removed from the network. After the removal, the network goes through the learning
process again. This process repeats until neurons can no longer be removed.

After the previous phase is finished and no more neurons can be removed from the
network, the network is further hardened by successive replicating of the most critical
neurons. The method determines the neurons whose removal had the most considerable
impact on the output data quality. Then the neuron is replicated. The weights of the
replicated neuron’s input synapses are kept the same, and the weights of the output synapses
of both the original neuron and its replica are halved. By halving the weights, the method
assures the network returns to its original state even with the additional neuron. The
reason is that the combined value both neurons provide to the neurons in the successive
layer will sum up to the same potential. Halving the weights of both neurons also reduces
their influence on the network performance, making a loss of either of them less critical.
This process is repeated with other critical neurons until the replication no longer improves
the network robustness.

3.2.2 Methods based on restricting the weights

These methods are based on the realization that the most fault-tolerant neural networks
are those that have the most uniform set of weights, that have weights whose value do
not significantly vary from one another. The more uniform the values of weights are, the
more the possibility that some of them may be critical to a neural network’s operation is
reduced. However, most networks do not have this property because the learning process
usually produces networks with a nonuniform set of weights. The network often has some
weights that are critical to its function, usually with high values. A fault injected into these
weights could significantly impact the network performance. Many of the other weights
are less critical to the network operation. If the weights of the network could be made
uniform, then a fault in any of them would have a more negligible impact on the network
performance. This can be achieved by artificially restricting the values of the weights.

One of the methods how for reducing the number of critical weights is based on con-
tinuous evaluation of their impact on the output data. Those weights that prove to have a

16

large impact are then reduced in value, so their influence would also reduce. If the values
of the weights are continuously restricted, the learning algorithm is forced to produce a
network with more uniform weights. However, limiting the time interval during which this
method is applied might be necessary because it might slow the learning process down or
event prevent the network from converging to the desired state at all. On the other hand,
this method can produce a network with higher generalization capabilities [20].

Another option to prevent the learning algorithm from generating weight with high
values is to force it to minimize them during learning [10, 78, 79]. For the algorithm to do
that, the error function (2.8) needs to be modified. The summarized value of the output
errors is expanded with a sum of all the weights values squared as illustrated in equation
(3.1), where 𝑊 are the set of all weights.

𝐸 =

⎛
⎝1

2

∑︁

𝑗

(𝑡𝑗 − 𝑦𝑗)2
⎞
⎠+

∑︁

𝑤∈𝑊
𝑤2 (3.1)

This modification means that the error function rises with the values of the network
weights. The learning algorithm is then forced to minimize the network’s weights as well
together with the output error in order to minimize the error function. This method can
be modified to only consider the weights of synapses connecting the hidden layer to the
output layer, which might prove to be a more efficient approach to hardening the network
[22, 23].

Besides modifying learning algorithms to make them harden the network, it is possible
to approach the problem as a direct optimization problem. The need for the network to
learn and the desire to harden it against fault can be seen as an optimization problem solv-
able with the Minimax method [12]. The algorithm’s objective function that is supposed
to be minimized represents the optimization problem. In this case, the objective function
is the error function. The constraints set to the method are designed to make the algo-
rithm as uniform a set of weights as possible and thus preventing the occurrence of critical
weights. The Minimax algorithm is not the only optimization algorithm that can be used
for hardening a neural network. The usage of quadratic programming [14], an optimization
method, was also successfully demonstrated.

It was also shown that Hopfield neural networks [46] can be hardened by restricting the
weights as well [29]. Hopfield networks are recursive networks containing a feedback loop
that serves as an associative memory.

3.2.3 Methods based on activation and basis functions modifications

These methods are based on the idea that it is possible to harden the network using neurons
functions manipulation - the basis function that calculates the neuron potential and the
activation function that calculates the neuron output from its potential.

The first method is a method modifying the basis function. This method changes the
way of calculating the potential by replacing the original summation in the basis function
with calculating a median value instead. The neuron’s inputs are still being multiplied by
the respective weights, but the median value is computed instead of the weighted data being
summarized. By applying the median, the method filters out the input data influenced by
weights with very high or very low values. Faults might cause these extreme values, and their
influence would be mitigated by filtering them from the potential computation. However,
because the median is not a continuous function and therefore is not a fully differentiable

17

function, the backpropagation algorithm needs to be modified. The experiments in the
original paper show that a neural network composed of neurons with a median basis function
showed a 10% better classification results than the original network with a weighted sum
basis function. The results also show that the method performs the best when only the
neurons in the output layer have their basis function replaced by the median [67].

Another possible approach is based on manipulating the activation function [30, 81].
This method is based on modifying the slope of a sigmoid activation function of the neurons
to make it steeper. The neural network does through the learning phase with activation
functions of its neurons having a modest slope. The slope is gradually made steeper and
steeper. At the end of the learning process, the slope is so steep that the activation functions
effectively turn into step functions. With the activation function like that, an output of a
neuron mainly falls into one of the extrema. Should some fault influence the input data of
the neuron and, therefore, its potential, there would be a significant chance that it would
not affect the neuron’s output at all as the output would still fall into the same extrema.
This method is, however, suitable only for classification tasks.

3.2.4 Methods using relearning

These methods are based on the idea that if some permanent fault should occur in a neural
network, it can be mitigated by letting the network relearn. The advantage of this approach
is that there is no need to modify the learning algorithm or the network structure. It is
the rest of the network that is unaffected by the fault and is still functioning that is used
to mitigate the fault by relearning how to perform the given task in the presence of the
fault. However, the network learns and later operates with fewer resources because some
were lost due to the fault. Therefore, the network might not be able to recover fully. Also,
the fact that the network relies on relearning is another disadvantage because the learning
process can be time-consuming, and the original data the network learned from must be
accessible. Both temporal and spatial complexity of this method is high.

The most simple but the least practical approach to recovering the network using learn-
ing is just to start the process of learning after the fault is detected. However, inserting a
new neuron into the network to take the role of the faulty neuron and then take the network
through relearning might be more effective [68]. This approach can recover the network
into its fully operational state; however free resources to insert the additional neuron into
the network must be available.

In the case of neural networks implemented in hardware, more than errors in data might
occur but also errors in timing and synchronization. These can be troubling because they
might not be easily detectable. A method based on the backpropagation algorithm was
proposed to solve this problem [11]. This method aims to determine and verify the working
frequency of the device that makes the device work the most reliably. This method is based
on simulating the computation of the particular neural network with different deviations
from the estimated ideal working frequency. The results of the simulations are applied to
the backpropagation algorithm that lets the network learn to work on different frequencies.
The overall error values the algorithm achieved are monitored. For each iteration of the
method, the set of weights and the corresponding frequency are saved, and the final setting
of the network’s weights and working frequency is based on which frequency achieved the
smallest overall error. The selected frequency should be the optimal working frequency for
the particular network and the device it is running on.

18

3.2.5 Other learning-based methods

The backpropagation algorithm is not the only gradient descend-based learning algorithm
that can also be used to harden the network. A learning algorithm based on the gradient
descent and the Kullback-Leibler divergence was suggested [73]. During each iteration,
this algorithm includes vectors of Gaussian noise to inject faults into the network weights.
During learning, the noise is incorporated into the weights and the networks become more
resilient against faults with Gauss noise characteristic affecting the weights.

In the case of Hopfield neural networks implemented in software, a method hardening
the network against errors in data of the learning algorithm due to a corrupted memory is
in [39]. All-access to data arrays in the memory access was protected by modulo operation
to ensure that the correct region of the memory was accessed [82]. The iteration counter in
the core of the learning algorithm, which serves for convergence evaluation, was hardened
against data corruption by calculating a logical disjunction of its value with the value of an
additional auxiliary variable. The variable was initialized with a non-zero value that is not
a multiple of two. The iteration counter was initialized with the same value. This ensures
that one erroneous bit in the iteration counter would not change its value to zero, thus
stopping the learning algorithm prematurely. Using the logical dis-junction with another
variable ensured that the iteration counter value was overwritten each iteration with a
correct value.

Another measure of hardening the network learning was based on connecting an identical
neural network to the hardened network. The second network serves as a golden model
producing a correct value in case a fault occurs in the original network. The key idea is
that even if the first network is not able to converge, the second one still is. If the second
network were faulty, then it would not affect the first one.

3.3 Methods based on redundancy
The neural networks are, by principle, massively parallel and redundant structures. This
redundancy provides them with inherent fault tolerance. A neural network can withstand
a fault of a neuron or a synapse, especially if hardening techniques were applied during
the learning process or modifications of the network’s properties were used to improve its
robustness, as described in the previous sections. However, their robustness can potentially
be improved by techniques based on adding more redundancies to the network.

3.3.1 Triple modular redundancy

The triple modular redundancy (TNR) is a classic method of hardening a system. This
technique is based on triplicating the system or its subsystems and adding a voter that would
evaluate the outputs of all three instances and vote for the correct one by the principle of
majority. Even if one of the three instances were faulty, the system would still operate
correctly.

This technique can be applied to neural networks as well. It can be applied to the entire
network or its components on different levels. Of course, triplicating the whole network is
an easy way to harden it without needing to modify the network’s structure or doing
any significant interference. However, it also triplicates the network spacial complexity,
which can be already high in the case of most neural networks. The number of neurons
and especially the number of weights grow quickly with the complexity of the implemented

19

task, and it might not be possible to expand it much more, let alone multiply it. Depending
on the network implementation, triplicating may also increase the temporal complexity.

The TMR method can be applied to the level of individual neurons and synapses. The
advantage is that we can individually choose what to harden and how. We can choose only
a subset of neurons and synapses we deem critical. The method can also be used on the
level of computing blocks themselves. We can triplicate the adders, multipliers, and other
low-level blocks. We can even go as far as using this technique on the bits themselves. A
method has been proposed for hardening a neural network using TMR while keeping the
overhead as low as possible. The method is called Relaxed Triple Modular Redundancy
(RTMR) [37] based on hardening the computational blocks and the interconnecting buses
on the bit level but only on the level of the selected subset of high bits. In this approach,
only the more minor part of the bits is hardened, and the rest of the design is still vulnerable.
However, it is the least significant bits that are left unhardened. Naturally, the low bits
have a lower influence on the overall values entering the computation. Its influence may be
less critical if an error occurs in the lower bits. The advantage is that the spacial overhead
consumed by replicated resources is significantly lower than in the case of the full TMR. It
is at the expense of a trade-off between hardening and resource consumption, but it can be
accommodated to the situation with the proper choice of hardened bits.

In the case of triplicating entire neural networks, voters with weighted inputs can also
be used as demonstrated in [5, 35, 63]. The principle of this modification is that the voter
at the output of the hardened system considers its inputs to have different priorities, and it
uses those priorities given by their weights in the voting process. The input with a higher
weight gets priority. For example, the weights can be determined using a backlog of faults
that occurred in all three replicas. The weights can also be learned [84]. In this approach,
the system is composed of three neural networks. However, the networks are not identical.
Each network learns individually and independently from others in three different steps. In
the first step, the networks learn to perform the desired task. In the second step, they learn
again, but their input data were individually injected with faults. In the third step, they
learn one more time and face simulated loss of some of their neurons. The weights for the
voter are then determined by how well each network operated during the first steps. The
more reliable and quality each network proved to be, the higher its weight gets.

In [54] the authors experimented with different replication orders. The root of the
experiment was to create a set of different neural networks with different numbers in the
hidden layers and let them learn to perform a classification task called Sonar [19]. In the
next step, the networks were replicated in different orders. After that, their tolerance to
loss of one of the neurons or synapses was evaluated. The authors came to two interesting
conclusions. The first conclusion was that when the resulting neural network had the same
size, it was the network that was created by a lower number of replications while using a
larger starting network that proved more reliable. On the contrary, when the network was
created by more extensive replication but from smaller original networks, it was less reliable.
So, for example, a neural network composed of eight neurons in the hidden layer created by
duplicating a network composed of four neurons was more reliable than a network created
by four replications of a network with two neurons.

The second conclusion was that neural networks created by replicating smaller networks
were more reliable than a network of that same size that was not created by replication.
For example, a neural network composed of eight neurons in the hidden layer created
by replicating the original four-neuron network was more reliable than a neural network
constructed and learned with eight neurons without any replications.

20

Another successful use of TMR was demonstrated in [66]. The authors determined
how critical each neuron was for the considered network computation and ordered them
by the measured criticality. They selected a number of the most critical neurons and
hardened them using TMR. They removed the same number of the least critical neurons
to compensate for increased computation complexity. Their method managed successfully
to harden the selected network against lost and noisy neurons.

3.3.2 Inserting new neurons

Neural networks can also be hardened by inserting new neurons into hidden layers. This
approach comes with less overhead than replicating an entire network or its significant part.
Naturally, the hardening effect is lower. As such, they are a middle ground between complete
replication methods and replication-free methods based on relearning and modification of
neural network configurations. These methods are always trade-offs between reliability and
spatial complexity. It is also important to point out that these methods only apply to
hidden layers because the respective data vector sizes give the input and output layers
sizes.

The most basic technique is based on adding a single neuron into a hidden layer [3].
This technique not only hardens the network but also allows us to detect a fault in any of
the neurons of the hardened layer. The technique works as follows. Suppose the neurons in
the hardened layer are equipped with enough memory storage for two vectors of weights.
One vector is for storing the operational weights, and the other is the testing vector for
storing weights used for fault detection. The neurons are then tested in pairs. The weights
of the first neuron in the pair are set to the values of the testing vector belonging to the
second neuron in the pair. After that, both neurons receive the same input vector, and
their output values are compared. If the values are different, then the network is possibly
affected by a fault in one of the neurons in the pair. The second neuron then becomes the
first in its own pair, and its subsequent neighbor in the layer becomes the second neuron in
the pair. Then the test is repeated. Therefore, every neuron is tested twice (the last neuron
in the layer will be paired with the newly inserted neuron). If a neuron suffers from a fault,
it likely fails both tests and therefore is detected as faulty. The newly inserted neuron can
take the faulty neuron role by setting its operation weights vector accordingly. Using this
approach, we can build a neural network that is able to detect a single faulty neuron and
recover from the fault. Naturally, every hidden layer can be hardened using this method.

Another approach [52, 53, 85] is based on multiple replications of all neurons. The
neurons are replicated ℎ times, then the thresholds of the neurons in the following layer are
multiplied by the same value. This ensures the network computes the same way despite the
replicated neurons while also being hardened against the faults in the replicated layer. If
changing the thresholds does not suit the design for some reason, the same effect can also
be achieved by dividing the weights of the synapses between the layers by the number ℎ
[16]. Both methods have the same result. The potentials of the neurons in the following
layer will have the same values as before replication; therefore, the layer will compute the
same way.

3.3.3 Temporal redundancy

All the techniques discussed before were based on redundancy and utilized spatial redun-
dancy to harden neural networks. However, it is also possible to achieve the effects of
redundancy by performing additional computations. The most trivial method is just to

21

compute the result several times in a row and then compare the results to detect an error
or select the correct result based on the majority principle. This approach can also be
utilized together with spatial redundancy. Suppose the network is hardened in a way that
uses replication and majority principle, but the fault detection fails. In that case, it is
possible to recompute the results and then retry the fault detection.

An approach utilizing both spatial and temporal redundancy was introduced in [26].
The arithmetic unit used for computing the weighted sum was divided into three smaller
units. Its operands were also divided into three parts based on the significance of the bits.
The computation was divided into three phases. In the first phase, the data part with the
least significant bits was introduced into all three arithmetic units, and three semi-results
were computed. The second and third parts of the original operands were introduced to
the arithmetic units in the two consequent parts. Their results were combined according to
the significance of the particular parts. Eventually, three independent full-operand results
were produced using three independent arithmetic units. The results were compared, and
the final result was selected using the majority principle.

22

Chapter 4

Field Programmable Neural Arrays

The concept of Field Programmable Neural Arrays (FPNAs) [17] is designed to enable a
resource-efficient implementation of artificial neural networks in Field Programmable Gate
Arrays by adjusting the network’s properties and especially its structure in order to make
them more efficiently implementable into the gate arrays. For instance, FPNAs were used
for implementing large scale spiking networks [21]. The efficiency comes from the FPNA’s
main feature - a highly customizable structure that enables the designer to build it in
a way that allows sharing the FPGA’s resources by merging sets of synapses into several
dedicated components. This concept also simplifies the interconnection structure compared
to the original neural network. The number of neurons remains the same.

By the original definition by B. Girau [17], an FPNA is directed graph (𝑁,𝐸) where 𝑁
is a set of nodes and 𝐸 is a set of directed edges that connect the nodes:

Definition 4.0.1 (FPNA [17]). We say that structure (𝑁,𝐸) is an FPNA if the following
statements hold true:

1. 𝑁 is a set of nodes called Activators. Activators represent the original neural network
neurons.

2. 𝐸 is a set of directed edges called Links. Link connect activators.

3. Each activator 𝑛 has a set of predecessors: 𝑃𝑟𝑒𝑑(𝑛) = {𝑝 ∈ 𝑁, (𝑝, 𝑛) ∈ 𝐸}

4. Each activator 𝑛 has a set of successors: 𝑆𝑢𝑐𝑐(𝑛) = {𝑠 ∈ 𝑁, (𝑛, 𝑠) ∈ 𝐸}

5. There is a set of input nodes: 𝑁𝑖 = {𝑛 ∈ 𝑁,𝑃𝑟𝑒𝑑(𝑛) = ∅} ;𝑁𝑖 ⊂ 𝑁

6. Each link (𝑝, 𝑛) ∈ 𝐸 has an affine operator : 𝛼(𝑝,𝑛) =𝑊𝑛(𝑝)𝑥+ 𝑇𝑛(𝑝)

7. Each non-input activator 𝑛 ∈ 𝑁 has an iteration operator : 𝑖𝑛 : R → R to calculate
its potential.

8. Each non-input activator 𝑛 ∈ 𝑁 has an function operator : 𝑓𝑛 : R → R to calculate
the activation function.

Definition 4.0.1 states that the original neurons are represented by the nodes in the
graph, the activators. The activators use their iteration operators 𝑖𝑛 to calculate their
potentials and then apply their function operators 𝑓𝑛 to calculate the activation functions
over the potentials and thus generate their outputs. Therefore, the activators principally
closely mimic the function of neurons.

23

The activators are interconnected by edges, by links. The links calculate an affine trans-
formation of their inputs using their affine operators 𝛼. By doing this, they approximate
multiplying the data by the corresponding weights. Therefore they participate in calculating
the weighted sum by taking this part of the computation out of activators. Moreover, each
link can approximate multiple synapses for multiple activators. Therefore, the weighted
data are calculated for each activator in parallel by a set of links that connect them to the
preceding activators. The definition allows the activators to be connected by more than a
single link. It is possible to create chains of links between activators or layers and, therefore,
to split each synapse and the corresponding weight into a set of successive affine operators.
Because this possibility exists, it is helpful to introduce a unifying term for both activators
and links - neural resources.

FPNAs resemble restructured original neural networks they implement; however, they
still miss some necessary properties and parameters to achieve their main goal - to convert
the neural networks into structures suitable for implementation in an FPGA. The additional
details must be defined using Field Programmable Neural Network to reach this goal.

4.1 Field Programmable Neural Network
FPNN (Field Programmable Neural Network) [17] is one of the possible configurations of an
FPNA. It defines the interconnections between neural resources and, therefore the FPNN’s
actual structure, and it defines concrete settings of the parameters and operators:

Definition 4.1.1 (FPNN [17]). We say that structure (𝑁,𝐸) is an FPNN if the (𝑁,𝐸) is
an FPNA and each non-input activator 𝑛 ∈ 𝑁 and each link (𝑝, 𝑛) ∈ 𝐸 have the following
defined:

1. Θ𝑛 ∈ R - initial value of the variable used by the iteration operator 𝑖𝑛. This value
represents a threshold.

2. 𝑎𝑛 ∈ N - the number of iterations to performed by the 𝑖𝑛 operator.

3. 𝑊𝑛(𝑝), 𝑇𝑛(𝑝) ∈ R - the setting of the affine operator.

4. ∀𝑝, 𝑝 ∈ 𝑃𝑟𝑒𝑑(𝑛) : 𝑟𝑛(𝑝) - a binary flag indicating whether the link (𝑝, 𝑛) and the
activator 𝑛 are connected.

5. ∀𝑠, 𝑠 ∈ 𝑆𝑢𝑐𝑐(𝑛) : 𝑆𝑛(𝑠) - a binary flag indicating whether the activator 𝑛 and the link
(𝑛, 𝑠) are connected.

6. ∀𝑝, 𝑠; 𝑝, 𝑠 ∈ 𝑃𝑟𝑒𝑑(𝑛), 𝑠 ∈ 𝑆𝑢𝑐𝑐(𝑛) : 𝑅𝑛(𝑝, 𝑠) - a binary flag indicating whether the link
(𝑝, 𝑛) and the link (𝑛, 𝑠) are connected.

Moreover, every input activator 𝑛 ∈ 𝑁𝑖 has the following defined:

1. 𝑐 ∈ N - the number of inputs

2. ∀𝑠, 𝑠 ∈ 𝑆𝑢𝑐𝑐(𝑛) : 𝑆𝑛(𝑠) - a binary flag indicating whether the input activator 𝑛 and
the link (𝑛, 𝑠) are connected.

Definition 4.1.1 declares several binary flags that indicate local connections between
activators and links and between links and other links. These flags, as well as the order of

24

neural resources defined by their 𝑃𝑟𝑒𝑑 and 𝑆𝑢𝑐𝑐 sets, describe the actual structure of the
particular FPNN. It also defines concrete values of other parameters.

The FPNNs do not have the same structures as neural networks, although they can
be constructed that way. They are based on a different model that can be structurally
different from the original neural network. This also means that the FPNA can differ in its
capabilities. In principle, the FPNNs are not a straightforward implementation of neural
networks but rather their approximation designed in an FPGA-friendly way. Since the
FPNNs can be constructed in various ways and types, the approximation accuracy can be
different.

4.1.1 The computation

The neural resources are autonomous components that work with others in parallel, pro-
cessing the data received from their predecessors (or the FPNN’s input) and propagating
their results to their successors. The communication between them is based on the request-
acknowledgment model. When a neural resource finishes its current computation, it prop-
agates the results to its output and generates a request for each of its successive connected
resources (defined by its 𝑆𝑛 and 𝑅−𝑁 flags). These requests notify each successor individ-
ually. However, the resources may already be busy processing other requests. Therefore,
the original resource waits until all successors accept their requests and send back the cor-
responding acknowledgment. It only resumes the operation only after all acknowledgments
are received. Then, it selects a request from its own input to process or wait until a new
request comes.

The operation of a neural resource can be summarized in the following successive steps:

1. The neural resource selects one of the requests waiting on its input. If there are no
pending requests, the neural resource waits for a new one to come.

2. The neural resource acknowledges the acceptance of the selected request to the request
origin.

3. The neural resource processes the request:

• Link applies the affine operator 𝛼.
• Activator applies an iteration operator 𝑖𝑛. Suppose the iteration counter equals
𝑎𝑛, indicating that this is the last supposed iteration, and all the necessary
data from all the predecessors have been collected. In that case, the cumulative
result of the iteration operator is presented to the function operator 𝑓𝑛, which
computes the activation function. The iteration counter is reset. If this is not
the last iteration yet, the computation returns to step 1.

4. The result of the computation is propagated to the neural resource’s output, and
requests for all successors are generated.

5. The neural resource waits until it receives acknowledgments for all generated requests.

6. Return to step 1.

The way a request is selected for processing in step 1 is essential. It is necessary the
requests were selected in a way that ensures that all of them will be processed eventually
and that the predecessors waiting for the acknowledgments will not be left waiting longer

25

than necessary. It is also necessary for activators to keep track of the number of iterations
they have been through with the current data set to ensure that they work with the correct
set and not with the data belonging to a successive set. Failing to do so would cause the
entire FPNN result to be wrong, and it could also block the FPNN from processing the
following data by breaking the synchronization. The recommended method of selection is
Round&Robin.

The grid structure

As we mentioned above, the purpose of FPNNs is to implement neural networks in gate
arrays less resource-consuming way by sharing resources between synapses and by simpli-
fying the interconnections. The primary tool to reach this goal is to shape the FPNN into
a grid-like structure, illustrated in Fig. 4.2. In the figure, the wide arrows represent links.
The thin arrows show the connections between neural resources. It can be seen that the
connections are only local between close neural resources. This is to mitigate the need for
long buses and complicated routing that would consume a lot of FPGA resources. The
intended locality of connections is also why the synapses are broken in chains of several
links - so that the entire FPNN would make the intended grid-like structure that would
inherently keep the connections local and short.

Figure 4.1: A grid FPNN. Circles represent activators, wide arrows illustrate links and thin
arrows show the way how the neural resources are connected to each other.

The output of each activator is connected to a single link that is subsequently connected
to the following layer. It is connected to an activator in the next layer’s corresponding
position and to two chains of links (see Definition 4.1.2) that go through the layer in
opposite directions. We call this set of chains the interconnection chain (Definition 4.1.3).

Definition 4.1.2 (Chain of links). By a chain of links, we understand a sequence of links
interconnected in a way that every link is connected to no more than one link on its input
and no more than one link on its output, and the flow of data through the entire chain is
one-directional.

Definition 4.1.3 (Interconnection chain). By an interconnection chain, we understand a
set of two chains of links going through a layer of activators in opposite directions in order
to allow the carrying of data from a previous layer to all activators in this layer.

Example FPNN

Let us illustrate the operation of an FPNN by an example. Let the neural network in Fig
4.3 be the original neural network we want to implement using an FPNN. It is a network

26

Figure 4.2: Interconnection chain. The highlighted links belong to the interconnection
chain.

composed of seven neurons. Three neurons are in the input layer (𝑛1, ..., 𝑛3), three are in
the hidden layer (𝑛4, ..., 𝑛6) and one is in the output layer (𝑛7). Corresponding activators
will directly replace the original neurons. Chains of interconnected links will replace the
synapses, as can be seen in Fig. 4.4. In the figure, the wide arrows represent links. The
thin dashed arrows show the local connections between the neural resources.

Using the Definitions 4.0.1 and 4.1.1, we can describe the example FPNN as follows:

𝑁 = {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7}
𝑁𝑖 = {𝑛1, 𝑛2, 𝑛3}
𝐸 = {(𝑛1, 𝑛4), (𝑛2, 𝑛5), (𝑛3, 𝑛6), (𝑛4, 𝑛5), (𝑛5, 𝑛6), (𝑛6, 𝑛5), (𝑛5, 𝑛4)
, (𝑛4, 𝑛7), (𝑛5, 𝑛7), (𝑛6, 𝑛7)}
𝑖𝑛4 = 𝑖𝑛5 = 𝑖𝑛6 = 𝑖𝑛7 = ((𝑥, 𝑥′)→ 𝑥+ 𝑥′)

𝑓𝑛4 = 𝑓𝑛5 = 𝑓𝑛6 = 𝑓𝑛7 = (𝑥→ 𝑡𝑎𝑛ℎ(𝑥))

{𝜃4, 𝜃5, 𝜃6, 𝜃7} ∈ R
∀(𝑝, 𝑛) ∈ 𝐸 : ∃𝑊𝑛(𝑝) ∈ R;∃𝑇𝑛(𝑝) ∈ R
The flags for for 𝑛4 : 𝑟𝑛4(𝑛1), 𝑟𝑛4(𝑛5), 𝑆𝑛4(𝑛7) are set.
The flags for for 𝑛5 : 𝑟𝑛5(𝑛2), 𝑟𝑛5(𝑛4), 𝑟𝑛5(𝑛6), 𝑆𝑛5(𝑛7) are set.
The flags for for 𝑛6 : 𝑟𝑛6(𝑛3), 𝑟𝑛6(𝑛5), 𝑆𝑛6(𝑛7) are set.
The flags for for 𝑛7 : 𝑟𝑛7(𝑛4), 𝑟𝑛7(𝑛5), 𝑟𝑛7(𝑛6) are set.
The flags for links : 𝑅𝑛4(𝑛1, 𝑛5), 𝑅𝑛5(𝑛2, 𝑛6), 𝑅𝑛5(𝑛2, 𝑛4), 𝑅𝑛5(𝑛4, 𝑛6),

𝑅𝑛5(𝑛6, 𝑛4), 𝑅𝑛6(𝑛3, 𝑛5) are set.
𝑎4 = 3, 𝑎5 = 3, 𝑎6 = 3, 𝑎7 = 3

𝑐𝑛1 = 𝑐𝑛2 = 𝑐𝑛3 = 1

All the other flags are not set

The description defines operators and parameters, but most importantly, it defines
interconnections between neural resources using binary flags. The 𝑟 flags define connections
between activators and the links that precede them. In other words, these flags define from
which links the activators receive their input data. The flags 𝑆, on the other hand, define
the links to which the activators send their output.

27

The links themselves are named by the names of activators they lay in between. However,
the fact that a link lies in between a certain pair of activators does not necessarily mean that
it is locally connected to both activators because it also might be a part of an intra-layer
chain of links that transfers data from one part of the FPNN to another. This is where
the need to use the flags 𝑟 and 𝑆 to describe the actual connections between activators and
surrounding links comes from.

The connections between links themselves are denoted by the 𝑅 flags. The notation
relays on the naming links scheme and it describes connection between link essentially as
s two-link chain between source activator 𝑠𝑟𝑐 to target activator 𝑡𝑟𝑔 while skipping the
common activator 𝑐𝑚𝑛 in between the two links: 𝑅𝑐𝑚𝑛(𝑠𝑟𝑐, 𝑡𝑟𝑔). So the flag 𝑅𝑛5(𝑛4, 𝑛6)
says that link (𝑛4, 𝑛5) is connected to and sends its output to link (𝑛5, 𝑛6). (See Fig. 4.4.)

Similarly, the 𝑟 and 𝑆 flags use the notion of source activator 𝑠𝑟𝑐 and target activator
𝑡𝑟𝑔 to describe connections to preceding and successive links. The flag 𝑟𝑡𝑟𝑔(𝑠𝑟𝑐) indicates
that activator 𝑡𝑟𝑔 is connected to and receives data from link (𝑠𝑟𝑐, 𝑡𝑟𝑔). Similarly, the flag
𝑆𝑠𝑟𝑐(𝑡𝑟𝑔) indicates that activator 𝑠𝑟𝑐 is connected and sends its output to link (𝑠𝑟𝑐, 𝑡𝑟𝑔).

Figure 4.5 illustrates how the example FPNN processes input data. The illustration
is broken into six steps with a different set of neural resources working in parallel in each
step. The grey filling illustrates the neural resources computing in parallel in the particular
step, while the solid thin arrows show the directions in which they sent the results of their
computation and corresponding requests. The steps are explained as follows:

1. The first step happens after the input data are introduced into the FPNN and propa-
gated through the input nodes into the three links that connect the input layer to the
hidden layer. After the links finish the computation, they generate requests for the
successive neural resources - to the closest activator and the links in the chain going
through the hidden layer.

2. In the second step, the activators process the incoming requests using their iteration
operators. The links in the hidden layer’s interconnection chain process and carry the
data to deliver them to the activators that are not directly above each other in the
layer.

3. In the third step, the activators process their second requests using the iteration
operators. The two links at the end of the hidden layer chain generate the third and
last requests for their successive activators. With those, the data from the furthest
input activators in the input layer are delivered to the activators on the edges of the
hidden layer.

4. In the fourth step, the activators have all requests they were waiting for; therefore,
after they apply the iteration operator to the third and last request, they pass the
cumulative result to the function operator and compute the activation functions.

5. In the fifth step, the three links between the hidden layer and the output layer process
the data and deliver requests to the activator in the output layer.

6. In the last step, the activator in the output layer processes all the requests using the
iteration operator and the function operator. The output it generates is the output
of the entire FPNN.

28

Figure 4.3: Original network for the example FPNN.

Figure 4.4: Example FPNN

29

Step 1 Step 2

Step 3 Step 4

Step 5 Step 6

Figure 4.5: Successive steps during an FPNN operation. The grey-filled neural resources
work in parallel and generated requests to their successors along the solid thin arrows.

30

Chapter 5

Research progress

In our research, we focused on improving the FPNN concept according to its defining focus -
the effective use of FPGA resources to reduce their consumption. There are different ways of
how FPNNs can be implemented and constructed from neural resources. Some FPNNs have
been constructed in a way that utilized long connections between neural resources. However,
it is the simplification of the connections structure and the effort to keep them as short as
possible that can bring a significant reduction in FPGAs resource consumption. Therefore,
our goal was to focus on preserving the connections between neural resources as short and
local as possible while offering different levels of approximation capabilities coupled with
different levels of resource consumption on those different approximation levels.

Another of our goals was to incorporate fault tolerance principles into the FPNN con-
cept, following the focus of our research group to create a possibility to build fault-tolerant
implementations and FPGA accelerators of neural networks. We aimed to consider and
evaluate traditional methods based on redundancy but also investigate methods that would
not rely on redundancies. Instead, we wanted to focus on methods that would utilize the
already existing neural resources in the FPNN to harden it or to provide a way to recover
from a possible fault. One way we aimed to investigate was supposed to be based on mod-
ifications of the given FPNN’s parameters existing within the neural resources that the
FPNN was built of. Such a technique would take advantage of the naturally redundant
structure of the FPNNs; a feature inherited from the neural networks that inspired their
creation.

Furthermore, just like the neural networks themselves, the FPNNs are generally soft-
computing systems. By their nature, their outputs are always approximate to ideal results,
the consequence of the learning process. Therefore, a bit-wise precision of their output
values might not be as critical as it would be in systems based on high precision. Especially if
the output values, although a bit different, still represent the correct pattern that would, for
instance, still classify the input data into the correct class. Consequently, a certain margin
of error in the output data might be acceptable in some tasks, even though it certainly
would not be acceptable for some other tasks. The point is that given the particular task
and margins, just like a neural network providing inexact results due to a fault or a different
reason might not be critical, it might also not be critical for the FPNN to work with an
error. Given this, a full recovery from a fault or a perfect hardening against them might
not always be required. Also, smaller resource consumption and lower overhead might be
preferable over a certain penalty in the precision due to a fault in some cases. Therefore,
we decide to explore techniques that work only with the existing parameters of the FPNN

31

in order to harden it or recover it from a fault, even though they inherently can not provide
as good results as the traditional and reliable methods based on redundancy.

Equivalently, to further build up the robustness of FPNN and following research in our
research group, we decided to explore the possibilities of using FPGAs’ build-in capability
to reconfigure themselves. The dynamic partial reconfiguration allows the FPGA to re-
program a part of its logic during its operation. We aimed to use online partial dynamic
reconfiguration as a possible means to recover from a permanent fault in an FPGA.

5.1 Approximation capabilities
When it comes to FPNNs, especially grid-like FPNNs, there is not necessarily a direct
relationship between the number of weights of the original neural network and the number of
affine operators in the FPNN that implements it. The topology and structure of the FPNN
may be different from the network. The designer can undoubtedly design the FPNN to
have basically the same or closely similar structure to the network. The designer can equip
the FPNN with many links and interconnect them so that the FPNN would resemble the
original network. To do this is an accessible and good choice for small FPNNs. However, the
goal of FPNNs is to reduce resource utilization when implemented in FPGAs. The primary
tool to achieve that goal is to reduce long connections and simplify the overall structure
of the FPNN using primarily only the local interconnections between neighboring neural
resources. This reduction is achieved by structuring the FPNN into the grid structure.
Using extra links beyond the grid goes against the goal because it introduces additional
connections and consumes resources to implement the links as well.

Let us consider the grid structure presented in 4.1. Figures 5.1 and 5.2 illustrate two
perspectives on how the original synapses are approximated by chains of links in the grid
FPNN. In the figures, the colored solid arrows represent the synapses, and the thin dashed
arrows represent the chains of links that approximate the synapse with the same color. The
dashed arrows also show the path the data take from an activator in the previous layer to
an activator in the following layer.

Figure 5.1 shows how synapses going from a single activator are approximated by chains
of links that are subsets of the interconnection chain within the layer. In contrast, the short-
est synapse, denoted in red, is realized by the single link that connects the two subsequent
activators in the two subsequent layers. The blue synapse is approximated by the chain
composed of the inter-layer link and the first link in the interconnection chain. The green
synapse uses the same chain expanded by the following link in the interconnection chain,
as does the violet synapse.

We can say that each synapse adds one more link into the mutual chain of links that
approximates all the previous, shorter synapses. Therefore, each synapse adds an affine
operator associated with the link to a series of affine operators that approximates its original
weight. If we consider only the operator’s multiplicative 𝑊𝑛(𝑝) term (the 𝑇𝑛(𝑝) term is
zero), then each weight is approximated by a product of a series of 𝑊𝑛(𝑝) values. The final
product can match the synapse’s original weight thanks to the last multiplicand that each
synapse adds to the series. Therefore, as long as a synapse has a dedicated link in the
chain that approximates it and its affine operator is appropriately set, the approximation
can be accurate because the final product of all affine operators in the chain can result in
the original weight value.

However, that might prove challenging to achieve if the number of activators in the
previous layer is higher than two. When there are only a couple of activators in the previous

32

layer, each occupies its own half of the interconnection chain - one of the two chains going
through the layer. In that case, each synapse going out of the activators has its own
dedicated link added to the chain, and the approximation is accurate.

When there are more activators, however, all the links in the interconnection chain have
to be shared between them, which might put them into conflict and a need to find a com-
promise between different required values of the affine operators. Fig 5.2 illustrates this
situation. The figure emphasises the (𝑛𝑥, 𝑛𝑦) link. The link lies at the end of the intercon-
nection chain a approximates three different synapses. It is the final link in three chains
of links that approximate those synapses denoted in the corresponding colors. Therefore,
it is the link that all three synapses need to finalize the product of the affine operators of
their particular chain links with the final multiplicand in order to bring the overall product
to match their weights. However, the link has only one affine operator by the Definition
4.1.1. Therefore, there are three different 𝑊𝑛(𝑝) values the affine operator needs to have to
ensure all three synapses are approximated accurately, which creates conflict.

There are three ways how to handle the conflict. The first possibility is to add more
links into the FPNN that would take the roles of dedicated links for the particular synapses,
offering them the chance to have their own dedicated affine operators to get the product
value right. As mentioned in the first paragraph, this solution would consume resources to
implement the additional link and increase the complexity of interconnections, making the
resource utilization even higher.

The second solution is to try to find a compromise between the conflicting values that
would make the FPNN work as well as possible, even without additional resources. Some
level of approximation accuracy degradation is inevitable, however. There are several pos-
sible ways how to find this compromise, and we focused on this problem in our paper
Mapping trained neural networks to FPNNs (Paper A). Subsection 5.1.1 explains this re-
search in more detail.

The third approach is to equip the links with more than one affine operator. More
operators would provide the FPNNs to approximate the synapses better or even accurately.
The level of improvement depends on how many operators we provide to the links. The
obvious approach is to provide enough operators to fully approximate all the synapses
and weight and make the FPNN accurate. However, it is also possible to provide less than
required for accurate approximation in order to save resources. This approach was the focus
of our papers Comparison of FPNNs models approximation capabilities and FPGA resources
utilization (Paper B) and Comparison of FPNNs Approximation Capabilities (Paper C).
Subsection 5.1.2 describe the research.

5.1.1 FPNNs with a single operator per link

In Mapping trained neural networks to FPNNs (Paper A), we followed our work in [33]
and focused on the situation when links only have a single affine operator. As we have
described above, FPNNs composed of links with singular operators face the challenge of
finding a compromise between conflicting values; the FPNNs need their operators to have
in order to achieve an accurate approximation of the given network.

The paper proposed a method for mapping the original neural network and its weights
into this type of FPNN. The method worked by determining the chains of links approx-
imating the particular synapses and calculating all the ideal values for affine operators
for approximating the synapses. Then final compromise values of affine operators were
determined as an arithmetic average between the conflicting values.

33

Figure 5.1: The chains of link approximating the particular synapses denote by the same
color.

The paper also visited other approaches to finding a compromise we experienced with.
The methods were based on weighted averages with weights assigned to the different con-
flicting values determined by several methods. The first method was based on the length
of the synapses or, more precisely, on the length of chains approximating them. If a con-
flicting value of an affine operator was associated with a longer chain of links, then the
value got a higher weight. Lets refer to the (𝑛𝑥, 𝑛𝑦) link in Figure 5.2 again. The 𝑊𝑛(𝑝)
value computed for the red synapse would get a higher weight than the value computed for
the green synapse because the chain of links corresponds to the red synapse (denoted by
the red dashed line) is longer. The 𝑊𝑛(𝑝) value related to the green synapse would get a
higher weight than the one related to the violet synapse because the chain approximating
the violet synapse is shorter. This method is called DIST_DP. The second method, called
DIST_IP, is an inversion of the first one. This method assigns higher weights to values
associated with shorter chains.

The third method is relatively straightforward. It uses the weight of the original
synapse directly as the weights of the corresponding 𝑊𝑛(𝑝) values. This method is called
WEIG_DP. Like the first method, this one has its inversion, WEIG_IP, which uses inverse
proportion as the weights.

The fifth method determines the weights using the product value of the preceding part
of the corresponding chain. In the case of (𝑛𝑥, 𝑛𝑦) link in Figure 5.2, the 𝑊𝑛(𝑝) value
computed for the red synapse would get weight computed as a product of 𝑊𝑛(𝑝) values of
all the preceding links in the chain denoted by the red dashed line. The actual value of the
product would be used as the weight. The method is called PROD_DP, and the derived
method that uses inverse proportions of the products is called PROD_IP.

The last two methods are based on the order of the conflicting values. The values would
get ordered by their values, and their corresponding weight would match their position in
the ordered set. In the case of (𝑛𝑥, 𝑛𝑦) link in Figure 5.2, there would be three conflicting
𝑊𝑛(𝑝) values. The three values would be directly ordered, and their weights would be their
positions. This method is called PVAL_DP. The inverse method PVAL_IP works the same
but uses reverse order.

34

Figure 5.2: The link (𝑛𝑥, 𝑛𝑦) is the final link in three chains approximating three synapses.

All the methods generally achieved the same approximation accuracy in terms of the
number of correctly classified input vectors compared to the original neural network. The
accuracy fell into proximity of 65% for all the methods (see Table I in the Paper A). To
achieve better results, we have also tried to combine the methods. We used all possible
combinations of two, three, and all four basic methods and their inverse version to determine
the weights. By using the combinations, we actually achieved up to 8% improvement.

We have also tried to use an optimization algorithm. We selected the Nelder-Mead
algorithm [47] to experiment with. The Nelder-Mead algorithm is based on searching for
a maximum of an objective function using simplex. The simplex is a multi-dimensional
polygon, a polytope, that moves around the objective function’s graph, trying to fall to a
maximum by moving its vertexes around the function graph and evaluating the objective
value of its central point.

The objective function was the approximation accuracy; the vertexes were FPNNs with
randomly generated 𝑊𝑛(𝑝) values. The algorithm was gradually modifying the 𝑊𝑛(𝑝)
values to reach the objective function maxima and find the best performing FPNN. Using
this algorithm, we achieved approximately 3% improvement over the best combination of
weighted sum methods.

5.1.2 Reduced and Full FPNNs

In Comparison of FPNNs models approximation capabilities and FPGA resources utilization
(Paper B), we focused on the possibility for the FPNNs to have multiple affine operators
to achieve better approximation accuracy. We expanded on the initial Definition 4.1.1 in
Definition II.1 in the Paper B. Based on the definition we defined three types of FPNN
(Definitions II.6-II.8 in Paper B). The first type is called Light FPNN, and it is the type of
FPNN we dealt with in Paper A and the previous section. Therefore, the Light FPNNs are
FPNNs composed of links equipped with singular affine operators. The second type is called
Full FPNN. This type of FPNNs has all the affine operators necessary to achieve accurate
approximation. Their links have full sets of operators to approximate all the synapses they
implement fully. The last type lies between the other two. The Reduced FPNNs have fewer
affine operators than Full FPNNs but more than one like in the case of Light FPNNs. The

35

number of operators in Reduced FPNNs is determined by the number of each link connected
to preceding neural resources. So, instead of having an affine operator for every synapse
ending in it, a link has an operator for every neural resource connected to its input. Should
the (𝑛𝑥, 𝑛𝑦) link in Figure 5.2 lay in a Reduced FPNN, it would have two affine operators.
One for the link that implements the violet synapse and the other one for the link that
approximates both the red and the green synapse. The second operator would still have a
conflict between the two, but it would have been less severe than in the case of the same
FPNN of the Light type.

In Paper B we introduced a universal algorithm for mapping a neural network to FPNNs
of all three types. We measured the approximation accuracy of Reduced FPNNs implement-
ing different networks with different tasks and structures. The approximation accuracy
could get as bad as 50% but also as good as 93%, showing that there might be some cases
when reduced FPNNs can provide high approximation accuracy. Prior to these results,
previous results of Reduced FPNNs accuracy experiments were published in Paper C.

We have also measured FPGA resource utilization of Reduced and Full FPNN to find
out how much resources can be saved by using an FPNN with fewer affine operators. The
results show that Full FPNNs can become multiple times more resource-consuming than
the Reduced variants. That is especially true for DSP consumption which was generally
three times higher. The Full FPNNs’ consumption of Look-Up-Tables (LUTs) was also
multiple of the consumption of the Reduced FPNNs. However, the consumption rise degree
varied more in the case of LUTs than DSPs. Sometimes the consumption has risen only
two or three times, but in several instances, it went as high as six times higher than the
Reduced FPNNs. The increase of LUTs was correlated to the consumption of the DSPs,
and it spiked the highest when the DSPs were depleted, and the implementation had to
compensate with the increased use of LUTs.

Moreover, the Full FPNNs proved slower because their operating clock frequency could
get lower than half of the Reduced FPNNs frequencies. The Reduced FPNNs all had
their working clock period of about twelve nanoseconds. On the other hand, the clock
periods of the Full FPNN varied. Some periods were close to the twelve nanoseconds;
however, most were longer. A number of the period were close to twenty nanoseconds, with
the longest period reaching as high as almost thirty-eight nanoseconds with the largest
implementations.

5.2 Fault tolerance
When it comes to fault tolerance of FPNNs we considered both redundancy based and
redundancy free methods of hardening. We proposed using Triple Modular Redundancy
technique to harden FPNNs or their selected sub-components. Beside this traditional tech-
nique we focused on using modification of FPNNs parameters to harden the FPNNs without
a need for redundancy that would go against the FPNNs’ overall goal to be resource effec-
tive implementation of neural networks in FPGAs. We also proposed a method of detecting
permanent faults in neural networks’ synapses, method that is directly applicable to FPNNs
as well.

5.2.1 Identity operators and mapping

In Fault tolerant Field Programmable Neural Networks (Paper E, the paper was shortened
after it was accepted, the original full length is enlisted as Paper G), we focused on fault-

36

tolerant mapping of FPNNs equipped with identity operators. The idea of the identity
operator is to change all inner computation operators of a given neural resource into an
identity function. Practically, when applied, it would turn the particular neural resource
into a register (see Figure 5.3). We suggested this technique to recover from a permanent
fault in the neural resource computing blocks. Even if the resource cannot compute as
expected, with the identity operator, it can still let at least pass the data through and let
the rest of the FPNN function. However, with the neural resource effectively missing from
the FPNN, the computation would most likely suffer a hit in performance and accuracy.
The Paper E discusses the feasibility of using the process of mapping the initial neural
network to FPNN to reduce the possible accuracy hit of an identity operator activation.

Figure 5.3: Identity operator effect.

We have also used the identity operator as a tool to identify critical links. We were
successively activating identity activators, one link at a time, and measuring the impact
it had on output results of the small FPNN we have experimented with. Some links have
indeed shown to be more critical than others (see Table I in Paper E).

In the next phase, we tried to determine if the negative effects of identity operators
can be mitigated using a modified mapping process. During mapping process (described in
the full version of Paper E - Paper G and in Paper B), selected links have their identity
operators activated. That removed them from chains of links to which the mapping process
mapped the original synapses. That forced the mapping process to use other links in chains
to approximate the particular weight. The FPNN we experimented with was a light FPNN
(equipped with only one affine operator, see subsection 5.1.1). That meant that the value
of the affine operator of the missing link came into conflict with the value of the operator
taking its place in the mapping. The mapping process would then use the arithmetic average
of the conflicting values to determine the final value.

In the experiment, we used the method to harden the FPNN against a fault (and the
subsequent activation of the particular identity operator) in every link to which the method
was applicable. We first measured the approximation accuracy of the hardened FPNN, then
activated the identity operator in the link the FPNN was hardened against. We measured
the approximation accuracy of the FPNN with the missing link due to the identity operator.
We compared them with the original accuracy and the accuracy of the completely hardened
FPNN. We also measured the effect when a different combination of links was considered
in the mapping process. The results showed that even though sometimes the hardening

37

worked, other times it had a negative effect. As anticipated, the method was not universally
applicable but rather a potential option to consider.

5.2.2 Triple modular redundancy

In Triple modular redundancy used in field programmable neural networks (Paper F), we
focused on Triple Modular Redundancy in FPNNs. We utilized two types of triplicating.
The entire neural resources were triplicated with the first type (referred to in the paper as
type A). In the case of the second type (referred to in the paper as type B), the building
blocks that implement the neural resources were triplicated. There are several components
that the neural resources consist of. There are components responsible for the neural
resource particular calculation. Other blocks take care of communicating with other neural
resources using the request system described in Section 4.1.1. The communication blocks are
composed of a multiplexer, a demultiplexer, a register, a generator for generating requests to
successors, and a block for selecting a request to process from the pool of received requests
from predecessors (see Figures 2 and 3 in Paper F and detailed explanation of the block
in the paper’s Section 2.1). These blocks and the system they implement are common
to both types of neural resources, the link and the activators, because both types need
to communicate. The difference between both types lies in their computation units. The
links utilize a multiplier that implements its affine operator. The activators use an adder
to implement the iteration operator and a unit that implements the function operator -
the activation function, using an adder and a multiplier. These computation blocks, the
multiplexers, and other blocks that implement the communication system are what we
triplicated with type B.

We measured the FPGA resource consumption of all the building blocks as well as the
consumption of the whole neural resources. Then we implemented the TMR technique on
the two different levels and measured the consumption of the hardened versions of the im-
plementation. Understandably, resource consumption often increased by more than 200%.
The communication blocks often increased their consumption of registers significantly more
than their consumption of Look Up Tables (LUTs). This is expected because the commu-
nication blocks do not utilize much computation. Also, given their relatively smaller size,
the consumption of voters added by the TMR contributed significantly. On the other hand,
the computation blocks that implement the neural resources’ operators primarily increased
their LUTs consumption.

When it comes to type B triplicating, when the whole neural resources were triplicated,
the overall resource consumption was lower than when all the inside blocks were triplicated
in type A. This is expected because type B does not suffer from the overhead coming with
the additional voters and connections needed to make the inside blocks hardened with the
TMR technique. The type B neural resources consumed fewer registers (the link consumed
2% less, and the activators consumed 11% less). The consumption of LUTs dropped even
more to 15% for the link and 19% in the case of the activator. These results correlate to
the fact that the computation blocks consume from 80% to 90% of resources.

We considered the two types because it might be feasible to harden only some subset
of the blocks instead of the whole neural resources. The computing blocks are apparent
candidates for hardening but hardening the communication blocks while leaving the com-
putation blocks unhardened might be a valid option as well, even when they are relatively
small and therefore less likely to experience a fault. Not only their resource overhead is
significantly lower, but also the communication blocks are vital for the function of the entire

38

FPNN. Should one of the resources stop generating requests and responding to them, the
whole FPNN would eventually stop computing. Computation blocks producing erroneous
data are naturally undesired; however, given the soft computing nature of neural networks,
such errors might significantly impact the outputs, but they also might not. On the other
hand, failure in communication between neural resources will always be critical. Moreover,
hardening the communication blocks can be easily combined with an idea of identity oper-
ator (discussed in Section 5.2.1) in order to produce low-overhead FPNN hardened against
communication errors if not against errors in computation or data.

5.2.3 Detecting hard synapses fault

In Detecting hard synapses faults in artificial neural networks (Paper D), we focused on
a way how to detect permanent faults in neural network synapses or their weights. In
particular the work focused on stuck and noisy synapses as referenced to in Section 3.1.
The general idea of the discussed method was related to the idea of identity operators
discussed in Section 5.2.1. The algorithm (see Algorithm III.B in Paper D) was based
on testing all the network’s synapses iteratively, one at a time. For every synapse, the
algorithm determined the set of synaptic sequences connecting the input layer through the
hidden layers to the output layer that the tested synapse was part of. Let’s say the synapse
between neurons 𝑛𝑥 and 𝑛𝑦 - (𝑛𝑥, 𝑛𝑦) was under test. Then the algorithm would determine
all the sequences of synapses that connect the neuron 𝑛𝑥 to the input layer through the
neurons in the previous layers. Similarly, the algorithm would determine the sequences of
synapses that connect the neuron 𝑛𝑦 to the output layer through the neurons in all the
successive layers. Sequences from both sets connect in the tested synapse, and therefore,
they represent all the possible paths the data can flow from the network’s input to its
output while going through the (𝑛𝑥, 𝑛𝑦) synapse.

In the next step, one of the sequences was selected. All the weight values in the sequence,
save the weight of the synapse under the test that was left unchanged, were set to one to
make the synapses transparent to data passing through them. Then, a predetermined
testing data vector was introduced to the network’s input. The vector was composed
of identical values except for the element that went to the input neuron in the selected
sequence. The output data were collected and compared to the expected result that was
calculated separately. Since all the parameters of the network and the input data were
known, it was possible to calculate the output data the network should ideally produce
independently of the network itself. This reference data was then compared to the network’s
output data. If the data were equal, the network performed as expected, and the synapse
passed the test. If the data differed, however, then there were three possibilities. First,
the synapse under test might have produced erroneous data that caused the difference.
Second, there was another synapse producing erroneous data in the tested sequence. It
could also have been both. The algorithm would repeat the test with several different
sequences containing the tested synapse to determine which was the case. If all the output
data were different than expected, then the synapse under the test was faulty. If only some
of the output data differed, another synapse was faulty. Which synapse it was would be
determined when the synapse would go through the testing itself.

The paper also discusses a problem that may complicate fault detection. In cases that
the value of the tested synapse’s weight is high, it might cause saturation of the next neuron
(the high input would make the neuron generate go to the minimum or the maximum of its
activation function). If the synapse was faulty and the fault would cause an error that would

39

further increase the weight’s value, the error might be left undetected. A faulty synapse
may also influence other synapse tests by saturating the neurons when it is selected to the
tested sequence. Therefore, it might lead to false positive detection. The paper suggests
that the saturation problem may be mitigated by modifying not only the weight of the
synapses in the testing sequence but also the neurons’ activation function. Suppose the
activation function is replaced by an identity function. In that case, its output could reach
any value in the range of the used data type. Therefore it would mitigate the saturation
problem and allow the erroneous value to propagate to the network’s output unchanged.
That would allow determining the actual value of the error. Section III.C of the Paper 5.2.1
describes the algorithm utilizing the activation function modifications.

The paper also discusses using different values to set the weight in the tested sequence
as well as different choices of the input data. Section IV describes experiments we per-
formed with the method that does not utilize the activation function modifications, as it
is more challenging due to the saturation problems. Tables I-V present the results of the
experiments. The results show that choosing a higher input value of the element entering
the tested sequence as well as a smaller value for the other elements helps prevent the
saturation problem. It also demonstrates that choosing low negative values for weights in
the tested sequence improves the detection. Overall, the method showed relatively decent
detection abilities despite the saturation problem.

5.2.4 The FPNNs robustness

In a yet unpublished paper Fault tolerance of different Field Programmable Neural Networks
types (Paper I), we focused on the robustness of FPNNs themselves. We experimented
with all the three types of FPNNs - light, reduced, and full as discussed in Section 5.1.
The FPNNs utilized fixed-point computation with an 8-bits integer part, and the remain-
ing 8-bits were used for the fraction part as recommended in [44]. We experimented with
six different FPNNs with different structures, all of them in their light, reduced, and full
versions. Therefore, the number of individual FPNNs under the experiment was eighteen.
Twelve of the FPNNs were performing the Diabetes task, and the six remaining were imple-
menting the Thyroid task, both tasks being neural network benchmark classification tasks
from the Proben set of benchmarks [61].

Faults were injected into all affine operators of the particular FPNNs. That meant
that each FPNN had a different number of faults injected into it. We chose this approach
because the FPNNs had very different sizes; therefore, choosing a constant number of fault
injections for all of the FPNNs would give some of the larger FPNNs an artificial advantage.
The faults were injected as bit flips in the affine operators’ variables. The bits to flip were
chosen randomly (see Section III.B in Paper I). Each FPNN with an injected fault was
presented with the testing data set, and its outputs were compared to the outputs of the
original FPNN without a fault to see if the FPNNs classified the input data vectors into
the same classes. Tables II and III in Paper I illustrate the worst, the best and the average
results the faulty FPNNs achieved in terms of how many percent of the input data vectors
the faulty FPNNs classified to the same classes. The Min column shows the worst result
reached by any of the faulty FPNNs of the given type, task, and structure. The Max shows
the best result, and the Avg shows the average success of the particular FPNN.

The results have shown that light FPNNs were more robust against the infected faults.
However, we attribute this to the light FPNNs’ lower approximation capabilities and, there-
fore, the approximation accuracy they can achieve. The lower accuracy can mask some of

40

the injected faults because the final computation result might be the same, even with an
erroneous weight value.

The full FPNNs, on the other hand, proved to be most robust for the Diabetes task
(see Table II in Paper I). Their high redundancy gave them the inherent robustness that
massively parallel structures like neural networks have. We can see they performed best in
terms of both best and worst results. Their average success rate was also the best of all
three types.

However, in the case of the Thyroid task, it was the reduced FPNN that performed
the best (see Table III in Paper I). The full FPNNs actually provided worse results than
the FPNNs with fewer affine operators. We believe this phenomenon is due to the inter-
connection chain’s length and the input layer’s size. These two facts mean that there was
a high number of affine operators in the relatively long interconnection chains. Any error
introduced into these affine operators there would have a higher chance of causing a more
significant effect as its influence would propagate through the interconnection chain and
impact a higher number of the following affine operators in the successive links. Therefore,
any error caused by the injected fault would more easily escalate into higher impact as
opposed to the FPNN implementing the Diabetes task that did have smaller concentrations
of the affine operators.

Recovery using 𝜃 parameters modifications

Besides evaluating how robust the FPNNs can be in this paper, we also experimented with
a recovery method following the research described in 5.2.1. In that method we tried to
recover faulty FPNNs using identity operators and utilizing the process of mapping the orig-
inal neural network to the FPNN. In this paper we experimented with a method modifying
the 𝜃 parameters of the activators. These parameters serve the same function like the neu-
rons’ thresholds. Therefore, modification of these parameters would effectively affected the
activation functions. Just like with the method suing identity operators, the experiments
with this method were to determine if the modification of the parameters could be used to
recover from a fault in a link’s affine operator. Therefore if this method presented another
option to recover using modifications of existing FPNN parameters without utilizing more
complex methods like remapping or retraining or relying on redundancy based methods.
Similar to the method using the identity operators, we did not expect this method would
prove universally usable but rather a possibility to consider.

The method relied on knowing the value of the error in the affected affine operator
caused by the injected fault. The section 5.2.5 describes a method that could be used to
determine the value. The method used the value of the error as a modifier to the 𝜃 operator
of the closest following activator to the affected link. There were several ways the method
used the value to modify the 𝜃 (see Table I. in I). We also expanded the method by using the
modifiers only when the faulty link was a direct successor of an activator. It was because
such a link would be at the beginning of some of the chains of link in the FPNN, therefore
an error in one of its affine operators would have potentially the most significant impact
because the erroneous data it would produce would go through links in the rest of the chain
which could escalate the error’s effect.

The results (see Table IV and Tabke V) was not very assuring. Even though there was
measurable improvement in the recovered FPNNs’ performance compared to faulty FPNNs,
the results generally showed decrease of the recovered FPNN’s performance. No scenario of
modification showed consistent pattern of positive influence on the results and the potential

41

to be useful in recovery. What the results illustrated however, was the vulnerability of the
FPNNs to the changes in the 𝜃 parameters. The recovery attempts behaved more like
additional fault injections furthermore negatively impacting the FPNNs’ performance.

5.2.5 Recovery using partial dynamic reconfiguration

One of the main goals of our research was to examine and potentially implement recov-
ery from faults using partial dynamic reconfiguration (PDR). It is the ability of FPGAs
to reconfigure one or more of their smaller parts, referred to as frames, instead of repro-
gramming the entire logic array. Not only is the process quicker, but more importantly, it
allows the designs implemented in the remaining frames to continue to function without an
interruption, which would be necessary for reprogramming the whole FPGA.

Our research group used partial dynamic reconfiguration extensively for works related to
fault tolerant systems. We have used it for injecting faults into a hardened robot controller
[55, 56, 57, 58, 59] as well as into a controller of an electronic lock [36, 60] during the
experimental evaluation of their robustness. We have also developed a controller capable
of supervising a recovery from fault using PDR [31, 41, 42, 71, 72] and we worked on
hardening this reconfiguration controller as well[49, 50, 51]. We have also addressed the
re-synchronization of the different parts of a design implemented in an FPGA after the
design recovered from fault using PDR [74, 75, 76, 77].

Other researchers utilized partial dynamic reconfiguration in fault-tolerant designs as
well. For instance, in [38], the authors introduced a hardened voter for systems based
on Triple Modular Redundancy. The design used PDR to recover the voter from fault
introduced by Single Event Upsets. A survey of various hardening techniques, including
double and triple modular redundancy and suggesting DPR for recovery from faults caused
by Single Event Upsets, was published in [69].

The authors of [13] considered the vulnerability of FPGAs and the PDR process to
errors in the reconfiguration bitstream. They suggested using a partial hardening of the
critical parts of the bitstream, the part that holds address and control information. This
method was put in contrast with the method proposed by Xilinx based on hardening all
the bitstream parts using CRC, which has a lot of spacial and temporal overhead.

The hardening approaches can also be combined. In [83] the authors presented a frame-
work that would harden the provided design using TMR a recover from faults using PDR.
The authors used the framework to harden a design implementing a neural network for
hand-written characters recognition. The DPR was also used as a recovery technique of an
OpenRISC processor implemented in FPGA [62]. The authors have broken the processor
into reconfigurable modules and duplicated them in order to detect a SEU and identify
modules that required to be reconfigured to mitigate the fault. The duplication was also
used for fault detection in [4]. The authors implemented a pacemaker divided into a set of
separated, parallel-operated modules and used the spare FPGA resources as a backup space
for implementing a replacement module. If a fault was detected in a module, it would have
been implemented in the spare space using dynamic reconfiguration to restore the design’s
functionality. Instead of TMR, the authors of [27] decided to use two hard-core processors
to control the recovery process and temporarily take the place of a faulty module. Their
application implemented an FIR filter that was duplicated for fault detection. If a SEU
was detected, one of the processors identified the faulty region and triggered and controlled
recovery using PDR while the other processor was computing the FIR filtration software.

42

The approach saved 41% of resources compared to TMR. The reduction was traded off with
temporarily slowed-down computation.

The goal of partial dynamic reconfiguration in this work was different from the ap-
proaches used by our research group or by other researchers. All the mentioned works were
based on traditional PDR that would take a correct pre-prepared bitstream representing
the desired design and use it to reconfigure an FPGA to the desired state. However, within
this work, we wanted to consider using online partial dynamic reconfiguration - a method
that would not use pre-prepared bitstreams. Instead, the bitstream would be generated
from scratch inside the FPGAs themselves. The reasoning behind this idea was that it
would allow for recovery from a wide range of permanent faults, even those that it was
not hardened against. With proper detection and localization methods, the FPGA would
create a new bitstream implementing a new design that would perform the same function
but mask the detected fault. As much as this idea is intriguing from the fault tolerance
point of view, we deemed it unfeasible in the end.

The first problem is that if such a technique is supposed to be practical and usable, it
would require extensive knowledge of the selected FPGA bitstream format and its inside
representation. Such information is proprietary to FPGA manufacturers that are not keen
to pride them in full scale to the FPGA community. A very demanding (and questionable)
process of reverse engineering would be required, and even though projects such as Project
X-Ray [2] exist, they do not provide complete information and are aimed to support the
development of external design tools.

To generate bitstreams for PDR inside an FPGA would also require a lot of its resources.
Implementing a design into an FPGA is a demanding process, especially routing the logic in
the FPGA to the desired working design. Except that the design modifications that would
go beyond simple changes in contents of selected Look Up Tables or minor modifications
would ideally require an established set of synthesis tools to be present to perform the
proper implementation. Both of these facts would introduce a need to have a processor
core [8] implemented in the FPGA that would sufficiently support the needed tools. Even
though different soft-core and hard-core processors are available for different FPGAs, the
current development in the FPGA technology drives toward integrating FPGAs with other
technologies. Also, the current trends lead to further improvements in the usefulness of
partial dynamic reconfiguration used in the traditional sense. Improvements can provide
generally more practical results than online reconfiguration can.

The rise of integrated devices utilizing processor cores together with a field programmable
gate array area, such as Zynq, makes implementing hardened neural network accelerators
easier than before. It is possible to utilize Linux operating systems [1, 34] that would
provide helpful support for programming systems using partial dynamic reconfiguration to
implement support systems utilizing the programmable area. The systems can be dynamic,
changing according to particular situations and needs. Therefore these systems are ideal
instruments for implementing hardened systems that can use dynamic reconfiguration to
recover from faults such as SEU. Frameworks such as FRED [9, 48] and PYNQ [18] can be
conveniently used for such purposes.

5.3 List of Publications Related to the Thesis
This thesis describes a research that was presented in several related papers the thesis refers
to. The list of the related publications is as follows:

43

2015

• M. Krcma, J. Kastil and Z. Kotásek, ”Mapping Trained Neural Networks to FPNNs,“
2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems, 2015, pp. 157-160, doi: 10.1109/DDECS.2015.50.

Author participation: 75% | Conference rank: B3 (Qualis)

• M. Krcma, Z. Kotasek and J. Kastil, ”Fault tolerant Field Programmable Neural
Networks,“ 2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP &
International Symposium on System-on-Chip (SoC), 2015, pp. 1-4, doi:
10.1109/NORCHIP.2015.7364381.

Author participation: 80% | Citations: 1 | Conference rank: B3 (Qualis)

• KRČMA Martin. FPNN – neuronové sítě v FPGA. In: Počítačové architektury a
diagnostika PAD 2015. Zlín: Faculty of Applied Informatics, Tomas Bata University
in Zlín, 2015, pp. 13-18. ISBN 978-80-7454-522-1.

Author participation: 100%

2016

• M. Krcma, Z. Kotasek and J. Lojda, ”Implementation of fault tolerant techniques into
FPNNs,“ 2016 International Conference on Field-Programmable Technology (FPT),
2016, pp. 297-298, doi: 10.1109/FPT.2016.7929559.

Author participation: 80% | Citations: 1

• M. Krcma, J. Kastil, Z. Kotásek and J. Lojda, ”Comparison of FPNNs Approximation
Capabilities,“ Proceedings of the Work in progress Session held in connection with
DSD 2016, 2016, pp. 1-2, ISBN:978-3-902457-46-2.

Author participation: 80% | Conference rank: B1 (Qualis)

• KRČMA Martin. Koncept Field Programmable Neural Networks odolný proti poruchám.
In: Počítačové architektury a diagnostika PAD 2016. Bořetice - Kraví Hora: Faculty
of Information Technology BUT, 2016, pp. 97-100. ISBN 978-80-214-5376-0.

Author participation: 100%

2017

• M. Krcma, Z. Kotasek and J. Lojda, ”Comparison of FPNNs models approximation
capabilities and FPGA resources utilization,“ 2017 13th IEEE International Con-
ference on Intelligent Computer Communication and Processing (ICCP), 2017, pp.
125-132, doi: 10.1109/ICCP.2017.8116993.

44

Author participation: 85% | Conference rank: C (Qualis)

• M. Krcma, Z. Kotasek and J. Lojda, ”Triple modular redundancy used in field
programmable neural networks,“ 2017 IEEE East-West Design & Test Symposium
(EWDTS), 2017, pp. 1-6, doi: 10.1109/EWDTS.2017.8110128.

Author participation: 85% | Citations: 5

2019

• M. Krcma, Z. Kotasek and J. Lojda, ”Detecting hard synapses faults in artificial
neural networks,“ 2019 IEEE Latin American Test Symposium (LATS), 2019, pp.
1-6, doi: 10.1109/LATW.2019.8704637.

Author participation: 80%

5.3.1 Author’s contributions to papers related to The Thesis

The author of this thesis is the main author of all of the papers related to this thesis.
The author was responsible for all the research presented in the papers as well as for
the implementation and experimental work. The author however relied on the research
group with papers corrections, proof-reads, technical assistance and most importantly on
discussions of the research.

5.4 List of Other Publications, unrelated to the Thesis
Beyond the research presented in this thesis, the author participated in several other re-
search efforts unrelated to the thesis. The list of the resulting publications is as follows:

2016

• J. Lojda, J. Podivinsky, M. Krcma and Z. Kotasek, ”HLS-based fault tolerance ap-
proach for SRAM-based FPGAs,“ 2016 International Conference on Field-Programmable
Technology (FPT), 2016, pp. 301-302, doi: 10.1109/FPT.2016.7929561.

Author participation: 5% | Citations: 4

2017

• PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub, ŠIMKOVÁ Marcela, KRČMA
Martin and KOTÁSEK Zdeněk. Functional Verification Based Platform for Evaluat-
ing Fault Tolerance Properties. Microprocessors and Microsystems, vol. 52, no. 5,
2017, pp. 145-159. ISSN 0141-9331.

Author participation: 8% | Citations: 4 | Impact factor: 1.045 (Q3)

45

• J. Lojda, J. Podivinsky, Z. Kotasek and M. Krcma, ”Data types and operations modifi-
cations: A practical approach to fault tolerance in HLS,“ 2017 IEEE East-West Design
& Test Symposium (EWDTS), 2017, pp. 1-6, doi: 10.1109/EWDTS.2017.8110113.

Author participation: 5% | Citations: 8

2018

• PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA Martin, BURGET Radek, HRUŠKA
Tomáš and KOTÁSEK Zdeněk. ”A Processor Optimization Framework for a Selected
Application,“ In: Proceedings of IEEE East-West Design & Test Symposium. Kazan:
IEEE Computer Society, 2018, pp. 564-574. ISBN 978-1-5386-5710-2.

Author participation: 20% | Citations: 1

• J. Lojda, J. Podivinsky, Z. Kotasek and M. Krcma, ”Majority Type and Redundancy
Level Influences on Redundant Data Types Approach for HLS,“ 2018 16th Biennial
Baltic Electronics Conference (BEC), 2018, pp. 1-4, doi: 10.1109/BEC.2018.8600951.

Author participation: 10% | Citations: 3

2019

• ČEKAN Ondřej, PODIVÍNSKÝ Jakub, LOJDA Jakub, PÁNEK Richard, KRČMA
Martin and KOTÁSEK Zdeněk. Testing Reliability of Smart Electronic Locks: Anal-
ysis and the First Steps Towards. In: Proceedings of the 2019 22nd Euromicro Con-
ference on Digital System Design. Kalithea: Institute of Electrical and Electronics
Engineers, 2019, pp. 506-513. ISBN 978-1-7281-2861-0.

Author participation: 19% | Citations: 1 | Conference rank: B1 (Qualis)

• PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA Martin, BURGET Radek, HRUŠKA
Tomáš and KOTÁSEK Zdeněk. Multidimensional Pareto Frontiers Intersection De-
termination and Processor Optimization Case Study. In: Proceedings of the 2019 22nd
Euromicro Conference on Digital System Design. Kalithea: Institute of Electrical and
Electronics Engineers, 2019, pp. 597-600. ISBN 978-1-7281-2861-0.

Author participation: 20% | Citations: 2 | Conference rank: B1 (Qualis)

2020

• LOJDA Jakub, PÁNEK Richard, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Analysis of Software-Implemented Fault Tolerance:
Case Study on Smart Lock. In: 2020 IEEE East-West Design and Test Symposium,
EWDTS 2020 - Proceedings. Varna: Institute of Electrical and Electronics Engineers,
2020, pp. 24-28. ISBN 978-1-7281-9899-6.

Author participation: 7% | Citations: 1

46

• LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, PÁNEK Richard, KRČMA
Martin and KOTÁSEK Zdeněk. Automatic Design of Reliable Systems Based on
the Multiple-choice Knapsack Problem. In: Proceedings - 2020 23rd International
Symposium on Design and Diagnostics of Electronic Circuits and Systems, DDECS
2020. Novi Sad: Institute of Electrical and Electronics Engineers, 2020, pp. 1-4.
ISBN 978-1-7281-9938-2.

Author participation: 10% | Citations: 2 | Conference rank: B3 (Qualis)

• PODIVÍNSKÝ Jakub, LOJDA Jakub, PÁNEK Richard, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Evaluation Platform For Testing Fault Tolerance:
Testing Reliability of Smart Electronic Locks. In: 2020 IEEE 11th Latin American
Symposium on Circuits & Systems (LASCAS). San José: IEEE Circuits and Systems
Society, 2020, pp. 1-4. ISBN 978-1-7281-3427-7.

Author participation: 10% | Citations: 2 | Conference rank: B5 (Qualis)

• LOJDA Jakub, PÁNEK Richard, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Hardening of Smart Electronic Lock Software against
Random and Deliberate Faults. In: Proceedings - Euromicro Conference on Digital
System Design, DSD 2020. Kranj: Institute of Electrical and Electronics Engineers,
2020, pp. 680-683. ISBN 978-1-7281-9535-3.

Author participation: 12% | Citations: 3 | Conference rank: B1 (Qualis)

• PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA Martin, BURGET Radek, HRUŠKA
Tomáš and KOTÁSEK Zdeněk. Iterative Algorithm for Multidimensional Pareto
Frontiers Intersection Determination. In: 2020 IEEE 11th Latin American Sympo-
sium on Circuits & Systems (LASCAS). San José: IEEE Circuits and Systems Society,
2020, pp. 1-4. ISBN 978-1-7281-3427-7.

Author participation: 20% | Conference rank: B5 (Qualis)

2020

• J. Lojda, R. Panek, J. Podivinsky, O. Cekan, M. Krcma and Z. Kotasek, ”Testing
Embedded Software Through Fault Injection: Case Study on Smart Lock,“ 2021 IEEE
22nd Latin American Test Symposium (LATS), 2021, pp. 1-6, doi:
10.1109/LATS53581.2021.9651770.

Author participation: 5%

5.5 Research Projects and Grants
• FIT-S-20-6309 — Design, Optimization and Evaluation of Application Specific Com-

puter Systems, Brno University of Technology, team member.

47

• 8A18014, Proposal ID 783119-2 — SECREDAS - Product Security for Cross Domain
Reliable Dependable Automated Systems, ECSEL Joint Undertaking, team member.

• FIT-S-17-3994 — Advanced parallel and embedded computer systems, Brno University
of Technology, team member.

• LQ1602 — IT4Innovations excellence in science, MŠMT CZ, team member.

• 7H14002, 621439 — Algorithms, Design Methods, and Many-Core Execution Plat-
form for Low-Power Massive Data-Rate Video and Image Processing, Artemis Joint
Undertaking, team member.

• FIT-S-14-2297 — Architecture of parallel and embedded computer systems, Brno Uni-
versity of Technology, team member.

• LD12036 — Methodologies for Fault Tolerant Systems Design Development, Imple-
mentation and Verification, MŠMT CZ, team member.

• 7HZC13005 — Portable and Predictable Performance on Heterogeneous Embedded
Manycores, Artemis Joint Undertaking, team member.

• ED1.1.00/02.0070 — The IT4Innovations Centre of Excellence, MŠMT CZ, team
member.

48

Chapter 6

Conclusions

The research presented in this thesis focused on developing multiple types of Field Pro-
grammable Neural Networks in order to provide different options with different trade-offs
between their resource consumption and their approximation accuracy. One of the goals was
to remain faithful to the core idea of the FPNN concept - to minimize resource consumption
by keeping the connections between neural resources as short and local as possible. We can
achieve this by making the FPNNs in a grid structure suitable for keeping all the connec-
tions only between the closest neural resources that neighbor each other. This measure
can prevent the need to have many long connections across several neural resources and,
therefore, reduce resource consumption.

In our research, we decided to keep to this principle. We researched three types of
grid FPNNs that differed in the number of affine operators they were equipped with. The
key idea was to reduce the number of affine operators, which would reduce the amount
of resources needed to store them. And because the usual FPNN has more links than
activators, reducing each link’s resource consumption could provide a significant savings of
resources. It is not only the amount of resources needed to store the values of affine operators
that would be reduced. Assuming that in many cases, the computing units realizing the
computation with the affine operators would be composed of Look Up Tables, the reduction
of the number of affine operators would make the computing units simpler and, therefore,
smaller and faster. With a low number of affine operators, some of the computing units
could even be replaced by simple constant multiplication in some cases.

However, just like the reduction in the size of the affine operators set brings savings
of resources, it also reduces the approximation power of the FPNN. With fewer operators,
the FPNN also holds less information; therefore, its computation ability is reduced. With
reduced computation power, the FPNN is less capable of reproducing the results of the
original neural network it implements, so its approximation capabilities and accuracy is
affected negatively.

One of the questions we have sought to answer in our research is how severely reduced the
approximation accuracy actually is and what are the trade-offs with resource consumption.
The experiments show that the answer depends on the original neural network the FPNN
approximates, the task the neural network learned to perform, and naturally on the number
of affine operators we decided to equip the FPNN with. Some Reduced FPNNs showed only
a few percent decrease in the approximation accuracy while being times smaller than the
Full FPNNs. Other Reduced FPNNs, however, showed a significantly higher decrease in
the approximation accuracy by tens of percent. This was the case with Light FPNNs as

49

well. Ultimately, the designer’s choice must be led by the given situation and the neural
network intended to be implemented with an FPNN.

Another goal of our research was to explore fault-tolerant properties of FPNNs and
methods of their hardening. FPNNs, just like neural networks, are massively parallel but
relatively homogeneous structures. These properties might provide them with some in-
herent robustness; however, grid FPNNs are composed of potentially long chains of links
that approximate the original synaptic interconnections between layers. This introduces an
additional dependency between neural resources. If a fault occurs in an FPNN, it might
be amplified while its consequences would propagate through the FPNN due to this depen-
dency. It may also prevent the FPNN from proper operation. This is the reason why we
have also focused on permanent faults that could seize the FPNNs from function.

Even though we worked with the traditional hardening method based on replication -
the Triple Modular Redundancy technique, we primarily focused on methods that would not
rely on replicating the components. This was following the FPNNs main goal of reducing
resource consumption. Aligned with this goal, we investigated recovery methods based on
modifications of FPNNs’ parameters rather than utilizing their resources’ replicas.

We proposed a replication-free method of recovering from a permanent fault in a link
that would stop its computation. The method utilized identity operators that would make
the faulty link transparent to the passing data, so it would allow the FPNN to continue its
operation even with the permanently faulty link. In order to minimize the impact of using
the identity operators in critical links, we proposed a method of identifying the critical
links and also a modified mapping algorithm. The algorithm would map the original neural
network to the FPNN in a way that would potentially harden it against the impact of the
identity operators’ activation. However, just like the approximation accuracy of FPNNs
was dependent on the particular condition, it was the same with this hardening method as
could be expected since the method did not rely on replicating the FPNNs’ components.

Another method of recovery from permanent fault in a link that we have proposed was
based on modifications of activators parameters. The method utilized changes in the 𝜃
parameters that would affect the activation function. Even though this technique improved
the performance of faulty FPNNs in some cases, it also harmed them in others. Depend-
ing on the situation, this could be a way to recover from faults; however, it needs to be
considered cautiously because it might introduce even more problems to the FPNN.

We have also proposed a method of detecting permanent faults in neural networks’
synaptic interconnections. The method was directly applicable to FPNNs as well. The
method would detect the fault by successively and repeatedly changing the weights in the
network in a way that would let the sought fault effect to propagate through the network
to its output. There, it could be detected by comparing the outputs influenced by the fault
to the correct results. The current configuration of the changes introduced to the weights
would reveal the location of a fault and possibly the value that the affected weight was
stuck at.

We have also performed experiments to determine the level of robustness of the three
types of FPNNs against faults causing bit-flips in affine operators’ values. The bit-flip
were injected into different FPNNs of all types and with different structures performing
benchmarking tasks. The impact of the fault was measured. The experiments revealed
the dependency of the FPNNs’ robustness on their structure. Particularly on the size of
their layers or, strictly speaking, the lengths of their interconnection chains. The longer
the interconnection chains were, the more the particular FPNN was prone to faults.

50

We have also investigated the possibility of recovering from permanent fault using online
partial dynamic reconfiguration. This reconfiguration application was supposed to construct
the reconfiguration bitstreams on the fly inside the FPGA itself rather than using stored pre-
prepared bitstreams or bitstreams provided by outside systems. While this would be a novel
approach, we deemed it impractical. Rather than relying on the online reconfiguration, it
would be more practical to utilize the usual partial dynamic reconfiguration to recover from
fault, as many authors proposed.

6.1 Contributions
The research described in this thesis represents the following contributions:

• Introduction of three different FPNN types with a different number of affine operators,
approximation accuracy, and resource consumption:

– Full FPNNs are the FPNNs with the whole set of affine operators provided for
approximation of the original neural network. Given that this type of FPNNs are
equipped with as many affine operators as they need, they can approximate the
given network accurately. However, they are also the most resource-consuming
type of FPNNs, with their resource utilization potentially being multiple times
higher than the resource utilization of the Reduced FPNNs.

– Reduced FPNNs are the FPNNs with a reduced set of affine operators. Each link
would have as many affine operators as it has preceding links directly connected
to its input. These FPNNs have significantly reduced resource consumption.
Compared to the Full FPNNs, their consumption could be multiple times lower,
but they suffer reduced approximation accuracy. The penalty to the accuracy
can be only a few percent or as significant as tens of percent. Therefore, the
reduced FPNNs can provide an interesting trade-off between accuracy and re-
source consumption. Still, they need to be carefully considered in regards to the
particular situation, the original neural network type, and its task.

– Light FPNNs are the FPNNs with the lowest resource consumption but also the
lowest capabilities and the lowest approximation accuracy. This makes their us-
age limited, and the trade-offs and possible gains need to be considered compared
to the reduced FPNNs.

• A method of detecting permanent synapses faults was proposed in our research. The
method is based on modifications of the neural network’s weights in a particular way
that allows a possible permanent fault to be detected by comparing the modified
neural network’s output data with the expected data. This method is also directly
applicable for detecting permanent faults in FPNNs’ links as well.

• FPNNs hardened with TMR applied on different implementation levels were proposed
in alignment with this traditional method’s proven effectiveness. A replication-free
method method of recovering the FPNNs from permanent faults using identity oper-
ators was proposed. Together with this method, a modified algorithm for mapping
neural networks to FPNNs that can potentially harden the FPNNs against the effect
of the identity operators’ activation was also proposed. Also, a method to detect
which links are critical to an FPNN’s function was proposed. These methods showed
the potential to increase an FPNN’s robustness but were not universally effective.

51

Therefore they present an option to consider as an alternative to replication-based
techniques like the TMR in some particular situations.

• A different replication-free method to recover from faults in an FPNN’s link was
proposed. This method was based on modifications of activators’ parameters that
influence their activation functions. The method proved to be more disruptive than
helpful, so its usage has to be carefully considered.

• Measurements of FPNNs’ robustness against fault causing bit-flips in affine operators’
values were presented. The experiments revealed the dependency of the Reduced
FPNNs robustness on the sizes of their layers.

6.2 Possibilities of Future Research
The topics of this thesis surely invite future research. Further research could advance
the Field Programmable Neural Network both in their capabilities to approximate neural
network and their robustness and beyond. We believe further research is possible in at least
these pathways:

• More replication-free methods of hardening and recovery based on parameters’ modifi-
cations can be proposed. Heuristics providing guidance to these recovery methods can
be introduced. Moreover, methods based on a modification of the structure together
with the modification of the parameters can be investigated.

• Additional methods of FPNNs’ construction and mapping neural networks to them
can be introduced. In an unpublished line of our work, we have experimented with
FPNNs mapped using an evolutionary algorithm, and given the results, we would
encourage this line of future research.

• The methods of recovery from faults based on the partial dynamic reconfiguration
proposed in multiple research efforts could be integrated as a replacement of the
online reconfiguration.

52

Bibliography

[1] Linux kernel FPGA Subsystem. Available at:
https://www.kernel.org/doc/html/latest/driver-api/fpga/index.html.

[2] Project X-Ray. Available at: https://github.com/f4pga/prjxray.

[3] Ahmadi, A., Sargolzaie, M. H., Fakhraie, S. M., Lucas, C. and Vakili, S. A
Low-Cost Fault-Tolerant Approach for Hardware Implementation of Artificial Neural
Networks. In: Computer Engineering and Technology, 2009. ICCET ’09.
International Conference on. Jan 2009, vol. 2, p. 93–97. DOI:
10.1109/ICCET.2009.204.

[4] Alkady, G. I., El Araby, N. A., Abdelhalim, M. B., Amer, H. H. and Madian,
A. H. Dynamic fault recovery using partial reconfiguration for highly reliable
FPGAs. In: 2015 4th Mediterranean Conference on Embedded Computing (MECO).
2015, p. 56–59. DOI: 10.1109/MECO.2015.7181865.

[5] Alpaydin, E. Multiple neural networks and weighted voting. In: Pattern
Recognition, 1992. Vol.II. Conference B: Pattern Recognition Methodology and
Systems, Proceedings., 11th IAPR International Conference on. Aug 1992, p. 29–32.
DOI: 10.1109/ICPR.1992.201715.

[6] Arad, B. and El Amawy, A. Robust fault tolerant training of feedforward neural
networks. In: Circuits and Systems, 1994., Proceedings of the 37th Midwest
Symposium on. Aug 1994, vol. 1, p. 539–544 vol.1. DOI:
10.1109/MWSCAS.1994.519296.

[7] Arad, B. S. and El Amawy, A. On Fault Tolerant Training of Feedforward Neural
Networks. Neural Networks. 1997, vol. 10, no. 3, p. 539 – 553. DOI:
http://dx.doi.org/10.1016/S0893-6080(96)00089-5. ISSN 0893-6080. Available at:
http://www.sciencedirect.com/science/article/pii/S0893608096000895.

[8] Bhandari, S., Pujari, S., Rai, A. and Subbaraman, S. Methodology for on the fly
partial reconfiguration for computation intensive applications on FPGA. In: 2010
International Conference on Computer Applications and Industrial Electronics. 2010,
p. 597–601. DOI: 10.1109/ICCAIE.2010.5735004.

[9] Biondi, A., Balsini, A., Pagani, M., Rossi, E., Marinoni, M. et al. A Framework
for Supporting Real-Time Applications on Dynamic Reconfigurable FPGAs. In: 2016
IEEE Real-Time Systems Symposium (RTSS). 2016, p. 1–12. DOI:
10.1109/RTSS.2016.010.

53

https://www.kernel.org/doc/html/latest/driver-api/fpga/index.html
https://github.com/f4pga/prjxray
http://www.sciencedirect.com/science/article/pii/S0893608096000895

[10] Chin, C.-T., Mehrotra, K., Mohan, C. and Rankat, S. Training techniques to
obtain fault-tolerant neural networks. In: Fault-Tolerant Computing, 1994. FTCS-24.
Digest of Papers., Twenty-Fourth International Symposium on. June 1994,
p. 360–369. DOI: 10.1109/FTCS.1994.315624.

[11] Deng, J., Rang, Y., Du, Z., Wang, Y., Li, H. et al. Retraining-based timing error
mitigation for hardware neural networks. In: Design, Automation Test in Europe
Conference Exhibition (DATE), 2015. March 2015, p. 593–596.

[12] Deodhare, D., Vidyasagar, M. and Sathiya Keethi, S. Synthesis of
fault-tolerant feedforward neural networks using minimax optimization. Neural
Networks, IEEE Transactions on. Sep 1998, vol. 9, no. 5, p. 891–900. DOI:
10.1109/72.712162. ISSN 1045-9227.

[13] Di Carlo, S., Gambardella, G., Indaco, M., Prinetto, P., Rolfo, D. et al.
Dependable Dynamic Partial Reconfiguration with minimal area & time overheads on
Xilinx FPGAS. In: 2013 23rd International Conference on Field programmable Logic
and Applications. 2013, p. 1–4. DOI: 10.1109/FPL.2013.6645549.

[14] Elsimary, H., Mashali, S. and Shaheen, S. A method for training feed forward
neural network to be fault tolerant. In: Virtual Reality Annual International
Symposium, 1993., 1993 IEEE. Sep 1993, p. 436–441. DOI:
10.1109/VRAIS.1993.380747.

[15] Elsimary, H., Mashali, S. and Shaheen, S. Generalization ability of fault tolerant
feedforward neural nets. In: Systems, Man and Cybernetics, 1995. Intelligent Systems
for the 21st Century., IEEE International Conference on. Oct 1995, vol. 1, p. 30–34
vol.1. DOI: 10.1109/ICSMC.1995.537728.

[16] Emmerson, M. and Damper, R. Determining and improving the fault tolerance of
multilayer perceptrons in a pattern-recognition application. Neural Networks, IEEE
Transactions on. Sep 1993, vol. 4, no. 5, p. 788–793. DOI: 10.1109/72.248456. ISSN
1045-9227.

[17] Girau, B. FPNA: Concepts and Properties. In: Omondi, A. R. and Rajapakse,
J. C., ed. FPGA Implementations of Neural Networks. Springer US, 2006, p. 63–101.
ISBN 978-0-387-28487-3. 10.1007/0-387-28487-7-3. Available at:
http://dx.doi.org/10.1007/0-387-28487-7-3.

[18] Goeders, J., Gaskin, T. and Hutchings, B. Demand Driven Assembly of FPGA
Configurations Using Partial Reconfiguration, Ubuntu Linux, and PYNQ. In: 2018
IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 2018, p. 149–156. DOI: 10.1109/FCCM.2018.00032.

[19] Gorman, R. and Sejnowski, T. J. Analysis of hidden units in a layered network
trained to classify sonar targets. Neural Networks. 1988, vol. 1, no. 1, p. 75 – 89.
DOI: http://dx.doi.org/10.1016/0893-6080(88)90023-8. ISSN 0893-6080. Available at:
http://www.sciencedirect.com/science/article/pii/0893608088900238.

[20] Hammadi, N. C. and Ito, H. A Learning Algorithm for Fault Tolerant Feedforward
Neural Networks. IEICE Trans. Information and Systems. 1996, vol. 80, p. 21–27.

54

http://dx.doi.org/10.1007/0-387-28487-7-3
http://www.sciencedirect.com/science/article/pii/0893608088900238

[21] Harkin, J., Morgan, F., Hall, S., Dudek, P., Dowrick, T. et al. Reconfigurable
platforms and the challenges for large-scale implementations of spiking neural
networks. In: 2008 International Conference on Field Programmable Logic and
Applications. Sept 2008, p. 483–486. DOI: 10.1109/FPL.2008.4629989. ISSN
1946-147X.

[22] Haruhiko, T., Hidehiko, K. and Terumine, H. Partially weight minimization
approach for fault tolerant multilayer neural networks. In: Neural Networks, 2002.
IJCNN ’02. Proceedings of the 2002 International Joint Conference on. 2002, vol. 2,
p. 1092–1096. DOI: 10.1109/IJCNN.2002.1007646. ISSN 1098-7576.

[23] Haruhiko, T., Hidehiko, K. and Terumine, H. Fault tolerant training algorithm
for multi-layer neural networks focused on hidden unit activities. In: Neural
Networks, 2006. IJCNN ’06. International Joint Conference on. 2006, p. 1540–1545.
DOI: 10.1109/IJCNN.2006.246616.

[24] Hebb, D. The Organization of Behavior: A Neuropsychological Theory. L. Erlbaum
Associates, 2002. ISBN 9780805843002. Available at:
http://books.google.cz/books?id=gUtwMochAI8C.

[25] Hopfield, J. J. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences. National
Academy of Sciences. april 1982, vol. 79, no. 8, p. 2554–2558. ISSN 1091-6490.
Available at: http://www.pnas.org/content/79/8/2554.abstract.

[26] Hsu, Y.-M., Piuri, V. and Swartzlander, J. Time-redundant multiple
computation for fault-tolerant digital neural networks. In: Circuits and Systems,
1995. ISCAS ’95., 1995 IEEE International Symposium on. Apr 1995, vol. 2,
p. 977–980 vol.2. DOI: 10.1109/ISCAS.1995.519929.

[27] Ilias, A., Papadimitriou, K. and Dollas, A. Combining Duplication, Partial
Reconfiguration and Software for On-line Error Diagnosis and Recovery in
SRAM-Based FPGAs. In: 2010 18th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines. 2010, p. 73–76. DOI:
10.1109/FCCM.2010.20.

[28] Ito, T. and Takanami, I. On fault injection approaches for fault tolerance of
feedforward neural networks. In: Test Symposium, 1997. (ATS ’97) Proceedings.,
Sixth Asian. Nov 1997, p. 88–93. DOI: 10.1109/ATS.1997.643927. ISSN 1081-7735.

[29] Kamiura, N., Isokawa, T. and Matsui, N. Learning based on fault injection and
weight restriction for fault-tolerant Hopfield neural networks. In: Defect and Fault
Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings. 19th IEEE International
Symposium on. Oct 2004, p. 339–346. DOI: 10.1109/DFTVS.2004.1347858. ISSN
1550-5774.

[30] Kamiura, N., Taniguchi, Y., Isokawa, T. and Matsui, N. An improvement in
weight-fault tolerance of feedforward neural networks. In: Test Symposium, 2001.
Proceedings. 10th Asian. 2001, p. 359–364. DOI: 10.1109/ATS.2001.990309. ISSN
1081-7735.

55

http://books.google.cz/books?id=gUtwMochAI8C
http://www.pnas.org/content/79/8/2554.abstract

[31] Kastil, J., Straka, M., Miculka, L. and Kotasek, Z. Dependability Analysis of
Fault Tolerant Systems Based on Partial Dynamic Reconfiguration Implemented into
FPGA. In: 2012 15th Euromicro Conference on Digital System Design. 2012,
p. 250–257. DOI: 10.1109/DSD.2012.40.

[32] Kohonen, T. Self-organization and associative memory. Springer-Verlag, 1984.
Springer series in information sciences. ISBN 9783540121657. Available at:
http://books.google.cz/books?id=LYZQAAAAMAAJ.

[33] Krma, M. Akcelerace neuronovch st v FPGA. Master’s thesis, Faculty of
Information Technology,Brno University of Technology; Brno. Fakulta informanch
technologi, Vysok uen technick v Brn. 2013. Available at:
https://wis.fit.vutbr.cz/FIT/st/rp.php/rp/2013/DP/15754.pdf.

[34] Langenbach, U., Wiehler, S. and Schubert, E. Evaluation of a declarative Linux
kernel FPGA manager for dynamic partial reconfiguration. In: 2017 International
Conference on FPGA Reconfiguration for General-Purpose Computing
(FPGA4GPC). 2017, p. 13–18. DOI: 10.1109/FPGA4GPC.2017.8008960.

[35] Latif Shabgahi, G., Hirst, A. and Bennett, S. A novel family of weighted
average voters for fault-tolerant computer control systems. In: European Control
Conference (ECC), 2003. Sept 2003, p. 642–646.

[36] Lojda, J., Panek, R., Podivinsky, J., Cekan, O., Krcma, M. et al. Hardening of
Smart Electronic Lock Software against Random and Deliberate Faults. In: 2020
23rd Euromicro Conference on Digital System Design (DSD). 2020, p. 680–683. DOI:
10.1109/DSD51259.2020.00110.

[37] Mahdiani, H. R., Fakhraie, S. M. and Lucas, C. Relaxed Fault-Tolerant
Hardware Implementation of Neural Networks in the Presence of Multiple Transient
Errors. IEEE Transactions on Neural Networks and Learning Systems. Aug 2012,
vol. 23, no. 8, p. 1215–1228. DOI: 10.1109/TNNLS.2012.2199517. ISSN 2162-237X.

[38] Mahmoud, D. G., Alkady, G. I., Amer, H. H., Daoud, R. M., Adly, I. et al.
Fault secure FPGA-based TMR voter. In: 2018 7th Mediterranean Conference on
Embedded Computing (MECO). 2018, p. 1–4. DOI: 10.1109/MECO.2018.8406016.

[39] Mansour, W., Velazco, R., Ayoubi, R., Falou, W. E. and Ziade, H.
Fault-tolerance capabilities of a software-implemented Hopfield Neural Network.
In: Communications and Information Technology (ICCIT), 2013 Third International
Conference on. June 2013, p. 205–208. DOI: 10.1109/ICCITechnology.2013.6579550.

[40] McCulloch, W. and Pitts, W. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biology. Springer New York. 1943, vol. 5,
p. 115–133. ISSN 0092-8240. 10.1007/BF02478259. Available at:
http://dx.doi.org/10.1007/BF02478259.

[41] Miculka, L. and Kotasek, Z. Generic partial dynamic reconfiguration controller for
transient and permanent fault mitigation in fault tolerant systems implemented into
FPGA. In: 17th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems. 2014, p. 171–174. DOI: 10.1109/DDECS.2014.6868784.

56

http://books.google.cz/books?id=LYZQAAAAMAAJ
https://wis.fit.vutbr.cz/FIT/st/rp.php/rp/2013/DP/15754.pdf
http://dx.doi.org/10.1007/BF02478259

[42] Miculka, L., Straka, M. and Kotasek, Z. Methodology for Fault Tolerant System
Design Based on FPGA into Limited Redundant Area. In: 2013 Euromicro
Conference on Digital System Design. 2013, p. 227–234. DOI: 10.1109/DSD.2013.33.

[43] Minsky, M. and Papert, S. Perceptrons: An Introduction to Computational
Geometry. MIT Press, 1969. ISBN 9780262630221. Available at:
http://books.google.cz/books?id=4e5wPAAACAAJ.

[44] Moussa, M., Areibi, S. and Nichols, K. On the Arithmetic Precision for
Implementing Back-Propagation Networks on FPGA: A Case Study. In: Omondi,
A. R. and Rajapakse, J. C., ed. FPGA Implementations of Neural Networks.
Springer US, 2006, p. 37–61. ISBN 978-0-387-28487-3. 10.1007/0-387-28487-7_2.
Available at: http://dx.doi.org/10.1007/0-387-28487-7_2.

[45] Munakata, T. Neural Networks: Fundamentals and the Backpropagation Model.
In: Munakata, T., ed. Fundamentals of the New Artificial Intelligence. Springer
London, 2007, p. 7–36. Texts in Computer Science. ISBN 978-1-84628-839-5.
10.1007/978-1-84628-839-5–2. Available at:
http://dx.doi.org/10.1007/978-1-84628-839-5--2.

[46] Munakata, T. Neural Networks: Other Models. In: Munakata, T.,
ed. Fundamentals of the New Artificial Intelligence. Springer London, 2007, p. 41–58.
Texts in Computer Science. ISBN 978-1-84628-839-5. 10.1007/978-1-84628-839-5–3.
Available at: http://dx.doi.org/10.1007/978-1-84628-839-5--3.

[47] Nelder, J. A. and Mead, R. A Simplex Method for Function Minimization. The
Computer Journal. 1965, vol. 7, no. 4, p. 308–313. DOI: 10.1093/comjnl/7.4.308.
Available at: http://comjnl.oxfordjournals.org/content/7/4/308.abstract.

[48] Pagani, M., Balsini, A., Biondi, A., Marinoni, M. and Buttazzo, G. A
Linux-based support for developing real-time applications on heterogeneous platforms
with dynamic FPGA reconfiguration. In: 2017 30th IEEE International
System-on-Chip Conference (SOCC). 2017, p. 96–101. DOI:
10.1109/SOCC.2017.8226015.

[49] Panek, R., Lojda, J., Podivinsky, J. and Kotasek, Z. Partial Dynamic
Reconfiguration in an FPGA-based Fault-Tolerant System: Simulation-based
Evaluation. In: 2018 IEEE East-West Design & Test Symposium (EWDTS). 2018,
p. 1–6. DOI: 10.1109/EWDTS.2018.8524728.

[50] Panek, R., Lojda, J., Podivinsky, J. and Kotasek, Z. Reliability Analysis of
Reconfiguration Controller for FPGA–Based Fault Tolerant Systems: Case Study.
In: 2020 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT). 2020, p. 1–4. DOI: 10.1109/VLSI-DAT49148.2020.9196269.

[51] Panek, R., Lojda, J., Podivinsky, J. and Kotasek, Z. Reliability Analysis of the
FPGA Control System with Reconfiguration Hardening. In: 2021 24th Euromicro
Conference on Digital System Design (DSD). 2021, p. 553–556. DOI:
10.1109/DSD53832.2021.00089.

[52] Phatak, D. and Koren, I. Fault tolerance of feedforward neural nets for
classification tasks. In: Neural Networks, 1992. IJCNN., International Joint
Conference on. Jun 1992, vol. 2, p. 386–391 vol.2. DOI: 10.1109/IJCNN.1992.226957.

57

http://books.google.cz/books?id=4e5wPAAACAAJ
http://dx.doi.org/10.1007/0-387-28487-7_2
http://dx.doi.org/10.1007/978-1-84628-839-5--2
http://dx.doi.org/10.1007/978-1-84628-839-5--3
http://comjnl.oxfordjournals.org/content/7/4/308.abstract

[53] Phatak, D. and Koren, I. Complete and partial fault tolerance of feedforward
neural nets. Neural Networks, IEEE Transactions on. Mar 1995, vol. 6, no. 2,
p. 446–456. DOI: 10.1109/72.363479. ISSN 1045-9227.

[54] Phatak, D. and Tchernev, E. Synthesis of fault tolerant neural networks.
In: Neural Networks, 2002. IJCNN ’02. Proceedings of the 2002 International Joint
Conference on. 2002, vol. 2, p. 1475–1480. DOI: 10.1109/IJCNN.2002.1007735. ISSN
1098-7576.

[55] Podivinsky, J., Cekan, O., Lojda, J. and Kotásek, Z. Verification of Robot
Controller for Evaluating Impacts of Faults in Electro-Mechanical Systems. In: 2016
Euromicro Conference on Digital System Design (DSD). 2016, p. 487–494. DOI:
10.1109/DSD.2016.38.

[56] Podivinsky, J., Lojda, J., Cekan, O. and Kotasek, Z. Evaluation Platform for
Testing Fault Tolerance Properties: Soft-core Processor-Based Experimental Robot
Controller. In: 2018 21st Euromicro Conference on Digital System Design (DSD).
2018, p. 229–236. DOI: 10.1109/DSD.2018.00051.

[57] Podivinsky, J., Lojda, J., Cekan, O., Panek, R. and Kotasek, Z. Reliability
Analysis and Improvement of FPGA-Based Robot Controller. In: 2017 Euromicro
Conference on Digital System Design (DSD). 2017, p. 337–344. DOI:
10.1109/DSD.2017.15.

[58] Podivinsky, J., Lojda, J. and Kotasek, Z. An Experimental Evaluation of
Fault-Tolerant FPGA-Based Robot Controller. In: 2018 IEEE East-West Design &
Test Symposium (EWDTS). 2018, p. 1–7. DOI: 10.1109/EWDTS.2018.8524627.

[59] Podivinsky, J., Lojda, J. and Kotasek, Z. Extended Reliability Analysis of
Fault-Tolerant FPGA-based Robot Controller. In: 2019 IEEE Latin American Test
Symposium (LATS). 2019, p. 1–4. DOI: 10.1109/LATW.2019.8704554.

[60] Podivinsky, J., Lojda, J., Panek, R., Cekan, O., Krcma, M. et al. Evaluation
Platform For Testing Fault Tolerance: Testing Reliability of Smart Electronic Locks.
In: 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS).
2020, p. 1–4. DOI: 10.1109/LASCAS45839.2020.9068977.

[61] Prechelt, L. P. and Informatik, F. F. — A Set of Neural Network Benchmark
Problems and Benchmarking Rules. Universitat Karlsruhe; 76128 Karlsruhe,
Germany, 1994.

[62] Psarakis, M. and Apostolakis, A. Fault tolerant FPGA processor based on
runtime reconfigurable modules. In: 2012 17th IEEE European Test Symposium
(ETS). 2012, p. 1–6. DOI: 10.1109/ETS.2012.6233007.

[63] Richards, W., Seung, H. S. and Pickard, G. Neural voting machines. Neural
Networks. 2006, vol. 19, no. 8, p. 1161 – 1167. DOI:
http://dx.doi.org/10.1016/j.neunet.2006.06.006. ISSN 0893-6080. Neurobiology of
Decision MakingNeurobiology of Decision Making. Available at:
http://www.sciencedirect.com/science/article/pii/S0893608006001511.

58

http://www.sciencedirect.com/science/article/pii/S0893608006001511

[64] Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review. november 1958, vol. 65, no. 6,
p. 386–408.

[65] Rumelhart, D., McClelland, J. and California, S. D. P. R. G. University of.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
Foundations. Mit Press, 1986. Computational Models of Cognition and Perception.
ISBN 9780262680530. Available at: http://books.google.cz/books?id=eFPqqMBK-p8C.

[66] Ruospo, A., Gavarini, G., Bragaglia, I., Traiola, M., Bosio, A. et al. Selective
Hardening of Critical Neurons in Deep Neural Networks. In: 2022 25th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS).
2022, p. 136–141. DOI: 10.1109/DDECS54261.2022.9770168.

[67] Rusiecki, A. Fault tolerant feedforward neural network with median neuron input
function. Electronics Letters. May 2005, vol. 41, no. 10, p. 603–605. DOI:
10.1049/el:20058169. ISSN 0013-5194.

[68] Sequin, C. and Clay, R. Fault tolerance in artificial neural networks. In: Neural
Networks, 1990., 1990 IJCNN International Joint Conference on. June 1990,
p. 703–708 vol.1. DOI: 10.1109/IJCNN.1990.137651.

[69] Shuler, R. L., Bhuva, B. L., O’Neill, P. M., Gambles, J. W. and Rezgui, S.
Comparison of Dual-Rail and TMR Logic Cost Effectiveness and Suitability for
FPGAs With Reconfigurable SEU Tolerance. IEEE Transactions on Nuclear Science.
2009, vol. 56, no. 1, p. 214–219. DOI: 10.1109/TNS.2008.2010320.

[70] Steinbuch, K. Die Lernmatrix. Biological Cybernetics. 1961, vol. 1, no. 1, p. 36–45.

[71] Straka, M., Kastil, J. and Kotasek, Z. Fault Tolerant Structure for
SRAM-Based FPGA via Partial Dynamic Reconfiguration. In: 2010 13th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools. 2010,
p. 365–372. DOI: 10.1109/DSD.2010.12.

[72] Straka, M., Kastil, J. and Kotasek, Z. Generic partial dynamic reconfiguration
controller for fault tolerant designs based on FPGA. In: NORCHIP 2010. 2010,
p. 1–4. DOI: 10.1109/NORCHIP.2010.5669477.

[73] Sum, J., Leung, C. sing and Hsu, L. Fault tolerant learning using Kullback-Leibler
divergence. In: TENCON 2007 - 2007 IEEE Region 10 Conference. Oct 2007, p. 1–4.
DOI: 10.1109/TENCON.2007.4429073.

[74] Szurman, K. and Kotasek, Z. Coarse-Grained TMR Soft-Core Processor Fault
Tolerance Methods and State Synchronization for Run-Time Fault Recovery. In: 2019
IEEE Latin American Test Symposium (LATS). 2019, p. 1–4. DOI:
10.1109/LATW.2019.8704639.

[75] Szurman, K. and Kotasek, Z. Run-Time Reconfigurable Fault Tolerant
Architecture for Soft-Core Processor NEO430. In: 2019 IEEE 22nd International
Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS).
2019, p. 1–4. DOI: 10.1109/DDECS.2019.8724636.

59

http://books.google.cz/books?id=eFPqqMBK-p8C

[76] Szurman, K., Miculka, L. and Kotasek, Z. State Synchronization after Partial
Reconfiguration of Fault Tolerant CAN Bus Control System. In: 2014 17th Euromicro
Conference on Digital System Design. 2014, p. 704–707. DOI: 10.1109/DSD.2014.103.

[77] Szurman, K., Miculka, L. and Kotasek, Z. Towards a state synchronization
methodology for recovery process after partial reconfiguration of fault tolerant
systems. In: 2014 9th International Conference on Computer Engineering & Systems
(ICCES). 2014, p. 231–236. DOI: 10.1109/ICCES.2014.7030963.

[78] Takase, H., Kita, H. and Hayashi, T. Weight minimization approach for fault
tolerant multi-layer neural networks. In: Neural Networks, 2001. Proceedings. IJCNN
’01. International Joint Conference on. 2001, vol. 4, p. 2656–2660 vol.4. DOI:
10.1109/IJCNN.2001.938789. ISSN 1098-7576.

[79] Takase, H., Shinogi, T., Hayashi, T. and Kita, H. Evaluation function for fault
tolerant multi-layer neural networks. In: Neural Networks, 2000. IJCNN 2000,
Proceedings of the IEEE-INNS-ENNS International Joint Conference on. 2000, vol.
3, p. 521–526 vol.3. DOI: 10.1109/IJCNN.2000.861361. ISSN 1098-7576.

[80] Tan, Y. and Nanya, T. Fault-tolerant back-propagation model and its
generalization ability. In: Neural Networks, 1993. IJCNN ’93-Nagoya. Proceedings of
1993 International Joint Conference on. Oct 1993, vol. 3, p. 2516–2519 vol.3. DOI:
10.1109/IJCNN.1993.714236.

[81] Taniguchi, Y., Kamiura, N., Hata, Y. and Matsui, N. Activation function
manipulation for fault tolerant feedforward neural networks. In: Test Symposium,
1999. (ATS ’99) Proceedings. Eighth Asian. 1999, p. 203–208. DOI:
10.1109/ATS.1999.810751. ISSN 1081-7735.

[82] Velazco, R., Mansour, W., Pancher, F., Marques Costa, G., Sohier, D. et al.
Improving SEU Fault Tolerance Capabilities of a Self-Converging Algorithm. Nuclear
Science, IEEE Transactions on. Aug 2012, vol. 59, no. 4, p. 818–823. DOI:
10.1109/TNS.2012.2188303. ISSN 0018-9499.

[83] Yang, J. and Keezer, D. C. A Framework for Design of Self-Repairing Digital
Systems. In: 2019 IEEE International Test Conference (ITC). 2019, p. 1–10. DOI:
10.1109/ITC44170.2019.9000155.

[84] Zarafshan, F., Latif Shabgahi, G. and Karimi, A. Notice of Retraction A novel
weighted voting algorithm based on neural networks for fault-tolerant systems.
In: Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE
International Conference on. July 2010, vol. 9, p. 135–139. DOI:
10.1109/ICCSIT.2010.5565122.

[85] Zhou, Z.-H., Chen, S.-F. and Chen, Z.-Q. Improving tolerance of neural networks
against multi-node open fault. In: Neural Networks, 2001. Proceedings. IJCNN ’01.
International Joint Conference on. 2001, vol. 3, p. 1687–1692 vol.3. DOI:
10.1109/IJCNN.2001.938415. ISSN 1098-7576.

60

Related Papers

61

Paper A

Mapping trained neural networks
to FPNNs

M. Krcma, J. Kastil and Z. Kotásek, ”Mapping Trained Neural Networks to FPNNs,“ 2015
IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits &
Systems, 2015, pp. 157-160, doi: 10.1109/DDECS.2015.50.

62

Mapping trained neural networks to FPNNs

Martin Krcma, Jan Kastil, Zdenek Kotasek
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Email: ikrcma@fit.vutbr.cz, ikastil@fit.vutbr.cz, kotasek@fit.vutbr.cz

Abstract—This paper introduces a set of methods for mapping
the trained neural networks into the lighted grid structured
Field Programmable Neural Networks without the use of a
training data set. These methods use information obtained from
original neural networks such as a network structure, connection
weights and biases. The principles of these mapping methods are
described and the used grid FPNNs are explained. The results of
experiments are presented and summarized.

I. INTRODUCTION

The concept of the Field Programmable Neural Arrays
(FPNAs) [1] is meant to simplify the implementation of arti-
ficial neural networks in FPGAs. The simplification originates
from its main feature - a strongly customizable structure which
makes it possible to share a lot of resources between the origi-
nal synaptic connections due to a more simple interconnection
model.

A. FPNAs

The FPNAs use two different types of units called neural
resources for approximation of the neurons and the weighted
connections (synapses) of the original neural network.

An activator is the first type of neural resource. Activators
implement the functionality of neurons. The activator collects
a potential and computes an activation function. The other
type of neural resource is called link. The links apply the
weight multiplication to incoming data. By doing this it
implements the synapses and serves as the interconnection
of activators. But unlike the traditional neural networks, the
structure of connections is much more flexible. The FPNAs
do not prescribe any mandatory type of connection model. It
makes it fully optional. In the FPNAs it is not necessary to
connect only activators. It is possible to connect the links as
well and to chain them. This feature allows us to construct
new types of connection models. For example, it is possible
to connect activators with a sequence of a few links and make
all original connections go through this sequence. Therefore,
one link in the sequence approximates a number of original
synaptic connections. The links are shared between a set of
original connections. This sharing leads to spare hardware
resources of FPGAs. Moreover, by using this feature it enables
us to construct the networks with a very simple interconnection
and make its structure suitable for FPGAs.

When the connection model is designed and concrete
parameters of neural resources are assigned, the resulting
object is called Field Programmable Neural Network (FPNN)
[2]. It is one of the possible instances of an FPNA. One FPNA
can be interconnected and parametrized in many ways, so it is
possible to create many FPNNs from one FPNA.

B. Grid FPNNs

In order to obtain as many resources saving FPNNs as
possible, we have designed a special type of the grid FPNNs
which became the core of our work [5][6]. An example of
one layer of this type of FPNN is illustrated in Fig. 1. The
circles represent activators, the large arrows represent links
and the thin arrows represent connections between the neural
resources. The orientation of the connection arrows show the
way of the passing data. As the picture illustrates, there is only
one link on the output of every activator. The link realizes the
connection to another layer. It is directly connected to one
successive activator. The connection to the other activators
goes through the sequence of links within the whole layer.
There are two sequences going in the opposite direction and
realizing most of the connection. Together they are called
interconnection chain. Every FPNN layer with more than one
activator has an interconnection chain. The whole connection
is realized by the layer size + 2 × (layer size − 1) links
only. Synaptic connections are implemented as a sequence of
multiplying by the weight of each link.

Fig. 1. A grid FPNN composed of activators (circles), links (thick arrows)
and data connections (thin arrows)

This kind of structure relatively matches the structure of
an interconnection bus in FPGAs. It consists of a lot of
shared resources with a very simple local interconnection.
Accordingly it is suitable for the implementation in FPGAs. In
order to obtain even more resource savings we have changed
the original definition [1] and limited the number of links affine
operators (the weights) to one. Thus, every link (a member of
the set of all links E) has an affine operator performing the
multiplication of its input value x by a constant parameter W
(1)(2). This single parameter is common for every approxi-
mated synapse. By doing this the universal multiplier in the
link is turned into a less expensive constant multiplier. We call
this type of link as light link and the grid FPNN using only
light links as light grid FPNN.

∀e ∈ E(∃αe);αe : R× R→ R (1)
αe =We × xe;We, xe ∈ R (2)

In the light grid FPNN, the original synapse w ∈ S, S is
a set of original synapses weights, is approximated with value
w′ computed (4) as a product of all W parameters of all links
in a sequence approximating the synapse determined by seq
function (3).

seq : S → En, n ≥ 1 (3)

w′ =
∏

e∈seq(w)

We (4)

We have used the grid FPNNs for the implementation of
basic feedforward layered neural networks for classification
tasks. We have constructed an FPNN from already trained
neural networks and tried to map these networks to FPNNs
as precisely as possible. For mapping purposes we have used
only the information coming from an original neural network,
such as the network structure, weights and bias values. Our
goal was to avoid the use of training data and thus be capable
of creating the FPNNs from the networks, the training data of
which were already lost or are not easily available.

II. EXPERIMENTS

We have experimented with classification tasks from the
Proben1 neural networks benchmarking data set [3]. The
experiments have been programmed in Python of version 3
and performed on personal computers. All the presented results
were obtained during experiments with a diabetes8 task from
the Proben1. The FPNN has eight inputs, sixteen activators in
the hidden layer and two activators in the output layer.

A. Basic mapping method

As all the links W parameters in a sequence have to be
known for the approximation of a synapse and as prefixes of
the sequence can approximate another synapses, it is needed
to start the mapping from the beginning of every sequence and
with the following steps moved further and further.

The weight approximation (4) can be reformulated as
multiplying the partial product of the sequence prefix by its
last l links W parameter (5). As the prefix value is already
known from previous steps of mapping, the Ww

l is needed to
be determined in an actual step. It is computed as the division
of original synapse w weight and the prefix value (6). All
synapses approximated by the link l are placed in a set Sl.

w′ =

 ∏

e∈seq(w)r{l}
We

×Ww

l ;w ∈ Sl (5)

Ww
l =

w∏
e∈seq(w)r{l}We

;w ∈ Sl (6)

As one link can be placed in more than one sequence and
|Sl| ≥ 1, there is a whole set Pl (|Pl| = |Sl|) of Ww

l computed
parameters for it. However, in the case of light grid FPNN, the
link disposes a single W parameter. Thus, there is a need for
compromise. In the basic method (called ARIT) an arithmetic
average has been used.

B. Measuring

Since the FPNNs are seen in this paper as an FPGA suitable
for approximation of neural networks, the quality of results
was measured as a difference between a neural network output
classification and an FPNN output classification. The number
of identically classified data vectors and differently classified
data vectors were measured. The representative value was the
percentage rate of match.

C. The accuracy

During our experiments with the grid FPNNs we have
found that FPNNs with two inputs and one output have
been mapped with 100% accuracy. This is not surprising
considering the grid FPNNs structure. There are two inputs
and two link sequences in a hidden layer to connect them
with each activator, so there is no need for sharing the links
between the synapses (there is one link in the sequence for
the approximation of each synapse) and it is possible for an
approximation to be accurate. Secondly, there is only one
output, thus there is no interconnection chain, no sharing links
between synapses and approximation is accurate.

Next, we have found that the accuracy of differently
organized FPNNs was not very high. If there are more than
two inputs and one output, the sharing comes into place having
a strong negative influence on the accuracy. In different kinds
of approximated neural networks we usually did not get over
the 70% rate of match level. Usually we reached an over 60%
rate of match.

Because of these results, we have decided to find a mapping
method capable of achieving a satisfying accuracy without the
use of structural changes. Our goal has been at least 90% rate
of match. in order to obtain these results two sets of new
methods have been designed.

III. METHODS BASED ON WEIGHTED AVERAGE

These methods are based on a weighted average (7) and
differ in a way of computation of the weights v. The compu-
tation is based on information the FPNN provides.

Wl =

∑
vi ∗ pi∑
vi

; l ∈ E, pi ∈ Pl, i ∈ 〈1, |Pl|〉 (7)

The first method computes the weights from a distance
between an actual computed link and a source activator of
computing connection in a previous layer. The weight is
determined as a count of links between the actual link and the
source activator. Thus, longer connections have a bigger effect
to a final value of links weight. Another version of the method
uses a reciprocal value of the distance between the actual
link and the source activator. Shorter connection had a bigger
effect in this case. We call this method DIST DP for direct
proportion and DIST IP for inverse proportion. Computation
uses dist and clos functions. If a sequence L is composed of n
links, L = {l1..ln}, n ≥ 1, then the functions can be defined
as (8)(9). By using these functions, the weight computation
can be performed as (10)(11).

∀em ∈ L : dist(em) = m (8)
∀em ∈ L : clos(em) = (n−m) + 1 (9)

vi = dist(pi); pi ∈ Pl, i ∈ 〈1, |Pl|〉 (10)

vi = clos(pi); pi ∈ Pl, i ∈ 〈1, |Pl|〉 (11)

The second method is based on the value of the original
synapses weight. The value is directly used as a weight (12).
Synapses with a bigger weight have a greater effect on a
link weight. Another version of this method uses an inverse
proportion to make connections with a smaller weight to have
a bigger effect on a result (13). We call this method WEIG DP
for direct proportion and WEIG IP for inverse proportion.

vi = wi;w ∈ Sl, i ∈ 〈1, |Sl|〉 (12)

vi =
1

wi
;w ∈ Sl, i ∈ 〈1, |Sl|〉 (13)

The third method is based on the value of the sequence
prefix. The value is directly used as a weight (14). Synapses
with a higher prefix value have a greater effect on a result.
Another version of this method uses an inverse proportion to
make synapses with a lower value of a prefix to have a bigger
effect on a result (15). We call this method PROD DP for
direct proportion and PROD IP for inverse proportion.

vi =

 ∏

e∈seq(w)r{l}
We

 ;wi ∈ Sl, i ∈ 〈1, |Sl|〉 (14)

vi =
1(∏

e∈seq(w)r{l}We

) ;wi ∈ Sl, i ∈ 〈1, |Sl|〉 (15)

The last method is based on the usage of a position of
a computed approximation value pi in ascending ordered set
of all approximation values. For completeness, the inverse
proportion is used as well. We call this method PVAL DP
for direct proportion and PVAL IP for inverse proportion.

Table I contains the results of all methods on the testing
data set. The column Method contains the name of the method
and the column Data set specifies the training or testing data
set. The column Match contains the number of input vectors
accordingly classified by both the FPNN and the original
neural network. The column Mismatch contains the number
of differently classified vectors, and the column Rate contains
the rate of matches.

Method Match Mismatch Rate [%]
ARIT 250 133 65.274

DIST DP 237 146 61.879
DIST IP 250 133 65.274

WEIG DP 250 133 65.274
WEIG IP 250 133 65.274
PROD DP 251 132 65.535
PROD IP 249 134 65.013
PVAL DP 250 133 65.274
PVAL IP 250 133 65.274

TABLE I. THE METHODS COMPARISON

As the table shows, the best results were achieved with the
PROD DP method with a 65.535% rate of match. However,
all the results are almost identical and there is hardly any im-
provement on the results according to the basic ARIT method.
In an effort to gain a better improvement, combinations of
methods were tested.

A. Combinations of methods

All the possible combinations of two, three or all four
weighted methods were used. A resulting weight vi was
computed as an addition of weights computed by all methods
in a combination. The results are summarized in Table II. The
results are ordered from the best to the worst. Only the results
better than 60% are listed. Table III contains the concrete
values of the gained improvement and these tables contain
only those methods which achieved an improvement over the
PROD DP (the best simple method). The column Increase
contains the percentage increase of the rate of the match.

Combination of methods Match Mismatch Rate [%]
PVAL DP, PROD IP, DIST DP 283 100 73.890

PVAL DP, PROD IP, WEIG IP, DIST DP 280 103 73.107
PVAL DP, DIST DP 279 104 72.845

PVAL DP, WEIG IP, DIST DP 277 106 72.323
PVAL IP, PROD DP, WEIG IP 259 124 67.624

PVAL IP, PROD DP 253 130 66.057
PVAL IP, PROD DP, WEIG DP, DIST DP 252 131 65.796
PVAL DP, PROD DP, WEIG IP, DIST IP 251 132 65.535
PVAL IP, PROD IP, WEIG IP, DIST IP 250 133 65.274

PVAL DP, PROD DP, WEIG DP, DIST IP 249 134 65.013
WEIG IP, DIST DP 237 146 61.879

PVAL IP, PROD IP, DIST DP 230 153 60.052

TABLE II. THE COMPARSION OF THE COMPLEX METHODS

Combination of methods Rate [%] Increase [%]
PVAL DP, PROD IP, DIST DP 73.89033 8.35533

PVAL DP, PROD IP, WEIG IP, DIST DP 73.10704 7.57204
PVAL DP, DIST DP 72.84595 7.31095

PVAL DP, WEIG IP, DIST DP 72.32375 6.78875
PVAL IP, PROD DP, WEIG IP 67.62402 2.08902

PVAL IP, PROD DP 66.05744 0.52244
PVAL IP, PROD DP, WEIG DP, DIST DP 65.79634 0.26134
PVAL DP, PROD DP, WEIG IP, DIST IP 65.53524 0.00024

TABLE III. THE IMPROVEMENT OF THE COMPLEX METHODS

The combination of methods PVAL DP, PROD DP,
WEIG DP and DIST DP gained the best results with a
73.890% rate. The best achieved improvement was 8.35533%.
In eight methods, improvements were achieved.

IV. METHODS BASED ON OPTIMIZATION ALGORITHM

Up till this point only the weights were mapped. The
neurons biases were directly transferred into activators without
any modification. In an effort to increase results even more,
we have developed two methods of mapping, including a
biases modification. Both methods are based on the Nelder-
Mead optimization simplex algorithm [4]. The error function
minimized with this algorithm is the sum of the differences
between the activators output and the original neurons output.
The methods differs in the way a simplex is constructed and
the way the error function is applied. The points of the simplex
in both methods are made of a different set of links weight and
activator biases. The FPNNs created using methods mentioned
in the previous section are used as the initial points. The
FPNNs are listed in Table III plus the basic ARIT method.
Thus, these new methods serve as an extension of both the
simple and complex methods.

A. Computation layer by layer

The first method creates the points of simplex from a set
of link weights and activator biases in one layer. Every layer is
optimized separately. The equation (16) is the error function.
The T is the testing data set and the H is the set of activators
(neurons) in a hidden layer. oti is the activator output on the
input vector t and dti is the neuron output. This extension is
called TLAY. Table IV summarizes the achieved improvement
over simple methods.

Err =
∑

t∈T

∑

i∈H

oti − dti (16)

Combination of methods Rate [%] Increase [%]
PVAL IP, PROD DP, WEIG IP, TLAY 68.66840 3.13340
PVAL DP, WEIG IP, DIST DP, TLAY 67.62402 2.08902

PVAL DP, PROD DP, WEIG DP, DIST DP, TLAY 67.10182 1.56682
PVAL DP, PROD IP, WEIG IP, DIST DP, TLAY 66.31853 0.78353

PVAL IP, PROD DP, TLAY 66.05744 0.52244
PVAL DP, PROD DP, WEIG IP, DIST IP, TLAY 65.79634 0.26134

TABLE IV. THE IMPROVEMENT OVER THE SIMPLE METHODS

It can be observed that the greatest improvement of
3.13340% over simple methods this extension was achieved
with the combinations of PVAL IP, PROD DP and WEIG IP
methods. This improvement is smaller compared with only
using the combinations of the methods without this extension.

B. Computation activator by activator

The second method creates the points of simplex from one
activator bias and from the weights of all links in sequences
connected to that activator. Every activator is optimized sepa-
rately. The final weights of links are computed as a weighted
average of the values obtained from all activator optimizations.
The weight in the average is determined as the distance
between an optimized activator and a computed link. The
links weight is computed after all optimizations are done. The
equation (17) is the error function. The T is the testing data
set, oti is the activator output on the input vector t and dti
is the neuron output. This extension is called TACT. Table
V summarizes the achieved improvement over the simple
methods.

Err =
∑

t∈T

oti − dti (17)

Combination of methods Rate [%] Increase [%]
PVAL DP, DIST DP, TACT 75.45691 9.92191

PVAL DP, WEIG IP, DIST DP, TACT 75.19582 9.66082
PVAL IP, PROD DP, WEIG IP, TACT 72.32375 6.78875

PVAL IP, PROD DP, TACT 67.62402 2.08902
PVAL DP, PROD IP, DIST DP, TACT 67.36292 1.82792

ARIT, TACT 65.53524 0.00024

TABLE V. THE IMPROVEMENT OVER THE SIMPLE METHODS

As the table shows, the best results this expansion achieved
with the combination of the methods PVAL DP and DIST DP
with a 9.92191% improvement over the simple methods. This
is the best result achieved with all methods, combinations and
extensions.

V. CONCLUSIONS AND FUTURE RESEARCH

We have developed a set of mapping methods based on the
weighted average and different kinds of weight determination.
We have combined these methods into a new set of complex
methods. We have extended these methods using the Nelder-
Mead optimization algorithm. The combinations of methods
gained an 8.35533% improvement over the simple methods.
The best result all the methods have gained is a 75.45691%
rate of match with the combination of PVAL DP, DIST DP
methods and the TACT extension.

Some of the designed combinations of the methods have
achieved an improvement over the simple methods, while some
have produced the same results as the simple methods. Also
the extensions made an increase of rate of match with some
combinations of the methods.

In our future research, we are going to perform significantly
more experiments with other neural networks. We are going to
examine other mapping methods and optimization algorithms,
develop methods of using redundancy to increase the approx-
imation accuracy and examine the light grid FPNNs enhanced
with links using more than one affine operator in place of light
links suffering with a high approximation error. Beside this, we
are going to focus on fault tolerant properties of FPNNs and
examine the possibilities of using redundancy on the neural
resources level in order to increase the fault tolerance. We are
also going to test special algorithms performing the mapping
of neural networks to FPNNs and establishing a redundancy
free fault tolerance of selected neural resources.

ACKNOWLEDGMENT

This work was supported by the following projects:
National COST LD12036 -”Methodologies for Fault Tol-
erant Systems Design Development, Implementation and
Verification”, project Centrum excelence IT4Innovations
(ED1.1.00/02.0070), EU COST Action IC1103 - MEDIAN
- Manufacturable and Dependable multIcore Architectures at
Nanoscale and BUT project FIT-S-14-2297.

REFERENCES

[1] Girau, B.: FPNA: Concepts and Properties. In FPGA Implementations of
Neural Networks, editace A. R. Omondi; J. C. Rajapakse, Springer US,
2006, ISBN 978-0-387-28487-3, p. 63–101, 10.1007/0-387-28487-7-3.
http://dx.doi.org/10.1007/0-387-28487-7-3

[2] Girau, B.: FPNA: Applications and Implementations. In FPGA Imple-
mentations of Neural Networks, editace A. R. Omondi; J. C. Rajapakse,
Springer US, 2006, ISBN 978-0-387-28487-3, p. 103–136, 10.1007/0-
387-28487-7-4.
http://dx.doi.org/10.1007/0-387-28487-7-4

[3] Prechelt, L. P.; Informatik, F. F.: — A Set of Neural Network Bench-
mark Problems and Benchmarking Rules. Technical report, Universitat
Karlsruhe; 76128 Karlsruhe, Germany, 1994.

[4] Nelder, J. A.; Mead, R.: A Simplex Method for Function Minimization.
The Computer Journal, year 7, n. 4, 1965: p. 308–313,
http://comjnl.oxfordjournals.org/content/7/4/308.abstract

[5] Krcma, M.: The neural networks acceleration in FPGA. Bachelor’s the-
sis, Faculty of Information Technology, Brno University of Technology;
Brno, 2012.
https://wis.fit.vutbr.cz/FIT/st/rp.php/rp/2011/BP/13719.pdf

[6] Krcma, M.: The neural networks acceleration in FPGA. Master’s thesis,
Faculty of Information Technology, Brno University of Technology;
Brno, 2014.
https://wis.fit.vutbr.cz/FIT/st/rp.php/rp/2013/DP/15754.pdf

Paper B

Comparison of FPNNs models
approximation capabilities and
FPGA resources utilization

M. Krcma, Z. Kotasek and J. Lojda, ”Comparison of FPNNs models approximation ca-
pabilities and FPGA resources utilization,“ 2017 13th IEEE International Conference on
Intelligent Computer Communication and Processing (ICCP), 2017, pp. 125-132, doi:
10.1109/ICCP.2017.8116993.

67

Comparison of FPNNs Models Approximation
Capabilities and FPGA Resources Utilization

Martin Krcma, Zdenek Kotasek, Jakub Lojda
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Email: ikrcma@fit.vutbr.cz, kotasek@fit.vutbr.cz, ilojda@fit.vutbr.cz

Abstract—This paper presents the concepts of FPNA and
FPNN, used for the approximation of artificial neural networks
in FPGAs and introduces derived types of these concepts used by
the authors. The process of transformation of a trained artificial
neural network to an FPNN is described. The diagram of the
FPGA implementation is presented. The results of experiments
determining the approximation capabilities of FPNNs are pre-
sented and the FPGA resources utilization are compared.

I. INTRODUCTION

The artificial neural networks [9] are one of the impor-
tant models of sofcomputing and artificial intelligence. Their
structure is inspired by the structure of the human brain and
they dispose of a high capability of learning and memorizing to
solve various types of tasks. Basically, the goal of the artificial
neural network is to learn the relation between two sets of data
vectors, to generalize the relation, to determine its features
and to use it for the determining the relation of the unknown
vectors belonging to the same problem. This capability can
be used for classification tasks, for timeseries and functional
prediction, to control tasks, to image recognition, clustering
and other tasks.

Neural networks are composed of a set of neurons com-
puting the activation function over the weighted sum of their
inputs. The neurons are interconnected with the weighted con-
nections called synapses. The learning of the neural network
is basically a process of setting the weights.

The networks have been implemented in various kinds of
devices starting from analog computers to the most modern
processors, VLSIs, graphical processing units and FPGAs.
This paper deals with one of the possible implementations of
artificial neural networks in FPGAs - FPNA/FPNN.

The concept of Field Programmable Neural
Arrays/Networks (FPNAs/FPNNs) [1], [2] in design is
meant to simplify the implementation of artificial neural
networks in FPGAs by adjusting its properties to be
more suitable for the implementation into their logic. The
simplification originates from its main feature - a highly
customizable structure which makes it possible to establish
resource sharing between the original synaptic connections of
the neural network. This is done by using its customizability
to simplify the interconnection model. The concept were used
for implementing large scale spiking networks [11], [12].

The FPNNs are not the same structures as neural networks,
although they can be constructed in that way. The FPNNs

represent a different model which can structurally differ from
the implemented neural network. They can also have different
capabilities, which means that they are not only an implemen-
tation of the neural networks, they are an approximation of
neural networks as well. Since the FPNNs can be constructed
in various ways and types, the approximation accuracy can be
different.

The goal of this paper is to describe the types of FPNNs
and compare the approximation capabilities of these types. The
FPGA resources utilization of the FPNNs is compared as well.

The FPNNs were formally defined in [1], [2]. In order to
follow the original definitions, the presented work is based on
these definitions and on definitions derived from them. For our
purposes we modified the original definitions in order to suit
them to our way of using the concept. This step allowed us to
use different level of the approximation accuracy. Our further
definitions specify special derived types of FPNNs. Also, they
allow us to describe easily the algorithms of mapping trained
neural networks to FPNNs.

In our paper published at NORCAS 2015 conference [7],
we described the concept of Field Programmable Neural Net-
works for artificial neural networks implementation in FPGA.
We also presented a model of fault tolerant FPNNs and various
fault tolerance improving techniques based on the model.
Experimental results were also provided. Now, in this paper
we describe how we continue in our research - the formal
definitions of the FPNA/FPNN concept are presented. The
problem of process of direct transformation of the trained
neural network to FPNN together with the related algorithms
are described. The goal of experiments presented in the paper
is to determine the approximation capabilities of different
FPNNs of the reduced and the full type, the results are
described in the paper. In the earlier paper [6] we dealt with
the mapping of the neural networks to FPNNs of the most
simple type with a number of methods. This paper follows
this work by extending it to other types of FPNN with more
detailed description of the models, methods and algorithms.

The paper is organised as follows - the first section intro-
duces the FPNA/FPNN concept. The second section deals with
the problem of neural networks transformation to FPNNs and
describes our transformation algorithms while the third section
presents the diagrams of FPGA implementation of FPNNs. In
the fourth section experiments and results are described. The
last section summarizes the paper.

II. FPNN

For purposes of our research we developed a new definition
of an FPNN (see Definition II.1, original definition by B. Girau
[1], [2]). According to this definition, an FPNN is a structure
composed of two types of units (together called neural re-
sources). The units of the first type are called activators (the
set N) and represent original neural network neurons. They
perform the same actions as neurons - they iteratively gather
input data into potential, then apply an activation function to
obtain the output. The activation function is represented by
the function operator ”f” and the iteration operator ”i” is
responsible for input data processing to provide the input to
the function operator.

The interconnections between activators are realized by the
other unit type called links (the set L). The links perform
approximation of the original synaptic weights (they compute
the weight multiplication) according to the rest of the FPNN
parameters. The actual data interconnection model is presented
by an oriented graph (N,E), where E is a set of valued edges
interconnecting the activators. Every edge is usually split up
to a sequence of links which allows us to construct various
structures. The more we split the edges into links, the more
flexibility we obtain.

Definition II.1 (FPNN [1]). We say that structure
(N,L,E, φ, ω) is an FPNN if the following statements
hold true:

1) N is a set of units called activators that dispose of:
a) An iterative variable tn: ∀n ∈ N : ∃tn ∈ R
b) A default value of tn:

∀n ∈ N : ∃on ∈ R; tn0
= on

c) A number of iterations: ∀n ∈ N : ∃an ∈ N
d) An iterative operator (xn is an input data):

∀n ∈ N : ∃in : R× R→ R;
tna = in(tna−1 , xn); a = 1..an

e) A function operator: ∀n ∈ N : ∃fn : R→ R
2) L is a set of units called links that dispose of:

a) A set of link operators ∀l ∈ L : ∃Al:
Al = {αn(x)|αn(x) = Wn × x;Wn ∈
R;n = 1..c}

3) E is a set of valued oriented edges: (m,n) ∈
E;m,n ∈ N).
The edge value is defined: ∀e ∈ E : ∃We ∈ R

4) (N,E) is an oriented graph denoting the intercon-
nection between activators.

5) φ is a function E → L+, so that:
∀e ∈ E : φ(e) = (l1..ln); l1..ln ∈ L;n > 0

6) ω is a function E → L+, so that:
∀e ∈ E : φ(e) = (l1..ln); l1..ln ∈ L;ω(e) ⊆
φ(e); 0 < n ≤ |φ(e)|

7) Edge-to-operator functions σl : E → Al; l ∈ L:
∀e ∈ E ∧ ∀l ∈ φ(e) : σl(e) = αxl ;α

x
l ∈ Al

8) Operator determining ψl : E+ → Al, l ∈ L:
∀l ∈ L : ψl(e1..en) = αx ⇔ αx ∈ Al ∧ l ∈ ω(e1) ∧
.. ∧ l ∈ ω(en) ∧ σl(e1) = .. = σl(en) = αx

9) A set of input nodes exists:
∃Ni = {n ∈ N | deg+(n) = 0}
∀n ∈ Ni : in = ∅; fn(x) = x

The actual FPNN structure is determined by the (N,E)

graph and the φ function. The edges are split up to the
sequences of interconnected links, given by the φ functions
which realize the interconnection between activators and the
approximation of the edges weights. The edges weight approx-
imation is determined by the ω, σ, ψ functions and realized
by the link operators. Link operators are functions which
are applied to the data passing through the links. Every
link disposes of one or more link operators (the Al sets).
To determine a link operator which should be assigned to
the particular edge (to the data which would originally pass
through the edge) the σ functions are constructed. All the link
operators in the sequence (realizing an edge) are applied to all
the passing data (according to the σ functions). To establish
the weight approximation, it has to be decided which links
in the sequences will be used for the approximation by the
construction of the ω function. The actual approximation is
determined by the ψ functions which construct link operators
for the assigned edges (by the ω, σ functions). This will be
further explained in the section III.

To preserve the consistency with the original definition [1]
we add the following: If only the graph (N,E), iteration and
function operators are defined, the structure is called FPNA
(Field Programmable Neural Array) [1] and it defines the
whole class of possible FPNNs. Every FPNN can bee seen
as an instance of some FPNA.

A. Grid FPNN

For our research purposes we developed a special type of
FPNN based on the above provided definitions. Grid FPNN
(definition II.2) is an FPNN with an enforced limitation of the
structure causing it to form a grid shape. The reason for this is
to make an FPNN suitable for the implementation in FPGAs
due to the similarity of the grid FPNNs structure and FPGAs
interconnection bus and the sharing of resources in links.

Definition II.2 (Grid FPNN). We say that FPNN is the grid
FPNN if the the following statements hold true:

1) The activators are organized into layers.
2) The two sequences of interconnected links exist in

all layers composed of more than one activator. The
number of links in every sequence is one less than
the number of activators in the layer. The output of
every link is connected to the input of the nearest
activator. The sequences go in the opposite ways.

3) The output od every activator is connected only to
a single link which provides the connection to the
next layer. The output of the link is connected to
the nearest activator and to the nearest links of one
or both link sequences in the layer (which realizes
connection to all other activators).

An example of a grid FPNN can be seen in Fig. 1. In the
figure, the circles represent activators, wide arrows represent
links and the thin arrows represent data interconnections. The
orientation of the connection arrows shows the way of the
passing data. The straight wide dashed/dotted arrows represent
the original neural networks synapses. The thin dashed/dotted
arrows represent the sequences of links approximating the
particular synapses. The synapses and the particular sequences
are drawn with the same line and arrow styles. As the picture

illustrates, there is only one link (called initial, Definition II.4)
on the output of every activator which provides the connection
to the following layer. It is directly connected to one successive
activator in the following layer. The connection to the other
activators goes through the sequence of links within the whole
layer. Two sequences of the links are going the opposite
ways. They are called Interconnection sequence (definitions
II.3-II.5). Every layer with more than one activator has an
interconnection sequence within.

Definition II.3. A sequence of links is generally a sequence
of directly interconnected links.

Definition II.4. An initial is a link having no link predecessors.
It has only an activator predecessor.

Definition II.5. An interconnection sequence is a sequence of
links interconnecting activators within a layer. It is composed
of two sequences going the opposite ways. The input of every
link is connected to one or two preceding links, the output is
always connected to the nearest activator and to the succeeding
link in the sequence (if it exists).

B. Different levels of approximation

The approximation capabilities of the FPNN depend on
the number of available link operators present in links and the
number of edges assigned by the ω function for approximation
to the links. Respectively, the ratio between the numbers of
operators and assigned approximated edges is the essential
parameter for the FPNN approximation abilities. The numbers
can be equal. In that case, the ψ functions only determine
the value approximating the given edge (the member of the
multiplication sequence as described in the next subsection).
Thus, every edge has its link operator counter part. In this
case, the approximation of the original neural network weights
(suppose that original synapses were directly transferred to
edges, thus (N,E) graph is isomorphic to the original network)
is accurate. We call the FPNN with these properties as Full
FPNN.

The definition allows us to reduce the number of link
operators. In that case, the ψ function is surjective and its
purpose is to find a compromise between a number of edges
mapped to one link operator. In this case, the approximation
accuracy suffers from the decrease caused by sharing the
link operators between multiple edges. However, this kind of
sharing reduces the FPGA resources utilization (the main goal
of the FPNN concept) since, the memories containing the link
operators are smaller as well as related logic (multiplexors,
possibly multipliers etc.). And the accuracy decrease does not
have to be necessary critical since the neural networks are
potentially robust against some weights losses. The usage of
this technique of resource utilization reduction is a matter of
preference and depends on concrete situation and a way of
usage.

We distinguish two other types of FPNN. The reduced
FPNN and the light FPNN. The meaning of light FPNN
is simple - every link disposes of only one link operator
(∀l ∈ L : |Al| = 1). In this case, the link multiplier turns
into a constant multiplier which offers the highest spare of
resources. However, the accuracy suffers the most.

The last type mentioned in this paper is the reduced

FPNN which disposes of the same number of link operators
as it has the number of direct link predecessors in the link
sequences it belongs to. This type approximation capabilities
are determined by an FPNN structure as the number of link
operators is directly dependent on the number of existing link
sequences and their interconnection. The explanation based
on Fig. 1 would be the most appropriate. Consider the third
(the rightmost) link of the lower part of the interconnec-
tion sequence (the sequence heading to the right). This link
approximates three edges originating in the three leftmost
activators. However, it has only two direct link connected
predecessors. So, in the case of reduced FPNN, it would
have two link operators. The first one approximates the edge
originating in the third leftmost activator. Since there is no
sharing of this link operator, the approximation of the edge is
accurate. However, the second link operator is shared between
two edges originating in the first two leftmost activators. An
approximation of these edges would be hence less accurate due
to sharing the link operators. But in case of the full FPNN, the
approximation would be accurate since there would be three
affine operators, one for every edge.

Fig. 1. Synapses (edges) approximation in a grid FPNN

Definition II.6 (Light FPNN). We say that FPNN is a light
FPNN if the folowing statemet holds true: ∀l ∈ L : |Al| = 1.

Definition II.7 (Full FPNN). We say that FPNN is a full FPNN
if the following statement holds true:
∀l ∈ L ∧ ∀e ∈ E : |Al| = |{e|e ∈ ω−1(l)}|.
Definition II.8 (Reduced FPNN). We say that FPNN is a
reduced FPNN if the following statements hold true:

1) The edge equivalence is defined:
∀e1, e2 ∈ E; l ∈ L : e1 ≡l e2 ⇔ φ(e1) = l11..lxl..ln∧
φ(e2) = l21..lyl..lm; lx = ly

2) ∀l ∈ L the size of Al is equal to the number of the
equivalence classes generated by the ≡l.

III. MAPPING OF NEURAL NETWORKS TO FPNNS

Mapping is a process of direct transfer of an artificial
neural network into an FPNN without using a training data set
and without the need of learning (other works [3] deal with
training of FPNNs). Mapping uses information obtainable from
an original neural network such as weights, biases, activation
functions and the network structure.

The first phase of mapping would be the construction of
an appropriate FPNN. The first step is construction of (N,E)
graph which should be (but does not have to be) isomorphic

to the original neural network. This step contain the mapping
of neurons to activators - the basis functions are mapped to
the iteration operators, the activation functions to the function
operators and the biases to the on parameters. The second step
is the links creation according to the intended shape of the
FPNN. The next step is to assign the edges to the sequence of
links (constructing the φ function) which specify the concrete
shape of the FPNN. According to the approximation accuracy
preferences, the Al sets of link operators needed to be con-
structed now.

Since all data between activators will flow through the
sequences of links (given by the φ function) interconnecting
them, the data will be modified using link operators of all
links in the sequences. Therefore, the σ functions have to be
constructed to determine the relations between edges and the
link operators.

However, not all link operators have to be used for the
edges weights approximations. Some of them (or all but one)
can be used as data passers which can be possibly shared
between edges. For better understanding, consider an edge e,
its weight We = 3 and φ(e) = l1l2l3l4. Using σ functions we
obtain a sequence of link operators α1α2α3α4 assigned to the
edge. If it would be our intention to use all these operators to
approximate the We, the approximation sequence would then
be most likely composed of three operators with value of 1 and
one operator with value of 3. Therefore, we would need to have
an extra 1-valued operator in all the three links. Which would
be easy to use, but costs more resources. I could be more wise
to use other existing operators (approximating other edges) in
some of links and special operators used for e approximation
in others. In our case, if σ functions map the e to the operators
in l1..l3 links with values of 1.5, 2, 2, the link operator in l4
used for approximation of the e would have the value of 0.25
(since 1.5× 2× 2× 0.25 = 3). In this case, only one operator
was used for the e approximation and the others were shared
with other edges without influencing them (they were used
for other edges approximation in the same way). To specify
which link operators are used for approximation of concrete
edges, the ω function is constructed. If sharing is not in our
intention (for example for matter of data type accuracy which
could suffer from multiple multiplications), the ω(e) = φ(e)
for all edges.

The last step is to determine the ψ functions. These func-
tions serve for finding a compromise if more then one edges
are mapped to a single link operator for approximation. If all
the edges dispose of exclusive operators of their own (the full
FPNN), no ψ functions are needed. In other cases (the reduced
and light FPNNs) they have to be constructed. There are
plenty of way of finding the compromises - arithmetic average,
median, weighted average and others. We have described the
results of using different compromises (ψ functions) in our
paper at DDECS 2015 [6].

There are several possible ways how to determine the ω and
the σ, ψ functions. Using evolution algorithms and optimiza-
tion algorithms could be one of them. In this paper however
we would like to describe a systematic approach of mapping
trained layered feedforward neural network (perceptron like)
to grid FPNNs. We suppose the (N,E) graph to be isomorphic
to the original neural network and the L set and the φ function
to be constructed to form a grid FPNN according to the

definition II.2. The ω functions is constructed according to
the equation 1. According to it, every edge is approximated
by the link operator of the last link in the sequence given
by the φ function. The σ functions need to be constructed to
create groups of edges according to the equivalence classes
generated by the ≡ function from the definition II.8. The ψ
functions were chosen as the arithmetic average (equation 2).
The opSeqe is the sequence of link operators assigned to the
edge e except the last one. The Pe is the value of the product
of the link operators in the opSeq set. It denotes the actual
multiplication value in the last link before ω(e). According
to the value and the value of the edge weight, the value Ae
needed to accurate approximation is computed. In full FPNN,
this value would be directly assigned to the link operator. In
the presented equation, the arithmetic average is applied to all
Ae values mapped to the link operator.

∀e ∈ E : ω(e) = ln ⇔ φ(e) = l1..ln (1)

opSeqe = (αel |αel = σl(e) ∧ l ∈ φ(e) \ ω(e))
Pe =

∏

αl∈opSeqe
αl

Ae =
We

Pe

∀l ∈ L : ψl(e1..en) =

∑
ex∈{e1..en}Ae

n

(2)

∀e ∈ E : Ae =
∏

l∈φ(e);αe
l=σl(e)

αel (3)

A. Mapping algorithms

On the base of the presented principles we implemented
the following algorithms which perform a mapping of trained
neural network to the grid FPNN. The construction algorithm
of the FPNN will not be described in explicit details in this
paper, however the main idea was presented in the preceding
section. The algorithms use the definitions and equations
presented above as well as the declaration in Table I.

At first, the auxiliary variables have to be initialized in
the Algorithm 1. Then, the ordered set of link sequences
must be constructed using the Algorithm 2. The set is called
chains and it is constructed for each layer separately using
the φ function and ordering the resulting link sequences by
their length (ascending order). The reason why to order the
sequences is that it is suitable to start mapping with the
shortest sequences of the length 1 (initials - always present
in the grid FPNN) and continue with longer sequences in
the next steps, determining one additional operator (member
of the multiplication sequence) in the sequence in the each
subsequent step. This means that the links (their operators)
are mapped one by one creating longer mapped sequences in
each step.

In every step a new link is selected and its operators
determined. In order to compute the values of the operators,
it is needed to construct the groups of edges related to each
link operator. Determining of these groups differs in case of

each type of FPNN. In case of reduced FPNN, the edges are
separated according to the link predecessor they pass trough,
as the definition specifies. The groups are constructed as the
equvalence classes of the ≡l function from the definition II.8.
This is done by the Algorithm 3. In case of light FPNN,
the equation on the second line of the Algorithm 3 shall be
replaced by the equation 4 assigning all the edges to the one
group which will be mapped to the single link operator. If a
full FPNN is being mapped, the line should be replaced by the
equation 5 assigning every edge to the separated group.

groups← ω−1(l) (4)

groups← {{e}|e ∈ ω−1(l)} (5)

After the groups edges are constructed, the values of partial
products Pe from the equation 2 as well as the approximation
values Ae are computed for every edge in every group in the
Algorithm 4. As the last step, the related link operator is
computed for each group using the ψ function. The operators
computation is complete and the link is removed from the
chain a algorithm continues with the successive link.

TABLE I. DECLARATIONS

Declaration Description
FPNN = (N,L,E, φ, ω) a grid FPNN
layers ∈ {N∗}∗ The set of FPNN activators layers.
chains ⊂ E∗ An ordered collection of link sequences.
sortByLength : En → E Sorting by path length.
firstNodeOf : En → E Chain’s first node.
∀e ∈ E : ∃Pe ∈ R Partial product of the operators sequence.
∀e ∈ E : ∃Ae ∈ R Approximation value for the operator computa-

tion.

1: procedure INITIALIZE(NN,FPNN)
/∗ Init of the variables: ∗/

2: for all ∀e ∈ E do
3: Pe ← 1.0
4: Ae ← 1.0
5: end for
6: end procedure

Algorithm 1. Initialization algorithm

The presented algorithms represent the very basic mapping
method. In our previous research [6] we developed a set of
additional methods for mapping the light FPNNs which can be
used to map the reduced FPNNs as well. The algorithms differ
in the way of computing the ψ function. They are based on
different usage of weighted algorithms with different weights

1: function DETERMINECHAINS(lr = {n1..nn} ∈ Nn)
2: chains← ∅
3: for all n ∈ lr ∧ s ∈ N do
4: for all (n, s) ∈ E do
5: chains← chains ∪ φ((n, s))
6: end for
7: end for
8: sortByLength(chains)
9: return chains

10: end function
Algorithm 2. Chain determination algorithm

1: procedure DETERMINEGROUS(l ∈ L)
2: groups← [e]≡l

∀e ∈ ω−1(l)
3: return groups
4: end procedure

Algorithm 3. Initialization algorithm

1: procedure MAPFPNN(NN,FPNN)
2: INITIALIZE(NN,FPNN)
3: for all layer ∈ layers do
4: chains← DETERMINECHAINS(layer)

/∗ Mapping path by path: ∗/
5: for all r ∈ chains do
6: l← firstLinkOf(r)

/∗ Multiplicands comput.: ∗/
7: for all g ∈ DETERMINEGROUPS(l) do
8: for all e ∈ g do
9: Pe =

∏
αl∈opSeqe αl

10: Ae ← We

Pe

11: end for
/∗ Computing the link
operators: ∗/

12: ασ(e∈g) = ψ(g) =
∑

e∈g Ae

|g|
13: end for

/∗ Shortening the chain: ∗/
14: r ← r \ {l}
15: chains← {p|p ∈ chains ∧ p 6= ∅}
16: end for
17: end for
18: end procedure

Algorithm 4. Reduced FPNN mapping algorithm

determination as well as on more advanced principles. They
also use different ways of results optimization. However, in
order to explain the problem we used the basic method only
since the other methods are more complicated and their results
could depend more on the concrete network.

We implemented these algorithms into our framework [5]
dealing with the FPNNs. The framework allow us to construct
FPNNs and map the neural networks to FPNNs as well as
simulating the computation of the FPNN and generating the
VHDL design for every FPNN. Using the framework, the
mapping is very fast, depending on the methods, FPNN size
and used optimizations it takes seconds to minutes to be
executed.

IV. IMPLEMENTATION OF FPNNS INTO FPGAS

The VHDL implementation of both types was created
according to the original design and schematic [1]. Another
implementation was proposed in [10]. Both, activators and
links were designed as separated units communicating with
signals. The communication is based on the asynchronous
request - acknowledgement model. Every neural resource gen-
erates requests for all units directly connected to its output
(successors) when its computation is done. Once a successor
starts to process the request, it sends the acknowledgement
back to the original resource. When the original resource
receives acknowledgements from all successors, it selects a
new input request to process, sends the acknowledgement and
begins the computation. The activators also send a flag together

with the requests. The flag is a constant number and it is
used by links to select the proper weight to multiply width the
input data. The links then propagate the flag to all connected
links. Only the full FPNNs use flags. The reduced and light
FPNNs implementation do not contain the logic related to flags
processing and transition.

The implementations of both types of neural resources are
similar, however they differ in used computational units. The
diagram of standard link implementation is illustrated in Fig.
2 and the diagram of the activator in Fig. 3. Both types are
composed of a multiplexor, demultiplexor, register, computa-
tion units and units for processing requests. The meaning of
common units is described bellow:

• SELECT selects one of the active requests for pro-
cessing using the Round&Robin algorithm. The re-
quests from preceding neural resources are indicated
by the set bits on its input. When the request is
selected, it sets the start signal up.

• MUX is an input data vectors multiplexer. It is con-
trolled by the SELECT unit.

• REG is a register storing the selected data vector.

• ACK DEMUX delivers an acknowledgement (gener-
ated by the start signal) to the proper predecessor. It
is controlled by the SELECT unit.

These units are present in both links and activators. They serve
for input requests processing and delivery of the input data to
the computation part of the unit. Computation part of links and
activators is composed of different units:

• MULT ADD applies the weights to the data. The key
to select the proper weight is the flag associated with
the request. The flag is selected from all of the flags
at the input FLAG IN by the value at the input s.
The weights are stored in the memory inside this unit.
Full FPNNs contain significantly more weights than
reduced or light FPNNs.

• ITER iteratively computes the sum of all input data
(simulates the neuron basis function). After a prede-
fined number of iterations, it transmits the result to
the TRANS unit and activates it using the fin signal.
After every iteration it activates the next signal which
starts the processing of another request.

• TRANS computes the activation function (the output
of the activator). The input is gained from the ITER
unit. The activation function were sigmoid like func-
tion suitable for hardware implementation [13].

All computation units take the input data from the register
REG, perform the computation of the result and transmit it to
the neural resource output. They also activate the signal ready
which is an input of the output requests generators:

• LINK REQ GEN generates the requests to the con-
nected successors when the ready signal is set. It also
receives the acknowledgements from the successors.
Using the free signal it controls the SELECT unit -
it enables (when all acknowledgements are received)

or disables (new request was selected - start signal
is up) its function.

• ACT REQ GEN is similar to the LINK REQ GEN,
but it allows to activate the free signal using the
next req signal without the requests generation.

These units are responsible for the control of the neural re-
source. When the processing of the selected request is started,
they block the SELECT unit preventing it from selecting
another request before the actual one is processed. After
the computation is done, they generate output requests and
hold the entire neural resource inactive until all requests are
successfully received by the successors.

Fig. 2. Diagram of a link implementation - the interconnection of the inner
units

Fig. 3. Diagram of an activator implementation - the interconnection of the
inner units

V. EXPERIMENTAL RESULTS

We experimented with the presented models and algo-
rithms, the experiments and results will be now described and
summarized. The experiments were focused on the approx-
imation capabilities of the reduced and full FPNNs model,
and on their FPGA resource consumption. The goals of the
experiments were to show and compare the capabilities of both
models and their space complexity. To perform the experiments
we used our framework to simulate the FPNNs in order to get

the approximation accuracy. The VHDL design of every FPNN
was generated using the framework as well.

The core of the experiments was a set of neural networks,
and a set of structurally corresponding FPNNs of both types.
Each trained neural network and the particular FPNN were
both tested on a set of testing input vectors and their outputs
were compared to each other to determine how the FPNN
output differs from the reference neural network output. Since
the FPNN serves as an approximation of the network, the
match between their outputs is the essential information.

We worked with 15 neural networks of different structures
trained for 3 classification tasks originating in the Proben1
neural networks set of benchmarks [4]. The selected tasks
were Diabetes, Thyroid and Two Spiral. The referential neural
networks were constructed with respect to obtaining the set
of networks with different structures not too big for the
implementation in the selected FPGA, with no respect to their
classification capabilities irrelevant for the FPNNs approxima-
tion quality determination.

Table II contains the information about reference neural
networks. The Name column contains the network name
(which is derived from the particular network task), the Struc-
ture column describes the network structure as numbers of
neurons in each layer separated by the dashes. The Neurons
and Weights columns summarize the numbers of neurons and
weights of the network. The last column contains the number
of links of the particular FPNN. The number of activators is
equal to the numbers of neurons.

The experiments were run ten times and the best and the
worst results of the approximation are presented in table III.
Table III contains the approximation accuracy test results. The
Name column refers to the particular FPNN (and the reference
network), the Reduced best column contains the approximation
accuracy of the reduced type FPNN output. The best case
results are evident from this column. The Reduced worst
column contains the approximation accuracy of the worst case
results. It is the rate of the identically classified input vectors
by both the network and the FPNN. The the rate of match of
the Full FPNNs is 100%.

The created FPNNs were implemented using VHDL and
were synthesized using the Xilinx ISE 14.4 tool. The target
FPGA was the Xilinx Virtex-7 device xc7v2000t-2flg1925. All
computations were implemented in fixed point form with 8
bits of the integer part and 8 bits of the fractional part [8]. The
utilization of slice registers, slice LUTs, DSPs and minimum
recommended clock period after synthesis were measured. The
result are summarized in tables IV and V. The columns contain
the utilization of the particular FPGA resources in the form
of the total number and the percentual usage of the total
available resources. The last column contains the minimum
recommended clock period.

As the table III shows, the reduced FPNNs reached dif-
ferent levels of the approximation capabilities. Five of the
reduced FPNNs were approximating the original network with
the accuracy higher than 90 %. Three other FPNNs outreached
the level of 70 % accuracy. However, some FPNNs did not
cross the level of 50 % accuracy. The worst case results, which
were in most cases very different from the best case results,
were few times close to the 0% accuracy. These particular

TABLE II. THE LIST OF NEURAL NETWORKS AND THEIR
PROPERTIES

Network name Structure Neurons Weights Links
diabetes1 8-16-8-2 34 272 78
diabetes2 8-64-2 74 640 200
diabetes3 8-64-32-2 106 2624 294
diabetes4 8-32-32-2 74 1344 198
diabetes5 8-32-32-32-2 106 2368 292
diabetes6 8-96-2 106 960 296
diabetes7 8-16-32-16-2 74 1184 196
diabetes8 8-16-32-64-2 122 2816 340
diabetes9 8-16-32-16-32-16-2 122 2208 336
thyroid1 21-21-3 45 504 86
thyroid2 21-42-3 66 1008 149
thyroid3 21-63-3 87 1512 212
thyroid4 21-84-3 108 2016 275
thyroid5 21-21-42-21-3 108 2268 271
thyroid6 21-63-21-3 108 2709 273

twoSpiral1 2-32-1 35 96 96
twoSpiral2 2-64-1 67 192 192
twoSpiral3 2-96-1 99 288 288
twoSpiral4 2-128-1 131 384 384
twoSpiral5 2-16-32-16-1 67 1072 188
twoSpiral6 2-16-32-48-1 99 2128 284

TABLE III. THE REDUCED FPNNS APPROXIMATION ACCURACY

FPNN name Reduced best [%] Reduced worst [%]
diabetes1 69.712 60.052
diabetes2 72.062 67.885
diabetes3 72.584 67.624
diabetes4 69.451 34.203
diabetes5 71.279 31.331
diabetes6 70.496 33.942
diabetes7 73.107 31.592
diabetes8 60.835 26.370
diabetes9 56.919 26.631
thyroid1 93.498 6.640
thyroid2 93.498 18.644
thyroid3 93.414 2.222
thyroid4 93.136 47.513
thyroid5 73.214 3.111
thyroid6 91.386 2.472

twoSpiral1 56.770 52.604
twoSpiral2 54.166 51.562
twoSpiral3 49.479 46.875
twoSpiral4 53.645 53.645
twoSpiral5 52.604 48.437
twoSpiral6 74.479 63.541

networks are unable to be approximated using the reduced
FPNN and the full FPNN is the only choice. These findings
show, how the mapping process is dependent on the concrete
situation, the concrete neural network and the set of its weights.
It shows that in some cases the mapping can be successful
and the particular neural network can be approximated with
the reduced FPNN, in other cases it is not possible. However,
only the basic mapping method was used in these experiments.
We developed a set of additional mapping methods which
could provide better results. We presented and compared these
methods and their optimizations in [6].

As the tables IV and V show, the results of the FPGA
resources utilization experiments differ in case of both FPNN
types. The slice registers consumption does not differ much,
other results however differ significantly. As expected, the
full FPNNs consume more resources than reduced FPNNs.
Considering the number of consumed LUTs, the difference is
in some cases only a few percent (diabetes1, twoSpiral1). In
some other cases, the full FPNNs consume multiple number of
resources than their reduced equivalents (diabetes4, diabetes5,
thyroid2 and others). Also, full FPNNs consume multiple times
more DSPs than the reduced FPNNs. This was expected since
the multipliers are supposed to be more complex due to higher

TABLE IV. THE RESULTS OF THE SYNTHESIS OF THE REDUCED
FPNNS

Name Regs (%) LUTs (%) DSPs (%) MinPer [ns]
diabetes1 4726 (0%) 18235 (1%) 182 (8%) 12.725
diabetes2 11165 (0%) 45604 (3%) 464 (21%) 12.725
diabetes3 16252 (0%) 67049 (5%) 686 (31%) 12.725
diabetes4 11229 (0%) 45908 (3%) 462 (21%) 12.725
diabetes5 17270 (0%) 69225 (5%) 684 (31%) 12.719
diabetes6 16254 (0%) 67405 (5%) 688 (31%) 12.725
diabetes7 6028 (0%) 23996 (1%) 238 (11%) 12.725
diabetes8 18865 (0%) 77224 (6%) 796 (36%) 12.725
diabetes9 18699 (0%) 76614 (6%) 792 (36%) 12.725
thyroid1 5738 (0%) 20059 (1%) 182 (8%) 12.725
thyroid2 9164 (0%) 33763 (2%) 329 (15%) 13.629
thyroid3 12538 (0%) 48346 (3%) 476 (22%) 12.725
thyroid4 15898 (0%) 62788 (5%) 623 (28%) 12.725
thyroid5 15763 (0%) 62679 (5%) 619 (28%) 12.738
thyroid6 15906 (0%) 61993 (5%) 621 (28%) 12.733

twoSpiral1 5217 (0%) 21713 (1%) 228 (10%) 12.725
twoSpiral2 10209 (0%) 43543 (3%) 452 (20%) 12.733
twoSpiral3 15201 (0%) 64994 (5%) 676 (31%) 12.745
twoSpiral4 20193 (0%) 85449 (6%) 900 (41%) 12.874
twoSpiral5 10329 (0%) 42877 (3%) 448 (20%) 12.725
twoSpiral6 15413 (0%) 63528 (5%) 672 (31%) 12.725

TABLE V. THE RESULTS OF THE SYNTHESIS OF THE FULL FPNNS

Name Regs (%) LUTs (%) DSPs (%) MinPer [ns]
diabetes1 5108 (0%) 29564 (2%) 376 (17%) 11.519
diabetes2 11530 (0%) 69785 (5%) 904 (41%) 20.312
diabetes3 18078 (0%) 392493 (32%) 2160 (100%) 37.806
diabetes4 11536 (0%) 111880 (9%) 1608 (74%) 18.685
diabetes5 18630 (0%) 325759 (26%) 2159 (99%) 21.249
diabetes6 16618 (0%) 103702 (8%) 1352 (62%) 30.555
diabetes7 11460 (0%) 103727 (8%) 1448 (67%) 14.937
diabetes8 22166 (0%) 460280 (37%) 2159 (99%) 20.416
diabetes9 21418 (0%) 284021 (23%) 2159 (99%) 18.780
thyroid1 6780 (0%) 47190 (3%) 600 (27%) 11.519
thyroid2 13546 (0%) 132290 (10%) 1776 (82%) 13.402
thyroid3 13546 (0%) 132290 (10%) 1776 (82%) 13.402
thyroid4 17594 (0%) 215282 (17%) 2159 (99%) 34.575
thyroid5 18027 (0%) 286474 (23%) 2160 (100%) 16.469
thyroid6 18151 (0%) 391568 (32%) 2159 (99%) 17.423

twoSpiral1 5311 (0%) 17672 (1%) 228 (10%) 11.519
twoSpiral2 10303 (0%) 35684 (2%) 452 (20%) 11.406
twoSpiral3 15295 (0%) 53188 (4%) 676 (31%) 19.025
twoSpiral4 20287 (0%) 70903 (5%) 900 (41%) 25.345
twoSpiral5 10393 (0%) 93953 (7%) 1332 (61%) 14.937
twoSpiral6 17051 (0%) 223580 (18%) 2160 (100%) 18.481

number of weights in the full FPNNs. While links in the
reduced FPNNs contain usually up to three weights, the links
in full FPNNs can dispose of tens of weights. Reduced FPNNs
also can generally operate on higher clock frequencies.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the formal definitions of the FPNA/FPNN
concept were presented. The definitions of the new derived
types were introduced. The process of direct transformation of
the trained neural network to FPNN and the related algorithms
were described. The diagrams of the FPGA implementation
were presented. The experiments determining the approxima-
tion capabilities of different FPNNs of the reduced and the full
type were run and their results were presented in this paper.
The results show that in some cases, the reduced FPNN type
is capable of good approximation performance. However, this
depends on the concrete neural network and its weight values
and their combinations. Therefore, the reduced FPNN are not
suitable for all neural network implementations.

One of the main ideas of this paper was to show the
possible trade-off between neural network approximation ac-

curacy and the FPGA resources consumption. The experiments
showed that reduced FPNNs consume significantly less re-
sources than full FPNNs and that they are faster as well. On
the other hand, the reduced FPNNs offer limited approximation
accuracy compared to the accurate full FPNNs.

During the future research, we are going to perform ex-
periments using our more advanced mapping techniques to
increase the usability of reduced FPNNs as well as develop
new methods and optimizations. Also we are going to include
more types of neural networks into our research.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602, ARTEMIS JU under grant agreement no 641439
(ALMARVI) and BUT project FIT-S-14-2297.

REFERENCES

[1] Girau, B.: FPNA: Concepts and Properties. In FPGA Implementations
of Neural Networks, A. R. Omondi; J. C. Rajapakse, Springer US,
2006, ISBN 978-0-387-28487-3, pp. 71–123, http://dx.doi.org/10.1007/
0-387-28487-7-3

[2] Girau, B.: Digital hardware implementation of 2D compatible neural
networks. In Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks. IJCNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium, 2000, ISSN 1098-
7576, pp. 506–511 vol.3

[3] Girau, B.: On-chip learning of FPGA-inspired neural nets. In Neural
Networks, 2001. Proceedings. IJCNN ’01. International Joint Conference
on, 2001, ISSN 1098-7576, pp. 222–227 vol.1

[4] Prechelt, L. P.; Informatik, F. F.: — A Set of Neural Network Bench-
mark Problems and Benchmarking Rules. Technical report, Universitat
Karlsruhe; 76128 Karlsruhe, Germany, 1994.

[5] Krcma, M.: The neural networks acceleration in FPGA. Master’s thesis,
Faculty of Information Technology, Brno University of Technology;
Brno, 2014. https://wis.fit.vutbr.cz/FIT/st/rp.php/rp/2013/DP/15754.pdf

[6] KRCMA Martin, KASTIL Jan a KOTASEK Zdenek: Mapping trained
neural networks to FPNNs. In: IEEE 18th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems. Belgrade:
IEEE Computer Society, 2015, pp. 157–160. ISBN 978-1-4799-6779-7.

[7] Krcma, M.; Kotasek, Z.; Kastil, J.: Fault tolerant Field Programmable
Neural Networks. In Nordic Circuits and Systems Conference (NORCAS):
NORCHIP International Symposium on System-on-Chip (SoC), 2015, Oct
2015, pp. 1–4, 10.1109/NORCHIP.2015.7364381.

[8] Holt, J.; Baker, T.: Back propagation simulations using limited precision
calculations. In Neural Networks, 1991., IJCNN-91-Seattle International
Joint Conference on, volume II, July 1991, pp. 121 –126 vol.2.

[9] Munakata, T.: Neural Networks: Fundamentals and the Backpropagation
Model. In Fundamentals of the New Artificial Intelligence, editace T. Mu-
nakata, Texts in Computer Science, Springer London, 2007, ISBN 978-1-
84628-839-5, pp. 7–36, http://dx.doi.org/10.1007/978-1-84628-839-5--2

[10] Bohrn, M.; Fujcik, L.; Vrba, R.: Field Programmable Neural Array for
feed-forward neural networks. In 2013 36th International Conference on
Telecommunications and Signal Processing (TSP), 2013, pp. 727–731

[11] Harkin, J.; McDaid, L.; Hall, S.: Programmable architectures for large-
scale implementations of Spiking Neural Networks. In IET Irish Signals
and Systems Conference (ISSC 2008), June 2008, ISSN 0537-9989, pp.
374–379

[12] Harkin, J.; Morgan, F.; Hall, S.: Reconfigurable platforms and the
challenges for large-scale implementations of spiking neural networks.
In 2008 International Conference on Field Programmable Logic and
Applications, Sept 2008, ISSN 1946-147X, pp. 483–486

[13] Kwan, H.: Simple sigmoid-like activation function suitable for digital
hardware implementation. Electronics Letters, 1992: pp. 1379–1380.
http://link.aip.org/link/?ELL/28/1379/1

Paper C

Comparison of FPNNs
Approximation Capabilities

M. Krcma, J. Kastil, Z. Kotásek and J. Lojda, ”Comparison of FPNNs Approximation
Capabilities,“ Proceedings of the Work in progress Session held in connection with DSD
2016, 2016, pp. 1-2, ISBN:978-3-902457-46-2.

76

Comparison of FPNNs Approximation Capabilities

Martin Krcma, Zdenek Kotasek, Jakub Lojda, Jan Kastil
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Email: ikrcma@fit.vutbr.cz, kotasek@fit.vutbr.cz, ilojda@fit.vutbr.cz, ikastil@fit.vutbr.cz

I. INTRODUCTION

The artificial neural networks [5] are one of the important
models of softcomputing and artificial intelligence. They are
structures composed of neurons interconnected by weighted
synapses. Basically, the goal of the networks is to learn
the relation between two sets of data vectors, to generalize
the relation, to determine its features and to use it for the
determining the relation of the unknown vectors belonging to
the same problem. This capability can be used for classification
tasks, for time series and functional prediction, to control tasks,
to image recognition, clustering and other tasks.

The implementation of neural networks is challenged with
two great neural networks complexities - space complexity and
time complexity. The usual solution of both is to use a pow-
erful hardware, such as graphical processor units or processor
clusters, which suffer from a high power consumption. For
some networks, FPGAs can be one of the possible solutions if
a lower power consumption is desired. In this case, the time
complexity is solvable by parallelism which is easy to achieve
in both FPGAs and neural networks since both are parallel by
their nature. The space complexity is bigger problem since an
FPGA has limited resources. Thus, there is a need for such
designs that exploit the neural networks parallel character for
fast computations and save the FPGA resources as well. A
Field Programmable Neural Networks (FPNN) concept can be
seen as one of the possible solutions. The goal of this paper is
to describe the types of FPNNs and compare their capabilities.

II. FIELD PROGRAMMABLE NEURAL NETWORKS

The concept of FPNNs [1] is meant to simplify the imple-
mentation of artificial neural networks in FPGAs by adjusting
their properties to be more suitable for implementation into
them. The simplification originates from its main feature
- a highly customizable structure which makes it possible
to establish resource sharing between the original synaptic
connections of the neural network. The FPNNs are composed
of dedicated interconnected units called neural resources which
approximate the original neurons and synaptic interconnec-
tions. The units of the first type are called activators and
represent the original neural network neurons. The other units
are called links and serve as an approximation of the original
synaptic interconnection. Every link disposes of a set of affine
operators serving as an approximation of the original synaptic
weights.

An example of a grid FPNN can be seen in Fig. 1. The
circles in the figure represent activators, wide arrows represent
links and the thin arrows represent data interconnections. The
orientation of the connection arrows shows the way of the

passing data. The straight wide dashed/dotted arrows represent
the original neural networks synapses. The thin dashed/dotted
arrows represent the sequences of links approximating the
particular synapses. The synapses and the particular sequences
are drawn with the same line and arrow styles.

The FPNNs are not the same structures as neural networks,
although they can be constructed in that way. The FPNNs
represent a different model which can structurally differ from
the implemented neural network. They can also have different
capabilities which means that they are not only an imple-
mentation of the neural networks, they are an approximation
of neural networks as well - with different structure and
properties, they can provide similar results as the networks.
The accuracy is the main problem here.

The approximation capabilities depend on the number of
affine operators belonging to links. This number depends
on the FPNN structure directly. However, the model can be
altered to dispose of different number of affine operators.
Two different models with different approximation capabilities
exist. The original model disposes of as many affine operators
as the number of directly connected preceding units. These
operators are shared between groups of synapses approximated
by the particular preceding units. This type of an FPNN is
called Standard FPNN. We derived a stronger model that has
the number of affine operators that allows it to reach the precise
approximation accuracy. This type of an FPNN is called Full
FPNN. In case of a full FPNN, every link disposes of dedicated
affine operator for every synapse it approximates. There is
no sharing of affine operators between synapses, therefore
the accurate approximation is ensured. Although, this type of
FPNN demands more FPGA resources.

Fig. 1. Synapses approximation in a grid FPNN

III. EXPERIMENTAL RESULTS

We experimented with the presented models and algo-
rithms, the experiments and results will be now described and
summarized. The experiments were focused on the approx-
imation capabilities of the standard and full FPNNs model.
The goal of the experiments was to show and compare the
capabilities of both models and their space complexity.

The base of the experiments was a set of neural networks,
which were transformed (using our algorithm described in [3])
to FPNNs of both types. Both, the trained neural network and
the particular FPNN were tested on a set of testing input
vectors and their outputs were compared to each other to
determine how the FPNN output differs from the reference
neural network output. Since the FPNN serves as an approx-
imation of the network, the match between their outputs is
the essential information. We worked with 15 neural networks
of different structures trained for three classification tasks
(Diabetes, Thyroid and Two Spiral) originating in the Proben1
neural networks benchmark tasks set [2].

Table I contains the information about the reference neural
networks. The columns contain the network name and its
structure (numbers of neurons in each layer), the numbers of
neurons and synapses of the network and the number of links
of the FPNN. The number of activators is equal to the numbers
of neurons.

The experiments were run ten times and the best and the
worst results of the approximation are presented in table II.
The Standard best and Standard worst columns contain the
percentual rate of match of the reference network and the
standard type FPNN output. It is the rate of the identically
classified input vectors by both the network and the FPNN.
The Full column contains the rate of match of the Full FPNN
type.

Network name Structure Neurons Synapses Links

diabetes1 8-64-2 74 640 200
diabetes2 8-32-32-32-2 106 2368 292
diabetes3 8-96-2 106 960 296
diabetes4 8-16-32-64-2 122 2816 340
diabetes5 8-16-32-16-32-16-2 122 2208 336
thyroid1 21-42-3 66 1008 149
thyroid2 21-84-3 108 2016 275
thyroid3 21-21-42-21-3 108 2268 271
thyroid4 21-63-21-3 108 2709 273
thyroid5 21-10-63-10-3 107 1500 268

twoSpiral1 2-64-1 67 192 192
twoSpiral2 2-128-1 131 384 384
twoSpiral3 2-16-32-16-1 67 1072 188
twoSpiral4 2-16-32-64-32-16-1 163 5168 472
twoSpiral5 2-16-32-48-1 99 2128 284

TABLE I. THE LIST OF THE NEURAL NETWORKS AND THEIR
PROPERTIES

As the table II shows, the standard FPNNs reached different
levels of the approximation capabilities. Some of the standard
FPNNs reached an accuracy higher than 90 %. However, some
FPNNs did not cross the level of 50 % accuracy. The worst
case results, which were in most cases very different from the
best case results, were few times closer to the 0% accuracy.
These findings show that in some cases the mapping to a
standard FPNN can be successful, in other cases it is not
possible. However, the results can be potentially improved by
methods and optimizations described in [3].

FPNN name Standard best [%] Standard worst [%] Full [%]

diabetes1 72.062 67.885 100
diabetes2 71.279 31.331 100
diabetes3 70.496 33.942 100
diabetes4 60.835 26.370 100
diabetes5 56.919 26.631 100
thyroid1 93.498 18.644 100
thyroid2 93.136 47.513 100
thyroid3 73.214 3.111 100
thyroid4 91.386 2.472 100
thyroid5 75.715 1.972 100

twoSpiral1 54.166 51.562 100
twoSpiral2 53.645 53.645 100
twoSpiral3 52.604 48.437 100
twoSpiral4 49.479 33.333 100
twoSpiral5 74.479 63.541 100

TABLE II. THE LIST OF THE FPNNS APPROXIMATION RESULTS

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the FPNN concept was described. The origi-
nal (standard) and the derived new (full) type were presented.
The experiments determining the approximation capabilities
of different FPNNs of the standard and the full type were
run and their results were presented in this paper. The results
show that in some cases, the standard FPNN type is capable
of good approximation performance. However, this depends on
the concrete neural network and its weights values.

During the future research, we are going to include more
types of neural networks into our research and we are going
to perform more hardware oriented experiments. We are also
going to devote to the comparison of our results and method-
ologies with other approaches.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602. This work was also supported by Brno University of
Technology under number FIT-S-14-2297 and by ARTEMIS
JU under grant agreement no 641439 (ALMARVI).

REFERENCES

[1] Girau, B.: FPNA: Concepts and Properties. In FPGA Implementations of
Neural Networks, editted by A. R. Omondi; J. C. Rajapakse, Springer
US, 2006, ISBN 978-0-387-28487-3, p. 71–123, 10.1007/0-387-28487-
7-3.
http://dx.doi.org/10.1007/0-387-28487-7-3

[2] Prechelt, L. P.; Informatik, F. F.: — A Set of Neural Network Bench-
mark Problems and Benchmarking Rules. Technical report, Universitat
Karlsruhe; 76128 Karlsruhe, Germany, 1994.

[3] KRCMA Martin, KASTIL Jan a KOTASEK Zdenek: Mapping trained
neural networks to FPNNs. In: IEEE 18th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems. Belgrade:
IEEE Computer Society, 2015, pp. 157–160. ISBN 978-1-4799-6779-7.

[4] Krcma, M.; Kotasek, Z.; Kastil, J.: Fault tolerant Field Programmable
Neural Networks. In Nordic Circuits and Systems Conference (NORCAS):
NORCHIP International Symposium on System-on-Chip (SoC), 2015, Oct
2015, s. 1–4, 10.1109/NORCHIP.2015.7364381.

[5] Munakata, T.: Neural Networks: Fundamentals and the Backpropagation
Model. In Fundamentals of the New Artificial Intelligence, editace
T. Munakata, Texts in Computer Science, Springer London, 2007, ISBN
978-1-84628-839-5, s. 7–36, 10.1007/978-1-84628-839-5–2.
http://dx.doi.org/10.1007/978-1-84628-839-5--2

Paper D

Detecting hard synapses faults in
artificial neural networks

M. Krcma, Z. Kotasek and J. Lojda, ”Detecting hard synapses faults in artificial neu-
ral networks,“ 2019 IEEE Latin American Test Symposium (LATS), 2019, pp. 1-6, doi:
10.1109/LATW.2019.8704637.

79

Detecting hard synapses faults in artificial neural
networks

Martin Krcma, Zdenek Kotasek, Jakub Lojda
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
Email: ikrcma@fit.vutbr.cz, kotasek@fit.vutbr.cz, ilojda@fit.vutbr.cz

Abstract—This paper presents the concepts of detecting hard
faults in artificial neural network synapses using the modification
of the neural network settings. The core of this work is based
on weights values modification and inserting the chosen testing
data when comparing the neural network output to the known
valid results. The paper also discusses the problem of neural
networks output saturation and provides experiments regarding
an influence of the neural network settings to the problem.

I. INTRODUCTION

The artificial neural networks [7] are one of the important
models of soft-computing and artificial intelligence. Their
structure is inspired by the structure of the human brain and
they dispose of a high capability of learning and memorizing to
solve various types of tasks. Basically, the goal of the artificial
neural network is to learn the relation between two sets of data
vectors, to generalize the relation, to determine its features
and to use it for the determining the relation of the unknown
vectors belonging to the same problem. This capability can
be used for classification tasks, for time-series and functional
prediction, for control tasks, image recognition, clustering and
other tasks.

The networks have been implemented in various kinds of
devices starting from analog computers to the most modern
processors, VLSI units, graphical processing units and FPGAs.
In the hardware implementation there is a chance that a fault
occurs in the device influencing its computation. The fault
can be transient, temporary which can be solved by numerous
ways. If the fault is hard and permanent however, it may not
be possible to fix it. In this case, the detecting of the fault
is even more important than in the case of temporary faults
because the computation of the device and the data it produces
are permanently affected by the fault. This paper deals with
one of the possible ways how to detect hard faults in neural
network synapses.

II. ARTIFICIAL NEURAL NETWORKS

Neural networks are composed of a set of neurons. A neuron
is a simple unit which computes an activation function (2)
over a result of a basis function which is often a weighted
sum (1) of the neuron inputs. A neuron is illustrated in Fig. 1.
The neurons are interconnected with the weighted connections
called synapses. The learning of the neural network is basically
a process of setting the weights.

The value θ in equation (2) represents the neuron threshold.
The threshold allows us to affect the shape of the neuron
activation function (its position on the x axis) which increases
the power of the network and the efficiency of its learning.

The neurons are often organized into the layered structure
composed of an input layer, output layer and a number of
hidden layers. This type of structure is illustrated in Fig. 2.
Sometimes, the neural network is composed of only one or
two layers or of layers with different neuron types (i.e. neurons
with different basis and activation functions) or interconnec-
tion structures.

net =
n∑

i=1

xiwi (1)

y = f(net+ θ) (2)

Fig. 1. The neuron.

Fig. 2. The neural network layered structure.

A. Activation functions approximations

A number of different activation functions which are used
in neural networks exists. One of the most used activation978-1-7281-1756-0/19/$31.00 c©2019 IEEE

Fig. 3. The sigmoid function and its approximation.

functions in classical neural networks is a sigmoid function (3).
It is a growing differentiable function, the features of which
are important for gradient-descent based learning algorithms
like the well known backpropagation algorithm [7]. However,
this function uses operations of division and power which are
not suitable for implementation in hardware. Therefore, it is
appropriate to replace it with a more effective approximation
with similar features. One of possible approximations is Fs
function (7) which is based on equations (4),(5) and (6). Both
the sigmoid function graphs and the Fs function are compared
in Fig. 3.[8]

sigmoid(x) =
1

1 + ε−θx
(3)

θ = 1
L2 β = 2

L (4)

Hs(x) =

{
x (β + θx) for x ∈ 〈−L, 0〉
x (β − θx) for x ∈ (0, L〉 (5)

Gs(x) =

−1 for x ∈ (−∞,−L〉
Hs(x) for x ∈ (−L,L)

1 for x ∈ 〈L,∞)
(6)

Fs(x) =
1

2
Gs(x) +

1

2
(7)

III. DETECTING THE HARD FAULTS

Artificial neural networks are inherently massively parallel
structures with a lot of redundancy. Even though this property
makes them able to tolerate some faults, this fault tolerance
reaches only a certain level and it is complicated to predict
its quality. In order to enhance the fault tolerant properties of
neural networks, several techniques are used. Some techniques
are based on modifications of the neural networks training
process to force the networks to learn to be fault tolerant
[10], [11], [12]. Other techniques use retraining as a way

of recovery from a fault [9], [18]. In some techniques, dif-
ferent modifications and restrictions of weights and neurons
activation functions take place [13], [14], [15], [16], [17].
Also, techniques which utilize redundancy are commonly
used. Either based on neurons replications [19], [21], [24],
[25] or on the well known Triple Modular Redundancy (TMR)
technique which is used for both faults detection and masking
it in order to produce a correct output.

When implemented in hardware, the neural networks may
face two types of faults. The soft (temporary) faults occur only
temporarily and affect the computation only for some time.
These faults are often caused by radiation generating a Single
Event Upset (SEU) - flipping a bit in a memory. This type of
fault may be often solved by rewriting the memory with correct
data. Other type of faults - hard faults are persistent faults often
caused by a physical condition or failure in the device. Most
approaches of faults detection, masking and recovery are based
on the TMR techniques [22], [23]. This technique, though
proven reliable, may fail in some combinations of faults as
shown in [20].

We propose a method of permanent faults detection that
does not utilize redundancy or learning but it uses properties of
neural networks computation instead. It utilizes modifications
of basic neural network parameters - weights values and
activation function shapes in order to detect a fault using
the network output. As we present general principles and
algorithm which may be used on any neural network platform
and implementation which are flexible enough to allow the
needed neural network parameters settings modification, we
primarily intent this method to be used on reconfigurable
hardware implementations, where a hard fault is more likely to
occur and is harder to mask and recover from them in a purely
software implementation. In our research, we intent to use
these methods, while utilizing a dynamic reconfiguration, with
our neural network Field Programmable Gate Array (FPGA)
implementation. This platform is based on the concept of Field
Programmable Neural Network (FPNN)[1] and we presented
this platform in [4], [5].

A. Definitions

In order to describe the principles clearly, we declare a set of
terms presented in the following list and equations. The terms
describe the neural network structure and derive additional
terms. Going through the list we define sets and functions
containing neurons, synapses and their weights (N ,S and W).
Using those, we declare a set of neurons layers L, the input
layer I and the output layer O. For all neurons we define two
sets - φ and τ . The φ set contains all the sequences of synapses
which connect the selected neuron to the input layer (to all its
neurons). To the opposite, the τ set contains all sequences of
synapses that connect the neuron to the output neurons.

Based on these sets we define a set π for all the neurons
which contains all sequences of synapses connecting the input
layer to the output layer through the selected neuron. It is
important to have this set as we need to find a way to propagate
the test data through the network in the sequence that includes

the neuron or synapse we want to test against the presence of
a hard fault.

1) N is the set of all neurons.
2) S ⊆ (N ×N) is the set of all synapses.
3) W = S → R is the set of weights of all synapses.
4) W = {ws ∈ R|s ∈ S} is the set of weights of all

synapses.
5) B = {bn : Rm → R|n ∈ N \ I,m ∈ N} is the set of

basis functions of all neurons except the input neurons.
m is the number of the neuron n inputs.

6) L is set of network layers defined by equation (8).
7) I is the input layer defined by equation (9).
8) O is the output layer defined by equation (10).
9) F = {fn : R → R|n ∈ N \ I} is the set of activation

functions of all neurons except the input neurons.
10) φn is a set of sequences of synapses connecting the

neuron n to the neurons in the input layer (11).
11) τn is a set of sequences of synapses connecting the

neuron n to the neurons in the output layer (12).
12) ∀n ∈ N : πn = φn × τn is a set of all sequences of

synapses connecting the input layer to the output layer
through the neuron n.

13) ψ(s) is a sequence of all source neurons of the synapses
in the synaptic sequence s (13).

14) χ(s) is a sequence of all target neurons of the synapses
in the synaptic sequence s (14).

15) Ω ∈ R is a chosen global value of weights to be used
in further algorithms.

16) da, do ∈ R are chosen input data values for an active
neuron (da) and for other neurons in the input layer
(do).

L ⊂ NX : ∀(n1, n2) ∈ S : n1 ∈ L1 ∧ n2 ∈ L2;
L1, L2 ∈ L (8)

I ∈ L : ∀n ∈ I ∧ ∃(n, nx) ∈ S : 6 ∃(ny, n) ∈ S;
nx, ny ∈ N (9)

O ∈ L : ∀n ∈ O ∧ ∃(nx, n) ∈ S : 6 ∃(n, ny) ∈ S;
nx, ny ∈ N (10)

∀n ∈ N∃φn ⊂ SX : (nx, nx+1) ∈ φn, x ∈ {i..m};
i,m ∈ N;ni ∈ I;nm+1 = n

(11)

∀n ∈ N∃τn ⊂ SX : (nx, nx+1) ∈ τn, x ∈ {m..o};
m, o ∈ N;nm = n;no+1 ∈ O (12)

∀s = s1s2..sm = (n1, n2)(n2, n3)...(nm−1, nm) ∈ Sm :
ψ(s) = n1, n2, ..., nm−1

(13)

∀s = s1s2..sm = (n1, n2)(n2, n3)...(nm−1, nm) ∈ Sm :
χ(s) = n2, n3, ..., nm

(14)

B. Detecting a fault in a synapse without affecting the acti-
vation functions

Using the previous definitions we declare an algorithm
which utilizes the modifications of neural networks properties
in order to detect the hard fault of a synapse. The principle
of the algorithm is to check sequentially all the synapses by
propagating the test data to the network and checking the
network output while setting all the other synapses weights
to 1 in order to omit them from the computation. Omitting
the weight ensures that the passing test data are affected only
by the weight of the tested synapse which makes the result
easy to determine. The algorithm is as follows:

A) Declare a set FS = ∅ to store the faulty synapses.
B) For all synapses s ∈ S execute:

1) To test a synapse s = (n1, n2) ∈ S compute πn2.
2) Select a sequence α out of πn2. α = βγ, β ∈ φn2, γ ∈

τn2.
3) Set all other weights to Ω: ∀w ∈ W \ {W (a)|a ∈ α} :

w = Ω.
4) Set weights in α synapses to 1, leave the original value

of the tested synapse - W (s): ∀w ∈W (S\α\s) : w = 1.
5) Present the input data i to the input layer of the network

in the form of a vector composed of da on the place of
the neuron from the α sequence and do in places of
others input neurons. Let the neural network compute
the output o(α, s, i).

6) Compute an ω value. ω(α, s, i) ∈ R represents the
expected output value for the selected synaptic sequence
α, tested synapse (n1, n2) and the input data i. It is
computed using equation (16) as a sequence of applica-
tion of all activation functions of the neurons in the β
sequence over the input data followed by multiplication
with the tested synapse weight. Then, the sequence of
all activation functions of the neurons in the γ sequence
is applied.

7) Compute the difference ε between the expected and the
actual output value:
ε(α, s, i) = o(α, s, i)− ω(α, s, i).

8) If the difference ε = 0 (the output is not affected by a
fault), return to the step A). Otherwise execute:

a) Repeat the steps 1 to 8 for several other α se-
quences containing the synapse s.

b) If all the ε values are not zero, the synapse s is
affected by a fault. Add then the synapse s to the
set FS.

ω(α, s, i) = fγ
(
fβ (in)× ws

)
;

n ∈ N, in ∈ R, ws ∈ S;
fβ = fn1 ◦ ... ◦ fn0;ψ(β) = n0, ..., n1;
fγ = fn1 ◦ ... ◦ fn0;χ(γ) = n0, ..., n1

(15)

The general problem to deal with in this algorithm is a
possibility of neurons outputs saturation preventing the fault
detection. This problem has its origin in the input (the da, do
values), used weights values (the Ω value) during the algorithm

and the activation functions. Regular sigmoid function has the
range of 〈0, 1〉 and the value of 0.5 as the function value
of zero (sigmoid(0) = 0.5). When the weights of synapses
outside an α sequence are set to zero, it causes all the neurons
in the rest of the network to emit value of 0.5. This can affect
the neurons in the α sequence as well as these values enter
their basis functions. Together with data passing through the α
sequence this can cause the neuron outputs to be saturated, i.e.
to have the value of 1.0 or 0.0. When these are valid values
for properly functioning network and there are no changes in
them, this can cause a fault to be masked from detection. This
effect can be straightened even more by values presented to the
input neurons both in and outside the α sequence (the da, do
values). It is necessary to choose all these values wisely to
obtain as correct detection as possible.

Another problem related to the saturation problem is the
problem of false positive detection. In the case that the fault
causes the weight to have a high value, it may saturate the
successive neuron itself causing saturation of neurons in higher
level as well as the saturation of the network outputs. The
saturated output then may be detected as fault even in case
when other synapses than the faulty one is under the test. This
problem may be solved by repetitive detection using different
settings as well as using heuristics to obtain specific strategies
of the test. This heuristics and methods will be part of the
future research.

C. Detecting a fault in a synapse with affecting the activation
functions

The hard faults detection becomes easier and less
demanding if there is an option to change shapes of neurons
activation functions. By changing the functions to the linear
functions f(x) = x we can prevent the saturation problem
mentioned in the previous paragraph. However, the saturation
problem is still present but it is far less likely as the
only risk of saturation is reaching the upper or the lower
boundary given by the used data-type and the bit width. Also,
by changing the activation functions, we obtain a higher
precision of the output computation and lesser influence of
neurons faults to the output. The algorithm, derived from the
previous algorithm, which utilizes the change of activation
functions is as follows:

A) Declare a set FS = ∅ to store the faulty synapses.
B) For all synapses s ∈ S perform:

1) Perform 1) - 4) steps of the section B algorithm.
5) Set the activation functions of the neurons in the α

sequence to linear function:
∀n ∈ ψ(β) ∪ χ(γ) : fn(x) = x; fn(x) ∈ F . When the
activation function is approximated using the function
(7), the modification can be done using constants mod-
ifications according to the (17) equation.

6) Perform 5) step of the section B algorithm.
7) Compute an ω value. ω(α, s, i) ∈ R represents the

expected output value for the selected synaptic sequence
α, tested synapse (n1, n2) and the input data i. It is

computed using equation (16) as a sequence of appli-
cations of all activation functions of the neurons in
the β sequence. In this case, the activation functions
are linear, therefore the applications are in principle
function of identity. The output data of the activation
functions sequence is data followed by multiplication
with the tested synapse weight. Then the sequence of
all activation functions of the neurons in the γ sequence
is applied, again as a sequence of identities.

8) Perform 7) - 8) steps of the section B algorithm.

ω(α, s, i) = in × ws;
n ∈ N, in ∈ R, ws ∈ S;

(16)

D. Activation functions modifications

If the implementation uses the Fs function as the activation
function approximation, it can be simply forced to behave like
a linear function in order to pass the neuron input data directly
to the output without affecting them by the activation function.
In the case of the Fs function, it can be done using constants
modifications and input data propagation to the multiplexers
realizing the Gs function. The modifications of the functions
and the constants are as follows:

θ = 0; β =1

Hs(x) =

{
x (β + θx) = x for x ∈ 〈−L, 0〉
x (β − θx) = x for x ∈ (0, L〉

Gs(x) =

x for x ∈ (−∞,−L〉
Hs(x) = x for x ∈ (−L,L)

x for x ∈ 〈L,∞)

Fs(x) =1×Gs(x) + 0 = Gs(x)

(17)

IV. EXPERIMENTS

We have experimented with the first algorithm which does
not utilize the activation functions modifications in order
to determine the influence of the da, do and Ω values to
the saturation problem and therefore to the quality of faults
detection.

The used neural network was composed of 8 neurons in
the input layer, 2 neurons in the output layer and of 64 and
16 neurons in two hidden layers. The sigmoid function was
used as the activation function of all the neurons and the
function of the weighted sum was used as basis functions.
The experiments were implemented using a FANN library
[3] using 32-bit floating point arithmetic. The neural network
was trained to solve the Diabetes classification task from the
Proben [2] set of neural networks benchmark tasks. Every
experiment used two identical neural networks, one as a golden
model, the second to inject fault and perform the algorithm.
Only one fault per test was injected randomly into a synapse
and the algorithm was executed to detect the fault.

With each set of da, do and Ω values, 100 tests were run
and the number of successful detections was measured as
a result. The do values were chosen in the 〈−10, 0〉 as we
expected that low values around zero may help to prevent the
saturation problem as well as the negative values. We expect

these values cause the neurons to emit low values as well
which may help to prevent the basis function to generate high
values which would saturate the neurons outputs in the higher
layers making the neural network output to be saturated as
well. The Ω values were chosen to be the same for the same
reasons as it may help to lower the high values emitted by
neurons and thus lower the risk of saturation in higher layers.
On the other hand, the di values are the most important as they
enter the computation in the α sequence. In order to explore
their influence on the detection quality, we chose them to be
in the 〈−10, 10〉 interval.

Tables I - III illustrate the results of the experiments. In
each table, the Ω value is the same for all listed experiments
and it is declared on the top row of the table. The values of do
are declared in the third rows of the tables (the first numerical
rows) and the di values are listed in the first columns of the
tables. The cells contain the experiments results illustrating
how many detections out of 100 were successful with the Ω, di
and do set according to the position in the table.

TABLE I
THE EXPERIMENTS RESULTS WHEN Ω = 0.0

Ω = 0.0

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 21 21 56 21 24
-1.0 20 99 32 58 78
-0.1 66 99 72 1 97

-0.01 81 100 0 0 71
0.01 70 96 79 58 0
0.1 79 100 75 63 85
1.0 86 100 83 100 82

10.0 100 100 1 63 91

TABLE II
THE EXPERIMENTS RESULTS WHEN Ω = −0.01

Ω = −0.01

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 97 97 98 92 75
-1.0 98 98 98 100 81
-0.1 99 99 100 99 70

-0.01 100 96 97 96 64
0.01 96 98 100 99 61
0.1 100 100 100 98 68
1.0 99 100 100 97 72

10.0 100 100 100 96 80

As you can see in the tables, the most of the experiments
resulted in the high ratio of detected faults. If we are going to
identify the general trends of the Ω, di and do values influence
on the results, we can see that higher values of di often led
to better results. This can be also stated in general about
influence of the higher negative values of do. As we expected,
the negative values of do helped the detection by lowing the
risk of saturation and allowing the fault detection by doing
so. On the other hand, the 0.0 value of do proved to provide
generally worse results. As it was said before, the value of 0.0
as an input to the neuron causes to emit the value of 0.5 as

a result in case it uses the sigmoid function as an activation
function, which is the case of these experiments. Also, the high
negative values of di provided worse results as they probably
increased the saturation problem in case the weights values
were high in the α sequence or the injected fault had a high
value.

TABLE III
THE EXPERIMENTS RESULTS WHEN Ω = −10.0

Ω = −10.0

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 75 55 53 54 60
-1.0 99 84 84 88 64
-0.1 84 91 92 100 58

-0.01 88 85 93 87 43
0.01 74 85 92 95 64
0.1 81 89 94 99 60
1.0 81 86 89 89 55

10.0 100 89 100 98 78

TABLE IV
THE EXPERIMENTS RESULTS WHEN Ω = −0.1

Ω = −0.1

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 97 97 98 93 82
-1.0 99 98 99 98 85
-0.1 99 99 100 100 73

-0.01 99 98 98 99 61
0.01 96 100 100 100 64
0.1 100 100 100 99 77
1.0 99 100 99 100 83

10.0 100 100 100 97 77

TABLE V
THE EXPERIMENTS RESULTS WHEN Ω = −1.0

Ω = −1.0

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 21 24 56 21 24
-1.0 20 58 32 58 66
-0.1 66 97 72 1 97
-0.01 81 71 0 0 71
0.01 70 91 79 58 0
0.1 79 85 75 63 85
1.0 86 100 83 100 100
10.0 100 91 1 63 91

As the tables II and IV illustrate, the low negative values of
Ω has positive influence on the results. These values reduced
the neurons output to higher layers helping to prevent the
saturation problem. The assumption of false positive detection
during the experiments was also confirmed, however this
aspect of the problem is beyond the range of this paper.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we described basis of neural networks as well
of formal basis of two algorithms which are the core of this
research. The algorithms offer the way to detect hard fault
in neural network synapses. Both algorithms are based on the

principle of setting the synapses weights to some chosen value,
then creating an interconnected sequence from input layer to
an output layer. One of the synapses is then set with its original
weight and chosen testing data are passed trough the network
and the output is compared to the pre-calculated valid result.
The difference between the outputs indicates a fault.

One of the algorithms uses the change of activation func-
tions to linear ones preventing the problem with an output
saturation which may occur with the other algorithm. The
experimental part of this work focuses on this problem and
shows the effect of the chosen values of the input data and
the weights to the quality of faults detection. The results show
that combination of low negative Ω values with high values of
do and negative values of do led in general to the best results
as they were the most successful preventing the saturation of
the network output.

In the future research, more extensive experiments with
both algorithms will be done as well as an optimization of
the algorithms based on a test strategy selection heuristics.
The heuristics are needed to achieve higher speed and better
precision of detection as well as saving of resources. Also, the
heuristics will help to prevent false positive detection which
may occur in case of the algorithm which does not utilize
the activation function modification. In addition, experiments
with limited precision will be performed, as in case of classical
neural networks, 16-bit fixed point precision was proven to be
sufficient [6]. We have also designed modifications for both
algorithm to be used to detect fault in both neurons basis
functions and their activation functions.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II) project IT4Innovations excellence in science
– LQ1602, the BUT project FIT-S-17-3994 and the JU EC-
SEL Project SECREDAS (Product Security for Cross Domain
Reliable Dependable Automated Systems), Grant agreement
No. 783119.

REFERENCES

[1] Girau, B.: FPNA: Concepts and Properties. In FPGA Implementations
of Neural Networks, A. R. Omondi; J. C. Rajapakse, Springer US,
2006, ISBN 978-0-387-28487-3, pp. 71–123, http://dx.doi.org/10.1007/
0-387-28487-7-3

[2] Prechelt, L. P.; Informatik, F. F.: — A Set of Neural Network Bench-
mark Problems and Benchmarking Rules. Technical report, Universitat
Karlsruhe; 76128 Karlsruhe, Germany, 1994.

[3] Fast Artificial Neural Network Library (FANN).
http://leenissen.dk/fann/wp/

[4] KRCMA Martin, KASTIL Jan a KOTASEK Zdenek: Mapping trained
neural networks to FPNNs. In: IEEE 18th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems. Belgrade:
IEEE Computer Society, 2015, pp. 157–160. ISBN 978-1-4799-6779-7.

[5] Krcma, M.; Kotasek, Z.; Kastil, J.: Fault tolerant Field Programmable
Neural Networks. In Nordic Circuits and Systems Conference (NORCAS):
NORCHIP International Symposium on System-on-Chip (SoC), 2015, Oct
2015, pp. 1–4, 10.1109/NORCHIP.2015.7364381.

[6] Holt, J.; Baker, T.: Back propagation simulations using limited precision
calculations. In Neural Networks, 1991., IJCNN-91-Seattle International
Joint Conference on, volume II, July 1991, pp. 121 –126.

[7] Munakata, T.: Neural Networks: Fundamentals and the Backpropagation
Model. In Fundamentals of the New Artificial Intelligence, editace T. Mu-
nakata, Texts in Computer Science, Springer London, 2007, ISBN 978-1-
84628-839-5, pp. 7–36, http://dx.doi.org/10.1007/978-1-84628-839-5--2

[8] Kwan, H.: Simple sigmoid-like activation function suitable for digital
hardware implementation. Electronics Letters, 1992: pp. 1379–1380.
http://link.aip.org/link/?ELL/28/1379/1

[9] Deng, J.; Rang, Y.; Du, Z.; aj.: Retraining-based timing error mitigation
for hardware neural networks. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2015, March 2015, s. 593–596.

[10] Elsimary, H.; Mashali, S.; Shaheen, S.: Generalization ability of fault
tolerant feedforward neural nets. In Systems, Man and Cybernetics, 1995.
Intelligent Systems for the 21st Century., IEEE International Conference
on, Issue 1, Oct 1995, pp. 30–34 vol.1, 10.1109/ICSMC.1995.537728.

[11] Arad, B. S.; El-Amawy, A.: On Fault Tolerant Training of Feedforward
Neural Networks. Neural Networks, Issue 10, vol. 3, 1997: pp. 539 – 553,
ISSN 0893-6080, http://dx.doi.org/10.1016/S0893-6080(96)00089-5.
http://www.sciencedirect.com/science/article/pii/S0893608096000895

[12] Ito, T.; Takanami, I.: On fault injection approaches for fault tolerance
of feedforward neural networks. In Test Symposium, 1997. (ATS ’97)
Proceedings., Sixth Asian, Nov 1997, ISSN 1081-7735, pp. 88–93,
10.1109/ATS.1997.643927.

[13] Haruhiko, T.; Hidehiko, K.; Terumine, H.: Partially weight minimiza-
tion approach for fault tolerant multilayer neural networks. In Neural
Networks, 2002. IJCNN ’02. Proceedings of the 2002 International
Joint Conference on, vol. 2, 2002, ISSN 1098-7576, pp. 1092–1096,
10.1109/IJCNN.2002.1007646.

[14] Haruhiko, T.; Hidehiko, K.; Terumine, H.: Fault tolerant training algo-
rithm for multi-layer neural networks focused on hidden unit activities. In
Neural Networks, 2006. IJCNN ’06. International Joint Conference on,
2006, pp. 1540–1545, 10.1109/IJCNN.2006.246616.

[15] Hammadi, N. C.; Ito, H.: A Learning Algorithm for Fault Tolerant
Feedforward Neural Networks. IEICE Trans. Information and Systems,
Issue 80, 1996: pp. 21–27.

[16] Rusiecki, A.: Fault tolerant feedforward neural network with median
neuron input function. Electronics Letters, Issue 41, vol. 10, May 2005:
pp. 603–605, ISSN 0013-5194, 10.1049/el:20058169.

[17] Kamiura, N.; Taniguchi, Y.; Isokawa, T.; and col.: An improvement in
weight-fault tolerance of feedforward neural networks. In Test Sympo-
sium, 2001. Proceedings. 10th Asian, 2001, ISSN 1081-7735, pp. 359–
364, 10.1109/ATS.2001.990309.

[18] Sequin, C.; Clay, R.: Fault tolerance in artificial neural networks. In
Neural Networks, 1990., 1990 IJCNN International Joint Conference on,
June 1990, pp. 703–708 vol.1, 10.1109/IJCNN.1990.137651.

[19] Phatak, D.; Koren, I.: Complete and partial fault tolerance of feedforward
neural nets. Neural Networks, IEEE Transactions on, Issue 6, vol. 2, Mar
1995: pp. 446–456, ISSN 1045-9227, 10.1109/72.363479.

[20] Tohma, Y.; Koyanagi, Y.: Fault-tolerant design of neural networks
for solving optimization problems. Computers, IEEE Transactions
on, Issue 45, vol. 12, Dec 1996: pp. 1450–1455, ISSN 0018-9340,
10.1109/12.545976.

[21] Zhou, Z.-H.; Chen, S.-F.; Chen, Z.-Q.: Improving tolerance of neural
networks against multi-node open fault. In Neural Networks, 2001. Pro-
ceedings. IJCNN ’01. International Joint Conference on, Issue 3, 2001,
ISSN 1098-7576, pp. 1687–1692 vol.3, 10.1109/IJCNN.2001.938415.

[22] Mahdiani, H. R.; Fakhraie, S. M.; Lucas, C.: Relaxed Fault-Tolerant
Hardware Implementation of Neural Networks in the Presence of Multiple
Transient Errors. IEEE Transactions on Neural Networks and Learning
Systems, Issue 23, vol. 8, Aug 2012: pp. 1215–1228, ISSN 2162-237X,
10.1109/TNNLS.2012.2199517.

[23] Latif-Shabgahi, G.; Hirst, A.; Bennett, S.: A novel family of weighted
average voters for fault-tolerant computer control systems. In European
Control Conference (ECC), 2003, Sept 2003, pp. 642–646.

[24] Emmerson, M.; Damper, R.: Determining and improving the fault
tolerance of multilayer perceptrons in a pattern-recognition application.
Neural Networks, IEEE Transactions on, Issue 4, vol. 5, Sep 1993: pp.
788–793, ISSN 1045-9227, 10.1109/72.248456.

[25] Ahmadi, A.; Sargolzaie, M. H.; Fakhraie, S. M.; aj.: A Low-Cost Fault-
Tolerant Approach for Hardware Implementation of Artificial Neural
Networks. In Computer Engineering and Technology, 2009. ICCET ’09.
International Conference on, Issue 2, Jan 2009, pp. 93–97, 10.1109/IC-
CET.2009.204.

Paper E

Fault tolerant Field Programmable
Neural Networks

M. Krcma, Z. Kotasek and J. Kastil, ”Fault tolerant Field Programmable Neural Networks,“
2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP & International
Symposium on System-on-Chip (SoC), 2015, pp. 1-4, doi: 10.1109/NORCHIP.2015.7364381.

86

Fault Tolerant Field Programmable Neural Networks

Martin Krcma, Zdenek Kotasek, Jan Kastil
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Email: ikrcma@fit.vutbr.cz, kotasek@fit.vutbr.cz, ikastil@fit.vutbr.cz

Abstract—This paper describes a concept of Field Pro-
grammable Neural Networks (FPNNs) for artificial neural net-
works implementation in FPGAs, presents a model of fault tol-
erant FPNNs and different fault tolerance improving techniques
based on the model. It describes an experiment based on one of
these techniques and presents its results.

I. INTRODUCTION

In the area of fault tolerant system design, three clearly
distinguished groups of methodologies can be identified: a)
the methodologies of constructing fault tolerant systems which
guarantee that the system behaves as fault tolerant [4][7],
b) the methodologies for detecting erroneous behavior of the
system [6], c) the methodologies which allow the system to
be recovered from the fault and reestablish its correct function
[5].

In our previous research we dealt with all above mentioned
methodologies [3]. Anyway, in the past we concentrated pri-
marily on developing these methodologies for classical digital
systems, while now we deal also with the design of fault
tolerant neuron nets. It is a very specialized area which requires
unique approaches to be used. The principles developed by us
in this area so far belong to the area which is mentioned above
as c). It means, we expect that the neuron net is designed
as fault tolerant (e.g. as TMR system) and our methodology
brings the TMR faulty component back to correct operation.

In this paper we focus on one of the possible implementa-
tions of neural networks in FPGAs - on Field Programmable
Neural Networks (FPNNs) and ways how to bring a fault
tolerance into design based on them. The paper is structured as
follows - first we will describe the concept of FPNNs, next we
will introduce a model of fault tolerant FPNNs and techniques
based on this model and eventually we will present the results
of one of our experiments with these techniques.

II. FPNNS

The concept of FPNNs [1] in design is meant to simplify
the implementation of artificial neural networks in FPGAs by
adjusting its properties to be more suitable for implementation
into them. The simplification originates from its main feature
- a highly customizable structure which makes it possible
to establish resource sharing between the original synaptic
connections of the neural network. This is done by using its
customizability to simplify the interconnection model.

FPNAs are one of the possible implementations of neural
networks in FPGAs. And just like others, they are vulnerable
to various kinds of faults, the Single Event Upset (a change

of a bit value caused by a ionizing particle) is the most
impending one. The vulnerability is even higher since FPNNs
are composed of a set of interconnected and interdependent
dedicated units. On the other hand, this allows us to use a
plenty of fault tolerance improving techniques. Some of them
are presented in this paper.

The author originally defined the FPNNs formally [1] but
now we shall describe it mostly in natural language in this
paper. However, we will introduce a formal model, which we
have based on the original definitions, in order to support our
effort to bring the fault tolerance into FPNNs. Our definitions
specify special derived types of units the FPNNs are composed
of. They gave us proper instruments for further research
leading to the design of fault tolerant FPGA artificial neural
network architectures based on the FPNN concept as well.

A. FPNN

The FPNN is defined [1] as an oriented graph (N,E).
Nodes (the set N) and edges (the set E) of this graph represent
two different types of units. Nodes are called activators and
represent original neural network neurons. Edges are called
links and serve as an approximation of an original synaptic
interconnection. Both types of units (together called neural
resources) specify operators responsible for computation. Ac-
tivators dispose of two operators. The first operator is an
iterative operator i - a binary operator on the set of real
numbers. This operator serves for iteration computing of an
activator inner potential (similarly to a neuron potential). The
first input of the operator is an activator input and the second
input is an inner accumulator variable. The second activator
operator is a function operator f - an unary operator on the
set of real numbers. The operator performs an activator output
computation - it computes an activation function (similarly to
a neuron). The input of this operator is the value of the inner
accumulator variable. The concrete functions of the operators
are not predefined, only the conditions that they have to
be binary and unary real functions. Then, there is a set of
affine operators for every link serving as an approximation
of original synaptic weights. There is one affine operator for
every activator predecessor. The links dispose of a set of
affine operators (1) performing a transformation of an input
x using two real constants W and T for the original neural
network weight approximation. Weights are approximated by
the sequence of one or more affine transformations performed
by affine operators in a sequence of connected links. In case,
that all Tn(p) = 0, the approximation is done by a sequence of
multiplications. In [2] we have described one of the possible
ways of transformation of neural network weights to affine
operators.

α(p,n) =Wn(p)× x+ Tn(p);Wn(p), Tn(p) ∈ R;
p, n ∈ N ; (p, n) ∈ E (1)

Also, the data interconnection between neural resources are
specified using binary flags determining interconnections be-
tween particular neural resources. We are allowed to connect
not only links to activators and activator to links, but even to
connect links to other links. This is a new property regarding
the neural networks, the possibility of connecting links to other
links and to construct sequences of interconnected links is the
core feature allowing us to construct FPNNs with very various
structures. Using this we are able to fit more effectively an
FPNN structure for implementation in FPGAs.

If only a graph (N,E), iteration, function and affine
operators are specified and data interconnection structure is
left unspecified, the result object is called Field Programmable
Neural Array (FPNA) [1]. This object specifies the whole
class of possible FPNNs. Adding the structure specification
and other details like default value of the inner accumulator
variable and number of i operator iterations allows us to create
FPNNs with different configurations.

Since an FPNN could be structurally different object from
the original neural network, it can have different parameters
and it generally can be constructed as an object of lower
power than the original network, we can generally say that
the FPNN is an approximation of the original network. The
approximation can have a different accuracy [2].

B. Grid FPNN

A special type of FPNN can now be defined using pre-
vious definitions. Grid FPNN is an FPNN with an enforced
limitation of the structure causing it to form a grid shape. The
reason for this is to make an FPNN suitable for implementation
in FPGAs due to the similarity of the grid FPNNs structure
and FPGAs interconnection bus.

An example of a grid FPNN can be seen in Fig. 1. The
circles on the figure represent activators, wide arrows represent
links and the thin arrows represent data interconnections.
The orientation of the connection arrows show the way of
the passing data. As the picture illustrates, there is only
one link on the output of every activator which realizes the
connection to another layer. It is directly connected to one
successive activator in the next layer. The connection to the
other activators goes through two sequence of links going the
opposite ways within the whole layer.

Fig. 1. A grid FPNN

C. FPNN operation

The communication and computation model [1] of the
FPNNs used in this paper is asynchronous (synchronous
FPNNs have been designed [1] as well). It is based on the
request-acknowledgement model. The neural resources within
a whole FPNN generate requests for all the connected suc-
ceeding units once they finish the output value computation.
Then they wait until all the successors process the requests
and send the acknowledgements. All acknowledgements have
to be obtained before the new iteration of computation starts.
So, all the neural resources work as follows:

1) Wait for the request from the predecessors.
2) Select a request from all the waiting requests.
3) Process the request and compute the new output.
4) Generate requests for all successors.
5) Wait for the acknowledgements from all the succes-

sors.
6) Go back to 1.

This model makes FPNNs to be flexible, easily con-
structable and extensible. However, it also brings an overhead
in space and time complexity due to resources needed for an
implementation of the communication.

III. FAULT TOLERANCE

In this paper we would like to present a formal model
of fault tolerant neural resources allowing us to use different
techniques to ensure a fault tolerance of an FPNN.

Definition III.1 (Fault tolerant link). is a set rLinkn =
{S, s,R, U, I,m,D}, where:

• S is a set of link settings (sets of parameters)

• R = {link1, link2, .., linkn} is a set of n identical
links with settings s ∈ S

• U = {0, 1}n is a set of binary flags determining the
links activity

• I is an identity operator (x is a link input): I(x) =
x;x ∈ R

• m is a majority level

• D ∈ {f, r, i} is a link mode:
◦ f - output is taken from the first active link
◦ r - output is taken as a majority of the first m

active links
◦ i - output is taken from the identity operator

Definition III.2 (Fault tolerant activator). is a set rLinkn =
{S, s,R, U,C,m, c,D}, where:

• S is a set of activator settings (sets of parameters)

• R = {link1, link2, .., linkn} is a set of n identical
activators with settings s ∈ S

• U = {0, 1}n is a set of binary flags determining the
activators activity

• C is a constant operator (x is a activator input):
C(x) = c;x, c ∈ R

• m is a majority level

• D ∈ {f, r, i, t} is an activator mode:
◦ f - output is taken from the first active activator
◦ r - output is taken as a majority of the first m

active activators
◦ t - output is taken from the constant operator

TMRLink = {{s}, s, {l1, l2, l3}, {1, 1, 1}, ∅, 2, r} (2)

The definitions allows us to use different techniques to
secure neural resources against faults. It allows us to use unit-
based redundancy techniques (such as TMR) and techniques
without unit-based redundancy. The neural resources based on
the definitions are composed of a set R of n identical neural
resources with identical settings s. The s is a set of all neural
resources parameters (W and T values for links, f , i, a, θ for
activators). The set of binary flags U determines the activity
of the particular resources in the R set. The positive flags
determine the active resources. Using the set U , we are able
both to switch between resources and have resources working
concurrently. The way, how the final neural resource output is
constructed from the active resources in the R is based on a
neural resource mode. The mode is specified by the tuple last
member. Both fault tolerant link and activator have f and r
mode. In the f mode, the output is taken from the first active
resource in the R set. So, in this mode we are able to use
the resources in the R set as backup units and switch between
them in case of a fault. In the mode r, the neural resource is
taken as a majority of m (the majority level) first active links
in the R set. So, in this mode we are able to realize techniques
such as TMR. The example of TMR secured link is in equation
(2). So, the combinations of usage of R and U sets and f and
r modes allow us to use unit-based redundancy techniques.

Techniques without unit-based redundancy are based on the
different principles. The first principle is switching between
neural resources settings. The settings are determined by the
member s ∈ S. The set S contains possible neural resource
settings. It allows us to switch between different settings in
case of a fault. For example, if one of the resource output bits
is hardly set due to a fault, we can compensate it by a change
of the settings. We can also use this principle to compensate
other neural resources faults. So, in case of our example, we
may be able to compensate the error even more by a change of
a successive link settings. Basically, the s and S is a dynamic
reconfiguration formalization.

The second unit redundancy free technique is based on two
new operators - an identity and constant operator. These oper-
ators allows us to secure an FPNN against the unpredictable
effect of a faulty neural resource. It allows us to stabilize the
state of the FPNN. The main idea is to force some value to the
faulty neural resource output instead leaving its output affected
by the fault. So this technique does not solve the fault but it
offers a way, how to lower the fault impact until the recover
is done. For this purposes, the fault tolerant links dispose of
the identity operator which is activated in the i mode. An
identity operator makes a resource to be transparent to the
passing data, i.e. it turns the resource in to a register. This
however negatively affects the passing data, since the link
W parameter is removed from the multiplication sequence.
In some cases (according to the weights distribution) we are

able to lower this negative effect by switching the settings
of the other neural resources. And, if we anticipate a failure
of some particular link, we might be able to intercorporate
this prediction into the final FPNN during the mapping of an
original neural network into it - we can map it as if the secured
link was already gone (transparent) and final FPNN will be
configured to work without it. We have described the process
of mapping of neural networks to FPNNs in [2]. According to
the weights distribution, this step can negatively influence the
approximation accuracy in both the faulty and faulty free state.
So, this method is usable only in some cases. The experimental
results of this technique are presented in the next section.

Fault tolerant activators dispose of the second operator, the
constant operator. This operator is activated in the t mode,
and it forces the value of c to the activator output. So, it turns
it to a constant register. In this case we can use statistics of
the activator output and assign for example the most common
value (or average of the most common values, or limit values
of an activation function) to the c to ensure that et least in
some cases, the data will not be affected by the fault and the
constant operator.

In case of all presented techniques, the other advantage of
the asynchronous communication model comes to place. That
is, that in case of the possible usage of the technique to solve or
compensate some fault, the mid-state during the recover does
not harm the the computation of other neural resources neither
the synchronization of the FPNN. The only negative effect is
that other neural resources have to wait until the recover is
done. This delays the FPNN computation by the time of the
recover, but the result of the computation shall be correct, not
affected by the recover itself.

IV. EXPERIMENTAL RESULTS

In this section we present an experiment dealing with an
influence of mapping neural network to an FPNN [2] in order
to decrease a negative influence of identity operator activation
according to the principle presented in the previous section.
We have experimented with the very basic neural network
task which allows us, due to its simplicity, to perform an
experiment with many combinations of faults and security. All
links dispose of only one affine operator in this FPNN.

The task is a logical exclusive addition - XOR. The original
neural network and derived grid FPNN have 2 inputs, 3
neurons in a hidden layer and 1 output. As a first step, we
measured the influence of link failures to the correctness of
the FPNN classification of all four input vectors. Table I
summarizes the results. The first column contains the name
of faulty links, the next two columns contain the numbers of
correctly and incorrectly classified inputs. The next column
shows the percentage rate of correctness. The last column
indicates if the link can be secured by the technique. The
faulty links were supposed to be treated as transparent (i.e.
their identity operators were activated). The link names are
derived from the names of activators (n1...n6) they connect,
as (source, destination), for example (n4, n6).

As the table shows, two link failures ((n4, n6),(n4, n3))
did not have an effect on the FPNN output. But the remaining
seven failures caused an output error. It can be seen that links
(n1, n3),(n2, n5) in the first layer caused the highest error.

Missing resource Correct Incorrect Match [%] Possible to secure

- 4 0 100 -
(n4,n6) 4 0 100 No
(n4,n3) 4 0 100 Yes
(n3,n4) 3 1 75 Yes
(n4,n5) 3 1 75 Yes
(n3,n6) 3 1 75 No
(n5,n4) 3 1 75 Yes
(n1,n3) 2 2 50 No
(n2,n5) 2 2 50 No
(n5,n6) 2 2 50 No

TABLE I. FAILURES EFFECT ON THE XOR FPNN

This is expected since they lay at the beginning of the FPNN
and thus have a high influence on the rest of it. Also, one
of the links in the last layer caused the same error. However,
all these links cannot be secured by mapping since they have
no link predecessors [2]. Other links caused a smaller error
and three of them ((n3, n4),(n4, n5),(n5, n4)) can be secured
using the presented technique.

We tried to secure these links. First, only one link at the
time was secured. Next, we tried to secure combinations of
two links and finally the combination of all three links. In all
experiments we ran the FPNN with and without failure of the
secured links in all possible combinations. Table II summarizes
the results of these experiments.

Secured resources Faulty resources Correct Incorrect Match [%]

(n4,n5) - 4 0 100
(n4,n5) (n4,n5) 4 0 100
(n3,n4) - 3 1 75
(n3,n4) (n3,n4) 2 2 50
(n5,n4) - 3 1 75
(n5,n4) (n5,n4) 3 1 75

(n4,n5),(n3,n4) - 4 0 100
(n4,n5),(n3,n4) (n4,n5) 4 0 100
(n4,n5),(n3,n4) (n3,n4) 4 0 100
(n4,n5),(n3,n4) (n4,n5),(n3,n4) 4 0 100
(n4,n5),(n5,n4) - 3 1 75
(n4,n5),(n5,n4) (n4,n5) 4 0 100
(n4,n5),(n5,n4) (n5,n4) 3 1 75
(n4,n5),(n5,n4) (n4,n5),(n5,n4) 3 1 75
(n3,n4),(n5,n4) - 3 1 75
(n3,n4),(n5,n4) (n3,n4) 2 2 50
(n3,n4),(n5,n4) (n5,n4) 3 1 75
(n3,n4),(n5,n4) (n3,n4),(n5,n4) 2 2 50
(n3,n4),(n4,n5),

(n5,n4) - 3 1 75

(n3,n4),(n4,n5),
(n5,n4) (n3,n4) 2 2 50

(n3,n4),(n4,n5),
(n5,n4) (n4,n5) 3 1 75

(n3,n4),(n4,n5),
(n5,n4) (n5,n4) 3 1 75

(n3,n4),(n4,n5),
(n5,n4) (n3,n4),(n4,n5) 2 2 50

(n3,n4),(n4,n5),
(n5,n4) (n4,n5),(n5,n4) 3 1 75

(n3,n4),(n4,n5),
(n5,n4) (n3,n4),(n5,n4) 2 2 50

(n3,n4),(n4,n5),
(n5,n4)

(n3,n4),(n4,n5),
(n5,n4) 2 2 50

TABLE II. FAILURES EFFECT ON THE XOR FPNN

As the table shows, in five cases the technique really
increased the influence of the identity operators activation. In
some cases the technique did not help and in some cases it
led to an even higher error. It also caused new errors which
occurred in the faulty free state. Both findings were expected

since the result of this technique depends on the original weight
distribution as mentioned above.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have followed the FPNNs author’s original
formal model and derived the model of the fault tolerant neural
resources. We have presented the techniques of fault tolerance
ensurance based on the described models. It allow us to use
unit based redundancy using fault tolerant techniques such as
TMR or backup copies. The techniques based on the identity
and the constant operator do not use the unit based redundancy
and offer the way how to potentially lower the influence of a
fault. The presented experiment showed, that in some cases,
the usage of link identity operator may lead to increase of
fault tolerance if we perform the mapping of a neural network
to an FPNN with assumption of the fault. It also proved that
this technique, because its usability depends on the weight
distribution, can have a negative effect on the FPNN in both
a fault-free and faulty state.

In future work, we are going to perform more practical
experiments with presented models and techniques and to
develop them. These efforts should lead to a design of a fault
tolerant neural network architecture implemented in FPGAs
using FPNNs and offering suitable features for implementing
deep neural networks.

ACKNOWLEDGMENT

This work was supported by the following projects:
National COST LD12036 - ”Methodologies for Fault Tol-
erant Systems Design Development, Implementation and
Verification”, project Centrum Excelence IT4Innovations
(ED1.1.00/02.0070), EU COST Action IC1103 - MEDIAN
- Manufacturable and Dependable multIcore Architectures at
Nanoscale and BUT project FIT-S-14-2297.

REFERENCES

[1] Girau, B.: FPNA: Concepts and Properties. In FPGA Implementations of
Neural Networks, editace A. R. Omondi; J. C. Rajapakse, Springer US,
2006, ISBN 978-0-387-28487-3, p. 63–136, 10.1007/0-387-28487-7-3.
http://dx.doi.org/10.1007/0-387-28487-7-3

[2] KRCMA Martin, KASTIL Jan a KOTASEK Zdenek: Mapping trained
neural networks to FPNNs. In: IEEE 18th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems. Belgrade:
IEEE Computer Society, 2015, pp. 157–160. ISBN 978-1-4799-6779-7.

[3] STRAKA Martin, KASTIL Jan, KOTASEK Zdenek a MICULKA Lukas:
Fault Tolerant System Design and SEU Injection Based Testing. Micro-
processors and Microsystems. Amsterdam: Elsevier Science, 2013, issue
37, pp. 155–173. ISSN 0141-9331.

[4] J. A. Cheatham, J. M. Emmert, and S. Baumgart: A survey of fault
tolerant methodologies for fpgas, ACM Trans. Des. Autom. Electron.
Syst., vol. 11, no. 2, pp. 501–533, 2006.

[5] M. G. Gericota, L. F. Lemos, G. R. Alves, and J. M. Ferreira: Online self-
healing of circuits implemented on reconfigurable fpgas, in IOLTS ’07:
Proceedings of the 13th IEEE International On-Line Testing Symposium.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 217–222.

[6] G. Yan, Y. Han, and X. Li: SVFD: A Versatile Online Fault Detection
Scheme via Checking of Stability Violation, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 19, pp. 1627–1640, Sept. 2011.

[7] U. Sharma, Fault tolerant techniques for reconfigurable platforms, in
A2CWiC ’10: Proceedings of the 1st Amrita ACM-W Celebration on
Women in Computing in India. New York, NY, USA: ACM, 2010, pp.
1–4.

Paper F

Triple modular redundancy used in
field programmable neural
networks

M. Krcma, Z. Kotasek and J. Lojda, ”Triple modular redundancy used in field programmable
neural networks,“ 2017 IEEE East-West Design & Test Symposium (EWDTS), 2017, pp.
1-6, doi: 10.1109/EWDTS.2017.8110128.

91

Triple Modular Redundancy Used in Field Programmable Neural
Networks

Martin Krcma, Zdenek Kotasek and Jakub Lojda
Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic
ikrcma@fit.vutbr.cz, kotasek@fit.vutbr.cz, ilojda@fit.vutbr.cz

Abstract

This paper presents the concepts of FPNA and
FPNN, used for the approximation of artificial neural
networks in FPGAs and discusses the usage of TMR
technique in order to reach a fault tolerance. The
schemes of the FPGA implementation are presented.
The results of experiments determining the FPGA re-
sources utilization with different usage of the TMR
technique are provided.

1 Introduction

The artificial neural networks [10] are one of the
important models of softcomputing and artificial in-
telligence. They are structure inspired by the human
brain with high capability of learning and memorizing
to solve various types of tasks. Basically, the goal of the
artificial neural network is to learn the relation between
two sets of data vectors, to generalize the relation, to
determine its features and use it for the determining
the relation of the unknown vectors belonging to the
same problem. This capability can be used for classi-
fication tasks, for timeseries and functional prediction,
to control tasks, to image recognition, clustering and
other tasks.

Neural networks are composed of a set of neurons
computing the activation function over the basis func-
tion (often the weighted sum) of their inputs. The neu-
rons are interconnected with the weighted connections
called synapses. The learning of the neural network is
basically a process of setting the weights.

The networks have been implemented in various
kinds of devices starting from analog computers to
the most modern processors, VLSIs, graphical process-
ing units and FPGAs. This paper deals with one of

the possible implementations of artificial neural net-
works in FPGAs - Field Programmable Neural Ar-
rays/Networks (FPNAs/FPNNs).

In our paper published at NORCAS 2015 conference
[8], we described the concept of Field Programmable
Neural Networks for artificial neural networks imple-
mentation in FPGA. We also presented a model of fault
tolerant FPNNs and various fault tolerance improving
techniques based on the model. Experimental results
were also provided.

This paper is organised as follows - the first section
introduces the FPNA/FPNN concept. The second sec-
tion describes the implementation of FPNNs into FP-
GAs. The third section deals with fault tolerance tech-
niques. The fourth section presents the experimental
results and the last section summarizes the whole pa-
per.

2 Field Programmable Neural Net-
works

The concept of FPNNs [4] is meant to simplify the
implementation of artificial neural networks in FPGAs
by adjusting their properties to be more suitable for im-
plementation into them. The simplification originates
from its main feature - a highly customizable structure
which makes it possible to establish resource sharing
between the original synaptic connections of the neu-
ral network and to simplify the interconnection model.
The FPNNs are composed of dedicated interconnected
units called neural resources which approximate the
original neurons and synaptic interconnections. The
units of the first type are called activators and repre-
sent the original neural network neurons. The other
units are called links and serve as an approximation of
the original synaptic interconnection. Every link dis-
poses of a set of weights serving as an approximation

1

of the original synaptic weights.

An example of a grid FPNN can be seen in Fig.
1. The circles in the figure represent activators, wide
arrows represent links and the thin arrows represent
data interconnections. The orientation of the connec-
tion arrows shows the way of the passing data. The
straight wide dashed/dotted arrows represent the orig-
inal neural networks synapses. The thin dashed/dotted
arrows represent the sequences of links approximating
the particular synapses. The synapses and the partic-
ular sequences are drawn with the same line and arrow
styles.

The FPNNs are not the same structures as neural
networks, although they can be constructed in that
way. The FPNNs represent a different model which can
structurally differ from the implemented neural net-
work. They can also have different capabilities which
means that they are not only an implementation of the
neural networks, they are an approximation of neural
networks as well - with different structure and proper-
ties, they can provide similar results as the networks.
The accuracy is the main problem here. Since the
FPNNs can be constructed in various ways and types,
the approximation accuracy can be different. We dealt
with the approximation accuracy in [7].

Figure 1. Synapses approximation in a grid
FPNN

2.1 Implementation of FPNNs into FPGAs

The VHDL implementation of both types was cre-
ated according to the original design and schematic
[4]. Both, activators and links were designed as sep-
arated units communicating with signals. The com-
munication is based on the asynchronous request - ac-
knowledgement model. Every neural resource gener-
ates requests for all units directly connected to its out-
put (successors) when its computation is done. Once
a successor starts to process the request, it sends the

acknowledgement back to the original resource. When
the original resource receives acknowledgements from
all successors, it selects a new input request to process,
sends the acknowledgement and begins the computa-
tion. The activators also send a flag together with the
requests. The flag is a constant activator number and
it is used in links to select the proper weight to mul-
tiply the input data width. The links then propagate
the flag to all connected links.

The implementations of both types of neural re-
sources are similar, however they differ in used com-
putational units. The scheme of standard link imple-
mentation is illustrated in Fig. 2 and the scheme of
the activator in Fig. 3. Both types are composed of a
multiplexor, demultiplexor, register, computation units
and units for processing requests. The meaning of com-
mon units is described bellow:

• SELECT selects one of the active requests for
processing using the Round&Robin algorithm.
The requests from preceding neural resources are
indicated by the set bits on its input. When the
request is selected, it sets the start signal up.

• MUX is an input data vectors multiplexer. It is
controlled by the SEL unit.

• REG is a register storing the selected data vector.

• ACK DEMUX delivers an acknowledgement
(generated by the start signal) to the proper pre-
decessor. It is controlled by the SEL unit.

These units are present in both links and activators.
They serve for input requests processing and delivery
of the input data to the computation part of the unit.
Computation part of links and activators is composed
of different units:

• MULT ADD applies the weights to the data.
The key to select the proper weight is the flag asso-
ciated with the request. The flag is selected from
all of the flags at the input FLAG IN by the value
at the input s.

• ITER iteratively computes the sum of all input
data (simulates the neuron basis function). After
a predefined number of iterations, it transmits the
result to the TRANS unit and activates it using
the fin signal. After every iteration it activates
the next signal which starts the processing of an-
other request.

• TRANS computes the activation function (the
output of the activator). The input is gained from

2

the ITER unit. The activation function were sig-
moid like function suitable for hardware imple-
mentation [9].

All computation units take the input data from the
register REG, perform the computation of the result
and transmit it to the neural resource output. They
also activate the signal ready which is an input of the
output requests generators:

• LINK REQ GEN generates the requests to the
connected successors when the ready signal is set.
It also receives the acknowledgements from the
successors. Using the free signal it controls the
SEL block - it enables (when all acknowledgements
are received) or disables (new request was selected
- start signal is up) its function.

• ACT REQ GEN is similar to the
LINK REQ GEN, but it allows to activate
the free signal using the next req signal without
the requests generation.

These units are responsible for the control of the neural
resource. When the processing of the selected request
is started, they block the SEL unit preventing it from
selecting another request before the actual one is pro-
cessed. After the computation is done, they generate
output requests and hold the entire neural resource in-
active until all requests are successfully received by the
successors.

Figure 2. Scheme of a link implementation -
the interconnection of the inner units

3 Fault tolerant FPNN using TMR

The neural networks are parallel structures with lot
of redundancy performing an approximate (soft) com-

Figure 3. Scheme of an activator implementa-
tion - the interconnection of the inner units

puting. Therefore they dispose of inherent fault toler-
ant properties which differ with every network though.
There are a number of techniques designed to increase
the fault tolerant properties. Some do it using an addi-
tional redundancy on different levels (for example TMR
on the level of the whole network [13], or adding redun-
dant neurons [1]) in order to build the network to be
fault tolerant. Others modify the process of training [2]
in order to train the network to be fault tolerant (for
example [5] uses weight minimization during the train-
ing) or use retraining after a fault occurs [3]. Others
modify the basis function [11] or activation function
[12]. All approaches are combined as well.

Our approach based on extension of the imple-
mented neural network fault tolerance (or substitution
if no fault tolerant technique was used on the network).
Different approaches can be used to make an FPNN
fault tolerant. The approaches can utilize replication
or can use other principles. We introduced a fault tol-
erance technique which does not use replication in [8].
The homogeneous structure of FPNNs is suitable for
using replication based techniques as well as for the
recovery using the online reconfiguration. The asyn-
chronous model of communication is suitable for this
type of recovery as well since the FPNN can be simply
put on hold until the recovery is finished and then re-
sume its function without a need of resetting the whole
FPNN.

TMR is a well known fault tolerant technique based
on triple replication of the secured unit and comparison
of the triplet output data in order to determine the
major result which is then used as the output of the
whole triplet. This technique can be used on different
levels with FPNNs. In this paper we focus on two levels
- the level of inner units (we will refer to this type as
type A) and the level of the whole neural resources (type
B).

3

On the level of inner units (type A), there are six
(link) or seven (activator) main units which can be se-
cured using the TMR technique. Using the technique
on this level has several advantages. It allows us to
choose which units (if not all) will be secured. There-
fore it allows us to adjust the security/overhead ratio.
Also, if we focus on the smaller inner units, the recov-
ery from fault using the dynamic reconfiguration will
be easier and faster than in the case of reconfiguration
of the whole neural resources. However, on this level
the interconnection between units will not be secured.
This will occur on the level of the whole neural re-
sources (type B). On this level, the fault tolerance will
be generally higher because of duplication the whole
resources but overhead will be higher as well. Also, re-
covery from fault using dynamic reconfiguration will be
more complicated and slower due to larger reconfigured
area.

We decided to compare these two levels in the mean-
ing of area utilization in order to have a base for deci-
sion which level of TMR will be used. There are other
criteria to evaluate the fault tolerant techniques. The
power consumption, maximum clock frequency and la-
tency belong to the most important. However, in this
paper we deal with area (resource utilization) only,
with other criteria we shall deal with in our future re-
search.

4 Experimental results

In order to determine the area usage (in the number
of slice registers and LUTs) of the neural resources and
their inner units in both the unsecured and the TMR
versions, we implemented them in VHDL and synthe-
sized them using the Xilinx ISE 14.7 tool. The tar-
get FPGA was the Xilinx Virtex-6 device xc6vlx240t-
1-ff1156. All computations were implemented in fixed
point form with 8 bits of the integer part and 8 bits
of the fractional part [6]. The voters were imple-
mented using bit operations, therefore the voting was
performed on the level of bits. All neural resources
were implemented to be connected with three prede-
cessors and two successors. The number of connected
neural resources affects the size of the communication
units. The link has three weights with real values. The
use of DSP blocks was switched off. The optimization
level was left on default but the Equivalent registers
removal option was switched off to avoid the drop of
the duplicated units. All results were provided by the
synthesis only.

The resources utilization of the unsecured units are
shown in Table 1. In the table, the Unit column iden-
tifies the units by their name. The columns Slice Regs.

and Slice-LUTs contain the resources utilization. The
columns LUTs of act. and LUTs of link compare the
LUTs utilization of the unit with the utilization of the
whole neural resources in order to illustrate the area
portion of the inner units.

Table 1. Utilization of unsecured blocks
Unit Slice

Regs.
Slice-
LUTs

LUTs
of act.

LUTs
of link

SELECT 8 17 1% 1%
ITER 49 104 6% 0%
TRANS 1 1478 86% 0%
MULT-
ADD

0 1389 0% 88%

REQ-
GEN

2 5 0.3% 0.3%

ACTI-
VATOR

126 1723 100% 0%

LINK 57 1582 0% 100%

As the table illustrates the most significant por-
tion of FPGA resources are utilized in the computa-
tion units MULT ADD and TRANS. The communica-
tion and control units utilize around one percent of re-
sources and around 5%-10% of resources are utilized by
the units interconnection. This shows that the compu-
tation units are the best candidates for using the TMR
technique as the probability of failure is the highest
with them. On the other hand, the communication
and control units are essential for the data flow, there-
fore for the functionality of the whole FPNN and the
failure in these units could stop the operation of the
whole FPNN, while the failure in the computing unit
could only cause the degraded precision. Moreover ac-
cording to their low resources utilization, it could be
suitable to apply the TMR technique to secure them.

Table 2 summarizes the resource utilization of the
building blocks secured using the TMR technique. The
columns Registers and LUTs have the same meaning
as in Table 1, the other columns contain the percent
increase of the resources utilization. As expected, the
resource utilization has increased approximately three
times or less in most of the units. The neural resources
are marked by the used TMR type. The utilization
of the type A activator (all units were TMR secured
although not all of them are listed in the table) has
increased around 2.7 times and the utilization of the
type A link around 2.9 times (registers) and 2.3 times
(LUTs). The type B resources LUTs utilization has
increased even more but their registers utilization has
increased less than in case of type A resources.

Table 3 compares the utilization of neural resources

4

Table 2. Utilization of TMR-secured blocks
Secured
unit

RegistersLUTs Increase
of
Regs.

Increase
of
LUTs

SELECT 28 40 250% 135%
ITER 179 331 265% 218%
TRANS 83 4291 83 190%
MULT-
ADD

83 3641 83 162%

REQ-
GEN

6 6 200% 20%

ACTIV-
ATOR -
TYPE A

346 4699 174% 173%

LINK -
TYPE A

166 3737 191% 136%

ACTIV-
ATOR -
TYPE B

311 5611 147% 226%

ACTIV-
ATOR -
TYPE B

163 4299 185% 172%

Table 3. Comparison of different TMR levels

Neural re-
source (se-
cured using
type B)

Increase of
registers
utilization
vs. type A

Increase
of LUTs
utilization
vs. type A

Link -2% 15%
Activator -11% 19%

secured by the both TMR types. As the table illus-
trates, the type B neural resources consumes less reg-
isters than neural resources of type A. This is due to
the number of voters consuming the registers in the
type A resources. However, the type B neural resources
consume more LUTs. This is due to interconnection in-
cluded into the duplicates. It is needed to consider that
there is around twice more registers than LUTs avail-
able in the FPGA. From this point of view the type A
neural resources seems to be more resource and area
efficient than type B resources. However, the type B
resources are secured including the interconnection be-
tween inner units, therefore their fault tolerance should
be higher.

5 Conclusions and future research

In this paper we briefly described the concept of
FPNN serving for the implementation of artificial neu-
ral networks in FPGAs. We also described the imple-
mentation using the schematics and explained the con-
struction of neural resources and the communication
model. The fault tolerance techniques were considered
and two levels of application of the TMR technique on
the neural resources were discussed.

The application of the TMR technique on the inner
units of the neural resources (type A) has proven to be
less consuming in the meaning of the number of con-
sumed LUTs, although this type consumed more reg-
isters. However, the registers are more available than
LUTs, so this type seems to be more resource efficient.
Due to smaller areas secured using TMR it might be
more effective to use the dynamic reconfiguration in
order to recover from fault.

The type of the TMR that secures the whole neu-
ral resources (type B) consumes less registers but more
LUTs. In the meaning of the available resources, this
type is less resource effective. Also, using the dynamic
reconfiguration to recover from fault might be less ef-
fective and slower due to larger area needed to be re-
configured.

In our future research we will deal with other fault
tolerance techniques. Especially with techniques which
do not use the replication but they are based on a
change of parameters and on the robustness of the
FPNN which we designed. We shall also perform ex-
periments with fault injection. We shall measure how
the techniques affect the consumption and the value of
the frequency on which the system works as well.

Acknowledgement

This work was supported by The Ministry of Educa-
tion, Youth and Sports from the National Programme
of Sustainability (NPU II); project IT4Innovations ex-
cellence in science - LQ1602, ARTEMIS JU under grant
agreement no 641439 (ALMARVI) and BUT project
FIT-S-14-2297.

References

[1] A. Ahmadi, M. H. Sargolzaie, S. M. Fakhraie, C. Lu-
cas, and S. Vakili. A low-cost fault-tolerant approach
for hardware implementation of artificial neural net-
works. In Computer Engineering and Technology,
2009. ICCET ’09. International Conference on, vol-
ume 2, pages 93–97, Jan 2009.

5

[2] B. S. Arad and A. El-Amawy. On fault tolerant train-
ing of feedforward neural networks. Neural Networks,
10(3):539 – 553, 1997.

[3] J. Deng, Y. Rang, Z. Du, Y. Wang, H. Li, O. Temam,
P. Ienne, D. Novo, X. Li, Y. Chen, and C. Wu.
Retraining-based timing error mitigation for hardware
neural networks. In Design, Automation Test in Eu-
rope Conference Exhibition (DATE), 2015, pages 593–
596, March 2015.

[4] B. Girau. Fpna: Concepts and properties. In
A. R. Omondi and J. C. Rajapakse, editors, FPGA
Implementations of Neural Networks, pages 63–101.
Springer US, 2006. 10.1007/0-387-28487-7-3.

[5] T. Haruhiko, K. Hidehiko, and H. Terumine. Fault
tolerant training algorithm for multi-layer neural net-
works focused on hidden unit activities. In Neural
Networks, 2006. IJCNN ’06. International Joint Con-
ference on, pages 1540–1545, 2006.

[6] J. Holt and T. Baker. Back propagation simulations
using limited precision calculations. In Neural Net-
works, 1991., IJCNN-91-Seattle International Joint
Conference on, volume ii, pages 121 –126 vol.2, jul
1991.

[7] M. Krcma, J. Kastil, and Z. Kotasek. Mapping trained
neural networks to fpnns. In Design and Diagnos-
tics of Electronic Circuits Systems (DDECS), 2015
IEEE 18th International Symposium on, pages 157–
160, April 2015.

[8] M. Krcma, Z. Kotasek, and J. Kastil. Fault tolerant
field programmable neural networks. In Nordic Cir-
cuits and Systems Conference (NORCAS): NORCHIP
International Symposium on System-on-Chip (SoC),
2015, pages 1–4, Oct 2015.

[9] H. Kwan. Simple sigmoid-like activation function suit-
able for digital hardware implementation. Electronics
Letters, 28(15):1379–1380, 1992.

[10] T. Munakata. Neural networks: Fundamentals and
the backpropagation model. In T. Munakata, editor,
Fundamentals of the New Artificial Intelligence, Texts
in Computer Science, pages 7–36. Springer London,
2007. 10.1007/978-1-84628-839-5–2.

[11] A. Rusiecki. Fault tolerant feedforward neural net-
work with median neuron input function. Electronics
Letters, 41(10):603–605, May 2005.

[12] Y. Taniguchi, N. Kamiura, Y. Hata, and N. Mat-
sui. Activation function manipulation for fault tol-
erant feedforward neural networks. In Test Sym-
posium, 1999. (ATS ’99) Proceedings. Eighth Asian,
pages 203–208, 1999.

[13] F. Zarafshan, G. Latif-Shabgahi, and A. Karimi. No-
tice of retraction a novel weighted voting algorithm
based on neural networks for fault-tolerant systems. In
Computer Science and Information Technology (ICC-
SIT), 2010 3rd IEEE International Conference on,
volume 9, pages 135–139, July 2010.

6

Paper G

Fault tolerant Field Programmable
Neural Networks

M. Krcma, Z. Kotasek and J. Kastil, ”Fault tolerant Field Programmable Neural Networks,“
2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP & International
Symposium on System-on-Chip (SoC), 2015, pp. 1-4, doi: 10.1109/NORCHIP.2015.7364381.

98

Light grid FPNNs and Fault Tolerant Mapping

Martin Krcma, Jan Kastil, Zdenek Kotasek
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Email: ikrcma@fit.vutbr.cz, ikastil@fit.vutbr.cz, kotasek@fit.vutbr.cz

Abstract—This paper presents formal definitions of FPNA and
FPNN concepts and introduces new types of FPNN derived and
used by author. The process of mapping a trained artificial neural
network to FPNNs is described. Techniques of redundancy free
fault tolerance of the selected parts of FPNN are introduced, the
derived algorithms are presented and the experimental results of
this algorithm are summarized.

I. INTRODUCTION

The concept of the Field Programmable Neural Arrays
(FPNAs) [1] is in design meant to simplify the implemen-
tation of artificial neural networks in FPGAs by adjusting its
properties to be more suitable for implementation in them.
The simplification originates from its main feature - highly
customizable structure which makes possible to establish a
resource sharing between the original synaptic connections of
the neural network. This is done by using its customizability
to simplify the interconnection model.

FPNAs are one of the possible implementation of neural
networks in FPGAs. And just like others, they are vulnerable
to various kinds of faults, the SEU is the most impending one.
The vulnerability is even higher since FPNNs are composed of
a set of interconnected and interdependent dedicated units. On
the other hand, this allows us to use a plenty of fault tolerance
improving techniques Since the main goal of FPNN is the
FPGAs resources savings, it is appropriate to avoid the use of
redundancy techniques and exploit other techniques preserving
this core property. One of the possible methods is presented
in this paper.

The author originally hase defined the FPNNs in quite
formal way in his work [1]. I have reformulated the origi-
nal definitions (see definiton I.1 and I.2) to suit us further
definitions which we have based on them. These definitions,
we are introducing in this paper, specify special types of
FPNNs and allow us to easily describe the algorithms of fault
tolerant mapping we are presenting. It also gave us proper
instruments for further research leading to the design of fault
tolerant FPGA artificial neural network architectures based on
the FPNA/FPNN concept.

A. FPNA

The FPNA is defined (definition I.1) [1] as an oriented
graph. Nodes and edges of this graph represent two different
types of unit. Nodes are called activators and represent original
neural network neurons. Edges are called links and serve
as an approximation of an original synaptic interconnection.
Both types of units (together called neural resources) specify
operators responsible for computation. Activators dispose of

an iterative operator i serving for activator potential computing
(similarly to a neuron potential). The Second activator operator
is a function operator f performing an activator output com-
putation, i.e. the computation of an activation function over
the potential. Then, there is a set of affine operators for every
link serving as an approximation of original synaptic weights.
There is one affine operator for every activator predecessor.

Definition I.1 (FPNA [1]). Let N be a set of nodes (activators)
and E a set of oriented edges (links denoted as (m,n);m,n ∈
N). We say that graph (N,E) is an FPNA if the following
statements hold:

1) Every node has a set of predecessors:
∀n ∈ N : ∃Pred(n) = {p ∈ N | (p, n) ∈ E}

2) Every node has a set of successors:
∀n ∈ N : ∃Succ(n) = {s ∈ N | (n, s) ∈ E}

3) A set of input nodes exists:
∃Ni = {n ∈ n | Pred(n) = ∅}

4) Every link has an affine operator (x is an input data):
∀p, n ∈ N ∧ p ∈ Pred(n) : ∃α(p,n) = Wn(p)× x+
Tn(p)

5) Every non-input activator has an iterative operator:
∀n ∈ N rNi : ∃in : R× R→ R

6) Every non-input activator has a function operator:
∀n ∈ N rNi : ∃fn : R→ R

The definition specifies the existence of neural resources,
declare their operators and determines the topology. However,
it does not declare the affine operator parameters, starting
value of an iteration operators and it does not specify the full
structure of the resulting object from the data connections point
of view. Thus, the FPNA specifies a whole class of possible de-
signs, and to obtain a fully specified and implementable object
there is need for something more. The remaining specification
is offered by a Field Programmable Neural Network - FPNN.

B. FPNN

An FPNN (definition I.2) [1] is one of the possible FPNA
instances. It defines concrete values of W and T parameters
of affine operators. It also defines a starting value θ of an
activator iteration operator and a number of iterations a. For
every input node it gives a number of input batches c. That is
because input vectors can be separated to parts and fed to an
FPNN part by part saving the number of necessary inputs in
this way.

FPNN also specifies the data interconnection between
neural resources. It uses four types of binary flags to do that.
The nterconnections between links and successive activators

is determined by r flags. The s flags define interconnections
between activators and successive links. Similarly, the S flags
determine interconnections between input nodes and succes-
sive links.

The last type of flag, R, specifies interconnection between
two links. This is a new property regarding the neural net-
works, the possibility of connecting links to other links, to
construct sequences of interconnected links. This is the core
feature allowing to construct FPNNs with very various struc-
tures, thus structures suitable for implementation in FPGAs.

Definition I.2 (FPNN [1]). Let N be a set of nodes (activators)
and E a set of oriented edges (links denoted as (m,n);m,n ∈
N). We say that graph (N,E) is an FPNN if the following
statements hold:

1) (N,E) is an FPNA
2) A default value of an activators iteration variable

exists: ∀n ∈ N : ∃θn ∈ R
3) A number of iterations is defined:

∀n ∈ N : ∃an ∈ N
4) Concrete values of affine operators parameters are

defined:
∀α(p,n) :Wn(p), Tn(p) ∈ R

5) Number of inputs for every input node is defined:
∀n ∈ Ni : ∃cn ∈ N

6) For every activator n a binary flag determining inter-
connection with a link (p, n) exists:
∀p, n ∈ N ∧ p ∈ Pred(n) : ∃rn(p) ∈ {0, 1}

7) For every activator n a binary flag determining inter-
connection with a link (n, s) exists:
∀n, s ∈ N ∧ s ∈ Succ(n) : ∃sn(s) ∈ {0, 1}

8) For every link (p, n) a binary flag determining inter-
connection with a link (n, s) exists:
∀n, p, s ∈ N ∧ p ∈ Pred(n) ∧ s ∈ Succ(n) :
∃Rn(p, s) ∈ {0, 1}

9) For every input node n a binary flag determining
interconnection with a link (n, s) exists:
∀n ∈ Ni,∀s ∈ N ∧ s ∈ Succ(n)) : ∃Sn(s) ∈ {0, 1}

C. Grid FPNN

For further definition purposes some auxiliary variables are
defined (definition I.3). These variables contain information
about numbers of connected neural resource to a particular
resource the variable is related to.

Definition I.3 (FPNN structural variables). Structural variables
are variables related to individual neural resources and contain-
ing numbers of connected resources derived from the number
of the positive structural flags (i.e. rn(p), sn(s), Rn(p, s) and
Sn(s) flags). Four types of structural variables are defined as
follows:

1) num rn and num sn variables for every activator:
∀n ∈ N : ∃num rn =
|{rn(p)|rn(p) = 1 ∧ p ∈ Pred(n)}|
∀n ∈ N : ∃num sn =
|{sn(s)|sn(s) = 1 ∧ s ∈ Succ(n)}|

2) num Rn(p) variable for every link:
∀(p, n) ∈ E : ∃num Rn(p) =
|{Rn(p, s)|Rn(p, s) = 1 ∧ n ∈ Pred(s) ∧ (n, s) ∈ E}|

3) num Sn variable for every input node:
∀n ∈ Ni : ∃num Sn =
|{Sn(s)|Sn(s) = 1 ∧ s ∈ N}|

A special type of FPNN can now be defined using previous
definitions. Grid FPNN (definition I.4) is an FPNN with
enforced limitation of the structure causing it has to form a
grid shape. The reason of this is to make FPNN suitable for
implementation in FPGAs due to similarity of grid FPNNs
structure and FPGAs interconnection bus.

Definition I.4 (Grid FPNN). Let N be a set of nodes (ac-
tivators) and E a set of oriented edges (links denoted as
(m,n);m,n ∈ N). We say that graph (N,E) is n grid FPNN
if the following statements hold:

1) (N,E) is an FPNN
2) A limited number of connected preceding links is

defined:
∀n ∈ N : num rn ≥ 2

3) A limited number of connected successive links is
defined:
∀n ∈ N : num sn ∈ {0, 1}
∀n ∈ N : num Sn ∈ {0, 1}
∀(p, n) ∈ E : num Rn(p) ∈ {0, 1, 2}

4) A limited number of iterations is defined: ∀n ∈ N :
an ≥ 2

5) A limited number of inputs is defined: ∀n ∈ Ni :
cn = 1

The example of grid FPNN is in Fig. 1. The circles on
the figure represent activators, wide arrow represent links and
thin arrow represent data interconnections. The orientation of
the connection arrows show the way of the passing data. As
the picture illustrates, there is only one link on the output
of every activator which realizes the connection to another
layer. It is directly connected to one successive activator in
the next layer. The connection to the other activators goes
through the sequence of links within the whole layer. The are
two sequences of the links going the opposite ways. They are
called Interconnection train (definitions I.5-I.9). Every layer
with more than one activator has an interconnection chain
within.

Fig. 1. A grid FPNN

Definition I.5. Train of links is generally a sequence of
interconnected links.

Definition I.6. Initial is a link having no link predecessors. It
has only an activator predecessor.

Definition I.7. Terminal is a link having no link successors.
It has only an activator successor.

Definition I.8. Chain of links is a train of links bordered by
initial (the beginning of the chain) and terminal (the end of
the link) respectively.

Definition I.9. Interconnection train is a train of links inter-
connecting activators within a layer. It is composed of two
trains going the opposite ways.

Before introducing another special type of FPNNs, the
new type of links has to be established. The definition I.10
specifies a light link. The difference between a standard link
and the light link is that the light link disposes of only one
affine operator. This leads to another spare of FPGA resources
because universal multiplier, which the standard link has to
contain, can be replaced by a less expensive constant multiplier
in the light link.

Definition I.10 (Light link). Let (N,E) be an FPNN and
(p, n) ∈ E a link. We say that (p, n) is a light link if it
dispose of only one affine operator which is common for all
predecessors (x is an input data):
∀p, n ∈ N ∧ (p, n) ∈ E : α(p,n) =W · x;W ∈ R

Now the core type of FPNN of this paper can be intro-
duced. It is a special type of grid FPNN called a Light grid
FPNN (definition I.11) and it is composed only of light links.
This type is oriented on maximal spare of FPGAs resources
using both principles described above.

Definition I.11 (Light grid FPNN). Let N be a set of nodes
(activators) and E a set of oriented edges (links denoted as
(m,n);m,n ∈ N). We say that graph (N,E) is an light grid
FPNN if the following statements hold:

1) (N,E) is a grid FPNN
2) all e ∈ E are the light links

II. MAPPING

Mapping is a process of direct transfer of an artificial
neural network into an FPNN without using a training data set
and without the need of learning. Mapping uses information
obtainable from an original neural network such as weights,
biases, activations functions and the network structure.

A. Theory

Considering the declarations in table I, the artificial neural
network will be seen in this paper as a double composed of set
of neurons and set of synapses. Every object in these sets rep-
resents an original object in the original network and its related
properties such as weights, biases and activation functions (i.e.
synval, neuact and synbiases in table I respectively).

In light grid FPNN, every original synapse is approximated
with sequence of multiplications performed by some chain of
links (1). The chain of links is determined by approx function
(table I).

∀s ∈ Synapses : sapx =
∏

e∈approx(s)
We (1)

There is a set of chains of different length approximating
the synapses. Every chain has to be fully specified (i.e every

multiplicands in a sequence has to be known) for equation (1)
to hold. For computation, it is possible to exploit the fact that
in the light grid FPNN the links can be part of more than one
chain, ad thus we are able to compute the last multiplicand in
chain multiplication sequence using one link shorter chain. In
this case only a chain terminal (synlast) has to be computed
(2). So, if mapping begins on the chains with length 1, which
are present in every grid FPNN, the mapping process can be
effectively performed with one link longer chain in every step
leading to fully mapped FPNN.

∀s ∈ Synapses : sapx =

 ∏

e∈approx(s)\synlast

We

× synlast

(2)

Since the multiplication values of the rest of the chain are
known, the synlast can be computed as the division of the
original synapse weight and the product of all the previous
multiplicands in a sequence (3).

∀s ∈ Synapses : synlast =
sval∏

e∈approx(s)\synlast
We

(3)

Since the light link can approximate more than one synapse
(∀e ∈ E : |apprSynse| ≥ 1), there is more than one synlast
values for it. However, the light links dispose of only one W
parameter, so there is a need for compromise. This compromise
can be computed in different ways [3], in this paper the
arithmetic average will be used.

B. Fault tolerance

There are many popular ways to enhance a fault tolerance
of various types of technology. In this paper we are proposing a
method increasing the light grid FPNNs fault tolerance without
using redundancy. The new type of link is defined (definition
II.1) for the purposes of this method. It adds new operators to
the standard or light link.

Definition II.1 (Fault tolerant link). Let (N,E) be an FPNN
and e ∈ E a link. We say that e is a Fault tolerant link if the
following statements hold:

1) it dispose of an identity operator (xe is e input data):
∃Ie; Ie : R→ R; Ie(xe) = xe

2) there is a binary flag useIe ∈ {0, 1} determining the
activity of the identity operator (ye is e output data):
ye = Ie(xe)⇔ useIe = 1

The new operator is an identity operator. If this operator
is active it replaces a link affine operator on a computation of
an output data and it simply copies the link input data to its
output. Using this technique the identity operator makes the
link to be transparent for the passing data. So, if the link is
faulty, the activation of this operator ensures the propagating
data against unpredictable effect of the defective link.

Even if we secure the propagating data against unknown
defects caused by faulty link, a problem of invalid data (a chain
is broken and one of the elements of a multiplication sequence
is missing) passing to the rest of the FPNN remains. To ensure
as correct FPNN computation results as possible we need to

settle this problem in some way. Since we do not intend to
use redundancy, we have no other choice than to use other
neural resources to compensate the missing (transparent) link.
The best candidates for this are the direct link predecessors
of the faulty link. If we anticipate the possible failure of
some particular link, or if we decide that one of links is more
important than others for some reason and we want to ensure
the FPNN against its failure, we might be able to delegate the
link function to its predecessors in advance. Thus compute the
failure of the link to the parameters of its predecessors. This
can be done by considering the link just not be there. Then
the predecessors are forced to approximate the link synapses
instead of it. So, basically the predecessors take a part of a link
apprSyns set and intercorporate it into their own apprSyns
sets. Then, during the process of mapping, the approximated
synapses of the selected neuron are approximated by its prede-
cessors. But since these synapses are together with the original
predecessor synapses, the approximation accuracy suffers from
a decrease caused by this sharing. And the accuracy of the
approximation of the original synapses is degraded as well.
So this method should be applied only if the fault tolerance
and FPGA resources savings is so important to the user that
a decrease of the accuracy is acceptable. Also, it is applicable
only on link having link predecessors, i.e. not initials.

Another problem is how to pick the link to be ensured with
this method. We can use different metrics. For example we can
consider links approximating synapses with high weights to
be more important then links approximating lower weighted
synapses. Or link being placed closer to the beginnings of
chains can be seen as more important as the higher number of
successive links depends on them compared to terminals for
example. Also links having more predecessors can be regarded
as more important, and so on. The next section introduces
an algorithm of selecting links for fault tolerance ensuring as
well as the mapping algorithm using the previously described
technique to mapping neural network to FPNN with securing
selected links against faults.

C. Algorithms

The presented principles are implemented in the following
algorithms which perform a fault tolerant mapping. Algorithm
1 is one of the possible algorithm for link fault tolerant
importance ranking. The resulting ranking is the addition of a
sum of all link approximated synapses weights and an inverse
proportion sum of all chains the link is part of. This ranking
method comes from an idea that a link is more important if
more successive links depend on it, i.e. the longer parts of
the chains rests on it. And also link is more important if it
approximates a higher weights, i.e. has a bigger impact in the
result.

After the ranking is done, the initialization must be done
(Algorithm 2). A graph of the link interconnection is con-
structed making links to be new nodes and interconnecting
those nodes with new edges according to original link to
link connections (Rn(p, s) flags). This graph is separated
to its components, where every component represents link
interconnection within one layer. Next, the links intended to
be secured are selected and stored in a SEL set. Then all the
synapse variables are initialized, val variable gets and original

synapse weight, prod and aprx gets 1.0 (multiplication neutral
element).

As a next step, the apprSyns sets are actualized (Algo-
rithm 3). The approximated synapses of links in SEL set are
copied to their chain predecessors apprSyns sets.

Finally, the mapping is done (algorithm 5). It it performed
layer by layer. In every layer the set of chains is determined
(algorithm 4). Links are divided into two sets with respect to
their input and output degree - links with zero input degree
(no predecessors) are the first links in chains and are stored
in the first set and the links with a zero output degree (no
successors) are the last links in chains and stored in the last
set. Next, all chains existing between all the links in first
and last sets are determined and stored in chains set together
with all their subsets (chains between links from the sets are
the longest chains within a layer. Thus, their subsets make all
possible chains. At least the chains are sorted by length in the
ascending order to make possible to start the mapping with the
shortest chains.

Algorithm then iterate over all the chains. Every chain is
fully mapped before the algorithm moves to the next one. First
link of every chain is picked and all its synlast are computed.
Then a compromise is find and used as new value for link W
parameter. The illustrated algorithm uses an arithmetic average
(11th line) as the compromise. When W is known, it is used
for actualization of partial products values (prod variables) of
synapses passing trough the link, i.e. longer chains. Finally the
computed link is removed from the chain and the algorithm
can continue with another link in the chain.

It is needed to be mentioned, that the mapping algorithm
is the universal algorithm for mapping neural networks to
FPNNs. It only performs the mapping using the input sets and
variables bud it does not improve the fault tolerance itself.
That is done by the algorithm 3 which perform expansion of
secured links predecessors approximated synapses sets.

The presented mapping algorithm can be easily used even
for the standard FPNNs mapping with only two changes
needed to be done. The equation on the 11th line of the
algorithm has to be replaced with equation 4. These equations
does not use any compromise and assign the value directly
since there is affine operator for every predecessor. Second,
the equation on the 13th line of the algorithm (actualization
of the synapses product variables) has to be switched to the
equation 5. The algorithm 3 can be used without any changes.

Wn(p) = synlast ⇔ srcNeuron(syn) = p (4)
∧dstNeuron(syn) = n

synprod = synprod ×Wn(p)⇔ srcNeuron(syn) = p (5)
∧dstNeuron(syn) = n

III. EXPERIMENTS

We have experimented with the presented algorithms and
in this paper we are going to present results from experiments
over the very basic neural networks task which allows us, due
to its simplicity, to perform an experiment with many com-
binations of faults and security. The task is logical exclusive

Declaration Description

NN = (Neurons, Synapses) an input neural network
(N,E) light an grid FPNN
NeuToAct : Neurons→ N Mapping neurons to activators.
ActToNeu = NeuToAct−1 Inverse mapping.
srcNeuron : Synapses→ Neurons Source neuron of a synapse.
dstNeuron : Synapses→ Neurons Destination neuron of a synapse.
approx : Synapses→ En Determination of chain of links ap-

prixmating a synapse.
sortByLength : En → E Sorting by path length.
findChain : E × E → En, n ≥ 1 Find path.
firstNodeOf : En → E Chain’s first node.
∀u ∈ E : ∃apprSynsu ⊂ Synapses Set of synapses ending in the link.
∀u ∈ E : ∃passSynsu ⊂ Synapses Set of synapses passing trough the

link.
∀u ∈ E : ∃connPredu ⊂ N Set of connected preceding activa-

tors.
∀neu ∈ Neurons : ∃neuact : R→ R Neurons activation functions.
∀neu ∈ Neurons : ∃neubias ∈ R Neurons biases.
∀syn ∈ Synapses : ∃synval ∈ R Synapses weight.
∀syn ∈ Synapses : ∃synprod ∈ R Partial product approximating the

synapse.
∀syn ∈ Synapses : ∃synapx ∈ R The value of synapse approximation.
∀syn ∈ Synapses : ∃synlast ∈ R Last multiplicand of approximation

product.
chains ⊂ E∗ an ordered collection of all chains.
belongTo : E → {En}m Set of chains the link belongs to.
lengthOfChain (En) = n Length of chain function.
∀link ∈ E : ∃ranklink ∈ R Link’s fault tolerant ranking.

TABLE I. DECLARATIONS

1: procedure RANKLINKS(NN,FPNN)
2: for all ∀link ∈ E do
3: rank1 ←

∑syn∈apprSynslink synval
4: rank2 ←

∑c∈belongTo(link)
lengthOfChain(c)

5: ranklink ← rank1 +
1

rank2

6: end for
7: end procedure

Algorithm 1. Ranking algorithm

addition - XOR. As the first step, we measured the influence
of link failures to the correctness of the FPNN classification
of all four input vectors. Table II summarizes the results.
The first column contains the name of faulty links, the next
two columns contain the numbers of correctly and incorrectly
classified vectors. The next column shows the percentage rate
of correctness. The last column says if the link can be secured
by fault tolerant mapping. The faulty links were supposed to be
treated as transparent, i.e. their identity operator were activated.

Missing resource Correct Incorrect Match [%] Possible to secure

- 4 0 100 -
(n4,n6) 4 0 100 No
(n4,n3) 4 0 100 Yes
(n3,n4) 3 1 75 Yes
(n4,n5) 3 1 75 Yes
(n3,n6) 3 1 75 No
(n5,n4) 3 1 75 Yes
(n1,n3) 2 2 50 No
(n2,n5) 2 2 50 No
(n5,n6) 2 2 50 No

TABLE II. FAILURES EFFECT ON THE XOR FPNN

As the table shows, two link failures ((n4,n6),(n4,n3)) did
not have an effect on the FPNN output. But the remaining
seven failures caused the output error. It can be seen that

1: procedure INITIALIZE(NN,FPNN)
2: Construct a graph of the link connection
3: Separate components of the graph and store them in a

CONN set.
4: Select the links intended to have a non-redundant

security and store them in a SEL set.
5: for all ∀syn ∈ Synapses do
6: synval ← original weight
7: synprod ← 1.0
8: synapx ← 1.0
9: end for

10: end procedure

Algorithm 2. Initialization algorithm

1: procedure EXPANSE(NN,FPNN)
/∗ Expansion of predecessors in the
apprSyns sets of all selected links: ∗/

2: for all (U, V) ∈ CONN do
3: for all (n, s) ∈ SEL ∧ (n, s) ∈ U do
4: for all (p, n) ∈ Pred(n) ∧Rn(p, s) do
5: for all ∀syn ∈ apprSyns(n,s)) do
6: if ∃act ∈ connPred(p,n) ∧

ActToNeu(act) =
srcNeuron(syn) then

7: apprSyns(p,n) ← apprSyns(p,n) ∪
syn

8: end if
9: end for

10: end for
11: end for
12: end for
13: end procedure

Algorithm 3. Expansion algorithm

initials in the first layer ((n1,n3),(n2,n5)) caused the highest
error. This is expected since they lay in the beginning of the
FPNN and thus have a big influence on the rest of it. Also one
of the links in the last layer caused the same error. However,
all these link cannot be secured by mapping since they have
no link predecessors. Another links caused a smaller error and
three of them ((n3,n4),(n4,n5),(n5,n4)) can be secured using
the presented algorithms.

We tried to secure these links. First, we secured only one

1: function DETERMINECHAINS((U, V))
2: first← {u ∈ U |deg+(u) = 0}
3: last← {u ∈ U |deg+(u) = 0}
4: chains← ∅
5: for all ∀u ∈ first do
6: for all ∀v ∈ last do
7: p← findChain(u, v),
8: chains← chains ∪ 2p,
9: sortByLength(chains))

10: end for
11: end forreturn chains
12: end function

Algorithm 4. Chain determination algorithm

1: procedure MAPLIGHTFPNN(NN,FPNN)
2: INITIALIZE()
3: EXPANSE()
4: for all (U, V) ∈ CONN do
5: chains← DETERMINECHAINS((U, V))

/∗ Mapping path by path: ∗/
6: for all ∀r ∈ chains do
7: (p, n)← firstNodeOf(r)

/∗ Multiplicands computation: ∗/
8: for all ∀syn ∈ apprSyns(p,n) do
9: synlast ← synval

synprod

10: end for
/∗ Computing a link W: ∗/

11: W(p,n) ←
∑syn∈apprSyns(p,n) synlast

|apprSyns(p,n)|
/∗ Updating the products: ∗/

12: for all syn ∈ passSyn(p,n) do
13: synprod ← synprod ∗W(p,n)

14: end for
/∗ Deleting finished node from
the path: ∗/

15: r ← r \ {(p, n)}
16: chains← {p|p ∈ chains ∧ p 6= ∅}
17: end for
18: end for
19: end procedure

Algorithm 5. Light FPNN mapping algorithm

singular link at the time. Next, we tried to secure combinations
of two links and finally we tried the combination of all
three links being secured. In all experiments we ran the
FPNN with and without failure of the secured links in all
possible combinations. Table III summarizes the results of
these experiments.

Secured resources Faulty resources Correct Incorrect Match [%]

(n4,n5) - 4 0 100
(n4,n5) (n4,n5) 4 0 100
(n3,n4) - 3 1 75
(n3,n4) (n3,n4) 2 2 50
(n5,n4) - 3 1 75
(n5,n4) (n5,n4) 3 1 75

(n4,n5),(n3,n4) - 4 0 100
(n4,n5),(n3,n4) (n4,n5) 4 0 100
(n4,n5),(n3,n4) (n3,n4) 4 0 100
(n4,n5),(n3,n4) (n4,n5),(n3,n4) 4 0 100
(n4,n5),(n5,n4) - 3 1 75
(n4,n5),(n5,n4) (n4,n5) 4 0 100
(n4,n5),(n5,n4) (n5,n4) 3 1 75
(n4,n5),(n5,n4) (n4,n5),(n5,n4) 3 1 75
(n3,n4),(n5,n4) - 3 1 75
(n3,n4),(n5,n4) (n3,n4) 2 2 50
(n3,n4),(n5,n4) (n5,n4) 3 1 75
(n3,n4),(n5,n4) (n3,n4),(n5,n4) 2 2 50

(n3,n4),(n4,n5),(n5,n4) - 3 1 75
(n3,n4),(n4,n5),(n5,n4) (n3,n4) 2 2 50
(n3,n4),(n4,n5),(n5,n4) (n4,n5) 3 1 75
(n3,n4),(n4,n5),(n5,n4) (n5,n4) 3 1 75
(n3,n4),(n4,n5),(n5,n4) (n3,n4),(n4,n5) 2 2 50
(n3,n4),(n4,n5),(n5,n4) (n4,n5),(n5,n4) 3 1 75
(n3,n4),(n4,n5),(n5,n4) (n3,n4),(n5,n4) 2 2 50
(n3,n4),(n4,n5),(n5,n4) (n3,n4),(n4,n5),(n5,n4) 2 2 50

TABLE III. FAILURES EFFECT ON THE XOR FPNN

As the table shows in five cases the mapping really in-
creased the tolerance of the secured links faults. In some other

case the mapping did not help and in some cases it led to even
higher error. Also it caused new errors showing in the state
without failure. Both findings are expectable since the FPNN
is the light grid FPNN suffering of sharing affine operators
between multiple synapses. However, the results show that
fault tolerant mapping can lead in some cases to real increase
of the fault tolerance.

IV. CONCLUSION AND FUTURE RESEARCH

In this paper we have followed the FPNNs author’s original
formal model and derived the model of the new type of FPNN
- the light grid FPNN. We have based algorithms on this model
serving for the mapping trained neural networks to the standard
or the light grid FPNNs. Beside mapping, these algorithm are
able to secure an FPNN against failure of some link only using
other links and without the usage of any redundancy.

This method was the core of the experiments presented in
this paper. During these experiments we tried to secure the
light grid FPNN implementing the logical exclusive addition
against failure of almost all securable links. In some cases we
observed an actual increase of fault tolerance, in other cases
it remained the same or even getting worse. In some cases the
usage of the method led to worse functionality of the FPNN
in the failure free state. This was expexted due to the fact the
FPNN is the light grid FPNN which have smaller strength than
standard FPNN. However, the presented method proved to be
able to increase an FPNN fault tolerance in some cases and
thus, it can be used for this purpose.

In the future work, we are going to perform more exper-
iments with bigger FPNNs and the standard FPNNs as well.
Also we are going to design other redundancy free methods of
securing the neural networks and FPNN against failures. We
are going to examine method using redundancy as well. These
efforts should lead to a design of a fault tolerant neural network
architecture implemented in FPGAs using FPNNs and offering
suitable features for implementing deep neural networks.

ACKNOWLEDGMENT

This work was supported by the following projects:
National COST LD12036 - ”Methodologies for Fault Tol-
erant Systems Design Development, Implementation and
Verification”, project Centrum excelence IT4Innovations
(ED1.1.00/02.0070), EU COST Action IC1103 - MEDIAN
- Manufacturable and Dependable multIcore Architectures at
Nanoscale and BUT project FIT-S-14-2297.

REFERENCES

[1] Girau, B.: FPNA: Concepts and Properties. In FPGA Implementations of
Neural Networks, editace A. R. Omondi; J. C. Rajapakse, Springer US,
2006, ISBN 978-0-387-28487-3, p. 63–136, 10.1007/0-387-28487-7-3.
http://dx.doi.org/10.1007/0-387-28487-7-3

[2] Krcma, M.: The neural networks acceleration in FPGA. Master’s thesis,
Faculty of Information Technology, Brno University of Technology;
Brno, 2014.
https://wis.fit.vutbr.cz/FIT/st/rp.php/rp/2013/DP/15754.pdf

[3] Krcma, M.: Mapping trained neural networks to FPNNs. Paper accepted
on DDECS 2015 conference, Faculty of Information Technology, Brno
University of Technology; Brno, 2014.

Paper H

Implementation of fault tolerant
techniques into FPNNs

M. Krcma, Z. Kotasek and J. Lojda, ”Implementation of fault tolerant techniques into
FPNNs,“ 2016 International Conference on Field-Programmable Technology (FPT), 2016,
pp. 297-298, doi: 10.1109/FPT.2016.7929559.

105

Implementation of Fault Tolerant Techniques into
FPNNs

Martin Krcma, Zdenek Kotasek, Jakub Lojda
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Email: ikrcma@fit.vutbr.cz, kotasek@fit.vutbr.cz, ilojda@fit.vutbr.cz

Abstract—This paper presents concepts of FPNN which can
be used for the implementation of artificial neural networks in
FPGAs and introduces fault tolerant techniques applied on this
concept that are developed by the authors.

I. INTRODUCTION

The artificial neural networks [4] are one of the important
models of softcomputing and artificial intelligence. They are
structures composed of neurons interconnected by weighted
synapses. Basically, the goal of the networks is to learn
the relation between two sets of data vectors, to generalize
the relation, to determine its features and to use it for the
determining the relation of the unknown vectors belonging to
the same problem. This capability can be used for classification
tasks, for time series and functional prediction, to control tasks,
to image recognition, clustering and other tasks.

The implementation of neural networks is challenged with
two great neural networks complexities - space complexity and
time complexity. The usual solution of both is to use a pow-
erful hardware, such as graphical processor units or processor
clusters, which suffer from a high power consumption. For
some networks, FPGAs can be one of the possible solutions
if a lower power consumption is required. In this case, the
time complexity is solvable by parallelism which is easy to
be achieved in both FPGAs and neural networks since both
are parallel by their nature. The space complexity is bigger
problem since an FPGA has limited resources. Thus, there
is a need for such designs that exploit the neural networks
parallel character for fast computations and save the FPGA
resources as well. A Field Programmable Neural Networks
(FPNN) concept can be seen as one of the possible solutions.
The goal of this paper is to describe the types of FPNNs and
compare their capabilities.

II. FIELD PROGRAMMABLE NEURAL NETWORKS

The concept of FPNNs [1] is meant to simplify the imple-
mentation of artificial neural networks in FPGAs by adjusting
their properties to be more suitable for implementation into
them. The simplification originates from its main feature
- a highly customizable structure which makes it possible
to establish resource sharing between the original synaptic
connections of the neural network. The FPNNs are composed
of dedicated interconnected units called neural resources which
approximate the original neurons and synaptic interconnec-
tions. The units of the first type are called activators and

represent the original neural network neurons. The other units
are called links and serve as an approximation of the original
synaptic interconnection. Every link disposes of a set of affine
operators serving as an approximation of the original synaptic
weights.

An example of a grid FPNN can be seen in Fig. 1. The
circles in the figure represent activators, wide arrows represent
links and the thin arrows represent data interconnections. The
orientation of the connection arrows shows the way of the
passing data. The straight wide dashed/dotted arrows represent
the original neural networks synapses. The thin dashed/dotted
arrows represent the sequences of links approximating the
particular synapses. The synapses and the particular sequences
are drawn with the same line and arrow styles.

The FPNNs are not the same structures as neural networks,
although they can be constructed in that way [2]. The FPNNs
represent a different model which can structurally differ from
the implemented neural network. They can also have different
capabilities which means that they are not only an imple-
mentation of the neural networks, they are an approximation
of neural networks as well - with different structure and
properties, they can provide similar results as the networks.
The accuracy is the main problem here.

The approximation capabilities depend on the number of
affine operators belonging to links. This number depends
on the FPNN structure directly. However, the model can be
altered to dispose of different number of affine operators.
Two different models with different approximation capabilities
exist. The original model disposes of as many affine operators
as the number of directly connected preceding units. These
operators are shared between groups of synapses approximated
by the particular preceding units. This type of an FPNN is
called Standard FPNN. A stronger model was derived that has
the number of affine operators that allows it to reach the precise
approximation accuracy. This type of an FPNN is called Full
FPNN. In case of a full FPNN, every link disposes of dedicated
affine operator for every synapse it approximates. There is
no sharing of affine operators between synapses, therefore
the accurate approximation is ensured. Although, this type of
FPNN demands more FPGA resources.

III. FAULT TOLERANCE

The present research is dealing with a fault tolerance of
neural networks implemented using the FPNN concept and

978-1-5090-5602-6/16/$31.00 c© 2016 IEEE

Fig. 1. Synapses approximation in a grid FPNN

developing new methods to improve the fault tolerance. The
well known redundancy based techniques such as Triple Mod-
ular Redundancy (TMR) are considered. These techniques are
well usable in many levels - on the level of neural resources,
on the level of their inner implementation or on the level of
the FPNN itself. However, at present the research focuses on
methods that do not use this kind of redundancy (replication).
Instead the goal is to use the FPNN parameters to partially or
completely mask faults. In this paper, the methods are briefly
described.

The first method relies on the inherit robustness of FPNN.
It uses two operators. The identity operator has a simple
function - it turns a faulty neural resource to the transparent
register. The dataflow and the synchronization are restored
and the computation continues. However, the neural resource
is missing from the computation sequence. Depending on
the missing resource parameters and the parameters of other
resources in the sequence, the approximation accuracy of the
original network is decreased. In some cases, the decrease
is only marginal, in some other cases, the impact could
be critical. The method decreasing the negative influence of
identity operators usage on links was developed [3].

The other operator is a constant operator. It turns the neural
resource to a constant register (the synchronization signals
pass transparently). This operator takes advantage from the fact
that in many neural networks neurons which have the similar
output in the majority cases exist. In case of fault if the neuron
(activator) is switched to the constant register with the most
frequent value, the network will compute properly in the major
cases (related to the value). The principle of switching neural
resource is illustrated in Fig. 2.

Fig. 2. Illustration of the identity operator principle

The second technique is based on changing the settings of
neural resources laying in the same sequence as the faulty re-
source (especially resources lying before the faulty one). With

the proper change it might be possible to mask or partially
compensate the fault impact (or the impact of operators usage).
However, there are many possible modification of parameters
and according algorithms is under development. The principle
is illustrated in Fig. 3. In the figure, the gray resources are
the resources preceding the faulty one in the sequence i.e. the
most probable candidates to apply changes to.

Fig. 3. Illustration of the parameters change principle

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the FPNN concept was described. It is the
concept of resource saving implementation of neural networks
in FPGAs which can serve as an approximation as well. The
techniques of increasing the fault tolerance of FPNNs were
also described. The first technique uses two operators - the
identity operator and the constant operator. These operators
turn selected neural resource to the transparent or constant
register. These techniques exploit the FPNN robustness - that
it can withstand the loss of a neural resource. The second idea
is that neural resource (activator specifically) can be replaced
by a constant register with the median of its values to make
the FPNN computation correct at least in some cases. These
techniques serve as temporal partial masking of the fault.
The second technique uses the changes of FPNN resources
parameters to compensate the fault impact. Both techniques
are under development and they are the core of the future
research.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602, ARTEMIS JU under grant agreement no 621439
(ALMARVI) and BUT project FIT-S-14-2297.

REFERENCES

[1] Girau, B.: FPNA: Concepts and Properties. In FPGA Implementations of
Neural Networks, editted by A. R. Omondi; J. C. Rajapakse, Springer
US, 2006, ISBN 978-0-387-28487-3, p. 71–123, 10.1007/0-387-28487-
7-3. http://dx.doi.org/10.1007/0-387-28487-7-3

[2] Krcma, M.; Kotasek, Z. and Kastil, J.: Mapping trained neural networks
to FPNNs. In: IEEE 18th International Symposium on Design and Di-
agnostics of Electronic Circuits and Systems. Belgrade: IEEE Computer
Society, 2015, pp. 157–160. ISBN 978-1-4799-6779-7.

[3] Krcma, M.; Kotasek, Z. and Kastil, J.: Fault tolerant Field Programmable
Neural Networks. In Nordic Circuits and Systems Conference (NORCAS):
NORCHIP International Symposium on System-on-Chip (SoC), 2015, Oct
2015, s. 1–4, 10.1109/NORCHIP.2015.7364381.

[4] Munakata, T.: Neural Networks: Fundamentals and the Backpropagation
Model. In Fundamentals of the New Artificial Intelligence, editace
T. Munakata, Texts in Computer Science, Springer London, 2007, ISBN
978-1-84628-839-5, s. 7–36, 10.1007/978-1-84628-839-5–2.
http://dx.doi.org/10.1007/978-1-84628-839-5--2

Related Unpublished Papers

108

Paper I

Fault tolerance of different Field
Programmable Neural Networks
types

M. Krcma and Z. Kotasek, unpublished paper

109

Fault tolerance of different Field Programmable
Neural Networks Types

Martin Krcma, Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
Email: ikrcma@fit.vutbr.cz, kotasek@fit.vutbr.cz

Abstract—This paper presents deals with fault tolerance prop-
erties of Field Programmable Neural Networks (FPNNs). The
paper describes the concept of FPNNs in context of our works
and presents experiments we did to get insight to the concept
robustness against Single Event Upset (SEU) induced errors. The
experiments were based on simulating SEUs by injecting bit-flips
into the FPNNs data representing the weights. Different FPNNs of
three different essential types were evaluated. The experimental
results were presented.

I. INTRODUCTION

The artificial neural networks are one of the important
models of soft-computing and artificial intelligence and they
popularity rises. Their structure is inspired by the structure of
the human brain. They try to emulate the brain’s capability
of learning and memorizing in order to solve various types
of tasks in an intelligent way. Basically, the goal of the
artificial neural networks is to learn the relation between two
sets of data vectors (known data of the selected problem),
to generalize the relation, to determine its features and then
to use it to estimate the relation between previously unseen
vectors belonging to the same problem. This capability can
be used for classification tasks, for time-series and functional
prediction, to control tasks, to image recognition, clustering
and other tasks.

Neural networks are composed of a set of neurons com-
puting the activation function over the weighted sum (their
potential) of their inputs. The neurons are interconnected
with the connections called synapses. Each synapse has its
own weight which represents the strength of the connection
similarly to the synapses in the human brain. The weights
represent the neural network knowledge. The learning of
the neural network is basically a process of calculating the
weights.

The fault tolerance properties of artificial neural networks
have been researched since the very beginning of the field’s
development. Many techniques were suggested to enhance the
robustness of neural networks in order to harden them enough
to be used in real world applications as controllers for various
systems.

Many method utilize fault injection in the training phase to
harden the network. The faults can be injected into neurons
in the hidden layers during some of the iterations of the
selected learning algorithm [1]. It is possible to harden the

network against multiple faults or even against a particular set
of faults selected by the network’s designer [2]. These methods
were proven to potentially increase the generalization ability
of neural networks [5].

Many methods are based on increasing neural networks
redundancy. They are inherently highly redundant structures
which grands them some level of built-in fault tolerance, it is
possible however to harden the networks even more by adding
redundancy to address possible faults specifically. It is possible
to determine the most valuable neurons (in therm having the
most measurable impact on the output data) in the network
and then replicate them to harden the networks against their
failure [3].

The neural networks have been implemented in various
kinds of devices starting from analog computers to the most
modern processors, Very large Scale Integrated circuits (VL-
SIs), graphical processing units and Field Programmable Gate
Arrays (FPGAs). This paper deals with one of the possible
implementations of artificial neural networks in FPGAs -
FPNA/FPNN.

The goal of this paper is to describe the types of FPNNs
and compare the fault tolerant properties of these types.

II. FPNNS

The concept of Field Programmable Neural
Arrays/Networks (FPNAs/FPNNs) [6] is designed to
enable a resource efficient implementation of artificial neural
networks in FPGAs by adjusting the networks properties in
order to make them more suitable for the FPGAs structure.
The efficiency comes from the FPNN’s main feature - a
highly customizable structure which enables the designer to
build it in a way that allows sharing the FPGA’s resources
between synaptic connections of the original neural network
by simplifying its interconnection structure. FPNNs were
used for implementing large scale spiking networks [8].

The FPNNs have not the same structures as neural networks,
although they can be constructed that way. They are based
on different model that can be structurally different from
the original neural network. This also means that the FPNN
can differ in its capabilities. In principle, the FPNNs are not
straightforward implementation of neural networks but rather
their approximation designed in an FPGA friendly way. Since
the FPNNs can be constructed in various ways and types, the
approximation accuracy can be different.978-1-7281-1756-0/19/$31.00 ©2019 IEEE

For purposes of our research we developed a new definition
of an FPNN (see Definition II.1, original definition by B.
Girau [6]) in order to support various FPNN types and
algorithms developed to map the neural networks, enhance the
approximation accuracy, detect hard faults and other tasks. We
define an FPNN to be a structure composed of two types of
units (together called neural resources). The set N contains
the first type of units called activators. The activators directly
represent the original neural network neurons. They perform
the same actions the original neurons do - they gather input
data into potential and apply an activation function to compute
the activator’s output. The activation function is represented
by the function operator ”f” and the iteration operator ”i”
substitutes the potential computation and is responsible for
input data processing to provide the input to the function
operator.

The activators are interconnected by the other type of neural
resources called links (in the set L). The links approximate
the original synaptic interconnection of the network. Unlike
the synapses in neural networks link do not only transmit data
between neurons (activators), they also perform the weight
multiplication. This allows the weighting of the transmitted
data to be computed in parallel across the FPNNs and leaves
the activators the only duty to apply the iteration operator ”i
(usually but not necessarily a simple addition) to finish the
weighted sum that forms the activator’s potential.

The interconnection of the neural resources is described by
an oriented graph (N,E), where E is a set of valued edges
interconnecting the activators. Every edge is usually split up
to a sequence of links which allows us to construct various
structures. The more we split the edges into links, the more
flexibility we obtain.

Definition II.1 (FPNN [6]). We say that structure
(N,L,E, φ, ω) is an FPNN if the following statements hold
true:

1) N is a set of units called activators that dispose of:
a) An iterative variable tn: ∀n ∈ N : ∃tn ∈ R
b) A default value of tn:
∀n ∈ N : ∃on ∈ R; tn0 = on

c) A number of iterations: ∀n ∈ N : ∃an ∈ N
d) An iterative operator (xn is an input data):
∀n ∈ N : ∃in : R× R→ R;
tna

= in(tna−1
, xn); a = 1..an

e) A function operator: ∀n ∈ N : ∃fn : R→ R
2) L is a set of units called links that dispose of:

a) A set of link operators ∀l ∈ L : ∃Al:
Al = {αn(x)|αn(x) = Wn × x;Wn ∈ R;n =
1..c}

3) E is a set of valued oriented edges: (m,n) ∈ E;m,n ∈
N).
The edge value is defined: ∀e ∈ E : ∃We ∈ R

4) (N,E) is an oriented graph denoting the interconnection
between activators.

5) φ is a function E → L+, so that:
∀e ∈ E : φ(e) = (l1..ln); l1..ln ∈ L;n > 0

6) ω is a function E → L+, so that:
∀e ∈ E : φ(e) = (l1..ln); l1..ln ∈ L;ω(e) ⊆ φ(e); 0 <
n ≤ |φ(e)|

7) Edge-to-operator functions σl : E → Al; l ∈ L:
∀e ∈ E ∧ ∀l ∈ φ(e) : σl(e) = αx

l ;α
x
l ∈ Al

8) Operator determining ψl : E
+ → Al, l ∈ L:

∀l ∈ L : ψl(e1..en) = αx ⇔ αx ∈ Al ∧ l ∈ ω(e1) ∧ .. ∧
l ∈ ω(en) ∧ σl(e1) = .. = σl(en) = αx

9) A set of input nodes exists:
∃Ni = {n ∈ N | deg+(n) = 0}
∀n ∈ Ni : in = ∅; fn(x) = x

A. Grid FPNN

For our research purposes we developed a special type of
FPNN based on the above provided definitions. Grid FPNN
(definition II.2) is an FPNN with an enforced limitation of the
structure causing it to form a grid shape. The reason for this is
to make an FPNN suitable for the implementation in FPGAs
due to the similarity of the grid FPNNs structure and FPGAs
interconnection bus and the sharing of resources in links.

Definition II.2 (Grid FPNN). We say that FPNN is the grid
FPNN if the the following statements hold true:

1) The activators are organized into layers.
2) The two chains of interconnected links exist in all layers

composed of more than one activator. The number of
links in every chain is one less than the number of
activators in the layer. The output of every link is
connected to the input of the nearest activator. The
chains go in the opposite ways.

3) The output of every activator is connected only to a
single link which provides the connection to the next
layer. The output of the link is connected to the nearest
activator and to the nearest links of one or both link
chains in the layer (which realizes connection to all other
activators).

An example of a grid FPNN can be seen in Fig. 1. In the
figure, the circles represent activators, wide arrows represent
links and the thin arrows represent data interconnections. The
orientation of the connection arrows shows the way of the
passing data. The straight wide dashed/dotted arrows represent
the original neural networks synapses. The thin dashed/dotted
arrows represent the chains of links approximating the particu-
lar synapses. The synapses and the particular chains are drawn
with the same line and arrow styles. As the picture illustrates,
there is only one link on the output of every activator which
provides the connection to the following layer. It is directly
connected to one successive activator in the following layer.
The connection to the other activators goes through the chain
of links within the whole layer. Two chains of the links are
going the opposite ways. They are called Interconnection chain
(definitions II.3-II.4). Every layer with more than one activator
has an interconnection chain within.

Definition II.3. A chain of links is generally a sequence of
directly interconnected links.

Definition II.4. An interconnection chain is a chain of links
interconnecting activators within a layer. It is composed of
two chains going the opposite ways. The input of every link
is connected to one or two preceding links, the output is always
connected to the nearest activator and to the succeeding link
in the chain (if exists).

Fig. 1. Synapses (edges) approximation in a grid FPNN

Definition II.5 (Light FPNN). We say that FPNN is a light
FPNN if the following statement holds true: ∀l ∈ L : |Al| = 1.

Definition II.6 (Full FPNN). We say that FPNN is a full
FPNN if the following statement holds true:
∀l ∈ L ∧ ∀e ∈ E : |Al| = |{e|e ∈ ω−1(l)}|.
Definition II.7 (Reduced FPNN). We say that FPNN is a
reduced FPNN if the following statements hold true:

1) The edge equivalence is defined:
∀e1, e2 ∈ E; l ∈ L : e1 ≡l e2 ⇔ φ(e1) = l11..lxl..ln ∧
φ(e2) = l21..lyl..lm; lx = ly

2) ∀l ∈ L the size of Al is equal to the number of the
equivalence classes generated by the ≡l.

In this paper we focus on determining the FPNNs robustness
against SEU introduced errors. We already presented a FPNN
implementation hardened by Triple Module Redundancy on
multiple levels of the concept in [10] and evaluated the
resource penalty of this approach.

III. EXPERIMENTS

In this work we focused on measuring effects of faulty
links. Therefore we we were injecting faults into links weights
to simulate possible SEU causing errors in the computation.
The injected faults were generated randomly and in the range
determined by the used datatype bit-length. The bit-length
were chosen to be 16 bits with fixed point arithmetic. The
fraction as well as the integer part have both 8 bits. It has
been demonstrated that this particular setup is good enough
for most neural networks computations in hardware [7].

We experimented with all three of the FPNNs types to find
out the differences in their robustness as well as the general
fault tolerant properties of the FPNN concept. The FPNNs
were generated from neural networks trained to perform se-
lected tasks from the [4] set of benchmarks intended to test

neural networks. The input data used in the experiments were
the test data from this set.

A. Injecting faults

The faults were injected by flitting a random bit in a weight.
Given the different sizes and types of FPNN, we decided to
consequently inject faults into all of the FPNN’s weight rather
than to inject a predefined number of faults. In that case,
larger FPNNs would have been advantaged and their inherently
higher fault tolerance (in comparison to smaller FPNNs) might
have been illusionary increased. Therefore we rather injected
faults into all the FPNNs weights to put them under higher
and better determined stress.

B. Injecting faults

The experiment procedure for all of the tested FPNNs is as
follows:

1) Test the FPNN using a test data set and save the results.
2) Save the original state of the FPNN.
3) Repeat until all weights have been tested:

a) Select a weight that has not been tested yet.
b) Inject a fault into the selected weight.
c) Re-test the FPNN with the same data-set and

compare the current results with the saved results
of the original FPNN. Calculate the number of
matching results.

d) Restore the FPNN into its original state.
The FPNN is tested with all the test data vectors after each

fault injection. Every iteration of this algorithm goes through
the full testing data-set then.

IV. RECOVERY FROM FAULTS USING θ PARAMETER
MODIFICATION

We have also tried to experiment with a method of recovery
from an error in an affine operator by modifying the FPNN’s
parameters. The idea was to recover the FPNN without utiliz-
ing techniques based on redundancy, relearning, or any other
complex mechanisms. Instead, the already existing resources
and settings would be used. We have not expected the method
to prove universally useful but rather to be another option to
choose from, similarly to the method published in [9]. The
method modified θ of the faulty link’s succeeding activators
using the fault’s value. The fault values were known at the time
of injection and could also be determined using the method
described in [11]. The Table I shows modifiers used to change
the θ values. The methods 7..12 used the same modifiers in
the same order but applied them only when the faulty link
had an activator among its predecessors. The idea is that the
presence of the activators would indicate that the faulty link
is at the beginning of some link of chains. Therefore its fault
would impact all the following links in the chain, amplifying
its effect. Therefore a fault in such a link would be a candidate
for recovery. The methods 13−15 added an additional modifier
with a value of 0.5.

TABLE I
THE RECOVERY MODIFIERS

Method θ modifier
1 + fault
2 - fault
3 + fault/10
4 - fault/10
5 × fault
6 + fault/10

V. EXPERIMENTAL RESULTS - ROBUSTNESS

We have used six different FPNNs structures constructed
to solve two benchmarks (Diabetes and Thyroid) from the
Proben set. All six FPNNs were used in all three varieties
of types, so the total number of FPNNs that went through
experiments is eighteen. The structures of all the six basic
FPNNs are listed in first columns of tables II and III. The
structures are written as numbers of activators in all layers
separated by the character x. The second column identify their
types. The last three columns list the minimum, maximum and
average percentages of matching original-faulty FPNN output
vectors through all iterations of the experiment.

TABLE II
THE EXPERIMENTS RESULTS OF THE DIABETES-TASK FPNNS

Diabetes
Structure Type Faults Min.[%] Max.[%] Avg.[%]
8x16x8x2 light 78 64.8 100 99.7
8x16x8x2 reduced 124 5.9 98.7 94.4
8x16x8x2 full 384 36.2 100 99.7

8x16x16x2 light 102 64.8 100 99.5
8x16x16x2 reduced 164 30.5 96.4 85.1
8x16x16x2 full 576 11.2 91.7 87.5

8x64x2 light 200 36.2 100 97.1
8x64x2 reduced 328 38.8 100 94.5
8x64x2 full 4160 53.4 97.4 95.6

8x32x32x2 light 198 64.8 100 99.6
8x32x32x2 reduced 324 100 100 100
8x32x32x2 full 2112 0 100 98.8

TABLE III
THE EXPERIMENTS RESULTS OF THE THYROID-TASK FPNNS

Thyroid
Structure Type Faults Min.[%] Max.[%] Avg.[%]
21x21x3 light 86 98.6 100 99.9
21x21x3 reduced 130 95 100 99.7
21x21x3 full 882 96.3 98.8 96.3
21x63x3 light 212 93.8 98.8 96.3
21x63x3 reduced 340 86.2 90 87.5
21x63x3 full 4410 10 75 60.1

As you can see in the tables, the light FPNNs types
proved to be the most robust against bit-flipping faults. This
is probably due to their reduced approximation capabilities
of the original neural network that that already limits the
approximation precision and therefore the injected faults had
less disrupting potential as opposed of the more complex types

of FPNNs that hold more computing power than the light
FPNNs. The high redundancy of full FPNNs on the other
hand provides them with some inherent robustness makes them
perform decently in the Diabetes task as opposed to reduced
FPNNs which are more prone to errors as their redundancy is
lower as well as their computing and approximation power.

The Thyroid task results show an interesting trend. Larger
the FPNN gets, more prone to errors it seems. That goes
against the idea that larger FPNNs would have more re-
dundancy and therefore would be more robust. It is due to
the structure if these particular FPNNs that introduce this
trend. The FPNNs have relatively small number of layers (as
opposed to the Diabetes task FPNNs) with relatively high
number of activator in the input and hidden layers. These
large layers mean that their interconnection chain is rather
long. Any introduced error in these chains (especially at their
beginnings) would go trough a number of the consequent links
and get potentially worse as it participates in the following
computations in the chain. The longer the interconnection
chain is the higher the chance of a fault to introduce an
increasingly influential error into the computation. We can see
this effect even with the Diabetes FPNN with 64 activators in
the hidden layer.

VI. EXPERIMENTAL RESULTS - RECOVERY

We have experimented with the recovery method applied to
both Diabetes and Thyroid tasks and their particular FPNNs
listed in the previous section. We have also generated faulty
FPNNs using the method described in the previous section.
We used all the fifteen techniques described in Section .
Given the number of combinations of these settings and the
quantity of resulting data, we could not include them in detail
in this paper. Instead, we decided to include average rates
between all the FPNNs performing the given task regarding
the particular recovery method. Table IV contains the results
of the Diabetes FPNNs, and Table V contains the results
of the Thyroid FPNNs. The first column Mtd. identifies the
recovery method by its number. Then each table contains three
triplets of columns that list the data of the three FPNN types
implementing the given task. In each triplet, the first column
denoted by F contains the average results of the FPNNs after
injecting a fault. Like in the previous experiments, the results
are in terms of average correspondence between the original
FPNNs’ and the Faulty FPNNs’ results. The R column shows
the average correspondence between the original FPNNs and
the Recovered FPNN. The last column, the I column, shows
the Improvement of the recovered FPNN over the faulty FPNN;
therefore, how closer to the original FPNNs the recovered
FPNNs’ results got.

Unfortunately, the method proved to be more disrupting than
repairing. Even though there were instances of improving the
results of the recovered FPNNs as compared to the faulty
FPNNs, there is not a particular method that would show a
general pattern of improvements. Most results show that the
θ parameter modifications led to even worse results than the
faulty FPNN. What these results show, however, is that FPNNs

TABLE IV
THE RECOVERY RESULTS OF THE DIABETES-TASK FPNNS

Diabetes
Light Reduced Full

Mtd F R I F R I F R I
1 47.5 47.4 -0.1 57.9 66.8 8.9 55.7 54.7 -1.0
2 47.5 51.3 3.8 57.9 56.7 -1.2 55.7 56.1 0.4
3 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 55.5 -0.2
4 47.5 47.5 0 57.9 55.2 -2.7 55.7 49.3 -6.4
5 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 56.9 1.2
6 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 49.4 -6.3
7 47.5 47.4 -0.1 57.9 66.8 8.9 55.7 55.7 0
8 47.5 51.3 3.8 57.9 56.7 -1.2 55.7 55.8 0.1
9 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 55.7 0

10 47.5 47.5 0 57.9 55.2 -2.7 55.7 49.3 -6.4
11 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 55.7 0.0
12 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 49.3 -6.4
13 47.5 47.4 -0.1 57.9 62.2 4.3 55.7 55.7 0
14 47.5 47.5 0 57.9 56.0 -1.9 55.7 49.3 -6.4
15 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 49.3 -6.4

TABLE V
THE RECOVERY RESULTS OF THE THYROID-TASK FPNNS

Thyroid
Light Reduced Full

Mtd F R I F R I F R I
1 74.6 74.6 0 97.6 97.6 0 71.1 66.4 -4.7
2 74.6 90.9 16.3 97.6 97.6 0 71.1 65.5 -5.6
3 74.6 74.6 0 97.6 97.6 0 71.1 70.9 -0.2
4 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4
5 74.6 61.4 -13.2 97.6 97.6 0 71.1 69.6 -1.5
6 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4
7 74.6 74.6 0 97.6 97.6 0 71.1 66.4 -4.7
8 74.6 90.9 16.3 97.6 97.6 0 71.1 65.6 -5.5
9 74.6 74.6 0 97.6 97.6 0 71.1 70.9 -0.2

10 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4
11 74.6 61.4 -13.2 97.6 97.6 0 71.1 70.2 -0.9
12 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4
13 74.6 74.6 0 97.6 97.6 0 71.1 66.4 -4.7
14 74.6 90.9 16.3 97.6 97.6 0 71.1 65.9 -5.2
15 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4

are particularly sensitive to the θ parameters modification,
which can also be seen as errors in activators.

VII. CONCLUSION

In this paper we focused on robustness of different FPNN
types against SEU introduced errors. We presented experi-
mental results showing that light FPNNs are relatively robust
against faults due to their limited computing power while
full FPNN proved to be more robust in the Diabetes task.
In the Thyroid task, we also demonstrated that robustness of
FPNN depends on its structure. It is shown that FPNNs with
large hidden layers featuring a long interconnection chain are
more prone to errors due to cumulative effect of an error
going trough the long chain of links. The experiments with
recovery from a fault using activator’s θ parameters shown the
vulnerability of the FPNNs to changes in these parameeters.

In the future work we focus on more experiments with more
FPNNs as well on methods to harden the FPNNs using other
activators parameters modifications as well as using the weight
re-computation without a need of retraining and remapping the
FPNNs.

REFERENCES

[1] C. Sequin and R. Clay, “Fault tolerance in artificial
neural networks,” in Neural Networks, 1990., 1990
IJCNN International Joint Conference on, Jun. 1990,
703–708 vol.1. DOI: 10.1109/IJCNN.1990.137651.

[2] Y. Tan and T. Nanya, “Fault-tolerant back-propagation
model and its generalization ability,” in Neural Net-
works, 1993. IJCNN ’93-Nagoya. Proceedings of 1993
International Joint Conference on, vol. 3, Oct. 1993,
2516–2519 vol.3. DOI: 10.1109/IJCNN.1993.714236.

[3] C.-T. Chin, K. Mehrotra, C. Mohan, and S. Rankat,
“Training techniques to obtain fault-tolerant neural net-
works,” in Fault-Tolerant Computing, 1994. FTCS-24.
Digest of Papers., Twenty-Fourth International Sympo-
sium on, Jun. 1994, pp. 360–369. DOI: 10.1109/FTCS.
1994.315624.

[4] L. P. Prechelt and F. F. Informatik, “-– a set of neu-
ral network benchmark problems and benchmarking
rules,” Universitat Karlsruhe; 76128 Karlsruhe, Ger-
many, Tech. Rep., 1994.

[5] H. Elsimary, S. Mashali, and S. Shaheen, “Generaliza-
tion ability of fault tolerant feedforward neural nets,”
in Systems, Man and Cybernetics, 1995. Intelligent
Systems for the 21st Century., IEEE International Con-
ference on, vol. 1, Oct. 1995, 30–34 vol.1. DOI: 10 .
1109/ICSMC.1995.537728.

[6] B. Girau, “Fpna: Concepts and properties,” in FPGA
Implementations of Neural Networks, A. R. Omondi
and J. C. Rajapakse, Eds., 10.1007/0-387-28487-7-
3, Springer US, 2006, pp. 63–101, ISBN: 978-0-387-
28487-3. [Online]. Available: http://dx.doi.org/10.1007/
0-387-28487-7-3.

[7] M. Moussa, S. Areibi, and K. Nichols, “On the arith-
metic precision for implementing back-propagation net-
works on fpga: A case study,” in FPGA Implemen-
tations of Neural Networks, A. R. Omondi and J. C.
Rajapakse, Eds., 10.1007/0-387-28487-72, Springer US,
2006, pp. 37–61, ISBN: 978-0-387-28487-3. [Online].
Available: http://dx.doi.org/10.1007/0-387-28487-7 2.

[8] J. Harkin, F. Morgan, S. Hall, P. Dudek, T. Dowrick,
and L. McDaid, “Reconfigurable platforms and the
challenges for large-scale implementations of spiking
neural networks,” in 2008 International Conference
on Field Programmable Logic and Applications, 2008,
pp. 483–486. DOI: 10.1109/FPL.2008.4629989.

[9] M. Krcma, Z. Kotasek, and J. Kastil, “Fault tolerant
field programmable neural networks,” in Nordic Circuits
and Systems Conference (NORCAS): NORCHIP Inter-
national Symposium on System-on-Chip (SoC), 2015,

Oct. 2015, pp. 1–4. DOI: 10 . 1109 / NORCHIP. 2015 .
7364381.

[10] M. Krcma, Z. Kotasek, and J. Lojda, “Triple modular
redundancy used in field programmable neural net-
works,” in 2017 IEEE East-West Design Test Sympo-
sium (EWDTS), 2017, pp. 1–6. DOI: 10.1109/EWDTS.
2017.8110128.

[11] ——, “Detecting hard synapses faults in artificial neural
networks,” in 2019 IEEE Latin American Test Sympo-
sium (LATS), 2019, pp. 1–6. DOI: 10.1109/LATW.2019.
8704637.

Appendices

116

Publications cited by other authors

• M. Krcma, Z. Kotasek and J. Lojda, ”Triple modular redundancy used in field
programmable neural networks,“ 2017 IEEE East-West Design & Test Symposium
(EWDTS), 2017, pp. 1-6, doi: 10.1109/EWDTS.2017.8110128.

– T. Fruehling et al., ”Architectural Safety Perspectives Considerations Regard-
ing the AI-based AV Domain Controller,“ 2019 IEEE International Conference
on Connected Vehicles and Expo (ICCVE), 2019, pp. 1-10, doi: 10.1109/IC-
CVE45908.2019.8965197.

– Sapozhnikov, V. & Sapozhnikov, Vl & Efanov, Dmitry. (2020). Signal correction
for combinational automation devices on the basis of Boolean complement with
control of calculations by parity. Informatics. 17. 71-85. 10.37661/1816-0301-
2020-17-2-71-85.

– Efanov, Dmitry & Sapozhnikov, V. & Sapozhnikov, Vl. (2021). Boolean-
Complement Based Fault-Tolerant Electronic Device Architectures. Automation
and Remote Control. 82. 1403-1417. 10.1134/S0005117921080075.

– V. Sapozhnikov, V. Sapozhnikov and D. Efanov, ”The Structures of the Fault-
Tolerant Automation and Computing Devices Based on the Boolean Complement,“
2021 IEEE East-West Design Test Symposium (EWDTS), 2021, pp. 1-10, doi:
10.1109/EWDTS52692.2021.9581037.

– Sapozhnikov, V. & Sapozhnikov, Vl & Efanov, Dmitry. (2022). Duplication
of Boolean Complements for Synthesis of Fault-Tolerant Digital Devices and
Systems. Automatic Control and Computer Sciences. 56. 1-9.
10.3103/S0146411622010096.

• M. Krcma, Z. Kotasek and J. Lojda, ”Implementation of fault tolerant techniques into
FPNNs,“ 2016 International Conference on Field-Programmable Technology (FPT),
2016, pp. 297-298, doi: 10.1109/FPT.2016.7929559.

– Johnson, Anju & Liu, Junxiu & Millard, Alan & Karim, Shvan & Tyrrell, Andy
& Harkin, Jim & Timmis, Jon & McDaid, Liam & Halliday, David. (2017).
Homeostatic fault tolerance in spiking neural networks utilizing dynamic partial
reconfiguration of FPGAs. 195-198. 10.1109/FPT.2017.8280139.

117

• M. Krcma, Z. Kotasek and J. Kastil, ”Fault tolerant Field Programmable Neural
Networks,“ 2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP &
International Symposium on System-on-Chip (SoC), 2015, pp. 1-4,
doi: 10.1109/NORCHIP.2015.7364381.

– I. C. Lopes, F. L. Kastensmidt and A. A. Susin, ”SEU susceptibility analy-
sis of a feedforward neural network implemented in a SRAM-based FPGA,“
2017 18th IEEE Latin American Test Symposium (LATS), 2017, pp. 1-6, doi:
10.1109/LATW.2017.7906770.

118

	Introcution
	Neural networks
	Neurons
	Activation functions
	Threshold
	Basic topology
	Learning of neural networks
	Supervised learning
	Unsupervised learning
	Backpropagation

	Fault tolerance of neural networks
	Possible faults in neural networks
	Hardening neural networks using learning
	Methods based on faults injection
	Methods based on restricting the weights
	Methods based on activation and basis functions modifications
	Methods using relearning
	Other learning-based methods

	Methods based on redundancy
	Triple modular redundancy
	Inserting new neurons
	Temporal redundancy

	Field Programmable Neural Arrays
	Field Programmable Neural Network
	The computation

	Research progress
	Approximation capabilities
	FPNNs with a single operator per link
	Reduced and Full FPNNs

	Fault tolerance
	Identity operators and mapping
	Triple modular redundancy
	Detecting hard synapses fault
	The FPNNs robustness
	Recovery using partial dynamic reconfiguration

	List of Publications Related to the Thesis
	Author’s contributions to papers related to The Thesis

	List of Other Publications, unrelated to the Thesis
	Research Projects and Grants

	Conclusions
	Contributions
	Possibilities of Future Research

	Bibliography
	Mapping trained neural networks to FPNNs
	Comparison of FPNNs models approximation capabilities and FPGA resources utilization
	Comparison of FPNNs Approximation Capabilities
	Detecting hard synapses faults in artificial neural networks
	Fault tolerant Field Programmable Neural Networks
	Triple modular redundancy used in field programmable neural networks
	Fault tolerant Field Programmable Neural Networks
	Implementation of fault tolerant techniques into FPNNs
	Fault tolerance of different Field Programmable Neural Networks types

