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Abstract This work first defines regulated formal systems such as regulated rewriting
system, regulated grammar and regulated automaton. Also some basic theorems are pre-
sented. The fourth chapter defines right-linear grammars with a start string of length n
regulated by regular language and postulates its equality with n-parallel right-linear lan-
guages formed in Wood hierarchy. Then we restrict the number of changing derivation
positions and the main result follows. The fifth chapter describes parsing techniques for
context-sensitive languages and their implementation.

Keywords regulated rewriting, Wood hierarchy, regulated automata, regulated gram-
mars, right-linear grammar with start string of length n regulated by regular language,
parsing of context-sensitive languages, parser implementation.

Abstrakt V této práci nejdř́ıve definujeme několik ř́ızených formálńıch systémů, jako
např́ıklad obecný ř́ızený přepisovaćı systém, ř́ızenou gramatiku a ř́ızený automat. Také
prezentujeme některé základńı poznatky z teorie ř́ızených přepisovaćıch systémů. Ve
čtvrté kapitole definujeme pravě-lineárńı gramatiky se startovaćım řetězcem délky n, ř́ızené
regulárńımi jazyky a postulujeme jejich ekvivalenci s n-paralelńımi pravě-lineárńımi gra-
matikami, které definuj́ı Woodovu hierarchii. Následně omeźıme počet změn derivačńı
pozice a formulujeme hlavńı výsledky práce. Pátá kapitola pak popisuje techniky parsingu
pro kontextové jazyky a jejich implementaci.

Kĺıčová slova ř́ızené přepisováńı, Woodova hierarchie, ř́ızený automat, ř́ızená gramatika,
pravě-lineárńı gramatika se startovaćım řetězcem délky n, ř́ızená regulárńım jazykem, pars-
ing kontextových jazyk̊u, implementace parseru.

Rychnovský, L.: Grammatical Models of Computational Distribution and Concurrency :
Theory and Application, Ph.D. Thesis, FIT VUT, Brno, 2009.
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1. Motivation

Part I

Introduction

1 Motivation

In the late fifties the linguist Noam Chomsky defined his famous formal language hierarchy
based on the restriction of the form of productions. Very soon many mathematicians
and computer scientists began to extend this simple hierarchy by adding new forms of
production rules.

In the seventies a new approach of extending the Chomsky hierarchy was developed.
The new approach was not only to restrict the form of the production rules but also the way
in which grammar is allowed to generate words. This approach opened a brand new part of
formal language theory called regulated rewriting or grammar with controlled derivations.
Mathematicians such as Salomaa, Dassow and Pǎun started their research and very soon
a complex theory with many results was born.

Nowadays, many books cover this part of formal language theory. But still there are
many grey areas worthy of interest.

This work tries to map regulated rewriting models and their properties. It starts with
necessary mathematical background for formal language theory in the second chapter.
The third chapter starts with a definition of a rewriting system as a basic concept of
all formal language theory. The definition of this rewriting system is then extended and
divided into two well-known approaches: grammar and automaton. The first approach,
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1. Motivation

automaton-based, is divided into three parts according to the Chomsky hierarchy. Finite
automaton and language accepted by finite automaton are defined in the first part and a
relation between the set of regular languages and languages accepted by finite automata
is postulated. In the second part, we move toward the set of context-free languages. We
define pushdown automata and language accepted by such automata and define relation
between these languages. In the third part we define the Turing machine and postulate the
relation between it and context-sensitive and recursive enumerable languages. The other
approach, grammar-based, is defined separately and the Chomsky hierarchy is formed.

Later in the third chapter regulated rewriting systems are mapped. A regulated rewrit-
ing system is any formal system where every application of any production rule can be
prohibited. We can achieve this behavior by several main concepts.

The first is to tie some productions together, as we can see in the case of matrix
grammar or programmed grammar. Instead of single productions, matrix grammar uses
a finite set of finite sequences of productions. Productions cannot be applied separately,
but a whole sequence has to be applied. In applying such a sequence, one first rewrites
according to the first production, then according to the second production, and so on,
until one has rewritten according to the last production. The sequences are referred to as
matrices. Programmed grammars are based on a similar method of regulating as matrix
grammars. In the case of programmed grammar G, one is given two sets, σ(f) and ϕ(f),
together with each production f of the entire production set P of G, referring to the success
and failure field of f , respectively. If we have applied f , then the next production to be
applied must belong to σ(f). If we have applied f in the appearance checking sense, that
is, noticing that the left side of f is not a subword of the word under scan, then the next
production to be applied must belong to ϕ(f). The sets σ(f) and ϕ(f) are also noted as
the go-to fields of f .

The second concept is to permit some productions only in some cases or deny usage of
some productions in some cases based on actual sentence form as we can see in the case
of permitting and forbidding grammars or random-context grammars. Unlike previous
cases, the behavior of permitting and forbidding grammars depends on actual sentential
form. In permitting grammar G, one is given a set of terminals and nonterminals P (f)
together with each production set P of G, referred to permitting set. In a forbidding
grammar this set F (f) is called forbidding set. If we should apply rule f , we first look into
permitting set P (f) and rewrite only if all symbols of P (f) are subwords of word under
scan. In forbidding case we check whether none of the symbols of F (f) are subword of
word under scan. Random-context grammars are combination of permitting and forbidding
grammars. Every production rule is a triple (f,Q,R) where Q,R are sets. If we should
apply production f , we must first check whether all symbols of Q appear and no symbol
in R appears in word under scan. Only in such a case is production allowed.

The third concept is to define control language. In this case we label production rules
and demand successful derivation to form a word from control language over the alphabet
of production labels. This construction allows us to obtain a large family of new languages
based on the combination of regulated and regulating languages. We can also regulate
automata in the same way as grammars. Every automaton transition is described by

8



1. Motivation

a specific symbol and only certain words over such an alphabet are accepted according to
control language. The question is whether equivalent models (regular languages and finite
automata, context-free grammars and pushdown automata, etc.), when regulated by the
same language, have the same generative power. As shown in the fourth section, the answer
is no. Hence, it is necessary to study even equivalent formal models separately when they
are regulated. In general, regulation greatly increases the generative power of a formal
model. For example pushdown automaton regulated by linear language is as powerful as
the Turing machine.

The fourth and fifth chapters are dedicated to the author’s own results. The fourth
chapter starts with the definition of a formal model with start string of length n. It is easy
to prove that any formal model from classic Chomsky hierarchy (even if regulated) doesn’t
extend its generative power if we start from start string rather than start nonterminal. This
is not true if we enrich right-linear grammar regulated by regular language by start string.
In this case we obtain stronger formalism than with start symbol. Moreover, the longer
start string we allow, the more powerful model we obtain. In theorem 4.3, equivalence
with the Wood language hierarchy based on n-parallel right-linear languages is proved.

In the next part of the fourth chapter there is another result presented. We start
again with right-linear grammars with start string of length n and we define a new way
of limitation: we restrict the number of times that derivation position switches from one
position in start string to another. This kind of limitation does not restrict the number of
derivations in general, but the impact on generative power is significant. The whole former
language hierarchy collapses again to only the set of regular languages.

We can study regulated formal models in two main ways, as described in Figure 1. The
first one is based on regular or linear languages and regulation extends their power towards
context-sensitive languages. The second way is based on context-free languages and it is
possible to reach recursive enumerable languages.
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Figure 1: Regulation of languages

Both concepts greatly increase the power of underlying grammars. But each of these
concepts focuses on different parts – theory and application. The first approach describes
the regulation of REG and LIN languages, which is attractive from the theoretical point of
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1. Motivation

view. It is easier to understand the mechanisms of regulation on REG and LIN languages
than on CF. On the other hand, the second approach is the practical one. The theory
gained during the studying of previous parts can be applied to CF languages to move
towards CS and RE languages. This approach is very promising in compiler theory because,
by the regulation, we get a more powerful formal model on which we can use slightly
modified classic parsing techniques. These non context-free parsers and compilers are able
to recognize semantic errors that standard context-free parsers can not. For example, we
can restrict the number of code lines directly in grammar. Or we can limit the number
of variables or we can require that any variable is defined before used. This approach is
described in the fifth chapter.

This work tries to connect two main approaches to formal languages – theory and
application. From this connection, both sides profit. The theory driven by application
brings a new look at proofs of known theorems. They need to be lead in a constructive
way because application needs implementation and implementing algorithms according to
non-constructive proof is impossible. On the other hand, parsing algorithms based on more
powerful theory can bring us many advantages.

10



2. Preliminaries

2 Preliminaries

In this section we define some basic notations and necessary mathematical background to
formal language theory.

2.1 Basic notations

N = {0, 1, 2, . . .} is the set of nonnegative integers. Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the
set of integers. Let E be a set. Then card(E) or |E| is the number of its elements. The
empty set is denoted by ∅. If A,B are subsets of E, then we write A ⊆ B if and only if
x ∈ A ⇒ x ∈ B, and A ⊂ B if and only if A ⊆ B and A 6= B. The set of all subsets of
E, i.e. the powerset of E, is denoted by 2E. If X and Y are sets, then Cartesian product,
denoted X × Y , is the set of all possible ordered pairs:

X × Y = {(x, y) | x ∈ X, y ∈ Y }.

2.2 Semigroups and Monoids

A semigroup consists of a set M and a binary operation on M , denoted by multiplication
(·), and is postulated to be associative:

∀m1,m2,m3 ∈M : m1(m2m3) = (m1m2)m3.

A neutral element or a unit is an element 1M ∈ M (also denoted by 1 for short if no
confusion can arise) such that

∀m ∈M : 1Mm = m1M = m.

A semigroup which has a neutral element is a monoid. The neutral element of a monoid
is unique.

Given two subsets A,B of a monoid M , the product AB is defined by

AB = {c ∈M | ∃a ∈ A,∃b ∈ B : c = ab}.

This definition converts 2M into monoid with unit {1M}. A subset A ofM is a subsemigroup
(submonoid) of M if A2 ⊆ A (1 ∈M and A2 ⊆ A). Given any subset A of M , the sets

A+ =
⋃
n≥1

An, A∗ =
⋃
n≥0

An,

where A0 = {1} and An+1 = AnA are subsemigroups resp. submonoids of M. A+ (resp.
A∗) is called the subsemigroup (submonoid) generated by A. If M = A∗ for some A ⊂M ,
then A is a system of generators of M . A monoid is finitely generated if it has a finite
system of generators. The unary operations A → A+ and A → A∗ are called Kleene plus
and star operations. It is clear that

A+ = AA∗ = A∗A and A∗ = 1 ∪ A+.
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2.2 Semigroups and Monoids 2. Preliminaries

If M,M ′ are monoids a homomorphism α : M →M ′ is a function satisfying

α(m1m2) = α(m1)α(m2) ∀m1,m2 ∈M
α(1M) = 1M ′ .

A homomorphism α : X∗ → M ′, where X is an alphabet, is completely defined by the
values α(x) of the letters x ∈ X.

For any set X, the free monoid X∗ generated by X is defined so that there exists exactly
one homomorphism f so that for every monoid M following diagram commutes : κ =!f ◦ ι.

X
ι //

κ

  B
BB

BB
BB

B X∗

!f}}{
{

{
{

M

The elements of X∗ are n-tuples

u = (x1, x2, . . . , xn) n ≥ 0

of elements of X. If v = (y1, y2, . . . , ym) is another element of X∗, the product uv is defined
by concatenation

uv = (x1, x2, . . . , xn, y1, y2, . . . , ym).

Sometimes, if no confusion can arise, we will not distinguish elements of X from singletons.
Thus elements of X∗ may be written as

u = x1x2 . . . xn.

u is called a word, x ∈ X is called a letter and X itself is called an alphabet, set alph(u) is
defined as {x | x ∈ X, x appears in u}. The length |u| of a word u ∈ X∗ is the number of
letters composing it. The neutral element of X∗ is called empty word and is noted 1 or ε.
The reversal of word u = x1x2 . . . xn (n ≥ 0, xi ∈ X) is denoted by u or uR and is defined
by u = xnxn−1 . . . x1. A formal language over X is any subset of X∗.

For any set X, n-ary relation on set X is any subset of Xn. A binary relation R is
a special case of n-ary relation for n = 2, for any (x, y) ∈ R we write R(x, y) or xRy.
Relation R is said to be reflexive if for every x ∈ X holds xRx. Relation R is said to
be symmetric if for every x, y ∈ X holds that if xRy then yRx. Relation R is said to be
transitive if for every x, y, z ∈ X holds that if xRy and yRz then xRz. Reflexive closure
of relation R is the smallest reflexive relation over X containing R. Transitive closure of
relation R, noted as R+, is the smallest transitive relation over X containing R. Reflexive
and transitive closure of relation R, noted as R∗, is the smallest transitive and relative
relation over X containing R.

12



3. Definitions

3 Definitions

In this section we define some basic notations and models in formal language theory.
We start with rewriting system and extend definition to automata and grammars. The
Chomsky hierarchy is introduced in the end of this chapter.

Definition 3.1. A rewriting system is ordered pair (V, P ), where V is a finite alphabet
and P ⊆ V ∗ × V ∗ is a finite set of rewriting rules. Every rewriting rule is a pair (u, v),
where u, v ∈ V ∗ and will be written as u→ v.

Let us define the relation⇒ over V ∗. If u→ v ∈ P and x, y ∈ V ∗, then xuy ⇒ xvy [u→
v] or simply xuy ⇒ xvy is called a direct derivation. Let ⇒n, where n ≥ 0, denotes the
n-th power of relation ⇒. Furthermore let ⇒+ and ⇒∗ denote the transitive closure
and reflexive and transitive closure of relation ⇒ respectively. We call ⇒∗ a (general)
derivation.

3.1 Automata

Definition 3.2. A deterministic finite automaton (dFA or FA, for short) is a rewriting
system, usually noted as a 5-tuple T = (Q,Σ, δ, s, F ), where

1. Q is a finite set of states.

2. Σ is a finite set of the input alphabet.

3. δ is a finite transition relation Q× (Σ ∪ {ε}) → Q.

4. s ∈ Q is the start state.

5. F ⊆ Q is a set of final states.

A configuration of finite automaton is an ordered pair (q, w), where q ∈ Q is current state
and w ∈ Σ∗ are non read input characters.
A computational step of finite automaton is a binary relation `T (or simply ` if no confusion
can arise) defined as

(q1, aw) `T (q2, w) ⇔ δ(q1, a) = q2.

Let `n, where n ≥ 0, denotes the n-th power of relation `. Furthermore let `+ and `∗
denote the transitive closure and reflexive and transitive closure of relation ` respectively.
The language accepted by finite automaton T = (Q,Σ, δ, s, F ) is

L(T ) = {w | w ∈ Σ∗, (s, w) `∗T (q, ε), q ∈ F}

Alternatively we can extend definition of transition relation to extended transition relation
δ∗ : Q× Σ∗ → Q this way:

1. δ∗(q, ε) = q for every q ∈ Q,

13



3.1 Automata 3. Definitions

2. δ∗(q, wa) = δ(δ∗(q, w), a) for every q ∈ Q,w ∈ Σ∗ and a ∈ Σ.

The language accepted by finite automaton T = (Q,Σ, δ, s, F ) is

L(T ) = {w | w ∈ Σ∗, δ∗(s, w) ∈ F}

Definition 3.3. A nondeterministic finite automaton (non-dFA) is a rewriting system,
usually noted as a 5-tuple T = (Q,Σ, δ, s, F ), where Q,Σ, s and F has the same meaning
as in previous definition and δ is a finite transition relation Q× (Σ ∪ {ε}) → 2Q.

Definition 3.4. A deterministic pushdown automaton (dPDA or PDA, for short) is a
rewriting system, usually noted as a 7-tuple T = (Q,Σ,Ω, δ, s,∇, F ), where

1. Q is a finite set of states.

2. Σ is a finite set of the input alphabet.

3. Ω is a finite set of the stack alphabet.

4. δ is a finite transition relation (Q× (Σ ∪ {ε})× Ω) → Q× Ω∗.

5. s ∈ Q is the start state.

6. ∇ ∈ Ω is the initial stack symbol

7. F ⊆ Q is a set of final states.

A configuration of the pushdown automaton is a triple (q, w, γ), where q ∈ Q is current
state, w ∈ Σ∗ are non read characters and γ ∈ Ω∗ are symbols on stack.
A computational step of pushdown automaton is a binary relation `T (or simply ` if no
confusion can arise) defined as

(q1, aw, Zγ) `T (q2, w, Y γ) ⇔ δ(q1, a, Z) = (q2, Y ).

Let `n, where n ≥ 0, denotes the n-th power of relation `. Furthermore let `+ and `∗
denote the transitive closure and reflexive and transitive closure of relation ` respectively.
The language accepted by a pushdown automaton T = (Q,Σ, δ, s, F ) by final state is

L(T ) = {w | w ∈ Σ∗, (s, w,∇) `∗T (qF , ε, γ), qF ∈ F, γ ∈ Ω∗}

The language accepted by a pushdown automaton T = (Q,Σ, δ, s, F ) by empty pushdown is

L(T ) = {w | w ∈ Σ∗, (s, w,∇) `∗T (q, ε, ε), q ∈ Q}

Definition 3.5. Let M = (Q,Σ,Ω, δ, s,∇, F ) be a PDA and let x, x′, x′′ ∈ Ω∗, y, y′, y′′ ∈
Σ∗, q, q′, q′′ ∈ Q, and ∇xqy ` ∇x′q′y′ ` ∇x′′q′′y′′. If |x| ≤ |x′| and |x′| > |x′′|, then
∇x′q′y′ ` ∇x′′q′′y′′ is a turn. If M makes no more than one turn during any sequence of
moves starting from an initial configuration, then M is said to be one-turn (OTSA).

14



3.1 Automata 3. Definitions

Definition 3.6. A nondeterministic pushdown automaton (non-dPDA) is a rewriting sys-
tem, usually noted as a 7-tuple T = (Q,Σ,Ω, δ, s,∇, F ), where Q,Σ,Ω, s,∇ and F has the
same meaning as in previous definition and δ is a finite transition relation (Q× (Σ∪{ε})×
Ω) → 2Q×Ω∗

.

Definition 3.7. A deterministic Turing machine (DTM or TM, for short) is a 5-tuple
T = (Q,Σ,Γ, q0, δ), where

1. Q is a finite set of states, assumed not to contain the halt state (qF ).

2. Σ, the input alphabet, is a set of symbols, Σ is assumed not to contain ∆, the blank
symbol

3. Γ, the tape alphabet, is a finite set with Σ ⊆ Γ.

4. q0 ∈ Q is the initial state,

5. δ is a partial function from Q× Γ → (Q ∪ {qF})× Γ× {R,L, S}.

A configuration of the dTM is a pair (q, xay) where q is a state, x, y ∈ Γ∗, a ∈ Γ, and the
underlined symbol represents current position of the head, which allows to read from and
write to a tape one symbol to the square of current position and which can possibly stay
(S) in the same position, move right (R), or move left (L). We say

(q, xay) `T (r, zbw)

if T makes a sequence of moves from the configuration on the left to that on the right in
one move and

(q, xay) `∗T (r, zbw)

if T makes a sequence of moves from the first configuration in zero or more moves.

Definition 3.8. An input string x ∈ Σ∗ is accepted by Turing machine T if starting T
with an input x leads eventually to halting configuration. In other words, x is accepted if
for some strings y, z ∈ Γ∗ and some a ∈ Γ

(q0,∆x) `∗T (qF , yaz)

In this situation we say T halts on the input x. The language accepted by T is the set of
input strings that are accepted by T.

Definition 3.9. A nondeterministic Turing machine (non-dTM, for short) is a 5-tuple
T = (Q,Σ,Γ, q0, δ), where Q,Σ,Γ and q0 has the same meaning as in previous definition
and δ is a finite transition relation Q× Γ → 2(Q∪{qF })×Γ×{R,L,S}.

Definition 3.10. An input string x ∈ Σ∗ is accepted by Linear Bounded Turing machine
(LBTM) T if starting T with an input x leads eventually to halting configuration but only
a finite contiguous portion whose length is a linear function of the length of the initial
input can be accessed by the read/write head. The language accepted by linear bounded
Turing machine T is the set of input strings that are accepted by LBTM T.
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3.2 Grammars

Definition 3.11. A grammar G is a quadruple G = (N, T, P, S) where N is a finite set of
nonterminals, T is a finite set of terminals, T ∩N = ∅, P is a finite set of production rules
P ⊆ {(N ∪ T )∗N(N ∪ T )∗ × (N ∪ T )∗}. An element (α, β) ∈ P will be written as α→ β.
Symbol S ∈ N is the starting nonterminal.
A grammar is called propagating if and only if (α, ε) /∈ P .

Definition 3.12. Let G = (N, T, P, S) be a grammar. If α→ β ∈ P and u, v ∈ (N ∪ T )∗,
then uαv ⇒ uβv [α → β] or simply uαv ⇒ uβv is called a simple derivation. In the
previously defined manner, we extend ⇒ to ⇒n, where n ≥ 0 and ⇒+ and ⇒∗ and we call
it a (general) derivation.

Definition 3.13. The language generated by grammar G = (N, T, P, S), L(G), is defined
as L(G) = {w ∈ T ∗ | S ⇒∗ w}.

Definition 3.14. A grammar G = (N, T, P, S) is called regular grammar if every rule from
P is in the form α→ β, where

α ∈ N,
β ∈ TN ∪ T.

A language, L, is regular if and only if L = L(G), where G is a regular grammar. The set
of languages generated by regular grammars is denoted by REG.

Definition 3.15. A grammar G = (N, T, P, S) is called linear grammar if every rule from
P is in the form α→ β, where

α ∈ N,
β ∈ T ∗NT ∗ ∪ T ∗.

The grammar G is called left-linear (resp. right-linear) if β ∈ NT ∗ ∪ T ∗ (resp. β ∈
T ∗N ∪ T ∗).

Definition 3.16. A grammar G = (N, T, P, S) is called context-free grammar if every rule
from P is in the form α→ β, where

α ∈ N,
β ∈ (N ∪ T )∗.

A language, L, is context-free if and only if L = L(G), where G is a context-free grammar.
The family of languages generated by context-free grammars is denoted by CF.

Definition 3.17. A grammar G = (N, T, P, S) is called propagating context-free grammar
or context-free grammar without epsilon rules if for every rule from P is in the form α→ β,
where

α ∈ N,
β ∈ (N ∪ T )+.
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3.2 Grammars 3. Definitions

Definition 3.18. A grammar G = (N, T, P, S) is called context-sensitive grammar if every
rule from P is in the form α→ β or S → ε where,

|α| ≤ |β|.

A language, L, is context-sensitive if and only if L = L(G), where G is a context-sensitive
grammar. The family of languages generated by context-sensitive grammars is denoted by
CS.

Definition 3.19. A grammar in general form as defined in Definition 3.11 is called unre-
stricted grammar. The family of languages generated by unrestricted grammars is known
as recursive enumerable and is denoted by RE.

Definition 3.20. The Chomsky hierarchy contains four families of languages defined by
the following four types of grammar:

1. Type-0 languages correspond to unrestricted grammars (this level includes all formal
grammars). They generate exactly all languages that are recognized by a Turing
machine. These languages are also known as the recursively enumerable languages.
Note that this is different from the recursive languages which are recognized by an
always halting Turing machine.

2. Type-1 languages correspond to context-sensitive grammars. These grammars have
rules of the form α → β, where |α| ≤ |β|. The rule S → ε is allowed if S does not
appear on the right side of any rule. The languages described by these grammars are
exactly all languages that can be recognized by a non-deterministic Turing machine
whose tape is bounded by a constant times the length of the input.

3. Type-2 languages correspond to context-free grammars. These are defined by rules
of the form A → γ with A a nonterminal and γ a string of terminals and non-
terminals. These languages are exactly all languages that can be recognized by a
non-deterministic pushdown automaton. Context free languages are the theoretical
basis for the syntax of most programming languages.

4. Type-3 languages correspond to regular grammars. Such grammars restrict their
rules to a single nonterminal on the left-hand side and a right-hand side consisting
of a single terminal, possibly followed by a single nonterminal. The rule S → ε is
also here allowed if S does not appear on the right side of any rule. These languages
are exactly all languages that can be decided by a finite state automaton. Addition-
ally, this family of formal languages is obtained as the family of languages accepted
by regular expressions. Consequently these languages are commonly used to define
search patterns and the lexical structure of programming languages.
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Figure 2: The Chomsky hierarchy

Definition 3.21. A type-2 grammar G = (N, T, P, S) is in Chomsky normal form if every
production p ∈ P has one of these forms

1. A→ BC
2. A→ a
3. S → ε

where A,B,C ∈ N, a ∈ T .

Definition 3.22. A type-2 grammar G = (N, T, P, S) is in Greibach normal form if every
production p ∈ P has one of these forms

1. A→ aX
2. S → ε

where A ∈ N, a ∈ T and X ∈ (N − {S})∗.

Definition 3.23. A type-1 grammar G = (N, T, P, S) is in Kuroda normal form if every
production p ∈ P has one of these forms

1. AB → CD
2. A→ BC
3. A→ B
4. A→ a

where A,B,C,D ∈ N, a ∈ T .

Definition 3.24. A type-0 grammar G = (N, T, P, S) is in Penttonen normal form if every
production p ∈ P has one of these forms

1. CB → CD
2. D → BC
3. C → c
4. C → ε

where B,C,D ∈ N, c ∈ T .
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The Chomsky hierarchy of languages (see definition 3.20) was obtained by restricting
the form of productions. It is natural to ask what happens if we restrict also the manner
in which a grammar is allowed to generate words. Not every derivation of a terminal word
is acceptable.

We can make such restrictions by three main principles. First, to join some productions
together in some circumstances (a matrix grammar, a programmed grammar, a scattered
context grammar, etc.). Second, to enable or disable applying a rule according to the pres-
ence of some terminals or nonterminals in the processed word (a permitting or forbidding
grammar, a random-context grammar, etc.). Finally, to modify the generation process
of the word by control language. We then accept only such words in which only certain
productions in a certain order are applied.

Another approach to regulate derivations of a grammar is grammar systems. They are
cooperating sets of grammars that either work together with common sentence string (CD
grammars systems) or exchange information between them (PC grammar systems).

3.3 Regulated Rewriting

Definition 3.25. A matrix grammar is a special case of rewriting system, usually noted
as M = (N, T,R, S), where N, T and S are exactly the same as in the definition 3.11 of a
grammar, but R is a finite set of finite nonempty sequences of productions

P → Q, where P ∈ N, Q ∈ (N ∪ T )∗.

The sequences are referred to as matrices and written

m = [P1 → Q1, . . . , Pi → Qi], i ≥ 1. (3.1)

Let F be the collection of all productions appearing in the matrices m of a matrix grammar
M . Then matrix grammar M is of type linear, context-free, context-sensitive, etc. if and
only if the grammar G = (N, T, F, S) has the corresponding property.

For a matrix grammar M , we define yield relation ⇒M or, in short, ⇒ as follows. For
any P,Q ∈ (N ∪ T )∗, P ⇒ Q holds if there exist an integer r ≥ 1 and words

α1, . . . , αr+1, P1, . . . , Pr, Q1, . . . , Qr, R1, . . . , Rr, R
1, . . . , Rr

over (N ∪ T )∗ such that (i) α1 = P and αr+1 = Q, (ii) the matrix (3.1) is one of the
matrices of M , and (iii) αi = RiPiR

i and αi+1 = RiQiR
i for every i = 1, . . . , r.

Mat = {L | L = L(G), where G = (N, T,R, S) is a matrix grammar}.

Definition 3.26. A programmed grammar is a special case of rewriting system, usually
noted as an ordered triple (G, σ, ϕ) where G = (N, T,R, S) is a context-free grammar, and
σ and ϕ are sets of production labels.

For a programmed grammar PG, we define yield relation ⇒ and ⇒ac on the set of all
pairs (P, f), where P ∈ (N ∪ T )∗ and f is the set of production labels of P as follows:
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(P, f1) ⇒ (Q, f2) holds if there are words P1, P2, P
′ and Q′ such that (i) P = P1P

′P2 and
Q = P1Q

′P2, (ii) the production in R labeled as f1 is P ′ → Q′, and (iii) f2 belongs to the
set σ(f1); (P, f1) ⇒ac (Q, f2) holds if (P, f1) ⇒ (Q, f2) holds, or else each of the following
conditions is satisfied for some words P ′ and Q′: P = Q, (i) the production in R labeled
as f1 is P ′ → Q′, (ii) P ′ is not a subword of P , and (iii) f2 belongs to the set ϕ(f1) (Thus,
only the relation ⇒ac depends on ϕ).

The language generated by the programmed grammar PG is defined by L(PG, σ) =
{w ∈ T ∗ | (S, f) ⇒∗ (w, f ′)}. Lac(PG, σ, ϕ) = {w ∈ T ∗ | (S, f) ⇒∗

ac (w, f ′)}.

Definition 3.27. A random-context grammar (RCG, for short) is a special case of rewriting
system, usually noted as G = (N, T, P, S), where N, T and S are exactly the same as in the
definition 3.11 of a grammar, but P is a finite set of random-context rules, that is, triplets
in the form of (C → α,Q,R), C → α is a CF rule over N ∪T , where C ∈ N , and Q and R
are subsets of N . For x, y ∈ (N ∪ T )∗, we write x⇒rc y, or x⇒ y for short, if x = x1Cx2,
y = x1αx2 for some x1, x2 ∈ (N ∪ T )∗, (C → α,Q,R) is a triplet in P , all symbols of Q
appear and no symbol of R appears in x1x2 (Q is called the permitting context, and R is
called the forbidding context of the rule C → α. If Q and/or R are empty, then no check
is necessary.)

Definition 3.28. (See [Wood–73]) For n ≥ 1, an n-parallel right-linear grammar, n-PRLG
for short, is an (n+3)-tuple G = (N1, . . . Nn, T, S, P ) where

• Ni, 1 ≤ i ≤ n are pairwise disjoint nonterminal alphabets,

• T is a terminal alphabet, N ∩ T = ∅,

• S /∈ N1 ∪ . . . ∪Nn is the start symbol,

• P is a finite set of rules. P contains three kinds of rules

1. S → X1 . . . Xn, Xi ∈ Ni, 1 ≤ i ≤ n,

2. X → aY, X, Y ∈ Ni, for some 1 ≤ i ≤ n, a ∈ T ∗, and

3. X → a, X ∈ Ni, for some 1 ≤ i ≤ n, a ∈ T ∗.

For x, y ∈ (N ∪ T ∪ {S})∗, x⇒ y if and only if

• either x = S and S → y ∈ P ,

• or x = y1X1 . . . ynXn, y = y1x1 . . . ynxn, where yi ∈ T ∗, xi ∈ T ∗N ∪ T ∗, Xi ∈ Ni, and
Xi → xi ∈ P, 1 ≤ i ≤ n.

parR(i) = {L | L = L(G), where G = (N1, N2, . . . , Nn, T, R, S) is a i-PRLG}.

Theorem 3.1 (Wood hierarchy). For all i ≥ 1, parR(i) ⊂ parR(i+ 1).

Proof. See [Wood–73].
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For more information about n-parallel right-linear grammars, see [Wood–73].

Definition 3.29. A scattered context grammar (SCG, for short) is a special case of rewrit-
ing system, usually noted as G = (N, T, S, P ), where N, T and S are exactly the same as
in the definition 3.11 of a grammar, but P is a finite set of production rules of the form

(A1, A2, . . . , An) → (w1, w2, . . . , wn), n ≥ 1, Ai ∈ N,wi ∈ (N ∪ T )∗, 1 ≥ i ≥ n.

Let (A1, A2, . . . , An) → (w1, w2, . . . , wn) ∈ P and xi ∈ (N ∪ T )∗, 1 ≥ i ≥ n+ 1. We write

x1A1x2A2 . . . xnAnxn+1 ⇒ x1w1x2w2 . . . xnwnxn+1.

Example 3.1.
G = ({S,A,B,C}, {a, b, c}, S, P )

where

P = {S → ABC, (A→ aA,B → bB,C → cC), (A→ a,B → b, C → c)}

The language generated by grammar G is

L(G) = {anbncn | n ≥ 1}

3.4 Control Languages

Definition 3.30. Let G = (V, P ) be a rewriting system. Let Ψ be an alphabet of rule
labels such that card(Ψ) = card(P ), and ψ be a bijection from P to Ψ. For simplicity, to
express that ψ maps a rule, u→ v ∈ P , to ρ, where ρ ∈ Ψ, we write ρ.u→ v ∈ P ; in other
words, ρ.u→ v means ψ(u→ v) = ρ.

If u → v ∈ P and x, y ∈ V ∗, then xuy ⇒ xvy [u → v] or simply xuy ⇒ xvy [ρ]. Let
there exists a sequence x0, x1, . . . , xn ∈ V ∗ for some n ≥ 1 such that xi−1 ⇒ xi [ρi], where
ρi ∈ Ψ, for i = 1, . . . , n. Then G rewrites x0 to xn in n steps according to ρ1, . . . , ρn,
symbolically written as x0 ⇒n xn [ρ1 . . . ρn].
Let Ξ be a control language over Ψ; that is Ξ ⊆ Ψ∗.

Definition 3.31. Let G = (N, T, P, S) be a grammar defined in Definition 3.11. Let Ψ
be an alphabet of rule labels and let Ξ be a control language. A language generated by
regulated grammar G by control language Ξ is the set

L(G,Ξ) = {w | w ∈ T ∗, S ⇒n w [ρ1, . . . , ρn], ρ1 . . . ρn ∈ Ξ}

Definition 3.32. Let T = (Q,Σ, δ, s, F ) be a finite automaton. Let Ψ be an alphabet of
rule labels and let Ξ be a control language. A language generated by finite automaton T
regulated by control language Ξ is the set

L(T,Ξ) = {w | w ∈ Σ∗, (s, w) `n
T (q, ε) [ρ1, . . . , ρn], ρ1 . . . ρn ∈ Ξ and q ∈ F}
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Theorem 3.2.
REG = L(FA,REG) = L(REG,REG).

Proof. The proof can be found in [Sal–73] on page 184.

Definition 3.33. Let T = (Q,Σ,Ω, δ, s,∇, F ) be a pushdown automaton. Let Ψ be an
alphabet of rule labels and let Ξ be a control language. A language generated by pushdown
automaton T regulated by control language Ξ is the set

L(T,Ξ) = {w | w ∈ Σ∗, (s, w,∇) `n
T (qF , ε, γ) [ρ1, . . . , ρn], ρ1 . . . ρn ∈ Ξ, qF ∈ F, γ ∈ Ω∗}.

If it is useful to distinguish, T defines the following types of accepted languages:

1. L(T,Ξ, 1) – the language accepted by the final state.

2. L(T,Ξ, 2) – the language accepted by an empty pushdown.

3. L(T,Ξ, 3) – the language accepted by the final state and an empty pushdown.

Theorem 3.3. For any pushdown automaton T and context-free grammar G so that

L(T ) = L(G)

and for any regular language Ξ

CF = L(T,Ξ) ⊂ L(G,Ξ).

Proof. The proof of the first equality can be found in [Kol–04] on page 31 as Lemma 4.4.1.
To prove the second relation we need to find regulated context-free grammar by regular
language that generates language, that is not context-free.
Consider following context-free grammar G = (N, T, P, S) where

• N = {S,A,B},

• T = {a, b, c},

• P = {1.S → AB, 2.A→ aA, 3.B → bBc, 4.A→ a, 5.b→ bc}

and the regular control language Ξ = 1(23)∗45. It is easy to verify, that L(G,Ξ) =
{anbncn | n ≥ 1}. This language is well known not context-free language.

The following theorem shows that regulation by control language can greatly increase
the power of underlying model.

Theorem 3.4. For every recursive enumerable language L there exists pushdown automa-
ton T and linear control language Ξ so that L = L(T,Ξ). Hence

RE = L(CF,LIN).
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Proof. Proof of this theorem can be found in [Med–00].

The following theorem postulates that any recursive enumerable language can be gen-
erated as an one-turn stack automaton regulated by a linear language. This theorem was
first proved in [Med–00] and the proof is based on equivalence of regulated pushdown au-
tomata and queue grammars. But for implementation purposes we need the constructive
alternative introduced here. This proof was published in [Rych–09].

Theorem 3.5. Any recursive enumerable language L can be generated as L = L(M,L1, 3)
where M is an OTSA and L1 is a linear language.

Proof. Let L be any recursive enumerable language and L = L(G) where G = (N, T, P, S)
is type-0 grammar in Penttonen normal form (see def. 3.24). Let M = (Q,Σ,Ω, δ, s,∇, F )
be an OTSA, where

1. Q = {q, qin, qout},

2. Σ = T ,

3. Ω = T ∪N ∪ {#} ∪ {∇}, where # /∈ {N ∪ T},

4. s = q,

5. ∇ ∈ Ω is the initial stack symbol

6. F = {qout}.

7. δ = δ′ ∪ δin ∪ δout, where
δ′ = {〈a〉.aq → qa | for every a ∈ T} ∪ {〈#〉.q → qin#},
δin = {〈A〉.qin → qinA | for every A ∈ T ∪N ∪ {#}} ∪ {〈2〉.qin → qout},
δout = {〈A〉.qoutA→ qout | for every A ∈ T ∪N ∪ {#}}.

A control language L1, which is linear, is defined by the following grammar G1 =
(N1, T1, P1, S1):

1. N1 = {S1, K,M,M ′, O},

2. T1 = {〈A〉, 〈A〉 |A ∈ T ∪N ∪ {#} and 〈A〉 is a label from Ψ} ∪ {〈2〉},

3. P1 = Pa ∪ P〈#〉 ∪ Pb ∪ Pc ∪ Pd ∪ Pc ∪ Pd ∪ Pe ∪ Pf ∪ Pg ∪ Ph ∪ P〈2〉, where
Pa = {S1 → 〈a〉S1 | for every a ∈ T},
P〈#〉 = {S1 → 〈#〉K},
Pb = {K → 〈A〉K〈A〉 | for every A ∈ T ∪N},
Pc = {K → 〈C〉M〈C〉 | for every rule in the form CB → CD ∈ P},
Pd = {M → 〈B〉O〈D〉 | for every rule in the form CB → CD ∈ P},
Pc = {K → 〈D〉M ′〈C〉 | for every rule in the form D → BC ∈ P},
Pd = {M ′ → O〈B〉 | for every rule in the form D → BC ∈ P},
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Pe = {K → 〈C〉O〈c〉 | for every rule in the form C → c ∈ P},
Pf = {K → 〈C〉O | for every rule in the form C → ε ∈ P},
Pg = {O → 〈A〉O〈A〉 | for every A ∈ T ∪N},
Ph = {O → 〈#〉K〈#〉},
P〈2〉 = {K → 〈2〉〈#〉〈S〉}.

Now, we prove two standard inclusions. First, L ⊆ L(M,L1). For every w ∈ L there
exists some successful derivation S = w0 ⇒ w1 ⇒ . . . ⇒ wn = w in L. We will construct
the control string R as follows (for the sake of simplicity we omit 〈 and 〉 if no confusion
can arise)

R = w#wn−1# . . .#w1#S#〈2〉#S#wR
1 # . . .#wR

n−1#w
R.

It is easy to verify, that OTSA M under regulation of R reaches the final state and empties
its pushdown (because R = R′〈2〉rev(R′)).

We need to prove that R ∈ L(G1). For every Ri:

R0 = w# K

R1 = w#wn−1# K #wR.

...

Rm = w#wn−1# . . .#wn−m K #wR
n−(m−1)# . . .#wR

n−1#w
R.

holds S1 ⇒∗ Ri by induction on i.
i = 0: S1 ⇒|w| wS1 ⇒ w# K, hence w#K ∈ L(G1).
i = k:

Rk = w#wn−1# . . .#wn−k K #wR
n−(k−1)# . . .#wR

n−1#w
R.

That is, K ⇒∗ wn−(k+1) O wR
n−k ⇒ wn−(k+1)# K #wR

n−k by using rules from Pb to ele-
ments not affected in the rewriting of wn−k to wn−k+1. Then one or two rules from sets
Pc, Pd, Pc, Pd, Pe and Pf are used according to used rule from P . The rest rules are taken
from Pg and finally one rule from Ph rewrites nonterminal O to K.

Rk ⇒∗ w#wn−1# . . .#wn−k#wn−(k+1)# K #wR
n−k#w

R
n−(k−1)# . . .#wR

n−1#w
R = Rk+1.

Let us see a short example. For the sake of simplicity we again omit 〈 and 〉 if no
confusion can arise. The derivation S ⇒ AX ⇒ ABC ⇒ aBC ⇒ aDC ⇒ aDc ⇒ abc in
grammar G = ({S,A,B,C,X}, {a, b, c}, S, {S → AX,X → BC,BC → DC,A → a,D →
b, C → c}) results in

abc#aDc#aDC#aBC#ABC#AX#S#〈2〉#S#XA#CBA#CBa#CDa#cDa#cba

as the control string.
The underlying OTSA under such derivation string operates as follows:

a.aq → qa : (abc, q,∇) ` (bc, q, a)
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b.bq → qb : (bc, q, a) ` (c, q, ab)
c.cq → qc : (c, q, ab) ` (ε, q, abc)
#.q → qin# : (ε, q, abc) ` (ε, qin, abc#)
a.qin → qina : (ε, qin, abc#) ` (ε, qin, abc#a)
D.qin → qinD : (ε, qin, abc#a) ` (ε, qin, abc#aD)
c.qin → qinc : (ε, qin, abc#aD) ` (ε, qin, abc#aDc)
#.qin → qin# : (ε, qin, abc#aDc) ` (ε, qin, abc#aDc#)
...
S.qin → qinS : (ε, qin, abc#aDc#aDC#aBC#ABC#AX#) `
` (ε, qin, abc#aDc#aDC#aBC#ABC#AX#S)
#.qin → qin# : (ε, qin, abc#aDc#aDC#aBC#ABC#AX#S) `
` (ε, qin, abc#aDc#aDC#aBC#ABC#AX#S#)
〈2〉.qin → qout# : (ε, qin, abc#aDc#aDC#aBC#ABC#AX#S#) `
` (ε, qout, abc#aDc#aDC#aBC#ABC#AX#S#)
#.qout# → qout : (ε, qout, abc#aDc#aDC#aBC#ABC#AX#S#) `
` (ε, qout, abc#aDc#aDC#aBC#ABC#AX#S)
S.qoutS → qout : (ε, qout, abc#aDc#aDC#aBC#ABC#AX#S) `
` (ε, qout, abc#aDc#aDC#aBC#ABC#AX#)
...
#.qout# → qout : (ε, qout, abc#) ` (ε, qout, abc)
c.qoutc→ qout : (ε, qout, abc) ` (ε, qout, ab)
b.qoutb→ qout : (ε, qout, ab) ` (ε, qout, a)
a.qouta→ qout : (ε, qout, a) ` (ε, qout,∇)
so OTSA is in final state and has empty stack.

The derivation of control string in control language is

S1 ⇒ aS1 ⇒ abS1 ⇒ abcS1 ⇒ abc#K ⇒ abc#aKa
D→b
=⇒ abc#aD O ba⇒

⇒ abc#aDc O cba⇒ abc#aDc# K #cba⇒ . . .⇒

⇒ abc#aDc#aDC#aBC#ABC#AX#S# K #XA#CBA#CBa#CDa#cDa#cba⇒

⇒ abc#aDc#aDC#aBC#ABC#AX#S#〈2〉#S#XA#CBA#CBa#CDa#cDa#cba.

The second inclusion is L(M,L1) ⊆ L. Let us suppose that the word wm = x1x2 . . . xp ∈
L(M,L1). We will prove the following theorem by induction on n:
For any integer n, the word wm−n, 1 ≤ n ≤ m in the control string Rn

R0 = wm# K

R1 = wm#wm−1# K #wR
m

...

Rn = wm#wm−1# . . .#wm−n# K #wR
m−(n−1)# . . .#wR

m−1#w
R
m
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can be derived from wm−n to wm in n steps in G, hence wm−n ⇒n wm in G.
n = 0: wm ⇒0 wm.
n = k:

Rk = wm . . .#wm−k# K #wR
m−(k−1)# . . .#wR

m

wm−k = y1y2 . . . yq. As M is OTSA, the sequence of pushed symbols onto the stack will be
popped in reverse order. Hence,

K ⇒∗ z1z2 . . . zr# K #yq . . . y2y1

where zi ∈ (N ∪ T ) and there exists index i such as y1 = z1, . . . , yi = zi and

K ⇒i y1y2 . . . yi K yi . . . y2y1,

according to i applications of rules from Pb. Now there are 4 possible rules to apply
Pc, Pc, Pe, and Pf . The next step has to generate yi+1 on the right side of K.

1. Pc: K ⇒ C M C ⇒ CB O DC ⇔ CB → CD ∈ P and yi+2 = D and yi+1 = C.

2. Pc: K ⇒ D M ′ C ⇒ D O BC ⇔ D → BC ∈ P and yi+2 = B and yi+1 = C.

3. Pe: K ⇒ C O c⇔ C → c ∈ P and yi+1 = c.

4. Pf : K ⇒ C O ⇔ C → ε ∈ P .

Now there are two possible rules to apply. From Pg and Ph. As there are still some
elements of yk on the right side of O, we have to use rules from Pg until there is complete
yq . . . y2y1 generated on the right side of O. Consequently, there exists index j such that
yj = zk, . . . , yq = zr. Then, the last rule from Ph generates # and # on both sides of O
and O rewrites to K. Then,

Rk ⇒∗ wm# . . .#wm−k#wm−(k+1) K #wR
m−k#w

R
m−(k−1)# . . .#wR

m = Rk+1

and wm−k ⇒ wm−(k+1) in G.
So, the complete control string will be

R = wn#wn−1# . . .#w1#S#〈2〉#S#wR
1 # . . .#wR

n−1#w
R
n

and there exists the derivation S ⇒ w1 ⇒ . . .⇒ wn−1 ⇒ wn in G and wn ∈ L = L(G).

Remark 1. However, we can in the same manner define regulated Turing machine, it is of
little or no interest because it is as powerful as ordinary Turing machine.
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3.5 Grammar Systems

While discussing grammatical models of computational distribution and concurrency we
cannot skip grammar systems. The grammar systems are cooperating sets of grammars
that either work together with common sentence string (CD grammars systems) or ex-
change information between them (PC grammar systems). We introduce only basic defini-
tions and main theorems in this section. Much more information can be found in [Roz–73],
volume 2.

Definition 3.34. A cooperating distributed grammar system of degree n (n ≥ 1), CD
grammar system for short, is a special case of rewriting system, usually noted as

Γ = (N, T, S, P1, . . . , Pn),

where N, T and S are defined as usual and Pi is a finite set of context-free productions,
called component of Γ, for each i ∈ {1, . . . , n}.
For each i = 1, . . . , n, we denote terminating derivation by the ith component

x i⇒t y

where x⇒∗ y in Gi = (N, T, S, Pi), y ∈ (N ∪ T )∗ and y ; z for all z ∈ (N ∪ T )∗ in Gi.
For each i = 1, . . . , n, we denote k-step derivation by the ith component

x i⇒=k y

where x⇒k y in Gi = (N, T, S, Pi) and y ∈ (N ∪ T )∗.
For each i = 1, . . . , n, we denote at most k-step derivation by the ith component

x i⇒≤k y

where x⇒j y in Gi = (N, T, S, Pi), for some j ≤ k and y ∈ (N ∪ T )∗.
For each i = 1, . . . , n, we denote at least k-step derivation by the ith component

x i⇒≥k y

where x⇒j y in Gi = (N, T, S, Pi), for some j ≥ k and y ∈ (N ∪ T )∗.
In short, set of derivation modes D

D = {∗, t} ∪ {≤k, =k, ≥k | k = 1, 2, . . .}.

Set of possible derivations F is defined by

F (Gj, u, f) = {v | u j⇒f v}, where j ∈ {1, 2, . . . , n}, f ∈ D, u ∈ (N ∪ T )∗

and finally language generated by CD-grammar system Γ in derivation mode f is defined
by
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Lf (Γ) = {w ∈ T ∗ | ∃v0, v1, . . . vm : vi ∈ F (Gji
, vi−1, f), i ∈ {1, . . . ,m}, ji ∈ {1, . . . , n},

v0 = S, vm = w,m ≥ 1}
Denotation of CD language families is

CDy
x(f)

where f is derivation mode, f ∈ D,

y =

{
nothing - no ε-productions,

ε - ε-productions allowed.

x =

{
n - degree at most n, n ≥ 1,

∞ - the number of components is not limited.

Example 3.2.
Γ = ({S,A,A′, B,B′}, {a, b, c}, S, P1, P2)

where
P1 = {S → S, S → AB,A′ → A,B′ → B}

P2 = {A→ aA′b, B → cB′, A→ ab, B → c}.

The languages generated by different derivation modes are

Lf (Γ) = {anbncm | m,n ≥ 1}, f ∈ { =1, ≥1, ∗, t} ∪ { ≤k | k ≥ 1}

L=2(Γ) = L≥2(Γ) = {anbncn | n ≥ 1}

L=k(Γ) = L≥k(Γ) = ∅, k ≥ 3.

Theorem 3.6. Generative power of CD grammar systems

• CDy
∞(f) = CF , for all f ∈ {=1,≥1, ∗} ∪ {≤k | k ≥ 1},

• CF = CDy
1(f) ⊂ CDy

2(f) ⊆ CDy
r (f) ⊆ CDy

∞(f) ⊆ Mat, for all f ∈ {=k,≥k | k ≥
2}, r ≥ 3,

• CDy
r (≥k) ⊆ CDy

r (≥k + 1),

• CDy
∞(≥) ⊆ CDy

∞(=),

• CF = CDy
1(t) = CDy

2(t) ⊂ CDy
3(t) = CDy

∞(t) ⊆ ET0L

Proof. Proof can be found in [Roz–73], volume 2, chapter 4.
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Definition 3.35. A parallel communicating grammar system of a degree n (n ≥ 1), PC
grammar system for short, is a special case of rewriting system, usually noted as

Γ = (N,K, T, (S1, P1), . . . , (Sn, Pn)),

where N and T are defined as usual, K is a finite set of query symbols, K = {Q1, . . . Qn},
Pi is a finite set of productions of the form

A→ x

where A ∈ N and x ∈ (N ∪ T ∪K)∗, for all i = 1, . . . , n and Si is the start symbol of the
ith component, Si ∈ N for all i = 1, . . . , n. N, T are defined as usual, N, T and K are
pairwise disjoint.
Generating step (g-step) is defined as

(x1, . . . , xn) g⇒ (y1, . . . , yn)

if

• either xi ⇒ yi in Gi = (N ∪K,T, Si, Pi),

• or xi = yi ∈ T ∗

for all 1 ≤ i ≤ n.
Communicating step (c-step) is defined as

(x1, . . . , xn) c⇒ (y1, . . . , yn)

if we set zi = xi for all i = 1, . . . , n and if alph(xi) ∩ K 6= ∅ and for each Qj in xi

alph(xj) ∩K = ∅, then for each Qj in xi

1. set xj = Sj,

2. replace Qj with xj in xi,

3. set zi to the string resulting from (2.).

then yi = zi, for all i = 1, . . . , n.
Direct derivation

(x1, . . . , xn) ⇒ (y1, . . . , yn)

is defined if
(x1, . . . , xn) g⇒ (y1, . . . , yn)

or
(x1, . . . , xn) c⇒ (y1, . . . , yn).
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The language generated by parallel communicating grammar system Γ of degree n is defined
by

L(Γ) = {x ∈ T ∗ | (S1, S2, . . . , Sn) ⇒∗ (x, α2, . . . , αn), αi ∈ (N ∪ T ∪K)∗, 2 ≤ i ≤ n}.

If after communicating, each component that has sent its string to another component
returns to its axiom, then we call this grammar returning PC Grammar System. Generated
language is denoted by Lr(Γ).
If after communicating, each component that has sent its string to another component con-
tinues to process the current string, then we call this grammar non-returning PC Grammar
System. Generated language is denoted by Lnr(Γ).
Denotation of PC language families is

XPCnY

where

X =

{
N – non-returning mode

ε – returning mode.

n– number of components

Y – specification of the type of productions (REG, LIN, CF)

Example 3.3.

Γ = ({S1, S
′
1, S2, S3}, K, {a, b}, (S1, P1), (S2, P2), (S3, P3))

where
P1 = {S1 → abc, S1 → a2b2c2, S1 → aS ′1, S1 → a3Q2,

S ′1 → aS ′1, S
′
1 → a3Q2, S2 → b2Q3, S3 → c}

P2 = {S2 → bS2}

P3 = {S3 → bS3}

Lr(Γ) = Lnr(Γ) = {anbncn | n ≥ 1}.

Theorem 3.7. Generative power of PC grammar systems

• PCnREG ⊂ PCn+1REG, for n ≥ 1,

• NPC∞CF ⊆ PC∞CF ,

• L(Mat) ⊂ PC∞CF ,

• L(LIN) ⊂ PC∞REG.

Proof. Proof can be found in [Roz–73], volume 2, chapter 4.
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Part II

New Grammatical Models of
Distribution and Concurrency

4 Theoretical Results

In this chapter, we discuss right-linear grammar that starts its derivations from start strings
rather than single symbols. Specifically, we study these grammars regulated by regular
languages. We demonstrate that the language family generated by these grammars with
start strings of length n or shorter is properly included in the language family generated
by these grammars with start strings of length n + 1 or shorter, for all n ≥ 1. From a
broader perspective, by obtaining this infinite hierarchy of language families, we contribute
to a classical trend of the formal language theory that demonstrates that some properties
of grammars affect the language families that the grammars generate.

Surprisingly, however, if during the derivation of any sentence from the generated lan-
guage, these grammars change the position of rewriting finitely many times, they just
generate the family of regular languages no matter how long their start strings are. In
other words, only if the number of these changes is unlimited, the above hierarchy holds
true.

The key parts of this chapter were published in [Med–08] and [Rych–08].
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4.1 Definitions

Definition 4.1. Let n ≥ 1. A linear grammar with a start string of length n, n-LG for
short, is a quadruple G = (N, T,R, S), where N and T are alphabets such that N ∩ T =
∅, S ∈ N+, |S| ≤ n, and R is a finite set of productions of the form A → x, where A ∈ N
and x ∈ T ∗(N ∪ {ε})T ∗. Set V = T ∪N .

Let Ψ be an alphabet of rule labels such that card(Ψ) = card(R), and ψ be a bijection
from R to Ψ. For simplicity, to express that ψ maps a rule A→ x ∈ R, to ρ, where ρ ∈ Ψ,
we write ρ.A→ x ∈ R; in other words, ρ.A→ x means ψ(A→ x) = ρ.

If ρ.A→ x ∈ R and u, v ∈ V ∗, then we write uAv ⇒ uxv [ρ] in G.
Let χ ∈ V ∗. Then G makes the zero-step derivation from χ to χ according to ε, symbol-

ically written as χ ⇒0 χ [ε]. Let there exist a sequence of derivation steps χ0, χ1, . . . , χn

for some n ≥ 1 such that χi−1 ⇒ χi [ρi], where ρi ∈ Ψ, for all i = 1, . . . , n, then G
makes n derivation steps from χ0 to χn according to ρ1 . . . ρn, symbolically written as
χ0 ⇒n χn [ρ1 . . . ρn]. If for some n ≥ 0, χ0 ⇒n χn [ρ], where ρ ∈ Ψ∗ and |ρ| = n, we write
χ0 ⇒∗ χn [ρ].

We call a derivation S ⇒∗ w successful, if and only if, w ∈ T ∗.
Let Ξ be a control language over Ψ; that is, Ξ ⊆ Ψ∗.
Under the regulation by Ξ, the language that G generates is denoted by L(G,Ξ) and

defined as
L(G,Ξ) = {w | S ⇒∗ w [ρ], ρ ∈ Ξ, w ∈ T ∗}.

Let i be a positive integer and X be a family of languages. Set

L(X, i) = {L | L = L(G,X),where G is a i-LG}.

In the same manner we define a right-linear grammar with a start string of length n,
n-RLG for short, where R is a finite set of productions of the form A → x, where A ∈ N
and x ∈ T ∗(N ∪ {ε}) and define

R(X, i) = {L | L = L(G,X),where G is a i-RLG}.

Specifically, R(REG, i) and L(REG, i) are central to this paper, where REG denotes
the family of regular languages.

Definition 4.2. Let G = (N, T,R, S) be an n-LG for some n ≥ 1 (See Definition 4.1).
G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S) is a distributed n-LG, n−disLG for short, if

• N = N1 ∪ N2 ∪ . . . ∪ Nn, where Ni, 1 ≤ i ≤ n are pairwise disjoint nonterminal
alphabets,

• S = X1X2 . . . Xn, Xi ∈ Ni, 1 ≤ i ≤ n,

• R = R1 ∪R2 ∪ . . . ∪Rn,
such that for every A→ xBy ∈ Ri, A,B ∈ Ni, for some 1 ≤ i ≤ n;x, y ∈ T ∗

and for every A→ a ∈ R, A ∈ N, a ∈ T ∗.
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Set Ψi = {ρ | ρ.A→ aBb ∈ Ri or ρ.A→ a ∈ Ri, where A,B ∈ Ni and a, b ∈ T ∗}.

In the same manner we define a distributed n-RLG,
n−disRLG for short, if this grammar is n−disLG and all rules are right-linear.

Definition 4.3. (See [Das–89]) For n ≥ 1, a linear simple matrix grammar of degree n,
n-LSM for short, is an (n+3)-tuple G = (N1, . . . Nn, T, S, P ) where

• Ni, 1 ≤ i ≤ n are pairwise disjoint nonterminal alphabets,

• T is a terminal alphabet, Ni ∩ T = ∅, 1 ≤ i ≤ n,

• S /∈ N1 ∪ . . . ∪Nn is the start symbol,

• P is a finite set of rules. P contains three kinds of rules

1. S → x, x ∈ T ∗,

2. S → X1 . . . Xn, Xi ∈ Ni, 1 ≤ i ≤ n,

3. (X1 → x1, X2 → x2, . . . , Xn → xn),
Xi ∈ Ni, xi ∈ T ∗NiT

∗ ∪ T ∗, 1 ≤ i ≤ n.

For x, y ∈ (N ∪ T ∪ {S})∗, x⇒ y if and only if

• either x = S and S → y ∈ P ,

• or x = y1X1 . . . ynXn, y = y1x1 . . . ynxn,
where yi ∈ T ∗, xi ∈ T ∗NiT

∗ ∪ T ∗, Xi ∈ Ni, 1 ≤ i ≤ n
and (X1 → x1, . . . , Xn → xn) ∈ P .

In the same manner we define a right-linear simple matrix grammar of degree n, n-RLSM
for short, if in definition of P the last rule is

3. (X1 → x1, X2 → x2, . . . , Xn → xn),
Xi ∈ Ni, xi ∈ T ∗Ni ∪ T ∗, 1 ≤ i ≤ n.

For more information about simple matrix grammars, see [Das–89].

Definition 4.4. Let i ≥ 1 and X be a family of languages. Let L(G,Ξ) be a language
generated by G and regulated by Ξ (See definition 3.11). Set

• R(X, i) = {L | L = L(G,Ξ), where G = (N, T,R, S) is a i-RLG and Ξ ∈ X}.

• L(X, i) = {L | L = L(G,Ξ), where G = (N, T,R, S) is a i-LG and Ξ ∈ X}.

• disR(X, i) = {L | L = L(G,Ξ),
where G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S)
is a i−disRLG and Ξ ∈ X}.
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• disL(X, i) = {L | L = L(G,Ξ),
where G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S)
is a i−disLG and Ξ ∈ X}.

• SMR(i) = {L | L = L(G),
where G = (N1, N2, . . . , Nn, T, R, S) is a i-RLSM}.

• SML(i) = {L | L = L(G),
where G = (N1, N2, . . . , Nn, T, S, P ) is a i-LSM}.

4.2 New Results

Lemma 4.1. For every n-LG G = (N, T,R, S), there exists an equivalent
n−disLG G′ = (N ′

1, N
′
2, . . . , N

′
n, T

′, R′
1, R

′
2, . . . , R

′
n, S

′) such that L(G) = L(G′).

Proof. We will define nonterminals of G′ in the form (A, k) so that (A, k) ∈ N ′
k. Hence,

• N ′
j = {(A, j) | A ∈ N}, where 1 ≤ j ≤ n;

• T ′ = T ;

• R′
j = {(A, j) → x(B, j)y | A→ xBy ∈ R,

(A, i), (B, i) ∈ N ′
j, x, y ∈ T ∗} where 1 ≤ j ≤ n;

• S ′ = (A1, 1)(A2, 2) . . . (An, n), where S = A1A2 . . . An.

For G′ = (N ′
1, N

′
2, . . . , N

′
n, T

′, R′, S ′) holds N ′
i ∩ N ′

j = ∅ for i 6= j, 1 ≤ i, j ≤ n. For
every derivation a ⇒ b [ρ], a, b ∈ {N ∪ T}∗, ρ.A → xBy ∈ R, x, y ∈ T ∗, A,B ∈ N of
grammar G there always exists equivalent derivation in G′ in form a′ ⇒ b′ [ρ′], a′, b′ ∈
{N ′ ∪ T ′}∗, ρ′.(A, i) → x(B, i)y ∈ R′, x, y ∈ T ′∗, (A, i), (B, i) ∈ N ′

i .

Lemma 4.2. For every n−disLG G′ = (N ′
1, N

′
2, . . . , N

′
n, T

′, R′
1, R

′
2, . . . , R

′
n, S

′), there exists
an equivalent n-LG G = (N, T,R, S) such that L(G) = L(G′).

Proof. We define grammar G = (N, T,R, S) in the following way

• N = N ′
1 ∪N ′

2 ∪ . . . ∪N ′
n,

• T = T ′,

• R = R′
1 ∪R′

2 ∪ . . . ∪R′
n,

• S = A1A2 . . . An, where S ′ = A1A2 . . . An ∈ R′.

A rigorous proof that L(G) = L(G′) is left to the reader.

Theorem 4.1. For all n ≥ 1, L(n−disLG) = L(n-LG).

Proof. This theorem directly follows from Lemma 4.1 and Lemma 4.2.
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Theorem 4.2. For all n ≥ 1, L(n−disRLG) = L(n-RLG).

Proof. This theorem directly follows from Theorem 4.1.

Lemma 4.3. Let i ≥ 1. disL(REG, i) ⊆ SML(i). That is,
for every n−disLG G = (N1, . . . , Nn, T, R1, . . . , Rn, S) regulated by regular language Ξ there
exists equivalent n-LSM G′ = (N ′

1, . . . , N
′
n, T

′, S ′, P ′) such that L(G) = L(G′).

Proof. Let Ξ = L(GΞ), GΞ = (NΞ, TΞ, RΞ, SΞ). Let R = R1 ∪R2 ∪ . . .∪Rn. We will define
grammar G′ = (N ′

1, . . . , N
′
n, T

′, S ′, P ′) this way:

• N ′
1 = {[A,X] | A ∈ N1, X ∈ NΞ},

• N ′
i = Ni, 2 ≤ i ≤ n,

• T ′ = T ,

• P ′
1 = {([A1, X], A2, . . . , An) → (u[B1, Y ]v, A2, . . . , An) |

| Ai ∈ Ni, 1 ≤ i ≤ n, X, Y ∈ NΞ and
f.A1 → uB1v ∈ R1, X → fY ∈ RΞ,
u, v ∈ T ∗},

• P ′
2 = {([A1, X], A2, . . . , Aj, . . . , An) →

→ ([A1, Y ], A2, . . . , uBjv, . . . , An) |
| Ai ∈ Ni, 1 ≤ i ≤ n, 2 ≤ j ≤ n, X, Y ∈ NΞ

and f.Aj → uBjv ∈ Rj, X → fY ∈ RΞ,
u, v ∈ T ∗},

• P ′ = P ′
1 ∪ P ′

2 ∪ {S ′ → [X1, SΞ]X2 . . . Xn |
|S = X1 . . . Xn ∈ G, Xi ∈ Ni, 1 ≤ i ≤ n}.

Note that P ′
1 is a special case of P ′

2 with j = 1.
Let Ln(G) = {x | S ⇒n x in G, x ∈ {N∪T}∗} and Ln(G′) = {x | S ′ ⇒n+1 x in G′, x ∈

{N ′ ∪ T ′}∗}. We will prove that Ln(G) = h(Ln(G′)) for every n ≥ 0, where h is surjective
function h : {N ′

1 ∪ . . . ∪N ′
n ∪ T ′} → {N1 ∪ . . . ∪Nn ∪ T} defined as

h(w) =

{
A, if w ∈ N ′

1, w = [A, Y ],

w, otherwise.

First we will prove that Ln(G) ⊆ h(Ln(G′)) by induction on n:
Let n = 0.
L0(G) = {X1X2 . . . Xn}, L0(G

′) = {[X1, Y ]X2 . . . Xn} because S ′ → [X1, Y ]X2 . . . Xn ∈ P ′

and, therefore,
h(L0(G

′)) = {X1X2 . . . Xn} = L0(G).
Let us suppose that the claim holds for all n ≤ k, where k is a non-negative integer.
Let n = k + 1.
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Consider w ∈ Lk+1(G) and a derivation S ⇒k v ⇒ w in G, so that v ⇒ w [p], where
v = C1C2 . . . Ci−1XCi+1 . . . Cn, w = C1C2 . . . Ci−1uY vCi+1 . . . Cn, Cj ∈ Nj ∪ {T}∗, 1 ≤
j ≤ n, p.X → uY v ∈ R,A → pB ∈ RΞ. From the induction step, v ∈ h(Lk(G

′)). Since
([C1, A]C2 . . . Ci−1XCi+1 . . . Cn) → ([C1, B]C2 . . . Ci−1uY vCi+1 . . . Cn) ∈ P ′, we have w ∈
h(Lk+1(G

′)).
Now we prove that Ln(G) ⊇ h(Ln(G′)) by induction on n ≥ 0:

Let n = 0. By analogy with the previous part of this proof.
Let us suppose that our claim holds for all n ≤ k, where k is a non-negative integer.
Let n = k + 1.
Consider w ∈ Lk+1(G

′) and a derivation S ⇒k v ⇒ w in G′, where
v = [C1, A]C2 . . . Ci−1XCi+1 . . . Cn, w = [C1, B]C2 . . . Ci−1uY vCi+1 . . . Cn, Cj ∈ Nj ∪ {T}∗,
1 ≤ j ≤ n. From the induction step, h(v) ∈ Lk(G). Since p.X → uY v ∈ R,A→ pB ∈ RΞ,
we have h(w) ∈ Lk+1(G).

Lemma 4.4. Let i ≥ 1. disL(REG, i) ⊇ SML(i) That is, for every n-LSM
G′ = (N ′

1, . . . , N
′
n, T

′, S ′, P ′) there exists equivalent n−disLG
G = (N1, . . . , Nn, T, R1, . . . , Rn, S) regulated by regular language Ξ such that L(G) = L(G′).

Proof. G is defined in this way:

• Ni = N ′
i , 1 ≤ i ≤ n;

• T = T ′;

• S = S ′;

• Ri = {rij.Ai → uiBivi | for the jth rule
(A1, . . . , Ai, . . . , An) →
→ (u1B1v1, . . . , uiBivi, . . . , unBnvn) ∈ P ′,
ui, vi ∈ T ∗, 1 ≤ j ≤ |P ′|}, 1 ≤ i ≤ n.

where Ξ = L(GΞ), GΞ = (NΞ, TΞ, RΞ, SΞ) is defined as follows:

• NΞ = {Q} ∪ {Qij | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ |P ′|};

• TΞ = {rij | 1 ≤ i ≤ n, 1 ≤ j ≤ |P ′|};

• RΞ = {Q→ r1jQ1j | 1 ≤ j ≤ |P ′|} ∪
∪ {Qij → ri+1jQi+1j | 1 ≤ i ≤ n− 2,
1 ≤ j ≤ |P ′|} ∪ {Qn−1j → rnjQ | 1 ≤ j ≤ |P ′|};

• SΞ = Q.

Theorem 4.3. For all i ≥ 1, disL(REG, i) = SML(i).

Proof. This theorem directly follows from Lemma 4.3 and Lemma 4.4
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Theorem 4.4. For all i ≥ 1, disR(REG, i) = SMR(i).

Proof. This theorem directly follows from Theorem 4.3.

Theorem 4.5. For all i ≥ 1, SML(i) ⊂ SML(i+ 1).

Proof. See [Das–89].

The main result of this paper follows next.

Theorem 4.6. For all i ≥ 1,
L(REG, i) ⊂ L(REG, i+ 1).

Proof. This theorem follows from Theorems 4.1, 4.3 and 4.5.

Theorem 4.7. For all i ≥ 1,
R(REG, i) ⊂ R(REG, i+ 1).

Proof. This theorem follows from Theorem 4.6.

Let G be an n−disRLG satisfying Definition 4.2. Let S ⇒∗ w [σ], w ∈ T ∗, σ =
ρ1ρ2 . . . ρm, for some m ≥ 1, 1 ≤ i ≤ m, ρi ∈ Ψ, σ ∈ Ξ.
Set

d = card({ρjρj+1 | j = 1, . . . ,m− 1, ρj ∈ Ψk, ρj+1 ∈ Ψh, k 6= h}).

Then, during the generation of w ∈ L(G,Ξ) by S ⇒∗ w [σ], G changes the derivation
position d times. If there is a constant k ≥ 0 such that for every x ∈ L(G,Ξ) there is a
generation of x during which G changes the derivation position k or fewer times, then the
generation of L(G,Ξ) by G requires no more than k changes of derivation positions. Let k
be the minimal possible than we write d(G) = k.

Let i ≥ 1, k ≥ i− 1 and X be a family of languages. Set

• R(X, i, k) = {L | L = L(G,Ξ), whereG = (N, T,R, S) is a i-RLG, Ξ ∈ X and d(G) =
k, the generation of L(G,Ξ) by G requires no more than k changes of derivation
positions}.

• disR(X, i, k) = {L | L = L(G,Ξ), where G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S) is
a i−disRLG, Ξ ∈ X and d(G) = k, the generation of L(G,Ξ) by G requires no more
than k changes of derivation positions}.

Theorem 4.8. Let i ≥ 1, k ≥ 0. Then, R(REG, i, k) = disR(REG, i, k).

Proof. This proof is analogous to the proof of Theorem 4.1.
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Definition 4.5. Let G be an n−disRLG G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S) regu-
lated by regular language Ξ. Let Ξ = L(H), H = (HN,HT,HS,HP ). Let A,B ∈ HN .

We write A i⇒ B and say B is achievable from A in i-th component of G in one
derivation step if and only if there exists derivation A ⇒ xB, x ∈ HT in H and x is the
label of some rule from Ri.

We write A i⇒∗ B and say B is achievable from A in i-th component of G if and only
if there exists derivation A⇒∗ xB, x ∈ HT

∗ in H, and x are the labels of rules from Ri.
We write i(A) = {B | B ∈ HN and A i⇒∗ B}.

Theorem 4.9. For any n, k ≥ 1, R(REG, n, k) ⊆ REG. That is,
let G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S) be an n−disRLG regulated by regular lan-
guage Ξ. Let generation of L(G,Ξ) by G require no more than k changes of derivation
positions. Then, there exists an equivalent regular grammar G′ = (N ′, T ′, S ′, P ′) such that
L(G,Ξ) = L(G′).

Proof. Let Ξ = L(H), H = (HN,HT,HS,HP ), N = N1∪N2∪. . .∪Nn, and S = S1S2 . . . Sn.

We will construct set N̂ in this way:

• if HS i⇒∗ A in H, A ∈ HN , add
〈ε, ε, . . . ,HSA#, . . . , ε〉 to N̂ , where HSA# is at the ith position.

• if C j⇒∗ A and A i⇒∗ B in H, i < j, A,B,C ∈ HN and

〈y1, y2, . . . , yi, . . . , yj, . . . , yn〉 ∈ N̂ , such that yj ∈ {HNHN}∗{C}{A}{#}, then add

〈y1, y2, . . . , yiAB#, . . . , yj, . . . , yn〉 to N̂ .

• if C j⇒∗ A and A i⇒∗ B in H, i > j, A,B,C ∈ HN and

〈y1, y2, . . . , yj, . . . , yi, . . . , yn〉 ∈ N̂ , such that yj ∈ {HNHN}∗{C}{A}{#}, then add

〈y1, y2, . . . , yj, . . . , yiAB#, . . . , yn〉 to N̂ .

• if A i⇒ x in H, A ∈ HN, x ∈ HT and
〈y1, y2, . . . , yi, . . . , yn〉 ∈ N̂ , such that yi ∈ {HNHN}∗HN{A}{#}, then add

〈y1, y2, . . . , yi•, . . . , yn〉 to N̂ .

The construction of N̂ is completed. M̂ = {X | X ∈ N̂ , sub(X) ∩ {•} 6= ∅}.
Next, we construct grammar G′ = (N ′, T ′, S ′, P ′) as follows:

1. if X ∈ M̂ , then add
[X,S1] to N ′ and S ′ → [X,S1] to P ′.

2. if

(∗) X = 〈y1, y2, . . . , yi, . . . , yn〉 ∈ M̂, yh = ε, 0 ≤ h ≤ i− 1, yi = AB#yi, A,B ∈ HN
and A i⇒∗ C i⇒ D i⇒+ B and C ⇒ qD in H and Y ⇒ aZ [q] in G,

then add [X,Z] to N ′ and rule [X,Y ] → a[X,Z] to P ′.
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3. if (∗) is untrue and if X = 〈y1, y2, . . . , yi, . . . , yn〉 ∈ M̂, yh = ε, 0 ≤ h ≤ i − 1, yi =
AB#yi, A,B ∈ HN and A i⇒∗ C i⇒ B and C ⇒ qB in H and Y ⇒ aZ [q] in G,
then add
[〈y1, y2, . . . , yi, . . . , yn〉, Z] to N ′ and rule [X,Y ] → a[〈y1, y2, . . . , yi, . . . , yn〉, Z] to P ′

and replace 〈y1, y2, . . . , yi, . . . , yn〉 with 〈y1, y2, . . . , yi, . . . , yn〉 in M̂ .

4. if (∗) is untrue and if X = 〈y1, y2, . . . , yi, . . . , yn〉 ∈ M̂, yh = ε, 0 ≤ h ≤ i − 1, yi =
AB#, A,B ∈ HN and A i⇒∗ C i⇒ B and C ⇒ qB in H and Y ⇒ a [q] in G, then
add
[〈y1, y2, . . . , ε, . . . , yn〉, Si+1] to N ′ and rule [X, Y ] → a[〈y1, y2, . . . , ε, . . . , yn〉, Si+1] to

P ′ and replace 〈y1, y2, . . . , yi, . . . , yn〉 with 〈y1, y2, . . . , ε, . . . , yn〉 in M̂ .
Suppose that Sn+1 = ε.

5. Add [〈ε, . . . , ε〉, ε] → ε to P ′.

6. If X = [〈ε, . . . , ε, •, yi, . . . , yn〉, Y ] ∈ M̂ , then replace X with

[〈ε, . . . , ε, ε, yi, . . . , yn〉, Y ] in M̂ .

7. T ′ = T .

Next we prove that L(G,Ξ, k) = L(G′).
L(G,Ξ, k) ⊆ L(G′) : for every w ∈ L(G,Ξ, k), there exists a derivation of the form

HS i1⇒∗ q1A1 i2⇒∗ q1q2A2 i3⇒∗ . . . ip−1⇒∗ q1 . . . qp−1Ap−1 ip⇒∗ q1 . . . qp = q in H (4.1)

and

S1 . . . Si1 . . . Si2 . . . Sn ⇒∗ S1 . . . w1X1 . . . Si2 . . . Sn [q1] ⇒∗

⇒∗ S1 . . . w1X1 . . . w2X2 . . . Sn [q2] ⇒∗ . . .⇒∗

⇒∗ wi1 . . . wip−1 . . . wipXp−1 . . . win [qp−1] ⇒∗

⇒∗ wi1 . . . win [qp] = w

in G, where qh ∈ Rh, 1 ≤ h ≤ n.
Derivation (4.1) can be rewritten in this form

X = 〈y1, y2, . . . ,HSA1#yi1 , . . . , A1A2#yi2 , . . . , yp#•, . . . , yn〉

which belongs to M̂ . We start derivation in G′ from start symbol [X,S1].

[X,S1] = [〈y1, y2, . . . ,HSA1#yi1 , . . . , A1A2#yi2 , . . . , yp#•, . . . , yn〉, S1] ⇒∗

⇒∗ wi1 [〈ε, y2, . . . ,HSA1#yi1 , . . . , A1A2#yi2 , . . . , yp#•, . . . , yn〉, S2] ⇒∗ . . .⇒∗

⇒∗ wi1 . . . win−1 [〈ε, . . . , ε, yn〉, Sn] ⇒∗ wi1 . . . win [〈ε, . . . , ε〉, ε] ⇒ wi1 . . . win = w.
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Hence, a w ∈ L(G,Ξ, k) implies w ∈ L(G′).
L(G,Ξ, k) ⊇ L(G′) : for every w ∈ L(G′), there exists a successful derivation from start
symbol [X,S1]

[X,S1] = [〈y1, y2, . . . ,HSA1#yi1 , . . . , A1A2#yi2 , . . . , yp#•, . . . , yn〉, S1] ⇒∗

⇒∗ wi1 [〈ε, y2, . . . ,HSA1#yi1 , . . . , A1A2#yi2 , . . . , yp#•, . . . , yn〉, S2] ⇒∗ . . .⇒∗

⇒∗ wi1 . . . win−1 [〈ε, . . . , ε, yn〉, Sn] ⇒∗ wi1 . . . win [〈ε, . . . , ε〉, ε] ⇒ wi1 . . . win = w.

X ∈ M̂ is of the form

X = 〈y1, y2, . . . ,HSA1#yi1 , . . . , A1A2#yi2 , . . . , yp#•, . . . , yn〉

X defines the derivation

HS i1⇒∗ q1A1 i2⇒∗ q1q2A2 i3⇒∗ . . . ip−1⇒∗ q1 . . . qp−1Ap−1 ip⇒∗ q1 . . . qp = q in H

which regulates grammar G in this way

S1 . . . Si1 . . . Si2 . . . Sn ⇒∗ S1 . . . w1X1 . . . Si2 . . . Sn [q1] ⇒∗

⇒∗ S1 . . . w1X1 . . . w2X2 . . . Sn [q2] ⇒∗ . . .⇒∗

⇒∗ wi1 . . . wip−1 . . . wipXp−1 . . . win [qp−1] ⇒∗ wi1 . . . win [qp] = w

in G, where qh ∈ Rh, 1 ≤ h ≤ n.
Thus, w ∈ L(G,Ξ, k) so L(G,Ξ, k) = L(G′).

Because card(N ′) ≤ card(HN)2nk+1 and all rules are regular, G′ ∈ REG.

Example 4.1. G = (N, T, P, S):

• N = {A,B,C,D},

• T = {x, y, u, v},

• S = AC,

• P = {a.A→ xB, b.B → yA, a.A→ ε, c.C → uD, d.D → vC, c.C → ε}.

Ξ = L(H), H = (HN,HT,HS,HP )

• HN = {X,X, Y, U, V },

• HT = {a, a, b, c, c, d},

• HS = X,

• HP = {X → aY, Y → bU, U → cV, V → dX,X → aX,X → c}.
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L(G,Ξ) = {(xy)n(uv)n | n ≥ 0} ⊆ R(REG, 2)

N̂ = {〈XY#, ε〉, 〈XU#, ε〉, 〈XX#, ε〉 } due to the first rule, because i(HS) = {Y, U} where
i = 1 and HS = X.
N̂ = N̂ ∪ {〈XU#, UV#〉, 〈XU#, UX#〉, 〈XX#, •〉 } due to the second rule.

N̂ = N̂ ∪ {〈XU#XY#, UX#〉, 〈XU#XU#, UX#〉} due to the second rule.

N̂ = N̂ ∪ {〈XU#XY#, UX#UV#〉, 〈XU#XU#, UX#UX#〉, 〈XU#XX#, UX#•〉}
due to the second rule.
N̂ = N̂ ∪ {〈XU#XY#XX#, UX#UX#〉, 〈XU#XU#XX#, UX#UX#•〉} due to the
last rule.
M̂ = {〈XU#XU#XX#, UX#UX#•〉, 〈XU#XX#, UX#•〉, 〈XX#, •〉}.

As opposed to Theorem 4.6, the next theorem demonstrates that if during the derivation of
any sentence from the generated language, these grammars change the position of rewrit-
ing finitely many times, then they always generate only the family of regular languages
independently of the length of their start strings.

Theorem 4.10.
R(REG, n, k) = REG.

Proof. REG = R(REG, 1, 0) ⊆ R(REG, n, k) ⊆ REG (see Theorem 4.9).
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5 Applications in Parsing

In previous chapters we saw that concurrency and regulation can extend the power of a
formal system based on regular or linear language towards context-sensitive language.'
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Figure 3: Regulation of REG and LIN languages

These kinds of results are very interesting from the theoretical point of view. But for
practical results, it is much more interesting to regulate context-free languages rather than
regular or linear ones. There are two reasons for this. Firstly, achieving some context-
sensitive programming language by regulation by linear or regular language leads to a
very complex and chatty grammars (see [Rych–05]). Secondly, we already have the whole
theory for managing context-free languages. So it is natural to use this theory and regu-
late context-free languages and move towards context-sensitive and recursive enumerable
languages. '
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Figure 4: Regulation of CF languages
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Now the natural question arises: why would we need to have parsers for more powerful
languages than context-free ones? Is not C, C# or Java enough? In one way they are.
But the more powerful language family we choose, the more complex requirements we can
demand. '
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%anbncn – accepted by LBTM

Figure 5: Another look at language hierarchy

In Figure 5 we can see that if we have only finite automata for parsing programming
languages we cannot distinguish between program in the form a∗b∗c∗ and anbnc∗. If we
have pushdown automata for parsing we cannot distinguish anbnc∗ and anbncn.

Consider the following two programs:

program A;

int : a, b;

string : s;

begin;

a := 1; b := 2;

a := a + b;

s := "foo";

end.

program B;

int : a, b;

string : s;

begin;

a := 1; b := 2;

a := a + b;

s := 1;
end.

Both programs are described by standard, context-free Pascal-like grammar. It is easy
to see that program A is correct and program B is incorrect, because of assigning integer
value 1 to string variable s. This is the place where the power of classic context-free parsers
fails. They are not able to distinguish correct from incorrect programs like program A from
program B.

In Figure 6 we can see the reversed Chomsky hierarchy. Σ∗ represents all programs
(text files) over ASCII character set. No parser is needed for distinguishing whether any
text file is or is not a program. If we use finite automaton for parser we can define tokens
and key words of our new programming language. Parser based on such finite automaton
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can distinguish whether any program consists of allowed tokens and key words without
any syntactic analysis. Next, pushdown automaton comes into play. Now we can easily
describe our programs by context-free grammars, construct LL table and parse input files
and decide whether they are programs in our language or not. This is the usual case of
parsing. All present programming languages such as C, C# or Java belong in this category.
We can prescribe syntax for such programming language but we are not able to prescribe
that program A is the correct program of such language but program B is not correct.'
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Figure 6: Correct and incorrect programs

Finally, we would like to move further towards parsing by more powerful languages. We
would like to define non context-free grammars and corresponding parsing techniques,
which can decide whether a certain program file is correct, whether it is a word from some
context-sensitive language, or is not correct.

Some kind of described possibilities we can already see in modern development envi-
ronments. It is achieved by repetitive running of the whole compile process, including data
flow analysis. This approach is quite complex and time consuming task and also usually
needs to be hard-coded in development environment and compiler. The described approach
reveals all mistakes made during the parsing phase and it is possible to make a general
parser that accepts any grammar and verifies the program.

This chapter first, in short, describes classic parsing techniques of context-free lan-
guages. Next we discuss possibilities of moving beyond the classic methods and present
parsing techniques for scattered-context grammar. The implementation is then described
generally.

5.1 Classic Parsing Technique

Parsing a string according to a grammar means deciding whether the input word (source
program) is generated by the grammar and if so, to construct the parse tree that shows
how the given word can be derived from the grammar. This task of parser is the key
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part in the compiler operation. As shown in Figure 7 (taken from [Aho–07]), the parser
together with the symbol table is responsible for constructing the parse tree. To do so,
it has to communicate with a lexical analyzer to obtain the sequence of tokens from the
input string.

Figure 7: Parser in compiler model

A word can have more than one parse tree. In this case we call it ambiguous. The ambiguity
can be true or false. The false ambiguity in Figure 8 does not change the semantics. The
string 3+5+1 has two parse trees but the semantics is 9 in both cases.

Figure 8: False ambiguity

If we change the + into a - in the previous example, the ambiguity changes the semantics.
In the first case, in Figure 9, the semantics is -1 but in the other case, it is -3.
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Figure 9: True ambiguity

To reconstruct the parse tree we need the parse technique. If we look into literature
[Aho–72], [Aho–07] or [Med–05] we find many of such techniques. The two main techniques
are top-down parsing and bottom-up parsing. Top-down parsing starts from start symbol
of a grammar and by simulating application of rules until the final word is reached. Bottom-
up parsing works in reversed mode. It takes the input word and replaces the right side
of some rule by its left side. This is repeated until the start symbol is reached. In both
cases the main question is to decide which rule to apply if there are more of them which
can be applied. The answer for grammar G = (N, T, P, S) is to construct an LL table
α(A, a) ∈ P , where A ∈ N and a ∈ T .

Definition 5.1. Let G = (N, T, P, S) is a context-free grammar, α ∈ (N ∪ T )∗.

FIRST (α) ::= {a ∈ T | α⇒∗ aβ, β ∈ (N ∪ T )∗} ∪ {ε | α⇒∗ ε}.

Definition 5.2. Let G = (N, T, P, S) is a context-free grammar, A ∈ N .

FOLLOW (A) ::= {a ∈ T | S ⇒∗ αAβ, a ∈ FIRST (β), α, β ∈ (N ∪ T )∗}.

Definition 5.3. Condition FF holds if for every set of production rules:

A→ α1 | α2 | . . . | αk ∈ P

from context-free grammar, G = (N, T, S, P ), it is satisfied:

FIRST (αi) ∩ FIRST (αj) = ∅,∀i 6= j, 1 ≤ i, j ≤ k.

Definition 5.4. Condition FFL holds if for every set of production rules:

A→ α1 | α2 | . . . | αk ∈ P

such that
∃i, 1 ≤ i ≤ k : αi ⇒∗ ε

from context-free grammar, G = (N, T, S, P ), it is satisfied:

FIRST (αj) ∩ FOLLOW (A) = ∅,∀i 6= j, 1 ≤ i, j ≤ k.
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Definition 5.5. A context-free grammar G is LL1 grammar if conditions FF and FFL
are satisfied for the G.

Definition 5.6. Let G = (N, T, P, S) is a context-free grammar, α ∈ (N ∪ T )∗.

Empty(α) ::= {ε | if α⇒∗ ε}

Empty(α) ::= {∅ | otherwise}

Definition 5.7. Let G = (N, T, P, S) be a context-free grammar. For every A → x ∈ P ,
we define set PREDICT (A→ x) so that

• if Empty(x) = {ε} then
PREDICT (A→ x) = FIRST (x) ∪ FOLLOW (A).

• if Empty(x) = ∅ then
PREDICT (A→ x) = FIRST (x).

Definition 5.8. Let G = (N, T, P, S) be a context-free grammar. A→ x ∈ P and a ∈ T .

• if a ∈ PREDICT (A→ x),
then add A→ x to α(A, a).

Now if the parser reaches the state where nonterminal A is on the top of the stack and
terminal a is the first terminal from the rest of input string, it looks into the LL table for
the rule at position α(A, a).

5.2 Alternative Approach to Parsing

By introducing context-sensitive syntax analysis into the source code parsing process a
whole class of new problems may be solved at this stage of a compiler. Namely issues with
correct variable definitions, type checking etc. The main goal of regulated formal systems
is to extend abilities from standard CF LL-parsing to CS or RE families with preservation
of ease of parsing.

In [Kol–04] and [Rych–05] we can find some basic facts from theory of regulated push-
down automata (RPDA). We figured that regulated pushdown automata can in some cases
simulate Turing machines so we could use this theory for constructing parsers for context-
sensitive languages or even type-0 languages. We have also demonstrated the basic problem
of this concept: complexity. Almost trivial Turing machine was transformed to regulated
pushdown automata with almost 6 000 rules.

Converting deterministic (linear bounded) Turing machine or scattered-context gram-
mar to deterministic RPDA is very complex task. For the most simple context-sensitive
languages corresponding deterministic RPDA has thousands of rules. If we want to use
these algorithms for creating some practical parser for real context-sensitive programming
language it may result in millions of rules. Therefore, we are looking for another way to
parse context-sensitive languages. We would like to extend some context-free grammar
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of any common programming language (such as Pascal, C/C# or Java). After extend-
ing context-free grammar to corresponding context-sensitive grammar, parsing should be
straightforward.

As an example of a context-free language we use a language called ZAP03 [ZAP–03]
which has very similar syntax to Pascal. We will use following program as an example
program in ZAP03 language.

int : a, b, c, d;

string : s;

begin

a = 1;

b = 2;

c = 10;

d = 15;

s = "foo";

a = c;

end

Now we will define KontextZAP03, the context-sensitive extension of ZAP03. KontextZAP-
03 will be described by scattered-context grammar. In the first phase we will enrich Kon-
textZAP03 by variable checking. If the variable is undefined or assigned before initialized,
the parser of KontextZAP03 will finish in error state. We will need to analyze three frag-
ments of ZAP03 code where variables are used (variable c for example).
Variable definition
int : a, b, c, d;

Assignment statement
c = 10;

And using variables in commands
a = c ;

Corresponding grammar fragments from ZAP03 are following.
Variable definition
DCL → TYPE [:] [id] ID LIST

ID LIST → [,] [id] ID LIST

ID LIST → ε
Fragment of assignment statement
COMMAND → [id] CMD COMMAND

CMD → [=] STMT [;]

And usage variable in command
STMT → [id] OPER

OPER → ε.
Symbols in brackets [,] are terminals. Complete ZAP03 grammar has about 70 context-
free grammar rules.
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We define grammar of language KontextZAP03 in the following way. Substitute previ-
ous rules with these scattered-context ones:
(DCL, S’) → (TYPE [:] [id] ID LIST, D)

(ID LIST, S’) → ([,] [id] ID LIST, D)

(ID LIST) → (ε)
assignment statement
(COMMAND, D) → ([id] CMD COMMAND, DL)

(CMD) → ([=] STMT [;])

and usage variable in command
(STMT, D) → ([id] OPER, DR)

(OPER) → (ε).

Parsing now proceeds in the following way: starting symbol is S S’ and derivation will
go as usual until there is DCL S’ processed and (DCL, S’)→ (TYPE [:] [id] ID LIST,

D) rule is to applied. At this moment S’ is rewritten to D indicating that variable [id] is
defined. When variable [id] is used on left resp. right side of assignment D is rewritten to
DL resp. DR according to second resp. third previously shown fragment. If variable [id] is
used without being defined beforehand, a parse error occurs because S’ is not rewritten to
D and S’ cannot be rewritten to DL or DR directly. When the input is parsed S is rewritten
to program code and during LL parsing is popped out of the stack. S’ is rewritten onto
D{LR}∗ and this is only string that remains.
S S’ ⇒∗ DCL S’ ⇒ TYPE [:] [id] ID LIST D ⇒∗ COMMAND D ⇒

⇒ [id] CMD COMMAND DL ⇒∗ DL

If the only remaining symbol is D, it means that variable [id] was defined but never used.
If DL+ is the only remaining symbol, we know that variable [id] was defined and used only
on the left sides of assignments. Finally if there is the only remaining DR(LR)∗, we know
that the first occurrence of variable [id] is on the right side of an assignment statement and
therefore it is being read without being set. In all these cases the compiler should generate
a warning. These and similar problems are usually addressed by a data-flow analysis phase
carried out during semantic analysis.

Using this algorithm we can only process one variable at a time. But the proposed
mechanism can be easily extended to a finite number of variables by adding new S’· · · ’
every time we discover a variable definition. Parsing of described scattered-context gram-
mar can be implemented by pushdown automaton with finite number of pushdowns. The
first pushdown is classic LL pushdown. The second one is variable specific and every [id]
holds its own.

Because original ZAP03 grammar is LL1 and using described algorithm was not any
rule added, KontextZAP03 grammar has unambiguous derivations.

A few examples can clear the idea. This program is well-formed according to ZAP03
grammar, but it’s semantics is not correct and parsing it as KontextZAP03 program should
reveal this error.
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int : a, b, c, d;

string : s;

begin

a = 1;

b = 2;

d = 15;

s = "foo";

a = c;

end

Corresponding stack to variable c will be DR what lead to warning:
Variable c read but not set.

Second example shows another variation

int : a, b, c, d;

string : s;

begin

a = 1;

d = 15;

s = "foo";

a = c;

end

Corresponding stack to variable b will be D what lead to warnings (together with pre-
vious one):
Variable c read but not set.

Variable b is defined but never used.

5.3 The Power of Modified Multistack Machine

As demonstrated in previous chapter, we will study scattered-context grammars where
every component represents its own stack in multistack machine. Therefor we need spe-
cial case of scattered-context grammars where every component works with different and
mutually disjoint alphabets. Our question is whether these grammars are capable to parse
context-sensitive languages.

Definition 5.9. Let G = (N, T, P, S) be a SCG. G′ = (N1, N2, . . . , Nn, T, P
′, S ′) is a

n-distributed SCG, n−disSCG for short, if

• N = N1 ∪ N2 ∪ . . . ∪ Nn, where Ni, 1 ≤ i ≤ n are pairwise disjoint nonterminal
alphabets,
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• P ′ is a finite set of rules. P ′ contains two kinds of rules

1. S ′ → X1 . . . Xn, Xi ∈ Ni, 1 ≤ i ≤ n,

2. (A1, A2, . . . , Am) → (w1, w2, . . . wm), m ≤ n,Ai ∈ Ni, wi ∈ (Ni ∪T )∗, for some
1 ≤ i ≤ m.

Example 5.1. G = ({A}, {B}, {C}, {a, b, c}, P, S) where P contains three rules

1. S → ABC;

2. (A,B,C) → (aA, bB, cC);

3. (A,B,C) → (a, b, c)

is 3-distributed SCG.

Theorem 5.1. Let G = (N1, . . . , Nn, T, P, S) be a n−disSCG. Then there exists a matrix
grammar M = (N ′, T ′, P ′, S ′) such that L(G) ⊆ L(M).

Proof. We will construct grammar M in the form

• N ′ = N1 ∪N2 ∪ . . . ∪Nn;

• T ′ = T ;

• S ′ = S;

• P ′ = {[A1 → w1, A2 → w2, . . . , Am → wm] |
(A1, A2, . . . , Am) → (w1, w2, . . . wm) ∈ P, m ≤ n} ∪

∪ {S → X1X2 . . . Xn | S → X1X2 . . . Xn ∈ P}.

For any applied rule (A1, A2, . . . , Am) → (w1, w2, . . . wm) in grammar G, there is the equiv-
alent matrix rule [A1 → w1, A2 → w2, . . . , Am → wm] in grammar G applied. The order of
nonterminals Ai is trivially preserved.

Example 5.2. Let G be an n−disSCG grammar from example 5.1. Corresponding matrix
grammar is M = ({A,B,C, S ′}, {a, b, c}, P ′, S ′), where P ′ contains these rules

1. p1 = [S ′ → ABC];

2. p2 = [A→ aA,B → bB,C → cC];

3. p3 = [A→ a,B → b, C → c].

Theorem 5.2. Let M = (N, T, P, S) be a matrix grammar. Then there exists a 2−disSCG
G = (N1, N2, T

′, P ′, S ′) such that L(M) ⊆ L(G).

Proof. We will construct grammar G in the form
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• N1 = N ;

• N2 = {p} ∪ {pj
i}, where pj

i are labels of rules of matrix grammar M ;

• T ′ = T ;

• P ′ = {(P 1
i , p) → (Q1

i , p
1
i ) | p1

i = P 1
i → Q1

i , 1 ≤ i ≤ |P |} ∪
∪ {(P j

i , p
j−1
i ) → (Qj

i , p
j
i ) | p

j
i = P j

i → Qj
i , 2 ≤ j ≤ mi − 1, 1 ≤ i ≤ |P |} ∪

∪ {(Pmi
i , pmi−1

i ) → (Qmi
i , p) | pmi

i = Pmi
i → Qmi

i , 1 ≤ i ≤ |P |} ∪
∪ {S ′ → Sp} ∪ {p→ ε}.

For any applied rule pi = [P 1
i → Q1

i , P
2
i → Q2

i , . . . , P
mi
i → Qmi

i ] in grammar M , there is
equivalent chain of applications (P 1

i , p) → (Q1
i , p

1
i ), (P

2
i , p

1
i ) → (Q2

i , p
2
i ), . . . , (P

mi
i , pmi−1

i ) →
(Qmi

i , p) in grammar G.

Example 5.3. Let M be a matrix grammar from example 5.2. Corresponding 2−disSCG
is G = ({A,B,C, S, S ′}, {p1

2, p
2
2, p

1
3, p

2
3, p}, {a, b, c}, P ′, S ′), where P ′ contains these rules

1. (S ′ → Sp);

2. (S → ABC);

3. (A, p) → (aA, p1
2);

4. (B, p1
2) → (bB, p2

2);

5. (C, p2
2) → (cC, p);

6. (A, p) → (a, p1
3);

7. (B, p1
3) → (b, p2

3);

8. (C, p2
3) → (c, p);

9. (p→ ε);

Theorem 5.3.
L(n−disSCG) = L(2−disSCG) = L(Mat).

Proof. This theorem follows from theorems 5.1 and 5.2.

Remark 2.
CF ⊆ L(Mat) = L(n−disSCG) = L(2−disSCG)) ⊂ CS.

This theorem shows that n−disSC grammars, if successfully parsed, are as powerful as
matrix grammars and therefore can help us to move towards parsing of context-sensitive
languages (even if not all of them).
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5.4 Type Checking

By using scattered-context grammars we can describe type set of language (INT, STR) and
type check rules directly in grammar. Almost trivial language with type checking using 5
stacks can look like this:

(s) → (program)
(program) → (dcl)
(program) → ([begin]command[end])
(dcl) → (type[:]dcl2)
(dcl2, S, INT, , ) →

([id]id list[; ]next,D, INT, INT )
(dcl2, S, STR, , ) →

([id]id list[; ]next,D, STR, STR)
(id list) → ([, ]idlist2)
(id list2, S) → ([id]id list,D)
(id list) → (ε)
(next) → (dcl)

(next) → (program)
(type, , ) → ([int], , INT )
(type, , ) → ([string], , STR)
(command,D, INT, , ) →

([id] cmd command,D L, INT, INT )
(command,D, STR, , ) →

([id] cmd command,D L, STR, STR)
(command) → (ε)
(cmd) → ([=]stmt[; ])
(stmt,D) → ([id], D R)
(stmt, , , , INT ) → ([digit], , , , )
(stmt, , , , STR) → ([strval], , , , )

Stacks at even positions are the variable specific stacks as mentioned in previous chap-
ter. The first stack is classic LL stack and the rest of stacks at odd positions are temporary
used stacks for additional information. Although the underlying context-free grammar is
not LL grammar because there are several identic rules (command → [id] cmd command),
this grammar is unambiguous.

Example of error program code can be
int : a, b, c, d;

string : s;

begin

a = 1;

b = 15;

c = "foo";

a = c;

end

because c = "foo" is not type correct (STR is assigned to INT), parsing will fail.
(S, S, ε, ε, ε) ⇒∗ (DCL, S, ε, ε, ε) ⇒ (TYPE [:] DCL2, S, ε, ε, ε) ⇒

⇒([int] [:] DCL2, S, INT, ε, ε) ⇒2 (DCL2, S, INT, ε, ε) ⇒
⇒([id] ID LIST [;] NEXT, D, INT, INT, ε) ⇒∗

⇒∗ (COMMAND [end], D, INT, INT, ε) ⇒
⇒ ([id] CMD COMMAND [end], DL, INT, INT, INT) ⇒∗

⇒∗ (STMT [;] COMMAND [end], DL, INT, INT, INT) ⇒
⇒ ([digit] [;] COMMAND [end], DL, INT, INT, INT)

Now parsing will fail because the input character is [strval] instead of [digit].
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This is an easy extension of standard context-free grammar that can describe the type
system. In our previous example there are just two types (INT and STR) and only two
allowed assignments (INT → INT and STR → STR). It is very easy to generalize this
approach to construct general type injector into a context-free grammar.
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Figure 10: Injecting type system into grammar

5.5 Other Applications of CS Languages

It is obvious, that using a simple scattered-context extension of CF languages, we obtain
a grammar with interesting properties with respect to analysis of a programming language
source code. We provide some basic motivation examples.

1. Errors related to usage of undefined variables may be discovered and handled at parse
time without the need to handle them by static semantic analysis.

2. A CS extension of a grammar of the Java programming language, which copes with
problems like mutual exclusion of various keywords, such as abstract and final,
reflecting the fact that abstract methods cannot be declared final and vice versa.
This situation can be handled quite easily, by introducing additional symbol S′′ and
two corresponding rules S′′ → A (corresponds to abstract) and S′′ → F (corresponds
to final). Obviously only one of the rules can be used at a time.

3. Introducing an observer keyword for methods in Java, which indicates that this
method does not modify the state of this object (similar to defining method as const
in C++). Handling of such keyword in the language grammar is similar to approach
taken in the previous example.

4. Accounting of statements in a program in a ZAP03 language by introducing new
size keyword, which defines upper bound on the number of statements in current
scope. The parser is then extended such that when the keyword is discovered, the
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number of specialized nonterminals (say X) is generated on the stack – as specified
by the keyword occurrence and the grammar of the language is modified accordingly.
The rule:
COMMAND → [id] CMD COMMAND

changes to:
(COMMAND, X) → ([id] CMD COMMAND, ε )
Then, when a statement rule is used, one X nonterminal is eliminated from the stack.
If there are no remaining X nonterminals, the parsing immediately fails. The context-
sensitive language used in this example is:

L(G) = {w.|w|10},

where w is word and |w|10 is the length of w written as a decimal number.

5.6 Implementation

The best proof of the concept of this theory is implementation of a context-sensitive parser.
This implementation does much more. It is the general parser of scattered-context grammar
which takes source program w and scattered-context grammar G and decides whether this
program is a word from the language generated by given grammar (see Figure 11).
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Figure 11: Implemented parser

The complete program documentation is described in Appendix A. The implementation
is divided into two parts – the parser and the user interface. The parser is the main part
of the program and it is implemented in Java. Graphical user interface is just a thin layer
over the parser and it is implemented in C#. The main window of this application is shown
in Figure 12.
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Figure 12: Main window of parser application

The first example of our application can be type-checking grammar, as previously de-
scribed. Grammar can be loaded by selecting File → Open → Program or Grammar from
the drop down menu. The grammar has to be in format

(N1, N2, . . . , Nn) -> (w1, w2, . . . , wn)

where ε is represented as white space. For example

(command, DCL, , INT, ) -> ([id] cmd command, DCL L, , INT, INT)

Completely loaded context sensitive grammar for type-checking is in Figure 12.
After loading both parts, a grammar and a program, we can see that every time the

code of the program is modified, the parser runs the verification and displays result in
the bottom part of the window. In Figure 13 we can see the previously mentioned source
program and its successful parsing result.
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Figure 13: Successfully parsed program

Now we can make this program incorrect by modifying the eighth line and assigning
string "15" to integer variable d (see Figure 14). Immediately after this modification, the
parser rescans the source program and, by the previously mentioned algorithm, detects the
problem. As shown in our example, the problem is in lexem of length 4 at position 70 in
our source program. This place is highlighted by the parser and the error message is:

-70:4- No rule to apply

Lexem:”15” Top: ”stmt”

This report means that during the parsing process the parser reaches lexem "15" (at
position 70) and on the top of the stack it has "stmt" and there was no rule to apply
according to LL table.
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Figure 14: String assigned to integer variable

Our next example shows another mentioned possibility of our parser. The parser verifies
whether all variables are first assigned and then used. This ability is already included in
the previous example, hence the grammar is the same. In Figure 15 variable b is not used,
therefore the corresponding variable stack will be D and the error message is:

Variable b defined but never used.
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Figure 15: Unused variable b

Figure 16: Read but not set variable c
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The other alternative of this example is shown in Figure 16. Variable c is defined but
its first usage is on the right side of the statement b = c;. The corresponding variable
stack is D USDR and therefore the error message is:

Variable c read but not set.

The last example shows the limiting grammar also described in the previous chapter.
Loaded grammar can be seen in Figure 17. The limitation is provided by the given number
of nonterminals X defined on the third line.

Figure 17: Limiting grammar with 5 statements

Now, if we modify the program to have only 5 statements, the parsing result is:

- - - Ok - - -

which means that the program has 5 or less statements (see Figure 18). If we add one
more statement, the parsing will fail (see Figure 19) because the number of statements is
greater than the number of nonterminals X and parsing will fail during processing the sixth
statement. It is also obvious that combining more statements to one line does not affect
the results.
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Figure 18: 5 statements

Figure 19: 6 statements
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6. Summary

Part III

Conclusion

6 Summary

This work attempts to map grammatical models of computational distribution and con-
currency. The main tool used to meet this requirement is regulated grammar. We divide
regulated formal models into three parts. The first approach is to tie some productions
together, as we can see in the case of matrix grammar or programmed grammar. The
second approach is to permit or deny applying rules according to presence of some symbols
in an actual word, as we can see in permitting and forbidding grammar or random-context
grammar. The third (and the most discussed in this work) is the approach based on con-
trol language. In this case we label productions and, as a successful derivation, we only
define such derivation in which corresponding production labels form a word from control
language.

In the fifth chapter new results from regulated rewriting systems are presented. It starts
with a definition of the formal model with start string of length n and shows that regular
language with start string of length n regulated by regular language forms a language
hierarchy according to n. This hierarchy is known as the Wood hierarchy. Later, in the
fifth chapter, we limit the derivation position in start string to a finite number. This results
in the collapsing the whole hierarchy to the set of regular languages.

The sixth chapter discusses an application of the presented models of distribution and
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concurrency. The implementation of a parser based on scattered-context grammar is pre-
sented and a couple of examples of non context-free grammar is described.

The whole work is divided into two main parts, which represent two concepts of formal
language regulation. The first part is based on regulation of regular and linear languages,
which is interesting from the theoretical point of view. This kind of regulation strengthens
the power of such formal systems towards context-sensitive languages. The other part
discusses regulation of context-free languages and is mainly focused on application. Using
standard parsing techniques on concurrent working context-free grammars preserves the
ease of classic methods but enables the parsing non context-free programs. The best proof
of this concept is the implementation of such a parser and presenting a couple of examples
describing the power of a context-sensitive parser.
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Figure 20: Regulation of languages

For future research, there is a wide spectrum of still not deeply mapped regulated
formal systems and their properties. It is possible to study in depth pure regulated formal
systems (as regular grammars with start string regulated by regular grammars) or modified
ones (with a given limitation in number of changing derivation positions).

It is also possible to study regulated parallel grammars and other regulated parallel
formal systems such as L-Systems. A special case of L-System, T0L system, is a parallel
rewriting system which can be studied deeply as a regulated formal system.

7 Historical and Bibliographical Remarks

Grammatical models of computational distribution and concurrency have from theoretical
point of view many aspects. Some of them were introduced in [Wood–73] in definition
of n-parallel languages. In [Roz–73] grammar systems are described. Later some more
general results were presented for example in [Sal–73] and [Das–89]. Practical applications
were described in [Aho–72], [Gor–98], [Aho–07], especially in the second edition.
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8 Future research

One of the promising applications of the described concept is introducing a notion of
preconditions and postconditions to the ZAP03 programming language. Preconditions
resp. postconditions are essentially sets of logical formulae, which are required to hold at
entering resp. leaving a program or method. For example, when computing a square root
of x, we can require a positivity of x using precondition {x >= 0}. A computation of sinus
function {y = sin x} a natural postcondition {(y <= 1) ∧ (y >= −1)} arises.

Statements of a programming languages then induce transformation rules on precon-
dition and postcondition sets. For example, assignment statement in the form V := E
defines a transformation:

{P [E/V ]}V := E{P},

where V is a variable, E is an expression, P is precondition and P[E/V] denotes a substi-
tution of V for all occurrences of E in P. Other transformation examples may be found in
[Gor–98].

The purpose of introducing preconditions and postconditions into a language is to be
able to derive postconditions from specified preconditions using transformation rules in a
particular program. Such program then carries a formal proof of its correctness with it,
which is a desirable property.

In the ZAP03 language we can implement the described concept by introducing two
new keywords pre and post and by extending the rules of the language grammar with
above mentioned transformation rules. When the parsing of a program is initiated, the
precondition set is constructed using the pre declarations and the transformation rules
are applied to it as the parsing progresses through the source code. When the parsing
terminates, the resulting set of transformed preconditions is compared with the declared
postconditions. If these two sets match, the parsed program is correct with respect to the
specified preconditions and postconditions.

However, for practical reasons we must define constraints on the possible preconditions
and postconditions. Postconditions must be generally derivable from preconditions or (as
a corollary of the Gödels incompleteness theorem) the postconditions need not be provable
from the preconditions at all, but may still hold. In this particular case we have encountered
a program which may be correct, but we cannot verify this fact.
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Part IV

Appendixes

Appendix A: Program Documentation

This appendix describes implementation issues in detail.

Package Source

Package Source contains just one class Source which manages all communication with
input program source code. It uses Java PushbackReader to read characters and push
characters back to stream.

method Source(String f)

This constructor creates PushbackReader connected to program source code f. It manages
all exceptions during opening the file.

method char getChar()

This method reads one character from input stream. It manages position in source file
for printing line and position on line if some error arises during parsing. EOLN and EOF
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are standard char#13 and char#10. All exceptions during reading character are managed
here.

method void ungetChar()

Lexical analyzer sometimes needs to look at the next character in source code. For example
if it reads 123 and the next character is + then it unreads + and returns 123 as read lexem.
Method ungetChar() returns the last read character back to stream for future processing
and adjusts line and position on line.

method void close()

This method just closes the input source program.

Package MyStack

Package MyStack implements methods for working with stacks. It is possible to use stan-
dard stack class and its methods, but it is better to implement own class for more complex
debug and output methods. Package Stack contains two classes, class StackItem and class
MyStack.

class StackItem

First class only defines StackItem with no methods. StackItem only contains string as
data inserted in stack and reference to another StackItem class as pointer to previous
StackItem. StackTop is a reference to top of the stack.

class MyStack

Class MyStack uses StackItem to define well-known stack methods.

method String top()

If stack is empty returns debug string ”empty”. If stack is not empty it returns data
extracted from StackTop.

method int push(String ch)

Creates a new StackItem, inserts data c in it, takes StackTop as reference to previous
StackItem and sets actual StackItem as StackTop.
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method String pop()

If stack is empty returns error. Else it takes StackTop and extracts data and reference to
previous StackItem from it. Previous StackItem then sets as StackTop and returns data
from popped StackItem.

method void printStack()

This method goes through the stack from StackTop until StackItem has empty reference
to next StackItem and prints on standard output data strings from processed StackItems.

Package StackAutomaton

Package StackAutomaton implements stack automaton with its rules and moves. It consists
of two classes. First class is StackRule and defines rules for stack automaton. Rules are
in format <Stack1, State1, Input1> -> <Stack2, State2, Input2>. StackRule also
contains reference to previous StackRule.

class StackAutomaton

The first class contains stack st and implements following methods.

method StackAutomaton(String startState, String startSymbol)

This constructor creates new stack automaton in start state StartState and with mark
# (empty stack) and StartSymbol on stack.

method int setRule(String stack1, String state1, String input, String stack2,
String state2, String input2)

This method adds a new rule to stack automaton. It modifies lastRule which points to
last added rule. Every rule is in the format <Stack1, State1, Input1> -> <Stack2,

State2, Input2>.

method void printStack()

Just calls printStack() method from containing stack st. It prints the whole stack.

method String move(String input)

This is main method of StackAutomaton class. It makes single move according to input.
It goes through rules and if it finds corresponding rule to input and symbol on the top of
the stack st, it makes this move.

70



method String getActiveMove(String input)

This method goes through all rules of StackAutomaton and returns rules which are appli-
cable right now according to input string and symbol on stack.

method String forceMove(String rule)

Takes rule and applies it on StackAutomaton. This method is used while regulated au-
tomaton pops rule and this rule should be followed by this automaton. The string rule is
in format <Stack1, State1, Input1> -> <Stack2, State2, Input2>.

method String getState()

This method returns state of StackAutomaton for debugging purposes.

method void printRules()

Prints all previously set StackAutomaton rules in the format <Stack1, State1, Input1>

-> <Stack2, State2, Input2>.

class StackRule

This class just holds one stack rule and holds pointer to next stack rule.

Package RPDA

Package RPDA extends class StackAutomaton and implements behavior of regulated push-
down automaton. When RPDA is completely loaded (loadPDA and loadGRM) it can simulate
RPDA moves.

class RPDA extends StackAutomaton

The first class contains stack St2 and implements following methods.

method RPDA(String startState1, String startSymbol1, String startSymbol2)

Constructor of RPDA. RPDA is then prepared for loadPDA and loadGRM to set up the rules.

method int setGRM(String NT1, String[] terminal1, String[] NT2, String[]
terminal2, String[] NT3)

This method is called by loadGRM. loadGRM loads rule from file and sets corresponding
rule.
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method String moveGRM(String input)

This method makes one single move of RPDA according to input. Main routine takes input
word and moves RPDA by each input character.

method void printGRM()

Prints rules of regulating pushdown automaton. For debugging purposes.

method void printStack1()

Prints first of two RPDA stacks. Stack1 is stack of PDA.

method void printStack2()

Prints second of two RPDA stacks. Stack2 is stack of regulating pushdown automaton.

class StackRule

This class just holds one stack rule and holds pointer to next stack rule.

class loadPDA

Loads RPDA’s PDA from PDA file and returns partially constructed RPDA.

method RPDA load(String PDAfile, RPDA newRPDA)

This method do all the work. It’s implemented as finite automaton which goes through
input file and scans the rules. The rules are in PDA file in format <Stack1, State1,

Input1> -> <Stack2, State2, Input2>.

class loadGRM

Loads RPDA’s controlling language from GRM file. Returns complete RPDA.

method RPDA load(String GRMfile, RPDA newRPDA)

This method is again mplemented as finite automaton which goes through input file and
scans the rules. The format of rule in GRM file is
L => <A,Ab2B,> -> <,Ab2B,>L<,Ab1rb,> -> <A,Ab1rb,>.

Package MultiStack

Package MultiStack implements main tool for managing scattered-context grammars –
multi stack machine. The only class in this package is MultiStack. MultiStack consists of
public property Map<Integer, MyStack> Stacks, that is integer indexed set of MyStacks.
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method MultiStack(String s)

This constructor of class MultiStack initializes multi stack machine and sets start symbol
to s.

method MyStack get(int i)

This method just selects i-th stack from multi stack machine and returns ordinary stack
machine MyStack where push(. . .) and pop() methods can be invoked.

Package SymbolTable

Package SymbolTable implements only one class SymbolTable using Map<String, Lexem>.

method Lexem add(String symbol)

This method takes string symbol from lexical analyzer and checks whether this symbol is
already included in symbol table. If so, directly returns corresponding lexem. In other
case this symbol is added to symbol table and new lexem is returned.

method void print(int num)

This method is just for debugging purposes. It prints whole symbol table and also stack
from multi stack number num.

method void check(int num)

SymbolTable class is implementing one more feature than standard symbol tables. This
method goes through symbol table and checks every identifier’s multistack for correct usage
of this identifier.

Package Lex

Package Lex implements Lexical analyzer and its main method getLexem(). It consist of
two classes, class Lexem and class Lex.

class Lexem

Class Lexem defines structure of lexems produced by lexical analyzer. This structure con-
sists of lexem type (e.g. ID), corresponding string representation (e.g. name of the
identifier) and multi stack machine for collection information about parsing.

class Lex

Class Lex implements functionality of lexical analyzer.
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method Lex(String file)

This constructor of class Lex just connects itself to Source file to read single characters.

method Lexem getLexem()

Implementation of lexical analyzer is done by finite automaton. This method is one large
switch command with 5 cases. The first (default) case 0 changes state to 1 if the first
character is letter, to 2 if the first character is digit, to 7 if the first character is = (as
part of => sign) and to 6 if the character is ". Finally it directly returns the lexem if
the character is one of these: +, -, *, :, ,, ;, ?. The second case 1 means that we read
a letter as previous character. If this time read character is not letter, we put back this
character and return lexem (in cooperation with SymbolTable class). Case 2 means that
we are reading a digit and until we reads digits we stay in this case. In other case we return
corresponding lexem of type digit. Case 6 means that we are reading something between
" marks and case 7 is only for => and =< signs.

method void close()

Method close() just closes previously opened Source file.

Package SCG

Package SCG implements methods and data structures for scattered-context grammars.
It has basic properties Set<String> Rules, Set<String> terminals and Set<String>

nonTerminals. Also derived (and computed) properties Map<String, String> Empty,
Map<String, Set<String>> First, Map<String, Set<String>> Follow and of course
Map<Integer, Set<String>> Predict. All this methods (properties) are the same as in
CF version of grammar. New properties (special for SCG) are Set<String> FirstEmpty

and Map<String, List<String>> EmptyList.

method SCG(String start)

Constructor for this method just sets the start symbol of new created grammar.

method int setRule(List<String> L, List<List<String>> R)

This method takes rules in the form (A,B,C) -> (a A,b B,c C) translated to left and
right parts List<String> L, List<List<String>> R.

method void printRule(int i)

This method is for debugging purposes, it just prints out i-th rule.
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method void printRules()

This method prints the whole grammar for debugging purposes.

method List<String> getRRule(int i, int k)

This method is getter (extractor) of the k-th part of right side of the i-th rule.

method String getLRule(int i, int k)

This method is getter of the k-th part of left side of the i-th rule.

method int getNRules(int i)

This method returns the number of components of the i-th rule. For example for the rule
(A,B,C) → (aA, bB, cC) it returns 3.

method int computeEmpty()

This method computes set EMPTY set and stores it in Map<String, String> Empty. It
stores in the first string nonterminal and in the second string corresponding empty flag.

method int computeFirst()

This method computes set FIRST set and stores it in Map<String, Set<String>> First.
It stores in the first string terminal or nonterminal and in the following set corresponding
FIRST set.

method int computePredict()

This method computes PREDICT and stores it in Map<Integer, Set<String>> Predict.
It stores in the first Integer rule number and in the following set corresponding terminals.

method Set<String> getFirstN(List<String> X)

This method computes and returns FIRST set of string X. The string can consist of multiple
nonterminals and terminals.

method String getEmptyN(List<String> X)

This method computes and returns EMPTY set of string X. The string can consist of
multiple nonterminals and terminals.
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method int computeFollow()

This method computes set FOLLOW and stores it in public Map<String, Set<String>>

Follow. It stores in the first string terminal or nonterminal and in the following set
corresponding terminals from FOLLOW set.

method int printLLtable()

This method prints the whole LL table. Only for debugging purposes.

method int LLtable(String Term, String NonT, List<String> Stacks)

This method returns the rule number from LL table for loaded scattered-context grammar.
It takes nonterminal NonT and terminal Term and computes number of rule which is lo-
cated on corresponding position in LL table. Because we are in scattered-context grammars
there can be more than one rule to apply. For example if there are rules (A,B) → (aA, bB)
and (A,C) → (aA, cC) it is impossible for standard LL table to decide which rule apply.
Now comes stacks into play. This method checks all the actual stacks and chooses the one
that exactly matches.

Class loadSCG

This class is the factory for creating scattered-context grammars from package SCG. All it
does is open file and translate text rules of the form (A,B,C) -> (a A,b B,c C) to full
defined scattered-context grammar.

method SCG load(String SCGfile, SCG newSCG)

This class is again implemented as finite automaton. Automaton walks through input
stream and expects one rule per line. Every line than automaton scans and changes it’s
state as it reaches various tokens (such as (, ,, ), ->). Once it reaches final ), it converts
all left and right parts of the rule to the SCG rule (left sides to List<String> and right to
List<List<String>>).

Class testSCG

This is the main class for presenting overall result. It implements just one method
main(. . .).

method void main (String args[])

This function does all the work. First it handles input arguments. The two required
arguments are -grm which loads corresponding SCG grammar and -prg which loads cor-
responding program.
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Usage: testSCG -grm grammar.SCG -prg program.txt

Next this method creates new SCG grammar and loads it from file

SCG myGram = new SCG("s");

loadSCG.load(fGram,myGram);

Then all necessary computations are made

myGram.computeEmpty();

myGram.computeFirst();

myGram.computeFollow();

myGram.computePredict();

New multi stack machine for simulating scattered-context grammar is created.

MultiStack mst = new MultiStack("s");

Lexical analyzer is initialized and connected to program file.

Lex input = new Lex(fPrg);

Lexem lexem = input.getLexem();

All following work is done in while loop for every scanned lexem

while (!lexem.type.equals("eof")) {
...

}

Because we are implementing recursive descent parser we erase top of the stack if it matches
input lexem

top = mst.get(1).pop();

if (lexem.type.equals(top)) {
lexem = input.getLexem();

} else {

Next we create structure List<String> Lrules that is the list of top elements from all
stacks of mst. The construction is a little bit tricky

Lrules = new ArrayList<String>();

for (i = 1; i < myGram.Cardinality+2; i++) {
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Lrules.add("");

}
for (i = 1; i < myGram.Cardinality+2; i++) {

if (i%2 == 0) {
if (lexem.type.equals("id")) {

Lrules.set(i-1,lexem.mstack.get(i-1).top());

}
} else {

if (i==1) {
Lrules.set(i-1,top);

} else {
Lrules.set(i-1,mst.get(i-1).top());

}
}

}

Next we choose the only one rule to apply according to lexem and top of all stacks (Lrules)

r = myGram.LLtable(lexem.type, top, Lrules);

if (r == 0) {
System.err.println("No rule to apply!");

return;

}

The rest of the while loop is to push all right sides of rule number r to corresponding
stack of mst.
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A.1 Installation

The whole project is divided into two parts – the parser and the user interface. The parser is
implemented in Java and only needs to be unpacked to a directory (eg. c:\Project\Parser\).

To compile the parser it is necessary to install Java version 1.6 or higher. Compilation
starts with

cd src

javac -d ..\classes testSCG.java

To verify the parser run the following command

cd ..\classes
java testSCG -prg ..\examples\program.txt -grm ..\examples\limit.SCG

To compile the user interface it is necessary to install .NET Framework 2.0 or higher
and Visual Studio 2005 or higher. The user interface is implemented in C# and needs
to be unpacked to a directory (eg. c:\Project\IDE\). First edit the file App.config and
modify WorkingDirectory to the path to classes of parser (eg. c:\Project\Parser\classes)
and javapath to the path to your Java interpreter. Then run Visual Studio, open MPAide
project from c:\Project\IDE\MPAide.sln. Now you can build and run the user interface
working together with the parser.
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