
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

ROZPTÝLENÝ KONTEXT
VE FORMÁLNÍCH JAZYCÍCH
SCATTERED CONTEXT IN FORMAL LANGUAGES

DISERTAČNÍ PRÁCE
PhD THESIS

AUTOR PRÁCE JIŘÍ TECHET
AUTHOR

VEDOUCÍ PRÁCE ALEXANDER MEDUNA
SUPERVISOR

BRNO 2008

Licenční smlouva
poskytovaná k výkonu práva užít školní dílo

uzavřená mezi smluvními stranami:

1. Pan
Jméno a příjmení: Jiří Techet
Bytem: Čejkova 27, 61500 Brno
Narozen: 29.10.1981 v Brně
(dále jen „autor“)

a

2. Vysoké učení technické v Brně
Fakulta informačních technologií
se sídlem Božetěchova 2, 61266 Brno
jejímž jménem jedná na základě písemného pověření děkanem fakulty:

. .
(dále jen „nabyvatel“)

Článek 1
Specifikace školního díla

1. Předmětem této smlouvy je vysokoškolská kvalifikační práce (VŠKP): disertační práce (dále
jen VŠKP nebo dílo)

Název VŠKP: Rozptýlený kontext ve formálních jazycích
Školitel VŠKP: Prof. RNDr. Alexander Meduna, CSc.
Ústav: Ústav informačních systémů
Datum obhajoby VŠKP: .
VŠKP odevzdal autor nabyvateli v: tištěné i elektronické formě (3 exempláře)

2. Autor prohlašuje, že vytvořil samostatnou vlastní tvůrčí činností dílo shora popsané a specifiko-
vané. Autor dále prohlašuje, že při zpracovávání díla se sám nedostal do rozporu s autorským
zákonem a předpisy souvisejícími a že je dílo dílem původním.

3. Dílo je chráněno jako dílo dle autorského zákona v platném znění.

4. Autor potvrzuje, že listinná a elektronická verze díla je identická.

Článek 2
Udělení licenčního oprávnění

1. Autor touto smlouvou poskytuje nabyvateli oprávnění (licenci) k výkonu práva uvedené dílo
nevýdělečně užít, archivovat a zpřístupnit ke studijním, výukovým a výzkumným účelům včetně
pořizovaní výpisů, opisů a rozmnoženin.

2. Licence je poskytována celosvětově, pro celou dobu trvání autorských a majetkových práv k dílu.

3. Autor souhlasí se zveřejněním díla v databázi přístupné v mezinárodní síti ihned po uzavření
této smlouvy.

4. Nevýdělečné zveřejňování díla nabyvatelem v souladu s ustanovením § 47b zákona č. 111/1998
Sb., v platném znění, nevyžaduje licenci a nabyvatel je k němu povinen a oprávněn ze zákona.

Článek 3
Závěrečná ustanovení

1. Smlouva je sepsána ve třech vyhotoveních s platností originálu, přičemž po jednom vyhotovení
obdrží autor a nabyvatel, další vyhotovení je vloženo do VŠKP.

2. Vztahy mezi smluvními stranami vzniklé a neupravené touto smlouvou se řídí autorským zá-
konem, občanským zákoníkem, vysokoškolským zákonem, zákonem o archivnictví, v platném
znění a popř. dalšími právními předpisy.

3. Licenční smlouva byla uzavřena na základě svobodné a pravé vůle smluvních stran, s plným
porozuměním jejímu textu i důsledkům, nikoliv v tísni a za nápadně nevýhodných podmínek.

4. Licenční smlouva nabývá platnosti a účinnosti dnem jejího podpisu oběma smluvními stranami.

V Brně dne 29. února 2008

. .
Nabyvatel Autor

Abstrakt
Tato disertační práce studuje teoretické vlastnosti gramatik s rozptýleným kontextem. Výzkum je
zaměřen na čtyři hlavní oblasti. Nejprve jsou zkoumány podmínky, za nichž lze odstranit vymazá-
vací pravidla z gramatik s rozptýleným kontextem. Druhou studovanou oblastí jsou modifikace gra-
matik s rozptýleným kontextem. Konkrétně se jedná o gramatiky s rozptýleným kontextem s jinými
než bezkontextovými komponentami, derivace limitované na prvních n nonterminálů, nejlevější de-
rivace a konečně derivace, v nichž je v každém derivačním kroku přepsán maximální, respektive
minimální počet nonterminálů. Dále práce studuje generátory vět, ve kterých je každá věta oboha-
cena o sekvenci pravidel použitých během její derivace. Jsou diskutovány kanonické a redukované
generátory tohoto druhu. Nakonec je uvedeno několik příkladů na použití gramatik s rozptýleným
kontextem při popisu a zpracování přirozeného jazyka.

Klíčová slova
teorie formálních jazyků, gramatiky s rozptýleným kontextem, vyjadřovací síla gramatik, popisná
složitost, vymazávací pravidla, kanonické derivace, lingvistika

Abstract
The present thesis studies theoretical properties of scattered context grammars. The research is
focused on four main areas. First, it examines the conditions under which erasing productions can
be removed form a scattered context grammar. Second, four modifications of scattered context
grammars are introduced and studied. Specifically, the considered modifications involve scattered
context grammars with non-context-free components, derivations limited to the first n nonterminals,
leftmost derivations, and, finally, derivations in which either the maximal or the minimal number of
nonterminals is rewritten in every derivation step. Next, the thesis studies generators of sentences
in which every sentence is enriched with a sequence of productions used during its generation.
Canonical and reduced generators of this kind are discussed. Finally, several applications of scat-
tered context grammars to natural language description and processing are presented.

Keywords
formal language theory, scattered context grammars, generative power, descriptional complexity,
erasing productions, canonical derivations, linguistics

Citace
Jiří Techet: Scattered Context in Formal Languages, disertační práce, Brno, FIT VUT v Brně, 2008

Scattered Context in Formal Languages

Prohlášení
Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením pana profesora Alexan-
dera Meduny. Některé části sekcí 2.1 a 2.2 byly inspirovány úvodními kapitolami v [55], výsledek
uvedený v sekci 5.3 je společným dílem mne a mého kolegy Tomáše Masopusta. Veškeré ostatní
výsledky jsou mé vlastní a vznikly pouze za spolupráce s mým školitelem. Uvedl jsem všechny
literární prameny a publikace, ze kterých jsem čerpal.

. .
Jiří Techet

29. února 2008

Poděkování
Chtěl bych poděkovat svému školiteli, panu profesoru Alexanderu Medunovi, jak za jeho odborné
rady, tak za jeho vždy vstřícný přístup a ochotu kdykoli pomoci. Děkuji Tomáši Masopustovi za
vynikající spolupráci, díky níž vznikla část této práce. Dále děkuji kolegům z doktorského studia
na Fakultě informačních technologií, kteří mi poskytli cenné podněty, jež se projevily ve výsledné
práci.

© Jiří Techet, 2008.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních
technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je
nezákonné, s výjimkou zákonem definovaných případů.

Contents

Contents 6

1 Introduction 8
Organization . 10

I Introduction to Formal Languages 12

2 Definitions 13
2.1 Mathematical Background . 13
2.2 Basics of Formal Language Theory . 15
2.3 Scattered Context Grammars . 24

3 Related Work 28

II Results 33

4 Conditional Removal of Erasing Productions 34

5 Restrictions and Extensions 49
5.1 Non-Context-Free Components of Scattered Context Grammars 49
5.2 n-Limited Derivations . 53
5.3 Leftmost Derivations . 64
5.4 Maximal and Minimal Rewriting . 69

6 Generators of Sentences with Their Parses 78
6.1 General Generators . 81
6.2 Canonical Generators . 86
6.3 Reduced Generators . 91

7 Applications in Linguistics 97

III Summary and Conclusion 108

8 Conclusion 109
Further Investigation . 110

Bibliography 112

6

Symbol Index 117

Operator Index 119

Language Family Index 120

Subject Index 121

7

Chapter 1

Introduction

Making use of highly effective computation performed in parallel, modern computer science tech-
nologies are designed to work with information of enormous size. During a single computational
step, however, a typical computational process usually needs only some selected elements of the
information. As a result, in the information as a whole, it selects a finite number of scattered,
but often mutually related elements of information, and simultaneously derives new pieces of in-
formation from these elements. By substituting the new pieces of information for the selected
elements, it produces new information as a whole and, thereby, completes such a computational
step. The newly obtained information is subsequently processed in the same selective way during
the next computational step. This computational process successfully ends when some terminating
conditions concerning the information are met; as a rule, these conditions simply require that the
information consists solely of elements from a prescribed terminating set. The present thesis studies
computational processes of this kind.

In general, to discuss some kind of information processing in a rigorous way in computer sci-
ence, we often formalize the corresponding information processors by formal language models,
such as suitable grammars. Then, by studying these grammars and the way they yield their lan-
guages in strictly mathematical terms of formal language theory, we actually rigorously investigate
the processors that work with the information under discussion. Following this mathematical ap-
proach, we formalize the scattered information processors by scattered context grammars, intro-
duced by formal language theory several decades ago (see [16]). We have chosen the theory of
formal languages because it straightforwardly and naturally allows us to formalize the scattered in-
formation within an information i by scattered context of symbols, A1 through An, occurring in i as
i = x0A1x1A2x2 . . .Anxn, where the x’s represent i’s parts irrelevant to the current computational step.
A computational rule according to which the derivation step is made has the form (A1,A2, . . . ,An)→
(y1,y2, . . . ,yn), where y1 through yn represent the new piece of information derived from A1 through
An. In this way, we formalize all the computational rules according to which the computational pro-
cess performs its steps. As these scattered context rules actually define how the words are changed,
the set containing these rules forms a scattered context grammar as a whole. These rules operate
over two sets of symbols. The grammar contains a finite set of terminal symbols. Apart from the
terminal symbols, it also contains finitely many nonterminal symbols, one of which is defined as the
start symbol. Beginning from the start symbol, the formalized computational process consisting of
a sequence of derivation steps successfully ends when the derived words consist solely of terminal
symbols. A terminal word derived in this way is included into the language of this grammar, which
contains all words derived in this way. As shown later in this thesis, scattered context grammars are
equivalent to Turing machines in the sense that both define the family of recursively enumerable
languages. As a result, these grammars represent not only an elegant formalization of scattered

8

information processing but also a powerful generator of languages.
To illustrate the formalization of scattered information processing, consider a file, f , in its binary

form. Double f by attaching f to its duplicate as f f , which is a common file operation in practice.
Suppose we want to specify the generative process which produces the set of all files doubled in this
way. More formally speaking, we want to generate the language L = { f f : f ∈ {0,1}∗}. Processing
this set requires to guarantee that each member of this set is formed by a binary word followed by
an equally long binary word that coincides with the preceding word. In greater detail, we need
to make sure that both words consist of the same number of binary digits and, in addition, the ith
binary digit in the first word coincides with the ith binary digit in the second word. In this case,
scattered information processing consists of verifying the identity of the ith binary digit in the first
f and the ith binary digit in the second f . The start rule derives FF from the start symbol S by a
rule of the form (S)→ (FF). Then, to guarantee that the ith binary digit in the left word coincides
with the ith binary digit in the right word, we simultaneously derive two identical binary digits
from the left and from the right F by these scattered context rules (F,F)→ (0F,0F) and (F,F)→
(1F,1F). To complete this process, we simultaneously erase both F’s by (F,F)→ (ε,ε), where ε

is the empty word, which consists of no symbols at all. For instance, 0101 is derived by a sequence
of derivation steps S, FF , 0F0F , 01F01F , 0101.

To enhance the reason why we have chosen scattered context grammars as a proper grammatical
formalization of scattered information processing, we now consider how some other fundamental
formal grammars describe the context and perform their derivation steps in order to see why these
grammars are less appropriate for this formalization than scattered context grammars.

Regarding the context description, we can divide grammatical rules into context-dependent and
context-independent rules in the theory of formal languages. Accordingly, we distinguish between
context-dependent grammars, such as phrase-structure grammars or interactive Lindenmayer sys-
tems, and context-independent grammars, such as context-free grammars. Context-independent
rules are applied quite independently of any other symbols, so they are obviously incapable of for-
malizing mutually related elements of scattered information. Besides this fundamental drawback,
they are significantly less powerful than scattered context grammars; in fact, they cannot even gen-
erate the trivial language L above. Context-dependent grammars are more powerful; however, their
context-dependent rules depend on the context surrounding the rewritten symbol, so they fail to
appropriately formalize widely scattered elements of information. Concerning the description of
scattered context, all these grammars are thus less suitable than scattered context grammars.

The performance of derivation steps in grammars should obviously reflect the way scattered
information is processed in reality. Therefore, sequential grammars, such as context-free gram-
mars, can hardly serve as a proper formalization of scattered information processing because they
rewrite only a single symbol during a derivation step. Although totally parallel grammars, such
as L systems (see [31, 59, 61]), reflect scattered information processing more appropriately, this
reflection is still not quite adequate from a realistic point of view. Indeed, these grammars work in
a completely parallel way since they rewrite all symbols of the sentence during a single derivation
step. However, due to hardware limitations, only a finite number of symbols can be processed in
one computational step in practice. As scattered context grammars simultaneously rewrite finitely
many selected symbols during a single derivation step while leaving the other symbols unchanged,
they formalize scattered information processing most appropriately.

Grammars which rewrite finitely many symbols during a single derivation step are referred to
as partially-parallel. Scattered context grammars are not the only representative of this grammar
type; multigrammars (see [24]) and simple matrix grammars (see [21]) belong to this class as well.
The reason why we have chosen scattered context grammars for scattered information processing is
the simplicity of language description and the flexibility of how their rules are used. In greater de-

9

tail, scattered context grammars, contrary to multigrammars, do not require the symbols appearing
between the scattered elements which are being processed to be described. On the other hand, sim-
ple matrix grammars are not economical in situations when no context checks are required as they
rewrite a fixed number of symbols during the whole computational process. Unordered scattered
context grammars (see [9, 15, 36, 56, 82]) are another type of partially-parallel grammars. In order
to apply a rule in an ordinary scattered context grammar, the order of the symbols appearing on the
left-hand side of the rule has to correspond to the order of these symbols appearing in the sentence;
in unordered scattered context grammars, this order is unimportant. Even though their definition
resembles the definition of scattered context grammars, the term “unordered scattered context gram-
mar” is slightly misleading—the left and the right context of a symbol cannot be checked because
there is no ordering within the rules; it can be only checked whether the considered symbol appears
somewhere in the sentence. These grammars are equivalent to programmed grammars (see [6, 82])
and have, therefore, completely different properties than scattered context grammars. As unordered
scattered context grammars are not fully capable of capturing scattered-context dependencies, we
do not discuss them in this thesis.

Organization

The thesis is divided into three main parts. Part I, Introduction to Formal Languages, presents the
basic mathematical concepts and the used terminology, formally defines scattered context gram-
mars, and, finally, summarizes the currently known results concerning scattered context grammars.
Part II, Results, is the key part of the thesis as it brings new results from the area of scattered con-
text grammars. Finally, Part III, Summary and Conclusion, summarizes all the obtained results and
proposes new directions for future investigation.

In greater detail, we briefly describe the contents of the individual chapters.
Chapter 1, Introduction, sets scattered information processing in a broader context and empha-

sizes the importance of its study. In addition, it outlines the structure of the document.
Chapter 2, Definitions, gives information about the needed mathematical background, the basics

of formal language theory, and defines various formalisms which are used later in the text. Finally,
it introduces the formal definition of a scattered context grammar which is the key concept of this
thesis.

Chapter 3, Related Work, summarizes all currently known theoretical properties of scattered
context grammars. It discusses both scattered context grammars with and without erasing produc-
tions, and their modified versions.

Chapter 4, Conditional Removal of Erasing Productions, presents a result which demonstrates
that erasing production removal is possible in scattered context grammars if their derivations satisfy
certain properties. A short version of this result was published in [78, 79], its full proof [54] has
been submitted for publication.

Chapter 5, Restrictions and Extensions, studies various restricted and extended versions of scat-
tered context grammars. Specifically, Section 5.1, Non-Context-Free Components of Scattered Con-
text Grammars, introduces scattered context grammars whose components are not context-free as
in ordinary scattered context grammars, and presents the obtained results (see [80]). In Section 5.2,
n-Limited Derivations, scattered context grammars without erasing productions which use n-limited
derivations are studied. These derivations permit only the first n nonterminals to be rewritten. Based
on n, we obtain an infinite hierarchy of language families. The result presented in this section has
been submitted for publication (see [51]). Section 5.3, Leftmost Derivations, mentions a simpli-
fied proof of a previously published result which discussed leftmost derivations of scattered context

10

grammars without erasing productions. This proof is a result of my cooperation with my colleague
Tomás Masopust and has been submitted for publication (see [35]). Finally, in Section 5.4, Maximal
and Minimal Rewriting, maximal and minimal derivations of scattered context grammars without
erasing productions are defined and it is proved that grammars with this type of derivations charac-
terize the family of context-sensitive languages (see [52]).

Chapter 6, Generators of Sentences with Their Parses, discusses the use of scattered context
grammars without erasing productions for generation of their sentences which are enriched with an
additional information needed for their possible subsequent analysis. First, Section 6.1, General
Generators, studies general types of these generators (see [49, 71, 72, 73]), second, their leftmost
and rightmost variants are studied in Section 6.2, Canonical Generators (see [50, 74, 75, 76, 77]),
and, finally, generators with a reduced number of nonterminals and context-sensitive productions
are discussed in Section 6.3, Reduced Generators (see [53]).

Chapter 7, Applications in Linguistics, studies possible applications of scattered context gram-
mars in linguistics. It shows that in natural languages there are many examples of dependencies
which are scattered through a sentence. The chapter demonstrates how to transform one kind of
sentences with scattered context dependencies to another and gives several examples of these trans-
formations.

Chapter 8, Conclusion, summarizes all results obtained in Part II and outlines possible areas for
further investigation.

11

Part I

Introduction to Formal Languages

12

Chapter 2

Definitions

Even though this thesis aims to be self-contained in the sense that no other sources are needed for
understanding all the presented results, the reader should be familiar at least with the basic math-
ematical terms and principles. However, a deeper knowledge of mathematics and formal language
theory is welcomed as this introductory chapter describes the used terminology very briefly which
may be insufficient for its full understanding. There is a vast number of excellent publications that
introduce the reader to the needed mathematical concepts and the fundamentals of formal language
theory (see [3, 8, 13, 17, 18, 23, 27, 29, 32, 60, 65, 66, 67, 70, 85]). In certain chapters, we refer
to the relation of our research to compiler construction. For more information about compilers and
their construction, see [1, 30, 47, 68, 69].

This chapter is divided into three sections. Sections 2.1 and 2.2 review the fundamental mathe-
matical notions needed to follow the thesis clearly and accurately. Section 2.3 introduces scattered
context grammars and notions related to these grammars which are specific for this thesis. For
readers having background in formal language theory, this chapter can be skimmed and treated as a
reference for notion and definitions.

2.1 Mathematical Background

This section recalls the basic notions concerning sets, sequences, and relations which are used later
in the thesis.

Sets

A set A is a collection of elements taken from some prespecified universe. If A contains an element
a, then we symbolically write a ∈ A and refer to a as a member of A. On the other hand, if a is not
in A, we write a /∈ A. The cardinality of A, |A|, is the number of A’s members. The set that has no
member is the empty set, denoted /0; note that | /0|= 0. If A has a finite number of members, then A is
a finite set; otherwise, A is an infinite set. An infinite set A is countably infinite if there is a bijection
from A to the set of all integers.

A finite set A is customarily specified by listing its members; that is, A = {a1,a2, . . . ,an}, where
a1 through an are all members of A. An infinite set B is usually specified by a property π , so that B
contains all elements satisfying π; in symbols, this specification has the following general format:
B = {a : π(a)}. Sets whose members are other sets are usually called families of sets rather than
sets of sets.

Let A and B be two sets. A is a subset of B, symbolically written as A⊆ B, if each member of A
also belongs to B. A is a proper subset of B, written as A ⊂ B, if A ⊆ B and B contains an element

13

that is not in A. If A⊆ B and B⊆ A, A equals B, denoted by A = B. The power set of A, denoted by
2A, is the set of all subsets of A. For two sets A and B, their union, intersection, and difference are
denoted by A∪B, A∩B, and A−B, respectively, and defined as

A∪B = {a : a ∈ A or a ∈ B},

A∩B = {a : a ∈ A and a ∈ B},

and
A−B = {a : a ∈ A and a /∈ B}.

For a property π , the union of elements of A satisfying this property is defined as⋃
π

A = {a : a ∈ A,π(a)}.

For a set A over a universe U , the complement of A is denoted by A and defined as A = U−A.
A sequence is a list of elements from some universe U . A sequence is finite if it represents a

finite list of elements; otherwise, it is infinite. The length of a finite sequence x, denoted by |x|, is
the number of elements in x. The empty sequence, denoted by ε , is the sequence consisting of no
element; that is, |ε| = 0. A finite sequence is usually specified by listing its elements. For V ⊆U ,
|x|V denotes the number of occurrences of elements from V in a sequence x. For instance, consider
a finite sequence x specified as x = 0,1,0,0 and observe that |x|= 4 and |x|{0} = 3.

Relations

For two objects a and b, (a,b) denotes the ordered pair consisting of a and b in this order. Analogi-
cally, the ordered n-tuple is denoted by (a1, . . . ,an), for some objects a1, . . . ,an. Let A and B be two
sets. The Cartesian product of A and B, A×B, is defined as

A×B = {(a,b) : a ∈ A and b ∈ B}.

A binary relation or, briefly, a relation ρ from A to B is any subset of A×B; that is, ρ ⊆ A×B. The
domain of ρ , denoted by domain(ρ), and the range of ρ , denoted by range(ρ), are defined by

domain(ρ) = {a : (a,b) ∈ ρ for some b ∈ B}

and
range(ρ) = {b : (a,b) ∈ ρ for some a ∈ A}.

If A = B, then ρ is a relation on A. A relation σ is a subrelation of ρ if σ represents a subset of ρ .
The inverse of ρ , denoted by ρ−1, is defined as

ρ
−1 = {(b,a) : (a,b) ∈ ρ}.

A function or, synonymously, a mapping from A to B is a relation φ from A to B such that for each
a ∈ A,

|{b : b ∈ B,(a,b) ∈ φ}| ≤ 1.

Let φ be a function from A to B. If domain(φ) = A, φ is total; otherwise, φ is partial. If for each
b ∈ B,

|{a : a ∈ A,(a,b) ∈ φ}| ≤ 1,

14

φ is injective. If for each b ∈ B,

|{a : a ∈ A,(a,b) ∈ φ}| ≥ 1,

φ is surjective. If φ is both a surjective and an injective, then φ is called bijective. Injective,
surjective and bijective function is briefly called injection, surjection, and bijection, respectively.

Instead of (a,b) ∈ ρ , we often write a ∈ ρ(b) or aρb; in other words, (a,b) ∈ ρ , aρb, and
a ∈ ρ(b) are used interchangeably. If ρ is a function, we usually write a = ρ(b).

We say that a set A is closed under a binary operation ◦ if for each a,b ∈ A, a◦b ∈ A. A set that
is closed under an operation is said to satisfy a closure property. A closure under an n-ary operation
is defined analogically. Let ρ be a relation on a set A. For k ≥ 1, the k-fold product of ρ , ρk, is
recursively defined as (1) aρ1b if and only if aρb, and (2) aρkb if and only if aρc and cρk−1b for
some c and k ≥ 2. The transitive closure of ρ , ρ+, is defined as aρ+b if and only if aρkb for some
k ≥ 1, and the reflexive and transitive closure of ρ , ρ∗, is defined as aρ∗b if and only if aρkb for
some k ≥ 0.

2.2 Basics of Formal Language Theory

In this section, we define fundamental mathematical notions and concepts of formal language the-
ory. We focus on languages, language operations, language families, and various types of gram-
mars.

Languages

An alphabet T is a finite, nonempty set, whose members are called symbols. A finite sequence of
symbols from T is a string or, synonymously, a word over T ; specifically, ε is referred to as the
empty string. By T ∗, we denote the set of all strings over T ; T + = T ∗−{ε}. Any subset L ⊆ T ∗

is a language over T . If L represents a finite set of strings, L is a finite language; otherwise, L is
an infinite language. For instance, T ∗, called the universal language over T , is an infinite language
while /0 and {ε} are finite; notably, /0 6= {ε} because | /0|= 0 6= |{ε}|= 1. By alph(x) we denote the
set of all symbols occurring in a string x. Set

alph(L) =
⋃
x∈L

alph(x).

By analogy with the set theory, sets whose members are languages are called families of languages.
By convention, we omit all separating commas in strings. That is, we write a1a2 . . .an rather

than a1,a2, . . . ,an.
Let x,y ∈ T ∗ be two strings over an alphabet T . The concatenation of x with y, denoted by xy,

is the string obtained by appending y to x. Observe that for each w ∈ T ∗, wε = εw = w. Notice that
from an algebraic point of view, T ∗ and T + are the free monoid and the free semigroup, respectively,
generated under the operation of concatenation. We say that x is a prefix of y if there exists u ∈ T ∗

such that xu = y; in addition, if x /∈ {ε,y}, x is a proper prefix of y. Similarly, x is a suffix of y if
there exists u ∈ T ∗ such that ux = y; in addition, if x /∈ {ε,y}, x is a proper suffix of y. Finally, x is
a substring or a subword of y if there exists u,v ∈ T ∗ such that uxv = y; in addition, if x /∈ {ε,y},
x is a proper substring or a proper subword of y. For all i ≥ 0 the ith power of x, denoted by xi, is
recursively defined as (1) x0 = ε and (2) xi = xxi−1 for i≥ 1. The reversal of x, denoted by rev(x),
is x written in the reverse order.

As languages are defined as sets, all set operations apply to them. Let L1,L2 ⊆ T ∗ be two
languages over T . Then, L1∪L2, L1∩L2, and L1−L2 denote the union, intersection, and difference

15

of languages L1 and L2, respectively. There are, however, some operations specific to languages.
The concatenation of L1 and L2, denoted by L1L2, is defined as

L1L2 = {xy : x ∈ L1,y ∈ L2}.

The right quotient of L1 with respect to L2, denoted by L1/L2, is defined as

L1/L2 = {y : yx ∈ L1, for some x ∈ L2};

similarly, the left quotient of L1 with respect to L2, denoted by L2\L1, is defined as

L2\L1 = {y : xy ∈ L1, for some x ∈ L2}.

We also use a special type of the right and the left quotient. The exhaustive right quotient of L1
with respect to L2, denoted by L1//L2, is defined as

L1//L2 = {x : x ∈ L1/L2, and no word in L1/L2 is a proper prefix of x};

similarly, the exhaustive left quotient of L1 with respect to L2, denoted by L2\\L1, is defined as

L2\\L1 = {x : x ∈ L2\L1, and no word in L2\L1 is a proper suffix of x}.

Apart from binary operations, we also make some unary operations with languages. Let L ⊆ T ∗.
The ith power of L, Li, is defined as (1) L0 = {ε} and (2) Li = LLi−1 for i≥ 1. The Kleene star of
L, L∗, is defined as

L∗ =
⋃
i≥0

Li

and the Kleene plus of L, L+, is defined as

L+ =
⋃
i≥1

Li.

Notice that L+ = LL∗ = L∗L and L∗ = L+∪{ε}. The complement of L is denoted by L and defined
as L = T ∗−L, and the reversal of L, rev(L), is defined as

rev(L) = {rev(x) : x ∈ L}.

Let T and U be two alphabets. A total function τ from T ∗ to 2U∗ such that τ(uv) = τ(u)τ(v) for
each u,v ∈ T ∗ is a substitution from T ∗ to U∗. By this definition, τ(ε) = {ε} and τ(a1a2 . . .an) =
τ(a1)τ(a2) . . .τ(an), where n ≥ 1 and ai ∈ T for all 1 ≤ i ≤ n, so τ is completely specified by
defining τ(a) for each a ∈ T . For L⊆ T ∗, we extend the definition of τ to

τ(L) =
⋃

w∈L

τ(w).

A total function χ from T ∗ to U∗ such that χ(uv) = χ(u)χ(v) for each u,v∈ T ∗ is a homomorphism
or, synonymously and briefly, a morphism from T ∗ to U∗. As any homomorphism is obviously a
special case of a substitution, we specify χ by analogy with the specification of τ . For L⊆ T ∗, we
extend the definition of χ to

χ(L) = {χ(w) : w ∈ L}.

A language L⊆ T ∗ is called regular language if it can be obtained from {a}, where a ∈ T , and
/0 using finitely many times the operations of union, concatenation, and Kleene star.

The closure of a family of languages under an operation is defined by analogy with the definition
of the closure of a set.

16

Definition 1. A family of languages L is said to be closed under linear erasing if for each L ∈L ,
homomorphism h and integer k such that |w| ≤ k|h(w)| for each w ∈ L, h(L) ∈L .

The following definition introduces a family of languages which is closed under several above
defined operations.

Definition 2. An abstract family of languages (see [14]) is a pair (T,L), or L when T is under-
stood, where

1. T is a countably infinite set of symbols;

2. For each L ∈L there is a finite set T1 ⊆ T such that L⊆ T ∗1 ;

3. L 6= /0 for some L ∈L ;

4. L is closed under the operations of union, concatenation, Kleene plus, inverse homomor-
phism, ε-free homomorphism, and intersection with a regular language.

Finally, we introduce some additional definitions used in this thesis. For a finite set of integers
I, max(I) and min(I) denote the maximal and the minimal element of I, respectively.

Definition 3. Let perm(t) be the set of all permutations of {1, . . . , t}. For some n,m≥ 0, define

perm(n,m) = {(i1, . . . , in+m) ∈ perm(n+m) : 1≤ ik < il ≤ n implies k < l}.

Let T be an alphabet. For x1, . . . ,xn ∈ T ∗, (i1, . . . , in) ∈ perm(n), define

reorder((x1, . . . ,xn),(i1, . . . , in)) = (xi1 , . . . ,xin).

Grammars

This section reviews the basics of grammars. Specifically, it provides definitions of regular, right-
linear, linear, context-free, context-sensitive, and phrase-structure grammars along with some re-
lated notions and basic results. Further, other types of grammars used throughout the thesis are
introduced together with their basic properties.

Definition 4. A phrase-structure grammar is a quadruple

G = (V,T,P,S),

where

• V is the total alphabet,

• T ⊂V is the set of terminal symbols or, briefly, terminals,

• P⊆V ∗(V −T)V ∗×V ∗ is a finite relation,

• S ∈V −T is the start symbol or, synonymously, axiom of G.

The symbols in V − T are referred to as nonterminal symbols or, briefly, nonterminals. In what
follows, each (x,y) ∈ P is called a production or a rule and written as

x→ y ∈ P;

17

accordingly, P is called the set of productions in G. Given a production p = x → y ∈ P, we set
lhs(p) = x and rhs(p) = y, which represent the left-hand side and the right-hand side of the produc-
tion p, respectively. The relation of a direct derivation in G is a binary relation over V ∗ denoted by
⇒G and defined in the following way. If u = z1xz2, v = z1yz2, and x → y ∈ P, where z1,z2 ∈ V ∗,
then G makes a derivation step from u to v according to x→ y, symbolically written as

u⇒G v [x→ y].

When no confusion exists, we simplify u⇒G v [x→ y] to u⇒G v. By⇒k
G, we denote the k-fold

product of⇒G. Furthermore, let⇒+
G and⇒∗G denote the transitive closure of⇒G and the reflexive

and transitive closure of⇒G, respectively. If S⇒∗G x for some x ∈V ∗, x is called a sentential form.
If S⇒∗G w, where w ∈ T ∗, S⇒∗G w is said to be a successful derivation of G. The language of G,
denoted by L(G), is defined as

L(G) = {w ∈ T ∗ : S⇒∗G w}.

A recursively enumerable language is a language generated by a phrase-structure grammar. In the
literature, the phrase-structure grammars are also often defined with productions of the form

xAy→ xuy,

where u,x,y ∈ V ∗ and A ∈ V −T (see [4]). Both definitions are interchangeable in the sense that
the grammars defined in these two ways generate the same family of languages—the family of
recursively enumerable languages, denoted by L (RE).

Definition 5. A context-sensitive grammar is a phrase-structure grammar

G = (V,T,P,S)

such that each production x→ y ∈ P satisfies

|x| ≤ |y|.

A context-sensitive language is a language generated by a context-sensitive grammar. The family
of context-sensitive languages is denoted by L (CS).

Definition 6. A context-free grammar is a phrase-structure grammar

G = (V,T,P,S)

such that each production in P is of the form

A→ x,

where A ∈ V −T and x ∈ V ∗. A context-free language is a language generated by a context-free
grammar. The family of context-free languages is denoted by L (CF).

Definition 7. A linear grammar is a phrase-structure grammar

G = (V,T,P,S)

such that each production in P is of the form

A→ xBy, or A→ x,

where A,B ∈V −T and x,y ∈ T ∗. A linear language is a language generated by a linear grammar.
The family of linear languages is denoted by L (LIN).

18

Definition 8. A regular grammar is a phrase-structure grammar

G = (V,T,P,S)

such that each production in P is of the form

A→ aB, or A→ a,

where A,B ∈V −T and a ∈ T . A regular language is a language generated by a regular grammar.
The family of regular languages is denoted by L (REG).

Alternatively, regular languages can be described by right-linear grammars.

Definition 9. A right-linear grammar is a phrase-structure grammar

G = (V,T,P,S)

such that each production in P is of the form

A→ xB, or A→ x,

where A,B ∈ V − T and x ∈ T ∗. The family of languages generated by right-linear grammars is
denoted by L (RLIN).

For the families of languages generated by regular, right-linear, linear, context-free, context-
sensitive, and phrase-structure grammars, it holds:

Theorem 1 (see [4]).

L (REG) = L (RLIN)⊂L (LIN)⊂L (CF)⊂L (CS)⊂L (RE).

Lemma 1 (Kuroda Normal Form of Context-Sensitive Grammars, see [28]). Let L ∈ L (CS).
Then, there exists a context-sensitive grammar G = (V,T,P,S) such that L = L(G) and each pro-
duction in P is either of the form

• AB→CD, or

• A→ x,

where A,B,C,D ∈V −T , x ∈ T ∪ (V −T)2.

Lemma 2 (Kuroda Normal Form of Phrase-Structure Grammars, see [28]). Let L∈L (RE). Then,
there exists a phrase-structure grammar, G = (V,T,P,S), such that L = L(G) and each production
in P is either of the form

• AB→CD, or

• A→ x,

where A,B,C,D ∈V −T , x ∈ {ε}∪T ∪ (V −T)2.

Besides phrase-structure grammars, we also use simple matrix grammars, state grammars, Ex-
tended Post Correspondence, and queue grammars to describe languages in this thesis. We start
with the definition of a linear simple matrix grammar.

19

Definition 10. A simple matrix grammar of degree n (see [21]) is an (n+3)-tuple

G = (V1, . . . ,Vn,T,P,S),

where n≥ 1, V1, . . . ,Vn are alphabets , T ⊂Vi for all 1≤ i≤ n, (V1−T), . . . ,(Vn−T) are pairwise
disjoint, S /∈V1∪ . . .∪Vn, and P is a finite set of productions of the following three forms:

1. (S) → (x11A11x12A12 . . .x1kA1k . . .xn1An1xn2An2 . . .xnkAnky), where y ∈ T ∗, and Ai j ∈ Vi−T ,
xi j ∈ T ∗ for all 1≤ i≤ n, 1≤ j ≤ k, for some k ≥ 1,

2. (A1, . . . ,An) → (x11A11x12A12 . . .x1kA1ky1, . . . ,xn1An1xn2An2 . . .xnkAnkyn), where yi,xi j ∈ T ∗,
Ai,Ai j ∈Vi−T for all 1≤ i≤ n, 1≤ j ≤ k, for some k ≥ 1,

3. (A1, . . . ,An)→ (x1, . . . ,xn), where Ai ∈Vi−T , xi ∈ T ∗ for all 1≤ i≤ n.

If

• either u = S and p = (S)→ (v) ∈ P,

• or u = y1A1z1 . . .ynAnzn, v = y1w1z1 . . .ynwnzn, where yi ∈ T ∗, zi ∈ V ∗i for all 1 ≤ i ≤ n, and
p = (A1, . . . ,An)→ (w1, . . . ,wn) ∈ P,

then G makes a derivation step from u to v according to p, symbolically written as u ⇒G v [p].
Let ⇒+

G and ⇒∗G denote the transitive closure of ⇒G and the transitive-reflexive closure of ⇒G,
respectively. The language of G is denoted by L(G) and defined as L(G) = {x ∈ T ∗ : S⇒∗G x}. The
family of languages generated by simple matrix grammars of degree n is denoted by L (SM,n),
and

L (SM) =
∞⋃

n=1

L (SM,n).

Definition 11. A linear simple matrix grammar of degree n (see [57]) is a simple matrix grammar

G = (V1, . . . ,Vn,T,P,S),

where P is a finite set of productions of the following three forms:

1. (S)→ (x1A1 . . .xnAnxn+1), where Ai ∈Vi−T , x j ∈ T ∗ for all 1≤ i≤ n, 1≤ j ≤ n+1,

2. (A1, . . . ,An)→ (x1B1y1, . . . ,xnBnyn), where Ai,Bi ∈Vi−T , xi,yi ∈ T ∗ for all 1≤ i≤ n,

3. (A1, . . . ,An)→ (x1, . . . ,xn), where Ai ∈Vi−T , xi ∈ T ∗ for all 1≤ i≤ n.

The family of languages generated by linear simple matrix grammars of degree n is denoted by
L (SM,LIN,n), and

L (SM,LIN) =
∞⋃

n=1

L (SM,LIN,n).

Definition 12. A right-linear simple matrix grammar of degree n (see [21]) is a linear simple matrix
grammar

G = (V1, . . . ,Vn,T,P,S),

where P is a finite set of productions of the following three forms:

1. (S)→ (x1A1 . . .xnAn), where Ai ∈Vi−T , xi ∈ T ∗ for all 1≤ i≤ n,

20

2. (A1, . . . ,An)→ (x1B1, . . . ,xnBn), where Ai,Bi ∈Vi−T , xi ∈ T ∗ for all 1≤ i≤ n,

3. (A1, . . . ,An)→ (x1, . . . ,xn), where Ai ∈Vi−T , xi ∈ T ∗ for all 1≤ i≤ n.

The family of languages generated by right-linear simple matrix grammars of degree n is denoted
by L (SM,RLIN,n), and

L (SM,RLIN) =
∞⋃

n=1

L (SM,RLIN,n).

Theorem 2 (see [21, 57]). For each n≥ 1,

L (SM,n) ⊂L (SM,n+1),
L (SM,LIN,n) ⊂L (SM,LIN,n+1),
L (SM,RLIN,n)⊂L (SM,RLIN,n+1),

L (SM,RLIN,n)⊂L (SM,LIN,n)⊂L (SM,n).

Theorem 3 (see [21, 57]).

L (CF)−L (SM,LIN) 6= /0, L (CF)−L (SM,RLIN) 6= /0

L (SM,RLIN)⊂L (SM,LIN)⊂L (SM)⊂L (CS).

Theorem 4 (Positive closure properties, see [21, 57]). Each of the families L (SM,LIN,n) and
L (SM,RLIN,n), where n≥ 1, is closed under union, reversal, homomorphism, inverse homomor-
phism, substitution with regular languages, concatenation with regular languages, intersection with
regular languages, left and right quotient by regular languages. L (SM,LIN) and L (SM,RLIN)
are closed under concatenation.

Theorem 5 (Negative closure properties, see [21, 57]). Each family L (SM,LIN,n), where n≥ 1, is
not closed under concatenation with linear languages. Each family L (SM,RLIN,n), where n≥ 1,
is not closed under concatenation with L (SM,RLIN,2). L (SM,LIN) and L (SM,RLIN) are not
closed under intersection, complement and Kleene star. L (SM,LIN) is not closed under substitu-
tion with linear languages. L (SM,RLIN) is not closed under substitution with L (SM,RLIN,2).

Now, we define another type of a grammar.

Definition 13. A state grammar (see [22]) is a sixtuple

G = (V,T,K,P,S, p0),

where V is an alphabet, T ⊂V , K is a finite set of states, S ∈V −T , p0 ∈ K, and P is a finite set of
productions of the form

(A, p)→ (x,q),

where A ∈V −T , x ∈V +, and p,q ∈ K. If u = (rAs, p), v = (rxs,q), and (A, p)→ (x,q) ∈ P, where
r,s ∈ V ∗, and for each (B, p)→ (y, t) ∈ P, B /∈ alph(r), then G makes a derivation step from u to v
according to (A, p)→ (x,q), symbolically written as

u⇒G v [(A, p)→ (x,q)]

21

or, simply, u⇒G v. To emphasize that the jth nonterminal in u is rewritten during a derivation step,
we write u j⇒G v. The state language is a language generated by a state grammar G, denoted by
L(G), and defined as

L(G) = {x ∈ T ∗ : (S, p0)⇒∗G (x,q) for some q ∈ K}.

The family of all state languages is denoted by L (ST). An n-limited derivation, denoted by x n⇒∗G
y, is a derivation in which every derivation step u j⇒G v satisfies j ≤ n. Define

L(G,n) = {x ∈ T ∗ : (S, p0) n⇒∗G (x,q) for some q ∈ K};

clearly, L(G) =
⋃

∞
n=1 L(G,n). A state grammar G is of degree n if and only if L(G,n) = L(G). A

state language is said to be of degree n if there is a state grammar G of degree n with L = L(G). If
L(G,n) 6= L(G) for all n≥ 1, then G and L(G) are said to be of infinite degree. The family of state
languages of degree n is denoted by L (ST,n), and L (ST,∞) =

⋃
∞
n=1 L (ST,n).

Theorem 6 (see [22]). A state language L is of degree n if and only if L = L(G,n) for some state
grammar G.

Theorem 7 (see [22]).

L (CF) = L (ST,1)⊂L (ST,2)⊂ . . .⊂L (ST,∞)⊂L (ST) = L (CS).

Theorem 8 (see [22]). Every L (ST,n), where n≥ 1, is an abstract family of languages.

Next, we continue by defining an Extended Post Correspondence.

Definition 14. For an alphabet T = {a1, . . . ,an}, an Extended Post Correspondence (see [12]) E is
defined as

E = ({(u1,v1), . . . ,(ur,vr)},(za1 , . . . ,zan)),

where ui,vi,za j ∈ {0,1}∗ for each 1≤ i≤ r and 1≤ j≤ n. The language represented by an Extended
Post Correspondence E, denoted by L(E), is defined as

L(E) = {b1 . . .bk ∈ T ∗ : vs1 . . .vsl = us1 . . .usl zb1 . . .zbk

for some s1, . . . ,sl ∈ {1, . . . ,r}, l ≥ 1,k ≥ 0}.

Theorem 9 (see [12]). For each L ∈L (RE) there exists an Extended Post Correspondence E such
that L(E) = L.

Finally, a queue grammar is defined, a normal form of its productions, which is used throughout
the thesis, is introduced, and it is proved that for every queue grammar there exists a queue grammar
in this normal form.

Definition 15. A queue grammar (see [25]) is a sixtuple

Q = (V,T,W,F,R,g),

where V and W are alphabets satisfying V ∩W = /0, T ⊂V , F ⊂W , g ∈ (V −T)(W −F), and

R⊆ (V × (W −F))× (V ∗×W)

22

is a finite relation such that for each a ∈ V , there exists an element (a,b,x,c) ∈ R. If u = arb,
v = rxc, and (a,b,x,c) ∈ R, r,x ∈ V ∗, where a ∈ V and b,c ∈W , then Q makes a derivation step
from u to v according to (a,b,x,c), symbolically written as

u⇒Q v [(a,b,x,c)],

or, simply, u⇒Q v. The language generated by a queue grammar Q, denoted by L(Q), is defined as

L(Q) = {x ∈ T ∗ : g⇒+
Q x f , f ∈ F}.

Theorem 10 (see [25]). For each L ∈L (RE) there exists a queue grammar Q such that L(Q) = L.

Lemma 3. Let Q′ be a queue grammar. Then, there exists a queue grammar

Q = (V,T,W ′∪{1, f},{ f},R,g)

such that L(Q′) = L(Q), where W ′∩{1, f}= /0, each (a,b,x,c) ∈ R satisfies a ∈V −T and either

• b ∈W ′, x ∈ (V −T)∗, c ∈W ′∪{1, f} or

• b = 1, x ∈ T , c ∈ {1, f}.

Proof. Let Q′ = (V ′,T,W ′,F ′,R′,g′) be any queue grammar. Set Φ = {ā : a ∈ T}. Define the
homomorphism α from (V ′)∗ to ((V ′−T)∪Φ)∗ as α(a) = ā for each a ∈ T and α(A) = A for each
A ∈V ′−T . Set V = V ′∪Φ, W = W ′∪{1, f}, F = { f}, and g = α(a0)q0 for g′ = a0q0. Define the
queue grammar Q = (V,T,W,F,R,g), with R constructed in the following way:

1. For each (a,b,x,c) ∈ R′, where c ∈W ′−F ′, add
(α(a),b,α(x),c) to R;

2. (a) For each (a,b,x,c) ∈ R′, where c ∈ F ′, add
(α(a),b,α(x),1) to R;

(b) For each (a,b,ε,c) ∈ R′, where c ∈ F ′, add
(α(a),b,ε, f) to R;

3. For each a ∈ T , add

(a) (ā,1,a,1) and

(b) (ā,1,a, f) to R.

Clearly, each (a,b,x,c) ∈ R satisfies a ∈V −T and either b ∈W ′, x ∈ (V −T)∗, c ∈W ′∪{1, f} or
b = 1, x ∈ T , c ∈ {1, f}.

To see that L(Q′) ⊆ L(Q), consider any v ∈ L(Q′). As v ∈ L(Q′), g′ ⇒∗Q′ vt, where v ∈ T ∗ and
t ∈ F ′. Express g′⇒∗Q′ vt as

g′⇒∗Q′ axc⇒Q′ vt [(a,c,y, t)],

where a ∈V ′, x,y ∈ T ∗, xy = v, and c ∈W ′−F ′. This derivation is simulated by Q as follows. First,
Q uses productions from (1) to simulate g′⇒∗Q′ axc. Then, it uses a production from (2) to simulate
axc ⇒Q′ vt. For x = ε , a production from (2b) can be used to generate ε ∈ L(Q) in the case of
ε ∈ L(Q′); otherwise a production from (2a) is used. This part of simulation can be expressed as

g⇒∗Q α(ax)c⇒Q α(v)1.

23

At this point, α(v) satisfies α(v) = ā1 . . . ān, where ai ∈ T for all 1 ≤ i ≤ n, for some n ≥ 1. The
productions from (3) of the form (ā,1,a,1), where a ∈ T , replace every ā j with a j, where 1≤ j ≤
n− 1, and, finally, (ā,1,a, f), where a ∈ T , replaces α(an) with an. As a result, we obtain the
sentence v f , so L(Q′)⊆ L(Q).

To establish L(Q) ⊆ L(Q′), observe that the use of a production from (2b) in Q before the
sentential form is of the form α(ax)c, where a ∈ V ′, x ∈ T ∗, c ∈W ′−F ′, leads to an unsuccessful
derivation. Similarly, the use of (2b) if x 6= ε leads to an unsuccessful derivation as well. The details
are left to the reader. As a result, L(Q)⊆ L(Q′).

As L(Q′)⊆ L(Q) and L(Q)⊆ L(Q′), we obtain L(Q) = L(Q′). �

Consider the queue grammar Q = (V,T,W,F,R,g) from Lemma 3. Its properties imply that
Q generates every word in L(Q)−{ε} so it passes through 1. Before it enters 1, it generates
only words from (V − T)∗; after entering 1, it generates only words from T . The following two
corollaries express this property formally.

Corollary 1. Let Q be a queue grammar that satisfies the properties given in Lemma 3. Then, Q
generates every y ∈ L(Q)−{ε} in this way:

a0q0⇒Q x0q1 [(a0,q0,z0,q1)]
...

⇒Q xk−1qk [(ak−1,qk−1,zk−1,qk)]
⇒Q xk1 [(ak,qk,zk,1)]
⇒Q xk+1b11 [(ak+1,1,b1,1)]

...
⇒Q xk+m−1b1 . . .bm−11 [(ak+m−1,1,bm−1,1)]
⇒Q b1 . . .bm f [(ak+m,1,bm, f)],

where k,m≥ 1, g = a0q0, a1, . . . ,ak+m ∈V −T , b1, . . . ,bm ∈ T , z0, . . . ,zk ∈ (V −T)∗, q0, . . . ,qk,1 ∈
W −F, f ∈ F, x0, . . . ,xk+m−1 ∈ (V −T)+, and y = b1 . . .bm. �

Corollary 2. Let Q be a queue grammar that satisfies the properties given in Lemma 3. Then, Q
generates a non-empty string of terminals during the last step of every successful derivation of a
sentence from L(Q)−{ε}. �

If some grammars define the same language, they are referred to as equivalent grammars. This
equivalence is central to this thesis because we often discuss how to transform some grammars
to some other grammars so that both the original grammars and the transformed grammars are
equivalent.

2.3 Scattered Context Grammars

In this section, we define scattered context grammars without erasing productions, originally intro-
duced in [16], and scattered context grammars with erasing productions studied in [82]. In addition,
we illustrate these definitions on several examples.

Sometimes, the notions used in this theses differ from the notions originally used in the research
papers discussing this topic. The reason for this change is the fact that each paper used a slightly
different terminology so some terms had to be modified to to present all the results in a unified way.

24

Definition 16. A scattered context grammar is a quadruple

G = (V,T,P,S),

where

• V is the total alphabet,

• T ⊂V is the set of terminals,

• P is a finite set of productions of the form

(A1, . . . ,An)→ (x1, . . . ,xn),

where n≥ 1, Ai ∈V −T and xi ∈V ∗ for all 1≤ i≤ n,

• S ∈V −T is the start symbol of G.

If
u = u1A1u2A2 . . .unAnun+1,
v = u1x1u2x2 . . .unxnun+1,

and
p = (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P,

where ui ∈ V ∗ for all 1 ≤ i ≤ n + 1, then G makes a derivation step from u to v according to p,
symbolically written as

u⇒G v [p],

or, simply, u ⇒G v. In addition, if Ai /∈ alph(ui) for all 1 ≤ i ≤ n, then the direct derivation is
leftmost, and we write

u lm⇒G v [p];

if Ai /∈ alph(ui+1) for all 1≤ i≤ n, then the direct derivation is rightmost, and we write

u rm⇒G v [p].

Set lhs(p) = A1A2 . . .An, rhs(p) = x1x2 . . .xn, and len(p) = |A1 . . .An| = n. If len(p) ≥ 2, p is said
to be a context-sensitive production, while for len(p) = 1, p is said to be context-free. The scattered
context language, is a language generated by a scattered context grammar G = (V,T,P,S), denoted
by L(G), and defined as

L(G) = {x ∈ T ∗ : S⇒∗G x}.

The family of languages generated by scattered context grammars is denoted by L (SC).

Definition 17. A propagating scattered context grammar is a scattered context grammar

G = (V,T,P,S)

in which each
(A1, . . . ,An)→ (x1, . . . ,xn) ∈ P

satisfies xi ∈V + for all 1≤ i≤ n. The propagating scattered context language is a language gener-
ated by a propagating scattered context grammar. The family of languages generated by propagating
scattered context grammars is denoted by L (PSC).

25

Example 1. Consider the non-context-free language L = {anbncn : n ≥ 0}. This language can be
generated by the scattered context grammar

G = ({S,A,B,C,a,b,c},{a,b,c},P,S),

where
P = {(S)→ (ABC),

(A,B,C)→ (aA,bB,cC),
(A,B,C)→ (ε,ε,ε)}.

For example, the sentence aabbcc is generated by G as follows:

S⇒G ABC⇒G aAbBcC⇒G aaAbbBccC⇒G aabbcc.

The generated language, however, belongs to the family of propagating scattered context languages
as there exists the grammar

G′ = ({S,A,B,C,a,b,c},{a,b,c},P′,S),

where
P′ = {(S)→ (ε),

(S)→ (ABC),
(A,B,C)→ (aA,bB,cC),
(A,B,C)→ (a,b,c)}.

In order to generate ε ∈ L by G′, P′ contains the production (S)→ (ε), and S does not appear on
any production’s right-hand side. As it is always possible to add the production (S)→ (ε), and not
allow S to appear on a right-hand side of any production, to simplify the notation, ε ∈ L, where L is
a propagating scattered context language, is not discussed in the rest of the thesis.

Example 2 (see [5, 33]). Consider the non-context-free language

L = {a2n
: n≥ 0}.

This language is generated by the propagating scattered context grammar

G = ({S,W,X ,Y,Z,A,a},{a},P,S),

where
P = {1 : (S)→ (a),

2 : (S)→ (aa),
3 : (S)→ (WAXY),
4 : (W,A,X ,Y)→ (a,W,X ,AAY),
5 : (W,X ,Y)→ (a,W,AXY),
6 : (W,X ,Y)→ (Z,Z,a),
7 : (Z,A,Z)→ (Z,a,Z),
8 : (Z,Z)→ (a,a)}.

In what follows, we demonstrate that L(G) = L. The productions (1) and (2) generate the strings of
{a2n

: n = 0,1} while (3) starts off the derivation of other strings in L. Consider the derivation of

26

a16 ∈ L(G):
S⇒G WAXY [3]
⇒G aWXA2Y [4]
⇒G a2WA3XY [5]
⇒G a3WA2XA2Y [4]
⇒G a4WAXA4Y [4]
⇒G a5WXA6Y [4]
⇒G a6WA7XY [5]
⇒G a6ZA7Za [6]
⇒7

G a13ZZa [77]
⇒G a16 [8].

Observe that in a successful derivation, productions (4) and (5) are applied in a cycle, and after the
required number of A’s is obtained, the derivation is finished by productions (6), (7), and (8). In
greater detail, observe that the production (W,A,X ,Y) → (a,W,X ,AAY) removes one A between
W and X , and inserts two A’s between X and Y . In a successful derivation, this production has to
rewrite the leftmost nonterminal A. After all A’s between W and X are removed, the production
(W,X ,Y)→ (a,W,AXY) can be used to bring all A’s between X and Y back between W and X , and
the cycle can repeat again. Alternatively, the production (6) can be used, which initializes the final
phase of the derivation in which all A’s are replaced with a’s by productions (7) and (8).

Finally, we introduce several measures of the descriptional complexity of scattered context
grammars which are used in Chapters 3 and 6.

Definition 18. Let G = (V,T,P,S) be a scattered context grammar. Then, its nonterminal com-
plexity is the number of nonterminals in G. If G is a scattered context grammar, then its degree
of context sensitivity, symbolically written as dcs(G), is defined as the number of context-sensitive
productions in G. The maximum context sensitivity of G is the greatest number in

{len(pi)−1 : 1≤ i≤ |P|},

symbolically denoted by mcs(G). The overall context sensitivity of G, denoted by ocs(G), is the
sum of all members in

{len(pi)−1 : 1≤ i≤ |P|}.

27

Chapter 3

Related Work

This chapter summarizes the known results of the research into scattered context grammars with
and without erasing productions. Since their introduction in [16], nearly forty years ago, there have
been published many papers dealing with this subject. In short, the studied topics can be divided
into three most important areas: (1) general study of propagating scattered context grammars and
the generated language families; (2) study of modified versions of propagating scattered context
grammars; (3) study of scattered context grammars with erasing productions. In what follows, we
look at these areas more deeply.

Properties of Propagating Scattered Context Grammars

In this section, we describe the properties of propagating scattered context grammars. We start with
a normal form that was first mentioned in the original article [16] by S. Greibach and J. Hopcroft.
Scattered context productions in this normal form contain at most two context-free components
while in general, their number is unlimited.

Definition 19. A 2-limited propagating scattered context grammar is a propagating scattered con-
text grammar G = (V,T,P,S) such that

1. (A1, . . . ,An) → (w1, . . . ,wn) ∈ P implies n ≤ 2, and for each 1 ≤ i ≤ n, 1 ≤ |wi| ≤ 2 and
wi ∈ (V −{S})∗,

2. (A)→ (w) ∈ P implies A = S.

The paper shows that every propagating scattered context language can be described by the above
normal form.

Theorem 11. If G is a propagating scattered context grammar, then there exists a 2-limited gram-
mar Ḡ with L(Ḡ) = L(G).

Next, the same paper studies the closure properties of the family of propagating scattered con-
text languages under various operations and demonstrates that this family properly contains the
family of context-free languages. The closure properties are also studied for a special type of ho-
momorphism and erasing which are referred to as k-restricted and k-limited, respectively.

Definition 20. A family of languages L is said to be closed under k-limited erasing, where k is a
positive integer, if whenever c /∈ T and L ∈L with

L⊆ (T ({ε}∪{c}∪ . . .∪{c}k))∗,

h(c) = ε and h(a) = a for each a ∈ T , then h(L) ∈L .

28

Definition 21. A homomorphism h from T ∗1 to T ∗2 is k-restricted on L ⊆ T ∗1 if h(w) = ε for w ∈ L
implies w = ε , and h(w) 6= ε for every subword w, |w| ≥ k of each word in L. A family of languages
L is said to be closed under restricted homomorphism if h(L) ∈L whenever L⊆ T ∗1 is in L and
h is a homomorphism on T ∗1 which is k−1 restricted on L for some positive integer k.

The following theorem summarizes the main closure results.

Theorem 12. The family of propagating scattered context languages is closed under substitution
by an ε-free context free language, intersection with a regular language, permutations, ε-free ho-
momorphism, reversal, restricted homomorphism, k-limited erasing, inverse homomorphism, con-
catenation, intersection, ε-free substitution, and linear erasing.

The following corollaries follow from the results given in Theorem 12.

Corollary 3. L (CF)⊂L (PSC)⊆L (CS).

Corollary 4. The family of propagating scattered context languages is an abstract family of lan-
guages.

Corollary 5. If L is a recursively enumerable language, then there exists a propagating scattered
context language L′ and a homomorphism h such that h(L′) = L.

Corollary 6. The family of propagating scattered context languages is not closed under arbitrary
homomorphism and quotient by a regular language.

Corollary 7. The emptiness problem is recursively unsolvable for propagating scattered context
grammars.

The paper introduces one important open problem which has remained unsolved since then.

Open Problem 1. L (CS) = L (PSC)?

The generative power of propagating scattered context grammars was further studied by [58].
This paper compares their generative power to simple matrix grammars and proves the following
result.

Theorem 13. L (SM)⊂L (PSC).

Special attention was payed to Corollary 5 by various papers. First, [7] demonstrated that any
recursively enumerable language can be characterized by a propagating scattered context grammar
so that every string x of this language is represented by {$}∗x in the propagating scattered context
grammar, where $ is an arbitrary symbol not present in the language. The interesting part of this
result is the fact that any recursively enumerable language can be described by a grammar whose
power is at most context-sensitive by adding some fill-in symbols into every sentence. Formally,
the result is stated as follows.

Theorem 14. For every recursively enumerable language L, there exists a propagating scattered
context grammar G such that L = {$}+\\L(G).

In Chapter 6, we perform a generation of this kind as well. However, instead of adding useless
symbols $ to every sentence, we try to increase the amount of information every string contains
by adding supplementary data which may be useful for subsequent parsing of this string. Theo-
rem 14 was later improved by [37]. It proved that such a language can be generated by a propa-
gating scattered context grammar which performs only leftmost or rightmost derivations. In fact,
it demonstrated that there is no need to explicitly restrict the grammar—if the grammar performs a

29

non-leftmost derivation step, the generation is unsuccessful. Accordingly, we modify our genera-
tors in Chapter 6 to satisfy this property as well. This topic was further studied by [38], where the
total number of the nonterminals needed for this generation was reduced to four. In relation to this
result, we discuss reduced generators in Chapter 6 which, in addition, perform only leftmost deriva-
tions and use a reduced number of context-sensitive productions. A slightly different approach was
presented in [46]. Instead of creating the sequence of the fill-in symbols, $, at the beginning or at
the end of the generated sentence, they are spread over the sentence so that they appear between
every two neighboring terminal symbols. The paper further demonstrates that the grammar can
be constructed in such a way that there is the same number of these symbols between every two
neighboring terminals in every string generated by the grammar.

Modifications of Propagating Scattered Context Grammars

Open Problem 1 mentioned in the previous section led to various modifications of propagating
scattered context grammars which made it possible to describe all context-sensitive languages.

One of the first modifications was discussed in [56]. The paper uses the notion of negative-
context grammars. In essence, negative-context grammars are context-free grammars in which
each context-free production has two sets of nonterminals, L and R, appended to it. A production is
applicable to a sentential form if and only if there is no symbol from L on the left of the nonterminal
to be rewritten and no symbol from R on the right of this nonterminal. The paper demonstrates that
if scattered context productions are added to such a grammar, the resulting grammar is powerful
enough to describe all context-sensitive languages.

A different approach was presented in [5]. This paper defines three kinds of context-free pro-
ductions: leftmost, checking, and global. Productions in leftmost mode are applicable if and only if
in front of the nonterminal to be rewritten there does not occur the same nonterminal. In checking
mode, the application of a production depends on whether the sentential form contains the nonter-
minal from its left-hand side or not: if it does, the production is applied; otherwise, the sentential
form remains unchanged. (This mode resembles appearance checking in matrix grammars, see [6]
for details.) Finally, a production in global mode rewrites all nonterminals in the sentential form
which coincide with its left-hand side in one derivation step. By allowing these kinds of productions
to be components of propagating scattered context productions and combining them with ordinary
context-free productions, the authors characterize the family of context-sensitive languages.

Propagating scattered context grammars with regulation, namely propagating scattered context
grammars with appearance checking and propagating scattered context grammars with uncondi-
tional transfer were introduced in [9]. For its relative complexity, we do not give the formal def-
inition of this modification in this paper. If interested, the reader can find more information about
these grammars in [9]. Again, the paper shows that propagating scattered context grammars with
appearance checking and unconditional transfer are able to generate all context-sensitive languages.

The following two modifications are more interesting from our point of view because they
change the basic definition of a propagating scattered context grammar only slightly, preserving
its uniformity and simplicity. Propagating scattered context grammars which use leftmost deriva-
tions were studied by [82]. It was proved that propagating scattered context grammars which use
only leftmost derivations characterize the family of context-sensitive languages. In Section 5.3, we
present a much simplified proof of the same result. Finally, [15] studied scattered context grammars
with erasing productions in which the length of the concatenation of nonterminals appearing on the
left-hand side of a production has to be less or equal to the concatenation of the strings appearing
on its right-hand side. We give a formal definition of this grammar next.

30

Definition 22. An extended propagating scattered context grammar is a scattered context grammar
G = (V,T,P,S) in which every (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P satisfies

|x1 . . .xn| ≥ n.

The family of languages generated by extended propagating scattered context grammars is denoted
by L (PSC,ext).

The paper proves the following theorem.

Theorem 15. L (PSC,ext) = L (CS).

In conclusion of this section, we point out to an interesting fact. It seems that the presented re-
sults speak in favor of the hypothesis that propagating scattered context grammars are not powerful
enough to describe all context-sensitive languages. Indeed, each of the presented grammars re-
quires some additional modification of the basic concept to be able to generate all context-sensitive
languages. On the other hand, no one has been able to prove this hypothesis yet.

Properties of Scattered Context Grammars

Scattered context grammars with erasing productions were first mentioned in [26]. In [82] it was
proved that scattered context grammars with erasing productions are powerful enough to describe
all recursively enumerable languages. Later, [39] demonstrated a trivial proof of this result.

Theorem 16. L (RE) = L (SC).

Proof. Let L ∈ L (RE). By Corollary 5, there exists a propagating scattered context grammar
G′= (V,T ′,P′,S) and a homomorphism h such that L = h(L(G′)). Without loss of generality assume
alph(L)∩T ′ = /0. Define the scattered context grammar

G = (V ∪ alph(L),alph(L),P∪P′,S),

where
P = {(a)→ (h(a)) : a ∈ T ′}.

Clearly, L(G) = L. Therefore, L (RE) ⊆ L (SC). Obviously, L (SC) ⊆ L (RE), so L (RE) =
L (SC). �

Further, [82] proved that if only leftmost derivation steps are used in scattered context grammars, it
can describe every recursively enumerable language as well.

Other theoretical properties of scattered context grammars were studied by [44, 45]. We do not
describe the results of these papers in greater detail; however, we present an interesting corollary of
the main result in [44]. It states that scattered context grammars which contain only one nonterminal
cannot characterize all recursively enumerable languages.

Particular attention was paid to the descriptional complexity of scattered context grammars.
There have been many papers dealing with this topic, often improving previously published results.
For example, all results proved in [10, 11, 40] were improved by the subsequent papers. In [43]
it was demonstrated that every recursively enumerable language can be generated by a scattered
context grammar with at most three nonterminals.

Theorem 17. For every recursively enumerable language L, there is a scattered context grammar
G = (V,T,P,S) satisfying |V −T |= 3, dcs(G) = ∞, mcs(G) = ∞, ocs(G) = ∞, such that L(G) = L.

31

The same paper also stated the following open problem.

Open Problem 2. Are two-nonterminal scattered context grammars powerful enough to character-
ize the family of recursively enumerable languages?

There have been several attempts to reduce both the number of nonterminals and the number of
context-sensitive productions. Two results of this kind are from [48, 81].

Theorem 18. For every recursively enumerable language L, there is a scattered context grammar
G = (V,T,P,S) satisfying |V −T |= 5, dcs(G) = 2, mcs(G) = 3, ocs(G) = 6, such that L(G) = L.

Theorem 19. For every recursively enumerable language L, there is a scattered context grammar
G = (V,T,P,S) satisfying |V −T |= 8, dcs(G) = 6, mcs(G) = 1, ocs(G) = 6, such that L(G) = L.

Another, not yet published result was presented in [34].

Theorem 20. For every recursively enumerable language L, there is a scattered context grammar
G = (V,T,P,S) satisfying |V −T |= 4, dcs(G) = 4, mcs(G) = 5, ocs(G) = 20, such that L(G) = L.

Apart form reducing the total number of nonterminals and context-sensitive productions, [41]
studied the way how to transform phrase-structure grammars to scattered context grammars as eco-
nomically as possible. It demonstrated that when converting a phrase-structure grammar in Kuroda
normal form to a scattered context grammar, only a small number of extra nonterminals and context-
sensitive productions has to be added. To describe this result precisely, we first define the needed
notation.

Definition 23. Let G be a grammar, and let P be G’s set of productions. We separate P into two
disjoint subsets—the set of context-free productions, cfree(P), and the set of context-dependent
productions, cdep(P). A production, p ∈ P, belongs to cfree(P) if and only if the left-hand side of
p consists of one nonterminal; otherwise, p belongs to cdep(P). Specifically, if G = (V,T,P,S) is a
phrase-structure grammar, then

cfree(P) = {A→ x : A→ x ∈ P and A ∈V −T},
cdep(P) = P− cfree(P).

If G = (V,T,P,S) is a scattered context grammar, then

cfree(P) = {(A)→ (x) : (A)→ (x) ∈ P},
cdep(P) = P− cfree(P).

The main result of [41] follows next.

Theorem 21. Let H = (M,T,R,S) be a phrase-structure grammar in Kuroda normal form. Then,
there exists a scattered context grammar, G = (V,T,P,E), that satisfies

1. L(G) = L(H),

2. |M|= |V |+5,

3. |cdep(P)|= |cdep(R)|+4,

4. |cfree(P)|= |cfree(R)|+1.

As we have seen from the number of articles written about scattered context grammars, this
topic represents a vivid research area in formal language theory. In the following part, we strive to
improve our knowledge about the way how scattered context grammars work by further examining
their theoretical properties.

32

Part II

Results

33

Chapter 4

Conditional Removal of Erasing
Productions

This section concentrates its investigation on the role of erasing productions and the way they are
applied in scattered context grammars. While scattered context grammars with erasing productions
characterize the family of recursively enumerable languages, the same grammars without erasing
productions cannot generate any non-context-sensitive language (see Corollary 3 and Theorem 16).
As a result, in general, we cannot convert any scattered context grammar with erasing productions
to an equivalent scattered context grammar without these productions. In what follows, we demon-
strate that this is always possible if the original grammar erases nonterminals in a generalized
k-limited way, where k ≥ 0, in a successful derivation; in every sentential form of the derivation,
between any two neighboring symbols from which the grammar derives non-empty strings, there
is a string of no more than k nonterminals from which the grammar derives empty strings later
in the derivation. Consequently, the scattered context grammars that have erasing productions but
apply them in a generalized k-limited way are equivalent to the grammars that do not have erasing
productions at all.

In Theorem 12 it was demonstrated that the family of propagating scattered context languages
is closed under k-limited erasing. Note that our definition of generalized k-limited erasing differs
significantly from the way how symbols are erased by k-limited erasing. In the case of k-limited
erasing a language can be generated by a propagating scattered context grammar if at most k sym-
bols are deleted between every two neighboring terminals in a sentence. On the contrary, in the
case of generalized k-limited erasing virtually unlimited number of symbols can be deleted be-
tween every two neighboring terminals in a sentence if during the derivation process between two
neighboring non-erasable symbols there is a string of at most k erasable symbols. Therefore, the
present result represents a generalization of the previously proved theorem.

Before we define generalized k-limited erasing formally, we give several auxiliary definitions.

Definition 24. The core grammar underlying a scattered context grammar G = (V,T,P,S) is de-
noted by core(G) and defined as the context-free grammar core(G) = (V,T,P′,S) with

P′ = {Ai→ xi : (A1, . . . ,Ai, . . . ,An)→ (x1, . . . ,xi, . . . ,xn) ∈ P}.

Definition 25. Let G = (V,T,P,S) be a scattered context grammar and let core(G) be a core gram-
mar underlying G. Let

u1A1u2A2 . . .unAnun+1= v
⇒G u1x1u2x2 . . .unxnun+1 = w [(A1, . . . ,An)→ (x1, . . . ,xn)],

34

where ui ∈ V ∗ for all 1 ≤ i ≤ n + 1. The partial m-step context-free simulation of this step by
core(G) is denoted by

cfm(v⇒G w)

and defined as core(G)’s m-step derivation of the form

u1A1u2A2 . . .unAnun+1
⇒core(G) u1x1u2A2 . . .unAnun+1

⇒m−1
core(G) u1x1u2x2 . . .umxmum+1Am+1 . . .unAnun+1,

where m≤ n. The context-free simulation of G’s derivation step, denoted by

cf(v⇒G w),

is the partial n-step context-free simulation of this step. Let v = v1⇒∗G vn = w be of the form

v1⇒G v2⇒G v3⇒G . . . ⇒G vn.

The context-free simulation of v⇒∗G w by core(G) is denoted by cf(v⇒∗G w) and defined as

v1⇒∗core(G) v2⇒∗core(G) v3 ⇒∗core(G) . . . ⇒∗core(G) vn

such that for all 1≤ i≤ n−1, vi⇒∗core(G) vi+1 is the context-free simulation of vi⇒G vi+1.

Definition 26. Let G = (V,T,P,S) be a scattered context grammar and let core(G) be a core gram-
mar underlying G. Let S⇒∗G x be of the form S⇒∗G uAv⇒∗G x. Let cf(S⇒∗G x) be the context-free
simulation of S⇒∗G x. Let t be the derivation tree corresponding to S⇒∗core(G) x (regarding deriva-
tion trees and related notions, we use the terminology of [42]). Consider a subtree rooted at A in
t. If the frontier of this subtree is ε , then G erases A in S ⇒∗G uAv⇒∗G x, symbolically written as
À, and if this frontier differs from ε , then G does not erase A during this derivation, symbolically
written as Á. If w = Á1 . . . Án or w = À1 . . . Àn, for some n≥ 1, we write ẃ or ẁ, respectively.

Generalized k-limited erasing is defined next.

Definition 27. Let G = (V,T,P,S) be a scattered context grammar and let k ≥ 0. G erases non-
terminals in a generalized k-limited way in S ⇒∗G y, where y ∈ L(G), if every sentential form x
occurring in S⇒∗G y satisfies the following two properties:

1. Every x = uAvBw, Á, B́, v̀, satisfies |v| ≤ k;

2. Every x = uAw, Á, satisfies: if ù or ẁ, then |u| ≤ k or |w| ≤ k, respectively.

Set
L(G,ε,k) = {x ∈ T ∗ : S⇒∗G x, and G erases nonterminals

in a generalized k-limited way in S⇒∗G x}.

A scattered context grammar G erases its nonterminals in a generalized k-limited way if L(G) =
L(G,ε,k). The family of languages generated by scattered context grammars which erase their
nonterminals in a generalized k-limited way is denoted by L (SC,ε,k).

We illustrate these definitions on the following example.

35

Example 3. Let G1 = (V1,T,P1,S1) and G2 = (V2,T,P2,S2) be right-linear grammars which satisfy
(V1− T)∩ (V2− T) = /0. The following example demonstrates the use of generalized k-limited
erasing to construct the grammar G satisfying

L(G) = {ww : w ∈ L(G1)\L(G2)}.

Suppose that S,X ,Y /∈V1∪V2. Define the homomorphism α from T ∗ to {ā : a ∈ T}∗ as α(a) = ā
for all a ∈ T . We construct the grammar

G = (V1∪V2∪{ā : a ∈ T}∪{S,X ,Y},T,P,S)

with P defined as follows:

1. Add (S)→ (XS1XS2XS1XS2) to P;

2. For each A→ xB ∈ P1∪P2, add (A,A)→ (α(x)B,α(x)B) to P;

3. For each A→ x ∈ P1∪P2, add (A,A)→ (α(x),α(x)) to P;

4. For each a ∈ T , add (X , ā,X , ā,X , ā,X , ā)→ (ε,X ,ε,X ,ε,X ,ε,X) to P;

5. Add (X ,X ,X ,X)→ (ε,Y,ε,Y) to P;

6. For each a ∈ T , add (Y, ā,Y, ā)→ (a,Y,a,Y) to P;

7. Add (Y,Y)→ (ε,ε) to P.

Observe that L(G) = L. Let y ∈ T ∗ be the longest string such that A → yB ∈ P1 or A → y ∈ P1.
Similarly, let z ∈ T ∗ be the longest string such that A→ zB ∈ P2 or A→ z ∈ P2. Then, observe that
G erases its nonterminals in a generalized (|y|+ |z|+3)-limited way for all w ∈ L, w 6= ε .

For instance, consider

G1 = ({S1,a},{a,b},{S1→ aaS1,S1→ ε},S1)

with L(G1) = {a2n : n≥ 0} and

G2 = ({S2,a,b},{a,b},{S2→ aaaaS2,S2→ b},S2).

with L(G2) = {a4nb : n≥ 0}. We construct the grammar

G = ({S1,S2,S,X ,Y, ā, b̄,a,b},{a,b},P,S),

where
P = {1 : (S)→ (XS1XS2XS1XS2),

2a : (S1,S1)→ (āāS1, āāS1),
2b : (S2,S2)→ (āāāāS2, āāāāS2),
3a : (S1,S1)→ (ε,ε),
3b : (S2,S2)→ (b̄, b̄),
4a : (X , ā,X , ā,X , ā,X , ā)→ (ε,X ,ε,X ,ε,X ,ε,X),
4b : (X , b̄,X , b̄,X , b̄,X , b̄)→ (ε,X ,ε,X ,ε,X ,ε,X),
5 : (X ,X ,X ,X)→ (ε,Y,ε,Y),
6a : (Y, ā,Y, ā)→ (a,Y,a,Y),
6b : (Y, b̄,Y, b̄)→ (b,Y,b,Y),
7 : (Y,Y)→ (ε,ε)}.

36

This grammar generates the language

L(G) = L = {ww : w ∈ L(G1)\L(G2)}= {a2nba2nb : n≥ 0}

and, in addition, erases its nonterminals in a generalized 9-limited way in every derivation, which
can be easily seen on the following derivation:

S⇒G XS1XS2XS1XS2 [1]⇒G XāāS1XS2XāāS1XS2 [2a]
⇒G XāāS1XāāāāS2XāāS1XāāāāS2 [2b]
⇒G XāS1XāāāS2XāS1XāāāS2 [4a]⇒G XS1XāāS2XS1XāāS2 [4a]
⇒G XXāāS2XXāāS2 [3a]⇒G XXāāb̄XXāāb̄ [3b]⇒G Y āāb̄Y āāb̄ [5]
⇒G aY āb̄aY āb̄ [6a]⇒G aaY b̄aaY b̄ [6a]⇒G aabYaabY [6b]
⇒G aabaab [7].

Notice that S2 is not deleted in a successful derivation of w ∈ L. As the derivation can always
proceed so that there are at most four ā’s in front of S2 and two ā’s in front of S1, in the case when
all ā’s, S1 and both X’s are deleted in front of S2, k = 9 so the erasing is performed in a generalized
9-limited way.

The previous example illustrates that erasing productions are often used to verify some rela-
tions between individual parts of a sentential form. The introduction of these productions, however,
does not have to mean that the generated language belongs to a more powerful family of languages.
For instance, the existence of erasing productions in the grammar in Example 3 suggests that the
language cannot be generated by any propagating scattered context grammar. However, the gen-
erated language, {a2nba2nb : n ≥ 0}, is clearly context-sensitive and can be easily generated by a
propagating scattered context grammar.

The following theorem shows that if generalized k-limited erasing is used during a generation
of a string, its derivation can be performed by a scattered context grammar which does not have
erasing productions at all.

Theorem 22. For each k ≥ 0 and every scattered context grammar G, there is a propagating scat-
tered context grammar Ḡ such that L(G,ε,k) = L(Ḡ).

Proof. Let G = (V,T,P,S) be a scattered context grammar. For each

p = (A1, . . . ,Ai, . . . ,An)→ (x1, . . . ,xi, . . . ,xn) ∈ P,

let bp, ic denote Ai→ xi for all 1≤ i≤ n. Let

Ψ = {bp, ic : p ∈ P,1≤ i≤ len(p)} and Ψ
′ = {bp, ic′ : bp, ic ∈Ψ}.

Set
N̄1 = {〈x〉 : x ∈ (V −T)∗∪ (V −T)∗T (V −T)∗, |x| ≤ 2k +1}.

For each 〈x〉 ∈ N̄1 and bp, ic ∈Ψ, define

lhs-replace(〈x〉,bp, ic) = {〈x1bp, icx2〉 : x1 lhs(bp, ic)x2 = x}.

Set
N̄2 = {〈x〉 : 〈x〉= lhs-replace(〈y〉,bp, ic),〈y〉 ∈ N̄1,bp, ic ∈Ψ}.

For each 〈x〉 ∈ N̄1 and bp, ic′ ∈Ψ′, define

insert(〈x〉,bp, ic′) = {〈x1bp, ic′x2〉 : x1x2 = x}.

37

Set
N̄′2 = {〈x〉 : 〈x〉= insert(〈y〉,bp, ic′),〈y〉 ∈ N̄1,bp, ic′ ∈Ψ

′}.

For each x = 〈x1〉 . . .〈xn〉 ∈ (N̄1∪ N̄2∪ N̄′2)
∗ for some n≥ 1, define

join(x) = x1 . . .xn.

For each x ∈ N̄1∪ N̄2∪ N̄′2, define

split(x) = {y : x = join(y)}.

Set V̄ = T ∪ N̄1∪ N̄2∪ N̄′2∪{S̄}. Define the propagating scattered context grammar

Ḡ = (V̄ ,T, P̄, S̄)

with P̄ constructed as follows:

1. For each p = (S)→ (x) ∈ P, add
(S̄)→ (〈bp,1c〉) to P̄;

2. For each 〈x〉 ∈ N̄1, each X ∈ insert(〈x〉,bp,nc′), where p ∈ P, len(p) = n, each 〈y〉 ∈ N̄1, and
each Y ∈ lhs-replace(〈y〉,bq,1c), where q ∈ P, add

(a) (X ,〈y〉)→ (〈x〉,Y), and

(b) (〈y〉,X)→ (Y,〈x〉) to P̄;

(c) if 〈x〉= 〈y〉, add
(X)→ (Y) to P̄;

(d) Add (X)→ (〈x〉) to P̄;

3. For each 〈x〉 ∈ N̄1, each X ∈ insert(〈x〉,bp, ic′), where p ∈ P, i < len(p), each 〈y〉 ∈ N̄1, and
each Y ∈ lhs-replace(〈y〉,bp, i+1c), where q ∈ P, add

(a) (X ,〈y〉)→ (〈x〉,Y) to P̄;

(b) if 〈x〉= 〈y〉 and X = x1bp, ic′x2, Y = y1bp, i+1cy2 satisfy |x1bp, ic′|< |y1bp, i+1c|, add
(X)→ (Y) to P̄;

4. For each
〈x1bp, icx2〉 ∈ lhs-replace(〈x〉,bp, ic),

〈x〉 ∈ N̄1, bp, ic ∈Ψ, and each Y ∈ split(x1 rhs(bp, ic)bp, ic′x2), add
(〈x1bp, icx2〉)→ (Y) to P̄;

5. For each a ∈ T , add
(〈a〉)→ (a) to P̄.

Denote the set of productions introduced in step i of the construction by P̄i, for 1≤ i≤ 5.
Let S⇒∗Ḡ y⇒∗Ḡ w, w ∈ L(Ḡ), y ∈ (N̄1∪ N̄2∪ N̄′2)

∗, and let for each 〈z〉 ∈ alph(y) there exist

1. A ∈ alph(z) such that Á or

2. bp, ic ∈ alph(z), bp, ic ∈Ψ, A = lhs(bp, ic) such that Á.

38

Then, we write y̌.

Basic Idea. The propagating scattered context grammar Ḡ simulates G by using nonterminals of the
form 〈. . .〉. In each nonterminal of this form, during every simulated derivation step, Ḡ records a
substring corresponding to the current sentential form of G. The grammar Ḡ performs its derivation
so that each of the nonterminals 〈. . .〉 contains at least one symbol which is not erased later in the
derivation.

The production constructed in (1) only initializes the simulation process. By productions in-
troduced in (2) through (4), Ḡ simulates the application of a scattered context production p ∈ P
in a left-to-right way. In greater detail, by using a production of (2), Ḡ nondeterministically se-
lects a scattered context production p ∈ P. Suppose that p consists of context-free productions
r1, . . . ,ri−1,ri, . . . ,rn. By using productions of (3) and (4), Ḡ simulates the application of r1 through
rn one by one. To explain this in greater detail, suppose that Ḡ has just completed the simulation of
ri−1. Then, to the right of this simulation, Ḡ selects lhs(ri) by using a production of (3). That is,
this selection is made inside of Ḡ’s nonterminal in which the simulation of ri−1 has been performed
or in one of the nonterminals appearing to the right of this nonterminal. After this selection, by
using a production of (4), Ḡ performs the replacement of the selected symbol lhs(ri) with rhs(ri).
If a terminal occurs inside of a nonterminal of Ḡ, then a production of (5) allows Ḡ to change this
nonterminal to the terminal contained in it.

Formal Proof.

Claim 1. Every successful derivation in Ḡ can be expressed in the following way:

S̄⇒Ḡ 〈bp,1c〉 [p1]
⇒∗Ḡ u [Φ]
⇒+

Ḡ v [Θ],

where p1 = (S̄)→ (〈bp,1c〉) ∈ P̄1, u = 〈a1〉 . . .〈an〉, n≥ 1, a1, . . . ,an ∈ T , v = a1a2 . . .an, Φ and Θ

are sequences of productions from (P̄2∪ P̄3∪ P̄4), and P̄5, respectively.

Proof. Productions from P̄1 are the only productions with S̄ on their left-hand sides. Therefore, the
derivation starts with a step made by one of these productions, so

S̄⇒Ḡ 〈bp,1c〉 [p1]
⇒∗Ḡ v.

Observe that S̄ does not appear on the right-hand side of any of the introduced productions. There-
fore, productions from P̄1 are not used during the rest of the derivation.

The productions from P̄5 are the only productions with their right-hand sides over T ; therefore,
they must be used to finish the derivation. Observe that none of the productions from P̄1∪P̄2∪P̄3∪P̄4
rewrites nonterminals of the form 〈a〉, where a ∈ T . As all productions from P̄5 are context-free,
they can be applied whenever 〈a〉 appears in the sentential form. Without loss of generality we can
assume that they are applied at the end of the derivation process; therefore,

S̄⇒Ḡ 〈bp,1c〉 [p1]
⇒∗Ḡ u [Φ]
⇒+

Ḡ v [Θ],

so the claim holds. �

39

Claim 2. Let

w1 ∈ split(u1bp,1cu2A2 . . .unAnun+1) and λ = u1A1u2A2 . . .unAnun+1,

u1, . . . ,un+1 ∈ V ∗, A1, . . . ,An ∈ V −T , A1 = lhs(bp,1c), p = (A1, . . . ,An) → (x1, . . . ,xn) ∈ P, and
w̌1; then, every partial h-step context-free simulation

cfh(λ = u1A1u2A2 . . .unAnun+1⇒G u1x1u2x2 . . .unxnun+1 [p])

of the form
u1A1u2A2u3A3 . . .unAnun+1 = λ

⇒core(G) u1x1u2A2u3A3 . . .unAnun+1

⇒core(G) u1x1u2x2u3A3 . . .unAnun+1

⇒h−2
core(G) u1x1u2x2u3x3 . . .uhxhuh+1Ah+1 . . .unAnun+1

is performed in core(G) if and only if

w1
⇒Ḡ w′1 [p4

1]
⇒Ḡ w2 [p3

2]
⇒Ḡ w′2 [p4

2]
...

⇒2h−5
Ḡ wh [p3

h]
⇒Ḡ w′h [p4

h]

is performed in Ḡ, where p3
2, . . . , p3

h ∈ P̄3, p4
1, . . . , p4

h ∈ P̄4, and

w′1 ∈ split(u1x1bp,1c′u2A2 . . .unAnun+1),
w2 ∈ split(u1x1u2bp,2cu3 . . .unAnun+1),
w′2 ∈ split(u1x1u2x2bp,2c′u3 . . .unAnun+1),

...
wh ∈ split(u1x1u2x2 . . .uhbp,hcuh+1Ah+1 . . .unAnun+1),
w′h ∈ split(u1x1u2x2 . . .uhxhbp,hc′uh+1Ah+1 . . .unAnun+1);

in addition, each w ∈ {w2, . . . ,wh,w′1, . . . ,w
′
h} satisfies w̌.

Proof.

Only If. The only-if part is proved by the induction on g for all partial g-step context-free simula-
tions, for g≥ 1.

Basis. Let g = 1. Then,

u1A1u2A2 . . .unAnun+1⇒core(G) u1x1u2A2 . . .unAnun+1,

and
w1 ∈ split(u1bp,1cu2A2 . . .unAnun+1).

Notice that each production from P̄2∪ P̄3∪ P̄4 contains one symbol from

insert(〈x〉,bp, ic′)∪ lhs-replace(〈x〉,bp, ic),

40

where 〈x〉 ∈ N̄1, bp, ic′ ∈Ψ′, bp, ic ∈Ψ, on its left- and right-hand side. Therefore, only one of these
symbols occurs in every sentential form of Ḡ. As

w1 ∈ split(u1bp,1cu2A2 . . .unAnun+1),

only a production from P̄4 can be used in Ḡ. Sentential form w1 can be expressed as

w1 ∈ split(u11)〈u12bp,1cu21〉split(u22),

where u11u12 = u1, u21u22 = u2A2 . . .unAnun+1. Consider the following two forms of 〈u12bp,1cu21〉.

1.
〈E1

1 . . .E1
l1B1 . . .Eα

1 . . .Eα
m . . .Eα

lα Bα . . .Eβ

1 . . .Eβ

lβ
Bβ Eβ+1

1 . . .Eβ+1
lβ+1 〉

with Eα
m = bp,1c, Eα

m = lhs(bp,1c), B́i for all 1 ≤ i ≤ β , È i
1, . . . , È

i
li for all 1 ≤ i ≤ β + 1.

If G erases nonterminals in a generalized k-limited way in the simulated derivation, then Ḡ
satisfies

|rhs(bp,1c)|+ lα −1≤ k.

Then, the corresponding simulating production p4
1 ∈ P̄4 is applicable and by its use, the non-

terminal 〈u12bp,1cu21〉 can be rewritten and splitted, so we obtain 〈y1〉 . . .〈yo〉 for some o≥ 1,
satisfying

y1 . . .yo = E1
1 . . .E1

l1B1 . . .Eα
1 . . . rhs(bp,1c)bp,1c′ . . .

. . .Eα
lα Bα . . .Eβ

1 . . .Eβ

lβ
Bβ Eβ+1

1 . . .Eβ+1
lβ+1 ,

and Bi ∈ alph(y j) for all 1 ≤ j ≤ o and some i, 1 ≤ i ≤ β . If G does not erase nonterminals
in a generalized k-limited way in the simulated derivation step, no production in Ḡ can be
applied and the derivation is blocked.

2.
〈E1

1 . . .E1
l1B1 . . .Eα

1 . . .Eα
lα Bα . . .Eβ

1 . . .Eβ

lβ
Bβ Eβ+1

1 . . .Eβ+1
lβ+1 〉

with Bα = bp,1c, Bα = lhs(bp,1c), B́i for all 1≤ i≤ β and È i
1, . . . , È

i
li for all 1≤ i≤ β +1.

Consider the simulated production denoted by bp,1c of the form

Bα →C1
1 . . .C1

p1D1 . . .Cγ

1 . . .Cγ

pγ DγCγ+1
1 . . .Cγ+1

pγ+1

with D́i for all 1 ≤ i ≤ γ , C̀i
1, . . . ,C̀

i
pi for all 1 ≤ i ≤ γ + 1. If G erases nonterminals in a

generalized k-limited way in the simulated derivation, the production satisfies p2, . . . , pγ ≤ k,
and p1 + lα ≤ k, pγ+1 + lα+1 ≤ k. Then, the corresponding simulating production p4

1 ∈
P̄4 is applicable, and by its use 〈u12bp,1cu21〉 can be rewritten and splitted, so we obtain
〈y1〉 . . .〈yo〉 for some o≥ 1, satisfying

y1 . . .yo = E1
1 . . .E1

l1B1 . . .Eα
1 . . .Eα

lα

C1
1 . . .C1

p1D1 . . .Cγ

1 . . .Cγ

pγ DγCγ+1
1 . . .Cγ+1

pγ+1bp,1c′ . . .
. . .Eβ

1 . . .Eβ

lβ
Bβ Eβ+1

1 . . .Eβ+1
lβ+1 ,

and Bi ∈ alph(y j) or Dq ∈ alph(y j) for all 1≤ j ≤ o and some i,q, 1≤ i≤ β , 1≤ q≤ γ . If G
does not erase nonterminals in a generalized k-limited way in the simulated derivation step,
then no production in Ḡ can be applied and the derivation is blocked.

41

Therefore, some production p4
1 ∈ P̄4 is applicable so we obtain

w1⇒Ḡ w′1 [p4
1]

with
w′1 ∈ split(u11)split(u12x1bp,1c′u21)split(u22),

so w′1 ∈ split(u11u12x1bp,1c′u21u22), so

w′1 ∈ split(u1x1bp,1c′u2A2 . . .unAnun+1).

Induction Hypothesis. Suppose that the claim holds for all partial k-step context-free simulations,
where k ≤ g, for some g≥ 1.

Induction Step. Consider a partial (g+1)-step context-free simulation

x⇒g+1
core(G) z,

where z ∈V ∗. As g+1≥ 2, there exists y ∈V ∗ such that

x⇒g
core(G) y⇒core(G) z [Ag+1→ xg+1],

where y = u1x1u2x2 . . .ugxgug+1Ag+1 . . .unAnun+1, and by the induction hypothesis

w1⇒2g−1
Ḡ w′g.

We perform the partial (g+1)-step context-free simulation of a production p, so g < len(p) and

w′g ∈ split(u1x1u2x2 . . .ugxgbp,gc′ug+1Ag+1 . . .unAnun+1);

therefore, only productions from P̄3 can be used. The sentential form w′g has either of the following
two forms:

1. split(r1)〈r2bp,gc′r3〉split(r4Ag+1r5) such that y = r1r2r3r4Ag+1r5. In this case, a production
from step (3a) can be used and after its application, we obtain

wg+1 = split(r1)〈r2r3〉split(r4bp,g+1cr5).

2. split(r1)〈r2bp,gc′ug+1Ag+1r3〉split(r4) such that y = r1r2ug+1Ag+1r3r4. In this case, a pro-
duction from step (3b) can be used and after its application, we obtain

wg+1 = split(r1)〈r2ug+1bp,g+1cr3〉split(r4).

Thus, this derivation step can be expressed as w′g⇒Ḡ wg+1 [p3
g+1], where p3

g+1 ∈ P̄3 and

wg+1 ∈ split(u1x1u2x2 . . .ugxgug+1bp,g+1c . . .unAnun+1).

If w̌′g, then w̌g+1 as well. At this point, only productions from p4
g+1 ∈ P̄4 can be used. The proof of

wg+1⇒Ḡ w′g+1 [p4
g+1]

42

is analogous to the proof of
w1⇒Ḡ w′1 [p4

1]

described in the Basis and is left to the reader. As a result,

w′g+1 ∈ split(u1x1u2x2 . . .ug+1xg+1bp,g+1c′ug+2Ag+2 . . .unAnun+1)

satisfying w̌′g+1.

If. The if part is proved by the induction on g for all g-step derivations in Ḡ, for g≥ 1.

Basis. Let g = 1. Then, w1⇒Ḡ w′1 [p4
1] and

λ = u1A1u2A2 . . .unAnun+1.

Clearly,
u1A1u2A2 . . .unAnun+1⇒core(G) u1x1u2A2 . . .unAnun+1 [A1→ x1].

Induction Hypothesis. Suppose that the claim holds for all k-step derivations, where k≤ g, for some
g≥ 1.

Induction Step. Consider a derivation

w1⇒2(g+1)−1
Ḡ w′g+1,

where
w′g+1 ∈ split(u1x1u2x2 . . .ug+1xg+1bp,g+1c′ug+2Ag+2 . . .unAnun+1).

Since 2(g+1)−1≥ 3, there exists a derivation

w1 ⇒2g−1
Ḡ w′g ⇒Ḡ wg+1⇒Ḡ w′g+1,

where
wg+1 ∈ split(u1x1u2x2 . . .ugxgug+1bp,g+1cug+2Ag+2 . . .unAnun+1).

By the induction hypothesis, there is a derivation

u1A1 . . .unAnun+1⇒g
core(G) u1x1 . . .ugxgug+1Ag+1 . . .unAnun+1.

Clearly,
u1x1 . . .ugxgug+1Ag+1ug+2Ag+2 . . .unAnun+1

⇒core(G) u1x1 . . .ugxgug+1xg+1ug+2Ag+2 . . .unAnun+1 [Ag+1→ xg+1].

�

Claim 3. The result from Claim 2 holds for a context-free simulation.

Proof. As the context-free simulation of a scattered context production (A1, . . . ,An)→ (x1, . . . ,xn)
is a partial context-free simulation of the length n, Claim 2 holds for a context-free simulation as
well. �

43

Let
u1A1u2A2 . . .unAnun+1

⇒G u1x1u2x2 . . .unxnun+1 [p = (A1, . . . ,An)→ (x1, . . . ,xn)])

for some p ∈ P. Then,V denotes the simulation of this derivation step in Ḡ as shown in Claim 2
and 3. We write

w1V w′n [p],

or, shortly, w1 V w′n. Therefore, w1 ⇒2n−1
Ḡ w′n from Claim 2 is equivalent to w1V w′n.

Claim 4. Let x1 ∈V ∗ and x̄′1 ∈ split(x′11bp1,1cx′12), where x′11 lhs(bp1,1c)x′12 = x1, bp,1c ∈Ψ, and
ˇ̄x′1; then, every derivation

x1
⇒G x2 [p1]

...
⇒G xm+1 [pm]

is performed in G if and only if
x̄′1

V x̄1 [p1]
⇒Ḡ x̄′2 [p′2]
V x̄2 [p2]
⇒Ḡ x̄′3 [p′3]

...
V x̄m [pm]
⇒Ḡ x̄′m+1 [p′m+1]

is performed in Ḡ, where x2, . . . ,xm+1 ∈V ∗, p1, . . . , pm ∈ P, p′2, . . . , p′m+1 ∈ P̄2,

x̄i ∈ split(xi1bpi, len(pi)c′xi2),
x̄′j ∈ split(x′j1bp j,1cx′j2),

for all 1≤ i≤ m, 2≤ j ≤ m, and

x̄′m+1 ∈ split(x′(m+1)1bpm+1,1cx′(m+1)2) for xm+1 /∈ T ∗,

or
x̄′m+1 ∈ split(xm+1) for xm+1 ∈ T ∗,

where xi1xi2 = xi for all 1 ≤ i ≤ m, x′j1 lhs(bp j,1c)x′j2 = x j for all 2 ≤ j ≤ m + 1, and each x̄ ∈
{x̄1, . . . , x̄m, x̄′2, . . . , x̄

′
m+1} satisfies ˇ̄x.

Proof.

Only If. The only-if part is proved by the induction on g for all g-step derivations in G, for g≥ 0.

Basis. Let g = 0. Then, x1 ⇒0
G x1 and x̄′1 ⇒0

Ḡ x̄′1.

Induction Hypothesis. Suppose that the claim holds for all k-step derivations, where k≤ g, for some
g≥ 0.

Induction Step. Consider a derivation

x1⇒g+1
G xg+2.

44

Since g+1≥ 1, there exists a derivation

x1 ⇒g
G xg+1 ⇒G xg+2.

By the induction hypothesis, there is a derivation

x̄′1V x̄1 ⇒Ḡ x̄′2 V x̄2⇒Ḡ . . . V x̄g⇒Ḡ x̄′g+1.

Because we are performing (g+1)-step derivation, xg+1 /∈ T ∗. The sentential forms x̄g and x̄′g+1 in
the g-step simulation have to satisfy

x̄g ∈ split(xg1bpg, len(pg)c′xg2)

and
x̄′g+1 ∈ split(x′(g+1)1bpg+1,1cx′(g+1)2),

where xg = xg1xg2,
xg+1 = x′(g+1)1 lhs(bpg+1,1c)x′(g+1)2,

and ˇ̄x′g+1. Then, by Claim 3,
x̄′g+1 V x̄g+1,

where
x̄g+1 ∈ split(x(g+1)1bpg+1, len(pg+1)c′x(g+1)2),

x(g+1)1x(g+1)2 = xg+1, and ˇ̄xg+1.
Consider the case when ˇ̄xg+1 is not satisfied, so there is some 〈z〉 ∈ alph(x̄g+1) such that z̀. By

an inspection of P̄4 and Claim 2, observe that 〈z〉 is rewritten by Ḡ’s simulation to 〈ε〉 (or 〈ε〉 . . .〈ε〉
when splitted). There is, however, no production rewriting 〈ε〉 in Ḡ, so the derivation is blocked.
For this reason, every sentential form x̄ in

x̄′1V x̄1 ⇒Ḡ x̄′2 V x̄2⇒Ḡ . . . V x̄g⇒Ḡ x̄′g+1

has to satisfy ˇ̄x.
As

x̄g+1 ∈ split(x(g+1)1bpg+1, len(pg+1)c′x(g+1)2),

bp, ic′ = bpg+1, len(pg+1)c′ ∈Ψ′ and i = len(p), only productions from P̄2 can be used. Let

xg+2 = u(g+2)1A(g+2)1 . . .u(g+2) jA(g+2) ju(g+2)(j+1),

where u(g+2)1, . . . ,u(g+2)(j+1) ∈ V ∗, A(g+2)1, . . . ,A(g+2) j ∈ V −T ∗, for some j ≥ 1. We distinguish
the following three cases of x̄g+1:

1. split(r1)〈r2bpg+1, len(pg+1)c′r3〉split(r4A(g+2)1r5) such that

xg+2 = r1r2r3r4A(g+2)1r5.

Then, a production constructed in (2a) can be used, and by its application we obtain a senten-
tial form

x̄′g+2 = split(r1)〈r2r3〉split(r4bpg+2,1cr5).

45

2. split(r1A(g+2)1r2)〈r3bpg+1, len(pg+1)c′r4〉split(r5) such that

xg+2 = r1A(g+2)1r2r3r4r5.

Then, a production constructed in (2b) can be used, and by its application we obtain a sen-
tential form

x̄′g+2 = split(r1bpg+2,1cr2)〈r3r4〉split(r5).

3. (a) split(r1)〈r2bpg+1, len(pg+1)c′r3A(g+2)1r4〉split(r5) such that

xg+2 = r1r2r3A(g+2)1r4r5.

Then, a production constructed in (2c) can be used, and by its application we obtain a
sentential form

x̄′g+2 = split(r1)〈r2r3bpg+2,1cr4〉split(r5).

(b) split(r1)〈r2A(g+2)1r3bpg+1, len(pg+1)c′r4〉split(r5) such that

xg+2 = r1r2A(g+2)1r3r4r5.

Then, a production constructed in (2c) can be used, and by its application we obtain a
sentential form

x̄′g+2 = split(r1)〈r2bpg+2,1cr3r4〉split(r5).

In the case of xg+2 ∈ T ∗, x̄g+1 has the form

split(r1)〈r2bpg+1, len(pg+1)c′r3〉split(r4),

where xg+2 = r1r2r3r4 ∈ T ∗. Then, a production constructed in (2d) can be used, and by its appli-
cation we obtain a sentential form

x̄′g+2 = split(r1)〈r2r3〉split(r4).

Notice that a production from step (2d) is applicable also in the case of xg+2 /∈ T ∗ (cases 1
through 3). This production removes the symbol from Ψ′ from the sentential form. However, as all
productions from steps (2) through (4) require a symbol from Ψ or Ψ′, its application for xg+2 /∈ T ∗

does not lead to a successful derivation.
As a result, there is a derivation

x̄g+1⇒Ḡ x̄′g+2 [p′g+1],

where
x̄′g+2 ∈ split(x′(g+2)1bpg+2,1cx′(g+2)2) for xg+2 /∈ T ∗

or
x̄′g+2 ∈ split(xg+2) for xg+2 ∈ T ∗

with x′(g+2)1 lhs(bpg+2,1c)x′(g+2)2 = xg+2, satisfying ˇ̄x′g+2.

If. The if part is proved by the induction on the number g of Ḡ’s simulation steps in a derivation,
for g≥ 0.

Basis. Let g = 0. Then, x̄′1⇒0
Ḡ x̄′1 and x1⇒0

G x1.

46

Induction Hypothesis. Suppose that the claim holds for all Ḡ’s derivations containing k simulation
steps, where k ≤ g, for some g≥ 0.

Induction Step. Consider a derivation

x̄′1V x̄1⇒Ḡ . . . V x̄g+1⇒Ḡ x̄′g+2.

Since g+1≥ 1, there exists a derivation

x̄′1 V x̄1⇒Ḡ . . . V x̄g⇒Ḡ x̄′g+1 V x̄g+1 ⇒Ḡ x̄′g+2.

By the induction hypothesis, there is a derivation

x1⇒g
G xg+1.

As
x̄′g+1 ∈ split(x′(g+1)1bpg+1,1cx′(g+1)2),

x′(g+1)1 lhs(bpg+1,1c)x′(g+1)2 = xg+1 and

x̄′g+1 V x̄g+1⇒Ḡ x̄′g+2,

then, by Claim 3, there is also a derivation

xg+1 ⇒G xg+2

such that
x̄′g+2 ∈ split(x′(g+2)1bpg+2,1cx′(g+2)2),

x′(g+2)1 lhs(bpg+2,1c)x′(g+2)2 = xg+2, or x̄′g+2 ∈ split(xg+2).
�

From Claim 1,
S̄⇒Ḡ 〈bp,1c〉.

As 〈bp,1c〉 ∈ split(bp,1c), S = lhs(bp,1c), G’s simulation as described in Claim 4 can be per-
formed, so

〈bp,1c〉 ⇒∗Ḡ u [Φ],

where Φ is a sequence of productions from P̄2∪ P̄3∪ P̄4. If a successful derivation is simulated, then
we obtain u = 〈a1〉〈a2〉 . . .〈an〉, where n ≥ 1 and a1,a2, . . . ,an ∈ T . Finally, by the application of
productions from P̄5, we obtain

u⇒+
Ḡ v,

where v = a1a2 . . .an. Therefore, every string during whose generation G erases nonterminals in a
generalized k-limited way can be generated by a propagating scattered context grammar Ḡ. �

Corollary 8. For every scattered context grammar G which erases its nonterminals in a generalized
k-limited way, there exists a propagating scattered context grammar Ḡ such that L(G) = L(Ḡ). �

Corollary 9. L (PSC) = L (SC,ε, i) for any positive integer i. �

47

We have proved that every scattered context grammar that erases its nonterminals in a gener-
alized k-limited way can be converted to an equivalent scattered context grammar without erasing
productions. Erasing productions are often used in grammars because their presence reduces the
total number of productions and makes their derivations more transparent as demonstrated in Ex-
ample 3. In certain situations, however, these erasing productions are not necessary and can be
removed from the grammar.

The result rises several open problems. First, we may ask if a stronger variant of Corollary 8 can
be established: for a scattered context grammar G, there is a propagating scattered context grammar
Ḡ such that L(G) = L(Ḡ) if and only if G erases its nonterminals in a generalized k-limited way.

Open Problem 3. Does generalized k-limited erasing cover all possible types of erasing which can
be performed by scattered context grammars without erasing productions?

Second, the result induces the following decidability question:

Open Problem 4. We have given an integer k and a scattered context grammar G. Is it decidable
whether G erases its nonterminals in a generalized k-limited way?

We propose these open problems for further investigation.

48

Chapter 5

Restrictions and Extensions

This chapter introduces several restricted and extended versions of scattered context grammars. We
present two types of these modifications—modifications of the definition of a derivation step and
modifications of the whole concept of a scattered context grammar. The first and the second type
of modifications is represented by the results discussed in Sections 5.2, 5.3, 5.4, and Section 5.1,
respectively. Most importantly, we investigate the generative power of scattered context grammars
modified in this way.

5.1 Non-Context-Free Components of Scattered Context Grammars

Scattered context grammars were introduced as a generalization of context-free grammars. Indeed,
each scattered context production consists of k context-free components which are applied in paral-
lel on the current sentential form. It is only natural to generalize other grammars from the Chomsky
hierarchy in a similar manner as well. The main aim of this section is to study the generative
power of scattered context grammars whose components are linear and right-linear. To be able to
use scattered context productions, we permit the context-free starting productions to generate the
initial strings containing several nonterminals and do not use these productions during the rest of
the derivation. It turns out that scattered context grammars with an initial string which contains n
nonterminals and productions with linear or right-linear components are as powerful as linear sim-
ple matrix grammars of degree n or right-linear simple matrix grammars of degree n, respectively.
Finally, we mention several corollaries of this result and discuss the generative power of scattered
context grammars with context-sensitive and unrestricted productions.

We start by defining linear and right-linear scattered context grammars formally.

Definition 28. A linear scattered context grammar is a scattered context grammar G = (V,T,P,S),
where P is a finite set of productions of the following two forms:

1. (S)→ (x1A1 . . .xkAkxk+1), where Ai ∈ (V −T)−{S}, x j ∈ T ∗ for all 1≤ i≤ k, 1≤ j≤ k+1,

2. (A1, . . . ,Ak)→ (z1, . . . ,zk), where Ai ∈ (V−T)−{S}, and either zi = xiBiyi, where xi,yi ∈ T ∗,
Bi ∈ (V −T)−{S}, or zi ∈ T ∗ for all 1≤ i≤ k, for some k ≥ 1.

A linear scattered context grammar is of degree n if (S)→ (x1A1 . . .xnAnxn+1) ∈ P is the production
satisfying n ≥ m for all (S) → (y1A1 . . .ymAmym+1) ∈ P. The family of languages generated by
linear scattered context grammars of degree n is denoted by L (SC,LIN,n), and

L (SC,LIN) =
∞⋃

n=1

L (SC,LIN,n).

49

Definition 29. A right-linear scattered context grammar is a linear scattered context grammar G =
(V,T,P,S), where P is a finite set of productions of the following two forms:

1. (S)→ (x1A1 . . .xkAk), where Ai ∈ (V −T)−{S}, xi ∈ T ∗ for all 1≤ i≤ k, for some k ≥ 1,

2. (A1, . . . ,Ak) → (z1, . . . ,zk), where Ai ∈ (V −T)−{S}, and either zi = xiBi, where xi ∈ T ∗,
Bi ∈ (V −T)−{S}, or zi ∈ T ∗ for all 1≤ i≤ k, for some k ≥ 1.

The family of languages generated by right-linear scattered context grammars of degree n is denoted
by L (SC,RLIN,n), and

L (SC,RLIN) =
∞⋃

n=1

L (SC,RLIN,n).

To prove that L (SM,LIN,n) = L (SC,LIN,n) for each n ≥ 1, we first give two preliminary
lemmas.

Lemma 4. For each n≥ 1, L (SM,LIN,n)⊆L (SC,LIN,n).

Proof. Let Ḡ = (V̄1, . . . ,V̄n,T, P̄, S̄) be a linear simple matrix grammar of degree n. Set N = {〈p, i〉 :
p ∈ P̄,1≤ i≤ n}. Define the linear scattered context grammar of degree n,

G = (V̄1∪ . . .∪V̄n∪N∪{S},T,P,S),

where P is defined as follows:

1. For each (S̄) → (x1A1 . . .xnAnxn+1) ∈ P̄, where xi ∈ T ∗, for all 1 ≤ i ≤ n + 1, and p =
(A1, . . . ,An)→ (y1, . . . ,yn) ∈ P̄, add
(S)→ (x1〈p,1〉x2A2 . . .xnAnxn+1) to P;

2. For each p = (A1, . . . ,Ai, . . . ,An) → (x1B1y1, . . . ,xiBiyi, . . . ,xnBnyn) ∈ P̄, where x j,y j ∈ T ∗,
A j,B j ∈ V̄j−T for all 1≤ j ≤ n,

(a) for each i < n, add
(〈p, i〉,Ai+1)→ (xiBiyi,〈p, i+1〉) to P;

(b) for each q = (B1, . . . ,Bn)→ (z1, . . . ,zn) ∈ P̄, add

i. (B1,〈p,n〉)→ (〈q,1〉,xnBnyn) to P;
ii. for n = 1, add

(〈p,1〉)→ (x1〈q,1〉y1) to P;

3. For each p = (A1, . . . ,Ai, . . . ,An)→ (x1, . . . ,xi, . . . ,xn) ∈ P̄, where x j ∈ T ∗ for all 1≤ j ≤ n,

(a) for each i < n, add
(〈p, i〉,Ai+1)→ (xi,〈p, i+1〉) to P;

(b) add (〈p,n〉)→ (xn) to P.

Each production introduced in step (1) simulates the initial production of Ḡ and, in addition, selects
the next production, p, to be simulated. After its application, we obtain the sentential form of the
form

w1〈p,1〉w2A2 . . .wnAnwn+1,

where wi ∈ T ∗ for all 1≤ i≤ n, and p = (A1, . . . ,An)→ (z1, . . . ,zn) ∈ P̄. Consider any derivation

w1A1w2A2 . . .wnAnwn+1⇒Ḡ w1x1B1y1 . . .wnxnBnynwn+1 [p],

50

where
p = (A1, . . . ,An)→ (x1B1y1, . . . ,xnBnyn),

xi,yi ∈ T ∗, Ai,Bi ∈ V̄i−T for all 1 ≤ i ≤ n. This derivation is simulated by G in n derivation steps
by first applying a production from (2a) n−1 times and, finally, applying a production from (2bi),
so

w1〈p,1〉w2A2 . . .wnAnwn+1
⇒G w1x1B1y1w2〈p,2〉 . . .wnAnwn+1

...
⇒G w1x1B1y1w2x2B2y2 . . .wn〈p,n〉wn+1
⇒G w1x1〈q,1〉y1w2x2B2y2 . . .wnxnBnynwn+1,

where q = (B1, . . . ,Bn) → (z1, . . . ,zn) ∈ P̄. Observe that no nonterminal Ai can be skipped by a
production from (2a) because the sentential form contains exactly n nonterminals and the form of the
productions from (2a) requires their n applications during each simulation. For the same reason, a
production from (2bi) has to select the first nonterminal in G’s sentential form. If n = 1, a production
from (2bii) is used instead of (2a) and (2bi). Finally, a production of the form (A1, . . . ,An) →
(x1, . . . ,xn) ∈ P̄, where xi ∈ T ∗ for all 1 ≤ i ≤ n, is simulated by productions from (3a) and (3b)
which perform the simulation analogously to the productions from (2a) and (2bi), respectively. By
removing the symbol from N from the sentential form, (3b) finishes the derivation. �

As the number of components in every production of G constructed in the proof of Lemma 4 is
at most 2, we state the following corollary.

Corollary 10. For every linear simple matrix grammar Ḡ of degree n, there is a linear scattered
context grammar G of degree n such that L(Ḡ) = L(G) and mcs(G) = 1. �

Lemma 5. For each n≥ 1, L (SC,LIN,n)⊆L (SM,LIN,n).

Proof. Let Ḡ = (V̄ ,T, P̄, S̄) be a linear scattered context grammar of degree n. Set

V1 = {〈a,1〉 : a ∈ (V̄ −{S̄})∪{ε}}∪T,
...

Vn = {〈a,n〉 : a ∈ (V̄ −{S̄})∪{ε}}∪T.

For A ∈ (V̄ −T)−{S̄}, set α(xAy, i) = x〈A, i〉y, where x,y ∈ T ∗, for a ∈ T , set α(xay, i) = x〈a, i〉y,
and α(ε, i) = 〈ε, i〉, for all 1≤ i≤ n. Define the linear simple matrix grammar of degree n,

G = (V1, . . . ,Vn,T,P,S),

where P is defined as follows:

1. For each (S̄)→ (x1A1 . . .xkAkxk+1) ∈ P̄, where k ≤ n, add
(S)→ (x1〈A1,1〉 . . .xk〈Ak,k〉xk+1〈ε,k +1〉 . . .〈ε,n〉) to P;

2. For each (A1, . . . ,Ak)→ (z1, . . . ,zk) ∈ P̄, where k ≤ n, Ai ∈ (V̄ −T)−{S̄} for all 1 ≤ i ≤ k,
c1, . . . ,cn−k ∈ (V̄ −{S̄})∪{ε}, Γ ∈ perm(k,n− k),

(d1, . . . ,dn) = reorder((A1, . . . ,Ak,c1, . . . ,cn−k),Γ),
(u1, . . . ,un) = reorder((z1, . . . ,zk,c1, . . . ,cn−k),Γ),

add (〈d1,1〉, . . . ,〈dn,n〉)→ (α(u1,1), . . . ,α(un,n)) to P;

51

3. For each ai ∈ T ∪{ε} for all 1≤ i≤ n, add
(〈a1,1〉, . . . ,〈an,n〉)→ (a1, . . . ,an) to P.

Productions from (1) simulate Ḡ’s productions of the form

(S̄)→ (x1A1 . . .xkAkxk+1),

where k ≤ n, so that each Ai ∈ (V̄ −T)−{S̄} is converted to 〈Ai, i〉 ∈ Vi−T for all 1 ≤ i ≤ k and
the string 〈ε,k + 1〉 . . .〈ε,n〉, which is erased in the last step of the derivation, is added at the end
of the resulting sentential form so that the sentential form contains n nonterminals. Consider the
sentential form of the form

w1〈B1,1〉 . . .wm〈Bm,m〉wm+1〈ε,m+1〉 . . .〈ε,n〉,

where w j ∈ T ∗ and 〈Bi, i〉 ∈Vi−T for all 1≤ j ≤m+1, 1≤ i≤m. Each 〈Bi, i〉 may be of the form

• 〈ε, i〉 which indicates that the ith nonterminal was deleted in Ḡ,

• 〈a, i〉, where a ∈ T , which indicates that the ith nonterminal was rewritten to a in Ḡ, or

• 〈A, i〉, where A ∈ (V̄ −T)−{S̄}.

The application of a production (A1, . . . ,Ak) → (z1, . . . ,zk) ∈ P̄, where k ≤ n, Ai ∈ (V̄ −T)−{S̄}
for all 1≤ i≤ k, can be simulated in G if B j1 . . .B jk = A1 . . .Ak, where ji < ji+1, 1≤ ji ≤ m for all
1 ≤ i ≤ k. The productions of G constructed in step (2) permute A1, . . . ,Ak while preserving their
order (see the definition of perm()) with symbols from (V̄ −{S̄})∪{ε} (not preserving their order),
and convert them to the corresponding symbols from (V1∪ . . .∪Vn)−T . The same is performed with
the elements of the right-hand side of the production for the same permutation. As a result, every
symbol 〈Bi, i〉 remains unchanged if 〈Bi, i〉 = 〈ε, i〉, 〈Bi, i〉 = 〈a, i〉, where a ∈ T , or the simulated
production is not applied to Bi. Otherwise, 〈Bi, i〉 is rewritten to x〈C, i〉y, x〈a, i〉y, or 〈ε, i〉, where
x,y ∈ T ∗, a ∈ T , C ∈ (V̄ −T)−{S̄}, depending on the right-hand side of the simulated scattered
context production’s component applied to Bi. Finally, a production from (3) finishes the derivation
by rewriting each 〈a, i〉, where a ∈ T , to a and erasing each 〈ε, i〉. �

The main result follows next.

Theorem 23. For each n≥ 1,

L (SC,LIN,n) = L (SM,LIN,n).
L (SC,LIN) = L (SM,LIN).

Proof. Follows immediately from Lemma 4 and Lemma 5. �

A similar result can be proved for right-linear scattered context grammars as well.

Theorem 24. For each n≥ 1,

L (SC,RLIN,n) = L (SM,RLIN,n).
L (SC,RLIN) = L (SM,RLIN).

Proof. The proof is analogous to the proof of Theorem 23 and is, therefore, left to the reader. �

The following four corollaries follow immediately from Theorems 23, 24, and Theorems 2, 3,
4, 5.

52

Corollary 11. For each n≥ 1,

L (SC,LIN,n) ⊂L (SC,LIN,n+1),
L (SC,RLIN,n)⊂L (SC,RLIN,n+1),
L (SC,RLIN,n)⊂L (SC,LIN,n).

Corollary 12.

L (CF)−L (SC,LIN) 6= /0, L (CF)−L (SC,RLIN) 6= /0,

L (SC,RLIN)⊂L (SC,LIN)⊂L (PSC).

Corollary 13 (Positive closure properties). Each of the language families L (SC,RLIN,n) and
L (SC,LIN,n), where n ≥ 1, is closed under union, reversal, homomorphism, inverse homomor-
phism, substitution with regular languages, concatenation with regular languages, intersection with
regular languages, left and right quotient by regular languages. L (SC,LIN) and L (SC,RLIN)
are closed under concatenation. �

Corollary 14 (Negative closure properties). Each family L (SC,LIN,n), where n≥ 1, is not closed
under concatenation with linear languages. Each family L (SC,RLIN,n), where n ≥ 1, is not
closed under concatenation with L (SC,RLIN,2). L (SC,LIN) and L (SC,RLIN) are not closed
under intersection, complement and Kleene star. L (SC,LIN) is not closed under substitution with
linear languages. L (SC,RLIN) is not closed under substitution with L (SC,RLIN,2). �

We have proved that (right) linear scattered context grammars characterize the same family of
languages as (right) linear simple matrix grammars. The main difference of these grammars lies in
the way how their productions are used. While in the case of (right) linear simple matrix grammars
every production contains exactly n components and each component rewrites symbols over its own
alphabet, the number of components in (right) linear scattered context grammars may be different
in every production and all components share a single alphabet. In addition, we have proved that
the generative power of (right) linear scattered context grammars does not depend on the number of
components in scattered context productions (see Corollary 10) but on the number of nonterminals
appearing in the starting production. As a result, (right) linear scattered context grammars seem to
be more convenient for describing languages than (right) linear simple matrix grammars as the total
number of their nonterminals is lower and their productions can avoid unnecessary rewriting and
capture only true context dependencies.

An interesting aspect of our result is the fact that when restricting propagating scattered context
grammars and simple matrix grammars to their right and right-linear variants, the power of the
resulting grammars is equal. However, ordinary propagating scattered context grammars are more
powerful than simple matrix grammars (see Theorem 13).

With respect to the Chomsky hierarchy, there remain two possible types of components of scat-
tered context grammars: context-sensitive and unrestricted. The generative power of scattered con-
text grammars with these components is obvious—they characterize the family of context-sensitive
and unrestricted languages, respectively. Therefore, as scattered context grammars with context-
sensitive and unrestricted components do not provide a higher generative power than their compo-
nents, their practical use is questionable.

5.2 n-Limited Derivations

As formal language theory has always introduced and studied various left restrictions placed on
grammatical derivations, we investigate this classical topic in terms of propagating scattered context

53

grammars. More specifically, we discuss the language families generated by propagating scattered
context grammars whose derivations are n-limited, where n is a positive integer. In these derivations,
a scattered context production is always applied within the first n occurrences of nonterminals in
the current sentential form. It demonstrates that this restriction gives rise to an infinite hierarchy of
language families. In addition, it proves that each family of this hierarchy is properly included in
the family of context-sensitive languages.

Based upon the proper inclusion, we obtain several conclusions and formulate new open prob-
lems. Perhaps most importantly, we point out that the language family generated by propagating
scattered context grammars that make derivations in the above n-limited way is properly contained
in the context-sensitive language family, so in this sense, we partially contribute to the solving of
Open Problem 1.

The result has also one practical aspect—when constructing a compiler based on a grammatical
model, we usually need to restrict this model in order to make the compiler more effective. The
presented result shows that when the model is based on propagating scattered context grammars,
by limiting the width of the window in which the context dependency is checked, we also limit
the power of this compiler. In certain situations, such as the parsing of streamed data, limiting the
context dependency check to a finite window is necessary as we do not know the exact length of the
input and we cannot determine which symbols appear on the input next.

First, we define n-limited derivations formally.

Definition 30. Let G = (V,T,P,S) be a propagating scattered context grammar. If (A1, . . . ,Ak)→
(x1, . . . ,xk) ∈ P, u = u1A1u2 . . .ukAkuk+1, and v = u1x1u2 . . .ukxkuk+1, where ui ∈V ∗ for all 1≤ i≤
k +1, and u⇒G v satisfies

|u1A1 . . .ukAk|V−T ≤ n,

then the derivation step is n-limited and we write

u n
lim⇒G v.

An n-limited derivation, denoted by x n
lim⇒∗G y, is a derivation in which every derivation step

u j
lim⇒G v satisfies j ≤ n. Define the language of order n generated by G as

L(G, lim,n) = {x ∈ T ∗ : S n
lim⇒∗G x}.

The family of languages of order n generated by propagating scattered context grammars is denoted
by L (PSC, lim,n), and

L (PSC, lim,∞) =
∞⋃

i=1

L (PSC, lim, i).

We prove the main result, L (PSC, lim,n) = L (ST,n) for all n ≥ 1, by demonstrating that
L (ST,n)⊆L (PSC, lim,n) and L (PSC, lim,n)⊆L (ST,n) in Lemmas 6 and 7, respectively.

Lemma 6. L (ST,n)⊆L (PSC, lim,n) for all n≥ 1.

Proof. Let G = (V,T,K,P,S, p0) be a state grammar of order n. Set

N1 = {〈A, p,k〉 : A ∈V −T, p ∈ K,1≤ k ≤ n},
N2 = {〈Â, p,k〉 : A ∈V −T, p ∈ K,1≤ k ≤ n},
N3 = {〈A′, p,n−1〉 : A ∈V −T, p ∈ K},

54

and N4 = {Â : A ∈ V − T}. Set α(p) = {A : (A, p) → (x,q) ∈ P} for each p ∈ K. Define the
propagating scattered context grammar

Ḡ = (V ∪N1∪N2∪N3∪N4∪{S̄},T, P̄, S̄)

with P̄ constructed as follows:

1. Add (S̄)→ (〈Ŝ, p0,1〉) to P̄;

2. For each A1, . . . ,Ak ∈ V −T , where 1 ≤ k ≤ n (number of nonterminals in a sentential form
if there are less than n nonterminals, otherwise k = n), each

(Ar, p)→ (x1B1 . . .xtBtxt+1,q) ∈ P,

where 1 ≤ r ≤ k (the G’s production simulates the rewriting of the rth nonterminal in a
sentential form), B1, . . . ,Bt ∈V−T , x1, . . . ,xt+1 ∈ T ∗ for some t ≥ 0 (number of nonterminals
appearing on the right-hand side of the simulated G’s production), Ai /∈ α(p) for each 1≤ i <
r, each An+1 ∈ (V −T)∪N4,

(a) and r + t−1 > n, add

i. (used when the sentential form contains more than n nonterminals)

(〈A1, p,n〉, . . . ,〈Ar−1, p,n〉,〈Ar, p,n〉,
〈Ar+1, p,n〉, . . . ,〈An, p,n〉)

→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉
xn−r+2Bn−r+2 . . .xtBtxt+1,Ar+1, . . . ,An)

to P̄;
ii. (used when the sentential form contains at most n nonterminals and Ar is not the

last nonterminal)
if r < k, add

(〈A1, p,k〉, . . . ,〈Ar−1, p,k〉,〈Ar, p,k〉,
〈Ar+1, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉)

→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉
xn−r+2Bn−r+2 . . .xtBtxt+1,Ar+1, . . . ,Ak−1, Âk)

to P̄;
iii. (used when the sentential form contains at most n nonterminals and Ar is the last

nonterminal)
if r = k, add

(〈A1, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉)
→ (〈A1,q,n〉, . . . ,〈Ak−1,q,n〉,x1〈B1,q,n〉 . . .xn−k+1〈Bn−k+1,q,n〉

xn−k+2Bn−k+2 . . .xt−1Bt−1xt B̂txt+1)

to P̄;

(b) and r + t−1≤ n, k + t−1 > n, add

55

i. (used when the sentential form contains more than n nonterminals)

(〈A1, p,n〉, . . . ,〈Ar−1, p,n〉,〈Ar, p,n〉,
〈Ar+1, p,n〉, . . . ,〈An−t+1, p,n〉,〈An−t+2, p,n〉, . . . ,〈An, p,n〉)

→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1,
〈Ar+1,q,n〉, . . . ,〈An−t+1,q,n〉,An−t+2, . . . ,An)

to P̄;
ii. (used when the sentential form contains at most n nonterminals and Ar is not the

last nonterminal)
if r < k, add

(〈A1, p,k〉, . . . ,〈Ar−1, p,k〉,〈Ar, p,k〉,
〈Ar+1, p,k〉, . . . ,〈An−t+1, p,k〉,
〈An−t+2, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉)

→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1,

〈Ar+1,q,n〉, . . . ,〈An−t+1,q,n〉,An−t+2, . . . ,Ak−1, Âk)

to P̄;

(c) and k + t−1≤ n, and

i. if t = 0, add
A. (used when the sentential form contains more than n nonterminals and Ar is

rewritten to x1 ∈ T ∗)

(〈A1, p,n〉, . . . ,〈Ar−1, p,n〉,〈Ar, p,n〉,
〈Ar+1, p,n〉, . . . ,〈An, p,n〉)

→ (〈A′1,q,n−1〉, . . . ,〈A′r−1,q,n−1〉,x1,
〈A′r+1,q,n−1〉, . . . ,〈A′n,q,n−1〉),

B. (used immediately after (2.c.i.A))

(〈A′1,q,n−1〉, . . . ,〈A′r−1,q,n−1〉,
〈A′r+1,q,n−1〉, . . . ,〈A′n,q,n−1〉,An+1)

→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,
〈Ar+1,q,n〉, . . . ,〈An,q,n〉,〈An+1,q,n〉)

to P̄;
ii. (used when the sentential form contains at most n nonterminals and Ar is not the

last nonterminal)
if r < k, add

(〈A1, p,k〉, . . . ,〈Ar−1, p,k〉,
〈Ar, p,k〉,〈Ar+1, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉)

→ (〈A1,q,k + t−1〉, . . . ,〈Ar−1,q,k + t−1〉,
x1〈B1,q,k + t−1〉 . . .xt〈Bt ,q,k + t−1〉xt+1,

〈Ar+1,q,k + t−1〉, . . . ,〈Ak−1,q,k + t−1〉,〈Âk,q,k + t−1〉)

to P̄;
iii. (used when the sentential form contains at most n nonterminals and Ar is the last

nonterminal)
if r = k

56

A. and k > 1 or t 6= 0, add

(〈A1, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉)
→ (〈A1,q,k + t−1〉, . . . ,〈Ak−1,q,k + t−1〉,

x1〈B1,q,k + t−1〉 . . .xt−1〈Bt−1,q,k + t−1〉
xt〈B̂t ,q,k + t−1〉xt+1)

to P̄;
B. (simulates the last derivation step of G)

and k = 1, t = 0, add
(〈Â1, p,1〉)→ (x1) to P̄.

Claim 5. Each G’s sentential form

(y1A1 . . .ymAmym+1, p),

where p ∈ K, y1, . . . ,ym+1 ∈ T ∗, A1, . . . ,Am ∈ V − T for some m ≥ 0, corresponds to one of the
following sentential forms in Ḡ:

1. For m≤ n, y1〈A1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1;

2. For m > n, y1〈A1, p,n〉 . . .yn〈An, p,n〉yn+1An+1 . . .ym−1Am−1ymÂmym+1.

Proof. Every derivation in Ḡ starts by the production from step (1) of the construction and this
production is not used during the rest of the derivation process. So,

S⇒Ḡ 〈Ŝ, p0,1〉.

The rest of the claim is proved by induction on the length h of derivations.

Basis. Let h = 0. Then, (S, p0)⇒0
G (S, p0) corresponds to 〈Ŝ, p0,1〉 ⇒0

Ḡ 〈Ŝ, p0,1〉.
Induction Hypothesis. Suppose that the claim holds for all derivations of length h or less, for some
h≥ 0.

Induction Step. First, consider a G’s sentential form (y1A1 . . .ymAmym+1, p), where m ≤ n, and a
production

(Ar, p)→ (x1B1 . . .xtBtxt+1,q) ∈ P,

where 1 ≤ r ≤ m, B1, . . . ,Bt ∈ V −T , x1, . . . ,xt+1 ∈ T ∗ for some t ≥ 0, which is applicable to the
above sentential form (that is, Ai /∈ α(p) for each 1≤ i < r and Ar ∈ α(p)). By its application, we
obtain

(y1A1 . . .yr−1Ar−1yrAryr+1Ar+1 . . .ymAmym+1, p)
⇒G (y1A1 . . .yr−1Ar−1yrx1B1 . . .xtBtxt+1yr+1Ar+1 . . .ymAmym+1,q).

By the induction hypothesis, for m≤ n, the Ḡ’s sentential form corresponding to

(y1A1 . . .yr−1Ar−1yrAryr+1Ar+1 . . .ymAmym+1, p)

is of the form

y1〈A1, p,m〉 . . .yr〈Ar, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1.

Then, only one of the productions from steps (2.a.ii), (2.a.iii), (2.b.ii), (2.c.ii), and (2.c.iii) is appli-
cable (productions from other steps require m > n). Notice that for m ≤ n, all first m nonterminals
in the Ḡ’s sentential form contain m and p. This allows the grammar to use only the production
which rewrites all m nonterminals and record the state corresponding to the simulated derivation
in G. Furthermore, notice that all productions are constructed so that the last nonterminal in every
sentential form is from N2∪N4. Which production is applied depends on m, n, r, and t:

57

1. If r + t−1 > n and r < m, then

(〈A1, p,m〉, . . . ,〈Ar−1, p,m〉,〈Ar, p,m〉,
〈Ar+1, p,m〉, . . . ,〈Am−1, p,m〉,〈Âm, p,m〉)

→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉
xn−r+2Bn−r+2 . . .xtBtxt+1,Ar+1, . . . ,Am−1, Âm)

introduced by (2.a.ii) is applied, so

y1〈A1, p,m〉 . . .yr−1〈Ar−1, p,m〉yr〈Ar, p,m〉
yr+1〈Ar+1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

n
lim⇒Ḡ y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yr

x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉xn−r+2Bn−r+2 . . .xtBtxt+1

yr+1Ar+1 . . .ym−1Am−1ymÂmym+1.

2. If r + t−1 > n and r = m, then

(〈A1, p,m〉, . . . ,〈Am−1, p,m〉,〈Âm, p,m〉)
→ (〈A1,q,n〉, . . . ,〈Am−1,q,n〉,x1〈B1,q,n〉 . . .xn−m+1〈Bn−m+1,q,n〉

xn−m+2Bn−m+2 . . .xt−1Bt−1xt B̂txt+1)

introduced by (2.a.iii) is applied, so

y1〈A1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1
n
lim⇒Ḡ y1〈A1,q,n〉 . . .ym−1〈Am−1,q,n〉ym

x1〈B1,q,n〉 . . .xn−m+1〈Bn−m+1,q,n〉
xn−m+2Bn−m+2 . . .xt−1Bt−1xt B̂txt+1.

3. If r + t−1≤ n, m+ t−1 > n, and r < m, then

(〈A1, p,m〉, . . . ,〈Ar−1, p,m〉,〈Ar, p,m〉,
〈Ar+1, p,m〉, . . . ,〈An−t+1, p,m〉,
〈An−t+2, p,m〉, . . . ,〈Am−1, p,m〉,〈Âm, p,m〉)

→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1,

〈Ar+1,q,n〉, . . . ,〈An−t+1,q,n〉,An−t+2, . . . ,Am−1, Âm)

introduced by (2.b.ii) is applied, so

y1〈A1, p,m〉 . . .yr−1〈Ar−1, p,m〉yr〈Ar, p,m〉
yr+1〈Ar+1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

n
lim⇒Ḡ y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yrx1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1

yr+1〈Ar+1,q,n〉 . . .yn−t+1〈An−t+1,q,n〉
yn−t+2An−t+2 . . .ym−1Am−1ymÂmym+1.

4. If m+ t−1≤ n and r < m, then

(〈A1, p,m〉, . . . ,〈Ar−1, p,m〉,〈Ar, p,m〉,
〈Ar+1, p,m〉, . . . ,〈Am−1, p,m〉,〈Âm, p,m〉)

→ (〈A1,q,m+ t−1〉, . . . ,〈Ar−1,q,m+ t−1〉,
x1〈B1,q,m+ t−1〉 . . .xt〈Bt ,q,m+ t−1〉xt+1,

〈Ar+1,q,m+ t−1〉, . . . ,〈Am−1,q,m+ t−1〉,〈Âm,q,m+ t−1〉)

58

introduced by (2.c.ii) is applied, so

y1〈A1, p,m〉 . . .yr−1〈Ar−1, p,m〉yr〈Ar, p,m〉
yr+1〈Ar+1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

n
lim⇒Ḡ y1〈A1,q,m+ t−1〉 . . .yr−1〈Ar−1,q,m+ t−1〉yr

x1〈B1,q,m+ t−1〉 . . .xt〈Bt ,q,m+ t−1〉xt+1
yr+1〈Ar+1,q,m+ t−1〉 . . .ym−1〈Am−1,q,m+ t−1〉
ym〈Âm,q,m+ t−1〉ym+1.

5. If m+ t−1≤ n, r = m, and m > 1 or t 6= 0, then

(〈A1, p,m〉, . . . ,〈Am−1, p,m〉,〈Âm, p,m〉)
→ (〈A1,q,m+ t−1〉, . . . ,〈Am−1,q,m+ t−1〉,

x1〈B1,q,m+ t−1〉 . . .xt−1〈Bt−1,q,m+ t−1〉
xt〈B̂t ,q,m+ t−1〉xt+1)

introduced by (2.c.iii.A) is applied, so

y1〈A1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1
n
lim⇒Ḡ y1〈A1,q,m+ t−1〉 . . .ym−1〈Am−1,q,m+ t−1〉ym

x1〈B1,q,m+ t−1〉 . . .xt−1〈Bt−1,q,m+ t−1〉
xt〈B̂t ,q,m+ t−1〉xt+1ym+1.

6. If m = 1, t = 0, then
(〈Â1, p,1〉)→ (x1)

introduced by (2.c.iii.B) is applied, so

y1〈Â1, p,1〉y2
n
lim⇒Ḡ y1x1y2.

Notice that this production can only be used in the ultimate derivation step because it removes
the last symbol from N1∪N2 from the sentential form and this symbol is on the left-hand side
of every production introduced in step (2).

Observe that as all of these productions satisfy Ai /∈ α(p) for each 1≤ i < r and all nonterminals in
the sentential form of Ḡ are rewritten, the simulation of G’s production is proper.

Second, consider a G’s sentential form (y1A1 . . .ymAmym+1, p), where m > n, and a production

(Ar, p)→ (x1B1 . . .xtBtxt+1,q) ∈ P,

where 1 ≤ r ≤ m, B1, . . . ,Bt ∈ V −T , x1, . . . ,xt+1 ∈ T ∗ for some t ≥ 0, which is applicable to the
above sentential form. By its use, we obtain

(y1A1 . . .yr−1Ar−1yrAryr+1Ar+1 . . .ynAn . . .ymAmym+1, p)
⇒G (y1A1 . . .yr−1Ar−1yrx1B1 . . .xtBtxt+1

yr+1Ar+1 . . .ynAn . . .ymAmym+1,q).

By the induction hypothesis, for m > n, the Ḡ’s sentential form corresponding to

(y1A1 . . .yr−1Ar−1yrAryr+1Ar+1 . . .ynAn . . .ymAmym+1, p)

is of the form

y1〈A1, p,n〉 . . .yr〈Ar, p,n〉 . . .yn〈An, p,n〉yn+1An+1 . . .ym−1Am−1ymÂmym+1.

Then, only one of the productions from (2.a.i), (2.b.i), and (2.c.i.A) is applicable, depending on m,
n, r, and t:

59

1. If r + t−1 > n, then

(〈A1, p,n〉, . . . ,〈Ar−1, p,n〉,〈Ar, p,n〉,〈Ar+1, p,n〉, . . . ,〈An, p,n〉)
→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉

xn−r+2Bn−r+2 . . .xtBtxt+1,Ar+1, . . . ,An)

introduced by (2.a.i) is applied, so

y1〈A1, p,n〉 . . .yr−1〈Ar−1, p,n〉yr〈Ar, p,n〉
yr+1〈Ar+1, p,n〉 . . .yn〈An, p,n〉
yn+1An+1 . . .ym−1Am−1ymÂmym+1

n
lim⇒Ḡ y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yr

x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉xn−r+2Bn−r+2 . . .xtBtxt+1

yr+1Ar+1 . . .ynAnyn+1An+1 . . .ym−1Am−1ymÂmym+1.

2. If r + t−1≤ n and m+ t−1 > n, then

(〈A1, p,n〉, . . . ,〈Ar−1, p,n〉,〈Ar, p,n〉,
〈Ar+1, p,n〉, . . . ,〈An−t+1, p,n〉,〈An−t+2, p,n〉, . . . ,〈An, p,n〉)

→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1,
〈Ar+1,q,n〉, . . . ,〈An−t+1,q,n〉,An−t+2, . . . ,An)

introduced by (2.b.i) is applied, so

y1〈A1, p,n〉 . . .yr−1〈Ar−1, p,n〉yr〈Ar, p,n〉
yr+1〈Ar+1, p,n〉 . . .yn−t+1〈An−t+1, p,n〉
yn−t+2〈An−t+2, p,n〉 . . .yn〈An, p,n〉
yn+1An+1 . . .ym−1Am−1ymÂmym+1

n
lim⇒Ḡ y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yr

x1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1
yr+1〈Ar+1,q,n〉 . . .yn−t+1〈An−t+1,q,n〉
yn−t+2An−t+2 . . .ynAnyn+1An+1 . . .ym−1Am−1ymÂmym+1.

3. If m+ t−1≤ n and t = 0, then

(〈A1, p,n〉, . . . ,〈Ar−1, p,n〉,〈Ar, p,n〉,〈Ar+1, p,n〉, . . . ,〈An, p,n〉)
→ (〈A′1,q,n−1〉, . . . ,〈A′r−1,q,n−1〉,x1,
〈A′r+1,q,n−1〉, . . . ,〈A′n,q,n−1〉)

introduced by (2.c.i.A) is applied, so

y1〈A1, p,n〉 . . .yr−1〈Ar−1, p,n〉yr〈Ar, p,n〉
yr+1〈Ar+1, p,n〉 . . .yn〈An, p,n〉
yn+1An+1 . . .ym−1Am−1ymÂmym+1

n
lim⇒Ḡ y1〈A′1,q,n−1〉 . . .yr−1〈A′r−1,q,n−1〉yrx1

yr+1〈A′r+1,q,n−1〉 . . .yn〈A′n,q,n−1〉
yn+1An+1 . . .ym−1Am−1ymÂmym+1.

Recall that the last nonterminal in every sentential form of Ḡ is from N2∪N4. As 〈An, p,n〉 /∈
N2 ∪N4, there is at least one nonterminal in the sentential form following 〈An, p,n〉. There-
fore, the production

(〈A′1,q,n−1〉, . . . ,〈A′r−1,q,n−1〉,
〈A′r+1,q,n−1〉, . . . ,〈A′n,q,n−1〉,An+1)

→ (〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,
〈Ar+1,q,n〉, . . . ,〈An,q,n〉,〈An+1,q,n〉)

60

from (2.c.i.B) can be used. This production rewrites a nonterminal A ∈ (V −T)∪N4 in its
last component. Because we generate a language of order n, A = An+1, so either

y1〈A′1,q,n−1〉 . . .yr−1〈A′r−1,q,n−1〉yrx1
yr+1〈A′r+1,q,n−1〉 . . .yn〈A′n,q,n−1〉
yn+1An+1yn+2An+2 . . .ym−1Am−1ymÂmym+1

n
lim⇒Ḡ y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yrx1

yr+1〈Ar+1,q,n〉 . . .yn〈An,q,n〉
yn+1〈An+1,q,n〉yn+2An+2 . . .ym−1Am−1ymÂmym+1

if An+1 ∈V −T or

y1〈A′1,q,n−1〉 . . .yr−1〈A′r−1,q,n−1〉yrx1

yr+1〈A′r+1,q,n−1〉 . . .yn〈A′n,q,n−1〉yn+1Ân+1yn+2
n
lim⇒Ḡ y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yrx1

yr+1〈Ar+1,q,n〉 . . .yn〈An,q,n〉yn+1〈Ân+1,q,n〉yn+2,

if Ân+1 ∈ N4.

Observe that as all of these productions satisfy Ai /∈ α(p) for each 1 ≤ i < r and all first n nonter-
minals in the sentential form of Ḡ are rewritten, the simulation of G’s production is proper.

Finally, notice that if the sentential form of Ḡ is of the form (1) or (2) as described in Claim 5, the
sentential form obtained after performing a derivation step is of one of these forms as well. As the
right-hand side of the production introduced in step (1) of the construction is of the form (1), every
sentential form obtained during the derivation process satisfies the properties given in Claim 5. �

From Claim 5 and the derivations described in its proof, it is easy to see that Ḡ rewrites at most
n first nonterminals in a sentential form and that L(G,n) = L(Ḡ, lim,n). �

Lemma 7. L (PSC, lim,n)⊆L (ST,n) for all n≥ 1.

Proof. Let L(G, lim,n) be a language of order n generated by a propagating scattered context gram-
mar G = (V,T,P,S). Set

N = {〈A, i〉 : A ∈V −T,1≤ i≤ n}.

Further, set K1 = {〈p, i〉 : p ∈ P,0≤ i < n} and

K2 = {〈p, i, j〉 : p = (A1, . . . ,Ak)→ (x1, . . . ,xk) ∈ P,0≤ i≤ n,0≤ j ≤ k}.

Define the state grammar

Ḡ = (V ∪N∪{S̄},T,K1∪K2∪{p0}, P̄, S̄, p0)

with P̄ constructed as follows:

1. For each p = (S)→ (x) ∈ P, add
(S̄, p0)→ (S,〈p,0〉) to P̄;

2. For each A ∈V −T , p = (A1, . . . ,Ak)→ (x1, . . . ,xk) ∈ P, 0≤ i < n, add

(a) (A,〈p, i〉)→ (〈A, i+1〉,〈p, i+1〉),
(b) (A,〈p, i〉)→ (〈A, i+1〉,〈p, i+1,k〉) to P̄;

61

3. For each p = (A1, . . . ,A j, . . . ,Ak) → (x1, . . . ,x j, . . . ,xk) ∈ P, q ∈ P, A ∈ V − T , 1 ≤ i ≤ n,
0≤ j ≤ k, add

(a) (〈A, i〉,〈p, i, j〉)→ (A,〈p, i−1, j〉),
(b) if j ≥ 1, add

(〈A j, i〉,〈p, i, j〉)→ (x j,〈p, i−1, j−1〉),
(c) (A,〈p,0,0〉)→ (A,〈q,0〉) to P̄.

The derivation starts in Ḡ by a production introduced in step (1) and as no production contains
S̄ on its right-hand side, none of the productions form (1) is used during the rest of the derivation.
Consider now a G’s sentential form u1A1 . . .ukAkuk+1, where u1, . . . ,uk+1 ∈V ∗, and a production

p = (A1, . . . ,Ak)→ (x1, . . . ,xk) ∈ P.

Obviously, for a sentential form satisfying |u1A1 . . .ukAk|V−T ≤ n,

u1A1 . . .ukAkuk+1
n
lim⇒G u1x1 . . .ukxkuk+1 [p].

Consider now a Ḡ’s sentential form

(u1A1 . . .ukAkuk+1,〈p,0〉)

corresponding to the above sentential form of G. (Notice that also (S,〈q,0〉), where q = (S) →
(x) ∈ P, obtained by the application of a production from (1) is a sentential form of this kind.)
The above described G’s derivation step is simulated in Ḡ by productions from (2) and (3). First,
productions from (2) are used. For a nondeterministically chosen m ≥ k, the first m nonterminals
in u1A1 . . .ukAkuk+1 are processed from the left to the right and each nonterminal is assigned its
ordinal number. Then, productions from (3) are used to simulate p’s context-free components form
the right to the left. To describe this derivation more formally, we express

(u1A1 . . .ukAkuk+1,〈p,0〉)

as
(w1B1 . . .wmBm . . .wnBn . . .wtBtwt+1,〈p,0〉),

where w1, . . . ,wt+1 ∈ T ∗, B1, . . . ,Bt ∈ V − T , t = |u1A1 . . .ukAkuk+1|V−T , and where Bli = Ai for
some 1≤ li ≤ m, for all 1≤ i≤ k, and l j < l j+1 for all 1≤ j ≤ k−1. (Discussion of other possible
kinds of this sentential form, for example for t < n, is left to the reader.) Then, the derivation
performed by productions from (2a) can be expressed as

(w1B1 . . .wmBm . . .wtBtwt+1,〈p,0〉)
⇒Ḡ (w1〈B1,1〉w2B2 . . .wmBm . . .wtBtwt+1,〈p,1〉)

...
⇒Ḡ (w1〈B1,1〉 . . .wm−1〈Bm−1,m−1〉wmBm . . .wtBtwt+1,〈p,m−1〉).

Finally, a production from (2b) is used, so

(w1〈B1,1〉 . . .wm−1〈Bm−1,m−1〉wmBm . . .wtBtwt+1,〈p,m−1〉)
⇒Ḡ (w1〈B1,1〉 . . .wm〈Bm,m〉wm+1Bm+1 . . .wtBtwt+1,〈p,m,k〉).

62

Next, productions from (3) are used to simulate all context-free components of p in the reversed
order. The simulation of Ak → xk is performed as follows:

(w1〈B1,1〉 . . .wm〈Bm,m〉wm+1Bm+1 . . .wtBtwt+1,〈p,m,k〉)
⇒Ḡ (w1〈B1,1〉 . . .wm−1〈Bm−1,m−1〉wmBm . . .wtBtwt+1,〈p,m−1,k〉)

...
⇒Ḡ (w1〈B1,1〉 . . .wlk〈Blk , lk〉wlk+1Blk+1 . . .wtBtwt+1,〈p, lk,k〉)
⇒Ḡ (w1〈B1,1〉 . . .wlk−1〈Blk−1, lk−1〉

wlk xkwlk+1Blk+1 . . .wtBtwt+1,〈p, lk−1,k−1〉).

The context-free components Ak−1→ xk−1, . . . ,A1→ x1 are simulated analogously, until a sentential
form

(u1x1 . . .ukxkuk+1,〈p,0,0〉)

is obtained. Notice that when a state 〈p,0, i〉, i≥ 1 is reached, the derivation is blocked. This means
that either in the nondeterministic part of the derivation the value of m was chosen too low so the
whole scattered context production cannot be simulated or more than n first nonterminals need to
be rewritten to simulate the scattered context production. Finally, a production from (3c) is used to
finish the simulation of p and to start the simulation of q ∈ P:

(u1x1 . . .ukxkuk+1,〈p,0,0〉)
⇒Ḡ (u1x1 . . .ukxkuk+1,〈q,0〉).

This simulation continues until the sentential form (w,〈q,0,0〉), where w ∈ T ∗, q ∈ P, is obtained.
�

Theorem 25. L (PSC, lim,n) = L (ST,n).

Proof. Follows immediately from Lemmas 6 and 7. �

The following corollaries follow immediately from Theorems 7, 8 and 25.

Corollary 15.

L (CF) = L (PSC, lim,1)⊂L (PSC, lim,2)⊂ . . .⊂L (PSC, lim,∞)⊂L (CS).

�

Corollary 16. Every L (PSC, lim,n), where n≥ 1, is an abstract family of languages. �

We have demonstrated that limiting derivations performed by propagating scattered context
grammars to the first n nonterminals gives rise to an infinite hierarchy of languages. The definition
of n-limited derivations, however, induces the following problem:

Open Problem 5. Can we construct a propagating scattered context grammar which rewrites the
first n nonterminals without restricting the derivations explicitly (that is to define a propagating
scattered context grammar of order n in the way analogous to a state grammar of order n) and
obtain the same results?

We propose this open problem for further study.

63

5.3 Leftmost Derivations

As the exact relation of L (PSC) with respect to L (CS) is unknown, there have been several
attempts to modify the basic definition of propagating scattered context grammars to obtain the
family of context-sensitive languages. The approach discussed in [82] is one of them. In [82] it was
proved that propagating scattered context grammars that use leftmost derivations are as powerful
as context-sensitive grammars. This result is of some interest as the use of context-free, context-
sensitive, and unrestricted productions in a leftmost way in the corresponding grammars of the
Chomsky hierarchy does not have any impact on their generative power.

The proof presented in [82] consists of two parts; first, two preliminary lemmas (Lemma 2 and
Lemma 3) are given and then, the main result, stated in Theorem 2, is presented as a straightforward
corollary of these two lemmas. In Lemma 2 it is demonstrated how any sentence of a context-
sensitive language can be derived by a propagating scattered context grammar which uses leftmost
derivations. Every sentence generated in such a way contains, however, some additional symbols.
Lemma 3 shows how these symbols can be removed. Together, the proof consists of six-page
construction part and not even one-page basic idea of the construction which makes it extremely
hard to follow. A more formal proof of the correctness of the construction is missing.

Our aim is to present the proof of this result in much simpler and more readable way. The main
difference of our proof lies in (1) the way how the symbols to be rewritten are selected and (2) the
way how context-sensitive productions are simulated. Furthermore, the proof is based on only one
construction instead of two. All this leads to a significantly simpler and more transparent proof.

We start by defining propagating scattered context grammars which use leftmost and rightmost
derivations.

Definition 31. A propagating scattered context grammar which uses leftmost or rightmost deriva-
tions is a propagating scattered context grammar G = (V,T,P,S) whose language is defined as

L(G, lm) = {x ∈ T ∗ : S lm⇒∗G x} or L(G, rm) = {x ∈ T ∗ : S rm⇒∗G x},

respectively. The family of languages generated by propagating scattered context grammars which
use leftmost or rightmost derivations is denoted by L (PSC, lm) or L (PSC, rm), respectively.

The following theorem and its proof demonstrate how for every context-sensitive grammar G
in Kuroda normal form a propagating scattered context grammar Ḡ which uses leftmost derivations
can be constructed so that L(G) = L(Ḡ, lm).

Theorem 26. L (PSC, lm) = L (CS).

Proof. Let G = (V,T,P,S) be a context-sensitive grammar in Kuroda normal form. Set N1 = (V −
T)∪{ā : a ∈ T} and N̂1 = {Â : A ∈ N1}. Let n = |N1|; then, we denote the elements of N1 as
{A1, . . . ,An}. Define the homomorphism α from V ∗ to N∗1 as α(A) = A for each A ∈ V −T , and
α(a) = ā for each a ∈ T . Set N′2 = {A′ : A ∈V −T}, N3 = {〈ab〉 : a,b ∈V},

N′4 = {〈Aa〉′ : A ∈V −T,a ∈V},

and
N5 = {〈a,0〉,〈ab,0〉 : a,b ∈V}
∪ {〈a, i, j〉 : a ∈V −T,1≤ i≤ 3,1≤ j ≤ n}
∪ {〈ab,4〉 : a,b ∈ T}.

Define the propagating scattered context grammar

Ḡ = (N1∪ N̂1∪N′2∪N3∪N′4∪N5∪{S̄,X}∪T,T, P̄, S̄),

where P̄ is constructed as follows:

64

1. (a) For each a ∈ L(G), where a ∈ T , add
(S̄)→ (a) to P̄;

(b) For each S⇒G ab, where a,b ∈V , add
(S̄)→ (〈ab,0〉X) to P̄;

2. For each a,b,c ∈V , add

(a) (〈a,0〉,α(b))→ (α(a),〈b,0〉),
(b) (α(a),〈b,0〉)→ (〈a,0〉,α(b)),

(c) (〈a,0〉,〈bc〉)→ (α(a),〈bc,0〉),
(d) (α(a),〈bc,0〉)→ (〈a,0〉,〈bc〉) to P̄;

3. For each A→ a ∈ P and b ∈V , add

(a) (〈A,0〉)→ (〈a,0〉),
(b) (〈Ab,0〉)→ (〈ab,0〉),
(c) (〈bA,0〉)→ (〈ba,0〉) to P̄;

4. For each A→ BC ∈ P and a ∈V , add

(a) (〈A,0〉)→ (B〈C,0〉),
(b) (〈Aa,0〉)→ (B〈Ca,0〉),
(c) (〈aA,0〉)→ (α(a)〈BC,0〉) to P̄;

5. For each AB→ CD ∈ P, a ∈V , E ∈ N3∪N′4, F ′ ∈ {B′,〈Ba〉′}, 1≤ i≤ n, and 1≤ j ≤ n−1,
add

(a) (〈AB,0〉)→ (〈CD,0〉),
(b) i. (〈A,0〉,B,X)→ (〈A,1,1〉,B′,A1),

ii. (〈A,0〉,〈Ba〉,X)→ (〈A,1,1〉,〈Ba〉′,A1),

(c) i. (〈A,1, i〉,Ai)→ (〈A,2, i〉, Âi),
ii. (〈A,2, i〉,F ′, Âi)→ (〈A,3, i〉,F ′,Ai),

iii. (〈A,3, j〉,E,A j)→ (〈A,1, j +1〉,E,A j+1),

(d) i. (〈A,3,n〉,B′,E,An)→ (〈C,0〉,D,E,X),
ii. (〈A,3,n〉,〈Ba〉′,An)→ (〈C,0〉,〈Da〉,X) to P̄;

6. For each a,b,c ∈ T , add

(a) (〈ab,0〉)→ (〈ab,4〉),
(b) (c̄,〈ab,4〉)→ (c,〈ab,4〉),
(c) (〈ab,4〉,X)→ (a,b) to P̄.

Basic Idea. In short, productions introduced in (1) initiate the derivation, productions from (2)
are used to select the nonterminal to be rewritten, productions from (3), (4), and (5) simulate G’s
productions of the form A → a, A → BC, and AB → CD, respectively, and, finally, productions
from (6) finish the derivation.

65

In greater detail, consider a sentential form a1 . . .amABam+1 . . .ak of G and G’s production
AB→CD. This sentential form can be expressed as

b1 . . .br−1〈ar,0〉br+1 . . .bmABbm+1 . . .bk−2〈ak−1ak〉X

in Ḡ, where each b j = α(a j). First, to simulate the application of AB → CD in Ḡ, productions
from (2) have to be used to select the nonterminal A in the sentential form so that

b1 . . .bm〈A,0〉Bbm+1 . . .bk−2〈ak−1ak〉X .

By a production from (5bi), the second nonterminal to be rewritten, B, is selected. It needs to be ver-
ified, however, whether there is no symbol between A and B in the sentential form. This verification
is performed for each symbol Ai which may appear in {bm+1, . . . ,bk−2}. By a production from (5ci),
the first Ai following A is tagged and by a production from (5cii), the first tagged Ai following B is
untagged. Therefore, if there is some Ai between A and B, no production from (5cii) can be used
and the derivation is blocked. To ensure that there is at least one Ai behind B, Ai is inserted at the
end of the sentential form by a production from (5ciii) before the verification. Finally, after it has
been verified that there is no symbol between A and B, a production from (5di) rewrites AB to CD,
and the simulation of other productions may continue. As the simulation of productions of the form
A → BC and A → a is much simpler than the above case, we do not describe it in greater detail.
Notice that the simulation can be performed also in the penultimate nonterminal of the sentential
form. This is allowed by productions from (2c), (2d), (3b), (3c), (4b), (4c), (5a), (5bii), and (5dii).

Finally, when the sentential form has the form ā1 . . . āk−2〈ak−1ak,0〉X , where all a j ∈ T , the
derivation enters the final phase by a production from (6a) in which each ā j is replaced with a j by
a production from (6b). Ultimately, a production from (6c) replaces the nonterminal X with ak, so
we obtain the G’s sentence a1 . . .ak.

Formal Proof. Every derivation starts either by a production introduced in (1a) to generate sentences
a∈ L(G), where a∈ T , or by a production introduced in (1b) to generate sentences x∈ L(G), |x| ≥ 2.
As S̄ does not occur on a right-hand side of any production, productions from (1) are not used during
the rest of the derivation.

Consider G’s sentential form a1 . . .ak, where a1, . . . ,ak ∈V , for some k≥ 2. In Ḡ, this sentential
form corresponds either to

b1 . . .br−1〈ar,0〉br+1 . . .bk−2〈ak−1ak〉X ,

where bi = α(ai) for all i ∈ {1, . . . ,r−1,r +1, . . . ,k−2}, for some 1≤ r ≤ k−2, or to

b1 . . .bk−2〈ak−1ak,0〉X ,

where bi = α(ai) for all 1≤ i≤ k−2 (observe that every right-hand side of a production from (1b)
represents a sentential form of this kind). To simulate any G’s production, the leftmost nonterminal
from its left-hand side has to be selected in the sentential form of Ḡ. This is done by appending 0 to
the symbol to be selected by productions from (2). Specifically, for a symbol a ∈V , (2a) selects the
leftmost symbol a immediately following the currently selected symbol and (2b) selects the leftmost
symbol a preceding the currently selected symbol. Productions from (2c) and (2d) are used to select
and unselect the penultimate nonterminal in Ḡ’s sentential form which is composed of two symbols
from V . Observe that in this way, any symbol (except for the final X) in every sentential form of Ḡ
can be selected. Further, observe that during a derivation, always one symbol is selected.

After the required nonterminal is selected, the use of G’s production can be simulated. Pro-
ductions of the form A→ a are simulated by (3a) for every selected nonterminal a1, . . . ,ak−2 and

66

by (3b), (3c) if the penultimate nonterminal (which contains ak−1,ak) of Ḡ’s sentential form is
selected. Analogously, productions of the form A → BC are simulated by productions from (4),
and (5a) is used to simulate the use of AB→CD inside the penultimate nonterminal.

In what follows, we demonstrate how an application of a production of the form AB → CD
within a1 . . .ak−2 is simulated by Ḡ. Suppose that the sentential form in Ḡ is of the form

b1 . . .br−1〈ar,0〉br+1 . . .bk−2〈ak−1ak〉X

and we simulate the production arar+1→ crcr+1 ∈ P. Recall that N1 = {A1, . . . ,An} denotes the set
of all symbols which may appear in the set {br+1, . . . ,bk−2}. First, to select br+1, the production

(〈ar,0〉,br+1,X)→ (〈ar,1,1〉,b′r+1,A1)

from (5bi) is applied in a successful derivation, so

b1 . . .br−1〈ar,0〉br+1 . . .bk−2〈ak−1ak〉X
lm⇒Ḡ b1 . . .br−1〈ar,1,1〉b′r+1br+2 . . .bk−2〈ak−1ak〉A1.

Observe that if br+1 does not immediately follow 〈ar,0〉, the leftmost b∈{br+1, . . . ,bk−2} satisfying
b = br+1 can be selected by a production from (5bi). The purpose of productions from (5c) is to
verify that the nonterminal immediately following 〈ar,0〉 has been selected. First, the production

(〈ar,1,1〉,A1)→ (〈ar,2,1〉, Â1)

from (5ci) is applied to tag the first A1 following 〈ar,1,1〉, so

b1 . . .br−1〈ar,1,1〉b′r+1br+2 . . .bk−2〈ak−1ak〉A1

lm⇒Ḡ b1 . . .br−1〈ar,2,1〉b′r+1y1〈ak−1ak〉d1,

where either
y1 = br+2 . . .bm−1b̂mbm+1 . . .bk−2,

b̂m = Â1, d1 = A1, for some 1≤ m≤ k−2, or y1 = br+2 . . .bk−2, d1 = Â1. Then, the production

(〈ar,2,1〉,b′r+1, Â1)→ (〈ar,3,1〉,b′r+1,A1)

from (5cii) is applied to untag the first symbol Â1 following b′r+1, so

b1 . . .br−1〈ar,2,1〉b′r+1y1〈ak−1ak〉d1,

lm⇒Ḡ b1 . . .br−1〈ar,3,1〉b′r+1br+2 . . .bk−2〈ak−1ak〉A1.

This means that if A1 occurs between 〈ar,2,1〉 and b′r+1, it is tagged by the production from (5ci)
but it cannot be untagged by any production from (5cii) so the derivation is blocked. Finally, the
production

(〈ar,3,1〉,〈ak−1ak〉,A1)→ (〈ar,1,2〉,〈ak−1ak〉,A2)

from (5ciii) is applied,

b1 . . .br−1〈ar,3,1〉b′r+1br+2 . . .bk−2〈ak−1ak〉A1

lm⇒Ḡ b1 . . .br−1〈ar,1,2〉b′r+1br+2 . . .bk−2〈ak−1ak〉A2,

67

and the same verification continues for A2. This verification proceeds for all symbols from the set
{A1, . . . ,An} so this part of derivation can be expressed as

u1 [p11] lm⇒Ḡ v1 [p12] lm⇒Ḡ w1 [p13]
lm⇒Ḡ u2 [p21] lm⇒Ḡ v2 [p22] lm⇒Ḡ w2 [p23]

...
lm⇒Ḡ un [pn1] lm⇒Ḡ vn [pn2]

with
ui = b1 . . .br−1〈ar,1, i〉b′r+1br+2 . . .bk−2〈ak−1ak〉Ai,
vi = b1 . . .br−1〈ar,2, i〉b′r+1yi〈ak−1ak〉di,
w j = b1 . . .br−1〈ar,3, j〉b′r+1br+2 . . .bk−2〈ak−1ak〉A j,

pi1, pi2, and p j3 are productions from (5ci), (5cii), and (5ciii), respectively, for all 1 ≤ i ≤ n,
1≤ j ≤ n−1, and either

yi = br+2 . . .bim−1 b̂imbim+1 . . .bk−2,

b̂im = Âim , di = Ai, for some 1≤ im ≤ k−2, or yi = br+2 . . .bk−2, di = Âi. After the verification, the
application of arar+1→ crcr+1 ∈ P is simulated by

(〈ar,3,n〉,b′r+1,〈ak−1ak〉,An)→ (〈cr,0〉,cr+1,〈ak−1ak〉,X)

from (5ciii), so
b1 . . .br−1〈ar,3,n〉b′r+1br+2 . . .bk−2〈ak−1ak〉An

lm⇒Ḡ b1 . . .br−1〈cr,0〉cr+1br+2 . . .bk−2〈ak−1ak〉X .

Observe that in order to simulate a production of the form AB→ CD within ak−2ak−1, productions
from (5bii) and (5dii) have to be used instead of productions from (5bi) and (5di) in the simulation
described above. The details are left to the reader.

Finally, consider a G’s sentence a1 . . .ak ∈ T +. This corresponds to

ā1 . . . ār−1〈ar,0〉ār+1 . . . āk−2〈ak−1ak〉X

in Ḡ after finishing the simulation. To enter the final phase in Ḡ, 〈ak−1ak〉 has to be selected by a
production from (2c), so we obtain

ā1 . . . āk−2〈ak−1ak,0〉X .

The rest of the derivation can be expressed as

ā1 . . . āk−2〈ak−1ak,0〉X
lm⇒Ḡ ā1 . . . āk−2〈ak−1ak,4〉X [p6a]
lm⇒k−2

Ḡ a1 . . .ak−2〈ak−1ak,4〉X [Ξ6b]
lm⇒Ḡ a1 . . .ak−2ak−1ak [p6c],

where p6a and p6c are productions introduced in steps (6a) and (6c), respectively, and Ξ6b is a
sequence of k−2 productions from (6b). As a result, every x ∈ L(Ḡ, lm) if and only if x ∈ L(G), so
the theorem holds. �

Next, we state the following corollary.

Corollary 17. L (PSC, rm) = L (CS).

Proof. This corollary can be proved by a straightforward modification of the proof of Theorem 26
and is, therefore, left to the reader. �

68

5.4 Maximal and Minimal Rewriting

In this section we introduce two natural modifications of propagating scattered context grammars to
be able to describe all context-sensitive languages. As a matter of fact, these simple modifications
only change the way propagating scattered context grammars perform their derivations while keep-
ing their grammatical concept unchanged. More specifically, this modification requires that during
every derivation step, a production containing the maximal or the minimal number of nonterminals
on its left-hand side is chosen from the set of all applicable productions. This kind of modifica-
tion is different from the other previously introduced modifications; while the other modifications
restrict the way in which the context-free components of a scattered context production operate,
maximal and minimal derivations prescribe the way a scattered context production is applied as a
whole. We demonstrate that these grammars characterize the family of context-sensitive languages
if they work in this modified way.

Formally, we define the two new kinds of derivations next.

Definition 32. Let G = (V,T,P,S) be a scattered context grammar. Define the maximal direct
derivation as

u max⇒G v [p]

if and only if u ⇒G v [p] and there is no r ∈ P satisfying len(r) > len(p) such that u ⇒G w [r].
Similarly, define the minimal direct derivation as

u min⇒G v [p]

if and only if u ⇒G v [p] and there is no r ∈ P satisfying len(r) < len(p) such that u ⇒G w [r].
Define the transitive closure and the reflexive and transitive closure of maximal and minimal di-
rect derivations in the standard way. The language of a scattered context grammar G which uses
maximal and minimal derivations is denoted by L(G,max) and L(G,min) and defined as

L(G,max) = {x ∈ T ∗ : S max⇒∗G x}

and
L(G,min) = {x ∈ T ∗ : S min⇒∗G x},

respectively. The corresponding language families of propagating scattered context grammars are
denoted by L (PSC,max) and L (PSC,min).

Next, we demonstrate that propagating scattered context grammars which use maximal and
minimal derivations characterize the family of context-sensitive languages.

Theorem 27. L (CS) = L (PSC,max).

Proof. Let L be a context-sensitive language. As by Theorem 7 state grammars characterize the
family of context-sensitive languages, we suppose that L is described by a state grammar Ḡ =
(V̄ ,T,K, P̄, S̄, p0). Set

Y = {〈A,q〉 : A ∈ V̄ −T,q ∈ K}

and Z = {ā : a ∈ T}. Define the homomorphism α form V̄ ∗ to ((V̄ −T)∪Z)∗ as α(A) = A for all
A ∈ V̄ −T and α(a) = ā for all a ∈ T . Set V = V̄ ∪Y ∪Z∪{S,X}. Define the propagating scattered
context grammar G as

G = (V,T,P,S),

where P is constructed as follows:

69

1. For each x ∈ L(Ḡ), where |x| ≤ 2, add
(S)→ (x) to P;

2. For each

(x,q) ∈ {(x,q) : (S̄, p0)⇒+
Ḡ (x,q) for some q ∈ K

and 3≤ |x| ≤min({3,max({|y| : (B, p)→ (y, p′) ∈ P̄})})},

where

(a) x ∈ T ∗, add
(S)→ (x) to P;

(b) x = x1Ax2, A ∈ V̄ −T , x1,x2 ∈ V̄ ∗, add
(S)→ (α(x1)〈A,q〉α(x2)) to P;

3. For each (A, p)→ (x,q), (B, p)→ (y,r) ∈ P̄, C ∈ V̄ , Γ21 ∈ perm(2,1),

z = reorder((B,〈A, p〉,α(C)),Γ21),

add
z→ (X ,X ,X) to P;

4. For each (A, p)→ (x,q) ∈ P̄, B ∈ V̄ −T , C ∈ V̄ , Γ11 ∈ perm(1,1),

y = reorder((〈A, p〉,α(C)),Γ11),

add

(a) (B,〈A, p〉)→ (〈B,q〉,α(x)),

(b) (〈A, p〉,B)→ (α(x),〈B,q〉) to P;

(c) If x = vBw, v,w ∈ V̄ ∗, for each

z = reorder((α(v)〈B,q〉α(w),α(C)),Γ11),

add
y→ z to P;

(d) For each
u = reorder((α(x),α(C)),Γ11),

add
y→ u to P;

5. For each a ∈ T , add
(ā)→ (a) to P.

Basic Idea. The state grammar Ḡ is simulated by the propagating scattered context grammar G
which performs maximal derivations. Productions from (1) are used to generate a sentence w ∈
L(Ḡ), where |w| ≤ 2, while the productions introduced in (2) start the simulation of the derivation
of a Ḡ’s sentence, w, |w| ≥ 3. Let (A, p) → (x,q) be a production of Ḡ which is applicable to a
sentential form (w1Aw2, p) generated by Ḡ. The sentential form (w1Aw2, p) in Ḡ corresponds to the
sentential form α(w1)〈A, p〉α(w2) in G. To simulate the application of (A, p) → (x,q) in G, it is
checked first, whether the production is applied to the leftmost nonterminal of the sentential form

70

for the given state p. If not, some production from (3) is applicable. This production is applied
because it has the highest priority of all productions, and its application introduces the symbol
X to the sentential form, which blocks the derivation. The successful derivation proceeds by a
production from (4a), (4b), and (4c) which nondeterministically selects the following nonterminal
to be rewritten and appends the new state to it. The production which finishes the derivation of a
sentence in Ḡ is simulated by a production from (4d) which removes the compound nonterminal
〈. . .〉 from the sentential form. Finally, each symbol ā,a ∈ T is rewritten to a.

Formal Proof.

Claim 6. Each x ∈ L(Ḡ), where |x| ≤ 2 is generated by G as follows:

S max⇒G x [p1],

where p1 is one of the productions introduced in step (1) of the construction. �

Claim 7. Every
(S̄, p0)⇒+

Ḡ (x,q),

where q ∈ K, x ∈ T +,

3≤ |x| ≤min({3,max({|y| : (B, p)→ (y, p′) ∈ P̄})})

is generated by G as follows:
S max⇒G x [p2a],

where p2a is one of the productions introduced in step (2a) of the construction. �

Claim 8. Every
(S̄, p0)⇒+

Ḡ (x,q)⇒+
Ḡ (u,r),

where q,r ∈ K, u ∈ T +, x = v0Aw0, A ∈ V̄ −T , v0,w0 ∈ V̄ ∗,

3≤ |x| ≤min({3,max({|y| : (B, p)→ (y, p′) ∈ P̄})}),

can only be generated by G as follows:

S max⇒G α(v0)〈A,q〉α(w0) [p2b]
max⇒∗G y [Ξ4]
max⇒G z [p4d]

max⇒|u|G u [Ξ5],

where y ∈ Z∗Y Z∗, z = α(u); p2b and p4d denote one of the productions introduced in steps (2b)
and (4d), respectively, and Ξ4 and Ξ5 are sequences of productions introduced in steps (4a), (4b),
(4c), and (5), respectively.

Proof. Observe that the productions from (1) and (2) are the only productions containing S on their
left-hand sides and no other productions contain S on their right-hand sides. To generate a sentence
u, |u| ≥ 3, the derivation has to start with

S max⇒G α(v0)〈A,q〉α(w0) [p2b],

and productions from (1) and (2) are not used during the rest of the derivation.

71

Further observe that none of the productions introduced in (3) can be applied during a successful
derivation as no productions rewrite the nonterminal X which is contained on the right-hand side of
each production from step (3).

To generate a sentence over T , all symbols from V̄ −T have to be removed from the sentential
form. Only productions from step (4) can be used for their replacement as they contain symbols
from V̄ −T on their left-hand sides. Further, productions (4a), (4b), (4c) contain one symbol from
Y both on their left and their right-hand sides, while productions from (4d) contain a symbol form
Y only on their left-hand sides. Therefore, after the application of a production from (4d), none
of the productions from step (4) is applicable. Because for each production p4 and p5 introduced
in step (4) and (5), respectively, it holds that len(p4) > len(p5), no production from step (5) is
applied while some production from step (4) is applicable. As a result, the corresponding part of
the derivation looks as follows:

α(v0)〈A,q〉α(w0) max⇒∗G y [Ξ4]
max⇒G z [p4d].

At this point, z = α(u) in a successful derivation. Productions from step (5) replace each ā ∈
alph(z) with a in |u| steps, so we obtain

z max⇒|u|G u [Ξ5].

Putting together the previous observations, we obtain the formulation of Claim 8, so the claim
holds. �

Claim 9. In a successful derivation, every

α(v0)〈B0,q0〉α(w0)
max⇒G α(v1)〈B1,q1〉α(w1) [p0]

...
max⇒G α(vn)〈Bn,qn〉α(wn) [pn−1]

is performed in G if and only if

(v0B0w0,q0)
⇒Ḡ (v1B1w1,q1) [(B0,q0)→ (x1,q1)]

...
⇒Ḡ (vnBnwn,qn) [(Bn−1,qn−1)→ (xn,qn)]

is performed in Ḡ, where vi,wi ∈ V̄ ∗, Bi ∈ V̄−T , qi ∈K for all 0≤ i≤ n, for some n≥ 0, x1, . . . ,xn ∈
V̄ +, and p0, . . . , pn−1 are productions introduced in steps (4a), (4b), and (4c).

Proof.

Only If. We show that

α(v0)〈B0,q0〉α(w0) max⇒m
G α(vm)〈Bm,qm〉α(wm)

implies
(v0B0w0,q0)⇒m

Ḡ (vmBmwm,qm)

by induction on m.

72

Basis. Let m = 0. Then,

α(v0)〈B0,q0〉α(w0) max⇒0
G α(v0)〈B0,q0〉α(w0)

and, clearly,
(v0B0w0,q0)⇒0

Ḡ (v0B0w0,q0).

Induction Hypothesis. Suppose that the claim holds for all k-step derivations, where k ≤ m, for
some m≥ 0.

Induction Step. Let us consider a derivation

α(v0)〈B0,q0〉α(w0) max⇒m+1
G α(vm+1)〈Bm+1,qm+1〉α(wm+1).

Since m+1≥ 1, there is some

α(vm)〈Bm,qm〉α(wm) ∈ ((V̄ −T)∪Z)∗Y ((V̄ −T)∪Z)∗

and a production pm such that

α(v0)〈B0,q0〉α(w0) max⇒m
G α(vm)〈Bm,qm〉α(wm)

max⇒G α(vm+1)〈Bm+1,qm+1〉α(wm+1) [pm].

By the induction hypothesis, there is a derivation

(v0B0w0,q0)⇒m
Ḡ (vmBmwm,qm).

The production pm is one of the productions introduced in steps (4a) through (4c) and may be
of the following three forms, depending on the placement of Bm+1:

• (Bm+1,〈Bm,qm〉)→ (〈Bm+1,qm+1〉,α(xm+1)) for vm = v′mBm+1v′′m,

• (〈Bm,qm〉,Bm+1)→ (α(xm+1),〈Bm+1,qm+1〉) for wm = w′mBm+1w′′m,

• (〈Bm,qm〉,α(A))→ (α(x′m+1)〈Bm+1,qm+1〉α(x′′m+1),α(A)) or
(α(A),〈Bm,qm〉)→ (α(A),α(x′m+1)〈Bm+1,qm+1〉α(x′′m+1)) for
xm+1 = x′m+1Bm+1x′′m+1,

where A ∈ V̄ and xm+1,x′m+1,x
′′
m+1 ∈ V̄ ∗. Their construction is based on P̄, so there is a production

(Bm,qm)→ (xm+1,qm+1) ∈ P̄.
As we simulate G’s derivation by Ḡ, we have to demonstrate that for the given state qm, the

leftmost nonterminal in the sentential form is rewritten in G. We prove this by contradiction. Sup-
pose that there is a production p′m ∈ P from step (4) which rewrites some B′m ∈ V̄ −T in a state qm,
and B′m ∈ alph(vm). Then there exists (B′m,qm)→ (x′m+1,q

′
m+1) ∈ P̄ and, as a result, there also exist

productions from (3) which are based on (Bm,qm) → (xm+1,qm+1) and (B′m,qm) → (x′m+1,q
′
m+1).

These productions have the following forms:

• (B′m,〈Bm,qm〉,α(A))→ (X ,X ,X),

• (B′m,α(A),〈Bm,qm〉)→ (X ,X ,X),

• (α(A),B′m,〈Bm,qm〉)→ (X ,X ,X),

73

where A ∈ V̄ . Because |α(vm)〈Bm,qm〉α(wm)| ≥ 3, one of these productions is applicable. As
productions introduced in step (3) have higher precedence than productions introduced in step (4),
one of them is applied, which introduces X to the sentential form. This symbol, however, can never
be removed from the sentential form, so the derivation is not successful.

As a result, the leftmost nonterminal for a state qm is rewritten in G, so (Bm,qm)→ (xm+1,qm+1)
is used in Ḡ and we obtain

(vmBmwm,qm)⇒Ḡ (vm+1Bm+1wm+1,qm+1) [(Bm,qm)→ (xm+1,qm+1)].

If. We demonstrate that
(v0B0w0,q0)⇒m

Ḡ (vmBmwm,qm)

implies
α(v0)〈B0,q0〉α(w0) max⇒m

G α(vm)〈Bm,qm〉α(wm)

by induction on m.

Basis. Let m = 0. Then
(v0B0w0,q0)⇒0

Ḡ (v0B0w0,q0).

Clearly,
α(v0)〈B0,q0〉α(w0) max⇒0

G α(v0)〈B0,q0〉α(w0).

Induction Hypothesis. Suppose that the claim holds for all k-step derivations, where k ≤ m, for
some m≥ 0.

Induction Step. Consider a derivation

(v0B0w0,q0)⇒m+1
Ḡ (vm+1Bm+1wm+1,qm+1).

Since m + 1 ≥ 1, there is some (vmBmwm,qm), where vm,wm ∈ V̄ ∗, Bm ∈ V̄ −T , and a production
(Bm,qm)→ (xm+1,qm+1) such that

(v0B0w0,q0)⇒m
Ḡ (vmBmwm,qm)
⇒Ḡ (vm+1Bm+1wm+1,qm+1) [(Bm,qm)→ (xm+1,qm+1)].

By the induction hypothesis, there is a derivation

α(v0)〈B0,q0〉α(w0) max⇒m
G α(vm)〈Bm,qm〉α(wm).

Because (Bm,qm)→ (xm+1,qm+1) rewrites the leftmost rewritable symbol Bm for a given state
qm, there is no production (B′m,qm)→ (x′m+1,q

′
m+1) satisfying B′m ∈ alph(vm). As a result, none of

the productions from step (3) is applicable.
For each (Bm,qm)→ (xm+1,qm+1) ∈ P̄, there are productions of the following three forms in G

whose use depends on the placement of Bm+1:

1. (Bm+1,〈Bm,qm〉)→ (〈Bm+1,qm+1〉,α(xm+1)) for vm = v′mBm+1v′′m,

2. (〈Bm,qm〉,Bm+1)→ (α(xm+1),〈Bm+1,qm+1〉) for wm = w′mBm+1w′′m,

3. (〈Bm,qm〉,α(A))→ (α(x′m+1)〈Bm+1,qm+1〉α(x′′m+1),α(A)) or
(α(A),〈Bm,qm〉)→ (α(A),α(x′m+1)〈Bm+1,qm+1〉α(x′′m+1)) for
xm+1 = x′m+1Bm+1x′′m+1,

74

where A ∈ V̄ and xm+1,x′m+1,x
′′
m+1 ∈ V̄ ∗. As |α(vm)〈Bm,qm〉α(wm)| ≥ 3, one of them is applicable

in G, so we obtain

α(vm)〈Bm,qm〉α(wm) max⇒G α(vm+1)〈Bm+1,qm+1〉α(wm+1).

�

By Claims 6 through 9 it follows that L (CS)⊆L (PSC,max). As propagating scattered con-
text grammars do not contain ε-productions, their derivations can be simulated by linear bounded
automata. As a result, L (PSC,max)⊆L (CS). Therefore, L (CS) = L (PSC,max). �

Theorem 28. L (CS) = L (PSC,min).

Proof. Let L be a context-sensitive language described by a state grammar, Ḡ = (V̄ ,T,K, P̄, S̄, p0).
Set

Y = {〈A,q〉 : A ∈ V̄ −T,q ∈ K},

and Z = {ā : a ∈ T}. Define the homomorphism α form V̄ ∗ to ((V̄ −T)∪Z)∗ as α(A) = A for all
A ∈ V̄ −T and α(a) = ā for all a ∈ T . Set V = V̄ ∪Y ∪Z∪{S,X}. Define the propagating scattered
context grammar G′ as

G′ = (V,T,P′,S),

where P′ is constructed as follows:

1. For each x ∈ L(Ḡ), where |x| ≤ 3, add
(S)→ (x) to P′;

2. For each

(x,q) ∈ {(x,q) : (S̄, p0)⇒+
Ḡ (x,q) for some q ∈ K

and 4≤ |x| ≤min({4,max({|y| : (B, p)→ (y, p′) ∈ P̄})})},

where

(a) x ∈ T ∗, add
(S)→ (x) to P′;

(b) x = x1Ax2, A ∈ V̄ −T , x1,x2 ∈ V̄ ∗, add
(S)→ (α(x1)〈A,q〉α(x2)) to P′;

3. For each (A, p)→ (x,q), (B, p)→ (y,r) ∈ P̄, add
(B,〈A, p〉)→ (X ,X) to P′;

4. For each (A, p)→ (x,q) ∈ P̄, B ∈ V̄ −T , D,E ∈ V̄ , Γ21 ∈ perm(2,1), Γ12 ∈ perm(1,2),

u = reorder((B,〈A, p〉,α(D)),Γ21), u′ = reorder((〈B,q〉,α(x),α(D)),Γ21),
r = reorder((〈A, p〉,B,α(D)),Γ21), r′ = reorder((α(x),〈B,q〉,α(D)),Γ21),

y = reorder((〈A, p〉,α(D),α(E)),Γ12),

add

(a) u→ u′,

(b) r→ r′ to P′;

75

(c) If x = vBw, v,w ∈ V̄ ∗, for each

z = reorder((α(v)〈B,q〉α(w),α(D),α(E)),Γ12),

add
y→ z to P′;

(d) For each
u = reorder((α(x),α(D),α(E)),Γ12),

add
y→ u to P′;

5. For each a,b,c,d ∈ T , add

(a) (ā, b̄, c̄, d̄)→ (a, b̄, c̄, d̄),

(b) (ā, b̄, c̄, d̄)→ (a,b,c,d) to P′.

Claim 10. Every
(S̄, p0)⇒+

Ḡ (x,q)⇒+
Ḡ (u,r),

where q,r ∈ K, u ∈ T +, x = v0Aw0, A ∈ V̄ −T , v0,w0 ∈ V̄ ∗,

4≤ |x| ≤min({4,max({|y| : (B, p)→ (y, p′) ∈ P̄})}),

can only be generated by G′ as follows:

S min⇒G α(v0)〈A,q〉α(w0) [p2b]
min⇒∗G y [Ξ4]
min⇒G z [p4d]

min⇒|u|−4
G v [Ξ5]

min⇒G u [p5b],

where y ∈ Z∗Y Z∗, z = α(u), v ∈ (T ∪ Z)+; p2b, p4d , and p5b represent one of the productions
introduced in steps (2b), (4d), and (5b), respectively, and Ξ4 and Ξ5 are sequences of productions
introduced in steps (4a), (4b), (4c), and (5a), respectively.

Proof. The proof of the beginning of the derivation,

S min⇒G α(v0)〈A,q〉α(w0) [p2b]
min⇒∗G y [Ξ4]
min⇒G z [p4d],

is analogous to the proof of Claim 8 (in terms of minimal derivations) and is left to the reader.
Recall that z satisfies z = α(u). Each of the productions from (5a) replaces one occurrence of

ā with a for some a ∈ T and, finally, the application of a production from step (5b) replaces the
remaining four nonterminals with their terminal variants. Therefore,

z min⇒|u|−4
G v [Ξ5]

min⇒G u [p5b],

so the claim holds. �

76

Notice that len(p3) < len(p4) < len(p5) for each production p3, p4, and p5 introduced in steps
(3), (4), and (5), respectively, so the priorities (and the use) of the productions from the individual
steps are the same as in the case of grammars which use maximal derivations. As a result, for-
mulations of Claim 6, 7, and 9 can be changed in terms of minimal derivations. As their proofs
resemble the proofs of the claims mentioned above, they are left to the reader. Therefore, L (CS)⊆
L (PSC,min) and for the same reason as in the proof of Theorem 27, L (PSC,min)⊆L (CS), so
L (CS) = L (PSC,min).

�

We have demonstrated that propagating scattered context grammars which use maximal or mini-
mal derivations characterize the family of context-sensitive languages. Consequently, if in the future
formal language theory proves that any propagating scattered context grammar making maximal or
minimal derivations can be transformed to an equivalent propagating scattered context grammar
making ordinary derivations, it also proves that these grammars generate the family of all context-
sensitive languages and, thereby, solves the long-standing open problem.

77

Chapter 6

Generators of Sentences with Their
Parses

Parsing is important to all scientific areas that grammatically analyze and process languages, rang-
ing from compiler design through linguistics to molecular biology. As obvious, parses—that is,
the sequences of grammatical rules according to which sentences are generated—usually represent
the goal information we want to achieve by parsing. (Let us note that the notion of a parse repre-
sents a synonym of several other notions, including a derivation word, a Szilard word, and a control
word—see page 18 in [84].) We demonstrate that for every recursively enumerable language L,
there exists a propagating scattered context grammar whose language consists of L’s sentences fol-
lowed by their parses. That is, if we eliminate all the suffixes representing the parses, we obtain
precisely the recursively enumerable language L.

This characterization of recursively enumerable languages is of some interest because it is based
on propagating scattered context grammars whose languages are included in the family of context-
sensitive languages, which is properly contained in the family of recursively enumerable languages.
Similar kind of characterization was already studied in [7] (see Theorem 14). This result was later
improved by [37] showing that the same characterization can be achieved by using only leftmost
derivations. We present a more general way of characterizing recursively enumerable languages by
propagating scattered context grammars. Instead appending a sequence of useless symbols at the
beginning or at the end of every sentence as in the above results, we add a useful information about
the process of the generation—the parse.

Noteworthy, languages consisting of sentences followed by their parses were discussed in terms
of matrix grammars in Section 7.2 of [6], which refers to these languages as extended Szilard lan-
guages. Apart from using different grammars, this discussion concentrated its attention on different
areas of investigation, excluding any study of descriptional complexity, canonical derivations, or
the characterization of the family of recursively enumerable languages.

Based upon scattered context grammars, we introduce scattered context generators that produce
their sentences followed by the corresponding parses. As canonical leftmost and rightmost deriva-
tions fulfill a crucial role in parsing, we then modify these generators to their canonical versions that
do the same job except that they only perform either leftmost or rightmost derivations. In addition,
we reduce the grammatical size of these generators.

As we record which productions were used during the derivation, we need to refer to these
productions somehow. This is done by production labels.

Definition 33. We assume that for every scattered context grammar G = (V,T,P,S) there is a set of
production labels, denoted by lab(G), such that |lab(G)|= |P|; as usual, lab(G)∗ denotes the set of

78

all strings over lab(G). Furthermore, there is a bijection from P to lab(G) such that if this bijection
maps a production (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P to a label l ∈ lab(G), we say that (A1, . . . ,An)→
(x1, . . . ,xn) is labeled with l, symbolically written as

l : (A1, . . . ,An)→ (x1, . . . ,xn).

To make the following text more readable, we use lhs(l) and rhs(l) instead of lhs((A1, . . . ,An)→
(x1, . . . ,xn)) and rhs((A1, . . . ,An)→ (x1, . . . ,xn)), respectively. By analogy with labeling each pro-
duction in every scattered context grammar, we label each production (a,b,x,c) in every queue
grammar as l : (a,b,x,c). To express that x⇒∗G y, where x,y ∈V ∗, by using a sequence of produc-
tions labeled with p1, p2, . . . , pn, we write x⇒∗G y [ρ], where ρ = p1 . . . pn ∈ lab(G)∗.

As we also use canonical generators, we define the derivations performed in a leftmost and a
rightmost way.

Definition 34. If every derivation step in every successful derivation in a scattered context grammar
G is leftmost, G generates L(G) in a leftmost way. If every step in every successful derivation in G
is rightmost, G generates L(G) in a rightmost way.

Finally, we introduce the most important definition of this chapter—a proper generator of its
sentences with their parses.

Definition 35. Let G = (V,T,P,S) be a scattered context grammar and let S⇒∗G x [ρ], where x∈ T ∗

and ρ ∈ lab(G)∗; then, x is a sentence generated by G according to parse ρ . Let lab(G)⊆ T . G is
a proper generator of its sentences with their parses if and only if

L(G) = {x : x = yρ,y ∈ (T − lab(G))∗,ρ ∈ lab(G)∗,S⇒∗G x [ρ]};

in addition, if G generates L(G) in a leftmost or a rightmost way, G is a proper leftmost or a proper
rightmost generator of its sentences with their parses. Similarly, G is a proper generator of its
sentences preceded by their parses if and only if

L(G) = {x : x = ρy,y ∈ (T − lab(G))∗,ρ ∈ lab(G)∗,S⇒∗G x [ρ]};

in addition, if G generates L(G) in a leftmost way, G is a proper leftmost generator of its sentences
preceded by their parses.

Notice that these definitions impose no restrictions on derivations in a proper leftmost generator.
However, every proper leftmost generator G satisfies the property that if G makes a non-leftmost
step during a derivation, then this derivation cannot generate a member of L(G). The same applies
for proper rightmost generators.

Example 4. We illustrate these definitions by four scattered context grammars, each of which has
its set of production labels equal to {1,2,3,4}.

1. Consider the scattered context grammar

G1 = ({S,A,B,C,a,b,c},{a,b,c},P1,S)

with P1 containing
1 : (S)→ (ε),
2 : (S)→ (ABC),
3 : (A,B,C)→ (aA,bB,cC),
4 : (A,B,C)→ (a,b,c).

As {1,2,3,4} 6⊆ {a,b,c}, G1 is not a proper generator of its sentences with their parses.

79

2. Consider the scattered context grammar

G2 = ({S,A,B,C,a,b,c,1,2,3,4},{a,b,c,1,2,3,4},P2,S)

with P2 containing
1 : (S)→ (1),
2 : (S)→ (ABC2),
3 : (A,B,C)→ (aA,bB,cC3),
4 : (A,B,C)→ (a,b,c4).

Notice that {1,2,3,4} ⊆ {a,b,c,1,2,3,4}. However,

L(G2) = {anbncn rev(ρ) : n≥ 0,S⇒∗G2
anbncn rev(ρ) [ρ]}

6= {anbncnρ : n≥ 0,S⇒∗G2
anbncnρ [ρ]},

so G2 is not a proper generator of its sentences with their parses either.

3. Consider the scattered context grammar

G3 = ({S,A,B,C,$,a,b,c,1,2,3,4},{a,b,c,1,2,3,4},P3,S)

with P3 containing
1 : (S)→ (1),
2 : (S)→ (ABC2$),
3 : (A,B,C,$)→ (AA,BB,CC,3$),
4 : (A,B,C,$)→ (a,b,c,4).

Observe that
L(G3) = {anbncn

ρ : n≥ 0,S⇒∗G3
anbncn

ρ [ρ]},

so G3 is a proper generator of its sentences with their parses. However, as G3 does not have
to generate every sentence in a leftmost or a rightmost way, G3 is neither a proper leftmost
nor a proper rightmost generator of its sentences with their parses.

4. Consider the scattered context grammar

G4 = ({S,A,B,C,$,a,b,c,1,2,3,4},{a,b,c,1,2,3,4},P4,S)

with P4 containing
1 : (S)→ (1),
2 : (S)→ (ABC2$),
3 : (A,B,C,$)→ (aA,bB,cC,3$),
4 : (A,B,C,$)→ (a,b,c,4).

Observe that
L(G4) = {anbncn

ρ : n≥ 0,S⇒∗G4
anbncn

ρ [ρ]}

and every derivation step in G4 is both leftmost and rightmost, so G4 is both a proper leftmost
and a proper rightmost generator of its sentences with their parses.

80

6.1 General Generators

Next, we demonstrate that for every recursively enumerable language L, there is a propagating
scattered context grammar G which represents a proper generator of its sentences with their parses
such that L results from L(G) by eliminating all production labels in L(G).

Theorem 29. For every recursively enumerable language L, there exists a propagating scattered
context grammar G such that G is a proper generator of its sentences with their parses and L =
L(G)// lab(G)+.

Proof. Let L be a recursively enumerable language. Then, there is a scattered context grammar Ḡ =
(V̄ ,T, P̄, S̄) such that L = L(Ḡ) (see Theorem 16). Set Φ = {â : a ∈ T}. Define the homomorphism
γ from V̄ to (Φ∪ (V̄ −T)∪{Y})+ as γ(a) = â for all a ∈ T and γ(A) = A for all A ∈ V̄ −T . Extend
the domain of γ to V̄ + in the standard manner; non-standardly, however, define γ(ε) =Y rather than
γ(ε) = ε . (Let us note that at this point γ does not, strictly speaking, represent a homomorphism.)
Finally, set Γ = {$1,$2,$3} and V = V̄ ∪ lab(G)∪Φ∪ Γ∪ {S,X ,Y,Z}. Define the propagating
scattered context grammar

G = (V̄ ∪ lab(G)∪Φ∪Γ∪{S,X ,Y,Z},T ∪ lab(G),P,S)

with
lab(G) = {b1c,b1εc,b2c,b2εc,b3c,b4c}∪Ξ1∪Ξ2∪Ξ3,

where Ξ1 = {b1pc : p ∈ lab(Ḡ)}, Ξ2 = {b2ac : a ∈ T}, Ξ3 = {b3ac : a ∈ T}; without loss of
generality, assume lab(G)∩ alph(L) = /0. P is constructed as follows:

1. Add

(a) b1c : (S)→ (Xb1c$1ZS̄) and

(b) b1εc : (S)→ (b1εc$1S̄) to P;

2. (a) For each p : (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P̄, add
b1pc : ($1,A1, . . . ,An)→ (b1pc$1,γ(x1), . . . ,γ(xn)) to P;

(b) Add

i. b2c : ($1)→ (b2c$2) and
ii. b2εc : ($1)→ (b2εc$3) to P;

3. For each a ∈ T , add

(a) b2ac : (X ,$2,Z, â)→ (aX ,b2ac$2,Y,Z) and

(b) b3ac : (X ,$2,Z, â)→ (a,b3ac$3,Y,Y) to P;

4. Add b3c : ($3,Y)→ (b3c,$3) to P;

5. Add b4c : ($3)→ (b4c) to P.

Basic Idea. First, we explain how G makes the derivation of a nonempty sentence followed by its
parse; then, we explain the derivation of the empty sentence followed by its parse.

G makes the derivation of a1a2 . . .anρ , where n ≥ 1, each ai ∈ T and ρ is the corresponding
parse, by productions introduced in steps (1) through (5) in this order. After starting this derivation

81

by using the production from (1a), it applies productions introduced in (2a), which simulate the ap-
plications of productions from P̄. More precisely, it simulates the application of p : (A1, . . . ,An)→
(x1, . . . ,xn) ∈ P̄ by using

b1pc : ($1,A1, . . . ,An)→ (b1pc$1,γ(x1), . . . ,γ(xn)) ∈ P

so that it places its own label, b1pc, right behind the previously generated production labels; this
substring of labels occurs between the leftmost symbol, X , and $1, in the sentential form. Otherwise,

b1pc : ($1,A1, . . . ,An)→ (b1pc$1,γ(x1), . . . ,γ(xn))

is analogical to p : (A1, . . . ,An) → (x1, . . . ,xn) except that (1) the former has the fill-in symbol
Y where the latter has ε and (2) the former has â where the latter has terminal ai. After using
productions introduced in (2), G has its current sentential form of the form

Xτ$2Zu0â1u1â2u2 . . .un−1ânun,

where τ is a prefix of ρ and ui ∈ {Y}∗. By using productions from (3), it places a1 . . .an at the
beginning of the sentential form while replacing each âi with Y and generating the production
labels. By using productions labeled with b3c, G replaces each Y with b3c while shifting $3 to
the right. Finally, the application of the production labeled with b4c completes the derivation of
a1a2 . . .anρ .

Finally, let us explain how G makes the derivation of the empty sentence ε followed by its parse.
By use of productions labeled with b1εc and b2εc instead of b1c and b2c, respectively, the process
of placing terminal symbols at the beginning of the sentential form by productions from step (3) is
skipped; otherwise, the derivation proceeds as above.

Formal Proof.

Claim 11. G generates each w ∈ L(G)− lab(G)+ in the following way:

S⇒G Xb1c$1ZS̄ [b1c]
⇒+

G x [ρ]
⇒G y [b2c]
⇒∗G z [σ]
⇒G u [b3ac]
⇒+

G v [τ]
⇒G w [b4c],

where x,y,z,u,v,w ∈V ∗, b3ac ∈ Ξ3, τ ∈ {b3c}+, ρ ∈ Ξ
+
1 , and σ ∈ Ξ∗2.

Proof. First, let us make these four observations:

1. Since the only productions with S on their left-hand sides are productions introduced in
step (1) of the construction, S ⇒+

G w surely starts with a step made by one of these pro-
ductions. Further, S /∈ alph(rhs(p)) for any p ∈ P. Therefore, these productions are not used
during the rest of the derivation. Notice that alph(w)∩T 6= /0 and only productions labeled
with p ∈ Ξ2∪Ξ3 satisfy a ∈ alph(rhs(p)), where a ∈ T . This derivation ends by applying the
production labeled with b4c because it is the only production with its right-hand side over
(T ∪ lab(G))∗. Thus, S⇒+

G w can be expressed as

S⇒G Xb1c$1ZS̄ [b1c]
⇒+

G v
⇒G w [b4c].

82

2. Let p be a label of any production introduced in steps (2) through (4) of the construction; then,
|lhs(p)|Γ = |rhs(p)|Γ = 1. In greater detail, for each b1pc ∈ Ξ1, b2ac ∈ Ξ2, and b3ac ∈ Ξ3,
productions introduced in step (2) satisfy

|lhs(b1pc)|{$1} = |rhs(b1pc)|{$1} = 1,

|lhs(b2c)|{$1} = |rhs(b2c)|{$2} = 1,

|lhs(b2εc)|{$1} = |rhs(b2εc)|{$3} = 1.

Similarly, productions introduced in step (3) satisfy

|lhs(b2ac)|{$2} = |rhs(b2ac)|{$2} = 1,

|lhs(b3ac)|{$2} = |rhs(b3ac)|{$3} = 1.

Finally, the production introduced in step (4) satisfies

|lhs(b3c)|{$3} = |rhs(b3c)|{$3} = 1.

3. Because X ∈ alph(x) and only productions labeled with p ∈ Ξ3 satisfy X ∈ alph(lhs(p)) and
X /∈ alph(rhs(p)), the production labeled with b2εc cannot be used.

4. Let p be the label of any production introduced in steps (1) through (5); then, alph(rhs(p))∩
lab(G) = {p} and |rhs(p)|{p} = 1.

Based on these observations, notice that G generates each w ∈ L(G)− lab(G)+ in the way
described in the formulation of Claim 11. �

Claim 12. Consider the derivation from Claim 11. In its beginning,

S⇒G Xb1c$1ZS̄ [b1c]
⇒+

G x [ρ]
⇒G y [b2c],

every sentential form s in Xb1c$1ZS̄⇒+
G x satisfies

s ∈ {X} lab(G)+{$1}{Z}(Φ∪ (V̄ −T)∪{Y})+

and
y ∈ {X} lab(G)+{$2}{Z}(Φ∪{Y})+.

Proof. By the definition of the homomorphism γ , productions labeled with b1pc, where p∈ lab(Ḡ),
rewrite symbols over Φ∪ (V̄ −T)∪{Y} and change $1 to b1pc$1. Since V̄ ∩{X ,$1,Z}= /0, every
sentential form s in Xb1c$1ZS̄⇒+

G x satisfies

s ∈ {X} lab(G)+{$1}{Z}(Φ∪ (V̄ −T)∪{Y})+.

Only productions labeled with b1pc ∈ Ξ1 satisfy

alph(lhs(b1pc))∩ (V̄ −T) 6= /0.

Therefore, to generate w ∈ (T ∪ lab(G))∗, productions labeled with b1pc have to be applied until

s ∈ {X} lab(G)+{$1}{Z}(Φ∪{Y})+.

Finally, the production labeled with b2c is used, so

y ∈ {X} lab(G)+{$2}{Z}(Φ∪{Y})+

and the claim holds. �

83

Claim 13. In
y⇒∗G z [bσc]
⇒G u [b3ac]

of the derivation from Claim 11, every sentential form o in y⇒∗G z can be expressed as

o ∈ T ∗{X} lab(G)+{$2}{Y}∗{Z}(Φ∪{Y})+

and u ∈ T + lab(G)+{$3}{Y}+. In greater detail,

Xbp1c . . .bpnc$2ZY i0 b̂1Y i1 b̂2Y i2 . . . b̂mY im = y
⇒G b1Xbp1c . . .bpncb2b1c$2Y i0+1ZY i1 b̂2Y i2 . . . b̂mY im [b2b1c]
⇒G b1b2Xbp1c . . .bpncb2b1cb2b2c$2Y i0+1Y i1+1ZY i2 . . . b̂mY im [b2b2c]
⇒m−3

G b1 . . .bm−1Xbp1c . . .bpncb2b1c . . .b2bm−1c$2Y i0+1

. . .Y im−2+1ZY im−1 b̂mY im [σ̄]
⇒G b1 . . .bmbp1c . . .bpncb2b1c . . .b2bm−1cb3bmc$3Y i0+1

. . .Y im+1 = u [b3bmc],

where bp1c, . . . ,bpnc ∈ lab(G) are labels that denote productions introduced in steps (1) and (2),
b1, . . . ,bm ∈ T , σ̄ = b2b3c . . .b2bm−1c, i0, . . . , im ≥ 0, m = |s|, where s ∈ L(Ḡ) is the corresponding
sentence of the scattered context grammar Ḡ.

Proof. Notice that
|lhs(b2ac)|{X} = |rhs(b2ac)|{X} = 1

and
|lhs(b2ac)|{Y} = |rhs(b2ac)|{Y} = 1,

where b2ac ∈ Ξ2. In every derivation step of y ⇒∗G z, the the first symbol b̂ ∈ Φ following Z is
replaced with Z, X is changed to bX , and $2 is changed to b2ac$2, where b2ac ∈ Ξ2. As only
productions from step (3), labeled with p, satisfy alph(lhs(p))∩Φ 6= /0, alph(rhs(p))∩Φ = /0, Z
can replace only the first occurrence of b̂ ∈Φ behind Z to generate w ∈ (T ∪ lab(G))∗. Productions
labeled with b2ac are used m−1 times. Thus, y⇒∗G z has the form

Xbp1c . . .bpnc$2ZY i0 b̂1Y i1 b̂2Y i2 . . . b̂mY im

⇒G b1Xbp1c . . .bpncb2b1c$2Y i0+1ZY i1 b̂2Y i2 . . . b̂mY im [b2b1c]
⇒G b1b2Xbp1c . . .bpncb2b1cb2b2c$2Y i0+1Y i1+1ZY i2 . . . b̂mY im [b2b2c]
⇒m−3

G b1 . . .bm−1Xbp1c . . .bpncb2b1cb2bm−1c$2Y i0+1

. . .Y im−2+1ZY im−1 b̂mY im [σ̄],

where every sentential form satisfies

T ∗{X} lab(G)+{$2}{Y}∗{Z}(Φ∪{Y})+.

Finally, a production labeled with b3ac is applied; therefore, z⇒G u can be expressed as

b1 . . .bm−1Xbp1c . . .bpncb2b1c . . .b2bm−1c$2Y i0+1

. . .Y im−2+1ZY im−1 b̂mY im

⇒G b1 . . .bmbp1c . . .bpncb2b1c . . .b2bm−1cb3bmc$3Y i0+1 . . .Y im+1 [b3bmc]

with u ∈ T + lab(G)+{$3}{Y}+.
Putting together the previous parts of derivation, we obtain the formulation of Claim 13. Thus,

Claim 13 holds. �

84

Claim 14. In
u⇒+

G v [τ]
⇒G w [b4c]

of the derivation from Claim 11, every sentential form s of u⇒+
G v satisfies s∈T + lab(G)+{$3}{Y}∗

and w ∈ T + lab(G)+. In greater detail, this derivation can be expressed as

b1 . . .bmbp1c . . .bpnc{$3}Y i

⇒G b1 . . .bmbp1c . . .bpncb3c{$3}Y i−1 [b3c]
⇒i−2

G b1 . . .bmbp1c . . .bpncb3ci−1{$3}Y [τ̄]
⇒G b1 . . .bmbp1c . . .bpncb3ci{$3} [b3c]
⇒G b1 . . .bmbp1c . . .bpncb3cib4c [b4c],

where each b j ∈ T for all 1≤ j ≤ m, bpkc ∈ lab(G) for all 1≤ k ≤ n are labels that denote produc-
tions introduced in steps (1) through (3) of the construction, and τ̄ ∈ {b3c}∗.

Proof. Observe that in order to generate w ∈ (T ∪ lab(G))∗, the first occurrence of Y following
$3 has to be rewritten by the production labeled with b3c in every derivation step. Finally, the
production labeled with b4c is applied. At this point, w satisfies w ∈ T + lab(G)+. �

The following claim formally demonstrates how G generates the empty sentence ε followed by its
parse.

Claim 15. G generates each w ∈ lab(G)+ in the following way:

S⇒G b1εc$1S̄ [b1εc]
⇒+

G x [ρ]
⇒G y [b2εc]
⇒+

G v [τ]
⇒G w [b4c],

where ρ ∈ Ξ
+
1 and τ ∈ {b3c}+.

Proof. Note that alph(w)∩T = /0 and only productions labeled with p∈Ξ3 satisfy X ∈ alph(lhs(p)),
X /∈ alph(rhs(p)), and a ∈ alph(rhs(p)), where a ∈ T . Therefore, X cannot appear in any sentential
form of S⇒∗G w, so the derivation starts with a step made by the production labeled with b1εc. As
X /∈ alph(x) and for p ∈ Ξ2∪Ξ3, X ∈ alph(lhs(p)), the production labeled with b2εc has to be used.
Observe that other derivation steps are made in the way described in Claim 12 and Claim 14. �

From Claims 11 through 15, it follows that for every recursively enumerable language L, there
exists a propagating scattered context grammar G such that G is a proper generator of its sentences
with their parses and L = L(G)// lab(G)+. �

In addition, Theorem 29 immediately implies Corollary 5. Clearly, by constructing a proper
generator of its sentences with their parses G whose language satisfies L = L(G)// lab(G)+ and
defining h so that it erases every symbol from lab(G) and preserves all other symbols, we get a
constructive proof of Corollary 5.

By a straightforward modification of the construction, we can also prove an analogous result
for sentences which are preceded by their parses.

Theorem 30. For every recursively enumerable language L, there exists a propagating scattered
context grammar G such that G is a proper generator of its sentences preceded by their parses and
L = lab(G)+\\L(G). �

Clearly, Theorem 14 is then an immediate corollary of Theorem 30 because instead of generating
a production label in every derivation step, we can generate the fill-in symbol $ so the resulting
sentence is preceded by a sequence of $’s which is exactly what Theorem 14 says.

85

6.2 Canonical Generators

Next, we establish two characterizations based on leftmost and rightmost generators. We demon-
strate that for every recursively enumerable language L there is a propagating scattered context
grammar G which represents a proper leftmost (rightmost) generator of its sentences with their
parses so that L results from L(G) by eliminating all production labels in L(G). Notice that there
exists a significant advantage of canonical generators over general generators—in a sentence gen-
erated by leftmost generators, the recorded parse provides us with a sufficient information to repro-
duce its derivation while in ordinary generators, this information is insufficient because the precise
specification of the occurrences of the symbols to be rewritten is missing.

Theorem 31. For every recursively enumerable language L there exists a propagating scattered
context grammar G = (V̄ , T̄ ,P,S) such that G is a proper leftmost generator of its sentences with
their parses, |V̄ − T̄ | ≤ 6, and L = L(G)// lab(G)+.

Proof. Let L be a recursively enumerable language. Let Q = (V,T,W,F,R,g) be a queue grammar
such that L(Q) = L−{ε} and Q satisfies the properties described in Lemma 3 and Corollary 1.
Recall that lab(Q) is the set of Q’s production labels. Define an injective homomorphism α from
lab(Q)∗ to {0}∗{1} so that α is an injective homomorphism when its domain is extended to lab(Q)∗

in the standard way. Further, define the substitution f on V ∗ so that f (ε) = ε and

f (a) = {α(r) : r : (a,b,x,d) ∈ R}

for all a ∈V . Similarly, define the substitution g on W ∗ so that

g(b) = {α(r) : r : (a,b,x,d) ∈ R}

for all b ∈W . Set

Ξ1= {b1ā0q̄0c : g = a0q0, ā0 ∈ f (a0), q̄0 ∈ g(q0)},
Ξ2= {b2rx̄d̄c : r : (a,b,x,d) ∈ R,x ∈ (V −T)∗,d ∈W −F,

x̄ ∈ f (x), d̄ ∈ g(d)},
Ξ4= {b4rd̄c : r : (a,b,c,d) ∈ R,c ∈ T,d ∈W −F, d̄ ∈ g(d)},
Ξ5= {b5rc : r : (a,b,c,d) ∈ R,c ∈ T,d ∈ F}.

Define the propagating scattered context grammar G as

G = ({S,A,B,#,0,1}∪T ∪ lab(G),T ∪ lab(G),P,S),

where
lab(G) = Ξ1∪Ξ2∪Ξ4∪Ξ5∪{b3c,b6c,b7c,b8c,b9c,b10c},

and P is constructed as follows:

1. For each ā0 ∈ f (a0), q̄0 ∈ g(q0) such that g = a0q0, add
b1ā0q̄0c : (S)→ (Ab1ā0q̄0cAAq̄0Aā0AB) to P;

2. For each r : (a,b,x,d) ∈ R, x ∈ (V −T)∗, d ∈W −F , and x̄ ∈ f (x), d̄ ∈ g(d), add
b2rx̄d̄c : (A,A,A,A,A,B)→ (A,b2rx̄d̄cA,α(r)A, d̄A, x̄A,B) to P;

3. Add b3c : (A,A,A,A,A,B)→ (A,b3cA,A,A,B,A) to P;

4. For each r : (a,b,c,d) ∈ R, c ∈ T , d ∈ (W −F), and d̄ ∈ g(d), add
b4rd̄c : (A,A,A,A,B,A)→ (cA,b4rd̄cA,α(r)A, d̄A,B,A) to P;

86

5. For each r : (a,b,c,d) ∈ R, c ∈ T and d ∈ F , add
b5rc : (A,A,A,A,B,A)→ (c,b5rcA,α(r)A,A,B,AA) to P;

6. Add

(a) b6c : (A,0,A,0,A,0,B,A,A)→ (b6c,A,#,A,#,A,B,A,A) and
(b) b7c : (A,1,A,1,A,1,B,A,A)→ (b7c,A,#,A,#,A,B,A,A) to P;

7. Add

(a) b8c : (A,A,A,B,A,A)→ (b8cB,#,#,#,#,#),
(b) b9c : (B,#)→ (b9c,B), and
(c) b10c : (B)→ (b10c) to P.

Basic Idea. G simulates every successful derivation of a sentence x ∈ L(Q) and, simultaneously,
records the productions it applies. At the end of the simulation, G moves the generated sentence x
to the left so it occurs in front of the recorded labels. G makes all this derivation so that it represents
a proper leftmost generator of its sentences with their parses and L(Q) = L(G)// lab(G)+.

To describe the way G works in greater detail, observe that G generates every sentence so it
applies its productions in the order corresponding to steps (1) through (7) in the construction above.
First, G applies a production introduced in (1) and, thereby, starts the simulation of a derivation of
x by Q. That is, for g = a0q0, G inserts the binary representation of q0 and a0 in front of the fourth
and the fifth nonterminal A, respectively. Each production introduced in step (2) of the construction
simulates a production in Q of the form r : (a,b,x,d), where x ∈ (V −T)∗ and d ∈W −F . This
production places r’s binary representation in front of the third nonterminal A and inserts the binary
representation of d and x in front of the fourth and the fifth nonterminal A, respectively. After the
application of the production labeled with b3c, G simulates only productions of the form (a,b,c,d)
with c ∈ T and d ∈W −F by productions introduced in step (4). This simulation places c so it
precedes the first nonterminal A; otherwise, it works similarly to the simulation by productions
introduced in (2). By a production constructed in (5), G completes the simulation of Q’s derivation
of x. To successfully complete the derivation, all the three binary substrings that follow each of the
first three nonterminals A have to coincide. By the productions constructed in step (6), G verifies
this coincidence so that it replaces the first coinciding binary symbol with the applied production
label and the other two symbols with #’s. If G successfully completes this verification process,
production labeled with b8c replaces all A’s with #’s and moves B at the very end of the sequence
of the recorded labels. Then, G uses the production labeled with b9c to replace all #’s with b9c’s.
Finally, it completes the derivation by using the production labeled with b10c to replace B with
b10c.
Formal Proof.

Claim 16. Every sentence w ∈ L(G) is generated in this way:

S⇒G Ab1ā0q̄0cAAq̄0Aā0AB [b1ā0q̄0c]
⇒∗G x [ρ]
⇒G y [b3c]
⇒∗G z [σ]
⇒G u [b5rc]
⇒∗G v [τ]
⇒G w1 [b8c]
⇒∗G w2 [ω]
⇒G w [b10c],

87

where
x,y,z,u,v,w1,w2,w ∈ ({S,A,B,#,0,1}∪T ∪ lab(G))∗,

b1ā0q̄0c ∈ Ξ1, b5rc ∈ Ξ5, ρ ∈ Ξ∗2, σ ∈ Ξ∗4, τ ∈ {b6c,b7c}∗, and ω ∈ {b9c}∗.

Proof. Since the only productions with S on their left-hand sides are the productions introduced in
step (1), S⇒∗G w surely starts with a derivation step made by one of these productions. As S does
not occur on the right-hand side of any production, no production constructed in step (1) is applied
later in the derivation.

All derivations end by applying the production labeled with b10c because it is the only produc-
tion with its right-hand side over (T ∪ lab(G))∗. Thus, S⇒∗G w can be expressed as

S⇒G Ab1ā0q̄0cAAq̄0Aā0AB [b1ā0q̄0c]
⇒∗G w2
⇒G w [b10c].

Further, notice that each production introduced in steps (2) through (6) contains exactly five A’s
and one B on both its left and right-hand side. As all five A’s and one B are rewritten during every
derivation step made by productions of (2) through (6), the position of B implies that

S⇒G Ab1ā0q̄0cAAq̄0Aā0AB [b1ā0q̄0c]
⇒∗G w2

can be expressed as
S⇒G Ab1ā0q̄0cAAq̄0Aā0AB [b1ā0q̄0c]
⇒∗G x [ρ]
⇒G y [b3c]
⇒∗G z [σ]
⇒G u [b5rc]
⇒∗G v [τ]
⇒G w1 [b8c]
⇒∗G w2.

The production labeled with b8c replaces all A’s with #’s. After this replacement, only produc-
tions labeled with b9c and b10c can be used. The production labeled with b9c requires #’s behind
B; this requirement is satisfied by the production labeled with b8c. The production labeled with
b10c is used during the very last derivation step because it removes B from the sentential form and
B occurs on the left-hand sides of all other productions. Based on these observations, notice that G
generates each w ∈ L(G) in the way described in Claim 16. �

Claim 17. Consider the derivation from Claim 16. In its beginning,

S⇒G Ab1ā0q̄0cAAq̄0Aā0AB [b1ā0q̄0c]
⇒∗G x [ρ]
⇒G y [b3c],

where b1ā0q̄0c ∈ Ξ1, ρ ∈ Ξ∗2, and every sentential form s in

Ab1ā0q̄0cAAq̄0Aā0AB⇒∗G x

satisfies
s ∈ {A} lab(G)+{A}{0,1}∗{A}{0,1}∗{A}{0,1}∗{A}{B},

and
y ∈ {A} lab(G)+{A}{0,1}∗{A}{0,1}∗{A}{0,1}∗{B}{A}.

88

Proof. Productions introduced in step (2) of the construction simulate Q’s productions of the form
r : (a,b,z,d), z ∈ (V −T)∗ and d ∈W −F . Each production inserts its label in front of the second
nonterminal A, α(r) in front of the third nonterminal A, d̄ ∈ g(d) in front of the fourth nonterminal
A, and, finally, z̄, where z̄ ∈ f (z), in front of the fifth nonterminal A. Intuitively, α(r) is the binary
representation of currently simulated production, d̄ is the binary representation of production r′ :
(a′,b′,z′,d′), b′ = d, which will be simulated in the following derivation step, and z̄ is the binary
representation of productions which will eventually be simulated when the first symbol of Q’s
sentential form becomes c1, . . . ,cn, where c1, . . . ,cn = z. As for all l ∈ lab(Q), α(l) ∈ {0}∗{1}
and for each u ∈ f (a), v ∈ g(b) with a ∈V , b ∈W , u,v ∈ {0}∗{1}, every sentential form s in

Ab1ā0q̄0cAAq̄0Aā0AB⇒∗G x

satisfies
s ∈ {A} lab(G)+{A}{0,1}∗{A}{0,1}∗{A}{0,1}∗{A}{B}.

Finally, after the production labeled with b3c is used,

y ∈ {A} lab(G)+{A}{0,1}∗{A}{0,1}∗{A}{0,1}∗{B}{A}.

Therefore, the claim holds. �

Claim 18. In
y⇒∗G z [σ]
⇒G u [b5rc]

of the derivation from Claim 16, where σ ∈ Ξ∗4 and b5rc ∈ Ξ5, every sentential form s in y ⇒∗G
z satisfies

s ∈ T ∗{A} lab(G)+{A}{0,1}∗{A}{0,1}∗{A}{0,1}∗{B}{A},

and
u ∈ T + lab(G)+{A}{0,1}∗{A}{0,1}∗{A}{0,1}∗{B}{A}{A}.

Proof. The productions introduced in step (4) simulate Q’s productions of the form r : (a,b,c,d),
where c ∈ T and d ∈W −F by analogy with the productions introduced in step (2) except that c is
placed in front of the first nonterminal A because c ∈ T is not further rewritten in Q during the rest
of the derivation. Therefore, every sentential form s in y⇒∗G z satisfies

s ∈ T ∗{A} lab(G)+{A}{0,1}∗{A}{0,1}∗{A}{0,1}∗{B}{A}.

The final step in Q is made by a production with d ∈ F that is simulated by productions introduced
in step (5) of the construction. After its application,

u ∈ T + lab(G)+{A}{0,1}∗{A}{0,1}∗{A}{0,1}∗{B}{A}{A},

so the claim holds. �

Claim 19. In
u⇒∗G v [τ]
⇒G w1 [b8c]

of the derivation from Claim 16, where τ ∈ {b6c,b7c}∗, every sentential form s in u⇒∗G v satisfies

s ∈ T + lab(G)+{A}{0,1}∗{#}∗{A}{0,1}∗{#}∗{A}{0,1}∗{B}{A}{A},

and w1 ∈ T + lab(G)+{B}{#}∗.

89

Proof. Observe that G properly simulates Q if and only if the substrings over {0,1} that follow each
of the first three nonterminals A in the sentential form u are identical. The productions introduced in
step (6) check if this property holds. As no production labeled with b8c,b9c,b10c rewrites symbols
over {0,1}, and w ∈ (T ∪ lab(G))∗, all symbols from {0,1} have to be rewritten with b6c and b7c;
while the first three nonterminals A are moving right in the sentential form, the symbols following
the first nonterminal A are replaced with production labels and the symbols following the second
and third nonterminal A with #’s. Observe that each step in this derivation has to be leftmost.
Therefore, every sentential form s in u⇒∗G v satisfies

s ∈ T + lab(G)+{A}{0,1}∗{#}∗{A}{0,1}∗{#}∗{A}{0,1}∗{B}{A}{A}.

Finally, the production labeled with b8c is used to rewrite each A to # and, thereby, make w1 ∈
T + lab(G)+{B}{#}∗. The claim thus holds. �

Claim 20. In
w1⇒∗G w2 [ω]
⇒G w [b10c]

of the derivation from Claim 16, where ω ∈ {b9c}∗, every sentential form s in w1 ⇒∗G w2 satisfies
s ∈ T + lab(G)+{B}{#}∗, and w ∈ T + lab(G)+.

Proof. Observe that in order to generate w ∈ (T ∪ lab(G))∗, the first occurrence of # following B is
changed to b9c in every derivation step. After each # is changed in this way, the production labeled
with b10c is applied to obtain w ∈ T + lab(G)+. �

By Claims 16 through 20, L(Q) = L(G)// lab(G)+ and G is a proper leftmost generator of
its sentences with their parses. If ε ∈ L, include b0c into lab(G) and a production of the form
b0c : (S)→ (b0c) into P. At this point, L = L(Q)∪{ε} = L(G)// lab(G)+. Finally, notice that G
contains only six nonterminals. Therefore, Theorem 31 holds. �

Next, we establish a result that is similar to Theorem 31 in terms of proper rightmost generators.

Theorem 32. For every recursively enumerable language L there exists a propagating scattered
context grammar G = (V̄ , T̄ ,P,S) such that G is a proper rightmost generator of its sentences with
their parses, |V̄ − T̄ | ≤ 6, and L = L(G)// lab(G)+.

Proof. The proper rightmost generator of its sentences with their parses can be constructed analog-
ically to the construction described in the proof of Theorem 31. The constructed grammar contains
exactly the same set of nonterminal and terminal symbols with a slightly modified set of produc-
tions. Specifically, the productions introduced in steps (1) through (5) of the construction in the
proof of Theorem 31 rewrite the sentential form in both the leftmost and the rightmost way and
could be used without any modification. However, to construct the rightmost generator, one more
nonterminal A is needed in the sentential form, so an additional symbol A has to occur in every of
these productions in front of the nonterminal B.

The productions introduced in steps (6) and (7) are changed in the following way:

6. Add

(a) b6c : (A,0,A,0,A,0,A,B,A,A)→ (b6cA,A,#,A,#,A,#,B,A,A),

(b) b7c : (A,1,A,1,A,1,A,B,A,A)→ (b7cA,A,#,A,#,A,#,B,A,A) to P;

7. Add

90

(a) b8c : (A,A,A,A,B,A,A)→ (#,#,#,#,#,#,BB),

(b) b9c : (#,B,B)→ (B,b9c,B), and

(c) b10c : (B,B)→ (b8c,b10c) to P.

The productions introduced in step (6) of the construction verify, whether the substrings over {0,1}
in front of the second, third, and fourth nonterminal are identical. Observe that the productions
introduced in this construction make this verification in the rightmost way. Indeed, the productions
introduced in step (7) replace the #’s with the rest of the parse; the rightmost generator, however,
takes always the rightmost #. The production labeled with b8c replaces each A with # and places BB
at the end of the sentential form. Notably, this production does not insert its label in the sentential
form (this insertion takes place later on as explained shortly). The production labeled with b9c
moves the first nonterminal B to the left and replaces # with its label, leaving the second nonterminal
B at the end of the sentential form. Finally, when there is no # in the sentential form, the first
nonterminal B is replaced with b8c and the second with b10c. Observe that this grammar is a proper
rightmost generator of its sentences with their parses. �

Concluding this section, let us compare the present result with the results published in [37]. The
main result of the paper is expressed by the following theorem.

Theorem 33. For every recursively enumerable language L, there is a propagating scattered con-
text grammar G which generates its language in a rightmost way and L = L(G)//{$}∗.

Clearly, if we generate the fill-in symbol $ instead of every production’s label in the proof of Theo-
rem 32, we obtain the same result.

Finally, let us look at another aspect of our result. If we use scattered context grammars with
erasing productions and substitute each label for the empty word on every production’s right-hand
side, we characterize every recursively enumerable language. The proofs of Theorems 31 and 32
can, therefore, serve as a constructive proof of this result. In addition, every derivation step is
leftmost (or rightmost) so at the same time, we prove the result of [82]. In fact, our result is stronger
as leftmost derivations are not explicitly required but it is a property of the constructed grammar
that in a successful derivation, every derivation step is leftmost.

Theorem 34. For every recursively enumerable language L, there is a scattered context grammar
G which generates its language in a leftmost way and L = L(G). �

6.3 Reduced Generators

Naturally, we want to construct our generators as economically as possible. Therefore, we reduce
both the number of their nonterminals and the amount of context checks which need to be performed
during a derivation step. This is done by reducing the total number of nonterminals on every pro-
duction’s left-hand side. We demonstrate that for every recursively enumerable language L, there
is a propagating scattered context grammar G which represents a proper leftmost generator of its
sentences preceded by their parses so that L results from L(G) by eliminating all production labels
in L(G). In fact, we achieve this result in two different ways which differ in the total number of the
needed nonterminals and in the maximal number of nonterminals on every production’s left-hand
side.

Theorem 35. For every recursively enumerable language L there exists a propagating scattered
context grammar G = (V̄ , T̄ ,P,S) such that G is a proper leftmost generator of its sentences pre-
ceded by their parses, |V̄ − T̄ | ≤ 6, mcs(G) = 3, and L = lab(G)+\\L(G).

91

Proof. Let L ⊆ T ∗ be any recursively enumerable language over an alphabet T = {a1, . . . ,an}.
Then, by Theorem 9, there is an Extended Post Correspondence

E = (D,(za1 , . . . ,zan)),

where D = {(u1,v1), . . . ,(ur,vr)}, ui,vi,za j ∈ {0,1}∗ for each 1≤ i≤ r, 1≤ j≤ n, such that L(E) =
L. Define the propagating scattered context grammar

G = ({S,A,B,0,1,#}∪T ∪ lab(G),T ∪ lab(G),P,S),

where
lab(G) = {b1c,b3c,b30c,b31c,b4c,b40c,b41c,b42c}

∪ {b1ac : a ∈ T}∪{b2uivic,b20uivic : (ui,vi) ∈ D},
and P is constructed as follows:

1. For each a ∈ T , add

(a) b1c : (S)→ (b1cAA),

(b) b1ac : (A,A)→ (b1acAza,Aa) to P;

2. For each (ui,vi) ∈ D, 1≤ i≤ r, add

(a) b2uivic : (A,A)→ (b2uivicBui,Bvi),

(b) b20uivic : (B,B)→ (b20uivicBui,Bvi) to P;

3. Add

(a) b3c : (B,B)→ (b3cA,B),

(b) b30c : (A,0,B,0)→ (b30c,A,#,B),

(c) b31c : (A,1,B,1)→ (b31c,A,#,B) to P;

4. Add

(a) b4c : (A,B)→ (b4cB,A),

(b) b40c : (B,#)→ (b40c,B),

(c) b41c : (B,A)→ (b41c,B),

(d) b42c : (B)→ (b42c) to P.

First, observe that each production introduced in steps (1b) through (4a) contains exactly two
nonterminals from the set {A,B} on its left and right-hand side. Therefore, there are two nontermi-
nals from this set in every sentential form while these productions are used.

Every successful derivation starts by using the production labeled with b1c because it is the only
production with S on its left-hand side. As no other production contains S on its right-hand side, it
is not used during the rest of the derivation process. Therefore, every derivation starts by

S⇒G b1cAA [b1c].

At this point, only productions from steps (1b) and (2a) are applicable. Productions from (1b)
nondeterministically generate a sentence so that each of them adds a ∈ T behind the second occur-
rence of A and simultaneously adds a’s binary representation behind the first occurrence of A in the
sentential form. Finally, a production from step (2a) is used to replace both occurrences of A with

92

B, so after its application, no production from step (1) can be used. This part of derivation can be
formally expressed as

b1cAA⇒∗G u [Ξ1]
⇒G v [p2],

where u ∈ lab(G)+{A}{0,1}∗{A}T ∗,

v ∈ lab(G)+{B}{0,1}+{B}{0,1}+T ∗,

Ξ1 is a sequence of labels of productions introduced in step (1b), and p2 is the label of a production
introduced in step (2a) of the construction.

Each production from (2) nondeterministically selects some (ui,vi) ∈ D, where 1 ≤ i ≤ r, and
adds ui and vi behind the first and the second occurrence of B, respectively. Observe that only
productions introduced in step (2b) and the productions labeled with b3c and b42c are applicable at
this point. However, as the production labeled with b42c removes B from the sentential form, its
use leads to an unsuccessful derivation. The production labeled with b3c is used to finish this part
of derivation by rewriting the first occurrence of B with A. The corresponding part of derivation is
of the form

v⇒∗G w [Ξ2]
⇒G x [b3c],

where
w ∈ lab(G)+{B}{0,1}+{B}{0,1}+T ∗,
x ∈ lab(G)+{A}{0,1}+{B}{0,1}+T ∗,

and Ξ2 is a sequence of labels of productions introduced in step (2b) of the construction.
In greater detail, the sentential form x can be expressed as x1Ax2x3Bx4x5, where x1 ∈ lab(G)+,

x2 = us1 . . .usl for some s1, . . . ,sl ∈ {1, . . . ,r}, l ≥ 1, x3 = zb1 . . .zbk for some b1, . . . ,bk ∈ T , k ≥ 0,
x4 = vs1 . . .vsl , and x5 = b1 . . .bk. From the definition of the language represented by an Extended
Post Correspondence, for b1 . . .bk ∈ L(E), us1 . . .usl zb1 . . .zbk = vs1 . . .vsl , therefore, in the sentential
form x, x2x3 = x4. This equivalence is verified by the productions labeled with b30c and b31c.
The production labeled with b30c (b31c) replaces two 0’s (1’s) which follow A and B with A and
B and further replaces A and B with b30c (b31c) and #, respectively. While these productions are
applicable, every sentential form y can be expressed as y1Ay20y3y4By50y6y7 or y1Ay21y3y4By51y6y7,
where y1 ∈ lab(G)+, y2,y3,y5,y6 ∈ {0,1}∗, y4 ∈ {#}∗, y7 ∈ T ∗. Then, the production labeled with
b30c or b31c can be applied so that

y1Ay20y3y4By50y6y7⇒G y1b30cy2Ay3y4#y5By6y7 [b30c] or
y1Ay21y3y4By51y6y7⇒G y1b31cy2Ay3y4#y5By6y7 [b31c].

We demonstrate that y2 = y5 = ε by contradiction.

• Suppose that y2 6= ε . As the nonempty string y2 cannot be removed by any production, y2
satisfies y2 = ε .

• Suppose that y5 6= ε . Then, y5 can be removed only by the production labeled with b30c or
b31c. After its application (in the case when y2 = ε), we get a sentential form of the form
y′1y3y4#Ay′5#By′6y7, where y′1 ∈ lab(G)+, y′5,y

′
6 ∈ {0,1}∗. Then, the substring y3y4# cannot be

removed by any production, so y5 satisfies y5 = ε .

Therefore, the nonterminals 0 and 1 immediately following A and B have to be rewritten during
every derivation step performed by productions labeled with b30c and b31c. If all 0’s and 1’s are
removed from the sentential form, the identity x2x3 = x4 is verified.

93

While the productions labeled with b30c and b31c are applicable, other productions cannot be
used. Specifically, the use of the productions labeled with b4c,b42c before all 0’s and 1’s are
removed from the sentential form leads to an unsuccessful derivation. After all 0’s and 1’s are
removed, the production labeled with b4c is used which finishes this part of derivation. Therefore,
this part of derivation can be performed only as follows:

x⇒+
G y [Ξ3]
⇒G z [b4c],

where y ∈ lab(G)+{A}{#}+{B}T ∗, z ∈ lab(G)+{B}{#}+{A}T ∗, and Ξ3 ∈ {b30c,b31c}+.
The remaining part of a successful derivation can be expressed as

z⇒+
G q1 [Ξ4]
⇒G q2 [b41c]
⇒G q [b42c],

where q1 ∈ lab(G)+{B}{A}T ∗, q2 ∈ lab(G)+{B}T ∗, q ∈ lab(G)+T ∗, and Ξ4 ∈ {b40c}+. The pro-
duction labeled with b42c is used in the last derivation step as it removes B from the sentential form.
The production labeled with b41c replaces A, which occurs as the last nonterminal in the sentential
form, with B so it can be used only if all #’s are removed by previous applications of the production
labeled with b40c.

Putting together the previous observations, we obtain the derivation of any string q ∈ L(E)
preceded by its parses in the following form:

S⇒G b1cAA [b1c]⇒∗G u [Ξ1]
⇒G v [p2] ⇒∗G w [Ξ2]
⇒G x [b3c]⇒+

G y [Ξ3]
⇒G z [b4c]⇒+

G q1 [Ξ4]⇒G q2 [b41c]⇒G q [b42c].

By examining the derivation and the applied productions, observe that (1) each of the productions
adds its label at the end of the sequence of labels in every sentential form and that (2) every deriva-
tion step is leftmost. Therefore, G is a proper leftmost generator of sentences preceded by their
parses, so Theorem 35 holds. �

Theorem 36. For every recursively enumerable language L there exists a propagating scattered
context grammar G′ = (V̄ ′, T̄ ′,P′,S) such that G is a proper leftmost generator of its sentences
preceded by their parses, |V̄ ′− T̄ ′| ≤ 9, mcs(G) = 1, and L = lab(G)+\\L(G).

Proof. Consider the grammar G introduced in the proof of Theorem 35. Define the propagating
scattered context grammar

G′ = ({S,A,B,C,0,1,$0,$1,#}∪T ∪ lab(G′),T ∪ lab(G′),P′,S),

where
lab(G′) = (lab(G)−{b30c,b31c})

∪ {b301c,b302c,b303c,b304c,b311c,b312c,b313c,b314c},

and P′ contains all P’s productions except for the productions introduced in step (3). Further, it
contains the productions from the following construction:

3. Add

(a) b3c : (B,B)→ (b3cA,B),

94

(b) i. b301c : (B,0)→ (#,$0),
ii. b302c : (A,$0)→ (C,$0),

iii. b303c : (C,0)→ (b301cb302cb303c,$0),
iv. b304c : ($0,$0)→ (b304cA,B),

(c) i. b311c : (B,1)→ (#,$1),
ii. b312c : (A,$1)→ (C,$1),

iii. b313c : (C,1)→ (b311cb312cb313c,$1),
iv. b314c : ($1,$1)→ (b314cA,B) to P′.

Every successful derivation is performed similarly to G’s derivation, only the productions la-
beled with b30c and b31c are simulated by the productions labeled with b301c,b302c,b303c,b304c
and b311c,b312c,b313c,b314c, respectively. Consider a sentential form of the form u1A0u2u3B0u4u5,
where u1 ∈ lab(G′)+, u2,u4 ∈ {0,1}∗, u3 ∈ {#}∗, u5 ∈ T ∗. Then,

u1A0u2u3B0u4u5 ⇒G u1b30cAu2u3#Bu4u5 [b30c]

in a successful derivation of G. This derivation step is simulated by G′ as follows:

u′1A0u2u3B0u4u5⇒G′ u′1A0u2u3#$0u4u5 [b301c]
⇒G′ u′1C0u2u3#$0u4u5 [b302c]
⇒G′ u′1b301cb302cb303c$0u2u3#$0u4u5 [b303c]
⇒G′ u′1b301cb302cb303cb304cAu2u3#Bu4u5 [b304c],

where u′1 ∈ lab(G)+. The G’s production labeled with b41c is simulated by G′ analogously.
Next, we need to demonstrate that the productions introduced in step (3) cannot be used during

the rest of the derivation process. We consider two special cases of the derivation. First, consider
a sentential form v1B0v2B0v3v4, where v1 ∈ lab(G)+, v2,v3 ∈ {0,1}∗, v4 ∈ T ∗, which is obtained
after the application of a production from (2a). Then,

v1B0v2B0v3v4 ⇒G′ v1#$0v2B0v3v4 [b301c]
⇒G′ v1#$0v2#$0v3v4 [b301c]
⇒G′ v1#b304cAv2#Bv3v4 [b304c].

However, in this sentential form, the first occurrence of # cannot be removed by any production, so
the derivation is not successful.

Second, consider a sentential form z1Az2B00z3, where z1 ∈ lab(G)+, z2 ∈ {#}+, z3 ∈ T ∗, which
is obtained when some 0’s behind B are not removed by productions labeled with b30c. Then,

z1Az2B00z3 ⇒G′ z1b4cBz2A00z3 [b4c]
⇒+

G′ z′1BA00z3 [Ξ4]
⇒G′ z′1#A$00z3 [b301c]
⇒G′ z′1#C$00z3 [b302c]
⇒G′ z′1#b301cb302cb303c$0$0z3 [b303c]
⇒G′ z′1#b301cb302cb303cb304cABz3 [b304c],

where z′1 ∈ lab(G)+ and Ξ4 ∈ {b40c}+. Again, the symbol # cannot be removed by any production,
so the derivation is not successful. Other special cases and more detailed proof of this theorem is
left to the reader. �

95

In conclusion of this chapter, let us recall that we have demonstrated that for every recursively
enumerable language, there exists a propagating scattered context grammar that generates the lan-
guage’s sentences followed by their parses. In addition, we have proved analogical results for
canonical and reduced versions of these generators. This kind of generation is specific to scattered
context grammars—we can hardly base the generation of sentences with their parses upon classi-
cal sequential rewriting mechanisms such as context-free or context-sensitive grammars. Probably,
some propagating parallel rewriting mechanisms, such as propagating PC grammar systems (see
Chapter 4 in Volume 2 of [62]), can be used in this way. Furthermore, some propagating regulated
grammars, such as propagating matrix grammars (see Chapter 3 in Volume 3 of [62]), seem to be
suitable for this generation as well. Apart from parses, there are more kinds of information which
can be stored during the derivation of a string (positions of nonterminals rewritten during the deriva-
tion, string encoded derivation trees and other). We suggest these ideas for future investigation.

96

Chapter 7

Applications in Linguistics

So far, we have studied theoretical properties of scattered context grammars. This section discusses
their practical use in linguistics.

In sentences of natural languages such as English, we can find words which depend on each
other and which, on the other hand, are not direct neighbors. For example, consider the following
sentence:

He usually goes to work early.

The subject (he) and the predicator (goes) are related; sentences

He usually go to work early.

and

I usually goes to work early.

are ungrammatical because the form of the predicator depends on the subject and the above com-
bination is illegal. Clearly, to change person, the verb has to reflect this change as well. This is
the kind of dependency that can be very easily captured by scattered context grammars. Let us
construct a scattered context grammar that contains the following production:

(He, goes)→ (We, go).

This production checks whether the subject is he and whether the verb go is in third person singular.
If the sentence satisfies this property, it can be transformed to the grammatically correct sentence

We usually go to work early.

Observe that the related words do not necessarily have to be direct neighbors. In the above example,
the word usually is located between the subject and the predicator. While it is fairly easy to use
context-sensitive grammars to model context dependencies where only one word is located between
the related words, note that the number of words between the subject and the predicator is virtually
unlimited. We can say

He almost regularly goes to work early.

but also

He sometimes, but not always, goes to work early.

97

To model context dependency of this kind by ordinary context-sensitive grammars, many auxiliary
productions have to be introduced to propagate the information about the form of one word to
the other word which may be located at the opposite end of the sentence. Still, the introduced
scattered context production can be used, no matter how many words are between the subject and
the predicator.

We give another example demonstrating why scattered context grammars are more economical
in certain situations. Consider the following two sentences:

John recommended it.

and

Did John recommend it?

There is a relation between the basic clause and its interrogative counterpart. Indeed, we get the
second, interrogative clause by adding did in front of John and by changing recommended to rec-
ommend while keeping the rest of the sentence untouched. In terms of scattered context grammars,
this transformation can be described by the scattered context production

(John, recommended)→ (Did John, recommend);

clearly, when applied to the first sentence, this production performs exactly the same transformation
as we have just described. Although this transformation is possible by an ordinary context produc-
tion, the inverse transformation is more problematic. The inverse transformation can be performed
by a scattered context production

(Did, recommend)→ (ε, recommended);

obviously, by erasing did and changing recommend to recommended, we obtain the first sentence.
Again, instead of John the subject may consist of a noun phrase containing several words. The ad-
vantage of scattered context grammars is apparent—scattered context grammars permit us to change
only some words during the transformation while keeping the other words untouched. On the other
hand, context-sensitive productions are not suitable for this kind of transformations because many
unnecessary context-sensitive productions have to be introduced to propagate the change made at
one end of the sentence to the other end.

In the following text, we study these transformations more deeply. First, we introduce the
needed notation and some conventions to be able to describe the transformations in a more exact
and general way. Then, we illustrate the use of scattered context grammars for transformations of
one kind of English sentences to another. Finally, we mention several areas where similar approach
can be used and give some ideas for further investigation in this area.

Overview of Used Linguistic Terms

This section introduces some basic linguistic terms we use later in this chapter. Regarding the used
linguistic terms and related notions, we use the terminology of [19, 20].

We focus our attention on verbs and personal pronouns because the form of the words in these
categories depends on the context in which these words are used. For example, is, are, was, and
been are different forms of the verb be. We say that words in these categories inflect and call this
property inflection. Verbs and personal pronouns often represent the key elements of a clause—the
subject and the predicate. In simple clauses like

98

She loves him.

we can understand the notion of the subject and the predicate so that some information is “predicated
of” the subject (she) by the predicate (loves him). In more complicated clauses, the best way to
determine the subject and the predicate is by examining their syntactic properties (see [19, 20] for
more details). The predicate is a verb phrase—the most important word of a verb phrase is the verb,
also called the predicator. In some verb phrases, there are more verbs present. For example, in the
sentence

He has been working for hours.

the verb phrase contains three verbs. The predicator is, however, always the first verb of a verb
phrase (has in the above example). We focus on the most elementary clauses—canonical clauses.
The subject in these clauses always precedes the predicate, the clause is positive (without negation),
declarative, and without subordinate and coordinate clauses.

The following paragraphs describe the basic categorization of verbs and personal pronouns and
further characterize their inflectional forms.

Verbs

We distinguish several kinds of verbs depending on their grammatical behavior. The set of all
verbs is divided into two subsets: auxiliary verbs and lexical verbs. Further, the set of auxiliary
verbs consists of modal and non-modal verbs. The set of modal verbs includes the following verbs:
can, may, must, will, shall, ought, need, dare; the verbs be, have, and do are non-modal. All the
remaining verbs are lexical. It needs to be said that the above defined classes overlap in certain
situations—for example, there are sentences, where do appears as an auxiliary verb and in different
situations it behaves as a lexical verb. For simplicity, we do not take into account these special cases
in the following text.

Inflectional forms of verbs are called paradigms. In English, every verb, except of the verb be,
may appear in each of the six paradigms described in Table 1 (see [19, 20]). Verbs in primary form
may occur as the only verb in a clause and form the head of a verb phrase; on the other hand, verbs
in secondary form have to be accompanied by a verb in primary form.

Paradigm Person Example
Present 3rd sg She walks home.

Primary form Other They walk home.
Preterite — She walked home.

Plain form They should walk home.
Secondary form Gerund-participle — She is walking home.

Past participle She has walked home.

Table 1: Paradigms of English verbs

The verb be has nine paradigms in its neutral form. All primary forms have, in addition, their
negative contracted counterparts. Compared to other verbs, there is one more verb paradigm called
irrealis. The irrealis form were (and weren’t) is used in sentences of an unrealistic nature, such as

I wish I were rich.

All these paradigms are shown in Table 2.

99

Paradigm Person Neutral Negative
Preterite 1st sg, 3rd sg was wasn’t

Other were weren’t
1st sg am aren’t

Primary forms Present 3rd sg is isn’t
Other are aren’t

Irrealis 1st sg, 3rd sg were weren’t
Plain form be —

Secondary forms Gerund-participle — being —
Past participle been —

Table 2: Paradigms of the verb be

Personal pronouns

Personal pronouns exhibit a great amount of inflectional variation as well. Table 3 summarizes all
their inflectional forms. The most important for us is the class of pronouns in nominative because
these pronouns often appear as the subject of a clause.

Non-reflexive Reflexive
Nominative Accusative Genitive Plain

Plain Dependent Independent
I I me my mine myself

you you your yours yourself
he he him his himself

she she her her hers herself
it it its itself

we we us our ours ourselves
you you your yours yourselves
they they them their theirs themselves

Table 3: Personal pronouns

Transformational Scattered Context Grammars

As we have already mentioned in the introduction of this chapter, we use scattered context grammars
to transform one kind of sentences to another. To be able to formally describe these transformations,
we define a special type of a scattered context grammar which does not start its derivation from the
start symbol but which transforms sentences over an input vocabulary to sentences over an output
vocabulary.

Definition 36. A transformational scattered context grammar is a quadruple

G = (V,T,P, I),

where

• V is the total vocabulary,

• T ⊂V is the set of terminals (or the output vocabulary),

100

• P is a set of scattered context productions,

• I ⊂V is the input vocabulary.

The derivation step is defined as in the case of scattered context grammars. The transformation T
defined by G is denoted by T (G) and defined as

T (G) = {(x,y) : x⇒∗G y,x ∈ I∗,y ∈ T ∗}.

If (x,y) ∈ T (G), we say that x is transformed to y by G; x and y are called the input and the output
sentence, respectively.

Example 5. Define the transformational scattered context grammar

G = ({A,B,C,a,b,c},{a,b,c},P,{A,B,C}),

where
P = {(A,B,C)→ (a,bb,c)}.

For example, for the input sentence AABBCC, one of the possible derivations is:

AABBCC⇒G aABbbcC⇒G aabbbbcc.

Therefore, the input sentence AABBCC ∈ I∗ is transformed to the output sentence aabbbbcc ∈ T ∗,
and (AABBCC,aabbbbcc)∈ T (G). If we restrict the input sentences to the language {AnBnCn : n≥
1}, we get

{(AnBnCn,anb2ncn) : n≥ 1} ⊆ T (G),

so every AnBnCn, where n≥ 1, is transformed to anb2ncn.

Transformational Scattered Context Grammars in Linguistics

This section uses transformational scattered context grammars for transformations of English sen-
tences. For our purposes, we assume that the English vocabulary is finite. While it is possible to
create new words by modifying or combining existing words (and thus obtaining an infinite vocabu-
lary), the set of words commonly used in books and newspapers can be regarded as fixed. Therefore,
we can talk about the finite set of all English words, which we denote by T in what follows. Next,
we subdivide this set into subsets with respect to the above mentioned classification of verbs and
pronouns:

• T is the set of all words, including all their inflectional forms,

• TV ⊂ T is the set of all verbs, including all their inflectional forms,

• TVA ⊂ TV is the set of all auxiliary verbs, including all their inflectional forms,

• TVpl ⊂ TV is the set of all verbs in plain form,

• TPPn ⊂ T is the set of all personal pronouns in nominative.

To be able to describe all possible paradigms of a verb v ∈ TVpl, we use the following notation:

• π3rd(v) is the verb v in third person singular present,

101

• πpres(v) is the verb v in present, other than third person singular,

• πpret(v) is the verb v in preterite.

There are several conventions we use throughout the text:

1. We do not take into account capitalization and punctuation. Therefore, for us,

He is your best friend.

and

he is your best friend

are equivalent.

2. To make the examples simple and readable, we expect every input sentence to be a canonical
clause. In some examples, we make slight exceptions—for instance, sometimes we permit
the input sentence to be negative. The first example also demonstrates a simple type of
coordination.

3. The input vocabulary is the set I = {〈x〉 : x ∈ T}, where T is the set of all English words as
stated above. As a result, the transformational grammar takes an input sentence over I, for
example

〈he〉〈is〉〈your〉〈best〉〈friend〉

and transforms it to an output sentence over T , for instance

is he your best friend

in the case of the declarative-to-interrogative transformation. As we have already mentioned,
we omit punctuation and capitalization for simplicity, so in fact, the above sentence corre-
sponds to

Is he your best friend?

The following four examples illustrate how to transform one kind of English sentences to an-
other by using transformational scattered context grammars.

Clauses with neither and nor

The first, simplest example shows how to use transformational scattered context grammars to negate
clauses which contain the pair of the words neither and nor, such as

Neither Thomas nor his wife went to the party.

The words neither and nor are related but there is no limitation on the number of words appearing
between them. The following transformational scattered context grammar G converts the above
sentence to

Both Thomas and his wife went to the party.

102

Set
G = (V,T,P, I),

where V = T ∪ I, and P is defined as follows:

P = {(〈neither〉,〈nor〉)→ (both, and)}
∪ {(〈x〉)→ (x) : x ∈ T −{neither, nor}}.

For example, for the above sentence, the transformation can proceed as follows:

〈neither〉〈thomas〉〈nor〉〈his〉〈wife〉〈went〉〈to〉〈the〉〈party〉
⇒G both 〈thomas〉and 〈his〉〈wife〉〈went〉〈to〉〈the〉〈party〉
⇒G both thomas and 〈his〉〈wife〉〈went〉〈to〉〈the〉〈party〉
⇒G both thomas and his 〈wife〉〈went〉〈to〉〈the〉〈party〉
⇒5

G both thomas and his wife went to the party.

The production
(〈neither〉,〈nor〉)→ (both, and)

replaces neither and nor with both and and, respectively. Every other word 〈w〉 ∈ I is changed to
w ∈ T .

Existential clauses

In English, clauses which indicate an existence are called existential. These clauses are usually
formed by the dummy subject there, for example

There was a nurse present.

However, this dummy subject is not mandatory in all situations. For example, the above example
can be rephrased as

A nurse was present.

We construct a transformational scattered context grammar G which converts an existential clause
without the dummy subject there to an equivalent existential clause with there.

Set
G = (V,T,P, I),

where V = T ∪ I∪{X}, and P is defined as follows:

P = {(〈x〉,〈is〉)→ (there is xX ,ε),
(〈x〉,〈are〉)→ (there are xX ,ε),
(〈x〉,〈was〉)→ (there was xX ,ε),
(〈x〉,〈were〉)→ (there were xX ,ε) : x ∈ T}

∪ {(X ,〈x〉)→ (X ,x) : x ∈ T}
∪ {(X)→ (ε)}.

For the above sample sentence, we get the following derivation:

〈a〉〈nurse〉〈was〉〈present〉
⇒G there was a X〈nurse〉〈present〉
⇒G there was a X nurse 〈present〉
⇒G there was a X nurse present
⇒G there was a nurse present.

103

A production from the first set has to be applied first as there is no symbol X in the sentential form
and all other productions require X to be present in the sentential form. In our case, the production

(〈a〉,〈was〉)→ (there was a X ,ε)

is applied; the use of other productions from this set depends on tense used in the input sentence
and whether the subject is in singular or plural. The production nondeterministically selects the first
word of the sentence, puts there was in front of it and the symbol X behind it; in addition, it erases
the word was in the middle of the sentence. Next, all words 〈w〉 ∈ I are replaced with w ∈ T by
productions from the second set. These productions also verify that the previously nondeterminis-
tically selected word was at the beginning of the sentence—if not, there is a word 〈w〉 ∈ I in front
of X which cannot be deleted. Finally, the derivation ends by erasing X from the sentential form.

Interrogative Clauses

Depending on the predicator, there are two possibilities of how declarative clauses are transformed
into interrogative. If the predicator is an auxiliary verb, the interrogative clause is formed by simply
swapping the subject and the predicator. For example, we get the interrogative clause

Is he mowing the lawn?

by swapping he, which is the subject, and is, which is the predicator, in

He is mowing the lawn.

If the predicator is a lexical verb, the interrogative clause is formed by adding the dummy do at the
beginning of the declarative clause—the dummy do has to be of the same paradigm as the predicator
in the declarative clause. The predicator itself is converted to its plain form.

She usually gets up early.

is a declarative clause with the predicator gets, which is in third person singular, and the subject
she. By inserting do in third person singular at the beginning of the sentence and converting gets to
its plain form, we obtain

Does she usually get up early?

To simplify the following transformational scattered context grammar G which performs this con-
version, we assume that the subject is a personal pronoun in nominative.

Set
G = (V,T,P, I),

where V = T ∪ I∪{X}, and P is defined as follows:

P = {(〈p〉,〈v〉)→ (vp,X) : v ∈ TVA, p ∈ TPPn}
∪ {(〈p〉,〈πpret(v)〉)→ (did p,vX),

(〈p〉,〈π3rd(v)〉)→ (does p,vX),
(〈p〉,〈πpres(v)〉)→ (do p,vX) : v ∈ TVpl−TVA, p ∈ TPPn}

∪ {(〈x〉,X)→ (x,X),
(X ,〈y〉)→ (X ,y) : x ∈ T −TV,y ∈ T}

∪ {(X)→ (ε)}.

104

For sentences containing an auxiliary verb as the predicator, the transformation by G looks as
follows:

〈he〉〈is〉〈mowing〉〈the〉〈lawn〉
⇒G is he X〈mowing〉〈the〉〈lawn〉
⇒G is he X mowing 〈the〉〈lawn〉
⇒G is he X mowing the 〈lawn〉
⇒G is he X mowing the lawn
⇒G is he mowing the lawn.

The derivation starts by a production from the first set which swaps the subject and the predicator
and puts X behind them. Next, productions from the third set are used to rewrite every word 〈w〉 ∈ I
to w ∈ T . Finally, X is removed from the sentential form.

The transformation of sentences in which the predicator is a lexical verb is more complicated:

〈she〉〈usually〉〈gets〉〈up〉〈early〉
⇒G does she 〈usually〉 get X〈up〉〈early〉
⇒G does she usually get X〈up〉〈early〉
⇒G does she usually get X up 〈early〉
⇒G does she usually get X up early
⇒G does she usually get up early.

As the predicator is in third person singular, a production from

{(〈p〉,〈π3rd(v)〉)→ (does p,vX) : v ∈ TVpl−TVA, p ∈ TPPn}

is applied. It inserts does at the beginning of the sentence, converts the predicator gets to its plain
form get, and puts X behind it. Next, productions from

{(〈x〉,X)→ (x,X) : x ∈ T −TV}

are used to rewrite the remaining words 〈w〉 ∈ I in front of the predicator to w ∈ T . They do not
rewrite verbs—this way the grammar ensures that the first verb in a sequence was previously chosen
as the predicator. For instance, in the sentence

He has been working for hours.

has has to be selected as the predicator—otherwise the derivation is unsuccessful. Finally, the
grammar rewrites all words behind X and erases X as in the previous example.

Question Tags

Question tags are special constructions which are used in spoken language. They are mini-questions
that are appended to a declarative clause to ask the other person for confirmation:

Your sister is married, isn’t she?

The polarity of question tags is always the opposite of the polarity of the main clause—if the main
clause is positive, the question tag is negative and vice versa. If the predicator is an auxiliary verb,
the question tag is formed by the same auxiliary verb. For lexical verbs, the question tag is made
by using the verb do:

He plays the violin, doesn’t he?

105

There are some special cases which have to be taken into account. First, the verb be has to be
treated separately as it has more paradigms than other verbs and the question tag for the first person
is irregular:

I am always right, aren’t I?

Second, for the verb have, the question tag depends on whether it is used as an auxiliary verb or a
lexical verb. In the first case have is used in the question tag, such as

He has been working hard, hasn’t he?

in the latter case, the auxiliary do is used:

They have a dog, don’t they?

To explain the basic concepts as simply as possible, we omit the special cases of the verb have in
the following transformational scattered context grammar G. We also only sketch its construction
and do not mention all created productions explicitly. In addition, we suppose that the subject is
represented by a personal pronoun.

Set
G = (V,T,P, I),

where V = T ∪ I∪{X ,Y}, and P is defined as follows:

P = {(〈p〉,〈will〉,〈x〉)→ (p,will X ,Y x won’t p),
(〈p〉,〈won’t〉,〈x〉)→ (p,won’t X ,Y x will p),
. . . : p ∈ TPPn,x ∈ T}

∪ {(〈I〉,〈am〉,〈x〉)→ (I,am X ,Y x aren’t I),
(〈you〉,〈are〉,〈x〉)→ (you,are X ,Y x aren’t you),
. . . : x ∈ T}

∪ {(〈p〉,〈v〉,〈x〉)→ (p,v X ,Y x doesn’t p),
(〈q〉,〈v〉,〈x〉)→ (q,v X ,Y x don’t q) :
p ∈ {he, she, it},q ∈ TPPn−{he, she, it},v ∈ TV−TVA,x ∈ T}
...

∪ {(〈x〉,X)→ (x,X),
(X ,〈y〉,Y)→ (X ,y,Y) : x ∈ T −TV,y ∈ T}

∪ {(X ,Y)→ (ε,ε)}.

First, we describe the generation of question tags for clauses in which the predicator is an
auxiliary verb:

〈I〉〈am〉〈always〉〈right〉
⇒G I am X〈always〉Y right aren’t I
⇒G I am X always Y right aren’t I
⇒G I am always right aren’t I.

Here, the production
(〈I〉,〈am〉,〈right〉)→ (I,am X ,Y right aren’t I)

initiates the derivation. When it finds I am at the beginning of the sentence, it generates the question
tag aren’t I at its end. In addition, it adds X behind I am and Y in front of aren’t I. Next, it rewrites
all words from 〈w〉 ∈ I to w ∈ T . Again, it ensures that the predicator was chosen properly by
productions from

{(〈x〉,X)→ (x,X) : x ∈ T −TV}.

106

In addition, productions from

{(X ,〈y〉,Y)→ (X ,y,Y) : x ∈ T −TV,y ∈ T}

are used to check whether the question tag was placed at the very end of the sentence. If not, there
remains some symbol from the input vocabulary behind Y which cannot be rewritten. Finally, the
last production removes X and Y from the sentential form.

When the predicator is a lexical verb in present, the question tag is formed by does or do
depending on person in which the predicator occurs:

〈he〉〈plays〉〈the〉〈violin〉
⇒G he plays X〈the〉Y violin doesn’t he
⇒G he plays X the violin Y doesn’t he
⇒G he plays the violin doesn’t he.

Concluding Notes

The aim of this chapter was to demonstrate that in natural languages, there exist many cases of
scattered context relations between individual elements of a sentence. The above examples were
chosen with respect to simplicity of the resulting grammar—there exist more examples of scattered
context relations than we have presented. Some of them appear when input sentences of more
complicated structure are permitted as the input. For instance, relative clauses are introduced by who
or which depending on the subject of the main clause. If the subject in the main clause is a person,
the relative clause is introduced by who; otherwise it starts by which. Similarly, transformations
of sentences in active voice to sentences in passive voice (and vice versa) require scattered context
processing as well. Finally, if we do not restrict our interest to the English language, we get many
more examples of scattered context dependency. For instance, in Spanish, all adjectives inflect
according to gender of the noun they characterize. Again, both the noun and the adjective may
appear at different parts of a sentence making it hard to capture their relationship by classical context
grammars.

As we have just demonstrated, there are many uses of scattered context grammars in natural
language description and processing. We recommend this area as a perspective topic for further
study.

107

Part III

Summary and Conclusion

108

Chapter 8

Conclusion

The object of the present thesis was a study of scattered context grammars which represent one of
the most natural formalisms of scattered information description and processing. Since their intro-
duction, these grammars have been intensively studied over the past four decades and many research
papers have been written about this topic. Our aim was to further investigate theoretical properties
of scattered context context grammars to better understand, describe, and process mutually related,
but not directly neighboring pieces of information. The research was carried out in four main areas.

First, we studied a classical topic of formal language theory—the removal of erasing produc-
tions. When describing a language, we use formal grammars for this description. The grammars
which contain erasing productions are often simpler and the total number of the productions they
contain is lower; on the other hand, parsers based on these grammars cannot be constructed as ef-
ficiently as in the case when these grammars do not contain erasing productions at all. Clearly, in
general, erasing productions cannot be removed from scattered context grammars as the generative
power of these grammars with erasing productions and without them is different. However, there
are certain grammars which, even though they contain erasing productions, characterize a language
which lies within the family of context-sensitive languages. We demonstrated that if such grammars
erase their symbols in a certain way, these grammars can be converted to equivalent grammars with-
out erasing productions. We call this erasing as generalized k-limited because during any derivation,
between every two neighboring symbols which are not erased later in the derivation, there may ap-
pear at most k symbols, which are later erased.

Second, several restricted and extended versions of scattered context grammars were discussed.
We started by considering scattered context grammars whose components, in contrary to the ba-
sic definition, were other than context-free; that is, right-linear, linear, context-sensitive and unre-
stricted. An infinite hierarchy of languages was obtained for grammars containing both right-linear
and linear components. Specifically, it was proved that each family of languages generated by these
grammars with starting productions containing at most n nonterminals on their right-hand sides is
properly included in the family of languages generated by these grammars with starting productions
containing at most n + 1 nonterminals. It is practical to study these kinds of restrictions because
usually, when creating a model of some system, we require the model to be as simple as possible.
This results in a simpler description and a more efficient implementation of the resulting system.
We continued by discussing derivations which may occur only within the first n nonterminals of the
sentence. It was demonstrated that propagating scattered context grammars whose derivations are
limited to n first nonterminals are less powerful than the grammars whose derivations are limited
to n + 1 nonterminals. This demonstrates that if a compiler based on propagating scattered con-
text grammars restricts its context-dependency checks to only a finite part of the sentence, it will
be always less powerful than if no such a restriction exists. Next, we revived the already existing

109

proof demonstrating that context-sensitive grammars are equivalent to propagating scattered con-
text grammars if the latter use only leftmost or rightmost derivations and presented a much simpler
proof of this result. When parsing a sentence, compiles usually simulate the leftmost or the right-
most derivation of the sentence. In fact, this requirement helps us to obtain the whole family of
context-sensitive languages while without it, the exact power of propagating scattered grammars
is not exactly known. Finally, the thesis studied another restriction which enabled us to describe
all context-sensitive languages. This restriction requires that in every derivation step, a production
which rewrites the maximal or the minimal number of nonterminals is chosen.

Third, we introduced generators of sentences with their parses. These generators are prop-
agating scattered context grammars that generate sentences followed by a sequence of labels of
productions which were used during their derivation. We established a characterization of recur-
sively enumerable languages based upon this kind of generators by scattered context grammars
without erasing productions. We also proved that there exist leftmost and rightmost generators with
this property and we reduced the total number of the needed nonterminals and context-sensitive
productions to a finite number no matter which recursively enumerable language is characterized.

Fourth, the use of scattered context grammars in linguistics was discussed. We demonstrated
that in natural languages, context relations between not directly neighboring elements of a sen-
tence are relatively common. We gave several examples of sentence transformations and sketched
possible applications of scattered context grammars in linguistics.

Further Investigation

There are two main areas which are suitable for further investigation of scattered context grammars:
their practical use in linguistics and compiler construction, and further study of their theoretical
properties. We start by looking at their possible practical applications.

As we have demonstrated in Chapter 7, scattered context grammars can be used for description
of natural languages and their transformations. It may be, therefore, convenient to use scattered
context grammars as a device for context dependency description in processors of natural languages.
These processors may be used to analyze and possibly check the correctness of their input sentences.
For instance, spellcheckers, widely used in text processors, are usually based only on a dictionary
which is used to compare the words from the input with the words contained in the dictionary.
A more sophisticated way of spell-checking would require some model of the checked language
to, for example, verify whether the combination of the subject and the predicator is legal. As
scattered context grammars are ideal for capturing this kind of dependencies, they seem to be a
proper candidate for language description. The transformations discussed in Chapter 7 could be
even extended so that the input sentence is in one language while the output sentence is in another.
This would make it possible to use scattered context grammars for computer-based translation. This
approach might be successful because sentences in different languages have different word orders.
German language, for instance, exhibits a tendency to put verbs at the end of the sentence while in
English, verbs come right behind the subject. There are surely other examples of the use of scattered
context grammars in linguistics so we recommend this area for further investigation.

Another application area of scattered context grammars might be found in construction of paral-
lel compilers. Effective design of parallel compilers is currently under a very intensive development
(see [2, 83]). Scattered context grammars could be used in parallel compilers as a model of synchro-
nization between individual parallel branches. While every parallel branch may use context-free
productions for effective parsing, scattered context productions could serve for the needed informa-
tion interchange between these branches. This kind of synchronization would, for example, happen

110

only if a specified nonterminal appears in the sentential form of a branch. This branch would then
request a simulation of the scattered context production so it would be performed in other selected
branches as well. As the left-hand side of a scattered context production may contain an arbitrary
number of nonterminals, it can flexibly select only those branches which are needed for the infor-
mation interchange. After this communication step, all branches would continue parsing in parallel
way.

Even sequential compiling benefits from additional scattered context checks as demonstrated
by [63, 64]. These papers use a restricted version of propagating scattered context grammars to im-
prove parsing of programming languages. The authors use scattered context productions to describe
every variable’s declaration and use. This way, they check whether a variable was declared before
its use and, in addition, perform type checks at the same time. This is all done within the parsing
phase of the compilation process without any need of a symbol table.

Finally, this theses, as a theoretical approach to the problematics of scattered context, intro-
duced several new open problems to formal language theory. In Chapter 4, we eliminated erasing
productions form a scattered context grammar if this grammar erased its nonterminals in a general-
ized k-limited way. The result rises, however, two open problems. First, are we able for given k and
a grammar G to decide whether G erases its nonterminals in a generalized k-limited way? Second,
does this type of erasing cover all cases in which erasing productions can be eliminated from a scat-
tered context grammar? In Section 5.2, we restricted derivations so that at most n first nonterminals
could be rewritten. Is it possible to construct a propagating scattered context grammar which sat-
isfies this property implicitly without any modification of its definition? Finally, the long-standing
open problem of whether scattered context grammars without erasing productions characterize the
family of context-sensitive languages remains still open. Hopefully, this long-open problem will be
solved one day in the future.

111

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1988.

[2] G. Almási, C. Cascaval, and P. Wu, editors. Languages and Compilers for Parallel Computing.
Springer, 2007.

[3] J. G. Brookshear. Theory of Computation. Benjamin/Cummings, 1989.

[4] N. Chomsky. On certain formal properties of grammars. Information and Control, 2:137–167,
1959.

[5] A. B. Cremers. Normal forms for context-sensitive grammars. Acta Informatica, 3:59–73,
1973.

[6] J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory. Akademie-Verlag,
1989.

[7] A. Ehrenfeucht and G. Rozenberg. An observation on scattered grammars. Information Pro-
cessing Letters, 9(2):84–85, 1979.

[8] S. Eilenberg. Automata, Languages, and Machines. Academic Press, 1976.

[9] H. Fernau. Scattered context grammars with regulation. Annals of Bucharest University,
Mathematics-Informatics Series, 45(1):41–49, 1996.

[10] H. Fernau and A. Meduna. On the degree of scattered context-sensitivity. Theoretical Com-
puter Science, 290:2121–2124, 2003.

[11] H. Fernau and A. Meduna. A simultaneous reduction of several measures of descriptional
complexity in scattered context grammars. Information Processing Letters, 86:235–240, 2003.

[12] V. Geffert. Context-free-like forms for the phrase-structure grammars. In Proceedings of the
Mathematical Foundations of Computer Science 1988, pages 309–317, New York, 1988.

[13] S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages. North-
Holland, 1975.

[14] S. Ginsburg and S. Greibach. Abstract families of languages. In FOCS, pages 128–139, 1967.

[15] J. Gonczarowski and M. K. Warmuth. Scattered versus context-sensitive rewriting. Acta
Informatica, 27:81–95, 1989.

[16] S. Greibach and J. Hopcroft. Scattered context grammars. Journal of Computer and System
Sciences, 3:233–247, 1969.

112

[17] M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, 1978.

[18] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, 1979.

[19] R. Huddleston and G. Pullum. The Cambridge Grammar of the English Language. Cambridge
University Press, 2002.

[20] R. Huddleston and G. Pullum. A Student’s Introduction to English Grammar. Cambridge
University Press, 2005.

[21] O. Ibarra. Simple matrix languages. Information and Control, 17(4):359–394, 1970.

[22] T. Kasai. An hierarchy between context-free and context-sensitive languages. Journal of
Computer and System Sciences, 4(5):492–508, 1970.

[23] D. Kelley. Automata and Formal Languages. Prentice-Hall, 1995.

[24] H. C. M. Kleijn and G. Rozenberg. Multigrammars. International Journal of Computer
Mathematics, 12:177–201, 1983.

[25] H. C. M. Kleijn and G. Rozenberg. On the generative power of regular pattern grammars.
Acta Informatica, 20:391–411, 1983.

[26] J. Král. On multiple grammars. Kybernetika, 1:60–85, 1969.

[27] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer-Verlag, 1985.

[28] S. Y. Kuroda. Classes of languages and linear-bounded automata. Information and Control,
7(2):207–223, 1964.

[29] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall,
1981.

[30] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Compiler Design Theory. Addison-Wesley,
Reading, 1976.

[31] A. Lindenmayer. Mathematical models for cellular interactions in development, parts I–II.
Journal of Theoretical Biology, 18:280–315, 1968.

[32] J. C. Martin. Introduction to Languages and the Theory of Computation. McGraw-Hill Higher
Education, 1997.

[33] T. Masopust. Scattered context grammars can generate the powers of 2. In EEICT 2007
Proceedings, volume 1, pages 401–404, Brno, 2007.

[34] T. Masopust and A. Meduna. On the descriptional complexity of partially parallel grammars.
Submitted, 2007.

[35] T. Masopust and J. Techet. Leftmost derivations of propagating scattered context grammars:
A new proof. Submitted, 2007.

[36] O. Mayer. Some restrictive devices for context-free grammars. Information and Control,
20:69–92, 1972.

113

[37] A. Meduna. Canonical scattered rewriting. International Journal of Computer Mathematics,
51:122–129, 1993.

[38] A. Meduna. Syntactic complexity of scattered context grammars. Acta Informatica, 32:285–
298, 1995.

[39] A. Meduna. A trivial method of characterizing the family of recursively enumerable languages
by scattered context grammars. EATCS Bulletin, 56:104–106, 1995.

[40] A. Meduna. Four-nonterminal scattered context grammars characterize the family of recur-
sively enumerable languages. International Journal of Computer Mathematics, 63:67–83,
1997.

[41] A. Meduna. Economical transformation of phrase-structure grammars to scattered context
grammars. Acta Cybernetica, 13:225–242, 1998.

[42] A. Meduna. Automata and Languages: Theory and Applications. Springer, 2000.

[43] A. Meduna. Generative power of three-nonterminal scattered context grammars. Theoretical
Computer Science, 246:276–284, 2000.

[44] A. Meduna. Terminating left-hand sides of scattered context productions. Theoretical Com-
puter Science, 237:423–427, 2000.

[45] A. Meduna. Uniform generation of languages by scattered context grammars. Fundamenta
Informaticae, 44:231–235, 2001.

[46] A. Meduna. Coincidental extension of scattered context languages. Acta Informatica, 39:307–
314, 2003.

[47] A. Meduna. Elements of Compiler Design. Taylor and Francis, 2008.

[48] A. Meduna, T. Masopust, and J. Techet. Improved results on the descriptional complexity of
scattered context grammars. Unpublished, 2006.

[49] A. Meduna and J. Techet. Generation of sentences with their parses: the case of propagating
scattered context grammars. Acta Cybernetica, 17:11–20, 2005.

[50] A. Meduna and J. Techet. Canonical scattered context generators of sentences with their
parses. Theoretical Computer Science, 389:73–81, 2007.

[51] A. Meduna and J. Techet. An infinite hierarchy of language families generated by scattered
context grammars with n-limited derivations. Submitted, 2007.

[52] A. Meduna and J. Techet. Maximal and minimal scattered context rewriting. In FCT 2007
Proceedings, volume 4639, pages 412–423, Budapest, 2007. Springer Verlag.

[53] A. Meduna and J. Techet. Reduction of scattered context generators of sentences preceded by
their leftmost parses. In DCFS 2007 Proceedings, pages 178–185, High Tatras, 2007.

[54] A. Meduna and J. Techet. Scattered context grammars that erase nonterminals in a generalized
k-limited way. Submitted, 2007.

[55] A. Meduna and M. Švec. Grammars with Context Conditions and Their Applications. Wiley,
2005.

114

[56] D. Milgram and A. Rosenfeld. A note on scattered context grammars. Information Processing
Letters, 1:47–50, 1971.

[57] G. Paun. Linear simple matrix languages. Elektronische Informationsverarbeitung und Ky-
bernetik, 14(7/8):377–384, 1978.

[58] G. Paun. On simple matrix languages versus scattered context languages. ITA, 16(3):245–253,
1982.

[59] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag,
1990.

[60] G. E. Revesz. Introduction to Formal Language Theory. McGraw-Hill, 1983.

[61] G. Rozenberg and A. Salomaa. The Mathematical Theory of L Systems. Academic Press,
1980.

[62] G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer, 1997.

[63] L. Rychnovský. Parsing of context-sensitive languages. In WFM 2007 Proceedings, pages
219–226, Hradec nad Moravicí, 2007.

[64] L. Rychnovský. Type checking by context-sensitive languages. In EEICT 2007 Proceedings,
pages 405–409, Brno, 2007.

[65] A. Salomaa. Theory of Automata. Pergamon Press, 1969.

[66] A. Salomaa. Formal Languages. Academic Press, 1973.

[67] A. Salomaa. Computation and Automata. Cambridge University Press, 1985.

[68] S. Sippu and E. Soisalon-Soininen. Parsing Theory. Springer-Verlag, 1987.

[69] S. Sippu and E. Soisalon-Soininen. Parsing Theory 2: LR(K) and LL(K) Parsing. Springer,
1990.

[70] T. A. Sudkamp. Languages and Machines: An Introduction to the Theory of Computer Sci-
ence. Addison-Wesley, Reading, 2006.

[71] J. Techet. Generation of sentences with their parses by scattered context grammars. In Inter-
national EEICT 2004 Proceedings, volume 1, pages 113–119, Bratislava, 2004.

[72] J. Techet. Generation of sentences with their parses by scattered context grammars. In EEICT
2004 Proceedings, volume 1, pages 227–229, Brno, 2004.

[73] J. Techet. Generation of sentences with their parses by scattered context grammars. In SVOČ
2004, pages 36–36, Brno, 2004.

[74] J. Techet. Canonical scattered context generators of sentences with their parses. In Honeywell
EMI 2005 Proceedings, pages 80–84, Brno, 2005.

[75] J. Techet. Canonical scattered context generators of sentences with their parses. In EEICT
2005 Proceedings, volume 1, pages 280–282, Brno, 2005.

[76] J. Techet. Scattered context generators of sentences with their parses. In MEMICS 2005
Pre-proceedings, pages 68–77, Znojmo, 2005.

115

[77] J. Techet. Částečně paralelní generování jazyků. Master’s thesis, Brno, 2005.

[78] J. Techet. k-limited erasing performed by scattered context grammars. In WFM 2007 Pro-
ceedings, pages 227–234, Hradec nad Moravicí, 2007.

[79] J. Techet. k-limited erasing performed by scattered context grammars. In EEICT 2007 Pro-
ceedings, volume 4, pages 419–423, Brno, 2007.

[80] J. Techet. A note on scattered context grammars with non-context-free components. In
MEMICS 2007 Proceedings, pages 225–232, Znojmo, 2007.

[81] G. Vaszil. On the descriptional complexity of some rewriting mechanisms regulated by context
conditions. Theoretical Computer Science, 330:361–373, 2005.

[82] V. Virkkunen. On scattered context grammars. Acta Universitatis Ouluensis, 20(6):75–82,
1973.

[83] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1996.

[84] D. Wood. Grammars and L Forms: An Introduction. Springer, 1980.

[85] D. Wood. Theory of Computation. Harper and Row, 1987.

116

Symbol Index

Symbol Page Description

a ∈ A 13 a is a member of A
a /∈ A 13 a is not a member of A
|A| 13 cardinality of A
/0 13 empty set
{a} 13 a set containing a
{a : π(a)} 13 a set containing elements which satisfy π

A⊆ B 13 A is a subset of B
A⊂ B 13 A is a proper subset of B
2A 14 power set of A
A∪B 14 union of A and B
A∩B 14 intersection of A and B
A−B 14 difference of A and B⋃

π A 14 union of elements of A satisfying π

A 14 complement of A
|x| 14 length of x
ε 14 empty sequence (string)
|x|V 14 number of occurrences of elements from V in x
(a,b) 14 ordered pair
(a1, . . . ,an) 14 ordered n-tuple
A×B 14 Cartesian product
ρ−1 14 inverse relation
a ∈ ρ(b) 15 synonym for (a,b) ∈ ρ

aρb 15 synonym for (a,b) ∈ ρ

ρk 15 k-fold product of ρ

ρ+ 15 transitive closure of ρ

ρ∗ 15 reflexive and transitive closure of ρ

T ∗ 15 set of all strings over T
T + 15 set of all non-empty strings over T
x · y 15 concatenation of x and y
xi 15 ith power of a string x
L1 ·L2 16 concatenation of languages L1 and L2
L1/L2 16 right quotient of L1 with respect to L2
L2\L1 16 left quotient of L1 with respect to L2
L1//L2 16 exhaustive right quotient of L1 with respect to L2
L2\\L1 16 exhaustive left quotient of L1 with respect to L2

117

Symbol Page Description

Li 16 ith power of a language L
L∗ 16 Kleene star
L+ 16 Kleene plus
L 16 complement of a language L
L 17 family of languages
x→ y 17 production
x⇒G y [p] 18 x is rewritten to y in G by using p
x⇒k

G y 18 k-fold product of⇒G

x⇒+
G y 18 transitive closure of⇒G

x⇒∗G y 18 reflexive and transitive closure of⇒G

L(G) 18 language of grammar G
x lm⇒G y 25 leftmost derivation step
x rm⇒G y 25 rightmost derivation step
x̀ 35 —
x́ 35 —
x̌ 39 —
L(G,ε,k) 35 —
xV y 44 —
x n

lim⇒G y 54 n-limited derivation step
L(G, lim,n) 54 —
L(G, lm) 64 —
L(G, rm) 64 —
x max⇒G y 69 maximal derivation step
x min⇒G y 69 minimal derivation step
L(G,max) 69 —
L(G,min) 69 —
l : p 79 production p labeled by l
T (G) 101 transformation defined by G

118

Operator Index

Operator Page Description

alph(x) 15 set of symbols occurring in x
cdep(P) 32 set of context-dependent productions of P
cf(x⇒G y) 35 context-free simulation of x⇒G y
cfree(P) 32 set of context-free productions of P
core(G) 34 core grammar of G
dcs(G) 27 degree of context sensitivity of G
domain(ρ) 14 domain of ρ

insert(x,a) 37 —
join(x) 38 —
lab(G) 78 production labels of G
len(p) 25 number of context-free productions in p
lhs(p) 18, 25 left-hand side of p
lhs-replace(x,a) 37 —
max(I) 17 maximal element of I
mcs(G) 27 maximum context sensitivity of G
min(I) 17 minimal element of I
ocs(G) 27 overall context sensitivity of G
perm(t) 17 set of t-element permutations
perm(n,m) 17 set of (n+m)-element permutations

preserving order of first n elements
range(ρ) 14 range of ρ

reorder(v, p) 17 reordered v according to permutation p
rev(x) 15, reversal of x
rhs(p) 18, 25 right-hand side of p
split(x) 38 —

119

Language Family Index

Family Page Description

L (RE) 18 unrestricted grammars
L (CS) 18 context-sensitive grammars
L (CF) 18 context-free grammars
L (LIN) 18 linear grammars
L (REG) 19 regular grammars
L (RLIN) 19 right linear grammars
L (SM) 20 simple matrix grammars
L (SM,n) 20 simple matrix grammars of degree n
L (SM,LIN) 20 linear simple matrix grammars
L (SM,LIN,n) 20 linear simple matrix grammars of degree n
L (SM,RLIN) 21 right linear simple matrix grammars
L (SM,RLIN,n) 21 right linear simple matrix grammars of degree n
L (ST) 22 state grammars
L (ST,n) 22 state grammars of degree n

L (SC) 25 scattered context grammars
L (PSC) 25 propagating scattered context grammars

L (PSC,ext) 31 extended propagating scattered grammars
L (SC,ε,k) 35 scattered context grammars which erase their

nonterminals in a generalized k-limited way
L (SC,LIN) 49 linear scattered context grammars
L (SC,LIN,n) 49 linear scattered context grammars of degree n
L (SC,RLIN) 50 right-linear scattered context grammars
L (SC,RLIN,n) 50 right-linear scattered context grammars of degree n
L (PSC, lim,n) 54 propagating scattered context grammars

which use n-limited derivations
L (PSC, lm) 64 propagating scattered context grammars

which use leftmost derivations
L (PSC, rm) 64 propagating scattered context grammars

which use rightmost derivations
L (PSC,max) 69 propagating scattered context grammars

which use maximal derivations
L (PSC,min) 69 propagating scattered context grammars

which use minimal derivations

120

Subject Index

2-limited prop. scattered context grammar, 27

abstract family of languages, 16
alphabet, 14
auxiliary verb, 98
axiom, see start symbol

bijection, see bijective function
bijective function, 14

canonical clause, 98
cardinality, 12
Cartesian product, 13
checking production, 29
Chomsky hierarchy, 18
closure

reflexive and transitive, 14
transitive, 14
under a binary operation, 14

closure property, 14
complement

of language, 15
of set, 13

concatenation
of languages, 15
of strings, 14

context-free
grammar, 17
language, 17
production, 24

context-free simulation, 34
partial, 34

context-sensitive
grammar, 17
language, 17
production, 24

control word, 77
core grammar, 33

degree of context sensitivity, 26

derivation, 17
step, see direct derivation

derivation word, 77
difference

of languages, 14
of sets, 13

direct derivation, 17
leftmost, 24
maximal, 68
minimal, 68
rightmost, 24

derivation
n-limited, 53

domain, 13

empty
sequence, 13
set, 12
string, 14

equivalent grammars, 23
existential clause, 102
Extended Post Correspondence, 21
extended prop. scattered context grammar, 30
extended Szilard language, 77

family
of languages, 14
of sets, 12

function, 13

global production, 29

homomorphism, 15

inflection, 97
injection, see injective function
injective function, 14
input sentence, 100
input vocabulary, 100
intersection

121

of languages, 14
of sets, 13

inverse relation, 13

k-fold product, 14
k-limited erasing, 27

generalized, 34
k-restricted homomorphism, 28
Kleene

plus, 15
star, 15

Kuroda normal form, 18

label of production, 77
language, 14

finite, 14
infinite, 14

leftmost production, 29
length of sequence, 13
lexical verb, 98
linear

grammar, 17
language, 17
scattered context grammar, 48

of degree n, 48
linear erasing, 16

mapping, see function
maximum context sensitivity, 26
modal verb, 98
morphism, see homomorphism

n-limited derivation, 21
negative-context grammars, 29
non-modal verb, 98
nonterminal, 16

symbol, see nonterminal
nonterminal complexity, 26

ordered
n-tuple, 13
pair, 13

output sentence, 100
output vocabulary, 99
overall context sensitivity, 26

paradigm, 98
irrealis, 98
past participle, 98
plain form, 98

present, 98
preterite, 98

parse, 78
partial function, 13
partially-parallel grammar, 8
phrase-structure grammar, 16
power

of language, 15
of string, 14

power set, 13
predicate, 97
predicator, 98
prefix, 14

proper, 14
production, 16

left-hand side, 17
right-hand side, 17

pronoun
nominative, 99

propagating scattered context
grammar, 24

which uses leftmost derivations, 29, 63
which uses rightmost derivations, 63
with appearance checking, 29
with unconditional transfer, 29

language, 24
of order n, 53

proper generator of its sentences
preceded by their parses, 78

leftmost, 78
with their parses, 78

leftmost, 78
rightmost, 78

question tag, 104
queue grammar, 21
quotient

left, 15
left exhaustive, 15
right, 15
right exhaustive, 15

range, 13
recursively enumerable language, 17
regular

grammar, 18
language, 15, 18

relation, 13
binary, 13

122

reversal
of language, 15
of string, 14

right-linear
scattered context grammar, 49

right-linear grammar, 18
rule, see production

scattered context
grammar, 24
language, 24

sentential form, 17
sequence, 13

finite, 13
infinite, 13

set, 12
countably infinite, 12
finite, 12
infinite, 12

simple matrix grammar, 19
linear, 19

of degree n, 19
of degree n, 19
right-linear, 19

of degree n, 19
start symbol, 16
state

grammar, 20
of degree n, 21
of infinite degree, 21

language, 21
of degree n, 21
of infinite degree, 21

string, 14
subject, 97
subrelation, 13
subset, 12

proper, 12
substitution, 15
substring, 14

proper, 14
subword, see substring
successful derivation, 17
suffix, 14

proper, 14
surjection, see surjective function
surjective function, 14
symbol, 14

Szilard word, 77

terminal, 16
symbol, see terminal

total function, 13
transformational scattered context grammar, 99

transformation, 100

union
of languages, 14
of sets, 13

unordered scattered context grammar, 9

verb
primary form, 98
secondary form, 98

verb phrase, 98

word, see string

123

	Contents
	1 Introduction
	Organization

	I Introduction to Formal Languages
	2 Definitions
	2.1 Mathematical Background
	2.2 Basics of Formal Language Theory
	2.3 Scattered Context Grammars

	3 Related Work

	II Results
	4 Conditional Removal of Erasing Productions
	5 Restrictions and Extensions
	5.1 Non-Context-Free Components of Scattered Context Grammars
	5.2 n-Limited Derivations
	5.3 Leftmost Derivations
	5.4 Maximal and Minimal Rewriting

	6 Generators of Sentences with Their Parses
	6.1 General Generators
	6.2 Canonical Generators
	6.3 Reduced Generators

	7 Applications in Linguistics

	III Summary and Conclusion
	8 Conclusion
	Further Investigation

	Bibliography
	Symbol Index
	Operator Index
	Language Family Index
	Subject Index

