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Abstract:

The thesis investigates into speaker verification by means of prosodic features.
This includes an appropriate representation of speech by measurements of
pitch, energy and duration of speech sounds. Two diverse parameterization
methods are investigated: the first leads to a low-dimensional well-defined set,
the second to a large-scale set of heterogeneous prosodic features. The first
part of this work concentrates on the development of so called prosodic contour
features. Different modeling techniques are developed and investigated, with
a special focus on subspace modeling. The second part focuses on a novel sub-
space modeling technique for the heterogeneous large-scale prosodic features.
The model is theoretically derived and experimentally evaluated on official
NIST Speaker Recognition Evaluation tasks. Huge improvements over the
current state-of-the-art in prosodic speaker verification were obtained. Even-
tually, a novel fusion method is presented to elegantly combine the two diverse
prosodic systems. This technique can also be used to fuse the higher-level
systems with a high-performing cepstral system, leading to further significant
improvements.
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Chapter 1

Introduction

1.1 Automatic Speaker verification

Automatic speaker verification deals with the task of verifying the claimed
identity of a previously trained speaker from a recorded utterance. One has to
distinguish between text dependent and text-independent speaker verification.
In the text-dependent task, the system knows the content of the utterance (e.g.
a certain passphrase) as well as the speaker. This work deals with the text-
independent verification of a speaker, in which case the system has no prior
information about the speech. In both cases, the speaker has to be enrolled by
a certain amount of speech before performing recognition. The most interesting
application for text-independent speaker verification is likely to be in the field
of forensics and intelligence.

Figure 1.1 shows the general approach to automatic speaker recognition. In
the first step, some kind of information has to be extracted from the speech
signal to represent discriminative characteristics of an individual. In the train-
ing phase, these so called features are extracted from speech of a particular
speaker and are used to build a statistical model which represents the speaker.
In the test phase, an unknown utterance is also transformed to the same kind
of features and these are then fed to a classifier which decides if the features
fit to the statistical model of the speaker in test.

1.2 Prosodic Speaker verification

High-level information has been used for over a decade to further enhance
short-time, cepstral-based speaker verification systems. Many approaches make
use of acoustic attributes of speech prosody that mainly involve variations
in syllable length, loudness, and pitch. In recent NIST Speaker Recognition
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Figure 1.1: General approach to statistical speaker recognition.

Evaluations [20, 21], two families of prosodic feature sets were presented. One
family corresponds to syllable-based, non-uniform extraction region features
(SNERFs) [27], which are highly complex prosodic features originally proposed
by SRI. These features in combination with specialized parameterization meth-
ods and support vector machine (SVM) modeling [11] result in a very good
prosodic system.

Another family of systems uses a set of very simple prosodic features, origi-
nally proposed for language identification [19]. These features model the tem-
poral trajectory of pitch and energy over the time span of a syllable. Joint
Factor Analysis (JFA) modeling for these features was originally proposed by
[7] and showed very promising results. This framework for prosodic modeling
has been adopted by several sites and is investigated thoroughly in this the-
sis [16, 10]. The main reason for its success lies in JFA modeling, which is
capable of coping with the problem of speaker and session variability in Gaus-
sian mixture model (GMM)-based speaker verification [14] and has become the
de facto standard for modeling low- and high-level features.

Moreover, excellent results on cepstral features were obtained with a sim-
plified variant of JFA [8], where separate subspaces for channel and speaker
variability are replaced by a single subspace covering the total variability. This
model can be used to extract compact low-dimensional feature vectors repre-
senting a whole utterance, often called iVectors. Based on this idea, we propose
a framework where the subspace modeling technique normally used to model

means of GMMs is adapted to model occupation counts using a multinomial
model. This so-called Subspace Multinomial Model (SMM) [17] is applicable
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to the complex SNERF's to extract iVectors.

Probabilistic Linear Discriminant Analysis (PLDA) [23] has been proposed
to model the speaker and channel variability in both types of iVectors, directly
generating likelihood ratios for the trials [15, 5]. iVector modeling of SNERFs
by SMMs with successive PLDA has been shown to give the best results for a
prosodic speaker verification system so far [18].

To date, the iVector approach — using a total variability subspace followed
by PLDA — has not been used (to our knowledge) for the simple prosodic
features that are usually modeled by JFA.

In this work, we further present results on the prosodic JFA system as
presented by Brno University of Technology in SRE 2010 and apply iVector
modeling and PLDA back end to the same features. We show that the iVector
approach is superior to the standard JFA modeling even for simple prosodic
features.

Eventually, we have two diverse prosodic systems that achieve similar per-
formance on our test sets: an iVector system that models means of GMMs
based on simple well-defined prosodic features and an iVector system that
models counts of multinomial distributions based on SNERFs. A combination
of both systems seems relevant due to their complementary nature in terms
of features and modeling. We propose an elegant way of combining these sys-
tems by simple concatenation of individual iVectors followed by a single joint
PLDA model. This combination achieves an equal error rate (EER) of 5.4%
on our NIST SRE 2008 telephone test set, a 23% gain over the best of the two
systems.

Justification for use of a higher-level systems usually lies in an overall im-
provement by fusion with a cepstral baseline system. Usually, combination of
low- and high-level systems is done by score-level fusion using a separate de-
velopment set to train the fusion parameters. As the best-performing cepstral
systems to date are also based on iVector modeling followed by PLDA mod-
eling [15, 5, 4], we are inspired by the successful combination of two prosodic
iVector front ends to further combine the cepstral and prosodic systems in the
same manner. We achieve a relative reduction in terms of the challenging new
detection cost function (DCF) [21] of 17% for SRE 2010 data and 21% for
SRE 2008 data. The iVector combination consistently outperforms standard
score-level fusion (11% and 13%) with no need for a separate development set
to train the fusion parameters.



Chapter 2

Prosodic features

This section describes the two prosodic feature sets used in the thesis.

2.1 DCT contour features

The initial intention was to use a finer modeling of pitch and energy contours
than used in the linear stylization by [28] and [2]. The use of a curve-fitting
algorithm based on higher-order polynomials [24] seemed to be an appropriate
way, suitable also for speaker recognition. This way, each pitch or energy
segment can be represented by a fixed number of the corresponding polynomial
coefficients and form a fixed sized feature vector. It is then possible to model
these prosodic feature vectors by standard UBM-GMM paradigm [25] as used
for standard cepstral based features.

In the very early literature research phase of this thesis, it was found that
the same idea was recently implemented by [7]. Not only did they use a
polynomial approximation of pitch and energy based on suprasegmental units,
but also they already incorporated intersession variability compensation based
on Joint Factor Analysis in the modeling approach.

Although this idea of curve-fitting based prosodic feature extraction had al-
ready been used and published, the excellent results obtained by [7] motivated
me to continue the work on the prosodic level and to develop an own prosodic
feature extraction module. The proposed approach to prosodic contour feature
extraction mainly differs in two ways: First, a simpler way of parameterizing
the temporal trajectories should be used, than by using a curve fitting module.
[7] used Legendre polynomials that are fitted in a least-square-error sense to
the original contour segments. Second, the idea was to derive the suprasegmen-
tal units in a different way. In [7], the segmentation is simply based on local
minima in the signal energy. On the one hand, in the proposed approach, even
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higher level information should be incorporated, by deriving pseudo-syllable
units using a language independent phone recognizer. On the other hand, one
idea was to use a very simple fixed-size long-temporal context.

This section describes the process of extracting the proposed prosodic con-
tour features. First, it is briefly described how a loudness and fundamental
frequency measure is obtained. Next, it will be described how the duration
measure is obtained by segmenting the speech in suprasegmental units. Fi-
nally, it is shown how to parameterize the information encoded in loudness
and fundamental frequency for each variable-sized suprasegmental unit to a
fixed-sized feature vector.

2.1.1 Basic prosodic features

The quantity that is actually being estimated by all “pitch trackers” is the
fundamental frequency (F0). FO is defined as the lowest frequency of a periodic
waveform and is an inherent property of periodic speech signals. It tends to
correlate well with perceived pitch (that is strictly defined otherwise, see [29]).
In time domain, it can be defined as the inverse of the smallest period in the
interval being analyzed. For typical male adults, FO will lie between 85-180
Hz and for females between 165-255Hz [30].

We will briefly describe a popular family of pitch algorithms that work di-
rectly on the time signal [29]. Those F0 estimation algorithms often comprises
three stages:

1. Pre-processing.
2. Estimation of candidates for true periods.
3. Selection of best candidate and FO refinement.

The aim of the pre-processing phase is to remove interfering signal components
from the audio signal. This is usually done by a band-pass filter or some sort
of noise reduction. Note, that a standard telephone signal (that we mostly
work with) is already band-pass filtered from 300-3400Hz due to the standard
telephone channel. However, the fundamental frequency can still be inferred
through its harmonics in the signal.

The estimation of FO candidates itself is mostly performed directly on the
time signal using correlations within the signal as a traditional source of period
candidates. A widely used and robust pitch tracking algorithm is the RAPT
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algorithm [29], that is based on the Normalized Cross-Correlation Function
(NCCF).
The RAPT algorithm consists of the following steps [29]:

1. Generate two version of sampled speech data, one at the original sample
rate and one at a significantly reduced rate.

2. Compute NCCF of low sample rate signal for all lags in the FO range of
interest. This first pass records the located local maxima.

3. Compute NCCF of high sample rate only in vicinity of the peaks found
in the first pass, again record new maxima.

4. Generate FO candidates and unvoiced probability for each frame from the
second NCCF pass.

5. Use Dynamic Programming (DP) to select the best path through the
candidates of the whole utterance.

The output of a pitch tracker is a continuous FO contour. When there is
no pitch detected (in unvoiced regions or speech pauses) the algorithms simply
outputs zeros.

Prosodic features measuring the loudness of speech are usually directly ob-
tained from the signal energy [3]. The short-time energy of the speech signal
can be either extracted directly from the time signal or equivalently from its
squared magnitude spectrum.

Before any further processing, the raw pitch and energy values are first
transformed to the logarithmic domain to compress their dynamic range. The
energy values are further normalized by subtracting the maximum value over
the whole utterance to make the loudness measure less dependent on any con-
stant background noises in the utterance. The pitch values are further filtered
by a median filter to smooth the contour.

2.1.2 Suprasegmental units

The time span of the prosodic suprasegmental units is used in two ways for
the contour features: First, the size of each segment is used as a single dura-
tion feature. Second, the segment boundaries determine the pitch or energy
sequence that is being modeled.

The literature proposes many methods to define suprasegmental units for
prosodic feature extraction, most of them using phonetically motivated syllable-
like units. A syllable can be seen as a unit of organization of speech sounds,
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or as a phonological building block which has influence on rhythm, stress and
other prosodic attributes of speech.

Various approaches will be investigated, with a special interest in their
computational complexity and further constraints, like language dependence.
Two of these approaches are newly proposed during the work on this thesis
and are described in the following.

The first approach to segment the speech into syllable-like units is based
on the basic assumption that a syllable is typically made up of a syllable
nucleus (most often a vowel) with optional initial and final margins (onset and
coda, typically consonants). By using this assumption we can derive syllable-
like units from a phone recognizer. Further, to be less language independent,
one can use a phonetically rich recognizer [26]. The proposed segmentation
algorithm consists of the following steps:

1. Extract language independent phones.
2. Map phones to coarse classes silence, vowel and consonant.
3. For each region between two silence labels:

e Consider each vowel as the nucleus of a syllable.

e Set the syllable boundaries to equally distant (as far as possible)
phone boundaries in between two vowels.

e If syllable boundary “cuts” a pitch sequence, while a another possible
candidate does not, move the boundary there

This process is illustrated in Figure 2.1. The vertical lines indicate the
phone boundaries. Highlighted are the three vowels that are found for a speech
segment between two pauses. Next, the algorithm tries to set the syllable
boundaries equidistantly between the vowels. As there are three consonants
between the first and the second vowel, the algorithm arbitrarily picks the first
consonant boundary (near frame 5250) instead of the second. However, the
successive processing stage finds that there is continuous pitch contour that
would be cut by this segmentation, while there is no pitch detected at the
boundary of the second consonant. The syllable boundary is shifted (indi-
cated by the red arrow) to suppress large gaps in the pitch contour within one
suprasegmental unit. The length of the obtained syllable segment is also used
as a single duration feature.
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Figure 2.1: Pseudo-syllable generation from vowels and consonants. Each vowel is considered
as the nucleus of a syllable. Preceding consonants as onset and successive consonants as coda.

While the algorithm itself is quite simple, it still needs a complex phone
recognizer incorporating cepstral features. As a second approach, it is pro-
posed to simply model the contours of pitch and energy over a fixed window
size. As such a segmentation does not rely on any data driven assumption
where to define the suprasegmental units, it is worked with highly overlap-
ping windows and a window size that corresponds to an estimated average of
the syllable length. This way, highly correlated and maybe redundant feature
frames are generated, many more than for the non-overlapping and exclusive
segmentation in the latter approach. As this approach is somehow similar to
the extraction of MFCC with a fixed and overlapping analysis window, it is ex-
pected that the successive statistical modeling technique of GMMSs learns the
relevant information and can benefit from the increased number of features per
utterance.

In this case, the number of voiced frames within the analysis window is used
as a duration feature.

2.1.3 Contour approximation

Eventually, the extracted pitch and energy measures should be presented in the
context of each suprasegmental unit. To be able to feed these prosodic features
to a statistical model like a GMM, a fixed size representation for each variable
sized suprasegmental unit is needed. For this purpose, some sort of curve-
fitting algorithm seems appropriate that best fits a combination of different
polynomials of different degrees to the original trajectory in a least-squared-

11



error sense. This way, it can capture the continuous contour by simply keeping
the coefficients corresponding to the polynomial basis functions.

In [19] it is proposed to fit the energy and pitch contours extracted over
a suprasegmental unit by a curve fitting based on Legendre polynomials [1].
The advantage over simpler polynomials is, that they are defined by orthogonal
basis functions, resulting in decorrelated coefficients. As the Legendre polyno-
mial is only defined in the interval of —1 to 1, all pitch and energy measures
for the suprasegmental units need to be mapped to this interval first.

Here, it is proposed to simply apply Discrete Cosine Transformation (DCT)
to the extracted pitch and energy values x(n) extracted for each suprasegmen-
tal unit of length N:

y(k) = w(k) 3" w(n) cos (”(2” _2%(’{ - ”) (2.1)

with £ =1,2,... N and

wik) =4 VN (2.2)

\/% 2<k<N

Taking the Inverse Discrete Cosine Transformation (IDCT) of all coefficients
y(k) would result in perfect reconstruction of each pitch or energy contour
extracted for each variable sized suprasegmental unit. However, taking only a
fixed number of the leading DCT coefficients results in an approximated curve
for each segment.

Figure 2.2.a shows the first four orthogonal DCT basis functions that are
used to transform the original pitch and energy values. Figure 2.2.b shows
an excerpt of a pitch contour. The solid lines show how the contours can be
approximated by using only the first (blue) up to the first four (cyan) DCT
coefficients.

This way, each variable sized pitch or energy contour can be translated to
a fixed sized parametric representation. Similar to the Legendre polynomials,
the coefficients correspond to the mean, slope, curvature and fine details of the
original contour. This becomes clear when observing the first DCT basis as
plotted in Figure 2.2.a.
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Figure 2.2: Approximation of pitch contour by first four DCT basis functions.

2.1.4 Final feature vector

Figure 2.3 shows how the final feature frames are constructed per syllable-like
unit in the utterance. The segmentation boundaries determine the length of
the segment which is stored in the feature vector as a single discrete number.
Next, the first n DCT coefficients (four in the example) are stored for the
pitch as well as for the energy contour. So, for each syllable we obtain a 2n+1
dimensional feature vector.

2.2 SNERF features

In the second phase of this thesis, we use SNERFs, which are syllable-based
prosodic features based on estimated pitch, energy, and duration information.
Characteristics like minimum, maximum, mean, and slope of pitch and energy
trajectories are extracted for each detected syllable in an utterance and its
nucleus, as well as duration of onset, nucleus, and coda of the syllable. All
values are further normalized with different techniques and form several hun-
dred features for each syllable. The used syllable segmentation is generated
from the output of a large-vocabulary continuous speech recognition (LVCSR)
system using a simple maximum onset algorithm (Section 3.4.1 of [9]) on the
phone-level alignments. Detailed information on SNERFs is given in [27].

We use 182 basic features that are extracted for each syllable. Furthermore,
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Figure 2.3: The final feature vector consists of one value for duration and the n leading
coefficients per pitch and energy contour.

temporal dependencies are modeled by constructing small vectors concatenat-
ing features from consecutive syllables and pauses. These so-called tokens are
formed for each basic feature by concatenating as many as three values (feature
values and duration of pauses; more details are given in [11]). Nine different
n-gram tokens are used.

The first line of plots in Figure 3.1 shows an example of the feature extrac-
tion process. The segments are given by the syllables found from the ASR
output. The pitch (blue curve) and energy (red curve) signals are estimated
from the waveform. For our example, we assume that we extract only three
features per segment: its duration (from one vertical black line to the next),
the mean pitch value (blue squares), and the mean energy value (red stars).

The SNERFs are parameterized by use of GMMs. This can be seen as a
soft binning of each SNERF value into a meaningful set of discrete classes
and makes it possible to accumulate soft counts for all SNERFs and tokens
extracted for one utterance (for details see [11]).

The second line of Figure 3.1 shows a toy example in which three small
GMMs are trained on a background data set. A two-component model is
trained for the syllable durations, a three-component model for mean pitch
values, and a four-component GMM for means of syllable energies.

The values from the exemplified feature extraction process (syllable dura-
tion, mean pitch, and mean energy) are further depicted as bars in middle
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row of Figure 3.1. The occupation counts (numbers next to mixtures) are the
responsibilities for each Gaussian component to generate these values. Each
Gaussian component can be seen as a discrete class (nine in total, including
Gaussians from the three GMMs) and the occupation counts can be seen as
soft-counts of discrete events.
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Chapter 3

Subspace models for prosodic features

The basic assumption in subspace modeling is that the natural parameters of
a model usually live in a much smaller subspace than the full parameter space.
This subspace can be learned by introducing latent variables in the model.

3.1 iVectors based on GMMs

The classical formulation of JFA for speaker verification [14] assumes that the
concatenated mean vectors @, ojra 0f @ GMM are distributed according to a
subspace model with separate subspaces for speaker and channel variability:

¢GaussJFA =m + Vy + UX7 (31)

where m is a speaker- and channel-independent supervector, and V and U
span linear subspaces (for speaker and channel variability) in the original mean
parameter space. The components of y and x are the low-dimensional latent
variables corresponding to the speaker and channel subspaces.

A simplified variant of JFA [8] assumes that speaker and channel subspaces
are not decoupled and uses only one subspace covering the total variability in
an utterance:

¢GaussIV =m + Tw. (32)

Again, T spans a linear subspace in the original mean parameter space and
the components of w are the low-dimensional latent variables corresponding to
the total variability subspace. The low-dimensional vectors w are also known
as iVectors.

In the latter approach, the JFA-like model serves only as the extractor of
the vectors w, which can be seen as low-dimensional fixed-size representations
of utterances, and which are in turn used as inputs to another classifier.

16



250 and uh where are you where which

— e ,/*>$<”;ﬁ\\/__ﬁ? - 60
/ Xfm/ * \f\\ﬁ N \ e
| \ | —40
f |/ 30
L | Vo .
0 20

T
|
0 50 100 150 200 250 300

Frequency [Hz]
=
[&
o
I

Duration: 2 mixtures Pitch: 3 mixtures Energy: 4 mixtures
0.04 1 25

0.03

0.02

0.01

. 1L ,
-20 0 40 60 80 3

6.3
3.7
\
20

Duration: 2 classes Pitch: 3 classes Energy: 4 classes
5

2
9
>
7
1 3 4

Figure 3.1: Top row: Extraction of three SNERF parameters from a speech segment con-
taining 10 single-syllable words: Syllable duration (determined by black vertical lines), mean
pitch value per syllable (blue squares), and mean energy per syllable (red stars). Middle
row: Parameterization of SNERF sequences: Small GMMs are trained on background data
for each individual SNERF. Two mixtures are used for duration, three mixtures for pitch, and
four mixtures for energy. Occupation counts for the values extracted in the top row (here as
bars) are collected using the GMMs. Bottom row: Multinomial model spaces for duration,
pitch, and energy. The colored lines show various one-dimensional iVectors (the values are
mapped to colors) projected to the full ensemble of multinomial spaces.

Both techniques, the JFA (GaussJFA) as well as the iVector modeling
(GausslV), are applicable to mean supervectors of GMMs trained on the
low-dimensional well-defined DCT features as presented in Section 2.1. All

model parameters are trained using an expectation-maximization (EM) algo-
rithm [14].

3.2 1Vectors based on multinomial distributions

We propose a novel subspace modeling approach for multinomial distributions,
applicable to the parameterized SNERFs. In our proposed approach, we com-
bine the advantage of the JFA-like subspace model with the flexibility of rep-
resenting prosodic features as the super-vector of occupation counts. Since the
occupation counts can be seen as counts of discrete events - a component gen-
erating a frame - the process of their extraction can be seen as discretization of
the original prosodic features. Therefore, as a generative model, multinomial
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distribution would appear as a natural choice for modeling such counts.!

In our model, the super-vector of model parameters is also constrained to
live in a subspace defined by (3.2). However, the super-vector of Gaussian
means is replaced by a super-vector of log probabilities, which are the natu-
ral parameters of our underlying multinomial distribution. A similar idea of
subspace modeling of multinomial distribution was proposed for inter-session
variability compensation in phonotactic language identification in [13]. A sim-
ilar model is also applied for modeling GMM weights in subspace GMM, which
is a recently proposed acoustic model for speech recognition [22].

The bottom row of Figure 3.1 illustrates the multinomial model spaces for
our toy example. The natural parameters for the duration model exist on a
line; the pitch model parameters, in a 2D simplex; and the energy parameters,
in a 3D simplex space. Note that the natural parameters for all classes, in each
case, are constrained to sum up to one.

The basic idea of the Subspace Multinomial Model (SMM) [17] is to learn
a low-dimensional subspace of high intersession variability within the ensem-
bles of multinomial models. That way we can (1) reduce the number of free
parameters to efficiently model differences between single utterances, and (2)
learn dependencies between the individual SNERF's.

In our example, in bottom row of Figure 3.1, we use a one-dimensional sub-
space, depicting (by the colored lines) how the subspace restricts the possible
movement in the individual higher-dimensional model spaces.

3.2.1 Likelihood function

The log-likelihood of data D for a multinomial model with C discrete classes
is determined by model parameters ¢ and sufficient statistics v, representing
the occupation counts of classes for all N utterances in D:

N C
logp(D) = > > Yuclog dne. (3.3)

n=1 c=1

where v, is the occupation count for class ¢ and utterance n and ¢,,. are prob-
abilities of (utterance dependent) multinomial distribution, which is defined

'More precisely, there would be a set of multinomial distributions, one for each GMM in the ensemble.
For each frame, each GMM is expected to generate a feature by one of its components. This corresponds to
co-occurring events that has to be modeled by separate multinomial distributions.
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by a subspace model according to Equation 3.2:

exp(me + t.wy,)

Pne = ,
" ZZO exp(m; + t;w,,)

(3.4)

where t. is the c-th row of subspace matrix T and w, is an r-dimensional
column vector (i-vector) representing speaker and channel of utterance n.

3.2.2 Parameter re-estimation

The model parameters are obtained by maximum likelihood (ML) estimation.
First, the subspace parameters m and T need to be estimated from training
data. This is an iterative process, where we alternate between estimating
subspace parameters m and T with fixed i-vectors, and estimating i-vectors w,,
(one for each training utterance) with fixed subspace parameters. Even with
fixed subspace parameters, there is no closed-form solution for ML update of
i-vectors, and each i-vector must be updated using an nonlinear optimization
technique, which is again an iterative procedure. Likewise, there is no closed-
form solution for ML update of subspace parameters with fixed i-vectors. The
updates we have adopted in our implementation are based on updates used for
subspace GMM [22]. Vectors w,, are updated as

w, = wilt + H, g, (3.5)

where g, is the gradient of the log likelihood function

X}T%Z¢M§}W) (3.6)
J

and H,, is an r X r matrix

Z tI't; max (v, 929 Z Yrj)s (3.7)

where ¢l refers to the multinomial distribution (3.4) defined by the parame-
ters from the preceding iteration. Note that the matrix H,, can be interpreted
as an approximation to the Hessian matrix and the update formula (3.5) can
be then seen as a Newton-Raphson update. The rows of matrix T are updated
as

6 =t + H, g, (3.8)
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where g. is the gradient of the log likelihood function

N C
8= (Yne— 04> i)Wl (3.9)
n=1 i=1
and H, is an r X r matrix
N C
Hc = Z max(f)/nc; ¢7C:Llcd Z ”Ym)WnWZ; (310)
n=1 =1

The updates for both w, and T may fail to improve likelihood by making too
large an update step. In the case of such failure, we start halving the update
step until an increase in likelihood is obtained. We have not provided any
formula for updating vector m. However, this can be simulated by fixing one
of the coefficients in vectors w,, to be one and regarding the corresponding
column of matrix T as the vector m.

So far, we considered only subspace modeling of single multinomial distri-
bution in our equations. However, for the prosodic features extracted by the
ensemble of GMMs, the occupation counts should be modeled by a set of multi-
nomial models, one for each GMM. We consider these to be concatenated into
single super-vector of multinomial distributions, which is modeled by one sub-
space matrix T. In other words, there will be only one i-vector w,, defining the
whole set of multinomial distributions for each segment n. To achieve this, the
indices ¢ from Equation (3.4) must be divided into subsets, where each subset
corresponds to mutually exclusive events (counts from one GMM). Then, the
only difference will be in the denominator of (3.4), where we normalize only
over the appropriate subset of indices that the current ¢ belongs to. After the
subspace parameters are estimated on training data, the model can be used to
extract i-vectors w,, for all enrollment, test and background utterances using
the same update formulae (3.5-3.7).

3.2.3 Model initialization

While Section 3.2.2 is quite general, the model initialization is described here
more specifically for the used system. First, we estimate multinomial distri-
butions for individual GMMs from the ensemble using all training utterances.
This corresponds to summing all training super-vectors of occupation counts
and normalizing the resulting super-vector over the ranges corresponding to
individual GMMs. We will denote such super-vector of multinomial distribu-
tions as svypy. The vector m is simply initialized to a log of svygy. Note
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that we did not observe any advantage from its further retraining using the
updates from the previous section. All vectors w are initialized with zero. To
ensure a good starting point, the subspace matrix T is initialized to represent
the most important directions in the space of model parameter super-vectors.
T is initialized by eigenvectors of covariance matrix computed from smoothed
utterance super-vectors sv,, centered around the vector m. The vectors sv,,
are computed per component as

,‘}/TLC
f’fLC

where f,. is the number of feature frames seen for the utterance and for the
GMM that the occupation count 7,. corresponds to. The smoothing constant
a = 0.9 ensures that we do not take log of zero for classes that have not been
occupied at all by any frames of utterance n.

svpe = log(a— + (1 — a)svypa,,), (3.11)

3.3 PLDA modeling of iVectors

The fixed-length iVectors extracted per utterance (from the GaussIV as well as
from the MultinlV model) can now be used as input to a pattern recognition
algorithm. Note that unlike in the standard JFA, where two subspaces are used
to account for speaker and intersession variability, the iVector variant uses a
single subspace accounting for all the variability. Therefore, the extracted
vectors w are not free of channel effect, and intersession compensation must
be eventually considered during classification.

For verification of speaker trials we use a special case of Probabilistic Linear
Discriminant Analysis (PLDA) [23], a two-covariance model, providing a prob-
abilistic framework where speaker and intersession variability in the iVectors
is modeled using across-class and within-class covariance matrices 3J,. and
dwe. We assume that latent vectors s representing speakers are distributed
according to

p(s) = N(s; p, Zac) (3.12)

and for a given speaker y the iVectors are distributed as
p(WlS) = N(W7 S, zch)- (313)

Figure 7?7 exemplifies this assumption by a toy example in 2D iVector space.
The dots represent several iVectors extracted from several utterances stemming
from four different speakers. It can be observed, that the four solid dots, rep-
resenting the explicit speakers means s, are Gaussian distributed with mean
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Figure 3.2: LDA assumption is iVector space.

m and covariance X,.. Further, the individual iVectors per speaker are also
Gaussian distributed with its mean s and a globally tied covariance X,,.. Using
this model, it becomes clear that two new data points (red squares) will be
identified as belonging to the same speaker although they are quite far apart
from each other. As we use a probabilistic model, the parameters can be esti-
mated using an EM algorithm and the model can be directly used to compute
likelihoods.

Model parameters p, 3,. and 3. are trained using an EM algorithm [15].
Using the PLDA model, one can directly evaluate the log-likelihood ratio for
the hypothesis test corresponding to “the two iVectors were generated by the
same speaker or not”:

J p(w1ls)p(w2ls)p(s)ds

p(w)p(wa) (3.14

s = log

The numerator gives the marginal likelihood of producing both iVectors from
the same speaker, while the denominator is the product of the marginal likeli-
hoods that both iVectors are produced from different speakers. The integrals
can be evaluated analytically and scoring can be performed very efficiently as
described in [5].
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Chapter 4

Experiments

This section shows selected experiments and results for the individual prosodic
systems and for the combination of these systems with each other and with a
baseline cepstral system.

4.1 Data

Results are presented on the telephone core conditions of the NIST Speaker
Recognition Evaluations 2008 [20] (dev) and 2010 [21] (ewal). Trials involve
English conversational speech recorded over various telephone channels. Our
development set is based on the original NIST SRE 2008 evaluation set, but was
extended to include about two orders of magnitude more impostor samples, to
adjust for the new DCF point. It includes 1,154 target and 1,516,837 nontarget
trials. Our evaluation set corresponds to the official extended condition 5 of
NIST SRE 2010 and contains 7,169 target and 408,950 nontarget trials.

Training of background, subspace, and PLDA models is performed on data
from Switchboard corpora as well as NIST SRE 2004 — 2006 corpora. This
set includes 13,482 recordings from 752 male and 16,782 recordings from 963
female speakers.

4.2 Prosodic systems

Experiments are carried out to evaluate the performance of the iVector mod-
eling approach for the simple DCT features. For both, the GaussJFA and the
GausslV systems, we extract 13-dimensional DCT contour features (1 dura-
tion, 6 pitch and 6 energy values) and train gender-dependent multivariate
universal background models (UBMs) with 512 Gaussian components and di-
agonal covariances. The GaussJFA and the GaussIV models are trained using
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Figure 4.1: Results for SRE 2008 (dev) versus SRE 2010 (eval) in terms of EER, old DCF and
new DCF, from left to right, for three different prosodic systems and combination of the two
best.

sufficient statistics extracted for all background data using the same UBMs.
For the GaussJFA model we train 100-dimensional speaker subspace V and
50-dimensional channel subspace U. For the Gauss/V model we train 300-
dimensional total variability subspace T on the same data. These subspace
sizes were found optimal in earlier experiments. The GaussJFA model is evalu-
ated directly by log-likelihood ratio using a fast scoring technique [12] followed
by zt-norm. The extracted DCT iVectors for all background data are used
to train a full rank PLDA model. The PLDA model is then used to eval-
uate the log-likelihood ratio for speaker trials. Figure 4.1 shows results for
the two DCT-based systems (green markers). The DCT-GaussIV system with
PLDA (square) clearly outperforms the DCT-GaussJFA system (triangle) on
all operating points on both test sets.

To compare the simple DCT-GausslV system with the best prosodic sys-
tem presented so far [18], we train a SNERF-MultinlV system on the same
setup. The SMM models an ensemble of 1,638 multinomial distributions rep-
resenting 9 different n-gram tokens of 182 individual SNERFs. We obtain 300
dimensional iVectors. While the SNERF-MultinIV system (blue diamonds in
Figure 4.1) is still superior on both test sets for EER and old DCF, we achieve
better results with the DCT-GaussIV system on both test sets in terms of new
DCF.

As both prosodic systems perform very well, but are significantly different
in terms of features as well as modeling approach, a combination of both
seems natural. Since both modeling techniques translate the long-temporal
prosodic feature vectors of variable size to a single fixed-length feature vector
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DEV SRE 2008 EVAL SRE 2010

System

EER oDCF nDCF EER oDCF nDCF
Cepstral iVector system CEP-iV 2.02 090 471 314 1.5 5.04
Concatenated CEP+DCT-1iV 1.69  0.80 4.00 2.72 1.36 4.31
Concatenated CEP+SNERF-1iV 1.65 0.80 3.89 274 134 4.44
Concatenated CEP+DCT+SNERF-iV 1.70 0.75 3.68 2.63 1.29 4.21

Score fusion CEP-iV, DCT-iV & SNERF-iV 1.92 (.78 4.06 3.09 1.49 4.47

Table 4.1: Results (old and new DCF x10) for single cepstral baseline system (CEP-iV) and
for combinations with one or two prosodic iVector systems.

per utterance (what we call iVector), it is possible to simply concatenate the
iVectors resulting from these diverse models and to model them jointly with
a PLDA model. We train a single full-rank PLDA model on 600-dimensional
iVectors. The effectivity of the joint modeling of complementary iVectors can
be observed in Figure 4.1. The combination of DCT-GaussIV and SNERF-
MultinIV iVectors (cyan hexagons) results in significant improvement over the
best individual system on all operating points on both test sets, achieving
an EER of 5.4% and a new DCF of 0.72 on 2008 data, which are (to our
knowledge) the best results reported for a purely prosodic system.

4.3 Combination with cepstral baseline system

Our baseline system is a cepstral iVector system followed by a PLDA model
(CEP-GaussIV). This system was the best-performing individual system from
the ABC NIST SRE 2010 submission [4]. It is based on 60-dimensional
cepstral features and a 2048-component full covariance UBM. Four hundred-
dimensional iVectors are used and the dimension is further reduced to 200 by
standard LDA and normalized by their length! before PLDA modeling. The
first row of Table 4.1 gives the results for our two data sets?.

Again, the iVector nature of our baseline system allows us to use a novel
way of combining low- and high-level systems by simple concatenation of their
iVectors and joint PLDA modeling. First, we apply an LDA reduction to 200
dimensions and length normalization to both 300-dimensional sets of prosodic

IThis pre-processing of iVectors is very helpful for cepstral iVectors but did not show any improvement for
our prosodic iVectors

2We are aware that better results are reported in the literature, simply by training the PLDA on more
data, which we did not have for SNERFs.

25



iVectors. In this way we have three same sized sets of 200 dimensional iVectors
(one cepstral and two prosodic). Next, we concatenate the cepstral iVectors
separately with each of our prosodic iVectors to obtain two sets of four hundred-
dimensional iVectors. Then we train a standard PLDA model with full rank of
400 for each type of combination. The second and third row of Table 4.1 give
the results for these combinations. We see that we can achieve significant im-
provements for both iVector fusions of cepstral and prosodic features. Finally,
we concatenate all three iVector types (one cepstral and two prosodic) and
train a PLDA model with full rank of 600. The fourth row of Table 4.1 gives
the results for this combination. We achieve further improvements leading to
reductions as high as 21% relative on the challenging new DCF measure.

As a last experiment we compare this approach to the conventional score-
level fusion. For this purpose we train a linear logistic regression [6] to fuse the
three individual system scores on the development set and apply this fusion
to the evaluation set. The last row of Table 4.1 indicates that consistent gains
are also achieved by score-level fusion (as high as 13% on new DCF), but
joint PLDA training of concatenated iVectors remains superior. iVector fusion
of the cepstral system and the simple prosodic DCT-GaussIV system already
outperforms the score-level fusion of all three systems.
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Chapter 5

Conclusions and Lookout

We present the first results on the use of total variability modeling of the mean
supervector space for a set of prosodic features. We show that this iVector
approach outperforms the standard JFA approach originally proposed for these
features. We note that this improvement over JFA is observed only when the
iVectors are modeled using the PLDA back end. No gain was observed during
SRE 2010 system development [4] when iVectors were modeled with simpler
scoring techniques [7].

Furthermore, we present combination results of two prosodic systems, one
where iVectors based on GMMs are used to model simple DCT features ex-
tracted from uniform regions and another one where iVectors based on multi-
nomial distributions are used to model a complex set of syllable-level features.
These two systems are different at both the feature and modeling levels. We
show gains on the order of 20% when combining these two systems with re-
spect to the single best. The combination is performed using an iVector-level
fusion: the individual iVectors for the two systems are concatenated and the
joint iVector is modeled using PLDA. An important advantage of iVector-level
fusion compared to score-level fusion is that it can make use of the full infor-
mation encoded in the iVectors while for the score-level fusion all information
is already reduced to a single number.

The iVector-level fusion technique followed by PLDA modeling can also be
applied to fuse heterogeneous features, such as low-level cepstral and high-level
prosodic features. Using this procedure we achieve 20% relative improvement
on new DCF over a cepstral iVector baseline, significantly outperforming score-
level fusion. These are, to our knowledge, the largest relative gains obtained
in speaker recognition from combination of cepstral systems with prosodic
features in several years.
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