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Abstract 

 
This work describes the application of a hybrid evolutionary algorithm to scheduling col-
lective communications on the interconnection networks of parallel computers. To avoid 
contention for links and associated delays, collective communications proceed in syn-
chronized steps. The minimum number of steps is sought for any given network topol-
ogy, store-and-forward switching, minimum routing and given sets of sender and/or re-
ceiver nodes. Used algorithm is able not only to re-invent optimum schedules for known 
symmetric topologies such as hyper-cubes, but it can find schedules even for  asymmetric 
or irregular topologies in case of general many-to-many collective communications. In 
most cases the number of steps reaches the theoretical lower bound for the given type of 
collective communication; if it does not, non-minimum routing can provide further im-
provement. Optimum schedules are destined for writing high-performance communica-
tion routines for application-specific networks on chip or communication libraries for 
general-purpose interconnection networks. 
 
 
Keywords: collective communications, communication scheduling, evolutionary optimi-
zation, topology of interconnection network, multiprocessor, parallel processing, routing 
algorithm, store-and-forward switching technique, model of communication, prediction 
of conflicts 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2

 

 
Acknowledgements 

 
First and foremost I wish to thank to my supervisor Docent Josef Schwarz who has been 
a permanent source of stimulation and encouragement throughout my research. His ad-
vice and constructive criticism have helped me to progress towards the successful com-
pletion of my research work. I am also grateful to Professor Václav Dvořák for his inspi-
ration and productive discussion. Special thanks also to my parents and the rest of my 
closest family for their understanding and support. Last, but not least, I would like to 
thank to my colleagues from the Faculty of Information Technology (FIT VUT Brno) 
with whom I have had the pleasure of working. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3

 

 
 
Contents 

 
 
 

Chapter 1 ..........................................................................................................................11 

Introduction........................................................................................................................11 
1.1 Parallel Architectures.........................................................................................12 
1.2 State of the Art...................................................................................................14 
1.3 Overview of the Following Chapters.................................................................16 

Chapter 2 ..........................................................................................................................17 

Interconnection Networks..................................................................................................17 
2.1 Basics in Interconnection Networks ..................................................................19 

2.1.1 Packet and Message ...................................................................................19 
2.1.2 Topology....................................................................................................20 
2.1.3 Routing.......................................................................................................26 
2.1.4 Routing Model ...........................................................................................26 
2.1.5 Flow Control ..............................................................................................28 

2.2 Deadlock, Livelock and Conflict .......................................................................30 
2.3 Case Study: Intel Tera-scale ..............................................................................31 

Chapter 3 ..........................................................................................................................35 

Switching Techniques........................................................................................................35 
3.1 Circuit Switching ...............................................................................................36 
3.2 Store and Forward Switching ............................................................................37 
3.3 Virtual Cut-Through Switching .........................................................................39 
3.4 Wormhole Switching .........................................................................................40 

Chapter 4 ..........................................................................................................................42 

Routing Algorithms ...........................................................................................................42 
4.1 Taxonomy of Routing Algorithms.....................................................................43 
4.2 Deterministic Routing........................................................................................44 



 4

4.3 Oblivious Routing..............................................................................................45 
4.4 Adaptive Routing...............................................................................................46 
4.5 Routing in Irregular Topologies ........................................................................48 

4.5.1 Up*/Down* Algorithm..............................................................................48 
4.5.2 Adaptive Routing Algorithm for Irregular Network..................................49 

Chapter 5 ..........................................................................................................................51 

Collective Communication ................................................................................................51 
5.1 Multiple One-to-One Communication...............................................................52 
5.2 One-to-All Communication ...............................................................................53 
5.3 All-to-One Communication ...............................................................................53 
5.4 All-to-All Communication.................................................................................54 
5.5 Many-to-Many Communication ........................................................................55 
5.6 Convenient Collective Communication Services ..............................................57 
5.7 Models of Communication ................................................................................57 

Chapter 6 ..........................................................................................................................60 

Design of New Evolutionary Optimization Techniques....................................................60 
6.1 Basics of Classical Genetic Algorithm ..............................................................61 
6.2 Simulated Annealing..........................................................................................62 
6.2.1 Control Parameters of Simulated Annealing .....................................................63 
6.2.2 Parallelization of SA..........................................................................................64 
6.2.3 Design of a New Parallel SA .............................................................................65 
6.3 Hybridization of Evolutionary Algorithms........................................................72 

6.3.1 A Short Survey of Hybrid Parallel Simulated Annealing Using Genetic 
Operators ……………………………………………………………………………73 
6.3.2 Design a New Hybrid Parallel Genetic Simulated Annealing (HGSA) ....73 
6.3.3 General Differences between New HGSA and Other Approach of SA 
and GA Aggregation..................................................................................................74 

6.4 Experimental Results .........................................................................................75 
6.5 Summary............................................................................................................77 

Chapter 7 ..........................................................................................................................79 

Evolutionary Design of Collective Communication..........................................................79 
7.1 Model of Communication..................................................................................81 
7.2 Methodology of Design of Optimal Communication Schedules.......................82 

7.2.1 Searching of Conflicts ...............................................................................82 
7.2.2 Prediction of Conflicts ...............................................................................83 

7.3 Input Data ..........................................................................................................86 



 5

7.4 Search of The Shortest Paths .............................................................................87 
7.5 Solution Encoding..............................................................................................88 
7.6 Definition of Fitness Function ...........................................................................90 

7.6.1 The Fitness Function Based on Searching of Conflicts.............................90 
7.6.2 The Fitness Function Based on Prediction of Conflicts ............................91 

7.7 Heuristic.............................................................................................................93 
7.8 Generalization of New Proposed Algorithm .....................................................94 

7.8.1 Fat Topologies ...........................................................................................94 
7.8.2 Many-to-Many Broadcast Communication ...............................................95 

7.9 Analyze of Proposed Algorithm ........................................................................97 
7.10 Experimental Results .......................................................................................101 

Chapter 8 ........................................................................................................................114 

Conclusion and Future Research Directions....................................................................114 
8.1 Future Research Directions..............................................................................116 

Bibliography ...................................................................................................................117 
Author publications......................................................................................................122 

Appendix A......................................................................................................................124 

Appendix B ......................................................................................................................129 

Appendix C ......................................................................................................................132 

Appendix D......................................................................................................................133 

Appendix E ......................................................................................................................135 

Appendix F ......................................................................................................................137 

Appendix G......................................................................................................................143 
 
 
 
 
 
 
 
 
 
 
 



 6

 
 
 

List of Figures 
 
 
 
Figure 1: Basic structure of a shared-memory multiprocessor. ........................................12 
Figure 2: Basic structure of a distributed-memory multiprocessor. .................................13 
Figure 3: The functional schema of an interconnection network. Terminals T1 

through T6 are connected to the network with bi-directional channels. ...........18 
Figure 4: The structure of message...................................................................................20 
Figure 5: Example of network topology. Illustrated topology is K-ring. .........................21 
Figure 6: The bisection Bc = 16 and degree d = 8 of K-ring topology. Each edge 

represents two unidirectional channels going in opposite directions. ...............22 
Figure 7: Node of direct network and node of indirect network – it consists of a 

terminal node and a switch node. ......................................................................23 
Figure 8: The fat node topology with two terminal nodes connected to one switch 

node. ..................................................................................................................24 
Figure 9: Two ways of routing from node 5 to node 3 in the hyper-cube. (a) A non-

minimal route requires more than the minimal path length. (b) A minimal 
routing using minimal path length. ...................................................................26 

Figure 10: Router model with ability to store packets for a time. ....................................28 
Figure 11: Time-space diagram shows two flow control methods. (a) Store-and-

Forward flow control – a packet is completely transmitted across one 
channel before transmission across the next channel is started. (b) 
Wormhole flow control – a packet transmission over the channels is 
pipelined..........................................................................................................29 

Figure 12: Deadlock in communication. Both partners start to send their packets 
and they are waiting for confirm of receiving these packets. Both are 
sending and therefore they cannot receive......................................................30 

Figure 13: Two source nodes want to use the same channel in the same direction 
and at the same time – it appears conflict. ......................................................31 

Figure 14: Prototype of multiprocessor Intel “Tera-scale” with eighty cores. .................32 



 7

Figure 15: Scalability is ensured on the all levels. In this figure, multiprocessor is 
denoted like CPU. ...........................................................................................33 

Figure 16: (a) Ring topology and (b) 2D-Mesh topology of Intel “Tera-scale”. ..............34 
Figure 17: View of the network path for computing switching latency. ..........................36 
Figure 18: Time-space diagram of a circuit-switched message........................................37 
Figure 19: Time-space diagram of a store-and-forward-switched message. ....................38 
Figure 20: Time-space diagram of a virtual cut-through switched message. (tblocking 

= waiting time for a free output channel.).......................................................39 
Figure 21: Time-space diagram of a wormhole-switched message..................................40 
Figure 22:  An example of deterministic routing. A packet is routed from node 15 to 

node 6 first by routing in the x dimension and then in the y dimension. ........45 
Figure 23: An example of randomized routing (Valiant’s algorithm) on 4x4 mesh. 

A packet is routed from node 13 to node 11 in two phases. In the first 
phase the packet is routed to random selected intermediate node 6 as 
shown the bold solid lines. The second phase delivers the packet from 
node 6 to node 11 as shown the dotted lines...................................................46 

Figure 24: A packet is routed from node 13 to node 3 along the solid line. To avoid 
the channel occupancy, which is illustrated by dotted line, the packet is 
routed by the longer path, which occupies many channels of the 
interconnection networks. ...............................................................................47 

Figure 25: Link direction assignment for the irregular network [12]. ..............................49 
Figure 26: Multiple one-to-one communication pattern: circuit shift permutation. .........52 
Figure 27: Two one-to-all communication patterns: (a) broadcast communication 

and (b) scatter communication........................................................................53 
Figure 28: Two all-to-one communication patterns: (a) reduce communication and 

(b) gather communication. ..............................................................................54 
Figure 29: Two all-to-all communication patterns: (a) all-broadcast communication 

and (b) all-scatter communication. .................................................................55 
Figure 30: Two many-to-many communication patterns, where senders and 

receivers are overlapped: (a) many-broadcast communication and        
(b) many-scatter communication. ...................................................................56 

Figure 31: Illustration of the communication during the temperature phase and at 
the end of the temperature phase. ...................................................................66 

Figure 32: Average tour length of TSP 52 for several versions of PSA...........................68 
Figure 33: Computational time with relevant average tour length at each PSA 

versions and sequential SA versions...............................................................69 
Figure 34: Optimization curves for TSP 52 (52 cities).....................................................70 
Figure 35: Optimization process of tour length for TSP 79 (79 cities). ...........................70 



 8

Figure 36: Structure of Hybrid parallel genetic simulated annealing. ..............................74 
Figure 37: Average tour length of TSP 52 for HGSA and three versions of PSA. ..........76 
Figure 38: Computational time with relevant average tour length for HGSA and 

PSA versions...................................................................................................77 
Figure 39: 32 processors in AMP topology. The SC node denotes a system 

controller (host computer) that sends input data to processing nodes and 
collects results. ................................................................................................80 

Figure 40: Conflict on a communication channel.............................................................83 
Figure 41: 9-processor Mesh configuration. .....................................................................86 
Figure 42: Construction of the shortest paths list from node 0 to node 5 in the 9-

processor Mesh topology. ...............................................................................88 
Figure 43: The structure of chromosome..........................................................................89 
Figure 44: Modification of shorter path according to longer path....................................93 
Figure 45: Fat Octagon topology with full duplex links and one-port model. .................96 
Figure 46: Illustration of a file, in which a network topology is description for 

MNB. ..............................................................................................................97 
Figure 47: The real time complexity of AAB on 64-node hyper-cube with different 

number of communication steps. ..................................................................106 
Figure 48: Time complexity of AAB on 64-node hyper-cube with different number 

of communication steps. ...............................................................................107 
Figure 49: Time complexity of AAB..............................................................................109 
Figure 50: Time complexity of OAS. .............................................................................110 
Figure 51: Time complexity of AAS. .............................................................................110 
Figure 52: The real time complexity of four communication patterns. ..........................111 
Figure 53: a) 4 x 4 CM,  b) 4 x 4 2D-M..........................................................................112 
Figure 54: Interconnection networks: a) Hyper-cube and b) K-ring ..............................129 
Figure 55: c) Moore graph and d) Midimew ..................................................................130 
Figure 56: e) AMP with SC and f) AMP without SC.....................................................130 
Figure 57: g) Ladder  and h) Twisted ladder ..................................................................131 
Figure 58: i) Slim Octagon and j) Fat Octagon...............................................................131 
Figure 59: k) Coated Mesh and l) 2D-Mesh ...................................................................131 
Figure 60: Model of OAB communication: store-and-forward switching, full duplex 

links, all-port non-combining model.............................................................132 
Figure 61: Model of AAB communication: store-and-forward switching, full duplex 

links, all-port non-combining model.............................................................134 
Figure 62: Model of OAS communication: store-and-forward switching, full duplex 

links, all-port non-combining model.............................................................136 



 9

Figure 63: Model of AAS communication: store-and-forward switching, full duplex 
links, all-port non-combining model.............................................................142 

Figure 64: Model of MNB communication: store-and-forward switching, full 
duplex links, one-port non-combining model...............................................146 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 10

 
 
List of Tables 
 
 
 
Table 1: Lower bounds on complexity of collective communications at slim node 

topology.............................................................................................................59 
Table 2: The setting of SA control parameters. ................................................................67 
Table 3: The value of HGSA parameters. .........................................................................75 
Table 4: Assignment of communication steps to channel from the interval (7.4). ...........85 
Table 5: 9-processor Mesh routing table...........................................................................86 
Table 6: An assignment of communication steps to channel from the interval (7.25). ....92 
Table 7: Time complexity of individual parts of algorithm based on conflict 

prediction in percent on the 32-slim node bidirectional all-port hyper-
cube; *) this value corresponds with frequency of communication n*100 
iteration (n > 1) from 300 iterations of Metropolis algorithm...........................99 

Table 8: The value of control parameters of proposed algorithm...................................101 
Table 9: Experimental results and the theoretical lower bound of the broadcast 

collective communication for the all-port topologies with 8-nodes................102 
Table 10: Experimental result and the theoretical lower bound of the scatter 

collective communication for the all-port topologies with 8-nodes................103 
Table 11: Number of steps for OAB optimization..........................................................104 
Table 12: Number of steps for AAB optimization (bold digits represent cases when 

lower bounds were not reached)......................................................................104 
Table 13: Success rate of 15 runs in achieving the optimal communication 

scheduling for AAB. .......................................................................................105 
Table 14: Number of steps for OAS and AAS optimization (bold digits represent 

cases when lower bounds were not reached). .................................................108 
Table 15: Success rate of 15 runs for AAS communication scheduling (the 

communication complexity is illustrated in Table 14)....................................108 
Table 16: Results of AAB optimization..........................................................................112 
Table 17: M-to-N communication on the Fat Octagon topology (P = 16;                  

2 processors at a node). ...................................................................................113 
 



Chapter 1  Introduction 

 11

 
 
 
 
 
 
 
 
 

Chapter 1  
 
Introduction 
 
 
 
 

The demand for even greater computing power has never stopped. Although the perform-
ance of processors has doubled (approximately) every three years, the complexity of the 
software and the scale and solution quality of applications, have continuously driven the 
need and development for yet faster processors. However, the frequency of processors 
cannot be increased to the infinity. The creation of more powerful computers is through 
parallelization.  
A parallel computer requires some kind of communications subsystem to interconnect the 
processors, memories and other devices. The specific requirements of these communica-
tion subsystems depend upon the architecture of the parallel computer. The simplest solu-
tion consists of connecting processors to memories and disk. Processors can be intercon-
nected using the interface to local area networks.  
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1.1 Parallel Architectures 
 
One of the fundamental taxonomies of computer architectures, proposed as early as 1966 
by Flynn [1], but still useful today, is a model of categorizing all computers into four 
classes according to parallelism at the instruction stream and data stream levels. These 
categories combine single/multiple data streams and single/multiple instruction streams. 
From the four possible combinations, the only category, which emerged as the parallel 
architecture of choice for general-purpose multiprocessors, is MIMD (multiple instruc-
tion streams, multiple data streams) [2]. This is primarily due to two reasons: 

• MIMDs offer flexibility. With the correct hardware and software support, MIMDs 
can function as single-user multiprocessors on high performance for one applica-
tion, as multiprogrammed multiprocessors running many tasks simultaneously or 
in some combination of these functions. 

• MIMDs can build on the cost-performance advantages of off-the-shelf microproc-
essors. In fact nearly all multiprocessors built today use the same microprocessors 
as those to be found in workstation and single-processor servers. 

Existing MIMD multiprocessors fall into two classes, depending on the number of proc-
essors involved, which in turn dictate a memory organization and interconnection strat-
egy. The first group called centralized shared-memory architectures usually does not 
have more than a few tens of processors. The second group, which consists of multiproc-
essors with physically distributed memory, scales to hundreds or thousands of processors. 
 

 
 

Figure 1: Basic structure of a shared-memory multiprocessor. 
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For multiprocessors with small processor counts, it is possible for the processors to share 
a single centralized memory and to interconnect the processors and memory by intercon-
nection network. Due to a single main memory that a symmetric relationship to all proc-
essors and uniform access time from any processor these multiprocessors are often called 
symmetric (shared-memory) multiprocessors (SMPs). This style of architecture is some-
times called uniform memory access (UMA). Figure 1 shows the basic structure of these 
multiprocessors [2]. 
To support a large processor count memory in parallel architectures must be distributed 
among the processors rather than centralized: otherwise the memory system would not be 
able to support the bandwidth demands of a large number of processors without incurring 
excessively long access latency. The large number of processors raises the need for high 
bandwidth interconnections. The basic structure of these multiprocessors is illustrated in 
Figure 2. 
There are two alternative architectural approaches that differ in the method used for 
communication data among processors in a distributed-memory system: single address 
space and multiple address spaces. 
 
 

 
 
 

Figure 2: Basic structure of a distributed-memory multiprocessor. 
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Using the first method, physically separated memories can be addressed as one logically 
shared address space. Meaning that any processor can make a memory reference to any 
memory location, assuming it has correct access rights. These multiprocessors are called 
distributed shared memory (DSM) architectures. The term shared-memory refers to the 
fact that address space is shared, but it does not mean that there is a single centralized 
memory. In contrast to the symmetric shared-memory multiprocessors, also known as 
UMA (uniform memory access), the DSM multiprocessors use NUMA (nonuniform 
memory access), since the access time depends on the location of a data word in memory. 
Alternatively, the address space can consist of multiple private address spaces that are 
logically disjoint and cannot be accessed by the remote processor. In such multiproces-
sors the same physical address for two different processors refers to two different loca-
tions in two different memories. Each processor-memory module is essentially a separate 
computer. These parallel processors have been called multicomputers. It is now widely 
recognized that a cluster of workstations (COW) or network of workstations (NOW) of-
fers a very attractive alternative to expensive supercomputers and parallel computer sys-
tems for high-performance computing. [3] 
 
 
 
 

1.2 State of the Art 
 
Processors with two cores are now here, and quad-core processors will very soon be 
available. In the coming years, the number of cores on a chip will continue to be in-
creased, launching an era of vastly more powerful computers. These are the machines that 
will deliver teraflop performance with the efficient capabilities needed to handle tomor-
row’s emerging applications. 
Why such a leap forward? These developments are necessary because incremental im-
provements in performance and capabilities would be unable to support real-time data 
mining across teraflops of data; artificial intelligence (AI) for smarter cars and appli-
ances; virtual reality (VR) for modeling, visualization, physics simulation, and medical 
training; and other applications that are still on the edge of being science fiction. Also, 
data stores are becoming larger and more complex. In medical healthcare, a full-body 
medical scan already contains terabytes of information. In our homes, people are generat-
ing large amounts of data, including hundreds of hours of video, thousands of documents, 
and tens of thousands of digital photos that need to be indexed and searched. Teraflop 
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computing is the way to bring the massive compute capabilities of supercomputers to 
everyday devices, from servers, to desktops, to laptops. 
With an increasing number of processor cores, memory modules and other hardware units 
in System on Chips (SoCs), the importance of communication within the system and with 
its related interconnection networks is steadily growing. These demands for increased 
communication within our computing systems has recently opened up research work in 
the Network on Chip (NoC) area, encompassing the interconnection/communication 
problem at all levels, from physical to the architectural to the OS and application level 
[4], [5].  
Some embedded parallel applications, such as network or media processors, are charac-
terized by independent data streams or by a small amount of inter-process communica-
tions [4]. However, many general-purpose parallel applications display a bulk-
synchronous behavior: the processing nodes access the network according to a global, 
structured communication pattern. They can, for example, execute a personalized all-to-
all information exchange, global synchronization, gather/scatter to/from one node, etc. 
The performance of these collective communications has a dramatic impact on the overall 
efficiency of parallel processing. Provided that computation times are known, as is usu-
ally the case in application-specific systems, the sole criteria thing for obtaining the high-
est performance is the duration of the various collective communications. 
Bus-based synchronous communication structures in SoC, operating at several hundreds 
MHz, are no longer attractive, due to tight timing constraints and skew control [5]. Tran-
sition to point-to-point high speed networks, that happened on system boards (e.g. from 
PCI to PCI/Express), is taking place on SoCs, too. Much research and practical interest 
has recently focused on interconnection networks implemented on chip. 
Currently, there are many different interconnection network topologies for general pur-
pose multiprocessors, but new networks for specific parallel applications can still be cre-
ated. Whereas the lower bounds on the time complexity of various group communications 
(in terms of required number of communication steps) can be mathematically derived for 
any network topology and its given communication pattern. Finding a corresponding 
schedule of communication is more difficult and, in some cases, not, as yet, an estab-
lished matter. 
 
The goal of this thesis is to create a general method based on evolutionary algorithm for 
optimal scheduling of a given collective communication and for arbitrary topologies. This 
optimal schedule has to be deadlock-free (some messages cannot advance toward their 
destination because the resources are full) and conflict-free (only one message can be sent 
via given channel in the same direction at the same time) and also has to be executed in 
the shortest possible time, i.e. in minimal number of communication steps.  
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1.3 Overview of the Following Chapters 
 
The opening of this chapter presented an introduction to parallel computation, followed 
by a short description of widely used parallel architectures in section 1.1. An overview of 
a state of art in the multiprocessors area was given and, finally, the goal of this work was 
introduced. 
All the needed terms of interconnection networks area are explained and defined in chap-
ter 2, which is necessary for a full understanding of our proposed method. At the end of 
this chapter, the view of multiprocessor chips’ future is presented. 
The third chapter describes in detail and explains switching techniques. In the fourth 
chapter the most widespread routing methods are presented, which are utilized with 
smaller or higher variations in almost all proposed routing algorithms to this time. 
The fifth chapter is dedicated to a detailed description of collective communication and 
models of communication. The mathematical approach is shown to calculate a lower 
bound of time complexity of optimal schedule, which can be utilized for some type of 
interconnection networks. 
Chapter 6 deals with the design of a new hybrid evolutionary method, and simultaneously 
our new method is compared with other similar hybrid evolutionary techniques in this 
chapter. Firstly, quality and efficiency of the proposed new method was tested on the 
traveling salesman problem and after verification of its quality, this method was utilized 
in the solving of a real problem from practice, i.e. the scheduling of collective communi-
cations for arbitrary interconnection networks.  Chapter 7 is also dedicated to this sched-
uling problem. The method was developed based on prediction of conflicts to design of 
optimal schedule. From the achieved results it can be stated that this method is very ef-
fective and it is able to schedule arbitrary topologies for arbitrary communication. 
Finally, chapter 8 summarizes the main contributions of the thesis and proposes possible 
directions for future research. 
Appendix A contains the pseudo-code of our proposed routing algorithm. All investigated 
topologies are presented in appendix B. The examples of OAB, AAB, OAS, AAS and 
MNB collective communication schedules are illustrated in the remaining appendixes.  
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Chapter 2  
 
Interconnection Networks 
 
 
 
 
 
An interconnection network is a programmable system that enables fast data communica-
tion between the components of a digital system. The network is programmable in the 
sense that it enables different connections at different points in time. The network is a 
system because it is composed of many components: buffers, channels, switches, and 
controls that work together to deliver data. 
The functional view of an interconnection network is illustrated in Figure 3. Six terminal 
nodes are connected to the network with bidirectional channels. When a source terminal 
(say T3) wants to communicate with a destination terminal (say T5), it sends data in the 
form of a message into the network and the network delivers the message to T5. Using 
the same resources, the network can deliver the above message in one cycle (cycle ex-
presses time), and a different message in the next cycle. [6] 
Interconnection networks are used in almost all digital systems that are large enough to 
have two components to connect. The most common applications of interconnection net-
works are in computer systems and communication switches. In computer networks, they 
connect processors to memories and input/output (I/O) devices to I/O controllers. They 
connect input ports to output ports in communication switches and network routers. 
Interconnection networks may also connect sensors and actuators to processors in control 
systems, host and disk nodes in I/O networks and on-chip cores in chip multiprocessors. 
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Today, all high-performance interconnections are realized by point-to-point interconnec-
tion networks rather than buses, and many systems that historically have been bus-based 
are being converted to the networks systems every year. The demand for interconnection 
performance is increasing with processor performance and network bandwidth. As a re-
sult, buses have been unable to keep up with the bandwidth demand, and point-to-point 
interconnection networks, which operate faster than buses while also offering concur-
rency, are rapidly taking over. [7] 
 
 

 
 

Figure 3: The functional schema of an interconnection network. Terminals T1 through 
T6 are connected to the network with bi-directional channels. 

 
 
The performance of most digital systems today is limited by their communication or in-
terconnection, not by their logic or memory. Hence, it is imperative that the underlying 
interconnection network performs efficiently in order to improve the efficacy of the entire 
system. For instance, in a computer system, the interconnection network between proces-
sor and memory determines key performance factors such as the memory latency and 
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memory bandwidth. The performance of the interconnection network in a communication 
switch largely determines the capacity (data rate and number of ports) of the switch. 
 
 
 
 

2.1 Basics in Interconnection Networks 
 
A key to the efficiency of interconnection networks comes from the fact that communica-
tion resources are shared. Instead of creating a dedicated channel between each terminal 
pairs, the interconnection network is implemented with a collection of shared router 
nodes connected by shared channels. The connection pattern of these nodes defines the 
network’s topology. A message is then delivered between terminals by making several 
hops across the shared channels and nodes from its source terminal to its destination ter-
minal.  
Once a topology has been chosen, there can be many possible paths (sequences of nodes 
and channels) that a message could take through the network to reach its destination. 
Routing determines which of these possible paths a message actually takes. A good 
choice of paths minimizes their length, usually measured as the number of nodes or chan-
nels visited, while balancing the demand placed on the shared resources of the network. 
The length of a path obviously influences latency of a message through the network and 
the demand or load on resource is a measure of how often that resource is being utilized.  
If one resource becomes over-utilized while another sits idle the total bandwidth of mes-
sages being delivered by the network is reduced. 
Flow control dictates which messages gets access to particular network resources over 
time. This influence of flow control becomes more critical as the utilization of the re-
source increases and good flow control forwards packets with minimum delay and avoids 
idling resources under high loads. [7] 
A detailed description and concept definition will be presented in the following chapters. 
 
 

2.1.1 Packet and Message 
 
It is necessary to distinguish between messages and packets in a network. A message is 
the logical unit of data transfer provided by network interfaces. Its size is limited only by 
the user memory space. Because messages do not always have a bounded length, they are 
often broken into smaller packets for handling within the network. Packets are fixed-size 
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smallest unit of communication containing routing information (e.g., a destination ad-
dress) and sequencing information in its header. All data contained within a packet fol-
lows the same route through the network and packets are reassembled into messages at 
the destination. Its size is of the order of hundreds or thousands of bytes or words, con-
sisting of header flits and data flits. The structure of a message is illustrated in the Fig. 4 
[8]. 
Packets are divided into fixed length flits (flow control digit) to simplify the management 
and allocation of resources. A flit is the smallest unit of resources allocation in a router. It 
may be divided further into phits (physical digit) for handling by the router datapath. 
 
 

 
 
 

Figure 4: The structure of message. 
 
 
 

2.1.2 Topology 
 
Interconnection networks are composed of a set of shared router nodes and channels. The 
topology of the network refers to the arrangement of these nodes and channels. The to-
pology of an interconnection network is analogous to a roadmap. The channels (the 
roads) carry packets (the cars) from one route node (the intersection) to another. For ex-
ample, the network shown in Fig. 5 consists of 8 nodes, each of which is connected to 8 
channels / 4 links. One link between nodes consists of 2 channels, 1 to neighbor and 1 
from neighbor.  
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• Channels and Nodes 
The topology of an interconnection network is specified by a set of nodes N connected by 
a set of channels C. Each channel c = (x, y) ∈ C connects a source x to a destination 
node y, where x, y ∈ N. We denote the source node of a channel c as sc and the destina-
tion as dc. 
A channel c = (x, y) ∈ C is characterized by its latency tc or txy the time required for a bit  
to travel from x to y. For most channel the latency is directly related to the physical length 
of the channel lc = vtc, by a propagation velocity v.  
 

 
 

Figure 5: Example of network topology. Illustrated topology is K-ring. 

 

 
Each node x has a channel set Cx = CIx ∪ COx, where CIx = {c ∈ C | dc = x} is the input 
channel set and COx = {c ∈ C | sc = x} is the output channel set. [7] 
 
 

• Node degree 
A node degree is the number of channels entering and leaving node. 

The degree of x is dx = |Cx| which is the sum of the in degree dIx = |CIx| and the out de-
gree dOx = |COx|, where x ∈ N. 
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• Bisections 
A bisection of a network is a cut that partitions the entire network nearly in half:  

1|||||| 212 +≤≤ NNN       (2.1.1) 

The channel bisection of a network (bisection width) BC is the minimum channel count 
over all bisections of the network: 

|),(|min 21sec
NNCB

tionsbiC =      (2.1.2) 

A cut of a network C(N1,N2) is a set of channels that partitions the set of all nodes N into 
two disjoint sets N1 and N2. Each element of C(N1,N2) is a channel with a source N1 and 
destination N2. The total bandwidth of the cut is: 

c
NNCc

bNNB
),(

21
21

),(
∈
∑=     (2.1.3) 

where bc is bandwidth of channel. 

The bisection bandwidth of network BB is the minimum bandwidth over all bisections of 
the networks [7]: 

),(min 21sec
NNBB

tionsbiB =                                                   (2.1.4) 
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Figure 6: The bisection Bc = 16 and degree d = 8 of K-ring topology. Each edge repre-
sents two unidirectional channels going in opposite directions. 
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• Paths 
A path in a network is an ordered set of channels Pa = {c1,…., cn}. Paths are also referred 
to as router. The source of a path is sc1. Similar, the destination of a path is dcn. The 
length or hop count of a path is |Pa|. If, for a particular network and its routing function at 
least one path exists between all source-destination pairs, it is said to be connected.  
A minimal path from node x to node y is a path with smallest length H(x, y) connecting 
these two nodes.  
The diameter of a network D is the largest minimal length over all pairs of terminal nodes 
in the network. [7] 

),(max
,

yxHD
Nyx ∈

=       (2.1.5) 

 
 

• Direct and Indirect Network 

A network node may be a terminal node that acts as a source/destination and a switch 
node (router) that forwards packets from input ports to output ports. In a direct network 
every node in the network is both a terminal and a switch, such as the K-ring topology of 
Fig. 6. In an indirect network a node is either a terminal or a switch. It cannot serve both 
functions. In a direct network packets are forwarded directly between terminal nodes 
while in an indirect network they are forwarded indirectly by means of dedicated switch 
nodes. Every direct network can be redraw as an indirect network by splitting each node 
into separate terminal and switch node, as illustrated Figure 7. 
 
 
 
 
 
 
 
 

Figure 7: Node of direct network and node of indirect network – it consists of a terminal 
node and a switch node.  

 
 
In some early networks the switching function was implemented in software running on 
the terminal CPU and buffering was performed using the terminal computer’s memory 
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[9], [10]. Software switching is very slow and demanding upon the terminal’s resources 
and is thus is rarely used today.  
A potential advantage of an indirect network is that more than one terminal node can be 
connected to one switch node.  
This manner of creating a topology with a higher number of terminal nodes. It is a sim-
pler process to implement routing in these fat node topologies than in a topology with the 
same number of node with a single terminate node. The fat node topologies have far 
fewer channels and the interconnection is simpler than the topology with single terminal 
node. An example of fat node topology is given in the Fig. 8. 
 
 

 
 
Figure 8: The fat node topology with two terminal nodes connected to one switch node. 
 
 

• Symmetry and Regularity 
The symmetry and regularity of a topology play an important role in routing, as will be 
discussed in a later section. A network is vertex-symmetric if there exist automorphism 
that maps any node a into another node b. In a vertex-symmetric network the topology 
looks the same from the point-of-view of all the nodes. In a regular network the nodes of 
the topology have the same degree. Symmetry and regularity can simplify routing be-
cause all nodes share the same point-of-view of the network and therefore can use the 
same directions to route to the same relative position. 
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• Throughput 
The throughput of the network is the data rate in bits per second that are delivered to the 
destination node of the network. Throughput is a property of the entire network which 
depends on the routing (details are presented in chapter 2.1.3) and flow control (see chap-
ter 2.1.5) as much as it depends upon the topology. Ideal throughput can be achieved by 
perfect flow control and routing. In this case the routing perfectly balanced the load over 
alternative paths in the network and the flow control left no idle cycles on the saturated 
channels. Maximal throughput occurs when each channels in the network becomes satu-
rated. 
 

• Traffic 
Traffic is the amount of information delivered per time unit. This amount of information 
is often modeled by a traffic pattern that determines how a packet travels between a par-
ticular source-destination pair and an arrival process. Historically, several of these pat-
terns are based on communication patterns that arise in particular applications. 
 

• Latency 
The latency of a network is the time required for a packet to traverse the network from 
the time the head of the packet arrives at the input port to the time the tail of the packet 
departs the output port. We separate latency T into two components: 

T = Th + Ts     (2.1.6) 

The head latency Th is the time required from the head of the message to traverse the 
network and the serialization latency: 

Ts = L/b      (2.1.7) 

is the time required for the tail to catch up – the time for a packet of length L to cross a 
channel with bandwidth b. 

Latency depends not only on a topology but also on routing, flow control and the design 
of the router.  
The head latency is the sum of two factors determined by the topology: router delay Tr 
and time of flight Tw. Router delay is the time spent in the routers, whereas time of flight 
is the time spent on the wires. Combining these components gives the following expres-
sion for latency [7]: 

T = Tr + Tw + L/b     (2.1.8) 
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2.1.3 Routing 
 
The routing method employed by a network determines the path taken by a packet from a 
source terminal node to a destination terminal node. A route or path is an ordered set of 
channels Pa = (c1,…, cn) where the output node of channel ci equals the input node of 
channel ci+1. The source is the input to channel c1 and the destination is output of channel 
cn. In some networks there is only one path from the source to its destination, whereas in 
others, which are much more common, there are many possible paths. When there are 
many paths, a good routing algorithm makes the decision which path should be used and 
in which time [7].  
  

 
        (a)         (b) 

 

Figure 9: Two ways of routing from node 5 to node 3 in the hyper-cube. (a) A non-
minimal route requires more than the minimal path length. (b) A minimal routing using 
minimal path length. 

 
 
Figure 9 shows two different paths from node 5 to node 3 in the interconnection network. 
Routing (a) illustrates a non-minimal routing in the situation, taking 5 hops. In routing (b) 
one of the shortest paths from 5 to 3 has been chosen and this route is minimal. (There are 
six shortest paths with length 3.) 
 
 

2.1.4 Routing Model 
 
The architecture of a router, where the packets can be stored for a time, is shown in Fig-
ure 10 and is comprised of the following major components: 



Chapter 2  Interconnection Networks 

 27

• Buffers – these are first-in first-out (FIFO) buffers for storing packets in transit. In 
the model shown in Figure 10 a buffer is associated with each input physical 
channel and each output physical channel. In alternative design buffers may be as-
sociated only with inputs (input buffering) or outputs (output buffering). 

• Packet memory – for storing incoming packet from input buffers. Packets are 
stored here for the necessary time. The storage time for individual packets differs, 
to ensure the best throughput of interconnection network. 

• Switch – this component is responsible for connecting router input buffers to 
router output buffers. High-speed routers will utilize crossbar networks with full 
connectivity. Lower-speed implementations may utilize networks that do not pro-
vide full connectivity between input buffers and output buffers. 

• Routing and scheduling logic – this component implements the routing and 
scheduling of incoming packets. It decides when and which packet will be chosen 
from packet memory. It selects input channel to switch and output channel from 
router for a chosen packet and accordingly sets the switch. This scheduling avoids 
the situation in which multiple packets simultaneously request the same output 
link. It causes some packets stay in the packet memory longer than others but how 
long is dependent upon the routing algorithm, which has been implemented in this 
component. Detailed descriptions of the routing algorithms are illustrated in chap-
ters 4 and 7. 

•  Link controllers (LCs) – the flow of packets across the physical channel between 
adjacent routers is implemented by the link controller. The link controllers on ei-
ther side of a channel coordinate the transfer units of flow control. 

• Processor interface – this component simply implements a physical channel inter-
face to the processor rather than to an adjacent router. It consists of one or more 
injection channels from the processor and one or more ejection channels to the 
processor. 

 

When a packet first arrives at a router it must be examined to determine the output chan-
nel over which the packet is to be forwarded. This is referred to as the routing delay and 
typically includes the time to set the switch. Once a path has been established through a 
router by the switch, of critical interest is the rate at which the packets can be forwarded 
through the switch. This rate is determined by the propagation delay through switch and 
the signaling rate for synchronizing the transfer of data between the input and output 
buffers. This delay has been characterized as the internal flow control latency [11]. The 
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delay across the physical links is referred to as the external flow control latency. The 
routing delay and flow control delays collectively determine the achievable packet la-
tency through switch and determine the network throughput. [12] 
The detail description of latency depending on switching technique is presented in chap-
ter 3.  
 
 

 

 

Figure 10: Router model with ability to store packets for a time.  

 
 
 

2.1.5 Flow Control 
 
Flow control manages the allocation of resources to packets as they progress along their 
route. The key resources in most interconnection networks are the channels and the buff-
ers. We have already seen the role of channels in transporting packets between nodes. 
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Buffers are storage implemented within the nodes and allow packets to be held temporally 
at the nodes. For simplicity we can say that: the topology determines the roadmap, the 
routing method manages the car and the flow control controls the traffic lights, determin-
ing when a car can advance over the next stretch of road (channels) or when it must pull 
off into a parking lot (buffer) to allow other cars to pass/overtake. 
To realize the performance potential of the topology and routing method, the flow control 
strategy must avoid resource conflicts that can hold a channel idle. For example, it should 
not block a packet that can use an idle channel because it is waiting on a buffer held by a 
packet that is blocked on a busy channel. 
A good flow control strategy is fair and avoids deadlock. An unfair flow control strategy 
can cause a packet to wait indefinitely. Deadlock is a situation that occurs when a cycle  
of packets is waiting for one another to release resources.  
We often describe a flow control method by using a time-space diagram, such as those 
shown in Figure 11. The figure shows a time-space diagram for (a) store-and-forward 
flow control and (b) wormhole flow control. 
 
 

 

 

Figure 11: Time-space diagram shows two flow control methods. (a) Store-and-Forward 
flow control – a packet is completely transmitted across one channel before transmission 
across the next channel is started. (b) Wormhole flow control – a packet transmission 
over the channels is pipelined. 

 

  
In both diagrams time is shown on the horizontal axis and space is shown on the vertical 
axis. Time is expressed in cycles and space is shown by listing the channels used to send 
the packet. As seen in Fig. 11 the choice of flow control techniques can significantly af-
fect the latency of a packet through network. 
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More details of store-and-forward and wormhole flow control are described in chapter 3. 
The problems of deadlock and livelock are dealt with in the next section. 
 
 
 
 

2.2 Deadlock, Livelock and Conflict 
 
In interconnection networks packets usually travel across several intermediate nodes be-
fore reaching the destination. However, it may happen that some packets are not able to 
reach their destinations because they are waiting on one another to release resources 
(channels and buffers). Consider the situation shown in Figure 12.  
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Deadlock in communication. Both partners start to send their packets while at 
the same time they are waiting for confirmation of receiving these packets. Both are send-
ing and, therefore, they cannot receive. 

 
 
Two partners need to communicate with each other. Both start to send their packets and 
both are waiting for confirmation of receiving these packets. However, because both are 
sending and neither can receive, deadlock occurs. A buffer deadlock occurs when some 
packets cannot advance toward their destination because the buffers required by them are 
full. Deadlock is catastrophic situation within a network. After a few resources are occu-
pied by deadlock packets, other packets block on these resource, paralyzing the network 
operation. To prevent this situation, networks must either use deadlock avoidance [13] 
(methods that guarantee that a network cannot deadlock) or deadlock recovery [14] (in 
which deadlock is detected and correct, e.g. packet is killed and sends again). Almost all 
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modern networks use deadlock avoidance, usually by imposing an order on the resources 
in question and insisting that packets acquire these resources in order. 
A different situation arises when some packets are not able to reach their destination, 
even if they never block permanently. A packet may be traveling around its destination 
node, never reaching it because the channels required to do so are occupied by other 
packets. This situation is known as livelock. It can only occur when packets are allowed 
to follow non-minimal paths. 
The last situation, which necessary to mention, is referred to as conflict. Conflict is the 
situation when two source nodes want to use the same channel in the same direction and 
at the same time. During a conflict situation it is not known what happens to packets, 
which were not assigned to channel, whether they reach their destination and when, and if 
they continue their path or will be sent from the source node again.  
 
 

 
 

Figure 13: Two source nodes want to use the same channel in the same direction and at 
the same time – conflict situation has occurred. 

 
 
 
 

2.3 Case Study: Intel Tera-scale 
 
In IDF Fall 2006 Intel announced their research prototype of their possible future proces-
sor’s architecture. In contrast to present architectures, this prototype is 8 x 10 of the same 
computing cores on one chip. The concentration of possible computing performance with 
eighty of these processors on wafer is hardly imaginable. The exact dimensions of this 
chip are 22 x 13.75 mm. The details are illustrated in Figure 14 [15]. This chip achieves 

 
Conflict 
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the possible computing performance of 1 TeraFLOPS (Floating Point Operations Per 
Second) with a frequency of 3.1 GHz. This computing performance is with inaccessible 
using currently available architectures and SMP (Symmetric Multiprocessing).  
 
 

 
 
 

Figure 14: Prototype of multiprocessor Intel “Tera-scale” with eighty cores. 

 

 
This prototype Intel has given a suitable name, “Tera-scale” and Platform 2015 at this 
stage in its development. The prototype has a number of developmental features, change 
in architecture and the system of communication in highly parallel systems, which take 
into consideration hundred’s of cores. 
The basic system of the “Tera-scale” will be a highly parallel architecture with many 
cores with emphasis on the support of virtualization and security. The target requirements 
have also insisted on lower consumption, high efficiency and the support of accelerators.     
The increase in the number of cores has encoutered a number of problems (mainly in 
consideration of available manufacturing technology and level of integration). This archi-
tecture allows scalability not only on the multiprocessor level and the number of cores, 
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but also with connection of more these multiprocessors or whole systems based on “Tera-
scale” principle with the help of high-speed optical interface, see Fig. 15.  
 
 

 
 
 

Figure 15: Scalability is ensured on all levels. In this figure, multiprocessor is denoted as 
CPU. 

 
 
The architectures of processors in the next few years will focus mainly on efficiency and 
lower consumption, evidently in the form of power management of computational mod-
ule. Cores, which are be not being used, will be slept. In the case overheating of the com-
putational core, redirection to a different core will be realized. 
Due to scalability and performance of highly parallel systems a vital feature of this sys-
tem design is speed of communication between cores – both on the level of composite 
computational modules and whole chip (of course on the level of packets). The complex 
new architecture also increases the complexity of communication and distribution of data 
between the cores. Intercommunication using traditional high frequency interconnections 
will be replace with laser in the course of time. The new technology of hybrid laser im-
plemented on the level of single core, will brings useful scalability and lower price. The 
last achievable bound is 40 Gbps (Gigabit per second) on the single hybrid laser. Twenty-
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five such lasers with multiplexor give other “Terabps” [16].  Communication on the level 
of core, more multiprocessors on a motherboard or connection of more such systems 
would not create any significant problem, see Fig. 15. 
The ring topology and 2D-Mesh topology are considered mainly for future platforms, see 
Fig. 16. Mesh topology allows good scalability with a large number of cores and ring 
topology offers the advantage of less skipping to the required destination [15]. 
 
 

            
 

(a)      (b) 

 

Figure 16: (a) Ring topology and (b) 2D-Mesh topology of Intel “Tera-scale”. 
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Switching Techniques 
 
 
 
 
 
This chapter focuses on the switching techniques that are implemented within the net-
work routers. These techniques differ in several respects. The switching techniques de-
termine when and how internal switches are set to connect router inputs to outputs and 
the time at which message components may be transferred along these paths. These tech-
niques are coupled with flow control mechanisms for the synchronized transfer of units of 
information between routers and through routers in forwarding messages through the 
network. Implementation of the switching differs in their relative timing, that is, when 
one operation can be initiated relatively to the occurrence of the other. 
 
For the purpose of comparison, for each switching technique we will consider the compu-
tation of the base latency of an L-bit message in the absence of any traffic. The phit size 
and flit size are assumed to be equivalent and equal to the physical data channel width of 
W bits. The routing header is assumed to be 1 flit, therefore the message size is M = L + 
W bits. A router can make a router decision in tr seconds. The physical channel between 
two routers operates at B Hz, that is, the physical channel bandwidth is BW bits per sec-
ond. The propagation delay across a channel is denoted by tw. Once a path has been set up 
through the router, the intrarouter delay or switching delay is denoted by ts. The router 
internal data paths are assumed to be matched to the channel width of W bits. Therefore 
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in ts seconds a W bit flit can be transferred from input of the router to the output. The 
source and destination processor are assumed to be Dd links apart [12]. The relation be-
tween these components as they are used to compute message latency is shown in Fig. 17 
[8]. 
 
 

 
 

Figure 17: View of the network path for computing switching latency. 

 
 
 
 

3.1 Circuit Switching  
 
In circuit switching a physical path from source to destination is reserved prior to the 
transmission of the data. This is realized by injection the routing header flit into the net-
work. This routing probe contains the destination address and some additional control 
information. The routing probe progresses toward the destination reserving the physical 
links as it is transmitted through intermediate routers. When the probe reaches the desti-
nation, a complete path has been set up and an acknowledgment is transmitted back to the 
source. The message contents may now be transmitted at the full bandwidth of the hard-
ware path. A time-space diagram of the transmission of a message over three links is 
shown in Fig. 18. 
Circuit switching is generally advantageous when messages are infrequent and long. The 
disadvantage is that the physical path is reserved for the duration of the message and may 
block other messages. 
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Figure 18: Time-space diagram of a circuit-switched message. 

 
 
The base latency of a circuit-switched message is determined by the set up time of a path 
and the subsequent time the path is busy transmitting data [12]. We can express the base 
latency of a message of length M as follow [8]: 
 

tcircuit = Dd (tr + 2(ts + tw)) + Mtw     (3.2) 
 
 
 
 

3.2 Store and Forward Switching 
 
In store-and-forward switching the message is partitioned and transmitted as fixed-length 
packets. The first few bytes of packet contain routing and control information and are 
referred to as the packet header. Each packet is individually routed from source to desti-
nation. A packet is completely buffered at each intermediate node before it is forwarded 
to the next node. This is the reason why this switching technique is referred to as store-
and-forward (SF) switching. This technique is also alternatively called packet switching. 
The header information is extracted by the intermediate router and used to determine the 
output link over which the packet is to be forwarded. A tome-space diagram of progress 
of a packet across three links is shown in Fig. 19. From the figure it can be seen that the 
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latency of a packet is proportional to the distance between the source and destination 
nodes. 
 
 
 

 

Figure 19: Time-space diagram of a store-and-forward-switched message. 

 
 
Packet switching is advantageous when messages are short and frequent. Unlike circuit 
switching, where a segment of a reserved path may be idle for a significant period of 
time, a communication link is fully utilized when there are data to be transmitted. In addi-
tion, every packet must be routed at each intermediate node. It is evident that the storage 
requirements at the individual router nodes are extensive if packets are large and multiple 
packets must be buffered at a node [12]. 
The base latency of a store-and-switched message of length M can be computed as follow 
[8]: 

 
tSF  = Dd (tr + (ts + tw)M)      (3.3) 
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3.3 Virtual Cut-Through Switching 
 
The virtual cut-through switching (VCT) technique allows packets to be forwarded 
although they are not completely stored in the current buffer. The router can start 
forwarding the header and following data bytes as soon as routing decisions have been 
made and the output buffer is free. In fact the message does not even have to be buffered 
at the output and can cut through to the input of the next router before the complete 
packet has been received at the current router. The message is effectively pipelined 
through successive switches. If the header is blocked in a busy output channel, the com-
plete message is buffered at the node. Figure 20 illustrates a time-space diagram of a 
message transferred using virtual cut-through switching where the message is blocked 
after the first link. However, from the figure it can be seen that the message is successful 
in cutting through the second router and across the third link [12], [17]. 
 
 

 

Figure 20: Time-space diagram of a virtual cut-through switched message. (tblocking = 
waiting time for a free output channel.) 

 
 
The base latency of a message that successfully cuts each intermediate router can be 
computed as follow [8]: 
 

tVCT  = Dd (tr + tw + ts) + max(tw ,ts)M     (3.4) 
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This model assumes that there is no time penalty for cutting through a router if the output 
buffer and output channel are free. Note that only the packet header routing delay as well 
as switching and inter-router latency. This is because the transmission is pipelined and 
the switch is buffered at the input and output. Once the header flit reaches the destination, 
the cycle time of the pipeline of packet flits is determined by the maximum of the switch-
ing time and inter-router latency. It can be assumed that channels have both input and 
output buffers. In the case of input buffering only, for example, we would have tw+tm 
instead of max(tw tm). 
 
 
 

3.4 Wormhole Switching 
 
In wormhole switching message packets are also pipelined through the network. How-
ever, the buffer requirements within the routers are substantially reduced over the re-
quirements for VCT switching. A message packet is broken up into flits. The message is 
pipelined through the network at the flit level and is typically too large to be completely 
buffered within a router. It means that a blocked message occupies buffers in several 
routers at any instant in time. The time-space diagram of a wormhole-switched message 
is shown in Fig. 21. Routing delays and intrarouter propagation of the header flits are also 
captured in this figure.  
 

 

Figure 21: Time-space diagram of a wormhole-switched message. 
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The primary difference between wormhole switching and VCT switching is that, the unit 
of message flow control is a single flit and as a consequence small buffers can be used. 
Just a few flits need to be buffered at a router. 
The blocking characteristics are very different from that of VCT. If the required output 
channel is busy, the message is blocked “in place”. This may lead to more deadlock 
situations than for other implemented strategies. 
The base latency of a wormhole-switched message can be computed as follow: 
 

twormhole  = Dd (tr + tw + ts) + max(tw ,ts)M    (3.5) 
 
This expression assumes flit buffers at the router inputs and outputs. Note that VCT and 
wormhole have the same latency. Once the header flit arrives at the destination the mes-
sage pipeline cycle time is determined by the maximum of the switch delay and wire de-
lay. For an input-only or output-only buffered switch, this cycle time would be given by 
the sum of the switch and wire delays. 
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Routing Algorithms 
 
 
 
 
 
Routing involves selecting a path from source node to a destination node in a particular 
topology. The routing algorithm used for a network is critical for several reasons. A good 
routing algorithm balances load across the network channels. The more balanced the 
channel load, the closer the throughput of the network is to the ideal. However many of 
the routing algorithms that have been proposed and are currently in use today fail to 
achieve an acceptable level of balancing load. This limitation can be partially explained 
because the routing has been designed to optimize a second important aspect of any rout-
ing algorithm – short path lengths [6]. 
A well-designed routing algorithm also keeps path lengths as short as possible, reducing 
the number of hops and the overall latency of a message. What may not be immediately 
obvious is that, routing minimally, which uses shortest paths, maximize throughput [7].  
The list of routing algorithms proposed in the literature is almost endless. We will focus 
on a representative set of approaches, being used or proposed in modern and future mul-
tiprocessors interconnects [12]. The routing algorithms presented in this chapter are valid 
for all switching techniques. Special emphasis is given to design methodologies because 
they provide a simple and structured way to design a wide variety of routing algorithms 
for different topologies. 
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4.1 Taxonomy of Routing Algorithms 
 
Routing algorithms can be first classified according to the number of destinations. Pack-
ets may have a single destination (unicast routing) or multiple destinations (multicast 
routing). Multicast routing will be studied in more details in chapter 5 and is included 
here for completeness [18]. 
Routing algorithms can also be classified according to the place where routing decisions 
are taken. Basically, the path can be either established at source node prior to packet in-
jection (source routing) or determined in distributed manner while the packet travels 
across the network (distributed routing). Hybrid schemes are also possible. These hybrid 
schemes are termed, multiphase routing [12]. 
Routing algorithms can be implemented in different ways. The most interesting ways 
proposed up to now consist of either looking at a routing table (table lookup) or executing 
a routing algorithm in software or hardware according to a finite-state machine. In both 
cases the routing algorithm can be deterministic, oblivious or adaptive. Deterministic 
routing algorithms always supply the same path between a given source-destination pair. 
Oblivious routing algorithms send each packet first to a random node and from there di-
rectly to its destination. Adaptive routing algorithms use information about network traf-
fic and/or channel status to avoid conflict in the network. 
Another way, how to classified routing algorithm, can be according to their minimality as 
profitable or misrouting. Profitable routing algorithms only supply channels that bring the 
packet closer to its destination. They are also referred to as minimal. Misrouting algo-
rithms may also supply channels that send the packet away from its destination. They are 
also referred to as nonminimal. The next classification is according to the number of al-
ternative paths as completely adaptive (also know as fully adaptive) or partially adaptive 
[19]. 
In source routing, the source node specifies the routing path on the basis of a deadlock-
free routing algorithm (either using lookup or not). The computed path is stored in the 
packet header. Source routing has been mainly used in networks with irregular topologies 
[20]. The first few flits of the packet header contain the address of the switch ports on 
intermediate switches. 
For efficiency reasons most hardware routers use distributed routing. In distributed rout-
ing each intermediate node has to make a routing decision based on the local knowledge 
of the network. By repeating this process at each intermediate node, the packet should be 
able to reach its destination. This can be achieved because the designers know the topol-
ogy of the whole network. Distributed routing algorithms are mainly used in regular to-
pologies so that the same routing algorithm can be used in all the nodes. As a conse-
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quence, routing decisions are much simpler than in other topologies. An alternative im-
plementation approach consists of using table lookup [20]. 
An obvious implementation of table-lookup is to place a routing table at each node, with 
the number of entries in the table equal to the number of nodes in network. This routing 
can be performed either at the source node or at each intermediate node. In the first case, 
given a destination node address, the corresponding entry in the table indicates the whole 
path to reach that node. In the second case, each table entry indicates which outgoing 
channel should be used to forward packet toward its destination.  
Misrouting algorithms are based on an optimistic view of the network: taking an unprof-
itable channel is likely to bring the header to another set of profitable channels that will 
allow further progress to the destination. Although misrouting algorithms are more flexi-
ble, they usually consume more network resources. Misrouting algorithms may also suf-
fer from livelock [12].  
 
 
 
 

4.2 Deterministic Routing 
 
The simplest routing algorithms are deterministic (the routing is after dimensions). They 
establish the path as a function of the destination address, always supplying the same path 
between every pair of nodes. This lack of path diversity can create large load imbalances 
in the network. In fact, there is a traffic pattern that causes large load imbalance for every 
deterministic routing algorithm. So, for a designer these algorithms would not be their 
first choice. However deterministic algorithms still have their merits.  
Many early networks adopted deterministic routing because it was so simple and inex-
pensive to implement. Therefore deterministic routing is permanently used in the network 
today. Especially, it is used in topologies, which can be decomposed into several or-
thogonal dimensions. This is the case of hypercube [21], mesh and tori [22]. Other types 
of interconnection networks, utilizing deterministic routing are irregular topologies. For 
these topologies it is more difficult to design good randomized or adaptive algorithms. 
Finally, for networks in which the ordering of messages between particular sort-
destination pairs is important, deterministic routing is often a simple way to provide this 
ordering. 
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Figure 22:  An example of deterministic routing. A packet is routed from node 15 to 
node 6 first by routing in the x dimension and then in the y dimension. 

 
 
 
 

4.3 Oblivious Routing 
 
Oblivious routing, in which we route packets without regard for the state of the network, 
is simple to implement. While adding information about network state can potentially 
improve routing performance, it also adds considerable complexity and if not done care-
fully can lead to performance degradation. 
The main tradeoff with oblivious routing is between locality and load balance. By send-
ing each packet first to a random node and from there directly to its destination, see Fig. 
23, Valiant’s randomized routing algorithm [23] exactly balances the load of any traffic 
pattern. However, this load balance comes at the expense of destroying any locality in the 
traffic pattern – even nearest neighbor traffic gives no better performance than worst-case 
traffic [24]. Minimal oblivious routing [25] on the other hand preserves locality and gen-
erally improves the average case throughput of a network over all traffic patterns. 
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Figure 23: An example of randomized routing (Valiant’s algorithm) on 4x4 mesh. A 
packet is routed from node 13 to node 11 in two phases. In the first phase the packet is 
routed to random selected intermediate node 6 as shown the bold solid lines. The second 
phase delivers the packet from node 6 to node 11 as shown the dotted lines. 

 
 
 
 

4.4 Adaptive Routing 
 
An adaptive routing algorithm uses information about the network state, channels occu-
pancy, to select among alternative paths to deliver a packet [10], [26], [27], see Fig. 24. 
Because routing depends on network state, an adaptive routing algorithm is intimately 
coupled with the flow-control mechanism [28]. This is the contrast to deterministic and 
oblivious routing on which the routing algorithm and the flow control mechanism are 
largely orthogonal. 
A good adaptive routing algorithm theoretically should outperform an oblivious routing 
algorithm, since it is using network state information not available to the oblivious rout-
ing. However many adaptive routing algorithms give poor worst-case performance. This 
is largely due to the local nature of most practical adaptive routing algorithms, because 
they use only local network state information in making routing decisions, they route in a 
manner that balances local load but often results in global imbalance [13]. 
The local nature of practical adaptive routing also leads to delay in responding to a 
change in traffic patterns [29]. The disadvantage of this routing method is prone to dead-
locks and conflicts.  
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Figure 24: A packet is routed from node 13 to node 3 along the solid line. To avoid the 
channel occupancy, which is illustrated by dotted line, the packet is routed by the longer 
path, which occupies many channels of the interconnection networks. 

 
 
A deadlock can occur in a channel and also at a buffer. A channel deadlock is mainly 
related to the situation, when a packet holds two channels and the other two channels are 
held by the other packet, but cannot proceed further until they acquire a third channel, 
currently held by the other packet. A buffer deadlock occurs when buffers are full, which 
are required by the arriving packet. Conflict is similar to a channel deadlock: two packets 
need to communicate via one channel in one direction at the same time. 
 
A minimal adaptive routing algorithm chooses among the shortest path between source-
destination pairs, using information about the network state in making the routing deci-
sion at each hop [30]. 
Partially adaptive routing algorithms represent a trade-off between flexibility and cost. 
They try to approach the flexibility of fully adaptive routing at the expense of a moderate 
increase in complexity with respect to deterministic routing. Some proposals aim at 
maximizing adaptivity without increasing the resources required to avoid deadlocks and 
conflicts. Other proposals try to minimize the resources needed to achieve a given level 
of adaptivity.  
Fully adaptive routing algorithms are based on deadlocks and conflicts avoidance that 
either maximize adaptivity for a given set of channels while balancing the use of channels 
[31]. Some routing algorithms are proposed to deadlock recovery that accomplish both. 
Routing strategies based on deadlock recovery allow maximum routing adaptivity [32] as 
well as minimum channel requirements [14]. 
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4.5 Routing in Irregular Topologies 
 
Designing an efficient routing scheme for irregular networks is not trivial. While many 
effective routing schemes have been proposed for regular networks, there have been very 
few counterparts for irregular networks. A well designed routing scheme for irregular 
networks should be deadlock-free and provide high performance for various network to-
pologies. Furthermore, the routing scheme should be efficiently implemented in a com-
munication switch. Although, deadlock detection and recovery can be used to resolve the 
problem of routing, the complexity of the communication switch based on this is signifi-
cantly increased. Several routing architectures have been proposed for irregular networks 
in recent years [33], [34]. These schemes are capable of routing packets in various net-
work topologies and achieve deadlock freedom, they typically rely on routing table in the 
communication switch.  
Most practical designs proposed recently for deadlock-free routing in irregular networks 
rely on deadlock avoidance.  
In the next section we briefly describe the deadlock-free routing scheme used in DEC 
AN1 (Autonet) [34]. In addition to provide deadlock freedom, it provides adaptive com-
munication between some nodes in an irregular network. Also we describe a fully adap-
tive routing algorithm for irregular topologies [35], [36] that considerably improves per-
formance over the routing scheme proposed in [34]. 
 
 

4.5.1  Up*/Down* Algorithm 
 
The up*/down* algorithm was first proposed for Autonet networks [34]. It is a distributed 
deadlock-free routing scheme that provides partial adaptability in irregular networks. Its 
general strategy is based on routing packets in a tree, where the routes go up the tree on 
leaving the source and then, come back down at the destination. One of the nodes is arbi-
trarily chosen as the root of the tree (usually, the one closest to the rest of the nodes) and 
all links of the topology are designated as up* or down* links with respect to this root. 
The up*/down* state of a link is relative to a spanning tree computed in background by a 
distributed algorithm. A link is up* if it points from a lower to a higher-level node in the 
tree (i.e. to a node closer to the root). Otherwise, it is down*. For nodes at the same level, 
nodes IDs break the tie. The routing from a source to a destination is established in such a 
fashion that zero or more up* links (towards the root) are traversed before zero or more 
down* links are traversed (away from the root) in order to reach the destination. The ad-
vantage of this approach is that each node's hardware and software are simple and some 
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adaptability is provided. The drawbacks are that the selected paths are generally not the 
shortest paths and that links near the root get congested (a conflict appears) and become 
bottlenecks leading to low throughput. Moreover, these problems become critical when 
the network size increases. 

 

Figure 25: Link direction assignment for the irregular network [12]. 

 
 

4.5.2  Adaptive Routing Algorithm for Irregular Network 
 
A general methodology for the design of adaptive routing algorithms for networks with 
irregular topology was proposed in [35]. That methodology can be summarized as fol-
lows. Given an interconnection network and a deadlock-free routing function definition, 
it is possible to duplicate all the physical channels in the network, or to split them into 
two virtual channels. In both cases, the graph representation of the new network contains 
the original and the new channels. Then the routing function is extended so that newly 
injected packets can use the new channels without any restriction as long as the original 
channels can only be used in the same way as in the original routing function. However, 
once a packet reserves one of the original channels, it can no longer reserve any of the 
new channels. 
According to the extended routing function defined above, new channels provide more 
routing flexibility than original channels. They can be used to route packets through 
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minimal paths. However, once a packet reserves an original channel, it is routed through 
the original paths, which are nonminimal in most cases.  Also routing through original 
paths produces a loss of adaptivity. 
Following this reasoning, the general methodology, proposed in [35], can be refined by 
restricting the transition from new channels to original channels. Newly injected packets 
can only leave the source switch using new channels belonging to minimal paths and 
never using original channels. When the packet arrives at a switch, the routing function 
gives a higher priority to the new channels belonging to minimal paths. To ensure that the 
new routing function is deadlock-free, if none of the original channels provides minimal 
routing, then the original channel that provides the shortest path will be used. This en-
hanced design methodology was proposed in [36]. Finally, latency decreases significantly 
and the network is able to deliver a throughput several times higher than the one achieved 
by the up*/down* [35] routing algorithm [36]. 
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Chapter 5  
 
Collective Communication 
 
 
 
 
 
Parallel processors conception can divide large and complex tasks into short tasks that are 
distributed and executed at the same time by many processors in order to achieve im-
proved performance and to minimize the execution time. These processors need to com-
municate in order to exchange data and the results of their execution. 
Communication operations can be divided in two types depending on how many proces-
sors are participating. If the communication involves a single source and a single destina-
tion, this type is called point-to-point; on the other hand, if communication involves more 
than one source and/or destination, this type is called collective communication. Provided 
that there is 1:1 mapping between processors and processes, we can equivalently talk 
about communicating process groups. 
The importance of collective communications is derived from the fact that many fre-
quently used parallel algorithms such as sorting, searching and matrix manipulation share 
data among groups of processes. Transmission of data to multiple destinations can be 
implemented with multiple calls for point-to-point transmission. However these patterns 
of sharing data are very regular and sufficiently important to merit special procedures.  
In general, collective communication involves one or multiple transmitters and receivers, 
i.e. we have two sets of nodes: T − the set of transmitting nodes and R − the set of receiv-
ing nodes. The subsets T and R can be overlapping and can be as large as the full set of P 
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processes. Collective communication may be categorized as one to one, one to many, 
many to one or many to many, with many being also all. 
There are also other operations that are collective in nature although no data are commu-
nicated, i.e. barrier synchronization.  
 
 
 
 

5.1 Multiple One-to-One Communication 
 
In this category each process can send at most one message and receive at most one mes-
sage, see Fig. 26. If each process has to send exactly one message and receive exactly one 
message, there are n! different permutations or communication patterns. Figure 26 shows 
circuit shift permutation in which Pi sends a message to Pi+1 for 1 ≤ i ≤ n – 1 and Pn de-
livers its message to P1. 
In the case that multiple one-to-one communication is the permutation, the set T is the 
same as the set R, then T ∩ R = P. Generally T ∩ R ≥ 1, when some node doesn’t 
send a message. 
 

 

               
 
 
 
 
 

                 
 
 

Figure 26: Multiple one-to-one communication pattern: circuit shift permutation. 
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5.2 One-to-All Communication 
 
In one-to-all communication one process is identified as the sender (called root) T = 1 
and all processes are receivers R = P-1. In this communication, the sets of nodes are 
non-overlapping and apply T ∩ R = ∅. 

There are two distinct services in this category: 

• Broadcast – the same message is delivered from the sender to all receivers. 
• Scatter – the sender delivers different messages to the different receivers. This 

also referred as personalized broadcast. 
 
Figure 27 shows the communication patterns of these two services. 
 
 

 
(a) (b) 

 

Figure 27: Two one-to-all communication patterns: (a) broadcast communication and (b) 
scatter communication. 

 
 
 
 

5.3 All-to-One Communication 
 
In all-to-one communication, all processes are senders T = P-1 and one process called 
the root is identified as the sole receiver R = 1. Again as previous case T ∩ R = ∅, non-
overlapping sets of nodes, and again, there are two distinct services: 
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• Reduce – different messages from different senders are combined together to form 
a single message for the receiver. The combining operator is usually communica-
tive and associative, such as addition, multiplication, maximum, minimum, and 
logical OR, AND, and exclusive OR operators. This service is also referred to as 
personalized combining or global combining. 

• Gather – different message from different senders are concatenated together from 
the receiver. The order of concatenation is usually dependent on the ID of the 
senders. 

 
Figure 28 shows the communication patterns of these two services. 
 
 

 
                         (a)        (b) 
 

Figure 28: Two all-to-one communication patterns: (a) reduce communication and (b) 
gather communication. 

 
 
 
 

5.4 All-to-All Communication 
 
In all-to-all communication, all processes perform their own one-to-all communication. 
Thus, each process will receive n messages from n different senders. The sets of senders 
and receivers are identical T = R = P and therefore T ∩ R = P. Again, there are two 
distinct services: 

• All-broadcast – all processes perform their own broadcast. Usually, the received n 
messages are concatenated together based on the ID of the senders. Thus, proc-
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esses have the same set of received messages. This service is also referred to as 
gossiping or total exchange. 

• All-scatter – all processes perform their own scatter. The n concatenated messages 
are different for different processes. This service is also referred to as personal-
ized all-to-all broadcast, index, or complete exchange. 

 
Figure 29 shows the communication patterns of these two services. 
 
 

 
              (a)       (b) 

 

Figure 29: Two all-to-all communication patterns: (a) all-broadcast communication and 
(b) all-scatter communication. 

 
 
 
 

5.5 Many-to-Many Communication 
 
Many-to-many collective communication is the generalization of the all communication 
patterns - all the preceding types of collective communication are special forms of this 
communication. In many-to-many communication, a certain number of processes are 
transmitters (senders) and simultaneously some group of processes receives messages. 
The groups of transmitters T = M and receivers R = N processes may: 

• correspond - thus, receivers and transmitters are the same processes. 
• separate - transmitters and receivers are disjoint group of processes, thus, trans-

mitters only send messages and receivers only receive messages. 
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• overlap – some processes only send messages, some processes only receive mes-
sages, and some processes send and receive simultaneously. 

 
If groups of nodes are overlapping then T ∩ R ≥ 1 and T ∩ R = ∅ if non-overlapping.  
Many-to-many communication may be categorized into: 

• one-to-many - one process is identified as the transmitter (called root) and subset 
of processes are receivers. Transmitter can send the same message (broadcast) or 
different messages (scatter) to receivers. 

• many-to-one – a subset of processes are transmitters and one process, called the 
root, is identified as the sole receiver. Again, there are two distinct services as in 
chapter 5.3. 

• many-to-many – a subset of transmitters sends the same messages (broadcast) or 
different messages (scatter) to a subset of receivers. 

 
Figure 30 shows the communication patterns of many-to-many communication, where 
senders and receivers create overlap groups. 
 
 

 
           (a)         (b) 

 

Figure 30: Two many-to-many communication patterns, where transmitters and receivers 
are overlapped: (a) many-broadcast communication and (b) many-scatter communication. 
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5.6 Convenient Collective Communication Services 
 
In addition to the basic types of collective communication services, some collective 
communication services require the combination of these basic services. Some of these 
frequently used collective communication services, referred to as convenient or composite 
collective communication services, as listed bellow [12]: 

• all combining – the result of a reduce operation is available to all processes. This 
is also referred to as a reduce and spread operation. The result may be broadcast 
to all processes after the reduce operation or multiple reduce operations are per-
formed with each process as a root. 

• barrier synchronization – a synchronization barrier is a logical point in the control 
flow of an algorithm at which all processes must arrive before any of the proc-
esses are allowed to proceed further. 
 

Collective communication services are demanded in many applications. Such services 
have been supported by several communication packages for multicomputers. However, 
efficient implementation of various collective communication services is topology de-
pendent. 
 
 
 
 

5.7 Models of Communication 
 
The simplest time model of communication in distributed memory systems uses a number 
of communication steps (rounds): point-to-point communication takes one step between 
adjacent nodes and a number of steps if the nodes are not directly connected. In the more 
detailed view, the communication time is composed of a fixed start-up time ts at the be-
ginning and of a component that is a function of distance Dd (the number of channels on 
the route or hops a message has to make), and message length m in certain units (words 
or bytes). More details are described in chapter 3. 
Further, we have to distinguish between unidirectional (simplex) channels and bi-
directional (half-duplex, full-duplex) channels. The number of bi-directional channels 
between the CPU and a router (ports) that can be engaged in communication simultane-
ously (1-port or all-port models will be considered, as they are most common) has also an 
impact on number of communication steps and communication times, as well as if nodes 
can combine/extract partial messages with negligible overhead (combining nodes) or can 
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only re-transmit/consume original messages (non-combining nodes). Finally we have to 
take into account a slim/fat node (one processor/more processors at a node), a switching 
technique and a network topology. 
A few comments are appropriate on communication among various nodes from the sim-
plest to the most complex type. A single neighbor-to-neighbor communication, multiple 
neighbor-to-neighbor communications, and a single point-to-point communication are 
always deadlock free. But collective communications are inherently prone to a deadlock. 
If each node sends or receives messages to or from more than one partner in a loop asyn-
chronously, it still faces the danger of a so called fetch deadlock (at least two nodes exe-
cute pending send operation and cannot receive). This is why a synchronized communica-
tion model, where the communication proceeds in synchronized rounds (steps), is much 
more popular and frequently used. 
The topology is one of the key design factors of a collective communication. There is a 
large body of theoretical research on optimal topologies, based on graph theory metrics 
such as average distance, network diameter, and bisection width, among others. These 
parameters have a direct impact on network performance, Tab.1. As far as the broadcast 
communication (OAB) in SF network is concerned, the number of steps cannot be less 
than network diameter D, because this is the worst case even for point-to-point communi-
cation. For WH switching the distance between nodes is not that important and the lower 
bound logd+1P is given by the number of nodes informed in each step, that is initially 1, 
1+1×d after the first step, (d+1)+(d+1)×d = (d+1)2 after the second step, etc.,…, and 
(d+1)k nodes after step k. 
In case of (SF or WH) AAB communication, since each node has to accept P−1 distinct 
messages, the lower bound is (P−1)/d steps. A similar bound applies to OAS communi-
cation, because each node can inject into the network not more than d messages in one 
step; for irregular networks with non-constant node degree d we should use the lowest 
value of the node degree for AAB and the value of the source node degree for OAS. The 
common strategy with SF OAS is to send messages to the farthest nodes first and then 
pipeline them with messages to the nodes less and less remote. The optimum broadcast 
tree is therefore different from that for OAB. In WH OAS we use different strategy: P−1 
pair-wise communications must be packed into the lowest number of steps in such a way 
that there are only edge-disjoint paths in a single step.  
For AAS communication pattern each of P processor sends an individual message to each 
of P-1 partners. If Ssd is the sum of the shortest distances of all node pairs, then the aver-
age distance of nodes da = Ssd/P2, [37]. With concurrent communication on 2e ports (2e = 
Pd in regular networks), the number of communication steps for SF switching cannot be 
less than Ssd/(2e). Another lower bound for AAS can be obtained considering that one 
half of messages from each processor cross the bisection and the other half do not. There 
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will be altogether 2 P/2  P/2 of such messages in both ways and up to BC messages in 
one step, where BC is the network bisection width [37]. This gives x = 2 P/2 P/2 / BC 
steps. This second lower bound applies to WH as well as SF switching, but is more ap-
propriate to WH switching, since point-to-point messages (and not neighbor-to-neighbor 
messages as in SF switching) are considered. 

 
 

SF switching WH switching 
CC 

1-port all-port 1-port all-port 
OAB max (log2P , D) D max (log2P , D) logd+1P 

AAB P – 1 (P – 1)/d P – 1 (P – 1)/d 

OAS P – 1 (P – 1)/d P – 1 (P – 1)/d 

AAS max (S/P, 2xe/P) max [S/(2e), x] 2xe/P x = 2P/2  P/2 / BC 

 
 

Table 1: Lower bounds on complexity of collective communications at slim node topol-
ogy. 
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Chapter 6  
 
Design of New Evolutionary Optimization 
Techniques 
 
 
 
 
 
Evolution is the adaptation of a population to its environment. This adaptation causes the 
creation of individuals of increasingly higher/greater "fitness"; in environments where the 
definition of fitness remains static, evolution drives the population towards better and 
better individuals. This process is similar to approximation - the search for good solutions 
to a particular problem. The parallels between the concepts of evolution and approxima-
tion have lead to the creation of evolutionary approximation. 
Many problems in real application have a search space that is exponentially proportional 
to the problem dimensions and, but for the simplest of cases, these problems cannot be 
solved using exhaustive search methods. Consequently, there is considerable interest in 
heuristic techniques that attempt to discover near-optimal solutions within an acceptable 
time. Evolutionary techniques provide a framework for effectively sampling large search 
spaces, and the basic technique is both broadly applicable and easily tailored to specific 
problems. All that is required to apply an evolutionary technique to any particular prob-
lem is an appropriate encoding scheme and a target function. 
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During the last decades, wide applicability has been demonstrated by successfully apply-
ing evolutionary computation techniques to various optimization problems in the fields of 
engineering, management science, biology, chemistry, physics and computer science. 
 
 
 
 

6.1 Basics of Classical Genetic Algorithm 
 
Genetic algorithm (GA) is a powerful, domain-independent search technique that was 
inspired by Darwinian theory. It emulates the natural process of evolution to perform an 
efficient and systematic search of the solution space to progress towards the optimum. It 
is based on the theory of natural selection that assumes that individuals with certain char-
acteristics are more able to survive and hence pass their characteristics to their offsprings. 
It is an adaptive learning heuristic belonging to a class of general nondeterministic algo-
rithms. 
GA is any population-based computational model that uses selection and recombination 
operators to generate a new sample in a search space. A chromosome (individual), con-
sisting of genes, represents one encoded solution of the search space. The values of genes 
are referred to as alleles. The chromosomes form a population, which changes through 
the process of evolution. The reproduction process is performed in such a way that chro-
mosomes, which represent a better solution, are given more chance to reproduce than 
those chromosomes, which represent poorer solutions. The fitness function (a measure of 
quality) of the chromosomes is defined in the frame of the population. The fitness func-
tion is applied to genotype (chromosomes) for evaluating phenotype (decoded form of the 
individual/chromosome). While the fitness function operates with phenotype, genetic 
operators are defined on the genotype. Convergence of genetic algorithms has been 
proved by use of Markov chains and a fundamental Schema Theorem [38], [39]. 

 
 Selection 

The operator of selection determines, which individuals will produce offsprings. A fitness 
function serves as a criterion (numeric evaluation of solution which represents an indi-
vidual), but worse individual can participate in the creation of new population with de-
fined probabilistic. Many selective strategies exist, which differ by in their accuracy and 
deterministic degree of choice. 
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 Crossover 

This is the most important genetic operation. A created chromosome inherits part of the 
genes from one parent’s chromosome and the rest from the second parent. In the case that 
the created chromosome is evaluated by higher price than its parents, this means, that the 
advantages are a connected profitable property in the chromosome and its recessive char-
acters are inhibited. 
 

 Mutation 

Mutation causes a random modification of chromosomes. In the case, that the population 
is saturated and converges to local extreme, mutation ensures the input of new genetic 
information.  
 
 
 
 

6.2 Simulated Annealing 
 
The origin of simulated annealing (SA) lies in the analogy of optimization and a physical 
annealing process [40], [41]. In condensed matter physics, annealing is a thermal process 
for obtaining low-energy states of a solid in a heat bath. Roughly, the process can be de-
scribed as follows. First, the temperature of the heat bath is increased to a maximum 
value at which the solid melts. Thus, all particles of the solid arrange themselves ran-
domly. Afterwards, the temperature is carefully decreased until the particles of the melted 
solid reach in the ground state of the solid in which the particles are arranged in a highly 
structured lattice with minimum energy. 
The physical annealing process can be simulated by computer programs using Monte 
Carlo techniques proposed by Metropolis et al. [42]. Given a current state i of the solid 
with energy Ei, a subsequent state j is generated by applying a perturbation mechanism, 
which transforms the current state into the next state by a small distortion, for instance by 
displacement of a single particle. If the energy difference ∆E = Ej - Ei is less or equal to 
zero, the state j is accepted as the current state. If the energy difference is greater than 
zero, the state j is accepted with probability exp(-∆E / (k T)), where T denotes the tem-
perature of the heat bath and k the Boltzmann constant [43], [44], [45]. The acceptance 
rule described above is known as the Metropolis criterion. In simulated annealing, the 
Metropolis criterion is used to generate sequences of solutions of combinatorial optimiza-
tion problems. 
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The key to SA’s proof of convergence is that a stationary distribution must be reached at 
each temperature, followed by sufficiently slow cooling. A side-effect of this proof is that 
other algorithms which achieve a stationary Boltzmann distribution, and which perform 
sufficiently slow cooling, will inherit the same convergence guarantees [44]. 
 
In the original version of simulated annealing, a final state serves from Metropolis algo-
rithm as a started state the following temperature phase (T= α*T). This basic premise can 
be modified in that way, Metropolis algorithm is initialised by the best solution, which 
was obtained in the previous temperature phases. That modified method; is called simu-
lated annealing with elitism.  
 
 

6.2.1 Control Parameters of Simulated Annealing 
 

o Initial temperature T0: This must be chosen in order that almost all perturbations 
are accepted.  

 
x=(number of perturbations accepted) / (total number of perturbations attempted) 
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where x is the acceptance probability, +∆Cost is the average change in cost over 
all perturbations, which lessen cost function, m- is the number of perturbations 
with the cost function decrease and m+ is the number of perturbations with the 
cost function increase [46].  

o kmax: number of iterations of Metropolis algorithm in one temperature phase. The 
number kmax is based on the requirement that at each value of T quasi-equilibrium 
is succeeded. 
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where )( iSN  is the maximum size of the configuration subspace, Ω is the search 

space and Si is current state. 

o Decrement coefficient α: The coefficient α (the term in brackets) is proposed to 
reduce the temperature. 
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where δ is a measure of how close the equilibrium vectors of two successive itera-
tions are to each other, 

kTσ is the standard deviation of the cost function up to the 

temperature Tk [46]. 

o The stopping criterion is based on the monitoring of the relevant reduction of the 
cost function during the optimisation process  

s
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s
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)( ,                                         (6.4) 

where sε is a small positive number called the stopping parameter, )( oTC is the av-

erage value of the cost function at T0. This condition is based on extrapolation of 
the smoothed average cost )(TCosts obtained during the optimisation process 

[46]. 
 
 
 

6.2.2 Parallelization of SA 
 
It is possible to use two different techniques from the point of communication: 

• In the first technique each process performs its complete SA algorithm, but each 
one works with a different generator of the random number but they don’t com-
municate. The final solution is chosen at the end of optimization process. 

• In the second approach all processes communicate with the master, which returns 
to all of them the current best solution, or with its neighbours. But in the case of 
asynchronous communication, the communication can be too frequent at higher 
temperature and the time of communication can be much greater than the time of 
optimisation. 

We proposed the technique, which is a combination of both of the above, i.e. in the 
higher temperature the processes are independent and the communication is activated 
only for the lower temperature phase. 
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6.2.3 Design of a New Parallel SA 
 

 The basic terms and definitions 

 Accepted solution 
o New generated solution have smaller predefined cost function or worse but it sat-

isfies the condition: random()< min[1, T
xfxf

e
)()( −′

−
],  where f(x´) is new cost, 

f(x) is old cost, T is temperature and random is generated randomly with uniform 
distribution. 

  Structure of parallel processes, see Fig. 31. 

o One control process (master)  
o n – slave processes (slaves) 

 Synchronization: the way of communication between master and slaves   
o Asynchronous mode – a process communicates with the master independently of 

the other processes 
o Synchronous mode 

• All slaves communicate with master in one predefined time period  
• All slaves wait for the message from master at the end of the temperature 

phase to continue in computation, i.e. in one temperature period the communi-
cation slave – master proceeds asynchronous but the whole execution appears 
as synchronous. The processes are namely synchronized at the end of tempera-
ture phase.  

In the lower temperatures the processes cooperate by using the architecture master – slave 
and all slaves (and also master) work on its sequence of solutions. If some slave process 
finds an acceptable a solution, it sends it to master, which determines its acceptance ac-
cording to its own rule. If accepted this solution or a new solution found by the master, it 
is sent to all slave processes.  
Each communication slave/master runs asynchronously in one temperature phase. A 
problem appears with termination and with delay of processes (e.g. it is caused by differ-
ent frequency of communication of each process with master). The principle of how to 
solve this problem is based on the usage of synchronisation at the end of temperature 
phase, which is controlled by the master. This approach allows that all processes work at 
the same temperature and also finish at the same time. 
The scheduling of the messages is shown in the Fig. 31. 
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Figure 31: Illustration of the communication during the temperature phase and at the end 
of the temperature phase. 

 
 

 Advanced modification of parallel simulated annealing (PSA) 

A. Communication only at the end of temperature phase: 
In comparison to the described version in the previous point (the basic terms and 
definitions) slaves communicate with master exclusively at the end of temperature. 
In this case all processes communicate at the same time and therefore there is no 
need of synchronisation. This way of communication is already synchronous, i.e. 
processes work at the same temperature phase. 

B. Communication after defined number of iterations: 
The same idea as for case A, but in this version the communication is performed af-
ter defined number of iterations at each temperature phase of Metropolis algorithm 
(e.g. after each 10th, 100th or 1000th iteration). This way of communication is im-
plicitly synchronous again. 

C. Usage of elitism: 
In this case, the Metropolis algorithm is initialised by the best solution, which was 
obtained during previous temperature phases. Otherwise the output from Metropolis 
algorithm is taken as starting state of the next temperature phase (T= α*T). Com-
munication is proceeded asynchronous after each iteration, but it is synchronised at 
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the end of temperature phase. The principle of synchronisation was described 
above. 

D. Sequential version of SA. It was described in the chapter 6.2. The sequential SA al-
gorithm performs as an interesting comparison to PSA algorithms.  

 
 

 Experimental results 

All parallel versions of SA were implemented in C using MPI [47] routines for message 
passing and it can therefore be compiled and run on any architecture (clusters of worksta-
tions, MPPs, SMPs, etc.) for which an implementation of MPI standard is available. 
Parallel variants of SA were not considered a possible test for the problem of collective 
communication scheduling, because this problem is too complex. Therefore it was de-
cided that PSA is tested using a simpler problem. We chose the well known problem of 
TSP (traveling salesman problem), as optimal results of this problem as well as optimal 
setting SA parameters are known. TSP benchmarks were published on the web site [48]. 
The principle of this problem is to search as much as possible the shortest path between 
all cities. Using this problem, it was possible to detect the differences and abilities of in-
dividual PSA algorithms. 
Most of experimental work was performed on the benchmark of 52 cities see Fig. 32 to 
34. It was performed 15 runs for tested versions of PSA. The efficiency of PSA versions 
were also proved by benchmark of 79 cities, see Fig.35. 
 
Optimal solution of TSP problems: 

• berlin52 - TSP52 (52 cities) - tour length equals to 7542 
• eil79      - TSP79 (79 cities) - tour length equals to 538. 

 
In all experiments the following control parameters were used: 
 
 

Kmax 10000

Tmax 100
Tmin  1
Tchange   20
Alpha 0,9
Count of processors 8

 
 

Table 2: The setting of SA control parameters. 
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Notice: The value Tchange was changed to 30 to achieve better lucidity of optimization 
curves of tour length in Fig. 34 and 35. We didn’t use mutual communication between 
processes in all temperatures phases, because the asynchronous variant was tested. In this 
asynchronous version, the time of optimisation can be rapidly degraded by frequent time 
of communication at higher temperature. Because of the comparison of execution time, 
all versions of PSA mutual cooperated in architecture master-slave only in interval       
Tchange - Tmin.  
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Figure 32: Average tour length of TSP 52 for several versions of PSA. 

 
 
In Fig. 32 the performance of the sequential SA and five PSA algorithms are illustrated. 
Sequential SA, which is shown in yellow (the first from right side), uses the same pa-
rameters as PSA versions. It is evident that the best versions of PSA are those, in which 
relatively small intensity of communication is used. The variant B provides the best re-
sults with communication after each 100th iteration of Metropolis algorithm. 
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Figure 33: Computational time with relevant average tour length at each PSA versions 
and sequential SA versions. 

 
 
In Fig. 33 computational time and average tour length for each version is shown. The 
sequential version doesn’t achieve such quality of results as the parallel versions indeed it 
runs the same time as the best parallel versions. From the figure it is evident that too fre-
quent communication increases computational time and simultaneously it cannot improve 
result quality. The best version of PSA is variant A according to computational time and 
average tour length, which communicates at the end of temperature phase and also vari-
ant B, which communicates after each 100th iteration. 
It is evident that the higher is the intensity of communication, the longer execution time 
of PSA versions - therefore trade-off must be found. 
 
In Fig. 34 and Fig. 35 the optimization curves of length tour are presented for several 
PSA versions. From B version of PSA the variant was chosen with communication after 
each 100th iteration. 
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Figure 34: Optimization curves for TSP 52 (52 cities). 

 
In Fig. 35 optimization curves of several PSA versions and sequential SA are presented 
for TSP 79 problem. 
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Figure 35: Optimization process of tour length for TSP 79 (79 cities). 
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 Summary 

All versions of PSA are based on mutual cooperation of the master-slave processes. In the 
first phase all processes are independent at temperature intervals Tmax-Tchange and each of 
them produces its optimised solution. In the second phase slave processes cooperate via 
control master process.  
Individual versions differ only by form and by count of communication. The new concep-
tion of parallel algorithm of simulated annealing is based on two basic modifications, 
which was applied in the designed PSA versions. 

• Communication at a given iteration epoch or at the end of temperature phase 
o All processes communicate at defined time interval or after given iteration 

number, which provides synchronization 
 Advantage - excessive communication is reduced and problem with accep-

tance of worse solution at low temperature is solved 
 Disadvantage – at very low temperature the processes produce the similar 

solutions. The profit of parallelization is decreased  
• Usage of elitism 

o It uses synchronization at the end of temperature phase, otherwise the com-
munication proceeds asynchronous after each iteration.  
 The disadvantage of this approach lies in excessive communication, which 

results in computation time increase. 
 Advantage – elitism removes the possible problem with the acceptance of 

worse solutions at low temperature phase 
 
All variants were tested on two problems of travelling salesman problems TSP52 and 
TSP79. In all versions of PSA and SA, no heuristics were used, because we investigated 
influence of cooperation processes on quality of achieved results and convergence speed 
to global solution. The sequential SA algorithm performs as an interesting comparison to 
PSA algorithms. From received results, it follows the necessity of trade-off between in-
tensity of communication and computational time. The best results produce one of PSA - 
B versions, which uses communication after each 100th iteration of Metropolis algorithm, 
see Fig. 32. In the case of communication after each 1000th iteration or at the end of tem-
perature phase it didn’t achieved such superior results. In a such small communication 
intensity the processes already generate similar results. In the case of the intensive com-
munication (almost at each iteration) the execution time is very high and the results are 
much worse than for the minimal communication. This fact was illustrated in Fig. 33. 
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6.3 Hybridization of Evolutionary Algorithms 
 
Hybrid evolutionary algorithms are built by combination of stochastic evolutionary algo-
rithm and problem specific algorithm or by aggregation of mostly two evolutionary algo-
rithms. In our case, we target the aggregation of simulated annealing (SA) and genetic 
algorithm (GA). In implementing a SA using GA principles, we seek to incorporate 
strengths and eliminate weaknesses of both methods. In practice both of them may con-
verge prematurely to suboptimal solutions but only SA currently possesses a formal proof 
of convergence to global optimum. This proof depends on SA's cooling schedule [49].  
Next contrasts between SA and GA have to do with loss of solutions, redundancy and 
deceptive problems. Since SA maintains only one structure (solution) at a time, whenever 
it accepts a new structure, it must discard the old one; there is no redundancy and no his-
tory of past structures. The end result is that good structures and substructures (in the 
extreme case the global optimum) can be discarded, and if cooling proceeds too quickly, 
may never be regained. SA compensates by increasingly sampling good solutions as tem-
perature decreases. GAs are also prone to the loss of solutions and their substructures or 
bits [55] due to the disruptive effects of genetic operators. Upon disruption, the simple 
GA will not maintain an old, but better solution; it must accept any newly generated solu-
tion, regardless of fitness. However, the GA partially overcomes this, especially at larger 
population sizes, by exponentially increasing the sampling of above-average regions of 
the search space, known as schemata [39], [58]. A schema is a subset of the solution 
space, whose elements are identical in certain fixed bit-positions. Schemata act as a par-
tial history of beneficial components of past solutions. However, for each above-average 
schema duplicated, a competing, below-average schema must be discarded. This can lead 
to trouble on difficult or deceptive problems, where low-order, low-fitness schemata are 
needed for the construction of an optimal higher-order schema [41]. SA is similarly sub-
ject to deception, as the algorithm will have a difficult time paying extended visits to the 
high-cost neighbors of a deceptive problem's global optimum.  
A final but important difference between GA and SA is the ease with which each algo-
rithm can be made to run in parallel. GA is naturally parallel - they iterate an entire popu-
lation using a binary recombination operator (crossover) as well as a unary operator (mu-
tation). SA, on the other hand, is naturally sequential and therefore it is not easily run on 
parallel processors; and works only with one structure (solution). While attempts have 
been made to parallelize SA, a general-purpose method has no yet been demonstrated. 
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6.3.1  A Short Survey of Hybrid Parallel Simulated An-
nealing Using Genetic Operators 

There are many hybrid parallel genetic simulated annealing algorithms, but they use one 
of two possible concepts. The first one is based on the algorithm SA, which is enhanced 
with particular genetic operations. The second is based on the concept of GA, which uses 
Metropolis algorithm at the selection process. In this paper we analyzed three variants of 
aggregation SA and GA: 

• S. W. Mahfoud and D. E. Goldberg proposed algorithm based on the concept of 
GA, which uses the Metropolis algorithm in the selection process [50]. 

• M. Krajíc described parallel hybrid genetic simulated annealing, which is based 
on the concept of SA and it uses genetic operations (mutation and crossover) [52]. 

• N. Mori, J. Yoshida and H. Kita suggested the thermodynamical selection rule in 
genetic algorithm [51]. 

We proposed the hybrid parallel genetic simulated annealing (HGSA) using architecture 
master-slave. HGSA is based on the best parallel version of SA, which is discussed in 
section 6.2.3. Each process includes the master process execute simple SA algorithm. The 
crossover and mutation GA operations are used just after the communications            
master-slave. A detail description is presented in the next chapters. 
 
 

6.3.2  Design a New Hybrid Parallel Genetic Simulated 
Annealing (HGSA) 

HGSA is a hybrid method utilizing parallel SA with genetic operators. The flow of the 
algorithm is shown in Fig. 36. The parallel SA is built on the base of a master-slave con-
figuration of processes. In each process the sequential SA is running (point 1 in Fig. 36). 
During the communication (Fig. 36 - point 2) which is activated each 100th iteration of 
Metropolis algorithm, each process sends their solution to a master. The master keeps one 
solution for himself and sends one randomly chosen solution to each slave. The selection 
is based on the roulette wheel, where the biggest probability of selection has the individ-
ual with the best fitness function. After the communication phase all processes have two 
individuals. Now, starts the phase of a genetic crossover (Fig. 36 - point 3). Two addi-
tional children solutions are generated from two parent solutions using double-point 
crossover. 
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Figure 36: Structure of Hybrid parallel genetic simulated annealing. 

 
 
The best solution from two parents and two children is selected and mutation is per-
formed always (in the parent solution) or with a predefined probability (in the children 
solution). Mutation is performed by randomly selecting genes and by randomly changing 
their values. A new solution for each process is selected from the actual solution provided 
by SA and from the solution obtained by genetic manipulation. The selection is con-
trolled by well-known Metropolis criterion. 
 
 

6.3.3  General Differences between New HGSA and Other 
Approach of SA and GA Aggregation  

 
We will take interest only in SA and GA aggregation, which are based on parallel SA 
using GA operators.  
Our algorithm HGSA differed from other hybrid algorithms mainly in the way of com-
munication between processes. Our approach is based on master-slave architecture, when 
master sends individuals to slave by roulette wheel, such that the individual with better 
evaluation of fitness function is sent more often than others. Other published algorithms 
randomly send all solution between processes or only neighbors.   
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In HGSA communication is activated each nth iteration of Metropolis algorithm. The 
other authors of hybrid algorithms activate a communication at the end of temperature 
phase. After the receiving of each individual the phase of genetic operations starts. Two 
new solutions are generated, using crossover from parent solutions. In our approach, the 
best individual can be one from parent or offspring solutions and it is generated by two-
point crossover. Selection and crossover differ also from other hybrid algorithms. In the 
case that the winner is parent solution the mutation is always performed, otherwise the 
mutation is performed by predefined probability. In other hybrid algorithms, only the 
offspring solution is chosen for mutation, which is always performed. 
These are the main differences and some further differences we can search by detailed 
comparing of HGSA and other hybrid algorithms. 
 
 
 
 

6.4 Experimental Results 
 
Hybrid parallel genetic simulated annealing and selected variants of PSA algorithm were 
tested on three TSP problems, which were published on the website [48]. We compared 
our HGSA with PSA versions described in section 6.2.3, to determine which of them 
achieve the best results according to the solution quality and the computing time. In all 
tested versions of PSA and HGSA, no heuristics was used, because we compared the 
abilities of proposed algorithms without utilization of accelerating methods for local 
searching.  
 
In all experiments the following control parameters were used: 
 

Kmax 10000 
Tmax 100 
Tmin  1 
Alpha 0,9 
Prmutation 0,1 
Iteration  of communication 100 
Number of processors 8 

 
  

Table 3: The value of HGSA parameters. 
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Most of the tests were performed on the benchmark of 52 cities see Fig. 37 and 38. In 
total 15 runs for 52 cities were performed, in each versions of PSA. The efficiency of 
PSA versions was also proved by benchmark of 79 cities and by benchmark of 100 cities. 
 
In Fig. 37 are shown the experimental results of three selected PSA versions and HGSA 
algorithm. The PSA versions differ only by the used time interval between master-slave 
communication. HGSA algorithm has used fixed communication period - each 100th it-
eration. All PSA versions found similar average tour length. The optimal tour was not 
found in any of the 15 runs. But in case of HGSA the optimal solution was achieved in 
each of 15 runs. 
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Figure 37: Average tour length of TSP 52 for HGSA and three versions of PSA. 

 
 
In Fig. 38 the computational time and average tour length is shown. It is evident that the 
best solution provides HGSA and its computation time is equal to the fastest PSA ver-
sion. 
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Figure 38: Computational time with relevant average tour length for HGSA and PSA 
versions. 

 
 
An extra experiment was applied for comparison the performance of HGSA with 
PAGASA [52] on the TSP benchmark of 100 cities. HGSA achieves the tour length 
equals to 21295, which is better than the tour length 21443 achieved by PAGASA. Using 
the benchmark of 79 cities, PAGASA algorithm achieved the best tour length of 540 units 
and HGSA achieved 538 unit tour length, which is the global optimum. 
 
 

 
 

6.5 Summary 
 
We have developed a new hybrid optimization algorithm HGSA as an aggregation of 
parallel simulated annealing PSA and genetic algorithm. HGSA was built on the parallel 
SA version, which achieved a good trade-off between achieving the quality (sub)optimal 
solutions and computing time. In all tested versions of PSA and HGSA, heuristic was not 
used, because we compared the abilities of proposed algorithms between each other with-
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out utilization of accelerating methods to local searching. We have tested HGSA on three 
benchmarks of the travelling salesman problems: TSP52, TSP79 and TSP100. The com-
parison of the performance of HGSA and PSA was realized. HGSA algorithm achieved 
the global optimum in each of 15 runs for TSP52. The PSA versions received only a local 
solution. The execution time was the same as the fastest PSA version. Comparison of the 
speed of convergence and achieved solution, proposed HGSA appears to be a very good 
compromise. Another experiment was arranged as a comparison of HGSA and a version 
of hybrid PSA called PAGASA published in [52]. HGSA outperforms PAGASA in all 
tested benchmark.  
HGSA achieved very good results in all tested benchmark and it appears as feasible algo-
rithm for solving some complex problem in practise. This hypothesis will be verified in 
the next chapter on the problem of collective communication scheduling for arbitrary 
interconnection networks. 
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Chapter 7  
 
Evolutionary Design of Collective Com-
munication    
 
 
 
 
 
As chip multiprocessors are quickly penetrating new application areas in network and 
media processing, their interconnection architectures become an object for optimization. 
Collective communications involving all processors are frequently used in the solution of 
demanding problems in parallel and their timing complexity has a dramatic impact on 
performance. 
In this chapter, we describe the application of hybrid evolutionary algorithm HGSA to 
scheduling collective communications on interconnection networks of parallel computers.  
The goal of the proposed algorithms is to find a deadlock-free and conflict-free schedule 
of a collective communication with the number of steps as close as possible to the lower 
bounds derived analytically, see Table 1.  
The optimization problem using HGSA evolutionary algorithms may be decomposed into 
several phases. In the first phase, it is necessary to choose a suitable encoding of the 
problem into a chromosome. The second phase is a proper definition of the fitness func-
tion, which determines quality of the chromosome. The next phase is the design of the 
input data structure for the evolutionary algorithm. The last phase is experimental runs of 
the evolutionary algorithm and search for the best set of its parameters. The proper choice 
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of parameters can speed-up the convergence of the algorithm and simultaneously mini-
mizes the probability of getting stuck in local minima. 
The proposed algorithm is able not only to re-invent optimum schedules for known sym-
metric topologies like hyper-cubes, but it can find schedules even for any asymmetric or 
irregular topologies (Fig. 39) in case of general collective communications. Optimum 
schedules are destined for writing high-performance communication routines for applica-
tion-specific networks on chip or communication libraries for general-purpose intercon-
nection networks. 
 
 

 
 
 

Figure 39:  32 processors in AMP topology. The SC node denotes a system controller 
(host computer) that sends input data to processing nodes and collects results. 
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7.1 Model of Communication 
 
Implementation of a collective communications is inherently prone to a deadlock. If we 
let each node send or receive messages to or from more than one partner in a loop asyn-
chronously, we still face the danger of a so called fetch deadlock (at least two nodes exe-
cute pending send operation and cannot receive). This is why a synchronized communica-
tion model is used and assume that the communication proceeds in synchronized rounds 
(steps). However, a deadlock doesn’t occur only on channels but also on a router’s buffer. 
Buffer deadlock is situation, where there is not enough space to store a message in the 
router’s buffer. (However this paper has not dealt with buffer deadlock because it is as-
sumed that routers’ buffers are of sufficient capacity to store all incoming messages.) 
This paper will focus especially on OAB, AAB, OAS, AAS and MNB communication 
patterns on interconnection networks with the following parameters: 

• full-duplex links — messages can be transferred in both directions at the same 
time 

• store-and-forward switching — whole packets are buffered in routers 

• non-combining nodes — every received packet is sent on separately 

• one-port/all-port communication facility — one/all ports of a single node can be 
used for communication simultaneously 

• slim/fat node – one/more then one processor is connected with a router 

These communication tasks [OA(B/S), AA(B/S) and MNB] cause the highest communi-
cation traffic and their timing overhead greatly depends on capabilities of particular 
communication hardware. OAB communication (as well as OAS) can be performed by 
sequentially sending the message to particular nodes. This system is very inefficient be-
cause only one node sends the message in each communication step. However, we can 
use a better technique using a broadcast tree when every node that received the message 
in previous communication step becomes an initiator of new multicast communication. If 
only node subset takes part in communication, we talk about multicast communication 
pattern. Consequently, the number of informed nodes increases by dk instead by d, where 
d is the node degree and k is the number of communication step. One well-known method 
of how to solve OAS communication pattern, is the design spanning tree. However, on 
the other hand, construction of the spanning tree is difficult, namely in asymmetrical to-
pologies. AAB communication is solved in a similar way as OAS, but the spanning tree 
is simultaneously generated by every node. This method termed time-arc-disjoint trees 
(TADT). However, this method is based on a similar principle, this method has the simi-
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lar disadvantage. One possibility implementing AAS is to use permutations separated by 
barriers. The number of steps is then P − 1, where P is processor count. However, this 
number of steps is too large and can be reduced significantly.  
The communication pattern MNB can be solved by MILP method (Mixed Integer Linear 
Programming). This method can achieve an exact solution, but, very long solutions are 
required for network sizes of any practical interest. The principle of the MILP can be 
formulated as a graph coloring. 
Since we deal with regular and also irregular topologies, the only way to find optimal or 
sub-optimal schedules of communication steps is by utilizing combinatorial optimization. 
The following describes our method of achieving optimal or sub-optimal schedules of 
communication using combinatorial optimization. 

 

 

 
 

7.2 Methodology of Design of Optimal Communi-
cation Schedules 

 
The optimal communication schedule must be conflict-free and deadlock-free. Therefore 
we use a synchronized communication model and we assume that router’s buffers’ are of 
a sufficient capacity to avoid buffer’s deadlocks, we don’t deal with deadlocks, while 
conflicts may occur. If the conflict occurs, the schedule cannot be used in a real applica-
tion. A conflict appears on a channel if two different messages want to utilize one com-
munication channel in one direction in the same communication step, see Fig. 40. The 
main idea of both proposed methods is based on testing conflict-free condition. 
For the scheduling of optimal collective communication for arbitrary topologies and 
communication patterns two, differing, methods can be considered. 
 
 

7.2.1 Searching of Conflicts 
 
This first method is based on the fact, that an optimal communication is one complex 
problem. This method of solution of investigated problem is possible, but it is very time-
consuming and also the probability of achieving an optimal schedule rapidly degrades for 
topologies with a higher number of nodes. Really, it works for topologies up to 23 nodes 



Chapter 7  Evolutionary Design of Collective Communication 

 83

by using AA (All-to-All) and 64 nodes by using OA (One-to-All) communication pattern. 
Mainly for AA, it is relatively small topologies. The algorithm searches for an appropri-
ate path (it is able to create an optimal schedule) between sending and receiving node and 
simultaneously it must correctly set a communication step to individual channels on the 
investigated path. This technique has a serious problem. It is not able to recognize 
whether it is possible to create optimal schedule by the selected path. Therefore it can 
happen, mainly for complex topologies, that a correctly selected path with the wrong set-
ting of a communication step of some channel is replaced by an unsuitable path (it is not 
able to create a conflict-free schedule). In other words, the algorithm does not know, 
whether the whole path must be replaced or only to modify the communication step to 
channel or channels. Selecting an incorrect channel or set of incorrect channels is also a 
very complex problem for reconfiguration of communication step.  
The next demand, which increases the execution time, is detection number of conflicts. 
The demand for conflict detection is performed in every modification of schedule. The 
conflicts are detected in the proposed schedule by the mutual checking of paths as to 
whether they use the same channel for communication. This is repeated for every com-
munication channel.  
 

 
Conflict 

 

 

 

Figure 40: Conflict on a communication channel. 

 
 

7.2.2 Prediction of Conflicts 
 
From above mentioned difficulties, the new method was developed for the design of op-
timal schedule, which partitions collective communication scheduling into two complex 
sub-problems. The first sub-problem is defined as a search for appropriate paths (it is able 
to create an optimal schedule) between source and destination node. The second sub-
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problem is stated as that of finding a conflict-free communication step to each channel for 
each found path. Without this partitioning the basic complex problem the method would 
need to be solved simultaneously the two sub-problems, as described in previous section. 
The time of finding the optimal schedule can be reduced by the use of conflict prediction. 
It is possible to discover during the solution of the first sub-problem, whether the com-
munication schedule will be conflict-free or not (detailed description is bellow). Using 
this technique of prediction, it is not necessary to assign the communication step to indi-
vidual channel and detect, if the conflict occurs. 
Necessary (but not sufficient) conditions for a schedule to be conflict-free are: 

1. Utilization of investigated channel in one step in one direction equals at most or 
just one.  

2. Utilization of each channel in one direction equals at most the number of commu-
nication steps S of the whole schedule. It can be described by equation (7.1), 
where the number of communication steps of the whole schedule is equal or 
greater than the number of the utilization of investigated channel in the whole 
schedule. 

S >= Rc      (7.1) 

where S is the desired number of communication steps of whole schedule, which is set by 
user at the beginning of the program as the input parameter and RC is the number of all 
paths, which utilize the investigated channel. 
So the conflict appears in case of inequality: 

S < Rc                   (7.2) 

The next case of the conflict detection in the designed schedule expresses the situation 
that it is not possible to assign a communication step to the channel to be conflict-free 
although the equation (7.1) is true. This case can be described by the equation (7.3) with 
the interval (7.4), which includes all possible communication steps for the investigated 
channel.  

bound = (S – (L-O))       (7.3) 

where bound is the higher border of communication steps of the investigated channel, L is 
the length of the investigated path and O is the channel position on the path. Finally, the 
communication step of an investigated channel on the path is chosen from the interval, 
where lower bound is the channel position O and the higher bound is value calculated 
from the equation (7.3): 

step ∈ <O, bound>     (7.4) 
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In the case, that it is impossible to choose two different values from interval (7.4) for the 
investigated channel into two different paths, the conflict appears in the generated com-
munication schedule. This situation is illustrated by the example given in Table 4. This 
table explains the idea of conflicts prediction. In the first column is a set of investigated 
paths (from the generated schedule), which contains the investigated channel 8_ 9. In the 
second column there are intervals of possible communication steps to investigated chan-
nel on the investigated path. 
 
 

path 
interval of all possible 
communication steps 

  2 0 8 9 25 3 
    8 9 1 

14 12 8 9    3, 4 
16 12 8 9    3, 4 

 

 

Table 4: Assignment of communication steps to channel from the interval (7.4). 

 
 
To illustrate the above results of Table 4, we have path “14_12_8_9” and investigated 
channel is 8_9. The number of communication steps of whole schedule S = 4, then posi-
tion of the investigated channel 8_9 on the path is 3, i.e. O = 3 and the length of the path 
is 3, i.e. L = 3. According to equation (7.3), 

bound = (S - (L - O)) = (4 - (3 - 3)) = 4.  

Substituting the values into interval (7.4) we get  

step ∈ <O, bound> = <3, 4>. 
 
These inequation (7.2), equation (7.3) and interval (7.4) perform only the detection of the 
conflict and also the evaluation of the fitness function. 
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7.3 Input Data 
 
At the beginning, the program reads its input data from a specified configuration file. It 
contains the values of the following parameters: 

 name of the file with a description of the network topology (its graph) 

 the target number of communication steps for communication task 

 source node (used only for OAB and OAS) 

 starting temperature  

 cooling gradient 

 the number of iterations of Metropolis algorithm 

 frequency of mutual communication master-slave 

 mutation probability 

 iteration, at which the parameters of function of the communication step setting 
are changed according to predefined values 

 
 

node 
neighbor  

1 
neighbor  

2 
neighbor  

3 
neighbor  

4 
0 1 3   
1 0 4 2  
2 1 5   
3 0 4 6  
4 1 3 5 7 
5 2 4 8  
6 3 7   
7 4 5 8  
8 5 7   

 
 

Table 5: 9-processor Mesh routing table. Figure 41: 9-processor Mesh configura-
tion.

. 

 

 6 7 8 

3 4 5 

0 1 2 
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Description of the network topology for which a particular collective communication is 
being optimized is specified in a separate topology file. This file contains a list of each 
node’s neighbors, where two nodes are considered to be neighbors only if they are con-
nected by a single direct link. Table 5 shows sample data which describe eight-processor 
Mesh topology shown in Fig. 41. Further description of the other parameters (e.g. set of 
senders/receivers, the number of processors at a node) is given in the following sections. 

 
 
 
 

7.4 Search of The Shortest Paths 
 
This algorithm generates all the shortest paths and saves them in the operating memory 
into a specific data structure. The algorithm [2] is inspired by the breadth-first search al-
gorithms (BFS). BFS is based on the searching of a graph, where the source processor is 
chosen as a root. The edges create a tree used in the searching process. A tree is gradually 
constructed, one level at a time, from the root that is assigned an index of a source node. 
When a new level of the tree is generated, every node at the lowest level (leaf) is ex-
panded. When a node is expanded, its successors are determined as all its direct 
neighbors except those, which are already located at higher levels of the tree (it is neces-
sary to avoid cycles). The construction of the tree is finished when a value of at least one 
leaf is equal to the index of a destination node. Destination leaves’ indices confirm the 
existence of searched paths, which are then stored as sequences of incident node indices. 
A sample tree constructed while searching for shortest paths from node 0 to node 5 in the 
9-processor Mesh topology is shown in Fig. 42. Three paths were actually found in the 
tree: 0-1-2-5, 0-1-4-5 and 0-3-4-5. If one-to-all communication is being scheduled, only 
paths from a single source node to all other nodes are searched for. On the other hand, for 
optimization of all-to-all communication AA, all paths between every pair of source-
destination nodes are considered. 
In certain cases when the target topology has nonuniform numbers of links per node, it 
may happen that an optimal routing schedule cannot be constructed from a set of the only 
shortest paths. Use of only the shortest paths may cause heavy utilizing of some links but 
the rare utilization of others, which can prevent the finding of an optimal solution. To 
avoid this problem, the algorithm must consider not only the shortest paths but also paths 
whose length may be longer. This approach can be used only for small topologies, be-
cause in case of the large topologies the searching space of possible paths increases dra-
matically. For example, consider with 9-processor Mesh, AA communication pattern and 
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the paths that are elongated by 1 according to shortest paths; whole number of paths is 
increased from 112 to 202, for more complex topologies with 32 processors and more, 
rising to thousands of paths. Consequently, optimization algorithms are not able to search 
an optimal solution for more complex topologies by non-minimal routing. 
 
 

  
 
Figure 42: Construction of the shortest paths list from node 0 to node 5 in the 9-
processor Mesh topology. 
 
 
 
 

7.5 Solution Encoding 
 
Very simple encoding has been chosen for HGSA. The solution is represented by the 
chromosome as an array of genes, see Fig. 43. Every gene encodes schedule of a single 
message transmission from a given source node to a destination node. The gene’s posi-
tion (locus) represents the source and the destination node for a message. The source 
node is calculated from the gene’s position by the equation (7.5) and destination node 
according to the equation (7.6). 

 source_node = gene’s_position  div  P             (7.5) 
destination_node = gene’s_ position  mod  P                 (7.6) 

 0

1 3

2 4 6

5 75 5 7 7

4

Index:     1          2               3 
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where P is the number of nodes in target architecture. 
Every gene consists of an identity of a path which is used for routing the message and a 
sequence of time steps at which every node on the path (except the destination node) 
sends the message to the next node on the path. Assignment of the time steps is con-
strained by a rule that transmission of any message must not take more steps than a 
maximum value, which is set as an input parameter when the program is run. The number 
of genes G in every chromosome is determined by the type of communication to be 
scheduled and by the number of nodes P as: 

G = P – 1      (7.7) 

for one-to-all communication pattern. 

G = P*(P – 1)     (7.8) 

for all-to-all communication pattern. 

G = M*N - Q      (7.9) 

for many-to-many communication pattern, where M – set of senders, N - set of receivers 
and Q – set of simultaneous senders and receivers. 

The main advantage of this encoding is a relatively short chromosome and the absence of 
inadmissible solutions (every message is transmitted from a source to a destination). The 
main disadvantage is a large number of possible values/alleles of the first gene compo-
nent, which represents index of shortest path - the number of the paths rapidly increases 
with the distance from source src to destination dst. 
 
 

       Paths src dst 

Gene 3 

04 01 02 03

4 1,2 6 1,3,5,..9 1,4,5

Scheduling  
sequence of 
communication 
steps  

Index to the 
shortest paths 
from node 0 to 1 

1,2,6,.. 12 

Gene 2 

 
 

Figure 43: The structure of chromosome. 
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7.6 Definition of Fitness Function 
 
Having defined solution encoding, we can now describe fitness function. For our repre-
sentation of chromosomes, fitness of an individual is directly derived from its cost, which 
is determined by a number of conflicts among genes of its chromosome. It is obvious that 
we are concerned only with such final solutions which have no conflicts, i.e. whose cost 
is equal to zero. Only these conflict-free schedules are applicable in real applications. 
 
 

7.6.1 The Fitness Function Based on Searching of Con-
flicts 

 
Fitness function based on searching of conflicts can be described as follow: 
Firstly, we create the set M, which has elements as much as value S of the required num-
ber of steps. 

M = {1,…, S} ⊆ N      (7.10) 

From the set M we create the set Q, which has elements as much as paths using the inves-
tigated channel. 

Q = {M1,…., MRc}       (7.11) 

Next, we create the set T, for which holds: 

T = {y| y is just one randomly selected element from every M ∈ Q}    (7.12) 

Now, we define the set R, whose cardinality is equal the number of paths using the inves-
tigated channel: 

 R = {1,…, Rc} ⊆ N      (7.13) 

Further, we define function Ω: T → R, which assign to every t∈ T element r∈ R, so t = r. 
In the case, that Ω is only surjection a conflict appears, if it is bijection then a conflict 
does not occur. 
Then, we create the set K, containing elements from T mapping on the same element from 
the set R: 

K = {x | ∃y∈T, y≠x: Ω(x) = Ω(y)}     (7.14) 
Finally, the number of conflicts in investigated channel conflictnew can be described as: 

conflictnew = |K|      (7.15) 
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Now, we can evolve the pattern of total number of conflicts: 

conflict = Σ conflictnew     (7.16) 

 
 
 

7.6.2 The Fitness Function Based on Prediction of Con-
flicts 

 
In the first phase the prediction is used to find out how many conflicts appear in the 
whole schedule. This is based on the inequation (7.2), on the equation (7.3) and on the 
interval (7.4). The counting of conflicts can be formally described as follows: 
On interval (7.4) it can be viewed as the set, because it is subset of nonnegative numbers: 

Step ⊆ N      (7.17) 

From the set Step we create the set W, which has elements as much as paths using the 
investigated channel: 

W = {Step1,…., StepRc}     (7.18) 

Now, we create the set U, for which holds: 

U = {y| y is just one randomly selected element from every Step ∈ W}   (7.19) 

Further, we define the set R, whose cardinality is equal the number of paths using the 
investigated channel: 

 R = {1,…, Rc} ⊆ N      (7.20) 

Now, we define function Ω: U → R, which assign to every u∈ U element r∈ R, so u = r. 
In case, that Ω is only surjection a conflict appears, if it is bijection then a conflict does 
not occur. 
Then, we create the set G, containing elements from U mapping on the same element 
from the set R: 

G = {x | ∃y∈U, y≠x: Ω(x) = Ω(y)}     (7.21) 

Finally, the number of conflicts in the investigated channel conflictnew can be described 
as: 

1. conflictnew = (Rc - S) + |G|,  if Rc > S     
2. conflictnew = |G| ,  otherwise                   (7.22) 
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Now, we can evolve the pattern of total number of conflicts: 

conflict = Σ conflictnew      (7.23) 

The parameters S and Rc are defined in section 7.2.2, conflictnew is the number of con-
flicts detected for the investigated channel and conflict is the number of conflicts of the 
whole schedule. 
 
In case, that prediction is conflict-free (the number of conflicts is equal to 0), the investi-
gated paths create admissible communication schedule. Now, after the prediction phase 
the step assignment must be found for to each channel for all paths. Step assignment is 
based on equation (7.24) and interval (7.25). 

difference = (S – CSB) – (L – O)       (7.24) 
comm_step = rand <O, O+difference>           (7.25) 

where difference is the number of possible communication steps of the investigated chan-
nel, CSB is the communication step of the previous channel, L is the length (number of 
channels) of the investigated path. The equation (7.24) with the interval (7.25) performs 
the counting of conflicts and also the communication step assignment to the channel on 
the investigated paths. 
In the case, that a communication step is randomly chosen to one channel in two different 
paths, the conflict appears. In this case another randomly generated communication step 
is applied to that channel for the conflict path. 
However, the situation can appear, when the equation (7.23) is equal 0, but the conflict-
free schedule cannot be constructed, see Tables 4 and 6. This situation is based on the 
prediction conditions, which are not sufficient, but only necessary. In this case, the com-
putation must be returned to the first phase, i.e. searching for appropriate paths. The pre-
diction only indicates that it is impossible to create conflict-free schedule or it might be 
created some conflict-free schedule, but it is not sure. 
 
 

Path Interval (7.25) 
  2 0 8 9 25 3 

         8 9 1 
14 12 8 9 4 
16 12 8 9    3 4 

 

Table 6: An assignment of communication steps to channel from the interval (7.25). 
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In Table 6 the possibility of the communication step assignment to investigated channel 
on the investigated path from the interval (7.25) is illustrated. Tables 4 and 6 are very 
similar but the difference is in the third row. The possible step interval in Table 6 has 
only one value instead two, as in Table 4. The step interval in the channel 8_ 9 cannot 
include the 3rd step because this communication step is assigned to channel 12_ 8, see 
(7.24). 

 
 
 
 

7.7 Heuristic 
 
In our proposed algorithm one heuristic is used to speed up the convergence to a sub-
optimal solution. It decreases the probability of being trapped in local optima during the 
execution. This heuristic is only used for the broadcast communication for the maximal 
utilization of channels. 
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Figure 44: Modification of shorter path according to longer path. 

 
 
The principle is simple. Path I from source node to destination node leads through a se-
quence of intermediate nodes. If other path II, which has shorter length and her destina-
tion node is occurred on the path I and has the same source node as path I, thus this path 
II changes according to path I (path II will go through the same nodes as path I), see Fig. 
44. 
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7.8 Generalization of New Proposed Algorithm 
 
So far, it has been unnecessary to deal with existence of channel between router and 
processor, since we supposed an all-port node model. In all-port model, there are chan-
nels as much as node degree between router and processor and every message, which is 
delivered to a router, is immediately sent from this router to a processor at the same time. 
There was simplification to a large extent for implementation and simultaneously for our 
algorithm, because the state space was reduced for searching. Furthermore, we didn’t 
need to deal with the number of processor in one node and also whether processors 
transmit and/or receive. We supposed one processor to a router. For solving these prob-
lems, our algorithm must have been extended and generalized on new communication 
pattern and topologies with fat nodes.  
 
 
 

7.8.1 Fat Topologies 
 
The term fat topologies, describes topologies with fat nodes, where nodes have more than 
one processor. Generally, each node can have a different number of processors and there-
fore the information concerning how many processors each node contains must be saved 
in a topology file. In this file, a value is assigned to every node, which determines the 
number of processors at each node and then a description of network topology to be fol-
lowed.  
The next change is one-port node model in contrast to the all-port model that was used in 
direct networks. Hence, we must take into consideration the channels between router and 
processor. In this node model, there aren’t enough channels to deliver every message 
from the router to a processor at the same time. This change becomes evident partly by 
increasing the number of new paths lead through the router to all of its processors and 
also by extension of individual paths about two channels, at the beginning and at the end 
of the path. Dependent on increasing the number of the shortest paths, the search space is 
expanded and therefore the whole problem must be encoded by a higher number of genes 
in chromosome. 
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7.8.2 Many-to-Many Broadcast Communication 
 
We will write many-to-many broadcast as MNB, because the letters M and N represent 
different sets of senders and receivers. According to notation order, the first letter M 
represents senders and the second letter N represents receivers. 
In the literature, we can meet with theoretical lower bounds for one-to-all and all-to-all 
communication patterns but not for the many-to-many communication pattern. Since we 
dealt with MNB, we tried to derive the lower bounds as follow: 
MNB is limited by OAB or AAB bound from Table 1, whichever is greater, because 
some nodes may absorb M messages, only when N ⊆M then nodes absorb M−1 messages. 

• one-port model      
TMNB = max (log 2 N, D, M - 1), where N ⊆M  (7.26) 
TMNB = max (log 2 N, D, M), otherwise     (7.27) 

 
• all-port model  

TMNB = max (D, (M - 1)/d ) , where N ⊆M   (7.28) 
TMNB = max (D, M/d ), otherwise     (7.29) 

 
These theoretical lower bounds were compared by computed bounds, which were 
achieved by our proposed algorithm and simultaneously we could have proved accuracy 
of these analytically derived and computed bounds. 
To illustrate the above results, MNB on the Fat Octagon in Fig. 45 all tree possibilities of 
sending/receiving processors will be analyzed:  

1. We have M = 8 sending nodes, N = 16 receiving nodes, and Q = 8 nodes in inter-
section M ∩ N. According to equation (7.27),  
TMNB = max (log 2 16, 8) = max (4, 8) = 8 steps.  

2. We have M = 8 sending nodes, N = 8 receiving nodes, and Q = 8 nodes. Accord-
ing to equation (7.26), 
 TMNB = max (log 2 8, 8 - 1) = max (3, 7) = 7 steps 

3. We have M = 8 sending nodes, N = 8 receiving nodes, and Q = 0 nodes. Accord-
ing to equation (7.27),  
TMNB = max (log 2 8, 8) = max (3, 8) = 8 steps. 
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Figure 45: Fat Octagon topology with full duplex links and one-port model. 

 
 
Only one change needed to be made to our algorithm to implement the MNB communi-
cation pattern. This one change related to the recognition of senders and receivers by the 
proposed algorithm. This information is written to the topology file as two lists, the list of 
senders and receivers. Each element of the list consists of two values, which are separate 
by “/”.  The first value of element is an index of node and the second value is an index of 
processor at this node. Every processor of one node is evaluated by index 0 to n. It may 
appear simple, each processor calls by a unique index. However the ability to design of 
MNB was added after implementation of OA and AA communication patterns and there-
fore we chose this approach, which minimized the number of implemented changes in the 
proposed algorithm. Consequently, the topology file appears as in Fig. 46: 

1. sum of processors and maximal number of links per processor 
2. number of processor at each node 
3. source processors (first number is node, second number is processor) 
4. destination processors 
5. matrix of direct neighbors 
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# sum of processors and maximal number of links per processor 
8 3 
 
# number of processor at the node 
0 2 
1 2 
2 2 
… 
 
# source processors (first position is node, second position is processor) 
0/0 
0/1 
1/0 
1/1 
… 
 
# destination processors (first position is node, second position is processor) 
4/0 
4/1 
5/0 
5/1 
… 
 
# node_num and its direct neighbors 
0 1 4 7 
1 0 2 5 
2 1 3 6 

… 
 
 

Figure 46: Illustration of a file, in which a network topology is description for MNB. 

 
 
 
 

7.9 Analyze of Proposed Algorithm 
 
A primary architecture intended for testing the proposed program was a cluster of work-
stations because it was readily available. Since the message passing was programmed 
using MPI library [47] routines, the program can easily be compiled and run on any ar-
chitecture (clusters of workstations, MPPs, SMPs, etc.) for which an implementation of 
MPI standard is available. 



Chapter 7  Evolutionary Design of Collective Communication 

 98

To achieve the best parallel performance of the proposed program, analysis was used to 
identify bottlenecks. It also appeared that analysis was necessary because test executions 
of the initial implementation showed that its performance dramatically reduces with the 
increasing number of processors P of the optimized topology. The problem was severe 
especially for all-to-all communication, which requires very long chromosomes. 
Analysis of the proposed algorithm showed that a majority of processing time was spent 
in evaluation of a fitness function, which determines cost of individual in every iteration. 
On the contrary, the time taken by genetic operators and communication master-slave is 
negligible. Even though the search for shortest paths requires also significant time, it is 
performed only once at the beginning of the computation and does not affect the overall 
run-time as much as the evolutionary algorithm. 
The reason for this bad performance was that the initial implementation of the fitness 
function used a relatively trivial approach to determining a cost of a chromosome. The 
cost is defined as a number of conflicts (the same channel used by different paths in the 
same step) by checking all possible pairs of genes whether they use the same channel for 
communication. This is repeated for every channel. So the main part of the calculation 
uses two nested loops both iterating through all genes of a chromosome yielding an as-
ymptotic complexity O(G2), where G is a number of genes determined by the pattern of 
communication to be scheduled. The next very complex reason for increasing computa-
tion time was, that the algorithm wasn’t able to recognize, if the whole selected path must 
be replaced or only modified communication step to channel or channels on this selected 
path. Therefore this happened mainly for the more complex topologies very often that a 
correctly selected path (it is able to create conflict-free create schedule) was replaced by 
an unsuitable path (it is not able to create conflict-free schedule), due only to the reason 
that it was improperly set the communication step to some channel on correct path. 
Although some optimizations were already used to simplify a body of each loop, e.g. a 
set of all genes which already caused a conflict was constructed on the fly so that a single 
check of the set can avoid expensive path reconstructions, the complexity was still unac-
ceptable. Especially if we consider the AA communication, which requires long chromo-
somes (number of genes proportional to P2), we get a complexity O(P4) which is unfeasi-
ble for optimization of architectures with more than a few processors, see Table 12 and 
14. 
To decrease the high complexity, methodology of prediction was developed. The princi-
ple of prediction is based on a partition scheduling problem of a collective communica-
tion into two sub-problems. The first sub-problem is defined as a search for appropriate 
paths between source and destination node. The second sub-problem is stated as a finding 
of conflict-free communication step to each channel for each founded path. It is possible 
to discover during the solution of the first sub-problem, whether the communication 
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schedule will be conflicting. If the prediction doesn’t find a conflict, the second part of 
problem can start and try to set up a communication step to each channel. Utilization of 
prediction we needn’t deal with investigation, if a conflict is caused by unsuitable selec-
tion of path or unsuitable setting of steps to individual channel on the path. In every itera-
tion we know what to change (path or step) to achieve the searched schedule. 
Performance of the new approach is improved since it reduces an asymptotic complexity 
to O(G) from the original O(G2). The complexity of the loop’s body is similar or even 
smaller than in the original implementation so that a multiplicative constant hidden in the 
asymptotic complexity formula is decreased. 
The time spent by individual parts of algorithm is showed in Table 7. Analyze was per-
formed on 32-slim node bidirectional all-port hyper-cube. We focus on implementation 
based on prediction, because such implementation outperforms the original implementa-
tion in time of execution, probability of achieving a global optimum, speed of conver-
gence and mainly in the greater number of nodes in the investigated topologies as can be 
see in chapter 7.10.  
 
 

Time [%] 
Parts of algorithm 

Broadcast Scatter 
Search of the shortest 
paths 

0.771 0.0263 

Prediction 76.256 75.282 
Setting of com. steps 8.416 0.0378 
Genetic operators 0.003 0.004 
Communication M-S *) 0.135 1.505 
Synchronization 11.194 18.231 
Others 3.229 4.9177 

 
 

Table 7: Time complexity of individual parts of algorithm based on conflict prediction in 
percent on the 32-slim node bidirectional all-port hyper-cube; *) this value corresponds 
with frequency of communication n*100 iteration (n > 1) from 300 iterations of Metropo-
lis algorithm. 

 
 
From previous chapters it follow that the fitness function is composed from two phases: 
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1. the prediction phase (search for appropriate paths) and after finishing the predic-
tion  

2. the phase of communication steps setting. 
 

In the Table 7, are presented average values from 10 runs of each communication pat-
terns. These values of variables are only orientation and illustrate properties of proposed 
algorithm. The time strongly depends on properties of interconnection networks and also 
on the setting of algorithm’s input parameters. For example, the time of synchronization 
is for large topologies relatively small, but it doesn’t remain true for small topologies. It 
can be as high as ten percent. Since, we chose the architecture master-slave, when all 
participants communicate simultaneously, synchronization is necessary. A similar case is 
the time of communication master-slave. The time of communications is based on fre-
quency, which is defined as the input parameter by user.  
From the Table 7 is evident that we can recognize relationships between communication 
patterns of broadcast and scatter. Although the time of prediction is nearly the same, the 
time of the setting of communication steps is very different. It is based on definition of 
both communication patterns. In scatter, there is a problem to search suitable paths to 
create an optima schedule in comparison with broadcast, where the problem is in cor-
rectly setting of the communication steps to suitable paths. It is clear from the fourth row 
of the Table 7 (Setting of the communication steps). There are significantly stronger con-
straint rules in broadcast than in the scatter for implementation. In broadcast, the mes-
sages, which travel from the same sending node, pass through the same intermediate 
nodes in the same communication steps. In scatter, the rule is opposite. No message is 
allowed to be sent through the same channel in the same step. Therefore, there is greater 
problem to search for suitable paths, over which these two messages should travel, than 
with correctly set communication steps. 
We analyzed our proposed algorithm on using the same topology (32-node hyper-cube), 
but the real time was very different; for AAB it was 37.5 minutes and for AAS it was 
3.15 hours. From this difference of real times, it can appear that individual times of pre-
diction are similar at both AAB and AAS. However this is not a valid conclusion. The 
comparison of topologies, which has the same executing time, would have better predica-
tive ability. For example: for AAB 64-node hyper-cube, where the time of prediction is 
53.2% and the time of setting the communication steps is 36.5%, and for AAS 32-node 
hyper-cube, where the time of prediction is 75.4% and 0.1% is the time of setting the 
communication steps. We assume that the model of topologies is the same in both cases. 
The item Others of Table 7 involves only helping operations such as printing of schedule, 
creating, computing and deleting helping variables, data conditioning etc. 
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7.10 Experimental Results 
 
In the first experiment the proposed algorithm, using HGSA, was verified using a variety 
of multiprocessor topologies (e.g. Midimew, K-Ring, Octagon...). We examined the algo-
rithm from the aspect of the ability to design optimal schedule in any arbitrary topology. 
All topologies had 8 nodes (except 10-node Moore topology) and the regular and the ir-
regular (AMP with SC [53], Ladder and Twisted Ladder) topologies were examined. The 
results achieved of the optimal/sub-optimal communication schedule and the theoretical 
lower bound (see Table 1) on the number of the communication steps of the tested to-
pologies are presented in the Table 9 and 10. An optimal communication schedule was 
achieved in all tested topologies, which is illustrated in the third and fifth column in the 
Table 9 and 10. 

The control parameters of proposed algorithm were set to the same values for all runs, i.e. 
Pc computers in the master-slave architecture, each computer work on one individual, the 
length of communication interval between master and slave was each Ic’s iterations of 
Metropolis algorithm, the start temperature equal to Tmax, Kmax iterations in each tempera-
ture phases, gradient of cooling equals to Alpha. 30 runs of HGSA were performed for 
each topology. In Table 8 are shown the values of parameters, which were reached ex-
perimentally on hyper-cube. The target was to reach optimal schedule in the shortest pos-
sible time. 
 
 

Kmax 200 
Tmax 100 
Tmin  0,1 
Alpha 0,99
Ic  50 
Pc 10 
Number of individuals 10 

 
 

Table 8: The value of control parameters of proposed algorithm. 
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Topology 
OAB        

Lower bounds 
OAB      

HGSA 
AAB        

Lower bounds 
AAB       

HGSA 
Hyper-cube 2 2 3 3 
Hyper-cube with body 
diagonal 

2 2 2 2 

AMP with SC - 2 - 3 
AMP without SC 2 2 2 2 
K-ring 2 2 2 2 
Midimew 2 2 2 2 
Moore 2 2 3 3 
Octagon 2 2 3 3 
Ladder - 3, 4 - 4 
Twisted ladder - 2, 3 -        5 *)        

 
 

Table 9: Experimental results and the theoretical lower bound of the broadcast collective 
communication for the all-port topologies with 8-nodes. 

 
 
The asterisk “*)” indicates a non-optimal schedule. During the search for the optimum 
schedule, it may be necessary to include not only multiple minimum paths, but, at times, 
non-minimum paths! This is the case of OAS and AAB for Twisted ladder topology. This 
problem doesn’t occur in AAS communication pattern, because this communication is 
more complex and the total time of communication compensates a delay on a channel. It 
is possible to consider non-minimal paths for such small topologies (8-node) but if we 
consider more complex topologies, this would lead to an enormous increase of possible 
paths from source to destinations and, thus, to prohibitive computer memory and time 
requirements. Therefore we didn’t include this ability in our proposed algorithm.  
Notation “–“ in tables means that theoretical lower bound cannot be derived analytically 
as in the Table 1, because these topologies are irregular and mathematical methods can-
not be applied.  
For some topologies two values were achieved, see Ladders and Mesh topologies in Ta-
ble 9 and 10. It is from the reason that one-to-all communications depend on the node 
degree of the source node, e.g. mesh topology has three values of d = 2 (corner node), 3 
(edge node) and 4 (central node), see Table 11.  
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Topology 
OAS        

Lower bounds 
OAS       

HGSA 
AAS        

Lower bounds 
AAS       

HGSA 
Hyper-cube 3 3 4 4 
Hyper-cube with body 
diagonal 

2 2 3 3 

AMP with SC - 3 - 5 
AMP without SC 2 2 3 3 
K-ring 2 2 3 3 
Midimew 2 2 3 3 
Moore 3 3 5 5 
Octagon 3 3 4 4 
Ladder - 3, 4 - 8 
Twisted ladder -              4, 5 *)     - 6 

 
 

Table 10: Experimental result and the theoretical lower bound of the scatter collective 
communication for the all-port topologies with 8-nodes. 

 
 
In the second experiment the proposed algorithm was tested with broadcast communica-
tion pattern and with a higher number of nodes in three different architectures - hyper-
cube, mesh and AMP. The number of nodes varied from 8 to 128. A hyper-cube has been 
chosen because of its regular topology with, known optimal scheduling, as it can serve as 
a convenient benchmark.  
OAB and AAB communication complexities, measured by the number of communication 
steps in schedules found by proposed algorithm so far, are shown in Table 11 and 12 (co-
lumns three, four and five). The first column includes the node count in the target archi-
tectures and the second column presents the number of steps in the optimal schedule 
achievable for a hyper-cube (the reachable lower bound). 
Finding an optimal schedule for the AAB communication pattern is a significant problem. 
The proposed algorithm is able to find an optimal schedule for AMP topology in all 
tested cases but for a greater number of nodes its success rate is significantly reduced. 
Our algorithm achieves global optimum in almost all tested topology. In only two cases 
the optimal solution failed to be achieved, at 64-node mesh and 128-node hyper-cube. 
However the achieved sub-optimal solutions are close to the optimum, see Table 12. 
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Number  
of 

nodes 

Hyper-cube 
minimal 

Hyper-cube 
HGSA 

Mesh     
HGSA 

AMP 
without 

SC 
HGSA 

8 3 3 4, 3 2 
16 4 4 6, 5, 4 - 
23 - - - 3 
32 5 5 - 3 
36 - - 10, 9, 8 - 
42 - - - 3, 4 
53 - - - 3 
64 6 6 14, 13, 12 - 

128 7 7 - - 
 

Table 11: Number of steps for OAB optimization. 

 
 

Number  of  
nodes 

Hyper-cube 
minimal 

Hyper-cube 
HGSA 

Mesh     
HGSA 

AMP   
without SC 

HGSA 
8 3 3 - 3 

16 4 4 8 - 
23 - - - 8 
32 7 7 - 11 
36 - - 18  
42 - - - 14 
53 - - - 18 
64 11 11 33 - 

128 19 20 - - 

 

Table 12: Number of steps for AAB optimization (bold digits represent cases when lower 
bounds were not reached). 

 
If we compare the solution gained with the help of the prediction and without prediction 
in scheduling of collective communication, it is evident, that the prediction provides rapid 
improvement, see Table 13. Finally, using prediction, final solution is superior and simul-
taneously the probability of achieving such a solution is higher. 
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Hyper-cube AMP Number of 
nodes With     

Prediction 
Without 

Prediction 
With   

Prediction 
Without 

Prediction 
8 100% 100% 100% 100% 

16 100% 60% - - 
23 - - 100% 70% 
32 100% 0% 100% 10% 
42 - - 95% 0% 
53 - - 100% 0% 
64 65% 0% - - 

 
Table 13: Success rate of 15 runs in achieving the optimal communication scheduling for 
AAB. 

 
 
The presented data of proposed algorithm deserves some comments. Firstly, OAB is quite 
a simple operation and therefore the algorithm is likely to find an optimal solution even 
for larger architectures up to 128 nodes. Optimal solutions have already been found for 
topologies with up to 64 nodes and quality sub-optimal solution for topology with up to 
128 nodes for AAB. To achieve an optimal solution for the AAB communication pattern, 
many hours are required for more complex topologies. On the other hand, if we need an 
sub-optimal solution quickly, the proposed algorithms is allowed to accept a larger num-
ber of communication steps and the solution is found in much shorter time, see Fig. 47. 
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Figure 47: The real time complexity of AAB on 64-node hyper-cube with different num-
ber of communication steps. 

 
 
The computational platform used was IBM BladeCenter® [54] with 12 HS20 blades, 
each fitted with 2 CPU Xeon 2,8GHz/533MHz, 1GB RAM, 40GB HD and with 14 HS20 
blades each fitted with 2 CPU Xeon 3,2GHz/800MHz, 2GB RAM, 36GB interconnected 
by gigabit router-switch. Algorithm ran under Unix OS. 
In Fig. 48, is shown the average time complexity of reaching global optima for four in-
stances of 64-node hyper-cube in the term of the number of fitness function evaluations. 
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The average number of fitness function 
evaluations of 64-node hyper-cube for AAB
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Figure 48: Time complexity of AAB on 64-node hyper-cube with different number of 
communication steps. 

 
 
After implementation and testing of broadcast communication pattern, we modified our 
algorithm for further type of communication pattern – namely scatter. The proposed 
modification consists of the elimination of some modules from the code, since broadcast 
is much more complex than scatter in the sense of implementation, because broadcast has 
more constrain rules, which flow from definition of broadcast.  
The achieving results for OAS and AAS are presented in the Table 14. Again as in previ-
ous case, the hyper-cube served as a convenient benchmark and simultaneously we tested 
this proposed algorithm on the irregular topology AMP. We achieved optimal solutions 
for OAS up to 128-node and for AAS we obtained optimal solution up to 32-node and 
quality sub-optimal solutions up to 128-node. 
Finding of the optimal communication schedule for AAS presents the most complex 
problem of all four investigated communication patterns, because searching space of 
AAS is the greatest, see comparative graphs of the number of evaluations in Fig. 49, 50 
and 51. 
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OAS AAS 
Number  

of 
nodes 

Hyper-cube  
minimal 

Hyper-cube 
HGSA 

AMP 
without 

SC 
HGSA 

Hyper-cube 
minimal 

Hyper-cube  
HGSA 

AMP 
without 

SC 
HGSA 

8 3 3 2 4 4 4 
16 4 4 - 8 8 - 
23 - - 6 - - 13 
32 7 7 9 16 16 20 
42 - - 11 - - 29 
53 - - 13 - - 40 
64 11 11 - 32 33 - 

128 19 19 - 64 66 - 
 

Table 14: Number of steps for OAS and AAS optimization (bold digits represent cases 
when lower bounds were not reached). 

 
The Table 15 illustrates the efficiency of the algorithm with the help of the prediction and 
without prediction. By utilization of the prediction, our algorithm is able to solve more 
complex topologies with higher probability of achieving the optimal schedule than with-
out prediction. Algorithm using prediction provides significantly better solutions 
 
 

Hyper-cube AMP Number of 
nodes With     

Prediction 
Without 

Prediction 
With   

Prediction 
Without 

Prediction 
8 100% 100% 100% 100% 

16 90% 40% - - 
23 - - 100% 40% 
32 80% 0% 80% 0% 
42 - - 75% 0% 
53 - - 60% 0% 
64 60% 0% - - 

 

Table 15: Success rate of 15 runs for AAS communication scheduling (the communica-
tion complexity is illustrated in Table 14). 
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The graph of fitness function evaluations for OAB is not presented here, because con-
flicts do not occur at this communication. OAB is based on a broadcast tree. We can cre-
ate this broadcast tree simply from the set of the shortest paths between any pair sender -
receiver. Since, this set of minimal paths is created in the first phase of our algorithm, 
thus the whole algorithm is reduced when creating this set. Consequently, the total execu-
tion time is equal to creating time of the set of the shortest paths and therefore the number 
of fitness function evaluations is equal to one for arbitrary topology. 
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Figure 49: Time complexity of AAB. 

 
 
Fig. 49 shows the average time complexity of reach optimal schedule for four instances 
of hyper-cubes in the term of the number of fitness function evaluations. In the case of 
16-node and 32-node topology, the number of evaluations is almost the same. The time of 
AAB execution depends much more on properties of the interconnection networks than 
on the number of nodes. 
Our proposed algorithm is very effective for OAS collective communication as the Fig. 
50 presents. We are able to find the optimal solution up to 128-node topologies in a short 
time. It is for this reason that a very effective method was proposed to solving collective 
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communications and also the searching space is only n and not n2 as in at AA communi-
cations. 

 

The average number of fitness function evaluations of 
hyper-cube (OAS)

8,5

43,75
81,25

432
1105

1

10

100

1000

10000

8 16 32 64 128

Number of nodes

N
um

be
r 

of
 e

va
lu

at
io

ns

 
 

Figure 50: Time complexity of OAS. 
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Figure 51: Time complexity of AAS. 



Chapter 7  Evolutionary Design of Collective Communication 

 111

As it is evident from Fig. 51, the most complex collective communication for scheduling 
is AAS. We obtained the optimal solution for three instances of hyper-cube, but it doesn’t 
mean that our algorithm isn’t able to solve more complex topologies. For these more 
complex collective communications, we are able to obtain a superior sub-optimal solu-
tion. However, we interested only in optimal schedules.  

 

 

Figure 52: The real time complexity of four communication patterns. 

 
 
All experiments were conducted using a supercomputer IBM BLADE system [54]. To 
illustrate how the execution times of individual communications differ, measurements 
were taken of the number of fitness function evaluations and also in seconds elapsed, see 
Fig. 52.  
 
All experiments were made in all-port topologies with slim nodes, but for generalization 
of our algorithm, we must consider also 1-port topologies with fat nodes. Since to change 
a slim node to a fat node is very simply way how to increase the number of processors in 
an interconnection network, it is, therefore, utilized often. Experiments were performed 
on AAB communication pattern, because this pattern is the most complex for implemen-
tation, as described earlier in chapter 7.9. We performed these tests on the direct and the 
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indirect networks. The illustrative examples of one indirect and one direct network are in 
Fig. 53 - coated Mesh (CM) [4] and 2D-Mesh (M). Only 4 x 4 meshes are presented for 
simplicity 
 
 

 
 

Figure 53: a) 4 x 4 CM,                b) 4 x 4 2D-M. 

 
 
The results of scheduling all-to-all broadcast communications are shown in Table 16. 
Optimum algorithms (lower bounds) have been obtained for all 20 runs. We considered 
that the fat 3D-Hyper-cube and the Fat Octagon (Fig. 45) had two processors at each 
node in our experiments. 
 
 

Network topology Lower bounds AAB 

M 4x4, 1-port 15 15 (100%) 

M 4x4, all-port 8 8 (100%) 

CM 4x4, 1-port 15 15 (100%) 

Hyper-cube, 1-port 15 15 (100%) 

Hyper-cube, all-port 5 5 (100%) 

Octagon, 1-port 15 15 (100%) 

Octagon, all-port 5 5 (100%) 

 
 

Table 16: Results of AAB optimization. 
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The last experiments were devoted to the collective communication many-to-many 
broadcast. We solved all three possible situations, where the sets of senders and receivers 
are disjoint, overlapping and corresponding. As Table 17 illustrates, we again achieved 
optimal schedules. The previously unsolved problem of, “the overlapping sets of senders 
and receivers” was resolved during our investigation. 
 
 

M-to-N Lower bounds MNB 

8 to the same 8 7 7 

8 to other 8 8 8 

8 to all 16 8 8 

all 16 to all 16 15 15 

 
 

Table 17: M-to-N communication on the Fat Octagon topology (P = 16; 2 processors at a 
node). 

 
 
Finally, we would claim that our algorithm is generally usable and solves arbitrary collec-
tive communication, including one-port and all-port topologies. Only many-to-many scat-
ter communication have yet to be investigated, however all principles and techniques 
were developed and it only remains to modify the algorithm’s code to include this com-
munication pattern.  
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Chapter 8  
 
Conclusion and Future Research Direc-
tions 
 
 
 
 
 
In this work we have focused on the design of optimal collective communication sched-
ules for arbitrary topologies with SF switching technique. Optimal schedule achieves the 
minimal number of communication steps, which can, in an ideal case, be equal to the 
lower bound for any given topology. Using this schedule we can speed-up many parallel 
algorithms that use collective communication as a part of their algorithm. The finding of 
the optimum schedule is a very difficult combinatorial problem, therefore, we decided to 
use an evolutionary algorithm. We created the hybrid evolutionary algorithm HGSA, 
which is based on aggregation of parallel simulated annealing and standard genetic opera-
tions. The presented algorithm is able to find a schedule of a collective communication 
pattern for arbitrary network topologies and a related number of communication steps. 
The ability of our proposed algorithm to find good or even optimal solutions was proven 
by the use a hyper-cube benchmark. It can schedule collective communications for vari-
ous networks with unknown optimal (minimal) number of steps and is useful especially 
for irregular topologies, where the analytical approach cannot be applied. 
Of course, the fact that the lower bound may not always be reached by presented algo-
rithms is to be expected because this may not be attainable in principle by any algorithm. 
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Sometimes lower bounds can be obtained in schedules with non-minimum routing. How-
ever, only minimum routing has been considered in this work because inclusion of the 
non-minimum routing would lead to an enormous increase of possible paths from sources 
to destinations and to prohibitive computer memory capacity and time requirements. 
The probability rate of achieving an optimal solution is increased, if a prediction utility is 
used.  
The proposed algorithm was tested successfully using networks with both slim node and 
fat node topologies. 
The technology of fat interconnection networks has several advantages over traditional 
networks: 
- makes some small networks more scalable, even though the interconnection graph of a 
network is not scalable at all (Moore, Twisted ladder) or only partially scalable (Octagon, 
AMP); 

- in many cases provides cheaper  network implementation in terms of hardware cost and 
is often more suitable for networking systems on chip;  

- performance in one-to-all collective communications OAB and OAS is comparable to 
generic base networks, at times, even better; 

- the performance in all-to-all collective communications AAB and AAS is inferior to 
that of base networks, but it can be controlled by multiplicity of links and by overlapping 
local and global communications. 

We tested our algorithm by MNB collective communication with identical, overlapping 
and disjoint sets of senders and receivers. We derived the theoretical lower bound for this 
type of communication and our algorithm was able to design an optimal schedule of 
MNB with overlapping sets of senders and receivers, the first in history. Application-
oriented many-to-many collective communications are of increasing importance on mul-
tiprocessor SoCs. One example is when one group of processors finishes a task and a 
different size group continues and needs the intermediate results from the first group.  

Importance and novelty of above goals should be emphasized. Algorithms, which would 
be able to find all types of collective communication on any regular or irregular topology, 
were not published so far in spite of a growing importance especially for multiprocessors 
on chips. 
Finally, we are able to state that our algorithm is the first, which is able to solve arbitrary 
type of collective communication for variety networks topologies. 
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8.1 Future Research Directions 
 
The algorithm, described in this research paper, is the most generally useful of all pro-
posed algorithms to date. However, it is necessary to state that something is missing be-
fore for total generalization can be claimed. Our algorithm we tested with one-port and 
all-port model, but except these models there can exist also k-port model, when the proc-
essor can communicate with the router via k internal channels simultaneously. In fact, 
both of the models, one-port and all-port, are special cases of the “k-port” model. Al-
though our algorithm was not tested using this model, the source code is written in such a 
manner that we can achieve the required ability by means of a simple modification of the 
algorithm’s code. 
Another factor, not included in this research, was the communication pattern many-to-
many scatter. Modification of our algorithm isn’t complex for this communication pat-
tern, because all methodologies and principles were developed and examined. To achieve 
this ability, we remove some constraint rules from code of communication pattern MNB 
(e.g. creation of broadcast tree). 
In our work we assume only the same capacity of channels in whole interconnection net-
work. However, in practise, we can meet with cases, when some channels have different 
capacities. This extension will slightly more complicated integrate into our algorithm’s 
code.  
The last improvement is related to length of messages. In our conception of problems we 
assumed that all messages have the same length for simplicity. However, real applica-
tions can work with different length of individual messages. The solving of this problem 
requires a deeper intervention into the proposed methodology. 
 
 
 
 
 
 
 
 
 
 
 
 
 



  Bibliography 

 117

 
 
 

 
 
Bibliography 
 
 
 
 
 

[1] Flynn, M. J.: Very high-speed computing systems. Proc. IEEE, Vol. 12, pp. 1901–1909. 

[2] Staroba J.: Parallel Performance Modeling, Prediction and Tuning, PhD. Thesis, Faculty 
of Information Technology, Brno University of Technology, Brno, Czech Rep., 2004. 

[3] Anderson, T. E., Culler, D. E., Patterson, D.: A Case for NOW (Networks of Worksta-
tions). IEEE Micro, Vol. 15, No. 1 (Feb.), pp. 54–64. 

[4] Jantsch, A., Tenhunen, H., Networks on Chip, Kluwer Academic Publ., Boston, 2003. 

[5] A. Ivanov, G. De Micheli, “Guest Editors’ Introduction: The Network-on-Chip Paradigm 
in Practice and Research”, IEEE Design & Test of Computers, IEEE Los Alamitos CA, 
Sept.-Oct. 2005, pp. 399-403. 

[6] Singh A.: Load-Balanced Routing in Interconnection Networks, PhD. Thesis, The De-
partment of Electrical Engineering, Stanford University, USA, 2005. 

[7] Dally W.J., Towles B.: Principles and Practices of Interconnection Networks, Morgan 
Kaumann publishers, SF, USA, ISBN 0-23-200751-4, 2003. 

[8] Tvrdík P.: Parallel algorithms and computing, CVUT, skripta (FEL), 2003. 

[9] Charles L.: The Cosmic Cube, Communication of the ACM, 1985. 

[10] Whitby-Srevebs C.: The transputer, In Proc. of the international Symposium on Com-
puter Architecture (ISCA), 1985. 



  Bibliography 

 118

[11] Chien A. A.: A cost and speed model for k-ary n-cube wormhole routers, Proceedings of 
Hot Interconnects’93, 1993. 

[12] Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks, Morgan Kaufmann pub-
lishers, SF, USA, ISBN 1-55860-852-4, 2003. 

[13] Ni L. M., McKinley P. K.: A survey of wormhole routing techniques in direct networks, 
IEEE Computer, 1993. 

[14] Khonsari A., Sarbazi-Azad H., Ould-Khaoua M.: Analysis of true fully adaptive routing 
with software-based deadlock recovery, Journal of Systems and Software, Computer Sys-
tems, vol. 71, 2004. 

[15] Svethardware, Intel Tera-scale, URL:                    
http://www.svethardware.cz/art_doc216 DF91988A99F97C1257215003E2DDD.html, 
February 2007. 

[16] Intel, Intel Tere-scale, URL: 
http://www.intel.com/technology/techresearch/teracale/index.htm, February 2007. 

[17] Walter A., Kuhm M, URL:                                                                      
http://dontcry.cs.tu-berlin.de/cinsim/docbook/html/handbook.html, Berlin, 2005. 

[18] Wikipedia, The Free Encyclopedia, URL: http://en.wikipedia.org/wiki/Anycast, February 
2007. 

[19] Graveno L. et al.: Adaptive deadlock- and livelock-free routing with all minimal paths in 
torus network, IEEE Transaction on Parallel and Distributed Systems, vol. 5,no.12, 1233-
1251, 1994. 

[20] Tanenbaum A. S.: Computer Networks, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 
1988. 

[21] Hypercube topology, URL:               
http://www.sgi.com/products/remarketed/origin/pdf/hypercube.pdf, January 2006. 

[22] Pinkston T. M., Duato J.: Interconnection Networks, Computer Architecture, vol. 4, Uni-
versity of Southern California, 2006. 

[23] Valiant L. G., Brebner G. J.: Universal schemes for parallel communication, In Proc. of 
ACM Symposium of the Theory of Computing, Milwaukee, Minn., 1981. 



  Bibliography 

 119

[24] Towles B, Dally W. J.: Worst-case traffic for oblivious routing functions, In Proc. of the 
Symposium on Parallel Algorithms and Architectures (SPAA), Winnipeg, Manitoba, 
Canada, 2002. 

[25] Nesson T., Johnson L. S., ROMM routing on mesh and torus networks, In Proc. of the 
Symposium on Parallel Algorithms and Architectures (SPAA), Santa Barbara, CA, 1995. 

[26] Chien A.A., Kim J. H.: Planar-adaptive routing: low-cost adaptive networks for multi-
processors, In Proc. of the International Symposium on Computer Architecture (ISCA), 
1992. 

[27] Chiu G.: The odd-even turn model for adaptive routing, IEEE Tran. on Parallel and Dis-
tributed Systems, 2000. 

[28] Ye T. T., Benini L., De Micheli G.: Packetization and routing analysis of on-chip multi-
processor networks, Journal of Systems Architecture, 2004. 

[29] Glass C. J., Ni M. L.: The turn model for adaptive routing, In 25 years ISCA: Retrospec-
tive and Reprint, 1998. 

[30] Leiserson Ch. E., Abuhamdeh Z. S., Douglas D. C., Feynman C. R., Ganmukhi M. N., 
Hill J. V., Hillis W. D., Kuszmaul B. C., St Pierre M. A., Wells D. S., Wong-Chan M. C., 
Yang S., Zak R.: The network architecture of the Connection Machine CM-5, Journal of 
Parallel and Distributed Computing, 1996. 

[31] Sarbazi-Azad H., Ould-Khaoua M.: Modelling and evaluation of adaptive routing in 
high-performance n-D tori networks, Simulation Modeling Practice and Theory, Distrib-
uted Systems Simulation, vol. 14, 2006. 

[32] Schwiebert L., Jayasimha D. N.: Optimally fully adaptive minimal wormhole routing for 
meshes, Journal of Parallel and Distributed Computing, 1995. 

[33] Qiao W., Ni L. M.: Adaptive Routing in Irregular Networks Using Cut-Through Switches, 
Proc. Int’l Conf. on Parallel Processing, 1996. 

[34] Schroeder M. D.: Autonet: a High-Speed, Self-Configuring Local Area network Using 
Point-to-Point Links, SRC Research Report 59, DEC, 1990. 

[35] Silla F.: Efficient adaptive routing in networks of workstation with irregular topology, 
Proc. of the Workshop on Communications and Architectural Support for Network-Based 
Parallel Computing, 1997. 

[36] Silla F., Duato J.: Improving the efficiency of adaptive routing in networks with irregular 
topology, Proc. of the 1997 Conference on High Performance Computing, 1997. 



  Bibliography 

 120

[37] Keltcher C.N. et al.: The AMD Opteron Processor for Multiprocessor Servers. IEEE Mi-
cro, March/April 2003. 

[38] Fogel D. B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelli-
gence, IEEE Press, 1995. 

[39] Goldberg D. E., Genetic Algorithms in Search, Optimization and Machine Learning, 
Complex Systems, 1989. 

[40] E. H. L. Aarts and J. H. M. Korst: Simulated Annealing and Boltzmann Machines: A Sto-
chastic Approach to Combinatorial Optimization and Neural Computing, John Wiley & 
Sons, Chichester, 1989. 

[41] D. E. Goldberg: Simple genetic algorithms and the minimal deceptive problem, in: L. 
Davis, ed., Genetic Algorithms and Simulated Annealing (Pitman, London, 1987). 

[42] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E.: Equation of 
state calculations by fast computing machines, Journal of Chemical Physics 21(6), 1953. 

[43] Ackley D. H., Hinton G. E., Sejnowski T. J.: A learning algorithm for Boltzmann ma-
chines, Cognitive Science 9, 1985. 

[44] Goldberg D. E.: A note on Boltzmann tournament selection for genetic algorithms and 
population-oriented simulated annealing, Complex Systems 4, 1990. 

[45] Romeo F., Sangiovanni-Vincentelli A.: A theoretical framework for simulated annealing, 
Algorithmica, 1991. 

[46] Sait M. S., Yoissef H.: Iterative Computer Algorithms with Applications in Engineering: 
Solving Combinatorial Optimization Problems, Wiley-IEEE Computer Society Press, 
ISBN: 978-0-7695-0100-0, 2000. 

[47] Manual MPI. Document reasonable on URL: http://www-unix.mcs.anl.gov/mpi, April 
2007. 

[48] MP– TESTDATA, URL:                                                                
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html, April 2007. 

[49] Romeo.F., Sangiovanni-Vincentelli A.: A theoretical framework for simulated annealing, 
Algorithmica, 1991. 

[50] Mahfoud, S. W., Goldberg, D. E.: A genetic algorithm for parallel simulated annealing, 
Parallel Problem Solving from Nature 2, pp. 301–310, 1992. 



  Bibliography 

 121

[51] Mori, N., Yoshida, J. and Kita, H.: Suggestion of thermodynamical selection rule in ge-
netic algorithm, Transaction of Institute of Systems, Control and Information Engineers, 
Vol. 9, No. 2, 1996. 

[52] Krajíc, M.: Algorithm of parallel hybrid genetic simulated annealing to solve of traveling 
salesman problem, ČVUT FEL, Prague, 2002. 

[53] Chalmers, A.-Tidmus, J.: Practical Parallel Processing, International Thomson Com-
puter Press, 1996. 

[54] IBM BLADE system, URL: http://www-03.ibm.com/systems/bladecenter/, April 2007. 

[55] K. A. De Jong: An analysis of the behavior of a class of genetic adaptive systems, Disser-
tation Abstracts International, Ph.D. Thesis, University of Michigan, 1975 

[56] J. H. Holland: Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, 1992 

[57] Wiley J. & Sons: The Handbook of Information Security, URL: 
http://www.cse.scu.edu/~hpdommel/publications/hpd.wiley06.pdf, March 2005. 

[58] Marsan Ajmone M., Bianco A., Giacoone P., Leonardi E., Neri F.: Router Architecture 
Exploiting Input-Queued, Cell-Based Switching Fabrics, Politecnico di Torino, Italy, Au-
gust 2000. 

[59] Rexford J, Hall J, Shin K. G.: A Router Architecture for Real-Time Communication in 
Multicomputer Networks, IEEE Transactions on Computers, vol 47, no. 10, October 
1998. 

[60] Schmid S.: A Component-based Active Router Architecture, PhD. Thesis, Computing 
Department, Lancaster University, United Kingdom, November 2002. 

[61] Rexford J., Hall J., Shin K. G.: A Router Architecture for Real-Time Point-to-Point Net-
works, Department of Electrical Engineering and Computing Science, University of 
Michigan, USA, 1996. 

[62] Bang Y., Choo H.: On Bandwidth Adjusted Multicast Communications in Pipeline Router 
Architecture, Springer, 2005. 

[63] Duato J.: A Necessary and Sufficient Condition for Deadlock-Free Routing in Cit-
Through and Store-and-Forward Networks, IEEE Translations on parallel and distributed 
systems, vol. 7, no. 8, August 1996. 



  Bibliography 

 122

[64] V. Puente V., Gregorio J.A., Beivide R., Vallejo F., Ibańez A.: A New Routing Mecha-
nism for Networks with Irregular Topology, Proc. of the ACM/IEE SC2001 Conference, 
2001. 

[65] Chi H.C., Tang C. T.: A Deadlock-Free Routing Scheme for Interconnection Networks 
with Irregular Topologies, Proc. of the 1997 International Conference on Parallel and 
Distributed Systems (ICPADS '97), 1997. 

[66] Sait, S., M. Youssef H.: Iterative Computer Algorithms with Applications in Engineering, 
IEEE Computer Society, Los Alamos, California, 1999. 

[67] Pao, D. C. W., Lam, S. P., Fong A. S.: Parallel simulated annealing using transaction 
processing, IEEE Proceedings, Hong Kong, 1999. 

[68] Miky, M., Hiroyasu, T., Wako, J., Yoshida, T.: Adaptive Temperature Schedule Deter-
mined by Genetic Algorithm for Parallel Simulated Annealing, Doshisha University, 
Kyoto, 2003. 

 

 

 

Author publications 
 
 
 

[I] Dvořák Václav, Jaroš Jiří, Ohlídal Miloš: Optimum Topology-Aware Scheduling of Many-
to-Many Collective Communications, In: Proceedings of The Sixth International Confer-
ence on Networking, New York, US, IEEE CS, 2007, s. 6, ISBN 0-7695-2805-8 

[II] Jaroš Jiří, Ohlídal Miloš, Dvořák Václav: An Evolutionary Approach to Collective Com-
munication Scheduling, In: Genetic and Evolutionary Computation Conference GECCO 
2007, London, 2007 

[III] Jaroš Jiří, Ohlídal Miloš, Dvořák Václav: Complexity of Collective Communications on 
NoCs, In: Proc. of 5th International Symposium on Parallel Computing in Electrical En-
gineering, Los Alamitos, CA 90720-1314, US, IEEE CS, 2006, s. 127-132, ISBN 0-7695-
2554-7 



  Bibliography 

 123

[IV] Ohlídal Miloš, Jaroš Jiří, Dvořák Václav, Schwarz Josef: Evolutionary Design of OAB 
and AAB Communication Schedules for Interconnection Networks, In: Lecture Notes in 
Computer Science, roč. 2006, č. 3907, DE, s. 267-278, ISSN 0302-9743 

[V] Ohlídal Miloš, Jaroš Jiří, Dvořák Václav: Performance of Collective Communications on 
Interconnection Networks with Fat nodes and Edges, In: Proceedings of the Fifth Interna-
tional Conference on Networking ICN 2006, Los Alamitos, US, IEEE CS, 2006, s. 619-
624, ISBN 0-7695-2570-9 

[VI] Ohlídal Miloš, Schwarz Josef: Collective Communication AAB for Regular and Irregular 
Topology Based on Prediction of Conflicts, In: Proc. of 2006 IEEE Design and Diagnos-
tics of Electronic Circuits and Systems Workshop, Praha, CZ, IEEE CS, 2006, s. 224-
225, ISBN 1-4244-0184-4 

[VII] Ohlídal Miloš: Plánování skupinové komunikace All-to-All Broadcast pomocí predikce 
konfliktů v propojovacích sítích, In: Zborník príspevkouv pracovného semináre Počíta-
čové architektúry a diagnostika pre studenty doktorského štúdia, Bratislava, SK, UI SAV, 
2006, s. 25-30, ISBN 80-969202-2-7 

[VIII] Jaroš Jiří, Ohlídal Miloš, Dvořák Václav: Evolutionary Design of Group Communication 
Schedules for Interconnection Networks, In: Lecture Notes in Computer Science,  2005, 
č. 3733, DE, s. 472-481, ISSN 0302-9743 

[IX] Ohlídal Miloš, Schwarz Josef: Design of Group Communication for Regular and Irregu-
lar Networks, In: Mendel 2005 11th Internacional Conference on Soft Computing, Brno, 
CZ, FSI VUT, 2005, s. 45-50, ISBN 80-214-2961-5 

[X] Ohlídal Miloš: Plánování skupinových komunikací v propojovacích sítích, In: Sborník 
příspěvků ze semináře Počítačové Architektury a Diagnostika, Praha, CZ, FEL ČVUT, 
2005, s. 129-134, ISBN 80-01-03298-1 

[XI] Ohlídal Miloš, Schwarz Josef: HYBRID PARALLEL SIMULATED ANNEALING USING 
GENETIC OPERATIONS, In: Mendel 2004 10th Internacional Conference on Soft Com-
puting, Brno, CZ, FSI VUT, 2004, s. 89-94, ISBN 80-214-2676-4 

[XII] Ohlídal Miloš, Schwarz Josef: Parallel Simulated Annealing Applied to the Traveling 
Salesman Problem, In: Proceedings of 38th International conference MOSIS'04, Rožnov 
pod Radhoštěm, CZ, MARQ, 2004, s. 155-162, ISBN 80-85988-98-4 

[XIII] Ohlídal Miloš: Hybrid parallel simulated annealing using genetic operations, In: Zborník 
príspevkov ze seminara Počítačové Architektury a Diagnostika, Bratislava, SK, SAV, 
2004, s. 48-53, ISBN 80-969202-0-0 

 



 

 124

 

 

 
 
Appendix A 
 
Pseudo-code of Conflicts Prediction 

 
 
 
 
 

Procedure Simulated_Annealing(Tmin,Tmax,kmax,α:input;  
                              chromozomeopt:output); 
  begin 

 chromozomeini:=randomly_generated_chromosome; 
 T:=Tmax; 
 phase := 1; 
 //detection of conflict channels – prediction 
 Prediction(chromozomeini, links);   
 //all channels are searched in whole schedule 
 SearchChannel(chromosomeini, channels); 
 for i:=1 to i = channels.size() do 
 //search every paths with investigated channel and set com.  
 //step to all channels in chosen paths  
 //and simultaneously conflicting channels are searched  

    OffsetSetting(chromosomeini, i, conflict_channel); 
    //evalution of individual 
    pricest := links.size() + conflict_channel.size(); 

 While(T > Tmin and pricest <> 0)do  
   begin 

        Metropolis_alg(kmax,T, chromozomeini, phase, links,  
                    conflict_channel, chromozomeout, phase,  

                       pricest, links, conflict_channel);    
     chromozomeini:= chromozomeout; 
     T:= α*T;      
   end; 
 chromozomeopt:= chromozomeout; 

  end; 
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Procedure Metropolis_alg(kmax,T, chromozomeini, phase, links,  
                        conflict_channel:input;  
                        chromozomeout, phase, pricest, links,             

     conflict_channel:output); 
  begin 
    k:=0; 
    chromozome:= chromozomeini;  
    while (k< kmax and pricest <> 0) do 
      begin 
//---------------------Prediction phase------------------------ 
        if(phase = 1) then 
          begin 
            if(randnum(100) < prmut) 
               //randomly selected path is changed 
               Mutation(chromozome); 
            else 
              begin  
                 //conflicting channel is randomly selected 
                 inv_link := random(links.size()); 
                 //detection of paths, on which the  
                 //investigation channel is occurred 
                 Detection(inv_link, chromosome, indexpaths); 
                 //one path is selected 
                 path := randomly(indexpaths); 
                 //selected path is changed 
                 Mutation(chromosome, path);                   
              end; 
              
            //substitution of the shorter path consists in  
            //copying subpath of the longer path whose  
            //intermediate node is simultaneously terminated  
            //node of the shorter path and source node is the  
            //same in the both paths 
            Heuristic(chromosome); 
            Prediction(chromosome, links); 
            if(links.empty()) then   
               begin 
                 phase := 2;               
                 SearchChannel(chromosome, channels); 
                 for i:=1 to i = channels.size() do 
                   OffsetSetting(chromosome, i,  

        conflict_channel); 
               end; 
          end; 
//------------------------------------------------------------- 
 
//----------- Phase of communication step setting ------------- 
        else 
          begin 
             //a conflicting channel is selected 
             channel := random(conflict_channel.size());     
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             OffsetSetting(chromosome, channel, 
                           conflict_channel); 
          end;  
//------------------------------------------------------------- 
          //evalution of new individual 
          pricenov := links.size() + conflict_channel.size(); 
 
//---------------- Communication master slave ----------------- 
          if(k mod comm = 0) then 
            begin  
              if(numID = SLAVE) then 
                begin 
                  //its solution is sent to master   
                  Send(chromosome, master); 
                  //the solution is obtained from master 
                  Recv(parent, master); 
                end;  
              if(numID = MASTER) then 
                begin 
                  //solutions are obtained from all slaves  
                  for i:=1 to i=coutProc do 
                    Recv(chromosome_array, i); 
                  //roulette is performed 
                  Roulette(chromosome_array); 
                  //distribution of solutions according of  
                  //roulette selection   
                  for i:=1 to i=coutProc do 
                    Send(chromosome_array, i); 
                end; 
              //it performs crossover, mutation and selection  
              //of individual to next execution 
              GAOperations(chromosome,parent); 
            end; 
//------------------------------------------------------------- 
          if pricenov - pricest  < 0 then  
            begin 
              chromozome:= chromozome´ 
              pricest = pricenov;   
            end; 
      else 

      if random()< T
priceprice strnov

e
−

−
 then 

              begin 
                chromozome:= chromozome´ 
                pricest = pricenov;   
              end;  
      end; 

  end; 
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Procedure Prediction(chromosome:input; links:output); 
  begin 
    //all channels are searched in whole schedule 
    SearchChannel(chromosome, channels); 
    //search every paths with investigated channel  
    for channel:=1 to channel=channels.size() do 
      begin 
        SearchPath(chromosome, channel, paths); 
        //the number of paths using the channels is greater  
        //than the value of comm. step of whole schedule 
        if(paths.size() > comm_step) 
          //conflict is detectable  
          links.push_back(channel); 
        else 
          begin 
            //detection of possible steps for channels on                  
            //investigate paths  
            ok := StepDetection(chromosome, paths); 
            //it is not possible to set two different value of   
            //step to channel on two different paths 
            if(ok = FALSE) then 
              begin  
                links.push_back(channel); 
              end; 
          end;  
      end;   
  end; 

 
 
 
 
 

Procedure OffsetSetting(chromosome, channel:input; 
                      conflict_channel:output); 
 begin 
   //search every paths with conflicting channel 
   SearchPath(chromosome, channel, paths); 
   //search remaining channels occur on paths with conflicting  
   //channel  
   SearchChannel(chromosome, channels, paths); 
   for ch:=1 to ch=channels.size() do 
     begin 
       //search every paths with investigated channel            
       SearchPath(chromosome, ch, ch_paths); 
       //calculation of interval of possible communication  
       //steps to channel on selected paths 
       BoundCompute(ch, ch_paths); 
       // an assignment of communication steps to channel on  
       //selected paths 
       ok := SetStep(chromosome, ch, ch_paths); 
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       //it is not possible to set two different value of   
       //step to channel on two different paths 
       if(ok = FALSE) then 
         begin 
           conflict_channel.push_back(ch); 
         end; 
     end;  
 end; 
 
 
 
 
 

Begin 
  input, output : file; 
 
  //read parameters from input_file 
  ReadInput(input);   
  //create set of all shortest paths between every pair of  
  //source-destination nodes 
  CreateSetOfShortestPaths(paths); 
  //initialization of the chromosome 
  Inicialization(chromozomeini); 
  if(numID = MASTER) then 
    begin 
      //initialization of output file to writing 
      output := open(write); 
    end; 
  //evolutionary optimization technique – searching of conflict- 
  //free schedule 

Simulated_Annealing(chromosomeini,Tmin,Tmax,kmax,α,chromozomeopt);  
  if(numID = MASTER) then 
    begin 
      //printing of achieved schedule 
      PrintChromosome(chromozomeopt, output); 
    end; 
End. 
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Appendix B 
 
Investigated Topologies 

 
 
 
 
 
 

                  a)               b) 

 

Figure 54: Interconnection networks: a) Hyper-cube and b) K-ring 
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            c)                                                                       d)  
 

Figure 55: c) Moore graph and d) Midimew 

 
 

                           e)               f) 

 

Figure 56: e) AMP with SC and f) AMP without SC 
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   g)         h) 
 

Figure 57: g) Ladder  and h) Twisted ladder 
 

         i)       j) 
 

Figure 58: i) Slim Octagon and j) Fat Octagon 

 
 

         k)       l) 
 

Figure 59: k) Coated Mesh and l) 2D-Mesh 
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Appendix C 
 
Example of Optimal OAB Communica-
tion Schedule on Moore Graph Topology 
 
 
 
 

  

 
 

Figure 60: Model of OAB communication: store-and-forward switching, full duplex 
links, all-port non-combining model. 
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Appendix D 
 
Example of Optimal AAB Communica-
tion Schedule on Moore Graph Topology 
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Figure 61: Model of AAB communication: store-and-forward switching, full duplex 
links, all-port non-combining model. 
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Appendix E 
 
Example of Optimal OAS Communica-
tion Schedule on Moore Graph Topology 
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Figure 62: Model of OAS communication: store-and-forward switching, full duplex 
links, all-port non-combining model. 
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Appendix F 
 
Example of Optimal AAS Communica-
tion Schedule on Moore Graph Topology 
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Figure 63: Model of AAS communication: store-and-forward switching, full duplex 
links, all-port non-combining model. 
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Appendix G 
 
Example of Optimal MNB Communica-
tion Schedule on Moore Graph Topology 
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Figure 64: Model of MNB communication: store-and-forward switching, full duplex 
links, one-port non-combining model; the set of senders M: 0, 1, 2, 3, 4, 5 and the set of 
receivers N: 4, 5, 6, 7, 8, 9. 


