
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ
FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

OPTIMALIZACE MODELOVÁNÍ GAUSSOVSKÝCH
SMĚSÍ V PODPROSTORECH A JEJICH
SKÓROVÁNÍ V ROZPOZNÁVÁNÍ MLUVČÍHO
OPTIMIZATION OF GAUSSIAN MIXTURE SUBSPACE MODELS
AND RELATED SCORING ALGORITHMS IN SPEAKER VERIFICATION

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. ONDŘEJ GLEMBEK
AUTHOR

VEDOUCÍ PRÁCE Ing. LUKÁŠ BURGET, Ph.D.
SUPERVISOR

BRNO 2012

Abstract

This thesis deals with Gaussian Mixture Subspace Modeling in automatic speaker recogni-
tion. The thesis consists of three parts. In the first part, Joint Factor Analysis (JFA) scor-
ing methods are studied. The methods differ mainly in how they deal with the channel of
the tested utterance. The general JFA likelihood function is investigated and the methods
are compared both in terms of accuracy and speed. It was found that linear approximation
of the log-likelihood function gives comparable results to the full log-likelihood evaluation
while simplyfing the formula and dramatically reducing the computation speed.

In the second part, i-vector extraction is studied and two simplification methods are
proposed. The motivation for this part was to allow for using the state-of-the-art technique
on small scale devices and to setup a simple discriminative-training system. It is shown
that, for long utterances, while sacrificing the accuracy, we can get very fast and compact
i-vector systems. On a short-utterance(5-second) task, the results of the simplified systems
are comparable to the full i-vector extraction.

The third part deals with discriminative training in automatic speaker recognition.
Previous work in the field is summarized and—based on the knowledge from the earlier
chapters of this work—discriminative training of the i-vector extractor parameters is pro-
posed. It is shown that discriminative re-training of the i-vector extractor can improve
the system if the initial estimation is computed using the generative approach.

Keywords

Speaker Recognition, Gaussian Mixture Model, Subspace Modeling, i-vector, Joint Factor
Analysis, Discriminative Training

Bibliographic citation

Ondřej Glembek: Optimization of Gaussian Mixture Subspace Models and Related Scor-
ing Algorithms in Speaker Verification, Doctoral thesis, Brno, Brno University of
Technology, Faculty of Information Technology, 2012

iii

iv

Abstrakt

Tato práce pojednává o modelováńı v podprostoru parametr̊u směśı gaussovských ro-
zložeńı pro rozpoznáváńı mluvč́ıho. Práce se skládá ze tř́ı část́ı. Prvńı část je
věnována skórovaćım metodám při použit́ı sdružené faktorové analýzy k modelováńı
mluvč́ıho. Studované metody se lǐśı převážně v tom, jak se vypořádávaj́ı s variabil-
itou kanálu testovaćıch nahrávek. Metody jsou prezentovány v souvislosti s obecnou
formou funkce pravděpodobnosti pro sdruženou faktorovou analýzu a porovnány jak z
hlediska přesnosti, tak i z hlediska rychlosti. Je zde prokázáno, že použit́ı lineárńı aproxi-
mace pravděpodobnostńı funkce dává výsledky srovnatelné se standardńım vyhodnoceńım
pravděpodobnosti při dramatickém zjednodušeńı matematického zápisu a t́ım i zvýšeńı
rychlosti vyhodnocováńı.

Druhá část pojednává o extrakci tzv. i-vektor̊u, tedy ńızkodimenzionálńıch reprezen-
taćı nahrávek. Práce prezentuje dva př́ıstupy ke zjednodušeńı extrakce. Motivaćı pro
tuto část bylo jednak urychleńı extrakce i-vektor̊u, jednak nasazeńı této úspěšné tech-
niky na jednoduchá zař́ızeńı typu mobilńı telefon, a také matematické zjednodušeńı
umožněňuj́ıćı využit́ı numerických optimalizačńıch metod pro diskriminativńı trénováńı.
Výsledky ukazuj́ı, že na dlouhých nahrávkách je zrychleńı vykoupeno poklesem úspěšnosti
rozpoznáváńı, avšak na krátkých nahrávkách, kde je úspěšnost rozpoznáváńı ńızká, se
rozd́ıly úspěšnosti st́ıraj́ı.

Třet́ı část se zabývá diskriminativńım trénováńım v oblasti rozpoznáváńı mluvč́ıho.
Jsou zde shrnuty poznatky z předchoźıch praćı zabývaj́ıćıch se touto problematikou.
Kapitola navazuje na poznatky z předchoźıch dvou část́ı a pojednává o diskriminativńım
trénováńı parametr̊u extraktoru i-vektor̊u. Výsledky ukazuj́ı, že při klasickém trénováńı
extraktoru a následném diskriminatvińım přetrénováńı tyto metody zvyšuj́ı úspěšnost.

Kĺıčová slova

rozpoznáváńı mluvč́ıho, směs gaussovských rozložeńı, modelováńı v podprostoru
parametr̊u, i-vector, sdružená faktorová analýza, diskriminativńı trénováńı

Bibliografická citace

Ondřej Glembek: Optimalizace modelováńı gaussovských směśı v podprostorech a jejich
skórováńı v rozpoznáváńı mluvč́ıho, Disertačńı práce, Brno, Vysoké učeńı technické
v Brne, Fakulta informačńıch technologíı, 2012

v

Acknowledgments

I would like to thank Honza Černocký, and Lukáš Burget for being excelent supervisors
during my studies. I was honored and priviledged each time I worked with them. Honza’s
push for education enabled me to attend numerous prestigous conferences and participate
in wonderful projects and internships. Not only I got the opportunity to learn interesting
things, but also to meet very interesting people and work with them. Endless discussions
with Lukáš—interleaved with relaxing guitar jam-sessions—gave me important ideas and
help for this thesis.

At the same time I have to thank all members of the Speech@FIT research group
for their support and help, especially the Language and Speaker recognition team: Pavel
Matějka, Olda Plchot, Petr Schwarz, Martin Karafiát, Karel Veselý, Sandro Cumani,
Mehdi Soufifar, and our technical guru Tomáš Kašpárek. Not to forget, my credits also go
to SPON—the unofficial “Fellowship of the Beloved Beverage”—for sharing the enjoyment
of drinking coffee.

I’d also like to thank the participants and organizers of the JHU Speaker Workshop
and the BOSARIS Workshop, from which most of the ideas for this thesis come from.
Special thanks to Niko Brümmer and Patrick Kenny for the essential ideas and help during
this work.

Thanks to all co-authors of the underlying papers for their support and kind agreement
to share the text and ideas of the papers in this thesis.

Special thanks to Marcel Kockmann for sharing his ideas and for providing useful
information for this work, especially introductory images and database description.

Very special thanks to my wife Maruška for her support and patience, thanks to my
kids Margaréta and Augustýn for being with me, thanks to my parents and all the family
for their moral support and helping out with my parental duties during the compilation
of this work.

vii

viii

Contents

1 Introduction 1

1.1 Extracting Speaker Information . 2

1.1.1 Voice Activity Detection . 2

1.1.2 Feature Extraction . 2

1.2 Automatic Speaker Verification Procedure 5

1.2.1 Model Training . 6

1.2.2 Score Normalization . 7

1.3 Motivation and Contribution . 8

1.3.1 Claims . 9

1.3.2 Structure of the thesis . 9

2 Evaluation Metrics, Databases, and Datasets 11

2.1 Data sets . 11

2.2 Tests . 12

2.2.1 NIST . 12

2.2.2 MOBIO Project and Target Platform 12

2.3 Evaluation Metrics . 12

2.3.1 DET Plot . 13

2.3.2 Equal Error Rate . 13

2.3.3 Detection Cost Function . 14

2.3.4 Constellation Plots . 15

2.3.5 Application-Independent Metric . 15

2.3.6 Calibration . 16

2.4 Databases . 17

2.4.1 Switchboard . 17

2.4.2 NIST SRE 2004 . 17

2.4.3 NIST SRE 2005 . 17

2.4.4 NIST SRE 2006 . 18

2.4.5 NIST SRE 2008 . 18

2.4.6 NIST SRE 2010 . 18

2.4.7 Fisher English . 19

2.4.8 MOBIO . 19

ix

x

3 Gaussian Mixture Modeling 21
3.1 Data Alignment . 22
3.2 Sufficient Statistics . 23
3.3 The Likelihood Function . 24

3.3.1 Fixed Alignment . 25
3.4 Maximum Likelihood Estimation of the Parameters 26

3.4.1 UBM Training . 27
3.5 MAP adaptation . 27
3.6 GMM Subspace Modeling . 29

3.6.1 Theoretical Background . 30
3.6.2 The Likelihood Function . 31
3.6.3 Posterior of the Hidden Variables 32
3.6.4 Hyper-Parameter Estimation . 32
3.6.5 The Channel-Compensation Example 35

3.7 Claims of the Thesis Revisited . 38

4 Joint Factor Analysis 39
4.1 Theoretical background . 39

4.1.1 Model Training . 40
4.2 Comparison of Scoring Methods . 42

4.2.1 Frame by Frame . 43
4.2.2 Integrating over Channel Distribution 43
4.2.3 Channel Point Estimate . 44
4.2.4 UBM Channel Point Estimate . 45
4.2.5 Linear Scoring . 45

4.3 Experimental setup . 47
4.3.1 Test Set . 47
4.3.2 Feature Extraction . 47
4.3.3 JFA Training . 48
4.3.4 Normalization . 48
4.3.5 Hardware and Software . 48

4.4 Results . 48
4.4.1 Speed . 49

5 i-vectors 51
5.1 Theoretical background . 51

5.1.1 Data . 52
5.1.2 i-vector Extraction Via Posterior Evaluation 53
5.1.3 Model Training . 53

5.2 Recognition using Cosine Distance . 54
5.2.1 LDA . 55
5.2.2 Within-Class Normalization . 55

5.3 PLDA . 56
5.3.1 Trial Scoring . 57

5.4 Simplifications of i-vector extraction . 59

xi

5.4.1 Simplification 1: Approximating the Zero-order Statistics 60
5.4.2 Simplification 2: I-vector Extractor Orthogonalization 61
5.4.3 The NIST Experiments . 63
5.4.4 Simplification 1 in Training . 66
5.4.5 The MOBIO Experiments . 67

6 Discriminative Training 69
6.1 Discriminative Objective Function . 70

6.1.1 Gradient Evaluation . 74
6.2 Discriminative Training of JFA . 75

6.2.1 Experiment with no explicit channel compensation 77
6.2.2 Experiment with ML trained eigenchannels 78

6.3 Discriminative Training of PLDA . 79
6.3.1 Efficient score and Gradient evaluation 79
6.3.2 Numerical Optimization . 80
6.3.3 Experimental Setup . 81
6.3.4 Results . 81

6.4 Discriminative Training of i-vector Extractor 82
6.4.1 Gradient Evaluation . 83
6.4.2 Experimental Setup . 85

7 Conclusions 89
7.1 Summary . 89
7.2 Future Work . 90

7.2.1 Low-hanging Fruit . 90
7.2.2 Long-term Plans . 91

A Appendix 101
A.1 Log-Likelihood with Hidden Variables . 101
A.2 The EM Algorithm in General . 102
A.3 EM for PLDA . 103

A.3.1 Data . 104
A.3.2 The Log-Likelihood Function . 104
A.3.3 Hidden-Variable Prior . 105
A.3.4 Hidden-Variable Posterior . 105
A.3.5 Marginal Log-Likelihood (EM Objective) 105
A.3.6 E-step . 106
A.3.7 M-step . 107

xii

Nomenclature

ANN Artificial Neural Network

BMBA Bi-Modal Biometric Authentication

CDF Cumulative Density Function

CG Conjugate Gradient

DCF Detection Cost Function

DCT Discrete Cosine Transform

DET Detection Error Tradeoff

DFT Discrete Fourier Transform

EER Equal Error Rate

EM Expectation Maximization

FA Fals Alarm

GMM Gaussian Mixture Model

HLDA Heteroscedastic Linear Discriminant Analysis

HMM Hidden Markov Model

HTPLDA Heavy-Tailed Probabilistic Linear Discriminant Analysis

JFA Joint Factor Analysis

LDA Linear Discriminant Analysis

LLR Log-Likelihood Ratio

LVCSR Large Vocabulary Continuous Speech Recognition

MCE Minimum Classification Error

MFCC Mel-Filterbank Cepstral Coefficients

ML Maximum Likelihood

xiii

xiv

MMI Maximum Mutual Information

MPE Minimum Phoneme Error

NIST National Institute of Standards and Technology

NN Neural Network

PDF Probability Density Function

PLDA Probabilistic Linear Discriminant Analysis

ROC Receiver Operating Characteristics

SRE Speaker Recognition

STG Short-Time Gaussianization

SVD Singular Value Decomposition

SVM Support Vector Machine

UBM Universal Background Model

VAD Voice Activity Detection

GSM Global System for Mobile Communications

WCCN Within-Class Covariance Normalization

Chapter 1

Introduction

Automatic speaker recognition (SRE) is the process of classifying audio recording based
on the information which is relevant to the speaker in that recording. It is assumed that
the process is independent of the channel, i.e. language, communication channel, content,
etc. The problem can be understood from two points of view: speaker identification, and
speaker verification.

Speaker identification is a multi-class classification problem, where the task is to assign
an utterance to a closed set of known speaker labels. An example of such application could
be a search engine in an audio database of university lecture recordings. If a new recording
by a staff member is to be added to the database, the speaker can be automatically
identified assigned to the new recording. Note that this approach fails if the speaker is a
guest and his voiceprint is not in the database of known speakers.

Speaker verification—on the other hand—is a two-class problem, where the task is to
decide whether two utterances come from the same speaker or not. This task is sometimes
reinterpreted as to decide whether an utterance belongs to a certain speaker model or
not. Since the speaker model is assumed to have been computed from some reference
utterance, the two interpretations of the problem are equivalent. An example of such
application could be e.g. telephone-banking authentication, where—apart from answering
questions about e.g. mother’s maiden name, date of birth, social security number, etc.—
the voiceprint match gives yet another level of security. Speaker verification can be easily
converted to speaker identification by restricting the set of compared utterances.

Looking at the SRE problem content-wise, we can understand it as either text-
dependent or text-independent. While text-dependent SRE looks at the content of the
speech, such as pass-phrase, the text-independent approach only exploits the information
in the waveform, basically ignoring what is being said. Looking at the possible scenar-
ios, text-dependent SRE system could be employed in a telebanking system where the
user authenticates using a passphrase that only he or she is supposed to know, while
text-independent system is more suitable for intelligence purposes, such as spotting a
suspicious person on a telephone network.

The point of interest of this work is text-independent speaker verification. Let us now
take a look at the levels of information in which moder SRE systems operate:

1

2 1 Introduction

1.1 Extracting Speaker Information

At the very beginning of an automatic speaker recognition, a speech waveform is provided
to the system. According to [Reynolds, 2002], several levels of information can be found
in speech (going from the lowest level to the highest):

• acoustic: spectral features conveying vocal tract information

• prosodic: features derived from prosody (pitch, energy, tracks, etc.) to characterize
speaker-specific patterns [Kockmann, 2012]

• phonetic: analysis of sequences of phonemes specific to the speaker (see
e.g. [Navrátil et al., 2003])

• idiolect: analysis of sequences of words

• linguistic: analysis of linguistic patters which characterize the speaker’s conversa-
tion styles

The last two levels are rare in automatic SRE and are mostly exploited by experts in the
forensic area.

In this work, I deal with the acoustic level of information, however many tech-
niques described in this work were successfully used in other fields such as prosodic
SRE [Kockmann, 2012].

1.1.1 Voice Activity Detection

In most speech-processing applications including SRE, Voice Activity Detection (VAD) is
run to choose the parts of the analyzed utterance, which do contain useful speech. There
are various approaches to this step including mere energy thresholding, Gaussian Mixture
Model (GMM) approaches to advanced and robust Neural Networks (NN) and Hidden
Markov Models (see e.g. system descriptions of [NIST, nd]).

In this work, VAD is based on hybrid Artificial Neural Networks (ANN) / Hidden
Markov Model (HMM). It is used as phoneme recognizer trained on the SPEECHDAT
Hungarian database [Matějka et al., 2006]. The output of such recognizer is a string of
recognized phonemes in the analyzed utterances. The phonemes are then clustered into
two classes—silence (all models of silence) and speech (all valid speech phonemes).

In case of telephone conversations, the cross-talks are detected by comparing the speech
energies in the overlapping string transcriptions (e.g. [Matějka et al., 2006]. The segment
with the higher energy is considered as the original channel.

1.1.2 Feature Extraction

In the orders of milliseconds, the acoustic signal can be considered stationary. This as-
sumption allows to split the signal into short (typically 10ms) units referred to as frames.
This operation can be viewed as windowing of the signal by a square window function.
The cuts at the borders of the frames introduce high-frequency distortion, therefore the

1.1 Extracting Speaker Information 3

...
...

...
...

...
...

...
...

...S
ho

rt
 T

er
m

 D
F

T

...
... ...

...

D
C

T

M
F

C
C

sp
ee

ch
 fr

am
e

...
...

M
E

L−
fil

te
rb

an
k

+
 E

ne
rg

y

ab
s(
·)

ln
(·

)

23 23128128200 13

Figure 1.1: MFCC extraction—the numbers above show typical dimensionalities for frame
length of 25ms at fs of 8000Hz

rectangular window function is usually substituted with a bell-shaped Hamming-window
function [Young et al., 2006], which attenuates the border area of the window and there-
fore suppresses the unwanted distortion. The drawback is that the useful information
in the border area is also suppressed, therefore the window function is usually set longer
than the windows shift and the windows overlap. To summarize the procedure, the typical
scenario is that frames are extracted every 10ms and their usual length is 20–25ms.

Speech information is extracted from the frames in the form of feature vectors. A
feature vector is a low-dimensional representation of a speech frame. In this work we have
used the Mel-Filterbank Cepstral Coefficients with various post-processing steps. Due to
time progression, different experiments use slightly different steps and the details will be
given in the corresponding chapters. However, let us now give a brief overview of the used
methods.

Mel-Filterbank Cepstral Coefficients

Mel-Filterbank Cepstral Coefficients (MFCC’s) have been standardly used in recent state-
of-the-art SRE systems. The usage of the MFCCs in SRE has been inspired by the
Large Vocabulary Continuous Speech Recognition (LVCSR) [Rabiner and Juang, 1993,
Davis and Mermelstein, 1980]. They provide a short-term representation of the power
spectrum of the analyzed signal. Figure 1.1 shows the extraction of the MFCC vec-
tor for one frame of speech and Figure 1.2 shows an example of the different stages
for one frame. At first, the absolute value of the short-term Discrete Fourier Trans-
form (DFT) is used to extract the amplitude of the spectrum. To emulate the human
hearing aparatus, the spectrum of the signal is divided into frequency bands using the
Mel-Filterbank [Rabiner and Juang, 1993] and energy for each band is computed as a sum
of squared values of the amplitude spectrum (see Figure 1.2(c) for the visualization of the
triangular-shaped, logarithmically spaced bank of filters). Note that the overall frame
energy is computed as an average of squared samples. The logarithm of the band energies
is computed to compensate for the dynamic range of the values and to emulate another
non-linearity in the human hearing. Discrete Cosine Transform (DCT) is then used to
de-correlate and reduce the dimensionality of the vector to get the final set of MFCC

4 1 Introduction

0 5 10 15 20 25
−1

−0.5

0

0.5

1
a) Segment of speech signal for vowel ’iy’

time [ms]
0 5 10 15 20 25

−0.5

0

0.5
b) Speech segment after preemphasis and windowing

time [ms]

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
c) Fourier spectrum of speech segment

frequency [Hz]
1 3 5 7 9 11 13 15 17 19 21 23

0

5

10

15

20
d) Filter bank energies − smoothed spectrum

band number

1 3 5 7 9 11 13 15 17 19 21 23
−4

−3

−2

−1

0

1

2

3

4
e) Log of filter bank energies

band number
2 4 6 8 10 12

−5

0

5
f) Mel frefuency cepstral coefficients

mel quefrency

Figure 1.2: MFCC extraction—visualization of MFCC extraction steps. Reproduced
from [Burget, 2004] with permission.

coefficients. Note that the zero-th coefficient contains information about the total frame
energy and is therefore often discarded or replaced by the total energy itself.

Feature Derivatives

To capture the time progression, the consecutive feature vectors are usually extended with
their 1st, 2nd, and/or 3rd order derivative approximations (higher orders are rarely used),
commonly referred to as deltas, double-deltas, and triple-deltas [Furui, 1986]. The first
order derivative for a feature vector c in frame k is usually realized as a linear combination
of the ±N surrounding feature vectors, i.e.:

∆c(k) =

N∑

j=−N

jc(k − j), (1.1)

where N is in our case set to 2. Higher-order derivatives can be obtained by recursively
applying the above formula to the lower-order derivatives.

Feature Normalization

It has been observed that it is common for the dynamics of the features to vary from one
utterance to another in a linear way, i.e. they can get biased and scaled. To deal with

1.2 Automatic Speaker Verification Procedure 5

this sort of inter-session variation on the feature level, feature mean removal and variance
scaling has been proposed (e.g. [Young et al., 2006]); for a k-th frame in utterance d, the
normalized i-th coefficient ĉd,i(k) is computed as

ĉd,i(k) =
cd,i(k)− µd,i

σd,i

, (1.2)

where the normalization parameters mean µd,i and standard deviation σd,i are usually
calculated from the whole utterance d.

Short-Time Normalization

It is also common to compute the normalization parameters on short segments and apply
them locally. For each frame, the scale and bias is computed from a short segment centered
around the frame. This operation compensates for the within-session variability and has
proved to be effective for some SRE systems. The typical length of such short-window is
3s.

Short-Time Gaussianization

Not only can the features be normalized locally as mentioned in the previous sec-
tion, they can also be warped to have standard normal distribution. This step is
known as Feature Warping or Short-Time Gaussianization (STG) and has been proposed
in [Pelecanos and Sridharan, 2006]. The algorithm operates on a short window of features
(typically 3s). It sorts the features and substitutes them with corresponding values of an
inverse cumulative density function (CDF) of a standard normal distribution.

1.2 Automatic Speaker Verification Procedure

As was said in the introduction, the task of speaker verification is to detect whether a pair
of utterances comes from the same speaker (referred to as hypothesis H1) or from different
speakers (hypothesis H2). It is assumed in this work, that the utterances themselves do
not contain speech from multiple speakers.

The detection is based on evaluating statistical models using the data provided. It is
realized using a 2-class classifier whose outcome is a log-likelihood ratio (LLR) of the two
hypotheses. Following the definition of speaker verification from the previous paragraph,
the diagram of speaker verification procedure can be seen in Figure 1.3. Note that the
input to the likelihood function is a pair of two utterances d1 and d2—referred to as a
trial x = 〈d1, d2〉—and the system is generally symmetrical, i.e. the order of d1 and d2

does not matter. Mathematically, the score is given as

ssym = log
p(x|H1)

p(x|H2)
(1.3)

However, the problem has traditionally been seen as a two-phase asymmetrical task. In
the first phase of enrollment, a speaker model M1 has to be trained from the utterance d1

6 1 Introduction

log p(x|H1)

∑

log p(x|H2)

utterance d2

utterance d1

pair x

sLLR

-1

Figure 1.3: General symmetrical speaker verification procedure: an input trial x is given
as a pair of utterances 〈d1, d2〉 and the computation of the likelihood is conditioned by the
hypotheses that the utterances come either from a single speaker (H1) or two different
speakers (H2).

enrollment

utterance d2

utterance d1

sLLR

log p(d2|M1)

model M1

log p(d2|MUBM) -1

∑

Figure 1.4: Asymmetrical speaker verification procedure: an input trial x is given as a
model M1 and test utterance d2 and the computation of the likelihood d2 is conditioned by
the model, i.e. either the probed speaker model M1 or the “the model of all speakers”—the
UBM.

(referred to as the enrollment data). Then, in the scoring phase, the score is computed
as a ratio of how likely the utterance d2 (referred to as test data) is generated by M1

and how likely it is generated by “any” speaker model MUBM, where UBM stands for
Universal Background Model. The UBM approximates the distribution of all speakers.
To do so, it is trained on some training set comprising many speakers (see Section 2.1).
A diagram of such evaluation is shown in Figure 1.4. Mathematically, the asymmetrical
problem is stated as

sassym = log
p(d2|M2)

p(d2|MUBM)
(1.4)

In this work, both described definitions are used, depending on the overall modeling
method used.

1.2.1 Model Training

As mentioned, the detection is based on evaluating statistical models. Essentially, there
are two approaches to modeling: generative and discriminative. The generative approach

1.2 Automatic Speaker Verification Procedure 7

aims at training the models so that they are most likely to have generated the input data.
This approach has traditionally been used due to its simplicity and flexibility. Note, that
the description of this problem does not mention anything about classes or classification.
A common method for estimating model parameters is e.g. maximum likelihood.

On the other hand, discriminative training aims at training the parameters so that,
when applied, they address the problem of class separation in a direct way. In speaker
recognition, discriminative training has originally been based on Support Vector Machines
(SVM) [Vapnik, 1995, Campbell, 2002, Campbell et al., 2006b]. SVMs were used in place
of M1 of Figure 1.4 and they were trained for each speaker to best match the speaker
against a cohort of impostors. The problem was therefore defined as one against many. In
this work—as studied in Chapter 6—discriminative training will address SRE as a sym-
metrical problem (as shown in Figure 1.3). The input will be a pair of tested utterances
and the classes will be given by the same-speaker and different-speaker hypotheses, i.e.
H1 and H2, respectively.

1.2.2 Score Normalization

It has been shown in [Auckenthaler et al., 2000], that score normalization compensates for
data mismatch. The assumption is that the impostor scores are normally distributed and
the principle of score normalization is to apply scaling and shift to force the impostor scores
to be of standard normal distribution. The scale and shift are estimated using separate
normalization sets which are assumed to contain recordings from impostor speakers only.
The scale and shift is applied as

snorm =
s− µ

σ
. (1.5)

Zero Normalization—Z-norm

Assuming the asymmetrical approach, this method estimates the normalization constants
by having a set of impostor recordings Z scored against the enrolled speaker model M.
Mathematically, we assure that

p

(
simp − µM

σM

∣
∣
∣
∣
M

)

= N

(
simp − µM

σM

; 0, 1

)

(1.6)

Figure 1.5 depicts this procedure as “STEP 1”. This normalization compensates for
the acoustic mismatch between the set of “standard” test utterances and the data that
were used to train the speaker model. The advantage of Z-norm is that the estimation of
the constants can be performed off-line when enrolling the model.

Test Normalization—T-norm

This method is similar to Z-norm in that a mean is subtracted and score is scaled by a
standard deviation. When scoring an utterance d, a set of impostor models M is used to
compute the parameters, which are then applied using (1.5). Mathematically, we assure
that

p

(
simp − µd

σd

∣
∣
∣
∣
d

)

= N

(
simp − µd

σd
; 0, 1

)

(1.7)

8 1 Introduction

Z−norm utterancestest utterances

en
ro

lle
d

m
od

el
s

m
od

el
s

T
−

no
rm T−norm

x
Z−normtest

x
T−norm

x
enroll

test

enroll
x

Z−norm

STEP 1

STEP 3

STEP 2

A B

C D

Figure 1.5: Application of ZT-norm. The boxes denote matrices of complete scores, i.e.
all models against all scored utterances.

The method is marked as “STEP 3” in Figure 1.5. It compensates for the acoustic
mismatch between the tested utterance and a set of “standard” speaker models.

ZT-norm

ZT-norm is a combination of both normalization techniques. For simplicity, let us assume
that we have a matrix of all scores, where each row corresponds to an enrolled model
and each column to a tested utterance. First, the Z-norm is applied to the matrix of test
scores and to the matrix of scores of T-norm models vs. test utterances, denoted as STEP
1 and STEP 2 in Figure 1.5. Next, T-norm parameters are computed on the T-norm–test
matrix, and applied to the matrix of (Z-normalized) test scores, denoted as STEP 3 in
Figure 1.5.

S-norm

S-norm has been introduced for the symmetrical systems as the Z- or T- norm concept is
asymmetrical by nature. The S-norm that was used in this work is basically computed as
the average of Z- and T-norm scores, where the cohorts are the same.

1.3 Motivation and Contribution

The first part of my work was done during the John Hopkins University 2008 summer
workshop [Burget et al., 2008], which consisted mainly in comparison of different scoring

1.3 Motivation and Contribution 9

methods for Joint Factor Analysis. My interest was to compare the methods and ana-
lyze them in deep [Glembek et al., 2009]. During the workshop, Najim Dehak invented
the i-vectors [Dehak et al., 2010], which outperformed JFA and had quickly become the
essence of the modern SRE systems. The second part of my work was inspired by Na-
jim’s work and the on-going Mobio project [Marcel et al., 2010], one of whose aim was
to implement speaker verification on a cell-phone. I was interested in simplifying the
i-vector extraction so that it could be used in Mobio. The underlying work was presented
in [Glembek et al., 2011b]. At that very same JHU workshop, Lukas Burget tried to
train the JFA discriminatively. Later on, he experimented with discriminatively optimiz-
ing the PLDA [Burget et al., 2011]. The third part of my work was inspired by Lukas’
work and I have tried to apply the discriminative training framework to the i-vector
system [Glembek et al., 2011a].

1.3.1 Claims

The goal of this work was to analyze the contemporary state-of-the-art speaker recognition
systems and to improve the methods not only in terms of accuracy, but also in terms of
speed and real-world application.

• analysis of JFA scoring methods: I systematically investigated different scoring
methods for JFA that different sites have been using and analyzed them in terms of
anatomy, speed, and accuracy.

• i-vector extraction optimization: The computational requirements for training
the i-vector systems and estimating the i-vectors, are too high for certain types
of applications. In this work I introduce simplifications to the original i-vector
extraction and training schemes, which dramatically decrease their complexity while
retaining the recognition performance.

• i-vector extractor training simplification: Using the new proposed method,
larger i-vector systems can be trained as memory demands have halved.

• discriminative training of i-vector extractor: I have implemented and tested
the i-vector extractor training using discriminative criterion. The approach was
tested on a scaled-down system and shown an improvement for the simplified i-
vector extraction.

1.3.2 Structure of the thesis

The thesis is organized as follows:

• Chapter 2 introduces the evaluation metrics, the data that are used throughout
this work, and processing of the scores. The data is described in three contexts:
databases, datasets, and feature extraction.

• Chapter 3 outlines the basics of acoustic modeling and provides a theoretical in-
troduction for the experiments of this work.

10 1 Introduction

• Chapter 4 presents the concept of Joint Factor Analysis and describes the work
on different scoring methods, including the experimental results.

• Chapter 5 presents the concept of i-vectors and introduces the simplification of
i-vector extraction and i-vector extractor training.

• Chapter 6 studies the technique of discriminative training of different parts of the
speaker-recognition system and summarizes previous work. The new approach for i-
vector extractor discriminative optimization together with the results are presented.

Chapter 2

Evaluation Metrics, Databases, and
Datasets

Let us first get familiar with the evaluation metrics and the data that were used throughout
the work. It is desirable to introduce and explain this issue at this point so that the reader
gets familiarized with the terminology and qualities of the data. These will be referred to
in the latter chapters.

2.1 Data sets

The procedure of building an SRE system consists of the following steps: first, the system
is trained, then its parameters are eventualy adjusted, and finally the system is evaluated.
All three steps require separate data sets, which have to be carefuly chosen, so that the
system generalizes for unseed data. Respecting the order of the steps, the data sets are
described as

• training set (also referred to as background set) — a large corpus for robust
parameter estimation. This set usually contains several thousands of hours of speech
and speakers and is used to train e.g. the UBM or hyper-parameters of the later
described models such as JFA or PLDA.

• development set (also referred to as heldout set) — the system parameters are
usually tuned using this set.

• evaluation set (also referred to as test set) — the final system performance is
reported using this set. If the developped system generalizes well, the performance
will positively corelate with the one measured on the development set.

11

12 2 Evaluation Metrics, Databases, and Datasets

2.2 Tests

2.2.1 NIST

Most experimental results are reported on the official NIST Speaker Recognition Evalu-
ation tasks1. Because of time progression of this work, the experiments are reported on
NIST SRE sets from years 2006 [NIST, 2006], 2008 [NIST, 2008], and 2010 [NIST, 2010].

Each of these evaluations consists of numerous tests, commonly referred to as condi-
tions. These are defined by the properties of the audio data, such as channel, nominal
length, number of utterances per trial side, etc. NIST usually defines some conditions as
core, meaning they are mandatory for each participant of the evaluations. The results of
this work are reported on the core conditions of the mentioned tests, as well as on some
non-core conditions where needed. The individual databases are described in Section 2.4.

2.2.2 MOBIO Project and Target Platform

One of the parts of this work was to test the developped techniques on a mobile platform as
a part of the MOBIO project. MOBIO was a consortium of universities, research centers
and companies joined in the EU-funded project MOBIO2. The goal of this project was to
bring robust biometric identification to the mobile devices with the common equipment,
i.e. a microphone and a camera. The target research fields are therefore face recognition
and speaker verification.

The project had two main scenarios, where the developed identification systems can
be used:

• Embedded biometry where the Bi-Modal Biometric Authentication (BMBA) system
is running entirely on a mobile phone. The system is designed to maximize the
authentication performance and to minimize resources such as CPU, memory and
speed.

• Remote biometry if the BMBA system needs too many resources to reach the re-
quired performance it will be hosted on a server while a minimum of essential func-
tionalities would stay on the mobile phone such as capture, segmentation, prepro-
cessing and feature extraction.

2.3 Evaluation Metrics

Let us now focus on how to evaluate the performance of speaker verification systems.
As was mentioned earlier in Section 1.2, a speaker verification trial x is defined as a
pair of two utterances x = 〈d1, d2〉. A supervised trial is also associated with a label
hx ∈ {H1, H2}, depending on whether the two utterances come from the same speaker or
two different speakers. A test set, usually denoted as X, consists of a set of same-speaker

1National Institute of Standards and Technology (NIST), http://www.nist.gov/speech/tests/spk/index.htm
2http://www.mobioproject.org. The partners of the project were: Idiap Research Institute (CH),

University of Manchester (UK), University of Surrey (UK), University of Avignon (FR), Brno University
of Technology (CZ), University of Oulu (FN), IdeArk (CH), and Visidon (FI).

2.3 Evaluation Metrics 13

and different-speaker supervised trials X1 and X2, sometimes referred to as target and
non-target trials, respectively. The task of a speaker verification system is to assign a
correct label to the tested trial, i.e. classify the trial as H1 or H2. Two types of detection
errors can arrise—false alarms (FA)—the recognizer classifies the different-speaker trial as
same-speaker—and missed detections (Miss)3—the recognizer classifies the same-speaker
trial as different-speaker. For a given test set, one can estimate the probabilities for the
detection errors:

p(miss|X) =
Nmiss

|X1|

p(fa|X) =
Nfa

|X2|
,

(2.1)

where |X1| and |X2| are the number of same- and different-speaker trials, respectively, and
Nfa and Nmiss are the number of false alarms and missed detections made by the system,
respectively.

The raw output of the recognizer is a score4, having higher value for same-speaker
hypothesis and lower value for different-speaker hypothesis. The score is converted to
hard decision by thresholding. Moving the threshold t balances between the two types of
errors, letting the user choose the operating point of the system, i.e.

p(miss|X) = p(miss|X, t)

p(fa|X) = p(fa|X, t).
(2.2)

2.3.1 DET Plot

In order to evaluate the system on a given dataset, it is desirable to visualize the errors for
different thresholds. In the SRE community, The Detection Error Tradeoff (DET) graph
is commonly used [Martin et al., 1997]. It is an alternative to a commonly used Receiver
Operating Characteristics (ROC), and it plots the two types of errors on a non-linearily
transformed x- and y- axes. An example of such plot is in Figure 2.1.

2.3.2 Equal Error Rate

It is often required to report a system performance using a single number instead of a
complex figure such as the DET plot. In the SRE community, it is common to report the
Equal Error Rate (EER)—an operating point where the two errors are equal. On a DET
plot, the point is given as an intersection of the curve and the x = y line. In Figure 2.1,
the point is shown as hexagram mark. This is a very intuitive choice of an operating
point, although not very useful in practical applications which usually require either very
few miss detections (e.g., authorization systems), or false alarms (e.g., speaker spotting).

3The “FA” and “Miss” are addopted NIST conventions.
4preferabely log-likelihood ratio of the two hypotheses

14 2 Evaluation Metrics, Databases, and Datasets

0.001 0.01 0.1 0.2 0.5 1 2 5 10 20
 5

 10

 20

 40

 80

 90

 95

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

 System 1
 old min DCF
 new min DCF
 EER
 System 2
 old min DCF
 new min DCF
EER

Figure 2.1: DET curves for two different systems. The three markers in each line corre-
spond to the new DCF, the old DCF, and the EER, from left to right.

2.3.3 Detection Cost Function

NIST has introduced the Detection Cost Function (DCF) as a metric, which focuses
on a particular operation point of interest. It is NIST’s primary metric in its Speaker
Recongition Evaluation series. It directly considers the overall costs based on the two
types of errors. It is defined as a weighted sum of the false-alarm probability and the
miss-detection probability:

ĈDet = Cmiss × p(miss|X)× p(H1)

+ Cfa × p(fa|X)× p(H2)
(2.3)

with

p(H2) = 1− p(H1) , (2.4)

where Cmiss and Cfa are the relative costs of the detection errors, and p(H1) and p(H2) are
the prior probabilities for the trial being same- and different-speaker, respectively. The
tripplet 〈Cmiss, Cfa, p(H1)〉 defines the application for which the system is evaluated. The
common values, as defined by NIST, are given in Table 2.1. Until the 2008, NIST had
used values referred to as “old DCF” in the table. Since 2010, NIST has introduced new
set of values, referred to as “new DCF”, to emphasize the importance of very low false
alarms. The points are shown in Figure 2.1 as diamonds and pentagrams, respectively.

To make the measure more intuitive, ĈDet is further normalized by the best a-priori
cost CDefault, i.e. one that would be obtained by setting all trials to either same- or

2.3 Evaluation Metrics 15

Table 2.1: Common NIST DCF parameters (applications)

Cfa Cmiss p(H1)

DCFold 10 1 0.01
DCFnew 1 1 0.001

different-speaker, whichever is smaller:

CDefault = min

{
Cmiss × p(H1)
Cfa × p(H2)

(2.5)

and
ĈNorm = ĈDet/CDefault. (2.6)

The cost is computed from the actual hard decisions, no matter how the threshold was
chosen. An intuitive criterion for choosing the threshold is one that minimizes the DCF.
One can compute a minimum possible DCF, referred to as min-DCF, to see the optimal
threshold for the given test set:

Ĉmin
Det = min

t
Cmiss × p(miss|X, t)× p(H1)

+ Cfa × p(fa|X, t)× p(H2) .

A more realistic measure, however, is the actual DCF or act-DCF, for which the threshold
is chosen on some development set. The difference between the min-DCF and act-DCF
reflects how well the system is calibrated, which will be further discussed in Section 2.3.6.

2.3.4 Constellation Plots

Alghough DET plot can show multiple curves for different systems, it can get confusing,
when the curves are close to each other or if there are many systems to compare. Another
usefull visualization tool is the constellation plot, where the systems are represented by
pairs of chosen operating points and plotted in a 2D graph. An example of such plot is
in Figure 2.2.

2.3.5 Application-Independent Metric

Assuming that the trial score is interpreted as a log-likelihood ratio—which is true for our
systems by nature, as described in Section 1—an application-independent metric, referred
to as Ĉllr has been proposed in [Brümmer and du Preez, 2006]. For a trial set X being
composed of same-speaker trials X1 and different-speaker trials X2, the function is defined
as

Ĉllr(X) =
1

2 log 2

(

1

|X1|

∑

x∈X1

log(1 + es−1
x) +

1

|X2|

∑

x∈X2

log(1 + esx)

)

(2.7)

16 2 Evaluation Metrics, Databases, and Datasets

2.8 3 3.2 3.4 3.6 3.8 4
14

14.5

15

15.5

16

16.5

17

EER

D
C

F
ne

w

Figure 2.2: Example of a constellation plot. The plot shows the configuration of four
systems for new DCF and EER. The arrows can be used to show the evolution of the
system development on the important operating points.

where sx is the score for trial x, and |X1| and |X2| represent the number of same- and
different-speaker trials, respectively. Assuming the scores are log-likelihood ratios, and the
prior probabilities for both trial classes are equal, the logarithms in the sums represent log-
posterior probabilities of the trial being recognized as same-speaker of different-speaker,
respectively, i.e.

sx = logit(px) = log
px

1− px

px = logit−1(sx) =
1

1− e−sx

(2.8)

where, for convenience, we use px = p(H1|x) = 1− p(H2|x).
Note that we can interpret this metric as a logistic-regression objective function, i.e.,

a sum of logarithmic posterior probabilities of all trials being recognized correctly. This
will be described in detail in Section 6.1.

2.3.6 Calibration

As mentioned earlier in Section 2.3, threshold has to be chosen in order to make the
decision for a specified operating point. This can be achieved by calibrating the output
scores of the detector to represent proper class (hypothesis) posterior probabilities, using
the desired target prior in the calibration training. Calibration is understood as an affine
transformation of the score. Each calibrated (logarithmic) score greater than the log of
the target prior exceeds the threshold and is accepted in the requested operating point.

2.4 Databases 17

The process of calibration is described in [Brümmer and du Preez, 2006]. It is realized
using logistic-regression which aims at maximizing the posterior probabilities of binary
classification, which is in fact defined by (2.7).

It is also worth mentioning that stacking scores from multiple systems into a single
vector and applying logistic regression to such data leads to discriminatively-trained score-
level fusion.

2.4 Databases

This section contains the description of the data corpora that were used to build the
datasets as described in Section 2.1.5

2.4.1 Switchboard

Switchboard 2 Phase II [Graff et al., 1999] was released in 1999 and consists of 4,472 five-
minute telephone conversations involving 679 participants which were mainly recruited
from US college campuses. Each speaker participated in at least 10 calls. Switchboard
2 Phase III [Graff et al., 2002] was recorded between 1997 and 1998 in the American
South and consists of 2,728 calls from 640 participants (292 Male, 348 Female) which
are all native English speakers. Both of these corpora only consist of landline calls.
Switchboard Cellular Part 1 [Graff et al., 2001] was recorded until 2000 and mainly focuses
on cellular phone technology. It consists of 1,309 calls, or 2,618 sides (1,957 GSM),
from 254 participants (129 Male, 125 Female), under varied environmental conditions.
Switchboard Cellular Part 2 [Graff et al., 2004] was released in 2004 and consists of 2,020
calls, or 4,040 sides (2,950 cellular, 2,405 female, 1,635 male), from 419 participants.

2.4.2 NIST SRE 2004

The NIST SRE 2004 corpus [Martin and Przybocki, 2004] consists of 10,743 telephone
call segments recorded from 480 participants (181 Male, 299 Female) over landline as well
as cellular phones.

2.4.3 NIST SRE 2005

The NIST SRE 2005 [NIST, 2005] corpus consists of 16,537 telephone call segments
recorded from 528 participants (219 Male, 308 Female) over landline as well as cellu-
lar phones. Additionally, telephone calls were recorded over auxiliary microphones of
eight different kinds. For both corpora, many segments have different lengths (from 10
seconds up to five minutes) but may stem from the same original full conversation. Fur-
thermore, some segments contain summed conversations. Only unique full conversations
with separate channel per speaker are used in the setup. Apart from native speakers,
both collections also consist of non-native English and several foreign languages.

5The description of the databases was taken from [Kockmann, 2012] and [Pešán, 2011] with kind
permission of the authors.

18 2 Evaluation Metrics, Databases, and Datasets

2.4.4 NIST SRE 2006

This corpus is used for many early experiments that are reported during the thesis. How-
ever, for experiments on NIST SRE 2008 and 2010, the corpus has also been included into
the background data set.

Overall, the NIST SRE 2006 corpus [NIST, 2006] consists of 24,637 telephone call
segments recorded from 1089 participants (462 Male, 626 Female) over landline as well as
cellular phones. Additionally, telephone calls were recorded over auxiliary microphones of
eight different kinds. Again, many segments have different lengths (from 10 seconds up to
five minutes) but may stem from the same original full conversation. Furthermore, some
segments contain summed conversations. Only unique full conversations with separate
channel per speaker are used in the setup. Again, native as well as non-native English
and several foreign languages are recorded. Special attention has to be paid while using
this data, as recordings from the NIST SRE 2005 corpus have been recycled.

Experiments that report on the NIST 2006 corpus are always performed on the core
condition which contains English trials only. The 1-side training 1-side test condition
is considered, where approximately 2.5 minutes of speech (from a 5-minute telephone
conversation) are available to train each speaker and for each test utterance. This set
contains 329 female and 248 male training utterances (multiple utterances can be produced
by one distinct speaker), 1,846 target trials, and 21,841 nontarget trials.

2.4.5 NIST SRE 2008

In the 2008 evaluation [NIST, 2008], NIST broadened the scope of the evaluation by intro-
ducing interview speech that was recorded over several microphones. As a consequence,
even the core condition (only full five minute calls in English speech) contains different
sub-conditions involving different types of speech or channels during both speaker enroll-
ment and verification. In this thesis, the results on the 2008 corpus are reported for the
following conditions: tel-phn:tel-phn uses only conversational telephone speech of full calls
for enrollment and verification, with 1,154 target and 1,516,837 nontarget trials (equiva-
lent to the preceding years). int-mic:tel-phn uses interview speech recorded over several
microphone types for enrollment and conversational telephone calls for verification, with
1,459 target and 820,215 nontarget trials. The condition int-mic:int-mic uses interview
speech recorded over microphone for both enrollment and verification, consisting of 33,743
target and 1,108,882 nontarget trials.

2.4.6 NIST SRE 2010

Finally, results are reported on selected conditions of the NIST 2010 extended evaluation
[NIST, 2010], that match the conditions in the 2008 development set: tel-phn:tel-phn
uses only conversational telephone speech of full calls for enrollment and verification with
7,169 target and 408,950 nontarget trials (official extended condition 5). int-mic:tel-
phn uses interview speech recorded over several microphone types for enrollment and
conversational telephone calls for verification with 3,989 target and 637,850 nontarget
trials (official extended condition 3). The condition int-mic:int-mic uses interview speech

2.4 Databases 19

recorded over microphones for both enrollment and verification, consisting of 15,084 target
and 2,789,534 nontarget trials (official extended condition 2).

2.4.7 Fisher English

Fisher English is a collection of conversational telephone speech collected in 2003 by
LDC. The database protocol was created at LDC to address a critical need of developers
trying to build robust ASR systems. A very large number of participants each make
a few calls of short duration speaking to other participants (in English), whom they
typically do not know, about assigned topics. This maximizes inter-speaker variation and
vocabulary breadth although it also increases formality. The database contains 11,699
recorded telephone conversations, each lasting up to 10 minutes.

2.4.8 MOBIO

This bi-modal database was captured in two phases and consists of 152 participants (100
males and 52 females). Each session recorded for Phase I consists of 21 questions which
the user was prompted to answer. These questions varied from set responses, read speech
from a paper through to, to free speech. It contains 1650 target and 34650 nontarget
female trials. On male part, it contains 2925 target and 111150 nontarget trials.

During the second phase (Phase II), six more sessions were recorded from 152 partici-
pants6. Each session for Phase II consists of 11 questions and includes the same variation
as the one captured in Phase I. [Hadid and McCool, 2010] It contains 196 target and 3332
nontarget female trials, and 130 target and 4810 nontarget male trials. MOBIO data were
recorded in normal conditions with slight noise on the background. The average length
of the utterances is approximately 5 seconds.

6Compared to the first phase, eight participants were not able to take part in the second phase of the
recording

20 2 Evaluation Metrics, Databases, and Datasets

Chapter 3

Gaussian Mixture Modeling

“A mixture model is a probabilistic model for representing the presence of sub-populations
within an overall population, without requiring that an observed data-set should identify
the sub-population to which an individual observation belongs” [Wikipedia, nd]. In other
words a mixture model of C mixture components assumes that each (multivariate) data
point oi has been generated by one mixture component c, formally

oi ∼ p(o|c). (3.1)

where p(o|c) is the probability density function (PDF) for the given component. However,
the identity of the component c is a hidden variable and as such, a prior probability p(c)—
referred to as mixture weight w(c)—is imposed on it. The mixture probability density
function is then given as

p(o) =

C∑

c=1

w(c)p(o|c). (3.2)

Gaussian mixture models (GMM) are a family of mixture models where the PDF for
each mixture is a Gaussian distribution. They have been the essential part of modern
speaker recognition (for essentials, see [Douglas Reynolds, 2000]), as well as of other fields
of speech processing, e.g. language identification (e.g. [Torres-Carrasquillo et al., 2002]),
LVCSR (e.g. [Young et al., 2006]), etc.

The probability density function for a single F -dimensional multivariate Gaussian
distribution (see e.g. [Bishop, 2006]) is given as:

N (o; µ,Σ) =
1

(2π)F/2|Σ|1/2
e−

1

2
(o−µ)′Σ−1(o−µ) (3.3)

where µ is the vector of the mean and Σ is the covariance matrix1. Substituting (3.4)
into (3.2), the probability density function of a GMM for a data vector o is given as:

G (o; θ) =

C∑

c=1

w(c)N

(

o; µ(c),Σ(c)
)

, (3.4)

1Note that the symbols µ and Σ will have slightly different meaning later in the text; I have chosen
to use this notation to keep consistent with most of the literature.

21

22 3 Gaussian Mixture Modeling

with parameters

θ = 〈w, µ,Σ〉 (3.5)

where C is the number of Gaussian components, w is the vector of weights for the corre-
sponding mixture components,

w =

w(1)

...
w(C)

 , (3.6)

µ is the supervector 2 of concatenated component-level mean vectors µ(c):

µ =

µ(1)

...
µ(C)

 , (3.7)

and Σ is generally a block-matrix of per-component covariance matrices:

Σ =

Σ(1) 0 · · · 0

0 Σ(2) · · · 0
...

...
. . .

...

0 0 · · · Σ(C)

. (3.8)

In most cases, however, diagonal version of the Gaussian distribution is used due to
simplicity and CPU power, so Σ will be a pure diagonal matrix with the corresponding
variances mapped to the diagonal. An illustration of a GMM for 2-dimensional data is
shown in Figure 3.1.

3.1 Data Alignment

As was mentioned earlier, the identity of the mixture component for each data point is
hidden, but having observed the data point, posterior probabilities p(c|oi)—also referred

to as occupation probabilities and shortly denoted as γ
(c)
i —can be computed using the

Bayes rule:

γ
(c)
i =

w(c)N

(

oi; µ
(c),Σ(c)

)

∑C
c=1 w(c)N

(

oi; µ(c),Σ(c)
) . (3.9)

The configuration of the posterior probabilities for each frame is referred to as the align-
ment of the data to the mixture components.

2The term supervector is used to denote that the “large” vector was constructed by concatenation of
smaller vectors. It will be used frequently throughout this work.

3.2 Sufficient Statistics 23

feature dimension 1feature dimension 2

Figure 3.1: GMM probability density function for 2-dimensional data

3.2 Sufficient Statistics

Most of the formulae throughout the rest of the work will be expressed in terms of the
sufficient statistics. They provide the complete information about the given utterance
needed to compute any estimate of the parameters of a GMM [Bishop, 2006].

Let us assume, that an utterance d is given as a sequence of N feature vectors of
dimensionality F , i.e. it is represented as a F × N matrix O = [o1 . . .oN]. Having the
alignment of each frame, as defined by (3.9), the statistics are defined as

N (c) =
N∑

i=1

γ
(c)
i (3.10)

f (c) =

N∑

i=1

γ
(c)
i oi (3.11)

S(c) =
N∑

i=1

γ
(c)
i oioi

′ . (3.12)

We refer to these as the zero-, the first-, and the second-order statistics (or cumulants)
respectively. For the sake of convenience, let us rewrite the statistics in the expanded

24 3 Gaussian Mixture Modeling

form of supervector and supermatrix as:

N =

N (1)I 0 · · · 0
0 N (2)I · · · 0
...

...
. . .

...
0 0 · · · N (C)I

f =

f (1)

...
f (C)

S =

S(1) 0 · · · 0
0 S(2) · · · 0
...

...
. . .

...
0 0 · · · S(C)

,

(3.13)

where the identity matrices in (3.13) have the same dimensionality as the feature vector.

3.3 The Likelihood Function

Let us now take a look at the different forms of the GMM likelihood function since they
will be used later in this work. Assuming that the consecutive frames are statistically
independent, the likelihood of the data, given the model parameters θ, is given as

p(O|θ) =

N∏

i=1

G(oi; θ) . (3.14)

Usually, the logarithm of the likelihood is required, e.g. for scoring as described in Sec-
tion 1.2, or when deriving the function to estimate the parameters. Its basic form is given
as

log p(O|θ) =

N∑

i=1

log

C∑

c=1

w(c)N

(

oi; µ
(c),Σ(c)

)

. (3.15)

We can now use slightly more complicated form of the log-likelihood (as derived by (A.12)
in Appendix A.1) and rewrite it as

log p(O|θ) =
N∑

i=1

C∑

c=1

q(c) log N

(

oi; µ
(c),Σ(c)

)

−

N∑

i=1

C∑

c=1

q(c) log
q(c)

w(c)

+
N∑

i=1

DKL

(

q(c)‖γ
(c)
i

)

,

(3.16)

3.3 The Likelihood Function 25

where q(c) is an arbitrary distribution over the GMM components, i.e. arbitrary align-

ment. If we set it to the true posterior probabilities q(c) = p(c|oi) = γ
(c)
i , the KL

divergence in (3.16) vanishes, and we can reformulate the likelihood function in terms of
the posterior probabilities as

log p(O|θ) =
N∑

i=1

C∑

c=1

γ
(c)
i log N

(

oi; µ
(c),Σ(c)

)

−
N∑

i=1

C∑

c=1

γ
(c)
i log

γ
(c)
i

w(c)
. (3.17)

Comparing the two expressions, (3.15) and (3.17), note that the sum over mixture com-
ponents has moved out of the logarithm. This generally allows us to represent the first
term using the sufficient statistics:

log p(O|θ) =

C∑

c=1

Nc log
1

(2π)F/2|Σc|1/2

−
1

2
tr(Σ−1S)

+ µ′Σ−1f −
1

2
µ′NΣ−1µ

−

N∑

i=1

C∑

c=1

γ
(c)
i log

γ
(c)
i

w(c)
.

(3.18)

3.3.1 Fixed Alignment

Looking back to (3.16), q(c) is an arbitrary distribution of the GMM components. Setting
it to anything different than the true model alignment makes the KL-divergence term
positive. Let us now assume that the true alignment is missing and that it is provided via
different model parametrized by θγ . We can set q(c) = p(c|oi, θγ). This, however, makes
the computation of the KL-divergence impossible, since it requires the true alignment. If
we assume that the provided alignment is “close-enough” to the true alignment, we can
omit the KL-divergence term and approximate the true log-likelihood function by

log p̃(O|θ, θγ) =

C∑

c=1

Nc(θγ) log
1

(2π)F/2|Σc|1/2

−
1

2
tr
(
Σ−1S(θγ)

)

+ µ′Σ−1f(θγ)−
1

2
µ′N(θγ)Σ

−1µ

−

N∑

i=1

C∑

c=1

γ
(c)
i (θγ) log

γ
(c)
i (θγ)

w(c)
,

(3.19)

which has essentially the same form as (3.18), however, the alignment (and therefore the
sufficient statistics) are parametrized by the model which was used for their computation.
Note that the approximation is a lower-bound to the true log-likelihood function as the
omitted KL-divergence is always non-negative.

26 3 Gaussian Mixture Modeling

A reasonably good alignment can be obtained using the Universal Background Model
(UBM) whose purpose is to model “any” speaker, as described in Section 1.2. As will be
shown in Section 4.2, this is a good approximation.

Let us recall, that the asymmetrical scoring of a trial (as defined by (1.4)) is given as a
log of the ratio of the likelihood of the data given the speaker model M and the likelihood
of the data given the UBM MUBM, which can be rewritten as

sassym = log p(O|M)− log p(O|MUBM) . (3.20)

Fixing the alignment to the UBM gives an approximation of the score:

s̃assym = log p̃(O|M, MUBM)− log p̃(O|MUBM, MUBM) (3.21)

= log p̃(O|M, MUBM)− log p(O|MUBM) , (3.22)

where we notice that the UBM alignment makes the UBM produce true log-likelihoods and
therefore, the approximated log-likelihood ratio is a lower-bound to the true log-likelihood
ratio.

Note that the UBM-alignment assumption is generally used throughout this work.
Most of the formulae are given in terms of the sufficient statistics which were computed
using the UBM alignment.

3.4 Maximum Likelihood Estimation of the Parame-

ters

Generally, the Maximum Likelihood (ML) estimate of the parameters θ is given as

θML = arg max
θ

p(O|θ) , (3.23)

i.e., we maximize the likelihood of some training data O. It is usually found by solving

d log p(O|θ)

d θ
= 0, (3.24)

however, no closed-form solution exists for GMM. The model is usually trained it-
eratively using the Expectation Maximization (EM) procedure [Dempster et al., 1977,
Bishop, 2006]. A brief mathematical introduction to the method is in Appendix A.2.
In the E-step, an auxiliary function QGMM—as a lower-bound to the real log-likelihood
function—is constructed by fixing the alignment of the data using the current model esti-
mate θ0 (the sufficient statistics are collected via the posteriors computed using θ0). The
solution is technically equivalent to (3.19):

QGMM(θ, θ0) = p̃(O|θ, θ0). (3.25)

In the M-step of the EM algorithm, the new ML estimate of parameters is computed as

θML = arg max
θ

QGMM(θ, θ0) (3.26)

3.5 MAP adaptation 27

for which closed-form solutions exist:

µ
(c)
ML =

1

N (c)
f (c)

Σ
(c)
ML =

1

N (c)
S(c) − µ

(c)
MLµ

(c)
ML

′

w
(c)
ML =

N (c)

N
,

(3.27)

where the statistics are functions of θ0. Repeating the E and M steps guarantees not to
decrease the likelihood.

ML can be used when sufficient amount of data is available. Considering the asym-
metrical SRE approach—as described in Section 1.2, Figure 1.4—the UBM is usually
trained this way. By having a large training set, it is assured that the ML estimation of
the parameters is robust enough (see e.g. [Burget et al., 2007]). As for estimating speaker
models M1, there is usually not enough data to estimate all of the GMM parameters cor-
rectly without overfitting. The common practice is to compute the µ parameter only (see
e.g. [Douglas Reynolds, 2000]). Therefore, the speaker identity (and the speaker model
M1) is given strictly by µ, while w and Σ are shared among all models and are taken
from the (robustly estimated) UBM which allows us to omit the second term from (3.18).

3.4.1 UBM Training

The UBM is typically trained in the ML fashion since there is usually large amount of
training data available. Note that the GMM has to be initialized in order to apply the
EM algorithm. There are various approaches to initializing the parameters, such as using
K-means clustering, random initialization, etc. In our work, we used progressive Gaus-
sian splitting, i.e. starting by a single-Gaussian model (which has closed form solution),
the components are duplicated and shifted by a small step in the direction of the largest
variability after certain number of EM iterations. The training scheme that was used
in this work is given in Algorithm 1. Note that covariance flooring is optionally per-
formed [Young et al., 2006] to prevent overfitting of the estimation, i.e. if the distribution
is found too sharp, the covariance is forced to stay within some trusted limits. In case of
diagonal covariance matrix model, scaled average covariance matrix, taken over all GMM
components, is often used as a threshold. In the case of full covariance models, the floor-
ing can be performed, e.g., via Singular Value Decomposition (SVD) [Povey et al., 2011,
Algorithm 5.3]. Figure 3.2a shows the result of an example of training GMM parameters
when lots of data is available. If little data is available, as seen in Figure 3.2b, we see
that the covariance matrices do not cover the data completely and the estimation suffers
from overfitting.

3.5 MAP adaptation

Another approach to computing the GMM parameters is using the maximum a-posteriori
criterion (MAP). Generally, the parameters are computed as

θMAP = arg max
θ

p(θ|d), (3.28)

28 3 Gaussian Mixture Modeling

Algorithm 1: General maximum likelihood GMM training algorithm

Data: Data from training set
Result: Model M

begin
C ← 1;
compute µ, Σ for single Gaussian model;
while not enough mixtures do

duplicate each Gaussian c into c1 and c2 ;

find the largest eigen-value and its corresponding eigen-vector r of Σ(c) ;

add 0.2r to µ(c1) ;

add −0.2r to µ(c2) ;
for i← 1 to number of iterations do

do the E step;
do the M step;
optional: do covariance flooring;

where p(θ|d) is the posterior probability for the parameters θ given the input d:

p(θ|d) =
p(d|θ)p(θ)

p(d)
(3.29)

This way, we select the most likely parameters. Note that the denominator of the formula
does not depend on the parameters and can therefore be omitted for optimization. The
MAP criterion is then given as

QMAP(O|θ) = p(O|θ)p(θ) , (3.30)

i.e. it is an ML estimation with a prior distribution imposed on the parameters. This
approach is helpful if very little data is available and more importantly if we choose a
good prior. In other words, ML is a special case of MAP, where flat priors are considered,
which gives good parameter estimation for large training data sets. If we take look at the
asymmetrical approach again (as defined in Section 1.2), where the speaker model M has
to be trained from little data, MAP is a good candidate to train the model parameters
robustly.

Let us now see, how the UBM can be used for “adapting”3 µ. The issue with MAP is
the choice of the prior p(µ). Again, we only work with µ and the rest of the parameters
are shared with the UBM, and fixed alignment to UBM is assumed. Since the resulting
probability density function is going to be per-component Gaussian, the conjugate per-
component priors to the likelihood are —thanks to fixed alignment—again Gaussians.
Instead of estimating the parameters of the priors, we approximate them using the UBM
as:

p
(
µ(c)

)
= N

(

µ(c); µ
(c)
UBM,

1

τ 2
Σ

(c)
UBM

)

, (3.31)

3“UBM adaptation” is a widely used term which refers to using UBM to choose the prior for the MAP
estimation.

3.6 GMM Subspace Modeling 29

where τ is an adaptation constant to be chosen by the user, and its interpretation
is clarified in the following explanation. This approximation has been proposed e.g.
in [Douglas Reynolds, 2000, Young et al., 2006]. Thanks to fixed alignment, estimation
of µ(c) has a closed-form solution, given as

µ
(c)
MAP = β(c)µ

(c)
ML +

(
1− β(c)

)
µ

(c)
UBM (3.32)

with

β(c) =
N (c)

N (c) + τ
, (3.33)

where µ
(c)
ML is the ML estimate of the mean (given that the weights and covariances are

fixed and set to the UBM values, and the Gaussian alignment is assumed to be the same
as the UBM’s), µ

(c)
UBM is the mean of the UBM, and N (c) are zero-order statistics. We

see that the τ constant controls the linear combination of the two models’ parameters.
Knowing that it is added to the data mass to control this weighing, one way to explain
its meaning is e.g. by stating that it takes τ frames to move the parameter values half
way between the UBM and the ML estimate. Figure 3.2c shows the behavior of MAP
adaptation when little data is available.

3.6 GMM Subspace Modeling

Generally, subspace modeling is a term that refers to representing the parameters of some
model by the means of another set of parameters (usually of much lower dimension) to
model some selected variability in the original parameter space. This selected variability
is given as a set of hyper-parameters for the selected model and tells how the model
parameters vary by being trained on different data. The assumption for using these models
is that we believe that some parameters of the model are given by useful information (e.g.
the speaker information) while other parameters might be rather affected by the noise.
As such, we distinguish between the wanted variability and the unwanted variability.

For better understanding, let us briefly give an SRE example. In the case of SRE, the
wanted variability is usually the speaker variability. If our model is large (e.g. supervector
of means for thousands of Gaussian components) and the training utterance is relatively
short (couple of seconds), then we face the problem of overfitting the model parameters
in the enrollment phase. By restricting the model parameter space, we believe that the
model is trained more robustly. On the other hand, having trained multiple models
for one speaker on different sessions, one could observe that the models differ in some
particular subspace, which is given by the unwanted (inter-session) variability—generally
referred to as channel—which can lead to errors in testing. To face these two problems,
we could basically enroll the model by adapting only some parameters, and—when testing
an utterance—we could adapt some other parameters to compensate for the channel. Or
we could essentially combine the two approaches and do both.

Subspace modeling found its usage in many fields of speech processing, e.g. the sub-
space GMM [Povey et al., 2011], Cluster Adaptive Training (CAT) [Gales, 1999a],
Eigen-Voices [Kuhn et al., 1998] in LVCSR, multinomial channel compensa-
tion in LID [Glembek et al., 2008], multinomial subspace models in prosodic

30 3 Gaussian Mixture Modeling

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Feature dimension 1

F
ea

tu
re

 d
im

en
si

on
 2

(a) UBM estimation

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Feature dimension 1

F
ea

tu
re

 d
im

en
si

on
 2

(b) Model ML estimation

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Feature dimension 1

F
ea

tu
re

 d
im

en
si

on
 2

(c) Model MAP estimation

Figure 3.2: GMM as a basic model for speaker recognition

SRE [Kockmann, 2012] etc. In acoustic SRE, the technique was introduced by
the means of eigen-voices [Thyes et al., 2000, Kenny et al., 2003], to represent the
speaker- dependent mean vector in a low-dimensional space. Since then, many
studies were carried out, such as Joint Factor Analysis [Kenny, 2005], eigen-channel
adaptation [Brümmer, 2004, Brümmer et al., 2007], and lately the concept of i-
vectors [Dehak et al., 2010].

3.6.1 Theoretical Background

Let us look at the supervector of means µ as a multi-dimensional normal-distributed
variable. As such, it lies in a CF -dimensional parameter space. Subspace Modeling,
as understood in this work, is modeling the supervector µ in a linear subspace of the
original parameter space with respect to some selected variability. In other words, the
aim is to estimate µ in a low-dimensional space as a linear combination of small number of
vector bases which represent the selected variability of model parameters. Mathematically

3.6 GMM Subspace Modeling 31

speaking, for an utterance i4,
µi =

¯
m +

¯
V

¯
yi , (3.34)

where,
¯
m represents the offset of the model given by the known variables,

¯
V is the (low-

rank) matrix defining the sub-space and defines the hyper-parameters of the model, and

¯
yi is a hidden variable with standard normal prior, i.e.

p(
¯
yi) = N

(

¯
yi; 0, 1

)
. (3.35)

From (3.34) and (3.35) it follows that the prior distribution for
¯
µi is given as

p(
¯
µi) = N

(

¯
µi; ¯

m,
¯
V

¯
V′
)

. (3.36)

Similar to the basic GMM, each utterance i is associated with a hidden variable
¯
yi. This

leads to application of the EM algorithm when estimating the hyper-parameters. As such,
we need to be able express the likelihood in terms of the hidden-variable posteriors.

Note that we can decompose the matrix
¯
V into C into sub-matrices, each being asso-

ciated with the corresponding GMM component:

¯
V =

¯
V(1)

...

¯
V(C)

 , (3.37)

3.6.2 The Likelihood Function

The log-likelihood function is based on the general GMM log-likelihood function as defined
in Section 3.3. For simplification, the method assumes fixed data alignment [Kenny, 2005].
This lets us represent the log-likelihood by the means of the sufficient statistics. This
assumption will be held throughout the rest of the work and we use the UBM for sufficient
statistics extraction, as defined in Section 3.2. As was discussed in Section 3.3.1, this
assumption implies that the log-likelihood is a lower-bound to the real log-likelihood,
which will be denoted by the tilde˜symbol. For a single utterance i, let

Si = 〈Ni, fi,Si〉 (3.38)

be the collection of the sufficient statistics. The (approximated) log-likelihood is then
given by substituting µ in (3.19) by (3.34), giving

log p̃(Si|
¯
yi,

¯
V) =

C∑

c=1

N
(c)
i log

1

(2π)F/2|Σ(c)|1/2

−
1

2
tr(Σ−1Si)

+
¯
µi

′Σ−1fi −
1

2 ¯
µi

′NiΣ
−1

¯
µi

−
C∑

c=1

γ
(c)
i log

γ
(c)
i

w(c)
(3.39)

4This concept is common to all subspace techniques studied in this work. This is denoted by the under-
lined symbols. They can be understood as general symbols which will be substituted by the appropriate
variables, depending on the application.

32 3 Gaussian Mixture Modeling

and further

=
¯
m′Σ−1fi −

1

2 ¯
m′NiΣ

−1

¯
m

+
¯
yi

′

¯
V′Σ−1fi −

1

2¯
yi

′

¯
V′NiΣ

−1

¯
V

¯
yi

+ const . (3.40)

3.6.3 Posterior of the Hidden Variables

Let us assume for this moment that the hyper-parameters
¯
V are known. Since the likeli-

hood of the data—as given by (3.39)—is Gaussian, and the prior for the hidden variables
is standard normal, then the posterior for the hidden variables is Gaussian [Bishop, 2006]:

p(
¯
yi|Si,

¯
V) = N

(

¯
yi; ˆ

¯
y

i
,
¯
L−1

i

)

, (3.41)

with the mean ˆ
¯
y given as

ˆ
¯
y

i
=

¯
L−1

i ¯
V′Σ−1f i , (3.42)

where f i is defined as shifted fist-order statistics:

f i = fi −Ni
¯
m , (3.43)

and
¯
Li is the precision matrix of the posterior distribution computed as

¯
Li = I +

¯
V′NiΣ

−1

¯
V . (3.44)

3.6.4 Hyper-Parameter Estimation

The objective for the training is to maximize the likelihood of the training data p(Si|
¯
V,

¯
yi),

which is a marginalization of (3.39) over the hidden variables (as discussed in Ap-
pendix A.1). We can make use of the Bayes’ rule and express the marginal using the
probabilities which we already know:

p(Si|
¯
V) =

p
(
Si|

¯
yi,

¯
V
)
p(

¯
yi|

¯
V)

p
(

¯
yi|Si,

¯
V
) , (3.45)

where p(
¯
yi|

¯
V) is constant and so

p(Si|
¯
V) ∝

p
(
Si|

¯
yi,

¯
V
)

p
(

¯
yi|Si,

¯
V
) . (3.46)

Note that the formula is true for any value of
¯
yi. The numerator and denominator

for (3.46) are computed using (3.40) and (3.41), respectively, and for convenience, we
choose

¯
yi = 0. The logarithm of (3.46) then becomes

log p (Si|
¯
V) =

¯
m′Σ−1fi −

1

2 ¯
m′NiΣ

−1

¯
m− log |

¯
Li|+

1

2
ˆ
¯
y

i

′

¯
Lˆ

¯
y

i
+ const . (3.47)

Leaving out the constant term, the objective for estimating
¯
V is given as

L(
¯
V) =

∑

i
¯
m′Σ−1fi −

1

2 ¯
m′NiΣ

−1

¯
m− log |

¯
Li|+

1

2
ˆ
¯
y

i

′

¯
Lˆ

¯
y

i
. (3.48)

3.6 GMM Subspace Modeling 33

Expectation Maximization

Similar to the GMM training, the EM algorithm for the hyper-parameter estimation
comprises two steps that are repeated iteratively [Brümmer, 2009b]. In the E step, as
described in Appendix A.2, given the initial parameters

¯
V0, the auxiliary function is

constructed as an expected value of the complete log-likelihood (constructed using (3.39)
and (3.35)) over the hidden-variable posteriors (3.41):

Q(
¯
V,

¯
V0) =

∑

i

E

[

log
p(Si,

¯
yi|

¯
V)

p
(

¯
yi|Si,

¯
V0

)

]

(3.49)

=
∑

i

E
[
log p(Si|

¯
yi,

¯
V) + const

]
(3.50)

=
∑

i

E

[

¯
m′Σ−1fi −

1

2 ¯
m′NiΣ

−1

¯
m +

¯
yi

′

¯
V′Σ−1fi −

1

2¯
yi

′

¯
V′NiΣ

−1

¯
V

¯
yi + const

]

(3.51)

=
∑

i

E

[

¯
yi

′

¯
V′Σ−1fi −

1

2¯
yi

′

¯
V′NiΣ

−1

¯
V

¯
yi

]

+ const (3.52)

=
∑

i

tr (
¯
Ci

¯
V′)−

1

2
tr (Ai

¯
V′Ni

¯
V) + const (3.53)

where the expectations are over p
(

¯
yi|Si,

¯
V0

)
, and

¯
Ci = fi

¯
ŷi

′

¯
Ai =

¯
ŷi

¯
ŷi

′ +
¯
Li .

(3.54)

We can derive (3.53) with respect to each sub-matrix
¯
V(c) of

¯
V as defined by (3.37):

dQ(
¯
V,

¯
V0)

d
¯
V(c)

=
∑

i
¯
C

(c)
i

′
−

(
∑

i

n
(c)
i ¯

A
(c)
i

)

¯
V(c)′ (3.55)

Setting the derivative to zero, yields a closed-form solution for computing the hyperpa-
rameters:

¯
V(c) =

¯
C(c)

¯
A(c)−1

, (3.56)

where

¯
C(c) =

∑

i
¯
C

(c)
i

¯
A(c) =

∑

i

n
(c)
i ¯

A
(c)
i

(3.57)

are the accumulators that are collected during the E-step.

Minimum Divergence

The Minimum Divergence (MD) step is complementary to the M-step of the EM algorithm
(see Appendix A.2 for explanation). The task is to find new hyper-parameters

¯
V from

34 3 Gaussian Mixture Modeling

initial parameters
¯
V0 to minimize the divergence from the hidden variable posterior to

its prior. In simple words, the prior for
¯
y is assumed to be standard normal, and we

should observe this when estimating the (Gaussian) distribution of ˆ
¯
y over the training

set. However, we can find that it is not so. MD aims at updating this prior and then
rotating matrix

¯
V in such a way that the estimates ˆ

¯
y

i
are standard normal distributed

over the training set again. Note that in this case, MD does not increase the log-likelihood
of the training data, rather it yields faster EM convergence by updating the prior of the
hidden variables. Generally, the algorithm also applies to updating

¯
m from

¯
m0, but as

was mentioned earlier, this step is skipped in this work.
Let

Y =
[

¯
y1

¯
y2 · · ·

]
(3.58)

denote all hidden variables for all data, and

D = 〈d1, d2, · · · 〉 (3.59)

denote the collection of all data. Let the prior be temporarily non-standard. Then, the
prior and posterior distributions of all data are given, respectively, as

p
(
Y|ȳ, P̄

)
=
∏

i

N
(

¯
yi; ȳ, P̄−1

)
(3.60)

p (Y|D,
¯
V0) =

∏

i

N
(

¯
yi;

¯
ŷi,L

−1
i

)
, (3.61)

where ȳ and P̄ are the mean and precision of the new prior, respectively. The divergence
is given as

DKL

(
p (Y|D,

¯
V0) ‖ p

(
Y|ȳ, P̄

))
= Ep(Y|D,

¯
V0)

[

log
p (Y|D,

¯
V0)

p
(
Y|ȳ, P̄

)

]

. (3.62)

Deriving (3.62) w.r.t. ȳ and P, and setting to zero, the parameters are computed as

ȳ =
1

N

N∑

i=1

ˆ
¯
y

i
(3.63)

P−1 =
1

N

N∑

i=1

Li + (ˆ
¯
y

i
− ȳ)(ˆ

¯
y

i
− ȳ)′ (3.64)

By normalizing the hidden variables using an affine transform

φ(
¯
y) = J−1(

¯
y − ȳ) , (3.65)

where J is a symmetric decomposition of P−1 so that

JJ′ = P−1 (3.66)

(such as Cholesky decomposition), we make the prior standard normal again. The task
is to find new parameters

¯
V (and generally

¯
m) such that

¯
m +

¯
V

¯
y =

¯
m0 +

¯
V0φ(

¯
y) (3.67)

=
¯
V0J

¯
y + (

¯
V0

¯
ȳ +

¯
m0) . (3.68)

3.6 GMM Subspace Modeling 35

for one speaker
mean supervectors

averaged within−class
covariance

within−class means

su
bt

ra
ct

io
n

w
ith

in
−c

la
ss

 m
ea

n
hig

h
with

in−
cla

ss
 va

ria
bil

ity

Figure 3.3: Alternative estimation of the subspace-GMM hyper-parameters via PCA

The general update formula is then given as

¯
V =

¯
V0J (3.69)

¯
m =

¯
V0¯

¯
y +

¯
m0 , (3.70)

where re-estimation of
¯
m is skipped.

Alternative Estimation via PCA

Simplified estimation has been proposed in [Brümmer, 2004]. In this case, the estimate
is given by R eigenvectors of the average within-class covariance matrix, where each class
is represented by the MAP-adapted mean supervectors estimated on different segments
spoken by the same speaker. Figure 3.3 depicts the computation of the averaged within-
class covariance matrix.

3.6.5 The Channel-Compensation Example

Throughout the years of research, various techniques for dealing with the so-called inter-
session variability have been introduced. Figure 3.4 shows the effect of channel mismatch
for an exemplary system evaluated on the NIST2008 Interview condition, where two
different microphones were used for enrolling and test.5 At the feature level, there is
a feature normalization6 (see e.g. [Openshaw and Masan, 1994]) already mentioned in
Section 1.1.2.

5The figure is a proprietary image of Lukáš Burget and was copied with his kind permission.
6Feature normalization is often referred to as cepstral mean and variance normalization (CMN, CVN)

due to the fact, that cepstral features are used most often.

36 3 Gaussian Mixture Modeling

NIST SRE2008 - Interview speech

The same
microphone
in training
and test

< 1% EER

Different microphone
in training and test

about 3% EER

False Alarm Probability (in%)

M
is

s
P

ro
ba

bi
lit

y
(in

 %
)

Figure 3.4: Example of channel mismatch effect. The red DET curve shows a system in
which the same microphone was used for speaker model training and for test. The blue
curve, however, shows what happens when two different microphones are used.

Another successful technique used to deal with the channel is feature mapping, in-
troduced in [Reynolds, 2003]. The technique is based on mapping feature vectors into
a channel-independent space. The mapping is learnt from a set of channel-dependent
models. The principle is as follows: given an input utterance, the most likely channel-
dependent model is first detected and then each feature vector in the utterance is mapped
to the channel independent space based on its top-1 decoded Gaussian in the channel de-
pendent GMM. The author claims a “significant” improvement on the NIST SRE2002 task
(around 30% relative improvement on the EER as read from the DET plots). This tech-
nique suffers from relying on a channel detector which is basically a closed-set multi-class
classifier. Therefore, if an input utterance comes from an unseen channel, the technique
might fail.

The problem of channel compensation has recently been addressed from the point of
subspace modeling. The scenario is depicted in Figure 3.5.a. The figure shows a situation
when the test data come from the target speaker, but the log-likelihood ratio is clearly
negative, i.e. the decision is in favor of the UBM. The data mismatch is caused by the
channel difference. In the GMM mean space, one can identify a subspace of eigenchannels7

that covers the unwanted variability. The solution to this issue is to use the test data to
adapt the models in the eigenchannel space, as shown in Figure 3.5.b. As opposed to the
standard MAP adaptation as described in Section 3.5, the eigenchannel adaptation (both

7The term eigenchannel—as used in SRE—was adopted from [Kenny and Dumouchel, 2004]. It
was introduced to the NIST SRE in 2004 by SDV [Brümmer, 2004], revisited by Kenny and
Vogt [Vogt et al., 2005] in SRE 2005, and again by various sites in the following SRE’s.

3.6 GMM Subspace Modeling 37

target speaker
model

speaker training
data

decision
boundary

test data

UBM

(a) Detection with no channel adaptation

speaker training
data

decision
boundary

channel subspace
(direction for adaptation)

model
adapted speaker

test data

adapted UBM

(b) Detection with channel-adapted models

Figure 3.5: Channel adaptation

of the speaker model and the UBM) is restricted to the eigenchannel subspace, only.
Mathematically, the (eigenchannel-adapted) model µ̂ is given as

µ̂ = µ + cd, (3.71)

where µ is the channel-independent model and cd is the supervector of channel-shift for
the input d, and it is defined as:

cd = Uxd, (3.72)

where U is a CF × R matrix whose columns define the eigenchannel subspace, and xd

is a vector of channel factors which are dependent on the input d. Imposing a standard
normal prior on x we can use the framework of GMM subspace modeling as described
in previous sections and use the following assignment to apply the framework to channel
adaptation:

¯
y := x (3.73)

¯
V := U (3.74)

¯
m := µ . (3.75)

Figure 3.6 shows an exemplary result of one of our NIST2005 systems.8 We used
the alternative PCA technique to estimate the channel subspace, as described in Sec-
tion 3.6.4. We see the superior performance of eigen-channel adaptation and depicts the
strength of GMM subspace modeling. For a thorough analysis on the NIST data, see
e.g. [Burget et al., 2007].

8The figure is a proprietary image of Lukáš Burget and was copied with his kind permission.

38 3 Gaussian Mixture Modeling

M
is

s
pr

ob
ab

ili
ty

 [%
]

False Alarm Probability (in%)

NIST SRE 2005 all trials

baseline

+ Feature Mapping

+ Eigenchannel adaptation

(50 eigenchannels)

Figure 3.6: Comparison of the different channel compensation techniques on the complete
NIST2005 data. We see the superior performance of the eigen-channel adaptation.

3.7 Claims of the Thesis Revisited

Let us summarize the claims of the thesis, as stated in Section 1.3.1, in terms of the
knowledge that was presented in this chapter:

• Claim 1 will be presented in terms of the different likelihood computation as given
in Section 3.3.

• Claim 2 will be presented in terms of different assumptions for computing the pos-
terior probability of the subspace hiden-variable, as given in Section 3.6.3.

• Claim 3 is based on the knowledge from Claim 2 and on the hyper-parameter esti-
mation as given in Section 3.6.4.

• Claim 4 is based on the study of discriminatively training the hyper-parameters of
a GMM-subspace model (Section 3.6) with the Cllr objective function as described
in Section 2.3.5.

Chapter 4

Joint Factor Analysis

Joint Factor Analysis (JFA) is a GMM subspace modeling technique, which has been
proposed to model the speaker and session variabilities. It has undergone a series of mod-
ifications and has attracted many researcher’s attention resulting in numerous interesting
publications. However, when comparing their results, people used different functions to
obtain the score. This chapter gives a brief introduction to JFA, mostly from a practical
point of view, i.e. it concentrates on explaining how the model parameters are trained
and how the score is estimated with respect to the paradigms of JFA.

4.1 Theoretical background

Joint factor analysis is a model used to treat the problem of speaker and session variabil-
ity in GMMs. In this model, each speaker is represented by the means, covariance, and
weights of a mixture of C multivariate Gaussian densities defined in continuous feature
space of dimension F . The GMM for a target speaker is obtained by adapting the Uni-
versal Background Model (UBM) mean parameters. Similar to the eigen-channel adap-
tation, in Joint Factor Analysis [Kenny et al., 2007], the assumption is that a speaker-
and channel-dependent supervector of means µ can be decomposed into a sum of two
supervectors: a speaker supervector s and a channel supervector c

µ = s + c, (4.1)

where s and c are normally distributed. The decomposition is shown in Figure 4.1.
As opposed to the eigen-channel adaptation, not only the channel is represented in a
low-dimensional subspace, but also the speaker. In [Kenny et al., 2008], Kenny et al.
described how the speaker-dependent supervector and channel-dependent supervector can
be represented in low dimensional spaces. The first term in the right hand side of (4.1) is
modeled by assuming that if s is the speaker supervector for a randomly chosen speaker
then

s = m + Vy + Dz, (4.2)

where m is the speaker and channel independent supervector (usually the supervector of
UBM means), D is a diagonal matrix, V is a rectangular matrix of low rank and y and
z are hidden variables having standard normal prior distributions. In other words, s is

39

40 4 Joint Factor Analysis

speaker subspace

channel subspace

m
ea

n−
su

pe
rv

ec
to

r
di

m
en

si
on

 2

mean−supervector dimension 1

Figure 4.1: GMM probability density function for 2-dimensional data

assumed to be normally distributed with mean m and covariance matrix VV′+DD′. The
components of y and z are respectively the speaker and common factors. The channel-
dependent supervector c, which represents the channel effect in an utterance, is assumed
to be distributed according to

c = Ux, (4.3)

where U is a rectangular matrix of low rank (known as eigenchannel matrix), x is again
a hidden variable with standard normal prior distribution. This is equivalent to saying
that c is normally distributed with zero mean and covariance UU′. The components of
x are referred to as channel factors. Figure 4.2 shows the complete decomposition of the
supervector space.

4.1.1 Model Training

Training scheme of the hyper-parameters has undergone a series of simplifications since
the very first experiments (see e.g. [Kenny and Dumouchel, 2004, Kenny et al., 2005]).
In the beginning, all matrices were trained jointly resulting in a slow process (for theory
see [Kenny, 2005]). For large-scale models, this approach was very difficult to use. By
further simplifications (e.g. [Kenny et al., 2005, Kenny et al., 2008, Burget et al., 2009]),
a decoupled training scheme has been introduced, i.e. the matrices of hyper-parameters
were trained one after another with the hidden variables fixed to their point estimate.
This allows for adapting the general GMM subspace modeling technique and using it to
compute the posteriors of the hidden variables (and their mean as the point estimate),
and to train the hyper-parameters of the model. Below is a training scheme that was
adopted for the experiments in this work and that has proved to work very well and was
successfully used during various NIST SRE speaker evaluations.

4.1 Theoretical background 41

Figure 4.2: GMM probability density function for 2-dimensional data

• Step 1: Eigen-voice matrix V is estimated assuming that U and D are set to 0:

¯
y := y

¯
V := V

¯
m := m

, (4.4)

• Step 2: Speaker factors y are computed based on the speaker labels, i.e. all
utterances from one speaker are used to (robustly) estimate the speaker factor which
is then distributed among the associated utterances. Matrix D is still considered to
be 0.

¯
y := x

¯
V := U

¯
m := m + Vy

, (4.5)

• Step 3: Speaker factors y are computed as in the previous step and channel fac-
tors are estimated for each utterance separately. Then the residual D matrix is
estimated:

¯
y := z

¯
V := D

¯
m := m + Vy + Ux

, (4.6)

Depending on the training phase, estimation of the parameters can be now generally
described using the terms

¯
y,

¯
V, and

¯
m. Each of the steps defined above comprises

application of the Expectation Maximization algorithm and the Minimum Divergence
step as described in Section 3.6.4. Kenny also suggests training of the m parameter,
however, following the work of [Burget et al., 2009], it is set to the mean supervector of
the UBM.

42 4 Joint Factor Analysis

Later in Section 6.2 we will show how the eigen-voices matrix can be optimized in a
discriminative framework. Cross-entropy, as defined early in Section 2.3.5, will be used as
the optimization criterion. The optimization will be based on one of the scoring methods
presented in the following section.

4.2 Comparison of Scoring Methods

Many sites used JFA in the past NIST evaluations, however they report
their results using different scoring methods ([Kenny et al., 2007], [Vair et al., 2007],
[Brümmer et al., 2007]). The aim of this work was to compare these techniques in terms
of speed and performance. It is necessary to point out that the speed test was performed
from a scientist’s point of view, i.e. the process starts at the time of loading the necessary
data units and ends at generating a set of scores for the given test set. The data units dif-
fer among the described methods and significantly determine the speed of the algorithms.
To be more specific, the slowest method loads the whole feature files, however the fast
methods only loads sufficient statistics which already saves a lot of time.

Scoring in JFA is performed in the asymmetrical way, i.e. data ds is used to train a
model for speaker s and log-likelihood is computed using test data dt. In the Bayesian
framework, the speaker model is given by the posterior distribution of ys and zs

1, where

p(ys|ds) = N(ys; ŷs,L
−1
y,s)

p(zs|ds) = N(zs; ẑs,L
−1
z,s) ,

(4.7)

where the hat version of a symbol represents the mean of the distribution, and L·,s rep-
resents the precision matrix. The Bayesian likelihood of test utterance dt is then com-
puted by integrating over the posterior distribution of y and z, and the prior distribution
of x [Kenny and Dumouchel, 2004]:

p(dt|ds) =

∫∫∫

p(dt|x,y, z)N(x; 0, I)p(y|ds)p(z|ds) dx dy dz (4.8)

In [Kenny et al., 2007], it was later shown, that using mere MAP point estimates of y
and z is sufficient. This means that we can treat the factors as known variables and we
can set them to the means of the posterior distribution. Still, integration over the prior
distribution of x was performed as given by [Kenny et al., 2007, Equation (13)]:

p(dt|s) =

∫

p(dt|s,x)N(x; 0, I)dx . (4.9)

It is further shown that using the MAP point estimate of x gives comparable results.
Scoring is understood as computing the log-likelihood ratio (LLR) between the target
speaker model s and the UBM, for the test utterance dt.

1Note that subscript s is added to the factor variable to denote the connection with the enrolled
speaker

4.2 Comparison of Scoring Methods 43

speaker subspace

channel subspace

test data

target model

UBM

N (x; 0, I)

Figure 4.3: Evaluation of log-likelihood with integration over the channel subspace. The
transparency depicts the probability p(dt|s,x)N(x; 0, I)

4.2.1 Frame by Frame

Frame-by-Frame is based on a full GMM log-likelihood evaluation. The log-likelihood of
utterance dt and model s is computed as an average frame log-likelihood 2. It is practically
infeasible to integrate out the channel, therefore MAP point estimate of x is used. The
formula is as follows

log p(dt|s) =

T∑

t=1

log

C∑

c=1

w(c)N

(

ot; µ
(c),Σ(c)

)

, (4.10)

where ot is the feature vector at frame t, T is the length (in frames) for utterance dt, C
is number of Gaussians in the GMM, and w(c), Σ(c), and µ(c) the c th Gaussian weight,
mean, and covariance matrix, respectively.

4.2.2 Integrating over Channel Distribution

This approach is based on evaluating an objective function as given by (4.9). The sit-
uation is depicted in Figure 4.3. As was said in the previous paragraph, it would be
difficult to evaluate this formula in the frame-by-frame strategy. However, (4.10) can be
approximated by using fixed alignment of frames to Gaussians, as was described early
in Section 3.3.1. In this case, the likelihood can be evaluated in terms of the sufficient
statistics. If the statistics are collected in the Baum-Welch way, the approximation is
equal to the GMM EM auxiliary function, which is a lower bound to (4.9). The closed

2All scores are normalized by frame length of the tested utterance, therefore the log-likelihood is
average.

44 4 Joint Factor Analysis

form (logarithmic) solution is then given as:

log p̃(dt|s) =
C∑

c=1

N (c) log
1

(2π)F/2|Σ(c)|1/2

−
1

2
tr(Σ−1Ss)−

1

2
log|L|

+
1

2

∥
∥L−1/2U′Σ−1fs

∥
∥

2
, (4.11)

where for the first term, C is the number of Gaussians, N (c) are the coefficients of the
zero-order statistics, F is the feature vector size, Σ(c) is covariance matrix for Gaussian
c. This term will be equal both for UBM and the target model, thus the whole term will
cancel out in the computation of the log-likelihood ratio.

For the second term of (4.11), Ss is the second order moment of utterance dt around
speaker s given as

Ss = S− 2 diag(fs′) + diag(Nss′), (4.12)

where S is the super-matrix of second-order statistics—it is independent of the speaker,
thus will cancel out in the LLR computation (note that this was the only place where
second order statistics appeared, therefore, they are not needed for scoring). f and N are
the first- and zero- order statistics, respectively.

The L in the third term of (4.11) is the precision of the posterior distribution of the
channel factor, given as

L = I + U′Σ−1NU, (4.13)

where I is a CF ×CF identity matrix, U is the eigenchannel matrix, and the rest is as in
the second term. The whole term, however, does not depend on speaker and will cancel
out in the LLR computation.

In the fourth term of (4.11), let L1/2 be a lower triangular matrix, such that

L = L1/2L1/2′ (4.14)

i.e., L−1/2 is the inverse of the Cholesky decomposition of L.
As was said, terms one and three in (4.11), and second order statistics S in (4.12) will

cancel out. Then the formula for the score is given as

Qint(dt|s) = tr
(
Σ−1 diag(fs′)

)

+
1

2
tr(Σ−1 diag(Nss′))

+
1

2
‖L−1/2U′Σ−1fs‖

2 . (4.15)

4.2.3 Channel Point Estimate

This function is based on directly evaluating the log-likelihood ratio using (3.39). This
way, there is no need for integrating over the whole distribution of x, and only its point

4.2 Comparison of Scoring Methods 45

channel subspace

speaker subspace test data

adapted UBM

UBM

speaker model
adapted speaker model

Figure 4.4: Illustration of the “Channel point estimate” technique. Both the speaker
model and the UBM are adapted separately.

estimate is taken for LLR computation. In (3.39), the first and second terms cancel out
in LLR computation, leading to scoring function

Qx(dt|s,x) = µ′Σ−1f +
1

2
µ′NΣ−1µ , (4.16)

hence
LLRx(dt|s) = Qx(dt|s,xs)−Qx(dt|UBM,xUBM), (4.17)

where xUBM is a channel factor estimated using UBM, and xs is a channel factor estimated
using speaker model s.

4.2.4 UBM Channel Point Estimate

In [Vair et al., 2007], the authors assumed, that the shift of the model caused by the
channel is identical both to the target model and the UBM3. Therefore, the x factor for
utterance dt is estimated using the UBM and then used for scoring. Formally written:

LLRLPT(dt|s) = Qx(dt|s,xUBM)−Qx(dt|UBM,xUBM) . (4.18)

Note, that when computing the LLR, Ux in the linear term of (3.39) will cancel out,
leaving the compensation to the quadratic term of (3.39). The situation is depicted in
Figure 4.5.

4.2.5 Linear Scoring

Let us keep the LPT assumption and let mc be the channel compensated UBM:

mc = m + c . (4.19)

3The authors identified themselves under abbreviation LPT as for “Loquendo–Politecnico di Torino”,
therefore I will refer to this approach as to LPT assumption

46 4 Joint Factor Analysis

channel subspace

speaker subspace test data

adapted UBM

UBM

speaker model
adapted speaker model

Figure 4.5: Illustration of the “LPT” assumption. The UBM defines the channel adapta-
tion also for the speaker model.

Furthermore, let us assume, that we move the origin of supervector space to mc:

µ̄ = µ−mc (4.20)

f̄ = f −Nmc . (4.21)

Eq. (4.16) can now be rewritten to

Qxmod(dt|µ̄,x) = µ̄′Σ−1̄f

+
1

2
µ̄′NΣ−1µ̄ . (4.22)

When approximating (4.22) by the first order Taylor series (as a function of µ̄), only the
linear term is kept, leading to

Qlin(dt|µ̄,x) = µ̄′Σ−1̄f . (4.23)

Realizing, that the channel compensated UBM is now a vector of zeros, and substitut-
ing (4.23) to (4.18), the formula for computing the LLR simplifies to

LLRlin(dt|s,x) = (Vy + Dz)′Σ−1(f −Nm−Nc) . (4.24)

Since we are using UBM-aligned statistics, the log-likelihood ratios are lower-bound to
the true log-likelihood ratio, as described in Section 3.3.1. Comparing the linear scoring
and the LPT (quadratic) scoring, which both use the same UBM channel estimation, it
is worth noting that the linear scoring can be a better approximation to the true LLR, as
is shown in Figure 4.6.

4.3 Experimental setup 47

quadratic

lin
ear

target
model

UBM GMM mean space

0
quadratic score

full score

linear score

LLR

LLRfbf

Figure 4.6: An illustration of the scoring behavior for frame-by-frame, quadratic (LPT),
and linear scoring.

4.3 Experimental setup

4.3.1 Test Set

The results of my experiments are reported on the Det1 and Det3 conditions of the NIST
2006 speaker recognition evaluation (SRE) dataset [NIST, nd].

The real-time factor was measured on a special test set, where 49 speakers were tested
against 50 utterances. The speaker models were taken from the t-norm cohort, while the
test utterances were chosen from the original z-norm cohort, each having approximately
4 minutes, totally giving 105 minutes.

4.3.2 Feature Extraction

In my experiments, I used cepstral features extracted using a 25ms Hamming win-
dow. 19mel frequency cepstral coefficients together with log energy are calculated
every 10ms. This 20-dimensional feature vector was subjected to feature warp-
ing [Pelecanos and Sridharan, 2006] using a 3 s sliding window. Delta and double delta
coefficients were then calculated using a 5-frame window resulting in 60-dimensional fea-
ture vectors. These feature vectors were modeled using GMM and factor analysis was
used to treat the problem of speaker and session variability.

Segmentation was based on the BUT Hungarian phoneme recog-
nizer [Schwarz et al., 2006] and relative average energy thresholding. Also short
segments were pruned out, after which the speech segments were merged together.

48 4 Joint Factor Analysis

4.3.3 JFA Training

We used gender independent UBM containing 2048 Gaussians. This UBM was trained
using LDC releases of Switchboard II, Phases 2 and 3; switchboard Cellular, Parts 1 and 2
and NIST 2004-2005 SRE. The (gender independent) factor analysis models were trained
on the same quantities of data as the UBM.

Our JFA included 300 speaker factors, 100 channel factors, and diagonal matrix D.
While U was trained on the NIST data, D and V were trained on two disjoint sets
comprising NIST and Switchboard data.

4.3.4 Normalization

All scores, as presented in the previous sections, were normalized by the number of frames
in the test utterance. In case of normalizing the scores (zt-norm), we worked in the gender
dependent fashion. We used 220 female, and 148 male speakers for t-norm, and 200 female,
159 male speakers for z-norm. These segments were a subset of the JFA training data set.

4.3.5 Hardware and Software

The frame-by-frame scoring was implemented in C++ code, which calls ATLAS functions
for math operations. Matlab was used for the rest of the computations. Even though C++
produces more optimized code, the most CPU demanding computations are performed
via the tuned math libraries that both Matlab and C++ use. This fact is important for
measuring the real-time factor. The machine on which the real-time factor (RTF) was
measured was a Dual-Core AMD Opteron 2220 with cache size of 1024 KB. For the rest
of the experiments, computing cluster was used.

4.4 Results

Table 4.1 shows the results without any score normalization. The reason for the loss of
performance in the case of LPT scoring could possibly be due to bad approximation of
the likelihood function around UBM, i.e., the inability to adapt the model to the test
utterance (in the U space only). Fig. 4.6 shows this case. Table 4.2 shows the results
after application of zt-norming. While the frame-by-frame scoring outperformed all the
fast scorings in the un-normalized case, normalization is essential for the other methods.
For the normalized case, however, all systems are very comparable. Let us note that the
point estimate result is comparable to the full frame-by-frame scoring. The difference
between the two approaches is only in the frame alignment, i.e. frame-by-frame uses the
target model alignment, while point estimate uses the UBM fixed alignment, as described
in Section 3.3.1. In that section, we have stated that the UBM fixed alignment is a
good approximation to the target model alignment and this experiment confirms that
assumption. Although mathematically very simple, the linear scoring gives comparable
results to the other systems. Not only is this approach practical in terms of speed and
implementation, but as we will see in Section 6.2, it is simple to derive through for the
purpose of discriminative training.

4.4 Results 49

Table 4.1: Comparison of different scoring techniques in terms of EER and DCF. No
score normalization was performed here.

Det1 Det3

EER DCF EER DCF

Frame-by-Frame 4.70 2.24 3.62 1.76
Integration 5.36 2.46 4.17 1.95
Point estimate 5.25 2.46 4.17 1.96
Point estimate LPT 16.70 6.84 15.05 6.52
Linear 5.53 2.97 3.94 2.35

Table 4.2: Comparison of different scoring techniques in terms of EER and DCF. zt-norm
was used as score normalization.

Det1 Det3

EER DCF EER DCF

Frame-by-Frame 2.96 1.50 1.80 0.91
Integration 2.90 1.48 1.78 0.91
Point estimate 2.90 1.47 1.83 0.89
Point estimate LPT 3.98 2.01 2.70 1.36
Linear 2.99 1.48 1.73 0.95

Table 4.3: Real time factor for different systems

Time [s] RTF

Frame-by-Frame 1010 1.60e−1

Integration 50 7.93e−3

Point estimate 160 2.54e−2

Point estimate LPT 36 5.71e−3

Linear 13 2.07e−3

4.4.1 Speed

The aim of this experiment was to show the approximate real time factor of each of the
systems. As was mentioned in the introductory section, this experiment is targeted for
laboratory usage. It does not compare the techniques in terms of absolute speed from
the moment of acquiring the recording. Rather it lets the user extract the necessary
information for faster experiments and system tweaking. The time measured included

50 4 Joint Factor Analysis

reading necessary data connected with the test utterance (features, statistics), estimat-
ing the channel shifts, and computing the likelihood ratio. Any other operations, such
as reading of hyper-parameters, models, etc. were not comprised in the result. Each
measuring was repeated 5 times and averaged. Table 4.3 shows the real time of each
algorithm. Surprisingly, the integration LLR is faster then the point estimate. This is
due to implementation, where the channel compensation term in the integration formula
is computed once per an utterance, while in the point estimate case, each model needs to
be compensated for each trial utterance.

Chapter 5

i-vectors

The i-vector systems have become the state-of-the-art technique in the speaker verification
field [Dehak et al., 2010]. They provide an elegant way of reducing the large-dimensional
input data to a small-dimensional feature vector while retaining most of the relevant
information. The technique was originally inspired by Joint Factor Analysis framework.

The history of i-vectors is dated to summer 2008 JHU workshop on Robust Speaker
Recognition [Burget et al., 2008]. At that time, JFA was the state-of-the-art technique
and it was the centerpoint of interest among the workshop researchers. One of the di-
rections was to use JFA as feature extraction. Various experiments were carried out on
the JFA factors; SVM classification was studied, and different measures were tested to
substitute the (fairly complicated) SVMs. There was an unofficial internal competition
between the SVM and the dot-product sub-teams which was usually reflected in building
touch-rugby or frisbee teams. Nevertheless, both teams found that using the channel
factors for speaker detection gives around 20% EER and when fusing with the speaker
factors, noticeable improvement was gained. Najim Dehak then came up with the idea
of reducing the complexity of JFA to having only one multivariate hidden variable that
would carry the total-variability information. He has originally called it the t-vector as
for “total”, but the community quickly adopted the term i-vectors as for “intermediate”,
“intervening”, “intelligent”, “informative”, “identity”, etc.

5.1 Theoretical background

Let us first state the motivation for the i-vectors. The main idea is that the speaker- and
channel-dependent GMM supervector µ can be modeled as:

µ = m + Tφ (5.1)

where m is the UBM GMM mean supervector, T is a low-rank matrix representing M
bases spanning subspace with important variability in the mean supervector space, and
φ is a standard normal distributed vector of size M . The matrix T is also sometimes
referred to as “total variability subspace”.

For each observation i, the aim is to estimate the parameters of the posterior proba-
bility of φ:

p(φ|i) = N(φ; φ̂i,L
−1
i) (5.2)

51

52 5 i-vectors

The i-vector φi is the MAP point estimate of the variable φ, i.e. the mean φ̂i of the
posterior distribution p(φ|i).1 It maps most of the relevant information from a variable-
length observation i to a fixed- (small-) dimensional vector. T is referred to as the i-vector
extractor. From this point of view, i-vectors can be understood as features for further
recognition. The extraction of i-vectors as well as training the T matrix will be described
in sections 5.1.2 and 5.1.3.

To apply the concept of GMM subspace modeling on i-vectors, as defined in Section 3.6,
we can define the following mapping:

¯
y := φ

¯
V := T

¯
m := m

. (5.3)

Extracting an i-vector is then equal to computing the mean of the posterior distribution
(5.2) using (3.42). Also, estimation of the hyper-parameters is performed using the algo-
rithm as defined in Section 3.6.4. We will, however, rewrite the formula using trasformed
statistics as defined in the following section.

5.1.1 Data

The input data for the observation i is given as a set of zero- and first-order statistics,
as defined in Section 3.4. For convenience, we center the first order statistics around the
UBM means, which allows us to treat the UBM means effectively as a vector of zeros:

f
(c)
i ← f

(c)
i −N

(c)
i m(c)

m(c) ← 0

This step technically leaves out the necessity of (3.43). Similarly, we “normalize” the
first-order statistics and the matrix T by the UBM covariances, which again allows us to
treat the UBM covariances as an identity matrix:

f
(c)
i ← Σ(c)− 1

2 f
(c)
i

T(c) ← Σ(c)− 1

2 T(c)

Σ(c) ← I

where Σ(c)− 1

2 is a symmetrical decomposition of an inverse of Σ(c) (such as Cholesky
decomposition), and T(c) is an F×M sub-matrix of T corresponding to mixture component
c such that

T =

T(1)

...
T(C)

 . (5.4)

The principle is illustrated in Figure 5.1. Note that we will not use any special symbols
to denote this transformation. From this moment on, the statistics will be assumed to be
presented in this form.

1In this work, we commonly refer to the means of distributions with a ˆhat symbol, but since we use
the i-vector as a feature, we omit the hat and use plain φ.

5.1 Theoretical background 53

feature dim 1

fe
at

ur
e

di
m

 2

Gaussian 2

Gaussian 1Gaussian 3

feature dim 1

fe
at

ur
e

di
m

 2 Gaussian 1

Gaussian 3

Gaussian 2

3xUBM

Figure 5.1: Illustration of data normalization—the blue ellipses represent the UBM co-
variances for different Gaussian components, while the red ellipses represent the adapted
speaker model. The normalization “squashes” the covariances so that they become iden-
tities and are distributed around the center of the coordinate system.

5.1.2 i-vector Extraction Via Posterior Evaluation

Using the knowledge about GMM subspace modeling as described in Section 3.6, and
using the symbol substitution (5.3), and with the data transforms from the previous
section, the extraction of an i-vector for observation i is given as

φi = φ̂i = L−1
i T′fi , (5.5)

where Li is the precision matrix of the posterior distribution, computed as:

Li = I +

C∑

c=1

N
(c)
i T(c)′T(c) . (5.6)

5.1.3 Model Training

Model hyper-parameters T are estimated using the same EM and MD algorithm as shown
in the GMM subspace modeling. Note that our algorithm performs the two steps jointly,
i.e., we accumulate the statistics for the EM and MD at the same time (the E step) and
then do a sequence of EM and MD update. We could also do the complete EM update first
and the do the MD update, but this would take double the time due to the computational
complexity of the posterior computation. In the E step, the following accumulators are

54 5 i-vectors

collected using all training observations i:

C =
∑

i

fiφ
′
i (5.7)

A(c) =
∑

i

N
(c)
i

(
L−1

i + φiφ
′
i

)
(5.8)

ȳ =
1

N

N∑

i=1

φi (5.9)

P−1 =
1

N

N∑

i=1

Li + (φi − ȳ)(φi − ȳ)′ , (5.10)

where φi and Li are the estimates from (5.5) and (5.6) for observation i. The joint update
is given as follows:

T(c)
em = CA(c)−1

(5.11)

Tmd = TemJ , (5.12)

where J is a symmetrical decomposition of P−1, such that JJ′ = P−1 (e.g. Cholesky
decomposition).

In Section 6.4, it will be further shown how the i-vector extractor can be trained
discriminatively using the cross-entropy objective function.

5.2 Recognition using Cosine Distance

Once the i-vectors are extracted, recognition is performed in the symmetrical fashion, as
described in Section 1.2. Several approaches have been proposed, all inspired by standard
pattern-recognition techniques. In [Dehak et al., 2010], the authors analyze support vec-
tor machine approach as well as cosine-distance scoring with different flavors of channel
compensation. Let us now briefly describe the cosine distance approach as used in this
work.

Cosine distance of two vectors is given as their inner product, normalized by their
Euclidian lengths:

score
(
φtarget, φtest

)
=
〈φtarget, φtest〉

‖φtarget‖‖φtest‖
. (5.13)

Since i-vectors contain both useful and nuisance information, mere cosine-distance does
not work properly in this task. In [Dehak et al., 2010], it was shown that it is necessary to
filter out the channel information using linear discriminant analysis (LDA)—represented
by matrix A—followed by within-class normalization (WCCN)—represented by matrix
R. The transformed i-vector is then given as

φ̂ = R′A′φ . (5.14)

Let us now describe the computation of the transformation matrices.

5.2 Recognition using Cosine Distance 55

5.2.1 LDA

Linear discriminant analysis is a technique for multi-class separability analysis and di-
mensionality reduction. It is similar to PCA in that it analyzes the directions in a vector
space with respect to the highest useful variability, however, PCA does not take into
account any difference in class of the data.

Mathematically, given a set of D-dimensional samples xi belonging to K classes Ck,
we look for a linear transformation

yi = A′xi , (5.15)

which transforms the input into D′-dimensional samples, where A is an D×D′ transfor-
mation matrix, with D′ < K − 1, which maximizes the Fisher criterion [Bishop, 2006]:

J(A) = tr
{
(AΣwcA

′)−1(AΣacA
′)
}

. (5.16)

The Σwc and Σac are within-class and across-class covariance matrices, respectively, de-
fined as

Σwc =

K∑

k=1

∑

n∈Ck

(xn − µk)(xn − µk)
′ (5.17)

Σac =

K∑

k=1

Nk(µk − µ)(µk − µ)′ , (5.18)

with

µk =
1

Nk

∑

n∈Ck

xn (5.19)

µ =
1

N

K∑

k=1

Nkµk . (5.20)

The solution for A is then given by the eigen-vectors of Σ−1
wcΣac which correspond to the

D′ largest eigen-values.

5.2.2 Within-Class Normalization

Within-class normalization was originally proposed to minimize a particular upper bound
on the error rate [Hatch et al., 2006] in an SVM-based SRE system. It is a linear transfor-
mation R, such that if applied to the i-vectors, the average within-class covariance matrix
Σwc, as defined by (5.17), becomes identity. The solution for R is then

R = Chol
(
Σ−1

wc

)
, (5.21)

where Chol(·) is a Cholesky decomposition function.

56 5 i-vectors

direction of the largest

across−class variability

class 1 class 2

dir
ec

tio
n

of
 th

e
lar

ge
st

av
er

ag
e

with
in−

cla
ss

 va
ria

bil
itycla

ss
 1

cla
ss

 2

LDA

Figure 5.2: Demonstration of LDA

5.3 PLDA

Another successful technique to facilitate comparison of i-vectors in a verifica-
tion trial is through the Probabilistic Linear Discriminant Analysis (PLDA) model
[Prince and Elder, 2007, Kenny, 2010]. Let us first assume a special kind of PLDA—the
two-covariance model—in which the speaker variability and channel variability are as-
sumed to be Gaussian and they are modeled using across-class and within-class variability
matrices Σac and Σwc, respectively. Mathematically, the speaker identity is represented
by a hidden variable y whose prior distribution is assumed to be

p(y) = N (y; µ,Σac) . (5.22)

For a known speaker, represented by vector ŷ, the distribution of i-vectors is given as

p(φ|ŷ) = N (φ; ŷ,Σwc) . (5.23)

Figure 5.3 depicts this situation.
In general PLDA, the covariance matrices do not necessarily have to be full-rank.

Similarly to JFA, the i-vectors can then be decomposed as

φ = µ + Vy + Ux + ǫ , (5.24)

where V describes the speaker subspace, y is a hidden variable representing the speaker,
U describes the channel subspace, x is a hidden variable representing the channel, and ǫ

is a variable representing the residual data noise—note that it is not hidden as it can be
computed once x and y are known. In its simplest form, PLDA imposes Gaussian priors
on the variables:

p(y) = N(y; 0, I)

p(x) = N(x; 0, I)

p(ǫ) = N(ǫ; 0,D−1) ,

(5.25)

where D is a diagonal precision matrix of the residual data variability. The PLDA across-
class covariance would then be given as Σac = VV′, and the within-class covariance would
be Σwc = UU′. In our experiments, we assume the mean µ to be zero.

5.3 PLDA 57

i−vector space

Σac

Σwc

Σwc

Σwc

Σwc

Figure 5.3: Demonstration of PLDA: the bold points represent the speaker identities in the
i-vector space. Provided that we know the speaker identity y, the conditional distribution
of the i-vectors is given by the within-class covariances, depicted by the ellipses around
the speaker identities.

Training such model in the ML fashion can be performed using the EM algorithm.
The training procedure is described in Section A.3. Later in Section 6.3, we will again
present how the parameters of PLDA can be optimized discriminatively.

A more complex model for PLDA was proposed in [Kenny, 2010], where Student’s
t-distribution was imposed on the prior. This “heavy-tail” (thus HTPLDA) model gives
better accuracy, however there is no close-form solution for the posteriors, and both the
training and testing are very complex and time-expensive algorithms. It was later shown
that length normalization [Garcia-Romero, 2011] allows the Gaussian PLDA to achieve
results comparable to HTPLDA. The reason is that length normalization forces the i-
vectors to lie on a unity sphere, which brings them closer to the Gaussian distribution
shell where most of the probability mass is concentrated. The transformation is given as

φ̄ =
φ

‖φ‖
=

φ
√

φ′φ
. (5.26)

5.3.1 Trial Scoring

Let us now remind that the speaker verification score is a function of a trial—i.e. a pair
of i-vectors φ1, φ2—and that it is computed in the symmetrical way, i.e. we test whether
the pair of i-vectors was generated by the same speaker (H1) or not (H2). The trial score
is then defined as a log-likelihood ratio between the two hypotheses, as defined by (1.3),
i.e.

s(φ1, φ2) = log
p(φ1, φ2|H1)

p(φ1, φ2|H2)
. (5.27)

58 5 i-vectors

Let us now consider the process of generating the two i-vectors under the different hy-
potheses:

• H1 In the case of a same-speaker trial, a single speaker factor ŷ is generated from
the prior p(y). The two trial i-vectors φ1, φ2 are then generated from p(φ|ŷ). The
joint likelihood for the two (independent) i-vectors being generated by the particular
speaker ŷ is simply the product of the two likelihoods:

p(φ1, φ2|ŷ) = p(φ1|ŷ)p(φ2|ŷ) . (5.28)

The likelihood that the two i-vectors are generated by any speaker (but still common
to both i-vectors) is then computed by marginalization over all possible speakers:

p(φ1, φ2|H1) =

∫

p(φ1, φ2|y)p(|y) dy (5.29)

=

∫

p(φ1|y)p(φ2|y)p(y) dy . (5.30)

• H2 In the case of a different-speaker trial, two different speaker factors ŷ1 and ŷ2

are generated from p(y). The two trial i-vectors φ1, φ2 are then generated from
p(φ|ŷ1) and p(φ|ŷ2), respectively. The joint likelihood for the two i-vectors being
generated by the two speakers is simply the product of the two likelihoods:

p(φ1, φ2|ŷ1, ŷ2) = p(φ1|ŷ1)p(φ2|ŷ2) . (5.31)

The marginal likelihood that the two i-vectors are generated by any two speakers is
then computed as

p(φ1, φ2|H2) =

∫∫

p(φ1|y1)p(φ2|y2)p(y1)p(y2) dy1 dy2 (5.32)

= p(φ1)p(φ2) . (5.33)

Plugging the conditional likelihoods (5.30) and (5.33) into the log-likelihood ratio (5.27),
we get

s(φ1, φ2) = log
p(φ1, φ2|H1)

p(φ1, φ2|H2)

=

∫
p(φ1|y)p(φ2|y)p(y) dy

p(φ1)p(φ2)
.

(5.34)

The integrals—which can be interpreted as convolutions of Gaussians—can be evaluated
analytically, giving

s = log N

([
φ1

φ2

]

;

[
µ

µ

]

,

[
Σtot Σac

Σac Σtot

])

− log N

([
φ1

φ2

]

;

[
µ

µ

]

,

[
Σtot 0
0 Σtot

])

, (5.35)

5.4 Simplifications of i-vector extraction 59

where the total covariance matrix is given as Σtot = Σwc+Σac. By expanding the Gaussian
computation and simplifying the formulas, we obtain a bi-linear form of the score:

s(φ1, φ2) = φT
1 Λφ2 + φT

2 Λφ1 + φT
1 Γφ1 + φT

2 Γφ2

+ (φ1 + φ2)
Tc + k , (5.36)

where

Γ = −
1

4
(Σwc + 2Σac)

−1 −
1

4
Σ−1

wc +
1

2
Σ−1

tot (5.37)

Λ = −
1

4
(Σwc + 2Σac)

−1 +
1

4
Σ−1

wc (5.38)

c =
(
(Σwc + 2Σac)

−1 −Σ−1
tot

)
µ (5.39)

k = log |Σtot| −
1

2
log |Σwc + 2Σac| −

1

2
log |Σwc|

+ µT
(
Σ−1

tot − (Σwc + 2Σac)
−1)

µ . (5.40)

5.4 Simplifications of i-vector extraction

Looking at the i-vector extraction in its basic form, as given by (5.5) and (5.6), we can
now analyze its complexity in terms of computation power and memory. For convenience,
let us repeat their form at this place.

φi = L−1
i T′fi (5.5)

where Li is the precision matrix of the posterior distribution, computed as:

Li = I +
C∑

c=1

N
(c)
i T(c)′T(c) . (5.6)

Let us repeat that C is number of Gaussian components, F is feature dimensionality,
and M is the dimensionality of the i-vector. The computational complexity of the i-
vector estimation for one observation is O(CFM +CM2 +M3). The first term represents
the T′fi multiplication. The second term represents the sum in (5.6) and includes the
multiplication of L−1

i with a vector. The third term represents the matrix inversion.

The memory complexity of the estimation is O(CFM + CM2). The first term repre-
sents the storage of all the input variables in (5.5), and the second term represents the
pre-computed matrices in the sum of (5.6).

Note that the computation complexity grows quadratically with M in the sum of (5.6),
and linearly with C. This becomes the bottle-neck in the i-vector computation, resulting
in high memory and CPU demands.

For reference let us also recall that the update of the i-vector extractor parameters is

60 5 i-vectors

given via the accumulators computed in the E step:

C =
∑

i

fiφ
′
i (5.7)

A(c) =
∑

i

N
(c)
i

(
L−1

i + φiφ
′
i

)
(5.8)

ȳ =
1

N

N∑

i=1

φi (5.9)

P−1 =
1

N

N∑

i=1

Li + (φi − ȳ)(φi − ȳ)′ , (5.10)

where φi and Li are the estimates from (5.5) and (5.6) for observation i. The joint update
is given as follows:

T(c)
em = CA(c)−1

(5.11)

Tmd = TemJ , (5.12)

where J is a symmetrical decomposition of P−1, such that JJ′ = P−1 (e.g. Cholesky
decomposition).

5.4.1 Simplification 1: Approximating the Zero-order Statistics

Our main motivation for finding simplifications for i-vector extractor was speeding up the
process of speaker verification in real-time systems and running robust speaker verification
systems on small scale devices, such as mobile phones, and speeding up our experimental
systems leading to faster turnover of experiments.

The most demanding step in i-vector extraction is the computation of the precision
matrix L, as defined by (5.6). In the first simplification, we apply the assumption that
the GMM alignment for the zero-order statistics in (5.6) is constant for all frames, i.e. the
posterior occupation probabilities γ(c) are replaced by their prior probabilities represented
by the UBM GMM weights w(c). The new zero-order statistics are then given by scaling
the GMM weights by the total number of frames in an utterance:

Ñ
(c)
i = w(c)Ni , (5.41)

where w(c) is the GMM UBM weight of component c, and Ni is the number of frames in
an utterance i. Substituting N

(c)
i in (5.6) by Ñ

(c)
i from (5.41), we get

L̃i = I + NiW , (5.42)

where

W =

C∑

c=1

w(c)T(c)′T(c) . (5.43)

We can exploit this simplification in the i-vector extractor training procedure as well
by using the new posterior approximation. First of all, φi in (5.7) through (5.9) would

5.4 Simplifications of i-vector extraction 61

be estimated using the approximated L̃i. Second, Li in (5.8) would be substituted for the
approximated L̃i.

Note that W in (5.43) is independent of data and can be pre-computed. Its resulting
size is M×M yielding faster computation and less memory demands. The computational
complexity of this algorithm reduces to O(CFM + M3) with the dominating inversion
step. The memory complexity reduces to O(CFM + M2).

5.4.2 Simplification 2: I-vector Extractor Orthogonalization

Let us assume, that we can find a linear (orthogonal) transformation G which would
orthogonalize all individual per-component sub-matrices T(c). Orthogonalizing T would
diagonalize Li, which would need to be rotated back using G. We can then express (5.6)
as

Li = G(−1)′L̃iG
−1 , (5.44)

where

L̃i = G′G +
C∑

c=1

N
(c)
i G′T(c)′T(c)G . (5.45)

Assuming that L̃i is diagonal, we can rewrite it as

L̃i = Diag (diag(G′G) + Vni) , (5.46)

where V is a M×C matrix whose c-th column is diag(G′T(c)′T(c)G). Diag(·) maps a vector
to a diagonal matrix, while diag(·) maps a matrix diagonal to a vector. Combining (5.44)
and (5.5), we get

φ̃i = GL̃−1
i G′T′fi . (5.47)

The computational complexity of this approach is O(CFM) as we can effectively sim-
plify the matrix inversion to a vector element-wise inversion. The memory complexity
is O(CFM + M2 + CM), where M2 represents the extra diagonalization matrix G, and
CM represents multiplication by V in (5.46).

The task is to estimate the orthogonalization matrix G. Let us take a look at two
approaches we investigated:

Eigen-decomposition

Let W be the weighted average of T(c)′T(c) as defined by (5.43). We assume W to be a
full-rank matrix with M linearly independent eigenvectors. Then W can be factorized as

W = QΛQ−1 . (5.48)

where Q is a square M ×M matrix whose ith column is the eigenvector qi of W and Λ
is a diagonal matrix whose diagonal elements are the corresponding eigenvalues. Matrix
Q clearly orthogonalizes the space given by W, therefore we can set G = Q.

62 5 i-vectors

Σ1

Σ2

Σaverage

Figure 5.4: Example of a two-class problem, where both PCA and LDA would fail

Heteroscedastic Linear Discriminant Analysis

If the average matrix W from (5.43) is close to diagonal, then the eigen-decomposition

does not have to be effective in diagonalizing the per-component quadratic terms T(c)′T(c).
Le us reformulate the problem by considering the quadratic terms as being pseudo-
covariance matrices. An extreme example is shown in Figure 5.4. We see that the
distributions given by the covariance matrices are perpendicular to each other. When
they get averaged to compute the PCA transform, the new covariance is clearly diagonal
and no PCA is needed.

The Heteroscedastic Linear Discriminant Analysis (HLDA) can be used to derive linear
projection de-correlating the space. It is a supervised method, which allows us to derive
such projection that best de-correlates features associated with each particular class (max-
imum likelihood linear transformation for diagonal covariance modeling [Kumar, 1997]).
The features are described by the corresponding within-class covariance matrices. In our
task, the classes are defined as GMM components and we use the within-class pseudo-
covariance matrices W

(c)
wc , given as

W(c)
wc = T(c)′T(c) . (5.49)

Note again that W
(c)
wc are not real covariance matrices (therore the term “pseudo-

covariance”), but our problem of simultaneously orthogonalizing many quadratic terms

W
(c)
wc is very similar to that solved by HLDA. Therefore we apply the same algorith to

deal with our problem. An efficient iterative algorithm [Gales, 1999b] was used in our
experiments to estimate matrix Ĝ from previous estimate G. Each new k-th column ĝk

of Ĝ is given as

ĝk = ck
′H(k)−1

√

1

ck
′H(k)−1

ck

(5.50)

where ck
′ is the k-th row vector of co-factor matrix

C = |G|G−1 , (5.51)

and

H(k) =

C∑

c=1

w(c)

gk
′W

(c)
wcgk

W(c)
wc , (5.52)

5.4 Simplifications of i-vector extraction 63

where gk is the k-th column of the current estimate G, and w(c) is the weight of GMM
component c.

Note that LDA can be seen as special case of HLDA, where the covariance matrices
of all classes are assumed to be identical.

5.4.3 The NIST Experiments

Feature Extraction

In our experiments, we used cepstral features, extracted using a 25 ms Hamming window.
19 Mel frequency cepstral coefficients together with log-energy were calculated every 10
ms. This 20-dimensional feature vector was subjected to short time mean and variance
normalization using a 3s sliding window. Delta and double delta coefficients were then
calculated using a 5-frame window giving 60-dimensional feature vectors.

Segmentation was based on the BUT Hungarian phoneme recognizer and relative
average energy thresholding. Also, short segments were pruned out, after which the
speech segments were merged together.

System Training

One gender-independent universal background model was represented as a diagonal co-
variance, 2048-component GMM. It was trained using LDC releases of Switchboard II,
Phases 2 and 3; switchboard Cellular, Parts 1 and 2 and NIST 2004-2005 SRE.

Two (gender-dependent) i-vector extractors were trained on the following telephone
data: NIST SRE 2004, NIST SRE 2005, NIST SRE 2006, Switchboard II Phases 2 and
3, Switchboard Cellular Parts 1 and 2, Fisher English Parts 1 and 2 giving 8396 female
speaker in 1463 hours of speech, and 6168 male speakers in 1098 of speech (both after
voice activity detection).

Originally, 400 dimensional i-vector extractor was chosen as a reference. As men-
tioned later, training of the 800 dimensional system got feasible using one of the proposed
methods. We trained such system to demonstrate the potentials of the proposed methods.

Scoring and Normalization

The extracted i-vectors were scaled down using an LDA matrix to 200 dimensions, and fur-
ther normalized by a within-class covariance matrix (see Section 5.2, [Dehak et al., 2010]).
Both of these matrices were gender-dependent and were estimated on the same data as the
i-vector extractor, except the Fisher data was excluded, resulting in 1684 female speakers
in 715 hours of speech and 1270 male speakers in 537 hours of speech.

Cosine distance of the two input vectors was used as the scoring function (see Sec-
tion 5.2). The scores were normalized using gender-dependent s-norm with a cohort of
400 speakers having 2 utterances per speaker.

Test Setup

The results of our experiments are reported on the female part of the Condi-
tion 5 (telephone-telephone) of the NIST 2010 speaker recognition evaluation (SRE)

64 5 i-vectors

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
14

15

16

17

18

19

20

21

22

norm new DCF x 100

no
rm

 o
ld

 D
C

F
 x

 1
00

400 baseline
400 simple 1
400 simple 2 − eigen
400 simple 2 − HLDA
800 baseline
800 simple 1
800 simple 2 − eigen
800 simple 2 − HLDA

Figure 5.5: Constellation plot of the individual systems

dataset [NIST, nd]. The recognition accuracy is given as a set of equal error rate (EER),
and the normalized DCF with parameters defined in the NIST 2010 SRE task (DCFnew)
and in the previous SRE evaluations (DCFold).

Results

In the following section, we will reference the systems according to the i-vector dimen-
sionality and to the extraction method used. Baseline stands for the original method as
in Sec. 5.1.2, and simple 1 and simple 2 reference to the proposed simplifications.

Table 5.1 summarizes the systems with respect to verification accuracy. Fig. 5.5 visu-
alizes the different systems on a constellation plot. The “800 baseline” system is clearly
the winner, however “800 simple 2 - HLDA” is a tight competitor to the “400 baseline”.

Speed and Memory

The speed and memory performance of i-vector extraction were tested on a set of 50
randomly chosen utterances from the MIXER05 database. The input data (given as a set
of fixed-size zero- and first-order statistics) and all of the input parameters were included
in the general memory requirements. The following algorithm-specific terms were pre-
computed (thus not included in the reported times), and comprised in the algorithm-
specific memory requirements:

• T(c)′T(c) in (5.6)

5.4 Simplifications of i-vector extraction 65

Table 5.1: Comparison of the proposed i-vector extraction methods in terms of normalized
DCFs and EER

DCFnew DCFold EER

400 baseline 0.5395 0.1651 3.58
400 simple 1 0.6664 0.2124 4.62
400 simple 2 - eigen 0.6627 0.2065 4.40
400 simple 2 - HLDA 0.6236 0.1899 4.19
800 baseline 0.4956 0.1468 3.05
800 simple 1 0.6057 0.1976 4.06
800 simple 2 - eigen 0.5414 0.1879 3.92
800 simple 2 - HLDA 0.5694 0.1822 3.84

Table 5.2: Comparison of the proposed i-vector extraction methods in processing speed.

absolute [sec] relative to 400 baseline

400 baseline 13.70 100.00%
400 simple 1 1.01 7.37%
400 simple 2 0.54 3.94%
800 baseline 65.75 480.00%
800 simple 1 3.64 26.57%
800 simple 2 1.11 8.10%

• W in (5.43)

• G and T(c)G in (5.44) and (5.47), and V in (5.46)

The algorithms were tested in MATLAB (R2009b) 64-bit, running in a single thread and
the default double-precision mode. The machine was an Intel(R) Xeon(R) CPU X5670
2.93GHz, with 36GB RAM.

As described earlier in Sec. 5.4.3, the computation time does not include reading of the
necessary data and pre-computation of some terms. The results are reported in Tab. 5.2.
The dominating complexity of matrix inversion makes “simple 2” faster than “simple 1”,
as described in Sec. 5.4.1 and 5.4.2.

Tab. 5.4 shows memory allocation for different systems. We see that for most of the
current hardware configurations, the baseline systems could be a problem.

Note that prior to the scoring, WCCN and LDA dimensionality reduction are applied
to the i-vectors (see Sec. 5.4.3). Projecting this linear transformation directly into the
leftmost G of (5.47) could further decrease the complexity of the “simple 2” algorithm.

66 5 i-vectors

Table 5.3: Time complexity for different systems. The first term is constant across
different methods and represents V′f for N observations

method time

baseline O(C2F 2MN + CM2N + M3N)
simple 1 O(C2F 2MN + M3N)
simple 2 O(C2F 2MN + CMN)

Table 5.4: Comparison of the proposed i-vector extraction methods in memory allocation
(in MB). The “constant” term depends on the i-vector dimensionality.

constant algorithm specific total

400 baseline 422.96 2,500.00 2,923.00
400 simple 1 ” 1.22 424.18
400 simple 2 ” 7.47 430.43
800 baseline 802.84 10,000.00 10,802.84
800 simple 1 ” 4.88 807.83
800 simple 2 ” 17.38 820.23

5.4.4 Simplification 1 in Training

While none of the simplifications had positive contribution to the test accuracy, the train-
ing phase simplification results in negligible accuracy changes while exploiting some of the
speed and memory advantages as described in the previous section. Table 5.5 shows the
difference.

Time and memory complexity of collecting the accumulators A from (5.8) is almost
identical to the computation of Li in (5.6). The proposed method still keeps the same
accumulator collection, however, avoiding the expensive computation of (5.6) decreases
the E step time and memory complexity by a factor of 2.

Table 5.5: Comparison of the proposed i-vector extractor training methods in terms of
normalized DCFs and EER for NIST2010

DCFnew DCFold EER

400 baseline 0.5460 0.1722 3.40
400 simple 1 0.5376 0.1729 3.42

5.4 Simplifications of i-vector extraction 67

Table 5.6: Comparison of the proposed i-vector extractor training methods in terms of
normalized DCFs and EER for MOBIO

female male

DCFold EER DCFold EER

128G baseline 0.0632 13.55 0.0597 14.50
128G simple 1 0.0635 14.08 0.0607 15.19

256G baseline 0.0588 12.94 0.0599 14.36
256G simple 1 0.0580 12.29 0.0599 13.81

5.4.5 The MOBIO Experiments

This experiment shows the methods with the scaled-down system that was used on the
cell phone as the part of the MOBIO project (as described in Section 2.2.2.)

The VAD is essentially the same as in the rest of the experiments except the Czech
phoneme recognizer was used instead of Hungarian. The features were 20-dimensional
MFCC’s augmented with their first- and second-order derivatives. Short-time cepstral
mean and variance normalization was applied over 3s windows.

As was mentioned in Section 2.4.8, the average length of each utterance for the MOBIO
database is around 5 seconds. Therefore, we had to join all utterances from one speaker
together for training the i-vector extractor. The extractor was gender-independent, 256G
and 128G are tested, s-norm was applied. The train-set for the i-vector extractor and
WCCN and LDA training was the same as in the previous experiments. Testing was
performed on the original (short) utterances.

Table 5.6 shows the results. It is apparent that the difference between the methods
is not as noticeable as in the NIST case. The reason is that the test segments are much
shorter than the ones of NIST. This results in much broader posterior distributions of
the i-vectors, i.e. the scale of L−1, which corresponds to overall performance degradation,
after which, the methods start to perform similarly.

68 5 i-vectors

Chapter 6

Discriminative Training

Discriminative training has shown to be effective in numerous fields of speech processing.
In LVCSR, acoustic models have been trained using different discriminative objectives
such as Maximum Mutual Information (MMI), Minimum Classification Error (MCE),
Minimum Phoneme Error (MPE), whose description and extensive study can be found
in [Povey, 2004]. In Language Recognition, discriminative training has been successfully
used in training the target language models (e.g. [Matějka, 2009, Campbell et al., 2006a])
or calibration (e.g. [Brümmer and van Leeuwen, 2006]). In Speaker Recognition, the use
of discriminative training has been very limited. Let us do a short review of what has
been done and give the motivation for this work. Let us start by looking at Figure 6.1 to
remind the principles of the fully-generative modeling.

SVMs and their one-against-many strategy has been successfully used by different
sites [Campbell et al., 2006b]. However, the objective of SVMs does not directly address
the discrimination between the same- and different-speaker hypotheses. Rather, the SVM
was trained so that it best separates the target-speaker data from the data belonging to a
cohort of impostor speakers. This approach addresses only half of the SRE task. The full
problem is to (i) distinguish one speaker from the others (as traditional SVM approach
does) and (ii) to recognize the same speaker under different conditions, which the SVM
does not address. Figure 6.2 shows the discriminative optimization in the task of SRE.

In fusion, Logistic Regression has been widely used (see [Brümmer and du Preez, 2006,
Brümmer et al., 2007] and various system descriptions in [NIST, nd]). As opposed to
SVM’s, its objective is to directly maximize the overall discrimination of the system.
Scores from two or more systems are linearly combined to maximize the system’s cross-
entropy as defined in Section 2.3.5. In this task, however, the discriminative model only
combines systems, but it does not make them better. Figure 6.3 shows the situation.

In [Burget et al., 2011], we have shown that discriminatively training the PLDA pa-
rameters can lead to improvement in recognition performance. The objective is essentially
the same as for fusion, however, it addresses optimizing the parameters of the system to
make the system itself better. Figure 6.4 shows how this approach is different from the
case of the SVMs. The discriminative optimization of the hyper-parameters is directly
dependent on the score.

In [Burget et al., 2008], Lukáš Burget and Niko Brümmer used the same objective to
discriminatively train the eigen-voices matrix in JFA. In that work, the scoring function

69

70 6 Discriminative Training

feature extractionfeature extraction

match

generative modeling
of JFA, PLDA

or i−vector extractor

system

estimate model

enrollment speech test speech

hyper−parameters

score

Figure 6.1: Fully generative approach—the dotted part is omitted for symmetrical sys-
tems.

for the discriminative objective was given by the linear scoring, as defined by (4.24).

In [Glembek et al., 2011a] we have shown that similar discriminative training frame-
work can be adopted for training the parameters of the i-vector extractor. The work
follows on the JFA discriminative training in that it addresses the optimization of the
GMM subspace, however, the system setup makes the optimization more complex as the
parameters lie “deeper” in the speaker recognition chain.

In this work, we review the techniques of discriminatively training JFA and PLDA,
including the results, and we follow up the work by studying discriminative training of
the i-vector extractor.

6.1 Discriminative Objective Function

Discriminative training is generally based on optimizing the parameters of a model with
the objective of best class discrimination. In this work, our objective is to maximize the
posterior probabilities of the classes given a set of training samples. Unlike generative
training, where the models are trained as if they were to literally generate the train-
ing data for the individual classes, discriminative training aims at finding such model
that best discriminates among the classes. In other words, discriminative objective is to
classify training data correctly. The classification score of each trial is evaluated using
some loss (or error) function, which is then summed over all training set to compute the
overall objective. Having constructed the objective this way, the task of discriminative
optimization is to minimize this overall loss (or to minimize the error).

Let x be a trial to be classified as either same-speaker (hypothesis H1) or different-
speaker (hypothesis H2). Let p(x|Hj) be the likelihood of trial x given hypothesis Hj .

6.1 Discriminative Objective Function 71

feature extractionfeature extraction

match

discriminative
optimization

generative modeling
of JFA, PLDA

or i−vector extractor

system

estimate model

enrollment speech test speech

hyper−parameters

score

Figure 6.2: Discriminative optimization of the speaker model—note that we do not op-
timize the system parameters; rather the model is trained so that it best separates the
target-speaker data from a set of non-target speakers.

The hypothesis posterior can then be evaluated using the Bayes rule:

p(Hj|x) =
p(x|Hj)p(Hj)

p(x|H1)p(H1) + p(x|H2)p(H2)
. (6.1)

We have expressed the hypothesis posterior in terms of likelihoods but we do not neces-
sarily have those at hand. Instead, each trial is provided with a score sx which we assume
to be a log-likelihood ratio. From (6.1) it holds that

p(H1|x)

p(H2|x)
=

p(x|H1)p(H1)

p(x|H2)p(H2)
, (6.2)

and so

log
p(H1|x)

p(H2|x)
= log

p(x|H1)

p(x|H2)
+ log

p(H1)

p(H2)

= sx + logit p(H1)

= ŝx , (6.3)

where ŝ denotes a log-posterior-ratio, and

logit p(H1) = log
p(H1)

p(H2)
(6.4)

= log
p(H1)

1− p(H1)
. (6.5)

72 6 Discriminative Training

system 1 system 2 system n

discriminative
optimization

. . .

linear
combination

score

Figure 6.3: Discriminative optimization of the fusion—the fusion makes the overall system
better by discriminatively optimizing the scale and shift parameters of the individual
systems, but it does not make the systems better recognizers.

feature extractionfeature extraction

match

system

estimate model

enrollment speech test speech

hyper−parameters

optimization
discriminative

score

Figure 6.4: Discriminative optimization of the system hyper-parameters

We can rewrite the posteriors as

p(H1|x) = σ (−ŝx) (6.6)

p(H2|x) = 1− p(H1|x)

= σ (ŝx) , (6.7)

where σ(·) is the the logistic function defined as

σ(s) =
1

1 + e−s
. (6.8)

Note that we assume the hypotheses’ priors to be equal, which sets ŝx = sx and we will
simply use the log-likelihood-ratio instead of the log-posterior-ratio throughout the rest
of the work1.

1To change the class priors for the optimization, we can simply add the logit p(H1) constant to the

6.1 Discriminative Objective Function 73

Let us use the coding scheme t ∈ {−1, 1} to represent labels for the different-speaker,
and same-speaker trials, respectively. Assigning each trial x a log-likelihood ratio s and
the correct label t, the log probability of recognizing the trial correctly can be expressed
as

log p (t|s) = − log
(
1 + e−ts

)
. (6.9)

In the case of logistic regression, the objective function to be maximized is the log probabil-
ity of correctly classifying all training examples with respect to the optimized parameters
θ, i.e., the sum of expressions (6.9) evaluated for all training trials X:

Q(θ) =
∑

x∈X

log p (tx|sx) (6.10)

=
∑

x∈X

− log
(
1 + e−txsx

)
, (6.11)

where

sx = sx(θ) . (6.12)

Equivalently, this can be expressed by minimizing the cross-entropy error function, whose
more general form is

EX(θ) =
∑

x∈X

αxELR (txsx(θ)) + R(θ) , (6.13)

where the logistic regression loss function

ELR(ts) = log(1 + exp(−ts)) (6.14)

is simply the negative log probability (6.9) of correctly recognizing a trial, αx allows to
scale each trial’s loss (to be discussed later), and R(θ) is a regularization term which
penalizes the objective function in case the parameters do not follow the regularizer con-
ditions. In this work, we will use the L2 regularizer which can be seen as imposing an
isotropic Gaussian prior on the parameters [Bishop, 2006]:

R(θ) =
λ

2
‖θ − θ̂‖2 , (6.15)

where bold-face θ denotes a vector of stacked parameters θ, λ is a constant controlling the
trade-off between the error function and the regularizer, i.e., the variance of the isotropic
Gaussian prior, and θ̂ defines the mean of the prior. Note that this kind of regularization
is similar to the sum-of-squares penalty; however, it extends it by controlling the distance
from some offset. The coefficients αx allow us to weight individual trials, e.g. to balance
the dataset, exclude suspicious trials, etc. In particular, they are useful to compensate
for different numbers of the same-speaker and different-speaker trials. Note that when

scores.

74 6 Discriminative Training

setting them to 1
2 log 2

1
|X1|

and 1
2 log 2

1
|X2|

, where |X1| and |X2| are the numbers of same- and
different-speaker trials, respectively, and when λ is set to 0, we get

EX(θ) =
∑

x∈X1

1

2 log 2

1

|X1|
log
(
1 + e−sx(θ))

)

+
∑

x∈X2

1

2 log 2

1

|X2|
log
(
1 + esx(θ)

)
(6.16)

=
1

2 log 2

(

1

|X1|

∑

x∈X1

log
(
1 + e−sx(θ)

)
+

1

|X2|

∑

x∈X2

log
(
1 + esx(θ)

)

)

(6.17)

= Cllr,θ(X) , (6.18)

which is the Cllr(X) objective (with respect to the parameters θ) for a set X as defined
by (2.7) early in Section 2.3.5.

SVM Loss function

For completeness, let us realize that the ELR as defined by (6.14) is not the only loss
function that we can use. Taking (6.13) and replacing ELR(ts) with hinge loss function

ESV (ts) = max(0, 1− ts), (6.19)

we obtain an objective function typically used in SVM. SVM is a classifier traditionally
understood to maximize the margin separating the class samples. Alternatively, one can
see the hinge loss function as a piecewise approximation to the logistic regression loss func-
tion. Figure 6.5 shows the plot of these functions. We mention this loss function to realize
the context and similarity of the two classifiers. Also, later in the experimental section of
PLDA, parallel work to the one described was done by Sandro Cumani [Cumani, 2012]
who used SVMs extensively in his work and the results are presented for comparison.

6.1.1 Gradient Evaluation

In order to optimize the parameters θ, we need to evaluate the gradient of the error
function. Either we set it to zero and find the solution analytically, or—as used in this
work—we use it to numerically optimize the parameters. The problem is that we are going
to optimize parameters that are deep in the speaker recognition chain, i.e., the objective
function is given as a composition of several functions. The solution is to find partial
derivatives (Jacobian matrices) and to use the chain rule to compose the final gradient.
In its general form, the gradient of the cross entropy objective is given as

∇E(θ) =
∑

x∈X

αx
∂E(txsx)

∂sx

∂sx

∂θ
+ λ(θ − θ̂), (6.20)

where the derivation of the loss function E(txsx), w.r.t. score sx, depends on the particular
choice of the loss function. For the logistic regression loss function, it is defined as

∂ELR(ts)

∂s
= −tσ(−ts) , (6.21)

6.2 Discriminative Training of JFA 75

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

5

LR
SVM

Figure 6.5: Loss functions for discriminative optimization: the logistic regression in blue
and SVM hinge loss in green. Note the similarity of the functions.

where σ(·) is the logistic function as defined by (6.8). For the hinge loss function, the
derivative is

∂ESV (ts)

∂s
=

{

0 if ts ≥ 1

−t otherwise.
(6.22)

To apply the discriminative optimization for a particular problem, one needs to define
∂sx

∂θ
, which will be studied separately in the following sections.

6.2 Discriminative Training of JFA

This section reviews the work of [Burget et al., 2008], specifically the experiments of dis-
criminatively training the JFA eigenvoice matrix V. The task was to minimize the dis-
criminative objective function as given by equation (6.16). The score s̄x for the objective
was given as

s̄x = αsx + β , (6.23)

where sx is the raw log-likelihood-ratio obtained from the full JFA model and α and β
are parameters for a linear calibration of the scores to ensure that the objective function
gets proper log-likelihood ratio. Since the simple linear scoring described in section 4.2.5
provided superior performance, it was the natural choice for these experiments. Therefore,
the log-likelihood-ratio defined by (4.24) is used as the raw score sx, generally leading to

s̄x = α(Vyx + Dzx)
′Σ−1̄fx + β . (6.24)

where
f̄x = fx −Nx(m−Uxx) . (6.25)

76 6 Discriminative Training

enroll
data

stats
extraction

stats
extraction

linear
scoring

JFA

optimization
discriminative

extraction
x,y,z

data
test

entropy
crossmatrix

V

Figure 6.6: System setup for the discriminative training of the eigen-voices matrix V.
Note that when optimizing the parameters, we do not derive through the extraction of
V, rather we derive through linear scoring, which is depicted by the bold arrows.

Another advantage of using the linear scoring is that derivatives of the objective function
w.r.t. V are easy to derive and can be very efficiently calculated. In all experiments
described in this section, speaker factors for all training and enrollment utterances were
precomputed using ML-trained JFA system and stayed fixed.

The full parameter set for optimization is θ = 〈α, β,V〉. The optimization is an
iterative process, where, in each iteration, we first fully optimize parameters α and β
using linear logistic regression2, which is followed by one iteration of modified gradient
descent update of eigenvoices V.

The gradient of the objective function has been partially derived in (6.20). We use
the setup of αx and λ as defined for the Cllr function in (6.17). Now we derive the score
function (6.24) w.r.t. the parameters V, and we obtain

∂s̄x

∂V
= αΣ−1̄fy′ . (6.26)

The complete gradient of the objective function w.r.t. the parameters is then constructed
by plugging (6.26) into (6.20):

∇E(V) = −α
∑

x∈X

αxtxσ(−txs̄x)Σ
−1̄fxyx

′ . (6.27)

To optimize our objective function, we need to define a set of training trials X (composed
of same- and different-speaker trials X1 and X2, respectively). In these experiments, each
possible pair of two segments from our training set formed a valid trial, where one segment
is considered to be the enrollment and the other the test segment. This allows us to define
X × X matrix P, where X = |X| is number of the segments in the training set X and
each element of the matrix corresponds to one trial where row index defines test segment
and column index defines the enrollment segment. Let the elements of the matrix P
corresponding to trial x be 1−p(H1|x)

|X1|
if the trial is a target trial and −p(H1|x)

|X2|
if the trial is

2FoCal toolkit (http://niko.brummer.googlepages.com/focal) by Niko Brümmer was used for this pur-
pose.

6.2 Discriminative Training of JFA 77

a non-target trial. Taking (6.27) and making use of matrix P, we obtain

∇E(V) =
1

2 log 2
αΣ−1F̄XPYX

′ , (6.28)

where columns of matrix F̄X are vectors of first order sufficient statistics, f̄ , extracted from
all segments in training set (representing test segments) and where columns of matrix YX

are vectors of speaker factors extracted from all segments in training set (representing
enrollment segments).

Now, the gradient could be used to optimize the objective function using standard gra-
dient descent method. However, the widely adopted technique for MMI training GMMs of
HMMs is Extended Baum-Welch [Schlüter, 2001] re-estimation, which has been shown to
provide much faster convergence compared to gradient descent. In our case, the Extended
Baum-Welch can not be adopted in straightforward way thanks to our more complicated
model and simplified linear scoring. In [Schlüter, 2001] section 2.2.2., relation between
Extended Baum-Welch and gradient descent update of parameters was pointed out show-
ing that Extended Baum-Welch update of GMM mean vectors can be seen as gradient
descent update with a specific learning rate used to update each parameter. Inspired by
this relation, we propose to use similar learning rate specific to each row of matrix V.
Specifically, we multiply the gradient ∇E(V) by diagonal matrix

L = η diag(ÑXP1)Σ, (6.29)

where columns of matrix ÑX are vectors of zero order sufficient statistics extracted from
all segments in training set, η is parameter-independent learning rate, 1 is column vector
of ones and diag(·) is an operator that converts vector into diagonal matrix. Finally, the
matrix V is iteratively updated using the following formula:

Vnew = Vold + L∇E(V) . (6.30)

6.2.1 Experiment with no explicit channel compensation

The first system, which we used for experimenting with discriminative training of eigen-
voices V was pure eigenvoice system (i.e., no U and no D matrices were considered in
this case). A system based on relatively small UBM with only 512 components and 39
dimensional features was selected for this experiment. The system was first trained using
maximum likelihood, then eigenvoice matrix V of size 19968×300 was retrained discrim-
inatively using the procedure described in the previous section. We use ML trained V as
the staring point for the discriminative training. The results are presented in Table 6.1.
Comparing the first and the third line in the table, we can see that discriminative train-
ing provides substantial improvement in the performance. The improvement holds also
when applying zt-normalization, though the normalization was not considered during the
discriminative training.

As mentioned in the previous section, speaker factors y are always computed using
the original ML trained model. In this case, it is the pure eigenvoice system with speaker
factors y estimated without considering channel variability. The last line in the table

78 6 Discriminative Training

Table 6.1: Results of the 1st large scale experiment, on SRE 2006 all trials (det1).

EER[%] No norm ZT-norm

Generative V 15.44 11.42
Generative V and U 6.99 4.07
Discriminative V 7.19 5.06
Discriminative V with channel compensated y 6.80 4.81

Table 6.2: Results of the 2nd large scale experiment, on SRE 2006 all trials (det1).

EER[%] No norm ZT-norm

Generative V and U 6.99 4.07
Discriminative V, Generative U 6.00 3.87

shows results obtained with the same discriminatively trained pure eigenvoice system used
for testing, where, however, factors y were obtained from ML trained system modeling the
channel variability. The improved result suggests that good estimation of y not affected by
channel variability may be important. Possibly, in the future, this could be also achieved
by means of discriminative training, without explicitly modeling the channel variability.

The second line in the table shows performance of ML trained system making use
of eigenchannels for both estimating speaker factors y and testing. We can see that
discriminative training provides improvements comparable to the intersession variability
modeling. However, improvement over the ML trained system is observed only in the first
column of the third row, which corresponds to result without zt-normalization. When zt-
norm is used, performance of the generative system is superior to the discriminatively
trained one. Note, that zt-norm was not considered during discriminative training. Not
having zt-norm incorporated in the discriminative training may force the training to
concentrate on problem that can be easily solved by the normalization, which can lead to
suboptimal result.

6.2.2 Experiment with ML trained eigenchannels

In the following experiment, the intersession variability is modeled using eigenchannel
matrix U (200 eigenchannels). Otherwise, the system is the same as in the previous set
of experiments. Again, the ML trained parameters are used as the starting point for the
discriminative training of matrix V. Although we make use of U in this experiment,
this matrix is not retrained discriminatively. As can be seen in Table 6.2, retraining the
matrix V improves the results. Much higher improvement is, however, obtained without
zt-norm. The probable reason is the same as explained in the previous paragraph.

6.3 Discriminative Training of PLDA 79

data

data

optimization
discriminative

i−vector
extraction

i−vector
extraction

PLDA entropy
crossPLDA parameters

Λ, Γ, c, k

Figure 6.7: System setup for the discriminative training experiments.

6.3 Discriminative Training of PLDA

Let us now show how the discriminative classifier from Section 6.1 can be used in training
the PLDA.

6.3.1 Efficient score and Gradient evaluation

We recall that the computation of a bilinear form xT Ay can be expressed in terms of
the Frobenius inner product as xTAy = 〈A,xyT 〉 = vec(A)T vec(xyT), where vec(·)
stacks the columns of a matrix into a vector. Therefore, the log-likelihood (5.36) from
Section 5.3.1 can be written as a dot product of a vector of weights wT , and an expanded
vector ϕ(φ1, φ2) representing a trial:

s = wT ϕ(φ1, φ2)

=

vec(Λ)
vec(Γ)

c
k

T

vec(φ1φ
T
2 + φ2φ

T
1)

vec(φ1φ
T
1 + φ2φ

T
2)

φ1 + φ2

1

. (6.31)

where the PLDA parameters Λ, Γ, c, and k are defined in equations (5.37) through (5.40).
Hence, we have obtained a generative generalized linear classifier [Bishop, 2006]. The
advantage of this form is that we have expressed the parameters as one single vector w
and this will be the form that we are going to optimize.

We have already defined the general gradient of the objective function w.r.t. the score
in (6.20). To evaluate the gradient w.r.t. the parameters w, we use the chain rule and
evaluate the Jacobian matrix of the score w.r.t. w and use it in (6.20). The derivation is
given as

∂s

∂w
=

∂

∂w
wTϕ(φ1, φ2)

= ϕ(φ1, φ2) . (6.32)

Given a trained classifier, we can obtain a verification score for a trial by forming the
expanded vector ϕ(φ1, φ2) and computing the dot product (6.31). However, as we have

80 6 Discriminative Training

already seen, the same score can be obtained using the two original i-vectors φ1, φ2 and
using formula (5.36), which is both memory and computationally efficient. Now, consider
two sets of i-vectors stored as columns of the matrices Φe and Φt. For illustration, let
us call these sets enrollment and test trials, although they play symmetrical roles in our
scoring scheme. We can efficiently score each enrollment trial against each test trial and
obtain the full matrix of scores as

S = 2ΦT
e ΛΦt

+((ΦT
e Γ) ◦ΦT

e)11T + 11T (Φt ◦ (ΓΦt))

+ΦT
e c1T + 1cTΦT

t + k, (6.33)

where ◦ denotes the Hadamard, or “entry-wise” product. Similarly, the näıve way of
evaluating the Jacobian matrix would be to explicitly expand every training trial and then
to apply equations (6.20) to (6.32). However, again taking into account the functional form
for computing scores (5.36), the gradient can be evaluated much more efficiently without
any need for explicit trial expansion. Let all the i-vectors, which we have available for
training, be stored in columns of a matrix Φ. Now consider forming a training trial using
every possible pair of i-vectors from this matrix. Let sij be the score for the trial formed
by the i-th and j-th columns of Φ calculated using the parameters w for which we wish
to evaluate the gradient. Let tij and αij be the corresponding label and trial weight,
respectively. Further, let dij be the corresponding derivation of loss function E(tijsij)
w.r.t. the score sij given in (6.21) or (6.22) depending on the loss function used. The
gradient can now be efficiently evaluated as

∇E(w) =

∇ΛL
∇ΓL
∇cL
∇kL

=

2 · vec
(
ΦGΦT

)

2 · vec
(
Φ[ΦT ◦ (G11T)]

)

2 · 1T [ΦT ◦ (G11T)]
1TG1

+ λw (6.34)

where elements of matrix G are gij = dijαij .

6.3.2 Numerical Optimization

The numerical optimization is based on the iterative “trust-region Newton-conjugate-
gradient” (CG) method, as described in [Lin et al., 2008, Nocedal and Wright, 2006]. The
“trust-region” (or restricted-step) refers to a spherical region in the space of the optimized
parameters, which serves as an update limit in case the optimization step goes out of the
trusty limits. The region is dynamically changed based on certain heuristics from each
previous update step.

The optimization itself is based on the Newton’s optimization method, where the gradi-
ent and the (inverted) Hessian are used for faster convergence. However, the update step of
the Newton-CG does not directly involve the inversion of the Hessian, nor it has to evaluate
the Hessian itself; instead, the inversion is computed using the conjugate-gradient method,
and the update step is effectively computed via a Hessian-vector multiplication. There-
fore, the implementation and application of the algorithm can be efficient in that one only
needs to provide a function which efficiently computes such multiplication. Evaluating

6.3 Discriminative Training of PLDA 81

Table 6.3: Normalized DCFnew, DCFoldand EER for the extended condition 5 (tel-tel)
from the NIST SRE 2010 evaluation.

Female Set Male Set Pooled

System DCFnew DCFold EER DCFnew DCFold EER DCFnew DCFold EER

PLDA 0.40 0.15 3.57 0.42 0.13 2.86 0.41 0.14 3.23
LR 0.40 0.12 2.94 0.39 0.10 2.22 0.40 0.11 2.62
SVM 0.39 0.11 2.35 0.31 0.08 1.55 0.37 0.10 1.94
HT-PLDA 0.34 0.11 2.22 0.33 0.08 1.47 0.34 0.10 1.88

the Hessian-vector product function can still be rather complex; therefore, we employed a
numerical approximation. The ‘complex step differentiation’ [Shampine, 2007] was tested
first, however, due to code optimization purposes, real-step numerical approximation—
where the product is expressed in terms of two close-enough gradient vectors—was used.

The algorithm was taken off-the-shelf as a part of the BOSARIS
toolkit [Brümmer and de Villiers, 2010]. The toolkit allows for building the cross-
entropy objective function as a composition of atomic functions represented by blocks
of MATLAB routines. Each such block provides the atomic function evaluation, as well
as its vector-Jacobian product to allow for back-propagation of the gradient for the
evaluation of the complete composite gradient.

6.3.3 Experimental Setup

The i-vector extractor and the baseline PLDA system is taken from the ABC system
submitted to NIST SRE 2010 evaluation [Brümmer et al., 2010]. The i-vector extractor
uses 60-dimensional cepstral features and a 2048-component full covariance GMM. The
UBM and i-vector extractor are trained on NIST SRE 2004, 2005 and 2006, Switchboard
and Fisher data. All PLDA systems and discriminative classifiers are trained using 400
dimensional i-vectors extracted from 21663 segments from 1384 female speakers and 16969
segments from 1051 male speakers from NIST SRE 2004, NIST SRE 2005, NIST SRE
2006, Switchboard II Phases 2 and 3, and Switchboard Cellular Parts 1 and 2.

6.3.4 Results

Table 6.3 presents results for the extended condition 5 (tel-tel) from NIST SRE 2010
evaluation. The reported numbers are Equal Error Rate (EER) and normalized minimum
Decision Cost Functions for the two operating points as defined by NIST for the SRE 2008
(DCFold) and SRE 2010 (DCFnew) evaluations as described in Section 2.3.

The system denoted as PLDA, which serves as the baseline, is based on a
generatively trained PLDA model with a 90-dimensional speaker variability sub-
space [Brümmer et al., 2010]. On telephone data, this configuration was found to give
the best DCFnew(focusing on low FA rates), which was the primary performance measure

82 6 Discriminative Training

in the NIST SRE 2010 evaluation. As a trade-off, the system gives somewhat poorer
performance at the DCFoldand EER.

The system denoted as LR is the discriminative linear classifier, where parameters
were initialized from the baseline system using (5.37) through (5.40) and retrained to
optimize the logistic regression objective function. Trust-region Newton-CG method, as
described in Section 6.3.2, was used. No regularization was used in this case. Significant
improvements compared to the baseline can be observed, especially at DCFold and EER.

For comparison with the con-current state-of-the art techniques, the presented re-
sults include the SVM discriminative training [Cumani et al., 2011] (as a parallel work
on discriminative PLDA), and the HTPLDA, which was the state-of-the-art generative
approach.

With the SVM-based classifier, the improvement was even larger than the LR. 10%,
30% and 40% relative improvements over the baseline were obtained for DCFnew, DCFold

and EER respectively. The improvements over the LR system can probably be attributed
mainly to the presence of the regularization term. Often, SVM classifiers are trained using
a solver to the dual problem, where a Gram matrix needs to be evaluated. The Gram
matrix is a matrix comprising dot products between every pair of training examples,
which are the trials in our case. Since it was decided to construct a training trial for
every pair of i-vectors, the size of the Gram matrix would be unmanageably large (the
number of training i-vectors to the 4th power). Therefore, a linear SVM was trained
by again solving the primal problem using a solver [Teo et al., 2007], which makes use
of the efficient evaluation of gradient. To make SVM regularization effective, it was
found that it is necessary to first normalize input i-vectors using within-class covariance
normalization (WCCN) [Dehak et al., 2010], i.e. to normalize i-vectors to have identity
within-class covariance matrix.

Finally, for comparison, we also include results with Heavy-tailed PLDA (HT-
PLDA) [Kenny, 2010], which gave the best results obtained with the same set of training
and test i-vectors. In heavy-tailed PLDA, speaker and intersession variability are mod-
eled using Student’s t, rather than Gaussian distributions. In the compared system, the
dimensionality of i-vectors was first reduced from 400 to 120 and the final vectors were
modeled with full-rank speaker and intersession subspaces. Nevertheless, the price paid
for the excellent results obtained with heavy-tailed PLDA is the very computationally
demanding score evaluation. As we can see, competitive results can be obtained with
the discriminatively trained models, for which the score evaluation is several orders of
magnitude faster.

It is worth mentioning that it was later observed that length normalization plays
an important role in this set of experiments. Not only it makes the Gaussian PLDA
competitive to the HT-PLDA [Garcia-Romero, 2011], but also it makes the discriminative
PLDA training ineffective.

6.4 Discriminative Training of i-vector Extractor

Let us first describe the system setup in order to understand the further description of
the problem. The speaker recognition pipeline is shown in Figure 6.8. The data comes in

6.4 Discriminative Training of i-vector Extractor 83

length
normdata

length
normdata

PLDA

i−vector
extraction

i−vector
extraction

i−vec extractor
parameters entropy

cross
optimization

discriminative

Figure 6.8: System setup for the discriminative training experiments.

the form of zero- and first-order statistics. It is then processed by the i-vector extractor
(in one of the two forms studied in Section 5.1.3 and Section 5.4.2). Length normalization
(as described in Section 5.3) is then performed. A pair of such i-vectors is then processed
by PLDA (Section 5.3) and a single score per trial is further passed to the cross-entropy
error function, as described in (6.13). As seen in the figure, we need to optimize the last
box, i.e., the cross-entropy, with respect to the parameters of the i-vector extractor. There
is no closed-form solution to this problem since the cross-entropy is a multiply-composed
function of the i-vector extractor parameters. Therefore, numerical-optimization needs to
be used.

We discriminatively optimize two kinds of i-vector extractor. In the first case, the
traditional extraction—as described in Section 5.1.3—is studied. It will be further referred
to as the full i-vector extractor. Its parameters are given by a single matrix T. In the
second case, the “simplified-2” extraction (as described in Section 5.4.2) is addressed. Its
parameters are given by three matrices—T, G, and V. It will be further referred to as
the simplified i-vector extractor.

6.4.1 Gradient Evaluation

The gradient of the objective function has been defined in Section 6.1.1. We will now
subsequently apply the chain rule to express the gradient in terms of the optimized pa-
rameters. Noting that the score s is a function of a length-normalized i-vector pair

s = s(φ̄1, φ̄2),

we get the gradient as a sum of two gradients

∂sn

∂θ
=

s(φ̄1, φ̄2)

∂φ̄1

∂φ̄1

∂θ
+

s(φ̄1, φ̄2)

∂φ̄2

∂φ̄2

∂θ
. (6.35)

From the bilinear form of PLDA as given by (5.36), knowing that Λ and Γ are symmetrical,
we can derive

s(φ̄1, φ̄2)

∂φ̄1

= 2φ′
2Λ + 2φ′

1Γ + c . (6.36)

84 6 Discriminative Training

Note that the two sides of the trial can be swapped so that an analogous equation applies
when deriving w.r.t. φ2. Again, we apply the chain rule to derive through the length
normalization as defined by (5.26)

∂φ̄

∂θ
=

∂φ̄

∂φ

∂φ

∂θ
(6.37)

where
∂φ̄

∂φ
=

1

‖φ‖

(

I− (φ̄φ̄
′
)
)

. (6.38)

Finally, we derive through the i-vector extractor. This is slightly tricky as the derivation
of a vector w.r.t. a matrix φ

θ
from (6.37) gives a third-order tensor. The näıve way could

be to represent θ as a vector and derive w.r.t each coefficient. However, we can make use
of matrix differentials.

Let us note that we can construct our optimization trial set X by pairing all M training
segments with all and masking them using the αx constant. It is trivial to express the
cross-entropy E as a function of the complete set of M i-vectors Φ = [φ1 · · · φM], where
each trial will be given as a pair of indexes to the training segments ij:

E(Φ) =

M∑

i=1

M∑

j=1

αijELR

(
tijs(φi, φj)

)
. (6.39)

With the given formulas for derivatives, it is also straightforward to express the gradient
∂E(Φ)

∂Φ
:

∂E(Φ)

∂Φ
=

M∑

i=1

M∑

j=1

αij
∂ELR

sij

(

∂s(φ̄i, φ̄j)

∂φ̄i

∂φ̄i

∂φi

+
∂s(φ̄i, φ̄j)

∂φ̄j

∂φ̄j

∂φj

)

. (6.40)

To derive through the i-vector extractor, we will make use of the chain rule for differentials,
where the following holds:

dE =
∑

ij

∂E

∂φij
dφij =

∑

kl

∂E

∂θkl
dθkl , (6.41)

i.e., the output differential of any stage is always determined by the gradient of that
stage and the input differential, which has already been discussed earlier in Section 6.1.1.
Looking at (6.41), we can also say that if we are able to evaluate the gradient ∂E

∂φij
and we

can express dΦ in terms of dθ, we are also able to find ∂E
∂θ

. We can do that by making use
of the matrix differentials. For the full i-vector extractor, the differential for j-th column
of dΦ is given as

dφj = −L−1
j dLjL

−1
j T′fj + L−1

j dT′fj , (6.42)

where

dLj =
∑

c

N
(c)
j

(

dT(c)′T(c) + T(c)′dT(c)
)

. (6.43)

6.4 Discriminative Training of i-vector Extractor 85

In the case of the simplified i-vector extractor, the corresponding differentials w.r.t. the
matrices T, G, and V are given respectively as

dφTj = GL̃
−1

j G′dT′fj (6.44)

dφGj =
(

dGL̃
−1

j G′ + GL̃
−1

j dG′
)

T′fj (6.45)

dφVj = −GL̃
−1

j Diag(dVnj)L̃
−1

j G′T′fj (6.46)

where L̃ is defined in (5.46). We find the gradient ∂E(θ)
∂θ

by substituting one of the dφ

from the above catalogue to (6.41). We can do that with the help of the tr(·) function
which allows to rewrite (6.41) as

tr

(
∂E(Φ)

∂Φ
dΦ

)

= tr

(
∂E(θ)

∂θ
dθ

)

. (6.47)

The tr function allows for rearrangements of the matrix products and once we have ex-
pressed the argument in such a way that dθ is the right-most term of the product, the
left side of it will be the solution as in r.h.s. of (6.47). In the case of the full i-vector
extractor, the derivative can be expressed as

∂E(T)

∂T
=

M∑

j=1

[

−

(

L−1
j

∂E

∂φ′
j

φ′
j + φj

∂E

∂φj

L−1
j

)

T′Nj + L−1
j

∂E

∂φj

fj

]

. (6.48)

For the simplified i-vector extraction, the derivatives of the parameters are

∂E(T)

∂T
=

M∑

j=1

fj
∂E

∂φj

GL̂−1
j G′ (6.49)

∂E(G)

∂G
=

M∑

j=1

L̂−1
j G′

(

T′fj
∂E

∂φj

+
∂E

∂φ′
j

f ′jT

)

(6.50)

∂E(V)

∂V
=

M∑

j=1

−nj

(
∂E

∂φj

G′ ◦ f ′jTGL̂−2
j

)

, (6.51)

where the ◦ stands for the Hadamard product. The gradients ∂E
∂φj

are simply the columns

of (6.40).

6.4.2 Experimental Setup

Test setup

The results of our experiments are reported on the female part of Condition 5 of the NIST
2010 SRE dataset [NIST, nd]. The recognition accuracy is given in terms of equal error
rate (EER), and the normalized DCF as defined in both NIST 2010 SRE (DCFnew) and
the previous SRE evaluations (DCFold).

86 6 Discriminative Training

Feature Extraction

In our experiments, we used cepstral features, extracted using a 25 ms Hamming win-
dow. 19 Mel frequency cepstral coefficients together with log energy were calculated
every 10 ms. This 20-dimensional feature vector was subjected to short time Gaussian-
ization [Pelecanos and Sridharan, 2006] using a 3 s sliding window. Delta and double
delta coefficients were then calculated using a five-frame window giving a 60-dimensional
feature vector.

Segmentation was based on the Brno University of Technology (BUT) Hungarian
phoneme recognizer and relative average energy thresholding. Also, short segments were
pruned out, after which the speech segments were merged.

System Setup

One gender-independent UBM was represented as a diagonal covariance, 64-component
GMM. It was trained using LDC releases of Switchboard II Phases 2 and 3, Switchboard
Cellular Parts 1 and 2, and NIST 2004-2005 SRE.

The initial i-vector extractor T was trained on the female portion of the following
telephone data: NIST SRE 2004, NIST SRE 2005, NIST SRE 2006, Switchboard II
Phases 2 and 3, Switchboard Cellular Parts 1 and 2, Fisher English Parts 1 and 2, giving
8396 female speakers in 1463 hours of speech. The dimensionality of the i-vectors was set
to 400. The initial orthogonalization matrix G was computed using HLDA, as described
in Section 5.4.2.

As described in Section 5.3, length normalization was applied after i-vector extraction.
PLDA was trained using the same data set as the T matrix. Only the Fisher portion

was trimmed off, reducing the amount of data by approximately 50%. The across-class
covariance matrix (eigen-voices) was of rank 90, and the within-class covariance matrix
(eigen-channels) was full-rank.

The training dataset for the discriminative training was identical to the dataset of
PLDA. The cross-entropy function was evaluated on the complete trial set, i.e., all training
samples were scored against each other, giving 378387 same-speaker trials, and over 468
million different-speaker trials.

Results

The numerical optimization of the parameters was performed in MATLAB using the opti-
mization and differentiation tools in the BOSARIS Toolkit as mentioned in Section 6.3.2.
Target prior p(H1) was set to 0.001 accroding to NIST2010 requirement (see Table 2.1).

First, the full i-vector extractor was tested. The first experiments were done with
initializing matrix T to random or to zeros. Even though the error function was decreas-
ing, the EER on the test set was close to random even after 20 iterations and no sign of
improvement was observed. The situation changed when initialized from the ML solution.
Different values for the regularization coefficient λ were tested. Good convergence and
stability were observed when setting it to 0.2 for the full i-vector extractor parameters,
and 0.8 for the simplified version. Figure 6.9a shows the plot of the objective function and
EER throughout the iterations when no regularizer was used. We see that even though

6.4 Discriminative Training of i-vector Extractor 87

Table 6.4: Comparison of ML and discriminatively trained full i-vector extractors in
terms of normalized DCFs and EER

DCFnew DCFold EER

ML 0.6678 0.2200 4.74
discriminative 0.6548 0.2122 4.26

Table 6.5: Comparison of ML and discriminatively trained simplified i-vector extractors
in terms of normalized DCFs and EER

DCFnew DCFold EER

ML 0.7496 0.2710 6.18
discriminative 0.6691 0.2403 5.41

the overall trend is decreasing EER, the optimization is unstable. Figure 6.9b—on the
other hand—shows the progression of the optimization when the described regularizer was
used. Plain L2 regularizer (omitting the θML term in (6.13)) was also tested; however, it
turned out that together with good initialization, the discriminative training works only
as a “fine-tuner” of the initial parameters.

Retraining the PLDA parameters (in generative fashion) between the iterations was
also tested, but never improved the results and usually increased the error function.

In the case of the simplified version, the matrices G and T were optimized subse-
quently. It was found, however, that even though optimizing V kept on decreasing the
error function, it would always decrease the recognition performance on the test set. The
regularization term was used in the same way as in the case of the full i-vector extractor.

It turned out that 10 iteration steps of the optimization algorithm gave stable results
in both cases when regularizer term was used.

Table 6.4 gives the comparison of the system based on the generative extractor and dis-
criminatively retrained one. We see that there is about 10% relative improvement in EER,
however moving towards low-false alarm operating points, the improvement gets smaller.
In the case of the simplified i-vector extractor, the improvement is more apparent—see

Table 6.5 for results. We see that the simplified system is still worse than the full one;
however, discriminative training has shown its potential.

88 6 Discriminative Training

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
llr

 o
n

tr
ai

n
se

t

Iteration
0 1 2 3 4 5 6 7 8 9 10

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

E
E

R
 o

n
te

st
 s

et
 [%

]

(a) No regularization

0 1 2 3 4 5 6 7 8 9 10
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Iteration

C
llr

 o
n

tr
ai

n
se

t

0 1 2 3 4 5 6 7 8 9 10
4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

E
E

R
 o

n
te

st
 s

et
 [%

]

(b) With regularization, λ = 0.2

Figure 6.9: Plot of the objecitve function (Cllr) and the EER w.r.t. number of opti-
mization iterations in discriminative training of the full ivector extractor. We can see the
effect of regularizing the optimization—after the third iteration the EER is monotonically
decreasing.

Chapter 7

Conclusions

7.1 Summary

In the first part of my work, I present comparison of different methods for scoring test
utterances using the Joint Factor Analysis models. The methods differ in how they deal
with the channel of the tested utterance. The work was inspired by the fact that many
sites used JFA in slightly different ways and comparison of the results among sites was
influenced not only by the methodology of training their systems, but also by the scoring
procedures.

The first method is based on evaluating the real log-likelihood functions (frame-by-
frame) for both the UBM and for the probed model—for each of the two, the channel
factors are estimated separately and dealt with as point estimates—and the log-likelihood
ratio is computed. The rest of the methods are based on approximating the likelihood
functions using the fixed-alignment assumption, which allows for using the zero- and
first-order statistics and simplifies the log-likelihood computation to a quadratic function
of the model. It was shown that using the point estimates—as in the frame-by-frame
case— with the fixed-alignment approximation and applying zt-norm gives results al-
most identical to the frame-by-frame approach, which confirms that the fixed-alignment
is a good assumption. It was also shown that integrating the quadratic function over
the posterior distribution of the channel factors gives results comparable to the point-
estimate approach. This is due to the fact that the posterior distribution is sharp on
long-enough utterances—in our case, the approximate length of the utterances was 2.5
minutes, which makes the point estimate a good approximation of the real posterior dis-
tribution. Estimating the channel point-estimate using the UBM only, and applying it to
both likelihood functions of the likelihood ratio has shown to lead to worse results when
used with the quadratic scoring. However, omitting the quadratic term—which can be
interpreted as first-order Taylor series approximation—leads to further simplification of
the log-likelihood function. Not only the computation of the whole log-likelihood ratio
reduces to a simple dot-product function, but also the accuracy of the system is compa-
rable to frame-by-frame approach. This method also allows for fast scoring of large-scale
evaluation sets, especially when all-against-all scoring is needed. For experimental usage,
linear scoring was found to be approximately 80 times faster than the frame-by-frame
approach.

89

90 7 Conclusions

In the second part, the extraction of i-vectors was studied. I have proposed two
simplifications to the i-vector computation. Both methods are based on approximating
the covariance of the posterior distribution of the i-vector. The first method approximates
the zero-order statistics by mere scaling of the GMM weights by the number of data-points.
This way, I managed to reduce the memory requirements and processing time for the i-
vector extractor training so that higher dimensions can be now used while retaining the
recognition accuracy. As for i-vector extraction, I managed to reduce the complexity of the
algorithm with sacrificing recognition accuracy by 20–30%, which makes this technique
usable in small-scale devices. It was shown that for short utterances (in average 5 sec),
the method performs similarly as the standard i-vector extraction. The results, with the
equal error rates in the range of 12%, however, are dramatically worse than when using
long utterances (which are typical in the NIST evaluations). The posterior distributions
in both methods are very broad which makes the point estimates of the i-vector almost
equally uncertain. As a practical result, Simplification 1 was used in the MOBIO project,
when porting a speaker verification system on a mobile phone platform.

The second simplification is based on orthogonalization of the subspace and assuming
that the posterior covariance is diagonal. Compared to the previous simplification, this
approach leads to better performance both in terms of speed and accuracy. The degra-
dation of accuracy for this technique, compared to the standard i-vector extraction, is
around 17% on EER on the NIST2010 data.

In the third part, discriminative training in automatic speaker recognition was studied
and adapted for the i-vector system. The objective for the training, as used in this
work, is the cross-entropy. The work follows on previous experiments where the same
objective was used for training the eigen-voices matrix of JFA, and later for training the
parameters of PLDA. I have applied the technique both to the original i-vector extractor
and to its simplified version, where orthogonal subspace is assumed. In both cases, the
discriminative training was effective: 10% relative improvement was achieved for the
standard i-vector extraction and 15% relative in the simplified case. The optimization
was performed numerically and it it was found out that mere discriminative training
does not work by itself. Rather, good initialization has to be provided—in our case the
standard ML estimat. Discriminative training is then used to “fine-tune” the parameters.

7.2 Future Work

7.2.1 Low-hanging Fruit

Most of the ideas for future work are inspired by the last part of my work, i.e., the
discriminative training. In this work, I summarized discriminative training of PLDA and
I have described discriminative training of the i-vector extractor. However, for the later
one, I have always used generatively trained PLDA. In this sense, the first thing that
might be worth experimenting with is joint discriminative training of multiple parts of
the speaker recognition system.

In my i-vector extractor discriminative training, I have always built the training set
as a complete list of all possible trials, i.e., all-against-all strategy. It would be interest-
ing to try to experiment with different trial sets. Another interesting experiment would

7.2 Future Work 91

be to cut the training utterances into large number of shorter segments. This thought
is inspired by experiments in other fields of speech processing, such as language recogni-
tion [Matějka et al., 2006], where MMI technique started to be successful only when using
short segments.

7.2.2 Long-term Plans

Concerning i-vector extraction with PLDA backend, it would also be interesting to dis-
criminatively optimize the i-vector extraction while concerning simultaneous ML estima-
tion of the PLDA parameters. This would make the parameters of the PLDA dependent
on the i-vector extractor and the discriminative objective function dependent also on
PLDA parameters, which would be ML-updated based on the changing i-vectors (where
i-vectors depend on changing the parameters of i-vector extractor). This corresponds to
an additional indirect dependence of the objective function on the i-vector extractor pa-
rameters, which has to be taken into account when evaluating gradient of the objective
function w.r.t. the i-vector extractor parameters. This problem is similar to the one in dis-
criminatively trained feature extraction used in ASR, namely fMPE [Povey et al., 2005].

As for the long-term plans, I am very interested in using subspace modeling in
combination with other distributions. I have already experimented with channel com-
pensation of the multinomial distribution [Glembek et al., 2008] and it has been shown
in [Kockmann, 2012, Soufifar et al., 2011, D’Haro et al., 2012] that similar approach can
be used for i-vector-like extraction for discrete data.

92 Bibliography

Bibliography

[Auckenthaler et al., 2000] Auckenthaler, R., Carey, M., and Lloyd-Thomas, H. (2000).
Score normalization for text-independent speaker verification systems. Digital Signal
Processing, 10(1-3):42–54.

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Brümmer, 2004] Brümmer, N. (2004). Spescom DataVoice NIST 2004 system descrip-
tion. In Proc. NIST Speaker Recognition Evaluation 2004, Toledo, Spain.

[Brümmer, 2009a] Brümmer, N. (2009a). The EM algorithm and minimum divergence:
Technical report, Agnitio Research, South Africa. https://sites.google.com/site/
nikobrummer/EMandMINDIV.pdf.

[Brümmer, 2009b] Brümmer, N. (2009b). EM for JFA: Technical report, Agnitio Re-
search, South Africa. https://sites.google.com/site/nikobrummer/EMforJFA.

pdf.

[Brümmer, 2010] Brümmer, N. (2010). EM for PLDA: Technical report, Agnitio Re-
search, South Africa. https://sites.google.com/site/nikobrummer/EMforPLDA.

pdf.

[Brümmer et al., 2010] Brümmer, N., Burget, L., Kenny, P., Matějka, P., de Villiers, E.,
Karafiát, M., Kockmann, M., Glembek, O., Plchot, O., Baum, D., and Senoussauoi, M.
(2010). ABC system description for NIST SRE 2010. In Proc. of NIST 2010 Speaker
Recognition Evaluation, Brno, Czech Republic, pages 1–20.

[Brümmer et al., 2007] Brümmer, N., Burget, L., Černocký, J., Glembek, O., Grézl, F.,
Karafiát, M., van Leeuwen, D., Matějka, P., Schwarz, P., and Strasheim, A. (2007).
Fusion of heterogeneous speaker recognition systems in the STBU submission for the
NIST speaker recognition evaluation 2006. IEEE Transactions on Audio, Speech and
Language Processing, 15(7):2072–2084.

[Brümmer and de Villiers, 2010] Brümmer, N. and de Villiers, E. (2010). The BOSARIS
toolkit. http://sites.google.com/site/bosaristoolkit/.

[Brümmer and du Preez, 2006] Brümmer, N. and du Preez, J. (2006). Application-
independent evaluation of speaker detection. Computer Speech & Language, 20(2-
3):230–275.

93

94 Bibliography

[Brümmer and van Leeuwen, 2006] Brümmer, N. and van Leeuwen, D. (2006). On cali-
bration of language recognition scores. In Proceedings of Speaker and Language Recog-
nition Workshop, 2006. IEEE Odyssey 2006: The, pages 1 –8.

[Burget, 2004] Burget, L. (2004). Complementarity of Speech Recognition Systems and
System Combination. PhD thesis, Brno University of Technology.

[Burget et al., 2008] Burget, L., Brummer, N., Reynolds, D., Kenny, P., Pelecanos, J.,
Vogt, R., Castaldo, F., Dehak, N., Dehak, R., Glembek, O., Karam, Z., Noecker, J. J.,
Na, Y. H., Costin, C. C., Hubeika, V., Kajarekar, S., Scheffer, N., and Černocký, J.
(2008). Robust speaker recognition over varying channels. Technical report, Johns
Hopkins University.

[Burget et al., 2007] Burget, L., Matejka, P., Schwarz, P., Glembek, O., and Cernocky,
J. (2007). Analysis of feature extraction and channel compensation in GMM speaker
recognition system. IEEE Transactions on Audio, Speech and Language Processing,
15(7):1979–1986.

[Burget et al., 2009] Burget, L., Matějka, P., Hubeika, V., and Černocký, J. (2009). Inves-
tigation into variants of joint factor analysis for speaker recognition. In Proc. Interspeech
2009, number 9, pages 1263–1266.

[Burget et al., 2011] Burget, L., Plchot, O., Cumani, S., Glembek, O., Matějka, P., and
Brümmer, N. (2011). Discriminatively trained probabilistic linear discriminant analysis
for speaker verification. In Proc. of the International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Prague, CZ.

[Campbell et al., 2006a] Campbell, W., Gleason, T., Navrátil, J., Reynolds, D., Shen,
W., Singer, E., and Torres-Carrasquillo, P. (2006a). Advanced language recognition
using cepstra and phonotactics: MITLL system performance on the NIST 2005 lan-
guage recognition evaluation. In Proceedings of IEEE Odyssey 2006: The Speaker and
Language Recognition Workshop, San Juan, Puerto Rico.

[Campbell et al., 2006b] Campbell, W., Sturim, D., Reynolds, D., and Solomonoff, A.
(2006b). SVM based speaker verification using a GMM supervector kernel and nap
variability compensation. In Proceedings of ICASSP 2006, volume 1, page I.

[Campbell, 2002] Campbell, W. M. (2002). Generalized linear discriminant sequence ker-
nels for speaker recognition. In Proceedings of Acoustics, Speech, and Signal Processing
(ICASSP), 2002 IEEE International Conference, volume 1, pages I–161 –I–164.

[Cumani, 2012] Cumani, S. (2012). Speaker and Language Recognition Techniques. PhD
thesis, Politecnico di Torino.

[Cumani et al., 2011] Cumani, S., Brümmer, N., Burget, L., and Laface, P. (2011). Fast
discriminative speaker verification in the i-vector space. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, pages 4852 –4855.

Bibliography 95

[Davis and Mermelstein, 1980] Davis, S. B. and Mermelstein, P. (1980). Comparison of
parametric representations for monosyllabic word recognition in continuously spoken
sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4).

[Dehak et al., 2010] Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., and Ouellet, P.
(2010). Front-end factor analysis for speaker verification. IEEE Transactions on Audio,
Speech and Language Processing, pages 1 –1.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via the EM algorithm. JOURNAL OF THE
ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38.

[D’Haro et al., 2012] D’Haro, L. F., Glembek, O., Plchot, O., Pavel Matějka, M. S., Cor-
doba, R., and Černocký, J. (2012). Phonotactic language recognition using i-vectors
and phoneme posteriogram counts. In Proceedings of Interspeech 2012, volume 2012.
To appear.

[Douglas Reynolds, 2000] Douglas Reynolds, Thomas F. Quatieri, R. B. D. (2000).
Speaker verification using adapted gaussian mixture models. Digital Signal Process-
ing, pages 19–41.

[Furui, 1986] Furui, S. (1986). Speaker-independent isolated word recognition using dy-
namic features of speech spectrum. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 34:52–59.

[Gales, 1999a] Gales, M. (1999a). Cluster adaptive training of hidden Markov models.
IEEE Transactions on Speech and Audio Processing, 8:417–428.

[Gales, 1999b] Gales, M. (1999b). Semi-tied covariance matrices for hidden Markov mod-
els. IEEE Trans. Speech and Audio Processing, 7:272–281.

[Garcia-Romero, 2011] Garcia-Romero, D. (2011). Analysis of i-vector length normal-
ization in Gaussian-PLDA speaker recognition systems. In Proc. of the International
Conference on Spoken Language Processing (ICSLP).

[Glembek et al., 2011a] Glembek, O., Burget, L., Bümmer, N., Plchot, O., and Matějka,
P. (2011a). Discriminatively trained i-vector extractor for speaker verification. In
Proceedings of Interspeech 2011, volume 2011, pages 137–140.

[Glembek et al., 2009] Glembek, O., Burget, L., Dehak, N., Brümmer, N., and Kenny,
P. (2009). Comparison of scoring methods used in speaker recognition with joint fac-
tor analysis. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on, pages 4057 –4060.

[Glembek et al., 2011b] Glembek, O., Matějka, P., and Burget, L. (2011b). Simplification
and optimization of i-vector extraction. In Proc. of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Prague, CZ.

96 Bibliography

[Glembek et al., 2008] Glembek, O., Matějka, P., Burget, L., and Mikolov, T. (2008).
Advances in phonotactic language recognition. In Proc. Interspeech 2008, number 9,
page 4.

[Graff et al., 2001] Graff, D., Miller, D., and Walker, K. (2001). Switchboard cellular part
1 audio. Linguistic Data Consortium, Philadelphia.

[Graff et al., 2002] Graff, D., Miller, D., and Walker, K. (2002). Switchboard-2 phase III.
Linguistic Data Consortium, Philadelphia.

[Graff et al., 2004] Graff, D., Miller, D., and Walker, K. (2004). Switchboard cellular part
2 audio. Linguistic Data Consortium, Philadelphia.

[Graff et al., 1999] Graff, D., Walker, K., and Canavan, A. (1999). Switchboard-2 phase
II. Linguistic Data Consortium, Philadelphia.

[Hadid and McCool, 2010] Hadid, A. and McCool, C. (2010). Description of MOBIO
database. https://www.idiap.ch/dataset/mobio/description-1.

[Hatch et al., 2006] Hatch, A. O., Kajarekar, S., and Stolcke, A. (2006). Within-Class
Covariance Normalization for SVM-based speaker recognition. In Proc. ICSLP, Pitts-
burgh, USA, pages 1471–1474.

[Kenny, 2005] Kenny, P. (2005). Joint factor analysis of speaker and session variability:
Theory and algorithms - technical report CRIM-06/08-13. Montreal, CRIM, 2005.

[Kenny, 2010] Kenny, P. (2010). Bayesian speaker verification with heavy–
tailed priors. In Proc. of Odyssey 2010, Brno, Czech Republic.
http://www.crim.ca/perso/patrick.kenny, keynote presentation.

[Kenny et al., 2005] Kenny, P., Boulianne, G., Ouellet, P., and Dumouchel, P. (2005).
Factor analysis simplified. In Proc. of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 637– 640, Toulouse, France.

[Kenny et al., 2007] Kenny, P., Boulianne, G., Oullet, P., and Dumouchel, P. (2007).
Joint factor analysis versus eigenchannels in speaker recognition. IEEE Transactions
on Audio, Speech and Language Processing, 15(7):2072–2084.

[Kenny and Dumouchel, 2004] Kenny, P. and Dumouchel, P. (2004). Disentangling
speaker and channel effects in speaker verification. In Acoustics, Speech, and Signal
Processing, 2004. Proceedings. (ICASSP ’04). IEEE International Conference on, vol-
ume 1, pages I – 37–40 vol.1.

[Kenny and Dumouchel, 2004] Kenny, P. and Dumouchel, P. (2004). Experiments in
speaker verification using factor analysis likelihood ratios. In Proceedings of Odyssey
2004.

[Kenny et al., 2003] Kenny, P., Mihoubi, M., and Dumouchel, P. (2003). New map esti-
mators for speaker recognition. In INTERSPEECH.

Bibliography 97

[Kenny et al., 2008] Kenny, P., Ouellet, P., Dehak, N., Gupta, V., and Dumouchel, P.
(2008). A study of inter-speaker variability in speaker verification. IEEE Transactions
on Audio, Speech and Language Processing, 16(5):980–988.

[Kockmann, 2012] Kockmann, M. (2012). SUBSPACE MODELING OF PROSODIC
FEATURES FOR SPEAKER VERIFICATION. PhD thesis, Brno University of Tech-
nology.

[Kuhn et al., 1998] Kuhn, R., Nguyen, P., Junqua, J. C., Goldwasser, L., Niedzielski, N.,
Fincke, S., Field, K., and Contolini, M. (1998). Eigenvoices for speaker adaptation.

[Kumar, 1997] Kumar, N. (1997). Investigation of Silicon-Auditory Models and General-
ization of Linear Discriminant Analysis for Improved Speech Recognition. PhD thesis,
John Hopkins University, Baltimore.

[Lin et al., 2008] Lin, C.-J., Weng, R. C., and Keerthi, S. S. (2008). Trust region Newton
method for large-scale logistic regression. Journal of Machine Learning Research.

[Marcel et al., 2010] Marcel, S., Cool, C. M., Matejka, P., Ahonen, T., Cernocky, J.,
Chakraborty, S., Balasubramanian, V., Panchanathan, S., Chan, C., Kittler, J., Poh,
N., Fauve, B., Glembek, O., Plchot, O., Jancik, Z., Larcher, A., Lévy, C., Matrouf,
D., Bonastre, J.-F., Lee, P. H., Hung, J. Y., Hung, Y. P., Wu, S. W., Machlica, L.,
Mason, J. S. D., Mau, S., Sanderson, C., Monzo, D., Albiol, A., Nguyen, H. V., Bai,
L., Wang, Y., Niskanen, M., Turtinen, M., Nolazco-Flores, J. A., Garcia-Perera, L. P.,
Aceves-Lopez, R., Villegas, M., and Paredes, R. (2010). On the results of the first
mobile biometry (MOBIO) face and speaker verification evaluation. In Proceedings of
the ICPR 2010 Contests, Istanbul, Turkey.

[Martin et al., 1997] Martin, A., Doddington, G., Kamm, T., Ordowski, M., and Przy-
bocki, M. (1997). The DET Curve in Assessment of Detection Task Performance. In
Proc. Eurospeech ’97, pages 1895–1898, Rhodes, Greece.

[Martin and Przybocki, 2004] Martin, A. and Przybocki, M. (2004). 2004 NIST speaker
recognition evaluation. http://www.itl.nist.gov/iad/mig//tests/sre/2004.

[Matějka, 2009] Matějka, P. (2009). Phonotactic and Acoustic Language Recognition. PhD
thesis, Brno University of Technology.

[Matějka et al., 2006] Matějka, P., Burget, L., Schwarz, P., and Černocký, J. (2006).
Brno University of Technology system for NIST 2005 language recognition evaluation.
In Proceedings of Odyssey 2006: The Speaker and Language Recognition Workshop,
pages 57–64.

[Minka, 1998] Minka, T. (1998). Expectation-maximization as lower bound maximiza-
tion. http://research.microsoft.com/en-us/um/people/minka/papers/matrix/

minka-matrix.pdf.

98 Bibliography

[Navrátil et al., 2003] Navrátil, J., Jin, Q., Andrews, W., and Campbell, J. (2003). Pho-
netic speaker recognition using maximum-likelihood binary-decision tree models. In
Proc. of the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Hong Kong.

[NIST, 2005] NIST (2005). The NIST year 2005 speaker recognition evaluation plan.

[NIST, 2006] NIST (2006). The NIST year 2006 speaker recognition evaluation plan.
http://www.itl.nist.gov/iad/mig//tests/sre/2006.

[NIST, 2008] NIST (2008). The NIST year 2008 speaker recognition evaluation plan.
http://www.itl.nist.gov/iad/mig//tests/sre/2008.

[NIST, 2010] NIST (2010). The NIST year 2010 speaker recognition evaluation plan.
http://www.itl.nist.gov/iad/mig//tests/sre/2010.

[NIST, nd] NIST (n.d.). The NIST speaker recognition evaluation. http://www.itl.

nist.gov/iad/mig/tests/spk/.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical Optimiza-
tion. Springer, 2nd edition.

[Openshaw and Masan, 1994] Openshaw, J. and Masan, J. (1994). On the limitations of
cepstral features in noise. In Proc. ICASSP 1994, Adelaide, SA, Australia.

[Pelecanos and Sridharan, 2006] Pelecanos, J. and Sridharan, S. (2006). Feature warping
for robust speaker verification. In Proceedings of Odyssey 2006: The Speaker and
Language Recognition Workshop, pages 213–218.

[Pešán, 2011] Pešán, J. (2011). Speaker recognition on mobile phone. Master’s thesis,
Brno University of Technology.

[Povey, 2004] Povey, D. (2004). Discriminative Training for Large Vocabulary Speech
Recognition. PhD thesis, Cambridge University.

[Povey et al., 2011] Povey, D., Burget, L., Agarwal, M., Akyazi, P., Kai, F., Ghoshal,
A., Glembek, O., Goel, N., Karafiát, M., Rastrow, A., Rose, R. C., Schwarz, P., and
Thomas, S. (2011). The subspace gaussian mixture model—structured model for speech
recognition. Computer Speech and Language, 25(2):404 – 439.

[Povey et al., 2005] Povey, D., Kingsbury, B., Mangu, L., Saon, G., Soltau, H., and Zweig,
G. (2005). fMPE: Discriminatively trained features for speech recognition. In Proceed-
ings of ICASSP 2005. IEEE International Conference, volume 1, pages 961 – 964.

[Prince and Elder, 2007] Prince, S. J. D. and Elder, J. H. (2007). Probabilistic linear
discriminant analysis for inferences about identity. In 11th International Conference
on Computer Vision.

[Rabiner and Juang, 1993] Rabiner, L. and Juang, B.-H. (1993). Fundamentals of speech
recognition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Bibliography 99

[Reynolds, 2002] Reynolds, D. (2002). Automatic speaker recognition – acoustics and
beyond. JHU SW’02 Tutorial.

[Reynolds, 2003] Reynolds, D. (2003). Channel robust speaker verification via feature
mapping. In Proceedings of ICASSP ’03. 2003 IEEE International Conference on,
volume 2, pages II – 53–6 vol.2.

[Schlüter, 2001] Schlüter, R. (2001). Comparison of discriminative training criteria and
optimization methods for speech recognition. Speech Communication, 34(3):287–310.

[Schwarz et al., 2006] Schwarz, P., Matějka, P., and Černocký, J. (2006). Hierarchical
structures of neural networks for phoneme recognition. In Proc. of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 325–328,
Toulouse, France.

[Shampine, 2007] Shampine, L. F. (2007). Accurate numerical derivatives in MATLAB.
ACM Trans. Math. Softw.

[Soufifar et al., 2011] Soufifar, M., Kockmann, M., Burget, L., Plchot, O., Glembek, O.,
and Svendsen, T. (2011). ivector approach to phonotactic language recognition. In
Proceedings of Interspeech 2011, volume 2011, pages 2913–2916.

[Teo et al., 2007] Teo, C., Smola, A., Vishwanathan, S. V., and Le, Q. V. (2007). A
scalable modular convex solver for regularized risk minimization. In Proc. KKD, pages
727–736.

[Thyes et al., 2000] Thyes, O., Kuhn, R., Nguyen, P., and Junqua, J.-C. (2000). Speaker
identification and verification using eigenvoices. In INTERSPEECH, pages 242–245.

[Torres-Carrasquillo et al., 2002] Torres-Carrasquillo, P. A., Singer, E., Kohler, M. A.,
and Deller, J. R. (2002). Approaches to language identification using gaussian mixture
models and shifted delta cepstral features. In Proc. ICSLP 2002, pages 89–92.

[Vair et al., 2007] Vair, C., Colibro, D., Castaldo, F., Dalmasso, E., and Laface, P. (2007).
Loquendo - Politecnico di Torino’s 2006 NIST speaker recognition evaluation system.
In Proceedings of Interspeech 2007, pages 1238–1241.

[Vapnik, 1995] Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-
Verlag New York, Inc., New York, NY, USA.

[Vogt et al., 2005] Vogt, R., Baker, B., and Sridharan, S. (2005). Modelling session vari-
ability in text-independent speaker verication. In Proc. Eurospeech, pages 3117–3120,
Lisbon, Portugal.

[Wikipedia, nd] Wikipedia (nd). Mixture model. http://en.wikipedia.org/wiki/

Mixture model.

[Young et al., 2006] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu,
X. A., Moore, G., Odell, J., Ollason, D., Povey, D., and et al. (2006). The HTK book.

100 Bibliography

Appendix A

A.1 Log-Likelihood with Hidden Variables

Let us collectively denote x as all observed variables (usually data) and y as all hidden
variables, where y ∈ Y. Let us assume that the observed values were generated by a model
parametrized by θ. Then the likelihood of the data x is given as

p(x|θ) =

∫

y∈Y

p(x, y|θ) dy . (A.1)

Let us introudce a distribution over the hidden variables q(y). For any arbitrary choice
of q(y), the following holds (with proof later):

log p(x|θ) = L(q(y), θ) + DKL(q(y)‖p(y|x, θ)) (A.2)

where

L(q, θ) =

∫

Y

q(y) log
p(x, y|θ)

q(y)
dy (A.3)

DKL(q(y)‖p(y|x, θ)) =

∫

Y

q(y) log
q(y)

p(y|x, θ)
dy , (A.4)

where the Kullback-Leibler divergence DKL(q(y)‖p(y|x, θ)) is always non-negative (by
definition) and null iif q(y) = p(y|x, θ). This implies that L(q, θ) is a lower-bound to the
true log-likelihood for arbitrary choice of q. The proof for (A.2) is given by the following

101

102 A Appendix

equality:

log p(x|θ) =

∫

Y

q(y) dy

︸ ︷︷ ︸

1

log p(x|θ) (A.5)

=

∫

Y

q(y) log p(x|θ) dy (A.6)

=

∫

Y

q(y) log
p(x, y|θ)

p(y|x, θ)
dy (A.7)

=

∫

Y

q(y) log
p(x, y|θ)q(y)

p(y|x, θ)q(y)
dy (A.8)

=

∫

Y

q(y) log
p(x, y|θ)

q(y)
dy +

∫

Y

q(y) log
q(y)

p(y|x, θ)
dy (A.9)

= L(q, θ) + DKL(q(y)‖p(y|x, θ)) , (A.10)

which prooves (A.2). Let us further expand the formula for diffent purposes

=

∫

Y

q(y) log
p(x|y, θ)p(y|θ)

q(y)
dy + DKL(q(y)‖p(y|x, θ)) (A.11)

=

∫

Y

q(y) log p(x|y, θ) dy −

∫

Y

q(y) log
q(y)

p(y|θ)
dy + DKL(q(y)‖p(y|x, θ)) (A.12)

= Eq(y) [log p(x|y, θ)]− DKL(q(y)‖p(y|θ)) + DKL(q(y)‖p(y|x, θ)) (A.13)

A.2 The EM Algorithm in General

The expectation-maximization algorithm is a general iterative technique for finding ML es-
timates of parameters of probabilistic models with hidden variables [Dempster et al., 1977,
Minka, 1998, Bishop, 2006, Brümmer, 2009a]. Let us use the notation from Section A.1.

EM is usually chosen when direct maximization of p(x|θ) is supposed to be difficult
but p(x, y|θ) is signifficantly easier. The algorithm is based on the fact that L(q(y), θ)
in (A.2) is a lower-bound to the true log-likelihood and that by choosing proper q(y)
and maximizing L(q(y), θ), we never decrease the log-likelihood. The algorithm then
iterates between the E-step—in which the auxilary function is constructed via the choices
of q(y)—and the M-step which maximizes this auxilary function

The E-step

The E-step is based on constructing an auxilary function Q(θ, θ0)—where θ0 is some
initial guess of the parameters—from L(q(y), θ) by choosing appropriate q(y) function
independent of the optimized parameters θ. It is usual for Q (although not necessary) to
touch the true log-likelihood function in the current estimate of the parameters θ0, i.e.
Q(θ0, θ0) = log p(x|θ0). The solution is in setting

q(y) = p(y|x, θ0) (A.14)

A.3 EM for PLDA 103

and

Q(θ, θ0) = L(p(y|x, θ0), θ) (A.15)

=

∫

Y

p(y|x, θ0) log
p(x, y|θ)

p(y|x, θ0)
dy (A.16)

. (A.17)

If we rewrite the formula as

Q(θ, θ0) =

∫

Y

p(y|x, θ0) log p(x, y|θ) dy −

∫

Y

p(y|x, θ0) log p(y|x, θ0) dy (A.18)

= Ep(y|x,θ0) [log p(x, y|θ)] + const , (A.19)

we see that the objective is to maximize the expectation of the joint log-probability given
the old posterior of the hidden variables, hence the name “expectation maximization”.
Another useful form of the objective can be derived using (A.13):

Q(θ, θ0) = Ep(y|x,θ0) [log p(x|y, θ)]− DKL (p(y|x, θ0)‖p(y|θ)) , (A.20)

i.e. the auxilary function is sum of the expectation of the log-likelihood and negative
divergence from the posterior distribution of the hidden variables to their prior.

The M-step

The M-step finds the new parameters θnew by maximizing (A.15):

θnew = arg max
θ

Q(θ, θ0) . (A.21)

Note that in the context of (A.20), θ parameterizes two distributions: (i) the likelihood
of the observed variables p(x|y, θ), and (ii) the prior of the hidden variables p(y|θ). If we
assume that the two distributions are parameterized by two disjoint subsets of parameters,
i.e., θ = 〈θ(x), θ(y)〉, we can rewrite (A.20) as

Q(θ, θ0) = Ep(y|x,θ0)

(
log p(x|y, θ(x))

)
− DKL

(
p(y|x, θ0)‖p(y|θ(y))

)
, (A.22)

and we can optimize the two sets of parameters independently. Optimizing the second
term is referred to as minimum divergence and the two optimization terms are comple-
mentary. Note that minimum divergence is used, e.g. for updating the weights of the
GMM (as they define the priors for the mixture components).

A.3 EM for PLDA

Let us give a quick cook-book style overview of how to exploit the EM to train the
PLDA parameters. This section is mainly motivated by [Brümmer, 2010], where the
complete derivations of the formulae can be found. The procedure is similar to training

104 A Appendix

the parameters of the GMM subspace models. Again, we construct the objective function
from the complete data log-likelihood and the prior using the same trick as in (3.45).

Let us recall that the observation i of speaker s is given as an i-vector φs,i which can
be decomposed using (5.24). As was mentioned earlier, we assume zero mean and we
model φs,i as

φs,i = Vys + Uxs,i + ǫ . (A.23)

The parameters of the model are θ = 〈V,U,D〉, where D is the precision matrix of the
posterior distribution of ǫ defined by (5.25).

A.3.1 Data

Let S be the set of all speakers, let Φs be an F × ns matrix of all ns observations of
speaker s ∈ S

Φs =
[
φs,1 . . . φs,ns

]
, (A.24)

with F being the dimensionality of the i-vector, and let Xs be the matrix of all hidden
variables xs,i

Xs = [xs,1 . . . xs,ns
] . (A.25)

Let us define the sufficient statistics in a similar way as we did for the GMM. The zero-
order statistics for speaker s are directly given by ns, the global zero-order statistics are
given as

N =
∑

s∈S

ns , (A.26)

the first-order statistiscs for speaker s are given as

fs =
ns∑

i=1

φs,i , (A.27)

and the second-order statistics for all observations are given as

S =
∑

s∈S

ns∑

i=1

φs,iφ
′
s,i . (A.28)

A.3.2 The Log-Likelihood Function

The complete data log-likelihood for speaker s is given as

log p(Φs|ys,Xs, θ) =
ns∑

i=1

log N
(
φs,i|Vys + Uxs,i,D

−1
)

(A.29)

∝

ns∑

i=1

(

−
1

2
φ′

s,iDφs,i + φ′
s,iDVys + φ′

s,iDUxs,i

−
1

2
y′

sV
′DVys − y′

sV
′DUxs,i −

1

2
x′

s,iU
′DUxs,i

)

. (A.30)

A.3 EM for PLDA 105

A.3.3 Hidden-Variable Prior

The joint prior for the hidden variables for speaker s is given as

p(Xs,ys) = p(Xs)p(ys) (A.31)

∝ exp

(

−
1

2
y′

sys −
1

2
tr(X′

sXs)

)

(A.32)

A.3.4 Hidden-Variable Posterior

For convenience, let us define these substitutions:

J = U′DV (A.33)

K = U′DU + I (A.34)

Ls = nsV
′DV + I . (A.35)

The posterior of the hidden variables is given as a joint probability

p(Xs,ys|Φs, θ) = p(Xs|ys,Φs, θ)p(ys|Φs, θ) , (A.36)

with the individual posteriors

p(Xs|,ys,Φs, θ) =

ns∏

i=1

N
(
xs,i; x̂s,i,K

−1
)

(A.37)

p(ys|Φs, θ) = N
(
ys|ŷs,P

−1
s

)
, (A.38)

where

Ps = ns

(
V′DV − J′K−1J

)
+ I (A.39)

x̂s,i = x̃s,i −K−1Jys (A.40)

ŷs = P−1
s

(

V′Dfs −
ns∑

i=1

J′x̃s,i

)

(A.41)

with

x̃s,i = K−1U′Dφs,i . (A.42)

A.3.5 Marginal Log-Likelihood (EM Objective)

As in the GMM subspace modeling, the EM objective is defined as a marginal log-
likelihood over the hidden variables. Again, we could marginalize by integrating over
the hidden variables, but we can use the same approach as in the GMM subspace mod-
eling:

p(Φs|θ) =
p(Φs|Xs,ys, θ)p(Xs)p(ys)

p(Xs|Φs,ys, θ)p(ys|Φs, θ)

∣
∣
∣
∣
ys=0,Xs=0

. (A.43)

106 A Appendix

The EM objective is given as a log of (A.43), summed over all speakers:

L(θ) =
∑

s∈S

log p(Φs|θ) (A.44)

=
∑

s∈S

ns∑

i=1

−
1

2
φ′

s,iDφs,i −
1

2
log |Ps|+

1

2
ŷ′

sPsŷs +
1

2
x̂′

s,iKx̂s,i . (A.45)

A.3.6 E-step

Let us stack the hyper parameters and the hidden variables as

W = [U V] (A.46)

zs,i =

[
xs,i

ys

]

. (A.47)

The auxillary function is defined as

Q(θ, θ0) = Eθ0

[
∑

s∈S

log p (Φs|ys,Xs, θ) + const

]

(A.48)

=
N

2
log |D| −

1

2
tr(SD)−

1

2
tr(RW′DW) + tr(TDW) , (A.49)

where S is the matrix of the global second-order statistics, and the accumulators R and
T are computed using the expected values of zs via the posterior computed using θ0:

T =
∑

s∈S

ns∑

i=1

E [zs,i] φ
′
s,i (A.50)

=
∑

s∈S

ns∑

i=1

[
Tx

Ty

]

(A.51)

and

R =
∑

s∈S

ns∑

i=1

E
[
zs,iz

′
s,i

]
(A.52)

=
∑

s∈S

ns∑

i=1

[
Rxx Rxy

R′
xy Ryy

]

, (A.53)

A.3 EM for PLDA 107

where

Ty =
∑

s∈S

ns∑

i=1

ŷsφ
′
s,i =

∑

s∈S

ŷsf
′
s (A.54)

Tx =
∑

s∈S

ns∑

i=1

E [x̂s,i(y)′] φ′
s,i (A.55)

=
∑

s∈S

ns∑

i=1

K−1
(
U′Dφs,i − Jŷs

)
φ′

s,i (A.56)

= K−1 (U′DS− JTy) (A.57)

and

Ryy =
∑

s∈S

ns∑

i=1

E [ysy
′
s] =

∑

s∈S

ns

(
P−1

s + ŷsŷ
′
s

)
(A.58)

Rxy =
∑

s∈S

ns∑

i=1

E [xs,iy
′
s] = K−1 (U′DTy − JRyy) (A.59)

Rxx =
∑

s∈S

ns∑

i=1

E
[
xs,ix

′
s,i

]
(A.60)

= K−1
(
U′DSDU−U′DT′

yJ
′ − JTyDU + JRyyJ

′
)
K−1 (A.61)

A.3.7 M-step

Differentiating (A.49) w.r.t. W and setting to zero gives

Wem = T′R−1 . (A.62)

Differentiating w.r.t. D gives

Dem = N
(
S−T′R−1T

)−1
, (A.63)

and if we want to force D to be isotropic, i.e. D = dI, then

d =
ND

tr (S−T′R−1T)
. (A.64)

The MD step is again based on rotating the space to compensate for the updated
priors as:

Umd = Uem Chol(Urot)
′ (A.65)

Vmd = Vem Chol(Vrot)
′ + UmdG , (A.66)

108 A Appendix

where

G′ = R−1
yyR

′
xy (A.67)

Vrot =
1

|S|

∑

s∈S

P−1
s + ŷsŷ

′
s (A.68)

Urot =
1

N

(
Rxx −GR′

xy

)
, (A.69)

and Chol(·) denotes Cholesky decomposition, where Chol(A) Chol(A)′ = A.

