
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ÚSTAV INFORMAČNÍCH SYSTÉMŮ

PROGRAMMING OF RECONFIGURABLE
SYSTEMS USING A HIGHER PROGRAMMING
LANGUAGE

PROGRAMOVÁNÍ REKONFIGUROVATELNÝCH SYSTÉMŮ POMOCÍ

VYŠŠÍHO PROGRAMOVACÍHO JAZYKA

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. ADAM HUSÁR
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ HRUŠKA, CSc.
VEDOUCÍ PRÁCE

BRNO 2014

The original of the complete thesis is available in the library of the Faculty
of Information Technology at the Brno University of Technology, Czech re-
public.

c© Adam Husár, Brno, 2014.

Abstract

The dissertation thesis is focused on application specific instruction set pro-
cessors (ASIP) programming and optimization. The goal was to create an
environment for fast ASIP optimization, which includes a higher level lan-
guage compiler, and a processor template. Process of compiler generation is
divided into two steps: semantics extraction and compiler backend genera-
tion. The author also designed several processor cores, one of them, a 32-bit
extensible processor core Codix RISC, is described here. Together with the
generated compiler, and the extensible processor core, the author created a
tool for fast ASIP optimization.

Key Words

Compilers, processor architectures, application-specific instruction set pro-
cessors, instruction set extensions, architecture description languages, em-
bedded systems.

Contents

1 Introduction 2
1.1 Thesis Goal Statement . 3

2 State of The Art 6
2.1 Application Specific Instruction Set Processor Design Tools 6
2.2 CodAL Language . 6
2.3 High Level Language Compilers 8

2.3.1 Higher Language Level Compiler Structure 8
2.3.2 Retargetable Compilers 8

2.4 State of the Art - Conclusion 9

3 Solution 11
3.1 Instruction Semantics Extraction 12

3.1.1 Semantics Extraction Results 14
3.2 Retargetable LLVM Compiler Generation 16

3.2.1 Overal Compiler Generator Design 16
3.2.2 Generated Compiler Results 17

3.3 Reconfigurable Processor Core Codix RISC 22
3.4 Manual ISE identification 25

4 Conclusion 28
Bibliography . 29
Curriculum Vitae . 33

1

Chapter 1

Introduction

The theme of the thesis is reconfigurable computing systems, how to compile
for them, and how to optimize them.

There are three usual sources of parallelism that can be exploited when
speeding up program execution on a system with processors. The first one is
the Thread Level Parallelism (TLP) in its various forms, which allows using
multiple processor cores simultaneously. The second one is the Instruction
Level Parallelism (ILP), where either the microarchitecture or the compiler
finds instructions from the ISA that can be executed in parallel on the same
processor core. The third source is the Data Level Parallelism (DLP), which
allows computing multiple computations simultaneously by just one instruc-
tion.

A lot of research has been done in automatic parallelization (exploiting
the TLP), but there will still be a part of an application that is inherently
sequential. This sequential part then limits the maximal achievable speed-up
as described by Amdahl’s law. For example, even if we parallelize 80% of
an application, so this part is computed instantly, the maximal speed-up is
500%, no matter how many more processors we put into the system. This is
where exploitation of ILP, DLP, and speeding up the elementary arithmetic
operations come into play.

Especially in signal and image processing algorithms, application-specific
instruction set processors (ASIPs) are used with success for speeding up the
sequential parts of an application. Application-specific instruction set pro-
cessors are usually single-issue or very long instruction word (VLIW) pro-

2

cessors extended with a combination of special instructions, special registers,
look-up tables, local memories, and interfaces such as queues.

Lower power consumption and lower area predetermine ASIPs to be
used in areas such as mobile handsets, wired and wireless networking, print-
ers, home entertainment, performance-demanding peripheral controllers, and
others.

In ASIPs, parallelism between elementary operations (ILP and DLP)
is exploited statically by the use of wide instruction set extensions (ISEs),
which compute several elementary operations in parallel. The elementary
operations can then be accelerated using shorter datapaths between the func-
tional units that execute them. In an ISE hardware implementation, func-
tional units such as adders, multipliers, etc. are connected directly. No ad-
ditional latency is added by passing intermediate results through forwarding
paths or through registers, as is usual in standard processors.

Functional units can be simplified to a required bitwidth. For example,
instead of a general 32-bit adder an 8-bit adder can be used where sufficient,.
Finally, bit manipulation operations such as shifts, masks, bit swaps, zero or
sign extends, etc. can be performed in hardware with minimal latency.

To sum up, faster computation of sequential calculations is enabled by:
shorter datapaths between functional units, functional units with minimal re-
quired bitwidths, and bit manipulation operations. Wide ISEs allow exploit-
ing elementary-operation level parallelism (ILP and DLP). The code size is
also smaller since one ISE may replace tens of instructions. The new ISEs
make the so-called semantic gap between the problem and the electronic
components narrower, and allow a more efficient compilation from the prob-
lem domain to the electronic components.

The problem is now how to efficiently design such ASIPs with ISEs.

1.1 Thesis Goal Statement
Many tools are needed to compile programs for a processor, to simulate it,
and to be able to quickly test and evaluate new extensions to a processor. All
this can be done by manually changing the compiler, assembler, simulator,
and other tools each time a new instruction is added. However, such approach
is very time consuming, and tools are needed that automate this process. For
this purpose, the Lissom project [3] was started at the Faculty of Information
Technologies at Brno University of Technology in the year 2004. The goal of

3

this project is to develop an ASIP design tool usable in practice. The tool is
based on the ISAC architecture description language (ADL), which has been
later substantially changed and renamed to CodAL.

The author, partially inspired by the success of the Tensilica Xtensa ex-
tensible processor core [14], and by suggestions from people knowledgeable
about the research area, also added a new partial goal. Namely to provide an
extensible processor core with a set of ASIP design tools. The user of the
Lissom tools will not have to start their processor design from scratch. With
an extensible processor core usable as a template, a new ASIP design can be
finished much faster.

The design and optimization process proposed by the author is shown
in figure 1.1. The process consists of the following steps: 1) take a tem-
plate in the form of an ADL model, 2) generate the compiler, assembler, and
simulator, 3) compile and profile the application, 4) using a profile and an in-
termediate program representation identify, either manually or automatically,
new ISEs and add them to the ADL model, and use them also in the applica-
tion’s source code if necessary. Older ISEs can be removed from the model
and the application. Steps 2)-4) are repeated until the performance and cost
requirements are met.

The author started his doctoral studies in the year 2007. At that time, we
already had an ADL language called ISAC, its parser, simulator generator,
linker, and also assembler generator. The assembler generator was imple-
mented by the author as his master’s thesis [9].

Components that were missing at that time are shown in figure 1.1 as
boxes with white background. The initial processor model template, com-
piler generator, other C compiler components, and support for either manual
or automatic ISE identification and generation were missing. So the author
started filling them in.

4

C compiler

C application

ADL processor
model

Assembler

Linker

Simulator & profiler

Initial processor
model template

Profile
Manual or

automated ISE
identification

Simulator generator

Intermediate program
representation

Assembler generator

Compiler generator

2) Tools
generation

3) Application
profiling

1) Use processor
template

4.1) ISE implementation
or generation

4.2) Usage of ISEs in the
original sources

Figure 1.1: Manual or automated processor optimization starting from a processor
template; boxes with white background show components that were missing at the
start of work on the dissertation thesis

5

Chapter 2

State of The Art

2.1 Application Specific Instruction Set Proces-
sor Design Tools

Embedded systems are often constrained by power, performance, and cost.
For one embedded device a simple 8-bit microcontroller suffices, but other
embedded systems must employ multi-core processors with powerful accel-
erators.

To create an embedded system that conforms to the given requirements,
a correct mix of processor cores and accelerators must be chosen.

A general-purpose processor, ASIP, FPGA or ASIC can be used to im-
plement an embedded system. As shown in the following figure 2.1, these
options differ in efficiency with which they execute the target application.

2.2 CodAL Language
The CodAL [1] language is a mixed ADL, which allows describing both
architectural information for C compiler generation and microarchitectural
information for HDL generation.

The processor core can be in the CodAL ADL described on two lev-
els of abstraction: instruction-accurate and cycle-accurate. The instruction-
accurate model is very light-weight, allows fast design space exploration, and

6

Figure 2.1: Trade-off between flexibility, performance and power consumption [5]

very fast functional simulator generation. New instructions can be added in
several minutes without the need to consider the microarchitecture. Also,
the behavior of a new instruction can be described in an arbitrary C code,
which allows just copying the potentially synthesizable application part and
using it as the behavior of a new ISE in order to quickly see the results. The
cycle-accurate model describes the processor’s pipeline, is used for proces-
sor synthesis to VHDL, and may contain specific optimizations for hardware
implementation.

Processor resources, instruction set syntax and binary coding description
can be shared between these two models.

This approach with two different abstraction models allows fully auto-
matic equivalence checking of instruction-accurate and cycle-accurate mod-
els either through bounded model checking approaches [6] or by using func-
tional verification [21]. This way the instruction-accurate model can be seen
as a golden model, and the cycle-accurate model is a more concrete refine-
ment of it. Also multiple cycle-accurate models (optimized for speed, area,
or power consumption) may exist for one instruction-accurate model.

The CodAL language is supported by Codasip Framework tools [7]. Co-
dasip Framework is an EDA (Electronic Design Automation) tool for fast
ASIP (Application-Specific Instruction Set Processor) design. Using the
Eclipse-based Codasip Studio graphical interface, the user defines models in
CodAL. Generated from the processor model can be the C compiler, assem-
bler, simulators with different accuracies and profiling levels with debugging

7

capabilities, VHDL description, and verification supporting tools.

2.3 High Level Language Compilers
In this section, we will review the problematics of retargetable compilers.
The full thesis text also contains detailed analysis of existing retargetable
compilers, reconfigurable cores, and instruction set optimization techniques.

2.3.1 Higher Language Level Compiler Structure
Higher Language Level (HLL) compilers generally follow a 3-part structure
as shown in figure 2.2. First a frontend processes the input code, then usu-
ally an architecture independent optimizer optimizes the code, and a target-
dependent backend transform the target-independent intermediate represen-
tation (IR) into assembly code.

Compiler

Frontend

Optimizer

Backend

High level language

Compiler IR

Compiler IR

Assembly code

Figure 2.2: 3-part HLL compiler structure

Since we need to generate a compiler, we will focus mainly on the target-
dependent part of the compiler, i.e. the backend. Retargetable compilers
differ from other compilers by clearly separating the target-dependent and
target-independent components, and by providing means for modifying the
target-dependent components.

2.3.2 Retargetable Compilers
A retargetable compiler can be classified either as [13]:

• parametrizable, where the machine description consists of only nu-
merical parameters and subtarget settings,

8

• user-retargetable, where the external machine description given in a
dedicated language contains the retargeting information and its speci-
fication does not require in-depth compiler knowledge, or

• developer-retargetable, where the target architecture description is also
mostly in external files, but its specification requires extensive com-
piler expertise.

It is up to the processor design tool developers to make the compiler retar-
geting based on an ADL model as user-retargetable as possible. This involves
automating of all the tasks that can be reasonably automatized, and also pro-
viding more abstract and user-friendly definition languages for the definition
of the remaining compiler features while hiding compiler implementation
details.

2.4 State of the Art - Conclusion
The planned goal of this thesis, as was described in the introduction, is to cre-
ate C compiler generator, an extensible ASIP processor template, and meth-
ods how to optimize the processor template using the compiler by adding
new instructions. This, together with other tools, will form a complete ASIP
design and optimization environment, where a user starts with a processor
template and optimizes it for his/her needs.

For C compiler generation, it is necessary to use an existing compiler as
a base platform, because to develop a compiler is a complex, and long-term
task for large teams. The best 2 retargetable compiler platforms with the
highest potential to be still improved in the future are LLVM, and GCC. We
chose LLVM, because of its newer, and cleaner implementation, and a more
permissive license.

The only commercially used compiler generators based on ADLs use lan-
guages nMl, and LISA. Compiler generation from nMl is not published. In
the LISA compiler generator, they described the instructions for the com-
piler generator with a special language different from the language used to
define instructions for the simulator. This can introduce inconsistencies in
the instruction accurate LISA model, and also makes the ADL language, and
model creation more difficult. The goal is to find an approach that can use
just one description. This would the mean that the ADL is kept simpler, and
the inconsistency problem is avoided.

9

Existing reconfigurable processor cores such as Tensilica Xtensa, or Syn-
opsys ARC that use a fixed instruction set that can be extended with config-
urable options such as floating point, or DPS instructions. This limits the
explorable design space, because the user of these extensible processor is
limited in the changes he can make. E.g. it may be necessary to add reading
ports to the register file, or to modify the memory interfaces. This is not pos-
sible neither with Xtensa, nor with ARC. We already have an ADL language
that allows arbitrary modifications to the processor, so we are not limited this
way. The goal for the new extensible core is a very efficient base instruction
set. Parts of an application can be accelerated with ISEs, but the rest will run
using standard instructions. It is also important that the new processor will
be easily extensible. The microarchitecture must be rather simple, so the user
can understand it and make modifications to it.

Finally, the ASIP optimization approaches can be roughly divided into
automatic, and manual. Pure automatic methods allows only limited speedup.
On the other hand, to employ manual methods is very time consuming. The
goal will be to find a method that allows the user to choose his own exten-
sions, and automatize his/her efforts as much as possible.

We refined the goals of this thesis with respect to the current state of the
problematics. The next chapter describes how were these goals solved.

10

Chapter 3

Solution

This chapter contains description of the solution done by the author with the
goal of providing tools for reconfigurable processor design.

The main contribution presented here is a process of transformation of a
CodAL model into a form usable by the C compiler generator. Tools that do
this transformation were designed and majority of them was implemented by
the author. This process of transformation is done a tool Semantics extractor
and is described in section 3.1.

This is followed by C compiler backend generator description that was
designed by the author. The Backend generator is covered in section 3.2.
Overall structure of the whole compiler generator is shown in figure 3.1.

LLVM compiler backend
CodAL processor
model

Backend generatorInstruction
semantics

Semantics extractor

Figure 3.1: Overall structure of the C compiler generator

To be able to test the generated C compiler and also to perform ex-
periments with reconfigurable processors, the author designed five extensi-
ble processor cores and implemented three of them as instruction accurate
CodAL models. The processor cores are described in section 3.3.

Finally, a method is shown that helps the user identify new instructions,
and to move them automatically into a template of an extensible processor
core.

11

3.1 Instruction Semantics Extraction
For compiler backend generation, the compiler generator needs as input some
kind of analyzable model of instruction set description. The developed model
is called instruction semantics model.

First, we specify some requirements on the instruction semantics model
with respect to compiler generation. The compiler generator must be able
to identify several important instructions, the most significant are: register
moves; memory accesses, also with accesses to a stack; load of a pointer-
wide (e.g. 32-bit) immediate value for global addresses; elementary oper-
ations needed during instruction selection and operation lowering; and no-
operation instruction for hazard-free scheduling, jump delay slots and other
scheduling purposes.

The compiler generator also needs the behavior of instructions in a DAG-
like (directed acyclic graph) form to generate instruction selection patterns
such as the one in figure 3.2. The instruction semantics model must also
contain information about processor registers and register operands to sup-
ply information for register allocator. Furthermore, the instruction set model
must be simple and precise enough to do these analyses quickly and unam-
biguously.

Figure 3.2: Desired form of instruction semantics representation as a DAG of and
addition instruction

The main components of the Semantics extractor are shown in figure 3.3.
First are all instruction enumerated by the tool semextr. Then in more than
40 steps is the output of the semextr processed and optimized. Finally the
output contains a list of instructions in their simplest possible form usable
for compiler generation.

As an example, we will show an addition instruction. The desired form
required by the compiler generator is shown in figure 3.2.

12

clang

opt-semextr

Semantics in C

Semantics in LLVM IR

Semantics in LLVM IR

llc-semextr

Instruction semantics

CodAL model

CodAL compiler

CodAL IR

semextr

Figure 3.3: The main components and intermediate representations in the Semantics
extractor

And you can see the output of the semantics extractor here:

instr i_3_reg_operands__opc_add__gpreg__gpreg__gpreg__ ,
ok,

// Instruction operands
{ gpreg_0 = regop(gpreg), gpreg_1 = regop(gpreg),

gpreg_2 = regop(gpreg) },

// Semantics
%u0 = i32 gpreg_1;
%u1 = i32 gpreg_2;
%add = add(%u1, %u0);
gpreg_0 = %add;
,
// Syntax
"ADD" gpreg_0˜"," gpreg_1˜"," gpreg_2 ,
// Binary coding
0b000100 gpreg_0[4,0] gpreg_1[4,0] gpreg_2[4,0]

0b00000000000

The gpreg 1 and gpreg 2 are input register operands, their values are
added, and the is the result stored into an output register operand gpreg 0.
This is just another representation of the DAG from figure 3.2 needed by the
compiler generator.

13

3.1.1 Semantics Extraction Results

Semantics extractor works for many diverse architectures and when the CodAL
model follows certain simple guidelines such as explicitly marked register
classes, and flag registers modeled as 1-bit registers, it outputs the instruc-
tion semantics in a very simple form.

Semantics extractor supports diverse features present in current architec-
tures, such as floating point with diverse special floating point operations,
SIMD instructions, indexed register access, and saturated operations. It is
also possible to define subinstructions, and user functions for often repeated
parts of code.

Results for diverse architectures are presented in table 3.1. These re-
sults were obtained for Semantics Extractor version 2.1.7 based on LLVM
3.4. The architectures were modeled as Instruction Accurate CodAL models,
the models that were implemented by the author are marked with an aster-
isk. The next column contains the count of instructions generated by the
first step of semantics extraction, the semextr tool that generates all possible
instructions from a CodAL model. Size in bytes contains resulting size of
the compiler semantics.sem file. To show relative size needed per one
instruction, the Bytes per instruction column contains file size divided by the
number of instructions. The size per instruction varies between 336 and 553
bytes (with the exception of the Intel 386 architecture that has in average
more complex instructions). Architectures whose arithmetic instructions set
flags such as carry, overflow, etc. have higher average size per instruction,
because setting of these flags is included in the instruction semantics.

Finally, the last column contains runtime of the Semantics extractor built
with gcc version 4.8.3 with optimization O3 on a PC with an operating sys-
tem Linux Fedora 20, processor Intel Core i7-4770 CPU running at 3.40GHz,
16GB of RAM, and an SSD hard disk.

14

Architecture Instrs. Size in ytes Bytes/instr. Time
ADOP 537 262050 488 1.96 s
ARM7 cc* 532 316374 595 8.27 s
AVR32 1521 624932 411 5.53 s
Codix Experimental* 3025 1133815 375 10.48 s
Codix Risc VLIW* 2588 995735 385 9.36 s
Codix Risc* 2585 977172 378 8.01 s
Codix Stream* 808 385088 477 4.05 s
Codix uRisc* 40 17504 438 0.38 s
Infineon Tricore 212 110344 520 1.66 s
Intel 386 10079 9481782 941 283.18 s
Microblaze 481 170849 355 1.69 s
MIPS basic* 308 105396 342 1.35 s
MIPS* 462 178678 387 3.30 s
Open RISC 241 81081 336 1.07 s
Power PC 177 97838 553 1.41 s
Simple Flag 47 23092 491 0.49 s
Simple Flag Float 74 34601 468 0.59 s
Vix 3348 1412534 422 32.05 s

Table 3.1: Semantics Extractor instruction counts, resulting file size, and runtimes
for diverse CodAL models

The instruction semantics format was also successfully used for fast sim-
ulator generation [17], in a reverese compilation tool [12], and in verifi-
cation [6]. Semantics extraction was published by the author in [10], and
in [11].

The main advantage of the Semantics extractor is its ability to convert an
instruction accurate CodAL model into a model suitable for compiler gen-
eration. This way, instruction behavior can be described only once, and no
inconsistencies can occur e.g. as in the LISA ADL approach, where they
have 2 descriptions - one for simulator, and one for compiler.

Also using a compiler to generate itself is very useful, because the re-
sulting form of instructions and ordering of operations is exactly the same
that then appears during compilation. This assures that instruction selection
patterns generated from the instruction semantics match the compiled code.

15

With strong optimizations and additional transformations are instructions,
originally described with complex C code, optimized into their into their sim-
plest possible, and also canonical form. This greatly simplifies analyses over
the instruction semantics model.

3.2 Retargetable LLVM Compiler Generation
The Semantics extractor that we just described converts the CodAL model
into a representation suitable for C compiler generation. From this descrip-
tion is generated a C compiler backend. The design of the Backend generator
is described in this section.

The author’s contribution to the compiler generator was its overall design,
preparation of many models for compiler generator testing, collecting and
preparation of tests, lead of the implementation works, and setting priorities
on new features, optimizations, and stability. Majority of implementation
works and internal components design was done by Jan Hranáč. Testing and
its automation was done by Luděk Dolı́hal, he also was the main quality
engineer for the compiler generator. Additional optimizations were done as
a part of numerous bachelor and master theses led by the author.

3.2.1 Overal Compiler Generator Design
Structure of the Backend generator is shown in figure 3.4 and has following
inputs from the user:

• Instruction semantics file is generated by the Semantics extractor, this
is the only required input, information contained in other inputs can be
automatically inferred from the instruction semantics file. User may
provide additional inputs when he needs to override the automatically
inferred values.

• User semantics file may contain:

– ABI (Application Binary Interface) definition such as register us-
age and calling convention,

– explicit setting of flag registers such as carry, overflow, etc. (if
they cannot be detected automatically),

16

– settings for the instruction scheduler, e.g. whether the compiler
should handle structural or data hazards, and

– user instruction aliases, for example to describe an existing in-
struction with equivalent, but slightly different semantics so the
Backend generator can recognize such instruction when the au-
tomatically generated semantics is not suitable.

• User instruction equality rules: equality rules are mainly used to spec-
ify combinations of instructions used to perform comparisons, condi-
tional selects, and conditional jumps. Some architectures use unusual
flags, or miss several comparison types, so with these equality rules the
user can define what instructions should be used e.g. for floating-point
equality comparison. The Backend generator already contains a huge
set of these equivalencies and can use them automatically (the Default
instruction equality rules).

• Instruction scheduling classes may override automatically generated
instruction schedule. Standard LLVM definition for the LLVM table-
gen tool is used and this allows for example to specify that a load from
memory has latency 3 cycles and then uses a shared register file. The
LLVM scheduler can then reorder instructions to minimize structural
and data hazards.

• User tablegen and C++ files are used to override and extend automat-
ically generated LLVM sources. For example, the Backend generator
may not be able to detect how to store some special (e.g. flag) register
to memory. By using virtual methods the user can simply extend the
generated sources to perform such operation.

Another input for the Backend generator are Tablegen and C++ file tem-
plates. This input can be modified by a Backend generator developer and
should not be usually modified by the user.

3.2.2 Generated Compiler Results
The Backend generator currently generates architecture files for LLVM ver-
sion 3.4. The Backend generator can fully automatically generate a backend
for architectures listed in table 3.2. It is also automatically tested on these ar-
chitectures on a set of tests in C language from GCC torture testsuite, LLVM
Testsuite, and a set of in-house developed tests.

17

Instruction

semantics

(generated)

User semantics

User instruction

equality rules

Instruction

scheduling classes

User tablegen and

C++ files

Default instruction

equality rules

Tablegen and C++

file templates

Semantics

parser

Equality rules

parser

Backend generator

Templates

parser

Templates

generator

Instruction set

analyzer

LLVM code

generator

Resulting

LLVM backend

files

Files provided by user

Fixed inputs of the

backend generator

Figure 3.4: Inputs and main components of the backend generator

18

For architectures where a standard C library Newlib is available is the
number of tests that are run higher. Many tests rely on the int data type
to have 32 bits, so the 16-bit architectures whose int data type has 16 bits
have more fails. Some tests check some obscure cornerstones or undefined
behaviors of the C language, so there were always some failing tests. If the
failing tests value is lower than 1% (or around 10% for 16-bit architectures),
the compiler can be regarded as stable and can compile any complex appli-
cation correctly. The table contains values from testing obtained on 20th of
August 2014.

Architecture Tests Failing tests (%) Comments
ADOP 1688 11.0 16-bit
ARM cc 1688 3.7
AVR32 1688 3.9
Codix Experimental 2392 1.3 Newlib
Codix RISC 2392 0.8
Codix STREAM 1677 10.0 16-bit
Codix URISC 2392 0.7 Newlib
MIPS 2392 1.2 Newlib
MIPS basic 2392 0.7 Newlib
Open RISC 1688 0.9
Simple Flag 2392 0.8 Newlib
Simple Flag Float 2392 1.0 Newlib
Vix 2392 0.8 Newlib

Table 3.2: Results of generated compiler testing

LLVM compiler backend files are generated by the Backend generator
in several seconds, and then building the backend takes approximately one
minute on a standard PC.

We will now compare the generated code performance on the MIPS ver-
sion Release 1 architecture. For this comparison were following compilers
used: the generated LLVM 3.4-based compiler from a MIPS CodAL model
(further only GEN LLVM), then hand-written compiler for MIPS present in
LLVM 3.4 (MIPS LLVM), and MIPS GCC 4.9 (MIPS GCC). Source codes
of applications come from the LLVM testsuite, that is a collection of tests

19

and many diverse benchmarks.
Relative performance is shown in graph 3.5. As a baseline was taken

count of simulated clock cycles for the GEN LLVM. Percentage values for
MIPS LLVM, and MIPS GCC were obtained by dividing the number of clock
cycles for the generated compiler by clock cycles for MIPS LLVM, resp.
for MIPS GCC. Higher percentage means higher relative performance, i.e.
higher is better.

80%

85%

90%

95%

100%

105%

110%

115%

120%

125%

130%

Generated compiler LLVM 3.4 Hand-written compiler LLVM 3.4

Hand-written compiler GCC 4.9

Figure 3.5: Comparison of compiler performance for the MIPS architecture

You can see that the performance of the GEN LLVM compared with
MIPS LLVM is very close, and in some cases even better than the hand-
written compilers. Differences between MIPS LLVM and MIPS GCC are
caused by different optimizations mainly in the architecture-independent op-
timizers of these compilers.

Corresponding relative code size for these benchmarks is shown in fig-
ure 3.6. Code sizes for Mibench-bitcnt and Mibench-crc are very small (ap-
prox. 200 bytes), so the relative difference is high. Lower percentage means
lower code size, i.e. higher is worse.

Results for the Codix RISC processor core are also presented in the fol-
lowing section 3.3.

Semantics extractor together with Backend generator perform many tasks
fully automatically, and can generate C compiler backend for many architec-

20

50%

70%

90%

110%

130%

150%

170%

Generated compiler LLVM 3.4 Hand-written compiler LLVM 3.4

Hand-written compiler GCC 4.9

Figure 3.6: Comparison of code size for the MIPS architecture

tures. To create a compiler backend by modifying the backend sources can
take more one month even to someone that knows the retargetable compiler
infrastructure. On the other hand, to create a CodAL model, and to generate
a backend with the developed Semantics extractor, and Backend generator
can be done in several days. This is an enormous boost in designer produc-
tivity. The solution that was developed is also fully automatic, so the user
does not need to know about the LLVM internals. Only when some specific
optimizations are needed, the user can add some extension manually.

Compared to the only published and commercially used solution that uses
the LISA ADL language, the biggest advantage is that the CodAL model
needs just one description of the instruction semantics, and there is no need
to modify the LLVM sources.

Another big advantage that the compiler is generated automatically is the
ease of adding, and removing instructions. New instruction, if an instruction
selection pattern can be generated for it, can be used fully automatically by
the C compiler. Also a very fast design space exploration, and optimization of
the instruction set can be made. For example the user can decide to optimize
on area by removing instructions, he/she then only regenerates the compiler,
and runs benchmarks.

Despite the compiler’s automatic generation, it provides performance

21

comparable with hand-written solutions. Also several extensions, especially
for VLIW architectures, and SIMD instructions were implemented. These
extensions then can provide even higher performance than existing compil-
ers.

3.3 Reconfigurable Processor Core Codix RISC
This chapter describes one of the processor cores designed by the author
called Codix RISC and modeled in the Codasip Framework as instruction
accurate CodAL model. The author also designed the high-level microar-
chitecture of the processor core, the detailed implementation of cycle accu-
rate CodAL models for Codix RISC was done by Marián Pristach from The
Faculty of Electrical Engineering and Communication, Brno University of
Technology.

Instruction Set

Codix RISC has 32 32-bit general purpose registers, and 1 special status
register. The general purpose register r0 is always zero. Memory used 32-bit
words with little endian ordering.

The operations in the instruction set, and also their syntax is based on
LLVM IR. This then helps better matching of IR operations to particular
instructions.

One feature that was inspired by ARM is shifting an input register operand.
Second source register operand can be shifted in Codix RISC by 0, 1, 2, or
3 bits to the left, as e.g. in r1 = add r2, shl2 r3. In ARM, the shift
amount can be a value from 0-31, but from profiling results, most of the shift
amounts are never used and this then forms a critical path between through
the ALU, shifter, and forwarding logic. The solution used in Codix RISC
does not need a full shifter, only a 4-input multiplexer suffices. Additional
operations over the second register operand can be easily added.

To compute an address for a load or store can be 2 addressing modes
used: register + signed offset, or register + shifted register.

Another difference to MIPS, or ARM, is that conditional jumps can per-
form comparison of 2 registers, including binary and logical operations. In
ARM, flags are used for conditional jumps, and MIPS provides only compar-
ison on equality, unequality, and comparisons with zero.

22

Interrupts are also supported in Codix RISC. One bit in the status register
specifies whether interrupts are enabled, and instructions to call an interrupt,
and to return from interrupt are provided.

Area and Performance

Codix RISC synthesis results are shown in table 3.3. Synthesis was done with
Xilinx ISE WebPack 14.2 with VHDL code generated from Codix cycle-
accurate model with Codasip Framework 1.8.1 [7]. Family is particular Xil-
inx FPGA type, Speed specifies speed grade selected for synthesis, LUTs
are used lookup-tables, Flip Flops specify used 1-bit memories and fmax is
maximal frequency recommended for the design by synthesizer.

Family Speed LUTs Flip Flops fmax [MHz]
Spartan3 -5 3145 570 56.213

Spartan3E -5 3102 566 65.016
Spartan6 -3 1835 594 72.163
Virtex5 -3 1805 564 140.443
Virtex6 -3 1853 572 159.571
Kintex7 -3 1871 567 172.655

Table 3.3: Synthesis results for extensible processor core Codix RISC

Codix RISC was also synthesized for the 40-nm TSMC technology. With-
out caches, it can run on 450 MHz. When synthesized to 500 MHz with Syn-
opsys Design Compiler, the total cell area is 40441 µm2 (0,04 mm2) (also
without caches).

In table 3.4 is Codix compared with other soft-processors using the Core-
mark benchmark. Coremark is an application measuring pipeline through-
put [8]. The Coremark benchmark was compiled with automatically gener-
ated C compiler based on LLVM 3.0 with optimization -O3 and simulated on
an cycle accurate simulator (with simulated 8kB 4-way caches for instruc-
tions and for data) using Codasip Framework v. 1.8.1. The Coremark/MHz
value is calculated as 1 000 000 divided by the number of cycles needed for
one iteration of the Coremark benchmark. Results for the other processor
cores in table 3.4 come from measurements described in article [4].

The Codix RISC architecture was also compared to the Microblaze, ARM,

23

Processor Core Compiler Coremark/MHz
Codix RISC LLVM 3.0 1.65

Leon 3 gcc 4.4.2 1.91
MicroBlaze gcc 4.1.2 1.90
OpenRISC gcc 4.5.1 1.38

Nios II gcc 4.1.2 1.93
TI Omap 3430 (ARM Cortex A8) gcc 4.7.0 2.24

Table 3.4: Comparison of soft-processors for the Coremark benchmark running on
hardware

and ARC architectures using Dhrystone 1, Dhrystone 2.1, and Coremark
benchmarks. The clock cycles needed to execute each of the benchmarks
were counted using instruction accurate simulators. To simulate Codix RISC
was used Codasip intersim 3.0.1, for other cores were used simulators from
Open Virtual Platforms build 20130630 [2]. To make the comparison fair,
data hazard handling for Codix RISC was disabled in the compiler, because
the other simulators are instruction accurate, and do not count stalled cy-
cles. Disabling data hazard handling in compiler disables generation of ad-
ditional NOPs, mainly for load instructions. All benchmarks were compiled
with -O3 optimization level. Following compilers were used: arm-gcc 4.8.1,
microblaze-gcc 4.8.1, arc-gcc 4.8.0, codix-risc-llvm 3.2 (codasip), and arm-
llvm 3.2. The benchmarks did not need any standard C library to be linked
and executed. Comparison is shown in graph 3.7, ther comparisons are in the
full text of the dissertation. The WPO values are results when using whole
program optimization in LLVM. With WPO is the whole application linked
together at the LLVM IR level, and additional intraprocedural optimizations
(IPO) such as inlining. Results for Microblaze with Coremark was omitted,
because it did not match the results from table 3.4 (it was on 40% of perfor-
mance of other cores), assuming that there was a mistake in measurement.

The last comparison presented here is for the FFMEG application, which
is a complex application having 30MB of source codes. Codix RISC was
compared where compared to ARMv7 with compiler GCC 4.8. It takes 6%
more cycles on an instruction accurate simulator with Codix RISC to decode
MPEG4 video compared to ARM.

24

0%
20%
40%
60%
80%

100%
120%
140%

Coremark

Figure 3.7: Comparison for Coremark on simulators

Codix RISC - Conclusion

The Codix RISC processor was successfully used to run many applications
including operating system Linux, and environment .NET Micro framework.
Also applications using the OpenCV library can be run on it. Without any ex-
tensions, it provides performance comparable to other widely used processor
cores. Its biggest advantage is its extensibility, where compared for example
to Tensilica Xtensa, or Synopsys ARC, any part of the processor pipeline can
be changed, so the user has much more freedom to do diverse optimizations.

At the time of finishing this thesis was this processor evaluated by Exar
Corporation. At Exar, they plan to replace an ARM processor in their design
for surveillance cameras. A competition to Codix RISC is the Synopsys ARC
processor. Their decision is not known yet.

3.4 Manual ISE identification
Two bachelor theses on automatic Instruction Set Extension (ISE) identifi-
cation were led by the author. First one used algorithm single cut [15], the
second used algorithm ISEGEN [20]. These theses were quite successful, but
the obtained speedup was rather limited.

Also, with regards to other published results on automatic ISE identifica-
tion [22], the author decided to focus mainly on automation of user-guided
identification. The scheme of this user support is shown in figure 3.8.

The user first marks interesting parts of code with pragma codasip ise.
The C code is the compiled by a frontend to LLVM IR, pragmas are kept

25

C/C++ code annotated with pragmas

void f() {

...

#pragma codasip ise (name)

{

// Code to be used as ISE

// semantics.

}

...

}

Compiler frontend
(clang)

Annotated
LLVM IR

ISE splitting pass

ISEs as functions in
LLVM IR

Original code with
pragmas replaced
to ISE function calls
in LLVM IR

ISE generator

CodAL processor model
template with new ISEs

Semantics Extractor

Backend Generator

ISE functions in C
containing inline

assembly

Compiler frontend
(clang)

LLVM link, optimizer,
generated backend,

assembler, and linker

ISE functions in
LLVM IR containing

inline assembly

Optimized
binary

with ISEs

Figure 3.8: Scheme of support for manually identified ISEs

26

in the LLVM IR as code annotation. Then an ISE splitting pass is run. It
removes annotated block of code from the application and replaces them with
calls to functions with name prefix ise, the result is stored in file prog.ll.
Another LLVM IR file ises.ll is created that contains the removed code
blocks as functions. This file ises.ll is processed by the ISE generator that
generates one instruction for each of the ISE function in the CodAL model
template.

This model is then used to generate compilation tools, and the Backend
generator also generates a file inlines.c containing functions with inline
assembly. The replaced code blocks are usually too complex to be matched
by the instruction selector, so using inline assembler is necessary.

The file inlines.c is then compiled with a frontend into a LLVM IR
file inlines.ll. Then it is linked together with prog.ll, and optimized.
The optimizations inlines the functions from inlines.ll into call sites from
prog.ll, so that no overhead of function calls is present in the resulting pro-
gram. Optimized file is then compiled, assembled, and linked, and an opti-
mized binary is created. The CodAL model template also contains definitions
of the new ISEs.

The resulting binary is then simulated. If the performance with new ISEs
is not sufficient, the user can change the pragmas in the original source code,
and try a new optimization opportunity.

Support for pragmas in clang, and the tool ISE generator was imple-
mented by the author. As a processor template was used the Codix RISC
model. The ISE splitting pass was implemented in a bachelor thesis [16] led
by the author. The student also made this whole infrastructure work, and
added other necessary transformations and externsions such as lookup tables
support. There are currently not many results on using this infrastructure,
because it was finished only recently, from some quick tests, speedups from
1.5 to 7.8 for different benchmarks can be obtained very quickly.

27

Chapter 4

Conclusion

In the introduction was as a goal planned to create a complete environment
for optimization of processor cores with using processor templates.

The largest part of this goal was to create a compiler generator. With Se-
mantics Extractor, and Backend generator, a LLVM-based compiler can be
automatically generated from a CodAL model. The performance of the code
produced by the generated compiler is comparable with hand-written solu-
tions, and in some cases even produces faster code. Also many extensions,
mainly for VLIW architectures were implemented that are better than exist-
ing solutions. The resulting compiler is used commercially in the Codasip
spin-off that originated from the Lissom project.

The author designed and implemented the Semantics Extractor with its
output format, and led the works on the remaining parts. One of the main
original contributions is the process used in the Semantics Extractor, where a
compiler is used to generate itself. Also, compared to other existing solutions
(e.g. LISA ADL), just one instruction semantics representation is needed. As
a result is produces an easily analyzable model of the instruction set that has
shown to be useful also for other areas such as fast simulator generation,
reverse compilation, and verification.

The author also designed several processor architectures with Codix RISC
currently being the most useful one. In its base configuration without exten-
sions, the performance is comparable to other existing processor architec-
tures. The Codix RISC processor can run Linux, OpenCV, and other com-
plex applications that can be compiled with the generated compiler. This

28

shows both the quality of the compiler, and the processor core. Codix RISC
is currently commercially offered by Codasip as an extensible processor core.
Compared to the Synopsys ARC processor tools, the compiler for Codix
RISC is generated automatically, and can take advantage of newly added
instructions.

Results were published in numerous papers, and the author also co-authored
2 US patents [19] owned by Brno University of Technology, and [18] owned
by Codasip. Both patents are currently pending.

Finally, the scheme shown in figure 3.8 (in the previous section) is in
fact the tool for fast design space exploration, and optimization of ASIPs that
was envisioned as the goal of this dissertation. Using a compiler generator,
processor template, and other tools, the author with the help of other people
created a tool for very efficient ASIP optimization.

29

Bibliography
[1] CodAL manual. Codasip, Brno, CZ, 2014.

[2] Open Virtual Platforms (OVP) portal, [online]
http://www.ovpworld.org/ (August 2014).

[3] Project Lissom Webpages, [online]
http://www.fit.vutbr.cz/research/groups/lissom/ (August 2014).

[4] Sven-Ake Andersson: Four soft-core processors for embedded systems,
EETimes, 2013.

[5] Blume, H., Hübert, H., Feldkämper, T., Noll, T. G.: Model-Based
Exploration of the Design Space for Heterogeneous Systems on Chip.
In ASAP ’02: Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures, and Processors, page 29,
2002.

[6] Charvát, L., Smrčka, A., Vojnar, T.: Automatic Formal Correspondence
Checking of ISA and RTL Microprocessor Description. In Proceedings
of the 13th International Workshop on Microprocessor Test and Verifi-
cation (MTV 2012), pages 6–12. Institute of Electrical and Electronics
Engineers, 2012.

[7] Codasip. Codasip Framework Tools, [online]
https://www.codasip.com/products/tools/ (August 2014).

[8] EEMBC. CoreMark an EEMBC Benchmark, 2014.

[9] Adam Husár: Implementace obecného assembleru. Master’s thesis,
FIT, Brno University of Technology, Brno, 2007.

[10] Husár, A., Hruška, T., Trmač, M., Přikryl, Z.: Instruction selection pat-
terns extraction from architecture specification language isac. In Pro-
ceedings of the 16th Conference Student EEICT 2010 Volume 5, pages
166–170. Faculty of Information Technology BUT, 2010.

[11] Husár, A., Trmač, M., Hranáč, J., Hruška, T., Masařı́k, K., Kolář, D.,
Přikryl, Z.: Automatic c compiler generation from architecture de-
scription language isac. In 6th Doctoral Workshop on Mathematical

30

and Engineering Methods in Computer Science, pages 84–91. Masaryk
University, 2010.

[12] Křoustek J., Pokorný, F.: Reconstruction of instruction idioms in a
retargetable decompiler. In 4th Workshop on Advances in Program-
ming Languages (WAPL’13), pages 1507–1514. IEEE Computer Soci-
ety, 2013.

[13] Leupers, R., Marwedel, P.: Retargetable compiler technology for em-
bedded systems: tools and applications. Kluwer Academic Publishers,
Norwell, MA, USA, 2001.

[14] Maxfield, C.: Wow! Tensilica licensees have shipped 2 billion IP
cores!, 2012.

[15] Melo, S.: Zrychlenı́ vykonávánı́ softwaru pomocı́ automatických in-
strukčnı́ch rozšı́řenı́. Bachelor’s thesis, FIT, Brno University of Tech-
nology, Brno, 2013.

[16] Mikó, A.: Semiautomatická optimalizace pomocı́ specializovaných in-
strukcı́. Bachelor’s thesis, FIT, Brno University of Technology, Brno,
2014.

[17] Ministr, M.: Virtuálnı́ platformy pro simulaci instrukčnı́ch sad. Bache-
lor’s thesis, FIT, Brno University of Technology, Brno, 2014.

[18] Přikryl, Z., Husár, A., Masařı́k, K., Hruška, T.: A method and an appa-
ratus for automatic processor design and verification, US patent, pend-
ing, owner: Codasip ltd., 2014.

[19] Hruška, T., Přikryl, Z., Husár, A.: A method and an apparatus for in-
struction set translation using finite state automata, US patent, pending,
owner: Brno University of Technology, 2013.

[20] Česka, M.: Automatické vyhledávánı́ instrukčnı́ch rozšı́řenı́ ap-
likačnı́ch procesorů. Bachelor’s thesis, FIT, Brno University of Tech-
nology, Brno, 2013.

[21] Šimková, M., Přikryl, Z., Hruška, T., Kotásek, Z.: Automated
functional verification of application specific instruction-set proces-
sors. IFIP Advances in Information and Communication Technology,
4(403):128–138, 2013.

31

[22] Galuzzi. C., Bertels, K.: The instruction-set extension problem: A
survey. ACM Trans. Reconfigurable Technol. Syst., 4(2):18:1–18:28,
May 2011.

32

Curriculum Vitae

Personal Data
Name: Adam Husár
Born: January 22, 1983
E-mail: ihusar@fit.vutbr.cz
Homepage: http://www.fit.vutbr.cz/∼ihusar/

Education
• 2007 Ing., Faculty of Information Technology, Brno University of Tech-

nology
• 2005/2006 Erasmus internship, ESIEE Amiens, France
• 1999 Gymnázium Mariánské Lázně
• Foreign languages: fluent in English and French, passive knowledge

of German, basics of Spanish and Russian

Experiences
• 2012 – 2014: Compiler group leader, Codasip ltd., and ApS Brno ltd.

Codasip Division, CZ
• 2010 – 2012: Compiler developer, ApS Brno ltd. Codasip Division,

CZ
• 2009: Instruction set simulator developer, OnDemand Microelectron-

ics A.G., Vienna, AU
• 2007: Embedded systems programmer, Honeywell, Brno, CZ

33

• 2006: Mobile applications programmer, Erasmusse, Amiens, FR

Research Projects
• MPO FT–TA3/128: Language and Development Environment for Mi-

croprocessor Design (2005 – 2009) - research in the field of processor
programming tools.

• MPO FR–TI1/038: System for Programming and Realization of Em-
bedded Systems (2009 – 2011) - research in the field of processor pro-
gramming tools.

• SMECY - Artemis JU: Smart Multicore Embedded SYstems (2010 –
2012) - research in the field of multicore processors programming.

• PaPP - Artemis JU: Developing Future-Proof Parallel Software (2010
– 2012) - research in the field of multicore processors programming.

Patents
• Přikryl, Z., Husár, A., Masařı́k, K., Hruška, T.: A method and an appa-

ratus for automatic processor design and verification, US patent, pend-
ing, owner: Codasip ltd., 2014.

• Hruška, T., Přikryl, Z., Husár, A.: A method and an apparatus for in-
struction set translation using finite state automata, US patent, pending,
owner: Brno University of Technology, 2013.

Products
• Hruška, T., Husár, A., Masařı́k, K.: C Language Compiler Frontend

with Pragma Support, software, 2014.
• Husár, A., Maršı́k L.: HW accelerator for radar signal processing,

specimen, 2014.
• Hruška, T., Husár, A., Masařı́k, K.: Robust Automatic Vector Acceler-

ator Compiler, software, 2014.
• Hruška, T., Masařı́k, K., Přikryl, Z., Husár, A., Fujcik L., Pristach M.:

Microprocessor ADOP, specimen, 2011.

34

Selected Author’s Publications

[i] Husár, A., Přikryl, Z., Dolı́hal, L., Masařı́k, K. a Hruška, T.: ASIP
Design with Automatic C/C++ Compiler Generation. Haifa, 2013.

[ii] Dolı́hal, L., Hruška, T., Husár, A., Masařı́k, K. a Přikryl, Z.: Use of
Architecture Description Language ISAC for ASIP Design. ACACES
2012, Poster Abstracts. Fiuggi: High Performance and Embedded Ar-
chitecture and Compilation, 2012. ISBN 978-90-382-1987-5.

[iii] Pristach, M., Husár, A., Fujcik, L., Hruška, T. a Masařı́k, K.: Digital
Signal Soft-Processor for Video Processing. In: Electronic Devices and
Systems IMAPS CS International Conference 2011 Proceedings. Brno:
Vysoké učenı́ technické v Brně, 2011, s. 180-185. ISBN 978-80-214-
4303-7.

[iv] Pristach, M., Husár, A., Fujcik, L., Masařı́k, K. a Hruška, T.: Digital
Signal Soft- Processor for Audio and Video Processing. ElectroScope.
Plzeň: Západočeská univerzita v Plzni, 2011, roč. 2011, č. 4, s. 1-5.
ISSN 1802-4564.

[v] Přikryl, Z., Křoustek, J., Hruška, T., Kolář, D., Masařı́k, K. a Husár,
A.: Design and Simulation of High Performance Parallel Architectures
Using the ISAC Language. GSTF International Journal on Computing.
Singapur: Global Science & Technology Forum, 2011, roč. 1, č. 2, s.
97-106. ISSN 2010-2283.

[vi] Husár, A., Hruška, T., Masařı́k, K. a Přikryl, Z.: Instruction Pipeline
Modeling using Petri Nets. In: Proceedings of the International Work-
shop on Petri Nets and Software Engineering - PNSE’10. Universität
Hamburg: Technische Universitat Hamburg-Harburg, 2010, s. 163-164.
ISBN 978-972-8692-55-1.

[vii] Husár, A., Hruška, T., Trmač, M. a Přikryl, Z.: Instruction Selection
Patterns Extraction from Architecture Specification Language ISAC. In:
Proceedings of the 16th Conference Student EEICT 2010 Volume 5.
Brno: Fakulta informačnı́ch technologiı́ VUT v Brně, 2010, s. 166-170.
ISBN 978-80-214-4080-7.

35

[viii] Husár, A., Trmač, M., Hranáč J., Hruška, T., Masařı́k, K., Kolář, D.
a Přikryl, Z.: Automatic C Compiler Generation from Architecture De-
scription Language ISAC. In: 6th Doctoral Workshop on Mathemati-
cal and Engineering Methods in Computer Science. Brno: Masarykova
universita, 2010, s. 84-91. ISBN 978-80-87342-10-7.

[ix] Přikryl, Z., Hruška, T., Masařı́k, K. a Husár, A.: Fast Cycle-Accurate
Compiled Simulation. In: 10th IFAC Workshop on Programmable De-
vices and Embedded Systems, PDeS 2010. Pszczyna: IFAC, 2010, s.
97-102. ISBN 978-3-902661-95-1. ISSN 1474-6670.

[x] Přikryl, Z., Husár, A., Hruška, T. a Masařı́k, K.: ASIP Design in the Lis-
som Project. In: ACACES 2010 - Poster Abstracts. Ghent: High Perfor-
mance and Embedded Architecture and Compilation, 2010, s. 105-108.
ISBN 978-90-382-1631-7.

[xi] Přikryl, Z., Křoustek, J., Hruška, T., Kolář, D., Masařı́k, K. a Husár, A.:
Design and Debugging of Parallel Architectures Using the ISAC Lan-
guage. In: Proceedings ot the Annual International Conference on Ad-
vanced Distributed and Parallel Computing and Real-Time and Embed-
ded Systems. Singapore: Global Science & Technology Forum, 2010,
s. 213-221. ISBN 978-981-08-7656-2.

[xii] Přikryl, Z., Masařı́k, K., Hruška, T. a Husár, A.: Generated Cycle-
Accurate Profiler for C Language. In: 13th EUROMICRO Conference
on Digital System Design, DSD’2010. Lille: IEEE Computer Society,
2010, s. 263-268. ISBN 978-0-7695-4171-6.

[xiii] Trmač, M., Husár, A., Hranáč J., Hruška, T. a Masařı́k, K.: Instruc-
tor Selector Generation from Architecture Description. In: 6th Doc-
toral Workshop on Mathematical and Engineering Methods in Com-
puter Science. Brno: Masarykova universita, 2010, s. 167-174. ISBN
978-80-87342-10-7.

[xiv] Husár, A., Přikryl, Z., Masařı́k, K. a Hruška, T.: ASIP Design using
Architecture Description Language ISAC. In: ACACES 2009 - Poster
Abstracts. Ghent: High Performance and Embedded Architecture and
Compilation, 2009, s. 137-139. ISBN 978-90-382-1467-2.

36

[xv] Přikryl, Z., Masařı́k, K., Hruška, T. a Husár, A.: Fast Cycle-Accurate
Interpreted Simulation. In: Tenth International Workshop on Micro-
processor Test and Verification: Common Challenges and Solutions.
Austin: IEEE Computer Society Press, 2009, s. 9-14. ISBN 978-0-
7695-4000-9.

37

