
BRNO UNIVERSITY OF TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

EVOLUTIONARY DESIGN OF COLLECTIVE
COMMUNICATION BASED ON PREDICTION OF
CONFLICTS IN INTERCONNECTION NETWORKS

DOCTORAL THESIS

AUTHOR Ing. MILOŠ OHLÍDAL

SUPERVISOR Doc. Ing. JOSEF SCHWARZ, CSc.

BRNO 2007

 1

Abstract

This work describes the application of a hybrid evolutionary algorithm to scheduling col-
lective communications on the interconnection networks of parallel computers. To avoid
contention for links and associated delays, collective communications proceed in syn-
chronized steps. The minimum number of steps is sought for any given network topol-
ogy, store-and-forward switching, minimum routing and given sets of sender and/or re-
ceiver nodes. Used algorithm is able not only to re-invent optimum schedules for known
symmetric topologies such as hyper-cubes, but it can find schedules even for asymmetric
or irregular topologies in case of general many-to-many collective communications. In
most cases the number of steps reaches the theoretical lower bound for the given type of
collective communication; if it does not, non-minimum routing can provide further im-
provement. Optimum schedules are destined for writing high-performance communica-
tion routines for application-specific networks on chip or communication libraries for
general-purpose interconnection networks.

Keywords: collective communications, communication scheduling, evolutionary optimi-
zation, topology of interconnection network, multiprocessor, parallel processing, routing
algorithm, store-and-forward switching technique, model of communication, prediction
of conflicts

 2

Acknowledgements

First and foremost I wish to thank to my supervisor Docent Josef Schwarz who has been
a permanent source of stimulation and encouragement throughout my research. His ad-
vice and constructive criticism have helped me to progress towards the successful com-
pletion of my research work. I am also grateful to Professor Václav Dvořák for his inspi-
ration and productive discussion. Special thanks also to my parents and the rest of my
closest family for their understanding and support. Last, but not least, I would like to
thank to my colleagues from the Faculty of Information Technology (FIT VUT Brno)
with whom I have had the pleasure of working.

 3

Contents

Chapter 1 ..11

Introduction..11
1.1 Parallel Architectures...12
1.2 State of the Art...14
1.3 Overview of the Following Chapters...16

Chapter 2 ..17

Interconnection Networks..17
2.1 Basics in Interconnection Networks ..19

2.1.1 Packet and Message ...19
2.1.2 Topology..20
2.1.3 Routing...26
2.1.4 Routing Model ...26
2.1.5 Flow Control ..28

2.2 Deadlock, Livelock and Conflict ...30
2.3 Case Study: Intel Tera-scale ..31

Chapter 3 ..35

Switching Techniques..35
3.1 Circuit Switching ...36
3.2 Store and Forward Switching ..37
3.3 Virtual Cut-Through Switching ...39
3.4 Wormhole Switching ...40

Chapter 4 ..42

Routing Algorithms ...42
4.1 Taxonomy of Routing Algorithms...43
4.2 Deterministic Routing..44

 4

4.3 Oblivious Routing..45
4.4 Adaptive Routing...46
4.5 Routing in Irregular Topologies ..48

4.5.1 Up*/Down* Algorithm..48
4.5.2 Adaptive Routing Algorithm for Irregular Network..................................49

Chapter 5 ..51

Collective Communication ..51
5.1 Multiple One-to-One Communication...52
5.2 One-to-All Communication ...53
5.3 All-to-One Communication ...53
5.4 All-to-All Communication...54
5.5 Many-to-Many Communication ..55
5.6 Convenient Collective Communication Services ..57
5.7 Models of Communication ..57

Chapter 6 ..60

Design of New Evolutionary Optimization Techniques..60
6.1 Basics of Classical Genetic Algorithm ..61
6.2 Simulated Annealing..62
6.2.1 Control Parameters of Simulated Annealing ...63
6.2.2 Parallelization of SA..64
6.2.3 Design of a New Parallel SA ...65
6.3 Hybridization of Evolutionary Algorithms..72

6.3.1 A Short Survey of Hybrid Parallel Simulated Annealing Using Genetic
Operators ……………………………………………………………………………73
6.3.2 Design a New Hybrid Parallel Genetic Simulated Annealing (HGSA)73
6.3.3 General Differences between New HGSA and Other Approach of SA
and GA Aggregation..74

6.4 Experimental Results ...75
6.5 Summary..77

Chapter 7 ..79

Evolutionary Design of Collective Communication..79
7.1 Model of Communication..81
7.2 Methodology of Design of Optimal Communication Schedules.......................82

7.2.1 Searching of Conflicts ...82
7.2.2 Prediction of Conflicts ...83

7.3 Input Data ..86

 5

7.4 Search of The Shortest Paths ...87
7.5 Solution Encoding..88
7.6 Definition of Fitness Function ...90

7.6.1 The Fitness Function Based on Searching of Conflicts.............................90
7.6.2 The Fitness Function Based on Prediction of Conflicts91

7.7 Heuristic...93
7.8 Generalization of New Proposed Algorithm ...94

7.8.1 Fat Topologies ...94
7.8.2 Many-to-Many Broadcast Communication ...95

7.9 Analyze of Proposed Algorithm ..97
7.10 Experimental Results ...101

Chapter 8 ..114

Conclusion and Future Research Directions..114
8.1 Future Research Directions..116

Bibliography ...117
Author publications..122

Appendix A..124

Appendix B ..129

Appendix C ..132

Appendix D..133

Appendix E ..135

Appendix F ..137

Appendix G..143

 6

List of Figures

Figure 1: Basic structure of a shared-memory multiprocessor. ..12
Figure 2: Basic structure of a distributed-memory multiprocessor.13
Figure 3: The functional schema of an interconnection network. Terminals T1

through T6 are connected to the network with bi-directional channels.18
Figure 4: The structure of message...20
Figure 5: Example of network topology. Illustrated topology is K-ring.21
Figure 6: The bisection Bc = 16 and degree d = 8 of K-ring topology. Each edge

represents two unidirectional channels going in opposite directions.22
Figure 7: Node of direct network and node of indirect network – it consists of a

terminal node and a switch node. ..23
Figure 8: The fat node topology with two terminal nodes connected to one switch

node. ..24
Figure 9: Two ways of routing from node 5 to node 3 in the hyper-cube. (a) A non-

minimal route requires more than the minimal path length. (b) A minimal
routing using minimal path length. ...26

Figure 10: Router model with ability to store packets for a time.28
Figure 11: Time-space diagram shows two flow control methods. (a) Store-and-

Forward flow control – a packet is completely transmitted across one
channel before transmission across the next channel is started. (b)
Wormhole flow control – a packet transmission over the channels is
pipelined..29

Figure 12: Deadlock in communication. Both partners start to send their packets
and they are waiting for confirm of receiving these packets. Both are
sending and therefore they cannot receive..30

Figure 13: Two source nodes want to use the same channel in the same direction
and at the same time – it appears conflict. ..31

Figure 14: Prototype of multiprocessor Intel “Tera-scale” with eighty cores.32

 7

Figure 15: Scalability is ensured on the all levels. In this figure, multiprocessor is
denoted like CPU. ...33

Figure 16: (a) Ring topology and (b) 2D-Mesh topology of Intel “Tera-scale”.34
Figure 17: View of the network path for computing switching latency.36
Figure 18: Time-space diagram of a circuit-switched message..37
Figure 19: Time-space diagram of a store-and-forward-switched message.38
Figure 20: Time-space diagram of a virtual cut-through switched message. (tblocking

= waiting time for a free output channel.)...39
Figure 21: Time-space diagram of a wormhole-switched message..................................40
Figure 22: An example of deterministic routing. A packet is routed from node 15 to

node 6 first by routing in the x dimension and then in the y dimension.45
Figure 23: An example of randomized routing (Valiant’s algorithm) on 4x4 mesh.

A packet is routed from node 13 to node 11 in two phases. In the first
phase the packet is routed to random selected intermediate node 6 as
shown the bold solid lines. The second phase delivers the packet from
node 6 to node 11 as shown the dotted lines...46

Figure 24: A packet is routed from node 13 to node 3 along the solid line. To avoid
the channel occupancy, which is illustrated by dotted line, the packet is
routed by the longer path, which occupies many channels of the
interconnection networks. ...47

Figure 25: Link direction assignment for the irregular network [12].49
Figure 26: Multiple one-to-one communication pattern: circuit shift permutation.52
Figure 27: Two one-to-all communication patterns: (a) broadcast communication

and (b) scatter communication..53
Figure 28: Two all-to-one communication patterns: (a) reduce communication and

(b) gather communication. ..54
Figure 29: Two all-to-all communication patterns: (a) all-broadcast communication

and (b) all-scatter communication. ...55
Figure 30: Two many-to-many communication patterns, where senders and

receivers are overlapped: (a) many-broadcast communication and
(b) many-scatter communication. ...56

Figure 31: Illustration of the communication during the temperature phase and at
the end of the temperature phase. ...66

Figure 32: Average tour length of TSP 52 for several versions of PSA...........................68
Figure 33: Computational time with relevant average tour length at each PSA

versions and sequential SA versions...69
Figure 34: Optimization curves for TSP 52 (52 cities)...70
Figure 35: Optimization process of tour length for TSP 79 (79 cities).70

 8

Figure 36: Structure of Hybrid parallel genetic simulated annealing.74
Figure 37: Average tour length of TSP 52 for HGSA and three versions of PSA.76
Figure 38: Computational time with relevant average tour length for HGSA and

PSA versions...77
Figure 39: 32 processors in AMP topology. The SC node denotes a system

controller (host computer) that sends input data to processing nodes and
collects results. ..80

Figure 40: Conflict on a communication channel...83
Figure 41: 9-processor Mesh configuration. ...86
Figure 42: Construction of the shortest paths list from node 0 to node 5 in the 9-

processor Mesh topology. ...88
Figure 43: The structure of chromosome..89
Figure 44: Modification of shorter path according to longer path....................................93
Figure 45: Fat Octagon topology with full duplex links and one-port model.96
Figure 46: Illustration of a file, in which a network topology is description for

MNB. ..97
Figure 47: The real time complexity of AAB on 64-node hyper-cube with different

number of communication steps. ..106
Figure 48: Time complexity of AAB on 64-node hyper-cube with different number

of communication steps. ...107
Figure 49: Time complexity of AAB..109
Figure 50: Time complexity of OAS. ...110
Figure 51: Time complexity of AAS. ...110
Figure 52: The real time complexity of four communication patterns.111
Figure 53: a) 4 x 4 CM, b) 4 x 4 2D-M..112
Figure 54: Interconnection networks: a) Hyper-cube and b) K-ring129
Figure 55: c) Moore graph and d) Midimew ..130
Figure 56: e) AMP with SC and f) AMP without SC...130
Figure 57: g) Ladder and h) Twisted ladder ..131
Figure 58: i) Slim Octagon and j) Fat Octagon...131
Figure 59: k) Coated Mesh and l) 2D-Mesh ...131
Figure 60: Model of OAB communication: store-and-forward switching, full duplex

links, all-port non-combining model...132
Figure 61: Model of AAB communication: store-and-forward switching, full duplex

links, all-port non-combining model...134
Figure 62: Model of OAS communication: store-and-forward switching, full duplex

links, all-port non-combining model...136

 9

Figure 63: Model of AAS communication: store-and-forward switching, full duplex
links, all-port non-combining model...142

Figure 64: Model of MNB communication: store-and-forward switching, full
duplex links, one-port non-combining model...146

 10

List of Tables

Table 1: Lower bounds on complexity of collective communications at slim node

topology...59
Table 2: The setting of SA control parameters. ..67
Table 3: The value of HGSA parameters. ...75
Table 4: Assignment of communication steps to channel from the interval (7.4).85
Table 5: 9-processor Mesh routing table...86
Table 6: An assignment of communication steps to channel from the interval (7.25).92
Table 7: Time complexity of individual parts of algorithm based on conflict

prediction in percent on the 32-slim node bidirectional all-port hyper-
cube; *) this value corresponds with frequency of communication n*100
iteration (n > 1) from 300 iterations of Metropolis algorithm...........................99

Table 8: The value of control parameters of proposed algorithm...................................101
Table 9: Experimental results and the theoretical lower bound of the broadcast

collective communication for the all-port topologies with 8-nodes................102
Table 10: Experimental result and the theoretical lower bound of the scatter

collective communication for the all-port topologies with 8-nodes................103
Table 11: Number of steps for OAB optimization..104
Table 12: Number of steps for AAB optimization (bold digits represent cases when

lower bounds were not reached)..104
Table 13: Success rate of 15 runs in achieving the optimal communication

scheduling for AAB. ...105
Table 14: Number of steps for OAS and AAS optimization (bold digits represent

cases when lower bounds were not reached). ...108
Table 15: Success rate of 15 runs for AAS communication scheduling (the

communication complexity is illustrated in Table 14)....................................108
Table 16: Results of AAB optimization..112
Table 17: M-to-N communication on the Fat Octagon topology (P = 16;

2 processors at a node). ...113

Chapter 1 Introduction

 11

Chapter 1

Introduction

The demand for even greater computing power has never stopped. Although the perform-
ance of processors has doubled (approximately) every three years, the complexity of the
software and the scale and solution quality of applications, have continuously driven the
need and development for yet faster processors. However, the frequency of processors
cannot be increased to the infinity. The creation of more powerful computers is through
parallelization.
A parallel computer requires some kind of communications subsystem to interconnect the
processors, memories and other devices. The specific requirements of these communica-
tion subsystems depend upon the architecture of the parallel computer. The simplest solu-
tion consists of connecting processors to memories and disk. Processors can be intercon-
nected using the interface to local area networks.

Chapter 1 Introduction

 12

1.1 Parallel Architectures

One of the fundamental taxonomies of computer architectures, proposed as early as 1966
by Flynn [1], but still useful today, is a model of categorizing all computers into four
classes according to parallelism at the instruction stream and data stream levels. These
categories combine single/multiple data streams and single/multiple instruction streams.
From the four possible combinations, the only category, which emerged as the parallel
architecture of choice for general-purpose multiprocessors, is MIMD (multiple instruc-
tion streams, multiple data streams) [2]. This is primarily due to two reasons:

• MIMDs offer flexibility. With the correct hardware and software support, MIMDs
can function as single-user multiprocessors on high performance for one applica-
tion, as multiprogrammed multiprocessors running many tasks simultaneously or
in some combination of these functions.

• MIMDs can build on the cost-performance advantages of off-the-shelf microproc-
essors. In fact nearly all multiprocessors built today use the same microprocessors
as those to be found in workstation and single-processor servers.

Existing MIMD multiprocessors fall into two classes, depending on the number of proc-
essors involved, which in turn dictate a memory organization and interconnection strat-
egy. The first group called centralized shared-memory architectures usually does not
have more than a few tens of processors. The second group, which consists of multiproc-
essors with physically distributed memory, scales to hundreds or thousands of processors.

Figure 1: Basic structure of a shared-memory multiprocessor.

Chapter 1 Introduction

 13

For multiprocessors with small processor counts, it is possible for the processors to share
a single centralized memory and to interconnect the processors and memory by intercon-
nection network. Due to a single main memory that a symmetric relationship to all proc-
essors and uniform access time from any processor these multiprocessors are often called
symmetric (shared-memory) multiprocessors (SMPs). This style of architecture is some-
times called uniform memory access (UMA). Figure 1 shows the basic structure of these
multiprocessors [2].
To support a large processor count memory in parallel architectures must be distributed
among the processors rather than centralized: otherwise the memory system would not be
able to support the bandwidth demands of a large number of processors without incurring
excessively long access latency. The large number of processors raises the need for high
bandwidth interconnections. The basic structure of these multiprocessors is illustrated in
Figure 2.
There are two alternative architectural approaches that differ in the method used for
communication data among processors in a distributed-memory system: single address
space and multiple address spaces.

Figure 2: Basic structure of a distributed-memory multiprocessor.

Chapter 1 Introduction

 14

Using the first method, physically separated memories can be addressed as one logically
shared address space. Meaning that any processor can make a memory reference to any
memory location, assuming it has correct access rights. These multiprocessors are called
distributed shared memory (DSM) architectures. The term shared-memory refers to the
fact that address space is shared, but it does not mean that there is a single centralized
memory. In contrast to the symmetric shared-memory multiprocessors, also known as
UMA (uniform memory access), the DSM multiprocessors use NUMA (nonuniform
memory access), since the access time depends on the location of a data word in memory.
Alternatively, the address space can consist of multiple private address spaces that are
logically disjoint and cannot be accessed by the remote processor. In such multiproces-
sors the same physical address for two different processors refers to two different loca-
tions in two different memories. Each processor-memory module is essentially a separate
computer. These parallel processors have been called multicomputers. It is now widely
recognized that a cluster of workstations (COW) or network of workstations (NOW) of-
fers a very attractive alternative to expensive supercomputers and parallel computer sys-
tems for high-performance computing. [3]

1.2 State of the Art

Processors with two cores are now here, and quad-core processors will very soon be
available. In the coming years, the number of cores on a chip will continue to be in-
creased, launching an era of vastly more powerful computers. These are the machines that
will deliver teraflop performance with the efficient capabilities needed to handle tomor-
row’s emerging applications.
Why such a leap forward? These developments are necessary because incremental im-
provements in performance and capabilities would be unable to support real-time data
mining across teraflops of data; artificial intelligence (AI) for smarter cars and appli-
ances; virtual reality (VR) for modeling, visualization, physics simulation, and medical
training; and other applications that are still on the edge of being science fiction. Also,
data stores are becoming larger and more complex. In medical healthcare, a full-body
medical scan already contains terabytes of information. In our homes, people are generat-
ing large amounts of data, including hundreds of hours of video, thousands of documents,
and tens of thousands of digital photos that need to be indexed and searched. Teraflop

Chapter 1 Introduction

 15

computing is the way to bring the massive compute capabilities of supercomputers to
everyday devices, from servers, to desktops, to laptops.
With an increasing number of processor cores, memory modules and other hardware units
in System on Chips (SoCs), the importance of communication within the system and with
its related interconnection networks is steadily growing. These demands for increased
communication within our computing systems has recently opened up research work in
the Network on Chip (NoC) area, encompassing the interconnection/communication
problem at all levels, from physical to the architectural to the OS and application level
[4], [5].
Some embedded parallel applications, such as network or media processors, are charac-
terized by independent data streams or by a small amount of inter-process communica-
tions [4]. However, many general-purpose parallel applications display a bulk-
synchronous behavior: the processing nodes access the network according to a global,
structured communication pattern. They can, for example, execute a personalized all-to-
all information exchange, global synchronization, gather/scatter to/from one node, etc.
The performance of these collective communications has a dramatic impact on the overall
efficiency of parallel processing. Provided that computation times are known, as is usu-
ally the case in application-specific systems, the sole criteria thing for obtaining the high-
est performance is the duration of the various collective communications.
Bus-based synchronous communication structures in SoC, operating at several hundreds
MHz, are no longer attractive, due to tight timing constraints and skew control [5]. Tran-
sition to point-to-point high speed networks, that happened on system boards (e.g. from
PCI to PCI/Express), is taking place on SoCs, too. Much research and practical interest
has recently focused on interconnection networks implemented on chip.
Currently, there are many different interconnection network topologies for general pur-
pose multiprocessors, but new networks for specific parallel applications can still be cre-
ated. Whereas the lower bounds on the time complexity of various group communications
(in terms of required number of communication steps) can be mathematically derived for
any network topology and its given communication pattern. Finding a corresponding
schedule of communication is more difficult and, in some cases, not, as yet, an estab-
lished matter.

The goal of this thesis is to create a general method based on evolutionary algorithm for
optimal scheduling of a given collective communication and for arbitrary topologies. This
optimal schedule has to be deadlock-free (some messages cannot advance toward their
destination because the resources are full) and conflict-free (only one message can be sent
via given channel in the same direction at the same time) and also has to be executed in
the shortest possible time, i.e. in minimal number of communication steps.

Chapter 1 Introduction

 16

1.3 Overview of the Following Chapters

The opening of this chapter presented an introduction to parallel computation, followed
by a short description of widely used parallel architectures in section 1.1. An overview of
a state of art in the multiprocessors area was given and, finally, the goal of this work was
introduced.
All the needed terms of interconnection networks area are explained and defined in chap-
ter 2, which is necessary for a full understanding of our proposed method. At the end of
this chapter, the view of multiprocessor chips’ future is presented.
The third chapter describes in detail and explains switching techniques. In the fourth
chapter the most widespread routing methods are presented, which are utilized with
smaller or higher variations in almost all proposed routing algorithms to this time.
The fifth chapter is dedicated to a detailed description of collective communication and
models of communication. The mathematical approach is shown to calculate a lower
bound of time complexity of optimal schedule, which can be utilized for some type of
interconnection networks.
Chapter 6 deals with the design of a new hybrid evolutionary method, and simultaneously
our new method is compared with other similar hybrid evolutionary techniques in this
chapter. Firstly, quality and efficiency of the proposed new method was tested on the
traveling salesman problem and after verification of its quality, this method was utilized
in the solving of a real problem from practice, i.e. the scheduling of collective communi-
cations for arbitrary interconnection networks. Chapter 7 is also dedicated to this sched-
uling problem. The method was developed based on prediction of conflicts to design of
optimal schedule. From the achieved results it can be stated that this method is very ef-
fective and it is able to schedule arbitrary topologies for arbitrary communication.
Finally, chapter 8 summarizes the main contributions of the thesis and proposes possible
directions for future research.
Appendix A contains the pseudo-code of our proposed routing algorithm. All investigated
topologies are presented in appendix B. The examples of OAB, AAB, OAS, AAS and
MNB collective communication schedules are illustrated in the remaining appendixes.

Chapter 2 Interconnection Networks

 17

Chapter 2

Interconnection Networks

An interconnection network is a programmable system that enables fast data communica-
tion between the components of a digital system. The network is programmable in the
sense that it enables different connections at different points in time. The network is a
system because it is composed of many components: buffers, channels, switches, and
controls that work together to deliver data.
The functional view of an interconnection network is illustrated in Figure 3. Six terminal
nodes are connected to the network with bidirectional channels. When a source terminal
(say T3) wants to communicate with a destination terminal (say T5), it sends data in the
form of a message into the network and the network delivers the message to T5. Using
the same resources, the network can deliver the above message in one cycle (cycle ex-
presses time), and a different message in the next cycle. [6]
Interconnection networks are used in almost all digital systems that are large enough to
have two components to connect. The most common applications of interconnection net-
works are in computer systems and communication switches. In computer networks, they
connect processors to memories and input/output (I/O) devices to I/O controllers. They
connect input ports to output ports in communication switches and network routers.
Interconnection networks may also connect sensors and actuators to processors in control
systems, host and disk nodes in I/O networks and on-chip cores in chip multiprocessors.

Chapter 2 Interconnection Networks

 18

Today, all high-performance interconnections are realized by point-to-point interconnec-
tion networks rather than buses, and many systems that historically have been bus-based
are being converted to the networks systems every year. The demand for interconnection
performance is increasing with processor performance and network bandwidth. As a re-
sult, buses have been unable to keep up with the bandwidth demand, and point-to-point
interconnection networks, which operate faster than buses while also offering concur-
rency, are rapidly taking over. [7]

Figure 3: The functional schema of an interconnection network. Terminals T1 through
T6 are connected to the network with bi-directional channels.

The performance of most digital systems today is limited by their communication or in-
terconnection, not by their logic or memory. Hence, it is imperative that the underlying
interconnection network performs efficiently in order to improve the efficacy of the entire
system. For instance, in a computer system, the interconnection network between proces-
sor and memory determines key performance factors such as the memory latency and

T2

T3

T4

T5

T6

T1

Interconnection
Network

Chapter 2 Interconnection Networks

 19

memory bandwidth. The performance of the interconnection network in a communication
switch largely determines the capacity (data rate and number of ports) of the switch.

2.1 Basics in Interconnection Networks

A key to the efficiency of interconnection networks comes from the fact that communica-
tion resources are shared. Instead of creating a dedicated channel between each terminal
pairs, the interconnection network is implemented with a collection of shared router
nodes connected by shared channels. The connection pattern of these nodes defines the
network’s topology. A message is then delivered between terminals by making several
hops across the shared channels and nodes from its source terminal to its destination ter-
minal.
Once a topology has been chosen, there can be many possible paths (sequences of nodes
and channels) that a message could take through the network to reach its destination.
Routing determines which of these possible paths a message actually takes. A good
choice of paths minimizes their length, usually measured as the number of nodes or chan-
nels visited, while balancing the demand placed on the shared resources of the network.
The length of a path obviously influences latency of a message through the network and
the demand or load on resource is a measure of how often that resource is being utilized.
If one resource becomes over-utilized while another sits idle the total bandwidth of mes-
sages being delivered by the network is reduced.
Flow control dictates which messages gets access to particular network resources over
time. This influence of flow control becomes more critical as the utilization of the re-
source increases and good flow control forwards packets with minimum delay and avoids
idling resources under high loads. [7]
A detailed description and concept definition will be presented in the following chapters.

2.1.1 Packet and Message

It is necessary to distinguish between messages and packets in a network. A message is
the logical unit of data transfer provided by network interfaces. Its size is limited only by
the user memory space. Because messages do not always have a bounded length, they are
often broken into smaller packets for handling within the network. Packets are fixed-size

Chapter 2 Interconnection Networks

 20

smallest unit of communication containing routing information (e.g., a destination ad-
dress) and sequencing information in its header. All data contained within a packet fol-
lows the same route through the network and packets are reassembled into messages at
the destination. Its size is of the order of hundreds or thousands of bytes or words, con-
sisting of header flits and data flits. The structure of a message is illustrated in the Fig. 4
[8].
Packets are divided into fixed length flits (flow control digit) to simplify the management
and allocation of resources. A flit is the smallest unit of resources allocation in a router. It
may be divided further into phits (physical digit) for handling by the router datapath.

Figure 4: The structure of message.

2.1.2 Topology

Interconnection networks are composed of a set of shared router nodes and channels. The
topology of the network refers to the arrangement of these nodes and channels. The to-
pology of an interconnection network is analogous to a roadmap. The channels (the
roads) carry packets (the cars) from one route node (the intersection) to another. For ex-
ample, the network shown in Fig. 5 consists of 8 nodes, each of which is connected to 8
channels / 4 links. One link between nodes consists of 2 channels, 1 to neighbor and 1
from neighbor.

Chapter 2 Interconnection Networks

 21

• Channels and Nodes
The topology of an interconnection network is specified by a set of nodes N connected by
a set of channels C. Each channel c = (x, y) ∈ C connects a source x to a destination
node y, where x, y ∈ N. We denote the source node of a channel c as sc and the destina-
tion as dc.
A channel c = (x, y) ∈ C is characterized by its latency tc or txy the time required for a bit
to travel from x to y. For most channel the latency is directly related to the physical length
of the channel lc = vtc, by a propagation velocity v.

Figure 5: Example of network topology. Illustrated topology is K-ring.

Each node x has a channel set Cx = CIx ∪ COx, where CIx = {c ∈ C | dc = x} is the input
channel set and COx = {c ∈ C | sc = x} is the output channel set. [7]

• Node degree
A node degree is the number of channels entering and leaving node.

The degree of x is dx = |Cx| which is the sum of the in degree dIx = |CIx| and the out de-
gree dOx = |COx|, where x ∈ N.

0

1

2

3

4

5

6

7

Chapter 2 Interconnection Networks

 22

• Bisections
A bisection of a network is a cut that partitions the entire network nearly in half:

1|||||| 212 +≤≤ NNN (2.1.1)

The channel bisection of a network (bisection width) BC is the minimum channel count
over all bisections of the network:

|),(|min 21sec
NNCB

tionsbiC = (2.1.2)

A cut of a network C(N1,N2) is a set of channels that partitions the set of all nodes N into
two disjoint sets N1 and N2. Each element of C(N1,N2) is a channel with a source N1 and
destination N2. The total bandwidth of the cut is:

c
NNCc

bNNB
),(

21
21

),(
∈
∑= (2.1.3)

where bc is bandwidth of channel.

The bisection bandwidth of network BB is the minimum bandwidth over all bisections of
the networks [7]:

),(min 21sec
NNBB

tionsbiB = (2.1.4)

0

1

2

3

4

5

6

7

Bisection
line

Figure 6: The bisection Bc = 16 and degree d = 8 of K-ring topology. Each edge repre-
sents two unidirectional channels going in opposite directions.

Chapter 2 Interconnection Networks

 23

• Paths
A path in a network is an ordered set of channels Pa = {c1,…., cn}. Paths are also referred
to as router. The source of a path is sc1. Similar, the destination of a path is dcn. The
length or hop count of a path is |Pa|. If, for a particular network and its routing function at
least one path exists between all source-destination pairs, it is said to be connected.
A minimal path from node x to node y is a path with smallest length H(x, y) connecting
these two nodes.
The diameter of a network D is the largest minimal length over all pairs of terminal nodes
in the network. [7]

),(max
,

yxHD
Nyx ∈

= (2.1.5)

• Direct and Indirect Network

A network node may be a terminal node that acts as a source/destination and a switch
node (router) that forwards packets from input ports to output ports. In a direct network
every node in the network is both a terminal and a switch, such as the K-ring topology of
Fig. 6. In an indirect network a node is either a terminal or a switch. It cannot serve both
functions. In a direct network packets are forwarded directly between terminal nodes
while in an indirect network they are forwarded indirectly by means of dedicated switch
nodes. Every direct network can be redraw as an indirect network by splitting each node
into separate terminal and switch node, as illustrated Figure 7.

Figure 7: Node of direct network and node of indirect network – it consists of a terminal
node and a switch node.

In some early networks the switching function was implemented in software running on
the terminal CPU and buffering was performed using the terminal computer’s memory

C S

T

Chapter 2 Interconnection Networks

 24

[9], [10]. Software switching is very slow and demanding upon the terminal’s resources
and is thus is rarely used today.
A potential advantage of an indirect network is that more than one terminal node can be
connected to one switch node.
This manner of creating a topology with a higher number of terminal nodes. It is a sim-
pler process to implement routing in these fat node topologies than in a topology with the
same number of node with a single terminate node. The fat node topologies have far
fewer channels and the interconnection is simpler than the topology with single terminal
node. An example of fat node topology is given in the Fig. 8.

Figure 8: The fat node topology with two terminal nodes connected to one switch node.

• Symmetry and Regularity
The symmetry and regularity of a topology play an important role in routing, as will be
discussed in a later section. A network is vertex-symmetric if there exist automorphism
that maps any node a into another node b. In a vertex-symmetric network the topology
looks the same from the point-of-view of all the nodes. In a regular network the nodes of
the topology have the same degree. Symmetry and regularity can simplify routing be-
cause all nodes share the same point-of-view of the network and therefore can use the
same directions to route to the same relative position.

15

1

3

5

7

10

12

14

2

4

6

8

9

11

13

0

Chapter 2 Interconnection Networks

 25

• Throughput
The throughput of the network is the data rate in bits per second that are delivered to the
destination node of the network. Throughput is a property of the entire network which
depends on the routing (details are presented in chapter 2.1.3) and flow control (see chap-
ter 2.1.5) as much as it depends upon the topology. Ideal throughput can be achieved by
perfect flow control and routing. In this case the routing perfectly balanced the load over
alternative paths in the network and the flow control left no idle cycles on the saturated
channels. Maximal throughput occurs when each channels in the network becomes satu-
rated.

• Traffic
Traffic is the amount of information delivered per time unit. This amount of information
is often modeled by a traffic pattern that determines how a packet travels between a par-
ticular source-destination pair and an arrival process. Historically, several of these pat-
terns are based on communication patterns that arise in particular applications.

• Latency
The latency of a network is the time required for a packet to traverse the network from
the time the head of the packet arrives at the input port to the time the tail of the packet
departs the output port. We separate latency T into two components:

T = Th + Ts (2.1.6)

The head latency Th is the time required from the head of the message to traverse the
network and the serialization latency:

Ts = L/b (2.1.7)

is the time required for the tail to catch up – the time for a packet of length L to cross a
channel with bandwidth b.

Latency depends not only on a topology but also on routing, flow control and the design
of the router.
The head latency is the sum of two factors determined by the topology: router delay Tr
and time of flight Tw. Router delay is the time spent in the routers, whereas time of flight
is the time spent on the wires. Combining these components gives the following expres-
sion for latency [7]:

T = Tr + Tw + L/b (2.1.8)

Chapter 2 Interconnection Networks

 26

2.1.3 Routing

The routing method employed by a network determines the path taken by a packet from a
source terminal node to a destination terminal node. A route or path is an ordered set of
channels Pa = (c1,…, cn) where the output node of channel ci equals the input node of
channel ci+1. The source is the input to channel c1 and the destination is output of channel
cn. In some networks there is only one path from the source to its destination, whereas in
others, which are much more common, there are many possible paths. When there are
many paths, a good routing algorithm makes the decision which path should be used and
in which time [7].

 (a) (b)

Figure 9: Two ways of routing from node 5 to node 3 in the hyper-cube. (a) A non-
minimal route requires more than the minimal path length. (b) A minimal routing using
minimal path length.

Figure 9 shows two different paths from node 5 to node 3 in the interconnection network.
Routing (a) illustrates a non-minimal routing in the situation, taking 5 hops. In routing (b)
one of the shortest paths from 5 to 3 has been chosen and this route is minimal. (There are
six shortest paths with length 3.)

2.1.4 Routing Model

The architecture of a router, where the packets can be stored for a time, is shown in Fig-
ure 10 and is comprised of the following major components:

Chapter 2 Interconnection Networks

 27

• Buffers – these are first-in first-out (FIFO) buffers for storing packets in transit. In
the model shown in Figure 10 a buffer is associated with each input physical
channel and each output physical channel. In alternative design buffers may be as-
sociated only with inputs (input buffering) or outputs (output buffering).

• Packet memory – for storing incoming packet from input buffers. Packets are
stored here for the necessary time. The storage time for individual packets differs,
to ensure the best throughput of interconnection network.

• Switch – this component is responsible for connecting router input buffers to
router output buffers. High-speed routers will utilize crossbar networks with full
connectivity. Lower-speed implementations may utilize networks that do not pro-
vide full connectivity between input buffers and output buffers.

• Routing and scheduling logic – this component implements the routing and
scheduling of incoming packets. It decides when and which packet will be chosen
from packet memory. It selects input channel to switch and output channel from
router for a chosen packet and accordingly sets the switch. This scheduling avoids
the situation in which multiple packets simultaneously request the same output
link. It causes some packets stay in the packet memory longer than others but how
long is dependent upon the routing algorithm, which has been implemented in this
component. Detailed descriptions of the routing algorithms are illustrated in chap-
ters 4 and 7.

• Link controllers (LCs) – the flow of packets across the physical channel between
adjacent routers is implemented by the link controller. The link controllers on ei-
ther side of a channel coordinate the transfer units of flow control.

• Processor interface – this component simply implements a physical channel inter-
face to the processor rather than to an adjacent router. It consists of one or more
injection channels from the processor and one or more ejection channels to the
processor.

When a packet first arrives at a router it must be examined to determine the output chan-
nel over which the packet is to be forwarded. This is referred to as the routing delay and
typically includes the time to set the switch. Once a path has been established through a
router by the switch, of critical interest is the rate at which the packets can be forwarded
through the switch. This rate is determined by the propagation delay through switch and
the signaling rate for synchronizing the transfer of data between the input and output
buffers. This delay has been characterized as the internal flow control latency [11]. The

Chapter 2 Interconnection Networks

 28

delay across the physical links is referred to as the external flow control latency. The
routing delay and flow control delays collectively determine the achievable packet la-
tency through switch and determine the network throughput. [12]
The detail description of latency depending on switching technique is presented in chap-
ter 3.

Figure 10: Router model with ability to store packets for a time.

2.1.5 Flow Control

Flow control manages the allocation of resources to packets as they progress along their
route. The key resources in most interconnection networks are the channels and the buff-
ers. We have already seen the role of channels in transporting packets between nodes.

Chapter 2 Interconnection Networks

 29

Buffers are storage implemented within the nodes and allow packets to be held temporally
at the nodes. For simplicity we can say that: the topology determines the roadmap, the
routing method manages the car and the flow control controls the traffic lights, determin-
ing when a car can advance over the next stretch of road (channels) or when it must pull
off into a parking lot (buffer) to allow other cars to pass/overtake.
To realize the performance potential of the topology and routing method, the flow control
strategy must avoid resource conflicts that can hold a channel idle. For example, it should
not block a packet that can use an idle channel because it is waiting on a buffer held by a
packet that is blocked on a busy channel.
A good flow control strategy is fair and avoids deadlock. An unfair flow control strategy
can cause a packet to wait indefinitely. Deadlock is a situation that occurs when a cycle
of packets is waiting for one another to release resources.
We often describe a flow control method by using a time-space diagram, such as those
shown in Figure 11. The figure shows a time-space diagram for (a) store-and-forward
flow control and (b) wormhole flow control.

Figure 11: Time-space diagram shows two flow control methods. (a) Store-and-Forward
flow control – a packet is completely transmitted across one channel before transmission
across the next channel is started. (b) Wormhole flow control – a packet transmission
over the channels is pipelined.

In both diagrams time is shown on the horizontal axis and space is shown on the vertical
axis. Time is expressed in cycles and space is shown by listing the channels used to send
the packet. As seen in Fig. 11 the choice of flow control techniques can significantly af-
fect the latency of a packet through network.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Cycle

C
ha

nn
el

0

 1
 2

(a)

0 1 2 3 4 5 6
Cycle

C
ha

nn
el

0

 1
 2

(b)

Chapter 2 Interconnection Networks

 30

More details of store-and-forward and wormhole flow control are described in chapter 3.
The problems of deadlock and livelock are dealt with in the next section.

2.2 Deadlock, Livelock and Conflict

In interconnection networks packets usually travel across several intermediate nodes be-
fore reaching the destination. However, it may happen that some packets are not able to
reach their destinations because they are waiting on one another to release resources
(channels and buffers). Consider the situation shown in Figure 12.

Figure 12: Deadlock in communication. Both partners start to send their packets while at
the same time they are waiting for confirmation of receiving these packets. Both are send-
ing and, therefore, they cannot receive.

Two partners need to communicate with each other. Both start to send their packets and
both are waiting for confirmation of receiving these packets. However, because both are
sending and neither can receive, deadlock occurs. A buffer deadlock occurs when some
packets cannot advance toward their destination because the buffers required by them are
full. Deadlock is catastrophic situation within a network. After a few resources are occu-
pied by deadlock packets, other packets block on these resource, paralyzing the network
operation. To prevent this situation, networks must either use deadlock avoidance [13]
(methods that guarantee that a network cannot deadlock) or deadlock recovery [14] (in
which deadlock is detected and correct, e.g. packet is killed and sends again). Almost all

Send

Receive

Send

Receive

Chapter 2 Interconnection Networks

 31

modern networks use deadlock avoidance, usually by imposing an order on the resources
in question and insisting that packets acquire these resources in order.
A different situation arises when some packets are not able to reach their destination,
even if they never block permanently. A packet may be traveling around its destination
node, never reaching it because the channels required to do so are occupied by other
packets. This situation is known as livelock. It can only occur when packets are allowed
to follow non-minimal paths.
The last situation, which necessary to mention, is referred to as conflict. Conflict is the
situation when two source nodes want to use the same channel in the same direction and
at the same time. During a conflict situation it is not known what happens to packets,
which were not assigned to channel, whether they reach their destination and when, and if
they continue their path or will be sent from the source node again.

Figure 13: Two source nodes want to use the same channel in the same direction and at
the same time – conflict situation has occurred.

2.3 Case Study: Intel Tera-scale

In IDF Fall 2006 Intel announced their research prototype of their possible future proces-
sor’s architecture. In contrast to present architectures, this prototype is 8 x 10 of the same
computing cores on one chip. The concentration of possible computing performance with
eighty of these processors on wafer is hardly imaginable. The exact dimensions of this
chip are 22 x 13.75 mm. The details are illustrated in Figure 14 [15]. This chip achieves

Conflict

Chapter 2 Interconnection Networks

 32

the possible computing performance of 1 TeraFLOPS (Floating Point Operations Per
Second) with a frequency of 3.1 GHz. This computing performance is with inaccessible
using currently available architectures and SMP (Symmetric Multiprocessing).

Figure 14: Prototype of multiprocessor Intel “Tera-scale” with eighty cores.

This prototype Intel has given a suitable name, “Tera-scale” and Platform 2015 at this
stage in its development. The prototype has a number of developmental features, change
in architecture and the system of communication in highly parallel systems, which take
into consideration hundred’s of cores.
The basic system of the “Tera-scale” will be a highly parallel architecture with many
cores with emphasis on the support of virtualization and security. The target requirements
have also insisted on lower consumption, high efficiency and the support of accelerators.
The increase in the number of cores has encoutered a number of problems (mainly in
consideration of available manufacturing technology and level of integration). This archi-
tecture allows scalability not only on the multiprocessor level and the number of cores,

Chapter 2 Interconnection Networks

 33

but also with connection of more these multiprocessors or whole systems based on “Tera-
scale” principle with the help of high-speed optical interface, see Fig. 15.

Figure 15: Scalability is ensured on all levels. In this figure, multiprocessor is denoted as
CPU.

The architectures of processors in the next few years will focus mainly on efficiency and
lower consumption, evidently in the form of power management of computational mod-
ule. Cores, which are be not being used, will be slept. In the case overheating of the com-
putational core, redirection to a different core will be realized.
Due to scalability and performance of highly parallel systems a vital feature of this sys-
tem design is speed of communication between cores – both on the level of composite
computational modules and whole chip (of course on the level of packets). The complex
new architecture also increases the complexity of communication and distribution of data
between the cores. Intercommunication using traditional high frequency interconnections
will be replace with laser in the course of time. The new technology of hybrid laser im-
plemented on the level of single core, will brings useful scalability and lower price. The
last achievable bound is 40 Gbps (Gigabit per second) on the single hybrid laser. Twenty-

Chapter 2 Interconnection Networks

 34

five such lasers with multiplexor give other “Terabps” [16]. Communication on the level
of core, more multiprocessors on a motherboard or connection of more such systems
would not create any significant problem, see Fig. 15.
The ring topology and 2D-Mesh topology are considered mainly for future platforms, see
Fig. 16. Mesh topology allows good scalability with a large number of cores and ring
topology offers the advantage of less skipping to the required destination [15].

(a) (b)

Figure 16: (a) Ring topology and (b) 2D-Mesh topology of Intel “Tera-scale”.

Chapter 3 Switching Techniques

 35

Chapter 3

Switching Techniques

This chapter focuses on the switching techniques that are implemented within the net-
work routers. These techniques differ in several respects. The switching techniques de-
termine when and how internal switches are set to connect router inputs to outputs and
the time at which message components may be transferred along these paths. These tech-
niques are coupled with flow control mechanisms for the synchronized transfer of units of
information between routers and through routers in forwarding messages through the
network. Implementation of the switching differs in their relative timing, that is, when
one operation can be initiated relatively to the occurrence of the other.

For the purpose of comparison, for each switching technique we will consider the compu-
tation of the base latency of an L-bit message in the absence of any traffic. The phit size
and flit size are assumed to be equivalent and equal to the physical data channel width of
W bits. The routing header is assumed to be 1 flit, therefore the message size is M = L +
W bits. A router can make a router decision in tr seconds. The physical channel between
two routers operates at B Hz, that is, the physical channel bandwidth is BW bits per sec-
ond. The propagation delay across a channel is denoted by tw. Once a path has been set up
through the router, the intrarouter delay or switching delay is denoted by ts. The router
internal data paths are assumed to be matched to the channel width of W bits. Therefore

Chapter 3 Switching Techniques

 36

in ts seconds a W bit flit can be transferred from input of the router to the output. The
source and destination processor are assumed to be Dd links apart [12]. The relation be-
tween these components as they are used to compute message latency is shown in Fig. 17
[8].

Figure 17: View of the network path for computing switching latency.

3.1 Circuit Switching

In circuit switching a physical path from source to destination is reserved prior to the
transmission of the data. This is realized by injection the routing header flit into the net-
work. This routing probe contains the destination address and some additional control
information. The routing probe progresses toward the destination reserving the physical
links as it is transmitted through intermediate routers. When the probe reaches the desti-
nation, a complete path has been set up and an acknowledgment is transmitted back to the
source. The message contents may now be transmitted at the full bandwidth of the hard-
ware path. A time-space diagram of the transmission of a message over three links is
shown in Fig. 18.
Circuit switching is generally advantageous when messages are infrequent and long. The
disadvantage is that the physical path is reserved for the duration of the message and may
block other messages.

Chapter 3 Switching Techniques

 37

Figure 18: Time-space diagram of a circuit-switched message.

The base latency of a circuit-switched message is determined by the set up time of a path
and the subsequent time the path is busy transmitting data [12]. We can express the base
latency of a message of length M as follow [8]:

tcircuit = Dd (tr + 2(ts + tw)) + Mtw (3.2)

3.2 Store and Forward Switching

In store-and-forward switching the message is partitioned and transmitted as fixed-length
packets. The first few bytes of packet contain routing and control information and are
referred to as the packet header. Each packet is individually routed from source to desti-
nation. A packet is completely buffered at each intermediate node before it is forwarded
to the next node. This is the reason why this switching technique is referred to as store-
and-forward (SF) switching. This technique is also alternatively called packet switching.
The header information is extracted by the intermediate router and used to determine the
output link over which the packet is to be forwarded. A tome-space diagram of progress
of a packet across three links is shown in Fig. 19. From the figure it can be seen that the

tr+ts

tsetup

ts

tdata

Data Acknowledgement Header Probe

Time

Link

Chapter 3 Switching Techniques

 38

latency of a packet is proportional to the distance between the source and destination
nodes.

Figure 19: Time-space diagram of a store-and-forward-switched message.

Packet switching is advantageous when messages are short and frequent. Unlike circuit
switching, where a segment of a reserved path may be idle for a significant period of
time, a communication link is fully utilized when there are data to be transmitted. In addi-
tion, every packet must be routed at each intermediate node. It is evident that the storage
requirements at the individual router nodes are extensive if packets are large and multiple
packets must be buffered at a node [12].
The base latency of a store-and-switched message of length M can be computed as follow
[8]:

tSF = Dd (tr + (ts + tw)M) (3.3)

tr

tSF

Data

Time

Link

Header

Chapter 3 Switching Techniques

 39

3.3 Virtual Cut-Through Switching

The virtual cut-through switching (VCT) technique allows packets to be forwarded
although they are not completely stored in the current buffer. The router can start
forwarding the header and following data bytes as soon as routing decisions have been
made and the output buffer is free. In fact the message does not even have to be buffered
at the output and can cut through to the input of the next router before the complete
packet has been received at the current router. The message is effectively pipelined
through successive switches. If the header is blocked in a busy output channel, the com-
plete message is buffered at the node. Figure 20 illustrates a time-space diagram of a
message transferred using virtual cut-through switching where the message is blocked
after the first link. However, from the figure it can be seen that the message is successful
in cutting through the second router and across the third link [12], [17].

Figure 20: Time-space diagram of a virtual cut-through switched message. (tblocking =
waiting time for a free output channel.)

The base latency of a message that successfully cuts each intermediate router can be
computed as follow [8]:

tVCT = Dd (tr + tw + ts) + max(tw ,ts)M (3.4)

tblocking

Message packet
cuts through the
router

Time

Link

Header

tr+ts

tw

Chapter 3 Switching Techniques

 40

This model assumes that there is no time penalty for cutting through a router if the output
buffer and output channel are free. Note that only the packet header routing delay as well
as switching and inter-router latency. This is because the transmission is pipelined and
the switch is buffered at the input and output. Once the header flit reaches the destination,
the cycle time of the pipeline of packet flits is determined by the maximum of the switch-
ing time and inter-router latency. It can be assumed that channels have both input and
output buffers. In the case of input buffering only, for example, we would have tw+tm
instead of max(tw tm).

3.4 Wormhole Switching

In wormhole switching message packets are also pipelined through the network. How-
ever, the buffer requirements within the routers are substantially reduced over the re-
quirements for VCT switching. A message packet is broken up into flits. The message is
pipelined through the network at the flit level and is typically too large to be completely
buffered within a router. It means that a blocked message occupies buffers in several
routers at any instant in time. The time-space diagram of a wormhole-switched message
is shown in Fig. 21. Routing delays and intrarouter propagation of the header flits are also
captured in this figure.

Figure 21: Time-space diagram of a wormhole-switched message.

tr+ts

twormhole

Time

Header

Link

Chapter 3 Switching Techniques

 41

The primary difference between wormhole switching and VCT switching is that, the unit
of message flow control is a single flit and as a consequence small buffers can be used.
Just a few flits need to be buffered at a router.
The blocking characteristics are very different from that of VCT. If the required output
channel is busy, the message is blocked “in place”. This may lead to more deadlock
situations than for other implemented strategies.
The base latency of a wormhole-switched message can be computed as follow:

twormhole = Dd (tr + tw + ts) + max(tw ,ts)M (3.5)

This expression assumes flit buffers at the router inputs and outputs. Note that VCT and
wormhole have the same latency. Once the header flit arrives at the destination the mes-
sage pipeline cycle time is determined by the maximum of the switch delay and wire de-
lay. For an input-only or output-only buffered switch, this cycle time would be given by
the sum of the switch and wire delays.

Chapter 4 Routing Algorithms

 42

Chapter 4

Routing Algorithms

Routing involves selecting a path from source node to a destination node in a particular
topology. The routing algorithm used for a network is critical for several reasons. A good
routing algorithm balances load across the network channels. The more balanced the
channel load, the closer the throughput of the network is to the ideal. However many of
the routing algorithms that have been proposed and are currently in use today fail to
achieve an acceptable level of balancing load. This limitation can be partially explained
because the routing has been designed to optimize a second important aspect of any rout-
ing algorithm – short path lengths [6].
A well-designed routing algorithm also keeps path lengths as short as possible, reducing
the number of hops and the overall latency of a message. What may not be immediately
obvious is that, routing minimally, which uses shortest paths, maximize throughput [7].
The list of routing algorithms proposed in the literature is almost endless. We will focus
on a representative set of approaches, being used or proposed in modern and future mul-
tiprocessors interconnects [12]. The routing algorithms presented in this chapter are valid
for all switching techniques. Special emphasis is given to design methodologies because
they provide a simple and structured way to design a wide variety of routing algorithms
for different topologies.

Chapter 4 Routing Algorithms

 43

4.1 Taxonomy of Routing Algorithms

Routing algorithms can be first classified according to the number of destinations. Pack-
ets may have a single destination (unicast routing) or multiple destinations (multicast
routing). Multicast routing will be studied in more details in chapter 5 and is included
here for completeness [18].
Routing algorithms can also be classified according to the place where routing decisions
are taken. Basically, the path can be either established at source node prior to packet in-
jection (source routing) or determined in distributed manner while the packet travels
across the network (distributed routing). Hybrid schemes are also possible. These hybrid
schemes are termed, multiphase routing [12].
Routing algorithms can be implemented in different ways. The most interesting ways
proposed up to now consist of either looking at a routing table (table lookup) or executing
a routing algorithm in software or hardware according to a finite-state machine. In both
cases the routing algorithm can be deterministic, oblivious or adaptive. Deterministic
routing algorithms always supply the same path between a given source-destination pair.
Oblivious routing algorithms send each packet first to a random node and from there di-
rectly to its destination. Adaptive routing algorithms use information about network traf-
fic and/or channel status to avoid conflict in the network.
Another way, how to classified routing algorithm, can be according to their minimality as
profitable or misrouting. Profitable routing algorithms only supply channels that bring the
packet closer to its destination. They are also referred to as minimal. Misrouting algo-
rithms may also supply channels that send the packet away from its destination. They are
also referred to as nonminimal. The next classification is according to the number of al-
ternative paths as completely adaptive (also know as fully adaptive) or partially adaptive
[19].
In source routing, the source node specifies the routing path on the basis of a deadlock-
free routing algorithm (either using lookup or not). The computed path is stored in the
packet header. Source routing has been mainly used in networks with irregular topologies
[20]. The first few flits of the packet header contain the address of the switch ports on
intermediate switches.
For efficiency reasons most hardware routers use distributed routing. In distributed rout-
ing each intermediate node has to make a routing decision based on the local knowledge
of the network. By repeating this process at each intermediate node, the packet should be
able to reach its destination. This can be achieved because the designers know the topol-
ogy of the whole network. Distributed routing algorithms are mainly used in regular to-
pologies so that the same routing algorithm can be used in all the nodes. As a conse-

Chapter 4 Routing Algorithms

 44

quence, routing decisions are much simpler than in other topologies. An alternative im-
plementation approach consists of using table lookup [20].
An obvious implementation of table-lookup is to place a routing table at each node, with
the number of entries in the table equal to the number of nodes in network. This routing
can be performed either at the source node or at each intermediate node. In the first case,
given a destination node address, the corresponding entry in the table indicates the whole
path to reach that node. In the second case, each table entry indicates which outgoing
channel should be used to forward packet toward its destination.
Misrouting algorithms are based on an optimistic view of the network: taking an unprof-
itable channel is likely to bring the header to another set of profitable channels that will
allow further progress to the destination. Although misrouting algorithms are more flexi-
ble, they usually consume more network resources. Misrouting algorithms may also suf-
fer from livelock [12].

4.2 Deterministic Routing

The simplest routing algorithms are deterministic (the routing is after dimensions). They
establish the path as a function of the destination address, always supplying the same path
between every pair of nodes. This lack of path diversity can create large load imbalances
in the network. In fact, there is a traffic pattern that causes large load imbalance for every
deterministic routing algorithm. So, for a designer these algorithms would not be their
first choice. However deterministic algorithms still have their merits.
Many early networks adopted deterministic routing because it was so simple and inex-
pensive to implement. Therefore deterministic routing is permanently used in the network
today. Especially, it is used in topologies, which can be decomposed into several or-
thogonal dimensions. This is the case of hypercube [21], mesh and tori [22]. Other types
of interconnection networks, utilizing deterministic routing are irregular topologies. For
these topologies it is more difficult to design good randomized or adaptive algorithms.
Finally, for networks in which the ordering of messages between particular sort-
destination pairs is important, deterministic routing is often a simple way to provide this
ordering.

Chapter 4 Routing Algorithms

 45

Figure 22: An example of deterministic routing. A packet is routed from node 15 to
node 6 first by routing in the x dimension and then in the y dimension.

4.3 Oblivious Routing

Oblivious routing, in which we route packets without regard for the state of the network,
is simple to implement. While adding information about network state can potentially
improve routing performance, it also adds considerable complexity and if not done care-
fully can lead to performance degradation.
The main tradeoff with oblivious routing is between locality and load balance. By send-
ing each packet first to a random node and from there directly to its destination, see Fig.
23, Valiant’s randomized routing algorithm [23] exactly balances the load of any traffic
pattern. However, this load balance comes at the expense of destroying any locality in the
traffic pattern – even nearest neighbor traffic gives no better performance than worst-case
traffic [24]. Minimal oblivious routing [25] on the other hand preserves locality and gen-
erally improves the average case throughput of a network over all traffic patterns.

Chapter 4 Routing Algorithms

 46

Figure 23: An example of randomized routing (Valiant’s algorithm) on 4x4 mesh. A
packet is routed from node 13 to node 11 in two phases. In the first phase the packet is
routed to random selected intermediate node 6 as shown the bold solid lines. The second
phase delivers the packet from node 6 to node 11 as shown the dotted lines.

4.4 Adaptive Routing

An adaptive routing algorithm uses information about the network state, channels occu-
pancy, to select among alternative paths to deliver a packet [10], [26], [27], see Fig. 24.
Because routing depends on network state, an adaptive routing algorithm is intimately
coupled with the flow-control mechanism [28]. This is the contrast to deterministic and
oblivious routing on which the routing algorithm and the flow control mechanism are
largely orthogonal.
A good adaptive routing algorithm theoretically should outperform an oblivious routing
algorithm, since it is using network state information not available to the oblivious rout-
ing. However many adaptive routing algorithms give poor worst-case performance. This
is largely due to the local nature of most practical adaptive routing algorithms, because
they use only local network state information in making routing decisions, they route in a
manner that balances local load but often results in global imbalance [13].
The local nature of practical adaptive routing also leads to delay in responding to a
change in traffic patterns [29]. The disadvantage of this routing method is prone to dead-
locks and conflicts.

Chapter 4 Routing Algorithms

 47

Figure 24: A packet is routed from node 13 to node 3 along the solid line. To avoid the
channel occupancy, which is illustrated by dotted line, the packet is routed by the longer
path, which occupies many channels of the interconnection networks.

A deadlock can occur in a channel and also at a buffer. A channel deadlock is mainly
related to the situation, when a packet holds two channels and the other two channels are
held by the other packet, but cannot proceed further until they acquire a third channel,
currently held by the other packet. A buffer deadlock occurs when buffers are full, which
are required by the arriving packet. Conflict is similar to a channel deadlock: two packets
need to communicate via one channel in one direction at the same time.

A minimal adaptive routing algorithm chooses among the shortest path between source-
destination pairs, using information about the network state in making the routing deci-
sion at each hop [30].
Partially adaptive routing algorithms represent a trade-off between flexibility and cost.
They try to approach the flexibility of fully adaptive routing at the expense of a moderate
increase in complexity with respect to deterministic routing. Some proposals aim at
maximizing adaptivity without increasing the resources required to avoid deadlocks and
conflicts. Other proposals try to minimize the resources needed to achieve a given level
of adaptivity.
Fully adaptive routing algorithms are based on deadlocks and conflicts avoidance that
either maximize adaptivity for a given set of channels while balancing the use of channels
[31]. Some routing algorithms are proposed to deadlock recovery that accomplish both.
Routing strategies based on deadlock recovery allow maximum routing adaptivity [32] as
well as minimum channel requirements [14].

Chapter 4 Routing Algorithms

 48

4.5 Routing in Irregular Topologies

Designing an efficient routing scheme for irregular networks is not trivial. While many
effective routing schemes have been proposed for regular networks, there have been very
few counterparts for irregular networks. A well designed routing scheme for irregular
networks should be deadlock-free and provide high performance for various network to-
pologies. Furthermore, the routing scheme should be efficiently implemented in a com-
munication switch. Although, deadlock detection and recovery can be used to resolve the
problem of routing, the complexity of the communication switch based on this is signifi-
cantly increased. Several routing architectures have been proposed for irregular networks
in recent years [33], [34]. These schemes are capable of routing packets in various net-
work topologies and achieve deadlock freedom, they typically rely on routing table in the
communication switch.
Most practical designs proposed recently for deadlock-free routing in irregular networks
rely on deadlock avoidance.
In the next section we briefly describe the deadlock-free routing scheme used in DEC
AN1 (Autonet) [34]. In addition to provide deadlock freedom, it provides adaptive com-
munication between some nodes in an irregular network. Also we describe a fully adap-
tive routing algorithm for irregular topologies [35], [36] that considerably improves per-
formance over the routing scheme proposed in [34].

4.5.1 Up*/Down* Algorithm

The up*/down* algorithm was first proposed for Autonet networks [34]. It is a distributed
deadlock-free routing scheme that provides partial adaptability in irregular networks. Its
general strategy is based on routing packets in a tree, where the routes go up the tree on
leaving the source and then, come back down at the destination. One of the nodes is arbi-
trarily chosen as the root of the tree (usually, the one closest to the rest of the nodes) and
all links of the topology are designated as up* or down* links with respect to this root.
The up*/down* state of a link is relative to a spanning tree computed in background by a
distributed algorithm. A link is up* if it points from a lower to a higher-level node in the
tree (i.e. to a node closer to the root). Otherwise, it is down*. For nodes at the same level,
nodes IDs break the tie. The routing from a source to a destination is established in such a
fashion that zero or more up* links (towards the root) are traversed before zero or more
down* links are traversed (away from the root) in order to reach the destination. The ad-
vantage of this approach is that each node's hardware and software are simple and some

Chapter 4 Routing Algorithms

 49

adaptability is provided. The drawbacks are that the selected paths are generally not the
shortest paths and that links near the root get congested (a conflict appears) and become
bottlenecks leading to low throughput. Moreover, these problems become critical when
the network size increases.

Figure 25: Link direction assignment for the irregular network [12].

4.5.2 Adaptive Routing Algorithm for Irregular Network

A general methodology for the design of adaptive routing algorithms for networks with
irregular topology was proposed in [35]. That methodology can be summarized as fol-
lows. Given an interconnection network and a deadlock-free routing function definition,
it is possible to duplicate all the physical channels in the network, or to split them into
two virtual channels. In both cases, the graph representation of the new network contains
the original and the new channels. Then the routing function is extended so that newly
injected packets can use the new channels without any restriction as long as the original
channels can only be used in the same way as in the original routing function. However,
once a packet reserves one of the original channels, it can no longer reserve any of the
new channels.
According to the extended routing function defined above, new channels provide more
routing flexibility than original channels. They can be used to route packets through

8

7

1

23

4

6

5

0

Up Direction

Chapter 4 Routing Algorithms

 50

minimal paths. However, once a packet reserves an original channel, it is routed through
the original paths, which are nonminimal in most cases. Also routing through original
paths produces a loss of adaptivity.
Following this reasoning, the general methodology, proposed in [35], can be refined by
restricting the transition from new channels to original channels. Newly injected packets
can only leave the source switch using new channels belonging to minimal paths and
never using original channels. When the packet arrives at a switch, the routing function
gives a higher priority to the new channels belonging to minimal paths. To ensure that the
new routing function is deadlock-free, if none of the original channels provides minimal
routing, then the original channel that provides the shortest path will be used. This en-
hanced design methodology was proposed in [36]. Finally, latency decreases significantly
and the network is able to deliver a throughput several times higher than the one achieved
by the up*/down* [35] routing algorithm [36].

Chapter 5 Collective Communication

 51

Chapter 5

Collective Communication

Parallel processors conception can divide large and complex tasks into short tasks that are
distributed and executed at the same time by many processors in order to achieve im-
proved performance and to minimize the execution time. These processors need to com-
municate in order to exchange data and the results of their execution.
Communication operations can be divided in two types depending on how many proces-
sors are participating. If the communication involves a single source and a single destina-
tion, this type is called point-to-point; on the other hand, if communication involves more
than one source and/or destination, this type is called collective communication. Provided
that there is 1:1 mapping between processors and processes, we can equivalently talk
about communicating process groups.
The importance of collective communications is derived from the fact that many fre-
quently used parallel algorithms such as sorting, searching and matrix manipulation share
data among groups of processes. Transmission of data to multiple destinations can be
implemented with multiple calls for point-to-point transmission. However these patterns
of sharing data are very regular and sufficiently important to merit special procedures.
In general, collective communication involves one or multiple transmitters and receivers,
i.e. we have two sets of nodes: T − the set of transmitting nodes and R − the set of receiv-
ing nodes. The subsets T and R can be overlapping and can be as large as the full set of P

Chapter 5 Collective Communication

 52

processes. Collective communication may be categorized as one to one, one to many,
many to one or many to many, with many being also all.
There are also other operations that are collective in nature although no data are commu-
nicated, i.e. barrier synchronization.

5.1 Multiple One-to-One Communication

In this category each process can send at most one message and receive at most one mes-
sage, see Fig. 26. If each process has to send exactly one message and receive exactly one
message, there are n! different permutations or communication patterns. Figure 26 shows
circuit shift permutation in which Pi sends a message to Pi+1 for 1 ≤ i ≤ n – 1 and Pn de-
livers its message to P1.
In the case that multiple one-to-one communication is the permutation, the set T is the
same as the set R, then T ∩ R = P. Generally T ∩ R ≥ 1, when some node doesn’t
send a message.

Figure 26: Multiple one-to-one communication pattern: circuit shift permutation.

P1 P2 P3 Pn

P1 P2 P3 Pn

Chapter 5 Collective Communication

 53

5.2 One-to-All Communication

In one-to-all communication one process is identified as the sender (called root) T = 1
and all processes are receivers R = P-1. In this communication, the sets of nodes are
non-overlapping and apply T ∩ R = ∅.

There are two distinct services in this category:

• Broadcast – the same message is delivered from the sender to all receivers.
• Scatter – the sender delivers different messages to the different receivers. This

also referred as personalized broadcast.

Figure 27 shows the communication patterns of these two services.

(a) (b)

Figure 27: Two one-to-all communication patterns: (a) broadcast communication and (b)
scatter communication.

5.3 All-to-One Communication

In all-to-one communication, all processes are senders T = P-1 and one process called
the root is identified as the sole receiver R = 1. Again as previous case T ∩ R = ∅, non-
overlapping sets of nodes, and again, there are two distinct services:

Chapter 5 Collective Communication

 54

• Reduce – different messages from different senders are combined together to form
a single message for the receiver. The combining operator is usually communica-
tive and associative, such as addition, multiplication, maximum, minimum, and
logical OR, AND, and exclusive OR operators. This service is also referred to as
personalized combining or global combining.

• Gather – different message from different senders are concatenated together from
the receiver. The order of concatenation is usually dependent on the ID of the
senders.

Figure 28 shows the communication patterns of these two services.

 (a) (b)

Figure 28: Two all-to-one communication patterns: (a) reduce communication and (b)
gather communication.

5.4 All-to-All Communication

In all-to-all communication, all processes perform their own one-to-all communication.
Thus, each process will receive n messages from n different senders. The sets of senders
and receivers are identical T = R = P and therefore T ∩ R = P. Again, there are two
distinct services:

• All-broadcast – all processes perform their own broadcast. Usually, the received n
messages are concatenated together based on the ID of the senders. Thus, proc-

Chapter 5 Collective Communication

 55

esses have the same set of received messages. This service is also referred to as
gossiping or total exchange.

• All-scatter – all processes perform their own scatter. The n concatenated messages
are different for different processes. This service is also referred to as personal-
ized all-to-all broadcast, index, or complete exchange.

Figure 29 shows the communication patterns of these two services.

 (a) (b)

Figure 29: Two all-to-all communication patterns: (a) all-broadcast communication and
(b) all-scatter communication.

5.5 Many-to-Many Communication

Many-to-many collective communication is the generalization of the all communication
patterns - all the preceding types of collective communication are special forms of this
communication. In many-to-many communication, a certain number of processes are
transmitters (senders) and simultaneously some group of processes receives messages.
The groups of transmitters T = M and receivers R = N processes may:

• correspond - thus, receivers and transmitters are the same processes.
• separate - transmitters and receivers are disjoint group of processes, thus, trans-

mitters only send messages and receivers only receive messages.

Chapter 5 Collective Communication

 56

• overlap – some processes only send messages, some processes only receive mes-
sages, and some processes send and receive simultaneously.

If groups of nodes are overlapping then T ∩ R ≥ 1 and T ∩ R = ∅ if non-overlapping.
Many-to-many communication may be categorized into:

• one-to-many - one process is identified as the transmitter (called root) and subset
of processes are receivers. Transmitter can send the same message (broadcast) or
different messages (scatter) to receivers.

• many-to-one – a subset of processes are transmitters and one process, called the
root, is identified as the sole receiver. Again, there are two distinct services as in
chapter 5.3.

• many-to-many – a subset of transmitters sends the same messages (broadcast) or
different messages (scatter) to a subset of receivers.

Figure 30 shows the communication patterns of many-to-many communication, where
senders and receivers create overlap groups.

 (a) (b)

Figure 30: Two many-to-many communication patterns, where transmitters and receivers
are overlapped: (a) many-broadcast communication and (b) many-scatter communication.

Chapter 5 Collective Communication

 57

5.6 Convenient Collective Communication Services

In addition to the basic types of collective communication services, some collective
communication services require the combination of these basic services. Some of these
frequently used collective communication services, referred to as convenient or composite
collective communication services, as listed bellow [12]:

• all combining – the result of a reduce operation is available to all processes. This
is also referred to as a reduce and spread operation. The result may be broadcast
to all processes after the reduce operation or multiple reduce operations are per-
formed with each process as a root.

• barrier synchronization – a synchronization barrier is a logical point in the control
flow of an algorithm at which all processes must arrive before any of the proc-
esses are allowed to proceed further.

Collective communication services are demanded in many applications. Such services
have been supported by several communication packages for multicomputers. However,
efficient implementation of various collective communication services is topology de-
pendent.

5.7 Models of Communication

The simplest time model of communication in distributed memory systems uses a number
of communication steps (rounds): point-to-point communication takes one step between
adjacent nodes and a number of steps if the nodes are not directly connected. In the more
detailed view, the communication time is composed of a fixed start-up time ts at the be-
ginning and of a component that is a function of distance Dd (the number of channels on
the route or hops a message has to make), and message length m in certain units (words
or bytes). More details are described in chapter 3.
Further, we have to distinguish between unidirectional (simplex) channels and bi-
directional (half-duplex, full-duplex) channels. The number of bi-directional channels
between the CPU and a router (ports) that can be engaged in communication simultane-
ously (1-port or all-port models will be considered, as they are most common) has also an
impact on number of communication steps and communication times, as well as if nodes
can combine/extract partial messages with negligible overhead (combining nodes) or can

Chapter 5 Collective Communication

 58

only re-transmit/consume original messages (non-combining nodes). Finally we have to
take into account a slim/fat node (one processor/more processors at a node), a switching
technique and a network topology.
A few comments are appropriate on communication among various nodes from the sim-
plest to the most complex type. A single neighbor-to-neighbor communication, multiple
neighbor-to-neighbor communications, and a single point-to-point communication are
always deadlock free. But collective communications are inherently prone to a deadlock.
If each node sends or receives messages to or from more than one partner in a loop asyn-
chronously, it still faces the danger of a so called fetch deadlock (at least two nodes exe-
cute pending send operation and cannot receive). This is why a synchronized communica-
tion model, where the communication proceeds in synchronized rounds (steps), is much
more popular and frequently used.
The topology is one of the key design factors of a collective communication. There is a
large body of theoretical research on optimal topologies, based on graph theory metrics
such as average distance, network diameter, and bisection width, among others. These
parameters have a direct impact on network performance, Tab.1. As far as the broadcast
communication (OAB) in SF network is concerned, the number of steps cannot be less
than network diameter D, because this is the worst case even for point-to-point communi-
cation. For WH switching the distance between nodes is not that important and the lower
bound logd+1P is given by the number of nodes informed in each step, that is initially 1,
1+1×d after the first step, (d+1)+(d+1)×d = (d+1)2 after the second step, etc.,…, and
(d+1)k nodes after step k.
In case of (SF or WH) AAB communication, since each node has to accept P−1 distinct
messages, the lower bound is (P−1)/d steps. A similar bound applies to OAS communi-
cation, because each node can inject into the network not more than d messages in one
step; for irregular networks with non-constant node degree d we should use the lowest
value of the node degree for AAB and the value of the source node degree for OAS. The
common strategy with SF OAS is to send messages to the farthest nodes first and then
pipeline them with messages to the nodes less and less remote. The optimum broadcast
tree is therefore different from that for OAB. In WH OAS we use different strategy: P−1
pair-wise communications must be packed into the lowest number of steps in such a way
that there are only edge-disjoint paths in a single step.
For AAS communication pattern each of P processor sends an individual message to each
of P-1 partners. If Ssd is the sum of the shortest distances of all node pairs, then the aver-
age distance of nodes da = Ssd/P2, [37]. With concurrent communication on 2e ports (2e =
Pd in regular networks), the number of communication steps for SF switching cannot be
less than Ssd/(2e). Another lower bound for AAS can be obtained considering that one
half of messages from each processor cross the bisection and the other half do not. There

Chapter 5 Collective Communication

 59

will be altogether 2 P/2  P/2 of such messages in both ways and up to BC messages in
one step, where BC is the network bisection width [37]. This gives x = 2 P/2 P/2 / BC
steps. This second lower bound applies to WH as well as SF switching, but is more ap-
propriate to WH switching, since point-to-point messages (and not neighbor-to-neighbor
messages as in SF switching) are considered.

SF switching WH switching
CC

1-port all-port 1-port all-port
OAB max (log2P , D) D max (log2P , D) logd+1P

AAB P – 1 (P – 1)/d P – 1 (P – 1)/d

OAS P – 1 (P – 1)/d P – 1 (P – 1)/d

AAS max (S/P, 2xe/P) max [S/(2e), x] 2xe/P x = 2P/2  P/2 / BC

Table 1: Lower bounds on complexity of collective communications at slim node topol-
ogy.

Chapter 6 Design of New Evolutionary Optimization Techniques

 60

Chapter 6

Design of New Evolutionary Optimization
Techniques

Evolution is the adaptation of a population to its environment. This adaptation causes the
creation of individuals of increasingly higher/greater "fitness"; in environments where the
definition of fitness remains static, evolution drives the population towards better and
better individuals. This process is similar to approximation - the search for good solutions
to a particular problem. The parallels between the concepts of evolution and approxima-
tion have lead to the creation of evolutionary approximation.
Many problems in real application have a search space that is exponentially proportional
to the problem dimensions and, but for the simplest of cases, these problems cannot be
solved using exhaustive search methods. Consequently, there is considerable interest in
heuristic techniques that attempt to discover near-optimal solutions within an acceptable
time. Evolutionary techniques provide a framework for effectively sampling large search
spaces, and the basic technique is both broadly applicable and easily tailored to specific
problems. All that is required to apply an evolutionary technique to any particular prob-
lem is an appropriate encoding scheme and a target function.

Chapter 6 Design of New Evolutionary Optimization Techniques

 61

During the last decades, wide applicability has been demonstrated by successfully apply-
ing evolutionary computation techniques to various optimization problems in the fields of
engineering, management science, biology, chemistry, physics and computer science.

6.1 Basics of Classical Genetic Algorithm

Genetic algorithm (GA) is a powerful, domain-independent search technique that was
inspired by Darwinian theory. It emulates the natural process of evolution to perform an
efficient and systematic search of the solution space to progress towards the optimum. It
is based on the theory of natural selection that assumes that individuals with certain char-
acteristics are more able to survive and hence pass their characteristics to their offsprings.
It is an adaptive learning heuristic belonging to a class of general nondeterministic algo-
rithms.
GA is any population-based computational model that uses selection and recombination
operators to generate a new sample in a search space. A chromosome (individual), con-
sisting of genes, represents one encoded solution of the search space. The values of genes
are referred to as alleles. The chromosomes form a population, which changes through
the process of evolution. The reproduction process is performed in such a way that chro-
mosomes, which represent a better solution, are given more chance to reproduce than
those chromosomes, which represent poorer solutions. The fitness function (a measure of
quality) of the chromosomes is defined in the frame of the population. The fitness func-
tion is applied to genotype (chromosomes) for evaluating phenotype (decoded form of the
individual/chromosome). While the fitness function operates with phenotype, genetic
operators are defined on the genotype. Convergence of genetic algorithms has been
proved by use of Markov chains and a fundamental Schema Theorem [38], [39].

 Selection

The operator of selection determines, which individuals will produce offsprings. A fitness
function serves as a criterion (numeric evaluation of solution which represents an indi-
vidual), but worse individual can participate in the creation of new population with de-
fined probabilistic. Many selective strategies exist, which differ by in their accuracy and
deterministic degree of choice.

Chapter 6 Design of New Evolutionary Optimization Techniques

 62

 Crossover

This is the most important genetic operation. A created chromosome inherits part of the
genes from one parent’s chromosome and the rest from the second parent. In the case that
the created chromosome is evaluated by higher price than its parents, this means, that the
advantages are a connected profitable property in the chromosome and its recessive char-
acters are inhibited.

 Mutation

Mutation causes a random modification of chromosomes. In the case, that the population
is saturated and converges to local extreme, mutation ensures the input of new genetic
information.

6.2 Simulated Annealing

The origin of simulated annealing (SA) lies in the analogy of optimization and a physical
annealing process [40], [41]. In condensed matter physics, annealing is a thermal process
for obtaining low-energy states of a solid in a heat bath. Roughly, the process can be de-
scribed as follows. First, the temperature of the heat bath is increased to a maximum
value at which the solid melts. Thus, all particles of the solid arrange themselves ran-
domly. Afterwards, the temperature is carefully decreased until the particles of the melted
solid reach in the ground state of the solid in which the particles are arranged in a highly
structured lattice with minimum energy.
The physical annealing process can be simulated by computer programs using Monte
Carlo techniques proposed by Metropolis et al. [42]. Given a current state i of the solid
with energy Ei, a subsequent state j is generated by applying a perturbation mechanism,
which transforms the current state into the next state by a small distortion, for instance by
displacement of a single particle. If the energy difference ∆E = Ej - Ei is less or equal to
zero, the state j is accepted as the current state. If the energy difference is greater than
zero, the state j is accepted with probability exp(-∆E / (k T)), where T denotes the tem-
perature of the heat bath and k the Boltzmann constant [43], [44], [45]. The acceptance
rule described above is known as the Metropolis criterion. In simulated annealing, the
Metropolis criterion is used to generate sequences of solutions of combinatorial optimiza-
tion problems.

Chapter 6 Design of New Evolutionary Optimization Techniques

 63

The key to SA’s proof of convergence is that a stationary distribution must be reached at
each temperature, followed by sufficiently slow cooling. A side-effect of this proof is that
other algorithms which achieve a stationary Boltzmann distribution, and which perform
sufficiently slow cooling, will inherit the same convergence guarantees [44].

In the original version of simulated annealing, a final state serves from Metropolis algo-
rithm as a started state the following temperature phase (T= α*T). This basic premise can
be modified in that way, Metropolis algorithm is initialised by the best solution, which
was obtained in the previous temperature phases. That modified method; is called simu-
lated annealing with elitism.

6.2.1 Control Parameters of Simulated Annealing

o Initial temperature T0: This must be chosen in order that almost all perturbations
are accepted.

x=(number of perturbations accepted) / (total number of perturbations attempted)

)
)(

ln(

)(

−+−

+

+

−+

∆
=

mmmx
m

CostT , (6.1)

where x is the acceptance probability, +∆Cost is the average change in cost over
all perturbations, which lessen cost function, m- is the number of perturbations
with the cost function decrease and m+ is the number of perturbations with the
cost function increase [46].

o kmax: number of iterations of Metropolis algorithm in one temperature phase. The
number kmax is based on the requirement that at each value of T quasi-equilibrium
is succeeded.

)(maxmax iS
SNk

i Ω∈
= , (6.2)

where)(iSN is the maximum size of the configuration subspace, Ω is the search

space and Si is current state.

o Decrement coefficient α: The coefficient α (the term in brackets) is proposed to
reduce the temperature.

Chapter 6 Design of New Evolutionary Optimization Techniques

 64

1

1 3
)1ln(1

−

+










 +
+=

kT

k
kk

TTT
σ

δ
, (6.3)

where δ is a measure of how close the equilibrium vectors of two successive itera-
tions are to each other,

kTσ is the standard deviation of the cost function up to the

temperature Tk [46].

o The stopping criterion is based on the monitoring of the relevant reduction of the
cost function during the optimisation process

s
o

s

TC
T

dT
TCostd ε<

)(
)(, (6.4)

where sε is a small positive number called the stopping parameter,)(oTC is the av-

erage value of the cost function at T0. This condition is based on extrapolation of
the smoothed average cost)(TCosts obtained during the optimisation process

[46].

6.2.2 Parallelization of SA

It is possible to use two different techniques from the point of communication:

• In the first technique each process performs its complete SA algorithm, but each
one works with a different generator of the random number but they don’t com-
municate. The final solution is chosen at the end of optimization process.

• In the second approach all processes communicate with the master, which returns
to all of them the current best solution, or with its neighbours. But in the case of
asynchronous communication, the communication can be too frequent at higher
temperature and the time of communication can be much greater than the time of
optimisation.

We proposed the technique, which is a combination of both of the above, i.e. in the
higher temperature the processes are independent and the communication is activated
only for the lower temperature phase.

Chapter 6 Design of New Evolutionary Optimization Techniques

 65

6.2.3 Design of a New Parallel SA

 The basic terms and definitions

 Accepted solution
o New generated solution have smaller predefined cost function or worse but it sat-

isfies the condition: random()< min[1, T
xfxf

e
)()(−′

−
], where f(x´) is new cost,

f(x) is old cost, T is temperature and random is generated randomly with uniform
distribution.

 Structure of parallel processes, see Fig. 31.

o One control process (master)
o n – slave processes (slaves)

 Synchronization: the way of communication between master and slaves
o Asynchronous mode – a process communicates with the master independently of

the other processes
o Synchronous mode

• All slaves communicate with master in one predefined time period
• All slaves wait for the message from master at the end of the temperature

phase to continue in computation, i.e. in one temperature period the communi-
cation slave – master proceeds asynchronous but the whole execution appears
as synchronous. The processes are namely synchronized at the end of tempera-
ture phase.

In the lower temperatures the processes cooperate by using the architecture master – slave
and all slaves (and also master) work on its sequence of solutions. If some slave process
finds an acceptable a solution, it sends it to master, which determines its acceptance ac-
cording to its own rule. If accepted this solution or a new solution found by the master, it
is sent to all slave processes.
Each communication slave/master runs asynchronously in one temperature phase. A
problem appears with termination and with delay of processes (e.g. it is caused by differ-
ent frequency of communication of each process with master). The principle of how to
solve this problem is based on the usage of synchronisation at the end of temperature
phase, which is controlled by the master. This approach allows that all processes work at
the same temperature and also finish at the same time.
The scheduling of the messages is shown in the Fig. 31.

Chapter 6 Design of New Evolutionary Optimization Techniques

 66

Figure 31: Illustration of the communication during the temperature phase and at the end
of the temperature phase.

 Advanced modification of parallel simulated annealing (PSA)

A. Communication only at the end of temperature phase:
In comparison to the described version in the previous point (the basic terms and
definitions) slaves communicate with master exclusively at the end of temperature.
In this case all processes communicate at the same time and therefore there is no
need of synchronisation. This way of communication is already synchronous, i.e.
processes work at the same temperature phase.

B. Communication after defined number of iterations:
The same idea as for case A, but in this version the communication is performed af-
ter defined number of iterations at each temperature phase of Metropolis algorithm
(e.g. after each 10th, 100th or 1000th iteration). This way of communication is im-
plicitly synchronous again.

C. Usage of elitism:
In this case, the Metropolis algorithm is initialised by the best solution, which was
obtained during previous temperature phases. Otherwise the output from Metropolis
algorithm is taken as starting state of the next temperature phase (T= α*T). Com-
munication is proceeded asynchronous after each iteration, but it is synchronised at

Chapter 6 Design of New Evolutionary Optimization Techniques

 67

the end of temperature phase. The principle of synchronisation was described
above.

D. Sequential version of SA. It was described in the chapter 6.2. The sequential SA al-
gorithm performs as an interesting comparison to PSA algorithms.

 Experimental results

All parallel versions of SA were implemented in C using MPI [47] routines for message
passing and it can therefore be compiled and run on any architecture (clusters of worksta-
tions, MPPs, SMPs, etc.) for which an implementation of MPI standard is available.
Parallel variants of SA were not considered a possible test for the problem of collective
communication scheduling, because this problem is too complex. Therefore it was de-
cided that PSA is tested using a simpler problem. We chose the well known problem of
TSP (traveling salesman problem), as optimal results of this problem as well as optimal
setting SA parameters are known. TSP benchmarks were published on the web site [48].
The principle of this problem is to search as much as possible the shortest path between
all cities. Using this problem, it was possible to detect the differences and abilities of in-
dividual PSA algorithms.
Most of experimental work was performed on the benchmark of 52 cities see Fig. 32 to
34. It was performed 15 runs for tested versions of PSA. The efficiency of PSA versions
were also proved by benchmark of 79 cities, see Fig.35.

Optimal solution of TSP problems:

• berlin52 - TSP52 (52 cities) - tour length equals to 7542
• eil79 - TSP79 (79 cities) - tour length equals to 538.

In all experiments the following control parameters were used:

Kmax 10000

Tmax 100
Tmin 1
Tchange 20
Alpha 0,9
Count of processors 8

Table 2: The setting of SA control parameters.

Chapter 6 Design of New Evolutionary Optimization Techniques

 68

Notice: The value Tchange was changed to 30 to achieve better lucidity of optimization
curves of tour length in Fig. 34 and 35. We didn’t use mutual communication between
processes in all temperatures phases, because the asynchronous variant was tested. In this
asynchronous version, the time of optimisation can be rapidly degraded by frequent time
of communication at higher temperature. Because of the comparison of execution time,
all versions of PSA mutual cooperated in architecture master-slave only in interval
Tchange - Tmin.

Average tour length

8609,4

8094,3
8019,1

8113,4
8023,8 8059,6

7700

7800

7900

8000

8100

8200

8300

8400

8500

8600

8700

to
ur

 le
ng

th

C.PSA-elitism

A.PSA-
communication at
the end of T
B.PSA-10th iteration

B.PSA-100th
iteration

B.PSA-1000th
iteration

D.sequentialí SA

Figure 32: Average tour length of TSP 52 for several versions of PSA.

In Fig. 32 the performance of the sequential SA and five PSA algorithms are illustrated.
Sequential SA, which is shown in yellow (the first from right side), uses the same pa-
rameters as PSA versions. It is evident that the best versions of PSA are those, in which
relatively small intensity of communication is used. The variant B provides the best re-
sults with communication after each 100th iteration of Metropolis algorithm.

Chapter 6 Design of New Evolutionary Optimization Techniques

 69

Execute time with relevant tour length

0 5 10 15 20 25 30 35 40 45

D.sequential SA

A.PSA-communication at the end of T

B.PSA-1000th iteration

B.PSA-100th iteration

B.PSA-10th iteration

C.PSA-elitism

T(s)

7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700

tour length

average time shortest achieved time average tour

Figure 33: Computational time with relevant average tour length at each PSA versions
and sequential SA versions.

In Fig. 33 computational time and average tour length for each version is shown. The
sequential version doesn’t achieve such quality of results as the parallel versions indeed it
runs the same time as the best parallel versions. From the figure it is evident that too fre-
quent communication increases computational time and simultaneously it cannot improve
result quality. The best version of PSA is variant A according to computational time and
average tour length, which communicates at the end of temperature phase and also vari-
ant B, which communicates after each 100th iteration.
It is evident that the higher is the intensity of communication, the longer execution time
of PSA versions - therefore trade-off must be found.

In Fig. 34 and Fig. 35 the optimization curves of length tour are presented for several
PSA versions. From B version of PSA the variant was chosen with communication after
each 100th iteration.

Chapter 6 Design of New Evolutionary Optimization Techniques

 70

Optimization curves of the shortest tour for several
PSA versions

7900

8000

8100

8200

8300

8400

8500

02468101214161820222426
T

to
ur

 le
ng

th

B.PSA-
communication
only each 100th
iteration
C.PSA-elitism

A.PSA-
communication at
the end of T

Figure 34: Optimization curves for TSP 52 (52 cities).

In Fig. 35 optimization curves of several PSA versions and sequential SA are presented
for TSP 79 problem.

Optimization curves of the shortest tour for several
PSA versions and sequential SA

500

700

900

1100

1300

1500

1700

1900

2100

02468101214161820222426

T

to
ur

 le
ng

th

C.PSA-elitism

B.PSA-
communication only
each 100th iteration

A.PSA-
communication at
the end of T

D.sequential SA

Figure 35: Optimization process of tour length for TSP 79 (79 cities).

Chapter 6 Design of New Evolutionary Optimization Techniques

 71

 Summary

All versions of PSA are based on mutual cooperation of the master-slave processes. In the
first phase all processes are independent at temperature intervals Tmax-Tchange and each of
them produces its optimised solution. In the second phase slave processes cooperate via
control master process.
Individual versions differ only by form and by count of communication. The new concep-
tion of parallel algorithm of simulated annealing is based on two basic modifications,
which was applied in the designed PSA versions.

• Communication at a given iteration epoch or at the end of temperature phase
o All processes communicate at defined time interval or after given iteration

number, which provides synchronization
 Advantage - excessive communication is reduced and problem with accep-

tance of worse solution at low temperature is solved
 Disadvantage – at very low temperature the processes produce the similar

solutions. The profit of parallelization is decreased
• Usage of elitism

o It uses synchronization at the end of temperature phase, otherwise the com-
munication proceeds asynchronous after each iteration.
 The disadvantage of this approach lies in excessive communication, which

results in computation time increase.
 Advantage – elitism removes the possible problem with the acceptance of

worse solutions at low temperature phase

All variants were tested on two problems of travelling salesman problems TSP52 and
TSP79. In all versions of PSA and SA, no heuristics were used, because we investigated
influence of cooperation processes on quality of achieved results and convergence speed
to global solution. The sequential SA algorithm performs as an interesting comparison to
PSA algorithms. From received results, it follows the necessity of trade-off between in-
tensity of communication and computational time. The best results produce one of PSA -
B versions, which uses communication after each 100th iteration of Metropolis algorithm,
see Fig. 32. In the case of communication after each 1000th iteration or at the end of tem-
perature phase it didn’t achieved such superior results. In a such small communication
intensity the processes already generate similar results. In the case of the intensive com-
munication (almost at each iteration) the execution time is very high and the results are
much worse than for the minimal communication. This fact was illustrated in Fig. 33.

Chapter 6 Design of New Evolutionary Optimization Techniques

 72

6.3 Hybridization of Evolutionary Algorithms

Hybrid evolutionary algorithms are built by combination of stochastic evolutionary algo-
rithm and problem specific algorithm or by aggregation of mostly two evolutionary algo-
rithms. In our case, we target the aggregation of simulated annealing (SA) and genetic
algorithm (GA). In implementing a SA using GA principles, we seek to incorporate
strengths and eliminate weaknesses of both methods. In practice both of them may con-
verge prematurely to suboptimal solutions but only SA currently possesses a formal proof
of convergence to global optimum. This proof depends on SA's cooling schedule [49].
Next contrasts between SA and GA have to do with loss of solutions, redundancy and
deceptive problems. Since SA maintains only one structure (solution) at a time, whenever
it accepts a new structure, it must discard the old one; there is no redundancy and no his-
tory of past structures. The end result is that good structures and substructures (in the
extreme case the global optimum) can be discarded, and if cooling proceeds too quickly,
may never be regained. SA compensates by increasingly sampling good solutions as tem-
perature decreases. GAs are also prone to the loss of solutions and their substructures or
bits [55] due to the disruptive effects of genetic operators. Upon disruption, the simple
GA will not maintain an old, but better solution; it must accept any newly generated solu-
tion, regardless of fitness. However, the GA partially overcomes this, especially at larger
population sizes, by exponentially increasing the sampling of above-average regions of
the search space, known as schemata [39], [58]. A schema is a subset of the solution
space, whose elements are identical in certain fixed bit-positions. Schemata act as a par-
tial history of beneficial components of past solutions. However, for each above-average
schema duplicated, a competing, below-average schema must be discarded. This can lead
to trouble on difficult or deceptive problems, where low-order, low-fitness schemata are
needed for the construction of an optimal higher-order schema [41]. SA is similarly sub-
ject to deception, as the algorithm will have a difficult time paying extended visits to the
high-cost neighbors of a deceptive problem's global optimum.
A final but important difference between GA and SA is the ease with which each algo-
rithm can be made to run in parallel. GA is naturally parallel - they iterate an entire popu-
lation using a binary recombination operator (crossover) as well as a unary operator (mu-
tation). SA, on the other hand, is naturally sequential and therefore it is not easily run on
parallel processors; and works only with one structure (solution). While attempts have
been made to parallelize SA, a general-purpose method has no yet been demonstrated.

Chapter 6 Design of New Evolutionary Optimization Techniques

 73

6.3.1 A Short Survey of Hybrid Parallel Simulated An-
nealing Using Genetic Operators

There are many hybrid parallel genetic simulated annealing algorithms, but they use one
of two possible concepts. The first one is based on the algorithm SA, which is enhanced
with particular genetic operations. The second is based on the concept of GA, which uses
Metropolis algorithm at the selection process. In this paper we analyzed three variants of
aggregation SA and GA:

• S. W. Mahfoud and D. E. Goldberg proposed algorithm based on the concept of
GA, which uses the Metropolis algorithm in the selection process [50].

• M. Krajíc described parallel hybrid genetic simulated annealing, which is based
on the concept of SA and it uses genetic operations (mutation and crossover) [52].

• N. Mori, J. Yoshida and H. Kita suggested the thermodynamical selection rule in
genetic algorithm [51].

We proposed the hybrid parallel genetic simulated annealing (HGSA) using architecture
master-slave. HGSA is based on the best parallel version of SA, which is discussed in
section 6.2.3. Each process includes the master process execute simple SA algorithm. The
crossover and mutation GA operations are used just after the communications
master-slave. A detail description is presented in the next chapters.

6.3.2 Design a New Hybrid Parallel Genetic Simulated
Annealing (HGSA)

HGSA is a hybrid method utilizing parallel SA with genetic operators. The flow of the
algorithm is shown in Fig. 36. The parallel SA is built on the base of a master-slave con-
figuration of processes. In each process the sequential SA is running (point 1 in Fig. 36).
During the communication (Fig. 36 - point 2) which is activated each 100th iteration of
Metropolis algorithm, each process sends their solution to a master. The master keeps one
solution for himself and sends one randomly chosen solution to each slave. The selection
is based on the roulette wheel, where the biggest probability of selection has the individ-
ual with the best fitness function. After the communication phase all processes have two
individuals. Now, starts the phase of a genetic crossover (Fig. 36 - point 3). Two addi-
tional children solutions are generated from two parent solutions using double-point
crossover.

Chapter 6 Design of New Evolutionary Optimization Techniques

 74

Figure 36: Structure of Hybrid parallel genetic simulated annealing.

The best solution from two parents and two children is selected and mutation is per-
formed always (in the parent solution) or with a predefined probability (in the children
solution). Mutation is performed by randomly selecting genes and by randomly changing
their values. A new solution for each process is selected from the actual solution provided
by SA and from the solution obtained by genetic manipulation. The selection is con-
trolled by well-known Metropolis criterion.

6.3.3 General Differences between New HGSA and Other
Approach of SA and GA Aggregation

We will take interest only in SA and GA aggregation, which are based on parallel SA
using GA operators.
Our algorithm HGSA differed from other hybrid algorithms mainly in the way of com-
munication between processes. Our approach is based on master-slave architecture, when
master sends individuals to slave by roulette wheel, such that the individual with better
evaluation of fitness function is sent more often than others. Other published algorithms
randomly send all solution between processes or only neighbors.

Chapter 6 Design of New Evolutionary Optimization Techniques

 75

In HGSA communication is activated each nth iteration of Metropolis algorithm. The
other authors of hybrid algorithms activate a communication at the end of temperature
phase. After the receiving of each individual the phase of genetic operations starts. Two
new solutions are generated, using crossover from parent solutions. In our approach, the
best individual can be one from parent or offspring solutions and it is generated by two-
point crossover. Selection and crossover differ also from other hybrid algorithms. In the
case that the winner is parent solution the mutation is always performed, otherwise the
mutation is performed by predefined probability. In other hybrid algorithms, only the
offspring solution is chosen for mutation, which is always performed.
These are the main differences and some further differences we can search by detailed
comparing of HGSA and other hybrid algorithms.

6.4 Experimental Results

Hybrid parallel genetic simulated annealing and selected variants of PSA algorithm were
tested on three TSP problems, which were published on the website [48]. We compared
our HGSA with PSA versions described in section 6.2.3, to determine which of them
achieve the best results according to the solution quality and the computing time. In all
tested versions of PSA and HGSA, no heuristics was used, because we compared the
abilities of proposed algorithms without utilization of accelerating methods for local
searching.

In all experiments the following control parameters were used:

Kmax 10000
Tmax 100
Tmin 1
Alpha 0,9
Prmutation 0,1
Iteration of communication 100
Number of processors 8

Table 3: The value of HGSA parameters.

Chapter 6 Design of New Evolutionary Optimization Techniques

 76

Most of the tests were performed on the benchmark of 52 cities see Fig. 37 and 38. In
total 15 runs for 52 cities were performed, in each versions of PSA. The efficiency of
PSA versions was also proved by benchmark of 79 cities and by benchmark of 100 cities.

In Fig. 37 are shown the experimental results of three selected PSA versions and HGSA
algorithm. The PSA versions differ only by the used time interval between master-slave
communication. HGSA algorithm has used fixed communication period - each 100th it-
eration. All PSA versions found similar average tour length. The optimal tour was not
found in any of the 15 runs. But in case of HGSA the optimal solution was achieved in
each of 15 runs.

Average tour length

8059,64

7542

8023,788019,06

7200
7300
7400
7500
7600
7700
7800
7900
8000
8100

PSA -
communication
at the end of T

PSA - only each
100th iteration

PSA - only each
1000th iteration

HGSA

Figure 37: Average tour length of TSP 52 for HGSA and three versions of PSA.

In Fig. 38 the computational time and average tour length is shown. It is evident that the
best solution provides HGSA and its computation time is equal to the fastest PSA ver-
sion.

Chapter 6 Design of New Evolutionary Optimization Techniques

 77

Computational time with relevant average tour length for
TSP 52

0 5 10 15 20 25 30 35 40

PSA-communication at the
end of T

PSA-only each 1000th
iteration

PSA-only each 100th
iteration

HGSA

 t

7200 7300 7400 7500 7600 7700 7800 7900 8000 8100
tour length

average time shortest achieved time average tour

Figure 38: Computational time with relevant average tour length for HGSA and PSA
versions.

An extra experiment was applied for comparison the performance of HGSA with
PAGASA [52] on the TSP benchmark of 100 cities. HGSA achieves the tour length
equals to 21295, which is better than the tour length 21443 achieved by PAGASA. Using
the benchmark of 79 cities, PAGASA algorithm achieved the best tour length of 540 units
and HGSA achieved 538 unit tour length, which is the global optimum.

6.5 Summary

We have developed a new hybrid optimization algorithm HGSA as an aggregation of
parallel simulated annealing PSA and genetic algorithm. HGSA was built on the parallel
SA version, which achieved a good trade-off between achieving the quality (sub)optimal
solutions and computing time. In all tested versions of PSA and HGSA, heuristic was not
used, because we compared the abilities of proposed algorithms between each other with-

Chapter 6 Design of New Evolutionary Optimization Techniques

 78

out utilization of accelerating methods to local searching. We have tested HGSA on three
benchmarks of the travelling salesman problems: TSP52, TSP79 and TSP100. The com-
parison of the performance of HGSA and PSA was realized. HGSA algorithm achieved
the global optimum in each of 15 runs for TSP52. The PSA versions received only a local
solution. The execution time was the same as the fastest PSA version. Comparison of the
speed of convergence and achieved solution, proposed HGSA appears to be a very good
compromise. Another experiment was arranged as a comparison of HGSA and a version
of hybrid PSA called PAGASA published in [52]. HGSA outperforms PAGASA in all
tested benchmark.
HGSA achieved very good results in all tested benchmark and it appears as feasible algo-
rithm for solving some complex problem in practise. This hypothesis will be verified in
the next chapter on the problem of collective communication scheduling for arbitrary
interconnection networks.

Chapter 7 Evolutionary Design of Collective Communication

 79

Chapter 7

Evolutionary Design of Collective Com-
munication

As chip multiprocessors are quickly penetrating new application areas in network and
media processing, their interconnection architectures become an object for optimization.
Collective communications involving all processors are frequently used in the solution of
demanding problems in parallel and their timing complexity has a dramatic impact on
performance.
In this chapter, we describe the application of hybrid evolutionary algorithm HGSA to
scheduling collective communications on interconnection networks of parallel computers.
The goal of the proposed algorithms is to find a deadlock-free and conflict-free schedule
of a collective communication with the number of steps as close as possible to the lower
bounds derived analytically, see Table 1.
The optimization problem using HGSA evolutionary algorithms may be decomposed into
several phases. In the first phase, it is necessary to choose a suitable encoding of the
problem into a chromosome. The second phase is a proper definition of the fitness func-
tion, which determines quality of the chromosome. The next phase is the design of the
input data structure for the evolutionary algorithm. The last phase is experimental runs of
the evolutionary algorithm and search for the best set of its parameters. The proper choice

Chapter 7 Evolutionary Design of Collective Communication

 80

of parameters can speed-up the convergence of the algorithm and simultaneously mini-
mizes the probability of getting stuck in local minima.
The proposed algorithm is able not only to re-invent optimum schedules for known sym-
metric topologies like hyper-cubes, but it can find schedules even for any asymmetric or
irregular topologies (Fig. 39) in case of general collective communications. Optimum
schedules are destined for writing high-performance communication routines for applica-
tion-specific networks on chip or communication libraries for general-purpose intercon-
nection networks.

Figure 39: 32 processors in AMP topology. The SC node denotes a system controller
(host computer) that sends input data to processing nodes and collects results.

Chapter 7 Evolutionary Design of Collective Communication

 81

7.1 Model of Communication

Implementation of a collective communications is inherently prone to a deadlock. If we
let each node send or receive messages to or from more than one partner in a loop asyn-
chronously, we still face the danger of a so called fetch deadlock (at least two nodes exe-
cute pending send operation and cannot receive). This is why a synchronized communica-
tion model is used and assume that the communication proceeds in synchronized rounds
(steps). However, a deadlock doesn’t occur only on channels but also on a router’s buffer.
Buffer deadlock is situation, where there is not enough space to store a message in the
router’s buffer. (However this paper has not dealt with buffer deadlock because it is as-
sumed that routers’ buffers are of sufficient capacity to store all incoming messages.)
This paper will focus especially on OAB, AAB, OAS, AAS and MNB communication
patterns on interconnection networks with the following parameters:

• full-duplex links — messages can be transferred in both directions at the same
time

• store-and-forward switching — whole packets are buffered in routers

• non-combining nodes — every received packet is sent on separately

• one-port/all-port communication facility — one/all ports of a single node can be
used for communication simultaneously

• slim/fat node – one/more then one processor is connected with a router

These communication tasks [OA(B/S), AA(B/S) and MNB] cause the highest communi-
cation traffic and their timing overhead greatly depends on capabilities of particular
communication hardware. OAB communication (as well as OAS) can be performed by
sequentially sending the message to particular nodes. This system is very inefficient be-
cause only one node sends the message in each communication step. However, we can
use a better technique using a broadcast tree when every node that received the message
in previous communication step becomes an initiator of new multicast communication. If
only node subset takes part in communication, we talk about multicast communication
pattern. Consequently, the number of informed nodes increases by dk instead by d, where
d is the node degree and k is the number of communication step. One well-known method
of how to solve OAS communication pattern, is the design spanning tree. However, on
the other hand, construction of the spanning tree is difficult, namely in asymmetrical to-
pologies. AAB communication is solved in a similar way as OAS, but the spanning tree
is simultaneously generated by every node. This method termed time-arc-disjoint trees
(TADT). However, this method is based on a similar principle, this method has the simi-

Chapter 7 Evolutionary Design of Collective Communication

 82

lar disadvantage. One possibility implementing AAS is to use permutations separated by
barriers. The number of steps is then P − 1, where P is processor count. However, this
number of steps is too large and can be reduced significantly.
The communication pattern MNB can be solved by MILP method (Mixed Integer Linear
Programming). This method can achieve an exact solution, but, very long solutions are
required for network sizes of any practical interest. The principle of the MILP can be
formulated as a graph coloring.
Since we deal with regular and also irregular topologies, the only way to find optimal or
sub-optimal schedules of communication steps is by utilizing combinatorial optimization.
The following describes our method of achieving optimal or sub-optimal schedules of
communication using combinatorial optimization.

7.2 Methodology of Design of Optimal Communi-
cation Schedules

The optimal communication schedule must be conflict-free and deadlock-free. Therefore
we use a synchronized communication model and we assume that router’s buffers’ are of
a sufficient capacity to avoid buffer’s deadlocks, we don’t deal with deadlocks, while
conflicts may occur. If the conflict occurs, the schedule cannot be used in a real applica-
tion. A conflict appears on a channel if two different messages want to utilize one com-
munication channel in one direction in the same communication step, see Fig. 40. The
main idea of both proposed methods is based on testing conflict-free condition.
For the scheduling of optimal collective communication for arbitrary topologies and
communication patterns two, differing, methods can be considered.

7.2.1 Searching of Conflicts

This first method is based on the fact, that an optimal communication is one complex
problem. This method of solution of investigated problem is possible, but it is very time-
consuming and also the probability of achieving an optimal schedule rapidly degrades for
topologies with a higher number of nodes. Really, it works for topologies up to 23 nodes

Chapter 7 Evolutionary Design of Collective Communication

 83

by using AA (All-to-All) and 64 nodes by using OA (One-to-All) communication pattern.
Mainly for AA, it is relatively small topologies. The algorithm searches for an appropri-
ate path (it is able to create an optimal schedule) between sending and receiving node and
simultaneously it must correctly set a communication step to individual channels on the
investigated path. This technique has a serious problem. It is not able to recognize
whether it is possible to create optimal schedule by the selected path. Therefore it can
happen, mainly for complex topologies, that a correctly selected path with the wrong set-
ting of a communication step of some channel is replaced by an unsuitable path (it is not
able to create a conflict-free schedule). In other words, the algorithm does not know,
whether the whole path must be replaced or only to modify the communication step to
channel or channels. Selecting an incorrect channel or set of incorrect channels is also a
very complex problem for reconfiguration of communication step.
The next demand, which increases the execution time, is detection number of conflicts.
The demand for conflict detection is performed in every modification of schedule. The
conflicts are detected in the proposed schedule by the mutual checking of paths as to
whether they use the same channel for communication. This is repeated for every com-
munication channel.

Conflict

Figure 40: Conflict on a communication channel.

7.2.2 Prediction of Conflicts

From above mentioned difficulties, the new method was developed for the design of op-
timal schedule, which partitions collective communication scheduling into two complex
sub-problems. The first sub-problem is defined as a search for appropriate paths (it is able
to create an optimal schedule) between source and destination node. The second sub-

Chapter 7 Evolutionary Design of Collective Communication

 84

problem is stated as that of finding a conflict-free communication step to each channel for
each found path. Without this partitioning the basic complex problem the method would
need to be solved simultaneously the two sub-problems, as described in previous section.
The time of finding the optimal schedule can be reduced by the use of conflict prediction.
It is possible to discover during the solution of the first sub-problem, whether the com-
munication schedule will be conflict-free or not (detailed description is bellow). Using
this technique of prediction, it is not necessary to assign the communication step to indi-
vidual channel and detect, if the conflict occurs.
Necessary (but not sufficient) conditions for a schedule to be conflict-free are:

1. Utilization of investigated channel in one step in one direction equals at most or
just one.

2. Utilization of each channel in one direction equals at most the number of commu-
nication steps S of the whole schedule. It can be described by equation (7.1),
where the number of communication steps of the whole schedule is equal or
greater than the number of the utilization of investigated channel in the whole
schedule.

S >= Rc (7.1)

where S is the desired number of communication steps of whole schedule, which is set by
user at the beginning of the program as the input parameter and RC is the number of all
paths, which utilize the investigated channel.
So the conflict appears in case of inequality:

S < Rc (7.2)

The next case of the conflict detection in the designed schedule expresses the situation
that it is not possible to assign a communication step to the channel to be conflict-free
although the equation (7.1) is true. This case can be described by the equation (7.3) with
the interval (7.4), which includes all possible communication steps for the investigated
channel.

bound = (S – (L-O)) (7.3)

where bound is the higher border of communication steps of the investigated channel, L is
the length of the investigated path and O is the channel position on the path. Finally, the
communication step of an investigated channel on the path is chosen from the interval,
where lower bound is the channel position O and the higher bound is value calculated
from the equation (7.3):

step ∈ <O, bound> (7.4)

Chapter 7 Evolutionary Design of Collective Communication

 85

In the case, that it is impossible to choose two different values from interval (7.4) for the
investigated channel into two different paths, the conflict appears in the generated com-
munication schedule. This situation is illustrated by the example given in Table 4. This
table explains the idea of conflicts prediction. In the first column is a set of investigated
paths (from the generated schedule), which contains the investigated channel 8_ 9. In the
second column there are intervals of possible communication steps to investigated chan-
nel on the investigated path.

path
interval of all possible
communication steps

 2 0 8 9 25 3
 8 9 1

14 12 8 9 3, 4
16 12 8 9 3, 4

Table 4: Assignment of communication steps to channel from the interval (7.4).

To illustrate the above results of Table 4, we have path “14_12_8_9” and investigated
channel is 8_9. The number of communication steps of whole schedule S = 4, then posi-
tion of the investigated channel 8_9 on the path is 3, i.e. O = 3 and the length of the path
is 3, i.e. L = 3. According to equation (7.3),

bound = (S - (L - O)) = (4 - (3 - 3)) = 4.

Substituting the values into interval (7.4) we get

step ∈ <O, bound> = <3, 4>.

These inequation (7.2), equation (7.3) and interval (7.4) perform only the detection of the
conflict and also the evaluation of the fitness function.

Chapter 7 Evolutionary Design of Collective Communication

 86

7.3 Input Data

At the beginning, the program reads its input data from a specified configuration file. It
contains the values of the following parameters:

 name of the file with a description of the network topology (its graph)

 the target number of communication steps for communication task

 source node (used only for OAB and OAS)

 starting temperature

 cooling gradient

 the number of iterations of Metropolis algorithm

 frequency of mutual communication master-slave

 mutation probability

 iteration, at which the parameters of function of the communication step setting
are changed according to predefined values

node
neighbor

1
neighbor

2
neighbor

3
neighbor

4
0 1 3
1 0 4 2
2 1 5
3 0 4 6
4 1 3 5 7
5 2 4 8
6 3 7
7 4 5 8
8 5 7

Table 5: 9-processor Mesh routing table. Figure 41: 9-processor Mesh configura-
tion.

.

 6 7 8

3 4 5

0 1 2

Chapter 7 Evolutionary Design of Collective Communication

 87

Description of the network topology for which a particular collective communication is
being optimized is specified in a separate topology file. This file contains a list of each
node’s neighbors, where two nodes are considered to be neighbors only if they are con-
nected by a single direct link. Table 5 shows sample data which describe eight-processor
Mesh topology shown in Fig. 41. Further description of the other parameters (e.g. set of
senders/receivers, the number of processors at a node) is given in the following sections.

7.4 Search of The Shortest Paths

This algorithm generates all the shortest paths and saves them in the operating memory
into a specific data structure. The algorithm [2] is inspired by the breadth-first search al-
gorithms (BFS). BFS is based on the searching of a graph, where the source processor is
chosen as a root. The edges create a tree used in the searching process. A tree is gradually
constructed, one level at a time, from the root that is assigned an index of a source node.
When a new level of the tree is generated, every node at the lowest level (leaf) is ex-
panded. When a node is expanded, its successors are determined as all its direct
neighbors except those, which are already located at higher levels of the tree (it is neces-
sary to avoid cycles). The construction of the tree is finished when a value of at least one
leaf is equal to the index of a destination node. Destination leaves’ indices confirm the
existence of searched paths, which are then stored as sequences of incident node indices.
A sample tree constructed while searching for shortest paths from node 0 to node 5 in the
9-processor Mesh topology is shown in Fig. 42. Three paths were actually found in the
tree: 0-1-2-5, 0-1-4-5 and 0-3-4-5. If one-to-all communication is being scheduled, only
paths from a single source node to all other nodes are searched for. On the other hand, for
optimization of all-to-all communication AA, all paths between every pair of source-
destination nodes are considered.
In certain cases when the target topology has nonuniform numbers of links per node, it
may happen that an optimal routing schedule cannot be constructed from a set of the only
shortest paths. Use of only the shortest paths may cause heavy utilizing of some links but
the rare utilization of others, which can prevent the finding of an optimal solution. To
avoid this problem, the algorithm must consider not only the shortest paths but also paths
whose length may be longer. This approach can be used only for small topologies, be-
cause in case of the large topologies the searching space of possible paths increases dra-
matically. For example, consider with 9-processor Mesh, AA communication pattern and

Chapter 7 Evolutionary Design of Collective Communication

 88

the paths that are elongated by 1 according to shortest paths; whole number of paths is
increased from 112 to 202, for more complex topologies with 32 processors and more,
rising to thousands of paths. Consequently, optimization algorithms are not able to search
an optimal solution for more complex topologies by non-minimal routing.

Figure 42: Construction of the shortest paths list from node 0 to node 5 in the 9-
processor Mesh topology.

7.5 Solution Encoding

Very simple encoding has been chosen for HGSA. The solution is represented by the
chromosome as an array of genes, see Fig. 43. Every gene encodes schedule of a single
message transmission from a given source node to a destination node. The gene’s posi-
tion (locus) represents the source and the destination node for a message. The source
node is calculated from the gene’s position by the equation (7.5) and destination node
according to the equation (7.6).

 source_node = gene’s_position div P (7.5)
destination_node = gene’s_ position mod P (7.6)

 0

1 3

2 4 6

5 75 5 7 7

4

Index: 1 2 3

Chapter 7 Evolutionary Design of Collective Communication

 89

where P is the number of nodes in target architecture.
Every gene consists of an identity of a path which is used for routing the message and a
sequence of time steps at which every node on the path (except the destination node)
sends the message to the next node on the path. Assignment of the time steps is con-
strained by a rule that transmission of any message must not take more steps than a
maximum value, which is set as an input parameter when the program is run. The number
of genes G in every chromosome is determined by the type of communication to be
scheduled and by the number of nodes P as:

G = P – 1 (7.7)

for one-to-all communication pattern.

G = P*(P – 1) (7.8)

for all-to-all communication pattern.

G = M*N - Q (7.9)

for many-to-many communication pattern, where M – set of senders, N - set of receivers
and Q – set of simultaneous senders and receivers.

The main advantage of this encoding is a relatively short chromosome and the absence of
inadmissible solutions (every message is transmitted from a source to a destination). The
main disadvantage is a large number of possible values/alleles of the first gene compo-
nent, which represents index of shortest path - the number of the paths rapidly increases
with the distance from source src to destination dst.

 Paths src dst

Gene 3

04 01 02 03

4 1,2 6 1,3,5,..9 1,4,5

Scheduling
sequence of
communication
steps

Index to the
shortest paths
from node 0 to 1

1,2,6,.. 12

Gene 2

Figure 43: The structure of chromosome.

Chapter 7 Evolutionary Design of Collective Communication

 90

7.6 Definition of Fitness Function

Having defined solution encoding, we can now describe fitness function. For our repre-
sentation of chromosomes, fitness of an individual is directly derived from its cost, which
is determined by a number of conflicts among genes of its chromosome. It is obvious that
we are concerned only with such final solutions which have no conflicts, i.e. whose cost
is equal to zero. Only these conflict-free schedules are applicable in real applications.

7.6.1 The Fitness Function Based on Searching of Con-
flicts

Fitness function based on searching of conflicts can be described as follow:
Firstly, we create the set M, which has elements as much as value S of the required num-
ber of steps.

M = {1,…, S} ⊆ N (7.10)

From the set M we create the set Q, which has elements as much as paths using the inves-
tigated channel.

Q = {M1,…., MRc} (7.11)

Next, we create the set T, for which holds:

T = {y| y is just one randomly selected element from every M ∈ Q} (7.12)

Now, we define the set R, whose cardinality is equal the number of paths using the inves-
tigated channel:

 R = {1,…, Rc} ⊆ N (7.13)

Further, we define function Ω: T → R, which assign to every t∈ T element r∈ R, so t = r.
In the case, that Ω is only surjection a conflict appears, if it is bijection then a conflict
does not occur.
Then, we create the set K, containing elements from T mapping on the same element from
the set R:

K = {x | ∃y∈T, y≠x: Ω(x) = Ω(y)} (7.14)
Finally, the number of conflicts in investigated channel conflictnew can be described as:

conflictnew = |K| (7.15)

Chapter 7 Evolutionary Design of Collective Communication

 91

Now, we can evolve the pattern of total number of conflicts:

conflict = Σ conflictnew (7.16)

7.6.2 The Fitness Function Based on Prediction of Con-
flicts

In the first phase the prediction is used to find out how many conflicts appear in the
whole schedule. This is based on the inequation (7.2), on the equation (7.3) and on the
interval (7.4). The counting of conflicts can be formally described as follows:
On interval (7.4) it can be viewed as the set, because it is subset of nonnegative numbers:

Step ⊆ N (7.17)

From the set Step we create the set W, which has elements as much as paths using the
investigated channel:

W = {Step1,…., StepRc} (7.18)

Now, we create the set U, for which holds:

U = {y| y is just one randomly selected element from every Step ∈ W} (7.19)

Further, we define the set R, whose cardinality is equal the number of paths using the
investigated channel:

 R = {1,…, Rc} ⊆ N (7.20)

Now, we define function Ω: U → R, which assign to every u∈ U element r∈ R, so u = r.
In case, that Ω is only surjection a conflict appears, if it is bijection then a conflict does
not occur.
Then, we create the set G, containing elements from U mapping on the same element
from the set R:

G = {x | ∃y∈U, y≠x: Ω(x) = Ω(y)} (7.21)

Finally, the number of conflicts in the investigated channel conflictnew can be described
as:

1. conflictnew = (Rc - S) + |G|, if Rc > S
2. conflictnew = |G| , otherwise (7.22)

Chapter 7 Evolutionary Design of Collective Communication

 92

Now, we can evolve the pattern of total number of conflicts:

conflict = Σ conflictnew (7.23)

The parameters S and Rc are defined in section 7.2.2, conflictnew is the number of con-
flicts detected for the investigated channel and conflict is the number of conflicts of the
whole schedule.

In case, that prediction is conflict-free (the number of conflicts is equal to 0), the investi-
gated paths create admissible communication schedule. Now, after the prediction phase
the step assignment must be found for to each channel for all paths. Step assignment is
based on equation (7.24) and interval (7.25).

difference = (S – CSB) – (L – O) (7.24)
comm_step = rand <O, O+difference> (7.25)

where difference is the number of possible communication steps of the investigated chan-
nel, CSB is the communication step of the previous channel, L is the length (number of
channels) of the investigated path. The equation (7.24) with the interval (7.25) performs
the counting of conflicts and also the communication step assignment to the channel on
the investigated paths.
In the case, that a communication step is randomly chosen to one channel in two different
paths, the conflict appears. In this case another randomly generated communication step
is applied to that channel for the conflict path.
However, the situation can appear, when the equation (7.23) is equal 0, but the conflict-
free schedule cannot be constructed, see Tables 4 and 6. This situation is based on the
prediction conditions, which are not sufficient, but only necessary. In this case, the com-
putation must be returned to the first phase, i.e. searching for appropriate paths. The pre-
diction only indicates that it is impossible to create conflict-free schedule or it might be
created some conflict-free schedule, but it is not sure.

Path Interval (7.25)
 2 0 8 9 25 3

 8 9 1
14 12 8 9 4
16 12 8 9 3 4

Table 6: An assignment of communication steps to channel from the interval (7.25).

Chapter 7 Evolutionary Design of Collective Communication

 93

In Table 6 the possibility of the communication step assignment to investigated channel
on the investigated path from the interval (7.25) is illustrated. Tables 4 and 6 are very
similar but the difference is in the third row. The possible step interval in Table 6 has
only one value instead two, as in Table 4. The step interval in the channel 8_ 9 cannot
include the 3rd step because this communication step is assigned to channel 12_ 8, see
(7.24).

7.7 Heuristic

In our proposed algorithm one heuristic is used to speed up the convergence to a sub-
optimal solution. It decreases the probability of being trapped in local optima during the
execution. This heuristic is only used for the broadcast communication for the maximal
utilization of channels.

0 1

3 2

4 5
6 7

7
4

6 7

0 1

2 3

4 5
6 7

 message

7
5

0 1
2 3

4 5
6 7

0
0

II

I

Figure 44: Modification of shorter path according to longer path.

The principle is simple. Path I from source node to destination node leads through a se-
quence of intermediate nodes. If other path II, which has shorter length and her destina-
tion node is occurred on the path I and has the same source node as path I, thus this path
II changes according to path I (path II will go through the same nodes as path I), see Fig.
44.

Chapter 7 Evolutionary Design of Collective Communication

 94

7.8 Generalization of New Proposed Algorithm

So far, it has been unnecessary to deal with existence of channel between router and
processor, since we supposed an all-port node model. In all-port model, there are chan-
nels as much as node degree between router and processor and every message, which is
delivered to a router, is immediately sent from this router to a processor at the same time.
There was simplification to a large extent for implementation and simultaneously for our
algorithm, because the state space was reduced for searching. Furthermore, we didn’t
need to deal with the number of processor in one node and also whether processors
transmit and/or receive. We supposed one processor to a router. For solving these prob-
lems, our algorithm must have been extended and generalized on new communication
pattern and topologies with fat nodes.

7.8.1 Fat Topologies

The term fat topologies, describes topologies with fat nodes, where nodes have more than
one processor. Generally, each node can have a different number of processors and there-
fore the information concerning how many processors each node contains must be saved
in a topology file. In this file, a value is assigned to every node, which determines the
number of processors at each node and then a description of network topology to be fol-
lowed.
The next change is one-port node model in contrast to the all-port model that was used in
direct networks. Hence, we must take into consideration the channels between router and
processor. In this node model, there aren’t enough channels to deliver every message
from the router to a processor at the same time. This change becomes evident partly by
increasing the number of new paths lead through the router to all of its processors and
also by extension of individual paths about two channels, at the beginning and at the end
of the path. Dependent on increasing the number of the shortest paths, the search space is
expanded and therefore the whole problem must be encoded by a higher number of genes
in chromosome.

Chapter 7 Evolutionary Design of Collective Communication

 95

7.8.2 Many-to-Many Broadcast Communication

We will write many-to-many broadcast as MNB, because the letters M and N represent
different sets of senders and receivers. According to notation order, the first letter M
represents senders and the second letter N represents receivers.
In the literature, we can meet with theoretical lower bounds for one-to-all and all-to-all
communication patterns but not for the many-to-many communication pattern. Since we
dealt with MNB, we tried to derive the lower bounds as follow:
MNB is limited by OAB or AAB bound from Table 1, whichever is greater, because
some nodes may absorb M messages, only when N ⊆M then nodes absorb M−1 messages.

• one-port model
TMNB = max (log 2 N, D, M - 1), where N ⊆M (7.26)
TMNB = max (log 2 N, D, M), otherwise (7.27)

• all-port model

TMNB = max (D, (M - 1)/d) , where N ⊆M (7.28)
TMNB = max (D, M/d), otherwise (7.29)

These theoretical lower bounds were compared by computed bounds, which were
achieved by our proposed algorithm and simultaneously we could have proved accuracy
of these analytically derived and computed bounds.
To illustrate the above results, MNB on the Fat Octagon in Fig. 45 all tree possibilities of
sending/receiving processors will be analyzed:

1. We have M = 8 sending nodes, N = 16 receiving nodes, and Q = 8 nodes in inter-
section M ∩ N. According to equation (7.27),
TMNB = max (log 2 16, 8) = max (4, 8) = 8 steps.

2. We have M = 8 sending nodes, N = 8 receiving nodes, and Q = 8 nodes. Accord-
ing to equation (7.26),
 TMNB = max (log 2 8, 8 - 1) = max (3, 7) = 7 steps

3. We have M = 8 sending nodes, N = 8 receiving nodes, and Q = 0 nodes. Accord-
ing to equation (7.27),
TMNB = max (log 2 8, 8) = max (3, 8) = 8 steps.

Chapter 7 Evolutionary Design of Collective Communication

 96

Figure 45: Fat Octagon topology with full duplex links and one-port model.

Only one change needed to be made to our algorithm to implement the MNB communi-
cation pattern. This one change related to the recognition of senders and receivers by the
proposed algorithm. This information is written to the topology file as two lists, the list of
senders and receivers. Each element of the list consists of two values, which are separate
by “/”. The first value of element is an index of node and the second value is an index of
processor at this node. Every processor of one node is evaluated by index 0 to n. It may
appear simple, each processor calls by a unique index. However the ability to design of
MNB was added after implementation of OA and AA communication patterns and there-
fore we chose this approach, which minimized the number of implemented changes in the
proposed algorithm. Consequently, the topology file appears as in Fig. 46:

1. sum of processors and maximal number of links per processor
2. number of processor at each node
3. source processors (first number is node, second number is processor)
4. destination processors
5. matrix of direct neighbors

 15

1

11

0

2

14

13

12

4

3

10

9

5

6

8 7

Chapter 7 Evolutionary Design of Collective Communication

 97

sum of processors and maximal number of links per processor
8 3

number of processor at the node
0 2
1 2
2 2
…

source processors (first position is node, second position is processor)
0/0
0/1
1/0
1/1
…

destination processors (first position is node, second position is processor)
4/0
4/1
5/0
5/1
…

node_num and its direct neighbors
0 1 4 7
1 0 2 5
2 1 3 6

…

Figure 46: Illustration of a file, in which a network topology is description for MNB.

7.9 Analyze of Proposed Algorithm

A primary architecture intended for testing the proposed program was a cluster of work-
stations because it was readily available. Since the message passing was programmed
using MPI library [47] routines, the program can easily be compiled and run on any ar-
chitecture (clusters of workstations, MPPs, SMPs, etc.) for which an implementation of
MPI standard is available.

Chapter 7 Evolutionary Design of Collective Communication

 98

To achieve the best parallel performance of the proposed program, analysis was used to
identify bottlenecks. It also appeared that analysis was necessary because test executions
of the initial implementation showed that its performance dramatically reduces with the
increasing number of processors P of the optimized topology. The problem was severe
especially for all-to-all communication, which requires very long chromosomes.
Analysis of the proposed algorithm showed that a majority of processing time was spent
in evaluation of a fitness function, which determines cost of individual in every iteration.
On the contrary, the time taken by genetic operators and communication master-slave is
negligible. Even though the search for shortest paths requires also significant time, it is
performed only once at the beginning of the computation and does not affect the overall
run-time as much as the evolutionary algorithm.
The reason for this bad performance was that the initial implementation of the fitness
function used a relatively trivial approach to determining a cost of a chromosome. The
cost is defined as a number of conflicts (the same channel used by different paths in the
same step) by checking all possible pairs of genes whether they use the same channel for
communication. This is repeated for every channel. So the main part of the calculation
uses two nested loops both iterating through all genes of a chromosome yielding an as-
ymptotic complexity O(G2), where G is a number of genes determined by the pattern of
communication to be scheduled. The next very complex reason for increasing computa-
tion time was, that the algorithm wasn’t able to recognize, if the whole selected path must
be replaced or only modified communication step to channel or channels on this selected
path. Therefore this happened mainly for the more complex topologies very often that a
correctly selected path (it is able to create conflict-free create schedule) was replaced by
an unsuitable path (it is not able to create conflict-free schedule), due only to the reason
that it was improperly set the communication step to some channel on correct path.
Although some optimizations were already used to simplify a body of each loop, e.g. a
set of all genes which already caused a conflict was constructed on the fly so that a single
check of the set can avoid expensive path reconstructions, the complexity was still unac-
ceptable. Especially if we consider the AA communication, which requires long chromo-
somes (number of genes proportional to P2), we get a complexity O(P4) which is unfeasi-
ble for optimization of architectures with more than a few processors, see Table 12 and
14.
To decrease the high complexity, methodology of prediction was developed. The princi-
ple of prediction is based on a partition scheduling problem of a collective communica-
tion into two sub-problems. The first sub-problem is defined as a search for appropriate
paths between source and destination node. The second sub-problem is stated as a finding
of conflict-free communication step to each channel for each founded path. It is possible
to discover during the solution of the first sub-problem, whether the communication

Chapter 7 Evolutionary Design of Collective Communication

 99

schedule will be conflicting. If the prediction doesn’t find a conflict, the second part of
problem can start and try to set up a communication step to each channel. Utilization of
prediction we needn’t deal with investigation, if a conflict is caused by unsuitable selec-
tion of path or unsuitable setting of steps to individual channel on the path. In every itera-
tion we know what to change (path or step) to achieve the searched schedule.
Performance of the new approach is improved since it reduces an asymptotic complexity
to O(G) from the original O(G2). The complexity of the loop’s body is similar or even
smaller than in the original implementation so that a multiplicative constant hidden in the
asymptotic complexity formula is decreased.
The time spent by individual parts of algorithm is showed in Table 7. Analyze was per-
formed on 32-slim node bidirectional all-port hyper-cube. We focus on implementation
based on prediction, because such implementation outperforms the original implementa-
tion in time of execution, probability of achieving a global optimum, speed of conver-
gence and mainly in the greater number of nodes in the investigated topologies as can be
see in chapter 7.10.

Time [%]
Parts of algorithm

Broadcast Scatter
Search of the shortest
paths

0.771 0.0263

Prediction 76.256 75.282
Setting of com. steps 8.416 0.0378
Genetic operators 0.003 0.004
Communication M-S *) 0.135 1.505
Synchronization 11.194 18.231
Others 3.229 4.9177

Table 7: Time complexity of individual parts of algorithm based on conflict prediction in
percent on the 32-slim node bidirectional all-port hyper-cube; *) this value corresponds
with frequency of communication n*100 iteration (n > 1) from 300 iterations of Metropo-
lis algorithm.

From previous chapters it follow that the fitness function is composed from two phases:

Chapter 7 Evolutionary Design of Collective Communication

 100

1. the prediction phase (search for appropriate paths) and after finishing the predic-
tion

2. the phase of communication steps setting.

In the Table 7, are presented average values from 10 runs of each communication pat-
terns. These values of variables are only orientation and illustrate properties of proposed
algorithm. The time strongly depends on properties of interconnection networks and also
on the setting of algorithm’s input parameters. For example, the time of synchronization
is for large topologies relatively small, but it doesn’t remain true for small topologies. It
can be as high as ten percent. Since, we chose the architecture master-slave, when all
participants communicate simultaneously, synchronization is necessary. A similar case is
the time of communication master-slave. The time of communications is based on fre-
quency, which is defined as the input parameter by user.
From the Table 7 is evident that we can recognize relationships between communication
patterns of broadcast and scatter. Although the time of prediction is nearly the same, the
time of the setting of communication steps is very different. It is based on definition of
both communication patterns. In scatter, there is a problem to search suitable paths to
create an optima schedule in comparison with broadcast, where the problem is in cor-
rectly setting of the communication steps to suitable paths. It is clear from the fourth row
of the Table 7 (Setting of the communication steps). There are significantly stronger con-
straint rules in broadcast than in the scatter for implementation. In broadcast, the mes-
sages, which travel from the same sending node, pass through the same intermediate
nodes in the same communication steps. In scatter, the rule is opposite. No message is
allowed to be sent through the same channel in the same step. Therefore, there is greater
problem to search for suitable paths, over which these two messages should travel, than
with correctly set communication steps.
We analyzed our proposed algorithm on using the same topology (32-node hyper-cube),
but the real time was very different; for AAB it was 37.5 minutes and for AAS it was
3.15 hours. From this difference of real times, it can appear that individual times of pre-
diction are similar at both AAB and AAS. However this is not a valid conclusion. The
comparison of topologies, which has the same executing time, would have better predica-
tive ability. For example: for AAB 64-node hyper-cube, where the time of prediction is
53.2% and the time of setting the communication steps is 36.5%, and for AAS 32-node
hyper-cube, where the time of prediction is 75.4% and 0.1% is the time of setting the
communication steps. We assume that the model of topologies is the same in both cases.
The item Others of Table 7 involves only helping operations such as printing of schedule,
creating, computing and deleting helping variables, data conditioning etc.

Chapter 7 Evolutionary Design of Collective Communication

 101

7.10 Experimental Results

In the first experiment the proposed algorithm, using HGSA, was verified using a variety
of multiprocessor topologies (e.g. Midimew, K-Ring, Octagon...). We examined the algo-
rithm from the aspect of the ability to design optimal schedule in any arbitrary topology.
All topologies had 8 nodes (except 10-node Moore topology) and the regular and the ir-
regular (AMP with SC [53], Ladder and Twisted Ladder) topologies were examined. The
results achieved of the optimal/sub-optimal communication schedule and the theoretical
lower bound (see Table 1) on the number of the communication steps of the tested to-
pologies are presented in the Table 9 and 10. An optimal communication schedule was
achieved in all tested topologies, which is illustrated in the third and fifth column in the
Table 9 and 10.

The control parameters of proposed algorithm were set to the same values for all runs, i.e.
Pc computers in the master-slave architecture, each computer work on one individual, the
length of communication interval between master and slave was each Ic’s iterations of
Metropolis algorithm, the start temperature equal to Tmax, Kmax iterations in each tempera-
ture phases, gradient of cooling equals to Alpha. 30 runs of HGSA were performed for
each topology. In Table 8 are shown the values of parameters, which were reached ex-
perimentally on hyper-cube. The target was to reach optimal schedule in the shortest pos-
sible time.

Kmax 200
Tmax 100
Tmin 0,1
Alpha 0,99
Ic 50
Pc 10
Number of individuals 10

Table 8: The value of control parameters of proposed algorithm.

Chapter 7 Evolutionary Design of Collective Communication

 102

Topology
OAB

Lower bounds
OAB

HGSA
AAB

Lower bounds
AAB

HGSA
Hyper-cube 2 2 3 3
Hyper-cube with body
diagonal

2 2 2 2

AMP with SC - 2 - 3
AMP without SC 2 2 2 2
K-ring 2 2 2 2
Midimew 2 2 2 2
Moore 2 2 3 3
Octagon 2 2 3 3
Ladder - 3, 4 - 4
Twisted ladder - 2, 3 - 5 *)

Table 9: Experimental results and the theoretical lower bound of the broadcast collective
communication for the all-port topologies with 8-nodes.

The asterisk “*)” indicates a non-optimal schedule. During the search for the optimum
schedule, it may be necessary to include not only multiple minimum paths, but, at times,
non-minimum paths! This is the case of OAS and AAB for Twisted ladder topology. This
problem doesn’t occur in AAS communication pattern, because this communication is
more complex and the total time of communication compensates a delay on a channel. It
is possible to consider non-minimal paths for such small topologies (8-node) but if we
consider more complex topologies, this would lead to an enormous increase of possible
paths from source to destinations and, thus, to prohibitive computer memory and time
requirements. Therefore we didn’t include this ability in our proposed algorithm.
Notation “–“ in tables means that theoretical lower bound cannot be derived analytically
as in the Table 1, because these topologies are irregular and mathematical methods can-
not be applied.
For some topologies two values were achieved, see Ladders and Mesh topologies in Ta-
ble 9 and 10. It is from the reason that one-to-all communications depend on the node
degree of the source node, e.g. mesh topology has three values of d = 2 (corner node), 3
(edge node) and 4 (central node), see Table 11.

Chapter 7 Evolutionary Design of Collective Communication

 103

Topology
OAS

Lower bounds
OAS

HGSA
AAS

Lower bounds
AAS

HGSA
Hyper-cube 3 3 4 4
Hyper-cube with body
diagonal

2 2 3 3

AMP with SC - 3 - 5
AMP without SC 2 2 3 3
K-ring 2 2 3 3
Midimew 2 2 3 3
Moore 3 3 5 5
Octagon 3 3 4 4
Ladder - 3, 4 - 8
Twisted ladder - 4, 5 *) - 6

Table 10: Experimental result and the theoretical lower bound of the scatter collective
communication for the all-port topologies with 8-nodes.

In the second experiment the proposed algorithm was tested with broadcast communica-
tion pattern and with a higher number of nodes in three different architectures - hyper-
cube, mesh and AMP. The number of nodes varied from 8 to 128. A hyper-cube has been
chosen because of its regular topology with, known optimal scheduling, as it can serve as
a convenient benchmark.
OAB and AAB communication complexities, measured by the number of communication
steps in schedules found by proposed algorithm so far, are shown in Table 11 and 12 (co-
lumns three, four and five). The first column includes the node count in the target archi-
tectures and the second column presents the number of steps in the optimal schedule
achievable for a hyper-cube (the reachable lower bound).
Finding an optimal schedule for the AAB communication pattern is a significant problem.
The proposed algorithm is able to find an optimal schedule for AMP topology in all
tested cases but for a greater number of nodes its success rate is significantly reduced.
Our algorithm achieves global optimum in almost all tested topology. In only two cases
the optimal solution failed to be achieved, at 64-node mesh and 128-node hyper-cube.
However the achieved sub-optimal solutions are close to the optimum, see Table 12.

Chapter 7 Evolutionary Design of Collective Communication

 104

Number
of

nodes

Hyper-cube
minimal

Hyper-cube
HGSA

Mesh
HGSA

AMP
without

SC
HGSA

8 3 3 4, 3 2
16 4 4 6, 5, 4 -
23 - - - 3
32 5 5 - 3
36 - - 10, 9, 8 -
42 - - - 3, 4
53 - - - 3
64 6 6 14, 13, 12 -

128 7 7 - -

Table 11: Number of steps for OAB optimization.

Number of
nodes

Hyper-cube
minimal

Hyper-cube
HGSA

Mesh
HGSA

AMP
without SC

HGSA
8 3 3 - 3

16 4 4 8 -
23 - - - 8
32 7 7 - 11
36 - - 18
42 - - - 14
53 - - - 18
64 11 11 33 -

128 19 20 - -

Table 12: Number of steps for AAB optimization (bold digits represent cases when lower
bounds were not reached).

If we compare the solution gained with the help of the prediction and without prediction
in scheduling of collective communication, it is evident, that the prediction provides rapid
improvement, see Table 13. Finally, using prediction, final solution is superior and simul-
taneously the probability of achieving such a solution is higher.

Chapter 7 Evolutionary Design of Collective Communication

 105

Hyper-cube AMP Number of
nodes With

Prediction
Without

Prediction
With

Prediction
Without

Prediction
8 100% 100% 100% 100%

16 100% 60% - -
23 - - 100% 70%
32 100% 0% 100% 10%
42 - - 95% 0%
53 - - 100% 0%
64 65% 0% - -

Table 13: Success rate of 15 runs in achieving the optimal communication scheduling for
AAB.

The presented data of proposed algorithm deserves some comments. Firstly, OAB is quite
a simple operation and therefore the algorithm is likely to find an optimal solution even
for larger architectures up to 128 nodes. Optimal solutions have already been found for
topologies with up to 64 nodes and quality sub-optimal solution for topology with up to
128 nodes for AAB. To achieve an optimal solution for the AAB communication pattern,
many hours are required for more complex topologies. On the other hand, if we need an
sub-optimal solution quickly, the proposed algorithms is allowed to accept a larger num-
ber of communication steps and the solution is found in much shorter time, see Fig. 47.

Chapter 7 Evolutionary Design of Collective Communication

 106

Figure 47: The real time complexity of AAB on 64-node hyper-cube with different num-
ber of communication steps.

The computational platform used was IBM BladeCenter® [54] with 12 HS20 blades,
each fitted with 2 CPU Xeon 2,8GHz/533MHz, 1GB RAM, 40GB HD and with 14 HS20
blades each fitted with 2 CPU Xeon 3,2GHz/800MHz, 2GB RAM, 36GB interconnected
by gigabit router-switch. Algorithm ran under Unix OS.
In Fig. 48, is shown the average time complexity of reaching global optima for four in-
stances of 64-node hyper-cube in the term of the number of fitness function evaluations.

The average real time of 64-node hyper-cube
for AAB

144303

2238
592

286

1

10

100

1000

10000

100000

1000000

11 12 13 14

Number of communication steps of whole schedule

tim
e

[s
]

 1day 16hours 5m
in 3s

37m
in

18s

 9m
in 52s

4m
in 46s

Chapter 7 Evolutionary Design of Collective Communication

 107

The average number of fitness function
evaluations of 64-node hyper-cube for AAB

103500

1120
683

3320

1

10

100

1000

10000

100000

1000000

11 12 13 14

Number of communication steps of whole schedule

N
um

be
r o

f e
va

lu
at

io
an

Figure 48: Time complexity of AAB on 64-node hyper-cube with different number of
communication steps.

After implementation and testing of broadcast communication pattern, we modified our
algorithm for further type of communication pattern – namely scatter. The proposed
modification consists of the elimination of some modules from the code, since broadcast
is much more complex than scatter in the sense of implementation, because broadcast has
more constrain rules, which flow from definition of broadcast.
The achieving results for OAS and AAS are presented in the Table 14. Again as in previ-
ous case, the hyper-cube served as a convenient benchmark and simultaneously we tested
this proposed algorithm on the irregular topology AMP. We achieved optimal solutions
for OAS up to 128-node and for AAS we obtained optimal solution up to 32-node and
quality sub-optimal solutions up to 128-node.
Finding of the optimal communication schedule for AAS presents the most complex
problem of all four investigated communication patterns, because searching space of
AAS is the greatest, see comparative graphs of the number of evaluations in Fig. 49, 50
and 51.

Chapter 7 Evolutionary Design of Collective Communication

 108

OAS AAS
Number

of
nodes

Hyper-cube
minimal

Hyper-cube
HGSA

AMP
without

SC
HGSA

Hyper-cube
minimal

Hyper-cube
HGSA

AMP
without

SC
HGSA

8 3 3 2 4 4 4
16 4 4 - 8 8 -
23 - - 6 - - 13
32 7 7 9 16 16 20
42 - - 11 - - 29
53 - - 13 - - 40
64 11 11 - 32 33 -

128 19 19 - 64 66 -

Table 14: Number of steps for OAS and AAS optimization (bold digits represent cases
when lower bounds were not reached).

The Table 15 illustrates the efficiency of the algorithm with the help of the prediction and
without prediction. By utilization of the prediction, our algorithm is able to solve more
complex topologies with higher probability of achieving the optimal schedule than with-
out prediction. Algorithm using prediction provides significantly better solutions

Hyper-cube AMP Number of
nodes With

Prediction
Without

Prediction
With

Prediction
Without

Prediction
8 100% 100% 100% 100%

16 90% 40% - -
23 - - 100% 40%
32 80% 0% 80% 0%
42 - - 75% 0%
53 - - 60% 0%
64 60% 0% - -

Table 15: Success rate of 15 runs for AAS communication scheduling (the communica-
tion complexity is illustrated in Table 14).

Chapter 7 Evolutionary Design of Collective Communication

 109

The graph of fitness function evaluations for OAB is not presented here, because con-
flicts do not occur at this communication. OAB is based on a broadcast tree. We can cre-
ate this broadcast tree simply from the set of the shortest paths between any pair sender -
receiver. Since, this set of minimal paths is created in the first phase of our algorithm,
thus the whole algorithm is reduced when creating this set. Consequently, the total execu-
tion time is equal to creating time of the set of the shortest paths and therefore the number
of fitness function evaluations is equal to one for arbitrary topology.

The average number of fitness function evaluations of
hyper-cube (AAB)

4

964,54 1456,8

128949,75

1

10

100

1000

10000

100000

1000000

8 16 32 64

Number of nodes

Nu
m

be
r o

f e
va

lu
at

io
ns

Figure 49: Time complexity of AAB.

Fig. 49 shows the average time complexity of reach optimal schedule for four instances
of hyper-cubes in the term of the number of fitness function evaluations. In the case of
16-node and 32-node topology, the number of evaluations is almost the same. The time of
AAB execution depends much more on properties of the interconnection networks than
on the number of nodes.
Our proposed algorithm is very effective for OAS collective communication as the Fig.
50 presents. We are able to find the optimal solution up to 128-node topologies in a short
time. It is for this reason that a very effective method was proposed to solving collective

Chapter 7 Evolutionary Design of Collective Communication

 110

communications and also the searching space is only n and not n2 as in at AA communi-
cations.

The average number of fitness function evaluations of
hyper-cube (OAS)

8,5

43,75
81,25

432
1105

1

10

100

1000

10000

8 16 32 64 128

Number of nodes

N
um

be
r

of
 e

va
lu

at
io

ns

Figure 50: Time complexity of OAS.

The average number of fitness function

evaluations of hyper-cube (AAS)

50

25140

1572454,667

1

10

100

1000

10000

100000

1000000

10000000

8 16 32

Number of nodes

N
um

be
r

of
 e

va
lu

at
io

ns

Figure 51: Time complexity of AAS.

Chapter 7 Evolutionary Design of Collective Communication

 111

As it is evident from Fig. 51, the most complex collective communication for scheduling
is AAS. We obtained the optimal solution for three instances of hyper-cube, but it doesn’t
mean that our algorithm isn’t able to solve more complex topologies. For these more
complex collective communications, we are able to obtain a superior sub-optimal solu-
tion. However, we interested only in optimal schedules.

Figure 52: The real time complexity of four communication patterns.

All experiments were conducted using a supercomputer IBM BLADE system [54]. To
illustrate how the execution times of individual communications differ, measurements
were taken of the number of fitness function evaluations and also in seconds elapsed, see
Fig. 52.

All experiments were made in all-port topologies with slim nodes, but for generalization
of our algorithm, we must consider also 1-port topologies with fat nodes. Since to change
a slim node to a fat node is very simply way how to increase the number of processors in
an interconnection network, it is, therefore, utilized often. Experiments were performed
on AAB communication pattern, because this pattern is the most complex for implemen-
tation, as described earlier in chapter 7.9. We performed these tests on the direct and the

The real time of collective communication of the 32-node
hyper-cube

0,247729 0,464875

441,093

-10

190

390

590

790

990

OAB OAS AAB AAS

Type of collective communication

tim
es

 [s
]

50435,84

14 hours 36s7m
in 21s

Chapter 7 Evolutionary Design of Collective Communication

 112

indirect networks. The illustrative examples of one indirect and one direct network are in
Fig. 53 - coated Mesh (CM) [4] and 2D-Mesh (M). Only 4 x 4 meshes are presented for
simplicity

Figure 53: a) 4 x 4 CM, b) 4 x 4 2D-M.

The results of scheduling all-to-all broadcast communications are shown in Table 16.
Optimum algorithms (lower bounds) have been obtained for all 20 runs. We considered
that the fat 3D-Hyper-cube and the Fat Octagon (Fig. 45) had two processors at each
node in our experiments.

Network topology Lower bounds AAB

M 4x4, 1-port 15 15 (100%)

M 4x4, all-port 8 8 (100%)

CM 4x4, 1-port 15 15 (100%)

Hyper-cube, 1-port 15 15 (100%)

Hyper-cube, all-port 5 5 (100%)

Octagon, 1-port 15 15 (100%)

Octagon, all-port 5 5 (100%)

Table 16: Results of AAB optimization.

Chapter 7 Evolutionary Design of Collective Communication

 113

The last experiments were devoted to the collective communication many-to-many
broadcast. We solved all three possible situations, where the sets of senders and receivers
are disjoint, overlapping and corresponding. As Table 17 illustrates, we again achieved
optimal schedules. The previously unsolved problem of, “the overlapping sets of senders
and receivers” was resolved during our investigation.

M-to-N Lower bounds MNB

8 to the same 8 7 7

8 to other 8 8 8

8 to all 16 8 8

all 16 to all 16 15 15

Table 17: M-to-N communication on the Fat Octagon topology (P = 16; 2 processors at a
node).

Finally, we would claim that our algorithm is generally usable and solves arbitrary collec-
tive communication, including one-port and all-port topologies. Only many-to-many scat-
ter communication have yet to be investigated, however all principles and techniques
were developed and it only remains to modify the algorithm’s code to include this com-
munication pattern.

Chapter 8 Conclusion and Future Research Directions

 114

Chapter 8

Conclusion and Future Research Direc-
tions

In this work we have focused on the design of optimal collective communication sched-
ules for arbitrary topologies with SF switching technique. Optimal schedule achieves the
minimal number of communication steps, which can, in an ideal case, be equal to the
lower bound for any given topology. Using this schedule we can speed-up many parallel
algorithms that use collective communication as a part of their algorithm. The finding of
the optimum schedule is a very difficult combinatorial problem, therefore, we decided to
use an evolutionary algorithm. We created the hybrid evolutionary algorithm HGSA,
which is based on aggregation of parallel simulated annealing and standard genetic opera-
tions. The presented algorithm is able to find a schedule of a collective communication
pattern for arbitrary network topologies and a related number of communication steps.
The ability of our proposed algorithm to find good or even optimal solutions was proven
by the use a hyper-cube benchmark. It can schedule collective communications for vari-
ous networks with unknown optimal (minimal) number of steps and is useful especially
for irregular topologies, where the analytical approach cannot be applied.
Of course, the fact that the lower bound may not always be reached by presented algo-
rithms is to be expected because this may not be attainable in principle by any algorithm.

Chapter 8 Conclusion and Future Research Directions

 115

Sometimes lower bounds can be obtained in schedules with non-minimum routing. How-
ever, only minimum routing has been considered in this work because inclusion of the
non-minimum routing would lead to an enormous increase of possible paths from sources
to destinations and to prohibitive computer memory capacity and time requirements.
The probability rate of achieving an optimal solution is increased, if a prediction utility is
used.
The proposed algorithm was tested successfully using networks with both slim node and
fat node topologies.
The technology of fat interconnection networks has several advantages over traditional
networks:
- makes some small networks more scalable, even though the interconnection graph of a
network is not scalable at all (Moore, Twisted ladder) or only partially scalable (Octagon,
AMP);

- in many cases provides cheaper network implementation in terms of hardware cost and
is often more suitable for networking systems on chip;

- performance in one-to-all collective communications OAB and OAS is comparable to
generic base networks, at times, even better;

- the performance in all-to-all collective communications AAB and AAS is inferior to
that of base networks, but it can be controlled by multiplicity of links and by overlapping
local and global communications.

We tested our algorithm by MNB collective communication with identical, overlapping
and disjoint sets of senders and receivers. We derived the theoretical lower bound for this
type of communication and our algorithm was able to design an optimal schedule of
MNB with overlapping sets of senders and receivers, the first in history. Application-
oriented many-to-many collective communications are of increasing importance on mul-
tiprocessor SoCs. One example is when one group of processors finishes a task and a
different size group continues and needs the intermediate results from the first group.

Importance and novelty of above goals should be emphasized. Algorithms, which would
be able to find all types of collective communication on any regular or irregular topology,
were not published so far in spite of a growing importance especially for multiprocessors
on chips.
Finally, we are able to state that our algorithm is the first, which is able to solve arbitrary
type of collective communication for variety networks topologies.

Chapter 8 Conclusion and Future Research Directions

 116

8.1 Future Research Directions

The algorithm, described in this research paper, is the most generally useful of all pro-
posed algorithms to date. However, it is necessary to state that something is missing be-
fore for total generalization can be claimed. Our algorithm we tested with one-port and
all-port model, but except these models there can exist also k-port model, when the proc-
essor can communicate with the router via k internal channels simultaneously. In fact,
both of the models, one-port and all-port, are special cases of the “k-port” model. Al-
though our algorithm was not tested using this model, the source code is written in such a
manner that we can achieve the required ability by means of a simple modification of the
algorithm’s code.
Another factor, not included in this research, was the communication pattern many-to-
many scatter. Modification of our algorithm isn’t complex for this communication pat-
tern, because all methodologies and principles were developed and examined. To achieve
this ability, we remove some constraint rules from code of communication pattern MNB
(e.g. creation of broadcast tree).
In our work we assume only the same capacity of channels in whole interconnection net-
work. However, in practise, we can meet with cases, when some channels have different
capacities. This extension will slightly more complicated integrate into our algorithm’s
code.
The last improvement is related to length of messages. In our conception of problems we
assumed that all messages have the same length for simplicity. However, real applica-
tions can work with different length of individual messages. The solving of this problem
requires a deeper intervention into the proposed methodology.

 Bibliography

 117

Bibliography

[1] Flynn, M. J.: Very high-speed computing systems. Proc. IEEE, Vol. 12, pp. 1901–1909.

[2] Staroba J.: Parallel Performance Modeling, Prediction and Tuning, PhD. Thesis, Faculty
of Information Technology, Brno University of Technology, Brno, Czech Rep., 2004.

[3] Anderson, T. E., Culler, D. E., Patterson, D.: A Case for NOW (Networks of Worksta-
tions). IEEE Micro, Vol. 15, No. 1 (Feb.), pp. 54–64.

[4] Jantsch, A., Tenhunen, H., Networks on Chip, Kluwer Academic Publ., Boston, 2003.

[5] A. Ivanov, G. De Micheli, “Guest Editors’ Introduction: The Network-on-Chip Paradigm
in Practice and Research”, IEEE Design & Test of Computers, IEEE Los Alamitos CA,
Sept.-Oct. 2005, pp. 399-403.

[6] Singh A.: Load-Balanced Routing in Interconnection Networks, PhD. Thesis, The De-
partment of Electrical Engineering, Stanford University, USA, 2005.

[7] Dally W.J., Towles B.: Principles and Practices of Interconnection Networks, Morgan
Kaumann publishers, SF, USA, ISBN 0-23-200751-4, 2003.

[8] Tvrdík P.: Parallel algorithms and computing, CVUT, skripta (FEL), 2003.

[9] Charles L.: The Cosmic Cube, Communication of the ACM, 1985.

[10] Whitby-Srevebs C.: The transputer, In Proc. of the international Symposium on Com-
puter Architecture (ISCA), 1985.

 Bibliography

 118

[11] Chien A. A.: A cost and speed model for k-ary n-cube wormhole routers, Proceedings of
Hot Interconnects’93, 1993.

[12] Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks, Morgan Kaufmann pub-
lishers, SF, USA, ISBN 1-55860-852-4, 2003.

[13] Ni L. M., McKinley P. K.: A survey of wormhole routing techniques in direct networks,
IEEE Computer, 1993.

[14] Khonsari A., Sarbazi-Azad H., Ould-Khaoua M.: Analysis of true fully adaptive routing
with software-based deadlock recovery, Journal of Systems and Software, Computer Sys-
tems, vol. 71, 2004.

[15] Svethardware, Intel Tera-scale, URL:
http://www.svethardware.cz/art_doc216 DF91988A99F97C1257215003E2DDD.html,
February 2007.

[16] Intel, Intel Tere-scale, URL:
http://www.intel.com/technology/techresearch/teracale/index.htm, February 2007.

[17] Walter A., Kuhm M, URL:
http://dontcry.cs.tu-berlin.de/cinsim/docbook/html/handbook.html, Berlin, 2005.

[18] Wikipedia, The Free Encyclopedia, URL: http://en.wikipedia.org/wiki/Anycast, February
2007.

[19] Graveno L. et al.: Adaptive deadlock- and livelock-free routing with all minimal paths in
torus network, IEEE Transaction on Parallel and Distributed Systems, vol. 5,no.12, 1233-
1251, 1994.

[20] Tanenbaum A. S.: Computer Networks, 2nd ed., Prentice Hall, Englewood Cliffs, NJ,
1988.

[21] Hypercube topology, URL:
http://www.sgi.com/products/remarketed/origin/pdf/hypercube.pdf, January 2006.

[22] Pinkston T. M., Duato J.: Interconnection Networks, Computer Architecture, vol. 4, Uni-
versity of Southern California, 2006.

[23] Valiant L. G., Brebner G. J.: Universal schemes for parallel communication, In Proc. of
ACM Symposium of the Theory of Computing, Milwaukee, Minn., 1981.

 Bibliography

 119

[24] Towles B, Dally W. J.: Worst-case traffic for oblivious routing functions, In Proc. of the
Symposium on Parallel Algorithms and Architectures (SPAA), Winnipeg, Manitoba,
Canada, 2002.

[25] Nesson T., Johnson L. S., ROMM routing on mesh and torus networks, In Proc. of the
Symposium on Parallel Algorithms and Architectures (SPAA), Santa Barbara, CA, 1995.

[26] Chien A.A., Kim J. H.: Planar-adaptive routing: low-cost adaptive networks for multi-
processors, In Proc. of the International Symposium on Computer Architecture (ISCA),
1992.

[27] Chiu G.: The odd-even turn model for adaptive routing, IEEE Tran. on Parallel and Dis-
tributed Systems, 2000.

[28] Ye T. T., Benini L., De Micheli G.: Packetization and routing analysis of on-chip multi-
processor networks, Journal of Systems Architecture, 2004.

[29] Glass C. J., Ni M. L.: The turn model for adaptive routing, In 25 years ISCA: Retrospec-
tive and Reprint, 1998.

[30] Leiserson Ch. E., Abuhamdeh Z. S., Douglas D. C., Feynman C. R., Ganmukhi M. N.,
Hill J. V., Hillis W. D., Kuszmaul B. C., St Pierre M. A., Wells D. S., Wong-Chan M. C.,
Yang S., Zak R.: The network architecture of the Connection Machine CM-5, Journal of
Parallel and Distributed Computing, 1996.

[31] Sarbazi-Azad H., Ould-Khaoua M.: Modelling and evaluation of adaptive routing in
high-performance n-D tori networks, Simulation Modeling Practice and Theory, Distrib-
uted Systems Simulation, vol. 14, 2006.

[32] Schwiebert L., Jayasimha D. N.: Optimally fully adaptive minimal wormhole routing for
meshes, Journal of Parallel and Distributed Computing, 1995.

[33] Qiao W., Ni L. M.: Adaptive Routing in Irregular Networks Using Cut-Through Switches,
Proc. Int’l Conf. on Parallel Processing, 1996.

[34] Schroeder M. D.: Autonet: a High-Speed, Self-Configuring Local Area network Using
Point-to-Point Links, SRC Research Report 59, DEC, 1990.

[35] Silla F.: Efficient adaptive routing in networks of workstation with irregular topology,
Proc. of the Workshop on Communications and Architectural Support for Network-Based
Parallel Computing, 1997.

[36] Silla F., Duato J.: Improving the efficiency of adaptive routing in networks with irregular
topology, Proc. of the 1997 Conference on High Performance Computing, 1997.

 Bibliography

 120

[37] Keltcher C.N. et al.: The AMD Opteron Processor for Multiprocessor Servers. IEEE Mi-
cro, March/April 2003.

[38] Fogel D. B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelli-
gence, IEEE Press, 1995.

[39] Goldberg D. E., Genetic Algorithms in Search, Optimization and Machine Learning,
Complex Systems, 1989.

[40] E. H. L. Aarts and J. H. M. Korst: Simulated Annealing and Boltzmann Machines: A Sto-
chastic Approach to Combinatorial Optimization and Neural Computing, John Wiley &
Sons, Chichester, 1989.

[41] D. E. Goldberg: Simple genetic algorithms and the minimal deceptive problem, in: L.
Davis, ed., Genetic Algorithms and Simulated Annealing (Pitman, London, 1987).

[42] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E.: Equation of
state calculations by fast computing machines, Journal of Chemical Physics 21(6), 1953.

[43] Ackley D. H., Hinton G. E., Sejnowski T. J.: A learning algorithm for Boltzmann ma-
chines, Cognitive Science 9, 1985.

[44] Goldberg D. E.: A note on Boltzmann tournament selection for genetic algorithms and
population-oriented simulated annealing, Complex Systems 4, 1990.

[45] Romeo F., Sangiovanni-Vincentelli A.: A theoretical framework for simulated annealing,
Algorithmica, 1991.

[46] Sait M. S., Yoissef H.: Iterative Computer Algorithms with Applications in Engineering:
Solving Combinatorial Optimization Problems, Wiley-IEEE Computer Society Press,
ISBN: 978-0-7695-0100-0, 2000.

[47] Manual MPI. Document reasonable on URL: http://www-unix.mcs.anl.gov/mpi, April
2007.

[48] MP– TESTDATA, URL:
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html, April 2007.

[49] Romeo.F., Sangiovanni-Vincentelli A.: A theoretical framework for simulated annealing,
Algorithmica, 1991.

[50] Mahfoud, S. W., Goldberg, D. E.: A genetic algorithm for parallel simulated annealing,
Parallel Problem Solving from Nature 2, pp. 301–310, 1992.

 Bibliography

 121

[51] Mori, N., Yoshida, J. and Kita, H.: Suggestion of thermodynamical selection rule in ge-
netic algorithm, Transaction of Institute of Systems, Control and Information Engineers,
Vol. 9, No. 2, 1996.

[52] Krajíc, M.: Algorithm of parallel hybrid genetic simulated annealing to solve of traveling
salesman problem, ČVUT FEL, Prague, 2002.

[53] Chalmers, A.-Tidmus, J.: Practical Parallel Processing, International Thomson Com-
puter Press, 1996.

[54] IBM BLADE system, URL: http://www-03.ibm.com/systems/bladecenter/, April 2007.

[55] K. A. De Jong: An analysis of the behavior of a class of genetic adaptive systems, Disser-
tation Abstracts International, Ph.D. Thesis, University of Michigan, 1975

[56] J. H. Holland: Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, 1992

[57] Wiley J. & Sons: The Handbook of Information Security, URL:
http://www.cse.scu.edu/~hpdommel/publications/hpd.wiley06.pdf, March 2005.

[58] Marsan Ajmone M., Bianco A., Giacoone P., Leonardi E., Neri F.: Router Architecture
Exploiting Input-Queued, Cell-Based Switching Fabrics, Politecnico di Torino, Italy, Au-
gust 2000.

[59] Rexford J, Hall J, Shin K. G.: A Router Architecture for Real-Time Communication in
Multicomputer Networks, IEEE Transactions on Computers, vol 47, no. 10, October
1998.

[60] Schmid S.: A Component-based Active Router Architecture, PhD. Thesis, Computing
Department, Lancaster University, United Kingdom, November 2002.

[61] Rexford J., Hall J., Shin K. G.: A Router Architecture for Real-Time Point-to-Point Net-
works, Department of Electrical Engineering and Computing Science, University of
Michigan, USA, 1996.

[62] Bang Y., Choo H.: On Bandwidth Adjusted Multicast Communications in Pipeline Router
Architecture, Springer, 2005.

[63] Duato J.: A Necessary and Sufficient Condition for Deadlock-Free Routing in Cit-
Through and Store-and-Forward Networks, IEEE Translations on parallel and distributed
systems, vol. 7, no. 8, August 1996.

 Bibliography

 122

[64] V. Puente V., Gregorio J.A., Beivide R., Vallejo F., Ibańez A.: A New Routing Mecha-
nism for Networks with Irregular Topology, Proc. of the ACM/IEE SC2001 Conference,
2001.

[65] Chi H.C., Tang C. T.: A Deadlock-Free Routing Scheme for Interconnection Networks
with Irregular Topologies, Proc. of the 1997 International Conference on Parallel and
Distributed Systems (ICPADS '97), 1997.

[66] Sait, S., M. Youssef H.: Iterative Computer Algorithms with Applications in Engineering,
IEEE Computer Society, Los Alamos, California, 1999.

[67] Pao, D. C. W., Lam, S. P., Fong A. S.: Parallel simulated annealing using transaction
processing, IEEE Proceedings, Hong Kong, 1999.

[68] Miky, M., Hiroyasu, T., Wako, J., Yoshida, T.: Adaptive Temperature Schedule Deter-
mined by Genetic Algorithm for Parallel Simulated Annealing, Doshisha University,
Kyoto, 2003.

Author publications

[I] Dvořák Václav, Jaroš Jiří, Ohlídal Miloš: Optimum Topology-Aware Scheduling of Many-
to-Many Collective Communications, In: Proceedings of The Sixth International Confer-
ence on Networking, New York, US, IEEE CS, 2007, s. 6, ISBN 0-7695-2805-8

[II] Jaroš Jiří, Ohlídal Miloš, Dvořák Václav: An Evolutionary Approach to Collective Com-
munication Scheduling, In: Genetic and Evolutionary Computation Conference GECCO
2007, London, 2007

[III] Jaroš Jiří, Ohlídal Miloš, Dvořák Václav: Complexity of Collective Communications on
NoCs, In: Proc. of 5th International Symposium on Parallel Computing in Electrical En-
gineering, Los Alamitos, CA 90720-1314, US, IEEE CS, 2006, s. 127-132, ISBN 0-7695-
2554-7

 Bibliography

 123

[IV] Ohlídal Miloš, Jaroš Jiří, Dvořák Václav, Schwarz Josef: Evolutionary Design of OAB
and AAB Communication Schedules for Interconnection Networks, In: Lecture Notes in
Computer Science, roč. 2006, č. 3907, DE, s. 267-278, ISSN 0302-9743

[V] Ohlídal Miloš, Jaroš Jiří, Dvořák Václav: Performance of Collective Communications on
Interconnection Networks with Fat nodes and Edges, In: Proceedings of the Fifth Interna-
tional Conference on Networking ICN 2006, Los Alamitos, US, IEEE CS, 2006, s. 619-
624, ISBN 0-7695-2570-9

[VI] Ohlídal Miloš, Schwarz Josef: Collective Communication AAB for Regular and Irregular
Topology Based on Prediction of Conflicts, In: Proc. of 2006 IEEE Design and Diagnos-
tics of Electronic Circuits and Systems Workshop, Praha, CZ, IEEE CS, 2006, s. 224-
225, ISBN 1-4244-0184-4

[VII] Ohlídal Miloš: Plánování skupinové komunikace All-to-All Broadcast pomocí predikce
konfliktů v propojovacích sítích, In: Zborník príspevkouv pracovného semináre Počíta-
čové architektúry a diagnostika pre studenty doktorského štúdia, Bratislava, SK, UI SAV,
2006, s. 25-30, ISBN 80-969202-2-7

[VIII] Jaroš Jiří, Ohlídal Miloš, Dvořák Václav: Evolutionary Design of Group Communication
Schedules for Interconnection Networks, In: Lecture Notes in Computer Science, 2005,
č. 3733, DE, s. 472-481, ISSN 0302-9743

[IX] Ohlídal Miloš, Schwarz Josef: Design of Group Communication for Regular and Irregu-
lar Networks, In: Mendel 2005 11th Internacional Conference on Soft Computing, Brno,
CZ, FSI VUT, 2005, s. 45-50, ISBN 80-214-2961-5

[X] Ohlídal Miloš: Plánování skupinových komunikací v propojovacích sítích, In: Sborník
příspěvků ze semináře Počítačové Architektury a Diagnostika, Praha, CZ, FEL ČVUT,
2005, s. 129-134, ISBN 80-01-03298-1

[XI] Ohlídal Miloš, Schwarz Josef: HYBRID PARALLEL SIMULATED ANNEALING USING
GENETIC OPERATIONS, In: Mendel 2004 10th Internacional Conference on Soft Com-
puting, Brno, CZ, FSI VUT, 2004, s. 89-94, ISBN 80-214-2676-4

[XII] Ohlídal Miloš, Schwarz Josef: Parallel Simulated Annealing Applied to the Traveling
Salesman Problem, In: Proceedings of 38th International conference MOSIS'04, Rožnov
pod Radhoštěm, CZ, MARQ, 2004, s. 155-162, ISBN 80-85988-98-4

[XIII] Ohlídal Miloš: Hybrid parallel simulated annealing using genetic operations, In: Zborník
príspevkov ze seminara Počítačové Architektury a Diagnostika, Bratislava, SK, SAV,
2004, s. 48-53, ISBN 80-969202-0-0

 124

Appendix A

Pseudo-code of Conflicts Prediction

Procedure Simulated_Annealing(Tmin,Tmax,kmax,α:input;
 chromozomeopt:output);
 begin

 chromozomeini:=randomly_generated_chromosome;
 T:=Tmax;
 phase := 1;
 //detection of conflict channels – prediction
 Prediction(chromozomeini, links);
 //all channels are searched in whole schedule
 SearchChannel(chromosomeini, channels);
 for i:=1 to i = channels.size() do
 //search every paths with investigated channel and set com.
 //step to all channels in chosen paths
 //and simultaneously conflicting channels are searched

 OffsetSetting(chromosomeini, i, conflict_channel);
 //evalution of individual
 pricest := links.size() + conflict_channel.size();

 While(T > Tmin and pricest <> 0)do
 begin

 Metropolis_alg(kmax,T, chromozomeini, phase, links,
 conflict_channel, chromozomeout, phase,

 pricest, links, conflict_channel);
 chromozomeini:= chromozomeout;
 T:= α*T;
 end;
 chromozomeopt:= chromozomeout;

 end;

 125

Procedure Metropolis_alg(kmax,T, chromozomeini, phase, links,
 conflict_channel:input;
 chromozomeout, phase, pricest, links,

 conflict_channel:output);
 begin
 k:=0;
 chromozome:= chromozomeini;
 while (k< kmax and pricest <> 0) do
 begin
//---------------------Prediction phase------------------------
 if(phase = 1) then
 begin
 if(randnum(100) < prmut)
 //randomly selected path is changed
 Mutation(chromozome);
 else
 begin
 //conflicting channel is randomly selected
 inv_link := random(links.size());
 //detection of paths, on which the
 //investigation channel is occurred
 Detection(inv_link, chromosome, indexpaths);
 //one path is selected
 path := randomly(indexpaths);
 //selected path is changed
 Mutation(chromosome, path);
 end;

 //substitution of the shorter path consists in
 //copying subpath of the longer path whose
 //intermediate node is simultaneously terminated
 //node of the shorter path and source node is the
 //same in the both paths
 Heuristic(chromosome);
 Prediction(chromosome, links);
 if(links.empty()) then
 begin
 phase := 2;
 SearchChannel(chromosome, channels);
 for i:=1 to i = channels.size() do
 OffsetSetting(chromosome, i,

 conflict_channel);
 end;
 end;
//---

//----------- Phase of communication step setting -------------
 else
 begin
 //a conflicting channel is selected
 channel := random(conflict_channel.size());

 126

 OffsetSetting(chromosome, channel,
 conflict_channel);
 end;
//---
 //evalution of new individual
 pricenov := links.size() + conflict_channel.size();

//---------------- Communication master slave -----------------
 if(k mod comm = 0) then
 begin
 if(numID = SLAVE) then
 begin
 //its solution is sent to master
 Send(chromosome, master);
 //the solution is obtained from master
 Recv(parent, master);
 end;
 if(numID = MASTER) then
 begin
 //solutions are obtained from all slaves
 for i:=1 to i=coutProc do
 Recv(chromosome_array, i);
 //roulette is performed
 Roulette(chromosome_array);
 //distribution of solutions according of
 //roulette selection
 for i:=1 to i=coutProc do
 Send(chromosome_array, i);
 end;
 //it performs crossover, mutation and selection
 //of individual to next execution
 GAOperations(chromosome,parent);
 end;
//---
 if pricenov - pricest < 0 then
 begin
 chromozome:= chromozome´
 pricest = pricenov;
 end;
 else

 if random()< T
priceprice strnov

e
−

−
 then

 begin
 chromozome:= chromozome´
 pricest = pricenov;
 end;
 end;

 end;

 127

Procedure Prediction(chromosome:input; links:output);
 begin
 //all channels are searched in whole schedule
 SearchChannel(chromosome, channels);
 //search every paths with investigated channel
 for channel:=1 to channel=channels.size() do
 begin
 SearchPath(chromosome, channel, paths);
 //the number of paths using the channels is greater
 //than the value of comm. step of whole schedule
 if(paths.size() > comm_step)
 //conflict is detectable
 links.push_back(channel);
 else
 begin
 //detection of possible steps for channels on
 //investigate paths
 ok := StepDetection(chromosome, paths);
 //it is not possible to set two different value of
 //step to channel on two different paths
 if(ok = FALSE) then
 begin
 links.push_back(channel);
 end;
 end;
 end;
 end;

Procedure OffsetSetting(chromosome, channel:input;
 conflict_channel:output);
 begin
 //search every paths with conflicting channel
 SearchPath(chromosome, channel, paths);
 //search remaining channels occur on paths with conflicting
 //channel
 SearchChannel(chromosome, channels, paths);
 for ch:=1 to ch=channels.size() do
 begin
 //search every paths with investigated channel
 SearchPath(chromosome, ch, ch_paths);
 //calculation of interval of possible communication
 //steps to channel on selected paths
 BoundCompute(ch, ch_paths);
 // an assignment of communication steps to channel on
 //selected paths
 ok := SetStep(chromosome, ch, ch_paths);

 128

 //it is not possible to set two different value of
 //step to channel on two different paths
 if(ok = FALSE) then
 begin
 conflict_channel.push_back(ch);
 end;
 end;
 end;

Begin
 input, output : file;

 //read parameters from input_file
 ReadInput(input);
 //create set of all shortest paths between every pair of
 //source-destination nodes
 CreateSetOfShortestPaths(paths);
 //initialization of the chromosome
 Inicialization(chromozomeini);
 if(numID = MASTER) then
 begin
 //initialization of output file to writing
 output := open(write);
 end;
 //evolutionary optimization technique – searching of conflict-
 //free schedule

Simulated_Annealing(chromosomeini,Tmin,Tmax,kmax,α,chromozomeopt);
 if(numID = MASTER) then
 begin
 //printing of achieved schedule
 PrintChromosome(chromozomeopt, output);
 end;
End.

 129

Appendix B

Investigated Topologies

 a) b)

Figure 54: Interconnection networks: a) Hyper-cube and b) K-ring

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

 130

 c) d)

Figure 55: c) Moore graph and d) Midimew

 e) f)

Figure 56: e) AMP with SC and f) AMP without SC

1

2

6

5

7 3 0 4
SC

1

2

6

5

7 3 0 4

3

9

7

2

6 4

1

5

8

0

0

7

6

5

4

3

2

1

 131

 g) h)

Figure 57: g) Ladder and h) Twisted ladder

 i) j)

Figure 58: i) Slim Octagon and j) Fat Octagon

 k) l)

Figure 59: k) Coated Mesh and l) 2D-Mesh

0 1 2 3

4

5

6

7

8 9 1011

12

13

14

15

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

 0

1

2

3

4

5

6

7

 0 2 4 6

1 3 5 7

 0 2 4 6

1 3 5 7

 132

Appendix C

Example of Optimal OAB Communica-
tion Schedule on Moore Graph Topology

Figure 60: Model of OAB communication: store-and-forward switching, full duplex
links, all-port non-combining model.

 133

Appendix D

Example of Optimal AAB Communica-
tion Schedule on Moore Graph Topology

 134

Figure 61: Model of AAB communication: store-and-forward switching, full duplex
links, all-port non-combining model.

 135

Appendix E

Example of Optimal OAS Communica-
tion Schedule on Moore Graph Topology

 136

Figure 62: Model of OAS communication: store-and-forward switching, full duplex
links, all-port non-combining model.

 137

Appendix F

Example of Optimal AAS Communica-
tion Schedule on Moore Graph Topology

 138

 139

 140

 141

 142

Figure 63: Model of AAS communication: store-and-forward switching, full duplex
links, all-port non-combining model.

 143

Appendix G

Example of Optimal MNB Communica-
tion Schedule on Moore Graph Topology

 144

 145

 146

Figure 64: Model of MNB communication: store-and-forward switching, full duplex
links, one-port non-combining model; the set of senders M: 0, 1, 2, 3, 4, 5 and the set of
receivers N: 4, 5, 6, 7, 8, 9.

