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Abstract

This thesis aims to improve existing scanning-window object detectors by exploiting

information shared among neighboring image windows. This goal is realized by

two novel methods which are build on the ideas of Wald’s Sequential Probability

Ratio Test and WaldBoost. Early non-Maxima Suppression moves non-maxima

suppression decisions from a post-processing step to an early classification phase in

order to make the decisions as soon as possible and thus avoid normally wasted

computations. Neighborhood suppression enhances existing detectors with an

ability to suppress evaluation at overlapping positions. The proposed methods

are applicable to a wide range of detectors. Experiments show that both methods

provide significantly better speed-precision trade-off compared to state-of-the-art

WaldBoost detectors which process image windows independently. Additionally,

the thesis presents results of extensive experiments which evaluate commonly used

image features in several detection tasks and scenarios.
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CHAPTER 1

Introduction

Automatic detection of objects in images is an important task with applications

ranging from face detection in hand-held cameras and cloud-based photo collections

to general scene understanding and human-machine interaction. Development of

practical detectors is a scientific and engineering challenge which combines fields of

image processing, machine learning, and often hardware acceleration.

The range of methods for object detection is wide. One particular class of

methods scans images with a small scanning-window and tries to determine for

each of the windows separately if it contains an object of interest or if it contains

background. These methods rely on fast classifiers to make the decisions and on

efficient features to extract relevant information from the image windows.

Existing scanning-window detectors are fast and precise, able to detect even

small objects in Full HD video in real-time. However, computational resources are

still not sufficient in some situations and precision of detection has to be sacrificed

for speed.

One drawback of many scanning-window detectors is that they process each

image window independently even though they overlap and share lot of common

information. In this thesis, I propose to make use of the shared information to

improve existing detectors.

I explore the idea of sharing local information and I refine it into two novel
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practical detection methods. The first method augments existing detectors by an

ability to suppress their evaluation at neighboring position in an image. This way,

the detector is evaluated fewer times, saving significant computational effort.

The second method relies on the fact that objects cannot occupy the same

space in an image. If two objects were too close, a detector would not be able

to detect them anyway due to occlusion. This method lets neighboring image

positions compete among themselves. It progressively evaluates small parts of a

detector at the neighboring positions and gradually reject those positions which

will not, with high probability, give the best detection score.

The proposed methods efficiently use the information shared among neighboring

image positions, and thus push speed-precision envelope of a range of state-of-the-

art detectors. Moreover, the two methods accelerate detection in different parts

of an image. The neighborhood suppression is effective in background areas while

the benefit of letting the detector locally compete improves speed mostly around

objects. Because of that, the methods complement each other very well and should

provide even greater benefits when combined.

1.1 Summary of Contributions

This thesis contributes to the state-of-the-art of appearance-based object detection

methods. It explores an idea that existing scanning-window detectors [17] could be

improved by exploiting dependencies between neighboring image windows. The idea

is refined into two novel, practical, and in certain aspects complementary methods

which utilize the shared information to improve detectors. Both methods are

demonstrated on specific detectors resulting in two practical detection algorithms.

The methods are general and are not limited to any specific type of detectors.

The only requirement is that the detectors have to be decomposable into frag-

ments which provide meaningful discriminative information. Exemplar applications

presented in this thesis are based on soft cascade [17] detectors which satisfy the

requirement very well; however, other detectors, such as detection cascades [18],

trees, and multi-object detectors [11], could be considered as well.

Neighborhood suppression. A detection classifier computed at an image win-

dow extracts information relevant to other overlapping windows. The neighborhood

suppression algorithm (Chapter 4) exploits this fact and trains new classifiers to

reject neighboring image windows provided they contain background with high con-
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fidence. The new classifiers reuse features of an existing detector changing only the

classification function. The neighborhood suppression can be realized with minimal

computational overhead for soft cascades and domain-partitioning weak classifiers

and it can be directly incorporated in existing detection engines requiring only

minor modifications. Neighborhood suppression was originally published in [21].

Early non-maxima suppression (EnMS). Scanning-window object detection

often includes some kind of non-maxima suppression which removes overlapping

detections with non-maximal responses of the detection classifier. Such suppression

decisions are made only after all the classifiers are fully evaluated. EnMS moves

the decision to earlier stages of the classifier in order to stop evaluation of the

classifiers which would, with high confidence, be rejected by the ordinary non-

maxima suppression. Chapter 5 presents the general idea of EnMS together with a

practical version of the algorithm which can be applied to soft cascades. EnMS is

general and can be applied to a wide range of tasks even outside computer vision –

any task which searches for the highest response of a suitable classifier in a group

of competing objects. Furthermore, EnMS could be modified to handle multiple

classifiers evaluated on a single object. EnMS was originally published in [9].
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CHAPTER 2

Sequential analysis in object detection

In object detection using the sliding-window technique, the decision at each image

position can be regarded as a statistical hypothesis test where the null hypothesis

H0 states that the image patch does not contain an object of interest [17]. The

alternative hypothesis H1 is that the patch contains an object of interest.

The most powerful statistical test [20] for single image window can be defined

as
p(x|H1)

p(x|H0)
≥ k, (2.1)

were x is a multi-dimensional vector of features extracted from a single image

position and k is the required confidence. In case the features were independent,

the functions p(x|H1) could be factorized into products of univariate distributions.

Unfortunately, features describing the same object are generally not independent,

and should be modeled jointly.

A fully joined model p(x|H) would be complex, hard to estimate, and com-

putationally expensive. Practical detectors which utilize probabilistic models of

background and foreground have to make compromises by omitting some of the

dependencies.
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Sequential statistical test. A. Wald [20] defined a sequential test of a statistical

hypothesis as a procedure which, at any stage of an experiment where samples

are drawn independently and identically distributed from an unknown distribution,

gives a specific rule, for making one of the three decisions: (1) to accept the null

hypothesis, (2) to reject the null hypothesis, (3) to continue the experiment by

making additional observation. A novel idea of the sequential test was that the

number of observations needed to make a decision was not predetermined, rather,

the number of observations was threated as a random variable. This made it possible

to adjust the number of observations to each particular instance of an experiment,

and thus reduce the average number of observations while maintaining the same

expected error level. As is shown in the following text, the ideas of sequential

statistical testing can be adapted in fast detection classifiers which compute and

use only so many features at each image position such that a predetermined error

rates are achieved.

2.1 Optimal Sequential Decision Strategy

In the following text, the sequential test is formalized in a way which is suited

for a two-class classification task as opposed to the Wald’s definition [20] for

independent samples drawn from an unknown distribution. The formulation here

follows formulations in [17, 19].

Sequential decision strategy. Let x ∈ X be a vector of measurements xi ∈ Xi
representing an object. The task is to estimate an unknown class y ∈ {−1,+1}
associated with the object based on the values xi. The sequential test can be

formalized as a sequential decision strategy S : X → {−1,+1} which is a sequence

of decision functions S = S1, S2, . . . Each of the decision functions takes one

measurement of the object, and makes its decision based on the previously obtained

measurements including the new one – formally St : X1×X2×. . .×Xt → {−1,+1, ]}.
The decision strategy terminates when a decision function outputs +1 or −1. The

symbol ’]’ defers the decision to the following function St+1.

Strength of a sequential decision strategy S is characterized by its false negative

rate αS and its false positive rate βS

αS = P (S(x) = −1|y = +1) and βS = P (S(x) = +1|y = −1). (2.2)
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Second important characteristic of a sequential decision strategy is its speed

which is expressed as the number of measurements needed to reach a decision. This

number is a random variable and it will be further denoted as NS . The average

number of measurements T̄S = E [NS ] depends on the object class. The average

number of measurements for the two classes will be denoted as

T̄S,−1 = E [NS |y = −1] and T̄S,+1 = E [NS |y = +1] . (2.3)

A sequential decision strategy S∗ is considered to be best [20] or evaluation-

time-optimal [19] if it provides the lowest TS∗,−1 and TS∗,+1 compared to any other

decision strategy of equal strength – of those decision strategies that have equal

false negative rate αS and false positive rate βS .

Sequential Probability Ratio Test. A. Wald [20] proposed a Sequential Prob-

ability Ratio Test (SPRT) which he believed was an evaluation-time-optimal se-

quential decision strategy. SPRT is defined as a sequential strategy S∗ where

S∗t (x) =


+1, if Rt(x) ≤ B
−1, if Rt(x) ≥ A
], if B < Rt(x) < A

(2.4)

where Rt(x) is a likelihood-ratio of the two competing hypotheses:

Rt(x) =
p (x1, . . . , xt|y = −1)

p (x1, . . . , xt|y = +1)
. (2.5)

The constraints A and B determine error rates α and β of the test. Wald [20]

suggest A and B to be set to their upper and lower bounds, respectively:

A =
1− β
α

, B =
β

1− α
. (2.6)

2.2 WaldBoost

In order for SPRT to be efficient in a classification task where the measurements

are not independent and identically distributed (non-i.i.d.), the decision functions

(Equation 2.4) have to be evaluated very fast. Ideally, the decision functions should

incorporate the new measurements in a computationally simple way which does

not depend on the number of measurements taken so far. Additionally, the order
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of measurements matters in the non-i.i.d. case. The first measurements taken

should be those most informative, as those allow to accumulate enough evidence

about the decision problem as early as possible, thus reducing average number of

measurements needed.

Šochman and Matas proposed WaldBoost [17] which avoids computation of the

likelihood ratios by projecting the classified objects to a scalar value using real

AdaBoost [15] classifier, and by reformulating the decision functions accordingly in

a way which directly thresholds output of the classifier.

Decision functions for classification. Let Ht(x) be a real-valued output of a

classifier incorporating features 1, . . . , t, the likelihood ratio Rt (2.5) is reformulated

as

Rt(x) =
p (Ht(x)|y = −1)

p (Ht(x)|y = +1)
. (2.7)

Assuming the likelihood ratio is a monotonic function of Ht(x), the decision

functions (2.4) can be equivalently redefined such that the decision conditions

compare the classifier output instead of the likelihood ratio:

S∗t (x) =


+1, if Ht(x) ≥ θ(t)B
−1, if Ht(x) ≤ θ(t)A
], if θ

(t)
A < Ht(x) < θ

(t)
B

. (2.8)

The thresholds θ
(t)
A and θ

(t)
B have to be estimated on a suitable dataset such

that the conditions are equivalet to the corresponding conditions using Rt(x) (2.4).

For practical purposes, Šochman [19] suggested to treat Ht(x) as a step function

with discontinuities at θ
(t)
A and θ

(t)
B . Such change transforms the continues density

estimation into a discrete estimation with three bins. As a result, the thresholds

should be set as strict as possible while satisfying [19]:

p
(
Ht(x) ≤ θ(t)A |y = −1

)
≥ Ap

(
Ht(x) ≤ θ(t)A |y = +1

)
(2.9)

and

p
(
Ht(x) ≥ θ(t)B |y = −1

)
≥ Bp

(
Ht(x) ≥ θ(t)B |y = +1

)
. (2.10)

These constraints are based on the probabilities that a sample of a certain class is

from one of the decided regions.

A WaldBoost classifier (shown in Algorithm 1) is defined by an ordered set of

T weak classifiers ht(x), by the corresponding thresholds θ
(t)
A and θ

(t)
B , and by the
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final threshold γ which is applied to the full classifier response HT (x) if a decision

is not reached earlier.

Algorithm 1 WaldBoost classification [19]

Given: ht, θ
(t)
A , θ

(t)
B , and γ for t ∈ {1, . . . , T}

Input: a classified object x
For t = 1, . . . , T :

1. If Ht(x) ≥ θ(t)B , classify x to the class +1 and terminate.

2. If Ht(x) ≤ θ(t)A , classify x to the class −1 and terminate.

end
If Ht(x) > γ, classify x to the class +1, −1 otherwise.

WaldBoost learning for object detection. The complete WaldBoost learning

algorithm is shown in Figure 2. It accepts as an input a large set of training examples

P , desired error rates α and β, and a number of training iterations T . The output

is a sequential decision strategy represented by an ordered set of weak classifiers

ht(x), t ∈ {1, . . . , T} and the corresponding decision thresholds θ
(t)
A and θ

(t)
B . The

algorithm extends real AdaBoost by bootstrapping (or sampling of the training set)

and by the decision thresholds.

A weak classifier is learned in each iteration of WaldBoost as in real AdaBoost.

It can be selected on a set of examples T sampled from P . The sampled set

T changes in each iteration and the weights have to be computed accordingly.

The decision thresholds are then set such that they satisfy the constraints from

Equation 2.9 and Equation 2.10 on the full training set P which is in turn pruned

by the thresholds.
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Algorithm 2 WaldBoost learning with bootstrapping. [19]

Input:

� sample pool P = {(x1, y1), . . . , (xN , yN )} ; xi ∈ X , yi ∈ {−1,+1}

� desired final false negative rate α and false positive rate β

� the number of iterations T

Set A = (1−β)
α and B = β

1−α
Initialize data weights w1(xi, yi) = 1

N
For t = 1, . . . , T :

1. Sample training set T = {(x1, y1), . . . , (xm, ym)} from P

2. Find ht(x) by real AdaBoost algorithm on training set T with weights wt
and compute new weights

3. Find decision thresholds θ
(t)
A and θ

(t)
B such that eq. 2.9 and 2.10 hold

4. Throw away samples from P for which Ht(x) ≥ θ(t)B or Ht(x) ≤ θ(t)A
end
Output: Weak classifiers ht(x) and decision thresholds θ

(t)
A and θ

(t)
B
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CHAPTER 3

Information sharing in scanning-window detection

In their basic form, scanning-window detectors process image regions independently

one by one. An advantage of such design is its simplicity which makes it possible to

define the detection task as a standard binary classification that can be solved by

general learning algorithms without any modifications. However, the independent

processing is sub-optimal in terms of computational cost.

The ways in which existing scanning-window detectors are optimized with

respect to detection window overlap can be divided in two basic groups. Many

detectors share some computations across image windows in the form of image

preprocessing and in the form of common feature or parts.

The second group includes methods which make local decisions interdependent

in various ways. These methods include detectors which try to minimize the

number of processed image windows by exploiting smoothness of a particular

detector responses, and some detectors improve speed by assuming minimum

distance between objects in the same way as non-maxima suppression does.

The rest of this chapter overviews existing detectors which locally share infor-

mation and discusses how the detectors relate to neighborhood suppression and

EnMS.
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Computation sharing. Most scanning-window detectors do not process image

windows completely independently. Notably, Dollár et al. [6] extend the idea

of integral images [18] to other types of information with their integral channel

features. The approach was further improved by Benenson et al. [1].

Sharing of features interlinks neighboring positions even further. Such approach

was advocated by Schneiderman [16] as feature-centric computation which computes

several first features densely across a whole image.

Similarly, most part-based detectors share visual words or parts. Detectors based

on visual words [3, 12, 13] compute the words from independently of the detection

task as a first step similarly to the feature-centric computation.

Some part-based detectors detect the parts first and infer positions of objects

from responses of the part detectors. For example, Felzenszwalb et al. [7] detect

objects from response maps of discriminatively trained part detectors.

Smoothness of detector responses. Responses of many detectors are smooth

due to their robustness to small shifts and other transformations. Such smoothness

can be used to infer responses in local neighborhoods or to reason about a whole

group of regions as about a single homogeneous set. The goal of methods which

use the smoothness assumption is usually to minimize the number of windows on

which the detector is evaluated.

Chum and Zisserman [3] use discriminative features to locate likely object

positions which serve as seeds for discrete gradient ascent search for a maximal

responses of a window classifier. Related is also the efficient subwindow search by

Lampert et al. [12] which searches the space of all windows in an image guided by

an upper bound on the classifier response over a set of rectangles. However, the

search can be efficient only if the bound is reasonably tight and computationally

efficient, which is possible only for relatively simple classifiers which have high

invariance to geometrical transformations.

A successful way how to apply the smoothness assumption to fast detectors

with attentional structure is to first scan an image relatively sparsely and then

re-scan the promising regions more densely. Examples of such approaches are by

Butko and Movellan [2] and Gualdi et al. [8].

A promising method was proposed by Dollár et al. [5]. Their excitatory cascades

realize the sparse scanning idea with soft cascades. The authors suggest an

algorithm which sets excitatory thresholds for stages of an existing soft cascade on

an unlabeled set of images such that regions containing positive responses of the
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original cascade are missed during the sparse scanning phase only with some small

and defined probability. However; the authors do not claim that the thresholds are

set in optimal way and, in fact, they are clearly sub-optimal.

Non-maxima suppression assumptions. Non-maxima suppression, which is

part of most scanning-window detectors [18, 5], is based on the assumption that

two objects can overlap only to a limited extent. This assumption is valid for most

detectors as they are usually not able to handle severe occlusions anyway. The

assumption allows detectors to merge overlapping responses into a single object

position, which is usually the window with the highest detector response.

The assumption of non-maxima suppression can be used to accelerate detection.

If the final object position is determined only by the window with the highest

responses, responses at neighboring positions are not needed and the detector

only has to determine that they are to be suppressed. This idea was utilized, for

example, by Pedersoli et al. [14] in their coarse-to-fine detector which splits an

image into a set of neighborhoods that can contain only one object and searches

the neighborhoods in greedy recursive coarse-to-fine fashion. First, the object

is localized at a coarse resolution, and the position is further refined at higher

resolutions.

An interesting application of the non-maxima suppression assumption is the

inhibitory cascade by Dollár et al. [5]. The inhibitory cascades evaluate neighboring

image positions in parallel and terminate computation of those windows which

will likely give non-maximal results. The decisions are based on ratios of partial

cascade responses. The authors proposed an algorithm which sets thresholds on the

response ratios for an existing soft cascade using unlabeled images. Although the

thresholds are set such that the inhibitory cascade introduces a small and defined

error, the thresholds are not optimal in terms of decision speed (why inhibitory

cascades are not optimal and how they relate to EnMS is discussed in Chapter 6).

Relations to EnMS and neighborhood suppression. All methods which

accelerate detectors by sharing computations of features or by image pre-processing

are orthogonal to neighborhood suppression and EnMS, and could be combined

with the proposed methods for even faster detection.

Many of the methods which strongly rely on smoothness of detector responses

are not applicable to fast detectors with attentional structures, which produce

discontinuous responses due to the early terminations. The local search methods [3]
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and the branch-and-bound search by Lampert et al. [12] target relatively slow

detectors which are not the primary focus of neighborhood suppression and EnMS.

The excitatory cascades by Dollár et al. [5] focus on the same detectors as

neighborhood suppression and their underlining idea is similar as well. However,

the excitatory cascades try to select image positions which should be evaluated

and neighborhood suppression, in contrast, selects image positions which should be

skipped.

The coarse-to-fine detector of Pedersoli et al. [14] is in many aspects related to

EnMS, which could, in fact, be applied to a multi-stage coarse-to-fine detector in

order to create a detector with similar behavior. An advantage of EnMS is that it

produces optimal time-to-decision detector for a target localization error.

The inhibitory cascades by Dollár et al. [5] are build exactly on the same idea

as EnMS and the way they process images is very similar. The methods differ

only in the exact form of the conditions which decide when non-maximal windows

are to be rejected, and EnMS, unlike inhibitory cascades, finds thresholds for the

decisions which optimize detection speed.
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CHAPTER 4

Neighborhood suppression

The algorithm proposed in this chapter extends existing appearance-based detectors

with an ability to suppress image positions in the neighborhood of the position

being currently classified [21]. The proposed method is effective and, at the same

time, simple and computationally inexpensive. It learns a new suppression classifier

which predicts the responses of the original detector at neighboring positions (see

Figure 4.1). When the predictions are negative and confident enough, computation

of the detector is suppressed at the respective positions.

The suppression is possible because the neighboring positions share information

due to overlap of the image windows caused by small horizontal and vertical

scanning steps. In order for the neighborhood suppression to be efficient, the

detector and the suppression classifier have to share computation. These reused

parts can be image features in the case of Viola & Jones’ [18] and similar detectors

or possibly other partial computations. The reuse of computation is crucial and, in

fact, it is the only reason why faster detection can be achieved this way.

The neighborhood suppression creates new suppression classifiers for an ex-

isting soft cascade using unlabeled images. The new classifiers are trained by

WaldBoost [17] and they reuse features of the original soft cascade.
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Figure 4.1: Scanning an image in ordinary line-by-line fashion while using neigh-
borhood suppression.

4.1 Learning Neighborhood Suppression

A soft cascade is a sequential decision strategy with decision functions St based on

a majority vote of weak hypotheses ht : X → R:

HT (x) =

T∑
t=1

ht(x) (4.1)

with corresponding decision thresholds (as discussed in Chapter 2).

For neighborhood suppression, the three-way decision functions from Equa-

tion 2.8) are simplified to:

St(x) =

{
−1, if Ht(x) ≤ θ(t)

], if θ(t) < Ht(x)
. (4.2)

Weak hypotheses used in practical detectors [17, 19] are in vast majority of

cases space partitioning weak hypotheses [15] which internally operate with disjoint

partitions of the object space X . The functions partitioning the object space

f : X → N will be reffered to in the following text simply as features. The space

partitioning weak hypotheses are combinations of such features and a look-up table

function l : N→ R
ht(x) = lt(ft(x)). (4.3)

In the further text, c
(j)
t specifies the real value assigned by lt to the output j of ft.
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Neighborhood suppression learning algorithm. The task of learning a sup-

pression classifier can be formalized as learning a new soft cascade with a decision

strategy S′ consisting of hypotheses h′t = l′t(ft(x)), which reuse features ft of the

original detector S, and which only differs in the look-up table functions l′t and in

the rejection thresholds θ′(t). The goal of the new decision strategy S′ is to emulate

the original detector at neighboring locations. The whole algorithm for learning

suppression classifiers is summarized in Algorithm 3. The learning algorithm is

closely related to WaldBoost (see Algorithm 2).

The inputs of the algorithm are target false negative rate, existing soft cascade

S and a set of unlabeled images.

The target false negative rate applies to the binary decision of the suppression

classifier. Total change of false negative rate of the whole final detector will be lower.

This discrepancy is natural and it has two reasons. Neighborhood suppression can

be performed only within a small neighborhood and, as a consequence, a detector

has to be evaluated at many image positions even if all the suppression decisions

are successful. Also, the target false negative rate in Algorithm 3 would be reached

only if the suppression classifier managed to reject all background positions, which

it is not able to do in practice (see Table 4.1).

The training set consists of image windows extracted from unlabeled imagesr.

The image windows represent positions at which the detector is evaluated, and

corresponding labels for the learning task are obtained by evaluating the original

soft cascade S at an image position with a particular displacement.

The algorithm proceeds in iterations in which it consecutively creates new weak

hypotheses for the suppression classifier – it sets values of the look-up table l′t

and of the early termination threshold θ′(t) for feature ft of the original detector

S. The look-up table values are set according to real AdaBoost. The termination

threshold θ′(t) is set as in WaldBoost (Equation 2.9).

The training set is pruned twice in each iteration. First, examples rejected by

the new suppression classifier must be removed from the training set. In addition,

examples rejected by the original detector S must be removed as well. This

corresponds to the behavior during image scanning when only those features which

are needed by the original detector to make decision are computed.

Suppression classifiers learned by Algorithm 3 aim to suppress only a single

image position. However, it can be easily extended to learn such classifiers for

suppressing multiple neighboring position. This behavior can be achieved by setting

labels of the training samples to −1 only when the original detector rejects all of
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Algorithm 3 Neighborhood suppression learning algorithm based on WaldBoost
as published in [21].

Input:

� original soft cascade S defined by features ft, corresponding weak hypotheses
ht(x), and rejection thresholds θ(t)

� training set P = {(x1, y1) . . . , (xm, ym)},xi ∈ X , yi ∈ {−1,+1}, where the
labels yi are obtained by evaluating the original soft cascade S at an im-
age position with particular displacement with respect to the position of
corresponding xi in an respective image

� desired miss rate α

Output:

� look-up table functions l′t and early termination thresholds θ′(t) of the new
suppression classifier

Initialize sample weight distribution D1(i) = 1
m

for t = 1, . . . , T

1. estimate new l′t using ft such that

c
(j)
t = −1

2
ln

(
Pi∼D(ft(xi) = j|yi = +1)

Pi∼D(ft(xi) = j|yi = −1)

)
2. add l′t to the suppression classifier

H ′t(x) =

t∑
r=1

l′r(fr(x))

3. find optimal threshold θ′(t) satisfying Equation 2.9

4. remove training set samples for which Ht(x) ≤ θ(t)

5. remove training set samples for which H ′t(x) ≤ θ′(t)

6. update the training set weight distribution

Dt+1(i) ∝ exp(−yiH ′t(xi))
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the considered positions. In addition, multiple suppression classifiers focusing on

different parts of a neighborhood can be combined.

4.2 Neighborhood suppression experiments

I tested the neighborhood suppression on frontal face detection and eye detection

tasks. In both tasks, two separate test image sets were used - one with less

constrained poses and lower quality images and one with easier poses and good

quality images.

Face detection experiments were performed on MIT+CMU frontal face dataset

and on GroupPhoto dataset. From these two, MIT+CMU contains lower quality

images. GroupPhoto contains good quality group shots with close to frontal faces.

Eye detection experiments were performed on XM2VTS database and on BioID

database. XM2VTS is much easier compared to BioID as it contains clutter-free

backgrounds. Suppression classifiers were trained on a large set of unannotated

images containing faces.

The tests were performed with four types of image features: (1)Haar – Haar-like

features [18], LBP – Local Binary Patterns [22], LRD – Local Rank Differences [10],

and LRP – Local Rank Patterns [10]. The base detectors were learned by Wald-

Boost [17].

Effect of neighborhood suppression. The first experiment focuses on the

effect of neighborhood suppression using a single classifier to suppress single positions

and using twelve such classifiers to suppress twelve different relative positions in

the neighborhood. The effects were measured as relative speed-up of detection and

relative change in average detection rate. The tests were performed with moderately

fast base detectors (4.5 - 6 features per position) and moderate target false negative

rate of the suppression classifiers (α = 0.05).

Results of the experiment are shown in Table 4.1 and Figure 4.2. The results

indicate large differences between individual feature types. While the average

number of weak hypotheses computed per position was reduced with twelve sup-

pressed positions down to 30% for LBP and 40% for LRP, only 55% suppression

was achieved for LRD and 65% for Haar. This can be explained by generally

higher descriptive power of LBP and LRP features – it is reasonable to expect

that they capture lot of information which is not directly relevant to their primary

detection task. In general, the average detection rate degraded only slightly – by
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Haar LBP LRD LRP
dataset value single 12 single 12 single 12 single 12

BioID
ROCA(%) -0.02 0.07 -0.48 -3.44 -0.16 -1.08 -0.24 -2.04

Time 0.96 0.68 0.78 0.33 0.92 0.54 0.82 0.37

PAL
ROCA(%) -0.00 -0.39 -0.08 -0.21 -0.09 -0.85 -0.05 -0.44

Time 0.96 0.71 0.77 0.31 0.91 0.51 0.82 0.36

CMU
ROCA(%) -0.03 -0.36 -0.27 -1.92 -0.02 -0.49 -0.08 0.01

Time 0.93 0.62 0.74 0.31 0.93 0.62 0.87 0.47

Group
ROCA(%) -0.04 -0.54 -0.21 -1.02 -0.02 -0.27 -0.06 -0.65

Time 0.93 0.60 0.73 0.29 0.93 0.60 0.87 0.45

Table 4.1: The effect of neighborhood suppression. ROCA(%) is the percentage
difference between average detection rate without and with neighborhood suppres-
sion. ”Time” represents reduction of computations. ”single” and ”12” stans for
suppressing 1 and 12 position, respectively.
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Figure 4.2: The ROC curves on MIT+CMU dataset without suppression (full line)
and with 12 suppression classifiers (dashed line).

no more than 1% in all cases except for twelve suppressed positions with LBP on

MIT+CMU and BioID and with LRP on BioID.

Suppression distance. This experiment evaluates changes in suppression ability

with distance form the evaluated position. Figure 4.3 shows that suppression ability

decreases relatively slowly with distance and large neighborhood of radius at least

10 pixels can be suppressed for the tested LBP and LRP classifiers.

Suppressing multiple positions. As mentioned before, single suppression clas-

sifier can suppress larger area than just a single position. Relation between speed-up

and size of the area suppressed by a single classifier is shown in Figure 4.4. The re-

sults show that larger area increases speed compared to suppressing single positions.

However, the speedup is not directly proportional to the area size as the suppres-

23



PAL eyes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10 12 14 16 18

Haar
LBP
LRD
LRP

distancev(px)

re
la

tiv
e

vti
m

e

GroupPhoto faces

0.7

0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10 12 14 16 18

Haar
LBP
LRD
LRP

distancev(px)

re
la

tiv
e

vti
m

e

Figure 4.3: Reduction of detection time (y-axis) when suppressing single positions
in different horizontal distance from the classified position (x-axis). Target error of
the suppression classifiers is 5 %.
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Figure 4.4: Reduction of detection time (y-axis) when suppressing multiple positions
by single classifier. x-axis is the number of suppressed positions. Target error of
the suppression classifiers is 5 %.

sion task becomes harder with higher number of suppressed positions. Multiple

suppression classifiers would always achieve higher speed-up than a single classifier

suppressing the same positions. In practical application, the optimal number of

suppression classifiers would be determined by the induced computational overhead

on the respective platform.

Speed-precision trade-off. If neighborhood suppression is to be useful, it has

to provide higher speed than the simple detector for the same precision of detection.

To validate this, I have trained number of WaldBoost detectors with different speeds

(in terms of average number of features computed per position) for each feature

type. Then, I learned three suppression classifiers with α set to 0.01, 0.05, and 0.2

for each of the WaldBoost detectors. The corresponding speeds and detection rates

of the detectors are shown in Figure 4.5. Even thought only a single suppression

classifier of a single position is used in this case for each of the detectors, the results
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clearly show that higher speed for the same detection rate can be reached by using

neighborhood suppression.
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Figure 4.5: Speed-up achieved by suppressing single position for different speeds
of the original detector and different target false negative rates α. Neighborhood
suppression detectors achieve better speed-precision trade-off. Each line represents
results for different α for three original detectors of different speed. X-axis is the
speed of classifier in number of weak hypotheses evaluated on average per single
scanned position (left is faster). Y-axis is average miss rate (lower is more accurate).
Better detectors are closer to the left-bottom corner.
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CHAPTER 5

Early non-Maxima Suppression

Non-maxima suppression is an important part of most scanning-window detectors.

It aggregates per-window responses of a detector into probable object positions, and

it suppresses multiple detections of the same object. Non-maxima suppression usu-

ally operates locally in a small neighborhood defined by a range of positions, scales,

rotations, aspect ratios, and possibly other transformations. In such neighborhood,

only the highest response of the classifier which is above a specific threshold is

kept and all lower responses are suppressed. As the suppressed responses have no

influence on the final detections, there is no need to compute them, and it should

be possible to terminate computation of the detector at such positions as soon as it

is certain they will, in fact, be suppressed. Such early terminations would improve

speed without any changes to detection results.

The main idea of Early non-Maxima Suppression (EnMS) is to merge existing

focus-of-attention approaches with non-maxima suppression, and take the non-

maxima suppression decisions from the post-processing step to the classification

phase itself. Such shift of the non-maxima suppression decisions could reduce

unnecessary computations with only low overhead and could significantly increase

detection speed.

The EnMS algorithm proposed in this chapter is formalized as a sequential

decision strategy and it builds upon the Sequential Probability Ratio Test [20] and
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WaldBoost [17] which optimize time-to-decision for a certain target error level. It

creates a new sequential decision strategy based on an existing soft cascade detector

by replacing all its rejection thresholds with variable thresholds which depend on

tentative results of the detector in neighboring positions. The proposed algorithm

only needs an existing detector and a set of unlabeled images.

Although EnMS was primarily motivated by object detection, it is applicable in

various other pattern classification tasks where the magnitude of classifier response

is significant and the classifier can be divided into separate steps.

5.1 Conditioned SPRT and EnMS

EnMS can be formalized as a two-class sequential decision problem where the first

class contains samples xbest which get the highest response of the whole classifier,

and the second class contains all the other samples. When formalized in this way,

the task is to create an optimal strategy which would decide at each stage of the

sequential classifier for each sample from a competing set: (1) whether to reject

it, (2) whether to accept it as the best sample, (3) or if this problem cannot be

decided yet with high enough confidence and further information is needed. Such

strategy would compute one stage of the classifier at a time and make the decision

simultaneously for each of the competing samples. The following EnMS algorithm

is an extension of SPRT (see Chapter 2) and it utilizes the WaldBoost’s projection

trick for dependent measurements.

Conditioned SPRT. The classification task in the case of EnMS is specific

in that the goal is to use information from a set of competing samples to guide

the decisions about any of the individual samples. Unfortunately, the original

SPRT cannot accommodate such sharing of information and has to be extended.

The resulting Conditioned Sequential Probability Ratio Test (CSPRT) allows the

decision to be conditioned by an arbitrary function over additional data. In CSPRT,

the decision functions when combined with the projection trick of WaldBoost (see

Equation 2.8) become:

S∗t (x, zt) =


+1, if Ht(x) > θ

(t)
B (zt)

−1, if Ht(x) < θ
(t)
A (zt)

], if θ
(t)
A (zt) ≤ Ht(x) ≤ θ(t)B (zt)

(5.1)
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where zt ∈ Z is some additional conditioning data and the thresholds on the

classifier response θ
(t)
B : Z → R and θ

(t)
A : Z → R are now functions of this

additional data. The likelihood-ratio from Equation 2.7, which is used to estimate

optimal θ
(t)
B (zt) and θ

(t)
A (zt), becomes

Rt =
p (Ht(x)|zt, y = −1)

p (Ht(x)|zt, y = +1)
. (5.2)

CSPRT for EnMS. The goal of EnMS is to find the sample xbest with maximal

response of a classifier H(x) (the champion) among a set of competing samples

X based on the intermediate result of the classifier Ht(x). Whether a classifier

response for a sample is maximal or not depends highly on the other competing

samples. Considering this, it is reasonable to make zt a function of X .

Ht(x) becomes very good indicator of the final value of H(x) with increasing t.

A good choice for zt which indicates the probable highest value of H(x),∀x ∈ X is:

zt = max
x∈Xt−1

(Ht(x)), (5.3)

where Xt−1 is a set of samples still not decided by the previous decision function

St−1.

Similarly to WaldBoost, it is not practical for EnMS to make positive decisions

– it should only reject samples by setting θ
(t)
B (zt) = +∞. A reasonable form of the

negative threshold θ
(t)
A (zt) is

θ
(t)
A (zt) = zt − λt, (5.4)

where λt can be interpreted as a handicap of the leading sample. With this choice

of θ
(t)
A (zt), the condition for rejecting samples as losers from Equation 5.1 becomes

Ht(x) < zt − λt. (5.5)

Learning Early non-Maxima Suppression. The process of learning an EnMS

strategy is depicted in Algorithm 4.

The inputs of the algorithm are the training sets of samples
{
X (k)

0

}N
k=1

, the

target false negative rate α of the strategy, and a classifier H(x) for which the

EnMS strategy should be created. The classifier must provide real-valued responses

and must be evaluated in stages Ht(x) where each subsequent stage gives better
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Algorithm 4 Learn algorithm for EnMS strategy as published in [9].

Input: classifier H(x) consisting of T stages Ht(x); training sets of samples{
X (k)

0

}N
k=1

; target false negative rate α

Output: EnMS handicaps {λt}tmax

t=1

1: find champions x
(k)
best = arg max

x∈X (k)
0

(H(x))

2: count losers Lall =
∑
k

∥∥∥X (k)
0 \

{
x
(k)
best

}∥∥∥
3: for each stage t = 1 to T do

4: find all z
(k)
t = max

x∈X (k)
t−1

(Ht(x))

5: λt = min λ̃t, such that α
Lkilled(λ̃t)

Lall
>
Ckilled(λ̃t)

N
,

where the number of killed losers Lkilled(λ̃t) =

Lall −
∑N
k=1

∥∥∥{x
∣∣∣Ht(x) > zt − λ̃t,x ∈ X (k)

t−1 \
{

x
(k)
best

}}∥∥∥
and where the number of killed champions Ckilled(λ̃t) =

N −
∑N
k=1

∥∥∥{x
∣∣∣Ht(x) > zt − λ̃t,x ∈ X (k)

t−1 ∩
{

x
(k)
best

}}∥∥∥
6: prune sample sets

X (k)
t = X (k)

t−1 \
{

x
∣∣∣Ht(x) < z

(k)
t − λt,x ∈ X (k)

t−1

}
7: end for

estimate of the final decision. The individual training sets X (k)
0 each represent one

competing set of samples (e.g. local image neighborhood in object detection).

In the first step of the algorithm, the champions x
(k)
best (there is one champion

in each set of competing samples, all the rest of the samples are losers) are found

in each set of competing samples X (k)
0 .

After the initial steps, the algorithm proceeds in iterations t = 1 . . . T . In

each of the iterations, a single decision function is estimated starting from the

first stage of the classifier. The iterations consist of three steps. In Step 4, the

conditioning parameters z
(k)
t (see Eq. (5.3)), which are the “best responses so far”,

are found for all the training sets of competing samples. Then, the only parameter

of the stage decision function λt (from Equation 5.4) is estimated and, finally, the

individual sets of competing samples are pruned by the newly estimated EnMS

decision function (from Equation 5.5). Note that the gradual pruning of the sets of

samples significantly reduces computational time of later iterations.

The parameter λt should be set such that the condition imposed by the threshold

(Equation 5.5) rejects only samples for which the likelihood-ratio Rt (Equation 5.2)
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Algorithm 5 Execute EnMS

Input: classifier H(x) consisting of tT stages Ht(x) with corresponding handicaps
λt, and a set of competing samples X0

Output: XT
1: for each stage t = 1 to T do

2: z
(k)
t = max

x∈Xt−1

(Ht(x))

3: prune sample sets

Xt = Xt−1 \
{

x
∣∣∣Ht(x) < z

(k)
t − λt,x ∈ Xt−1

}
4: end for

satisfies

Rt(x, zt) ≥
1

α
, i.e.

αp (Ht(x) |zt, y = −1) > p (Ht(x) |zt, y = +1) ,
(5.6)

which comes Equation 2.6 when β = 0. The condition is equivalent to

αp (Ht(x), zt |y = −1) > p (Ht(x), zt |y = +1) . (5.7)

The condition divides examples into two disjoint sets, which can be used to

reformulate the constraint from Equation 5.7 in terms of these two sets as is done

in WaldBoost (see Equation 2.9):

αp (Ht(x) < zt − λt |y = −1) > p (Ht(x) < zt − λt |y = +1) , (5.8)

which is already expressed in terms of λt. The handicap λt should be set as low as

possible while still satisfying this constraint.

EnMS decision algorithm. The algorithm of applying EnMS strategy on a

set of samples is described in Algorithm 5. An important feature of EnMS is

that it diverges very little from the standard classifier runtime: only the “best

so far” response must be found after each stage of the classifier and then each

instance’s response is compared to a calculated threshold (as in the case of most

other focus-of-attention strategies). Although this kind of synchronization could

be undesirable on some parallel architectures, it requires only minimal additional

computation and modern parallel architectures (e.g. CUDA) support constant-time

voting operations, such as finding the maximal value among concurrent threads.
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5.2 EnMS in face localization

The following text presents EnMS experiments on a face localization task. The

experiments aim to asses how effective EnMS is compared to attentional detectors

which process image windows independently.

The input classifier used in the experiments was a monolithic real AdaBoost

face detector composed of 1000 weak classifiers based on LRD features.

EnMS strategies were learned on a separate training set of unlabelled images

(described further) and the strategies were then applied to a separate testing set.

Several error rates were measured and are reported in the tables of results:

� “=X” – rate of images where the EnMS strategy rejected the ultimate

champion xbest, i.e. xbest 6∈ XT ,

� “>X–2” – rate of images where the found best sample’s score was different

from H(xbest) by more than 2, i.e. max
x∈XT

H(x) < H(xbest)− 2,

� “>X–6” – similarly, max
x∈XT

H(x) < H(xbest)− 6,

� “>2” – rate of images where the reported best sample’s score was below 2,

i.e. the reported maximum was not a face.

“=X” is the true error of the sequential decision strategy and it should ideally

correspond to the target false negative rate α. For the classifier used as input,

image windows well aligned on objects give H(x) around 40–60, so decision errors

which comply the “>X–2” or “>X–6” condition are still well usable for most

applications.

WaldBoost detector as a baseline reference. The main question concern-

ing the proposed EnMS approach is what is the real benefit of the additional

information shared by the competing samples compared to traditional focus-of-

attention mechanisms which do not share such information. To estimate this, we

compared the EnMS to WaldBoost [17] face detector with the same properties as

the monolithic classifier.

Although the WaldBoost classifier does not directly aim to emulate the mono-

lithic classifier, its task is the same. Also the experiments show that for small

target false negative rate α, the WaldBoost classifier achieves minimal error rate

with respect to the monolithic classifier. Moreover, this or similar approach would

probably be used today when optimizing object localization for speed.
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EnMS results The dataset was created from images from group “portraits”

(training set) and “just faces“ (test set) from server flicker.com. Training set

contained 84,251 images and the test set 6704. The images were then rescaled

so that the size of faces was 50-by-50 pixels. Further, the images were cut to a

defined size with the faces centered in the middle. The size of training images was

100-by-100 pixels. The test images were cut to 70-by-70, 85-by-85, 100-by-100,

120-by-120, and 150-by-150 pixels.

Results of EnMS with 100-by-100 testing images are given in Table 5.1 and

graphically in Figure 5.1 – the figure contains results of the WaldBoost baseline as

well. The performance of EnMS is approximately twice as good as the WaldBoost

baseline.

target average % error
% error speed-up “=X” “>X–2” “>X–6” “>2”

1.00 103.3 3.07 1.48 0.31 0.03
2.00 119.4 4.77 2.31 0.60 0.06
5.00 165.0 8.86 5.06 1.67 0.09
10.00 236.3 17.99 11.99 4.79 0.39
16.00 330.6 29.52 22.24 10.99 1.18

Table 5.1: EnMS results on Dataset B with image size 100-by-100 pixels.
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Figure 5.1: Comparison of EnMS and WaldBoost baseline on Dataset B with image
size 100-by-100 pixels.
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Effect of neighborhood size. EnMS should be more effective on larger images

as the larger images contain more competing windows. To asses this relation, EnMS

strategy learned on the training set (all samples 100-by-100) was executed on the

five resolutions of the test sets (see Figure 5.2 for results). Note that the average

speed-up of EnMS increases with the number of competing samples. The speed-up

is roughly 2× higher on 150-by-150 images than on 70-by-70 images.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

50 100 150 200 250 300 350 400 450 500

er
ro
r

speed-up

100x100
70x70
85x85

120x120
150x150

Figure 5.2: Performance of EnMS on test datasets with samples of different
dimensions.
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CHAPTER 6

Discussion

The experimental results of neighborhood suppression (Section 4.2) and of EnMS

(Section 5.2) indicate that both methods effectively share information between

neighboring image positions, and that they are both able to improve detectors

which process image windows independently. EnMS achieved roughly 2× speed-up

at same error level compared to WaldBoost in face localization on small images.

Neighborhood suppression improved speed of face detectors up to 3× at the expense

of only minor reduction of detection rates (average detection rate was reduced

in most cases no more than by 2%). The results show that both neighborhood

suppression and EnMS provides better speed-precision trade-off compaterd to

WaldBoost baseline.

The improvements in speed are impressive considering that the baseline Wald-

Boost detectors are already very fast – the fastest ones compute as few as two

features per image window. Neighborhood suppression was able to reduce the

average number of computed features per window down to single feature in some

of the experiments.

From the nature of EnMS, its performance should not depend on specific

properties of the detector it is based on, such as which features it uses, as long as

the detector conforms to the basic requirements of the method. On the contrary,

behavior of neighborhood suppression depends strongly on the type of features(see
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Table 4.1, Figure 4.3, and Figure 4.4).

Neighborhood suppression. Although neighborhood suppression aims to im-

prove speed of an existing detector by sacrificing precision in a controlled way,

it, in fact, provides better speed-precision trade-off as does EnMS (as shown in

Figure 4.5). Combination of neighborhood suppression with a slow and more precise

detector achieves on average better detection accuracy compared to WaldBoost

detector with the same speed.

A downside of the neighborhood suppression as described in this thesis is that

it does not provide a mechanism how to create a detector from scratch with

specific error or speed. The two stage process which improves existing detectors

has its benefits, but the only way an optimal neighborhood suppression detector

with a specific error rate can be created this way is to try to learn multiple

neighborhood suppressions for multiple detectors and select the best combination.

Such approach would be tedious and time-consuming. Alternatively, neighborhood

suppression could update rejection thresholds of the original detector while learning

the suppression classifiers. Such approach would be similar to the combination of

a soft cascade and excitatory cascade of Dollár et al. [5] and may provide good

compromise with respect to complexity of training.

Neighborhood suppression effectively utilizes information shared in neighbor-

hoods for rejection. The approach should be extended to use the evidence extracted

from neighboring locations as a starting point for decision at current image location.

Early non-Maxima Suppression The task that EnMS solves is the same as

the one addressed by efficient subwindow search by Lampert et al. [12] and by the

inhibitory cascades of Dollár et al. [5]. It is also similar to the taks of recursive

coarse-to-fine localization by Pedersoli et al. [14]. The problem which these methods

solve is to find an image window with the highest response of a detector in a set of

windows.

Unlike EnMS, the efficient subwindow search is guaranteed to always find the

optimal window, but it can only be applied to simple detectors for which an efficient

upper bound on detector response exists. Although EnMS is, in a way, constrained

with respect to what classifiers it can be applied to as well, it can support classifiers

of arbitrary complexity and strength.

The recursive coarse-to-fine localization is an ad-hoc process which, unlike

EnMS, does not provide any indications of what is the error caused by the coarse-
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to-fine structure of the detector. In fact, EnMS could be applied to a multi-stage

coarse-to-fine detector which would result in a detector with similar behavior, but

with controlled error and optimal computational complexity for the target error

and detector structure.

The closest competitors of EnMS are the inhibitory cascades of Dollár et al. [5]

which let positions with strong tentative detector responses suppress other positions

in a local neighborhood in almost exactly the same way as EnMS. Both methods

enhance existing detectors, have similar requirements on the detectors, and require

only unlabeled images as training data. Inhibitory cascades and EnMS differ

in two aspects: (1) exact functional form of suppression conditions, (2) method

for choosing suppression thresholds. As the following text argues, the choices

made by Dollár et al. in inhibitory cascades are not optimal in contrast to EnMS.

Considering that both methods have the same computational overhed, EnMS

should be considered superior.

Inhibitory cascades base their decisions on the ratio of tentative results – a

window x with competing neighbors X gets suppressed if

Ht(x)

Ht(xmax)
< θt, (6.1)

where xmax = arg maxx∈X Ht(x). Although this condition makes certain intuitive

sense at the first sight, it becomes less reasonable when the underlying meaning of

Ht(x) is considered.

The value of Ht(x) can be directly linked to log likelihood ratio [17]:

lim
T→∞

HT (x) = −1

2
log

p(x|y = −1)

p(x|y = +1)
+

1

2
log

P (+1)

P (−1)
(6.2)

Even though the limit is defined for infinitely long detectors, it can be safely used

for certain reasoning about shorter detectors as well.

The limit can be substituted into the condition used by inhibitory cascades

(Equation 6.1), resulting in:

p(xmax|y=−1)
p(xmax|y=+1)

√
p(x|y = −1)

p(x|y = +1)
> eθt . (6.3)

Seeing the condition in this form makes it clear that it does not have any clear or

meaningful interpretation.
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On the other hand, the condition used by EnMS (Equation 5.5), which can be

rewritten as

Ht(x)−Ht(xmax) < λt, (6.4)

can be similarly expressed by substituting the limit from Equation 6.2 as

log
p(x|y = +1)

p(x|y = −1)
− log

p(xmax|y = +1)

p(xmax|y = −1)
<

1

2
λt. (6.5)

As the logarithmic likelihood ratios can be interpreted as certainty levels, the EnMS

condition can be said to be true if xmax is at least by 1
2λt more likely to contain an

object than x is. The condition does not depend on the certainty of the individual

windows, only on the difference. This is a necessary property for the condition

to work the same way in regions which certainly contain an object, as well as, in

regions which are ambiguous.

The second difference between EnMS and inhibitory cascades is that Dollár at

al. set the thresholds such that the decisions in all stages induce the same constant

error. Such approach does not take into account that the computational savings

by rejections in early stages are much greater compared to rejections in late stages.

EnMS takes these differences into account and produces optimal time-to-decision

detector for the target error.

Comparison of EnMS and neighborhood suppression Although EnMS and

neighborhood suppression were demonstrated on simple boosted (or WaldBoost)

detectors, the approaches can be directly applied to other detectors with similar

structure which are composed of stages. These include all detectors with attentional

structure [18, 17]. Monolithic detectors [4] would have to be split into meaningful

parts first.

Neighborhood suppression and EnMS are, in a certain sense, complementary

and most powerful in different situations. Neighborhood suppression does not

assume anything beyond what is required for existing scanning-window detectors, it

behaves as a standard scanning-window detector and it can process image positions

sequentially. In essence, it just extends existing attentional structures by an early

rejection stage which extracts information from neighboring positions and which

is very cheap as it relies on features which would be computed anyway by the

neighboring classifiers. This implies that the suppression can not help at regions

which are likely to contain objects of interest.

EnMS, on the other hand, diverges from the standard scanning window pro-
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cedure and assumes that only the locally maximal position are of interest. It is

inherently parallel and requires all image positions to be evaluated concurrently.

EnMS should remain effective even in regions which are likely to contain an object

of interest as it adapts to the image content. The only requirement for EnMS to be

effective is that the competing regions differ in how likely they contain an object.

In fact, it is reasonable to expect that EnMS would improve a detector with fixed

rejection thresholds mostly in ambiguous regions where the fixed thresholds are

not effective.

Neighborhood suppression is closely linked with object detection as it explicitly

relies on topological relations. On the other hand, EnMS can be directly applied

on any task, even outside computer vision, which uses classifiers and which is

interested in finding the highest response in a set of candidates.
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CHAPTER 7

Conclusions

This thesis studied scanning-window detectors and, especially, how such detectors

can be improved by sharing local information and by interlinking decisions at

neighboring positions. This general idea resulted in two novel methods, neighborhood

suppression and Early non-Maxima Suppression, which improve existing scanning-

window detectors by utilizing the information shared between neighboring image

positions. The methods provide higher speed (up to 2× faster in experiments) at

the same detection rates or conversely better detection rates at the same speed

compared to detectors which process image windows independently.

Both methods were developed into practical algorithms which can be used in

real world applications with minimum changes to existing detection engines on

various platforms including highly parallel environments, such as FPGA and GPU.

Especially, EnMS matches the nature of highly parallel platforms well, as it requires

a high number of competing hypotheses to be computed concurrently in parallel.

The novel methods have potential to improve object detectors in a wide range of

applications from embedded devices and smart cameras to high-throughput GPU

clusters in cloud-based photo galleries and surveillance systems.

The novel algorithms are build upon Sequential Probability Ratio Test [20] and

WaldBoost [17] which optimize time-to-decision for a certain target error level.

These ideas were directly used in neighborhood suppression and extended into
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Conditioned Sequential Probability Ratio Test for EnMS.

Although both neiborhood suppression and EnMS were tested on boosted

detectors with simple image features and soft-cascade attentional structure, they are

not in any way limited to these detectors. Neighborhood suppression can be directly

applied to any detector which can be decomposed into smaller predictive functions

(such as features in boosted classifiers). EnMS requires the original detector to

be composed of stages which give progressively more confident predictions of the

final decision. Also, EnMS, being inspired by non-maxima suppression, finds only

the region with the highest response of the detector in a local group of competing

regions. Although the requirements of EnMS are stricter, it can be applied to

wider range of tasks even outside computer vision – any task which searches for

the highest response of a suitable classifier in a group of competing objects.

Although neighborhood suppression is able to use information from neighboring

positions effectively to suppress evaluation of a detector, the same information

could be potentially used even more effectively as initial evidence by the detector.

Such tight integration should be further explored as it could lead to significant

speed-up without any degradation of detection quality.

EnMS as presented in this thesis becomes less effective on small neighborhoods,

such as those used by non-maxima suppression in face detection. To ensure

competitiveness of EnMS in such situations, it should be extended by adding

WaldBoost-style fixed rejection thresholds. Adding such thresholds does not

presents any difficulties; however, an algorithm which sets both types of thresholds

in a unified way such that the speed is optimized for specific target error rate

should be developed.

Ideally, EnMS should be combined with neighborhood suppression or with a

method similar to the excitatory cascade of Dollár et al. [5]. Such combination

would benefit from the complementary strengths of the methods and it could result

in very fast detectors.
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