
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

METODY AKCELERACE EVOLUČNÍHO NÁVRHU
ČÍSLICOVÝCH OBVODŮ
ACCELERATION METHODS FOR EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. ZDENĚK VAŠÍČEK
AUTHOR

VEDOUCÍ PRÁCE Prof. Ing. LUKÁŠ SEKANINA, Ph.D.
SUPERVISOR

BRNO 2012

Abstrakt
Ačkoliv můžeme v literatuře nalézt řadu př́ıklad̊u prezentuj́ıćıch evolučńı návrh jakožto
zaj́ımavou a slibnou alternativu k tradičńım návrhovým technikám použ́ıvaným v oblasti
č́ıslicových obvod̊u, praktické nasazeńı je často problematické zejména v d̊usledku tzv.
problému škálovatelnosti, který se projevuje např. tak, že evolučńı algoritmus je schopen
poskytovat uspokojivé výsledky pouze pro malé instance řešeného problému. Vážný problém
představuje tzv. problém škálovatelnosti evaluace fitness funkce, který je markantńı zejména
v oblasti syntézy kombinačńıch obvod̊u, kde doba potřebná pro ohodnoceńı kandidátńıho
řešeńı typicky roste exponenciálně se zvyšuj́ıćım se počtem primárńıch vstup̊u.

Tato disertačńı práce se zabývá návrhem několika metod umožňuj́ıćıch redukovat prob-
lem škálovatelnosti evaluace v oblasti evolučńıho návrhu a optimalizace č́ıslicových systémů.
Ćılem je pomoćı několika př́ıpadových studíı ukázat, že s využit́ım vhodných akceleračńıch
technik jsou evolučńı techniky schopny automaticky navrhovat inovativńı/kompetitivńı
řešeńı praktických problémů.

Aby bylo možné redukovat problém škálovatelnosti v oblasti evolučńıho návrhu č́ıslicových
filtr̊u, byl navržen doménově specifický akcelerátor na bázi FPGA. Tato problematika
reprezentuje př́ıpad, kdy je nutné ohodnotit velké množstv́ı trénovaćıch dat a současně
provést mnoho generaćı. Pomoćı navrženého akcelerátoru se podařilo objevit efektivńı im-
plementace r̊uzných nelineárńıch obrazových filtr̊u. S využit́ım evolučně navržených filtr̊u
byl vytvořen robustńı nelineárńı filtr implusńıho šumu, který je chráněn užitným vzorem.
Navržený filtr vykazuje v porovnáńı s konvenčńımi řešeńımi vysokou kvalitu filtrace a ńızkou
implementačńı cenu.

Spojeńım evolučńıho návrhu a technik známých z oblasti formálńı verifikace se podařilo
vytvořit systém umožňuj́ıćı výrazně redukovat problém škálovatelnosti evolučńı syntézy
kombinačńıch obvod̊u na úrovni hradel. Navržená metoda dovoluje produkovat komplexńı
a přesto kvalitńı řešeńı, která jsou schopna konkurovat komerčńım nástroj̊um pro logickou
syntézu. Navržený algoritmus byl experimentálně ověřen na sadě několika benchmarkových
obvod̊u včetně tzv. obt́ıžně syntetizovatelných obvod̊u, kde dosahoval v pr̊uměru o 25%
lepš́ıch výsledk̊u než dostupné akademické i komerčńı nástroje.

Posledńı doménou, kterou se práce zabývá, je akcelerace evolučńıho návrhu lineárńıch
systémů. Na př́ıkladu evolučńıho návrhu násobiček s v́ıcenásobnými konstantńımi koefi-
cienty bylo ukázáno, že čas potřebný k evaluaci kandidátńıho řešeńı lze výrazně redukovat
(defacto na ohodoceńı jediného testovaćıho vektoru), je-li brán v potaz charakter řešeného
problému (v tomto př́ıpadě linearita).

Kĺıčová slova
návrh č́ıslicových obvod̊u, evolučńı optimalizace, evolučńı návrh, násobička s konstantńımi
koeficienty, filtrace obrazu, nelineárńı filtr, optimalizace kombinačńıch obvod̊u, FPGA akcel-
erace

Citace
Zdeněk Vaš́ıček: Acceleration Methods for Evolutionary Design of Digital Circuits, dis-
ertačńı práce, Ústav poč́ıtačových systémů, FIT VUT v Brně, Brno, CZ, 2012

Abstract
Although many examples showing the merits of evolutionary design over conventional de-
sign techniques utilized in the field of digital circuits design have been published, the evo-
lutionary approaches are usually hardly applicable in practice due to the various so-called
scalability problems. The scalability problem represents a general problem that refers to
a situation in which the evolutionary algorithm is able to provide a solution to a small
problem instances only. For example, the scalability of evaluation of a candidate digital
circuit represents a serious issue because the time needed to evaluate a candidate solution
grows exponentially with the increasing number of primary inputs.

In this thesis, the scalability problem of evaluation of a candidate digital circuit is ad-
dressed. Three different approaches to overcoming this problem are proposed. Our goal is
to demonstrate that the evolutionary design approach can produce interesting and human
competitive solutions when the problem of scalability is reduced and thus a sufficient num-
ber of generations can be utilized.

In order to increase the performance of the evolutionary design of image filters, a do-
main specific FPGA-based accelerator has been designed. The evolutionary design of image
filters is a kind of regression problem which requires to evaluate a large number of training
vectors as well as generations in order to find a satisfactory solution. By means of the pro-
posed FPGA accelerator, very efficient nonlinear image filters have been discovered. One
of the discovered implementations of an impulse noise filter consisting of four evolutionary
designed filters is protected by the Czech utility model.

A different approach has been introduced in the area of logic synthesis. A method
combining formal verification techniques with evolutionary design that allows a significant
acceleration of the fitness evaluation procedure was proposed. The proposed system can
produce complex and simultaneously innovative designs, overcoming thus the major bottle-
neck of the evolutionary synthesis at gate level. The proposed method has been evaluated
using a set of benchmark circuits and compared with conventional academia as well as com-
mercial synthesis tools. In comparison with the conventional synthesis tools, the average
improvement in terms of the number of gates provided by our system is approximately 25%.

Finally, the problem of the multiple constant multiplier design, which belongs to the
class of problems where a candidate solution can be perfectly evaluated in a short time,
has been investigated. We have demonstrated that there exists a class of circuits that
can be evaluated efficiently if a domain knowledge is utilized (in this case the linearity of
components).

Keywords
digital circuit design, evolutionary optimization, evolutionary design, multiplier with con-
stant coefficients, image filtering, nonlinear filter, optimization of combinational circuits,
FPGA acceleration

Bibliographic citation
Zdeněk Vaš́ıček: Acceleration Methods for Evolutionary Design of Digital Circuits, PhD
thesis, Department of Computer Systems, FIT BUT, Brno, CZ, 2012

Acceleration Methods for Evolutionary Design of
Digital Circuits

Prohlášeńı
Prohlašuji, že jsem tuto disertačńı práci vypracoval samostatně pod vedeńım Prof. Ing.
Lukáše Sekaniny, Ph.D., a že jsem uvedl všechny literárńı prameny, ze kterých jsem v
pr̊uběhu své práce čerpal.

. .
Zdeněk Vaš́ıček
9. března 2012

Poděkováńı
Na tomto mı́stě bych rád poděkoval všem, kteř́ı přispěli k tomu, že tato práce vznikla.
Předevš́ım mému vedoućımu disertačńı práce Prof. Ing. Lukáši Sekaninovi, Ph.D. za řadu
podnětných diskuźı týkaj́ıćıch se tématu disertačńı práce, metodické vedeńı a spolupráci
při výzkumu. Dále děkuji všem spolupracovńık̊um za vstř́ıcnost a spolupráci při řešeńı
jednotlivých část́ı disertačńı práce. V neposledńı řadě bych rád poděkoval svým rodič̊um,
ženě a všem bĺızkým za podporu během studia i psańı této práce.

Výsledky této práce vznikly za podpory Grantové agentury české republiky a Minister-
stva školstv́ı, mládeže a tělovýchovy v rámci projekt̊u: Matematické a inženýrské metody pro
vývoj spolehlivých a bezpečných paralelńıch a distribuovaných poč́ıtačových systém̊u, GAČR,
GD102/09/H042, 2009-2012, Návrh a obvodová realizace zař́ızeńı pro automatické gen-
erováńı patentovatelných invenćı, GAČR, GA102/07/0850, 2007-2009, Natural computing
na nekonvenčńıch platformách, GAČR, GP103/10/1517, 2010-2013, Výzkum informačńıch
technologíı z hlediska bezpečnosti, CEZ MŠMT, MSM0021630528, 2007-2013.

c© Zdeněk Vaš́ıček, 2012.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 1
1.1 Goals of the Thesis . 3

2 From Evolutionary Algorithms to Evolvable Hardware 5
2.1 Evolutionary Algorithms . 5

2.1.1 Genetic Algorithms . 6
2.1.2 Genetic Programming . 7
2.1.3 Evolutionary Strategies . 8
2.1.4 Evolutionary Programming . 8
2.1.5 Cartesian Genetic Programming . 8

2.2 Reconfigurable Devices . 11
2.2.1 Reconfigurability and Its Benefits . 11
2.2.2 Digital Reconfigurable Devices . 11
2.2.3 Analog Reconfigurable Devices . 14

2.3 Evolvable Hardware . 16
2.3.1 Basic Principle of EHW . 16
2.3.2 Evaluation of Candidate Circuits . 17
2.3.3 Evolvable Hardware as Design Tool 18

3 Evolutionary Design of Analog and Digital Circuits 19
3.1 Evolutionary Design of Analog Circuits . 20

3.1.1 Synthesis of Analog Circuits Using GP 20
3.2 Evolutionary Design of Digital Circuits . 22

3.2.1 Transistor Level Representation . 22
3.2.2 Gate Level Representation . 24
3.2.3 Function-level representation . 31

3.3 Practical Aspects of the Evolutionary Design of Digital Circuits using CGP 35
3.3.1 Simulators for Circuit Evolution . 35
3.3.2 Performance Improvement Using Parallel Simulation 40
3.3.3 Effcient Calculation of Fitness Value 41

3.4 Current Problems of Evolutionary Design 42
3.4.1 Scalability of Representation . 42
3.4.2 Scalability of Fitness Evaluation . 44

3.5 Summary . 47

i

4 Evolutionary Synthesis of Linear Transforms 49
4.1 Theoretical Background . 50

4.1.1 Single Constant Multiplication . 50
4.1.2 Multiple Constant Multiplication . 53

4.2 Proposed Method . 55
4.3 Results . 56
4.4 Summary . 58

5 Evolutionary Synthesis of Complex Combinational Circuits 59
5.1 Theoretical Background . 59

5.1.1 Boolean Satisfiability . 60
5.1.2 Combinational Equivalence Checking 60
5.1.3 Conventional Logic Synthesis . 66

5.2 Proposed Method . 68
5.2.1 Formal Verification in Fitness Function 69
5.2.2 Time of Candidate Circuit Evaluation 70
5.2.3 CGP-Specific Performance Improvement Techniques 72

5.3 Evaluation of the Proposed Method . 73
5.3.1 Population Size . 74
5.3.2 Mutation Rate and Topology of CGP encoding 74
5.3.3 Seeding the Initial Population . 75
5.3.4 Parity Benchmarks . 75
5.3.5 LGSynth93 Benchmarks . 76

5.4 Improved Equivalence Checking . 77
5.4.1 Time of Candidate Circuit Evaluation 80
5.4.2 LGSynth93 Benchmarks . 81

5.5 Experimental Evaluation and Comparison with Conventional Synthesis . . . 81
5.5.1 Synthesis of LGSynth93 Benchmarks 81
5.5.2 Synthesis of Conventionally Hard to Synthesize Circuits 82

5.6 Summary . 87

6 Evolutionary design of nonlinear image filters 89
6.1 Theoretical Background . 90

6.1.1 Image Filters and Sliding Window Function 90
6.1.2 Impulse Noise . 91
6.1.3 Nonlinear Impulse Noise Filters . 93

6.2 Evolutionary Design of Image Filters using CGP 101
6.2.1 Encoding of a Candidate Filter . 102
6.2.2 Fitness Function . 103

6.3 Experimental Results . 104
6.3.1 Salt-and-pepper Noise Filters and Noise-Resistant Edge Detectors . 104
6.3.2 Evolutionary Design of Robust Salt-and-pepper Noise Filter 107
6.3.3 Evolutionary Design of Switching Filters 112

6.4 Summary . 121

ii

7 Hardware Accelerator of Cartesian Genetic Programming 123
7.1 Target FPGA Platform . 124
7.2 CGP Accelerator with a Single Fitness Unit 125

7.2.1 Architecture Overview . 126
7.2.2 Genetic Unit . 127
7.2.3 Fitness Unit . 128
7.2.4 VRC for Symbolic Regression Problems 128
7.2.5 VRC for Logic Expressions . 129

7.3 Experimental Evaluation . 130
7.3.1 Theoretical Performance . 130
7.3.2 Evolution of Image Filters . 130
7.3.3 Evolution of Digital Circuits . 135

7.4 CGP Accelerator with Multiple Fitness Units 137
7.4.1 Fitness Unit . 138
7.4.2 Genetic Unit . 139

7.5 Experimental Evaluation . 140
7.5.1 Theoretical Performance . 140
7.5.2 Results of Synthesis . 141
7.5.3 Evolution of image filters . 142

7.6 Summary . 143

8 Conclusions 145

iii

Chapter 1

Introduction

The electronic manufacturing industry, especially electronic circuit production, is an area
that has gone through a substantial development in the recent fifty years. In the second half
of the 20th century, innovations in electronic computer systems made the personal com-
puter a reality. Each new generation of computers was cheaper to purchase, more powerful
and easier to operate. Thus the computers shortly became universal computing machines
that spread not only among the scientific community but also among the common users.
The progress achieved by the 21st century causes the electronic products had transformed
the way that people live, work, and communicate. A common cellular phone has been su-
perseded with the devices having the performance comparable with the personal computers
and the personal computers are gradually replaced with very popular portable devices.

Comparing the current requirements to the requirements formulated a few years ago,
significantly more complex circuits and behaviors are demanded today. This demand is
caused by the relentless improvements of the available technologies. While the current
advance is driven mainly by the necessity to minimize the overall power consumption of the
produced systems, in the 1990s the goal was a relative simple – doubling of the performance
of the computer systems and keeping up with the Moore’s law. The current situation is
much complicated and requires discovering and applying new approaches as the power
consumption requirements are generally in contrast with the performance requirements.

One of the main bottlenecks that has been identified by scientific community is a low
efficiency of circuit design [54]. Traditional circuit design methodologies rely on rules and
design techniques that have been developed over many decades. However, the need for
human input to the increasingly complex design process means that the circuit design
has to be simplified by imposing greater and greater abstraction to the design space. An
example of this approach is the introduction of the hardware description languages. This
abstraction allows designers to significantly reduce the time needed to design and produce
the intended system. On the other hand, it also results in waste of potential circuit behavior
since the conventional design methodologies do not offer too many ways to benefit from the
physical dynamics available from the silicon medium [175].

One of crucial parts of the design process is the efficient logic synthesis and optimization.
As a part of computer theory, the logic synthesis and optimization have been developed
for more than 50 years. Despite the fact that the logic synthesis and optimization are

1

CHAPTER 1. INTRODUCTION

considered to be very difficult problems, many companies provide commercial tools that
allow processing even the systems of the contemporary complexity in a reasonable time.
However, the recent work in the area of conventional synthesis has shown that the available
synthesis algorithms produce solutions that are far from optimum for many circuit classes
[35].

In the beginning of nineties, a new field applying evolutionary techniques to hardware
design and synthesis has been established. This field is referred to as Evolvable Hardware
[65]. The evolvable hardware draws inspiration from three main fields – biology, computer
science and electronic engineering. The aim is to provide (1) electronic systems exhibiting
a degree of self-adaptive and self-repair behavior and/or (2) a robust design approach that
could even replace a human designer in some cases. Typical application domains include
design of digital circuits, analog circuits, antennas, optical systems and MEMS [107, 78, 83].

In the context of the circuit design, the evolvable hardware is very attractive approach
as it provides another option to the traditional design methodology – to use evolution to
design circuits for us. Moreover, the key strength of the evolvable hardware approach is
that it can be applied for designing of the circuits that cannot be fully specified a priori,
but where the desired behavior is known. In fact, the search-based approaches seem to be
the only viable option in this case. Another often emphasized advantage of this approach
is that the circuits can be adopted for a particular environment.

During the last two decades, the evolvable hardware community has demonstrated that
very efficient (and sometimes also patentable) implementations of physical designs can be
obtained using evolutionary computation. For example, John Koza, the pioneer of the
field, dealing primarily with the evolutionary design of analog circuits, has reported tens
of human-competitive results in various areas of science and technology. The results were
obtained automatically using evolutionary techniques, in particular using genetic program-
ming [102] that has mainly been adopted for analog circuit design [121, 38]. In case of
digital logic synthesis, the evolutionary synthesis has also led to several innovative designs
[127, 9, 164]; however the obtained results belong to the category of relatively small circuits.

Although the evolutionary design has been shown to be a promising and general-purpose
design method, there exist several problems that make the evolutionary approach problem-
atic in some applications [69]. The scalability problem has been identified as one of the
most difficult problems the researchers are faced with in the evolvable hardware field. The
scalability problem means such situation in which the evolutionary algorithm is able to
provide a solution to a small problem instance; however, only unsatisfactory or even none
solutions can be obtained for larger problem instances in a reasonable time. Another prob-
lem related to this issue is enormous computational power which evolutionary algorithms
usually need for obtaining innovative results for some applications.

The scalability problem can primarily be seen from two perspectives: scalability of
representation and scalability of fitness evaluation. From the viewpoint of the scalability
of representation, the problem is that long chromosomes (a set of genes which defines a
candidate solution) which are usually required to represent complex solutions imply large
search spaces that are typically difficult to search. Another issue is the scalability of fitness
evaluation, i.e. the problem that complex candidate solutions might require a lot of time to
be evaluated. For example, in the case of the evolutionary design of combinational circuits,

2

1.1. GOALS OF THE THESIS

the evaluation time of a candidate circuit grows exponentially with the increasing number
of inputs (assuming that 2n test vectors are generated for n-input circuit). This represents
the main weakness of the evolutionary approach. It also causes that real-world applications
of evolutionary circuit design are not able to compete with conventional design.

1.1 Goals of the Thesis

It will be argued in this thesis that the fitness scalability issue can be eliminated by seeking
for new sophisticated evaluation methods. We will solely deal with evolvable hardware as
the method for automated design, i.e. the scenario in which the evolutionary algorithm is
used only in the design phase of a product. The thesis postulates two main objectives.

The first goal is to propose problem-specific methods that will allow designers to reduce
the scalability problem in the area of digital system design. As the scalability problem
represents a general problem, we will consider only a very narrow but important subarea –
the scalability of evaluation of a candidate digital circuit.

The second goal is to evaluate the impact of the proposed methods and show that
by means of the proposed methods it is possible to evolve innovative solutions in various
problem domains. In the context of evolutionary circuit design, we mean by the term
innovative that a solution exhibits better features with respect to existing designs of the
same category.

Thesis Organization

The thesis is organized as follows. The first two chapters contain theoretical background
that outlines the basic concepts and ideas utilized in the following chapters. In addition
to that, this introductory part also clarifies the motivation of this work. The next three
chapters contain three case studies that demonstrate three approaches to elimination of
the scalability problem of evolutionary circuit design. Finally, an evolutionary platform
designed to accelerate the evolutionary design of digital circuits is introduced. To be more
specific:

Chapter 2 provides the necessary background of evolvable hardware which represents the
essential concept tightly connected with this thesis. This overview covers the principles and
basic concepts of evolutionary algorithms. The chapter is divided into three sections. The
first section contains a description of relevant evolutionary techniques, especially Cartesian
Genetic Programming that have been utilized in the experiments. The next section sum-
marizes reconfigurable devices that have been used in the evolvable hardware field. The last
section comprises of a literature survey of evolvable hardware which represents the research
area in which the presented thesis belongs to.

Chapter 3 is devoted to the evolutionary design of digital and analog circuits. The
first two sections contain a summary of the electronic circuits designed at various levels
of abstraction that have been published in literature. The goal of this chapter is to make
an insight to the complexity of the design problems that have been solved so far. The
next section discusses the practical aspects of the evolutionary design of digital circuits

3

CHAPTER 1. INTRODUCTION

by means of Cartesian Genetic Programming. In the third section, the shortcomings and
bottlenecks of the evolutionary design are discussed. This part deals with the issue of
scalability of evolutionary design and the approaches that have been proposed to mitigate
or even remove various scalability problems.

The first case study, which is presented in Chapter 4, deals with the evolutionary design
of linear transforms. We have identified a class of problems for which a candidate solution
can be perfectly evaluated in a very short time. This chapter is divided into four sections.
The first section covers the theoretical background related to the linear transforms in gen-
eral, and multiple constant multiplier blocks in particular. The next three sections contain
the description of the proposed method and experimental evaluation of this method.

In Chapter 5, the second case study related to the evolutionary synthesis of complex
digital circuits is introduced. The goal of this chapter is to present a new approach to
the fitness function implementation which is based on a formal verification algorithm. The
proposed method significantly eliminates the scalability problem of fitness function evalu-
ation which has been known from the very beginning of digital evolvable hardware. This
part is divided into five sections. The first section describes the problem of combinational
equivalence checking and the process of conventional logic synthesis. The proposed method
followed by its extensive experimental evaluation is described in the second and third sec-
tion respectively. The fourth and fifth section describe the improved version of the proposed
approach and its evaluation using a set of real-world benchmark circuits.

The case study devoted to the evolutionary design of nonlinear image filters is presented
in Chapter 6. This chapter consists of three sections. The first section defines the problem to
be solved and introduces the necessary theoretical background connected with the filtration
of impulse noise. The second section discusses the evolutionary design of image filters using
Cartesian Genetic Programming. Finally, experimental results are summarized in the last
section.

A common feature of Chapters 4–6 is that firstly the discussed problem is introduced.
Afterwards, the proposed evolutionary design approach followed by experimental evaluation
is given. Finally, the obtained results are presented and summarized. The introduction
includes not only the description of the problem, but also an overview of the best-known
conventional methods that are usually utilized to solve a given problem.

Chapter 7 describes a new hardware accelerator for Cartesian Genetic Programming im-
plemented using FPGA. Two types of application-specific accelerators are in fact proposed.
The first one is devoted for symbolic regression problems over the fixed point representation.
The second one is designed for evolution of logic circuits.

Chapter 8 summarizes the results obtained in this thesis and outlines directions for the
future research.

4

Chapter 2

From Evolutionary Algorithms to

Evolvable Hardware

The purpose of this chapter is briefly introduce the key concepts behind the evolutionary
algorithms, reconfigurable devices and evolvable hardware.

2.1 Evolutionary Algorithms

Several decades ago, researchers started to explore how some ideas taken from nature could
be employed for solving hard computing problems. Evolutionary algorithms inspired by
biological evolution represent one of the most successful examples.

The evolutionary algorithms (EAs) [11] are stochastic search algorithms inspired by
Darwin’s theory of evolution. The common feature of evolutionary algorithms is that they
utilize mechanisms that are inspired by principles of biological evolution, namely reproduc-
tion, mutation, recombination and selection. In contrast with common search algorithms,
such as random search or hill climbing, the EAs are population-based algorithms. It means
that they work with more candidate solutions (i.e. individuals) in the same time. By a
candidate solution we mean a point in the search space, the space that contains all possible
considered solutions to a given problem.

Every new population is formed using genetic operators such crossover and mutation
and through a selection pressure. The selection pressure together with the fitness function,
sometime referred to as objective function, is responsible for guiding the evolution towards
better areas of the search space. The guidance is received from the fitness function that
assigns so called fitness value to each candidate solution. The fitness value indicates how
well a candidate solution fulfills the problem objective; in other words, it indicates how
a particular candidate solution meets the specification. A better fitness value implies a
greater chance that a candidate solution will remain for a longer while and produce offspring,
which inherit parental genetic information. A well-designed evolutionary algorithm should
converge to a population containing desired solutions.

Each member of the population (i.e. a candidate solution) consists of a string of param-
eters, so called genes. This string is usually referred to as an individual or chromosome. A
particular value of a gene in chromosome is called allele. Thus, the alleles are the small-

5

CHAPTER 2. FROM EVOLUTIONARY ALGORITHMS TO EVOLVABLE HARDWARE

est information units in a chromosome. In nature, alleles exist pair wise, whereas in the
evolutionary algorithms, an allele is usually represented by only one symbol. Because the
objects in the search space can generally represent arbitrary structure (a vector of real val-
ues, digital circuit, antenna, and so on), we distinguish between a search space (or genotype
space) and representation space (phenotype space). While the fitness function is applied to
evaluate phenotypes, the genetic operators manipulate with genotypes. A small change in
the genotype should produce a small change in the phenotype otherwise the evolutionary
algorithm is not efficient [15].

The evolutionary algorithms are traditionally divided into four distinct branches: ge-
netic algorithm [62], genetic programming [100], evolutionary strategies [156] and evolution-
ary programming [55]. The algorithms mainly differ in the mechanism of the candidate
solutions encoding, implementation of the evolutionary operators applied to the candidate
solutions and finally, utilized search strategy that guides the EA through the search space.

2.1.1 Genetic Algorithms

Genetic algorithm (GA) was introduced by John Holland in 1973 and made famous by
David Goldberg [62, 82].

Researchers have proposed many different variants of genetic algorithms in the litera-
ture. For the illustration, we will use the traditional simple genetic algorithm (the simplest
form of GA) defined by Goldberg. This canonical algorithm uses two genetic operators,
crossover as the main operator and mutation which serves only as background noise. The
structure of a canonical genetic algorithm, as it has been described by David Goldberg in
[62], is captured in the following pseudo code.

set time t = 0
randomly create initial population P(t)
while (termination condition is false)
 evaluate each individual in P(t)
 if acceptable solution found then
 break
 reproduce individuals according to their fitnesses into mating pool
 (higher fitness implies more copies of individual in mating pool)
 t = t + 1
 while P(t) is not filled with new offspring do
 randomly take two individuals from mating pool
 use probabilistic random crossover to generate two offspring
 apply probabilistic random mutation to the offspring
 place offspring into population P(t)

Algorithm 2.1: Canonical Genetic Algorithm

The simple genetic algorithm uses a population of individuals having the constant size.
The individuals are encoded using a vector (or string) of fixed size. GA traditionally oper-
ates with binary, integer, real-valued or character-based string. The genetic operators such

6

2.1. EVOLUTIONARY ALGORITHMS

as one-point, uniform or n-point crossover are directly applied to the genotypes. In many
implementations, crossover produces two new offspring from two parents by exchanging
substrings. The mutation operator slightly changes the genotype of an individual.

The basic functionality of a traditional simple GA is relatively simple. After randomly
creating and evaluating an initial population, the algorithm iteratively creates new genera-
tions. New generations are created by recombining the selected highly fit individuals using
a crossover operator and applying mutation to the obtained offspring. Crossover is often
used about 70% of the time to generate offspring, for the remaining 30% offspring are sim-
ply clones of their parents. Mutations occur rarely and usually modify value of a randomly
selected gene of the individual. The selection is typically implemented as a probabilistic
operator that is based solely on the fitness value. The genetic algorithm terminates when
a sufficient solution is found or a given time limit (or a given number of generations) is
exhausted.

For practical problems, the simple genetic algorithm is often considered as a basis for
many enhancements, including: heuristic generation of the initial population, multi-point or
more complicated crossover, elitism preserving the best individual for the next generation,
more realistic selection, etc.

2.1.2 Genetic Programming

Genetic Programming (GP) was introduced by John Koza in late eighties as an extension
to genetic algorithms in order to enrich the chromosome representation [100, 101, 105, 107].
Instead of fixed-length strings, GP evolves pieces of code written over a specified alphabet
consisting of a set of functions and a set of terminals. The chromosome encoding can be
directly executed by the system or compiled (interpreted) to produce a machine executable
code. Genetic programming allows automatic programming and program induction (i.e.
automatically developing of computer programs). Unlike genetic algorithms, genetic pro-
gramming does not distinguish between phenotype and genotype. As genetic programming
is able to effectively evolve symbolic expressions, the problem of symbolic regression became
the most popular application of GP.

The evolved programs are usually represented either as tree structures or in a linear form
using a list of machine-language instructions. Similarly to the GA, crossover is considered
as a major genetic operator. A typical crossover interchanges randomly chosen subtrees of
parents’ trees without the disruption of the syntax. A typical mutation, another genetic
operator, selects a random subtree and replaces it with a randomly generated one. Selec-
tion is typically implemented as a probabilistic operator, using the relative fitness, which
determines the selection probability of an individual.

In order to improve the efficiency in GP, John Koza introduced the concept of auto-
matically defined functions (ADFs) [101]. Automatically defined functions enable genetic
programming to define useful and reusable subroutines (subtrees) dynamically during evo-
lution. According to the obtained results, genetic programming with ADFs produces so-
lutions that are simpler and smaller than the solutions obtained without automatically
defined functions.

The GP representation has also its own pitfalls. An evolved program may contain

7

CHAPTER 2. FROM EVOLUTIONARY ALGORITHMS TO EVOLVABLE HARDWARE

segments which do not alter the result of the program execution when they are removed
from it. A typical trivial example is the expression x = x · 1 + 0 where the addition as well
as the multiplication represent redundant operations that can be omitted. The redundant
segments are referred to as introns. Another well-known issue of GP is that the program
size can grow uncontrollably until it reaches the tree-depth maximum, while the fitness
remains unchanged. This effect is called a bloat. These pitfalls and their relations are
discussed, for example, in [8, 12].

2.1.3 Evolutionary Strategies

Evolutionary strategies proposed by Bienert, Rechenberg and Schwefel have been developed
for optimization purposes in industrial applications [156, 11]. Similarly to the genetic pro-
gramming, evolutionary strategies do not distinguish between a genotype and phenotype.
Each individual is represented as a real-valued vector. Evolution strategies use primarily
mutation and selection. Unlike the previous approaches, the mutation operator, which mu-
tates each vector element, is considered as a major genetic operator. Mutation aggregates
a normal-distributed random variable and a preselected standard deviation value which are
applied on every gene of a candidate vector.

The simplest evolutionary strategy operates on a population of size of two consisting
of the current solution (parent) and the result of its mutation (offspring). The selection
strategy is strictly deterministic. Only if the offspring’s fitness is at least as good as the
parent’s one, it becomes the parent of the next generation. Otherwise the offspring is
disregarded. This basic strategy is known as a (1 + 1)-ES. More generally, λ offspring
can be generated. The strategy in which the offspring compete with µ parents is called
(µ+λ)-ES. Another selection scenario (µ, λ)-ES picks the best µ individuals from the both
child and parent populations. In the simplified (1,1)-ES variant, the offspring becomes the
parent of the next generation while the current parent is always disregarded.

2.1.4 Evolutionary Programming

Evolutionary programming was introduced by Lawrence Fogel in sixties in order to use sim-
ulated evolution as a learning process [56, 55]. He has used the evolutionary programming
for the design of finite state machines working as predictors. Evolutionary programming
exhibits a number of similarities with evolutionary strategies and is becoming harder to dis-
tinguish from that paradigm. Important features of advanced evolutionary programming
systems typically include a problem-specific representation, self-adaptation and tournament
selection. Mutation operator is considered as the only genetic operator, crossover or similar
recombination operators are not usually used at all. The search space and the representation
space are not distinguished explicitly.

2.1.5 Cartesian Genetic Programming

Cartesian genetic programming (CGP), introduced by Julian Miller and Peter Thomson in
2000, is a variant of genetic programming where the genotype is represented as a list of
integers that are mapped to directed oriented graphs rather than trees [131]. The motivation

8

2.1. EVOLUTIONARY ALGORITHMS

for this representation came from the previous analysis covering the effectiveness of this
approach in learning Boolean functions where the CGP has been proved to be considerably
more efficient than any other variant of GP.

Cartesian genetic programming encodes a candidate solution (typically a circuit or a
program) using an array consisting of nc × nr programmable nodes. The nc parameter
determines the number of columns whereas nr determines the number of rows. Each pro-
grammable node has the fixed number of inputs, nei, and outputs neo; in most cases nei = 2
and neo = 1. The main feature of CGP is that all the parameters including the number
of programmable nodes, node inputs and outputs and program inputs, ni, and program
outputs, no, are fixed. Each node input can be connected either to the output of a node
placed in the previous l columns or to one of the program inputs. The parameter l (referred
to as l-back parameter) defines the level of connectivity and thus reduces or extends the
search space. For example, if l=1 only neighboring columns may be connected; if nr = 1
and nc = l, full connectivity is enabled. Because of the complicated evaluation, feedback
is not allowed in the standard version of CGP. Each node can be programmed to perform
one of nei-input functions defined in the set Γ. Let nf = |Γ|. Thus, every individual can be
encoded using nc × nr × (nei + neo) + no integers.

Figure 2.2: Example of a candidate circuit encoded using CGP with the following parame-
ters: nc = 4, nr = 2, ni = 3, no = 2, l = 2, nei = 2, neo = 1, Γ = {AND (0), OR(1), XOR
(3) }. Chromosome: 1, 2, 1, 0, 0, 1, 2, 3, 0, 3, 4, 0, 1, 6, 0, 0, 6, 1, 1,3, 0, 6, 8, 0, 6, 10.
Functions of elements are typed in bold. The first 24 integers encode the interconnection of
the CGP elements and function of each element. The last two integers indicate the output
of the circuit. Elements 5, 7 and 9 are not utilized.

Figure 2.2 shows a digital circuit encoded using CGP representation. The figure also
demonstrates the main feature of CGP encoding – while the genotype (i.e. chromosome) is
of fixed length, the phenotype is of variable length depending on the number of unexpressed
genes. In this example, three nodes do not contribute to the phenotype. The utilized
representation also significantly reduces the bloat which is inevitable in GP [126]. This fact
has been confirmed by Miller in [129] who claimed that it cannot occur in the genotype just
because it is bounded.

Due to the presence of redundancy, there are many genotypes that are mapped to
identical phenotypes. The simplest form of redundancy is caused by the presence of genes
or nodes that are inactive. These genes influence neither the phenotype nor the fitness value.
This kind of redundancy is very high at the beginning of the evolution as many nodes are

9

CHAPTER 2. FROM EVOLUTIONARY ALGORITHMS TO EVOLVABLE HARDWARE

not connected in the early populations. With the increasing number of generations, the
node redundancy gradually reduces to a level that is determined by the average number of
nodes required to obtain a satisfactory solution and the maximum allowed number of nodes
[131].

The phenomenon indicating the presence of genotypes with the same fitness is often
referred to as neutrality. The role of neutrality has been investigated in detail in several
papers [198, 129, 34]. For example, it was discovered that the most evolvable representations
occur when the chromosome is extremely large and contains over ninety percent of inactive
genes [129]. On contrary, it has been also shown that for some specific problems, the
neutrality based search is not the best approach [34].

In CGP, the search is performed using a mutation-based evolutionary strategy (1 + λ)-
ES that does not utilize crossover as it has been discussed in the previous chapters. The
influence of the crossover operator has been intensively studied in literature, however, it
has been confirmed that crossover does not improve the search [128, 183]. CGP operates
with the population of 1 + λ individuals, where λ is typically from 1 to 15. In case of
the evolutionary design, the initial population is usually generated randomly whereas in
case of the evolutionary optimization the initial population can be constructed by means
of mapping of a known conventional solution to the CGP representation.

The search strategy works as follows. The initial population has to be evaluated using
a fitness function and the fittest individual becomes the new parent. Then, every new
population consists of the best individual of the previous population and its λ mutated off-
spring. The offspring are created by a point mutation operator which modifies m randomly
selected genes of the parental individual where m is a user-defined value. The mutation
operator usually modifies up to 5% of genes of the chromosome. The implementation of
the mutation operator has to ensure that the modifications are legal and lead to a valid
phenotype. The moment the population is created, the fitness value of each offspring is
calculated. The fittest individual in the population is selected and forms the new parent.
In case when two or more individuals have received the same fitness score, the individual
which has not served as the parent in the previous population has to be selected as the new
parent. This strategy is important because it ensures the diversity of population and allows
so called neutral search [129]. The evolution is terminated when the maximum number of
generations is exhausted.

The CGP became the routinely used approach in the area of evolutionary-based digital
circuit synthesis and optimization. The main advantage of CGP is that it generates very
compact solutions, i.e. it can effectively reduce the total number of gates in the case of
circuit evolution [127]. Even if the CGP was originally defined for gate-level evolution, it can
easily be extended for function-level evolution [157]. CGP has been successfully utilized in
many applications [125, 91, 131, 127, 182, 157, 4, 57, 186, 223]. In addition to the standard
CGP, several extensions have been proposed in recent years; for example, self-modifying
CGP [74], modular CGP [188, 92], developmental CGP [164] or multi-chromosome CGP
[204]. Some authors have also utilized CGP with a relative encoding of the solution instead
of the absolute encoding introduced by Miller [70].

10

2.2. RECONFIGURABLE DEVICES

2.2 Reconfigurable Devices

In recent years, we could observe a boom in the area of reconfigurable devices and reconfig-
urable computing [181]. In comparison to fixed architectures, the structure and parameters
of reconfigurable chips can be modified by writing configuration data to the configuration
memory. The reconfigurable devices usually consist of configurable blocks whose functions
and interconnections are controlled by the configuration bitstream. While the first pro-
grammable devices such as Programmable Logic Arrays (PLAs) used hundreds of bits to
store the configuration and relatively simple reconfigurable structure, recent devices such
as Field Programmable Gate Arrays (FPGAs) require tens of megabytes to store their
configuration bitstream. Due to its potential to accelerate a wide variety of applications,
reconfigurable computing has become a subject of intensive research. Its key feature is the
ability to perform computations in hardware to increase performance, while retaining much
of the flexibility of a software solution.

The possibility of reconfiguration is typical for digital architectures. However, reconfig-
urable devices are now available in the areas of analog circuits, antennas, mirrors, molecular
electronics and others. This short survey introduces the concept and basic principles be-
hind the FPGAs as well as other reconfigurable devices that have been used in the evolvable
hardware field.

2.2.1 Reconfigurability and Its Benefits

There are several reasons for using reconfigurable hardware. The reconfiguration can extend
the lifespan of a system due to the possibility to update the firmware. For example, when
a new driver or peripheral device is introduced to a system, existing hardware could have a
problem to communicate with it. However, if the system is implemented in a reconfigurable
chip, the hardware can be updated by simple reprogramming the configuration memory.
In this case, the reconfiguration is performed occasionally and only when the application is
suspended.

Another common scenario is to use a reconfigurable chip in order to increase the func-
tional density. The goal is to perform a complex task on a small chip and thus reduce
the power consumption, size or weight of the application, even reduce the cost. The ap-
plication has to be divided into modules whose configurations alternate on the chip. The
reconfiguration is performed dynamically at runtime.

The reconfigurability also gives the chance to create an adaptive hardware. In this case,
the goal is to dynamically create electronic circuits that are optimized for a given task, time
and location of the chip.

And finally, the typical reason why reconfigurable devices are used is shortening the
design time. Creating a configuration for a reconfigurable device usually takes much less
time than building a new application-specific chip.

2.2.2 Digital Reconfigurable Devices

In order to control the routing among the configurable blocks, a kind of configurable switch
matrix is used. To establish the routing on a reconfigurable chip, a passgate structure is

11

CHAPTER 2. FROM EVOLUTIONARY ALGORITHMS TO EVOLVABLE HARDWARE

typically employed. Modern digital reconfigurable devices such as Xilinx FPGAs contain
a rich routing fabric consisting of millions of routing choice points. The configuration
bits directly control the configurable switches, selection signals of multiplexers, contents
of lookup tables (LUTs) and some bits used as control signals for computational unit. A
single chip can implement many different functions depending on its configuration. The
main disadvantage of this approach is that the circuitry established in order to allow the
configurability occupies a considerable area on the chip and make the whole system slower
in comparison with application specific integrated circuits. Since the FPGAs represent the
mainstream in the area of digital reconfigurable devices, we will restrict ourselves to these
devices only.

CLB

SLICE

FPGA

Figure 2.3: The hierarchical architecture of FPGA Virtex II Pro which contains two Pow-
erPC processors, embedded multipliers and memories.

Field Programmable Gate Arrays

Figure 2.3 shows a typical architecture of a modern Xilinx FPGA [192]. FPGA consists of
a two-dimensional array of reconfigurable resources that include configurable logic blocks
(CLB), programmable interconnect blocks (PIB) and reconfigurable I/O blocks (IOB). The
configuration bitstream configuring all these elements is stored in the configuration SRAM
memory. A CLB consists of several smaller elements referred to as slices. Each slice contains
two function generators implemented using k-bit LUTs, flip-flops and some additional logic.
The number of bits k is usually between 3 and 6 depending on the FPGA family. Each

12

2.2. RECONFIGURABLE DEVICES

function generator can be programmed into one of the three modes. In the first mode, it
can implement a combinational function. In the second mode, it can implement a fast k-bit
shift register. And finally, the last mode enables to configure the LUT as a fast synchronous
RAM with the total capacity of 2k bits.

A typical structure of an FPGA logic block consisting of 4-input LUTs is depicted in
Figure 2.4. While the LUTs provide some kind of generic logic, the flip-flops can be used
for pipelining, registers, stateholding functions for Finite State Machines, or any other sit-
uations where clocking is required. Note that the flip-flops typically include programmable
set/reset lines and clock signals. These signals may come from global signals routed on
special resources, or could be routed via the standard interconnect structures from another
input or logic block. The fast carry logic is a special resource provided in the cell to speed
up carry-based computations, such as addition, parity, wide bit-wise operations, and other
functions. These resources bypass the general routing structure in order to directly connect
neighboring CLBs in the same column. Since there are very few routing choices in the
carry chain, and thus less delay on the computation, the inclusion of these resources can
significantly speed up the carry-based computations.

I4
I3
I2
I1

Cin

Cout

4-LUT

carry
logic

DFF

OUT

bypass

Figure 2.4: A typical structure of an FPGA logic block.

The FPGAs differ in the amount and type of resources available on the chip. The most
advanced FPGAs based on 6-input lookup tables contain more than 100 thousands CLBs
and integrate, in addition to CLBs, various embedded hard cores such as SRAM memories,
fast multipliers, gigabit interfaces, PCI interfaces or even processors (PowerPC or ARM).
Because the existence of these cores has been identified as important to designers in the past,
it is reasonable to integrate them as hard cores on the chip instead of implementing them
using CLBs and other resources. Current FPGAs can compete with application specific
integrated circuits (ASICs) in many domains, for example, in applications of advanced
signal processing or embedded systems.

Most FPGAs support a dynamic partial reconfiguration which means that some parts
of the FPGA can be reconfigured while remaining parts of the FPGA are performing some
computation. As it will be mentioned later, the possibility of the partial reconfiguration is
crucial for evolvable hardware. FPGAs can be configured either externally or internally. In

13

CHAPTER 2. FROM EVOLUTIONARY ALGORITHMS TO EVOLVABLE HARDWARE

the case of external reconfiguration, the configuration bit stream is copied to the configu-
ration memory from an external memory, typically FLASH. The internal reconfiguration is
available in Xilinx Virtex FPGAs via the Internal Configuration Access Port (ICAP) which
allows for reading and modifying the FPGA configurations by circuits created directly in
the same FPGA.

The goal of digital circuit design is to provide such implementation of a target circuit
which satisfies the user specification and which is available in a reasonable time. As the con-
ventional circuit design process with FPGAs is very similar to programming, the resultant
system can be obtained relatively quickly. Designer has to describe the circuit structure or
behavior using a hardware description language (such as VHDL, Verilog, Catapult C, etc.).
Then, the source code is automatically transformed into the configuration bit stream for a
particular FPGA. The transformation, which includes the synthesis, placement and routing
is performed by CAD tools. This process can be constrained using various requirements,
e.g. the maximum delay of the circuit can be specified. Also, it is possible to simulate
intermediate results of the transformation, modify the original source code when needed
and optimize the design.

In most cases, the format of the configuration bit stream is not fully documented for
the designer. The reason is that the manufacturers protect their know-how and prevent
the designers from potentially dangerous attempts to configure the FPGA without a CAD
tool. In case of Xilinx chips, the only exception was the XC6200 family which is nowadays
obsolete. The XC6200 family was very popular as it allowed to carry out intrinsic EHW ex-
periments at the lowest possible level of abstraction. Comparing to the modern FPGAs, the
basic building block of XC6200 was very simple as it contained several 2-input multiplexers
instead of lookup tables. Thus, each programmable logic element could be programmed to
implement a common 2-input Boolean functions such as AND, OR, XOR, etc. or 2-input
multiplexer.

2.2.3 Analog Reconfigurable Devices

Reconfigurable analog circuits allow, in fact, a software control of analog circuits. In com-
parison with FPGAs, reconfigurable analog circuits contain fewer configurable blocks and
operate at lower frequencies. The reconfiguration is usually based either on configurable
transistor switches, analog multiplexers, switching capacitors or operational transconduc-
tance amplifiers. Reconfigurable analog chips have been introduced much later than FP-
GAs. Examples of analog reconfigurable circuits are given in the following sections.

Field Programmable Transistor Arrays

Field Programmable Transistor Array (FPTA-2) developed at NASA JPL employs transis-
tor switches to implement the reconfiguration [170]. The FPTA-2 can implement analog,
digital and mixed signal circuits. The architecture of the FPTA consists of an 8x8 array of
re-configurable cells. Each cell contains a set of transistors and programmable resources,
including programmable resistors and static capacitors. The reconfigurable circuitry con-
sists of 14 transistors connected through 44 switches in each cell. In contrast with FPGAs,
only several thousands of bits are used to program the whole chip only. The pattern of

14

2.2. RECONFIGURABLE DEVICES

interconnection among cells is similar to the one used in commercial FPGAs. Every cell
can be interconnected with its northern, southern, eastern and western neighbors.

Another FPTA was developed at the University of Heidelberg [110]. This chip enables
developing circuits directly at the transistor level. Designer can select the transistor type
(PMOS or NMOS), its parameters such as channel length and size, and interconnection.

Field Programmable Analog Arrays

The reconfiguration of Field Programmable Analog Arrays (FPAA) is typically based on
either switched capacitors or operational transconductance amplifiers.

Switched capacitors perform the function of configurable resistors. FPAAs use the
following principle. A capacitor C is connected between two switches controlled by two
signals. The switches are implemented using unipolar transistors and the control signals are
non-overlapping clocks. The charge Q over one clock period transferred to the capacitor C is
given by equation Q = C(V1−V2) representing a discrete version of a well-known differential
equation. The average current associated to this charge is Ia = C(V1 − V2)/T , where T
denotes the clock period. Applying both equations, the value of an equivalent resistor can
be calculated as R = (V1 − V2)/Ia = T/C. Thus, the value of a corresponding resistor can
be controlled by the switching frequency f = 1/T . In comparison to conventional resistors,
switching capacitors are advantageous in terms of linearity, dynamic range, precision and
size on the chip. As f can be controlled from software, analog circuits (such as filters and
oscillators) can be easily tuned. A disadvantage might be that circuits containing switched
capacitors operate in discrete domain, i.e. there is a limit in the possible operation frequency
which is determined by f .

The commercially available Anadigm AN221E04 FPAA [5], developed using switching
capacitors, is an array of four configurable analog blocks (CAB), each of which containing
two operational amplifiers, a comparator, and an 8-bit analog-to-digital converter. The
device also contains one programmable lookup table that can be used to store information
for the generation of arbitrary waveforms. The table is shared amongst the CABs. The
configuration bit stream is stored in SRAM and the maximum switching frequency is 16
MHz.

Another approach to software control of analog circuits is based on operational transcon-
ductance amplifiers. A typical operational transconductance amplifier (OTA) produces a
current output Io that is linearly depending on an input voltage present at both invert-
ing input (V−) and non-inverting input (V+). The output current can be expressed as
Io = −gm(V+ − V−), where gm is the transconductance of the circuit. The transconduc-
tance can be predefined using an external biasing current input. Biasing currents for OTAs
are generated using D/A converters. Ideally, the circuit has infinite values for both the in-
put and output impedances. OTAs are the main building blocks of continuous time filters
in which the transconductance (and thus the frequency characteristics) can be controlled
externally.

An example of FPAA which utilizes configurable OTAs is the FPAA developed at the
University of Freiburg [76].

15

CHAPTER 2. FROM EVOLUTIONARY ALGORITHMS TO EVOLVABLE HARDWARE

2.3 Evolvable Hardware

A massive application of evolutionary principles to hardware design and self-configuration
has led to a new concept called Evolvable Hardware (EHW). The growth of this interest has
been caused by emerging a new class of programmable devices, in particular FPGAs. The
main idea is to accomplish the whole process of circuit design by evolutionary algorithms.
Evolvable hardware refers to a hardware that a) has been created using EA or b) embeds
a variant of EA in order to either adapt the system to changing environments, or repair
the system autonomously during its lifetime. While the first scenario is usually called
evolutionary design, only the second approach can be, according to the [201], referred to
as evolvable hardware. The evolutionary design uses evolutionary algorithms to evolve a
system that meets a predefined specification. EA is employed only in the design phase. In
contrast with this approach, the adaptive systems reconfigure a part or whole existing design
to repair the faults or adapt to a changed operational environment. Thus the evolutionary
algorithm is an integral part of the adaptive system. Although the terminology has been
successively evolved, some literature, e.g. [65], does not distinguish between evolutionary
hardware design and evolvable hardware.

The field of evolvable hardware originates from the intersection of three sciences: elec-
tronic engineering, biology and computer science. EHW belongs to the area of bioinspired
hardware which combines the ideas from biology and electronic engineering. Although
evolvable hardware as a research area has been established two decades ago, its roots can
be traced to the sixties, when Gordon Pask constructed several electrochemical devices
having the ability to adaptively construct their own sensors [141]. In addition to that,
evolutionary strategies were used to perform parameter optimizations for a variety of elec-
tronic designs. The first experiment which explicitly speaks about evolvable hardware was
conducted by Higuchi and his team in 1993 [79]. They utilized a genetic algorithm to find
a configuration of a simple programmable logic chip (GAL). The aim of this work was to
rediscover an implementation of a common 6-input multiplexer only on the basis of a behav-
ioral specification given in the form of truth table. Because the number of reconfigurations
of a GAL chip was limited, a GAL simulator calculated the fitness value of each member
of population. At the end of evolution, the best solution was verified using a real GAL
chip. This experiment demonstrated that the evolutionary approach is able to synthesize
an electronic circuit without being explicitly told how to do it. Since that, the evolvable
hardware has been successfully applied in many different areas. The following results are
usually mentioned as the most successful applications of EHW: evolutionary designed high-
speed robust classifiers [77], high-performance high-quality adaptive hardware compression
systems based on the predictive coding [153, 154], adaptive fault-tolerant system with au-
tonomous recovery [58], evolutionary designed antennas optimized for space missions [83]
or innovative image filters [158].

2.3.1 Basic Principle of EHW

EHW typically utilizes a reconfigurable hardware, particularly programmable logic devices
such as FPGAs. The programmable logic devices allow the candidate solutions to be

16

2.3. EVOLVABLE HARDWARE

tested in situ which is well suited to embedded applications such as adaptive image filters
or adaptive controllers. Figure 2.5 shows the basic principle of the evolvable hardware
approach.

Genetic
Engine

Fitness
Unit

Transformation

Reconfigurable
Device

stimuli

responses

specification

configuration

chromosome

Figure 2.5: The basic principle of the evolvable hardware approach.

The objective of evolutionary algorithm is to design a circuit that meets the specifica-
tion given by designer. In order to evaluate a candidate circuit, a new configuration of a
reconfigurable device is created on the basis of the information stored in the corresponding
chromosome. This step usually involves some kind of transformation as the chromosome
encoding and configuration string can be generally different. The configuration is uploaded
into the reconfigurable device and evaluated for a chosen set of input stimuli. The fit-
ness function, which reflects the problem specification, can include behavioral as well as
non-behavioral requirements. For example, the correct functionality is a typical behavioral
requirement. As a non-behavioral requirement, we can mention the requirement for mini-
mum power consumption or minimum area occupied on the chip. Once the evaluation of
the population of candidate circuits is complete, a new population can be produced. That
is typically performed by applying genetic operators (such as mutation and crossover) on
existing circuit configurations. High-scored candidate circuits have got a higher probability
that their genetic material (configuration bitstreams) will be selected for next generations.
The process of evolution is terminated when a perfect or satisfactory solution is obtained
or when a certain number of generations is evaluated.

2.3.2 Evaluation of Candidate Circuits

Several schemes have been developed for classifying the evolvable hardware, e.g. [65, 177,
200, 81]. In this section, we will focus on one key feature that is usually considered by the
mentioned classifications – hardware evaluation process.

Two scenarios are usually applied for evaluation of candidate circuits. Early evolvable
hardware experiments used circuit simulators in order to calculate a fitness value of each
member of the population. This approach has been known as extrinsic evolution. If all
candidate solutions are evaluated in reconfigurable hardware, then the approach is called
intrinsic evolvable hardware. The off-the-shelf FPGAs represent the most popular intrinsic
reconfigurable chips due their availability and outstanding performance.

17

CHAPTER 2. FROM EVOLUTIONARY ALGORITHMS TO EVOLVABLE HARDWARE

The importance of intrinsic evolution has been recognized by Thompson who has carried
out the first intrinsic experiment using FPGA at the lowest level of abstraction possible
[175]. The task was to evolve a circuit that discriminates between 1 kHz and 10 kHz
signals. Evolution was able to find a very small circuit, i.e. to perform a task that would
require human designers to project larger and clocked circuits, or use passive components,
such as capacitors and inductors. In fact, evolution used a digital programmable device in
the analog mode to perform this task. However, in spite of the high effort of Thompson
involving the usage of analog simulators, the nature of some of the mechanisms used by the
evolutionary designed circuit has not been completely understood. This is probably caused
by the presence of feedbacks that can not be easily simulated, since they are dependent
on the propagation delay of each cell. Thompson’s impressive results stimulated other
scientists to investigate the field of EHW.

2.3.3 Evolvable Hardware as Design Tool

Using evolution to design electronics brings a number of benefits. Some of the most im-
portant areas where evolutionary electronics can successfully be applied include: automatic
design of low cost hardware, automatic design of hardware systems for poorly specified
problems, innovation in poorly understood design spaces, design of adaptive systems, or
design of fault tolerant systems. The ability to generate solutions to poorly specified prob-
lems can be considered as a form of creativity which is one of the features of evolutionary
processes. In case of the adaptive and fault tolerant system, the evolvable hardware is usu-
ally used due to its potential of autonomous adaption to changes in its environment (e.g.
noise level in case of adaptive image filters, or presence of faults in case of fault-tolerant
adaptive systems). The advantageous feature of the evolutionary approach is that it can not
be necessary constrained to the well-known topologies that usually prevent from achieving
novel solutions.

On the contrary, the evolutionary design approach has some drawbacks. Evolutionary
methods are sometimes criticized that they do not produce robust and trustworthy designs.
The evolved circuits are usually different from the well-known and proven structures which
complicates their analysis and verification. Another discussed problem is enormous compu-
tational power which is usually needed for obtaining a satisfactory result. In some real-time
applications (e.g. adaptive and fault tolerant systems), slow convergence or even stuck in
a local extreme may represent an issue.

18

Chapter 3

Evolutionary Design of Analog and

Digital Circuits

After reading the previous chapter, the evolutionary circuit design might seem to be sub-
stantially ineffective in comparison with conventional approaches. In many cases it is even
true; however, there are applications where the evolutionary design brings a number of
benefits unattainable by means of conventional design.

Initialize a
population of

circuits

Evaluate the
circuits

Sort the circuits
based on their

fitness

Is the best circuit
acceptable?

Make new circuits using
the recombination

operators

no

yes
apply
circuit

Figure 3.1: The basic principle of the evolutionary design of analog and digital circuits.

The basic principle of the evolutionary design of analog and digital circuits is depicted
in Figure 3.1. The evolutionary design approach works as follows. Firstly, a population
of initial solutions (circuits) is created. This population is usually generated randomly.
Then, the behavior of each circuit is evaluated. In this step, a fitness value determining
degree of correspondence with the initial specification is assigned to each circuit. If the
fittest solution is acceptable, the algorithm is terminated. Otherwise, the best circuits are
combined to generate new circuits and the algorithm continues with evaluation of newly
generated circuits. After a number of iterations, the fittest circuit should behave according
to the given specification.

This chapter surveys the most important approaches proposed mainly to extrinsic evo-
lutionary design of analog and digital circuits.

19

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

3.1 Evolutionary Design of Analog Circuits

The first technique of analog circuit design automation has been reported in the seventies
[174]. Since that, several other methods have been published, e.g. [75, 139]. Nevertheless,
these methods utilized the approaches known from the area of artificial intelligence (e.g.
expert systems, some kind of heuristics, or simulated annealing) rather than the evolution-
ary techniques. In contrast with the evolutionary design, these systems were very limited as
they usually restricted the search space to well-known circuit topologies. A typical task was
the optimization of a set of parameters. In the first applications dealing with the synthesis
of passive filters, evolutionary approaches were used to perform the selection of topologies,
or the simple determination of components’ values for fixed topologies [67, 84].

The first truly analog circuit evolution was performed by Genetic Programming. The
research group led by John Koza published pioneering methods solving this task, where all
the steps necessary to design an analog circuit were handled by GP [103]. The objective was
to find not only the values of utilized passive components but also the topology of the circuit.
The first results published by Koza’s team motivated researchers to deeply investigate this
area. Tens of competitive analog circuits designed by means of the evolutionary algorithms
have been reported up to now [99].

3.1.1 Synthesis of Analog Circuits Using GP

Passive filters are electronic circuits that consist of an arrangement of resistors, capacitors,
and inductors. In order to implement an analog filter with required characteristics, one of
the known polynomial filter structures might be used. The filters differ in the construction,
complexity of corresponding circuit implementation and the parameters of the frequency
response. For example, the Butterworth response is the one that is closer to the ideal
frequency response. However, the Butterworth filters require more components than the
other ones. As there is a wide range of different aspects that has to be considered, the
conventional design of analog filters represents a nontrivial task. The main filter character-
istics that have to be reflected include: amplitude of the frequency response, phase of the
frequency response, group delay, impulse response, and response to the step function.

In order to evolve analog circuits, Koza came up with a developmental approach to
perform a nontrivial mapping between circuit topologies and tree structures [103]. He used
GP to find a tree that encodes a program to build a circuit from an initial circuit called
the embryonic circuit. The initial circuit structure contains fixed and modifiable part. The
fixed part includes the source resistance, output load, source signal and ground. It other
words, it covers the essential features of the target circuit that has to be preserved. The
modifiable part usually consists of pieces of wires that can be modified by the instructions
encoded in the tree. Figure 3.2 depicts an example of a typical embryonic circuit used in
Koza’s applications.

The nodes of GP trees can be divided into functional and terminal nodes. The functional
nodes may either create a component (component-creating functions) or modify a connec-
tion (connection modifying functions). Component-creating functions point to a modifiable
part of the circuit, and create a particular component in this part of the circuit. In the

20

3.1. EVOLUTIONARY DESIGN OF ANALOG CIRCUITS

Rload

Rsource
Embryo

Rload

Rsource

~ ~

L12

C2

L11

L17

a) b)

c)Z0

Z1

– 0.880 FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8

7

9 10 11 12

13 14 15 17 1816 19 20 21

22

23 24 25 26 27 28 29 30 31

FLIP

END

Figure 3.2: a) The initial circuit consisting of two modifiable wires denoted as Z0 and Z1.
These wires provide some kind of place holder for inserting additional components. b)
The analog circuit that has been created by the application of a candidate program. c)
Candidate program encoded using a GP tree [104].

particular case of passive filters, we can have tree functions (R, C or L) which create re-
sistors, capacitors, and inductors, respectively. The value of the corresponding component
is determined by the expression which is encoded in the children nodes. The simplest case
of expression is represented by a node containing a constant value. Connection Modifying
Functions alter the topology of the modifiable parts of the circuit. There are four basic
operations – Series (S), Parallel (P), Flip (F) and Ground (G). All these operations point
to a particular wire or component in the modifiable part of the circuit. Series and Parallel
operations create a series or a parallel connection of a particular component. Flip operation
flips the corresponding component. This operation is intended for the components where
the polarity plays important role (e.g. diodes). Finally, the Ground operation connects a
given node to the ground potential. Apart from the functional nodes, two special terminal
nodes are defined. Terminal NOP (N) which represents a no-operation and terminal End
(E) which terminates the development in the corresponding branch. The example of this
approach is illustrated in Figure 3.2.

In case of the evolutionary design of analog filters, the fitness function has to consider
the circuit behavior in the frequency domain. In order to evaluate the quality of a candidate
filter, Koza utilized AC signal analysis provided by the SPICE simulator. The fitness value
has been calculated according to the following expression:

F (t) =
∑

i

[W (d(fi), fi) · d(fi)], (3.1)

where i denotes the index of a fitness case (i.e. the index of a frequency response point that

21

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

is included and considered by the fitness function), fi is the frequency of the fitness case i,
d(x) is the difference between the target and the observed values at frequency x, and W (y, x)
is the weight function for a difference y at frequency x. The task of setting the weights
is the most serious problem in this fitness equation as it can significantly influence the
performance of evolutionary algorithm. Thus it is usually determined by experimentation.
This scheme provides a very flexible approach enabling to capture a wide range of different
design tasks. Since W depends on the frequency, it allows to specify more or less important
bands or even to define don’t care bands. Moreover, it depends also on the calculated
difference which gives the chance to smooth the search space.

Although the evolutionary synthesis of analog circuits is a time consuming process (a
cluster consisting of more than 2000 PCs have been utilized), Koza has reported tens of
human-competitive analog circuits automatically designed by means of this evolutionary
approach up to now. In addition to the passive circuits, he has evolved circuits contain-
ing transistors, circuits with operational amplifiers, regulators or logic circuits. A similar
method has been applied also to the evolutionary design of antennas, optical systems, clas-
sifiers, predictors and another nontrivial design task [106, 114, 83, 101, 105].

The evolutionary designed analog circuits are sometimes criticized that they are not
trustworthy because they have not been verified in silicon and hence they can not be
utilized by designers as building blocks. In order to address this issue, McConaghy et al.
proposed EA-based system for a structural synthesis of trustworthy analog blocks that can
be easily combined in order to create complex analog circuits [122].

Other approaches have been surveyed in [201].

3.2 Evolutionary Design of Digital Circuits

Typical goals of a synthesis algorithm include the minimization of the total number of gates
(the area required to implement a circuit on a chip) and the minimization of the number of
levels affecting the circuit propagation delay. Even if there exists a completely mechanical
procedure of designing a correct circuit for any Boolean function represented by a truth
table or as the sum of products, the conventional approaches provide suboptimal solutions
in many cases. This is caused by the fact that various assumptions and simplifications have
to be applied in order to manage the enormous complexity of current circuits in reasonable
time.

In the rest of this chapter, three possible levels of abstraction are investigated in the
context of evolutionary design. Even if the representations only differ in the degree of com-
plexity of the basic building blocks, this detail can have significant impact not only on the
performance of evolutionary algorithm, but also on the quality and novelty of evolved solu-
tions. The goal of this survey is to show how these representations affect the performance
of evolutionary algorithm, representation and fitness function implementation.

3.2.1 Transistor Level Representation

Transistor level representation is considered to be the lowest level of abstraction of digital
circuits in this thesis. Nevertheless, conventional design approaches do not synthesize elec-

22

3.2. EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

tronic circuits at this level due to a huge and still increasing complexity of circuits. Instead
of this, a circuit designed at gate-level is mapped to transistor-level circuit. The process of
mapping is straightforward; the gates are simply replaced by their transistor-level imple-
mentations which are available in a particular fabrication technology. In order to reflect the
implementation costs, the conventional synthesis tools do not optimize only the number of
gates but also the total number of transistors expressed in terms of relative implementation
area. For example, while the NOT gate occupies the smallest area, the XOR gate occupies
approximately three times larger area depending on the utilized technology.

Even if the occupied area is taken into account, the resulting circuits can be far from
optimal solutions. For example, if a simple logic expression Y = A ·B + C ·D is considered,
the optimal gate-level representation requires two AND gates, consuming six transistors
in ordinary CMOS technology each, and a single NOR gate consuming four transistors.
After technology mapping, this circuit will utilize 16 transistors in total. However, the
same function can be implemented using 8 transistors only when a special AND-OR-Invert
circuit is employed [186]. It is likely, that implicit redundancy will exists for a wide range
of other and more complex circuits.

The evolutionary design of digital circuits at the transistor level is similar to the evo-
lutionary design of analog circuits. However, it is useful to restrict the search space to
meaningful topologies in order to reduce the search space. For example, the following
constraints should be reflected: all the transistor’s inputs are required to be connected;
the CMOS circuits should contain both complementary branches, there should be a strong
driver at the output (e.g. an inverter that restores the full voltage levels at the outputs)
etc. Besides the use of a developmental approach proposed by Koza, there are also other
approaches that utilize a form of direct encoding similar to CGP, e.g [186, 201].

The fitness value is typically calculated using a simulator, e.g. SPICE, which is able
to accomplish the transient analysis. The following scheme is usually recommended. Let
T is the total period of transient analysis. Then, for a circuit with n inputs, the period T

is divided into 2n slices of time as there exists 2n input combinations. Each time slice is
sampled using k discrete samples. The fitness value can be calculated using the following
equation:

F (t) = −
k(2n−1)∑

i=0

|d(iTs)− v(iTs)| (3.2)

In fact, this equation computes the sum of the absolute deviations between the desired
voltage, d(t), and real output voltages, v(t), over 2n fitness cases using k2n discrete samples
acquired every Ts = T/(k2n) seconds . The negative sign is used because the fitness should
be higher for smaller deviations.

In comparison with the gate-level and function-level evolution, only relatively simple
circuits were evolved directly at the transistor level. For example, Keane et al. evolved
a NAND gate using a developmental genetic programming [107]. Zaloudek and Sekanina
proposed a direct representation loosely inspired by the Cartesian genetic programming
that has been utilized for the evolutionary design of elementary two-input gates, small
multiplexers and adders [186]. Walker et al. proposed evolutionary system that is able to

23

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

design variability-tolerant designs for future technology nodes [187]. The unconventional
designs of inverter, two AND gates, and an OR gate more tolerant to variability than the
conventional designs have been reported. Apart from the extrinsic approaches, various
intrinsic experiments were performed on various reconfigurable platforms, including FPTA,
FPTA-2 and PAMA [201, 110].

The main limitation of the evolutionary design at this level is primarily caused by an
extremely time consuming fitness calculation and the problem of scalability of representa-
tion. When the extrinsic evolution is carried out, precise simulations of a candidate circuit
must be performed (simulators of the SPICE family are usually used) in order to avoid
possible malfunctions such as incorrect transient response, insufficient driving capabilities
or incorrect operation at different timescales [171]. On top of that, the number of test-cases
increases exponentially with the increasing number of primary inputs.

3.2.2 Gate Level Representation

The gate-level representation represents the most used approach to evolve digital circuits.
The literature contains several direct as well as indirect approaches to the gate level encod-
ing.

terminals: a, b, c
functions: AND, OR, XOR

XOR

a b c
AND

AND OR

AND(c, XOR(AND(a,b), OR(a,b)))

a b a b c

chromosome:

Figure 3.3: The combinational circuit specified by the truth table and its encoding using
GP representation.

One can utilize tree representation of genetic programming. However, this approach
is suitable only for a subclass of combinational circuits. The tree-based GP is not able
to represent sequential circuits as the tree structure does not allow establishing a feedback
loop necessary to implement sequential circuits. Common GP does not even allow to encode
circuits with multiple outputs as only one root node exists. While the latter drawback can
be removed by introducing more root nodes where each root corresponds with one output
(e.g. Multi Expression Programming [140]), the efficient representation of the sequential
circuits remains unaddressed. Figure 3.3 depicts an example of a combinational circuit
specified by the truth table and its encoding using a GP tree.

Another scheme suitable for encoding of combinational circuits is linear genetic pro-
gramming (LGP). In contrast with tree-based genetic programming, LGP uses an indirect

24

3.2. EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

encoding. The genotype individuals have the form of a linear list of instructions encoded
as binary strings [13]. Each instruction consists of the operation code and indexes of regis-
ters that store the operands. The program execution is performed using a simple register
machine. As soon as the program is terminated, preselected registers contain the computed
values. The structure of a linear GP individual is depicted in Figure 3.4. The sequence of
instructions can be transformed into an equivalent functional representation in the form of
a directed acyclic graph using the algorithm described in [20]. Providing that the instruc-
tions evaluate basic Boolean functions, the resulting acyclic graph represents a gate-level
combinational circuit.

Figure 3.4: Representation of a LGP individual [191]

One advantage of linear GP is that the evolved program can be a binary machine code
that can be executed during the fitness evaluation directly without interpretation [138].
Thus LGP is faster in evaluation than the tree-based GP. In [20], Bramier claimed that
programs with a linear representation are more suitable to be varied in small steps than in a
tree structure. On top of that, the programs in the linear structure are generally more com-
pact due to multiple usages of register contents and an implicit parsimony pressure by the
structurally non-effective code. However, the execution of linear GP programs is generally
sequential, thus more work is needed in order to find a way to implement repetitions easily
in this linear structure. Moreover, programs represented by binary machine code cannot
be understood as easily as those in tree-based GP. In the context of evolutionary design of
digital circuits, there is also another pitfall; some effort is needed in order to restrict the
resulting circuits to the combinational ones.

Iba et al. utilized a form of variable length direct encoding in order to find a configura-
tion of a programmable logic array (PLA) implementing basic combinational functions such
as parity circuit and multiplexer [87]. The authors presented this approach as a gate-level
EHW, because the PLA components are in fact AND, OR and NOT gates. The chromo-

25

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

some consists of one or more alleles containing two integers. The first integer encodes the
position of the allele in the PLA fuse array while the second integer defines a connection type
(direct and inverted). The inverted connection can be applied only for the AND array, as
the OR array does not contain inverters. Figure 3.5 shows an example of a configured PLA
array having 14 fuse locations and the corresponding chromosome. While the GP-based
approaches are able to encode arbitrary combinational circuit, the PLA-based encoding is
limited to the evolutionary design of two-level Boolean functions.

O
R

AND

AND

AND

O
R

O0 O1

I0 I1 I2

AND array

OR array

Chromosome:
(0,1)(4,1)(8,2)(9,1)(13,1)(14,1)

O
R

AND

AND

AND

O
R

O0 O1

I0 I1 I2

AND array

OR array

0 1 2

3 4 5

6 7 8

9 12

10 13

11 14

Allele:
 (connection index, connection type)

connection
type

AND
array

OR
array

1

2

Figure 3.5: An example of a variable length encoding designed for evolutionary design of
PLA configuration.

NAND1 NOR4NOT2

NOT3

output dir/len/mode dir/len/modenode

NAND1 fwd/1/rel rev/3/rel

NOT2 fwd/2/rel rev/1/rel

NOT3 rev/1/rel fwd/3/rel

NOR4 fwd/1/rel rev/3/end

Figure 3.6: Ring oscillator composed of three inverting gates and its encoding using the
approach presented in [175]. The chromosome consists of four 24-bit segments encoding 4
gates. The output of oscillator is connected to the last segment.

Another form of direct encoding for digital circuits has been proposed in [33] and
adopted for gate-level evolution in [175]. In this scheme, the genotype forms a bit-string
consisting of a fixed number of segments, each of which directly encodes the function of
a particular gate and the sources of its inputs. The source of each input is specified by
counting forwards or backwards along the genotype for a certain number of segments. The
counting direction is specified by means of the direction bit, the number of segments is
determined by the length field. The counting starts either from the current segment or

26

3.2. EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

from the last segment according to the addressing mode bit. The counting wraps around
the boundaries. This scheme is suitable for the evolutionary design of combinational as well
as sequential circuits. Figure 3.6 shows an example of a ring oscillator encoded using this
approach. The example illustrates the main feature of the encoding – the relative order of
gates encoded in genotype is different from phenotype.

In [225], a developmental approach for synthesis of combinational circuits based on
enhanced cellular automata (CA) has been proposed. The goal of this work was to demon-
strate, that the evolutionary algorithm is capable of creating a cellular automaton that is
able to construct a digital circuit as it develops. Each rule of CA’s local transition func-
tion is connected with an action that creates a gate of a given type. The developmental
approach is demonstrated in Figure 3.7. Even if the resulting circuit is relative simple, the
proposed CA demonstrates the compactness of developmental encoding. The evolved CA
has to apply only ten rules in order to generate a circuit consisting of 12 gates.

AND

AND

AND

A0

A1

AND

XOR

AND

BUF

BUF

BUF

BUF

XOR

BUF

0

1

2

3

B0

B1

M0

M1

M2

M3

1

1

0

0

0

2

1

1

2

1

1

2

1

1

2

0

initial
state

step
1

step
2

step
3

001 1 : AND 1,2
021 1 : XOR 2,3
102 2 : BUF 0,1
211 1 : BUF 1,0
011 0 : AND 2,3
100 1 : AND 3,0
110 2 : AND 0,1
112 2 : XOR 3,0

rewrite
rule

generative
part

Utilized CA rules

Figure 3.7: Example of the development of a 2x2-bit multiplier using a cellular automaton.
The multiplier has been developed from the initial state 1100. A part of local transition
function of the CA applied to development of the multiplier is shown on the right-hand
side.

If we summarize the mentioned representations, none of the presented approaches could
be considered as universal encoding scheme. The genetic programming can not capture
asynchronous circuits and according to Koza’s experiments it does not scale well probably
due to the existence of bloat effect and ineffective representation. The linear genetic pro-
gramming can represent both sequential and combinational circuits however an additional
effort is needed in order to restrict the resulting circuits to the combinational ones due to
the indirect instruction-based approach. The encoding used by Thompson has the similar
problem due to the variable order of gates in the phenotype that can be changed with each
mutation.

In Chapter 2, we have introduced a variant of genetic programming called Cartesian

27

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

Genetic Programming that has been primarily designed for evolutionary synthesis of digital
circuits at the gate-level. The CGP representation has a number of interesting features.
Firstly, as only some nodes are utilized in the genotype, there is a degree of redundancy
which has been shown to be very useful [129]. Secondly, as the genotype encodes a graph,
some nodes can be reused, which makes the representation very compact and also dis-
tinct from the tree based GP. Although CGP is very similar to the linear GP, there is
one important difference – the restriction of the feed-forward connectivity. While the CGP
restricts connectivity using the l-back parameter, LGP’s connectivity is implicit and under
evolutionary control as a component of the genotype. In other words, the CGP enables
to specify whether combinational or sequential behavior should be evolved whereas LGP
does not. This fact significantly complicates the fitness evaluation because asynchronous
or sequential circuits have to be evaluated in a different way. The l-back parameter also
determines the maximal length of a combinational path and thus it can be used to restrict
the propagation delay of a combinational circuit. Similarities of CGP and LGP have been
investigated in [191]. Also a variant of CGP allowing the feedback loops has been investi-
gated there. However, the results are hardly interpretable as the authors have used only
two instances of regression benchmarks that give questionable results. We can conclude
that CGP can be considered as the best-available method for digital circuit evolution.

Evaluation of Candidate Circuits

In case of combinational circuit evolution, the fitness function measures the quality of a
candidate solution through the number of correct output bits (i.e. the number of hits),
compared to the specified (i.e. target) truth table. When a circuit with n inputs and m

outputs ought to be designed, the objective is to find a solution that can attain m2n hits,
corresponding to the size of the truth table and the number of outputs. The fitness value
of a candidate circuit that reflects the implementation cost can be defined as [91]:

fitness =

{
b when b < m2n,

b+ (nmax − z) otherwise,
(3.3)

where b is the number of correct output bits obtained as response for all possible assignments
to the inputs, z denotes the number of gates utilized in a particular candidate circuit and
nmax is the total number of available gates (nmax = ncnr in terms of CGP). It can be
seen that the last term nmax − z is considered only if the circuit behavior is perfect, i.e.
b = bmax = m2n. This scheme is referred to as a two-stage fitness strategy. Alternatively,
we can replace the number of utilized gates by the number of utilized transistors which is
a more precise measure as implementation costs of gates are different [57]. We can observe
that the evolution has to discover a perfectly working solution firstly while the size of
circuit is not important. Then, the number of gates is optimized. Similarly, delay or power
consumption may be optimized. A multi-objective formulation of the circuit evolution
problem was also proposed, but evaluated using small benchmark problems only [80].

Assume that the objective is to find a circuit that implements function y = F(x) speci-
fied in the form of a truth table where x = (x1, . . . , xn) ∈ {0, 1}n is the vector corresponding
with the circuit’s inputs and y = (y1, . . . , ym) ∈ {0, 1}m is the vector corresponding with

28

3.2. EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

the required output defined by truth table. The number of correct output bits b can be
calculated according to the following equation:

b = m2n −
2n−1∑
x=0

Ω(F([x])⊕ G([x])) (3.4)

where G is the response of a candidate solution to the input vector x = [x], Ω is a function
that counts the number of bits set to 1, [x] is a binary representation of x at n bits and ⊕
is a binary exclusive-or operator. As it will be shown in Chapter 3.3, this equation can be
effectively implemented on a common processor. In fact, the sum calculates the Hamming
distance between the response and required output value for each test case.

Even if there are circuits that need not to be specified by a complete truth table, e.g.
4-bit priority encoder which can fully be defined using a truth table containing only one
quarter of all input combinations, it is clear that this method is not applicable for design or
optimization of large circuits because of the time consuming fitness evaluation that increases
exponentially with the increasing number of primary inputs. A common solution applied,
for example for training neural networks, is to use only some representative inputs vectors.
However, it has been shown that the evolved digital circuits do not usually work correctly
for some of the remaining input vectors [130]; it is just because it was not required to do
that.

In order to overcome this disadvantage and evolve large designs, a kind of decompo-
sition strategy can be employed. For example, Torresen introduced a divide-and-conquer
approach for the evolution of digital circuits [176]. Kalganova applied a kind of incremental
evolution that is able to semi-automatically divide a complex task into simpler subtasks
[90]. This method has been extended by Stomeo and referred to as generalized disjunction
decomposition [172]. However, the scalability problem has been eliminated only partially.

If a synchronous sequential circuit ought to be evolved, the same scheme can be utilized
as for the combinational circuits. The objective of the evolutionary algorithm is to find a
combinational circuit that determines the next state and the output value according to the
knowledge of the actual state and the current inputs. The memory that keeps the current
state is modeled using a set of registers. In case of the asynchronous circuits, it is necessary
to evaluate the stability of the circuit because the asynchronous circuits contain feedback
loops. This represents an additional evaluation time. Since the evaluation of sequential
circuits requires the comparison of a sequence of circuit outputs or internal circuit states
against the desired sequence, the evolutionary design of asynchronous sequential circuits is
tractable for trivial circuits only.

Survey of Circuits Evolved at Gate Level

Let us conclude this section with the overview of the circuits reported in literature evolved
at the gate level. The first results in the area of digital circuit synthesis were reported by
Koza, who investigated the evolutionary design of the even-parity problem in his extensive
discussions of the standard GP paradigm [100] and ADFs [101]. Although the construction
of an optimal parity circuit using XOR gates is a straightforward process, the parity circuits
are considered to be appropriate benchmark problem when the AND, OR, NOT gate set is

29

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

allowed. Unsurprisingly, solving the parity problems using standard GP without ADFs is
computationally expensive and Koza was unable to obtain any result for the parity circuits
having more than five inputs. Using ADFs, Koza reported greater success; the parity
circuits up to 11 inputs have been successfully evolved. Koza was unable to design larger
parity circuits not because GP with ADFs was failing to find a solution, but because the
combination of the large population sizes and the increasing number of fitness cases to be
evaluated was becoming computationally extremely expensive. Poli et al. extended Koza’s
GP approach by introducing new search operators and a novel node representation [144].
The goal was to smooth the fitness landscape in order to solve large instances of parity
problem. Even if the proposed method does not use ADFs, the authors were able to design
parity circuits having up to 22 inputs. However, while Koza utilized only four gates (AND,
OR, NAND, NOR), they used a complete set of Boolean functions including XOR.

Thompson used a form of direct encoding in his intrinsic EHW experiment [175]. His
goal was to evolve a square wave oscillator (i.e. asynchronous sequential circuit) within a
small FPGA (up to 100 gates can be utilized) that oscillates at a much slower timescale
than the gate delays. An interesting point is that the circuit behavior was defined using
neither truth table nor state table; he counted the number of peaks within a certain time
window instead. Even if the evolution found several solutions, the visual inspection on an
oscilloscope showed that all of the evolved solutions produce very high frequency waveforms,
but that these high frequency components are not crossing the digital logic threshold hence
they are not being registered by the counter.

Iba et al. employed evolutionary algorithm to find a configuration of PLA for three
circuit instances – a circuit with randomly generated Boolean function having 32 inputs
with 6 terms, 6-input multiplexer and 4-input parity [87]. The goal was to find an approx-
imation of the given Boolean functions according to limited training data. At the end of
evolution, the randomly generated circuit worked well only for a small fraction of all input
combinations (1650 out of 232).

Miller et al. demonstrated that evolutionary design systems are not only able to redis-
cover standard designs as it has been shown in past, but they can, in some cases, improve
them [132]. He was interested in the evolutionary design of arithmetic circuits such as
adders and multipliers. A gate level CGP was employed with the function set including
AND, NAND, OR, NOR, XOR, and MUX logic functions. He has reported a one-bit adder
and two-bit multiplier designed at the gate-level (i.e, without the MUX gate). Both circuits
required fewer resources comparing to the designs produced by human designers. Three-bit
multiplier consisting of 24 two-input gates evolved using Cartesian genetic programming
has been introduced in [127]. The multiplier is about 20% better (in terms of two-input
gates) than the conventional implementation. Four-bit multiplier consisting of 57 two-input
gates has been reported in [182]. The circuit was evolved from the conventional multiplier
employing 67 cells.

CGP has been also utilized for evolutionary design of digital filters at gate level [125]. It
is a quite challenging task because nothing is supposed about properties (e.g. conventional
approach always requires that filtering circuits are linear systems). The goal was to evolve
the 4th orde digital filters working with 4-bit coefficients (i.e. combinational circuits having
32 inputs and 8 outputs). Resulting filters exhibited elementary functionality, however, only

30

3.2. EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

for training signals. This approach has been thoroughly analyzed in [210]. It was shown
that the evolutionary design of digital filters at the gate level does not produce filters that
are useful in practice when linearity of filters is not guaranteed by the evolutionary design
method. Another problem is that the goal was to find a circuit that minimizes the difference
between the obtained signal and expected signal using 128 samples only, instead of finding
a combinational circuit for a given truth table having 232 rows. Moreover, target circuit
could not fit into the available resources.

In [80], a multi-objective approach has been introduced to gate-level evolution. The
goal was to find an optimized solution for several small circuits having up to 40 gates and
6 inputs (3-bit multiplier, 3-bit adder, 7-segment display decoder). The fitness function
considered not only the number of logic gates and transistors but also the propagation
delay. Resulting solutions are organized on the Pareto front which allows the designers to
choose the most suitable one.

Many other approaches were proposed for evolution of small combinational as well as
sequential circuits but none of them has provide results competitive with CGP, see e.g.
[1, 4, 165].

If we look at the results achieved at the gate-level during the last two decades, it
appears that the problems solved now by evolutionary techniques are nearly of the same
size and complexity as those that have been solved several years ago [69]. The most complex
combinational circuit that has been evolved consists of tens of gates having up to 20 inputs
[172]. Apart from the problem related to the fitness calculation time, there is another
problem related to the encoding scheme. Long chromosomes which are usually required to
represent complex solutions imply large search spaces that are typically difficult to search.
In many cases, even a well tuned parallel evolutionary algorithm running on a cluster of
workstations fails to find an adequate solution in a reasonable time. In order to evolve large
designs and simultaneously keep the size of chromosome small, the function-level evolution
seems to be a promising way [134].

3.2.3 Function-level representation

In the function-level evolution, circuits are designed using higher functions such as mul-
tiplexers, adders, comparators, LUTs, etc. Function-level approach can evolve solutions
for complex problems, but the main weakness is that human has to provide the most ap-
propriate functions for specific problems. It seems that the evolutionary approach can be
successfully applied only if a kind of domain knowledge which helps in focusing the search
algorithm on promising areas of the search space is introduced. Next paragraphs will survey
basic models proposed in the literature.

A single k-input lookup table can implement arbitrary Boolean function defined over
k variables, including k

2 -to-1 multiplexer. As the LUTs can model multiplexers, a cascade
of lookup tables can be used to implement any combinational circuit having n inputs.
Figure 3.8 shows an example.

Although this representation is very efficient, it has some caveats. In the traditional
logic synthesis, the set of considered sub-functions is determined by the set of operators
used in the initial synthesis and by the set of gates in the library of logic blocks used in

31

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

a) d)c)b)

Figure 3.8: a) A Boolean function F with three input variables implemented using b), c)
3-input lookup table (LUT3) and d) a cascade of 2-input lookup tables (LUT2).

technology mapping. In contrast, the k-input LUT can implement 22k
different functions;

e.g. 16,384 functions for LUT having 4-inputs only. Restriction of the set of Boolean sub-
functions considered during the synthesis process often results in poor synthesis results for
a large class of functions. For LUT-based FPGAs, it is extremely important to consider
all available Boolean functions. Therefore, there has recently been research concerning the
application of the functional decomposition to the FPGA logic synthesis [32]. Although this
domain could be a potential application of EHW, LUT-based representation is not popular
in this field since it implies huge and rough search space.

In order to address the problem of insufficient complexity of circuits evolved at gate-
level, Murakawa et al. proposed a model for function-level evolution which operates with
programmable function units (PFUs) arranged in a grid [134]. Each unit can perform one
of high-level functions, such as addition, subtraction, multiplication, division, sine, cosine,
constant generation and if-then. The selection of function to be implemented by PFU is
determined by a corresponding gene in chromosome. Neighboring columns of PFUs are
interconnected by configurable crossbar switches. The output of PFU can be fed only into
the input of a PFU located in the next neighboring column. The authors utilized a variable
length encoding. Each gene consists of a string of integers that identify a particular PFU,
the function of PFU and addresses of input operand(s). Figure 3.9 shows part of the model
that is configured using the following chromosome:

(1, sin, Y)(2, cos,X)(3, add,X, Y) · · · (6,mul, 1, 2)(7, if − then, 1, 3, X, 2)(8, sin, 1) · · ·

For example, the gene (6,mul, 1, 2) specifies the hardware function executed at the top
PFU in the second column (i.e. PFU’s number is 6). The function is multiplication using
operands produced by the first PFU (i.e., sine) and the second PFU (i.e., cosine) in the
first column. The output of the sixth PFU is sin(Y) · cos(X).

Apart from these models, any GP-like representation such as common GP, CGP or LGP
can utilize complex computing blocks instead of gates. For example, CGP can easily be
modified to evolve larger circuits at function-level [157]. Instead of gates and single-wire
connections, application specific functions and multiple-bit connections can be employed.
The advantage is that while the size of chromosome is similar to the gate-level evolution, the
size of phenotype can be arbitrarily large, depending on the building blocks used. However,
there are several issues concerning the use of common CGP in this domain. For example,

32

3.2. EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

PFU
sin cos
mul add

C C C C

XYZ 12345XYZ

PFU
sin cos
mul add

C C C C

678

PFU
sin cos
mul add

C C C C

PFU
sin cos
mul add

C C C C

if

PFU
sin cos
mul add

C C C C

PFU
sin cos
mul add

C C C C

1

2

3

6

7

8

1st column 2nd column

Figure 3.9: The evolutionary function-level model proposed by Murakawa [134]. A part of
the grid having three primary inputs denoted as X, Y and Z is shown.

Kalganova proposed an extension of CGP that addresses the problem of multi-input multi-
output building blocks typical at function-level [89].

Evaluation of Candidate Circuits

Due to the complexity of candidate circuits, it is impossible to evaluate circuit responses for
all possible input vectors. Hence candidate circuits are usually evaluated using a training
set. While the training set is applied during evolution, another set referred to as test
set has to be used at the end of evolution. The purpose of this step is to validate the
obtained results. The validation can consider various aspects, e.g. generality, robustness,
functionality, etc. The goal of evolution is typically to minimize the difference between
the response of a candidate circuit and the target response. The fitness value is usually
calculated as the sum of the absolute deviations using the following equation:

fitness = −
∑

i

|d(i)− r(i)| (3.5)

where d(i) represents desired value for fitness case i and r(i) is a response of a particular
candidate solution to fitness case i. For m-ouput circuits (m > 1), the fitness value can be
calculated as follows:

fitness = −
m∑

j=1

∑
i

|d(i, j)− r(i, j)| (3.6)

where d(i, j) is a desired value for j-th ouput and fitness case i and r(i, j) is the response of
a candidate solution measured on j-th output. Alternatively mean absolute error or mean
square error metrics can be used as well.

33

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

Note that this scheme can be used only when it is acceptable to evolve a circuit which
responds correctly for a certain subset of all possible input vectors. The problem is that the
specification is in principle incomplete. Hence this approach is not applicable for arithmetic
circuits. On the other hand, in some cases it is sufficient to evaluate only some structural
properties of candidate circuits which can be done with a reasonable time complexity. For
example, because the testability of a candidate circuit can be calculated in a quadratic
time, very large benchmark circuits with predefined testability properties were successfully
evolved [143].

Let us conclude this section with a statement of Yao and Higuchi [197]. They claimed
that circuits are not evolved from a conceptual viewpoint. Rather, a circuit behavior is
evolved as the fitness function does not reflect the internal structure of the circuit. Hence,
evolved circuits are not necessarily robust because nothing is known about their behavior in
conditions different from those that have been utilized during evolution. In order to evolve
robust circuits, some non-behavioral requirements have to be introduced [175]. This yields
to the multi-objective approach to the fitness calculation.

Circuits Evolved at Function-Level

The first attempt to apply the function-level evolution in order to evolve large designs has
been reported in [134]. Murakawa et al. used the function-level EHW based on FPGA
to create an adaptive filter for digital mobile communication, and non-linear prediction
functions for lossy data compression system. Another application of function-level EHW is
autonomously reconfigurable and evolvable neural network chip [78].

Sekanina extended CGP in order to handle the function-level evolution [157]. As a
proof of concept, evolutionary design of image filters has been chosen as a demonstration
application. The objective was to design a complete structure of an image filter. The
target filters could be composed of simple digital components such as logic gates, adders
and comparators. Several Gaussian noise filters have been evolved. Later, image filters for
other types of noise and edge detectors were evolved using the same technique [158, 161].

Aoki et al. introduced graph-based evolutionary optimization technique called Evolu-
tionary Graph Generation [10]. Instead of creating bitlevel circuits directly, the proposed
EGG system generates arithmetic data-flow graphs that can be transformed into actual
bit-level circuit configurations. The advantages of this method were demonstrated through
experimental synthesis of arithmetic circuits at different levels of abstraction. Several in-
stances of competitive 16-bit constant multipliers consisting of word-level arithmetic com-
ponents (such as one-bit full adders or one-bit registers) were evolved.

The most complex circuits have been evolved using a generalized disjunction decompo-
sition introduced by Stomeo et al. in [172]. Among others, 17-bit parity circuit, the 6-bit
multiplier, and a circuit with 14 inputs and eight outputs have been evolved using function-
level approach (multiplexers and common gates have been utilized as basic building blocks).
However, while the method is successful if the number of evaluations is measured, it pro-
duces inefficient implementations with respect to the number of gates. Another problem is
that the decomposition strategy is a kind of domain knowledge which has to be supplied
by designer.

34

3.3. PRACTICAL ASPECTS OF THE EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

She proposed an EHW chip containing an array of 6 × 8 4-input LUTs [166]. The ob-
jective was to accelerate the evolution of combinational and sequential circuits. In order
to evolve larger circuits, he utilized a kind of decomposition method. The evolved circuit
is represented using 4-bit LUT tables, multiplexers and eventually D flip-flops. The ex-
perimental results showed that this decomposition technique requires fewer generations to
evolve fully functional solutions, reduces the time for an experiment, and allows the evo-
lution of large circuits. Among others, a 5-bit multiplier (412 LUTs), 6-bit adder (2516
LUTs) and 14-input circuit CM162 (4667 LUTs) have been successfully evolved.

Shanthi put together previously published modular developmental approach [165] to-
gether with partitioning in order to demonstrate that the combined method is able to handle
large digital circuits [164]. Even if a 5-bit multiplier has been presented only, is has been
shown that compared to the direct evolution technique, the proposed technique reduces the
time of evolution five times and improves the area by 5% - 50%.

In addition to the combinational circuits, several synchronous finite state machines
having up to 20 states have been successfully evolved at the function-level [135].

3.3 Practical Aspects of the Evolutionary Design of Digital

Circuits using CGP

As it has been shown in the previous chapter, genetic programming and its variants have
been successfully applied to solve many difficult problems. However, the computational
power which the evolutionary approaches need for obtaining satisfactory or innovative re-
sults is usually enormous. For example, Koza utilized two clusters of workstations, 1000
x Pentium II/350 MHz processor and 70 x DEC Alpha/533 MHz processor. According to
the reported results, approximately 82 hours and 129 generations is needed in average to
reaching a solution for 36 analog circuit design tasks solved using GP on the clusters [107].
In case of intrinsic as well as extrinsic evolution, evolutionary system usually spends most
of time by running domain-specific simulators which evaluate candidate individuals using
large training sets. In order to reduce the computational time, various methods have been
proposed.

The parallelization on clusters of workstations represents the most applied approach as
it does not require any significant change of source code written for a common workstation.
Due to the stochastic nature of evolutionary algorithms, it is usually necessary to execute
tens or hundreds of independent evolutionary runs in order to find a satisfactory solution.
In this context, the evolutionary approach scales linearly as each workstation can execute
a single evolutionary run. A similar approach can be adopted for parallel variants of GP.

In this chapter, we will present and discuss various techniques that can be applied in
order to accelerate the evolutionary design technique based on CGP.

3.3.1 Simulators for Circuit Evolution

In contrast with other approaches, the main advantage of CGP is the fixed-length encoding
that allows to implement the process of fitness evaluation efficiently not only in software
but also in hardware.

35

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

Figure 3.10: Principle of fitness evaluation of a candidate combinational circuit represented
using CGP. The candidate circuit has three inputs and two outputs. The circuit is encoded
using the following chromosome: (2,1,1)(2,0,0)(3,1,1)(4,3,0)(1,6,0)(1,6,1)(8,6). The set of
building blocks includes three common logic gates Γ = {AND (0), OR (1), XOR (2)}. As
there are 9 matches, the fitness value of the candidate circuit is equal to 9.

Figure 3.10 shows the principle of fitness evaluation when the problem of evolutionary
design of digital circuits is considered. The goal is to design a combinational circuit having
three primary inputs and two primary outputs. The specification is given in the form of a
truth table. The test cases are successively applied to the primary inputs, the candidate
circuit is simulated and the calculated response is compared with truth table. If the calcu-
lated response matches the specification (i.e. the required output is equal to the required
response given by the truth able), the fitness value is incremented. As soon as all test cases
are applied, the fitness value holds the number of correct responses.

In order to maximize performance, it is important to simulate candidate circuits effec-
tively. Simulators that are utilized for circuit evolution can be divided into four classes:
interpreted simulators, high-level simulators, native simulators and hardware-based simula-
tors. The simulators, their simulation processes as well as particular examples are summa-
rized in Figure 3.11.

Interpreted simulation

In case of the interpreted simulators, the simulated circuit is represented using an interme-
diate language or intermediate code. The simulator can be regarded as a virtual machine
that successively executes the instructions of the intermediate language, one instruction
at a time. The effect of executing the interpreted object code creates the behavior of the
circuit. Any variant of a genetic programming including CGP can be easily evaluated using
this approach as the genotype in fact represents a code for interpreter. In comparison with
other approaches, the interpreted code is portable. The code can run on any machine that
has the same interpreted simulator. However, the interpreted simulation represents the

36

3.3. PRACTICAL ASPECTS OF THE EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

slowest approach compared with the other three kinds of simulators, because there must
be an extra layer of execution on top of the native machine that executes the simulator.

Figure 3.11: The common types of simulation processes that have been applied in the field
of evolutionary design of digital circuits

The advantage of CGP encoding is that it can be directly used as an intermediate code
that is consequently processed by an interpreter. Two types of interpreters are usually
utilized. The interpreter based on recursion and linear interpreter. In the first case, the
encoded graph structure is executed by recursion, starting from the output nodes down
through the functions, to the input nodes [70]. In this way, the unconnected nodes are
not processed and do not affects the performance of the evaluation. The calculated values
are stored in local stacks and propagated upwards. For efficiency, it is appropriate to
introduce some caching mechanism and evaluate each node only once even if such a node
is shared and connected multiple times. Note that each output has to be calculated using
its own recursion descent. This is another reason why the caching is important and should
be introduced. The linear interpreter works in opposite direction. The execution of the
encoded graph starts from the first node and continues according to the increasing node
index. Providing the CGP encoding does not allow feedback loops, this execution scheme
guarantee the calculated output values to be correct. This scheme represents the most
efficient implementation as it does not introduce any overhead due to function calling that
have to manipulate with stack. However, all the nodes are evaluated even if they are not
connected. In order to improve the performance, a simple preprocessing step that marks
the utilized nodes only can be introduced. Let us assume the goal is to evaluate a candidate
circuits having ni primary inputs encoded using nn CGP nodes. To simulate a candidate
circuit, one array consisting of ni + nn items is needed. In fact, this array stores the
calculated output value for each node. Thus, it can be directly addressed by the indices
stored in chromosome. In contrast with the recursive approach, all the output values are
calculated in one pass. Both of these interpreters are applicable for absolute [131] as well
as relative CGP encoding [70].

Figure 3.12 depicts the interpreted simulation process for both presented approaches.

37

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

Figure 3.12: The code that have to be evaluated in order to simulate the candidate circuit
from Figure 3.10 using a) recursive interpreter b) linear interpreter.

For the simplicity, none of the discussed optimizations is considered. The illustration con-
tains the instructions represented by logic operations that have to be executed by the
interpreter, one by one, in order to simulate the given circuit.

High-level simulation

Another common approach is to use a compiler that can compile a circuit into a high-
level language such as C. In order to evaluate the response, the generated C description
supplemented with the evaluation procedure is compiled with a common C compiler and is
run just like any other C program. From the view of portability, the high-level code is not
as portable as interpreted code because it needs to be recompiled to the native language
of the platform every time it is simulated. Even if the high-level simulators exhibit better
performance in contrast with the interpreted simulators, the compilation time may represent
a bottleneck of the whole system. If the high-level code is large, the compilation time may
be extremely long. On contrary, for the small designs, the compilation time is usually larger
than the time needed for evaluation. Another penalty, that should be also considered is the
time needed to launch the compiled program.

High-level simulator and interpreted simulator represent two possible methods for im-
plementing genetic programming on GPUs [72]. In order to calculate the fitness values,
the candidate solutions are converted to some form of source code that is compiled and
executed on GPU. For instance in [73], C programs were generated from the GP individual,
compiled to a GPU PTX language and then executed on the GPU. In fact, PTX code

38

3.3. PRACTICAL ASPECTS OF THE EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

is an intermediate code that is compiled by the graphics driver just in time when it is
used. However, the results showed that the process of pre-compilation leads to a significant
time overhead. The authors noticed that this approach is suitable for applications where
there is a large amount of data to be processed and the evolved programs are sufficiently
complicated [72].

Native-code simulation

The most effective approach that reduces the main drawbacks of the high-level compiler
is the native code compilation that skips the intermediate code generation. In order to
simulate a given circuit, the corresponding representation is directly translated (i.e. com-
piled using an application specific compiler) to the machine executable code for the given
platform. The machine code residing in the same memory space can be easily executed
without any time penalties by a simple call. At the expense of portability, native code
runs slightly faster than high-level code because the application specific compiler can han-
dle direct machine code optimizations. However, the overall performance is significantly
higher as there do not arise any time penalties due to the complex compilation or program
launching. Both native code and high-level code are typically about 20 times faster than
optimized interpreted code [109]. The major shortcoming for native code compilation is
portability.

The idea to use the native-code simulation in connection with CGP in the form which has
been presented herein was not published in literature. However a similar idea has been used
by Nordin [138]. He introduced a system based on linear genetic programming performing
the automatic induction of machine code. The candidate solutions were represented directly
using binary machine code and executed directly without passing an interpreter during
fitness calculation. The evolved LGP program has been comprised of a sequence of 32-bit
machine instructions. When executed, those instructions cause the central processing unit
to perform operations on the CPU’s hardware registers. The linear machine code approach
to GP has been documented to be over 60 times faster when compared to an interpreting
C-language implementation and up to 1500 to 2000 times faster when compared to a LISP
implementation [137, 138].

Hardware acceleration

If the aim is to reduce the simulation time, the hardware-based simulators (accelerators)
offer the highest degree of freedom (especially if modern FPGAs allowing to implement a
custom accelerator are taken into account). In this case, the simulated circuit is compiled
to a suitable representation that is downloaded to the hardware simulator. The hardware
simulator is usually constructed using one or more FPGAs or GPUs that contain several
processing units. As soon as the circuit is simulated, the obtained results are downloaded
to the workstation. The process of compilation is usually trivial as it involves converting
a genotype to a configuration string. Even if the simulations on hardware can be orders
of magnitude faster than those running in software, the communication can introduce a
significant overhead. There are two potential communication bottlenecks. In case that
the hardware accelerator does not contain a sufficient amount of memory to store all the

39

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

test-cases, an additional penalty can be introduced due to fetching of data from a host
machine. Besides that, the interactions with the host machine represent another problem.
These host-hardware interactions should be minimized. Both of these problems represent
a serious issue for current GPUs. Another disadvantage is a limited size of the circuit that
can fit into the simulator.

The hardware accelerators can be divided into three groups: application-specific (ASIC)
chips developed for a given problem [152], application-specific accelerators based on recon-
figurable FPGAs [163, 180, 61, 189] and accelerators based on off-the-shelf hardware (e.g.
GPUs) [73, 72].

3.3.2 Performance Improvement Using Parallel Simulation

Even if the common CPUs are since nineties equipped with the instructions that can process
multiple data in one cycle, this fact has been overlooked by the EA community. One reason
is that the first Single Instruction Multiple Data (SIMD) instruction sets tended to slow
overall performance of the system due to the reuse of existing floating point registers.
Other systems, like MMX offered a support for data types that were not interesting to a
wide audience and had expensive context switching instructions to switch between using
the FPU and MMX registers. Nowadays, the current systems seem to have settled down
and the SSE instruction set represents a powerful and easily applicable system.

In addition, there are also some common instructions that are performed in parallel. For
example a bit-wise logical instructions such as AND, OR, XOR and NOT are performed
independently for all the bits in the operands; the instructions are executed in one clock
cycle by concurrently activation of 32 (or 64) different logic gates within the arithmetic
logic unit. In this context, a common CPU can be also seen as SIMD processor consisting
of several one-bit processors.

Figure 3.13: The principle of parallel simulation. The response for all eight test-cases is
evaluated applying a single 8-bit word to each primary input.

The idea of parallel simulation is to utilize bitwise operators operating on multiple bits
to perform more than one evaluation of a gate in a single step [127]. Using this approach, the
simulators working at the gate level can be significantly accelerated. For example, when the
combinational circuit under simulation has three inputs and it is possible to concurrently
perform bitwise operations over 23 = 8 bits in the simulator then the circuit can completely
be simulated by applying a single 8-bit test vector at each input (see Figure 3.13). On
the other hand when it is impossible to evaluate the vectors in parallel, eight three-bit test
vectors must be applied sequentially. Current processors allow us to operate with 64 bit

40

3.3. PRACTICAL ASPECTS OF THE EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

operands, i.e. it is possible to evaluate the truth table of a six-input circuit by applying a
single 64-bit test vector at each input. Therefore, the parallel simulation is 64 times faster
than the sequential simulation. Note that in case that the circuit has more than six inputs,
the speedup is constant, i.e. 64. This technique can be also utilized in hardware. However,
it is mainly useful for gate-level evolution. In case of function-level evolution, for example,
over b-bit operators (such as addition, subtraction, maximum etc.) the speedup is only c/b,
where c is the number of bits of the operators implemented in hardware.

The parallel simulation can also be combined with native simulator that utilizes modern
instruction sets such as SSE/SSE2 enabling to process four 8-bit operations in parallel or
Advanced Vector Extension that manipulates with 256-bit data types. The CGP implemen-
tation that utilizes SSE/SSE2 extension was introduced in [221]. The proposed system was
evaluated using a symbolic regression problem in floating point domain. Using the same
64-bit computer, the authors reported speedup between 20–117 depending on the number
of training vectors and the size of CGP array.

3.3.3 Effcient Calculation of Fitness Value

In order to determine the fitness value, the Hamming distance between the obtained 32-bit
(or 64-bit) response and desired output value has to be calculated. This task can be solved
by applying XOR operation on the vectors and determining the number of non-zero bits
in the resulting bit vector. The naive approach requires one operation per bit, until no
more bits are set. For a 32-bit word, it will go through 32 iterations which is unacceptable.
This task can be solved using an 8-bit lookup table and four lookups. The main drawback
of this approach is that a lookup table residing in the main memory can cause additional
penalties in case there is a cache miss or it might introduce some latency due to the memory
operations. In order to eliminate these problems, it is possible to use some tricks performing
SIMD in general-purpose registers. The following code uses a variable-precision algorithm
to perform a tree reduction adding the bits in a 32-bit value:

unsigned int popcnt (register unsigned int x)

{

 x -= ((x >> 1) & 0x55555555);

 x = (((x >> 2) & 0x33333333) + (x & 0x33333333));

 x = (((x >> 4) + x) & 0x0f0f0f0f);
 x += (x >> 8);

 x += (x >> 16);

 return (x & 0x0000003f);

}

Algorithm 3.14: Population count

The operation this algorithm performs is referred to as the population count. It is based
on an O(log(n)) algorithm that successively groups the bits into groups of 2, 4, 8, 16, and
32, while maintaining a count of the set bits in each group. The first step maps two-bit
values into sum of two one-bit values, i.e. it partitions the integer into groups of two bits
and computes the population count for each 2-bit group. The second step calculates the

41

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

population count of adjacent 2-bit group and stores the sum to the 4-bit group resulting
from merging these adjacent 2-bit groups. To do this simultaneously to all groups, one has
to mask out the odd numbered groups, mask out the even numbered groups, and then add
the odd numbered groups to the even numbered groups. In the next steps, the reduction
using a shift and sum approach is applied since the value in each k-bit field are small enough
that adding two k-bit fields results in a value that still fits in the k-bit field. The AMD
Athlon code optimization guide suggests a very similar algorithm that replaces the last
three lines with multiplication (see Algorithm 3.15).

unsigned int popcnt (register unsigned int x)

{

 x -= ((x >> 1) & 0x55555555);

 x = (((x >> 2) & 0x33333333) + (x & 0x33333333));

 x = (((x >> 4) + x) & 0x0f0f0f0f);

 return ((x * 0x01010101) >> 24);

}

Algorithm 3.15: Population count optimized for AMD Athlon CPU [2]

As the population count is often needed in cryptography and other applications, In-
tel introduced a POPCNT instruction with the SSE4.2 instruction set extension, firstly
available in a Nehalem-based Core i7 processor, released in November 2008. However, the
common PCs are rarely equipped with this extension.

3.4 Current Problems of Evolutionary Design

From the view of the design automation and ability to produce novel designs, the evolu-
tionary design represents a promising and general-purpose design method. However, there
are known problems that limit the application of evolutionary approach in some domains.
The scalability problem means such situation in which the evolutionary algorithm is able
to provide a solution to a small problem instance, however, only unsatisfactory or even
none solutions can be obtained for larger problem instances in reasonable time. During
the last decade, a number of researchers have been addressing the scalability problem.
Unfortunately, this issue has not been yet successfully solved [69].

In order to overcome the scalability problem, a kind of domain knowledge is usually
employed in focusing the search algorithm on promising areas of the search space and
reducing the computation overhead. The scalability problem can primarily be seen from
two perspectives: scalability of representation and scalability of fitness evaluation.

3.4.1 Scalability of Representation

In terms of the scalability of representation, the problem is that long chromosomes which are
usually required to represent complex solutions imply large search spaces that are typically
difficult to search. In order to evolve large designs and simultaneously keep the size of
chromosome small, various techniques have been proposed.

42

3.4. CURRENT PROBLEMS OF EVOLUTIONARY DESIGN

Variable Length Representation

Variable length representation of chromosomes provides, in contrast to the fixed length
representation, more flexibility to the search algorithm. It allows for sampling a genome
space with varying dimensionalities, balancing accuracy and parsimony of the solutions and
the manipulation of non-coding segments [202]. Although this technique is not primarily
considered as a technique for solving the scalability problem, it is incorporated at the level
of genotype or phenotype in almost all methods that attempt to overcome the scalability
problem.

Function-Level Evolution

Instead of gates and single-wire connections, the solution is composed of complex application-
specific functional blocks (such as adders, multipliers and comparators) connected using
multi-bit connections [134, 157, 60]. The advantage is that while the system complex-
ity can be effectively increased, the size of chromosome can remain relatively small. This
approach has mainly been utilized in the area of approximate synthesis where resulting
innovative circuits can have tens of inputs and outputs. However, the selection of suitable
functional blocks represents a domain knowledge that has to be included into the design
method.

Incremental Evolution

In order to evolve more complex circuits and without the aim to minimize the number
of gates, Torresen proposed a divide-and-conquer approach for the evolution of digital
circuits, sometimes referred to as increased complexity evolution [176, 178]. The key idea is
to decompose (e.g. according to Shanon) a target circuit on modules that are subsequently
evolved separately. The advantage is that the modules are much smaller than the original
circuit and so they can be evolved easily. The decomposition can also be applied recursively.
Kalganova employed the incremental evolution in two directions [90]. The objective was
to semi-automatically divide a complex task into simpler subtasks in order to evolve each
of these subtasks and then to incrementally merge the evolved subsystems, reassembling a
new evolved complex system. Generalized disjunction decomposition is the latest and most
successful version of this method [172]. The 17-bit parity circuit, the 6x6 bit multiplier, and
the alu4, which is a circuit with 14 inputs and eight outputs never evolved before with any
other techniques, were evolved using the incremental evolution. However, while the method
is successful if the time of design is measured (respectively, the number of evaluations), it
produces inefficient implementations with respect to the number of gates. Another problem
is that the decomposition strategy is a kind of domain knowledge which has to be supplied
by designer. Incremental evolution was also combined with the function level evolution
[164, 60].

Development

The above mentioned approaches employ a direct encoding of target circuit in the chro-
mosome. Hence the size of the chromosome is proportional to the size of the circuit. As

43

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

developmental approaches employ indirect encoding, the chromosome contains a genetic
program which is executed in order to construct the target circuit. The genetic program
can be implemented using various computational models, e.g. L-system, cellular automaton,
if-then-else rules or, in general, as a program.

Arbitrarily large multipliers were constructed using evolved programs working in a grid
of programmable nodes [18]. However, no innovation is observable in evolved multipliers
in comparison to conventional multipliers. A similar approach was proposed to create
arbitrarily large sorting networks which exhibit slightly better properties (in the number
of components and delay) than sorting networks created using conventional construction
algorithms [159]. Among others, developmental genetic programming introduced by Koza
[105, 107], L-system-based antenna design [83] and developmental neural networks [167] are
examples of successful application of developmental approach.

Although the developmental approaches do not usually lead to innovative circuit designs,
they are useful for investigation of principles of development, genetic regulatory networks,
environmental interactions and fault tolerance which could be useful for evolution and
adaptation of large-scale digital circuits in future. Designing these developmental encodings
is not trivial and a lot of domain knowledge has to be supplied by designer.

Modularization

Some evolutionary algorithms enable to dynamically create and destroy reusable modules
(subcircuits). The reuse of modules makes the evolution easier even for large circuits. Var-
ious modularization techniques have been introduced for tree-based genetic programming.
Among others, the automatically defined functions represent the most popular approach
[101]. Cartesian Gentic Programming was extended by utilizing automatic module acqui-
sition, evolution, and reuse [188, 92]. Shanthi and Parthasarathi have proposed modular
developmental CGP [164]. In particular, it was shown that the computational effort can
be significantly reduced for small combinational circuits in comparison to standard CGP.
However, evolved solutions are inefficient with respect to the number of gates.

3.4.2 Scalability of Fitness Evaluation

Even if an encoding is chosen such that it allows the candidate circuits to be represented ef-
fectively, there is another scalability problem having substantial impact on the evolutionary
design of digital circuits. In case of the combinational circuit evolution, the evaluation time
of a candidate circuit grows exponentially with the increasing number of inputs (assuming
that all possible input combinations are tested in the fitness function). Hence, the evalua-
tion time becomes the main bottleneck of the evolutionary approach when complex circuits
with many inputs are evolved. In case of popular benchmark circuits, the limit when the
evolution provides some solution is 17 inputs for parity circuits [172, 188], 8 inputs for
combinational multipliers when a novel solution has been obtained [182] and 16 inputs for
combinational multipliers when only functionality has been evolved [164]. The 28-input
sorting networks evolved using FPGA accelerator are probably the largest circuits that
were successfully evolved using the fitness function which evaluates all possible assignments
to the inputs, however, only functionality has been evolved [98].

44

3.4. CURRENT PROBLEMS OF EVOLUTIONARY DESIGN

Perfect and Approximate Synthesis

From the viewpoint of the scalability of evaluation, the applications of digital circuit evo-
lution can be divided into two main classes which we will call the perfect synthesis and
approximate synthesis.

In case of the perfect synthesis the goal is to obtain a circuit which responds perfectly
for all requested assignments to the inputs and which exhibits a kind of innovation such
as close-to optimum number of gates, small delay or low power consumption. The fitness
function is usually constructed in such a way that all requested assignments are applied
to the inputs of a candidate circuit and the fitness value is defined as the number of bits
that the candidate circuit computes correctly (additional criteria can be incorporated as
well). The evolution of arithmetic circuits is a typical example of that class. Because
the evaluation time depends exponentially on the number of inputs of the circuit there is
the scalability problem inherently present. Thus, only relatively small and simultaneously
innovative designs have been evolved in this domain.

In case of the approximate synthesis it is sufficient to evolve a circuit which responds
correctly for a reasonable subset of all possible input vectors. The problem is that the
specification is in principle incomplete. Among others, design of filters, classifiers and
predictors are typical examples [78, 157, 60]. The fitness value is usually calculated on
the basis of the circuit response obtained for a carefully chosen training set, a subset of
all possible input vectors. Applying all possible input vectors is intractable as the circuit
can have tens of inputs. This approach is commonly applied during the learning process of
neural networks or classification systems. In contrast to the perfect synthesis, the behavior
of evolved solution has to be validated using a test set at the end of evolution, i.e. using the
vectors unseen during the evolution. To justify the approach, the evolved solution should
exhibit a kind of innovation. For example, the goal can be to obtain a solution having better
classification accuracy or smaller area overhead with respect to competitive solutions.

In order to assess the evolvability of functionally in case of combinational circuits, Miller
and Thomson included only a randomly selected sample of all possible input combinations
to the fitness function [130]. Unfortunately, it has been demonstrated that this is not a
right way since the evolved digital circuits did not work correctly for the remaining input
vectors.

Special Cases of Tractable Applications

Digital circuits evolved so far contain from several gates to thousands of gates. It is typical
for evolution of small circuits that all possible input vectors are used in the fitness function
and that the aim is to improve circuit parameters in comparison with exiting designs.
Evolved mid-size circuits such as image filters or classifiers contain thousands of gates. In
this case, the researchers focus on ways to reduce the number of test vectors required for
evaluation whilst being able to provide a reliable evaluation method.

An obvious conclusion is that the perfect evolutionary synthesis is currently applicable
only for small circuits. On the other hand, when the problem belongs to the class of the
approximate synthesis, real-world and innovative circuits are likely to be evolved. However,
there exist applications that do not suffer from this problem. Even if a perfect synthesis

45

CHAPTER 3. EVOLUTIONARY DESIGN OF ANALOG AND DIGITAL CIRCUITS

scenario is utilized (i.e. a circuit that exactly fulfils the specification ought to be evolved),
the evolutionary approach can be applied to solve large instances without having fitness
scalability problems.

We have identified that linear systems represent a class of problems that can be effec-
tively evaluated [223]. This domain has been completely ignored by EA community even
if it comprises a wide variety of real-world applications. In case that the target system
exhibits the linear properties, it is possible to perfectly evaluate a candidate circuit using
a single input vector independently of the circuit complexity (i.e. the number of inputs,
outputs or components). The system is linear if and only if it consists of linear components
(functions). A linear function is a function f : D → R which satisfies the following two
properties:

additivity f(x + y) = f(x) + f(y)
homogenity f(αx) = αf(x)

(3.7)

for every x ∈ D, y ∈ D and for all scalars α, where D and R are vector spaces over field K.
Note that x and y are not necessarily vectors of real numbers, but can in general be members
of any vector space. This is equivalent to requiring that for any vectors x1, . . . ,xm ∈ D
and scalars a1, . . . , am ∈ K, the following equality holds

f(a1x1 + · · ·+ amxm) = a1f(x1) + · · ·+ amf(xm) (3.8)

The concept of linearity can be easily extended to linear operators because the operators
represent in fact a mapping from one space to another. This idea can be also utilized at
gate-level. In Boolean algebra, a linear function is a function f for which there exists vector
a0, a1, . . . , an ∈ {0, 1}n+1 such as

f(b1, . . . , bn) = a0 ⊕ (a1 ∧ b1)⊕ . . .⊕ (an ∧ bn) (3.9)

for all b1, . . . , bn ∈ {0, 1}n. The easy way to determine the linearity of Boolean operations
is based on the looking into the truth table. An operation is linear if each variable always
makes a difference in the truth value or it never makes a difference. In order to determine
the linearity efficiently, a spectral method based on Walsh transformation can be utilized
[146].

According to the definition of Boolean linearity, there are only six linear functions of
two input variables x, y ∈ {0, 1}. Namely, two identities x and y, two logical complements
¬x and ¬y and finally nonequivalence and equivalence relation x 6= y and x ≡ y. These
functions correspond with the following common two-input gates: BUF, NOT, XOR and
XNOR. This set of gates is used in Reed-Muller logic [66]. It is well known that many
Boolean functions which can be easily implemented using XOR gates are very inefficiently
represented in canonical Boolean logic. The most extreme case represents the n-bit parity
circuits which can be realized with n− 1 XOR gates only. On contrary, 2n−1 − 1 OR gates
and a large number of AND gates are required when a common logic including AND, OR
and NOT gates is used [127].

The principle of linearity can be demonstrated on the evolutionary design of parity
circuits using XOR and XNOR gates only. Let us assume an n-input parity circuit ought

46

3.5. SUMMARY

to be designed. The common approach requires to evaluate 2n test-cases; i.e. 1024 vectors
for a 10-bit parity circuit. If the linearity is taken into account, the number of fitness
cases can be reduced to n + 2; i.e. 12 vectors for a 10-bit parity circuit. One test-case
corresponding to the case when all inputs are set to zero, another one the opposite case,
i.e. when all the inputs are set to one, and the rest n input vectors matching the cases
when exactly one input is set to one. The latter vectors are required in order to inform the
evolution that all the inputs have to contribute to the resulting value.

The evolutionary design of multiple-constant multipliers represents another problem in
which the principle of linearity can be utilized to reduce fitness evaluation time. Because the
multiple-constant multipliers are composed of adders, subtractors and shifters (i.e. building
blocks exhibiting the linear property), a single training vector can be utilized to perfectly
evaluate the fitness value. Using this approach multipliers consisting of hundreds of gates
can be evolved at function-level (see Chapter 4).

Let us conclude this section with a different problem that also belongs to the class
of tractable problems – the evolutionary design of benchmark circuits. In this case it
is sufficient to evaluate only some structural properties of combinational circuits. The
key feature is that the evaluation of these properties can be done in a reasonable time
complexity. For example, the testability of a candidate circuit can be calculated in a
quadratic time. This approach has been firstly utilized in [143]. The authors showed that
it is possible to evolve very large benchmark circuits with predefined testability properties.

3.5 Summary

Evolutionary circuit design is considered as a very challenging research area. The first
difficulty comes from the complexity of the search space. Another difficulty is caused by
the presence of very good and robust conventional design tools that have been extensively
developed for many years to produce compact and efficient solutions.

There is a belief that evolutionary search works better for analogue circuits rather than
digital circuits possibly due to the fact that analogue behaviors provide relatively smoother
search spaces [169]. In addition, contrasting with digital design, there is no reliable set of
design rules for analog circuit synthesis. As a consequence, the engineer has to rely on his
own experience or intuition. Another problem is that automated design tools for analog
circuits are not as developed as in the area of digital circuits.

One of the goals of the early pioneers of the evolvable hardware was to evolve com-
plex circuits, overcome the limits of traditional design and find ways how to exploit the
vast computational resources available on today’s computation platforms. However, the
scalability issue for evolvable hardware continues to be out of reach [69].

Although we have shown some possibilities how to improve the time needed to evaluate a
candidate solution in CGP, the discussed acceleration techniques have only marginal impact
on evolutionary synthesis of complex (i.e. real-world) digital circuits since the evaluation
time grows exponentially with increasing number of primary inputs. Thus the only way
to eliminate the fitness scalability issue seems to be introducing of new domain-specific
evaluation methods.

47

Chapter 4

Evolutionary Synthesis of Linear

Transforms

The linear transforms represent a key concept that is in some way employed in every digital
signal processing (DSP) application. In order to reduce area and power requirements for
embedded and mobile applications, designers of such systems use various techniques. One
of the approaches is focused on the usage of effective finite-precision algorithms. Many
numerically intensive applications have computations that are based on linear transforms
such as convolutions, the discrete Fourier transform, the discrete cosine transforms, etc.
Mathematically, they consist exclusively of additions and multiplications by constants. The
algorithms usually involve a large number of multiplications of one variable with several
constants. A proper optimization of this part of the computation, referred to as multiple
constant multiplication problem (MCM), often results in a significant improvement not only
of the performance but also the power consumption. When implemented in hardware, the
multiplications by constants are often implemented by a sequence of additions and shifts.
Compared to general n × n-bit multipliers, this implementation is less expensive in terms
of chip area and power consumption.

The design and optimization of a finite precision implementation for a given application
represents a nontrivial task. The designer has to manually choose a numerically robust
algorithm considering the least possible precision in the final fixed point implementation.
In the second step, accuracy has to be tuned. The goal is to reduce the precision of the
multiplicative constants (and thus the number of additions) without exceeding a given
error constraint. This step conceals two major problems – the exponentially large number
of different configurations of constant precisions and the fact that reducing the precision
of one or several constants has a virtually unpredictable impact on the output error and is
strongly dependent on the chosen error measure [148].

In order to simplify this process, several approaches have been proposed. For example,
Breitzman proposed a system for automatic derivation and implementation of fast con-
volution algorithms [21]. Algorithms are presented in a uniform mathematical notation
that allows automatic derivation, optimization, and implementation. Püschel et al. have
proposed another approach for the domain of linear DSP transforms that is able to au-
tomate the mentioned design steps [148]. This method is suitable for automatic design

49

CHAPTER 4. EVOLUTIONARY SYNTHESIS OF LINEAR TRANSFORMS

of a close to optimal implementation of a given transform if an error measure and error
threshold is given. There also exists a generator for optimized software implementations of
DSP transforms called SPIRAL [147]. A given problem is described in Signal Processing
Language and automatically transformed using a set of rules, compiled and according to
the given performance results eventually modified, recompiled and so on. The process of
transformation is driven by the requirements and constraints.

In this chapter, we will introduce an evolutionary method based on Cartesian Genetic
Programming that can synthesize complex instances of the MCM problem. The goal of this
research is to show that the evolutionary algorithm is able to generate not only complex
but also close to optimal structures even if a perfect synthesis scenario is considered. In
order to eliminate the scalability problem of a candidate MCM evaluation, the linearity is
exploited as it has been discussed in Section 3.4.2. Surprisingly, the proposed method is
able to compete with well optimized heuristics in particular problem instances.

4.1 Theoretical Background

The aim of this section is to provide the necessary background on transform algorithms
and multiplierless implementation techniques in order to put the MCM problem into the
context.

Mathematically, a linear transform can be expressed as multiplication y = Mx, where
x is an input vector, M the transform matrix, and y the output vector. The input vector
x represents a sampled signal, the output vector y represents a transformed input signal.
Surprisingly, for each transform where M is of size n×n there is a large number of different
fast algorithms, which have similar, close to minimal cost, typically of the order O(n log(n)),
but have different structures and different numerical accuracies [148]. The reason for this
variety lies in the recursive structure of the algorithms. For a given transform, there are
various ways of computing it using other, smaller transforms. The combination of these
choices leads to a combinatorial explosion as the number of algorithms grows exponentially
with n.

In order to implement a linear transform in hardware, two basic building blocks are used
– additions/subtractions and multiplications by constants. When multiplying by constants
in hardware, costly combinational n×n-bits multipliers may be avoided by replacing them
with structure consisting of additions, subtractions and shifts. In most cases, the shifts
can be effectively implemented using the wires. The principles of multiplierless multiplier
design will be briefly introduced in the following paragraphs. Firstly, design of a single
constant multiplier will be described. Then, its extended version will be discussed.

4.1.1 Single Constant Multiplication

In order to implement a DSP algorithm, each real-valued constant c is firstly replaced by
its fixed point approximation c ≈ k/2n, where n denotes the number of fraction bits and
k represents the corresponding fixed point value. As the denominator has a fixed value,
the number of operations required to multiply by c is not affected by the position n of the
decimal point (i.e. a fixed-point multiplication is equivalent to a multiplication by an integer

50

4.1. THEORETICAL BACKGROUND

followed by a right shift) and we can restrict our discussion to integer fixed point numbers
c = k without loss of generality. The multiplication y = kx of variable x by a known
constant k can be decomposed to into additions, subtractions and shifts. The problem of
finding the optimal decomposition is known as the single constant multiplication problem
(SCM) [185].

A straightforward method for decomposing the multiplication into the additions and
shifts can be constructed as follows. Let us assume a common binary representation of a
constant k

k =
n−1∑
i=0

bi2i, bi ∈ {0, 1} (4.1)

where n corresponds with the number of bits used to represent a given integer k. Using
this representation, the product of k and x can be computed as

y = kx = x

n−1∑
i=0

bi2i. (4.2)

Then, a simple method of multiplying can be constructed; for each non-zero bit bi, one shift
and one adder is issued resulting into the adder chain

y = kx =
n−1∑
i=0

xbi2i = xb0 + (2xb1 + (4xb2 + · · ·)). (4.3)

This direct method requires as many additions as the number of nonzero bits bi minus
one, which can be as large as n − 1. In this sense, the effort in multiplication can be
estimated through the number of nonzero bits. Statistically, the half of the digits are zeros
if a binary coding is used. Thus b(n− 1)/2c adders is required in average. The worst case
scenario requires n− 1 additions. Figure 4.1a show the implementation of a multiplierless
multiplier for k = 15.

As it can be easily demonstrated, this method does not produce an optimal decompo-
sition. For example, the multiplication y = 15x = 8x+ (4x+ (2x+ 1x)) consisting of three
adders and three shifts can be implemented as y = 15x = 16x−x requiring one subtraction
and one shift only. To handle this issue and reduce the number of operations, signed digit
(SD) representation is commonly used in both hardware as well as software [68, 124]. A
constant represented in SD is expressed as

k =
n−1∑
i=0

bi2i, bi ∈ {1, 0, 1}, (4.4)

where 1 stands for -1. This scheme recodes each sequence of m consecutive ’1’ digits in
a normal binary representation, where m > 1, by an SD sequence of n − 1 ’0’ digits with
prefix ’1’ and suffix ’1’. For example 1510 = 11112 = 10001SD. Comparing to the direct
approach, the density of zeros increases to two thirds [124]. The worst case scenario, i.e. the
alternating one’s and zero’s digits, requires b(n−1)/2c additions or subtractions. Since the
SD representation is non unique, a canonic signed digit system (CSD) having the minimum
number of non-zero elements is used instead.

51

CHAPTER 4. EVOLUTIONARY SYNTHESIS OF LINEAR TRANSFORMS

15 = 1111DEC BIN

X

15 = 16-1=10001

<<2

<<3

+

+

+

2

1<<1

4 3

87

15

X

-
16

1<<4

(a) (b)

15

DEC SD

Figure 4.1: The implementation of the multiplierless multiplier for the constant 15. The
structure has been designed using a) the direct encoding and b) CSD representation.

105 = 01101001
DEC BIN

X

105 = 7 15 = (8-1)(16-1).

<<5

<<6

+

+

+

8

1<<3

9 32

6441

105

X

-
8

1<<3

-

7

7<<4

112

105

(a) (b)

Figure 4.2: Two SCM implementations for the constant 105.

Even if the CSD system minimizes the cost, it is known that CSD in general does
not yield the minimum cost solution. It can be sometimes more efficient to firstly factor
the coefficient into several factors and implement the individual factors in an optimal CSD
sense [42, 43, 124]. The process of factorization is illustrated in Figure 4.2 for the coefficient
105 = 011010012 = 10101001CSD. In this case, the direct binary code and CSD require
three additions. By factorizing, this coefficient can also be represented as 105 = 7 × 15 =
(8− 1)(16− 1). This implementation requires only one adder for each factor.

In order to find an optimal solution that minimizes the cost, a kind of reusing of interme-
diate results has to be introduced. However, finding the optimal addition chain for a given

52

4.1. THEORETICAL BACKGROUND

10021 = 10011100100101DEC BIN

X

+
10021

(a) (b)

10021 = 10100100100101DEC BIN

(c)

s1 = (x >> 2) + x
s2 = (x >> 3) - x

s3 = (s2 << 5) - s1

10021x = (s1 << 11) + s3

<<10 <<9 <<8 <<5<<13 <<2

+
8192 1024

+
512 256

+
32 4

+ +
9216 768 36

9984

1

37

X

+
10021

<<11 <<8 <<5

<<13

<<2

8192

-
2048 256

+
32 4

+ +
1792 36

9984

1

37

+
4

<<2

-
1

<<3

1 8

X

<<5

7

224

-<<11

5

5

-
10240 219

10021

Figure 4.3: The implementation of addition chains using a) direct method, b) CSD repre-
sentation and c) the optimal solution.

constant k is known to be NP-complete problem [26, 23]. For example, the addition chain
to multiply x by k = 1021 can be implemented using 4 additions. In this case, the direct
method requires 6 additions and the CSD method requires 5 additions. The corresponding
implementations are summarized in Figure 4.3.

In order to find the optimal decomposition, Dempster and Macleod designed an exhaus-
tive search algorithm that finds the optimal MCM implementation of constants defined over
12 bits [41]. This work has been extended by Gustafsson et al. for constants up to 19 bits
[68]. Although the asymptotic worst-case cost of the optimal decomposition remains an
open problem, is has been shown that a maximum of five additions is needed for constants
of up to 19 bits.

4.1.2 Multiple Constant Multiplication

The single constant multiplication problem can be extended to the problem of multiplying a
variable x with several constants k1, . . . , kN in parallel. The resulting structure referred to
as multiplier block can be used to implement digital finite impulse response (FIR) filters (see
Figure 4.4), linear signal transforms such as the discrete Fourier transform or discrete cosine
transform, and so on [185]. For example, discrete Fourier and trigonometric transform
algorithms involve rotations, which require simultaneous multiplication by two constants.
The problem of finding the decomposition with fewest operations is known as the multiple
constant multiplication (MCM) design problem [185].

Comparing to the previous problem, the design of an optimal multiplierless MCM struc-
ture is more complicated since intermediate results of the SCM decompositions may be
shared. In addition to that, the optimal decomposition can not be obtained as a simple
combination of optimal SCM multipliers obtained for each constant independently. Another

53

CHAPTER 4. EVOLUTIONARY SYNTHESIS OF LINEAR TRANSFORMS

z-1 z-1

x[n]

c[L] c[L-2] c[0]

y[n]

x[n]

c[0]x
c[1]x
c[2]x

c[L-1]x

c[0]

c[1]

c[2]

c[L]

y[n]=x[n]*f[n] = x[k] c[n-k] = c[k] x[n-k]
k=0

L

k=0

L

c[L-3]

Figure 4.4: Each FIR filter can be expressed as the sum of the input sample and its delayed
variants multiplied by a finite number of coefficients. This equation can be transformed
and expresses as the sum of the input sample multiplied by finite number of coefficients
that are successively summed [124]. FIR filter in the transposed structure (a) implemented
using a multiplier block (b).

characteristics that has to be also considered is the number of levels that determines the
propagation delay. Figure 4.5 shows an example of a multiplier block which implements
the parallel multiplication by 19 and 71 using only 3 add/subtract operations and 3 shifts.
The optimal decompositions of 19 and 71 require 2 add/subtract operations and 2 shifts
each.

+

8 1

<<3

X

-
4 1

<<2

(a) (b)

<<4

+
3 16

19

X

-
8 1

<<3

<<6

+
7 64

71

<<3<<1

+
19

-
71

72181 1

9 9

X

(c)

Figure 4.5: a) optimal decomposition of constant 19, b) optimal decomposition of constant
17 and c) the optimal implementation of MCM multiplier block for constants 19 and 71.

Even if the MCM problem is NP-complete, several efficient heuristics have been pro-
posed. A good survey containing the details can be found, for example, in [185]. Apart
from the direct simple methods based on CSD representation that do not provide good
solutions, some authors applied common subexpression elimination algorithms. The basic
idea is to find common subpatterns in representations of constants after the constants are
converted to a convenient number system such as CSD. The disadvantage, however, is that
the performance of these algorithms depends on the number representation. Graph-based
algorithms and hybrid algorithms represent the best approaches proposed in this field. In

54

4.2. PROPOSED METHOD

contrast with another heuristics, the graph-based algorithms are expected to outperform
other methods, since they have the fewest restrictions. Graph-based algorithms iteratively
construct the graph representing the multiplier block. The graph construction is guided
by a heuristic that determines the next graph vertex to add to the graph. Graph-based
algorithms offer more degrees of freedom by not being restricted to a particular representa-
tion of the coefficients, or a predefined graph topology (as in digit-based algorithms), and
typically produce solutions with the lowest number of operations. A very efficient graph-
based heuristic approach was proposed by Voronenko and Püschel in [185]. This algorithm
can handle problem sizes as large as one hundred 32-bit constants. The algorithm can be
considered as the state of the art method for the MCM design problem.

4.2 Proposed Method

The goal is to synthesize a multiple constant multiplier block which generates N output
values yi = cix where 1 ≤ i ≤ N , ci are given constants and x is the input variable. The
circuit is composed of high-level linear components such as additions, subtractions and logic
shifts. The evolution is conducted at function level. In order to design a multiplier block
having the minimal cost, two-stage fitness strategy is employed. At the beginning of the
search, the objective of the evolutionary algorithm is to evolve a fully functional multiplier
only. Once the first fully functional solution appears, an optimization phase rewarding the
solutions with lower cost is conducted. During this stage, the number of components is
optimized. The problem is approached using evolutionary algorithm in which the problem
representation is borrowed from the CGP.

Figure 4.6: Example of a candidate MCM block. CGP parameters are as follows: l = 3,
nc = 3, nr = 2, Γ = {add (0), sub (1), 1b-shift (2), 2b-shift (3)}. Nodes 2, 4 and 5 are
not utilized. Chromosome: 0,0,2, 0,0,3, 1,0,0, 1,2,0, 3,1,1, 3,0,0, 3, 6. The last two integers
indicate the outputs of the MCM. The input x is encoded as 0.

A candidate multiplier block is represented as an array of nc (columns) and nr (rows)
of programmable nodes. The number of columns defines the maximum MCM delay. Each
node has two inputs where at least the first input is always utilized. The number of inputs,
ni, and outputs, no, is fixed and chosen as follows: ni = 1, no = N . Feedback is not
allowed. Each node input can be connected to the output of a node placed in the previous
columns or directly to the input variable x. Each node is programmed to perform one
of functions defined in the set Γ which includes addition, subtraction, various shifts and

55

CHAPTER 4. EVOLUTIONARY SYNTHESIS OF LINEAR TRANSFORMS

identity function. These functions as well as all connections are used over b bits, where
b = 16 in our case. Figure 4.6 shows an example of MCM with two coefficients.

EA operates with the population of λ individuals where λ = 5. The initial population
is randomly generated. The goal of EA is to minimize the difference between actual and
required products. When a functionally perfect solution is obtained, the fitness function
is switched to a new fitness function in which the number of components is optimized. In
order to measure the similarity of a candidate solution and the required response, sum of
absolute differences (SAD) is used. The fitness value is defined as

fitness =

fSAD when fSAD > 0, fSAD =

∑
x

N∑
i=1

|yi − xci|

fC otherwise, fC =
NcNr∑
i=1

cost(Ni)

(4.5)

where cost(Ni) is the cost of node Ni. The cost function is constructed as follows:

cost(Ni) =

0 for identity function,
1 for shift,
10 for addition/subtraction.

(4.6)

The evolution is stopped when the best fitness value stagnates or a predefined number
of generations is exhausted. As it has been discussed, in theory, it is sufficient to evaluate
a candidate solution using one test-case, e.g. x = 1. Nevertheless, especially in case when
Γ contains right shifts and subtractions, the limited number of bits may introduce a kind
of nonlinearity. For example, in order to implement y = 3x, the following structure can
be evolved y = ((x << 12) >> 11) + x. For x = 1, the result is correct, however, when
x = 128 is used, the obtained result y = 128 does not correspond with the expected value
384 due to the overflow caused by the left shift. In order to avoid this behavior more test
cases should be used. It is usually sufficient to test x with the powers of two.

4.3 Results

In order to evaluate the proposed method, we have chosen to evolve multipliers with 3, 5, 10,
20 and 54 coefficients (given in Table 4.1). The coefficients were encoded at 16 bits. All the
multipliers were evaluated using single training vector x = 1. The evolved multipliers were
verified at symbolic level. All experiments were repeated 200 times with the population of
eight individuals and five genes mutated in the chromosome. Γ = {a, a+ b, a− b, 2a, 4a,
8a, . . ., 8192a }. Table 4.1 gives other parameters of the experiments, average results (the
number of generations and used adders/subtractors), the success rate and parameters of
the best evolved solutions.

Results are compared with the best known heuristic approach [185] which produces very
compact solutions. Table 4.1 shows that the proposed evolutionary-based approach is able
to generate multipliers that are competitive with results obtained using the state of the art
heuristic approach. The evolution can reduce the total number of components as well as

56

4.3. RESULTS

Table 4.1: Results of evolutionary design of MCMs with different coefficients. Population
size is 8. Averages are calculated from 200 independent runs.

Settings Average Results The Best MCM

cols × rows maxgen geners. #add/sub succ. rate delay add/sub shifts operations

3 constants: 2925, 23111, 13781

Heuristics [185] 8 8 8 16

5×6 20M 1M62 14 68.5 5 9 8 17
6×6 20M 1M27 14 86.5 6 8 8 16
7×4 40M 2M15 13 99.0 7 8 6 14 (Fig. 4.8)

5 constants: 83, 221, 71, 387, 13

Heuristics [185] 5 6 6 12

4×6 20M 461k 10 99.5 4 7 6 13
5×6 20M 207k 11 99.5 5 6 6 12
6×6 20M 114k 11 100.0 6 6 5 11

10 constants: 117, 1123, 743, 221, 1069, 7605, 987, 16689, 3033, 29

Heuristics [185] 8 14 13 27

10×4 40M 4M8 23 99.0 7 15 12 27
7×6 20M 4M7 23 95.5 6 17 11 28
9×4 40M 9M5 22 91.0 9 17 9 26

20 constants: 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71

Heuristics [185] 4 19 8 27

4×10 40M 457k 23 100 4 19 4 23 (Fig. 4.7)
5×10 40M 347k 23 100 4 19 4 23
6×5 40M 772k 21 100 5 19 3 22

54 constants: 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,
181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251

Heuristics [185] 6 53 53 106

5×20 40M 12M9 66 98 5 56 17 73
6×14 40M 19M7 63 90 6 56 12 68
6×16 40M 9M8 65 98.5 6 55 19 74

the delay of the designed MCMs. Even if the goal of this research was to demonstrate and
confirm the validity of our hypothesis concerning the linear problems, the proposed method
has been able to discover better solutions in some instances. In case of the 3 constant
MCM, a solution exhibiting lower delay containing fewer shifts has been evolved. In case
of the 20 constant MCM, the number of shift has been reduced by one half.

x

<<2 <<4

<<5 +

1

-

1

+

1

-

1

<<6

1x

4

4

+

4

-

4

+

4

-

4

1 6

+

1 6

-

1 6

+

1 63 2

+

3 2

-

3 2

5 5

-

5

5x

5

-

3 3 3

+

3

3x

3

-

1 7 1 7

17x

17

31x

31

6 46 4

-

6 4

+

6 4

6 4 6 4

3 7

37x

37

4 7

47x

476 1

61x

61

77

7x

7

19x

19

1 1

11x

11

53x

53

43x

43

23x

23

41x

41

71x

71

13x

13

59x

59

29x

29

67x

67

Figure 4.7: The best evolved MCM with 20 constant coefficients

57

CHAPTER 4. EVOLUTIONARY SYNTHESIS OF LINEAR TRANSFORMS

Figure 4.7 shows one of evolved innovative solutions for the 20 constant MCM. This cir-
cuit consists of 4 shifters and 19 adders/subtractors. The heuristic approach [185] provides
a solution consisting of 19 shifters and 19 adders/subtractors. Delay remains unchanged.

<<2

-

<<5

+<<8

<<11

<<4

-

<<6

+

<<3 <<2

+ +

- +

<<3

+

1

+
1

-

1

8

<<12

9

<<2

9

+

9

9

36864 36

<<6

45

<<9

45

+

45

-

45

2880

36865

23040

2925

+

23039

-

23039
72

36820

23111 13781

<<3

23111

X X

2925 13781

4 1 1 32 1

204833 33256

289

3

48 3

45

452880

23400

2925 2925

11700 2081

Figure 4.8: MCM with 3 coefficients (2925, 23111, 13781): according to [10] (left), the best
evolved solution (right)

Figure 4.8 compares the best evolved solution with the solution provided by the heuris-
tics for the 3 constant MCM. Evolved solution contains 2 shifters less and exhibits shorter
delay than the solution provided by the heuristics.

4.4 Summary

A very time-consuming evaluation of candidate configurations is one of problems which
influence the applicability of evolutionary circuit design. In this chapter, we focused on
such problems in which a candidate solution can be perfectly evaluated in a short time if
some domain knowledge is employed. Linear transforms in general, and multiple constant
multiplier blocks in particular, belong to this class. Although well-optimized heuristics
exist for linear transforms design, we confirmed that novel implementations of multiple
constant multipliers can be designed using evolutionary algorithm. As the design of opti-
mal multiplierless implementations of linear transforms is known to be NP-complete, the
probability that a novel implementation will be discovered using an evolutionary approach
even increases with the increasing number of constants as well as precision bits. Using this
method, digital circuits with total output width higher than 850 bits have been successfully
evolved.

58

Chapter 5

Evolutionary Synthesis of Complex

Combinational Circuits

Efficient logic synthesis and optimization have been crucial for computer theory as well as
computer industry for more than 50 years. Nowadays, many companies provide commercial
tools that allow producing reasonable solutions (circuits) in a reasonable time. However,
the recent work in the area of conventional synthesis has shown that these tools produce
solutions that are far from optimum for many circuit classes [35]. Evolvable hardware
community has demonstrated that very efficient implementations of digital circuits can
be obtained using evolutionary computation, particularly by means of Cartesian Genetic
Programming [182]. Unfortunately, the evolutionary circuit design is able to discover in-
novative designs only for small circuit instances (approx. up to 20 inputs and 100 gates).
One of the key problems is a very time consuming fitness calculation which typically grows
exponentially with increasing circuit complexity (number of inputs).

The goal of this chapter is to show that it is possible to significantly reduce the number of
gates for complex circuits, too. As it will be demonstrated, very compact implementations
can be obtained if the fitness calculation utilizes a formal verification algorithm to check
whether a candidate circuit is functionally correct or not. In order to decide the correctness
of a candidate solution, we have employed SAT-based equivalence checking. This approach
translates the problem of functional equivalence of two combinational circuits to the problem
of deciding whether a Boolean formula given in conjunctive normal form is satisfiable or
not. We have used SAT-based equivalence checking from several reasons. Firstly, the
combinational circuits represented by CGP can be converted to Boolean formula in linear
time with respect to the number of CGP nodes. Secondly, as it will be shown, the SAT-based
approach enables to apply several optimization techniques specific for the evolutionary
design. And finally, the SAT-based equivalence checking becomes to be a preferred method
as it outperforms the BDD-based approaches in many problems.

5.1 Theoretical Background

The aim of this section is to provide the necessary background on the problem of checking
a functional equivalence of combinational circuits that represents the fundamental part of

59

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

the proposed method. We will firstly introduce the Boolean satisfiability problem and the
existing SAT solvers. Then, the problem of functional equivalence checking will be intro-
duced. We will briefly summarize how the binary decision diagrams are used in determining
functional equivalence and outline the concept of the functional equivalence checking based
on SAT. In addition to that, the last part is devoted to the conventional logic synthesis.

5.1.1 Boolean Satisfiability

Boolean satisfiability problem is a well-known decision problem consisting of deciding
whether the variables of a propositional formula can be assigned in such a way that the
formula evaluates to true. The research area devoted to this problem is today very active
as many real-world problems can be effectively solved by transforming them to the SAT
problem. However, SAT is also a typical example of NP-complete problem which means
that all SAT solvers algorithms require in worst-case exponential time with respect to the
size of a given instance [36]. Despite that, modern SAT algorithms are extremely effective
at coping with large problem instances and large search spaces [116]. In the field of digital
system design, the use of SAT has been investigated for more than twenty years and many
powerful tools utilizing SAT solvers have been developed. Test pattern generation [111],
identification of functional dependencies in Boolean functions [112], technology-mapping
[151], combinational equivalence checking [64] or model checking [123] represent successful
examples of practical applications of SAT solvers.

Most of the SAT solvers require to transform the solved problem into Boolean formula
in conjunctive normal form (CNF). CNF formula ϕ consists of a conjunction of clauses
denoted as ωj . Each clause contains a disjunction of literals. A literal is either variable
xi or its complement ¬xi. The clause can contain up to n literals providing there exists
exactly n variables. Formula 5.1 contains example of a Boolean formula in CNF of three
variables x1, x2 and x3. The given formula is satisfiable because there exists at least one
assignment that evaluates the formula to true, e.g. x1 = 0, x2 = 1, x3 = 1.

ϕ(x1, x2, x3) = (¬x1 ∨ ¬x3)(x1 ∨ x2)(¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) (5.1)

The modern SAT solver algorithms can be divided into two groups, complete algorithms
and incomplete algorithms. Most of the complete algorithms for solving the SAT problem
for conjunctive normal forms are based on the Davis-Putnam procedure [40] and Davis-
Putnam-Logemann-Loveland procedure (DPLL) proposed in 1962 [39]. SATO [203], Satz
[113], Chaff [133], Berkmin [63], MiniSAT [51] and PrecoSAT [19] represent typical SAT
solvers based on DPLL algorithm. The incomplete algorithms are based on a local search,
e.g. genetic algorithms. The stochastic local search methods are used especially when there
is no or limited knowledge of the specific structure of the problem instances to be solved.

5.1.2 Combinational Equivalence Checking

Determining whether two Boolean functions are functionally equivalent represents a fun-
damental problem in formal verification. Although the functional equivalence checking

60

5.1. THEORETICAL BACKGROUND

is an NP-complete problem, several approaches have been proposed so far to reduce the
computational requirement for practical circuit instances.

Circuit A
x
1

x
k

y
1

y
m

Circuit B
y'
1

y'
m

z
1

z
m

1
?
=

Figure 5.1: Equivalence checking of two combinational circuits using the all outputs ap-
proach. The combinational circuits are equivalent if and only if the output evaluates to
zero for every input assignment.

Most of the proposed techniques are based on representing the circuit by means of its
canonical representation. Generally, two Boolean functions are equivalent if and only if
canonical representations of their output functions are equivalent. A brute-force method to
determine combinational equivalence is to expand the combinational functions in minterm
form (or in a truth table) and compare them term by term (row by row). This method
represents an approach routinely used by EHW community. Clearly, this method runs into
the problem of exponential size, because the number of minterms (or rows of a corresponding
truth table) of a function can grow exponentially with the increasing number of input
variables. In order to decide the functional equivalence problem in reasonable time, we need
a representation that is both canonical and compact. However, due to the NP-completeness,
it is likely that all canonical representations are exponential in size in the worst case. In
spite of that, there exist representations that provide reasonable results for many practical
applications.

The Reduced Ordered Binary Decision Diagrams (ROBDD) represent the widely used
canonical representation in formal verification [196]. ROBDD is a directed acyclic graph
that can be obtained by applying certain transformations on the ordered binary decision
diagram. Determining whether two circuits represent the same Boolean function is equiv-
alent to determining whether two ROBDDS are isomorphic. Some of methods developed
to determine whether two ROBDDS are isomorphic are based on graph-based algorithms.
Other methods are based on the combination of ROBDDs with the XOR operation and
checking whether the resulting ROBDD is a constant node (zero) [109].

The equivalence checking using BDDs is illustrated in Figure 5.2. The objective is to
decide whether a combinational circuit CA exhibits the same Boolean function as combi-
national circuit CB; both of these circuits having three primary inputs and two primary
outputs. Note that only the first outputs exhibit the same Boolean function. Firstly a

61

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

CA

CB

x1

x2 x2

x3 x3 x3 x3

f

x1 x1

x2 x2 x2x2

x3 x3 x3 x3 x3 x3 x3 x3

0 0 0 0 01 1 1

f

x1

f

0 1

x3

x2

x1
x1

x3x3

x2 x2

a)

b) c)

x1
x2

x3

Figure 5.2: Principle of combinational equivalence checking using Binary Decision Dia-
grams.

miter circuit with Boolean function f is created (a). Miter consists of the checked com-
binational circuits combined using XOR gates. If CA and CB are functionally equivalent,
f must evaluate to zero for each input assignment. For illustration, (b) contains common
BDD while (c) contains ROBDD. Looking at the ROBDD it can be easily determined that
it does not contain a single zero node; thus the circuits are not equivalent. Moreover, using
the ROBDD it can be determined that the circuits gives different results for example for
the assignment x1 = x2 = x3 = 1.

All these graph-based approaches rely on the fact, that the number of nodes in the
resulting graph will be relative small; otherwise, the time of the ROBDD construction as
well as the time of comparison will be enormous. In practice, these methods are rarely
implemented directly without any further circuit preprocessing. The main problems are
the need for high memory resources due to the huge number of BDD nodes and significant
time requirements. Although many functions in practice can be represented by polynomial
number of BDD nodes with respect to the number of inputs, there are functions (e.g.
multipliers) that always have the number of nodes exponentially related to the number of
inputs [48]. The verification of such functions still represents a challenge. Note that And-
or-invert graphs (AIG) represent another canonic representation with similar properties.

High consumption of memory resources has motivated the researchers to look for al-

62

5.1. THEORETICAL BACKGROUND

ternative methods. Since the satisfiability solvers were significantly improved during the
last few years, the SAT-based equivalence checking becomes a promising alternative to the
BDD-based checking. In this case, the circuits to be checked are transformed into one
Boolean formula which is satisfiable if and only if the circuits are functionally equivalent
[64].

As it has been mentioned, the SAT solvers require to transform the equivalence checking
problem into Boolean formula in conjunctive normal form. Unfortunately, the time com-
plexity of translation process transforming a circuit to optimal CNF is exponential [184].
However, there exist suboptimal techniques that introduce a new variable for each logic
gate having the linear complexity. For our purposes, the most suitable transformation of
the circuit to CNF is represented by Tseitin’s algorithm proposed in [179] that works as
follows: Let us consider a combinational circuit CA with k inputs that is composed of n
interconnected logic gates. Without loss of generality, let us restrict the set of all possible
gates to the following one-input and two-input gates: NOT, AND, OR, XOR, NAND, NOR
and XNOR only. Let yi = Ω(xi1, xi2) denote a gate i of CA with function Ω, output yi and
two inputs xi1 and xi2 (1 ≤ i1, i2 ≤ k+n). The Tseitin transformation is based on the fact
that the CNF representation ϕ captures the valid assignments between the primary inputs
and outputs of a given circuit. This can be expressed using a set of valid assignments for
every gate. In particular, ϕ = ω1 ∧ ω2 ∧ · · · ∧ ωn where ωi(yi, xi1, xi2) = 1 if and only if
the corresponding predicate yi = Ω(xi1, xi2) holds true. During the transformation a new
auxiliary variable is introduced for every signal of CA. Hence the CNF contains exactly
k + n variables and the size of the resulting CNF is linear with respect to the size of CA.

Let us assume that a common 2-input logic AND gate should be transformed to CNF.
The objective is to express a Boolean function of two variables y = AND(x1, x2) = x1x2

by means of CNF ω(y, x1, x2) that is evaluated to true if and only if the predicate y =
AND(x1, x2) holds true. The latter statement can be expressed using the implications
from both directions as

ω(y, x1, x2) = (y ⇒ x1x2)(x1x2 ⇒ y). (5.2)

Using the identity P ⇒ Q ≡ P ∨Q, the expression can be rewritten as

ω(y, x1, x2) = (y ∨ x1x2)(x1x2 ∨ y). (5.3)

Finally, applying the second De Morgan’s law PQ ≡ P ∨Q and distributive law P ∨QR ≡
(P ∨Q)(P ∨R), the equation can be rewrited as

ω(y, x1, x2) = (y ∨ x1)(y ∨ x2)(x1 ∨ x2 ∨ y). (5.4)

Table 5.3 contains the CNF representation for the common logic gates. The Tseitin’s
transformation can be applied to any Boolean function having arbitrary number of variables.
The Boolean function with multiple outputs is converted to CNF using the same approach
however, each output is converted separately. Because both the size of resulting CNF and
the complexity of the translation are linear, the resulting CNF does not necessary have
the lowest possible number of literals. In order to improve the size of CNF, some kind of
preprocessing (e.g. gate merging or subsuming of inverters) can be introduced [184, 7].

63

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

NOTx1

x2
x1

x2
x1

x2
x1

x2
x1

x2
x1

x2
x1

y

y

y

y

y

y

y

Gate Boolean function CNF representation

Figure 5.3: CNF representation for the common logic gates

In order to check whether two circuits are functionally equivalent, the following scheme
is usually used. Let CA and CB be combinational circuits, both with k inputs denoted as
x1 . . . xk and m outputs denoted as y1 . . . ym and y′1 . . . y

′
m respectively. The same approach

as in the previous case can be used – the corresponding primary outputs yi and y′i are
connected using the XOR-gate. The corresponding primary inputs are connected as well.
The goal is to obtain one circuit that has only k primary inputs x1 . . . xk and m primary
outputs z1 . . . zm, zi = XOR(yi, y

′
i). In order to disprove the equivalence, it is necessary

to identify at least one XOR gate which evaluates to 1 for an input assignment, i.e. it is
necessary to find an input assignment for which the corresponding outputs yi and y′i provide
different values and thus zi = 1. This can be done by checking one output after another (i.e.
a CNF is created and solved for each XOR gate separately) or by the all outputs approach
(all XOR outputs are connected using the m-input OR gate; thus one CNF is created and
solved only). Note that both approaches are used in practice.

Figure 5.4 shows an example of equivalence checking based on SAT. The objective
is to decide whether a combinational circuit CA exhibits the same Boolean function as
combinational circuit CB. Firstly a miter circuit combining both of the checked circuits
is created (a). The miter is transformed to the CNF (b) using a Tseitin’s transformation.
For each gate, new variable is created and a CNF according to the Table 5.3 is generated.
The obtained CNF instance is solved using a SAT solver. In this case, there exists an
assignment (x1 . . . x13 = 1100000010101) that satisfies the CNF. It means that the circuits
are functionally different.

Although the equivalence checking technology has been significantly improved during

64

5.1. THEORETICAL BACKGROUND

CA

CB

f

a)

b)

x3
x2

x1
x4
x5 x6

x7

x8 x9

x10

x11

x12

x13

N
O
T

N
O
T

A
N
D

O
R

N
O
T

N
A
N
D

N
A
N
D

X
O
R

X
O
R

X
O
R

Figure 5.4: Principle of combinational equivalence checking using SAT.

the last years even for circuits with millions of gates, there exist some specific problems
that remain to be extremely difficult. In fact, we have transformed one problem that in
the worst case will take exponential time in the number of its circuit inputs into another
problem that in the worst case will take exponential time in the number of its variables. For
example, formal verification of arithmetic circuits, especially if multiplication is involved,
represents one of these problems [168]. It is known, that multipliers lack a compact canonical
representation that can be built efficiently from gate level implementations. For example,
the equivalence checking of multipliers using the Binary Decision Diagrams is intractable
as the number of nodes grows exponentially with the number of inputs. On the other hand,
the common SAT-based combinational equivalence checking is also impractical due to the
large runtime requirements; despite the compact CNF representation, the number of paths
traversed by the SAT solver grows exponentially with the increasing number of inputs (see
Figure 5.5). In order to improve performance of the SAT solver in this particular case,
various techniques have been proposed to reduce the equivalence checking time [168, 6, 7,
142]. All approaches attempt to exploit specific knowledge about the nature of the problem
under verification.

65

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

a) b)

Figure 5.5: The time needed to perform the SAT-based equivalence checking for various
multipliers. a) The runtime and number of branches for the Satz SAT solver. b) The
runtime and number of decisions for the Minisat SAT solver with preprocessing. Note that
the CNF are rather small; e.g for 11-bit multiplier the CNF uses 1400 variables and consists
of 4732 clauses [88].

5.1.3 Conventional Logic Synthesis

Among others, SIS [162] and ABC [17] represent the open synthesis tools routinely used in
the digital circuit synthesis community. SIS (Sequential Interactive Synthesis) is a system
primary designed for synthesis and optimization of sequential circuits. It consists of variety
of algorithms and tools including combinational optimization techniques. SIS can synthe-
size combinational, synchronous and asynchronous circuits, generating either two-level or
multi-level equations. The ABC, SIS’s successor, is a growing software system for synthesis
and verification of combinational as well as sequential circuits. The ABC supports various
representations of logic functions such as the Sum of Products or Binary Decision Dia-
grams, but most of the operations are performed over And-Inverter Graph representation.
The basic operations include various conversions, minimizations, combinational equivalence
checking, synthesis and technology mapping.

Combinational logic functions are commonly specified by PLA or BLIF files where
PLA stands for programmable logic array and BLIF stands for Berkeley Logic Interchange
Format. The PLA file is an abbreviated truth table where all inputs are specified. However,
it does not list products for which all the outputs are zero or undefined combinations.
BLIF which is a list of gates lists all interconnected single output combinational gates
(and latches in case of sequential circuits). Implementations of the synthesis tools support
various operations with circuits, for example, it is possible to convert PLA to BLIF and vice
versa. Circuits specified in BLIF can also be mapped on a chosen set of gates, including
lookup tables. Both of these representations can contain don’t care symbols to simplify the
specification.

The BLIF describes the digital circuit behavioral in a hierarchical manner. Combina-
tional as well as sequential digital circuit can be viewed as a directed graph of combinational
logic nodes and sequential logic elements. BLIF encodes each node using a truth table sim-

66

5.1. THEORETICAL BACKGROUND

ilarly to the PLA. Figure 5.6 contains example of two possible BLIF representations that
describe the same circuit consisting of five logic gates. The first case encodes the circuit
using two-input Boolean functions. In the second case, the same behavior is modeled using
two lookup tables (4-LUT and 2-LUT).

AND

AND

a

d

xb

c

r

t

u

s

v
y

AND

OR

OR

#gate-level representation
.model tst_01.blif
.inputs a b c d
.outputs x y
.names a b r
11 1
.names b c s
10 1
01 1
11 1
.names c d t
11 1

.names r t u
11 1
.names s t v
10 1
01 1
11 1
.names u x
1 1
.names v y
1 1
.end

#LUT-4 representation
.model tst_01_fpga.blif
.inputs a b c d
.outputs x y

a)

b)

c)

.names a b c d x
1111 1
.names b c y
00 0
.end

Figure 5.6: Example of two possible BLIF representations describing the same combina-
tional function of four variables. The directive .inputs defines the list of input variables,
.outputs is the list of output variables. Each .name directive begins a section that defines
the truth table for a given list of variables. In this section, the input and output parts are
separated by a space character.

The synthesis process using ABC is based on DAG-aware rewriting of a circuit rep-
resented using AIG [17]. Rewriting is performed using a library of pre-computed AIGs
(command rewrite), or collapsing and refactoring of logic cones with 10-20 inputs (com-
mand refactor). According to the documentation, iterating these two transformations and
interleaving them with AIG balancing (command balance) substantially reduces the AIG
size and tends to reduce the number of AIG levels. In order to simplify the process of syn-
thesis, ABC offers several synthesis scripts such as resyn, resyn2, and resyn2rs combining
the mentioned commands. SIS contains similar commands and provides two basic synthe-
sis scripts, script.rugged and script.algebraic. Combinational logic synthesis in ABC using
resyn and resyn2 is typically 10-100x faster compared to SIS scripts giving a comparable

67

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

quality measured in terms of the number of AIG nodes and levels in the resulting network.
However, the resulting number of factored-form literals is typically larger compared to SIS
[17]. The synthesis is followed by technology mapping to LUTs or standard cells (command
map).

Table 5.1: Recommended synthesis scripts for the SIS and ABC system

SIS ABC
read PLA file read PLA file
script rugged script choice
map map
script rugged: script choice:
sweep; eliminate -1 fraig store;
simplify -m nocomp resyn; fraig store;
eliminate -1 resyn2; fraig store;
sweep; eliminate 5 resyn2rs; fraig store;
simplify -m nocomp share; fraig store;
resub -a fraig restore
fx
resub -a; sweep
eliminate -1; sweep
full simplify -m nocomp

In this work, we will use the synthesis tools with recommended (standard) setting
which is represented by synthesis scripts given in Table 5.1. The synthesis is followed by
technology mapping into the MCNC technology library [195] limited to 2-input gates only,
for simplicity.

5.2 Proposed Method

The goal of proposed evolutionary circuit synthesis method (primarily intended for the
perfect synthesis) is to automatically create complex real-world circuits that will contain
fewer gates than the circuits routinely designed using conventional synthesis algorithms.
Since the complete truth table evaluation is intractable for large combinational circuits
(i.e. the circuits having more than 20 inputs), each candidate circuit produced by CGP is
verified against the reference circuit using a SAT-based combinational equivalence checking
algorithm.

According to the preliminary experiments, we have chosen MiniSAT 2 (version 070721)
SAT solver [50] because it exhibits small runtime requirements, has flexible interface and
can be effectively embedded into a custom application. In addition to that, MiniSAT was
recently awarded in several industrial categories of the SAT competition [50].

The method consists of three steps that will be described in detail in the following
sections. In the first step, the optimized circuit is synthesized using a conventional synthesis
tool. The synthesis includes an optimization phase followed by mapping to the standard
technology library as it has been described in the previous chapter. In this case, SIS, or
its successor ABC can be utilized. In the second step, the synthesized circuit is converted

68

5.2. PROPOSED METHOD

from the BLIF file format to the CGP representation. Finally, the algorithm based on CGP
that employs a formal verification method to reduce the number of gates is used.

The CGP is terminated if either the maximum allowed number of generations has been
exhausted or a solution that fulfills all requirements has been discovered. The initial solution
(the seed) is constructed by means of mapping of the circuit obtained from conventional
synthesis and specified in the BLIF format to the CGP representation. The mapping is
straightforward since the CGP representation is in fact a netlist. If the initial circuit consists
of m gates, each of them possessing up to γ inputs, then CGP will operate with parameters
nc = m,nr = 1, l = nc, na = γ. As it will be explained later, the initial circuit is also
transformed into the conjunctive normal form in order to create a reference solution for the
formal verification.

5.2.1 Formal Verification in Fitness Function

Assume that C is a k-input/m-output circuit composed of n logic gates and the goal is
to reduce the number of gates. The first step involves creating a reference solution (seed)
by converting C to the corresponding CNF ϕ1 using the approach described above. Let
X = {x1, x2, . . . , xN} be a set containing the variables used within ϕ1 and |X| = N = k+n.
The variables corresponding with the primary inputs will be denoted as x1, . . . , xk and
the auxiliary variables generated during the transformation process will be denoted as
xk+1, . . . , xk+n. Let the last m variables xN−m+1, . . . , xN correspond with the primary
outputs of C. This step is illustrated in Figure 5.7a). The reference circuit has k = 4
inputs and consists of n = 5 gates. Thus, nine variables x1, . . . , x9 have been created.
While the variables x1, . . . , x4 correspond with the primary inputs, the variables x8 and x9

refer to the primary outputs.
The following steps are used in order to calculate the fitness value of a candidate circuit:

1. A new instance of the SAT solver is created and initialized with the reference circuit
C. This comprises creating of N new variables and submitting all clauses of ϕ1 into the
SAT solver.

2. A candidate solution is transformed to a list of clauses that are submitted into the SAT
solver. The transformation includes reading the CGP representation according to the
indexes of the nodes. If a CGP node contributes to the phenotype, it is converted to the
corresponding CNF according to Table 5.3, otherwise it is skipped. In particular, for
each node a new variable is created and a list of corresponding CNF clauses is submitted
into the SAT solver. The following input mapping is used in order to form a CNF: If
an input of the node situated in row ir and column ic is connected to the primary input
i, variable xi is used; otherwise variable xN+i is used where i = (ic − 1).nr + ir denotes
the index of the corresponding node. Let variables corresponding with the primary
outputs of a candidate solution be denoted xN ′−m+1, . . . , xN ′ where N ′ is the number
of converted CGP nodes.

Note that although it is possible to include unused gates to CNF without affecting the
reasoning, it is preferred to minimize the number of clauses and variables of the resulting
CNF since it can decrease the decision time.

69

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

This step is depicted in Figure 5.7b). The utilized candidate circuit contains four gates
that contribute to the phenotype. For each gate, a new variable (x10, . . . , x13) has to
be created. Since the CNF of the reference circuit consists of ten variables, the first
variable created in this step is x10. The last two variables x12 and x13 correspond with
the candidate solution’s primary outputs.

3. Miter circuit for combinational equivalence checking is created. The XOR gates are
applied to each output pair which means that m new variables denoted as y1, . . . , ym

have to be created and CNFs of XOR gates yi = XOR(xN−i, xN ′−i), i = 0 . . .m − 1
have to be submitted to the SAT solver.

Figure 5.7c) shows the resulting structure of miter circuit as well as the CNF clauses
submitted to the SAT solver during this phase. Since the optimized circuit has two
primary outputs, two new variables y1 and y2 have been created.

4. In order to guarantee that the resulting CNF will be satisfiable if and only if at least
one miter is evaluated to 1, the outputs of the miters generated in the previous step
have to be combined together. The solution is based on combining the outputs by
m-input OR gate z = OR(y1, . . . , ym). As it can be easily derived, the corresponding
CNF representation has the form of

∧k
i=1(¬xi ∨ z) ∧ (¬z ∨ x1 ∨ · · · ∨ xk). In order to

provide a CNF instance capable of the equivalence checking, it is necessary to append
the clause (z) that implies z = 1. However, this CNF can be simplified as follows∧k

i=1(¬yi ∨ z) ∧ (¬z ∨ y1 ∨ · · · ∨ yk) ∧ (z) = (y1 ∨ · · · ∨ yk) because the z = 1 can be
propagated through the clauses. So, in order to finish the CNF, clause (y1 ∨ · · · ∨ yk)
has to be submitted to the SAT solver (see last clause in Figure 5.7c).

5. Finally, the SAT solver determines whether the submitted set of clauses is satisfiable
or not. If the CNF is satisfiable, it means that there exists at least one assignment
of input variables for which the reference circuits gives different response. Thus the
fitness function returns -1 because the candidate circuit and the reference circuit are
not equivalent; otherwise the number of utilized gates is returned.

The resulting CNF given in Figure 5.7 submitted to the SAT solver is satisfiable, thus
the candidate circuit is thrown away since it receives bad fitness value. This result can
be easily verified when the following input assignment x1 = x2 = x3 = x4 = 0 is used.
For this combination, the output y1 is evaluated to 1.

5.2.2 Time of Candidate Circuit Evaluation

In order to compare the time of evaluation for the common fitness function and the proposed
SAT based fitness function, the parity circuit optimization problem has been chosen. The
design of a parity circuit consisting of AND, OR and NOT gates only is considered as a
standard benchmark problem for genetic programming [101]. The relevant CGP parameters
are as follows: λ = 4, Γ = {AND,OR,NOT,BUF}, l = Ng, nc = Ng and nr = 1 where
Ng is the number of gates of the reference circuit. One gene of the chromosome undergoes
the mutation only. The CGP implementation uses the parallel evaluation described in

70

5.2. PROPOSED METHOD

CNF

CNF is satisfiable if

Figure 5.7: Example of transformation of reference circuit, candidate circuit and miter to
CNF

Section 3.3.2. The initial circuit (seed) has been obtained by mapping a parity circuit
consisting of XOR gates (parity tree) to the 2-inputs gates using ABC.

Table 5.2 gives the mean evaluation time (out of 100 runs) for three fitness functions
– the standard fitness function of CGP (tcgp), the optimized and accelerated evaluation
(tocgp), and the proposed SAT-based method (tsat). Last two columns contain the achieved
speedup of proposed approach against the common CGP and accelerated CGP. Since tcgp

increases exponentially with the increasing number of circuit inputs, the standard CGP
approach provides a reasonable evaluation time for parity circuits that contain up to 22
inputs. The optimized evaluation is applicable for up to 24 inputs. In case of the SAT-based
approach the evaluation time is almost similar independently of the number of candidate
circuit inputs. The experiments were carried out on Intel Core 2 Duo 2.26 GHz processor.
For ni ≥ 26 only extrapolated values are given as running the experiments is not tractable
due to the problems with enormous memory as well as runtime requirements.

The optimized and accelerated CGP implementation works as follows. Because the

71

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

Table 5.2: The mean evaluation time for the standard fitness function of CGP tcgp, CGP
with optimized and accelerated evaluation tocgp and the SAT-based CGP tsat in the task of
k-bit parity circuit. Symbol ‘*’ denotes extrapolated values.

seed tcgp tocgp tsat tcgp:tsat tocgp:tsat

ni [gates] [ms] [ms] [ms] speedup speedup
12 69 0.13 0.04 0.348 0.3 0.1
14 87 0.54 0.16 0.438 1.2 0.4
16 103 2.54 0.27 0.531 4.8 0.5
18 115 11.45 1.20 0.722 15.9 1.7
20 125 51.44 5.17 0.776 66.3 6.7
22 135 220 25.11 0.804 273.6 31.2
24 145 1328 139 0.903 1471 153.9
26 171 5962* 626* 1.028 5799 608
28 181 26748* 2820* 1.195 22383 2359
30 199 119996* 12703* 1.211 99088 10489
32 215 538327* 57207* 1.348 399352 42438

initial population already contains a fully functional solution and the elitism is implicit for
CGP, there will be at least one perfectly working solution in each population. Hence we
can now consider CGP as a circuit optimizer rather than a tool for discovering new circuit
implementations from a randomly generated initial population. The fitness evaluation
procedure which probes every assignment to the inputs (i.e., 0 . . . 2ni − 1 test cases) is time
consuming. In order to make the evaluation of a candidate circuit as short as possible,
it is only tested whether a candidate circuit is working correctly or incorrectly. In case
that a candidate circuit does not produce a correct output value for the j-th input vector,
j ∈ {0 . . . 2ni−1}, during the evaluation, the remaining 2ni−j−1 vectors are not evaluated
and the circuit gets the worst possible score. Experimental results show that this technique
reduces the computational overhead (see Table 5.2), but it does not significantly contribute
to solving the scalability problems. Note that this technique cannot be applied for the
randomly initialized CGP because we have to know the fitness score as precisely as possible
(i.e. the exact number of bits has to be calculated that can be generated by a particular
candidate circuit) in order to obtain a reasonably smooth fitness landscape.

5.2.3 CGP-Specific Performance Improvement Techniques

Although the system can be used directly as it was proposed in the previous section, it is
possible to introduce some techniques allowing the SAT solver even to increase the perfor-
mance.

The speed of the SAT-based equivalence checking depends mainly on the number of
paths that have to be traversed in order to prove or disprove the satisfiability. The number
of paths among others increases with the increasing number of outputs to be compared, i.e.
more outputs to be compared more time the SAT-solver needs for the decision. In order
to simplify the decision problem and increase the performance, CNF reduction based on
finding structural similarities were proposed in literature.

72

5.3. EVALUATION OF THE PROPOSED METHOD

In our case we can apply an elegant and simple solution. Since every fitness evaluation
is preceded by a mutation, a list of nodes that are different for the parent and its offspring
can be calculated. This list can be used to determine the set of outputs that have to be
compared with the reference circuit and only these outputs are included into CNF. This
can be achieved by omitting the unnecessary outputs during the miter creation phase.

In order to decrease the number of variables as well as the number of clauses in NOT-
intensive circuits, the following approach is used. Let yi = NOT (xi), then the NOT gate
can be subsumed to CNF of every gate that is connected directly to output yi. Using literal
¬xi instead of yi and literal xi instead of ¬yi respectively solves the problem.

Note that proposed approach can easily be combined with other methods designed
to speedup the SAT-based equivalence checking, e.g. circuit preprocessing, incremental
approach or improved CNF transformation [44, 49, 7, 184].

Table 5.3: The mean time needed to evaluate a candidate solution for plain and optimized
SAT-based fitness method

seed tsat tosat tsat : tosat

circuit ni no [gates] [ms] [ms] speedup
apex1 45 45 1408 49.80 15.52 3.21
apex2 39 3 235 3.54 2.52 1.40
apex3 54 50 1407 34.56 13.93 2.48
apex5 117 87 784 17.45 5.07 3.44

In order to evaluate the impact of proposed improvements, four complex circuits have
been selected for experiments from the LGSynth93 benchmark set. This benchmark set
includes nontrivial circuits specified in BLIF format that are traditionally used by engineers
to evaluate quality of synthesis algorithms. The benchmark circuits were mapped to 2-input
gates using SIS. Parameters of selected circuits as well as obtained results are summarized
in Table 5.3. It can be seen that even if the circuits exhibit higher level of complexity in
comparison with parity circuits, the average time needed to perform the fitness evaluation
remains still reasonable. Note that the same experimental setup mentioned in the previous
section has been utilized. Obtained results show that the average time needed to evaluate
a candidate solution has been reduced three times in average by means of applying the
proposed steps during the transformation of a candidate solution to corresponding CNF.

5.3 Evaluation of the Proposed Method

This section surveys experiments performed to further evaluate the proposed method. In
particular, the effect of population sizing, CGP grid sizing, mutation rate and time allowed
to evolution are analyzed for benchmark circuits. In all experiments we used the optimized
SAT-based fitness function. The experiments were carried out on a cluster consisting of
Intel Xeon X5670 2.4GHz processors using the Sun Grid Engine (SGE) that enables to run
the experiments in parallel.

73

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

5.3.1 Population Size

Table 5.4 surveys the best (minimum) and mean number of gates obtained for λ = 1
and λ = 4 out of 100 independent runs. The number of evaluations was limited to
400,000 which corresponds with 100,000 generations for ES(1+4) and 400,000 generations
for ES(1+1). The mutation operator modified 1 gene of the chromosome, l = nc and
Γ = {BUF,AND,OR,NOT,XOR,NAND,NOR}. The best values as well as mean values
indicate that ES(1+1) performs better than ES(1+4) which corresponds with the assump-
tion of very rugged fitness landscape.

Table 5.4: The best and mean number of gates for different population sizing.

seed ES 1+4 ES 1+1
circuit ni no [gates] best mean best mean
apex1 45 45 1408 1240 1267 1201 1255
apex2 39 3 235 138 155 132 146
apex3 54 50 1407 1336 1350 1331 1347
apex5 117 87 784 736 746 730 743
mean 959 863 880 849 873

5.3.2 Mutation Rate and Topology of CGP encoding

Table 5.5 gives the best (minimum) and mean number of gates obtained for different mu-
tation rates (1, 2, 5, 10, 15 genes) and CGP grid setting (nc× 1 versus nc×n(i)

r). It will be
seen below that the number of rows n(i)

r is variable. The number of evaluations was limited
to 400,000 and results were calculated out of 100 independent runs of ES(1+1). Table 5.5
also includes the mean number of bits that were included to create miters and the mean
time of a candidate circuit evaluation.

The best results were obtained for the lowest mutation rate. The higher mutation rate
the higher mean number of gates in the final circuit. While the mean number of miters
grows with increasing of the mutation rate, the mean evaluation time is reduced. This
phenomenon can be explained by the fact that higher mutation rate implies more changes
that are performed in circuits and thus more miters have to be considered. On the other
hand, because of many (mostly harmful) changes in a circuit it is easier to disprove the
equivalence for SAT solver and so reduce the evaluation time.

The settings nc× 1 or nc×nr do not have a significant impact on the resulting number
of gates on average. Recall that the values of nc and nr are given by the circuit topology
which is created by the SIS tool. The number of rows (n(i)

r) is considered as variable for
a given circuit in order to represent the circuit optimally. For example, the 1408 gates
of the apex1 benchmark is mapped on the array of 19x189 nodes; however only 1, 5, 7,
14, 17, 26, 43, 57, 84, 117, 142, 177, 189, 187, 139, 89, 51, 27, 40 gates are utilized in
columns i = 1 . . . 19. The advantage of using nr > 1 is that delay of the circuit is implicitly
controlled to be below a given maximum value.

74

5.3. EVALUATION OF THE PROPOSED METHOD

Table 5.5: The best (minimum) and mean number of gates, the mean number of miters and
the mean evaluation time for different mutation rates (1–20 genes) and CGP grid setting
(nc × 1 versus nc × n(i)

r)

mutated genes (nc × 1) mutated genes (nc × n(i)
r)

1 2 5 10 15 20 1 2 5 10 15 20
apex1 - 1408x1 apex1 - 19x189

best 1240 1290 1351 1377 1382 1393 1260 1290 1351 1379 1385 1392
mean 1269 1313 1367 1387 1396 1399 1287 1326 1369 1390 1395 1399
mean (miters) 3.8 5 8.2 12.3 15.3 17.6 3.6 4.8 8 12.2 15.2 17.6
mean tosat [ms] 15.8 11.2 8.8 7.7 7.7 7.2 11.8 11.5 9.7 7.8 7.9 6.7

apex2 - 235x1 apex2 - 22x23
best 164 159 166 181 195 200 165 167 172 186 194 201
mean 170 172 181 195 203 209 171 174 182 195 205 209
mean (miters) 1.8 2.1 2.5 2.7 2.8 2.9 1.8 2 2.5 2.7 2.8 2.9
mean tosat [ms] 1.7 1.7 1.4 1.2 1.1 0.9 1.7 1.6 1.4 1.2 1.0 1.0

apex3 - 1407x1 apex3 - 24x193
best 1341 1358 1383 1392 1395 1396 1345 1362 1383 1392 1396 1398
mean 1354 1369 1389 1397 1399 1400 1357 1372 1390 1397 1400 1401
mean (miters) 2.6 3.6 6.2 9.4 12 14 2.6 3.5 6.1 9.4 11.9 14.1
mean tosat [ms] 10.5 10.1 9.0 11.4 8.3 8.0 10.5 10.3 9.8 8.8 9.8 7.2

apex5 - 784x1 apex5 - 34x117
best 740 741 755 765 767 774 741 750 757 767 768 771
mean 748 753 764 773 775 779 751 757 766 773 775 777
mean (miters) 4.6 6.4 11.1 18.1 23.7 28.4 4.6 6.4 11.2 18.1 23.7 28.4
mean tosat [ms] 3.3 3.1 3.0 2.9 2.9 2.7 3.1 3.2 2.9 3.0 3.2 2.9

5.3.3 Seeding the Initial Population

In order to investigate the role of seeding of the initial population we have used two seeds
obtained after 1 and 1000 iterations of the SIS script. Figure 5.8 shows that convergence
curves for two selected LGSynth93 benchmark circuits – apex1 (the largest one) and ex4p
(the highest number of inputs) – are very similar for those seeds. We can also observe
how the progress of evolution is influenced by restarting CGP (every 3 hours; using the
best solution out of 100 independent runs) which can be also considered as a new seeding.
Figure 5.8 shows that repeating the synthesis scripts (SIS and ABC are compared) quickly
lead to a small reduction of the circuit size; however, no further improvements have been
observed in next 1 hour.

5.3.4 Parity Benchmarks

In Section 5.2.2 we compared the evaluation time of the standard fitness function and the
SAT-based fitness function in the task of parity circuits optimization. Table 5.6 shows
concrete results - the minimum number of gates that were obtained for 12–38 input parity
circuits by running the proposed method for 3, 6, 9 and 12 hours. The results are aver-
aged from 100 independent runs of CGP with the following setting: ES(1+1), 1 mutated

75

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

0 100 200 300 400 500 600 700
900

1000

1100

1200

1300

1400

1500

#
g

a
te

s

apex1
(1408 gates) CGP

0 2 4 6 8 10
1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

#
g

a
te

s
apex1

SIS

ABC

0 100 200 300 400 500 600 700
380

400

420

440

460

480

500

#
g

a
te

s

ex4p
(500 gates) CGP

0.0 0.2 0.4 0.6 0.8 1.0

t [m in]

480

490

500

510

520

530

540

550

560

#
g

a
te

s

ex4p
SIS

ABC

0 100 200 300 400 500 600 700
900

1000

1100

1200

1300

1400

1500

#
g

a
te

s

apex1
(1394 gates) CGP

0 100 200 300 400 500 600 700
t [m in]

380

400

420

440

460

480

500

#
g

a
te

s
ex4p

(488 gates) CGP

Figure 5.8: Convergence curves for the apex1 and ex4p LGSynth93 benchmarks. The mean,
minimum and maximum number of gates from 100 independent runs of CGP when seeded
using the result of the 1st iteration and the best result out of 1000 iterations of the SIS
tool. ABC and SIS were repeated until stable results observed.

gene/chromosome, Γ = {BUF,AND,OR,NOT}, and CGP array of nc×1 nodes where nc is
the number of gates in the seed – the initial circuit created by SIS. Column TG denotes the
number of gates of the optimal solution which is known in this case. It can be calculated
as 4w where w is the number of XOR gates in the optimized parity tree and 4 denotes the
number of gates from Γ needed to form a single XOR gate.

We can observe that the proposed method provides an optimal solution for ni ≤ 20 and
almost optimal solution for larger problem instances. Last column shows that the proposed
method improves the original solution of SIS by 28–42 %.

5.3.5 LGSynth93 Benchmarks

Table 5.7 shows the minimum and mean number of gates that were obtained for real-
world benchmark circuits of the LGSynth93 suite (we have selected those with more than
20 inputs) by running the proposed method for 3, 6, 9 and 12 hours. The results are
averaged from 100 independent runs of CGP with the following setting: ES(1+1), 1 mutated
gate/chromosome, Γ = {BUF,AND,OR,NOT, XOR,NAND,NOR}, and CGP array of
nc × 1 nodes where nc is the number of gates in the seed circuit. The initial circuit was
obtained by converting the PLA files of LGSynth93 circuits to the 2-input gates of Γ and

76

5.4. IMPROVED EQUIVALENCE CHECKING

Table 5.6: The minimum number of gates that were obtained for parity circuits by running
the proposed method for 3, 6, 9 and 12 hours. TG gives the optimum solution.

seed run-time TG relative
ni [gates] 3h 6h 9h 12h [gates] improv.
12 69 45 44 44 44 44 36 %
14 87 54 53 52 52 52 40 %
16 103 64 61 60 60 60 42 %
18 115 74 70 69 69 68 40 %
20 125 82 79 77 76 76 39 %
22 135 95 91 88 87 84 36 %
24 145 110 101 98 96 92 34 %
26 171 134 120 114 111 100 35 %
28 181 151 132 124 121 108 33 %
30 199 165 140 132 129 116 35 %
32 215 186 169 159 143 124 33 %
34 227 214 187 172 160 132 30 %
36 237 220 192 168 162 140 32 %
38 247 235 219 193 177 148 28 %

optimizing them by SIS. Last column shows that the proposed method improves the original
solutions obtained from SIS by 22–58%.

5.4 Improved Equivalence Checking

Although the SAT-based equivalence checking applied in the fitness function allows to
optimize large logic circuits using genetic programming, there exist circuits for which the
runtime of state-of-the-art SAT solvers grows exponentially with the increasing size of the
problem instance.

One of the hard cases is the equivalence checking of the combinational multipliers where
the time needed to decide whether two multipliers are functionally equivalent is enormous
even for instances with operands of modest size. In order to improve the performance of
SAT solvers in this particular case, various techniques have been proposed in literature. A
common goal of the proposed techniques is to modify (preprocess) the input CNF instance
in order to decrease the proving effort of the SAT solver. For example, a preprocessing tool
which derives implications according to the computed implication graph is proposed in [7].
The implications are then used to reduce the verification time. Although this tool is able
to handle the multipliers having 32-bit operands, the run-time is enormous (5.5 hours).

In order to shorten the decision time and improve the performance of the evolutionary
approach, an enhanced method has been proposed. The knowledge of the dissimilarities
between the reference circuit and checked (i.e. candidate) circuit is applied to reduce the
size of CNF instance. Comparing to the previous approach, this method does not require
additional reference circuit since a parental circuit serves simultaneously as a reference. It
also means that as the size of the optimized circuit gets smaller, the CNF derived from the
reference requires fewer clauses. Thus, the performance has been improved at two different

77

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

Table 5.7: The minimum (even rows) and mean number (odd rows) of gates for LGSynth93
circuits obtained from the proposed method after 3, 6, 9 and 12 hours.

seed run-time relative
circuit ni no [gates] 3h 6h 9h 12h improv.
apex1 45 45 1408 1179 1083 1026 990 30 %

1230 1108 1042 1001 29 %
apex2 39 3 235 104 101 99 98 58 %

119 102 100 98 58 %
apex3 54 50 1407 1280 1223 1189 1167 17 %

1333 1240 1202 1175 16 %
apex5 117 87 784 675 649 640 633 19 %

692 661 644 636 19 %
cordic 23 2 67 32 32 32 32 52 %

33 32 32 32 52 %
cps 24 109 1128 870 788 737 698 38 %

909 806 757 713 37 %
duke 22 29 430 286 274 270 268 38 %

296 279 272 269 37 %
e64 65 65 192 133 130 129 129 33 %

139 131 129 129 33 %
ex4p 128 28 500 404 399 396 394 21 %

414 401 397 395 21 %
misex2 25 18 111 76 73 72 70 37 %

82 74 72 71 36 %
vg2 25 8 95 79 75 74 74 22 %

83 77 74 74 22 %

levels – by applying an approach that uses a variable reference and reducing the size of a
miter circuit. In order to generate a CNF that is used to decide about the equivalence of
the parental and candidate circuit, the proposed extension uses of the following steps.

1. Because the evolutionary approach is based on the modify-and-test approach, we can
easily determine the difference between the parent individual and its modified (mutated)
version. Let ∆ be a set containing (a) the indexes of such gates where at least one gene
has been modified and (b) the indexes of the outputs that have been modified. This set
can be constructed within the mutation phase.

The improved Equivalence Checking algorithm is illustrated in Figure 5.9. The example
contains the reference circuit and its mutated version. For the simplicity, only one
mutation will be considered in this example. The second input of gate 7 has been
mutated and is now connected to the output of gate 5. Since only one mutation has
been executed, ∆ contains one index referring the mutated gate ∆ = {7}. Note that
the gate indices correspond with the encoding introduced in Section 2.1.5. The example
circuit has four inputs indexed as 0, . . . , 3 and consists of 7 gates indexed as 4, . . . , 10.

2. Another set, ∆e, contains the indexes of all the gates and outputs in the mutated circuit
which are directly or indirectly connected to the outputs of the gates of ∆. The ∆e set

78

5.4. IMPROVED EQUIVALENCE CHECKING

can be constructed in linear time as follows. Let ∆(0)
e = ∆, i = 0 and dmin = min(∆) be

the lowest index of a modified gate (if it exists). Check all gates with the index greater
than dmin (starting with the lowest index). If at least one of the inputs is connected to
a gate whose index is stored in ∆(i)

e then increase i and add the corresponding index
to ∆(i)

e . The same procedure is performed for all the primary outputs. At the end,
∆e = ∆(i)

e holds.

In our example, the gates with indexes 8, 9, 10 are successively tested. The ∆e is
initialized to ∆(0)

e = ∆ = {7}. Since the gate with index 9 is connected to gate 7 that
is already in ∆(0)

e , the gate is added to the set resulting in ∆(1)
e = {7, 9}. Finally, the x

output is also labeled as it is connected to previously labeled gate 9, thus ∆(2)
e = {7, 9, x}.

As there are no other nodes to test, ∆e = ∆(2)
e = {7, 9, x}.

3. In this step, the ∆r set which contains the indexes of all the gates in the reference
parental circuit that contribute to any of the outputs listed in ∆ is constructed. Similarly
to the previous step, the ∆r set can be calculated in linear time as follows. Let ∆(0)

r

contains the indexes of the gates that are directly connected to the primary outputs
listed in ∆ and i = 0. Go through all the gates (starting with the highest index). If a
gate index is in ∆(i)

r then increase i and add all the gate indexes the particular gate is
connected with to ∆(i)

r . At the end, ∆r = ∆(i)
r .

In our example, the set will contain the gates contributing to the x output. Since there
is only one gate connected directly to the output x, the ∆(0)

r is initialized as follows
∆(0)

r = {9}. Then, the gates with indices 9,8,7,6 and 5 are successively tested if their
output is connected to a gate listed in ∆r. The algorithm gradually generates the
following sequence: ∆(1)

r = {9, 7}, ∆(2)
r = {9, 7, 6} and finally ∆r = ∆(3)

r = {9, 7, 6, 4}.

4. The ∆f set containing the indexes of all the gates of mutated circuit that have to be
included to CNF is constructed. The ∆f set is determined as follows. Let i = 0 and ∆(0)

f

contain the indexes of the gates that are directly connected to the primary outputs listed
in ∆e and whose indexes d meet the following condition: (d ∈ ∆e)∨ (d /∈ ∆e ∧ d /∈ ∆r).
Then, go through all the gates of the mutated circuit (starting with the highest index).
If a gate is in ∆(i)

f then for every input connected to this gate (with index d) which the

following condition (d ∈ ∆e)∨ (d /∈ ∆e ∧ d /∈ ∆r) holds for, increase i and add d to ∆(i)
f .

In our example, gate 9 and then gate 7 are labeled because both are labeled in the
reference as well as modified circuit. Gate 4 is not labeled because it is labeled in the
reference circuit only. Gate 5 is labeled because it is connected to gate 7 but included
neither in modified nor reference circuits. Then, ∆f = {9, 7, 5}.

5. Finally, the SAT solver is applied on the clauses representing all the gates that are
included in ∆r and ∆f , and only those outputs that are in ∆e. In our example, the
final circuit consists of 8 gates (7 + 1 XOR). This is a significant reduction with respect
to the common combinational equivalence checking approach described in Section 5.1.2
that lead to 17 gates (14 + 2 XOR + 1 OR). Using the improved version described in
Section 5.2, 15 gates (14 + 1 XOR) are encoded to CNF.

79

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

c) miter

b) modified circuit

[4']

[5']

[6']

[7']

[8']

[9']

[10']

[4]

[5']

[6]

[7]

[7']

[9]

[9']

a) reference circuit

d) CNF

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Figure 5.9: Construction of the miter circuit (c) from the reference circuit (a) and modified
(mutated) circuit (b) using the improved algorithm. The number of CNF clauses has been
significantly reduced. The obtained CNF (d) consists of 23 clauses. The improved CEC
proposed in Section 5.2 generates 44 clauses.

5.4.1 Time of Candidate Circuit Evaluation

In order to compare the time of evaluation for standard fitness function tCGP , the proposed
SAT-based fitness function tsat (Section 5.2) and the enhanced SAT-based fitness function
timp, the problem of the combinational multiplier optimization has been chosen.

The CGP parameters are as follows: the population size λ = 2, the set of building blocks
consists of 8 common gates Γ = {BUF,NOT,AND,OR,XOR,NAND,NOR,XNOR}, l-
back parameter has been set to maximum value, i.e. l = Ng, where Ng is the number of
gates of the initial (seed) circuit that has been created using conventional synthesis. One
mutation per chromosome has been allowed, one-dimensional CGP structure has been used,
i.e. nc = Ng and nr = 1.

The CGP implementation uses the parallel evaluation described in Section 3.3.2. The
circuits were mapped to the 2-input gates using SIS. The experiments were carried out on a
cluster consisting of Intel Xeon X5670 2.4GHz processors using the Sun Grid Engine (SGE)
that enables to run the experiments in parallel.

80

5.5. EXPERIMENTAL EVALUATION AND COMPARISON WITH CONVENTIONAL SYNTHESIS

Table 5.8 gives the mean evaluation time for the three fitness functions. The results
were obtained from fifty 10-minute independent runs of CGP. In the last column, we can
observe a significant speedup achieved using the improved SAT-based fitness function.

Table 5.8: The mean evaluation time in milliseconds for three fitness functions in the task
of k-bit multiplier evolution.

circuit ni no seed (Ng) tcgp tsat timp tsat/timp

mutliplier 7× 7 14 14 238 8 1 4 0,3
multiplier 8× 8 16 16 416 45 250 8 33,1
multiplier 9× 9 18 18 540 183 1 789 17 105,4
multiplier 10× 10 20 20 680 901 6 431 44 146,0
multiplier 11× 11 22 22 836 n/a 316 333 88 3 607,8

5.4.2 LGSynth93 Benchmarks

Further experiments were performed using the LGSynth93 benchmark set. In this eval-
uation, only circuits with more than 20 inputs were considered. These benchmarks are
intractable for common CGP based on the standard fitness function that enumerates all
the possible input combinations. Table 5.9 compares the number of gates obtained after 3
and 12 hours of optimization using the SAT-based fitness function (Ngsat) and improved
SAT-based fitness function (Ngimp). The results clearly show the more runtime available,
the more compact circuits obtained in comparison to the reference circuit (the Ng column)
synthesized using SIS. The Ne columns give the mean number of evaluations which has
been performed within a given time limit. The columns ’speedup’ (Neimp/Nesat) show
that the improved approach is able to evaluate more candidate solutions in a given time
limit. The results were obtained from fifty independent runs of CGP.

Figure 5.10 contains convergence curves for selected benchmark circuits – apex1 (the
largest one), ex4p (the highest number of inputs), apex3 (the second largest circuit) and
apex5 (the second highest number of inputs, the third largest circuit). The graphs contain
mean, minimum and maximum number of gates from 50 independent runs of CGP for two
variants of fitness function; the SAT-based fitness function proposed in Section 5.2.1 and its
enhanced version. We can observe that the improved SAT-based fitness function exhibits
better convergence in comparison with the common SAT-based fitness function.

5.5 Experimental Evaluation and Comparison with

Conventional Synthesis

5.5.1 Synthesis of LGSynth93 Benchmarks

Table 5.10 contains the best results obtained using the noncommercial and commercial
tools. We have used the standard settings for the tools and technology library with the
same set of gates as CGP, i.e. Γ = {BUF,NOT,AND,OR,XOR,NAND,NOR}.

It can be seen that the commercial synthesis tools provide results that are comparable
with the noncommercial synthesis tools such as ABC and SIS. The results from SIS and

81

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

Table 5.9: The min. number of gates obtained using the SAT-based fitness function (Ngsat)
and improved SAT-based fitness function (Ngimp) for the LGSynth93 benchmarks. The Ne
columns give the mean number of evaluations in millions.

seed 3h runtime
circuit ni no Ng Ngsat Ngimp impr. Nesat Neimp speedup

apex1 45 45 1408 1179 946 20% 0,22 0,50 2,3
apex2 39 3 235 104 93 11% 2,66 10,04 3,8
apex3 54 50 1405 1280 1099 14% 0,23 0,54 2,4
apex5 117 88 784 675 618 8% 0,93 2,22 2,4
cordic 23 2 67 32 32 0% 10,44 17,46 1,7
cps 24 109 1128 870 643 26% 0,32 0,81 2,5
duke2 22 29 430 286 264 8% 0,98 1,79 1,8
e64 65 65 192 133 138 -4% 3,52 2,39 0,7
ex4p 128 28 500 404 368 9% 1,69 6,79 4,0
misex2 25 18 111 76 73 4% 8,48 12,28 1,4
vg2 25 8 95 79 80 -1% 6,23 5,83 0,9

seed 12h runtime
circuit ni no Ng Ngsat Ngimp impr. Nesat Neimp speedup

apex1 45 45 1408 921 847 8% 0,22 0,49 2,2
apex2 39 3 235 98 90 8% 3,20 10,77 3,4
apex3 54 50 1405 1167 1038 11% 0,21 0,52 2,5
apex5 117 88 784 633 613 3% 1,02 2,21 2,2
cordic 23 2 67 32 32 0% 13,59 17,84 1,3
cps 24 109 1128 698 585 16% 0,36 0,80 2,2
duke2 22 29 430 268 260 3% 1,22 1,92 1,6
e64 65 65 192 129 129 0% 3,37 2,46 0,7
ex4p 128 28 500 394 349 11% 1,96 7,08 3,6
misex2 25 18 111 70 71 -1% 9,97 13,36 1,3
vg2 25 8 95 74 78 -5% 5,09 5,83 1,1

ABC were obtained by iterative application of the synthesis script (1000 iterations). None
of the tools has provide better results than CGP (when CGP is seeded using the first result
provided by SIS) with the exception of apex5 where the number of gates is very similar.

5.5.2 Synthesis of Conventionally Hard to Synthesize Circuits

Despite the massive development and more than 50 years of history of logic synthesis and
optimization, the latest results provided by Cong and Minkovich in [35] or Schmidt and
Fǐser in [53] indicate that the current synthesis tools are not able to cope with newly
emerging designs. One part of the problem is that most of the currently used gate-level
synthesis algorithms and processes have been established in 1980’s and they are being used
in today’s commercial tools; thus the ever-increasing size of the digital circuits becomes
a problem. However, there have been discovered very small circuits, for which synthesis
tools produce extremely bad results. Cong and Minkovich demonstrated that the number

82

5.5. EXPERIMENTAL EVALUATION AND COMPARISON WITH CONVENTIONAL SYNTHESIS

0 2 4 6 8 10 12
800

900

1000

1100

1200

1300

1400

1500

#
g
a
te

s

apex1
SAT-based fit.

improved fit.

0 2 4 6 8 10 12
340

360

380

400

420

440

460

480

500

#
g
a
te

s

ex4p
SAT-based fit.

improved fit.

0 2 4 6 8 10 12
t [h]

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

#
g
a
te

s

apex3
SAT-based fit.

improved fit.

0 2 4 6 8 10 12
t [h]

600

650

700

750

800

#
g
a
te

s

apex5
SAT-based fit.

improved fit.

Figure 5.10: Convergence curves for the apex1, ex4p, apex3 and apex5 LGSynth93 bench-
marks. The mean, minimum and maximum number of gates from 50 independent runs of
CGP for two variants of fitness function

Table 5.10: The min. number of gates obtained using the noncommercial tools (SIS, ABC),
commercial tools (C1,C2,C3) and the proposed approach based on CGP.

circuit SIS ABC C1 C2 C3 CGP impr.

apex1 1394 1862 1439 1272 1368 847 33,4%
apex2 151 225 221 195 299 90 40,4%
apex3 1405 1737 1494 1332 1515 1038 22,1%
apex5 751 768 728 609 921 613 -0,7%
cordic 67 61 67 49 90 32 34,7%
cps 1128 1109 1150 975 967 585 39,5%
duke 406 356 417 366 357 260 27,0%
e64 192 384 183 191 255 129 29,5%
ex4p 488 523 468 467 555 349 25,3%
misex2 111 121 94 89 108 71 20,2%
vg2 95 113 88 83 109 78 6,0%

of gates of the synthesized circuits is of orders of magnitude higher than the optimum. This
study has been extended in [53] where the authors shown that there exists a huge class of
real-world circuits for which synthesis fails and provides very poor results. This failure is
a problem of both academic (SIS, ABC) and commercial tools. If a large design is broken
down to multiple smaller circuits and failures of this kind occur, we obtain an unacceptably
large circuit without having any clue for it.

Summarized, up to our knowledge no available conventional synthesis process is able
to efficiently discover disclosed structures and to create new, non-standard structures. The
synthesis mostly fully relies on local optimizations. Therefore, using some kind of global
optimization may overcome drawbacks of present local synthesis algorithms. Genetic pro-

83

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

gramming thus becomes an apparent option. The major feature of GP is that it does
not employ any deterministic synthesis algorithm; all the optimizations are being done
implicitly, without any structural biases.

Experiments

In order to evaluate the proposed system in this task, we have used a set of hard-to-
synthesize benchmarks that have been published in literature. In particular, four different
classes of benchmark circuits have been employed; difficult standard benchmark circuits,
artificially created benchmark circuits, tautology and near-tautology benchmarks and non-
trivial parity circuits. Each benchmark circuit was generated by a specific synthesis process
using ABC synthesis tool (see [209]). The obtained results (in terms of number of 2-input
gates) are shown in Table 5.12, 5.11, 5.13 and 5.14, respectively. Three set of experiments
have been used.

Firstly, we have compared the CGP-based optimization with ABC. Both of the tools
are utilized as primary optimization processes. The results obtained using ABC are shown
in column Nga , while the results provided by CGP are shown in column Ngc . The relative
improvement (the number of gates obtained by CGP in comparison with ABC) is shown
in the next column. It can be seen that CGP almost always outperforms ABC, sometimes
significantly. The ABC resynthesis completely fails in these cases, while CGP is able to
implicitly discover beneficial circuit structures. It is most apparent in the tautology and
near-tautology examples. In cases where the difference between ABC and CGP is negligible,
most probably the global optimum is approached by both methods.

Secondly, the CGP has been used to optimize circuits obtained by a conventional syn-
thesis. Each of the presented benchmark categories requires a specific synthesis process, to
obtain satisfactory results. Generally, it is the capability of XOR decomposition for diffi-
cult standard benchmarks and parity benchmark circuits and collapsing for the rest of the
benchmarks [209]. We have processed the benchmarks by the respective processes and fur-
ther minimized by the ABC script, to obtain the best conventional solution. Then, we have
processed these circuits by CGP. The obtained results are shown in the Ngbc

column and
the percentage improvement achieved is shown next. It can be seen that the conventional
solution was almost always improved.

Finally, we have tried to further optimize the circuits optimized by CGP by running the
ABC resynthesis script. Surprising results were obtained, see columns Ngca for the result
of CGP optimized using ABC and Ngbca

for the best conventional result optimized by CGP
and ABC. The results were almost always deteriorated by ABC. This gives us a hint that
CGP is able to find a very deep local minimum in the circuit size, to refine the structure
so that no other synthesis can improve it further more.

Difficult Artificially Created Circuits

The difficult circuit were firstly mentioned in [35]. Even if the commercial tools are able
to manage these deceptive benchmarks without problems, the resulting structures contain
more than 500-times higher number of gates in comparison with the optimum size. These
circuits were called LEKO (Logic Examples with Known Optimum) and LEKU (Logic Ex-

84

5.5. EXPERIMENTAL EVALUATION AND COMPARISON WITH CONVENTIONAL SYNTHESIS

amples with Known Upper Bound) benchmarks. The Cong and Minkovich’s LEKU circuits
are basically constructed by intentionally introducing a bad structure into the replicated
core circuit which made the circuit artificially large. This process may be performed on
other, realistic benchmark circuits as well. Collapsing a multi-level network into a two
level circuit completely destroys the original structure, which is then very difficult to be
recreated. The results obtained for this class of circuits are shown in Table 5.11. In all the
cases, the results provided by the conventional synthesis tools have been further improved
by CGP. The average improvement was about 17%.

Table 5.11: The minimal number of gates for artificially created difficult benchmarks

circuit ni no Ng Nga Ngc imp. Ngb
Ngbc

imp. Ngca Ngbca

LEKU-CB 25 25 759 216 175 19% 235 181 23% 196 189
LEKU-CB c 25 25 699 214 178 17% 211 176 17% 182 189
LEKU-CD c 25 25 932 224 186 17% 195 177 9% 195 180

Difficult Standard Benchmark Circuits

Designers have objected to the Cong and Minkovich’s LEKU circuits that they are ar-
tificially constructed. However, Fǐser discovered circuits from the standard LGSynth’93
benchmark set, which are difficult to synthesize as well. Particularly, the capability of the
XOR decomposition is required to synthesize these circuits properly. Without using the
XOR decomposition, the synthesized circuits are sometimes more than 25 times larger. Un-
fortunately, the XOR decomposition is not performed in all the available tools (SIS, ABC),
except of BDS [194]. Many commercial tools are missing this ability as well. Table 5.12
shows that the conventional synthesis using ABC completely fails as it provides the solu-
tions that are of magnitude higher than the optimum (see columns Nga and Ngc). The
CGP provides the results that are about 90% better than the solutions provided by ABC.

Table 5.12: The minimal number of gates for difficult standard benchmark circuits

circuit ni no Ng Nga Ngc imp. Ngb
Ngbc

imp. Ngca Ngbca

9sym 9 1 329 280 27 90% 57 48 16% 37 50
rd84 8 4 713 395 31 92% 85 32 62% 35 33
t481 16 1 1263 420 21 95% 11 11 0% 15 11

Tautology and Near-Tautology Benchmarks

A different kind of artificially complex benchmarks can be created by generating large
random sum of products (SOPs). If the number of product terms in the SOP exceeds a
particular threshold, the function turns into tautology. Two-level minimization must be run
in order to discover the true nature of functions described by this needlessly large amount
of SOPs [209]. However, ABC and commercial tools do not do so. If this SOP (in form of a
PLA or mapped into technology) is submitted to the synthesis, huge circuits are produced
as it is demonstrated in Table 5.13. Comparing to ABC, the proposed CGP-based synthesis

85

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

tool is able to discover significantly better structures requiring only a fraction of the original
number of gates. Note that the taut1 benchmark circuit is implemented using XNOR gate
which inputs are connected to the same input variable.

Table 5.13: The minimal number of gates for tautology and near-tautology benchmarks

circuit ni no Ng Nga Ngc imp. Ngb
Ngbc

imp. Ngca Ngbca

big pla 25 1 15744 14940 24 100% 29 24 17% 24 24
taut1 25 1 15397 14583 1 100% 1 1 0% 1 1

Parity Benchmark Circuits

In order to obtain difficult benchmarks circuits, Fǐser have constructed new benchmark
circuits by appending a XOR tree to the circuit’s outputs, to obtain one parity bit according
to the [53]. The upper bound of the area is the sum of the original circuit size and the size
of the XOR tree. The circuit may be then resynthesized, with the hope of decreasing its
size. The results for the standard benchmark circuits supplemented with the parity three
are shown in Table 5.14.

Table 5.14: The minimal number of gates for the standard circuit benchmarks supplemented
with parity tree

circuit ni no Ng Nga Ngc imp. Ngb
Ngbc

imp. Ngca Ngbca

9sym 9 1 217 214 37 83% 57 46 19% 38 49
alu1 12 1 1085 795 52 93% 38 38 0% 57 38
b4 33 1 9645 5008 5003 0% 279 98 65% 4535 104
c8 28 1 1605 486 71 85% 53 51 4% 68 53
cc 21 1 799 347 36 90% 54 36 33% 40 38
count 35 1 1608 921 78 92% 57 54 5% 82 58
ex7 16 1 1985 1392 719 48% 118 74 37% 726 87
i1 25 1 759 397 37 91% 37 35 5% 36 35
in6 33 1 5046 2386 798 67% 118 106 10% 759 111
misex3c 14 1 5869 4445 4444 0% 492 358 27% 4463 355
s1238 32 1 66633 52590 35116 33% 1916 897 53% 26726 935
s298 17 1 2294 1483 52 96% 51 36 29% 61 41
s344 24 1 3387 1910 76 96% 76 61 20% 80 59
s349 24 1 3619 1950 79 96% 82 63 23% 80 73
s420.1 34 1 4098 2521 2541 -1% 80 80 0% 2281 81
s420 35 1 2535 1175 141 88% 123 108 12% 148 109
signet 39 1 49167 36974 45143 -22% 8304 7453 10% 34991 7318
term1 34 1 2397 918 80 91% 136 95 30% 75 101
tt2 24 1 13800 9828 13140 -34% 66 55 17% 10414 62

We have confirmed the findings published in [53]. The conventional synthesis tools are
not able to minimize the circuit size efficiently, unless it is collapsed into a two-level SOP
network and resynthesized. This process fully resembles the construction of the artificial
LEKU benchmarks. The results of the resynthesis are spun between two extreme cases: at

86

5.6. SUMMARY

the ”good“ end, the circuit size is significantly reduced with respect to the upper bound,
at the other end the size explodes. The reason for the size explosion is the same as for
the LEKU benchmarks – the obtained SOP is too large and the subsequent synthesis is
not able to rediscover the original circuit structure. The need for XOR decomposition has
been emphasized even more in these experiments. Tools not able to perform the XOR
decomposition sometimes produced results 50-times larger than the upper bound.

5.6 Summary

As it has been presented in Chapter 3, the current methods of evolutionary synthesis are
capable of evolving either small and simultaneously innovative circuits or larger circuits
that are not interesting from the implementation point of view because of their inherent
inefficiency. According to our best knowledge, when a perfect synthesis scenario is consid-
ered, the most complex combinational circuit has been successfully evolved by Stomeo in
[172]. This circuit, specified by a truth table, consists of tens of gates and has 17 primary
inputs and one primary output. Even if this result can be considered by the EHW commu-
nity as a great success because it was evolved from scratch, it has a marginal significance
from the viewpoint of the logic synthesis because commercial synthesis tools are able to
handle the combinational circuits having hundreds of inputs and thousands of gates. The
main reason that prevents EA from evolving large and real-world competitive circuits is
primarily caused by the problem of scalability of the fitness evaluation.

We have shown that it is possible to eliminate the mentioned scalability limits by intro-
ducing a different fitness evaluation procedure. The proposed method is based on applying
formal verification techniques that allow a significant acceleration of the fitness evaluation
procedure, overcoming thus the major bottleneck of evolutionary design. In particular,
we have used a SAT solver in the fitness function that allows significant reducing of the
computational requirements of the fitness function for such combinational circuit optimiza-
tion problems for which a fully functional initial solution exists before the optimization is
started. Proposed algorithm can produce complex and simultaneously innovative designs,
quite competitive with the state-of-the art logic synthesis tools. This method can poten-
tially be used to minimize the area on the chip, delay of the circuit, power consumption or
to minimize the number of test vectors.

Comparing to the standard CGP, we have demonstrated that the proposed method is
able to evaluate over 40000× more candidate solutions in the same time when the com-
mon 32-input parity benchmark problem is considered. In addition, we have introduced
some CGP-specific techniques that are able to further improve the performance of a SAT
solver. Using the multipliers, known as hard benchmark problems, we have shown that
the enhanced version of the proposed method tracking the changes between parent and its
offspring is able to provide the additional speedup over 3000 when the 11-bit multiplier
is considered. Note that the speedup increases mostly exponentially with the increasing
complexity of the solved problem.

The proposed technique has been evaluated using the common LGSynth93 benchmark
circuits. It has been shown that this approach enables to optimize large logic circuits having

87

CHAPTER 5. EVOLUTIONARY SYNTHESIS OF COMPLEX COMBINATIONAL CIRCUITS

from tens to hundreds of inputs and thousands of logic gates. The most complex LGSynth93
benchmark circuit (apex5) consists of 784 gates, 117 primary inputs and 88 primary outputs.
Using another benchmark set, we have demonstrated that the proposed method can handle
the circuits that are known to be hard for common synthesis tools. These circuits consist
from several hundreds to several thousands of logic gates. The largest circuit that has been
successfully processed by the proposed evolutionary method contains 66633 logic gates, 32
primary inputs and one primary output.

We have also demonstrated that despite the fact that various logic synthesis and opti-
mization tools have been proposed in the recent 50 years, the logic synthesis/optimization
problem has not been completely solved yet. Using the LGSynth93 benchmark we have
shown, that the best-obtained results of conventional synthesis conducted using academia
as well as commercial tools can be improved by the proposed method in 20-40%. The
experiments with the hard-to-synthesize circuits show that a significant area improvement
(33-99%) can be reached using the proposed evolutionary approach. In this case, CGP
is able to discover structures, for which conventional synthesis completely fails. As a re-
sult, CGP can be efficiently used as a primary circuit optimization process, which, as we
have found by processing numerous benchmark circuits, universally produces good results,
regardless the original circuit structure.

The main drawback of the CGP optimization is a long runtime (several hours) required
to obtain reasonable improvements, especially for large circuits. However, for the cost
of runtime, CGP is able to produce results that conventional synthesis is never able to
reach. The long runtime drawback may be partially compensated by running CGP as a
post-synthesis process. The original circuit is first maximally reduced by a conventional
synthesis and then optimized by CGP. As a consequence, the circuit size can be further
reduced.

Although the results for LGSynth93 benchmarks are very encouraging, the SAT-based
combinational equivalence checking can definitely perform unsatisfactory for some problem
instances. However, the proposed method is assumed to be able to handle large-scale
optimization problems if more advanced version of SAT solver is utilized.

88

Chapter 6

Evolutionary design of nonlinear

image filters

Image preprocessing, which includes image filtering, edge detection, histogram equalization,
brightness and contrast adjustment, and other low level operations over images, is the
first stage of many applications. As low-cost digital cameras have entered to almost any
place, the need for high-quality, high-performance and low-cost image filters is of growing
interest. It is a well-known fact that the quality of preprocessing significantly influences
the accuracy, reliability, robustness and performance of subsequent image processing steps
such as segmentation, classification, recognition etc. In order to perform the required
preprocessing (such as image filtering, edge detection etc.) a problem-specific filter has to
be created. Traditionally, engineers use a library of predefined filters and operators and
manually tune promising variants of these filters for a given application. In the process of
tuning, various properties of filters might be optimized, in particular, their coefficients and
structure [24, 47, 145]. There are also other important parameters to be optimized. With
emerging of new portable devices, the number of operations should be optimized since it has
impact on the performance as well as power consumption. In case that the filter should be
implemented as a digital circuit, the parameters such as area, delay and power consumption
play an important role.

Historically, linear filters became the most popular filters in image processing. The
reason of their popularity is caused by the existence of robust mathematical models which
can be used for their analysis and design. However, there exist many areas in which the
nonlinear filters provide significantly better results [46]. The advantage of nonlinear filters
lies in their ability to preserve edges and suppress the noise without loss of detail. The
success of nonlinear filters is caused by the fact that image signals as well as existing noise
types are usually nonlinear. As there is no suitable general theory for the design of non-
linear operators, evolutionary design techniques have been utilized to accomplish this task
in the recent years. The pioneer work in this area has been done by Sekanina who applied
Cartesian Genetic Programming in the image filter design task [157].

Sekanina has shown that evolutionary design techniques are able to generate slightly
better solutions than the standard filters [158]. Unfortunately, his direct evolutionary de-
sign approach which works for low noise intensity does not work for higher noise intensities.

89

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

The goal of the research presented in this chapter is to show that by an innovative com-
bination of evolved designs and conventional designs we are able to propose the systems
that exhibit at least comparable quality with respect to the conventionally used approaches
and simultaneously significantly reduce the overall implementation cost on a chip in com-
parison to standard approaches based on sophisticated filtering schemes, such as adaptive
median filter. In this research, the evolutionary design approach is presented as a tool that
can automatically discover nonlinear image filters that are competitive with filters designed
conventionally in terms of filtering quality as well as implementation cost on a chip.

6.1 Theoretical Background

In this section, we will briefly introduce the principles of the image filters. In order to
compare the results produced by CGP we will introduce the most popular conventional
methods that are utilized to suppress selected types of non-linear noise. In order to demon-
strate the advantage of the evolutionary designed filters, the conventional filters are also
discussed from the hardware implementation point of view. In this research we will take
into account grey-scaled images only; however, the concept can be naturally extended to
color images.

6.1.1 Image Filters and Sliding Window Function

The image filters operate in the spatial or frequency domain. While the linear filters are
implemented in frequency domain, the software as well as hardware implementations of
non-linear image filters operate in the spatial domain. As spatial filters operate with pixel
values in the neighbourhood of the centre pixel (so-called filter window or kernel), it is
necessary to implement a local neighbourhood function (sometimes referred to as a sliding
window function). This function is applied separately on all pixel locations and is typically
invariable for all locations (i.e. spatially invariant). Figure 6.1 shows the concept of sliding
window function.

Image
filter

Input image Filtered image
I[0,0]

I[1,0]

I[2,0]

I[0,1]

I[2,1]

I[1,1]

I[2,2]

I[1,2]

I[0,2]

J[1,1]

Figure 6.1: The concept of sliding window function. The output of the image filter for
location [x, y] (x, y = 1) is calculated according to a value of the pixel situated at location
[x, y] and its surrounding pixels. In this case, 3× 3 sliding windows is considered.

Figure 6.2 shows the most common hardware architecture of the sliding window function
that uses the row buffers. This approach assumes that one image pixel is read from memory
in one clock cycle. The pixels are read row by row. When buffers are filled (which is done

90

6.1. THEORETICAL BACKGROUND

with a fixed latency), this architecture provides the access to the entire pixel neighborhood
every clock cycle. Note that when local neighborhood function is applied at edge locations
some of the neighborhood is not defined. In order to cope with this problem and produce
the images with the same size, the undefined pixels can be assigned a value of 0, or can
reflect pixel values across each edge.

ww

w w w

w w w

w
0,0−1,0

−1,−1 0,−1 1,−1

−1,1 0,1 1,1

1,0

Neighborhood registers Row buffers

length = image width − 3

length = image width − 3

Input

8 bits/pixel

Output
3x3 window based filter

Figure 6.2: Implementation of a 3 × 3 filter window. Row buffers are used to reduce the
memory access to one pixel per clock cycle.

The length of the shift registers depends on the width of the input image. In order to
implement a sliding window, several image rows have to be stored. The number of rows
corresponds to the window size. Another approach is to choose a fixed row length and divide
the input image into strips. However, this method leads to decreasing of the performance
due to data overlapping (when compared to the usage of full-length row buffers).

While the architecture places the lowest demand on external memory bandwidth, the
highest demand is placed on internal memory bandwidth. This architecture is suitable for
FPGA devices as the modern FPGAs contain large amount of fast embedded memory. If
the embedded memory is not available, it is necessary to access the external memory for
more than one pixel in one clock cycle. Thus this approach requiring the external memory
can be efficient only for small window sizes. In consequence of that it is rarely used in high
performance image processing since the memories represent a performance bottleneck.

As the implementation cost of buffers implementation depends on the size of the input
image and as the buffers have to be implemented for every window-based spatial filter, we
will not consider this implementation cost in the comparisons which will be performed later.

6.1.2 Impulse Noise

Due to the imperfections of image sensors, images are often corrupted by a noise. The
impulse noise is the most frequently referred type of noise. In most cases, impulse noise is
caused by malfunctioning pixels in camera sensors, faulty memory locations in hardware,
or errors in the data transmission. We distinguish two common types of impulse noise;

91

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

the salt-and-pepper noise (commonly referred to as intensity spikes or speckle) and the
random-valued shot noise. For images corrupted by salt-and-pepper noise, the noisy pixels
can take only the maximum or minimum values. In case of the random-valued shot noise,
the noisy pixels have an arbitrary value. Impulse burst noise represents another type of
impulse noise that consists of sudden step-like transitions between two or more discrete
values at random and unpredictable times. In fact it is a variant of a random-valued shot
noise that is characterized by longer duration. The main reason for the occurrence of bursts
is the interference of frequency modulated carrying signal with the signals from other data
sources. This interference can occur several times during a transmission of a single image
and corrupt several image pixels in one or more neighboring rows. Impulse burst noise is
also often accompanied by salt-and-pepper noise and multiplicative noise [96]. In case that
the images are transferred row-wise, the impulse burst noise causes horizontal strikes. The
similar effect occurs if the images are transferred column-wise. The impulse burst noise is
a specific kind of noise which is difficult to filter even if a non-linear filter is used. With
the increased noise intensity, more consecutive rows may be affected and subsequent noise
filtering becomes difficult as the filtered value need not be determined according to the
values of the neighboring pixels. Therefore, a larger filter window ought to be considered
in order to obtain a satisfactory quality of the filtered image.

fir
st

 ro
w

se
co

nd
 ro

w
th

ird
 ro

w

(a) original image (b) 5% salt-and-pepper noise (c) 5% impulse noise (d) 10% impulse burst noise

Figure 6.3: Image consisting of 384 × 256 pixels corrupted by salt-and-pepper noise with
p = 5% (b), random-valued impulse noise with p = 5% (c) and impulse burst noise with
p = 10%, q = 128 (d). For the illustration, a snapshot of the first three rows represented
as one-dimensional signals is depicted below each image.

The shot noise and impulse noise in general can be modeled as follows. Consider image
I and observation image J of the same size w × h pixels. The image J corrupted by the
impulse noise can be expressed as

Jxy =

{
Nxy with probability p

Ixy with probability 1− p
(6.1)

where Ixy and Jxy denotes the pixel values at location (x, y) of the original image and
the noisy image respectively, Nxy a noise value independent on Ixy, x = 1, . . . , w and

92

6.1. THEORETICAL BACKGROUND

y = 1, . . . , h. The p is the probability that a given pixel is affected by a noisy value,
0 < p < 1. For gray level images encoded using 8 bits per pixel, the Nxy can take up to
256 discrete values. In case of the salt-and-pepper noise, Nxy is equal to 0 or 255 each with
equal probability. In case of the random-valued shot noise, Nxy is usually modeled using
the discrete uniform distribution.

The burst noise can be characterized using two parameters: p and q. Similarly to the
previous model, let p denote a probability that a certain pixel is affected by the noise.
Let q be a parameter which determines the maximal duration of a burst expressed as the
maximal number of consecutive pixels which are affected by an impulse. The number of
burst fragments in the image depends on both these parameters; the higher q, the lower
number of burst fragments for a given value of p. Figure 6.3 shows example of an image
corrupted by various types of impulse noise.

6.1.3 Nonlinear Impulse Noise Filters

Traditionally, the impulse noise is removed by a median filter [3] which represents the most
popular nonlinear filter even if the quality of the filtered images is poor in comparison with
other advanced techniques. The output of the median filter is calculated as the median value
of the kernel. The success of the common median filter is mainly based on its simple and
efficient software as well as hardware implementation which is straightforward and does not
require many resources. However, the standard median filter gives a mediocre performance
even for images corrupted by impulse noise with lower intensity. Even if the common median
filter utilizing 3× 3 or 5× 5-pixel window is able to repair all the noisy pixels for the noise
intensity less than approx. 10-20%, it simultaneously degrades the filtered image because
it replaces all the pixels with the median value. When the intensity of noise is increasing,
a simple median filter leaves many shots unfiltered. In order to increase the performance,
it is possible to increase the size of filter window, however, the larger filter kernel results in
loosing of more details.

The median-based filtering approach has been intensively studied and extended to
promising approaches such as center weighted median filter (CWMF) [94], more general
weighted median filter (WMF) [22] or order statistic and weighted order statistic filter
[117]. A good survey of the existing methods can be found for example in [155]. Nev-
ertheless, all these median-based methods tend to smudge the image since applying the
median filtering to the entire image would inevitably remove details presented in the im-
age. Almost all alternatives to median filters have already been implemented in hardware
[52, 25, 115, 29, 108, 28].

In order to overcome the main drawback of the median-based filters, a switching-based
median filtering concept has been proposed [173]. This concept splits the filtering process
into two parts – noise detection and noise replacement. The noise detector determines
which pixels are affected by the impulse noise and only these pixels are replaced. Noise
detection can be based on various concepts: a median-based filter [173], fuzzy techniques
[150] or neural networks [95]. However, the common problem of the proposed detection
mechanisms is the necessity to predetermine the value of a threshold parameter which
significantly influences the filtering quality.

93

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

The adaptive median filter (AMF) proposed in [85] is a robust approach which tries to
identify and replace the affected pixels only. In contrast with the previous approaches, the
detection method is based on the statistical ordered filters with gradually increasing kernel
size. Compared to the common median-like filters, AMF provides significantly better results
even for images corrupted with high intensity impulse noise. Similarly to the median-based
approaches, the adaptive median filter can be efficiently implemented in hardware [218].
In addition to filtering, adaptive median filters can be also used as detectors of corrupted
pixels (detection statistics) [199, 136].

Apart from the non-iterative algorithms, the iterative algorithms such as pixel-wise me-
dian of the absolute deviations from the median (PWMAD) [37] or directional weighted
median filter (DWMF) outlined in [45] have been introduced. These approaches provide
very good results if the random valued impulse noise is considered; they do not contain
any varying parameters and require no previous training or optimization. The main dis-
advantage is apparent – the iterative approach places higher requirements for the memory
resources especially in case of hardware implementation.

While the common impulse noise can be successfully filtered using DWMF or PWMAD,
the removal of the impulse burst noise using these filters fails especially if the noise intensity
is higher. All these median-like filters rely on the principle of spatial locality which is
violated. Various filters have been proposed to suppress impulse burst noise in the recent
years. Apart from the AMF and WMF which produce images of reasonable quality, specific
filters developed for impulse burst noise such as training-based optimized soft morphological
filters and variational approaches [97, 96, 136, 46] have been introduced. Unfortunately, it
is much more difficult to implement these filters in hardware than median filters because
they use for example unlimited kernel size, nontrivial restoring algorithm (e.g. solving
of differential equations), etc. Thus, AMF, PWMAD and WMF represent the tradeoff
between filtering quality and implementation cost.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
noise intensity [%]

5

10

15

20

25

30

35

40

45

P
S
N

R
 [

d
B

]

MF (W=3× 3)

MF (W=5× 5)

MF (W=7× 7)

AMF (Wmax=3× 3)

AMF (Wmax=5× 5)

AMF (Wmax=7× 7)

AMF (Wmax=9× 9)

DWMF

unfiltered

Figure 6.4: Comparison of various image filters using a set of 25 test images corrupted by
salt-and-pepper noise of intensity 5-75%. Mean PSNR is reported.

Figure 6.4 summarizes the results of filtering properties of adaptive median filters (with
filtering windows 5×5, 7×7 and 9×9) and standard median filters (with filtering windows
3 × 3, 5 × 5 and 7 × 7) that were evaluated using a set of 25 test images (see [218]). All
images were corrupted by salt-and-pepper noise of intensity 5-75%. The results were also

94

6.1. THEORETICAL BACKGROUND

compared to the best known software solution (DWMF [45]) which utilizes filtering windows
of unlimited size. The visual quality of filtered images is numerically expressed by the peak
signal-to-noise ratio (PSNR). The higher the PSNR value, the better filtering quality.

(a) original image (b) corrupted image (c) MF 3x3

(d) MF 5x5 (e) AMF 5x5 (f) AMF 7x7

Figure 6.5: Image corrupted by salt-and-pepper impulse noise filtered using conventional
filters. (a) Original image (b) Image corrupted by 40% salt-and-pepper noise (PSNR: 9.535
dB) (c) Filtered by median filter with the kernel size 3× 3 (PSNR: 16.796 dB) (d) Filtered
by median filter with the kernel size 5 × 5 (PSNR: 18.309 dB) (e) Filtered by adaptive
median with the kernel size up to 5×5 (PSNR: 22.021 dB) (f) Filtered by adaptive median
with the kernel size up to 7× 7 (PSNR: 22.078 dB)

Figure 6.5 contains examples of filtered images. Increasing the size of filtering window
allows the standard median filter to remove a great deal of noisy pixels; however because
the standard median filters modify almost all pixels, images become smudged and detail
less. Thus it is suitable to utilize the smallest window as possible. Nevertheless such a filter
fails when the noise intensity is higher than approx. 10-20%. On the other hand, adaptive
median filters work correctly not only for higher but also for lower noise intensities because
they try to use the smallest possible window and modify only corrupted pixels. In this case,
the size of filtering window influences the quality of filtering when noise intensity is higher
than 40%.

95

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

Order statistic and median filters

Consider a sequence {x1, x2, . . . , xN} = {xi}, 1 ≤ i ≤ N that consists of N elements
generated by a random variable X. Let {xi} be arranged in ascending order so that x(1) ≤
x(2) ≤ · · · ≤ x(k) ≤ · · · ≤ x(N−1) ≤ x(N). Then, element x(k) = S(k){xi} is so-called
k-th order statistic. Note that element x(1) corresponds to the minimum of the observed
sequence and x(N) to the maximum. In case that k = (N + 1)/2, where N is odd, x(k) is
the median of the given sequence.

LetM be the length of the filter window, M = 2L+1, and {xi} is the input sequence, 1 ≤
i ≤ N and N ≥M . Then the filter defined by specifying its output yj (j = L+1, . . . , N−L)
as yj = S(k){xj−L, . . . , xj+L} is denoted as the k-th order statistic filter (OSF). It is obvious
that if the k = (N + 1)/2 then the k-th order statistic filter defines the standard median
filter.

So-called weighted OSF [30] assigns a weight to every element of the observation window.
This generalization allows the usage of some elements of window more than once. On
contrary, some elements need not to be included into the process of filtering.

2 2
1 1

1 2
2 1

2 3
4 1

3 3
2 3

2
2
2
4

3 2 1 4 2

S ({2,3,3,4,1,2,3,2,1}) =
6

S ({1,1,2,2,2,3,3,3,4}) = 36

[x] =
i,j [y] =i,j

2 2
2 2

2 2
2 2

3

2
3 3

3 3
3 3

2
2
3
3

4

3

3 4 4

Figure 6.6: Filtering using a two dimensional 6th order statistic filter (a 3×3 filter window
is used)

Because each pixel of a given image can be treated as a random variable, statistic order
filter can be used for the filtering of the images. However, in this case we need a two
dimensional variant of statistic filter which can be obtained as an extension of the one-
dimensional case mentioned above. Instead of one-dimensional observed sequence {xi}, we
have to consider a two-dimensional matrix [xi,j]. Each element of this matrix corresponds
to one pixel of observed input image. Similarly, the output of the filter is a two-dimensional
matrix [yi,j] (see Figure 6.6). Note that the two-dimensional statistic order filter does not
have to use every element of the rectangular filtering window.

The hardware implementation of median-based filters can be divided into three classes
[30]: array-based architectures, stack filter-based architectures, and sorting network-based
architectures.

The array architectures use a large number of simple processors arranged into a systolic
linear array. Each processor processes one value of the filter window. Even if the processors
can be pipelined and can provide high throughput, this architecture is not suitable for
manipulating with large windows. Unfortunately, large windows are typical for adaptive
median filters.

The most efficient approach is based on stack filters. A stack filter uses a transformation

96

6.1. THEORETICAL BACKGROUND

of process of filtering into the binary domain. This transformation uses threshold decompo-
sition. Processing in the binary domain is very efficient and can be easily parallelized. The
main disadvantage of this approach is the requirement for a high number of decomposition
levels which depends exponentially on the number of bits used to represent each pixel. On
the other hand, in the serial bitwise version, the stack filters usually allow the most area
efficient implementation [108].

Sorting networks-based architectures can be used to implement arbitrary rank order
filters. The samples of observed filter window are sorted by a sorting network. Then, the
value in the middle of sorted sequence represents the median value. Sorting network is de-
fined as a network of elementary operations denoted as compare&swap elements (sometimes
called comparators) that sorts all input sequences. A compare&swap (CS) of two elements
(a, b) compares a and b and exchanges (if it is necessary) the elements in order to obtain
sorted sequence. A sequence of compare&swap operations depends only on the number
of elements to be sorted, not on the values of the elements. The main advantage of the
sorting network is that the sequence of comparisons is fixed. Thus it is suitable for parallel
processing and pipelined hardware implementation. In hardware, CS is implemented using
two multiplexers that are controlled by means of a comparator that determines the maxi-
mum of the two. As the sorting network can be easily pipelined, the approach provides the
best performance. There exist different types of sorting networks. The sorting networks
constructed using Batcher’s bitonic sort and Batcher’s odd-even merge sort provide the
best results in terms of implementation cost [218].

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

A

B

min(A,B)

max(A,B)

<

A

B

MIN

MAX

D

D

DCLK

I0 I1 I2 I3 I4 I5 I6 I7

D

I8

DD D

D DD

D

D

D DD

O0 O1 O2 O3 O4 O5 O6 O7 O8

D

D

D

D
A

B

min

max

(a) 9-input sorting network (b) pipelined hardware implementation

Figure 6.7: Structure of 9-input sorting network (a) and its pipelined hardware implementa-
tion (b). Each vertical line represents one compare&swap operation. The arrow determines
the position of maximum of the two inputs. The pipelined hardware implementation con-
sists of compare&swap operations and buffers. Providing that the O4 is the output and
I0-I7 inputs connected to the sliding window function, the shown structure represents a
median filter.

The bitonic sorter [14] is developed on the basis of the 0-1 principle [93]. It is based on
merging of two so-called bitonic sequences. A 0-1-sequence is called bitonic if it contains at

97

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

most two changes between 0 and 1. The main idea is to recursively divide the input sequence
into several parts. In each part, bitonic sequences are created and subsequently merged in
order to create 1) another larger bitonic sequence and 2) sorted sequence. After all merging
tasks, the sequence is sorted. Structure of the 9-input sorting network created using the
bitonic sorter and its corresponding hardware implementation is depicted in Figure 6.7.

Results of synthesis of the pipelined median filter are summarized in Table 6.1. The
median filters were described in VHDL, simulated using ModelSim and synthesized using
Xilinx ISE tools to Virtex II Pro XC2VP50-7 FPGA. The implementation cost is expressed
in terms of slices. The utilized FPGA contains 23616 slices in total.

Table 6.1: Results of synthesis (number of slices) of common median filters

median filter
inputs optimal using bitonic SN using oe-merge SN max. freq.

9 (3x3) 268 297 289 305 MHz
25 (5x5) 1506 1706 1582 305 MHz
49 (7x7) unknown 4815 4426 303 MHz
81 (9x9) unknown 10315 9719 302 MHz

Switching-based filters

The switching-based approach outlined in [173] can be considered as a general process of
filtering that operates in two steps. In the first step, the noisy pixels are detected using a
detection algorithm. Then, the new values of the corrupted pixels are estimated using an
estimation algorithm.

Figure 6.8: The concept of the switching-based filtering using a 3× 3 filter kernel

Let xij and yij denote pixels with coordinates i, j in noisy image and filtered image
respectively. If the estimated value of the corrupted pixel xij is zij , the switching filter
concept can be defined as

yij = sij · zij + (1− sij) · xij (6.2)

where sij is a binary noise map – an output produced by the estimation algorithm. Noise
map sij contains ones at the positions of pixels detected as noisy pixels.

In general, sij is determined by comparing the absolute difference between the original
pixel value xij and some local statistics Ω(xij) with a threshold T . Statistics Ω(xij) can

98

6.1. THEORETICAL BACKGROUND

be produced by common median filter, weighted median filter, adaptive median filter or
using a complex detection mechanism, e.g. DWMF or PWMAD. Since the value of T
is highly correlated to the image contents, noise probability and distribution, T has to
be calculated for each filtered image. This is unpractical since the problem of finding the
optimal threshold is a complex task. While setting T too high leaves a lot of the noisy pixels
unfiltered, too low T causes that image details will be treated as noise and the overall image
quality will be degraded. In order to avoid setting of this parameter, the process of noise
map estimation is usually applied iteratively with varying threshold (e.g. DWMF). The
objective of this approach is to make the choice of optimal T irrelevant. Estimated value of
the filtered pixel zij is usually based on common median filter or its variants (e.g. weighted
median filter).

The concept the switching-based filtering is shown in Figure 6.8. The noise detector
provides single bit value according to which the filter action is determined (i.e. whether the
processed pixel is a noise that needs to be filtered or it is an uncorrupted pixel that passes
the filter unchanged).

Adaptive median filter

The adaptive median filter (AMF) can be defined in several ways [86, 85]. We will use the
definition based on the order statistic. In this sense, AMF can be considered as iterative
order statistic filter. The iterative processing was introduced in order to detect and replace
corrupted pixels only. In each iteration, filtering windows of different sizes are utilized.

Figure 6.9: (a) Image corrupted by 40% salt-and-pepper noise, (b) Image filtered by adap-
tive median filter with Wmax = 9 × 9, (c) Size of the filtering window used for processing
each pixel of the input image and the processed number of pixels in each stage

In order to simplify the description, we will deal only with one filter window located at
position (u, v). Let a two-dimensional matrix [xi,j] describe the input image and W is the
size of the filtered window. Let the sequence [wk,l] be the output of a local neighborhood
function which contains just N = W ×W samples of filter window located at position (u, v)
(assume that W is odd). Let xuv denote the value of pixel xu,v which corresponds to the
value of a pixel at position (u, v) of the input image. Let yuv be the output of the AMF
located at position (u, v). The algorithm of adaptive median filter is as follows:

99

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

1. Initialization
Start with the smallest windows size W = 3. Let the maximum window size be Wmax

(again, an odd number).

2. Computation of order statistic
Let xmin = S(0)([wk,l]) be the output of the 0-th order statistic filter. xmax = S(N)([wk,l])
is the output of the N -th order statistic filter And xmed = S((N+1)/2)([wk,l]) is the output
of the median filter.

3. Evaluation of the terminating condition
If the condition xmin < xmed < xmax is satisfied then the processing ends with the
computation of the output value which is defined as follows: If xmin < xuv < xmax then
the pixel is not corrupted by noise and the output value is the value of the original pixel,
i.e. yuv = xuv. If xmin < xuv < xmax is not satisfied then the output value is the median
of the window, i.e. yuv = xmed. If the condition is not satisfied then the computation
continues.

4. Increasing of the window size
If the condition xmin < xmed < xmax is not satisfied, it can be interpreted as follows. If
many pixels have the same value then it is impossible to determine (with the current
window size) whether the pixels are corrupted with high intensity noise or whether it is
the constant area with all pixels of the same color. This is the reason why the window
size has to be increased.

If the window W is smaller than Wmax, increase the size of the window, i.e. W =
W + 2, and repeat the computation from step 2. If the size of the window W reaches
the maximum value Wmax, the processing ends and the output value is defined as
yuv = xmed.

Figure 6.9 demonstrates the filtering capabilities of adaptive median filter. The image
containing 256× 256 pixels corrupted by 40% impulse noise is filtered by adaptive median
filter using three levels (i.e. with the window which can take up to 7 × 7 pixels). It can
be seen that all the noisy pixels were successfully detected and removed. More than 95%
pixels (62822 out of 65536) were processed in the first level using the 3 × 3 pixel window.
Then, 4% pixels were processed in the next level using the 5× 5 window.

Although the adaptive median filter is defined as an iterative filter, the result can be
computed in a two-phase process [218]. The idea is to implement a set of sorting networks
of different number of inputs (from 3 × 3 to Wmax × Wmax). The minimum, maximum
and median value of each sorting network is utilized. As these sorting networks have
different latencies it is necessary to include registers at suitable positions to synchronize the
computation. In the second phase, the outputs of sorting networks are combined together
using a simple combination logic. Because we will need a reference hardware implementation
of adaptive median filter in next chapters, we have implemented the filter in FPGA. The
proposed hardware architecture of the adaptive median filter implemented using the two-
phase scheme is depicted in Figure 6.10. Note that the hardware architecture can be

100

6.2. EVOLUTIONARY DESIGN OF IMAGE FILTERS USING CGP

ou
tp

ut
s

of
 s

lid
in

g
w

in
do

w
 fu

nc
tio

n

buffer

total latency

buffer

SN9_latency

SN25_latency

buffer
logic

[0,0]x

sorting network W x Wmax max

sorting network 5x5

sorting network 3x3

output
pixel

Figure 6.10: Hardware implementation of the adaptive median filter based on sorting net-
works [218]

optimized and only one sorting network that provides all the required values can be utilized.
Such a sorting network can be designed using a cascade of unbalanced sorting networks.

Table 6.2: Results of synthesis of proposed adaptive median filter

SN bitonic SN oe-merge Latency
Wmax # slices max. freq # slices max. freq [delay]

5x5 2220 305 MHz 2024 303 MHz 15
7x7 7297 302 MHz 6567 298 MHz 21
9x9 18120 302 MHz 16395 298 MHz 28

Results of synthesis of the pipelined adaptive median filter are summarized in Table 6.2.
The adaptive median filters were described in VHDL, simulated using ModelSim and syn-
thesized using Xilinx ISE tools to Virtex II Pro XC2VP50-7 FPGA. The implementation
cost is expressed in terms of slices. The utilized FPGA contains 23616 slices in total. Adap-
tive median filter with filtering window 7x7 exhibits a very good performance/cost ratio in
comparison to standard median filters. This filter occupies approx. 30% of the chip and is
able to remove noise up to 60% intensity. As the design of AMF is pipelined and without
iterations, it provides the same performance as standard median filters (i.e. approx. 300M
processed pixels per second).

6.2 Evolutionary Design of Image Filters using CGP

Firstly, let us describe the evolutionary method that has been proposed by Sekanina in
[158] and utilized to create image filters with the 3 × 3 pixel filter window. In the next
chapter, we will introduce several extensions that have been proposed to evolve the filters
with better filtering properties.

Every image filter is considered as a function (a digital circuit in the case of hardware
implementation) of nine 8-bit inputs and a single 8-bit output, which processes grayscale

101

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

images. As Figure 6.11 shows, every pixel value of the filtered image is calculated using
a corresponding pixel and its eight neighbors in the processed image. In order to evolve
an image filter which suppresses a given type of noise from corrupted image, we need (a)
training data consisting of corrupted and original version of the image that will be used
to determine the fitness score of the candidate filters (i.e., to evaluate the quality of any
candidate filter) and (b) a set of suitable 8-bit functions that can be used by CGP. The
generality of evolved filters (i.e., the ability to operate sufficiently also for other images
containing the same type of noise the filters have not been trained for) is tested by means
of a test set.

Image
filter

Input image Filtered image
I0

I1

I2

I3

I5

I4

I8

I7

I6

1

I0

I1

I2

I3

I4

I5

I6

I7

I8

5

7

2

3

4

8

1

2

5

Figure 6.11: The concept of evolutionary design of image filters that utilizes the 3× 3 filter
window

6.2.1 Encoding of a Candidate Filter

A candidate filter is represented using nc × nr nodes arranged in a grid, where a typical
grid size is (nc = 8) × (nr = 4). The setting of other CGP parameters is: ni = 9, no = 1,
na = 2, λ = 8 and l = nc. Each node represents a two-input function which receives two
8-bit values and produces an 8-bit output. The 8-bit node output is utilized to ensure a
straightforward connectivity of the nodes in hardware. Table 6.3 lists the functions that
were confirmed as useful for this task [158]. We note that these functions are also suitable
for hardware implementation (i.e. there are no complex functions, such as multiplication
or division). A node input may be connected either to an output of another node, which
is placed anywhere in the preceding columns or to a primary input of the filter. The filter
circuits are encoded as array of integers of the size 3 · nr · nr + 1.

102

6.2. EVOLUTIONARY DESIGN OF IMAGE FILTERS USING CGP

6.2.2 Fitness Function

In order to evolve an image filter capable of removing a given type of noise, the original
uncorrupted image is needed to determine the fitness values of candidate filters. The goal
of CGP is to minimize the difference between the original image and the filtered image.

Usually, the fitness function is implemented as the mean difference per pixel also known
as the mean absolute error. Let u denote a corrupted image, v the filtered image and w the
original (uncorrupted) version of u. Let the image size be M × N pixels. Due to the one
pixel neighborhood in kernel, the area of (M−2)×(N−2) pixels is processed only. Without
loss of generality, the pixel values at the borders are ignored and thus remain unfiltered.
The fitness value of a candidate filter is obtained by calculating the error function:

fitness =
1

(M − 2)(N − 2)

M−2∑
i=1

N−2∑
j=1

|v(i, j)− w(i, j)|.

The objective is to design a filter producing images with minimal error, i.e. the lower
fitness value the better filter. Note that it is practically impossible to obtain a filter pos-
sessing the zero fitness value (i.e. an ideal filter) since the filter manipulates with corrupted
images only (i.e. missing and incomplete information) and it can not predict the original
values perfectly for an arbitrary input image. Only in rare cases (e.g. a training image with
simple pattern), it is possible to evolve a filter that exhibits the zero fitness value but this
filter will not be probably robust (i.e., it will work only for the selected training image).
Thus, if a candidate filter fulfills a given criterion of quality (e.g. the mean difference per
pixel is less than a predefined error ε), it is usually considered as a solution to the problem.

It is evident that the robustness of evolved filter depends on the selection of the training
data. Thus, generality of evolved filters (i.e., whether the filters can operate sufficiently
also for other images containing the same type of noise) has to be tested by means of a test
(validation) set. There exists several metrics for expressing of the quality of filtering. For
this purposes, the peak signal-to-noise ratio (PSNR) or mean square error (MSE) is usually
used in image processing. PSNR is defined as

PSNR = 10 log10

2552

1
MN

∑
i,j(v(i, j)− w(i, j))2

(6.3)

Table 6.3: List of functions implemented in each programmable node

code function description code function description
0 255 constant 8 x� 1 right shift by 1
1 x identity 9 x� 2 right shift by 2
2 255− x inversion 10 swap(x, y) swap nibbles
3 x ∨ y bitwise OR 11 x+ y + (addition)
4 x̄ ∨ y bitwise x̄ OR y 12 x+S y + with saturation
5 x ∧ y bitwise AND 13 (x+ y)� 1 average
6 x ∧ y bitwise NAND 14 max(x, y) maximum
7 x⊕ y bitwise XOR 15 min(x, y) minimum

103

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

where N ×M is the size of image, v denotes the filtered image and w denotes the original
image. The higher PSNR value the better filter. Note that the denominator represents
the mean square error. It has been shown experimentally, that a suitable image containing
128×128 pixels provides the sufficient amount of training data for evolution of robust 3×3
salt-and-pepper filters [119].

6.3 Experimental Results

As it has been discussed in previous chapters, the evolutionary design of image filters is a
time consuming process. There is large amount of training data that have to be evaluated in
order to determine the fitness value. In order to speed up the evolutionary design process
and give the evolutionary algorithm possibility to explore large portion of search space,
we have proposed an FPGA-based accelerator which hardware architecture is described in
Chapter 7.

The aim of the first experiment is to apply the proposed accelerator to evolve filters for
salt-and-pepper noise working with the 3×3 pixel filter window. Then, in order to improve
the filtering properties, we have combined several filters and create a more robust bank filter
working with the 3×3 pixel filter window. As it will be shown, this filter is able to compete
with conventionally used filters working with larger filter windows, however, the resulting
filter is probably the best solution that can be obtained using 3 × 3 pixel filter window.
Thus, the last section deals with the evolutionary design of filters utilizing concept of so
called switching filters. The common goal of these experiments is to experimentally evaluate
whether the evolutionary design is able to discover solutions that exhibit better properties
in terms of filtering capability and implementation cost comparing to the conventionally
used approaches.

6.3.1 Evolutionary Design of Salt-and-pepper Noise Filters and

Noise-Resistant Edge Detectors

In order to evaluate the performance of the proposed FPGA-based evolutionary platform,
we have arranged four experiments. The objective was to evolve filter for salt-and-pepper
noise of (1) 5%, (2) 10% and (3) 20% intensity and (4) design an edge detector which is
able to deal with input images corrupted by the salt-and-pepper noise. Note that a 3 × 3
filter window is considered in all cases. Except the 5%-salt-and-pepper noise, the other
problems were not approached by means of evolutionary design techniques in literature. In
order to compare the quality of the obtained filters with the results published in [161, 160],
visual quality of filtered images is expressed in terms of mdpp which stands for the mean
difference per pixel between the filtered image and original image.

The following experimental setup was applied. The CGP array was comprised of 4× 8
programmable nodes. Each CGP node can implement one of the sixteen 8-bit functions
listed in Table 6.3. The l-back parameter was set to one; i.e. the inputs of a certain node
can be connected either to the output of a node situated in the previous column or to the
primary input. The chromosome consists of 384 bits; a single node is configured using 12
bits. Thus the search space contains 2384 possible solutions.

104

6.3. EXPERIMENTAL RESULTS

(a) (b) (c) (d) (e) (f)

Figure 6.12: Training images utilized for the evolutionary design of 5% (a,b), 10% (a,c) and
20% (d,e) salt-and-pepper noise filter, and the evolutionary design of noise-resistant edge
detector (f,b).

The population contains eight individuals (λ = 8). The initial population is generated
randomly. Then, two offspring are generated from each parent using a bit-mutation op-
erator. A new population is selected from the eight parents and their sixteen offspring.
We utilized a deterministic selection in which the eight-best scored individuals are selected
as new parents. The evolutionary algorithm utilizes a single genetic operator – mutation,
which is applied with the probability of 4.7–6.3% per bit. This mutation intensity was
experimentally confirmed as the most suitable. No crossover operator is utilized in this
type of EA [158].

Table 6.4: Parameters of the experiments

exp. bits runs evaluations
no input image target image mutated (Nr) per run
E1 5%-noise Lena128 Lena128 18 64 160,000
E2 10%-noise Lena128 Lena128 24 349 320,000
E3 20%-noise Lena128 Lena128 20 139 320,000
E4 5%-noise Lena128 edges in Lena128 18 389 160,000

The evolution is stopped when a predefined number of evaluations is exhausted. Ta-
ble 6.4 provides the parameters that have been used in each experiment. The parameters
have been determined experimentally [215]. Because it is intractable to evaluate all possible
input combinations, there exists 29·8 = 272 possible input vectors, approximate synthesis
scenario has been applied. As a training image, we used the 128×128-pixel version of Lena
image referred to as Lena128 which is corrupted with a given type of noise in some regions.
Figure 6.12 depicts the training images that have been applied in this experiment.

Table 6.5: The fitness value of the evolved filters for the four test problems expressed in
terms of mean difference per pixel (mdpp)

exp. training best worst average conventional
no image solution solution solution approach
E1 6.049 0.410 3.190 0.967 ±0.581 4.796 (median)
E2 12.382 0.982 3.280 1.720 ±0.337 5.207 (median)
E3 25.766 1.870 4.350 2.850 ±0.510 6.383 (median)
E4 n/a 1.100 2.660 1.910 ±0.419 11.329 (sobel)

105

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

Table 6.5, which summarizes the obtained results, contains the fitness values of the
best, worst and an average solution. The statistics is calculated from the Nr independent
evolutionary runs. The number of runs for each experiment is given in Table 6.4. The
last column of Table 6.6 gives the results of conventional filters. As it can be seen, the
evolutionary designed filters significantly outperform the conventional solutions.

Table 6.6: Comparison of mdpp of the best evolved filters and 3× 3 median filter on a test
set of 256× 256 images.

test 5% noise 10% noise edge detection
image evolved MF AMF evolved MF AMF evolved SO
Airplane 0.338 3.536 1.046 0.874 3.843 1.227 0.988 2.902
Bird 0.147 1.514 0.598 0.389 1.648 0.651 0.467 2.827
Bridge 0.657 7.830 2.545 1.386 8.165 2.765 1.688 2.856
Camera 0.627 4.413 1.589 0.850 4.746 1.707 1.108 2.786
Goldhill 0.451 5.870 2.053 0.962 6.134 2.191 1.161 2.812
Lena 0.367 3.577 1.209 0.863 3.893 1.437 1.022 2.832

Table 6.6 compares mdpp of the best-evolved filters and conventional filters (median
filter denoted as MF, adaptive median filter denoted as AMF and Sobel operator denoted
as SO) on a set of 256 × 256-pixel test images. In order to fairly evaluate the quality,
all the filters use the 3 × 3 filter window. Even if the evolutionary design does not in
general guarantee robustness of the evolved filters (i.e. that they exhibit a similar quality
independently on the image content), the obtained results show that the evolved filters
exhibit very good performance not only for the training images but also for the testing
images. As it can be seen, the results outperform not only the common median filter but
also the more advanced adaptive median filter.

6 9

2 11

10 12

9 13

11 15

3 16

8 18

11 27

3 29

6 30

14 33

12 36

8 38

7 39

3 40

0 10 10 14

13 17

1 19

14 20

11 21

15 22

2 23

14 24

14 25

15 26

11 28

4 31

15 32

14 34

12 35

15 37

0 1 2

3 4 5

6 7 8

0

Figure 6.13: The best evolved filter for 5% salt-and-pepper impulse noise.

Figures 6.13 and 6.14 depict structure of the best evolved filters for 5% and 10% re-
spectively salt-and-pepper noise. Figure 6.15 gives examples of images filtered using the
best-evolved filters. As it can be seen, the images filtered by evolved filters are not as
smudged as the images filtered by median filters. The most significant improvement has
been achieved in the last experiment which combines the edge detector with noise removal.
If a conventional edge detector is applied to the image corrupted by the salt-and-pepper
noise, the noisy pixels are significantly amplified.

106

6.3. EXPERIMENTAL RESULTS

10 12

15 14

2 29 15 33

0 34 11 38

6 39

13 40

9 9

15 10

9 11

3 13

14 15

14 16

15 17

9 18

4 19

15 20

14 21

11 22

11 23

11 24

12 25

15 26

14 27

8 28

2 30

15 31

12 32

15 35

15 36

14 37

0 1 2

3 4 5

6 7 8

0

Figure 6.14: The best evolved filter for 10% salt-and-pepper impulse noise.

(a) corrupted image (b) conventional filter (c) evolved filter (d) desired output

(e) corrupted image (f) conventional filter (g) evolved filter (h) desired output

(i) corrupted image (j) conventional filter (k) evolved filter (l) desired output

Figure 6.15: The Bird (a-d) and Goldhill (e-h) images from test set in the 10% salt-and-
pepper noise removal task. The edge detection in images corrupted by the 5% salt-and-
pepper noise, the Airplane image (i-l).

6.3.2 Evolutionary Design of Robust Salt-and-pepper Noise Filter

Even if the results presented in the previous section clearly demonstrate that the evolution-
ary design approach is able to automatically evolve competitive image filters, unfortunately
this method is not able to evolve competitive filters for higher noise intensities (e.g. 40%).
It may seem that this failure is caused by the insufficient information provided by the 3× 3
filter window. On the other hand, the missing information can be derived from the unaf-
fected pixels since there are five out of nine pixels (in average) that are unaffected by the

107

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

noise if a 40% noise level is considered. The goal of this experiment is to experimentally
evaluate whether is it possible to design an image filter working with 3×3 filter window that
can provide sufficient quality even for higher noise intensities. And moreover, to provide a
solution suitable for pipelined hardware implementation in FPGA that can compete to the
quality of adaptive median filter.

The main feature of evolutionary design of image filters is that each evolutionary run
typically produces a solution having different structure as well as properties. This behavior
is usually undesirable because the evolutionary design does not guarantee the evolved filters
are robust (i.e. that the proposed filters exhibit the constant quality for the whole class
of images corrupted with a given type of noise). However, this feature can be exploited to
create robust image filters.

Filter kernel 3x3 Filtered image
I0

I1

I2

I3

I5

I4

I8

I7

I6

OPost−
processing

filter

Filter
1

Filter
2

Filter
n

O0

O1

On

Pre−
processing

filter

Figure 6.16: The proposed architecture for the impulse noise removal

In order to create more robust salt-and-pepper noise filter, we have proposed to combine
several simple image filters utilizing the 3× 3 window that are designed by an evolutionary
algorithm. As Figure 6.16 shows the procedure has three steps: (1) the reduction of a
dynamic range of noise, (2) processing using a bank of n filters and (3) deterministic
selection of the best result.

The first step reduces the large dynamic range of corrupted pixels (0/255) using a com-
ponent which inverts all pixels with value 255, i.e. all shots are transformed to have a
uniform value. This task is easy to implement in hardware using comparators. This step
has been introduced according to the analysis presented in [158] where we have recognized
that the evolved salt-and-pepper noise filters have problems with the large dynamic range
of corrupted pixels (0/255). Note that the comparators can be replaced with a more so-
phisticated algorithm that replaces the affected pixels with zero value which indicates the
noisy pixel that should be replaced.

The preprocessed image then enters a bank of n filters which operate in parallel. We
selected n evolved filters which produce different results and which exhibit better-than-
average filtering quality and utilized them in the bank. Note that all these filters were
designed by EA using the same type of noise and training image and with the same aim:
to remove the 40% salt-and-pepper noise.

Finally, the outputs coming from banks 1 . . . n are combined by n-input median filter
which can be easily implemented using comparators [93].

108

6.3. EXPERIMENTAL RESULTS

(a) original image (b) 40% noise (c) MF 3x3 (d) MF 5x5

(e) evolved filter (f) AMF 5x5 (g) AMF 7x7 (h) 3-bank filter

(i) 5-bank filter (j) original image (k) 5% noise (l) MF 3x3

(m) MF 5x5 (n) evolved filter (o) AMF 5x5 (p) AMF 7x7

Figure 6.17: Filtering the images corrupted by 40% salt-and-pepper noise (a–i) and filtering
the images corrupted by 5% salt-and-pepper noise (j–p)

In order to evolve the filters for the bank, we have applied the same experimental setup
as in the previous experiment. As a training image we utilized 128 × 128-pixel version of
Lena (Lena128) which was partially corrupted by 40% salt-and-pepper noise. Evolution was
repeated 100 times; 1.5 million evaluations were performed in each run. CGP operated with
an eight-member population and the 5% mutation. According to the chromosomes of the
five best-scored filters we created corresponding pipelined VHDL models and synthesized
them. The first part of Table 6.7 shows that the implementation cost of evolved filters is
much lower than the cost of the 3× 3 median circuit given in Table 6.1.

To evaluate the quality of the proposed bank, the proposed approach and adaptive
median filters are compared on several test images of size 256 × 256 pixels which contain
the salt-and-pepper noise with the intensity of 5%, 10%, 20%, 40%, 50% and 70% corrupted
pixels. Table 6.8 summarizes the results obtained for selected test images and two versions

109

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

Table 6.7: Result of synthesis for evolved filters utilized in the bank (filter1-5) and for the
whole bank filters

filter # slices area max. frequency latency
filter1 156 0.7% 316 MHz 8
filter2 199 0.8% 318 MHz 8
filter3 137 0.6% 308 MHz 8
filter4 183 0.8% 321 MHz 8
filter5 148 0.6% 320 MHz 8
filter # slices area max. frequency latency
3-bank 500 2.1% 308 MHz 11
5-bank 843 3.6% 305 MHz 13

of the adaptive median filter and two versions of the bank filter (which contain the filters
from Table 6.7). The higher PSNR, the better results.

Surprisingly, only three filters utilized in the bank are needed to obtain a bank filter
which produces images of at least comparable visual quality to the adaptive median filter.
This fact is demonstrated by Figure 6.17f–i where the visual quality of the images filtered
by the adaptive median and 3-bank filter is practically undistinguishable. The structure of
the best evolved filters that are utilized in the 3-bank filter is shown in Figure 6.18.

An obvious question is how it is possible that three (five, respectively) filters utilizing a
relatively small 3× 3 filter window evolved with the aim of removing 40%-salt-and-pepper
noise are able to suppress the salt-and-pepper noise with the intensity up to 70%? Moreover,
none of these filters does work sufficiently in the task which it was trained for (the 40%
noise). We are convinced that this success is caused by the fact that although these filters
perform the same task, they operate in a different way. While the median filter gives as its
output one of the pixels of the filtering window, evolved filters can sometime produce new
pixel values. By processing these n-values in the n-input median, the shot is suppressed.
We tested several variants of evolved filters in the bank but never observed a significant
degradation in the image quality.

Table 6.8: PSNR for adaptive median filters with the kernel size up to 7×7 and bank filters
containing 3 and 5 filters

Adaptive median filter 5× 5 Bank filters 3-bank

img/noise 5% 10% 20% 40% 50% 70% 5% 10% 20% 40% 50% 70%

goldhill 31.60 31.15 30.08 26.90 24.29 15.85 36.61 33.75 30.61 27.71 25.86 19.09
bridge 29.93 29.47 28.06 24.99 22.56 14.78 34.06 31.45 28.99 25.83 24.28 18.33
lena 34.43 33.66 31.21 27.17 24.43 15.46 31.42 30.30 28.16 25.68 24.13 18.32
pentagon 33.10 32.76 31.46 28.23 25.21 16.31 37.44 34.63 31.89 28.68 26.57 18.43
camera 30.86 30.36 28.56 25.14 22.67 14.97 34.25 30.57 28.18 25.28 23.72 17.85

Adaptive median filter 7× 7 Bank filters 5-bank

img/noise 5% 10% 20% 40% 50% 70% 5% 10% 20% 40% 50% 70%

goldhill 31.60 31.15 30.08 27.31 25.96 20.88 37.21 34.39 31.13 27.96 25.96 19.07
bridge 29.94 29.47 28.05 25.17 23.71 19.06 34.82 32.32 29.71 26.12 24.44 18.32
lena 34.42 33.65 31.20 27.52 25.98 20.45 31.44 30.39 28.42 25.88 24.20 18.31
pentagon 33.10 32.76 31.46 28.62 27.17 21.65 38.01 35.20 32.41 28.94 26.68 18.43
camera 30.86 30.36 28.56 25.29 23.85 19.24 34.62 31.09 28.74 25.57 23.91 17.84

110

6.3. EXPERIMENTAL RESULTS

10 9

15 12 6 20

2 21

4 22 10 26

14 27

14 28

1 30 3 34

10 36

8 38

6 39

9 40

14 10

0 11

14 13

11 14

4 15

14 16

5 17

11 18

5 19 15 23

14 24

14 25 9 29

1 31

0 32

11 33

14 35

15 37

0 1 2

3 4 5

6 7 8

0

(c) Third filter (filter 3)

12 10 12 14

14 15

2 20

8 23 4 31

7 34

4 36

14 38

6 39

10 40

1 9

14 11

14 12

14 13

14 16

15 17

2 18

2 19

2 21

15 22

15 24

14 25

14 26

0 27

3 28

4 29

14 30

11 32

14 33

1 35

15 37

0 1 2

3 4 5

6 7 8

0

(b) Second filter (filter 2)

1 12 4 28

9 31 10 35

6 36

7 38

3 39

9 40

14 9

12 10

13 11

14 13

11 14

0 15

6 16

0 17

11 18

14 19

14 20

11 21

11 22

3 23

1 24

6 25

15 26

14 27

14 29

13 30

7 32

14 33

5 34

15 37

0 1 2

3 4 5

6 7 8

0

(a) First filter (filter 1)

Figure 6.18: Three filters evolved for the 40% salt-and-pepper noise and utilized in the
3-bank filter

The results obtained for this class of images are quite promising from the application
point of view. We can reach the quality of adaptive median filtering using a 3-bank filter;
however four times less resources are utilized. This can potentially lead to a significant
reduction of power consumption of a target system. Moreover, as the adaptive medians
require larger filtering windows than bank filters they also require more logic to implement
input FIFOs. For example, the adaptive median with kernel size up to 7 × 7 pixels needs
seven input FIFOs. Each FIFO stores the whole row of the filtered image. This overhead
is not included in the implementation cost of filters given in Tables 6.2 and 6.7. Note that
the proposed filter bank, which can comprise an arbitrary number of evolutionary designed
filters working in parallel, needs three input FIFOs only.

The extended version of the 3-bank filter, has been registered as Czech Utility Model
under No. UV020017/2009. The proposed filter is optimized for high-performance impulse
noise removal task. The proposed filter works in three phases. The first phase (detection
phase) tries to identify the noisy pixels and replace them with a constant value. Some kind
of inaccuracy is not crucial in this step. The second phase comprises the filtering of the

111

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
noise intensity [%]

10

15

20

25

30

35

40

45

P
S
N

R
 [

d
B

]

MF (W=3× 3)

MF (W=5× 5)

MF (W=7× 7)

AMF (Wmax=5× 5)

AMF (Wmax=7× 7)

AMF (Wmax=9× 9)

DWMF

unfiltered

3-bank filter

Figure 6.19: Comparison of various image filters and the extended version of the 3-bank
filter using a set of 25 test images corrupted by salt-and-pepper noise of intensity 5-75%.

resulting image using a bank of evolutionary designed filters. Finally, a selection mechanism
that determines the best result is applied. The resulting value is calculated according to
the knowledge of the value of central pixel and the results produces by the evolutionary
designed filters. Figure 6.19 summarizes the results of filtering properties of the proposed
3-bank filter, adaptive median filters (with filtering windows 5×5, 7×7 and 9×9), standard
median filters (with filtering windows 3× 3, 5× 5 and 7× 7) and the DWMF filter which
utilizes filtering windows of unlimited size.

6.3.3 Evolutionary Design of Switching Filters

The main disadvantage of the common median-based filters is that the filtering transfor-
mation is applied on all the pixels of the image regardless if the pixel represents the noise
or not. Thus this approach results in loss of the image details and causes the degradation
of the image quality especially if a larger filter kernel is used (see Figure 6.4). In order
to improve the filtering quality, so called switching-based median filter, which combines
median filter with a noise detector, has been proposed in [173].

Image filter
with

noise detector

Filtered imageInput image

O
1

O
2

I
C

O
F

Figure 6.20: The structure of the filter under evolution that utilizes the concept of switching
filter with 5× 5 filter window.

112

6.3. EXPERIMENTAL RESULTS

Table 6.9: The list of functions that can be implemented in each programmable node

code function description code function description

0 255 constant 7 x + y addition
1 x identity 8 x +S y addition with saturation
2 255− x inversion 9 (x + y)� 1 average
3 max(x, y) maximum 10 y if (x > 127) else x conditional assignment
4 min(x, y) minimum 11 |x− y| absolute difference
5 x� 1 division by 2 12 x� 1 multiplication by 2 with saturation
6 x� 2 division by 4 13 x� 2 multiplication by 4 with saturation

The goal of this work is to experimentally evaluate whether it is possible to design
filters that are able to compete with conventionally used non-iterative as well as iterative
filters suitable for the impulse noise removal task. In addition to the salt-and-pepper noise,
random-valued impulse noise and impulse burst noise will be investigated. The objective is
to design filters based on the switching concept. In particular, the evolutionary algorithm
has to design a filter system consisting of a noise detector and nonlinear image filter. Both
parts are evolved in parallel. This enforces the node sharing. Similarly to the previous
experiments, the filters should be suitable for FPGA-based implementation.

In our case, the image filter produces filtered value O1 and noise detector output O2,
both are 8-bit values. The structure of the image filter is illustrated in Figure 6.20. The
MSB of O2 controls the multiplexer that implements the switching algorithm. The switching
filter works as follows. If O2 is less than 128 (i.e. the MSB of O2 equals to 0), then the
value IC was detected as noise and the final output of the filter OF equals the filtered value
O1, otherwise OF equals the original value IC . In fact, the noise detector represents an
additional logic of the filter circuitry that is capable of determining whether the value of
the pixel to be filtered is a noise value or a correct (uncorrupted) value.

The following experimental setup was used. In order to evolve an image filter, the CGP
at the functional level was utilized. The CGP array consists of nc × nr = 7 × 9 nodes.
Each node can implement one of the high-level functions listed in Table 6.9. The l-back
parameter has been set to l = nc (i.e. the full connectivity has been enabled). Only the
elements situated in the first four columns can be connected directly to the primary inputs.

The evolutionary algorithm works with the population of λ = 8 individuals. Up to
15 genes in an individual can be mutated. The initial population is generated randomly.
The results were obtained from 100 independent runs of the CGP system. Each single
experiment takes 200,000 generations. This artificial limit has been chosen in order to
provide the tradeoff between the quality of the evolved filters and the time needed for the
evolution. The goal of this experiment was to confirm the hypothesis instead of find the
best possible solution. The objective is to design filters working with 5×5-pixel kernel that
are optimized for the removal of a) salt-and-pepper, b) random-valued impulse noise and
c) impulse burst noise.

For the first three problems, an artificial image corrupted by 20% noise consisting of
256×256 pixels was used as training data. The training images for the investigated problems
are shown in Figure 6.21. We carried out an analysis of the images and recognized that
the training data set for the evolutionary design of a salt-and-pepper noise filter consist
of 62,061 unique training vectors extracted from Figure 6.21b. The training data for the

113

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

Figure 6.21: The training data utilized in the experiments: (a,d) the reference image,
(b) the image corrupted by 20% salt-and-pepper noise, (c) the image corrupted by 20%
random-valued impulse noise and (e) the image corrupted by 20% impulse burst noise. The
noise intensity 20% means that 20% of the total number of pixels of the reference image is
corrupted by the noise.

evolutionary design of a random-valued impulse noise filter comprise 63,437 unique training
vectors extracted from Figure 6.21c. Note that the utilized images can provide up to
252 · 252 = 63504 different training vectors if a filter window of 5 × 5 pixels is considered.
The artificial image has been utilized because it contains a representative sample of training
vectors possessing crucial features; for example smooth gradients of different types combined
with sharp edges. These components showed to be important for the filter training. The
previous experiments showed that if the noise intensity is low during the training process
(≤ 10%), the evolutionary design approach can not guarantee that the evolved filter works
also for a high intensity noise. On the other hand, if the training noise intensity is high
(≥ 30%), substantial amount of (training) image data is lost and the resulting filters do
not exhibit reasonable filtering quality. During the evolutionary design of impulse burst
noise filter, a training image consisting of 384 × 256 pixels selected from [16] was used.
This image contains 92,813 unique training vectors. The left part of this image is shown
in Figure 6.21e. The impulse burst noise model corresponds to the following parameters:
p = 0.01÷ 0.3, q = 128, σ = 30.

The quality of the evolved filters is compared with several conventional single-step and
iterative filters that are known to provide good results in removing of the particular type of
impulse noise. In order to show the ability of the evolved solutions to improve the filtered
image using the iterative processing, one and two iterations of these filters will be performed.
The results are compared to the images filtered by the conventionally used approaches such
as DWMF and PWMAD. Moreover, the filtering results will also be compared to standard
median filter (MF) and adaptive median filter (AMF). We have used the recommended
settings of the PWMAD filter, i.e. five iterations, the value of threshold was set to 5 and
the filter window consisting of 5 × 5 pixels has been utilized. In case of the impulse burst
noise, center weighted median filter (CWMF) has been also included in the comparison.
We have chosen the center weight equal to 3 and the kernel size 3× 3 pixels.

The evolved filters were evaluated using a set of 30 randomly selected images from [16],
each of which was corrupted by noise of 1%–30% intensity. Therefore, in total more than
200 test images were utilized during the evaluation process. The filtering quality (expressed
by means of PSNR) for each noise intensity is calculated as average of the PSNR for each
image in the evaluation set.

114

6.3. EXPERIMENTAL RESULTS

The experiments were conducted on a cluster consisting of more than 200 PCs (Xeon
E5345, 2.33GHz, 8GB RAM) using the Sun Grid Engine (SGE) that enables to run all the
experiments in parallel. A highly optimized software implementation of CGP described in
Chapter 3.3.1 has been utilized. The evolution time of a single run is approximately 8 hours
until the CGP algorithm reaches 200,000 generations.

Salt-and-pepper noise

Table 6.10 summarizes the obtained results for the evolutionary design of switching salt-
and-pepper noise filter. The evolved filter is denoted as F18. The results show that the
evolutionary designed filter exhibits the best results for lower noise intensity (1%–15%) in
comparison with the conventional filters. For higher noise intensity (i.e. greater than 20%)
the AMF produces the images with the highest values of PSNR. However, the difference
between F18 and AMF for these noise intensities is negligible.

Table 6.10: Comparison of the salt&pepper noise filters in terms of mean PSNR (dB). The
size of the kernel is also specified for each filter.

noise intensity
filter 1% 5% 10% 15% 20% 25% 30%

F18 5x5 39.0 36.4 33.7 31.2 28.5 25.9 23.4
F18, 2 iter. 38.1 35.9 34.0 32.5 31.3 30.1 29.0
PWMAD 3x3 33.0 32.4 30.7 27.7 24.5 21.6 19.1
PWMAD 5x5 29.0 28.9 28.8 28.4 27.7 26.2 24.0
DWMF 5x5 28.8 28.3 27.8 27.2 26.6 25.9 25.0
AMF 5x5 34.3 33.9 33.2 32.2 31.4 30.5 29.5
MF 5x5 26.5 26.4 26.2 26.0 25.8 25.6 25.3
unfiltered 25.1 18.1 15.1 13.3 12.1 11.1 10.3

In order to demonstrate the visual quality, Figure 6.22 contains example of the filtered
images for the input image corrupted by 15% and 30% salt-and-pepper noise. In addition
to the evolutionary designed filter, the conventionally used approaches are also included in
this comparison. Note that the standard median filter as well as the DWMF filter are not
included in this comparison, since the filtered images are smudged (see the results given in
Table 6.10). Whilst the evolved filter F18 provides a very good result of the filtered image
even if a single iteration is utilized, the iterative PWMAD filter leaves a significant amount
of noisy pixels in the resulting image (see Figure 6.22b,i,j).

The evolved filter F18 provides very good results even for images corrupted by 30% salt-
and-pepper noise. The visual quality is comparable to the AMF (see Figure 6.22g,h). A
single application of F18 is not sufficient to obtain the best quality for the image corrupted
by 30% noise (as evident in Figure 6.22d). However, images filtered by F18 filter exhibit
better quality in comparison with the PWMAD filter that leaves a lot of noise in the filtered
image and makes a loss of some detail (see Figure 6.22d,k).

To summarize the obtained results, the CGP-based evolutionary system succeeded in
searching a robust salt-and-pepper noise filter whose filtering quality can compete with the
iterative filters and especially the adaptive median filter even for high noise intensity.

115

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

(a) corrupted image (b) evolved F18 (c) corrupted image (d) evolved F18

(e) evolved F18, 2 iter. (f) 5x5 kernel AMF (g) evolved F18, 2 iter. (h) 5x5 kernel AMF

(i) 3x3 kernel PWMAD (j) 5x5 kernel PWMAD (k) 3x3 kernel PWMAD (l) 5x5 kernel PWMAD

Figure 6.22: Filtering the images corrupted by 15% (a,b,e,f,i,j) and 30% (c,d,g,h,k,l) salt-
and-pepper noise using different filters

Random-valued impulse noise

The random-valued noise represents a more realistic type of impulse noise in which the
corrupted pixels can take an arbitrary value from the entire scale available for the given
class of images. Therefore, in this case the noise may be represented by an arbitrary
grayscale value from 0 to 255. It is thus more difficult to distinguish between the noisy
and the uncorrupted pixels. In the consequence of a false detection, a filter may have a
tendency to deteriorate the overall quality of the filtered image.

The obtained results for the evolutionary design of switching random-valued impulse
noise filters are summarized in Table 6.11. The best evolved filter optimized for random-
valued impulse noise is denoted as F17. Similarly to the previous experiment, the obtained
results are compared with the results of conventional filters. Surprisingly, the evolutionary
approach succeeded in the search for a robust filter for the noise of this type. As expected,
the higher noise intensity requires more iterations of the filter to obtain an acceptable result.

116

6.3. EXPERIMENTAL RESULTS

Table 6.11: Comparison of the random valued noise filters in terms of mean PSNR (dB).
The size of the kernel is also specified for each filter.

noise intensity
filter 1% 5% 10% 15% 20% 25% 30%

F17 5x5 36.0 33.4 30.9 28.7 26.6 24.7 23.0
F17, 2 iter. 34.4 32.5 30.9 29.6 28.4 27.2 25.9
PWMAD 3x3 33.1 32.5 31.2 29.5 27.4 25.3 23.3
PWMAD 5x5 29.1 29.0 28.7 28.3 27.8 27.0 26.0
DWMF 5x5 28.9 28.4 27.8 27.3 26.8 26.2 25.7
AMF 5x5 33.9 30.0 26.0 23.3 21.2 19.6 18.3
MF 5x5 26.6 26.5 26.3 26.1 25.9 25.5 25.2
unfiltered 28.5 21.5 18.5 16.7 15.5 14.5 13.7

The comparison of the visual quality of different filters considering images corrupted by
the random-valued noise is shown in Figure 6.23. Very good results can be obtained using
two iterations of the evolved filter F17 or conventional PWMAD filter with the 5× 5 filter
window. Unlike the case of the salt-and-pepper noise, the adaptive median filter fails in
filtering random-valued noise even for lower intensity. On the other hand, the conventional
DWMF filter exhibits a good quality slightly loosing some detail in comparison with the
proposed F17 (compare Figure 6.23e–h).

Impulse burst noise

In comparison with the previous types of noise, impulse burst noise represents a serious
issue because the principle of spatial locality is violated in this case. With the increased
noise intensity, more consecutive rows may be affected and subsequent noise filtering be-
comes difficult as the filtered value need not be determined according to the values of the
neighboring pixels.

Table 6.12: Comparison of the impulse burst noise filters in terms of mean PSNR (dB).
The size of the kernel is also specified for each filter.

noise intensity
filter 1% 3% 5% 7% 10% 12% 15% 20% 25% 30%

F32 5x5 35.4 33.9 33.0 31.9 30.9 29.8 28.7 27.0 25.3 23.4
F32, 2 iters 32.6 31.6 30.9 30.1 29.3 28.7 28.0 27.0 25.9 24.7
CWM 3x3 32.5 30.2 27.1 24.8 21.7 20.1 18.7 16.2 14.6 13.3
PWMAD 5x5 32.3 29.9 26.6 24.3 21.2 19.6 18.2 15.8 14.3 12.9
DWMF 5x5 26.5 24.3 22.4 21.2 19.5 18.4 17.4 15.6 14.4 13.3
AMF 5x5 26.8 23.3 20.7 19.5 17.6 16.7 15.7 14.1 13.0 12.0
MF 3x3 29.4 28.0 25.6 23.8 21.0 19.6 18.2 15.8 14.3 12.9
unfiltered 25.3 21.4 18.8 17.6 15.9 15.1 14.2 12.9 12.0 11.2

The results for the evolutionary design of switching impulse burst noise filter are summa-
rized in Table 6.12. The proposed filter F32 exhibits the best filtering quality in comparison
with the commonly used conventional filters, surprisingly, even if we do not apply iterative

117

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

(a) corrupted image (b) evolved F17 (c) corrupted image (d) evolved F17

(e) evolved F17, 2 iter. (f) 5x5 kernel DWM (g) evolved F17, 2 iter. (h) 5x5 kernel DWM

(i) 3x3 kernel PWMAD (j) 5x5 kernel AMF (k) 5x5 kernel PWMAD (l) 5x5 kernel AMF

Figure 6.23: Filtering the images corrupted by 15% (a,b,e,f,i,j) and 30% (c,d,g,h,k,l)
random-valued impulse noise using different filters

filtering. We have analyzed the best evolved filter (denoted as F32) and recognized that
this filter tries to avoid the calculations based solely on horizontal information [213]. This
interesting property shows that the evolutionary approach was able to detect, that the
burst noise affects adjacent horizontal pixels. If the burst noise has been applied in vertical
direction, the pixels of filter window utilized by the evolved filters changed.

Figure 6.24d shows that the proposed filter exhibits very good quality even for the lower
noise intensity – in this case 1% impulse burst noise was generated. In case of the image
filtered by the PWMAD filter, we can see that a perceptible part of the noise remains in the
image (see Figure 6.24c). In contrary, the image produced by the CWMF does not contain
any impulse; however, the image is smudged and lacks the details in comparison with the
original image.

Similar comparison was performed considering the images corrupted with higher noise
intensity (30% impulse burst noise). The obtained results are shown in Figure 6.24e-h.

118

6.3. EXPERIMENTAL RESULTS

(a) 5x5 kernel AMF (b) 3x3 kernel CWMF (c) 3x3 kernel PWMAD (d) evolved F32

(e) 5x5 kernel AMF (f) 3x3 kernel CWMF (g) 3x3 kernel PWMAD (h) evolved F32

(i) corrupted image (j) 3x3 kernel CWMF (k) 3x3 kernel PWMAD (l) evolved F32

Figure 6.24: Filtering the images corrupted by 1% (a,b,c,d), 15% (e,f,g,h) and 30% (j,k,l)
impulse burst noise

Whilst the proposed filter was able to detect and remove a great portion of the noisy pixels,
the conventional filters have serious problems and fail to remove the noise. The failure of
the conventional filters probably lies in the fact that the bursts are accumulated in the
neighboring rows of the image and thus it is difficult to estimate the correct pixel values
using median filter.

In comparison with the previous results, the last example depicted in Figure 6.24i-l
represents a serious problem for the filters. This data set shows an image containing several
sharp and contrast transitions that are very similar to the noise. Even if the proposed filter
is able to provide better image (shown in Fig. 6.24d) in comparison with the CWMF and
PWMAD filter, it can be seen that the image is degraded slightly. It is interesting to note
that the proposed filter is efficient not only from the point of view of the filtering quality but
also from the point of hardware/software implementation – it consists of simple operations
and does not require iterative processing.

119

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

Evolved filters

Figure 6.25, 6.26 and 6.27 show the structure of the best evolved filters for salt-and-pepper
shot noise, random-valued impulse noise and impulse burst noise.

Figure 6.25: Structure of the best evolved filters for salt-and-pepper shot noise

In contrast with the other investigated problems, the evolved salt-and-pepper noise
filter, which consists of 31 nodes (operations), employs a relative simple circuitry for noise
detection that is based only on the knowledge of value of the central pixel. This circuitry
consists of 7 nodes.

Let Ic be value of the central pixel and O2 be the 8-bit output of the detection part.
Then the output O2 can be expressed as follows.

O2 = ((Ic + Ic/4/2) + (255− Ic)/4) +S (Ic + Ic/4/2) = (7Ic/8 + 63) +S (9Ic/8)

If we analyze this equation, we will find out that the O2 provides the value higher than
127 only in such cases in which Ic holds the following inequality: 33 ≤ Ic ≤ 227. The
evolutionary approach discovered that the noisy pixels are affected by the values that are
close to 0 or 255.

On the other hand, the estimation part of this filter is relative complicated and consists
of three operations: minimum, maximum and difference. There are two possible expla-
nations for such a structure. The first theory is that the evolution determined that it is
not necessary to have a robust statistics that detects exactly the noisy pixels because they
can be easily removed using an algorithm that has the capability to suppress the outliers
(e.g. median filter). The second theory is that the detection is used as a pre-filtering that
separates the pixels that are definitely uncorrupted and thus it reduces the space of all
possible input combinations that have to be processed by estimation part.

The evolved random-valued impulse noise filter, which consists of 33 nodes, represents
the opposite example. In this case, the detection part is a relative complicated circuitry uti-
lizing 23 nodes. The calculation is based on the values spread out over four directions from

120

6.4. SUMMARY

Figure 6.26: Structure of the best evolved filters for random-valued impulse noise

central pixel. The estimation part mainly utilizes the minimum and maximum operations.
Interestingly, five nodes are shared between estimation and detection circuitry.

Figure 6.27: Structure of the best evolved filters for impulse burst noise

The impulse burst noise filter shown in Figure 6.27 contains 33 nodes. In this case,
the evolutionary approach evolved a relative complicated nonlinear structure that contains
eight conditional assignments. The estimation part consists of 10 nodes and utilizes the
information from eight pixels of the filter window. The interesting feature is that the
estimation part uses (in addition to the value of central pixel) only two pixels that are
utilized also by the estimation part.

6.4 Summary

The experimental results clearly show, that the evolutionary design approach can auto-
matically produce image filters that are competitive with conventional filters such as MF,
CWMF, AMF, DWMF or PWMAD not only in terms of filtering quality but also if the im-

121

CHAPTER 6. EVOLUTIONARY DESIGN OF NONLINEAR IMAGE FILTERS

plementation cost is considered. We observed that images filtered by evolved filters preserve
more details (and thus provide a higher visual quality) than images filtered by conventional
filters (e.g. median filters).

It has been also shown, that the designed filters require less FPGA resources than
conventional filters. For example, the proposed 3-bank filter provides the same filtering
capability as a standard adaptive median filter; however, using four times less slices. The
more detailed analysis can be found in [214, 220].

The best results have been achieved when the concept of so called switching filter con-
sisting of the detection and estimation part was applied during the evolutionary process.
The switching filters evolved for salt-and-pepper shot noise are able to overcome the con-
ventional filters especially for lower noise intensity (≤ 15%). Interesting results have also
been achieved if the iterative filtering process has been taken into account. Whilst DWMF
and PWMAD require from 5 to 10 iterations, the evolutionary designed random-valued
impulse noise filter can produce the images of similar quality using two iterations. Thus,
in contrast with the conventional iterative filters, the satisfactory quality is accomplished
using less number of resources and operations.

We have also demonstrated that the combination of several evolutionary designed filters
leads to the significant improvement of the quality of filtering even if the same filter window
is utilized. This concept can be employed in the switching-based filters. We can combine
several evolutionary designed detectors as well as estimators together to produce one robust
filter of high-quality.

122

Chapter 7

Hardware Accelerator of Cartesian

Genetic Programming

According to John Koza, evolutionary algorithms in general and genetic programming in
particular can routinely deliver high-return human-competitive machine intelligence [107].
The competitiveness and performance of the evolutionary approaches have been demon-
strated in many tasks and design areas. Unfortunately, the computational power which
evolutionary algorithms need for obtaining innovative results is enormous for most appli-
cations. This kind of inefficiency is caused by the fact, that the evolutionary algorithms
usually spends most of time by running domain-specific simulators which evaluate candi-
date individuals using large training sets. Even if the principles of evolutionary algorithms
are known from nineties, the large computation requirements caused that the EAs became
popular in recent decades, when the performance of the personal computers has been dra-
matically improved.

In order to reduce the computational time of EAs, various methods are usually employed.
In general, they can be divided into the following classes: (1) algorithmic – the use of smart
search strategies, evolutionary operators and fitness evaluation strategies, (2) source code
optimization for a given platform, (3) parallel implementations on clusters of workstations
and (4) hardware accelerators. However, even with a parallel implementation, the evolution
can be very time consuming.

In contrast with clusters of workstations, the domain-specific hardware accelerators
represent a very promising solution due to the high performance, low implementation cost
and low power consumption. As the fitness evaluation of a candidate program is the most
time consuming part of EA, hardware acceleration are primarily devoted to the fitness
calculation. A straightforward implementation involves multiple fitness calculation units
which work concurrently. In addition to application-specific chips such as [152], Field Pro-
grammable Gate Arrays have been utilized [180, 163, 118, 61, 189]. Modern FPGAs provide
a cheap, flexible and powerful platform, often outperforming common workstations or even
clusters of workstations in particular applications. For example, Martinek and Sekanina
proposed a complete hardware implementation of a simple population-oriented evolution-
ary algorithm. As it has been demonstrated in [119], a single-chip FPGA-based accelerator
running at 50 MHz can provide approx. 20 times higher performance in comparison with a

123

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

common workstation running at gigahertz frequency. This speedup has been reported for
evolutionary design of image filters. Martin designed linear genetic programming system in
an FPGA operating with fixed point expressions encoded as linear programs [118]. For the
even 6-parity problem, he achieved the speedup of 18 (two hardware fitness units have been
utilized) respectively 419 (for 64 fitness units) in comparison with the PowerPC processor
running at 200 MHz. Although the hardware accelerators are able to provide high perfor-
mance, the key issue usually is whether the particular problem requires the floating-point
operations or fixed-point operations. The fixed-point arithmetic circuits or even logic cir-
cuits can be accelerated in a much easier way than floating-point operations on a commonly
accessible hardware such as FPGA.

Recently, Graphics Processing Units (GPUs) that are available in common desktop
computers have been used to parallelize the fitness evaluation. Chitty [31] reports the
speedup of 0,4–30 depending on target problem. Harding and Banzhaf have shown how the
speedup of candidate individual evaluation depends on the expression length for various
problems [71]. With the growing expression length and growing number of test cases, GPU
becomes more effective than CPU. The maximum speedup is approx. 1000 for Boolean
expressions and 14 for a protein classification problem. These results show only the number
of times faster evaluating evolved GP expressions is on the GPU (NVidia GeForce 7300
GO) compared to CPU implementation (Intel Centrino T2400 running at 1.83 GHz); the
speedup of evolution was not reported. Unfortunately, for training sets of a common size,
the overhead of transferring data to the GPU and for constructing the GPU programs leads
to a worse performance than CPU.

This chapter is focused on the implementation of a modular FPGA-based accelerator
designed to accelerate the Cartesian Genetic Programming. The first two sections are
devoted to the description and evaluation of the proposed hardware accelerator with one
fitness unit. The second two sections provide the details of the enhanced version supporting
of multiple fitness units and its evaluation.

7.1 Target FPGA Platform

In order to implement the proposed system, a COMBO6X card equipped with Virtex II
Pro XC2VP50 FPGA has been used [27]. This platform has been developed to accelerate
time-critical and high-speed applications especially from the area of network applications.
The whole system contains two FPGAs. The smaller FPGA XC2VP4 of Virtex II family
serves as a PCI interface while the larger FPGA of Virtex II Pro family which contains
23 616 slices, 49 788 flip flops, 852 IO blocks and 232 Block RAM modules (2kB each) is
intended for implementation of application-specific hardware accelerators. The FPGA can
utilize three types of memories: ternary CAM memory having 2 Mb of total capacity; three
synchronous SRAMs, 2MB of each, organized as 512k× 36 and DDR DRAM memory with
the capacity up to 2GB.

The Virtex II Pro FPGA contains two instances of IBM PowerPC 405 core which is
able to operate at 400 MHz each. As shown in Figure 7.1, the PowerPC is equipped with a
5-stage pipeline, a virtual-memory-management unit, separate instruction-cache and data-

124

7.2. CGP ACCELERATOR WITH A SINGLE FITNESS UNIT

cache units, 3 programmable timers, on-chip memory controller (OCM) and variety of
interfaces, including processor local bus (PLB) interface, device control register (DCR)
interface and JTAG port interface.

RST

CPM

DCR

ISPLB

DSPLBDSOCM

ISOCM

OCM

OCM

Instruction
Cache
Unit

Data
Cache
Unit

D−Cache
Controller

I−Cache
Controller

PLB

PLB

DCR

Cache Units

Memory
Management

Unit

405 CPU

Fetch
And
Decode
Logic

Fetch
Queue

GPR
32x32

MACALU

Execute
Unit

Timers
And

Debug

JTAG

EIC

Figure 7.1: Architecture and interface of the PowerPC 405 processor (adopted from [193])

Table 7.1 summarizes basic parameters of the PowerPC 405 interfaces. Although the
PLB controller is more complicated than OCM controller, it provides a higher throughput.
Further details of the PowerPC 405-processor architecture are available in [193].

The FPGA chip can be configured either externally or internally, using the so-called
Internal Configuration Access Port (ICAP). Although the port can operate at 66 MHz, it is
not used for evolutionary filter design due to the low throughput, insufficient for our target
evolvable hardware applications [59, 119].

Table 7.1: A comparison of basic interface parameters of PowerPC 405. IS stands for
Instruction Side, DS stands for Data Side. The C405 column summarizes the performance
of the whole PowerPC core.

Interface DCR ISOCM DSOCM ISPLB DSPLB C405
Maximal throughput [MB/s] 300 1 200 600 2 400 1 2 400 1 1 200
Data bus width [b] 32 64 32 64 64 32
Address space [B] 1 k 16 M 16 M 4 G 4 G 4 G
Variable latency support Yes No No Yes Yes n/a

1 The maximal throughput is higher that the throughput of PowerPC core C405 due to the presence of

PLB fill buffer.

7.2 CGP Accelerator with a Single Fitness Unit

The basic idea of the CGP accelerator is that a given instance of CGP (i.e. a reconfigurable
array consisting of u×v programmable nodes) is implemented as a reconfigurable circuit on
the FPGA. Its configuration is defined using a bitstream which is stored in a configuration

125

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

register implemented also in the FPGA. This concept is called the virtual reconfigurable
circuit [158].

7.2.1 Architecture Overview

The proposed CGP accelerator is completely implemented in a single FPGA and consists
of Genetic unit (GU), Fitness Unit (FU) and Control Unit (CU) (see Figure 7.2). Training
data are stored in external SRAM memories. The GU as well as FU are connected to the
internal FPGA bus which provides an effective communication interface between FPGA
and PCI bus. The host PC is used to load training data, read the results, and define
the parameters of CGP. The FU contains one or more instances of Virtual Reconfigurable
Circuit (VRC). The VRC is, in fact, a second reconfiguration layer developed on the top of
an FPGA in order to obtain a fast reconfiguration and application-specific programmable
elements.

PPC Fitness

Computation

Part

Control

Unit

PowerPC

Processor

VRC configuration

IRQ

FIT_VALUE

BRAM

Population

Memory

VRC_OUT

SRAM SRAM

Genetic unit

Input

Generation

Part

VRC
Virtual Reconfigurable Circuit

FPGA

PCI bus

VRC_IN

Fitness unit

Figure 7.2: Architecture of the proposed CGP accelerator

In order to maximize the overall performance, the CU plays the role of master, controls
the entire system and provides an interface to the host PC. In particular, it starts/stops the
evolution, handles the generation counter and issues the control signals for the remaining
units. The CU consists of two subcomponents working concurrently. The first subcompo-
nent reconfigures the VRCs according to the configuration stored in the population memory.
The second subcomponent is responsible for sending the fitness value to the PowerPC pro-
cessor. The PowerPC generates a new candidate individual when a request is issued. The
instruction memory of the PowerPC is implemented using on-chip synchronous Block RAM
(BRAM) memories. The memory is connected to the PCI bus interface in order to upload
the PowerPC programs from PC. Since our search algorithm is optimized for space, it is
completely executed from an instruction cache.

The population of candidate configurations is also stored in on-chip BRAM memories.
The population memory is divided into Nb banks; each of them contains one configuration

126

7.2. CGP ACCELERATOR WITH A SINGLE FITNESS UNIT

bitstream. Each bitstream consists of the configuration data that are necessary to configure
one VRC. An additional bit (associated with every bank) determines the data validity; only
valid configurations can be evaluated. In order to overlap the evaluation of a candidate
configuration with generating a new candidate configuration, at least two memory banks
have to be utilized. While a candidate solution is evaluated, the new candidate configuration
is generated. The population memory provides two independent ports:

1. the 32-bit read/write port A connected to the PowerPC processor and

2. the m-bit read-only port B connected to the fitness unit used for the reconfiguration
of VRC.

Note that the width of the B port must be chosen with respect to the implementation limits
(m must be an integer divisible by 128) and the number of bits of a part of bitstream used
to configure one column of VRC.

The process of evaluation works as follows:

1. When a valid configuration is available, the CU initiates the reconfiguration of VRC.

2. As soon as the first column of configurable logic blocks (CFBs) has been reconfigured,
CU initiates the fitness calculation process performed by the FU.

3. When the last column of CFBs has been reconfigured, a corresponding memory bank
is invalidated and the bank counter is incremented.

4. Three clock cycles before the end of evaluation the FU indicates the forthcoming end
of evaluation.

5. The CU initiates a new configuration of VRC and repeats the sequence 1-4 again.

6. As soon as the fitness value is valid, an interrupt request (IRQ) is generated to activate
a service routine of the PowerPC. In this routine, PowerPC reads the fitness value
together with some additional data (corresponding bank number) and new candidate
configurations are generated for the given bank. The PowerPC processor acknowl-
edges the interrupt and sets up the validity bit.

7.2.2 Genetic Unit

Due to the presence of the PowerPC processor, the proposed system allows the use of var-
ious search algorithms. These algorithms utilize a population of candidate solutions and
a single genetic operator — mutation, which inverts k bits of the chromosome (i.e. of the
configuration). No crossover operator is used. An analysis of various search strategies,
mutation operators and pseudorandom number generators is presented in the Section 7.3.2.
Hill climbing, genetic algorithm and parallel version of random search strategy was imple-
mented. In order to exploit the performance of the proposed platform, the search strategy
has to generate a new candidate solution as soon as a candidate solution is evaluated. This
concept differs from standard implementations on common CPUs where a new population
is usually generated the moment the whole population is evaluated.

127

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

7.2.3 Fitness Unit

The fitness calculation is carried out by the Fitness Unit. The fitness unit consists of three
components: (1) the training data generation part, (2) the fitness computation part and (3)
Virtual Reconfigurable Circuit. According to the size of training data, the training data can
be stored using internal BRAM memory or external SRAM memory. Note that in case of
evolutionary design of image filters, all image data are stored in external SRAM memories
due to the limited capacity of internal BRAMs available in the FPGA chip. The first part
of the fitness unit loads the training data and forwards them to the inputs of VRC. VRC
is utilized to evaluate the response for the training vectors. The response of a candidate
circuit is sent back to the Fitness Unit, where it is compared with the required response
which is stored in another internal/external memory. The implementation of the circuit
responsible for the computation of fitness value depends on the problem to be solved.

conf_reg 0

E0

col 0

conf_reg 1 conf_reg 2 conf_reg 7

conf

PEIN

CONF

OUT

MUXA

MUXB

A

B

Y

.

..

.

..

D

E1

E2

E3

D

E0

col 1

E1

E2

E3

D

E0

col 7

E1

E2

E3

E0

col 6

E1

E2

E3

D

.

..

F0

F1

Fk

.

..

A

B

Y

MUXY

conf

Figure 7.3: VRC for symbolic regression problems

7.2.4 VRC for Symbolic Regression Problems

Figure 7.3 shows the VRC implemented for the image filter design problem, which is a
kind of a symbolic regression problem over the FX representation [206]. Every candidate
program (image filter) is considered as a digital circuit of nine 8-bit inputs and a single
8-bit output.

The VRC consists of 2-input Configurable Logic Blocks (CFBs), denoted as Ei, placed
in a grid of 8 columns and 4 rows. Any input of each CFB may be connected either to a
primary circuit input or to the output of a CFB, which is placed anywhere in the preceding
column. Any CFB can be programmed to implement one of 16 function from Γ, where Γ
includes addition, subtraction, shift, minimum, maximum and logic functions. All these
functions operate with 8-bit operands and produce 8-bit results. The reconfiguration is
performed column by column. The computation is pipelined; a column of CFBs represents
a stage of the pipeline. Registers (denoted D) are inserted between the columns in order

128

7.2. CGP ACCELERATOR WITH A SINGLE FITNESS UNIT

to synchronize the input pixels with CFB outputs. The configuration bitstream of VRC,
which is stored in a register array conf reg, consists of 384 bits. A single CFB is configured
by 12 bits, 4 bits are used to select the connection of a single input, 4 bits are used to select
one of the 16 functions. Evolutionary algorithm directly operates with configurations of
the VRC; simply, a configuration is considered as a chromosome.

In tasks of symbolic regression, training data are stored in external SRAM memories.
Fitness unit loads training data from external SRAM1 memory and forwards them to the
inputs of VRC. The outputs of VRC, yi, are compared with required outputs, ri, (which are
loaded from another external memory, SRAM2) and simultaneously stored into the third
external memory, SRAM3. The FU can be considered as an extension of the VRC pipeline
because in each clock cycle, a temporary fitness value is updated by a new difference,
|yi − ri|. Due to pipelined reconfiguration as well as execution of VRC, the evaluation of
a candidate program (circuit) requires k clock cycles, where k is the number of training
vectors.

conf_reg 0

E0

col 0

conf_reg 1 conf_reg m−1 conf_reg m

conf

PEIN

CONF

OUT

MUXA

MUXB

A

B

Y

.

..

.

..

D

E1

En

D

E0

col 1

En

D

E0

col m

En

E0

col m−1

En

D

.

..

F0

F1

Fk

.

..

A

B

Y

MUXY

conf

DD

E1

Om−2O0

O1

Om−1O0

Figure 7.4: VRC for evolution of digital circuits

7.2.5 VRC for Logic Expressions

The architecture of VRC for the evolutionary design of logic circuits is similar to the VRC for
symbolic regression. There are four main differences: PEs contain only logic functions, L-
back=2 is supported, the size of phenotype can be calculated and a data parallel operation of
PEs (the same as used in the software parallel simulation) is introduced (see Section 3.3.2).
If PEs operate at dw bits then the speedup against the bit-level execution is dw-times. In
order to support L-back=2, additional registers (D) have been used to store the results of
stage i − 2 for stage i of the pipeline (see Figure 7.4). The number of configuration bits
for a single column is 2 ∗ log2(ni + 2u) + log2(nf). In contrast to symbolic regression, the
training data (truth table) is stored in BRAMs. For example, if ni = 16 then 64 BRAMs
are utilized. All possible input combinations are generated using a binary counter and need

129

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

COST

CONF col(i) f
E0

=

f
E1

=

f
E2

=

f
En−1

=

f
En

=...

+

+

+

+

+

Tree of adders

ACC+

. ..

Figure 7.5: Circuit for the calculation of the size of a phenotype

not to be stored in BRAMs. When the size of circuit is not optimized, the maximum fitness
value is 2nino.

Figure 7.5 explains the calculation of the size of a candidate circuit. The method assumes
that a PE can implement a single wire. Once a functionally-perfect solution is found, the size
is optimized. The objective is to maximize the number of PEs which operate as wires. The
configuration of a single column of VRC is analyzed using comparators. The comparator
returns 1 in case that a particular PE operates as a wire. These 1s are added using a tree
of adders. This calculation is performed when the column of PEs is configured. It costs no
extra time. The size of phenotype is stored to the least significant bits of the fitness value.

7.3 Experimental Evaluation

7.3.1 Theoretical Performance

Since the steps of the evaluation process described in Section 7.2.1 are pipelined in such
manner that there are no idle clock cycles, time of evolution ttotal can be expressed as

ttotal = tinit +Neteval = tinit +NeNt
1
f

(7.1)

where tinit corresponds with the time needed for the initialization, Ne is the number of
evaluations, Nt is the number of training vectors and f is the operation frequency (in our
case, f = 100 MHz).

7.3.2 Evolution of Image Filters

Results of synthesis for VRC consisting of 4× 8 CFBs are summarized in Table 7.2. While
the PowerPC works at 300 MHz, the logic supporting the PowerPC works at 150 MHz. The
remaining FPGA logic (including VRC and FU) works at 100 MHz. Experimental results
show that approximately 6,000 candidate programs can be evaluated per second when
the training set consists of 15876 vectors (training image consisting of 128 × 128 pixels is
considered) which is 44 times faster than the same algorithm running at the Celeron 2.4
GHz [206]. This accelerator was utilized to discover novel implementations of image filters
discussed in Section 6.3.1.

130

7.3. EXPERIMENTAL EVALUATION

Table 7.2: Results of synthesis for the symbolic regression problems

VRC IO blocks BRAM Slices DFF
Available 852 232 23 616 49 788
4× 8 CFBs 602 12 4 591 3 638
used 70% 5% 20% 7%

Experiments were arranged to find a suitable mutation rate, an efficient pseudo-random
number generator and search strategy. The objective was to (1) remove the salt-and-pepper
noise with intensity of 5%, 10% and 20% from real-world images and (2) design an edge
detector which is able to deal with input images corrupted by the salt-and-pepper noise. A
visual quality of filtered images is expressed using mean difference per pixel (mdpp) between
the filtered image and original image.

Search strategy

As the search algorithm is stored in the program memory of the PowerPC processor, the
proposed platform allows the designer to easily modify the search algorithm. Three search
algorithms are evaluated: a random search, a hill-climbing algorithm and a genetic algo-
rithm. As training images we have used 128 × 128-pixel version of Lena image (see Fig-
ure 6.12). The parameters for each experiment such as maximum number of evaluations,
mutation rate and number of evolutionary runs are given in Table 6.4.

Random search (RS)

This algorithm operates with p individuals that are generated randomly at the beginning of
the evolution. Then an offspring is created using a bit-mutation operator from each parent
and evaluated. If the offspring is equal or better than its parent then the offspring replaces
the parent in the new population. In fact, p standard random search algorithms run in
parallel. This algorithm was implemented in [119] as a special circuit. Figure 7.6 shows
concurrent operations of several processes running in hardware and the PowerPC processor
(including the configuration of the VRC, evaluation of candidate filters and generation of
candidate configurations). These processes are synchronized in such a way that no clock
cycle is lost because of waiting on some resources. Note that only two banks are considered
in this example. Parameter p was chosen as p = 8.

Hardware

bank1

Fitness unit

VRC config bank2

fitness calculation of bank1

PPC

IRQ

Action

bank1 bank2

Clock signal

fitness
value

fitness calculation of bank2 fitness calculation of bank1 fitness calculation of bank2

fitness
value

fitness
value

evaluation mut. evaluation mut. evaluation mut.

bank1 bank2 bank1

Figure 7.6: Example of timing for 2 banks: the reconfiguration of VRC costs 4 clock cycles,
the evaluation costs 12 clock cycles and the interrupt routine requires 8 clock cycles.

131

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

Hill Climbing search (HC)

This algorithm operates with p individuals that are generated randomly at the beginning
of the evolution. After their evaluation, r offspring configurations are generated for each
parent using a bit-mutation operator. The best offspring of the r offspring configurations
replaces the corresponding parent; however, only in case that its fitness value is equal or
better than the parent’s fitness value. Again, in fact, p standard hill climbing algorithms
run in parallel. The following setup was applied in this experiment: p = 8, r = 2.

Genetic algorithm (GA)

The initial population of p individuals is generated randomly. Then, r offspring are gen-
erated from each parent using a bit-mutation operator. A new population consisting of p
individuals is formed from p parents and their p.r offspring. We used a deterministic se-
lection in which p-best scored individuals are selected as new parents. The following setup
was applied in this experiment: p = 8, r = 2.

Table 7.3: The experimental evaluation of the search strategies on four test problems

noise search mean difference per pixel
type algorithm min max mean std.dev.

5% salt-and-pepper RS 0.410 3.190 0.967 0.581
noise HC 0.432 3.320 1.060 0.615

GA 0.333 3.450 2.010 1.240
10% salt-and-pepper RS 0.982 3.280 1.720 0.337

noise HC 0.913 48.01 4.370 3.730
GA 0.828 7.390 2.650 2.190

20% salt-and-pepper RS 1.870 4.350 2.850 0.510
noise HC 1.650 4.190 2.880 0.587

GA 0.870 12.10 2.680 1.330
5% noise, RS 1.100 2.660 1.910 0.419

edge detection HC 1.380 2.960 2.310 0.421
GA 1.070 2.660 2.400 0.453

The results are summarized in Table 7.3. We can observe that while the best mdpp (in
average) is always obtained by means of the RS algorithm, the GA always produces the
filters with the smallest mdpp at all. Recall that the number of evaluations is identical;
however, RS always produces more generations than the GA. The fitness value of the
best-evolved filters are shown in Table 6.5. The LFSR generator has been used in this
experiment.

Mutation operator implementation and mutation rate

Our strategy is to estimate the suitable mutation rate using not so many evaluations (less
than 100,000 evaluations allowed) and then to utilize the discovered mutation rate in long-
time experiments. Figure 7.7 and Figure 7.8 show boxplot diagram containing the average
mdpp, median and standard deviance calculated from the best values obtained at the end
of 32 independent runs of the RS algorithm (p = 8) for each of k inverted bits in the

132

7.3. EXPERIMENTAL EVALUATION

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

1
0

1

1
0

3

1
0

5

1
0

7

1
0

9

1
1

1

1
1

3

1
1

5

1
1

7

1
1

9

1
2

1

1
2

3

1
2

5

1
2

7

m utated bits

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
d

p
p

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

1
0

1

1
0

3

1
0

5

1
0

7

1
0

9

1
1

1

1
1

3

1
1

5

1
1

7

1
1

9

1
2

1

1
2

3

1
2

5

1
2

7

m utated bits

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
d

p
p

5% salt-and-pepper noise
exactly k bits mutated

5% salt-and-pepper noise
up to k bits mutated

Figure 7.7: The results of the evolutionary design of 5% salt-and-pepper noise for various
mutation rate calculated from 32 independent runs.

chromosome (k = 1− 127). Two methods are used: exactly k bits are always inverted and
a randomly chosen number of bits is inverted; however, limited by k.

We can observe that the mutation rate which allows minimizing the fitness value fluc-
tuates around 20 mutated bits per chromosome. This value corresponds with mutation
ratio of 5.2%. It is also more efficient to invert exactly 20 bits than to randomly generate
a number from interval 1− 20.

Pseudorandom number generator

As the outputs of pseudorandom number generators (PRNG) only approximate some of
the properties of random numbers, we have to determine a suitable one for the proposed
architecture. The following three PRNGs were evaluated:

Linear congruential generators (CG)

Linear congruential generators represent the oldest and best-known pseudorandom number
generator algorithms. It is, however, well known that the properties of this class of gener-
ators are far from ideal. The applied linear congruential generator operates according to
formula

Vj+1 = (1103515245× Vj + 12345) mod 232 (7.2)

133

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

1
0

1

1
0

3

1
0

5

1
0

7

1
0

9

1
1

1

1
1

3

1
1

5

1
1

7

1
1

9

1
2

1

1
2

3

1
2

5

1
2

7

m utated bits

2

4

6

8

10

12

m
d

p
p

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

1
0

1

1
0

3

1
0

5

1
0

7

1
0

9

1
1

1

1
1

3

1
1

5

1
1

7

1
1

9

1
2

1

1
2

3

1
2

5

1
2

7

m utated bits

2

4

6

8

10

12

m
d

p
p

10% salt-and-pepper noise
exactly k bits mutated

10% salt-and-pepper noise
up to k bits mutated

Figure 7.8: The results of the evolutionary design of 10% salt-and-pepper noise for various
mutation rate calculated from 32 independent runs.

Linear Feedback Shift Register (LFSR)

Linear Feedback Shift Register is a shift register whose input bit is driven by the exclusive-
or (xor) of some bits of the overall shift register value. As for this PRNG is also known
that output bits do not pose a good distribution we used a parallel LFSR consisting of
16 independent and different LFSRs seeded identically. The LFSR generators operate
according to formula

V i
j+1 =

{
V i

j shr 1 if LSB bit of V i
j = 1

V i
j shr 1⊕ Ci otherwise

(7.3)

where Ci is a suitable constant for i-th LFSR generator (e.g. 0x805FDF47).

Mersenne Twister (MT)

Mersenne Twister algorithm is a twisted generalized feedback shift register that avoids
many of the problems with earlier generators. It has the period of 219937 − 1 iterations,
is proven to be equidistributed in (up to) 623 dimensions (for 32-bit values). A standard
implementation of Mersenne Twister was utilized [120].

Figure 7.9 shows average mdpp and corresponding standard deviations obtained from
32 independent runs (after 12,288 evaluations in each run) using the RS algorithm (p = 8,
mutation applied on 20 bits). The three generators are compared on two problems: remov-
ing 10% salt-and-pepper noise from Lena image and edge detector design. Surprisingly,
there are not any significant differences in the quality of obtained results.

134

7.3. EXPERIMENTAL EVALUATION

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

m utated bits

2.2

2.3

2.4

2.5

2.6

2.7

m
d

p
p

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

m utated bits

4

5

6

7

8

9

10

11

12

13

m
d

p
p

LFSR

MT

CG

10% salt-and-pepper noise
exactly k bits mutated

sobel filter resistant against 5% salt-and-peper noise
exactly k bits mutated

LFSR

MT

CG

Figure 7.9: The impact of the quality of pseudo random numbers generators on the results of
the evolutionary design of 10% salt-and-pepper noise filter and noise-resistant edge detector.
The average fitness value expressed in terms of mdpp is calculated from 32 independent
runs. The error bars shows the standard deviance.

7.3.3 Evolution of Digital Circuits

Table 7.4 provides results of synthesis for various parameters of VRC. While the size of
VRC and the number of inputs and outputs are fixed, the number of test vectors evaluated
in parallel (i.e. dw) increases from 1 to 12. When no data parallel execution is used,
the whole design occupies approx. 10% resources; when dw = 12 (i.e. 12 test vectors
are evaluated in parallel by a PE) the design occupies approx. 90% resources. Using this
setup we can achieve 27 times faster evaluation in comparison with a highly optimized SW

Table 7.4: Results of synthesis for VRC with 10x10 PEs, 9 inputs, 9 outputs and 4 logic
functions per PE (XC2VP50-ff1517 Xilinx FPGA). DFF is the number of flip-flops and FG
is the number of function generators

of vectors evaluated in parallel (dw)
resource available 1 2 4 8 12
BRAMs 232 14 16 20 28 36

used 6.0% 6.9% 8.6% 12.1% 15.5%
DFFs 49788 2743 2993 3533 4709 5843

used 5.5% 6.0% 7.1% 9.5% 11.7%
FGs 47232 4836 7813 14164 26734 41281

used 10.2% 16.5% 30.0% 56.6% 87.4%

135

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

Table 7.5: Results of synthesis for various VRCs of 9 inputs, 9 outputs, 4 logic functions
and dw = 2 (FPGA XC2VP50-ff1517)

VRC size
resource available 10× 10 12× 12 14× 14 16× 16
DFFs 49788 1644 2336 3634 4664

used 3.3% 4.7% 7.3% 9.4%
FGs 47232 6242 9012 26700 32352

used 13.2% 19.1% 56.5% 68.5%
of conf. bits 1200 2016 2744 3584

implementation running at a CPU Intel Xeon 3 GHz processor (and utilizing a parallel
simulation at 32 bits), even if the VRC works at 100 MHz.

Table 7.5 contains the results of synthesis for various VRC sizes. The number of inputs,
outputs, logic functions and data width are fixed. The last row shows the number of
configuration bits of VRC.

In order to investigate the impact of the L-back parameter, we created two VRCs with
L = 1 and L = 2. Proposed implementations were evaluated in the task of multiplier
evolution, a traditional hard benchmark problem for evolutionary circuit design. A parallel
version of Hill Climbing algorithm with neighbourhood of two and population size of 8
individuals was used. Table 7.6 summarizes results of 10 independent experiments for each
problem. We can see that the increasing value of L-back parameter has the positive effect
on the average number of generations and the success rate. Obtained results are comparable
to the best-known results [182] (where the authors allowed the maximum value of L-back
parameter).

Table 7.7 compares the number of evaluated candidate circuits per one second in a
highly optimized SW implementation and proposed HW accelerator. In case of the SW
implementation, the time of circuit evaluation depends on the size of the phenotype and
the number of training vectors. On the other hand, in hardware, this time depends only

Table 7.6: Results for evolution of multipliers (Γ = {BUF, AND, XOR, ā AND b})

Parameters of evolution
multiplier 2× 2 2× 3 3× 3 3× 4 4× 4
l-back 1 2 1 2 1 2 1 2 1 2
VRC 8x8 8x8 10x10 10x10 10x10 10x10 10x10 10x10 16x16 16x16
inputs 4 4 5 5 6 6 7 7 8 8
gener. (max) 10k 10k 100k 100k 1M 1M 10M 10M 20M 20M

Results
success rate 91% 96% 92% 100% 72% 96% 18% 84% 0% 4%
gates (min) 7 7 13 13 29 24 60 45 - 125
gates (max) 19 13 20 21 45 47 67 68 - 156
gates (avg) 9 8 15 15 34 33 61 57 - 138
gener. (avg) 1.8k 1.5k 20k 13k 22k 284k 4.84M 3.84M - 14.2M

136

7.4. CGP ACCELERATOR WITH MULTIPLE FITNESS UNITS

on the number of training vectors. Hence, the accelerator becomes more useful for complex
VRCs and larger sets of training data.

Table 7.7: The number of evaluations per second. VRC operates at 100 MHz (dw = 4),
SW is executed on the Intel(R) Xeon(TM) CPU 3.06 GHz (dw = 32)

VRC size (SW) VRC size (HW) evaluation
inputs 10× 10 12× 12 16× 16 10× 10 12× 12 16× 16 speedup

6 400 296 222 6250 6250 6250 15–28
7 250 173 89 3125 3125 3125 12–35
8 154 95 51 1563 1563 1563 10–30
9 85 50 25 781 781 781 9–31

7.4 CGP Accelerator with Multiple Fitness Units

As it has been demonstrated, the evolution using the proposed accelerator containing a sin-
gle fitness unit running at 100 MHz is significantly faster that the software implementation
running on the common PC at GHz processor. In the task of image filter evolution, which
can be considered as a symbolic regression problem, the FPGA-based accelerator exhibits
the 44 times higher performance. Looking at the results of synthesis, the FPGA offers the
capacity to increase this speedup by creating a system with multiple fitness units. The
architecture of the accelerator with multiple fitness units is shown in Figure 7.10. Similarly
to the previous architecture, the system consists of genetic unit, fitness unit and control
unit. All the units have the same meaning as it has been described in the previous section.

PPC Fitness
Computation

Part

Control
Unit

PowerPC
Processor

VRC configuration

IRQ

FIT_VALUE

BRAM

Population
Memory

VRC_OUT

VRC_IN

SRAM SRAM

Genetic unit Fitness unit

Input
Generation

Part

VRC
Virtual Reconfigurable Circuit

FPGA

PCI bus

Figure 7.10: Architecture of the proposed CGP accelerator with multiple fitness units

The population of candidate configurations is stored in on-chip BRAM memories. The
population memory is divided into Nb banks; each of them contains Nc configuration bit-
streams. Each bitstream consists of the configuration data that are necessary to configure
one VRC. All the bitstreams stored within a bank are evaluated in parallel. An additional
bit (associated with every bank) determines the data validity; only valid configurations

137

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

can be evaluated. While the candidate solutions are evaluated, the Nc new candidate con-
figurations are generated. Similarly to the previous architecture, the population memory
provides also two independent ports; the m-bit read-only port B is connected to the fitness
unit and used for the reconfiguration of all VRCs. Since corresponding columns of VRCs
are reconfigured at the same time (i.e. in parallel), the part of bitstream which encodes one
column of VRC can contain up-to m/Nc bits. Note that the width of the B port must be
chosen with respect to

1. the implementation limits (m must be an integer divisible by 128),

2. the number of bits of a part of bitstream used to configure one column of VRC and

3. the number of VRC instances Nc.

7.4.1 Fitness Unit

The fitness unit consists of Nc instances of VRC and two subcomponents: (a) the input
generation part and (b) the fitness computation part. The training data are stored in
external SRAM memories. The fitness unit loads training data from the external SRAM1
memory and forwards them to the inputs of VRCs. The VRCs exhibit the same architecture
as it has been described in the previous section.

In case of the evolutionary design of image filters it is necessary to implement a local
neighborhood function (also referred to as a sliding window function) producing wk2 bits
per one clock cycle that have to be forwarded to the inputs of VRCs, where k is the size
of the filter window and w is the data width (in our case k = 3 and w = 8). The local
neighborhood function can be efficiently implemented using k row buffers as shown in Figure
7.11.

In case of common one-dimensional symbolic regression problems, the training data can
be forwarded directly from the SRAM1 to the VRC inputs. In case that the problem to be
solved involves the utilization of a history of previous samples, the input generation part of
the fitness unit will contain a buffer for previous samples. This buffer can be implemented
using registers or BRAM memories.

ACC

ACC

ACC

ACC

Fitness computation partSRAM 2

Input generation part

VRC

configuration

VRC 1

VRC 3

VRC 4

VRC 2

control

signals
fitness

value

72b

72b

72b

72b

8b

8b

FIFO

FIFO

FIFO

SRAM 1 24b

24b

24b

REG

REG

REG

8b

8b

8b

8b

y1

y2

y3

y4

y

x

Figure 7.11: Architecture of the fitness unit with multiple VRCs (Nc = 4)

138

7.4. CGP ACCELERATOR WITH MULTIPLE FITNESS UNITS

The fitness computation part consists of Nc instances of a circuit that computes the
fitness value; each VRC utilizes its own instance. In this experiment, four VRCs with
k2 inputs and one output are used. For each VRC i, the absolute difference between
the output value yi and the required output value y (which is obtained from the external
memory SRAM2) is calculated. Then, a temporary fitness value stored in accumulator
(ACCi) is updated by the difference |yi − y|. As soon as FU evaluates the last training
vector, the best fitness value together with the index of corresponding VRC is sent to the
PowerPC. VRCs are then reconfigured using new bitstreams.

7.4.2 Genetic Unit

The introduction of multiple VRC instances requires designing of a problem specific memory
interface that allows avoiding the idle clock cycles. The memory banks are used in order to
overlap the evaluation of the candidate solutions with the generation of new chromosomes.
Moreover, each bank is divided into Nc equivalent sections, each of them is used to configure
a single VRC. The population memory consists of several instances of BRAM memories
arranged together to provide the required number of bits. This arrangement enables to
reconfigure all VRC instances in parallel. In order to reduce the number of memory accesses
issued by the PowerPC processor, the population memory is equipped with a logic that
enables to store only the differences between the configurations of neighboring sections.

S
ec

tio
n

1
S

ec
tio

n
2

S
ec

tio
n

3
S

ec
tio

n
4

0256512768

bank 1bank 2bank N

C
1

(c
ol

 1
)

C
1

(c
ol

 2
)

C
1

(c
ol

 3
)

C
1

(c
ol

 1
)

C
1

(c
ol

 2
)

C
1

(c
ol

 3
)

C
2

(c
ol

 1
)

C
2

(c
ol

 2
)

C
2

(c
ol

 3
)

C
3

(c
ol

 1
)

C
3

(c
ol

 2
)

C
3

(c
ol

 3
)

C
4

(c
ol

 1
)

C
4

(c
ol

 2
)

C
4

(c
ol

 3
)

C
2

(c
ol

 1
)

C
2

(c
ol

 2
)

C
2

(c
ol

 3
)

C
3

(c
ol

 1
)

C
3

(c
ol

 2
)

C
3

(c
ol

 3
)

C
4

(c
ol

 1
)

C
4

(c
ol

 2
)

C
4

(c
ol

 3
)

Figure 7.12: Population memory and its internal organization

In order to exploit the performance of proposed highly-parallel architecture, GU has
to generate Nc new candidate configurations while another Nc candidate configurations
are evaluated. Because the search algorithm utilizes a population of candidate solutions,
a single genetic operator is used (i.e. mutation which inverts h bits of the configuration)
and no crossover operator is applied, the number of memory accesses can be minimized
by storing the differences between the configuration bitstream of the first offspring and
remaining offspring.

The PowerPC keeps only the information about mutations (i.e. indices of inverted
bits) and the best fitness value. FU contains a circuit generating a complete configuration
bitstream for each VRC according to the partial information stored in the sections.

The mechanism controlling the bitstream generation works as follows. As soon as the
evaluation is finished, the best fitness value fbest (out of the four evaluated individuals)

139

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

together with the index of the corresponding VRC i is sent to the PowerPC. The three
situations can occur

1. if fbest < fparent then the bitstream of the first mutant is reverted to the parent
bitstream by applying the mutations leading to this configuration, however in reverse
order,

2. if i > 1 then the differences between the first mutant and i-th mutant stored in i-th
section have to be reflected to the first bitstream,

3. if i = 1 then nothing has to be done; the configuration bitstream corresponds with
the new parent bitstream.

By applying the previous steps, the first section contains the parental bitstream and a
new generation can be created. Note that the inverted bits stored in sections have to be
cleared before a new generation is created. The same principle is applied for remaining
banks.

7.5 Experimental Evaluation

In order to evaluate the performance of the proposed solution, the problem of evolutionary
design of image filters will be investigated. We will consider VRC that consists of 8 columns
and 4 rows (u = 8 and v = 4). The configuration bitstream which is used to configure one
VRC consists of 384 bits; i.e. 48 bits per a column are used. A single CFB is configured
by 12 bits, 4 bits are used to select the connection of a single input, 4 bits are used to
select one of the 16 functions. The population memory consists of 8 BRAM memories that
provide 256 bit wide output. Hence a VRC with the configuration bitstream containing up
to 64 bits per column can be used.

7.5.1 Theoretical Performance

Due to the pipelined reconfiguration as well as execution of VRC, the evaluation of Nc

candidate programs requires (M − 2)(N − 2) clock cycles, where M ×N is the number of
pixels of training image. The time teval needed to evaluate Nc candidate solutions can be
expressed as

teval = (M − 2)(N − 2)
1
f

= (M − 2)(N − 2)
1

100
µs,

where f is the operation frequency (f = 100 MHz). Since the evaluation of a candidate
solution is pipelined, the teval depends only on the number of training vectors. Note that in
case of the software implementation of CGP, the evaluation time depends not only on the
number of training vectors but also on the number of CGP nodes. As the generation of new
candidate configurations is overlapped with the evaluation of other candidate solutions, the
total time ttotal can be expressed as

ttotal = tinit +Ngd
p

Nc
eteval,

140

7.5. EXPERIMENTAL EVALUATION

where tinit corresponds with the time needed for the initialization (i.e. transferring the
training data and programming the PowerPC processor), Ng is the number of generations,
p is the population size and Nc is the number of VRC instances. The proposed platform
provides the best performance if the number of VRC instances is equal to the population
size or the population size is a multiple of the number of VRC instances (p = kp, where
k ∈ N+). If the previous condition is met, all the VRC instances are utilized without
stalls. Note that this condition does not represent any limitation since the population size
is typically chosen between five and ten individuals and moreover, the population size can
be adjusted according to the number of utilized VRC instances.

7.5.2 Results of Synthesis

Results of synthesis for the accelerator containing up to four VRC instances (4 × 8 CFBs
each) are summarized in Table 7.8. The proposed system is implemented using Virtex
II Pro XC2VP50 FPGA. The PowerPC works at 300 MHz, the memory interface at 150
MHz and the remaining FPGA logic including FU at 100 MHz. According to the detailed
synthesis report, one instance of VRC occupies 3275 slices and 1084 flip-flops. The whole
design occupies approx. 60% of the FPGA for Nc = 4, the four VRC instances represent
approx. 90% of the design size (see Figure 7.13).

Table 7.8: Results of synthesis for various number of VRC instances (Virtex II Pro)

resource avail. Nc = 1 Nc = 2 Nc = 4
IO blocks 852 602 70% 602 70% 602 70%
BRAM 232 16 7% 16 7% 16 7%
SLICES 23 616 4 651 20% 7 961 34% 14 582 60%
DFF 49 788 3 536 7% 4 691 9% 7 001 14%

Table 7.9 summarizes the results of synthesis for the XC5VFX100T FPGA. This FPGA
is available on the second generation of the COMBO cards (COMBO-LXT). The main
difference between Virtex-5 and Virtex II Pro family is the internal structure of the basic
building blocks (LUTs); while the Virtex II Pro chip contains 4-input LUTs the Virtex-5
chip utilizes LUTs with 6 inputs. Moreover, the Virtex-5 family is equipped with more
powerful PowerPC processor, faster logic and larger BRAM memories. Thus a well written
design usually works on higher frequency and occupies smaller area.

Table 7.9: Results of synthesis for various number of VRC instances (Virtex-5, 100 MHz)

resource avail. Nc = 1 Nc = 2 Nc = 4 Nc = 8
IO blocks 640 640 94% 640 94% 602 94% 602 94%
BRAM 228 8 4% 8 4% 8 4% 12 5%
SLICES 16 000 1 828 11% 3 157 20% 5 819 36% 11 158 70%
DFF 65 280 3 633 6% 4 788 7% 7 098 11% 11 718 18%

According to the detailed synthesis report, one instance of VRC occupies 1290 slices
and 1084 flip-flops. The whole design occupies approx. 40% of the FPGA for Nc = 4. The
number of occupied resources indicates that this FPGA is able to contain approximately

141

CHAPTER 7. HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING

2.5 times higher number of VRC instances and thus provide 2.5 times higher computational
power with nearly the same power consumption.

7.5.3 Evolution of image filters

Experimental results show that approximately 25,000 candidate filters can be evaluated per
second when the training set consists of 15876 8-bit vectors (i.e. a training image containing
128× 128 pixels is used) and four instances of VRC are employed. Table 7.10 contains the
comparison of the proposed accelerator against the recently published works dealing with
the evolutionary design of image filters in terms of the number of evaluated candidate
solutions per second as well as the estimated power consumption. Note that the number of
evaluations per second has been calculated for the image containing 128× 128 pixels. The
last column of Table 7.10 contains the relative speedup. It can be seen that the proposed
solution works approximately 170 times faster than the highly optimized software version
of the same algorithm written in C running at the Celeron 2.4 GHz processor. Estimated
results indicate that a cluster of 30 FPGAs will have the same power consumption as a
common processor (65 W). Nevertheless, the cluster is capable of providing the speedup
of more than 5000 supposing that one independent run of CGP is carried out using one
FPGA.

VRC1

VRC2

VRC3

VRC4

FU

GU

Legend

Figure 7.13: FPGA Virtex II Pro XC2VP50 utilization for the accelerator containing four
VRC instances.

Apart from the FPGA-based accelerators, several papers have been published in recent
years dealing with the acceleration of CGP using common GPUs [71, 31, 149]. Harding and
Banzhaf achieved the speedup between 0,02 and 100 for the problem of symbolic regression
using the GPU NVidia GeForce 7300 GO [71]. The direct comparison between the results is
difficult, as they used extremely large CGP array (10000 nodes) and relative small number of
training vectors (2000) in order to reduce the huge overhead arising during the data transfer
to the GPU or accessing the content of the GPU memory. Another common approach to
increase the speedup on GPUs is to introduce higher level of parallelism by increasing

142

7.6. SUMMARY

Table 7.10: Comparison of the proposed accelerator with published approaches

Approach Platform clock power evals speedup
freq. cons. per sec

Accelerator with PowerPC (4 VRCs) FPGA XC2VP50 100 MHz 2W 25195 1
Accelerator with PowerPC (1 VRC) FPGA XC2VP50 50 MHz 2W 3150 8
Complete HW accelerator [119] FPGA XC2V3000 50 MHz 1W 3150 8
Complete HW accelerator [189] FPGA XCV2000 33 MHz 1W 1935 13
Muli-VRC accelerator [190] FPGA XCV2000 30 MHz 1W 1935 13

Highly optimized SW [215] CPU Celeron 2.4 GHz 65W 145 170
SW [189] CPU Pentium IV 2.0 GHz 60W 16 1495

the number of individuals in the population [31, 149]. Although this approach enables to
overlap the expensive data transfers with the evaluation of other individuals, the method
seems to be unpractical. According to the published works, it appears that population-
parallel approaches are more effective for smaller data sets but unable to compete with the
FPGA-based accelerators on very large data sets.

7.6 Summary

The goal of this chapter was to present a parallel highly optimized pipelined hardware
architecture designed for the acceleration of Cartesian genetic programming. The proposed
accelerator consists of two main units – genetic engine and fitness unit. The fitness unit
contains multiple instances of virtual reconfigurable circuit to evaluate several candidate
solutions in parallel. The genetic engine is reused in all applications. Two types of virtual
reconfigurable circuits are proposed. While the first VRC is devoted for symbolic regression
problems over the FX representation, the second one is designed for evolution of logic
circuits. In both cases a significant speedup of evolution was obtained in comparison with a
highly optimized software implementation of CGP running at common gigahertz processor.
The speedup can be even increased by using a modern FPGA chip (e.g. Virtex-5) doubling
thus resources now capable of running at higher frequencies. In contrast with the CGP
implementations based on GPUs or common CPUs, the proposed hardware accelerator
provides constant speedup independently on the size of the training set (if a suitable FPGA
or external memory is chosen).

143

Chapter 8

Conclusions

The primary goal of the research presented in this thesis is an acceleration of the evolu-
tionary design in the field of digital systems design and optimization. We have postulated
the hypothesis that the evolutionary design approach can produce interesting and human
competitive solutions when the problem of scalability is reduced and thus sufficient num-
ber of generations can be utilized. Because the scalability problems significantly limit the
application of evolutionary algorithms, we were primarily focused on the reduction of the
fitness evaluation time which represents a serious issue in circuit evolution since the complex
candidate solutions require a lot of time to be evaluated.

Proposed Approaches to the Scalability Problem Reduction

The contribution of this research can be summarized as follows. The thesis dealt with
the design of various acceleration techniques that can significantly eliminate the scalability
problem of evolutionary design of digital circuits at various levels of abstraction. In order
to confirm our hypothesis, the work has addressed three different design classes.

In order to reduce the fitness evaluation time, a domain-specific single-chip FPGA-based
accelerator has been proposed. This accelerator is designed to address the problem of the
necessity of huge computation power for designing of digital circuits at the function-level.
These circuits cannot be fully specified a priori, but their desired behavior is known. A
typical example is the regression problem which includes e.g. evolutionary design of non-
linear image filters. The common feature of this class of circuits is that small imperfections
in circuit behavior are tolerable, e.g. it is acceptable that the error of filtering is not zero
but reasonably small value.

A different approach has been proposed in the area of logic synthesis, where the re-
sulting circuits must perfectly meet the specification. A method based on applying formal
verification techniques that allow a significant acceleration of the fitness evaluation proce-
dure was proposed, overcoming thus the major bottleneck of the evolutionary synthesis at
gate level. The proposed algorithm can produce complex and simultaneously innovative
designs, improving thus the state-of-the art logic synthesis tools.

Finally, we have shown that there are applications that require a single training vector
in order to calculate the fitness value of a candidate solution. This approach is applicable

145

CHAPTER 8. CONCLUSIONS

in such cases where the utilized building blocks satisfy the properties of linearity. This
method can be used at the gate level as well as function level.

The Obtained Results

It has been demonstrated that in case of the evolutionary design of nonlinear as well as
linear image filters, the proposed single-chip accelerator running at 100 MHz can provide,
using a moderate Xilinx FPGA XC2VP50, approximately 170 times higher performance in
comparison with a common PC running at 2.4 GHz. This performance has been achieved
by introducing a deeply pipelined architecture which significantly accelerates the evaluation
of a candidate solution. Note that even higher performance can be achieved using the same
architecture on the latest FPGA chips. The modern FPGAs are able to work on higher
frequencies and provide significantly more resources that can be utilized to parallelize the
process of evaluation.

By means of the proposed FPGA accelerator, very efficient nonlinear image filters have
been designed. The performance of the proposed FPGA accelerator and its ability to
design innovative solutions was investigated in several papers dealing with evolution of edge
detectors and various impulse noise filters of lower [215] as well as high intensity [214, 213].
Extensive testing was devoted to the analysis of the optimal choice of the population size,
mutation rate, size of the CGP array, size of the training image, set of node functions,
pseudo-random number generator and search algorithm [215, 206]. One of the discovered
implementations of an impulse noise filter consisting of four evolutionary designed filters
working with the 3 × 3 pixel filter window combined in a bank of filters is protected by
the Czech utility model (a patent application was submitted in 2009). The resulting filter
exhibits high filtration quality while the implementation cost remains very low. Apart from
that, some other new impulse noise filters have been evolved using the CGP-based approach
[220, 212, 211].

Using the proposed acceleration algorithm employing the formal verification algorithm,
a system was developed that is able to optimize the number of gates (and potentially power
consumption or delay) of combinational circuits having from tens to thousands primary
inputs. The proposed method has been evaluated using a set of LGSynth93 benchmark
circuits and compared with conventional academia as well as commercial synthesis tools
[209, 208, 219]. It was shown that the proposed method can handle circuits intractable
for common EHW-based approaches utilized so far (one of the benchmark circuits has
over 100 inputs and more than 1000 gates). In contrast with the conventional synthesis
tools, the average improvement in terms of the number of gates provided by our system was
approximately 25%. Apart from the fact that the obtained result indicates the evolutionary
approach is able to generate the solutions better than conventional techniques, it also
confirms the recent hypothesis that the conventional logic synthesis produces the results
that are far from optimum [209].

The problem of the multiple constant multiplier design, which belongs to the class of
problems where a candidate solution can be perfectly evaluated in a short time, has been
investigated [223]. Although the multiple constant multiplier is not a complex circuit in

146

its own right, it represents a basic component of more complex circuits that form an in-
tegral part of every linear transformation (e.g. the discrete Fourier transform). Although
well-optimized heuristics exist for linear transforms design, we confirmed that novel imple-
mentations of multiple constant multipliers can be designed using evolutionary algorithm.

To summarize, it has been demonstrated that the evolutionary approach is able to
produce innovative solutions if an efficient evaluation procedure is employed. We have
presented three different approaches to increase the performance of evolutionary algorithms
and showed their applicability.

Future Work

There are several directions how to continue with this research.
It has been shown that the virtual reconfigurable circuit utilized in the proposed accel-

erator is able to deliver significant speedup, however due to its implementation based on
multiplexers it simultaneously consumes many FPGA resources. The amount of occupied
resources could then be substantially reduced when a modern FPGA supporting a fast dy-
namical partial reconfiguration is applied. The multiplexers that are used to connect the
processing elements could be removed since the connections can be established dynamically
using partial dynamical reconfiguration. If we reduce the area occupied by the VRC, we can
synthesize more VRCs on a single FPGA chip and thus increase the overall performance.

The system employing the formal verification algorithm can also be improved in several
ways. The SAT-based approach can perform unsatisfactory for some problem instances.
For example, the time needed to decide whether two multipliers are functionally equivalent
grows exponentially with the increasing number of inputs. There are tens of extensions and
algorithms that have been proposed by the SAT community to improve the performance
of digital circuit equivalence checking. Some of the extensions can be adopted in order
to improve performance of the proposed system. In future research it is also necessary to
confirm that the proposed method is able to handle large-scale optimization problems if
more advanced version of the SAT solver is utilized.

Since the evolutionary synthesis based on the formal verification algorithm can handle
real-world (i.e. complex) circuits, it will be probably necessary to investigate the scalability
of CGP representation, efficiency of utilized genetic operators and the utilized search al-
gorithm. As it has been shown, the evolutionary strategy with population containing only
two individuals surprisingly provided the best results.

We believe that there are other applications of evolvable hardware where formal veri-
fication algorithms are directly or indirectly applicable. Further investigation is needed to
identify more complex applications that can benefit from this technique.

147

Bibliography

[1] M. Abd-El-Barr, S. Sait, B. Sarif, and U. Al-Saiari. A modified ant colony algorithm for
evolutionary design of digital circuits. In Evolutionary Computation, 2003. CEC ’03. The
2003 Congress on, volume 1, pages 708 – 715, 2003.

[2] Advanced Micro Devices, Inc. AMD Athlon Processor x86 Code Optimization Guide.
http://support.amd.com/us/Processor_TechDocs/22007.pdf, 2000.

[3] M. O. Ahmad and D. Sundararajan. A fast algorithm for two-dimensional median filtering.
IEEE Transactions on Circuits and Systems, 34:1364–1374, 1987.

[4] B. Ali, A. E. A. Almaini, and T. Kalganova. Evolutionary algorithms and theirs use in the
design of sequential logic circuits. Genetic Programming and Evolvable Machines, 5(1):11–29,
2004.

[5] Anadigm, AN221E04 – Field Programmable Analog Arrays – User Manual, 2007. URL:
http://www.anadigm.com/ doc/UM021200-U007.pdf.

[6] F. V. Andrade, M. C. M. Oliveira, A. O. Fernandes, and C. J. N. Coelho. SAT-based
equivalence checking based on circuit partitioning and special approaches for conflict clause
reuse. Design and Diagnostics of Electronic Circuits and Systems, pages 1–6, 2007.

[7] F. V. Andrade, L. M. Silva, and A. O. Fernandes. Improving SAT-based combinational
equivalence checking through circuit preprocessing. In 26th International Conference on
Computer Design, ICCD 2008, pages 40–45, 2008.

[8] P. J. Angeline. Subtree crossover causes bloat. In Genetic Programming 1998: Proceedings of
the Third Annual Conference, pages 745–752. Morgan Kaufmann, 1998.

[9] T. Aoki, N. Homma, and T. Higuchi. Evolutionary Synthesis of Arithmetic Circuit
Structures. Artificial Intelligence Review, 20(3–4):199–232, 2003.

[10] T. Aoki, N. Homma, and T. Higuchi. Evolutionary synthesis of arithmetic circuit structures.
Artificial Intelligence Review, 20:199–232, 2003.

[11] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, 1996.
[12] W. Banzhaf and W. B. Langdon. Some considerations on the reason for bloat. Genetic

Programming and Evolvable Machines, 3(1):81–91, 2002.
[13] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming - An Introduction.

On the Automatic Evolution of Computer Programs and its Application. Morgan Kaufmann,
Heidelberg/San Francisco, 1998.

[14] K. E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computing
Conference, pages 307–314, 1968.

[15] P. J. Bentley. Evolutionary Design by Computers. Morgan Kaufmann, San Francisco CA,
1999.

[16] Berkeley Segmentation Dataset. Images, 2003.
http://www.eecs.berkeley.edu/Research/Projects/

CS/vision/grouping/segbench/BSDS300/html/dataset/.

149

BIBLIOGRAPHY

[17] Berkley Logic Synthesis and Verification Group. Abc: A system for sequential synthesis and
verification.

[18] M. Bidlo and J. Skarvada. Instruction-based development: From evolution to generic
structures of digital circuits. International Journal of Knowledge-Based and Intelligent
Engineering Systems, 12(3):221–236, 2008.

[19] A. Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Technical report,
Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69,
4040 Linz, Austria, 2010. Technical Report 10/1, August 2010, FMV Reports Series.

[20] M. Brameier and W. Banzhaf. Linear genetic programming. Springer, 2007.
[21] A. F. Breitzman. Automatic Derivation and Implementation of Fast Convolution Algorithms.

PhD thesis, Philadelphia, PA, USA, 2003.
[22] D. R. K. Brownrigg. The weighted median filter. Commun. ACM, 27(8):807–818, 1984.
[23] D. Bull and D. Horrocks. Primitive operator digital filters. Circuits, Devices and Systems,

IEE Proceedings G, 138(3):401 – 412, 1991.
[24] A. Burian and J. Takala. Evolved Gate Arrays for Image Restoration. In Proc. of 2004

Congress on Evolutionary Computing CEC’04, pages 1185–1192. IEEE Publ. Press, 2004.
[25] D. Caban. FPGA implementation of positional filters. In Design of Embedded Control

Systems, pages 243–249. Springer-Verlag, 2005.
[26] P. Cappello and K. Steiglitz. Some complexity issues in digital signal processing. Acoustics,

Speech and Signal Processing, IEEE Transactions on, 32(5):1037 – 1041, 1984.
[27] Cesnet, z.s.p.o. Liberouter COMBO cards. http://www.liberouter.org/hardware.php,

2005.
[28] C. Chakrabarti. Novel sorting network-based architectures for rank order filters. IEEE

Transactions on Very Large Scale Integration Systems, 2(4):502–507, 1994.
[29] C. Chakrabarti. Sorting network based architectures for median filters. Transaction on

Signal Processing, 1994.
[30] C. Chakrabarti and L. E. Lucke. VLSI architectures for weighted order statistic (WOS)

filters. Signal Processing archive, 80(8):1419–1433, 2000.
[31] D. M. Chitty. A data parallel approach to genetic programming using programmable

graphics hardware. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, volume 2, pages 1566–1573, London, 2007. ACM Press.

[32] A. Chojnacki. Effective and efficient fpga synthesis through functional decomposition based
on information relationship measures. In Proceedings of the Euromicro Symposium on Digital
Systems Design, DSD ’01, pages 30–, Washington, DC, USA, 2001. IEEE Computer Society.

[33] D. Cliff, I. Harvey, and P. Husbands. Explorations in evolutionary robotics. Adaptive
Behavior, 2(1):73–110, 1993.

[34] M. Collins. Finding needles in haystacks is harder with neutrality. Genetic Programming and
Evolvable Machines, 7:131–144, 2006.

[35] J. Cong and K. Minkovich. Optimality Study of Logic Synthesis for LUT-Based FPGAs.
IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems,
26(2):230–239, 2007.

[36] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third
annual ACM symposium on Theory of computing, pages 151–158, New York, NY, USA, 1971.
ACM.

[37] V. Crnojevic, V. Senk, and Z. Trpovski. Advanced impulse detection based on pixel-wise
MAD. SPLetters, 11(7):589–592, July 2004.

150

[38] A. Das and R. Vemuri. A graph grammar based approach to automated multi-objective
analog circuit design. In DATE 2009, pages 700–705. IEEE, 2009.

[39] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Commun. ACM, 5:394–397, 1962.

[40] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,
7:201–215, 1960.

[41] A. Dempster and M. Macleod. Constant integer multiplication using minimum adders.
Circuits, Devices and Systems, IEE Proceedings -, 141(5):407 – 413, 1994.

[42] A. Dempster and M. Macleod. Use of minimum-adder multiplier blocks in fir digital filters.
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on,
42(9):569 – 577, 1995.

[43] A. Dempster and M. Macleod. Comments on ldquo;minimum number of adders for
implementing a multiplier and its application to the design of multiplierless digital filters
rdquo;. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions
on, 45(2):242 – 243, 1998.

[44] S. Disch and C. Schollm. Combinational equivalence checking using incremental SAT solving,
output ordering, and resets. Asia and South Pacific Design Automation Conference, pages
938–943, 2007.

[45] Y. Dong and S. Xu. A new directional weighted median filter for removal of random-valued
impulse noise. Signal Processing Letters, 14(3):193–196, 2007.

[46] E. R. Dougherty and J. T. Astola, editors. Nonlinear Filters for Image Processing.
SPIE/IEEE Series on Imaging Science & Engineering. SPIE/IEEE, 1999.

[47] J. Dumoulin, J. Foster, J. Frenzel, and S. McGrew. Special Purpose Image Convolution with
Evolvable Hardware. In Real-World Applications of Evolutionary Computing – Proc. of the
2nd Workshop on Evolutionary Computation in Image Analysis and Signal Processing
EvoIASP’00, volume 1803 of LNCS, pages 1–11. Springer-Verlag, 2000.

[48] R. Ebendt, G. Fey, and R. Drechsler. Advanced BDD Optimization. Springer, 2000.
[49] N. Een, A. Mishchenko, and N. Sorensson. Applying logic synthesis for speeding up SAT.

Lecture notes in computer science, page 272, 2007.
[50] N. Een and N. Sorensson. MiniSAT. http://minisat.se.
[51] N. Een and N. Sorensson. An extensible SAT-solver. In Theory and Applications of

Satisfiability Testing, pages 333–336, 2004.
[52] S. A. Fahmy, P. Y. K. Cheung, and W. Luk. Novel FPGA-based implementation of median

and weighted median filters for image processing. In FPL, pages 142–147, 2005.
[53] P. Fiser and J. Schmidt. Small but nasty logic synthesis examples. In Proc. 8th Int.

Workshop on Boolean Problems, pages 183–190, 2008.
[54] M. Flynn and P. Hung. Microprocessor design issues: thoughts on the road ahead. Micro,

IEEE, 25(3):16 – 31, 2005.
[55] D. B. Fogel. Evolutionary Computation: Towards a New Philosophy of Machine Intelligence.

IEEE Press, 1995.
[56] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated

Evolution. Wiley, New York, 1966.
[57] Z. Gajda and L. Sekanina. Reducing the number of transistors in digital circuits using

gate-level evolutionary design. In Genetic and Evolutionary Computation Conference, pages
245–252. Association for Computing Machinery, 2007.

[58] M. Garvie. Reliable Electronics through Artificial Evolution. PhD thesis, University of

151

BIBLIOGRAPHY

Sussex, 2005.
[59] K. Glette and J. Torresen. A flexible on-chip evolution system implemented on a xilinx

virtex-ii pro device. In Evolvable Systems: From Biology to Hardware, volume 3637 of LNCS,
pages 66–75. Springer, 2005.

[60] K. Glette, J. Torresen, and M. Yasunaga. An online EHW pattern recognition system
applied to face image recognition. In Applications of Evolutinary Computing, EvoWorkshops
2007, volume 4448 of LNCS, pages 271–280. Springer, 2007.

[61] K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi. On-Chip Evolution Using a Soft
Processor Core Applied to Image Recognition. In Proceedings 1st NASA /ESA Conference
on Adaptive Hardware and Systems (AHS), pages 373–380. IEEE CS Press, 2006.

[62] E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

[63] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver. In Proceedings of the
conference on Design, automation and test in Europe, DATE ’02, pages 142–, Washington,
DC, USA, 2002. IEEE Computer Society.

[64] E. Goldberg, M. Prasad, and R. Brayton. Using SAT for combinational equivalence checking.
In DATE ’01: Proceedings of the conference on Design, automation and test in Europe, pages
114–121, Piscataway, NJ, USA, 2001. IEEE Press.

[65] T. G. W. Gordon and P. J. Bentley. On evolvable hardware. In Soft Computing in Industrial
Electronics, pages 279–323, London, UK, 2002. Physica-Verlag.

[66] D. Green. Modern Logic Design. Addison-Wesley, 1986.
[67] J. Grimbleby. Automatic analogue network synthesis using genetic algorithms. In Genetic

Algorithms in Engineering Systems: Innovations and Applications, 1995. GALESIA. First
International Conference on (Conf. Publ. No. 414), pages 53 –58, 1995.

[68] O. Gustafsson, A. Dempster, and L. Wanhammar. Extended results for minimum-adder
constant integer multipliers. In Circuits and Systems, 2002. ISCAS 2002. IEEE
International Symposium on, volume 1, pages I–73 – I–76, 2002.

[69] P. C. Haddow and A. Tyrrell. Challenges of evolvable hardware: past, present and the path
to a promising future. Genetic Programming and Evolvable Machines, 12:183–215, 2011.

[70] S. Harding. Evolution of image filters on graphics processor units using cartesian genetic
programming. In 2008 IEEE World Congress on Computational Intelligence, pages
1921–1928, Hong Kong, 2008. IEEE Computational Intelligence Society, IEEE Press.

[71] S. Harding and W. Banzhaf. Fast genetic programming on GPUs. In Proceedings of the 10th
European Conference on Genetic Programming, volume 4445 of Lecture Notes in Computer
Science, pages 90–101, Valencia, Spain, 2007. Springer.

[72] S. Harding and W. Banzhaf. Implementing cartesian genetic programming classifiers on
graphics processing units using gpu.net. In Proceedings of the 13th annual conference
companion on Genetic and evolutionary computation, GECCO ’11, pages 463–470, New
York, NY, USA, 2011. ACM.

[73] S. L. Harding and W. Banzhaf. Distributed genetic programming on GPUs using CUDA. In
I. Hidalgo, F. Fernandez, and J. Lanchares, editors, Workshop on Parallel Architectures and
Bioinspired Algorithms, pages 1–10, Raleigh, NC, USA, 2009. Universidad Complutense de
Madrid.

[74] S. L. Harding, J. F. Miller, and W. Banzhaf. Self modifying cartesian genetic programming:
Parity. In 2009 IEEE Congress on Evolutionary Computation, pages 285–292. IEEE Press,
2009.

[75] R. Harjani, R. A. Rutenbar, and L. R. Carley. A prototype framework for knowledge-based

152

analog circuit synthesis. In Proceedings of the 24th ACM/IEEE Design Automation
Conference, DAC ’87, pages 42–49, New York, NY, USA, 1987. ACM.

[76] F. Henrici, J. Becker, A. Buhmann, M. Ortmanns, and Y. Manoli. A continuous-time field
programmable analog array using parasitic capacitance gm-c filters. In Proc. IEEE
International Symposium on Circuits and Systems, pages 2236–2239. IEEE, 2007.

[77] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, T. Furuya, and B. Manderick. Evolvable
hardware and its application to pattern recognition and fault-tolerant systems. In Towards
Evolvable Hardware, Lecture Notes in Computer Science, pages 118–135. Springer Berlin /
Heidelberg, 1996.

[78] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani, E. Takahashi,
K. Toda, M. Salami, N. Kajihara, and N. Otsu. Real-World Applications of Analog and
Digital Evolvable Hardware. IEEE Transactions on Evolutionary Computation,
3(3):220–235, 1999.

[79] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya. Evolving Hardware with
Genetic Learning: A First Step Towards Building a Darwin Machine. In Proc. of the 2nd
International Conference on Simulated Adaptive Behaviour, pages 417–424. MIT Press, 1993.

[80] J. A. Hilder, J. A. Walker, and A. M. Tyrrell. Use of a multi-objective fitness function to
improve cartesian genetic programming circuits. In NASA/ESA Conference on Adaptive
Hardware and Systems, pages 179–185. IEEE, 2010.

[81] A. J. Hirst. Notes on the evolution of adaptive hardware. In Proc. of Adaptive Computing in
Engineering Design and Control, pages 212–219. Plymouth, U.K., 1996.

[82] J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of
Michigan Press, 1975.

[83] G. Hornby, A. Globus, D. S. Linden, and J. Lohn. Automated Antenna Design with
Evolutionary Algorithms. In Proc. 2006 AIAA Space Conference, page 8, San Jose, CA,
2006. AIAA.

[84] D. Horrocks and M. Spittle. Component value selection for active filters using genetic
algorithms. First On-line Workshop on Soft Computing (WSC1), Special Session on,
page 19, 1996.

[85] H. Hwang and R. Haddad. Adaptive median filters: new algorithms and results. IP,
4(4):499–502, April 1995.

[86] H. Hwang and R. A. Haddad. New algorithms for adaptive median filters. In Proc. SPIE
Vol. 1606, Visual Communications and Image Processing ’91, pages 400–407, 1991.

[87] H. Iba, M. Iwata, and T. Higuchi. Machine learning approach to gate-level evolvable
hardware. In Evolvable Systems: From Biology to Hardware, volume 1259 of Lecture Notes in
Computer Science, pages 327–343. Springer Berlin / Heidelberg, 1997.

[88] M. Järvisalo. Equivalence checking hardware multiplier designs, 2007. SAT Competition 2007
benchmark description. Available at http://www.satcompetition.org/2007/contestants.html.

[89] T. Kalganova. An extrinsic function-level evolvable hardware approach. In Proceedings of the
European Conference on Genetic Programming, pages 60–75, London, UK, 2000.
Springer-Verlag.

[90] T. Kalganova. Bidirectional incremental evolution in extrinsic evolvable hardware. In Proc.
of the 2nd NASA/DoD Workshop on Evolvable Hardware, pages 65–74. IEEE Computer
Society, Silicon Valley, USA, July 2000.

[91] T. Kalganova and J. F. Miller. Evolving more efficient digital circuits by allowing circuit
layout evolution and multi-objective fitness. In The First NASA/DoD Workshop on
Evolvable Hardware, pages 54–63. IEEE Computer Society, 1999.

153

BIBLIOGRAPHY

[92] P. Kaufmann and M. Platzner. Advanced techniques for the creation and propagation of
modules in cartesian genetic programming. In Proc. of Genetic and Evolutionary
Computation Conference, GECCO 2008, pages 1219–1226. ACM, 2008.

[93] D. E. Knuth. The Art of Computer Programming: Sorting and Searching (2nd ed.). Addison
Wesley, 1998.

[94] S. Ko and Y. Lee. Center weighted median filters and their applications to image
enhancement. IEEE Transactions on Circuits and Systems, 15:984–993, 1991.

[95] H. Kog and L. Guan. A noise-exclusive adaptive filtering framework for removing impulse
noise in digital images. IEEE Signal Processing Letters, 45:422–428, 1998.

[96] P. Koivisto, J. Astola, V. Lukin, V. Melnik, and O. Tsymbal. Removing Impulse Bursts from
Images by Training-Based Filtering. EURASIP Journal on Applied Signal Processing,
2003(3):223–237, 2003.

[97] P. Koivisto, H. Huttunen, and P. Kuosmanen. Training-based optimization of soft
morphological filters. Journal of Electronic Imaging, 5(3):300–322, 1996.

[98] J. Korenek and L. Sekanina. Intrinsic evolution of sorting networks: A novel complete
hardware implementation for FPGAs. In Evolvable Systems: From Biology to Hardware,
volume 3637 of LNCS, pages 46–55. Springer Verlag, 2005.

[99] J. R. Koza. The Annual ”HUMIES“ Awards.
http://www.genetic-programming.org/hc2011/combined.html.

[100] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, 1992.

[101] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Cambridge, MA, 1994.

[102] J. R. Koza. Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines, 11(3–4):251–284, 2010.

[103] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Four problems for which a
computer program evolved by genetic programming is competitive with human performance.
In Evolutionary Computation, 1996., Proceedings of IEEE International Conference on,
pages 1 –10, 1996.

[104] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. The design of analog circuits by
means of genetic programming. In P. J. Bentley, editor, Evolutionary Design by Computers,
chapter 16, pages 365–385. Morgan Kaufmann, San Francisco, USA, 1999.

[105] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Genetic Programming III:
Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers, San Francisco,
CA, 1999.

[106] J. R. Koza and L. W. Jones. Automated re-invention of six patented optical lens systems
using genetic programming. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2005, pages 1953–1960. ACM Press, 2005.

[107] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza. Genetic
Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic
Publishers, 2003.

[108] P. Lakamsani, R. Yang, B. Zeng, and M. Liou. Design and implementation of a
programmable stack filter. In ICIP94, pages 664–667, 1994.

[109] W. K. Lam. Hardware Design Verification: Simulation and Formal Method-Based
Approaches. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2008.

[110] J. Langeheine. Intrinsic Hardware Evolution on the Transistor Level. PhD thesis, 2005.

154

[111] T. Larrabee. Test pattern generation using boolean satisfiability. IEEE Transactions on
Computer-Aided Design, 11:4–15, 1992.

[112] C.-C. Lee, J.-H. R. Jiang, C.-Y. R. Huang, and A. Mishchenko. Scalable exploration of
functional dependency by interpolation and incremental SAT solving. In Proceedings of the
2007 IEEE/ACM international conference on Computer-aided design, ICCAD ’07, pages
227–233, Piscataway, NJ, USA, 2007. IEEE Press.

[113] C. M. Li. A constraint-based approach to narrow search trees for satisfiability. Information
Processing Letters, 71:75–80, 1999.

[114] D. S. Linden. Automated design and optimization of wire antennas using genetic algorithms.
PhD thesis, 1997.

[115] R. Maheshwari, S. S. S. P. Rao, and E. G. Poonacha. FPGA implementation of median
filter. In VLSI Design, pages 523–524, 1997.

[116] J. Marques-Silva. Practical applications of boolean satisfiability. In Workshop on Discrete
Event Systems (WODES’08). IEEE Press, 2008.

[117] S. Marshall. New direct design method for weighted order statistic filters. VISP, 151(1):1–8,
February 2004.

[118] P. Martin. Genetic Programming in Hardware. PhD thesis, University of Essex, 2003.
[119] T. Martinek and L. Sekanina. An evolvable image filter: Experimental evaluation of a

complete hardware implementation in FPGA. In Evolvable Systems: From Biology to
Hardware, volume 3637 of LNCS, pages 76–85. Springer Verlag, 2005.

[120] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8(1):3–30,
1998.

[121] T. McConaghy, P. Palmers, G. G. E. Gielen, and M. Steyaert. Simultaneous multi-topology
multi-objective sizing across thousands of analog circuit topologies. In DAC 2007, pages
944–947. IEEE, 2007.

[122] T. McConaghy, P. Palmers, M. Steyaert, and G. G. E. Gielen. Trustworthy genetic
programming-based synthesis of analog circuit topologies using hierarchical domain-specific
building blocks. Evolutionary Computation, IEEE Transactions on, 15(4):557–570, 2011.

[123] K. L. McMillan. Interpolation and SAT-based model checking. Computer Aided Verification,
pages 1–13, 2003.

[124] U. Meyer-Baese. Digital Signal Processing with Field Programmable Gate Arrays. Springer,
2007.

[125] J. F. Miller. Digital filter design at gate-level using evolutionary algorithms. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 1999, pages 1127–1134.
Morgan Kaufmann, 1999.

[126] J. F. Miller. What bloat? Cartesian Genetic Programming on Boolean problems. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2001, pages
295–302. Morgan Kaufmann Publishers, 2001.

[127] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the Evolutionary Design of Digital
Circuits – Part I. Genetic Programming and Evolvable Machines, 1(1):8–35, 2000.

[128] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the Evolutionary Design of Digital
Circuits – Part II. Genetic Programming and Evolvable Machines, 1(2):259–288, 2000.

[129] J. F. Miller and S. L. Smith. Redundancy and Computational Efficiency in Cartesian Genetic
Programming. IEEE Transactions on Evolutionary Computation, 10(2):167–174, 2006.

[130] J. F. Miller and P. Thomson. Aspects of digital evolution: Geometry and learning. In

155

BIBLIOGRAPHY

Proceedings of the Second International Conference on Evolvable Systems: From Biology to
Hardware, Lecture Notes in Computer Science, pages 25–35. Springer-Verlag, 1998.

[131] J. F. Miller and P. Thomson. Cartesian Genetic Programming. In Proc. of the 3rd European
Conference on Genetic Programming EuroGP2000, volume 1802 of LNCS, pages 121–132.
Springer, 2000.

[132] J. F. Miller, P. Thomson, and T. Fogarty. Designing electronic circuits using evolutionary
algorithms. arithmetic circuits: A case study. In Genetic Algorithms and Evolution Strategies
in Engineering and Computer Science, pages 105–131. Wiley, 1997.

[133] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an
efficient SAT solver. In Proceedings of the 38th annual Design Automation Conference, DAC
’01, pages 530–535, New York, NY, USA, 2001. ACM.

[134] M. Murakawa et al. Evolvable hardware at function level. In In Proc. of the Parallel
Problem Solving from Nature IV, volume 1141 of LNCS, pages 62–71. Springer Berlin /
Heidelberg New York, 1996.

[135] N. Nedjah and L. de Macedo Mourelle. Evolutionary Synthesis of Synchronous Finite State
Machines. In Evolvable Machines: Theory and Practice, pages 103–127, Berlin, 2005.
Springer.

[136] M. Nikolova. A variational approach to remove outliers and impulse noise. J. Math. Imaging
Vis., 20(1-2):99–120, 2004.

[137] P. Nordin. A compiling genetic programming system that directly manipulates the machina
code, pages 311–331. MIT Press, Cambridge, MA, USA, 1994.

[138] P. Nordin. Evolutionary Program Induction of Binary Machine Code and its Applications.
PhD thesis, 1997.

[139] E. Ochotta, R. Rutenbar, and L. Carley. Synthesis of high-performance analog circuits in
astrx/oblx. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 15(3):273 –294, 1996.

[140] M. Oltean and C. Grosan. Evolving digital circuits using multi expression programming. In
Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware, pages 87–97,
Seattle, 2004. IEEE Press.

[141] G. Pask. Physical analogues to the growth of a concept. In A. Uttley, editor, Mechanisation
of thought processes, pages 765–794. National Physical Laboratory H.M.S.O., 1958.

[142] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, O. Wienand, and E. Karibaev. A New
Verification Technique for Custom-Designed Components at the Arithmetic Bit Level, volume
Languages for Embedded Systems and their Applications of Lecture Notes in Electrical
Engineering, chapter 17, pages 257–272. Springer Netherlands, 2009.

[143] T. Pecenka, Z. Kotasek, L. Sekanina, and J. Strnadel. Automatic discovery of RTL
benchmark circuits with predefined testability properties. In 2005 NASA / DoD Conference
on Evolvable Hardware, pages 51–58. IEEE Computer Society, 2005.

[144] R. Poli and J. Page. Solving high-order boolean parity problems with smooth uniform
crossover, sub-machine code gp and demes. Genetic Programming and Evolvable Machines,
1:37–56, 2000.

[145] R. Porter. Evolution on FPGAs for Feature Extraction. PhD thesis, Queensland University
of Technology, Brisbane, Australia, 2001.

[146] P. Porwik. The spectral test of the boolean function linearity. Int. J. Appl. Math. Comput.
Sci, 13:567–575, 2003.

[147] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, and
R. W. Johnson. SPIRAL: A generator for platform-adapted libraries of signal processing

156

algorithms. Journal of High Performance Computing and Applications, special issue on
“Automatic Performance Tuning”, 18(1):21–45, 2004.

[148] M. Püschel, A. C. Zelinski, and J. C. Hoe. Custom-optimized multiplierless implementations
of DSP algorithms. In International Conference on Computer-Aided Design (ICCAD), pages
175–182, 2004.

[149] D. Robilliard, V. Marion-Poty, and C. Fonlupt. Population parallel gp on the g80 gpu. In
Proc. of European Conference on Genetic Programming, volume 4971 of LNCS, pages
98–109. Springer-Verlag, 2008.

[150] F. Russo and G. Ramponi. A fuzzy filter for images corrupted by impulse noise. IEEE
Transactions on Circuits and Systems, 45:168–170, 1996.

[151] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan. Efficient SAT-based boolean matching
for FPGA technology mapping. In Proceedings of DAC 2006, 2006.

[152] H. Sakanashi, M. Iwata, and T. Higuchi. EHW Applied to Image Data Compression. In
T. Higuchi, Y. Liu, and X. Yao, editors, Evolvable Hardware, pages 19–40. Springer, 2006.

[153] M. Salami, M. Murakawa, and T. Higuchi. Data compression based on evolvable hardware.
In Evolvable Systems: From Biology to Hardware, Lecture Notes in Computer Science, pages
167–179. Springer Berlin / Heidelberg, 1997.

[154] M. Salami, H. Sakanashi, M. Tanaka, M. Iwata, T. Kurita, and H. T. On-line compression of
high precision printer images by evolvable hardware. In Proc. of the Data Compression
Conference, pages 219–228, Los Alamitos, CA, U.S.A, 1998.

[155] S. Schulte, M. Nachtegael, V. D. Witte, D. V. der Weken, and E. E. Kerre. Fuzzy impulse
noise reduction methods for color images. In Computational Intelligence, Theory and
Applications International Conference 9th Fuzzy Days in Dortmund, pages 711–720. Springer
Verlag, 2006.

[156] H. P. Schwefel. Evolution and Optimum Seeking. John Wiley, New York, 1995.
[157] L. Sekanina. Image Filter Design with Evolvable Hardware. In Applications of Evolutionary

Computing – Proc. of the 4th Workshop on Evolutionary Computation in Image Analysis
and Signal Processing EvoIASP’02, volume 2279 of LNCS, pages 255–266, Kinsale, Ireland,
2002. Springer Verlag.

[158] L. Sekanina. Evolvable components: From Theory to Hardware Implementations. Natural
Computing. Springer-Verlag Berlin, 2004.

[159] L. Sekanina and M. Bidlo. Evolutionary design of arbitrarily large sorting networks using
development. Genetic Programming and Evolvable Machines, 6(3):319–347, 2005.

[160] L. Sekanina and T. Mart́ınek. Evolving image operators directly in hardware. In S. Cagnoni,
E. Lutton, and G. Olague, editors, Genetic and Evolutionary Computation for Image
Processing and Analysis, EURASIP Book Series on Signal Processing and Communications,
Volume 8, pages 93–112. Hindawi Publishing Corporation, 2007.

[161] L. Sekanina and R. Růžička. Easily Testable Image Operators: The Class of Circuits Where
Evolution Beats Engineers. In Proc. of the 2003 NASA/DoD Conference on Evolvable
Hardware, pages 135–144, Chicago, USA, 2003. IEEE Computer Society.

[162] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R.
Stephan, R. K. Brayton, and A. Sangiovanni-vincentelli. Sis: A system for sequential circuit
synthesis. Technical report, University California, Berkeley, 1992.

[163] B. Shackleford. A high-performance, pipelined, FPGA-based genetic algorithm machine.
Genetic Programming and Evolvable Machines, 2(1):33–60, 2001.

[164] A. P. Shanthi and R. Parthasarathi. Practical and scalable evolution of digital circuits.
Applied Soft Computing, 9(2):618–624, 2009.

157

BIBLIOGRAPHY

[165] A. P. Shanthi, L. K. Singaram, and R. Parthasarathi. Evolution of asynchronous sequential
circuits. In Evolvable Hardware’05, pages 93–96, 2005.

[166] X. She. Fast evolution of large digital circuits. W. Trans. on Comp., 7:1988–2000, 2008.
[167] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life,

9:93–130, 2003.
[168] D. Stoffel and W. O. Kunz. Equivalence checking of arithmetic circuits on the arithmetic bit

level. IEEE Trans. on CAD of Integrated Circuits and Systems, 2004.
[169] A. Stoica, D. Keymeulen, R. Tawel, C. Salazar-Lazaro, and W.-t. Li. Evolutionary

experiments with a fine-grained reconfigurable architecture for analog and digital cmos
circuits. In Proceedings of the 1st NASA/DOD workshop on Evolvable Hardware, EH 1999,
pages 76–84, Washington, DC, USA, 1999. IEEE Computer Society.

[170] A. Stoica, R. S. Zebulum, M. I. Ferguson, D. Keymeulen, and V. Duong. Evolving circuits in
seconds: Experiments with a stand-alone board-level evolvable system. In Proceedings of the
2002 NASA/DoD Conference on Evolvable Hardware (EH’02), pages 67–64, Washington,
DC, USA, 2002. IEEE Computer Society.

[171] A. Stoica, R. S. Zebulum, X. Guo, D. Keymeulen, M. Ferguson, and V. Duong. Taking
evolutionary circuit design from experimentation to implementation: some useful techniques
and a silicon demonstration. IEE Proceedings - Computers and Digital Techniques,
151(4):295–300, 2004.

[172] E. Stomeo, T. Kalganova, and C. Lambert. Generalized disjunction decomposition for
evolvable hardware. IEEE Transaction Systems, Man and Cybernetics, Part B,
36(5):1024–1043, 2006.

[173] T. Sun and Y. Neuvo. Detail-preserving median based filters in image processing. Pattern
Recognition Letters, 16:341–347, 1994.

[174] G. Sussman and R. Stallman. Heuristic techniques in computer-aided circuit analysis.
Circuits and Systems, IEEE Transactions on, 22(11):857 – 865, 1975.

[175] A. Thompson. Silicon evolution. In Proceedings of the First Annual Conference on Genetic
Programming, GECCO ’96, pages 444–452, Cambridge, MA, USA, 1996. MIT Press.

[176] J. Torresen. A Divide-and-Conquer Approach to Evolvable Hardware. In Proc. of the 2nd
International Conference on Evolvable Systems: From Biology to Hardware ICES’98, volume
1478 of LNCS, pages 57–65, Lausanne, Switzerland, 1998. Springer.

[177] J. Torresen. Possibilities and limitations of applying evolvable hardware to real-world
applications. In Field-Programmable Logic and Applications: The Roadmap to Reconfigurable
Computing, volume 1896 of Lecture Notes in Computer Science, pages 230–239. Springer
Berlin / Heidelberg, 2000.

[178] J. Torresen. A scalable approach to evolvable hardware. Genetic Programming and
Evolvable Machines, 3(3):259–282, 2002.

[179] G. S. Tseitin. On the complexity of derivation in propositional calculus. In Studies in
Constructive Mathematics and Mathematical Logic, Part II, pages 115–125, 1968.

[180] G. Tufte and P. C. Haddow. Prototyping a GA Pipeline for Complete Hardware Evolution.
In A. Stoica, D. Keymeulen, and J. Lohn, editors, Proc. of the 1st NASA/DoD Workshop on
Evolvable Hardware, pages 143–150, Pasadena, CA, USA, 1999. IEEE Computer Society.

[181] A. Upegui and E. Sanchez. Evolvable FPGAs. In Reconfigurable Computing, pages 725–752.
Morgan Kaufmann, 2008.

[182] V. K. Vassilev, D. Job, and J. F. Miller. Towards the Automatic Design of More Efficient
Digital Circuits. In Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pages
151–160, Los Alamitos, CA, USA, 2000. IEEE Computer Society.

158

[183] V. K. Vassilev, J. F. Miller, and T. C. Fogarty. On the nature of two-bit multiplier
landscapes. In EH 1999: Proceedings of the 1st NASA/DOD workshop on Evolvable
Hardware, page 36, Washington, DC, USA, 1999. IEEE Computer Society.

[184] M. N. Velev. Efficient translation of boolean formulas to CNF in formal verification of
microprocessors. Asia and South Pacific Design Automation Conference, pages 310–315,
2004.

[185] Y. Voronenko and M. Püschel. Multiplierless multiple constant multiplication. ACM
Transactions on Algorithms, 3(2), 2007.

[186] L. Žaloudek and L. Sekanina. Transistor-level evolution of digital circuits using a special
circuit simulator. In Evolvable Systems: From Biology to Hardware, volume 5216 of Lecture
Notes in Computer Science, pages 320–331. Springer Berlin / Heidelberg, 2008.

[187] J. A. Walker, J. A. Hilder, and A. M. Tyrrell. Evolving variability-tolerant cmos designs. In
Evolvable Systems: From Biology to Hardware, volume 5216 of Lecture Notes in Computer
Science, pages 308–319. Springer Berlin / Heidelberg, 2008.

[188] J. A. Walker and J. F. Miller. The Automatic Acquisition, Evolution and Re-use of Modules
in Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation,
12(4):397–417, 2008.

[189] J. Wang, Q. Chen, and C. Lee. Design and implementation of a virtual reconfigurable
architecture for different applications of intrinsic evolvable hardware. IET computers and
digital techniques, 2(5):386–400, 2008.

[190] J. Wang, C. Piao, and C. Lee. Implementing multi-vrc cores to evolve combinational logic
circuits in parallel. In Evolvable Systems: From Biology to Hardware, volume 4684 of LNCS,
pages 23–34, 2007.

[191] G. Wilson and W. Banzhaf. A comparison of cartesian genetic programming and linear
genetic programming. In Genetic Programming, volume 4971 of Lecture Notes in Computer
Science, pages 182–193. Springer Berlin / Heidelberg, 2008.

[192] Xilinx Inc. Xilinx FPGAs.
http://www.xilinx.com/products/silicon-devices/fpga/index.htm.

[193] Xilinx Inc. Xilinx Virtex-II Pro Platform FPGAs.
http://www.xilinx.com/partinfo/ds031.pdf, 2005.

[194] C. Yan, M. Ciesielski, and V. Singhal. BDS: a BDD-based logic optimization system. In
Design Automation Conference, 2000. Proceedings 2000. 37th, pages 92 –97, 2000.

[195] S. Yang. Logic synthesis and optimization benchmarks user guide version 3.0. Technical
report, 1991. MCNC, Technical Report.

[196] S. Yanushkevich, D. M. Miller, V. P. Shmerko, and R. S. Stankovic. Decision Diagram
Techniques for Micro- and Nanoelectronic Design Handbook. CRC, 2006.

[197] X. Yao and T. Higuchi. Promises and Challenges of Evolvable Hardware. IEEE Transactions
on Systems, Man, and Cybernetics – Part C, 29(1):87–97, 1999.

[198] T. Yu and J. F. Miller. Finding needles in haystacks is not hard with neutrality. In
Proceedings of the Fifth European Conference on Genetic Programming (EuroGP-2002),
volume 2278 of LNCS, pages 13–25. Springer-Verlag, 2002.

[199] S.-Q. Yuan and Y.-H. Tan. Erratum to ”impulse noise removal by a global-local noise
detector and adaptive median filter“: [signal processing 86 (8) (2006) 2123-2128]. Signal
Processing, 87(5):1171, 2007.

[200] R. S. Zebulum, M. Pacheco, and M. Vellasco. Evolvable systems in hardware design:
Taxonomy, survey and applications. In Evolvable Systems: From Biology to Hardware,
volume 1259 of Lecture Notes in Computer Science, pages 344–358. Springer Berlin /

159

BIBLIOGRAPHY

Heidelberg, 1997.
[201] R. S. Zebulum, M. Pacheco, and M. Vellasco. Evolutionary Electronics - Automatic Design

of Electronic Circuits and Systems by Genetic Algorithms. The CRC Press International
Series on Computational Intelligence, 2002.

[202] R. S. Zebulum, M. S. Vellasco, and M. A. Pacheco. Variable length representation in
evolutionary electronics. Evol. Comput., 8(1):93–120, 2000.

[203] H. Zhang. SATO: An efficient propositional prover. In Proceedings of the 14th International
Conference on Automated Deduction, CADE-14, pages 272–275, London, UK, 1997.
Springer-Verlag.

[204] S. Zhao and L. Jiao. Multi-objective evolutionary design and knowledge discovery of logic
circuits based on an adaptive genetic algorithm. Genetic Programming and Evolvable
Machines, 7(3):195–210, 2006.

Author’s publications

Journal papers

[205] Z. Vaš́ıček and L. Sekanina. Evolučńı návrh kombinačńıch obvod̊u. Elektrorevue, 2004(43):6,
2004.

[206] Z. Vaš́ıček and L. Sekanina. An evolvable hardware system in Xilinx Virtex II Pro FPGA.
International Journal of Innovative Computing and Applications, 1(1):63–73, 2007.

[207] Z. Vaš́ıček and L. Sekanina. Hardware accelerator of cartesian genetic programming with
multiple fitness units. Computing and Informatics, 29(6+):1359–1371, 2010.

[208] Z. Vaš́ıček and L. Sekanina. Formal verification of candidate solutions for post-synthesis
evolutionary optimization in evolvable hardware. Genetic Programming and Evolvable
Machines, 12(3):305–327, 2011.

Conference papers

[209] P. Fǐser, J. Schmidt, Z. Vaš́ıček, and L. Sekanina. On logic synthesis of conventionally hard
to synthesize circuits using genetic programming. In Proc. of the 13th Int. IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems, pages 346–351. IEEE
Computer Society, 2010.

[210] L. Sekanina and Z. Vaš́ıček. On the practical limits of the evolutionary digital filter design at
the gate level. In Applications of Evolutionary Computing, volume 3907 of Lecture Notes in
Computer Science, pages 344–355. Springer Berlin / Heidelberg, 2006.

[211] Z. Vaš́ıček and M. Bidlo. Evolutionary design of robust noise-specific image filters. In IEEE
Congress on Evolutionary Computation, pages 269–276. IEEE Computer Society, 2011.

[212] Z. Vaš́ıček, M. Bidlo, L. Sekanina, and K. Glette. Evolutionary design of efficient and robust
switching image filters. In Proc. of the 2011 NASA/ESA Conference on Adaptive Hardware
and Systems, pages 192–199. IEEE Press, 2011.

[213] Z. Vaš́ıček, M. Bidlo, L. Sekanina, J. Torresen, K. Glette, and M. Furuholmen. Evolution of
impulse bursts noise filters. In Proc. of the 2009 NASA/ESA Conference on Adaptive
Hardware and Systems, pages 27–34. IEEE Press, 2009.

[214] Z. Vaš́ıček and L. Sekanina. An area-efficient alternative to adaptive median filtering in

160

FPGAs. In Proc. of 2007 Conf. on Field Programmable Logic and Applications, pages
216–221. IEEE Computer Society, 2007.

[215] Z. Vaš́ıček and L. Sekanina. Evaluation of a new platform for image filter evolution. In Proc.
of the 2007 NASA/ESA Conference on Adaptive Hardware and Systems, pages 577–584.
IEEE Computer Society, 2007.

[216] Z. Vaš́ıček and L. Sekanina. Reducing the area on a chip using a bank of evolved filters. In
Evolvable Systems: From Biology to Hardware, volume 4684 of Lecture Notes in Computer
Science, pages 222–232. Springer Verlag, 2007.

[217] Z. Vaš́ıček and L. Sekanina. Hardware accelerators for cartesian genetic programming. In
European Conference on Genetic Programming, volume 4971 of Lecture Notes in Computer
Science, pages 230–241. Springer Verlag, 2008.

[218] Z. Vaš́ıček and L. Sekanina. Novel hardware implementation of adaptive median filters. In
Proc. of 2008 IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop,
pages 110–115. IEEE Computer Society, 2008.

[219] Z. Vaš́ıček and L. Sekanina. A global postsynthesis optimization method for combinational
circuits. In Proc. of the Design, Automation and Test in Europe, DATE, pages 1525–1528.
IEEE Computer Society, 2011.

[220] Z. Vaš́ıček, L. Sekanina, and M. Bidlo. A method for design of impulse bursts noise filters
optimized for FPGA implementations. In DATE 2010: Design, Automation and Test in
Europe, pages 1731–1736. European Design and Automation Association, 2010.

[221] Z. Vaš́ıček and K. Slaný. Efficient phenotype evaluation in cartesian genetic programming.
In 15th European Conference on Genetic Programming, volume 7244 of Lecture Notes in
Computer Science, pages 265–276. Springer Verlag, 2012.

[222] Z. Vaš́ıček, L. Čapka, and L. Sekanina. Analysis of reconfiguration options for a
reconfigurable polymorphic circuit. In Proceedings of the 2008 NASA/ESA Conference on
Adaptive Hardware and Systems, pages 3–10. IEEE Computer Society, 2008.

[223] Z. Vaš́ıček, M. Žádńık, L. Sekanina, and J. Tobola. On evolutionary synthesis of linear
transforms in FPGA. In Proc. of the 8th Int. Conference on Evolvable Systems: From
Biology to Hardware, volume 5216 of LNCS, pages 141–152, Berlin, 2008. Springer Verlag.

Books

[224] L. Sekanina, Z. Vaš́ıček, R. Růžička, M. Bidlo, J. Jaroš, and P. Švenda. Evolučńı hardware:
Od automatickěho generováńı patentovatelných invenćı k sebemodifikuj́ıćım se stroj̊um.
Academia, Praha, 2009.

Other publications

[225] M. Bidlo and Z. Vaš́ıček. Cellular automata-based development of combinational and
polymorphic circuits: A comparative study. In Evolvable Systems: From Biology to Hardware,
volume 6274 of Lecture Notes in Computer Science, pages 106–117. Springer Verlag, 2008.

[226] M. Bidlo and Z. Vaš́ıček. Comparison of the uniform and non-uniform cellular
automata-based approach to the development of combinational circuits. In Proc. of
NASA/ESA Conference on Adaptive Hardware and Systems, pages 423 – 430. IEEE
Computer Society, 2009.

[227] M. Bidlo and Z. Vaš́ıček. Investigating gate-level evolutionary development of combinational

161

BIBLIOGRAPHY

multipliers using enhanced cellular automata-based model. In IEEE Congress on
Evolutionary Computation, pages 2241–2248. IEEE Computer Society, 2009.

[228] M. Bidlo, Z. Vaš́ıček, and K. Slaný. Sorting network development using cellular automata.
In Evolvable Systems: From Biology to Hardware, volume 6274 of Lecture Notes in Computer
Science, pages 85–96. Springer Berlin / Heidelberg, 2010.

[229] T. Duĺık, Z. Křivka, J. Kadlec, M. Bližňák, V. Bud́ıková, O. Jirák, N. Oľsarová, J. Trbušek,
and Z. Vaš́ıček. Virtuálńı laboratoř pro vývoj aplikaćı s mikroprocesory a FPGA. CERM,
Brno, 2011.

[230] O. Jirák, Z. Křivka, N. Oľsarová, and Z. Vaš́ıček. Odvozováńı propojeńı komponent pro
podporu návrhu pro malé fpga čipy. In Proc. of the DATAKON 2010, pages 81–90. VŠB TU,
2010.

[231] O. Jirák, Z. Křivka, and Z. Vaš́ıček. Component interconnection inference tool supporting
the design of small fpga-based embedded systems. In Proc. of the IADIS International
Conference Applied Computing 2010, pages 230–234. IADIS Press, 2010.

[232] O. Jirák, Z. Křivka, and Z. Vaš́ıček. Integrated development environment for virtual
laboratory. In International Technology, Education and Development Conference, page 10.
IATED, 2011.

[233] Z. Křivka and Z. Vaš́ıček. The virtualization of development boards in the virtual laboratory
of microprocessor technology. In 12th International Carpathian Control Conference, pages
424–428. VŠB TU, 2011.

[234] L. Sekanina, R. Růžicka, Z. Vaš́ıček, R. Prokop, and L. Fujč́ık. Repomo32 – new
reconfigurable polymorphic integrated circuit for adaptive hardware. In 2009 IEEE
Workshop on Evolvable and Adaptive Hardware, pages 39–46. IEEE Computational
Intelligence Society, 2009.

[235] Z. Vaš́ıček. Evolutionary synthesis of gate-level digital circuits. In Proceedings of 11th
Conference and Competition HONEYWELL EMI 2005. FEKT VUT, 2005.

[236] Z. Vaš́ıček. Implementation of high-performance reconfigurable systems on a chip. In
Proceedings of 12th Conference and Competition STUDENT EEICT 2006 Volume 2, pages
232–234. FEKT VUT, 2006.

[237] Z. Vaš́ıček. Reálné aplikace evolučńıho návrhu. In Poč́ıtačové architektury a diagnostika
2007. Česko-slovenský seminář pro studenty doktorandského studia, pages 137–142.
University of West Bohemia in Pilsen, 2007.

[238] Z. Vaš́ıček. Towards automatic design of competitive image filters in fpgas. In Proceedings of
Junior Scientist Conference. TU-Wien, 2008.

[239] Z. Vaš́ıček, L. Čapka, and L. Sekanina. Analysis of reconfiguration options for a
reconfigurable polymorphic circuit. In Proceedings of the 2008 NASA/ESA Conference on
Adaptive Hardware and Systems, pages 3–10, Washington, DC, USA, 2008. IEEE Computer
Society.

[240] L. Čapka and Z. Vaš́ıček. Investigating the influence of mutation operators in cartesian
genetic programming. In 13th International Conference on Soft Computing, pages 43–47.
Faculty of Mechanical Engineering BUT, 2007.

162

