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Lukáš Rychnovský
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Abstract This work first defines regulated formal systems such as regulated rewriting
system, regulated grammar and regulated automaton. Also some basic theorems are pre-
sented. The fourth chapter defines right-linear grammars with a start string of length n
regulated by regular language and postulates its equality with n-parallel right-linear lan-
guages formed in Wood hierarchy. Then we restrict the number of changing derivation
positions and the main result follows. The fifth chapter describes parsing techniques for
context-sensitive languages and their implementation.

Keywords regulated rewriting, Wood hierarchy, regulated automata, regulated gram-
mars, right-linear grammar with start string of length n regulated by regular language,
parsing of context-sensitive languages, parser implementation.

Abstrakt V této práci nejdř́ıve definujeme několik ř́ızených formálńıch systémů, jako
např́ıklad obecný ř́ızený přepisovaćı systém, ř́ızenou gramatiku a ř́ızený automat. Také
prezentujeme některé základńı poznatky z teorie ř́ızených přepisovaćıch systémů. Ve
čtvrté kapitole definujeme pravě-lineárńı gramatiky se startovaćım řetězcem délky n, ř́ızené
regulárńımi jazyky a postulujeme jejich ekvivalenci s n-paralelńımi pravě-lineárńımi gra-
matikami, které definuj́ı Woodovu hierarchii. Následně omeźıme počet změn derivačńı
pozice a formulujeme hlavńı výsledky práce. Pátá kapitola pak popisuje techniky parsingu
pro kontextové jazyky a jejich implementaci.

Kĺıčová slova ř́ızené přepisováńı, Woodova hierarchie, ř́ızený automat, ř́ızená gramatika,
pravě-lineárńı gramatika se startovaćım řetězcem délky n, ř́ızená regulárńım jazykem, pars-
ing kontextových jazyk̊u, implementace parseru.

Rychnovský, L.: Grammatical Models of Computational Distribution and Concurrency :
Theory and Application, Ph.D. Thesis, FIT VUT, Brno, 2009.
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1. Motivation

Part I

Introduction

1 Motivation

In the late fifties the linguist Noam Chomsky defined his famous formal language hierarchy
based on the restriction of the form of productions. Very soon many mathematicians
and computer scientists began to extend this simple hierarchy by adding new forms of
production rules.

In the seventies a new approach of extending the Chomsky hierarchy was developed.
The new approach was not only to restrict the form of the production rules but also the way
in which grammar is allowed to generate words. This approach opened a brand new part of
formal language theory called regulated rewriting or grammar with controlled derivations.
Mathematicians such as Salomaa, Dassow and Pǎun started their research and very soon
a complex theory with many results was born.

Nowadays, many books cover this part of formal language theory. But still there are
many grey areas worthy of interest.

This work tries to map regulated rewriting models and their properties. It starts with
necessary mathematical background for formal language theory in the second chapter.
The third chapter starts with a definition of a rewriting system as a basic concept of
all formal language theory. The definition of this rewriting system is then extended and
divided into two well-known approaches: grammar and automaton. The first approach,
automaton-based, is divided into three parts according to the Chomsky hierarchy. Finite
automaton and language accepted by finite automaton are defined in the first part and a
relation between the set of regular languages and languages accepted by finite automata
is postulated. In the second part, we move toward the set of context-free languages. We
define pushdown automata and language accepted by such automata and define relation
between these languages. In the third part we define the Turing machine and postulate the
relation between it and context-sensitive and recursive enumerable languages. The other
approach, grammar-based, is defined separately and the Chomsky hierarchy is formed.

Later in the third chapter regulated rewriting systems are mapped. A regulated rewrit-
ing system is any formal system where every application of any production rule can be
prohibited. We can achieve this behavior by several main concepts.

The first is to tie some productions together, as we can see in the case of matrix
grammar or programmed grammar. Instead of single productions, matrix grammar uses
a finite set of finite sequences of productions. Productions cannot be applied separately,
but a whole sequence has to be applied. In applying such a sequence, one first rewrites
according to the first production, then according to the second production, and so on,
until one has rewritten according to the last production. The sequences are referred to as
matrices. Programmed grammars are based on a similar method of regulating as matrix
grammars. In the case of programmed grammar G, one is given two sets, σ(f) and ϕ(f),
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1. Motivation

together with each production f of the entire production set P of G, referring to the success
and failure field of f , respectively. If we have applied f , then the next production to be
applied must belong to σ(f). If we have applied f in the appearance checking sense, that
is, noticing that the left side of f is not a subword of the word under scan, then the next
production to be applied must belong to ϕ(f). The sets σ(f) and ϕ(f) are also noted as
the go-to fields of f .

The second concept is to permit some productions only in some cases or deny usage of
some productions in some cases based on actual sentence form as we can see in the case
of permitting and forbidding grammars or random-context grammars. Unlike previous
cases, the behavior of permitting and forbidding grammars depends on actual sentential
form. In permitting grammar G, one is given a set of terminals and nonterminals P (f)
together with each production set P of G, referred to permitting set. In a forbidding
grammar this set F (f) is called forbidding set. If we should apply rule f , we first look into
permitting set P (f) and rewrite only if all symbols of P (f) are subwords of word under
scan. In forbidding case we check whether none of the symbols of F (f) are subword of
word under scan. Random-context grammars are combination of permitting and forbidding
grammars. Every production rule is a triple (f,Q,R) where Q,R are sets. If we should
apply production f , we must first check whether all symbols of Q appear and no symbol
in R appears in word under scan. Only in such a case is production allowed.

The third concept is to define control language. In this case we label production rules
and demand successful derivation to form a word from control language over the alphabet
of production labels. This construction allows us to obtain a large family of new languages
based on the combination of regulated and regulating languages. We can also regulate
automata in the same way as grammars. Every automaton transition is described by
a specific symbol and only certain words over such an alphabet are accepted according to
control language. The question is whether equivalent models (regular languages and finite
automata, context-free grammars and pushdown automata, etc.), when regulated by the
same language, have the same generative power. As shown in the fourth section, the answer
is no. Hence, it is necessary to study even equivalent formal models separately when they
are regulated. In general, regulation greatly increases the generative power of a formal
model. For example pushdown automaton regulated by linear language is as powerful as
the Turing machine.

The fourth and fifth chapters are dedicated to the author’s own results. The fourth
chapter starts with the definition of a formal model with start string of length n. It is easy
to prove that any formal model from classic Chomsky hierarchy (even if regulated) doesn’t
extend its generative power if we start from start string rather than start nonterminal. This
is not true if we enrich right-linear grammar regulated by regular language by start string.
In this case we obtain stronger formalism than with start symbol. Moreover, the longer
start string we allow, the more powerful model we obtain. In theorem 3.3, equivalence
with the Wood language hierarchy based on n-parallel right-linear languages is proved.

In the next part of the fourth chapter there is another result presented. We start
again with right-linear grammars with start string of length n and we define a new way
of limitation: we restrict the number of times that derivation position switches from one
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1. Motivation

position in start string to another. This kind of limitation does not restrict the number of
derivations in general, but the impact on generative power is significant. The whole former
language hierarchy collapses again to only the set of regular languages.

We can study regulated formal models in two main ways, as described in Figure 1. The
first one is based on regular or linear languages and regulation extends their power towards
context-sensitive languages. The second way is based on context-free languages and it is
possible to reach recursive enumerable languages.
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Figure 1: Regulation of languages

Both concepts greatly increase the power of underlying grammars. But each of these
concepts focuses on different parts – theory and application. The first approach describes
the regulation of REG and LIN languages, which is attractive from the theoretical point of
view. It is easier to understand the mechanisms of regulation on REG and LIN languages
than on CF. On the other hand, the second approach is the practical one. The theory
gained during the studying of previous parts can be applied to CF languages to move
towards CS and RE languages. This approach is very promising in compiler theory because,
by the regulation, we get a more powerful formal model on which we can use slightly
modified classic parsing techniques. These non context-free parsers and compilers are able
to recognize semantic errors that standard context-free parsers can not. For example, we
can restrict the number of code lines directly in grammar. Or we can limit the number
of variables or we can require that any variable is defined before used. This approach is
described in the fifth chapter.

This work tries to connect two main approaches to formal languages – theory and
application. From this connection, both sides profit. The theory driven by application
brings a new look at proofs of known theorems. They need to be lead in a constructive
way because application needs implementation and implementing algorithms according to
non-constructive proof is impossible. On the other hand, parsing algorithms based on more
powerful theory can bring us many advantages.
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2. Definitions

2 Definitions

In this section we define some notations and models in formal language theory. We omit
basic notations such as rewriting system, automata and grammars.

2.1 Regulated Rewriting

Definition 2.1. A matrix grammar is a special case of rewriting system, usually noted
as M = (N, T,R, S), where N, T and S are exactly the same as in the definition of a
grammar, but R is a finite set of finite nonempty sequences of productions

P → Q, where P ∈ N, Q ∈ (N ∪ T )∗.

The sequences are referred to as matrices and written

m = [P1 → Q1, . . . , Pi → Qi], i ≥ 1. (2.1)

Let F be the collection of all productions appearing in the matrices m of a matrix grammar
M . Then matrix grammar M is of type linear, context-free, context-sensitive, etc. if and
only if the grammar G = (N, T, F, S) has the corresponding property.

For a matrix grammar M , we define yield relation ⇒M or, in short, ⇒ as follows. For
any P,Q ∈ (N ∪ T )∗, P ⇒ Q holds if there exist an integer r ≥ 1 and words

α1, . . . , αr+1, P1, . . . , Pr, Q1, . . . , Qr, R1, . . . , Rr, R
1, . . . , Rr

over (N ∪ T )∗ such that (i) α1 = P and αr+1 = Q, (ii) the matrix (2.1) is one of the
matrices of M , and (iii) αi = RiPiR

i and αi+1 = RiQiR
i for every i = 1, . . . , r.

Mat = {L | L = L(G), where G = (N, T,R, S) is a matrix grammar}.

Definition 2.2. A programmed grammar is a special case of rewriting system, usually
noted as an ordered triple (G, σ, ϕ) where G = (N, T,R, S) is a context-free grammar, and
σ and ϕ are sets of production labels.

For a programmed grammar PG, we define yield relation ⇒ and ⇒ac on the set of all
pairs (P, f), where P ∈ (N ∪ T )∗ and f is the set of production labels of P as follows:
(P, f1) ⇒ (Q, f2) holds if there are words P1, P2, P

′ and Q′ such that (i) P = P1P
′P2 and

Q = P1Q
′P2, (ii) the production in R labeled as f1 is P ′ → Q′, and (iii) f2 belongs to the

set σ(f1); (P, f1) ⇒ac (Q, f2) holds if (P, f1) ⇒ (Q, f2) holds, or else each of the following
conditions is satisfied for some words P ′ and Q′: P = Q, (i) the production in R labeled
as f1 is P ′ → Q′, (ii) P ′ is not a subword of P , and (iii) f2 belongs to the set ϕ(f1) (Thus,
only the relation ⇒ac depends on ϕ).

The language generated by the programmed grammar PG is defined by L(PG, σ) =
{w ∈ T ∗ | (S, f) ⇒∗ (w, f ′)}. Lac(PG, σ, ϕ) = {w ∈ T ∗ | (S, f) ⇒∗

ac (w, f ′)}.

Definition 2.3. A random-context grammar (RCG, for short) is a special case of rewriting
system, usually noted as G = (N, T, P, S), where N, T and S are exactly the same as in
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2.1 Regulated Rewriting 2. Definitions

the definition of a grammar, but P is a finite set of random-context rules, that is, triplets
in the form of (C → α,Q,R), C → α is a CF rule over N ∪T , where C ∈ N , and Q and R
are subsets of N . For x, y ∈ (N ∪ T )∗, we write x⇒rc y, or x⇒ y for short, if x = x1Cx2,
y = x1αx2 for some x1, x2 ∈ (N ∪ T )∗, (C → α,Q,R) is a triplet in P , all symbols of Q
appear and no symbol of R appears in x1x2 (Q is called the permitting context, and R is
called the forbidding context of the rule C → α. If Q and/or R are empty, then no check
is necessary.)

Definition 2.4. (See [Wood–73]) For n ≥ 1, an n-parallel right-linear grammar, n-PRLG
for short, is an (n+3)-tuple G = (N1, . . . Nn, T, S, P ) where

• Ni, 1 ≤ i ≤ n are pairwise disjoint nonterminal alphabets,

• T is a terminal alphabet, N ∩ T = ∅,

• S /∈ N1 ∪ . . . ∪Nn is the start symbol,

• P is a finite set of rules. P contains three kinds of rules

1. S → X1 . . . Xn, Xi ∈ Ni, 1 ≤ i ≤ n,

2. X → aY, X, Y ∈ Ni, for some 1 ≤ i ≤ n, a ∈ T ∗, and

3. X → a, X ∈ Ni, for some 1 ≤ i ≤ n, a ∈ T ∗.

For x, y ∈ (N ∪ T ∪ {S})∗, x⇒ y if and only if

• either x = S and S → y ∈ P ,

• or x = y1X1 . . . ynXn, y = y1x1 . . . ynxn, where yi ∈ T ∗, xi ∈ T ∗N ∪ T ∗, Xi ∈ Ni, and
Xi → xi ∈ P, 1 ≤ i ≤ n.

parR(i) = {L | L = L(G), where G = (N1, N2, . . . , Nn, T, R, S) is a i-PRLG}.

Theorem 2.1 (Wood hierarchy). For all i ≥ 1, parR(i) ⊂ parR(i+ 1).

Proof. See [Wood–73].

For more information about n-parallel right-linear grammars, see [Wood–73].

Definition 2.5. A scattered context grammar (SCG, for short) is a special case of rewriting
system, usually noted as G = (N, T, S, P ), where N, T and S are exactly the same as in
the definition of a grammar, but P is a finite set of production rules of the form

(A1, A2, . . . , An) → (w1, w2, . . . , wn), n ≥ 1, Ai ∈ N,wi ∈ (N ∪ T )∗, 1 ≥ i ≥ n.

Let (A1, A2, . . . , An) → (w1, w2, . . . , wn) ∈ P and xi ∈ (N ∪ T )∗, 1 ≥ i ≥ n+ 1. We write

x1A1x2A2 . . . xnAnxn+1 ⇒ x1w1x2w2 . . . xnwnxn+1.

5



2.2 Control Languages 2. Definitions

Example 2.1.
G = ({S,A,B,C}, {a, b, c}, S, P )

where

P = {S → ABC, (A→ aA,B → bB,C → cC), (A→ a,B → b, C → c)}

The language generated by grammar G is

L(G) = {anbncn | n ≥ 1}

2.2 Control Languages

Definition 2.6. Let G = (V, P ) be a rewriting system. Let Ψ be an alphabet of rule labels
such that card(Ψ) = card(P ), and ψ be a bijection from P to Ψ. For simplicity, to express
that ψ maps a rule, u→ v ∈ P , to ρ, where ρ ∈ Ψ, we write ρ.u→ v ∈ P ; in other words,
ρ.u→ v means ψ(u→ v) = ρ.

If u → v ∈ P and x, y ∈ V ∗, then xuy ⇒ xvy [u → v] or simply xuy ⇒ xvy [ρ]. Let
there exists a sequence x0, x1, . . . , xn ∈ V ∗ for some n ≥ 1 such that xi−1 ⇒ xi [ρi], where
ρi ∈ Ψ, for i = 1, . . . , n. Then G rewrites x0 to xn in n steps according to ρ1, . . . , ρn,
symbolically written as x0 ⇒n xn [ρ1 . . . ρn].
Let Ξ be a control language over Ψ; that is Ξ ⊆ Ψ∗.

Definition 2.7. Let G = (N, T, P, S) be a grammar. Let Ψ be an alphabet of rule labels
and let Ξ be a control language. A language generated by regulated grammar G by control
language Ξ is the set

L(G,Ξ) = {w | w ∈ T ∗, S ⇒n w [ρ1, . . . , ρn], ρ1 . . . ρn ∈ Ξ}

Definition 2.8. Let T = (Q,Σ, δ, s, F ) be a finite automaton. Let Ψ be an alphabet of
rule labels and let Ξ be a control language. A language generated by finite automaton T
regulated by control language Ξ is the set

L(T,Ξ) = {w | w ∈ Σ∗, (s, w) `n
T (q, ε) [ρ1, . . . , ρn], ρ1 . . . ρn ∈ Ξ and q ∈ F}

Theorem 2.2.
REG = L(FA,REG) = L(REG,REG).

Proof. The proof can be found in [Sal–73] on page 184.

Definition 2.9. Let T = (Q,Σ,Ω, δ, s,∇, F ) be a pushdown automaton. Let Ψ be an
alphabet of rule labels and let Ξ be a control language. A language generated by pushdown
automaton T regulated by control language Ξ is the set

L(T,Ξ) = {w | w ∈ Σ∗, (s, w,∇) `n
T (qF , ε, γ) [ρ1, . . . , ρn], ρ1 . . . ρn ∈ Ξ, qF ∈ F, γ ∈ Ω∗}.

If it is useful to distinguish, T defines the following types of accepted languages:

6



2.2 Control Languages 2. Definitions

1. L(T,Ξ, 1) – the language accepted by the final state.

2. L(T,Ξ, 2) – the language accepted by an empty pushdown.

3. L(T,Ξ, 3) – the language accepted by the final state and an empty pushdown.

Theorem 2.3. For any pushdown automaton T and context-free grammar G so that

L(T ) = L(G)

and for any regular language Ξ

CF = L(T,Ξ) ⊂ L(G,Ξ).

Proof. The proof of the first equality can be found in [Kol–04] on page 31 as Lemma 4.4.1.
To prove the second relation we need to find regulated context-free grammar by regular
language that generates language, that is not context-free.
Consider following context-free grammar G = (N, T, P, S) where

• N = {S,A,B},

• T = {a, b, c},

• P = {1.S → AB, 2.A→ aA, 3.B → bBc, 4.A→ a, 5.b→ bc}

and the regular control language Ξ = 1(23)∗45. It is easy to verify, that L(G,Ξ) =
{anbncn | n ≥ 1}. This language is well known not context-free language.

The following theorem shows that regulation by control language can greatly increase
the power of underlying model.

Theorem 2.4. For every recursive enumerable language L there exists pushdown automa-
ton T and linear control language Ξ so that L = L(T,Ξ). Hence

RE = L(CF,LIN).

Proof. Proof of this theorem can be found in [Med–00].

The following theorem postulates that any recursive enumerable language can be gen-
erated as an one-turn stack automaton regulated by a linear language. This theorem was
first proved in [Med–00] and the proof is based on equivalence of regulated pushdown au-
tomata and queue grammars. But for implementation purposes we need the constructive
alternative introduced here. This proof was published in [Rych–09].

Theorem 2.5. Any recursive enumerable language L can be generated as L = L(M,L1, 3)
where M is an OTSA and L1 is a linear language.

Remark 1. However, we can in the same manner define regulated Turing machine, it is of
little or no interest because it is as powerful as ordinary Turing machine.
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3. Theoretical Results

Part II

New Grammatical Models of
Distribution and Concurrency

3 Theoretical Results

In this chapter, we discuss right-linear grammar that starts its derivations from start strings
rather than single symbols. Specifically, we study these grammars regulated by regular
languages. We demonstrate that the language family generated by these grammars with
start strings of length n or shorter is properly included in the language family generated
by these grammars with start strings of length n + 1 or shorter, for all n ≥ 1. From a
broader perspective, by obtaining this infinite hierarchy of language families, we contribute
to a classical trend of the formal language theory that demonstrates that some properties
of grammars affect the language families that the grammars generate.

Surprisingly, however, if during the derivation of any sentence from the generated lan-
guage, these grammars change the position of rewriting finitely many times, they just
generate the family of regular languages no matter how long their start strings are. In
other words, only if the number of these changes is unlimited, the above hierarchy holds
true.

The key parts of this chapter were published in [Med–08] and [Rych–08].

3.1 Definitions

Definition 3.1. Let n ≥ 1. A linear grammar with a start string of length n, n-LG for
short, is a quadruple G = (N, T,R, S), where N and T are alphabets such that N ∩ T =
∅, S ∈ N+, |S| ≤ n, and R is a finite set of productions of the form A → x, where A ∈ N
and x ∈ T ∗(N ∪ {ε})T ∗. Set V = T ∪N .

Let Ψ be an alphabet of rule labels such that card(Ψ) = card(R), and ψ be a bijection
from R to Ψ. For simplicity, to express that ψ maps a rule A→ x ∈ R, to ρ, where ρ ∈ Ψ,
we write ρ.A→ x ∈ R; in other words, ρ.A→ x means ψ(A→ x) = ρ.

If ρ.A→ x ∈ R and u, v ∈ V ∗, then we write uAv ⇒ uxv [ρ] in G.
Let χ ∈ V ∗. Then G makes the zero-step derivation from χ to χ according to ε, symbol-

ically written as χ ⇒0 χ [ε]. Let there exist a sequence of derivation steps χ0, χ1, . . . , χn

for some n ≥ 1 such that χi−1 ⇒ χi [ρi], where ρi ∈ Ψ, for all i = 1, . . . , n, then G
makes n derivation steps from χ0 to χn according to ρ1 . . . ρn, symbolically written as
χ0 ⇒n χn [ρ1 . . . ρn]. If for some n ≥ 0, χ0 ⇒n χn [ρ], where ρ ∈ Ψ∗ and |ρ| = n, we write
χ0 ⇒∗ χn [ρ].

8



3.1 Definitions 3. Theoretical Results

We call a derivation S ⇒∗ w successful, if and only if, w ∈ T ∗.
Let Ξ be a control language over Ψ; that is, Ξ ⊆ Ψ∗.
Under the regulation by Ξ, the language that G generates is denoted by L(G,Ξ) and

defined as
L(G,Ξ) = {w | S ⇒∗ w [ρ], ρ ∈ Ξ, w ∈ T ∗}.

Let i be a positive integer and X be a family of languages. Set

L(X, i) = {L | L = L(G,X),where G is a i-LG}.

In the same manner we define a right-linear grammar with a start string of length n,
n-RLG for short, where R is a finite set of productions of the form A → x, where A ∈ N
and x ∈ T ∗(N ∪ {ε}) and define

R(X, i) = {L | L = L(G,X),where G is a i-RLG}.

Specifically, R(REG, i) and L(REG, i) are central to this paper, where REG denotes
the family of regular languages.

Definition 3.2. Let G = (N, T,R, S) be an n-LG for some n ≥ 1 (See Definition 3.1).
G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S) is a distributed n-LG, n−disLG for short, if

• N = N1 ∪ N2 ∪ . . . ∪ Nn, where Ni, 1 ≤ i ≤ n are pairwise disjoint nonterminal
alphabets,

• S = X1X2 . . . Xn, Xi ∈ Ni, 1 ≤ i ≤ n,

• R = R1 ∪R2 ∪ . . . ∪Rn,
such that for every A→ xBy ∈ Ri, A,B ∈ Ni, for some 1 ≤ i ≤ n;x, y ∈ T ∗

and for every A→ a ∈ R, A ∈ N, a ∈ T ∗.

Set Ψi = {ρ | ρ.A→ aBb ∈ Ri or ρ.A→ a ∈ Ri, where A,B ∈ Ni and a, b ∈ T ∗}.

In the same manner we define a distributed n-RLG,
n−disRLG for short, if this grammar is n−disLG and all rules are right-linear.

Definition 3.3. (See [Das–89]) For n ≥ 1, a linear simple matrix grammar of degree n,
n-LSM for short, is an (n+3)-tuple G = (N1, . . . Nn, T, S, P ) where

• Ni, 1 ≤ i ≤ n are pairwise disjoint nonterminal alphabets,

• T is a terminal alphabet, Ni ∩ T = ∅, 1 ≤ i ≤ n,

• S /∈ N1 ∪ . . . ∪Nn is the start symbol,

• P is a finite set of rules. P contains three kinds of rules

1. S → x, x ∈ T ∗,

9
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2. S → X1 . . . Xn, Xi ∈ Ni, 1 ≤ i ≤ n,

3. (X1 → x1, X2 → x2, . . . , Xn → xn),
Xi ∈ Ni, xi ∈ T ∗NiT

∗ ∪ T ∗, 1 ≤ i ≤ n.

For x, y ∈ (N ∪ T ∪ {S})∗, x⇒ y if and only if

• either x = S and S → y ∈ P ,

• or x = y1X1 . . . ynXn, y = y1x1 . . . ynxn,
where yi ∈ T ∗, xi ∈ T ∗NiT

∗ ∪ T ∗, Xi ∈ Ni, 1 ≤ i ≤ n
and (X1 → x1, . . . , Xn → xn) ∈ P .

In the same manner we define a right-linear simple matrix grammar of degree n, n-RLSM
for short, if in definition of P the last rule is

3. (X1 → x1, X2 → x2, . . . , Xn → xn),
Xi ∈ Ni, xi ∈ T ∗Ni ∪ T ∗, 1 ≤ i ≤ n.

For more information about simple matrix grammars, see [Das–89].

Definition 3.4. Let i ≥ 1 and X be a family of languages. Let L(G,Ξ) be a language
generated by G and regulated by Ξ. Set

• R(X, i) = {L | L = L(G,Ξ), where G = (N, T,R, S) is a i-RLG and Ξ ∈ X}.

• L(X, i) = {L | L = L(G,Ξ), where G = (N, T,R, S) is a i-LG and Ξ ∈ X}.

• disR(X, i) = {L | L = L(G,Ξ),
where G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S)
is a i−disRLG and Ξ ∈ X}.

• disL(X, i) = {L | L = L(G,Ξ),
where G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S)
is a i−disLG and Ξ ∈ X}.

• SMR(i) = {L | L = L(G),
where G = (N1, N2, . . . , Nn, T, R, S) is a i-RLSM}.

• SML(i) = {L | L = L(G),
where G = (N1, N2, . . . , Nn, T, S, P ) is a i-LSM}.

3.2 New Results

Lemma 3.1. For every n-LG G = (N, T,R, S), there exists an equivalent
n−disLG G′ = (N ′

1, N
′
2, . . . , N

′
n, T

′, R′
1, R

′
2, . . . , R

′
n, S

′) such that L(G) = L(G′).

Proof. We will define nonterminals of G′ in the form (A, k) so that (A, k) ∈ N ′
k. Hence,

10
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• N ′
j = {(A, j) | A ∈ N}, where 1 ≤ j ≤ n;

• T ′ = T ;

• R′
j = {(A, j) → x(B, j)y | A→ xBy ∈ R,

(A, i), (B, i) ∈ N ′
j, x, y ∈ T ∗} where 1 ≤ j ≤ n;

• S ′ = (A1, 1)(A2, 2) . . . (An, n), where S = A1A2 . . . An.

For G′ = (N ′
1, N

′
2, . . . , N

′
n, T

′, R′, S ′) holds N ′
i ∩ N ′

j = ∅ for i 6= j, 1 ≤ i, j ≤ n. For
every derivation a ⇒ b [ρ], a, b ∈ {N ∪ T}∗, ρ.A → xBy ∈ R, x, y ∈ T ∗, A,B ∈ N of
grammar G there always exists equivalent derivation in G′ in form a′ ⇒ b′ [ρ′], a′, b′ ∈
{N ′ ∪ T ′}∗, ρ′.(A, i) → x(B, i)y ∈ R′, x, y ∈ T ′∗, (A, i), (B, i) ∈ N ′

i .

Lemma 3.2. For every n−disLG G′ = (N ′
1, N

′
2, . . . , N

′
n, T

′, R′
1, R

′
2, . . . , R

′
n, S

′), there exists
an equivalent n-LG G = (N, T,R, S) such that L(G) = L(G′).

Proof. We define grammar G = (N, T,R, S) in the following way

• N = N ′
1 ∪N ′

2 ∪ . . . ∪N ′
n,

• T = T ′,

• R = R′
1 ∪R′

2 ∪ . . . ∪R′
n,

• S = A1A2 . . . An, where S ′ = A1A2 . . . An ∈ R′.

A rigorous proof that L(G) = L(G′) is left to the reader.

Theorem 3.1. For all n ≥ 1, L(n−disLG) = L(n-LG).

Proof. This theorem directly follows from Lemma 3.1 and Lemma 3.2.

Theorem 3.2. For all n ≥ 1, L(n−disRLG) = L(n-RLG).

Proof. This theorem directly follows from Theorem 3.1.

Lemma 3.3. Let i ≥ 1. disL(REG, i) ⊆ SML(i). That is,
for every n−disLG G = (N1, . . . , Nn, T, R1, . . . , Rn, S) regulated by regular language Ξ there
exists equivalent n-LSM G′ = (N ′

1, . . . , N
′
n, T

′, S ′, P ′) such that L(G) = L(G′).

Proof. Rigorous proof can be found in the thesis.

Lemma 3.4. Let i ≥ 1. disL(REG, i) ⊇ SML(i) That is, for every n-LSM
G′ = (N ′

1, . . . , N
′
n, T

′, S ′, P ′) there exists equivalent n−disLG
G = (N1, . . . , Nn, T, R1, . . . , Rn, S) regulated by regular language Ξ such that L(G) = L(G′).

Proof. G is defined in this way:

• Ni = N ′
i , 1 ≤ i ≤ n;
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• T = T ′;

• S = S ′;

• Ri = {rij.Ai → uiBivi | for the jth rule
(A1, . . . , Ai, . . . , An) →
→ (u1B1v1, . . . , uiBivi, . . . , unBnvn) ∈ P ′,
ui, vi ∈ T ∗, 1 ≤ j ≤ |P ′|}, 1 ≤ i ≤ n.

where Ξ = L(GΞ), GΞ = (NΞ, TΞ, RΞ, SΞ) is defined as follows:

• NΞ = {Q} ∪ {Qij | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ |P ′|};

• TΞ = {rij | 1 ≤ i ≤ n, 1 ≤ j ≤ |P ′|};

• RΞ = {Q→ r1jQ1j | 1 ≤ j ≤ |P ′|} ∪
∪ {Qij → ri+1jQi+1j | 1 ≤ i ≤ n− 2,
1 ≤ j ≤ |P ′|} ∪ {Qn−1j → rnjQ | 1 ≤ j ≤ |P ′|};

• SΞ = Q.

Theorem 3.3. For all i ≥ 1, disL(REG, i) = SML(i).

Proof. This theorem directly follows from Lemma 3.3 and Lemma 3.4

Theorem 3.4. For all i ≥ 1, disR(REG, i) = SMR(i).

Proof. This theorem directly follows from Theorem 3.3.

Theorem 3.5. For all i ≥ 1, SML(i) ⊂ SML(i+ 1).

Proof. See [Das–89].

The main result of this paper follows next.

Theorem 3.6. For all i ≥ 1,
L(REG, i) ⊂ L(REG, i+ 1).

Proof. This theorem follows from Theorems 3.1, 3.3 and 3.5.

Theorem 3.7. For all i ≥ 1,
R(REG, i) ⊂ R(REG, i+ 1).

Proof. This theorem follows from Theorem 3.6.
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Let G be an n−disRLG satisfying Definition 3.2. Let S ⇒∗ w [σ], w ∈ T ∗, σ =
ρ1ρ2 . . . ρm, for some m ≥ 1, 1 ≤ i ≤ m, ρi ∈ Ψ, σ ∈ Ξ.
Set

d = card({ρjρj+1 | j = 1, . . . ,m− 1, ρj ∈ Ψk, ρj+1 ∈ Ψh, k 6= h}).

Then, during the generation of w ∈ L(G,Ξ) by S ⇒∗ w [σ], G changes the derivation
position d times. If there is a constant k ≥ 0 such that for every x ∈ L(G,Ξ) there is a
generation of x during which G changes the derivation position k or fewer times, then the
generation of L(G,Ξ) by G requires no more than k changes of derivation positions. Let k
be the minimal possible than we write d(G) = k.

Let i ≥ 1, k ≥ i− 1 and X be a family of languages. Set

• R(X, i, k) = {L | L = L(G,Ξ), whereG = (N, T,R, S) is a i-RLG, Ξ ∈ X and d(G) =
k, the generation of L(G,Ξ) by G requires no more than k changes of derivation
positions}.

• disR(X, i, k) = {L | L = L(G,Ξ), where G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S) is
a i−disRLG, Ξ ∈ X and d(G) = k, the generation of L(G,Ξ) by G requires no more
than k changes of derivation positions}.

Theorem 3.8. Let i ≥ 1, k ≥ 0. Then, R(REG, i, k) = disR(REG, i, k).

Proof. This proof is analogous to the proof of Theorem 3.1.

Theorem 3.9. For any n, k ≥ 1, R(REG, n, k) ⊆ REG. That is,
let G = (N1, N2, . . . , Nn, T, R1, R2, . . . , Rn, S) be an n−disRLG regulated by regular lan-
guage Ξ. Let generation of L(G,Ξ) by G require no more than k changes of derivation
positions. Then, there exists an equivalent regular grammar G′ = (N ′, T ′, S ′, P ′) such that
L(G,Ξ) = L(G′).

Proof. This proof can be found in [Med–08].

As opposed to Theorem 3.6, the next theorem demonstrates that if during the derivation of
any sentence from the generated language, these grammars change the position of rewrit-
ing finitely many times, then they always generate only the family of regular languages
independently of the length of their start strings.

Theorem 3.10.
R(REG, n, k) = REG.

Proof. REG = R(REG, 1, 0) ⊆ R(REG, n, k) ⊆ REG (see Theorem 3.9).
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4 Applications in Parsing

In previous chapters we saw that concurrency and regulation can extend the power of a
formal system based on regular or linear language towards context-sensitive language.'

&

$

%

RE

'

&

$

%

CS

'

&

$

%

CF

'
&

$
%LIN

�
�

�
�REG

����������1

A
A

A
A

A
AK

Figure 2: Regulation of REG and LIN languages

These kinds of results are very interesting from the theoretical point of view. But for
practical results, it is much more interesting to regulate context-free languages rather than
regular or linear ones. There are two reasons for this. Firstly, achieving some context-
sensitive programming language by regulation by linear or regular language leads to a
very complex and chatty grammars (see [Rych–05]). Secondly, we already have the whole
theory for managing context-free languages. So it is natural to use this theory and regu-
late context-free languages and move towards context-sensitive and recursive enumerable
languages. '
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Figure 3: Regulation of CF languages
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Now the natural question arises: why would we need to have parsers for more powerful
languages than context-free ones? Is not C, C# or Java enough? In one way they are.
But the more powerful language family we choose, the more complex requirements we can
demand. '
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anbnc∗ – accepted by PDA
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%anbncn – accepted by LBTM

Figure 4: Another look at language hierarchy

In Figure 4 we can see that if we have only finite automata for parsing programming
languages we cannot distinguish between program in the form a∗b∗c∗ and anbnc∗. If we
have pushdown automata for parsing we cannot distinguish anbnc∗ and anbncn.

Consider the following two programs:

program A;

int : a, b;

string : s;

begin;

a := 1; b := 2;

a := a + b;

s := "foo";

end.

program B;

int : a, b;

string : s;

begin;

a := 1; b := 2;

a := a + b;

s := 1;
end.

Both programs are described by standard, context-free Pascal-like grammar. It is easy
to see that program A is correct and program B is incorrect, because of assigning integer
value 1 to string variable s. This is the place where the power of classic context-free parsers
fails. They are not able to distinguish correct from incorrect programs like program A from
program B.

In Figure 5 we can see the reversed Chomsky hierarchy. Σ∗ represents all programs
(text files) over ASCII character set. No parser is needed for distinguishing whether any
text file is or is not a program. If we use finite automaton for parser we can define tokens
and key words of our new programming language. Parser based on such finite automaton

15



4.1 Classic Parsing Technique 4. Applications in Parsing

can distinguish whether any program consists of allowed tokens and key words without
any syntactic analysis. Next, pushdown automaton comes into play. Now we can easily
describe our programs by context-free grammars, construct LL table and parse input files
and decide whether they are programs in our language or not. This is the usual case of
parsing. All present programming languages such as C, C# or Java belong in this category.
We can prescribe syntax for such programming language but we are not able to prescribe
that program A is the correct program of such language but program B is not correct.'
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Σ∗ – all text files
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%

accepted by FA – sequence of tokens

'

&

$

%

accepted by PDA – program B

'
&

$
%accepted by LBTM – program A

Figure 5: Correct and incorrect programs

Finally, we would like to move further towards parsing by more powerful languages. We
would like to define non context-free grammars and corresponding parsing techniques,
which can decide whether a certain program file is correct, whether it is a word from some
context-sensitive language, or is not correct.

Some kind of described possibilities we can already see in modern development envi-
ronments. It is achieved by repetitive running of the whole compile process, including data
flow analysis. This approach is quite complex and time consuming task and also usually
needs to be hard-coded in development environment and compiler. The described approach
reveals all mistakes made during the parsing phase and it is possible to make a general
parser that accepts any grammar and verifies the program.

This chapter first, in short, describes classic parsing techniques of context-free lan-
guages. Next we discuss possibilities of moving beyond the classic methods and present
parsing techniques for scattered-context grammar. The implementation is then described
generally.

4.1 Classic Parsing Technique

Parsing a string according to a grammar means deciding whether the input word (source
program) is generated by the grammar and if so, to construct the parse tree that shows
how the given word can be derived from the grammar. This task of parser is the key part
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in the compiler operation. The parser together with the symbol table is responsible for
constructing the parse tree. To do so, it has to communicate with a lexical analyzer to
obtain the sequence of tokens from the input string.

A word can have more than one parse tree. In this case we call it ambiguous. The
ambiguity can be true or false. The false ambiguity in Figure 6 does not change the
semantics. The string 3+5+1 has two parse trees but the semantics is 9 in both cases.

Figure 6: False ambiguity

If we change the + into a - in the previous example, the ambiguity changes the semantics.
In the first case the semantics is -1 but in the other case, it is -3.

To reconstruct the parse tree we need the parse technique. If we look into literature
[Aho–72] or [Aho–07] we find many of such techniques. The two main techniques are top-
down parsing and bottom-up parsing. Top-down parsing starts from start symbol of a
grammar and by simulating application of rules until the final word is reached. Bottom-up
parsing works in reversed mode. It takes the input word and replaces the right side of
some rule by its left side. This is repeated until the start symbol is reached. In both cases
the main question is to decide which rule to apply if there are more of them which can be
applied. The answer for grammar G = (N, T, P, S) is to construct an LL table α(A, a) ∈ P ,
where A ∈ N and a ∈ T .

Definition 4.1. Let G = (N, T, P, S) is a context-free grammar, α ∈ (N ∪ T )∗.

FIRST (α) ::= {a ∈ T | α⇒∗ aβ, β ∈ (N ∪ T )∗} ∪ {ε | α⇒∗ ε}.

Definition 4.2. Let G = (N, T, P, S) is a context-free grammar, A ∈ N .

FOLLOW (A) ::= {a ∈ T | S ⇒∗ αAβ, a ∈ FIRST (β), α, β ∈ (N ∪ T )∗}.

Definition 4.3. Condition FF holds if for every set of production rules:

A→ α1 | α2 | . . . | αk ∈ P

from context-free grammar, G = (N, T, S, P ), it is satisfied:

FIRST (αi) ∩ FIRST (αj) = ∅,∀i 6= j, 1 ≤ i, j ≤ k.
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Definition 4.4. Condition FFL holds if for every set of production rules:

A→ α1 | α2 | . . . | αk ∈ P

such that
∃i, 1 ≤ i ≤ k : αi ⇒∗ ε

from context-free grammar, G = (N, T, S, P ), it is satisfied:

FIRST (αj) ∩ FOLLOW (A) = ∅,∀i 6= j, 1 ≤ i, j ≤ k.

Definition 4.5. A context-free grammar G is LL1 grammar if conditions FF and FFL
are satisfied for the G.

Definition 4.6. Let G = (N, T, P, S) is a context-free grammar, α ∈ (N ∪ T )∗.

Empty(α) ::= {ε | if α⇒∗ ε}

Empty(α) ::= {∅ | otherwise}

Definition 4.7. Let G = (N, T, P, S) be a context-free grammar. For every A → x ∈ P ,
we define set PREDICT (A→ x) so that

• if Empty(x) = {ε} then
PREDICT (A→ x) = FIRST (x) ∪ FOLLOW (A).

• if Empty(x) = ∅ then
PREDICT (A→ x) = FIRST (x).

Definition 4.8. Let G = (N, T, P, S) be a context-free grammar. A→ x ∈ P and a ∈ T .

• if a ∈ PREDICT (A→ x),
then add A→ x to α(A, a).

Now if the parser reaches the state where nonterminal A is on the top of the stack and
terminal a is the first terminal from the rest of input string, it looks into the LL table for
the rule at position α(A, a).

4.2 Alternative Approach to Parsing

By introducing context-sensitive syntax analysis into the source code parsing process a
whole class of new problems may be solved at this stage of a compiler. Namely issues with
correct variable definitions, type checking etc. The main goal of regulated formal systems
is to extend abilities from standard CF LL-parsing to CS or RE families with preservation
of ease of parsing.

In [Kol–04] and [Rych–05] we can find some basic facts from theory of regulated push-
down automata (RPDA). We figured that regulated pushdown automata can in some cases
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simulate Turing machines so we could use this theory for constructing parsers for context-
sensitive languages or even type-0 languages. We have also demonstrated the basic problem
of this concept: complexity. Almost trivial Turing machine was transformed to regulated
pushdown automata with almost 6 000 rules.

Converting deterministic (linear bounded) Turing machine or scattered-context gram-
mar to deterministic RPDA is very complex task. For the most simple context-sensitive
languages corresponding deterministic RPDA has thousands of rules. If we want to use
these algorithms for creating some practical parser for real context-sensitive programming
language it may result in millions of rules. Therefore, we are looking for another way to
parse context-sensitive languages. We would like to extend some context-free grammar
of any common programming language (such as Pascal, C/C# or Java). After extend-
ing context-free grammar to corresponding context-sensitive grammar, parsing should be
straightforward.

As an example of a context-free language we use a language called ZAP03 [ZAP–03]
which has very similar syntax to Pascal. We will use following program as an example
program in ZAP03 language.

int : a, b, c, d;

string : s;

begin

a = 1;

b = 2;

c = 10;

d = 15;

s = "foo";

a = c;

end

Now we will define KontextZAP03, the context-sensitive extension of ZAP03. KontextZAP-
03 will be described by scattered-context grammar. In the first phase we will enrich Kon-
textZAP03 by variable checking. If the variable is undefined or assigned before initialized,
the parser of KontextZAP03 will finish in error state. We will need to analyze three frag-
ments of ZAP03 code where variables are used (variable c for example).
Variable definition
int : a, b, c, d;

Assignment statement
c = 10;

And using variables in commands
a = c ;

Corresponding grammar fragments from ZAP03 are following.
Variable definition
DCL → TYPE [:] [id] ID LIST
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ID LIST → [,] [id] ID LIST

ID LIST → ε
Fragment of assignment statement
COMMAND → [id] CMD COMMAND

CMD → [=] STMT [;]

And usage variable in command
STMT → [id] OPER

OPER → ε.
Symbols in brackets [,] are terminals. Complete ZAP03 grammar has about 70 context-
free grammar rules.

We define grammar of language KontextZAP03 in the following way. Substitute previ-
ous rules with these scattered-context ones:
(DCL, S’) → (TYPE [:] [id] ID LIST, D)

(ID LIST, S’) → ([,] [id] ID LIST, D)

(ID LIST) → (ε)
assignment statement
(COMMAND, D) → ([id] CMD COMMAND, DL)

(CMD) → ([=] STMT [;])

and usage variable in command
(STMT, D) → ([id] OPER, DR)

(OPER) → (ε).

Parsing now proceeds in the following way: starting symbol is S S’ and derivation will
go as usual until there is DCL S’ processed and (DCL, S’)→ (TYPE [:] [id] ID LIST,

D) rule is to applied. At this moment S’ is rewritten to D indicating that variable [id] is
defined. When variable [id] is used on left resp. right side of assignment D is rewritten to
DL resp. DR according to second resp. third previously shown fragment. If variable [id] is
used without being defined beforehand, a parse error occurs because S’ is not rewritten to
D and S’ cannot be rewritten to DL or DR directly. When the input is parsed S is rewritten
to program code and during LL parsing is popped out of the stack. S’ is rewritten onto
D{LR}∗ and this is only string that remains.
S S’ ⇒∗ DCL S’ ⇒ TYPE [:] [id] ID LIST D ⇒∗ COMMAND D ⇒

⇒ [id] CMD COMMAND DL ⇒∗ DL

If the only remaining symbol is D, it means that variable [id] was defined but never used.
If DL+ is the only remaining symbol, we know that variable [id] was defined and used only
on the left sides of assignments. Finally if there is the only remaining DR(LR)∗, we know
that the first occurrence of variable [id] is on the right side of an assignment statement and
therefore it is being read without being set. In all these cases the compiler should generate
a warning. These and similar problems are usually addressed by a data-flow analysis phase
carried out during semantic analysis.

Using this algorithm we can only process one variable at a time. But the proposed
mechanism can be easily extended to a finite number of variables by adding new S’· · · ’
every time we discover a variable definition. Parsing of described scattered-context gram-
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mar can be implemented by pushdown automaton with finite number of pushdowns. The
first pushdown is classic LL pushdown. The second one is variable specific and every [id]
holds its own.

Because original ZAP03 grammar is LL1 and using described algorithm was not any
rule added, KontextZAP03 grammar has unambiguous derivations.

A few examples can clear the idea. This program is well-formed according to ZAP03
grammar, but it’s semantics is not correct and parsing it as KontextZAP03 program should
reveal this error.

int : a, b, c, d;

string : s;

begin

a = 1;

b = 2;

d = 15;

s = "foo";

a = c;

end

Corresponding stack to variable c will be DR what lead to warning:
Variable c read but not set.

Second example shows another variation

int : a, b, c, d;

string : s;

begin

a = 1;

d = 15;

s = "foo";

a = c;

end

Corresponding stack to variable b will be D what lead to warnings (together with pre-
vious one):
Variable c read but not set.

Variable b is defined but never used.
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4.3 Type Checking

By using scattered-context grammars we can describe type set of language (INT, STR) and
type check rules directly in grammar. Almost trivial language with type checking using 5
stacks can look like this:

(s) → (program)
(program) → (dcl)
(program) → ([begin]command[end])
(dcl) → (type[:]dcl2)
(dcl2, S, INT, , ) →

([id]id list[; ]next,D, INT, INT )
(dcl2, S, STR, , ) →

([id]id list[; ]next,D, STR, STR)
(id list) → ([, ]idlist2)
(id list2, S) → ([id]id list,D)
(id list) → (ε)
(next) → (dcl)

(next) → (program)
(type, , ) → ([int], , INT )
(type, , ) → ([string], , STR)
(command,D, INT, , ) →

([id] cmd command,D L, INT, INT )
(command,D, STR, , ) →

([id] cmd command,D L, STR, STR)
(command) → (ε)
(cmd) → ([=]stmt[; ])
(stmt,D) → ([id], D R)
(stmt, , , , INT ) → ([digit], , , , )
(stmt, , , , STR) → ([strval], , , , )

Stacks at even positions are the variable specific stacks as mentioned in previous chap-
ter. The first stack is classic LL stack and the rest of stacks at odd positions are temporary
used stacks for additional information. Although the underlying context-free grammar is
not LL grammar because there are several identic rules (command → [id] cmd command),
this grammar is unambiguous.

Example of error program code can be
int : a, c;

begin

a = 1;

c = "foo";

end

because c = "foo" is not type correct (STR is assigned to INT), parsing will fail.
(S, S, ε, ε, ε) ⇒∗ (DCL, S, ε, ε, ε) ⇒ (TYPE [:] DCL2, S, ε, ε, ε) ⇒

⇒([int] [:] DCL2, S, INT, ε, ε) ⇒2 (DCL2, S, INT, ε, ε) ⇒
⇒([id] ID LIST [;] NEXT, D, INT, INT, ε) ⇒∗

⇒∗ (COMMAND [end], D, INT, INT, ε) ⇒
⇒ ([id] CMD COMMAND [end], DL, INT, INT, INT) ⇒∗

⇒∗ (STMT [;] COMMAND [end], DL, INT, INT, INT) ⇒
⇒ ([digit] [;] COMMAND [end], DL, INT, INT, INT)

Now parsing will fail because the input character is [strval] instead of [digit].
This is an easy extension of standard context-free grammar that can describe the type

system. In our previous example there are just two types (INT and STR) and only two
allowed assignments (INT → INT and STR → STR). It is very easy to generalize this
approach to construct general type injector into a context-free grammar.
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Figure 7: Injecting type system into grammar

4.4 Other Applications of CS Languages

It is obvious, that using a simple scattered-context extension of CF languages, we obtain
a grammar with interesting properties with respect to analysis of a programming language
source code. We provide some basic motivation examples.

1. Errors related to usage of undefined variables may be discovered and handled at parse
time without the need to handle them by static semantic analysis.

2. A CS extension of a grammar of the Java programming language, which copes with
problems like mutual exclusion of various keywords, such as abstract and final,
reflecting the fact that abstract methods cannot be declared final and vice versa.
This situation can be handled quite easily, by introducing additional symbol S′′ and
two corresponding rules S′′ → A (corresponds to abstract) and S′′ → F (corresponds
to final). Obviously only one of the rules can be used at a time.

3. Accounting of statements in a program in a ZAP03 language by introducing new
size keyword, which defines upper bound on the number of statements in current
scope. The parser is then extended such that when the keyword is discovered, the
number of specialized nonterminals (say X) is generated on the stack – as specified
by the keyword occurrence and the grammar of the language is modified accordingly.
The rule:
COMMAND → [id] CMD COMMAND

changes to:
(COMMAND, X) → ([id] CMD COMMAND, ε )
Then, when a statement rule is used, one X nonterminal is eliminated from the stack.
If there are no remaining X nonterminals, the parsing immediately fails.
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5. Summary

Part III

Conclusion

5 Summary

This work attempts to map grammatical models of computational distribution and con-
currency. The main tool used to meet this requirement is regulated grammar. We divide
regulated formal models into three parts. The first approach is to tie some productions
together, as we can see in the case of matrix grammar or programmed grammar. The
second approach is to permit or deny applying rules according to presence of some symbols
in an actual word, as we can see in permitting and forbidding grammar or random-context
grammar. The third (and the most discussed in this work) is the approach based on con-
trol language. In this case we label productions and, as a successful derivation, we only
define such derivation in which corresponding production labels form a word from control
language.

In the fifth chapter new results from regulated rewriting systems are presented. It starts
with a definition of the formal model with start string of length n and shows that regular
language with start string of length n regulated by regular language forms a language
hierarchy according to n. This hierarchy is known as the Wood hierarchy. Later, in the
fifth chapter, we limit the derivation position in start string to a finite number. This results
in the collapsing the whole hierarchy to the set of regular languages.

The sixth chapter discusses an application of the presented models of distribution and
concurrency. The implementation of a parser based on scattered-context grammar is pre-
sented and a couple of examples of non context-free grammar is described.

The whole work is divided into two main parts, which represent two concepts of formal
language regulation. The first part is based on regulation of regular and linear languages,
which is interesting from the theoretical point of view. This kind of regulation strengthens
the power of such formal systems towards context-sensitive languages. The other part
discusses regulation of context-free languages and is mainly focused on application. Using
standard parsing techniques on concurrent working context-free grammars preserves the
ease of classic methods but enables the parsing non context-free programs. The best proof
of this concept is the implementation of such a parser and presenting a couple of examples
describing the power of a context-sensitive parser.
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Figure 8: Regulation of languages

For future research, there is a wide spectrum of still not deeply mapped regulated
formal systems and their properties. It is possible to study in depth pure regulated formal
systems (as regular grammars with start string regulated by regular grammars) or modified
ones (with a given limitation in number of changing derivation positions).

It is also possible to study regulated parallel grammars and other regulated parallel
formal systems such as L-Systems. A special case of L-System, T0L system, is a parallel
rewriting system which can be studied deeply as a regulated formal system.

6 Historical and Bibliographical Remarks

Grammatical models of computational distribution and concurrency have from theoretical
point of view many aspects. Some of them were introduced in [Wood–73] in definition
of n-parallel languages. In [Roz–73] grammar systems are described. Later some more
general results were presented for example in [Sal–73] and [Das–89]. Practical applications
were described in [Aho–72], [Aho–07], especially in the second edition.

7 Future research

One of the promising applications of the described concept is introducing a notion of
preconditions and postconditions to the ZAP03 programming language. Preconditions
resp. postconditions are essentially sets of logical formulae, which are required to hold at
entering resp. leaving a program or method. For example, when computing a square root
of x, we can require a positivity of x using precondition {x >= 0}. A computation of sinus
function {y = sin x} a natural postcondition {(y <= 1) ∧ (y >= −1)} arises.

Statements of a programming languages then induce transformation rules on precon-
dition and postcondition sets. For example, assignment statement in the form V := E
defines a transformation:

{P [E/V ]}V := E{P},
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where V is a variable, E is an expression, P is precondition and P[E/V] denotes a substi-
tution of V for all occurrences of E in P. Other transformation examples may be found in
[Gor–98].

The purpose of introducing preconditions and postconditions into a language is to be
able to derive postconditions from specified preconditions using transformation rules in a
particular program. Such program then carries a formal proof of its correctness with it,
which is a desirable property.

In the ZAP03 language we can implement the described concept by introducing two
new keywords pre and post and by extending the rules of the language grammar with
above mentioned transformation rules. When the parsing of a program is initiated, the
precondition set is constructed using the pre declarations and the transformation rules
are applied to it as the parsing progresses through the source code. When the parsing
terminates, the resulting set of transformed preconditions is compared with the declared
postconditions. If these two sets match, the parsed program is correct with respect to the
specified preconditions and postconditions.

However, for practical reasons we must define constraints on the possible preconditions
and postconditions. Postconditions must be generally derivable from preconditions or (as
a corollary of the Gödels incompleteness theorem) the postconditions need not be provable
from the preconditions at all, but may still hold. In this particular case we have encountered
a program which may be correct, but we cannot verify this fact.
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[Das–89] Dassow, J., Pǎun, Gh.: Regulated Rewriting in Formal Language Theory,
Springer, 1989.

[Gef–91] Geffert, V., Normal forms for phrase-structure grammars, Theoretical Infor-
matics and Applications, Volume 25, Pages 473-496, 1991.

26



REFERENCES REFERENCES

[Gor–98] Gordon, J. C. M.: Programming Language Theory and its Implementation,
Prentice Hall, 1998.

[Gre–69] Greibach, S.: An Infinite Hierarchy of Context-Free Languages, Journal of the
ACM, Volume 16, Pages 91-106, 1969.
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