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Abstract

This thesis introduces several selected algorithms, which were primarily developed for

CPUs, but based on high demand for improvements; we have decided to utilize it on behalf

of GPGPU. This modification was at the same time goal of our research. The research

itself was performed on CUDA enabled devices.

The thesis is divided in accordance with three algorithm’s groups that have been

researched: a real-time object detection, spectral image analysis and real-time line detection.

The research on real-time object detection was performed by using LRD and LRP features.

Research on spectral image analysis was performed by using PCA and NTF algorithms

and for the needs of real-time line detection, we have modified accumulation scheme for

the Hough transform in two different ways.

Prior to explaining particular algorithms and performed research, GPU architecture

together with GPGPU overview are provided in second chapter, right after an introduction.

Chapter dedicated to research achievements focus on methodology used for the different

algorithm modifications and authors’ assess to the research, as well as several products

that have been developed during the research.

The final part of the thesis concludes our research and provides more information about

the research impact.
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Abstrakt

Táto práca popisuje niekǒlko vybraných algoritmov, ktoré boli primárne vyvinuté pre

CPU procesory, avšak vzȟladom k vysokému dopytu po ich vylepšeniach sme sa rozhodli

ich využǐt v prospech GPGPU (procesorov grafického adaptéra). Modifikácia týchto

algoritmov bola zároveň ciělom nášho výskumu, ktorý bol prevedený pomocou CUDA

rozhrania.

Práca je členená poďla troch skuṕın algoritmov, ktorým sme sa venovali: detekcia

objektov v reálnom čase, spektrálna analýza obrazu a detekcia čiar v reálnom čase. Pre

výskum detekcie objektov v reálnom čase sme zvolili použitie LRD a LRP funkcíı. Výskum

spektrálnej analýzy obrazu bol prevedný pomocou PCA a NTF algoritmov. Pre potreby

skúmania detekcie čiar v reálnom čase sme použ́ıvali dva rôzne spôsoby modifikovanej

akumulačnej schémy Houghovej transformácie.

Pred samotnou časťou práce venujúcej sa konkrétnym algoritmom a predmetu skúmania,

je v úvodných kapitolách, hneď po kapitole ozrejmujúcej dôvody skúmania vybranej prob-

lematiky, stručný preȟlad architektúry GPU a GPGPU. Záverečné kapitoly sú zamerané na

konkretizovanie vlastného pŕınosu autora, jeho zameranie, dosiahnuté výsledky a zvolený

pŕıstup k ich dosiahnutiu. Súčasťou výsledkov je niekǒlko vyvinutých produktov.

V závere nechýba stručné zhodnotenie celého výskumu, jeho vplyv či využitie a dopad

na budúce štúdie a výskum.

Kľúčové slová

GPU, CPU, GPGPU, CUDA, LRP, LRD, PCA, NTF, detekcia objektov, spektrálna

analýza obrazu, detekcia čiar, Houghova transformácia, paralelné koordináty;
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Chapter 1

Introduction

Back in 2007, when we started the research for the needs of this thesis, there was a limited

number of implementations which could enable an effective and energy-efficient use of

Graphics Processing Units (GPUs). There were many publications describing the new,

fast implementations of algorithms on Central Processing Unit (CPU), but there was a

gap and very high demand for improvements of current algorithms that were primarily

designed for CPUs that time (even though there were also some solutions for specialized

processors such as FPGA, DSP, etc.). Based on very high computational potential of

GPU, we have decided to utilize it on behalf of general-purpose computing on graphics

processing units (known as GPGPU, or GPGP or GP2U) - focusing on computer vision

and image processing algorithms. These pixel-based applications are very well suited to

GPGPU technology.

We have selected a set of existing and successfully implemented algorithms with good

performance results and optimized them for GPGPU. For computer vision, we have decided

for object detection using the Local Rank Differences (LRD) and Local Rank Pattern (LRP)

functions, and for image processing improvement we had chosen Non-Negative Tensor

Factorization (NTF) and Principle Component Analysis (PCA) algorithms. Research on

line detection was performed using high-resolution Hough transformation and parallel

coordinates.

As all commonly available PCs include GPU, our goal was to off-load CPU (that is

optimized for a small number of threads) and move the part (or even the whole blocks)

of program to GPGPU; and therefore enable better usage of computer resources, and

enhance the effectiveness of whole PC in the manner of costs and data processing speed.

Historically, the initial purpose of GPU was to serve as graphic accelerator, which

supports only specific fixed-function pipelines. Later on, after almost 10 years of devel-

opment in 90’s, they became increasingly programmable. NVIDIAs’ GPU was for the
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first time introduced in 1999, but further development was carried on, moving forward to

high-performance computing methodology - GPGPU, which uses GPU to crunch the data.

At the time of the research there were an NVIDIA GPUs available for our needs.

These GPUs had a CUDA parallel computing platform interface and shaders. That time,

the shaders were on a very high level from the GPU programming availability point of

view; however they were tailored for graphics rendering and their usage for GPGPU needs

would cause significant difficulties in optimization when comparing with CUDA parallel

computing platform. NVIDIA invented CUDA in 2006, and that was the world’s first

solution for general-computing on GPUs. In parallel with CUDA development, there was

an OpenCL developed. These are the two different interfaces for programming the GPUs.

While OpenCL is an open standard that can be used to program CPUs, GPUs or other

devices; CUDA is specific to NVIDIA GPUs.

For the needs of this thesis, CUDA was used as primary computing platform, as at the

time the research, OpenCL was in a stage of development - it was not stable enough, and

was unable to use the full potential of GPUs. Moreover, several months later, NVIDIA

introduced Parallel Nsight, a development platform for heterogeneous computing, what

enabled us to debug, and fully optimize the performance of GPU. This tool was used to

identify and analyze bottlenecks, and to observe the behaviour of the system.

GPGPU makes a significant impact affecting wide range of application domains, such as

weather forecasting, fluid-flow, or molecular dynamics. Algorithms that we were focusing

on, can find an application on the field of computer vision, physics, astronomy, medicine

and many others.

Thesis Structure

After introduction, the second part of this thesis discusses the background and architecture

of GPU and GPGPU. Beside products available at the time of our research, the past,

current and further GPUs are listed.

Next three chapters discuss different types of algorithms, we have been focusing on.

Namely - LRD and LRP features are explained in Chapter 3., research on PCA and NTF

algorithms is discussed within Chapter 4, and Hough transform with parallel coordinates

are described in Chapter 5. These three chapters provide an insight, and basic information

about the particular algorithms, with an outline of related researches, performance analysis

and results for each research.

Chapter 6 points out the research gains of the author, his contribution and results.

Whole thesis is concluded within Chapter 7., which except overall conclusion includes

also the citation analysis performed in order to assess research impact.
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Within the thesis, the list of published papers is enclosed as Appendix A. Appendix B

conclude the list of products developed during our research.

1.1 Research Motivation

As already stated, our whole research can be divided into three main parts:

� Speed-up of real-time object detection algorithms using CUDA;

� Optimizations of spectral image analysis algorithms;

� Modifications of real-time line detection algorithm (Hough transform).

Each of these topics had a different reason for research initiative and those are further

explained in a consequent section.

1.1.1 Real-Time Object Detection Algorithms - Problem For-

mulation

Object detection, having a wide range of applications, was in 2001 subject of research for

Viola and Jones [92], who introduced very successful face detector which was combining

boosting, Haar low-level feature calculated on integral image, and a focus-of-attention

cascade of classifiers. The detector provided a precision of detection high enough for

practical applications. Success of Viola and Jones encouraged further research in similar

approaches and resulted in a great number of modifications to this original detector.

It was a popular trend to use statistical classifiers (such as AdaBoost and its modifica-

tions) for object detection. Statistical classifiers, as very powerful and common approach

to object detection, classified individual locations of the input image and made a binary

decision whether the location contains the object or not. The result was a set of candidate

locations, which was further proceeded, typically by a non-maxima suppression algorithm.

Face detector of Viola and Jones was a combination of techniques that all together well

minimized the average decision time. The classifier extracted relevant information from

the image with Haar-like features, which were computed very fast and in constant time

using an intermediate image representation called the integral image. Viola and Jones used

AdaBoost, a general boosting algorithm, for feature selection by keeping weak hypotheses

very simple and each based only on single Haar-like feature. However, either this or

any other consequent proposed approaches ([86]) were still not fast enough for real-time

applications.
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As in this period of time, the GPGPU was introduced, we have decided to the accelerate

object detection in images and video sequences using graphic processors (GPUs). Our

task included algorithmic modifications and adjustments, constructing variants of efficient

implementations, and evaluation by comparing with efficient implementations on CPUs.

CUDA offered a maintainable and portable way of programming general-purpose code

for the GPUs (in the scope of NVIDIA), and GPUs controlled by CUDA offered a high

computational power for tasks that were highly parallel. The aim of our research (Chapter

3) was also to evaluate the suitability of the CUDA platform for object detection by

classifiers, and to design efficient version of object detection algorithm.

1.1.2 Spectral Image Analysis Algorithms - Problem Formula-

tion

The topic that led to initiation of the research on hardware-accelerated Principal Compon-

ent Analysis (PCA) algorithm has been revealed from the start-up project called Optical

Sensor Technology in Medical Applications, introduced by University of Eastern Finland.

PCA was primarily targeted on real-time spectral image analysis. It could have been

used on very large data sets, where its utilization has previously been unthinkable. The

computational speed of PCA, especially the speed of creation of the co-variance matrix,

was however critical and any improvement was appreciated.

PCA is often used for data of high dimensionalities. Generally, in the case of spectral

imaging, the dimensionality of the input data was not high (commonly 6–81 channels) but

the number of samples (i.e. number of pixels in image or video) was large - millions to

billions. Existing solutions (e.g. [39, 38, 2, 67]) did not exactly suit this purpose, and so

this unique situation must have been covered by a particular solution.

Within this research ( Chapter 4), also motivated by the need of using PCA on spectral

images in the context of real-time medical imaging, we have optimized two implementations

of algorithm, one utilizing the SSE instruction set of contemporary CPUs, and the other

running on graphics processors, using CUDA environment.

Spectral imaging is except medicine used in many different scientific and industrial

fields, such as wood analysis, mineral detection or textile industries. Non-Negative Tensor

Factorization (NTF) can be used for image compression [3], optimal filter generation

[29], and feature extraction [43], or in fields of global climate analysis, neuroscience,

psychometrics, etc. [75], [6], [11], [57], [84], [48]. The problem that led us to perform

the research on this algorithm was that dimensionalities of these problems are often so

high, that NTF computation takes hours, therefore the acceleration of this process was

desirable.
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Having the possibility to use GPU for GPGPU, we were not forced to use shading

languages and rendering libraries, but were able to use CUDA. Our task was to speed-up

the NTF computation, enhance the efficiency, and compare it with other available solutions.

1.1.3 Real-Time Line Detection - Problem Formulation

The Hough transform is a well-known algorithm for detecting shapes and objects in raster

images. Originally, Hough [34] defined the transformation for detecting lines. Later it

was extended for more complex shapes, such as circles, ellipses, etc., and even generalized

for arbitrary patterns [5]. However, as standard Hough transform was rather slow to be

usable in real-time, different accelerated and approximated algorithms existed. Previously,

several research groups invested an effort to deal with computational complexity of

Hough transform based on the θ-% parametrization, which uses a very straightforward

transformation from the image space to one bounded space of parameters, and because

its uniform distribution of discretization error across the Hough space. There have been

different methods developed ([71], [82], [98], [51] or [8]) focusing on spacial data structures,

non-uniform resolution of the accumulation array, or special rules for picking points from

the input image, but there was still a need for real-time implementation of the Hough

transform.

Our first research (Section 5.1.) on modification of accumulation scheme for the Hough

transform was using θ-% parametrization. The algorithm used a modified strategy for

accumulating the votes in the array of accumulators in the Hough space. The strategy

was designed to meet the nature of GPUs available at the time of research.

The second part of this research (Section 5.2.) used new parametrization of lines

– PClines. Both algorithms were suitable for computer systems with a small but fast

read-write memory, such as GPUs available at the time of the research. Our second

algorithm required no floating-point computations or goniometric functions, what made it

suitable for special, or low-power processors and special-purpose chips. Our task was to

evaluate proposed algorithm solutions both on synthetic binary images, and on complex

high resolution real-world photos.
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Chapter 2

GPU Architecture and GPGPU

The aim of this chapter is to provide an overview of GPU and GPGPU evolution and

theory, together with different GPU products available both at the time of our research

(years 2007-2011), and those that were not addressed in our research, as they became

available later on.

Currently, there are basically two dominant GPU producers. The first one is NVIDIA,

which invented their first GPU (GeForce 256) in 1999, and unveiled CUDA architecture

in 2006. NVIDIA GPUs are now powering millions of desktops, notebooks, workstations

and supercomputers around the world, accelerating computationally-intensive tasks for all

types of potential customers – professionals, scientists, researchers or random consumers.

The whole scale of products is now available; such as Tesla for technical and scientific

computing, Quadro for professional visualization, NVS products for financial industries,

or their primary product line called GeForce, which is for a years in a competition with

AMD’s Radeon product, and will be the subject of our further discussion. Radeon brand

was originally launched by ATI Technologies, and acquired by Advanced Micro Devices

(AMD) in 2006. AMD is therefore the second dominant producer.

At the time of the research there were NVIDIA GPUs available for our needs. The

reason why AMD products were not considered for our research is that AMD, supported

only by OpenCL language, what was that time less mature and less stable than CUDA

architecture - the base of our research.

2.1 GPU Architecture

Historically were GPUs designed as non-programmable 3D-graphics accelerators, support-

ing only specific fixed-function pipelines. The evolution of this kind of GPUs started from

large expensive systems in early 1980s to small workstations and then PC accelerators in
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the mid to late 1990s, when the hardware became increasingly programmable. [91, 90]

They were being developed by multiple companies, and during this period the performance

increased from 50 million pixels to 1 billion pixels per second and from 10 000 vertices

up to 10 million vertices per second. Within years 1994 and 2001, the progress on chips

development moved from simplest pixel-drawing functions to implementing the full 3D

pipeline including transforms, lighting, rasterization, texturing, depth testing and display,

when the surface of an object was drawn as a collection of triangles.

Fixed-function pipeline GPUs were represented by products as S3 ViRGE (1995) or

3DFx VooDoo products line (starting in 1996), followed by first NVIDIA products: “pre”-

GeForce NV3 (known also as RIVA 128 or N3 only, 1997), GeForce 256 (or NV10, 1999),

later NV11 up to NV16, crowned by GeForce3 (NV20, in 2001), which for the first time

allowed limited amount of programmability in the vertex pipeline. All of these are further

explained within next sections of this chapter.

As the chip programmability of GeForce3 was very limited, later GeForce products

became more flexible and faster, adding separate programmable engines for vertex and

geometry shadings. This evolution culminated in the GeForce 7800 that had three kinds of

programmable engines for different stages of the 3D pipeline together with several stages

of configurable and fixed-function logic. With GeForce 7800, the era of programmable

pipeline had begun.

At this point, also GPGPU started its evolution, as to perform non-graphics processing

on graphics-optimized architectures. This was typically performed by running carefully

crafted shader code against data presented as vertex or texture information, and retrieving

the results from a later stage in the pipeline.

GeForce 7800 and its three engines management led to unpredictable bottlenecks, so

in 2006 NVIDIA introduced GeForce 8800 (G80 series of Tesla product line) design that

featured “unified shader architecture” with 128 processing elements distributed among eight

shader cores, where each of them could have been assigned to any shader task, eliminating

the need for stage-by-stage balancing and greatly improving overall performance. With

GeForce 8800, CUDA development environment was introduced (see 2.1 or 2.2 for more

information about CUDA).

With G80 series, NVIDIA introduced their Tesla product line, beginning with PCI

Express add-in boards, and drivers optimized for GPU computing beside of 3D rendering.

From now on, GPU could become to be treated like a many-core processor. Tesla product

line was followed by introduction of Fermi and Kepler product lines, as well as latest

Maxwell and expected future Pascal products. All of these are further, and more in detail,

discussed within next sections of this chapter.
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Application Programming Interfaces (APIs)

In parallel with GPU development, an Application Programming Interfaces (APIs) were

being developed. Generally, the API is standardized layer of software that allows an

application (e.g. game) to send commands to graphics processing unit to draw objects on

a display.

The leader in 3D graphics for workstation was American manufacturer Silicon Graphics,

Inc. (SGI). Their IrisGL API became industry standard, overshadowing the open standards-

based PHIGS, due to its usage simplicity and immediate mode rendering support. As

the market started to accommodate more and more competitors, SGI decided to turn the

IrisGL into an open standard – OpenGL.

OpenGL is now known as a rendering API, providing hardware accelerated (GPU)

rendering functions. Unlike other popular APIs (like DirectX), OpenGL is platform

agnostic, in the meaning that you can write an OpenGL application on one platform and

at the same time OpenGL program can be compiled and run on another platform.

In 1995, Microsoft released the main competitor of OpenGL – Direct3D interface, and

consequently in 1997 an SGI initiated the Fahrenheit project, which was a joint effort

with the goal of unifying the OpenGL and Direct3D. [89] In 1998 Hewlett-Packard joined

the project. Even though it initially showed some promise of bringing order to the world

of interactive 3D computer graphics APIs, due to financial constrains at SGI, strategic

reasons at Microsoft and general lack of industry support, it was abandoned in 1999. [90]

Several years later, in 2006, the OpenGL Architecture Review Board voted to transfer

the control of OpenGL API standard to the Khronos Group, but still keeping the ARB

acronym to prefix the name of OpenGL core extensions. [70]

In the same year, when NVIDIA introduced GeForce 8800, also CUDA was introduced.

CUDA (stands for Compute Unified Device Architecture) is considered to be industry’s

first C-based development environment for GPUs, which delivers an easier and more

effective programming model than earlier GPGPU architectures.

2.1.1 OpenGL and Shader Evolution

The first version of OpenGL had a fixed-function pipeline (Fig. 2.1), what means that all

the functions performed by OpenGL were fixed and could not be modified except through

the manipulation of various rendering states. Programmers therefore didn’t have a control

over the rendering pipeline. [90] The scheme of fixed-function pipeline OpenGL is shown

at Fig. 2.1, where blue stages are still being used within current versions of OpenGL and

orange ones represent stages of the fixed-function pipeline, that have been replaced by

different stages in the programmable shader pipeline.
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Figure 2.1: OpenGL Fixed-Function Pipeline.

OpenGL version 2.0 released in 2004 provided the ability to programmatically define

the vertex transformation and lightening (T&L), and introduced fragment operations.

Vertex shaders offer programmers with more flexibility regarding how the vertices are

transformed, and it is even possible to perform the lighting computations in the fragment

shader to archive per-pixel lighting. The primary responsibility of vertex shader is to

transform the vertex position into “clip space”. This is often done by multiplying the

vertex position by the model-view-projection matrix (known also as MVP matrix). The

output of vertex shader can go directly to rasterizer (OpenGL version 2.0) or to geometry

shader (if present; from OpenGL version 3.0). [77]

In Fig. 2.2, orange stages from Fig. 2.1 are replaced by vertex and fragment program.

Figure 2.2: OpenGL 2.0 Programmable Shader Pipeline with Vertex
Shader.

Another type of shader, available in OpenGL 2.0 is fragment shader, known also as

pixel shader that compute colour and other attributes for each fragment. It replaces all of

the complicated texture blending, colour sum, and fog operations from Fig. 2.1. Fragment

shader can be used to compute the per-pixel lighting as well as blend together multiple

textures to determine the final fragment colour.

OpenGL version 3.2 introduced in 2009 came with additional stage of the programmable

shader pipeline called geometry shader (Fig. 2.3). This shader comes after the vertex

shader in the programmable shader pipeline and therefore the output of vertex shader

becomes an input to the geometry shader. Geometry shader can generate new graphics

primitives, such as points, lines, and triangles. They are typically used for point sprite
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generation, geometry tessellation, shadow volume extrusion, or single pass rendering to a

cube map.

Figure 2.3: OpenGL 3.2 Programmable Shader Pipeline with Geometry
Shader Included.

Tessellation stages that come after vertex but before geometry shaders were introduced

in OpenGL 4.0 (2010) (Fig. 2.4). Tessellation Control Shaders and Tessellation Evaluation

Shaders together allow for simpler meshes to be subdivided into finer meshes at run-time

according to a mathematical function.

Figure 2.4: OpenGL 4.0 Programmable Shader Pipeline with Tessella-
tion.

2.2 GPGPU

First naive graphic cards had almost no ability to change their graphic pipeline com-

putations. NVIDIA Geforce 3/4 brought the first chance of shader programming for

programmers. However, shaders in early stages couldn’t compute very complex algorithms,

due to graphic hardware limitation and were still used primarily for vertex and pixel

processing. Lately introduced Geforce 8 provided almost unlimited programmability, not

only thanks to better shading language, but also for support of CUDA. The CUDA uses the

same hardware shaders, but the interface for accessing hardware is more straightforward for

GPGPU programmers. Shading language therefore became to be used for other purposes

than graphic computations.
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As already stated, at the time of the research there were an NVIDIA GPUs available

for our needs. The reason why AMD products were not considered for our research is that

AMD, supported only by OpenCL language, was that time less mature and stable than

CUDA architecture, so the performance with OpenCL implementation may not match

the expected performance specified in particular GPU specification and figures provided

further in the next chapters of the thesis. Initially, we have been working on an OpenCL

implementation as well, as it was expected to bring more portability, ease of programming

and software maintenance. However, we have found out that OpenCL was always one step

behind, and a full utilization of hardware (NVIDIA) seemed to be impossible. It was just

too unstable and in comparison with CUDA, it was missing the functionality.

Ideal GPGPU applications have large data sets, high parallelism, and minimal depend-

ency between the data elements. The GPUs usage of data parallelism can be described as

follows [77]:

� It uses Single Instruction Multiple Data (SIMD) or Thread (SIMT) model, while

CPUs maps multiple tasks to multiple threads;

� It runs thousands of lightweight threads on hundreds of cores, while CPUs runs tens

of relatively heavyweight threads on tens of cores;

� The threads are managed and scheduled by hardware, while on CPU each thread is

managed and scheduled explicitly (Fig. 2.5);

� The programming is done for batches of threads, while on CPU each thread has to

be programmed individually;

Figure 2.5: CPU and GPU Architecture Overview. [64]

There is also a different hardware architecture needed when performing tasks with

GPU data parallelism. GPGPU capable graphic card contains several multiprocessors

that contain a fast and small memory shared between the cores and a register set, and

large DRAM which can be accessed directly or by using a cache. As already discussed,

GPU architecture was originally designed for real-time rendering purposes: processing 3D
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vertices, rasterization of primitives and processing of pixels. All these tasks are performed in

parallel and are done by a simple code with limited requirements for advanced programming

structures (recursion, branching, loops, etc.). The possibilities and limitations of the GPUs

are defined by SIMT concept and the different levels of memory.

Getting back to shaders evolution, as we have already mentioned in 2.1.1, at a particular

evolution level of GPUs, shaders became to be able to execute very sophisticated and

complicated computations. Suddenly it was possible to use shaders also for GPGPU

needs. But to use them this way, we have had to choose special approach to algorithm

decomposition. If we could divide the whole problem/algorithm in pixel/vertex manner,

than we could use shaders for GPGPU. But there was still a high probability that we

will have implementation problems, due to shader limitations. For example, it could be

impossible to communicate between pixels in one pass, problems with storing temporary

data, etc. Each program must be kind of “drawn” - even if you draw nothing. And this

was the main disadvantage - the fact that you cannot focus on the problem itself, but

wrap the problem into drawing of primitives.

CUDA/OpenCL was more generalized approach to overcome some of the limitations

of shading languages, providing benefits such as:

� CUDA/OpenCL access to spatial information is much more flexible, than in shading

language;

� CUDA/OpenCL provides thread synchronization and atomic functions;

� CUDA/OpenCL enables to define your own compute space (Fig. 2.6), while shading

language will hard-wire the vertex/fragment compute space to your shader.

2.2.1 CUDA

With GPGPU, the programmers are not forced to use shading languages and rendering

libraries to use the GPUs, but CUDA [64] – the first and currently the most mature C-like

programming language. In other words, CUDA is a scalable parallel programming model

and software environment for parallel computing. It offers a maintainable and portable

way of programming general-purpose code for the GPUs. CUDA is often linked with the

three abstractions that are simply exposed to the programmer as a minimal set of language

extensions: a hierarchy of thread groups, shared memories, and barrier synchronization.

These abstractions provide fine-grained data parallelism and thread parallelism, nested

within coarse-grained data parallelism and task parallelism.

This scalable programming model (Fig. 2.6) allows the GPU architecture to span a

wide market range by simply scaling the number of multiprocessors and memory partitions:
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from the high-performance enthusiast GeForce GPUs and professional Quadro and Tesla

computing products to a variety of inexpensive, mainstream GeForce GPUs.

Figure 2.6: Automatic Scalability [64].

Next section introduces the main concepts behind the CUDA programming model by

outlining how they are exposed in C. The following description was due to its complexity

kept in an original wording of CUDA C Programming Guide [64], in order to provide the

reader with accurate and compact set of essential information.

Kernels

CUDA C extends C by allowing the programmer to define C functions, called kernels, that,

when called, are executed N times in parallel by N different CUDA threads, as opposed to

only once like regular C functions.

A kernel is defined using the global declaration specifier and the number of CUDA

threads that execute that kernel for a given kernel call is specified using a new <<<...>>>

execution configuration syntax. Each thread that executes the kernel is given a unique

thread ID that is accessible within the kernel through the built-in threadIdx variable.

[64]

Here, each of the N threads that execute VecAdd() performs one pair-wise addition.

Two vectors A and B of size N are added and stored into vector C. [64]

Thread Hierarchy

For convenience, threadIdx is a 3-component vector, so that threads can be identified

using a one-dimensional, two-dimensional, or three-dimensional thread index, forming a

one-dimensional, two-dimensional, or three-dimensional thread block. This provides a
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Algorithm 2.1 Illustration of Kernel invocation.
// Kernel definition

global void VecAdd(float* A, float* B, float* C)

{
int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{
...
// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

...

}

natural way to invoke computation across the elements in a domain such as a vector,

matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward

way: For a one-dimensional block, they are the same; for a two-dimensional block of size

(Dx, Dy),the thread ID of a thread of index (x, y) is (x + yDx); for a three-dimensional

block of size (Dx, Dy, Dz), the thread ID of a thread of index (x, y, z) is (x+yDx+zDxDy).

[64]

As an example, the following code adds two matrices A and B of size N ×N and stores

the result into matrix C:

Algorithm 2.2 Illustration of Kernel invocation.
// Kernel definition

global void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{
int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main()

{
...
// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;

dim3 threadsPerBlock(N, N);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}

There is a limit to the number of threads per block, since all threads of a block are

expected to reside on the same processor core and must share the limited memory resources
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of that core. On current GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks, so that

the total number of threads is equal to the number of threads per block times the number

of blocks.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional

grid of thread blocks as illustrated by Fig. 2.7. The number of thread blocks in a grid is

usually dictated by the size of the data being processed or the number of processors in the

system, which it can greatly exceed.

Figure 2.7: Grid of Thread Blocks.

The number of threads per block and the number of blocks per grid specified in the

<<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be

specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional, or

three-dimensional index accessible within the kernel through the built-in blockIdx variable.

The dimension of the thread block is accessible within the kernel through the built-in

blockDim variable.

Extending the previous MatAdd() example to handle multiple blocks, the code becomes

as follows.

A thread block size of 16 × 16 (256 threads), although arbitrary in this case, is a

common choice. The grid is created with enough blocks to have one thread per matrix

element as before. For simplicity, this example assumes that the number of threads per

grid in each dimension is evenly divisible by the number of threads per block in that



2.2 GPGPU 17

Algorithm 2.3 Illustration of Kernel invocation.
// Kernel definition

global void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{
int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];

}

int main()

{
...
// Kernel invocation

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}

dimension, although that need not be the case.

Thread blocks are required to execute independently: It must be possible to execute

them in any order, in parallel or in series. This independence requirement allows thread

blocks to be scheduled in any order across any number of cores as illustrated by Fig. 2.6,

enabling programmers to write code that scales with the number of cores.

Threads within a block can cooperate by sharing data through some shared memory

and by synchronizing their execution to coordinate memory accesses. More precisely, one

can specify synchronization points in the kernel by calling the syncthreads() intrinsic

function; syncthreads() acts as a barrier at which all threads in the block must wait

before any is allowed to proceed. Shared Memory gives an example of using shared memory.

For efficient cooperation, the shared memory is expected to be a low-latency memory

near each processor core (much like an L1 cache) and syncthreads() is expected to be

lightweight. [64]

Memory Hierarchy

CUDA threads may access data from multiple memory spaces during their execution as

illustrated by Fig. 2.8. Each thread has private local memory. Each thread block has

shared memory visible to all threads of the block and with the same lifetime as the block.

All threads have access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the

constant and texture memory spaces. The global, constant, and texture memory spaces

are optimized for different memory usages. Texture memory also offers different addressing
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modes, as well as data filtering, for some specific data formats.

The global, constant, and texture memory spaces are persistent across kernel launches

by the same application.[64]

Figure 2.8: Memory Hierarchy.

Heterogeneous Programming

As illustrated by Fig. 2.9, the CUDA programming model assumes that the CUDA threads

execute on a physically separate device that operates as a coprocessor to the host running

the C program. This is the case, for example, when the kernels execute on a GPU and the

rest of the C program executes on a CPU.

The CUDA programming model also assumes that both the host and the device

maintain their own separate memory spaces in DRAM, referred to as host memory and

device memory, respectively. Therefore, a program manages the global, constant, and

texture memory spaces visible to kernels through calls to the CUDA runtime. This includes

device memory allocation and deallocation as well as data transfer between host and device

memory.[64]

Compute Capability

The compute capability of a device [64] is defined by a major revision number and a

minor revision number. Devices with the same major revision number are of the same
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Figure 2.9: Heterogeneous Programming.

core architecture. The major revision number is 5 for devices based on the Maxwell

architecture, 3 for devices based on the Kepler architecture, 2 for devices based on the

Fermi architecture, and 1 for devices based on the Tesla architecture.

The minor revision number corresponds to an incremental improvement to the core

architecture, possibly including new features.

CUDA-enabled GPUs lists of all CUDA-enabled devices along with their compute cap-

ability. Compute capabilities gives the technical specifications of each compute capability.

[64]

2.2.2 OpenCL

OpenCL language [47] was introduced due to lack of compatibility between hardware

producers. It was merging various architecture interfaces into one unified OpenCL interface

and could be used on different hardware. The interface is almost the same as CUDA for C

interface and reimplementing already existing algorithms from CUDA to OpenCL is not

difficult at all. CUDA and OpenCL differentiate in several ways:

� CUDA has better marketing, as it is directly supported by its GPU vendor;
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� CUDA has developer-support in one package, well-written manuals, examples, tu-

torials, etc.;

� CUDA has more built-in functions and features, as it is re-released always together

with a new product (up-to-date with NVIDIA products);

� CUDA was more stable in the time of our research;

The only disadvantage of CUDA was that it only works on GPUs of NVIDIA, while

OpenCL is a completely open standard and has a support of more types of processor

architectures; however it is supplied by many vendors, not provided as one packet or

centrally orchestrated.

2.2.3 GPGPU Debugging

There are several debugging tools available for GPGPU programming. [24] NVIDIA Visual

Profiler was introduced for a fist time in 2008 and provides a strategic metrics to find

potential performance problems. It provides the performance analysis for CUDA apps

Linux, Windows or Mac, and delivers developers vital feedback for optimizing CUDA

C/C++ applications. It supports all CUDA capable NVIDIA GPUs and is available as part

of the CUDA Toolkit. CUDA-GDB command line debugger seamlessly debug both the

CPU and GPU code, setting the breakpoints on any source line or symbol name, executing

only one wrap per single step. It is capable of handling thousands of threads running

simultaneously on each GPU in the system. CUDA-MEMCHECK memory analyser

accurately identifies the source and cause of memory access errors in GPU code and

allows their quick locating. It also reports runtime execution errors, identifying situations

that could otherwise result in an “unspecified launch failure” error when an application

is running. One more tool, mostly during our research is NVIDIA Nsight, an ultimate

development platform for heterogeneous computing, explained more in detail within next

section.

NVIDIA Nsight

NVIDIA Nsigh enables full optimization of the CPU and GPU performance. This feature-

rich tool provides generally better understanding of the code by identifying and analysing

the bottlenecks and observing the behaviour of all system activities. An environment

integrated into Microsoft Visual Studio extends the debugging and performance analysis

capabilities of Visual Studio to support GPU computing, and is useful for game development,

high-performance computing, supercomputing or workstation and content creation software.

Nsight can be divided three functional parts:
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1. GPU Debugger that helps to debug applications that uses CUDA. It enables to set

the breakpoints in CUDA source code, inspect the memory, view the values of local

variables, perform memory checks, or other common debugging tasks.

2. Graphics Debugger debug frame by each draw call (vertex shaders, pixel shaders,

view pipeline states). It creates performance makers and profiles the execution of

graphics code.

3. System Analysis and Profiling Tools provide an understanding how workloads are

distributed across an application and the whole system in general. It enables

programmer to see API calls (including CUDA, OpenCL, DirectX, and OpenGL),

memory copies, kernel executions, draw calls, and CPU/GPU activity events along a

visual time-line. Some key features are source code correlation, deep kernel analysis

to detect factors limiting maximum performance, or unlimited experiments on live

kernels.

2.3 GPU Product Lines Overview

This subsection will provide you with the selection of some major GPU releases aligned

chronologically, beginning with first generations of fixed-function pipeline GPUs, crossing

through programmable pipeline NVIDIA Tesla, Fermi, Kepler and Maxwell product lines.

Section is concluded by some proposed future GPU products.

During our research, we have been mostly using three particular graphics cards:

� NVIDIA GeForce 9800GTX (Tesla product line);

� NVIDIA GeForce GTX 280 (Tesla product line);

� NVIDIA GeForce GTX 480 (Fermi product line).

The major differences between the product lines are described below.

2.3.1 Fixed-Function Pipeline Products

First Generation of GPUs

The two significant products since the beginnings of 3D graphics that are worth to be

mentioned within this section are [53]:
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S3 ViRGE (1995) graphics chipset is known as first 2D/3D accelerator that has been

intended for mainstream consumers. The acronym ViRGE stands for Virtual Reality

Graphics Engine, and S3 powerhouse equipped their first 3D the chipset with 4MB

of on-board memory (core and memory clock-speeds of up to 66MHz). ViRGE’s

pixel throughput gained somewhat faster than the best software-optimized 3D-

rendering available that time, when performing basic 3D-renering with only texture

mapping without other advanced features. In addition, it offered better (16bpp)

colour fidelity. However, with additional operations to the polygon load, such as

perspective-correction, Z-depth fogging or bilinear filtering, the rendering throughput

dropped to the speed of software-based rendering on an entry-level CPU. This feature

was unacceptable for the most of the gamers, and after introduction of competing

product (by 3dfx), the S3 as a company was unable to adapt the rapidly evolving

market.

3dfx Voodoo (1996) product line introduced by 3dfx Interactive was the company’s

initial flagship. It heralded a new era of high-performance and high-quality 3D

graphics for gaming and became a standard for many 3D games. The typical Voodoo

Graphics PCI expansion card consisted of a DAC, a frame buffer processor and

a texture mapping unit, along with 4 MB of EDO DRAM. RAM and graphics

processors operated at 50 MHz. While other video-cards fused on both 2D and

3D functionality onto a single board, the Voodoo1 concentrated solely on 3D and

lacked any 2D capabilities. The consumers therefore still needed a 2D graphics card

for day to day computing, which would be connected to the Voodoo1 via a VGA

pass-through cable.

NVIDIA’s First Generation of GPUs

Several years after NVIDIA has been founded, they came with their first 3D GPU [77, 53]:

NVIDIA “pre”-GeForce (NV3) (1997) product, also known as RIVA 128 or N3, was

introduced to target the performance segment of the volume PC graphics market. It

was designed with OpenGL 1.0 and Microsoft’s DirectX 5 API in mind. NVIDIA

packed 3.5 million transistors on its first performance part, along with a single pixel

pipeline. It was also a 2D/3D combo card, whereas 3dfx’s Voodoo line still required

a separate 2D card. This proposition was relatively costly, what was not a welcome

feature in gamer’s community. However, image quality was poor compared to the

Voodoo line, at least early on, and some games at the time were embracing 3dfx’s

proprietary Glide API.
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Nowadays, NVIDIA desktop cards carry the GeForce nomenclature. This naming scheme

first began in 1999 as a result of contest called “Name That Chip”.

NVIDIA GeForce (NV10, NV11-NV16) (1999) firstly introduced NV10, also known

GeForce 256. This architecture offered significant speed gains over its predecessor,

almost twice as fast in some cases, and allowed NVIDIA to snatch the performance

crown from 3dfx in dramatic fashion. The GeForce 256’s quad-pixel rendering

pipeline could pump 480 M/texels, which was about 100-166M more than other

video-cards on the market that time. It was also equipped with hardware T&L

(Transformation and Lighting) and a multi-texturing (giving bump maps, light maps,

cube environment mapping for creating real-time reflections and others). Later

NV11-NV16 got second texture map unit (TMU) to each of its 2-4 pixel pipelines

what helped to boost the performance.

NVIDIA GeForce3 (NV20) (2001) was introduced with Shader Model 1.0. It was

the first time when a limited amount of programmability in the vertex pipeline was

allowed, together with volume texturing and multi-sampling for anti-aliasing.

Consequently, several generations of graphics cards from NVIDIA, ATI and other man-

ufacturers were developed. Their enhancements were mainly based on tweaking the

speed of memory and other computing units, bus expanding, etc. However, any of these

enhancements did not enter the market with significant step forward.

2.3.2 NVIDIA Programmable Pipeline Products

Year 2002 brought the first GPU with programmable pipeline. This section presents the

selection of some of the major NVIDIA GPU releases having this ability [77, 53]:

NVIDIA GeForce FX (NV30) (2002) is also known as GeForce5. The NVIDIAs’

FX series was the fifth generation of the GeForce line and the first generation of

fully-programmable graphics cards. They were the company’s first video-cards to

support Shader Model 2.0 with support of Cg, HLSL and GLSL shading language.

Shader model 2.0 allowed more flexibility in complex shader/fragment programs and

much higher arithmetic precision.

NVIDIA GeForce6 (NV40) (2004) series provided innovative feature set of comput-

ing, including full support of Shader Model 3.0 for unparalleled gaming effects. This

series implemented also high dynamic range imaging and introduced scalable link

interface (SLI) and PureVideo capability. The main benefit of this series, from

programmable pipeline point of view, was dynamic flow control in vertex and pixel
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shaders (branching, looping, predication, etc.), increased efficiency, longer shader

lengths and vertex texture fetch.

NVIDIA GeForce7 (G70/NV47) (2005) series was the last generation of GPUs that

could support the AGP bus. It was just the refined version of 6th GeForce generation,

but providing the major improvement of being a widened pipeline and increase in

clock speed. The GeForce 7950GT was used in origins of our research, where object-

detection algorithm, which used LRD and Haar features, was implemented by using

shaders.[73]

TESLA Product Line

Tesla, as NVIDIA’s first micro-architecture (Fig. 2.10) was the first product line which

implemented unified shaders (Fig. 2.11)[77]. Prior to this point, pixel shaders and vertex

shaders existed as separate units. Tesla started with 8th generation of GeForce and covers

also GeForce 9 Series, GeForce 100 Series, GeForce 200 Series and GeForce 300 Series, and

then it was replaced by Fermi product line. Tesla is at the same time NVIDIA’s third

generation of micro-architecture designed as a GPGPU.

Figure 2.10: Tesla Architecture [88].

With unified shaders, unlike the vector processing approach taken with older shader

units, each stream processor (SP) is scalar and thus can operate only on one component

at a time. This makes them less complex to build while still being quite flexible and

universal. Each streaming multiprocessor (SM) consists of eight scalar SPs. Two special

function units (SFUs) for transcendentals such as exponential function, logarithm, and

trigonometric functions, an MTIU (multi-threaded instruction unit), and on-chip shared
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Figure 2.11: Unified Shaders [77].

memory. The SM creates, manages, and executes hundreds of concurrent threads in

hardware with zero scheduling overhead. It can create as many as eight CUDA thread

blocks concurrently, limited by thread and memory resources. To manage hundreds

of threads running several different programs, the Tesla SM employs single-instruction,

multiple-thread (SIMT) architecture. For more details, refer to [64]. Tesla-architecture

GPUs also provide atomic read-modify-write memory instructions, facilitating parallel

reductions and parallel-data structure management. [88]

During our research, we have been using two Tesla GPUs: GeForce 9800GTX and

GeForce GTX280.

NVIDIA GeForce 9800GTX (2008) when compared with previous versions (8800GTX),

benefited in two SLI connectors, higher clock speed, and support for NVIDIA Hybrid

Power, a technology allowing the discrete GPU to shut off during non-resource

intensive applications, and use integrated GPU instead. This feature made this

product relatively expensive. The memory interface width was 256-bit. It supported

Shader Model 4.0 and Compute Capability 1.1. GeForce 9800GTX has 128 CUDA

cores (SPs) which are divided into 16 multi-processors (SMs). CUDA capability

1.1 enabling 8 192 registers and 16 KB of shared memory per one SM. See CUDA

documentation [60] for more details on Compute Capability. Three months after

releasing this version, NVIDIA introduced GeForce 9800GTX+ with even faster core

and shader clocks. This design is since March 2009 manufactured as GeForce GTS
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250. [53]

NVIDIA GeForce GTX280 (2008) was almost identical with GeForce 9800GTX but

providing 240 CUDA cores (SPs) divided into 30 multi-processors (SMs). The

most interesting feature was the support of Compute Capability 1.3 (while already

Compute Capability 1.2 supported Atomic function in shared memory). See CUDA

documentation [60] for more details on Compute Capability and differences between

any two versions. [53]

FERMI Product Line

Fermi micro-architecture introduced (Fig. 2.13) in the beginning of 2010 was represented

by GeForce 400 Series and GeForce 500 Series. A complex architecture managed by a

multi-level programming model allowing programmers to focus on an algorithm design

to improve the productivity. Fermi was based on collection of four Graphics Processing

Clusters (GPCs), each of which contained a raster engine and four SM units. Fermi

supports concurrent kernel (Fig. 2.12) execution, where different kernels of the same

application context can execute on the GPU at the same time thus fully utilizing GPU

capacity.[61, 20, 83, 96]

Figure 2.12: Fermi Concurrent Kernel.

At this time, NVIDIA has also introduced Nexus (further renamed to Nsight, 2.2.3),

which is claimed to be the world’s first integrated heterogeneous computing application

development environment within Microsoft Visual Studio.

Double precision throughput has increased by a factor of eight compared to the

previous generation. NVIDIA has also added support for ECC memory, which was a

critical requirement for data-centres and supercomputers looking to deploy GPUs on a

large scale.

During our research, we have been using one Fermi GPU – a GeForce GTX 480.
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Figure 2.13: Fermi Architecture GeForce GT300 (GF100).

NVIDIA GeForce GTX 480 (2010) provided 480 CUDA cores (SPs) divided into 15

multi-processors (SMs) and included GDDR5 memory with memory width of 384-bit,

what is less than the Tesla GTX 280, but the overall maximal bandwidth is up to

177 GB/s. It supported Compute Capability 2.0. See CUDA documentation [60] for

more details.

KEPLER Product Line The same year as Fermi, NVIDIA introduced Kepler micro-

architecture (Fig. 2.14) which brought some very important architectural changes. Kepler

is represented by GeForce 600 Series and GeForce 700 Series. Taking into account that

Kepler was still organized into CUDA cores, SMs, and GPCs, and the way how the warps

were executed, from a high-level view, Kepler was identical to Fermi. However, the key new

features of Kepler compared to previous Fermi were new SMX processor architecture and

enhanced memory subsystem (offering additional caching capabilities, more bandwidth

at each level of the hierarchy, and a fully redesigned and substantially faster DRAM I/O

implementation). [63]

Kepler replaced SM with SMX consisting of 192 CUDA cores (SPs), 32 Special

Function Units (SFU), and 32 Load/Store units (LD/ST). It was designed from ground

up to maximize computational performance with superior power efficiency. SMX was 3

times more energy efficient than previous Fermi multiprocessor. Each SMX featured four

warp schedulers and eight instruction dispatch units, allowing four warps to be issued

and executed concurrently. Kepler’s quad warp scheduler selected four warps, and two
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Figure 2.14: Kepler SMX Architecture.

independent instructions per warp could be dispatched each cycle.

Another ability introduced with Kepler was Dynamic Parallelism (Fig. 2.15, 2.16) for

kernels to be able to dispatch other kernels. By giving kernels the ability to dispatch their

own child kernels, GK110 could both save time by not having to go back to the CPU, and

in the process free up the CPU to work on other tasks. Dynamic Parallelism is all about

scheduling work on GPU based on the data without the need for the CUP to coordinate

work. The accelerator can generate work for itself; it can launch its own kernels unlike in

the past where CPU was solely responsible for launching all kernels allowing more of a

program to directly run on the GPU without communication with the CPU. [40, 62]

Figure 2.15: Kepler Dynamic Parallelism.



2.3 GPU Product Lines Overview 29

Figure 2.16: Dynamic Parallelism Decomposition.

MAXWELL Product Line Maxwell was introduced in 2013 and is represented by

GeForce 800 Series and GeForce 900 Series. The number of CUDA Cores per SM has

been reduced to a power of two, however with Maxwell’s improved execution efficiency,

performance per SM is usually within 10% of Kepler performance, and the improved area

efficiency of the SM means CUDA cores per GPU will be substantially higher versus

comparable Fermi or Kepler products. The Maxwell SM retains the same number of

instruction issue slots per clock and reduces arithmetic latencies compared to the Kepler

design.

As with SMX, each SMM has four warp schedulers, but unlike SMX, all core SMM

functional units are assigned to a particular scheduler, with no shared units. Number of

active thread blocks per multiprocessor has been doubled over SMX to 32, which should

result in an automatic occupancy improvement for kernels that use small thread blocks

of 64 or fewer threads. A significant improvement in SMM is that it provides 64KB of

dedicated shared memory per SM and per-thread-block limit remains 48 KB. [65]

Future

In 2013 (the same year when Maxwell architecture was introduced) NVIDIA announced

that their next GPU architecture will be Volta; with on-package DRAM, utilizing Through

Silicon Vias (TSVs) to die stack memory and place it on the same package as the GPU.

However, in the first quarter of this year, Volta was pushed back and architecture named

Pascal (Fig. 2.17) was announced for year 2016. Pascal is supposed to be the first

GPU to use stacked, 3D chip packing, and should incorporate a new PCI Express-based

interconnect technology called NVLink. With Pascal, NVIDIA will achieve 2.5 times the

capacity and four times the energy efficiency of Maxwell while boosting memory bandwidth

for multi-GPU scaling even further.
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Figure 2.17: Nvidia Roadmap.

Another NVIDIA-announced future event is Echelon (Fig. 2.18) - NVIDIA’s Extreme-

Scale Computing Project. NVIDIA Research team Echelon project aims to address

energy-efficiency and memory-bandwidth challenges and provide features that facilitate

programming of scalable parallel systems. Echelon is a general-purpose fine-grained parallel-

computing system that performs well on a range of applications, including traditional and

emerging computational graphics as well as data-intensive and high-performance computing.

At a 10 nm process technology in 2017, the Echelon project’s initial performance target

is a peak double-precision throughput of 16 Tflops, a memory bandwidth of 1.6 TB per

second, and a power budget of less than 150 W. The goal is to integrate CPUs and GPUs

on the same die with unified memory architecture. Such a system eliminates some of

accelerator architectures’ historical challenges, including requiring the programmer to

manage multiple memory spaces, suffering from bandwidth limitations from an interface

such as PCI Express for transfers between CPUs and GPUs, and the system-level energy

overheads for both chip crossings and replicated chip infrastructure. Echelon aims to

achieve an average energy efficiency of 20 pJ per sustained floating-point instruction,

including all memory accesses associated with program execution. [45, 19]

Echelon processor promises global address space, flexible memory hierarchy, efficient

bulk parallelism and heterogeneous cores.
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Figure 2.18: Echelon System Sketch.
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Chapter 3

Real-Time Object Detection Using

CUDA

This chapter presents object detection in still images and video sequences. Image classific-

ation and detection tasks can be used as a base for various image processing and computer

vision applications. While it is a very costly task from the computational resources point of

view, very high demand exists for efficient object detection methods and implementations.

One of the frequently used techniques of fast object detection is usage of classifiers

to scan the image and attempt classification of every potential object position or even

every potential position in the image being searched. Classifiers can be implemented as

statistical classifiers based on supervised machine learning and can take as their input

low-level features (sometimes called weak classifiers) extracted from the window being

classified. In principle, such features can be immediately the image pixels, but by using

more complex feature extractors, the classifiers can achieve better performance - both in

the detection rate and speed.

The research on real-time object detection presented within this chapter was performed

in cooperation with the following list of co-authors: Adam Herout, Pavel Zemč́ık, Lukáš

Polok, Michal Hradǐs, Roman Juránek and Jǐŕı Havel.

3.1 Background of Object Detection by Boosting

In 2001 Viola and Jones [92] presented the first real-time frontal face detector which

provided a precision of detection high enough for practical applications. This perform-

ance was achieved by combining ideas which together very well minimize the average

computation time. The individual parts are the Haar-like features used to efficiently

extract discriminative information from images; the AdaBoost learner which combines
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simple hypotheses into a powerful decision rule; and the attention-cascade structure of

the detector which greatly reduces the average decision time. Additionally, bootstrapping

was used when training the detector to achieve very low false positive rates needed when

detecting objects in images. The significant success of the Viola and Jones face detector

consequently encouraged further research in similar approaches and resulted in a great

number of modifications to this original detector.

The performance of the detection classifiers largely depends on the type of features

they use. The ideal features should be computationally inexpensive, and to some degree,

invariant to geometry and illumination changes, and should provide high discriminative

power – all at the same time. High discriminative power is needed to achieve high precision

of detection and it also implies more compact and faster classifiers as lower number of

features is needed to be computed for the classifier to make a decision. In general, the

ideal type of features can differ for different types of objects [87]. However, simple image

filters have been proven to generalize well across various types of objects [79]. These filters

decorrelate the neighbouring pixel values; utilize knowledge about frequency properties of

images; and they also provide low tolerance to geometric transformations. Most of the

filters which are used for object detection do not respond to the zero-frequency component,

and they can be also normalized to compensate lighting changes.

When using simple filters, it is possible to transform the data in such a way that all

the information in the original data is represented with the same number of coefficients

(wavelet transformation). However, it is more efficient to consider all the possible filters

and choose only the most discriminative for the classifier. This way, the most relevant

information is extracted in the least amount of time and the classifier can be simpler. For

example, Viola Jones ([92]) used a highly over-complete set of Haar-like features totalling

180,000 for samples 24Ö24.

Algorithm 3.1 The original version of AdaBoost [18] with notation modified according
to [78].

Require: S = 〈(x1, y1) , . . . , (xm, ym)〉 , xi ∈ X, yi ∈ Y = {−1,+1}
Ensure: D1(i) = 1/m

1: for t = 1, . . . ,T do
2: Train weak learner using distribution Dt

3: Choose αt = 1
2

ln
(

1−εt
εt

)
4: Update: Dt+1(i) = Dt(i) exp(−αtyiht(xi))

Zt
where Ztis a normalization factor

5: end for
6: Output the final hypotesis: H(x) = sign

(∑T
t=1 αtht(x)

)

Viola and Jones used AdaBoost [18] algorithm to both select informative features and
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create the classifier. AdaBoost (Alg. 3.1) is one of the boosting algorithms. It combines

simple (weak) classifiers into a very accurate prediction rule (strong classifier). If each

of the weak classifiers is based on only a single feature, the boosting algorithm then

effectively performs feature selection. The weak classifiers are selected in a greedy fashion

and combined to minimize an exponential loss function. AdaBoost creates large-margin

classifiers in the weak classifier space. The AdaBoost algorithm has certain properties

which makes it especially useful for real-time detection. The strong classifier is a linear

combination of the weak classifiers which makes it very efficient to compute. Also, the

algorithm rapidly converges to a good solution on training data which minimizes the size

of the strong classifier. Finally, the AdaBoost algorithm has been proven to reach an

arbitrarily low classification error rate on the training data as long as the weak classifiers

provide at least some useful information. This can be generalized in that the AdaBoost

algorithm is guaranteed to reach a specific error at any operating point. In the Viola

& Jones detector, this fact is exploited when creating classifiers for the cascade stages,

where the reaching of a specified error at a specific operating point is used as the stopping

criterion. This way, the complexity of the classifier is kept low while maintaining the

required error rate.

The ensemble classifier created by AdaBoost can be itself a powerful and efficient

classifier capable of detecting objects in images. However, such a classifier would have

to still be composed of hundreds of weak hypotheses. Such a large classifier would

certainly not provide real-time performance in most of the desired scenarios. To reduce

the computational complexity of the detector, Viola and Jones exploited the fact that

the vast majority of samples classified when scanning images for desired objects belong

to background. They created an object-specific focus-of-attention mechanism which they

called cascade and which is essentially a degenerated decision tree (Fig. 3.1), where each of

the nodes is a strong classifiers created by AdaBoost. The individual stages of the cascade

either reject the processed sample as background or they send the sample to the next

classifier. As the decision task becomes harder for the later stages, the classifiers become

longer. The cascade is the first mechanism which allows creation of such focus-of-attention

mechanisms at least partially automatically.

The detection cascade can be created according to the desired false positive rate and

false negative rate of each stage. In such a case, AdaBoost increases the size of the strong

classifier until the required rates are reached. However, in [92], the authors set the lengths

of the individual stages manually. Moreover, the cascade is in many aspects suboptimal.

First, all information between the consecutive stages is lost, even though the previous

stage already provides a very good solution to the problem of the next stage. Second,

the operating points of the classifiers and their lengths are set ad-hoc and not optimally.
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Figure 3.1: The detection cascade. The cascade is composed of a series
of increasingly more complex classifiers which either reject the classified
sub-window as background or pass it to the subsequent stage. The object
is detected only if the corresponding sub-window successfully passes

through all of the stages. [92]

These two problems were addressed many times ([7][85] [97]), most notably, [86] presented

WaldBoost algorithm which solves these two problems in a natural way. The WaldBoost

algorithm is a combination of real AdaBoost [78] and Wald’s [94] sequential probability

ratio test. In WaldBoost, rejection thresholds are set after each iteration of the AdaBoost

algorithm. The thresholds are set as Wald proposes in the sequential probability ratio

test, which he proves is the fastest possible classification strategy for a given target error

rate. Also, as the resulting classifier is monolithic, no information is lost.

3.1.1 Image Features Based on Haar Wavelets

The Haar features were introduced by Papageorgiou et al. [72], who used them as an input

for support vector machine to create a very accurate classifier. Viola and Jones [92] used

the Haar features for rapid object detection in a framework with an AdaBoost classifier

and thresholding weak hypotheses. The features, in their basic form, are based on the

difference of adjacent rectangular regions of the input image. They respond strongly on

edges and line segments of the image.

Figure 3.2: Shapes of Haar features. Standard shapes on top and
extended set on the bottom.
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The shapes of the wavelets typically used in pattern recognition are displayed in Fig.

3.2. The Haar features are very popular for their extremely low computational cost when

evaluated on integral image and for providing good amount of information at the same

time. The extended Haar feature set was introduced by Lienhart and Maydt [52]. The

difference from the commonly used features is that new features are rotated by 45 degrees.

Figure 3.3: Integral images. Standard integral image (top) and integral
image required to evaluate 45 degree rotated Haar features (bottom).

Efficient evaluation of Haar features is achieved by using integral image (Fig. 3.3). The

integral image stores in each pixel the sum of all pixels above and to the left of it. As a

consequence, the sum of pixels of an arbitrary axis-aligned rectangular region in the image

can be obtained by referencing only the corner pixels. For the extended set, a different type

of integral image is required (Fig. 3.3 bottom). An important advantage of the features is

that the response can be obtained in constant time regardless of the size of the feature

in the image. A preprocessing stage is required to create the integral images, though.

Similar to other convolution-based features, the Haar features need to be normalized to

achieve (at least partial) invariance to lighting conditions, which can significantly increase

computational demands. The typical choice of the normalization value is the standard

deviation of local intensity for which another integral image is required.

Cg Implementation as a Reference

Cg implementation was created as a reference for LRD implementation introduced further

in this chapter. LRD implementations have been compared to Cg implementation, and

the results are presented within Chapter 6.
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Only the simplest (two-fold) Haar wavelet features were used in this testing implement-

ation (though also three-fold features are used in the object detectors, whose evaluation is

slightly slower). The Haar wavelets require normalization by the energy in the classified

window – both to evaluate the energy and to evaluate the features themselves, integral

images are used, which is the fastest method available to our knowledge. The calculation of

the integral images constitutes the preparatory phase evaluated in the comparison. Please

note that (to our knowledge) there is no effective way of calculating the integral image in

the shading language, so the preparatory phase is implemented in the CPU. The shader

evaluating the classifiers is illustrated in Alg. 3.2.

3.1.2 Local Binary Patterns

The Local Binary Patterns (LBP) are widely used in texture processing. They were

introduced by Ojala et al. [68] and some improvements have been proposed since then.

LBPs in their basic form capture information about local textural structures by thresholding

samples from a local neighbourhood by its central value and forming the pattern code (Fig.

3.4). The code is calculated as a weighted sum of the threshold samples. The weights

correspond to powers of 2, so each sample sets a single bit in the pattern value.

Figure 3.4: Example Of LBP Evaluation: sampling of the neighbour-
hood (left), thresholding sampled values by the central value (middle)

and forming of the LBP code (right).

Typically, the circular neighbourhood with 8 samples is used (8 bit pattern), but other

variants are also possible (Fig. 3.5). LBP are most frequently used in combination with

local histograms to describe a local image area and segment the image.

Figure 3.5: Different Sizes Of Local Binary Patterns.
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Algorithm 3.2 Evaluation of the Haar-like features in the GPU (Cg).
float GetHaar(float2 p0, float2 p1, float2 p2,

float2 p3, float2 p4, float2 p5,

uniform samplerRECT IntegTexId)

{
return - texRECT(IntegTexId, p0).a

+ texRECT(IntegTexId, p1).a * 2.0f

- texRECT(IntegTexId, p2).a

+ texRECT(IntegTexId, p3).a

- texRECT(IntegTexId, p4).a * 2.0f

+ texRECT(IntegTexId, p5).a;

}

float Horizontal(float2 p0, float2 d, float WIntensity,

uniform samplerRECT IntegTexId,

uniform samplerRECT AlphaTexId,

float HaarId)

{
float2 dx1 = float2(d.x,0.0f);

float2 dx2 = float2(d.x+d.x, 0.0f);

float2 p3 = p0 + float2( 0.0f, d.y);

float haar = GetHaar(p0, p0+dx1, p0+dx2, p3, p3+dx1, p3+dx2, IntegTexId);

haar /= d.x*d.y * WIntensity; // Normalization

haar = clamp((haar+1.0f)*0.5f * 120.0f, 0.0f, 120.0f); // quantization

return texRECT(AlphaTexId, float2(HaarId, haar)).a;

}

sOutPS FragmentProgram(sVS2PS IN,

uniform samplerRECT IntegTexId,

uniform samplerRECT IntegSqTexId,

uniform samplerRECT AlphaTexId)

{
sOutPS OUT;

float window energy =

+texRECT(IntegSqTexId, IN.texcoord0).a

-texRECT(IntegSqTexId, IN.texcoord0 + float2(WND W, 0.0f)).a

-texRECT(IntegSqTexId, IN.texcoord0 + float2( 0.0f, WND H)).a

+texRECT(IntegSqTexId, IN.texcoord0 + float2(WND W, WND H)).a;

float haarid = 0;

float sum = 0;

sum += Horizontal(IN.texcoord0+float2( 0.0f, 0.0f), float2( 8.0f, 8.0f),

window energy, IntegTexId, AlphaTexId, haarid);

haarid++;

sum += Vertical (IN.texcoord0+float2( 3.0f, 3.0f), float2( 2.0f, 8.0f),

window energy, IntegTexId, AlphaTexId, haarid);

haarid++;

sum += // ...

OUT.color.r += sum/haarid;

OUT.color.a = 1.0f;

return OUT;

}
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The LBP is not rotationally invariant, it is dependent on which sample is considered

first when forming the code. Rotational invariance can be achieved by normalization of

the pattern by shifting the bits – the lowest value is selected as the LBP result. The LBPs

exhibit very good performance when used as features in object detection. [100]

3.1.3 Local Rank Functions

The experience with known features, such as Haar features and LBP, suggests that in

many cases the classification benefits from the intensity information. On the other hand,

the intensity information is subject to changes due to brightness and contrast adjustments

of the images while invariance to these changes is very often wanted. This fact causes the

applications using features directly based on intensity, such as Haar features, to normalize

the image window being classified (e.g. through equalization of its histogram to have a

constant energy and zero mean value or through other comparable techniques). However,

regardless of the normalization method, the normalization can be very costly from the

computational point of view especially comparing it to the cost of, for example, the

computation of Haar features evaluation itself. The novel LRF is based on the idea that

the intensity information in the image can be well represented by the order of the values

(intensities) of the pixels or small pixel regions (e.g. summed 2Ö2 pixel rectangular areas).

This idea is backed by the fact that calculation of the values of features based on the order

of pixels is equivalent to (or based on the exact evaluation method at least very close

to) normalizing the image through histogram equalization [1] and then evaluation of the

feature value based on the pixel or small regions intensities.

The LRF based on the order of pixel values rather than the values of pixels themselves

– have several principal advantages over the functions based on the values themselves:

� Invariance to illumination changes – the LRF are invariant to most of the functions

used to brightness and contrast adjustments/normalization in the images. More

specifically, LRF are invariant to nearly all monotonic gray-scale transformations;

� Strict locality – LRF of objects (parts of objects) do not change locally when the

object’s image is being captured under changing conditions (similar to for example

SIFT);

� Reasonable computational complexity – computation and memory accesses can be

optimized thanks to regular geometric structure. No explicit normalization is needed,

which is specifically important in some classification schemes, such as WaldBoost

([86]);
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Formal Definition of LRF

Let us consider a scalar image f : Z2 → R. On such image, a sampling function can be

defined (x, u ∈ Z2, g : Z2 → R):

Sgx(u) = (f ∗ g) (x + u) (3.1)

This sampling function is parametrized by convolution kernel g which is applied before

the actual sampling, and by vector x which is the origin of the sampling. Next, let us

introduce a vector of relative coordinates (n ∈ N):

U = [u1u2 . . .un], ui ∈ Z2 (3.2)

This vector of two-dimensional coordinates can define an arbitrarily shaped neighbourhood

and it will be used together with the sampling function to obtain a vector of values

describing the neighbourhood of this shape on position x in the image:

M = [Sgx(u1)Sgx(u2) . . . Sgx(un)] (3.3)

This n-tuple of values will be referred to as the mask in the following text. The term mask

is reasonable as the vector was created by “masking” global information from the image

and leaving only specific local information. Note that in general, the sampling function

does not have to be uniform over the mask:

M = [Sg1x (u1)Sg2x (u2) . . . Sgnx (un)] (3.4)

but the implementations described in this text all use the uniform sampling function.

For each element k in the mask, its rank can be defined as:

Rk =
n∑
i=1

{
1 if Mi < Mk

0 otherwise
(3.5)

i.e., the rank is the order of the given member of the mask in the sorted progression of all

the mask members. This way an n-tuple of ranks R is obtained. Note that the ranks are

independent on the local energy in the image.

On the n-tuple of ranks R, a variety of functions which extract discriminative informa-

tion can be defined. These LRF have the form:

LRF : Zn�Z (3.6)

One of the possible variants of LRF is the Local Rank Pattern (LRP) image feature
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[35], which selects two specific ranks and encodes their values. The LRP from their nature

produce a large set of possible results, which can in the context of recognition/detection

cause problems when only small training datasets are available and when the memory

available on the target computational platform is limited. One way to deal with this issue

- and to shrink the output set of the image features - is the Local Rank Differences (LRD).

The LRD computes the difference of two ranks which is very similar to the Haar-like

features with added (Fig. 3.2) with added local image contrast normalization.

These are just brief definitions of LRP and LRD. However, both LRD and LRP were

the subject of our interest and research and are further explained in the next sections of

this chapter (3.2,3.3).

3.2 Local Rank Patterns

Local Rank Patterns (LRP) are low-level image features introduced in [35] and described

in detail in [32]. They were designed to constitute an alternative of the commonly used

Haar wavelets, which would be suitable for hardware implementations (in FPGA and

ASIC chips). Though designed for implementation by circuitry, they perform very well

also when implemented on processors and graphics chips.

The LRPs are based on the idea that the intensity information in the image can be

well represented by the order of the values (intensities) of the pixels or small pixel regions

(e.g. summed 2 Ö 2 pixel rectangular areas).

Our research addressed in [32] and [30] presents the LRP low-level image feature

extractor and its efficient implementations on several hardware architectures.

Formal Definitions of LRP

Local Rank Patterns [35] are defined as:

LRP (a, b) = nRa +Rb, a, b ∈ 1, . . . , n (3.7)

Note that n is the number of samples taken in the neighbourhood and therefore the

result of LRP is unique for each combination of values of the two ranks Ra and Rb. This

fact suggests an alternative definition of the LRP when we allow the results of LRP to be

pairs of values instead of a single value:

LRP (a, b) = [RaRb] (3.8)

The LRP have some interesting properties which make them promising for image
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pattern recognition. Mainly, LRP are invariant to monotonous gray-scale changes such

as changes of illumination intensity. This invariance results from using ranks instead of

absolute values to compute the value of the feature. In fact, using the ranks has the same

effect as locally equalizing the histogram of the convolved image f ∗ g.

Further, LRP are strictly local – their results are not influenced by image values outside

the neighbourhood defined by U. This is a clear advantage over wavelet features (e.g.

Haar-like features) which, in the way they are commonly used, need global information to

normalize their results. This locality makes the LRP highly independent, for example, on

changes of background and on changes of intensity of directional light.

The meaning of the values produced by the LRP can be understood in two ways. First

and most naturally, the results give information about the image at the locations of the

two ranks x+ ua and x+ ub and information about their mutual relation. On the other

hand, the results also carry information about the rest of the neighbourhood, especially

if the neighbourhood is small. In such cases the results of LRP carry good information

about the local pattern in the image.

In the previous text, the LRP have been defined for two-dimensional images. However,

the notation allows very a simple generalization for higher-dimensional images by changing

the dimensionality of x, u and of the relative coordinates in U to Z 3 for 3D or Z k for

general dimensionality. Furthermore, it is possible to use more than two ranks to compute

the results of the LRP. For example:

LRP (a, b, c) = Ra · n2 +Rb · n+Rc (3.9)

3.2.1 Implementations

As the core of this thesis was to find the possibility of using CUDA in object detection, the

main implementation of LRP was CUDA implementation. Consequently was this CUDA

implementation compared to SSE implementation on multi-threaded CPU.

CUDA Approach

The efficient implementation solves problems of two main domains: the classifier operating

on one fixed-size window and parallel execution of this classifier on different locations of

the input image. Making the object detector with these two issues separate simplifies

the design. However, some extra speed-up could possibly be gained from exchanging

information between different classifier instances. The implementation presented in this

section keeps the classifier instances as “black boxes” and does not share information
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between them. Experiments with sharing the information lay outside the scope of this

research.

The problem of object detection by statistical classifiers (from the CUDA implementa-

tion point of view) can be divided into following steps:

1. loading and representing the classifier data;

2. image pre-processing;

3. object detection and

4. retrieving results.

Loading and Representing the Classifier Data The constant data containing

the classifier (image features’ parameters, prediction values of the weak hypotheses summed

by the algorithm, WaldBoost thresholds) could be accommodated in texture memory or

constant memory of the CUDA architecture. This data is accessed on evaluation of each

feature at each position, so the demand for access speed is critical. Although the access

would be slightly simpler and faster if the data was stored in the texturing memory of the

CUDA environment, the experiments showed that the overall detection times are better

when the classifier data is stored in the constant memory. This is mainly because the

image is stored in the texturing memory and is heavily accessed, so offloading the access

to the classifier data to the constant memory relieves a bottleneck of the system. The

constant memory (as well as the texturing memory) is cached and the referencing to the

classifier data exhibits a large locality of reference – all the threads are typically processing

the same weak classifier.

Input Image Pre-Processing The classifier is trained on a training dataset of

fixed-scale examples. To be able to detect the object in different scales, the image must

be scanned in multiple resolutions. The common approach benefits from the ability of

the Haar wavelets calculated using the integral image to be evaluated in arbitrary scales

in constant time. The LRP features could be evaluated in a similar manner as well, but

experiments showed that especially on the graphics card, it is notably more efficient to

construct a multi-resolution pyramid from the input image and scan it by the detector.

See Fig. 3.6 for an illustration of how the pyramid is built. Note that some pixels of

the pyramidal image, which is the actual input of the detection algorithm itself, are left

unused. More compact layouts of the images of different resolutions could possibly be

found and the amount of the unused pixels could be slightly reduced. However, thanks

to the nature of the WaldBoost algorithm, only a very small number of weak classifiers
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(˜2) are evaluated on the unused locations, which are filled with a constant colour. The

time spent on evaluation of these areas is a tiny fraction of the whole processing time

and sparing a fraction of this amount would not be worth the relatively complicated and

error-prone layout algorithm.

(a) Original image (b) Multi-res pyramid

Figure 3.6: Multi-Resolution Pyramid Constructed from the Input
Image.

OpenGL rasterization is used for creation of the multi-resolution pyramid: a pixel

buffer object of sufficient resolution is created and the input image is rendered for each

scale. After the rendering is done, this pixel buffer is converted into a CUDA texture (Alg.

3.3).

Algorithm 3.3 Pixel Buffer conversion to CUDA texture.
cudaGLRegisterBufferObject( PixelBufferObject );

cudaGLMapBufferObject( CudaData, PixelBufferObject );

cudaMallocArray( CudaArray, ... );

cudaMemcpyToArrayAsync( CudaArray, CudaData);

cudaBindTextureToArray( CudaTexture, CudaArray);

Object Detection – Overall Algorithm Design Programs that are run on the

graphics hardware using CUDA are executed as kernels, each kernel has a number of

blocks and block is further organized into threads. The code of the threads consumes

hardware resources: registers and shared memory; this limits the number of threads that

can be efficiently executed in a block (both the maximal and minimal number of threads).

One thread computes one or more locations of the scanning window in the image.

One thread could as well perform a task of smaller granularity - e.g. one or more weak

classifiers, but that would imply too much inter-thread communication. The image pixels
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(or window locations, more precisely) are therefore divided into groups which are calculated

by the threads. The final solution divides the image into rectangular tiles which are solved

by different thread blocks (see Fig. 3.7). We have been experiencing with various layouts

of the position-thread assignments, but this design is both simple and achieves no less

performance than any other design experimented with.

Figure 3.7: Blocks of Threads.

Experiments showed that the suitable number of threads per block is around 128.

Executing blocks for only 128 pixels of the image would not be efficient, so we choose that

one thread calculates more than one pixel - a whole line of pixels in the rectangular tile. A

nice consequence of this layout is an easy control of the resources used by one block: the

number of threads is determined by the height of the tile, the width controls the whole

number of processed window positions by the block. The tile can extend over the whole

width of the image or just a part of it. Because of thread rearrangement described below

in 3.2.1, the total number of pixels processed by one thread block is limited proportionally

to the size of the shared memory (fast memory in one multiprocessor, which is shared

between the threads of one block), and so the image is divided vertically into several

columns of tiles.

When the kernel is started, the image data are referenced by texturing units from the

multi-resolution pyramid and the parameters of the classifier are read from the constant

memory. When object is recognized at window position, the coordinates are written

to the global memory. To avoid collisions of concurrently running threads and blocks,

atomic increment (atomicInc()) of one shared word in the global memory is used for

synchronization. This operation is rather costly, but the positive detections are so rare

that this means of output can be afforded. As a consequence, the results of the whole

process are at the end available in one spot of the global memory, which can be easily

fetched to the host computer. The whole architecture is depicted in Fig. 3.8.
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Figure 3.8: CUDA Object Detection Architecture. On the left side of
the figure is the host process, on the right is the device kernel.

Thread Rearrangement The CUDA architecture imposes some requirements on

the threads to run efficiently. Because of the SIMD (single instruction, multiple data)

nature of CUDA, at one time the threads must perform identical operations. In case of

branching, the threads are split into groups according to the variant of code they execute,

and the groups of identical execution paths are run separately. Not all threads in the block

are handled in this manner, but the threads are organized into warps - groups of threads

of fixed count (32 in current hardware implementations). Organization of the threads into

the warps is done at kernel start and the threads remain in a warp till their end.

The scanning classifiers indeed execute identical code - they load image data from

identical positions (differing only by an additive offset), they evaluate identical weak

classifiers, compare the intermediate sum to identical thresholds etc. However, due to the

(desired) focus-of-attention capability of WaldBoost, some threads terminate with negative

decision earlier than others (Fig. 3.9), but the warp continues to evaluate until the very
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last thread terminates. This leads to relatively low utilization of the hardware resources.

Figure 3.9: Fraction of locations in the image still evaluated after a
number of evaluated image features. After the first evaluated feature, 60
= 70% (depending on the used classifier) locations are eliminated. The

classifier is trained with different target false negative rate
(a20, a10, a05).

For illustration, Fig. 3.10 contains the situation in a block after 10 weak classifiers

evaluated – white pixels indicate that the classifier evaluation was terminated, blue pixels

indicate positions still evaluated. Note that the threads are arranged into warps of 32

threads and all threads within one warp must evaluate the same code path or wait for

the others. In this case it means that the majority of threads is waiting for several

threads exploring a fraction of the image; note that this happens in each column again.

However, the situation is not tragic thanks to locality of reference, i.e. that the threads

evaluate locations close to each other and the responses of the classifiers are therefore

highly correlated.

To address this issue, we propose thread rearrangement: at some stage of the classifier,

all locations in the image that have not been classified as negative are written into a

memory block shared between the threads, and another phase of the classification is

started, that processes only these locations. This rearrangement can be performed several

times during the whole classification process (∼ 500= 1,000 stages). See Fig. 3.11 for an

illustration of two rearrangements.

The intermediate positive (more accurately not-yet-negative) samples are stored into

the shared memory of the multiprocessor similarly as the final detections are written to

the global memory, as described above. The shared memory is very fast (as fast as the
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Figure 3.10: Remaining Candidates for Positive Response after
10 Weak Classifiers.

registers) and even the instruction of atomic increment in the shared memory is not as

costly as in the case of global memory. The scope of accessibility of the shared memory is

only within one block of threads, which is only appropriate, because the rearrangement

happens within one block.

The exact count and locations of the rearrangement steps needs to be determined

experimentally. Analytical expressions can be sought for, that would determine these from

some characteristics of the algorithm and the platform. Such expressions, however, would

depend on many variables: cost of one weak classifier, cost of the rearrangement, speed

of the classifier in different phases of the classification process, locality of information

in the processed image and many others and still would be only crude approximations.

Further in this chapter are described experiments carried out to determine an optimal

locations rearrangement and the discussion on the measurement results. Generally, the

major influence of the rearrangements is during the beginning of the classifier, because the

most of the locations are dropped out very early (see Fig. 3.9) and only a small fraction

of computational load remains to the further stages.

Considerations of Alternative Algorithm Designs The purpose of this section

is to mention several elements of the algorithmic design that were considered for the

object-detection architecture but were found to be inferior to the solution described above.

Many efficient image processing CUDA implementations use the shared memory for
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Figure 3.11: Thread Rearrangement after 10 and after 50 Weak Classi-
fiers.

storing the processed image. The shared memory is very fast and is dozens of kilobytes

large – tiles of the processed image can be loaded into it and processed by thread blocks.

We have tried variants of this arrangement and experiments show that using the texture

memory is more efficient. The texturing units perform bilinear interpolation between

neighbouring pixels, which can be used for evaluation of LRP. Most importantly, when using

the texturing memory, the execution is as fast as when using shared memory (apparently

because the bottleneck is in the calculation, not memory access), and the shared memory

remains spared for other helpful purposes, as is the thread rearrangement above.

As discussed in the previous section, one of the factors limiting the performance is

that the evaluation of different locations in the image is terminated after varying number

of stages of the classifier and due to the SIMD nature of CUDA some threads are idly

waiting. We have tried several arrangements, where the threads are assigned the work

dynamically, so that when the evaluation at one location terminates, the thread “asks

for” another location in the image and processes it. The idea is that the work unit would

not be one location in the image, but one weak classifier. The control required by this

arrangement and especially the need to synchronize the threads seems to be too complex

and these attempts were much slower than the finally achieved solution with the thread

rearrangement (although some threads are still idle).

We have made several experiments (see 3.2.1) with the placement and representation
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of the classifier data (constant for all images and all locations in the images). A texture

could be used for storing it, shared memory or constant memory. Both texture memory

and constant memory were cached; shared memory was very fast by itself. Placement

of the classifier data into the shared memory required pre-loading it upon start of each

block from another location and so it was the least efficient solution. The rest two options

(texture memory or constant memory) seemed to be performing equally well, so storing

the classifier in the constant memory was preferred to offload the texturing units which

were used for accessing the pyramidal image.

SSE Approach

The performance of the CUDA implementation was evaluated in comparison to an efficient

SSE implementation of the same classification principle. For details on the implementation

please refer to [33]; these paragraphs will summarize briefly its main characteristics.

This implementation addresses two crucial issues: memory accesses performed by the

algorithm (minimizing the number of memory accesses and ensuring their speed by aligning

the operands) and the algorithmic evaluation of the local ranks and their differences. It

uses the SSE2 instruction set which has extensive support of instructions working with

sixteen 8bit values in a single 128bit register.

To simplify feature evaluation as much as possible, the convolutions of the input image

with the sampling function were pre-computed and stored in the memory in such a manner

that all the results of the LRP grid could be fetched into the CPU registers through two

64bit loads. Compared to a naive LRP implementation, the described implementation

benefits from parallel processing when calculating the ranks. The disadvantage was the

limited number of convolution kernels because for each grid size a separate pre-calculated

image was required. In our experiments we used four feature sizes 1 Ö 1px, 1 Ö 2px,

2 Ö 1px and 2 Ö 2px and therefore four interleaved convolution images needed to be

pre-computed.

The evaluation part (Fig. 3.12) first expands selected values (A and B) to full 128bit

length. The value of A (resp. B) is then compared to all other values loaded from the

sampling function. Comparison result is masked and the result is summed – the number

of positive comparisons corresponds to the rank of A (resp. B). Results for A and B are

then combined to produce the LRP value.
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Figure 3.12: Evaluation of LRP using SSE instruction set of Intel CPU.
The input is a vector data of 16 values, mask and indexes A, B of values

from which LRP is calculated.

3.3 Local Rank Differences

An algorithms exhibits real-time performance in detecting complex patterns, such as

human faces [92], while achieving precision of detection which is sufficient for practical

applications. Work of Sochman and Matas [87] even suggests that any existing detector can

be efficiently emulated by a sequential classifier which is optimal in terms of computational

complexity for desired detection precision. In their approach, human effort is invested

into designing a set of suitable features which are then automatically combined by the

WaldBoost [93] algorithm into an ensemble. This approach may significantly reduce the

development time of detectors and it may even lead to more computationally efficient

detectors - Šochman and Matas report successfully emulating the Kadir-Brady saliency

detector [44], while achieving 70Ö faster detection times over the original implementation.

In practical applications, the speed of the object detector or other image classifier is

crucial. Real-time performance is required in many applications such as surveillance, even

when processing several input streams. Use of specialized hardware in image processing

and computer vision is nothing new (e.g.[81], [55]). The advances in development of

graphics processors, at the time of our research, were attracting many researchers and

engineers to the idea of using GPU’s not for their primary purpose - rendering 3D graphics

scenes. Different approaches to so-called GPGPU [69] existed and also the field of image

processing and computer vision have had seen several successful uses of these techniques
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(e.g.[81], [55]).

Statistical classifiers were built by using low level weak classifiers or image features and

the properties of the classifier largely depended on the quality and performance of the low

level features. In face detectors and similar classifiers, Haar-like wavelets [52], [93], [87],

[92] are frequently used, since they provide good amount of discriminative information and

they provide excellent performance. Other features are used in different contexts, such

as the Local Binary Patterns [68]. Recently, designed especially for being implemented

directly in programmable or hard-wired hardware, Local Rank Differences [35] have been

presented. These features are described in more detail in section 3 of this paper. The

main strengths of this image feature are inherent gray-scale transformation invariance, the

ability to capture local patterns and the ability to reflect quantitative changes in lightness

of image areas.

Prior to this GPGPU [69] in CUDA [60] implementation and related research, we have

implemented the LRD features in the GPU as shaders [73]. The Cg implementation was

fairly efficient, the main disadvantage was the need of complicated control of the rendering

pipeline from the CPU (by issuing commands to render quads, lines or other primitives

in a complex pattern that covered the searched area of the image). This disadvantage

was minimized by the properties of the GPGPU philosophy. The CUDA implementation

presented in [31], compared to the Cg one [73] benefits also from some memory arrangement

improvements, from improved training process and other minor advances.

The following part of this section briefly presents the Local Rank Differences (see [35]

for more detail) image feature.

3.3.1 Formal Definition of LRD

The LRP from their nature produce a large set of possible results, which can in the context

of recognition/detection cause problems when only small training datasets are available

and when the memory available on the target computational platform is limited. One way

to deal with this issue – and to shrink the output set of the image features – are the Local

Rank Differences (Polok et al., 2008), which can be defined as:

LRD(a, b) = Ra −Rb (3.10)

The LRD computes the difference of two ranks which is very similar to the Haar-like

features (Fig. 3.2) with added local image contrast normalization.

The definition of the LRP (and LRD) which was given in the previous text is very general.

It allows arbitrary sizes and shapes of the neighbourhoods and arbitrary convolution kernels.

However, we can define a set of LRP which is suitable for creating classifiers for detecting
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objects in images – which is both informative and efficient to compute. This particular

version is used in the reported experiments.

Fig. 3.13 shows the simplified flow for evaluating a single LRD classifier. It begins with

the detection window (e.g. 31Ö31 pixels) being classified where rectangular mask Mmn33
xy

is positioned (considering e.g. 3Ö3 masks). Each field of the mask spans across several

pixels which need to be convolved (see Eq. 3.11 below). Next, the ranks are evaluated

and finally the rank difference is used as index into the alpha table, selecting the weak

classifier’s result.

Figure 3.13: Use of Local Rank Differences in the Classifier.

Input Image Pre-Processing

For increasing the performance of the LRD evaluation, the function Smnxy defined on the

input image can be pre-calculated. As stated above, low number of combinations ofm× n
is sufficient for learning an object classier - experiments show that 1× 1, 2× 2, 2× 4 and

4× 2 combinations are enough. The input image I can be convolved with:
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wh

 (3.11)

and the resulting images at given location (x, y) can contain the values of the sampling

function. Such pre-processing of the input images can be done efficiently and the LRD

evaluation then only consists of 9 look-ups to the memory (for the case of 3 × 3 LRD

mask) into appropriate pre-processed image and then evaluation of ranks for two members

of the mask. The evaluation then can be done in parallel on platforms supporting vector

operations; both GPU and FPGA are strong in such kind of parallelism.

3.3.2 LRD Compared to Haar Wavelets

Comparing LRD with Haar wavelets is only natural as both of these types of features were

first intended to be used in detection classifiers. There are two fundamental aspects in
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respect to the detection classier which must be addressed: the computational complexity of

evaluating the features and the amount of discriminative information the features provide.

Haar wavelets can be computed very rapidly on general purpose CPUs by using the

integral image representation [92] which can be created in a single pass through the original

image. The simple Haar wavelets of any size can be computed using only six accesses

into the integral image, six additions and two bit-shifts. When scanning the image in

multiple scales, this gives the possibility to scale the classier instead of down-sampling

the image. The Haar wavelets are usually normalized by the size of the feature and

the standard deviation of pixel values in the classified sub-window. Computation of the

standard deviation requires additional integral image of squared pixel values and uses

square root.

While the Haar wavelets can be computed relatively efficiently on general purpose

CPUs, it may not be the same on other platforms. On FPGAs, the six random accesses

into memory would significantly limit the performance (only single feature evaluated per

every six clock cycles) and the high bit-precision needed for representing the integral

images would make the design highly demanding. On the other hand, the nine values

needed to compute LRD with grid size 3× 3 can be obtained on FPGAs with only single

memory accesses [35] (when preprocessed as shown in 3.3.1) and on GPUs with three or

six accesses [73].

Some detection classifiers evaluate on average very low number of features (even less

than 2). In such cases, computing the normalizing standard deviation poses significant

computational overhead. Further, the square root which is needed cannot be easily

computed on FPGAs. The LRD inherently provide normalized results, whose normalization

is in fact equivalent to local histogram equalization.

The detection performance of classifiers with the LRD has been evaluated on the

frontal face detection task and it has been compared to the performance of classifiers with

the standard Haar features. The results suggest that the two types of features provide

similar classification precision. One of the two classifiers compared in (Fig. 3.14) uses

the same Haar wavelets as in [92] and the other uses the LRD with block sizes of the

sampling function (Eq. 3.3) restricted to 1× 1, 1× 2, 2× 1 and 2× 2. The classifiers were

trained using 5000 hand annotated faces normalized to 24× 24 pixels and the non-face

samples were randomly sampled from a pool of 250 million sub-windows from more than

3000 non-face images. The results were measured on a set of 89 group photos which

contain 1618 faces and total 142 million scanned positions (scale factor 1.2, displacement

2/24). Although the set of LRD features is very limited in this experiment, the detection

performance it provides is similar to the full set of Haar wavelets. This is probably due to

the localized normalization of the results of the LRD which provides information about
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local image patterns that goes beyond simple difference of intensity of image patches.

Figure 3.14: ROC of two WaldBoost classifiers on a frontal face detec-
tion task. Length of the classifiers is 500 and they differ only in type of

features which they use (Haar features, LRD).

3.3.3 Implementations

Since previous section introduced several LRP implementations, there are also several

approaches to LRD. The goal of the particular LRD implementations was the comparison

of their effectiveness. Apart from those mentioned below, two more straight-forward

(without any optimization) implementations has been developed:

� “Simple” LRD implementation on CPU, and

� “Simple” Haar implementation on CPU.

These “Simple” implementations are due to their simplicity not addressed within this

thesis.

CUDA Approach

CUDA approach is already described in 3.2.1. The only difference is that in this section,

the LRD evaluation is being used.

The implementation of the LRD using CUDA corresponds with the theoretical de-

scription of the LRD in a straightforward way. It appears that a wise choice is relying

on the combinations 1× 1, 1× 2, 2× 1 and 2× 2 of the LRD sampling function. Such

sampling limits the descriptive power of the features slightly, but allows nice performance

improvements. Thanks to the built-in texture sampling with bilinear interpolation on the

usable graphics cards, sums of 2 neighbouring pixels in vertical or horizontal direction

or sum of four neighbouring pixels consume the same amount of time as sampling just

one source pixel. The scanned image can be used in such way without any pre-processing



3.3 Local Rank Differences 57

Algorithm 3.4 The central part of the CUDA implementation code. The LRD() function
loops over all the weak classifiers in the boosted cascade (stored in a 1D texture), gets the
rank difference (by calling GetRankDi(...) and uses the difference as an index to the table
of alpha values obtained by training the classier.
device int GetRankDiff(

unsigned int posX, unsigned int posY,

unsigned int BlockSizeId, unsigned int BlockABId)

{
unsigned int mempos = threadIdx.x*9; // address to the temp mem

float uiBlockWidth = uiBlockSizeId >> 3; // mask size

float uiBlockHeight = uiBlockSizeId & 7; // mask size

// current pixel [px,py]

float px = posX + AbsX1 + float(BlockSizeId >> 3)/2.0f;

float py = posY + AbsY1 + float(BlockSizeId & 7)/2.0f;

// get sums of each matrix block (1x1, 1x2, 2x1, 2x2)

s fBlockSum[mempos+0] = tex2D(tImage1, px, py).x; px+=uiBlockWidth;

s fBlockSum[mempos+1] = tex2D(tImage1, px, py).x; px+=uiBlockWidth;

s fBlockSum[mempos+2] = tex2D(tImage1, px, py).x;

px -= 2.0f*uiBlockWidth; py+=uiBlockHeight; // shift to next line

s fBlockSum[mempos+3] = tex2D(tImage1, px, py).x; px+=uiBlockWidth;

s fBlockSum[mempos+4] = tex2D(tImage1, px, py).x; px+=uiBlockWidth;

s fBlockSum[mempos+5] = tex2D(tImage1, px, py).x;

px -= 2.0f*uiBlockWidth; py+=uiBlockHeight; // shift to next line

s fBlockSum[mempos+6] = tex2D(tImage1, px, py).x; px+=uiBlockWidth;

s fBlockSum[mempos+7] = tex2D(tImage1, px, py).x; px+=uiBlockWidth;

s fBlockSum[mempos+8] = tex2D(tImage1, px, py).x;

// compute the rank difference between blockA and blockB

int iRank = 0;

unsigned int uiBlockA = blockABId >> 4;

unsigned int uiBlockB = blockABId & 15;

for (unsigned int bi = 0; bi < 9; bi++)

{
if (s fBlockSum[mempos+bi] < s fBlockSum[mempos+uiBlockA]) iRank--;

if (s fBlockSum[mempos+bi] < s fBlockSum[mempos+uiBlockB]) iRank++;

}

return iRank;

}

device unsigned char LRD()

{
float ret = 0.0f;

// loop over weak class

for (unsigned cid=0; cid < WCCount-1; cid++)

{
uint4 w0 = tex1D(tWeakParam, cid); // get WeakClassifier parameters

// Compute WeakClassifier rank and convert it to predictor value

ret += tex2D(PredValues, GetRankDiff(w0.x, w0.y, w0.z, w0.w)+8, cid);

}

return (unsigned char)ret;

}
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stage. The following Alg. 3.4 contains the central part of the CUDA code implementing

the LRD evaluation.

Compared to the previously published Cg implementation of the LRD [73], the CUDA

offers some advantages. The biggest problem of the shader version was the need for rather

complicated drawing of geometric primitives on the “screen” to control the object detection

process. The whole of the input image needs to be covered by the primitives, but for

efficiency reasons, simple drawing of one rectangle of the same size as the input image

was not possible. In the GPGPU version, all the coding and control is simpler and more

straightforward. As shown further in this chapter, the price to pay for such feasibility of

programming is the performance, or rather performance distribution depending on the

input size and on the count of the weak classifiers.

MMX Approach

The performance of the GPU implementation was compared to an implementation on

standard Intel CPU using MMX instructions. To simplify feature evaluation as much as

possible, the convolutions of image are pre-computed and stored in the memory in such

manner that all the results of the LRD grid can be fetched into the CPU registers through

two 64-bit loads. This positively affects the evaluation that is performed in MMX CPU

instructions (introduced by Intel).

A pseudo-code of the MMX implementation is shown in Alg. 3.5 and the block diagram

of the evaluation is shown on Fig. 3.15. The LRD are parametrized by the feature’s

position (x, y) and the block size (w, h) which determine the convolution image to use.

First the data from the subsequent rows of the convolved images are loaded into registers

(row1, row2 ). The values of the rank pixels are loaded from the data (pixelA, pixelB) and

expanded to the MMX registers. The registers with the data are then compared to the

expanded values of pixelA and pixelB and the result of the comparison is masked (since

we are interested in 3Ö3 grid only and 4Ö4 pixels were loaded). The comparison’s results

are summed – the resulting registers, therefore, contain the rank sum of differences of a

pixel and vale A and B. Finally, the 8-bit values in the resulting registers are summed

together which corresponds to the LRD response.

The code, compared to CPU without MMX, is more optimal since the values are

compared in one step. The slowest step of evaluation is the expansion of 8 bit value to the

64 bit MMX register. Since the instruction set lacks a single instruction to do this, the

expansion must be done by a sequence of shift-left and or instructions. A similar problem

is the final sum of rank differences - eight 8 bit values in a register must be summed

together. Again, there is no support in instruction set.
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Algorithm 3.5 Pseudo-code of the MMX implementation of the LRD.
row1 = convolution {w,h}(x, y)

row2 = convolution {w,h}(x. y+1)

pixelA = (A < 8) ? row1[A] : row2[A-8];

pixelB = (B < 8) ? row1[B] : row2[B-8];

mm0 = expand(pixelA)

mm1 = expand(pixelB)

mm2 = load(row1)

mm3 = load(row2)

mm4 = cmp(mm2, mm0)

mm5 = cmp(mm2, mm1)

mm6 = cmp(mm3, mm0)

mm7 = cmp(mm3, mm1)

mask(mm4, valid0)

mask(mm5, valid1)

mask(mm6, valid0)

mask(mm7, valid1)

mm4 = add(mm4, mm6)

mm5 = add(mm5, mm7)

mm0 = sum pi8(mm4)

mm0 += sum pi8(mm5)

return mm0

Figure 3.15: Block Diagram of the MMX Implementation of the LRD.

GPU(Cg) Approach

As shown in 3.3.1, the sampling function for a given sampling block size used by the

LRD can be pre-processed by convolving the original input image by a simple convolution

matrix. On GPU, built-in texture sub-sampling can be used to achieve this pre-processing

efficiently. This is done using very simple fragment shaders and the whole convolution

calculation usually takes less than 10% of frame time and was not further optimized.

The step that uses the pre-calculated images is the evaluation of the LRD weak

classifiers. Early analysis of the algorithm revealed that its bottleneck would be texture

sampling. Therefore, the main goal was to minimize the number of texture samples per

pixel and to improve texture sampling coherency in order to achieve the best performance.

A trick was used to do this – interleaving the convolution image into different layers of a
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3D texture. The dimensions of the texture are:

wt =
wi
m

ht =
hi
n

dt = mn (3.12)

Where wi, hi are the input image’s dimensions, m, n are the sampling block’s dimensions

and wt, ht, dt is the texture size. The texture organization is illustrated in Fig. 3.16. Such

way of storing image data ensures the texture samples needed to evaluate single LRD

classifiers are tightly connected to each other.

Figure 3.16: (from left to right) Original image, interleaved convolution
images (for 2x2 kernel) and interleaved images stored as a 3D texture.

To read the 3Ö3 LRD mask in a naive way, nine texture samples are needed; however,

most of today’s hardware is not capable of loading nine samples without stalling the

pipeline. To avoid this limitation, the (8-bit grayscale) pixels of the convolution texture

are packed by four into RGBA vectors stored in the texture memory. Then it takes three

or six texture samples, depending on the modulo 4 position, to read all the nine pixels of

the mask (in contrast to the nine reads without the use of 3D texture).

Pixel unpacking is done in the fragment shader and it needs to choose one of four

different branches. It could be solved by a simple if statement, but the (expensive)

branching instruction can be avoided by rasterizing the image in vertical stripes, one pixel

wide and four pixels apart, using a different shader for each modulo 4 position.

Having read the 3Ö3 grid, the next step is to evaluate the local ranks. The SIMD

nature of the GPU can be exploited by keeping the pixels in three 3D vectors. First, the

pixels on positions a and b are picked. Unfortunately, no index parameter can be used in

a shader so the pixels are selected using dot product (which is fairly efficient on GPU).

The ranks are calculated using the Alg. 3.6.

The AdaBoost/WaldBoost Object Detection Runtime Framework in GPU

One fragment shader evaluates several LRD’s and accumulates them in an accumulated

(see above). After accumulating all the weak classifiers in the learned AdaBoost classifier,

a decision is made based on a threshold. The overall AdaBoost classifier structure

implemented using the shader is in Fig. 3.17.
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Algorithm 3.6 Calculation of the local rank difference; row0, row1 and row2 are vec3
and contain the input pixels, A and B are pixel values on positions a and b. The lessThan
function compares its arguments by component and the result is vec3, containing zeros or
ones based on comparison. The dot product sums up the Local Rank Difference. This
snippet of code evaluates in approximately 14 GPU instructions. Finally, alpha is chosen
from table (texture).
vec3 accum = lessThan(vec3(A), row0);

accum += lessThan(vec3(A), row1);

accum += lessThan(vec3(A), row2);

accum -= lessThan(vec3(B), row0);

accum -= lessThan(vec3(B), row1);

accum -= lessThan(vec3(B), row2);

float rank difference = dot(vec3(1,1,1), accum);

Figure 3.17: AdaBoost/WaldBoost object detection GPU runtime
shaders with several classifiers.

The WaldBoost [93] pipeline is fairly similar to the one of AdaBoost (described above),

it only needs facilities to terminate the calculation on individual pixels. This can be done

using depth test – the classifier evaluation remains unchanged, but extra rendering passes

are added which compare the intermediate accumulated sum with a given threshold and

modify the depth-buffer accordingly. That means if output is below the threshold, zero is

written into the depth-buffer, otherwise one is written (using step to avoid branching).

The outputs from the classifier are rasterized on depth 1 so shaders are not executed on

positions with zero depth (see Alg. 3.7).

This approach benefits from early depth-test that discards all fragments with the wrong

depth (without evaluation). The limitation is that fragments modifying their depth must

be evaluated so the number of the stopping decisions must be low. Therefore, training of

WaldBoost classifier must include costs of the decisions.

GPU(GLSL) Approach

This section presents our experiments with an OpenGL implementation of the LRD

detector, consisting of the convolution precalc module and a feature extractor. It can

work on most of today’s common GPU’s which support OpenGL 2.0. To achieve better
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Algorithm 3.7 AdaBoost shader code; n texture 0 is the id of the right texturing unit,
v pixel 00 is the pixel size of that texture, n alphas is the id of the alphas texturing unit,
v alpha pixel is site for alphas texture, v block to slice contains constants required for 3D
texture slice from 2D texcoords (width/number of layers, convolution kernel width/number
of layers, height/number of layers*convolution kernel width and slight z-offset to aid the
right layer sampling), v selector a00 and v selector b00 are vectors selecting the right
column from 3Ö3 grid).
uniform sampler3D n texture 0;

uniform vec2 v pixel 00;

uniform sampler2D n alphas;

uniform vec2 v alpha pixel;

uniform vec4 v block to slice 00;

uniform vec3 v selector a00, v selector b00;

void main()

{
float f result = .0; // result accumulator

{
// classifier 0

}
...

{
// classifier n

}
gl FragColor.r = f result; // write output fragment

}

compatibility and portability, our implementation prefers the frame-buffer objects (FBO)

above platform-dependent P-buffers and GLSL shading language above the Cg language.

The implementation takes a raster image in the system memory as input, then it needs

to upload it to an OpenGL texture in the GPU memory, feature evaluation shaders get

executed and a raster with detector responses is downloaded back to the system memory.

There was no attempt for asynchronous data transfers to hide transport delay, but earlier

work proved that such transfers are possible on GPU.

One implementation is already described in [73] which relies on complex, optimized

image data storage. The implementation measured here is more straightforward because

it is limited to sampling function dimensions 1 × 1, 1 × 2, 2 × 1 and 2 × 2. Such a

limitation does not notably harm the information content extracted by the features, but

significantly improves the performance. The bilinear filter (implemented in the texturing

hardware of GPU) samples four pixels and assigns them weights, based on fractional

texture coordinates. It is possible to simulate 1× 1, 1× 2, 2× 1 and 2× 2 pixel sums just

by a texture coordinate offset.

This introduces some interesting consequences. There is no need for a pre-calculation

phase; also, we just need a single texture to evaluate all weak classifiers in the WaldBoost

classifier, which is important for two reasons:

1. there is no need for branching in the classifier to select the proper convolution texture
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for a particular weak classifier and, therefore, there is no need to split the classifier

evaluation into multiple rendering passes as in [73];

2. all textures required to evaluate the WaldBoost classifier can be bound simultaneously

to available texturing units.

Now, we can evaluate all the weak classifiers in a loop in a single pass, than we had to

store the classifier properties.Weak classifier properties was stored in two pixels of a RGBA

texture. Once the textures with classifiers properties were generated, it was possible to

evaluate the features in the fragment shader. The shader requires the data textures and

the image texture as its input. For each weak classifier, the properties texture is read first

so the mask can be read from the source image texture. Then it is necessary to get values

of blocks a and b from the mask. In the fragment shader it is not possible to use an array

referencing operator to select values from the matrix, so these needs to be masked-out

using dot products. Once the values of blocks a and b are known it is straightforward to

evaluate their ranks Ra and Rb. All that remains is to read the alpha texture, accumulate

the classifier response and compare it with the WaldBoost thresholds. Detailed description

of algorithm can be found in [32].

SSE Approach

This section presents a brief description of SSE implementation, which was introduced in

[32]. It is similar to implementation described in [31], where LRP classifiers evaluation

was used.

The LRD evaluation is described in Fig. 3.18. First, the data are compared to A and

B vectors and masked (temporary results cmpA, cmpB). The sums of absolute differences

of cmpA and cmpB are subtracted and the results for high and low parts are summed

together producing the LRD value. The evaluation is much more efficient compared to

CPU code without SSE since all the values are processed in parallel. The slowest step of

the evaluation is the expansion of an 8- bit value to a full 128-bit SSE register.
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Figure 3.18: Block Scheme of the SSE Code (evaluation part only).

3.4 Detection Performance

In the context of real-time object detection, the main measurable criterion which should

be used to compare individual types of features is how much useful information they

can extract in a certain amount of time. The second criterion is how much are they

invariant to irrelevant information. Both of these criteria have to be evaluated with

respect to a certain learning algorithm. The first criterion can be directly evaluated on a

training set and the second corresponds to generalization on a test set. When using some

focus-of-attention mechanism, the amount of extracted useful information determines the

speed of the classifier which can be then related to the precision of detection on a testing

set.

We have used WaldBoost ([86]) as the learning algorithm and tested the features on

two detection tasks – face detection and eye detection. We have compared the Haar-like

features, LBP, LRD and LRP (all neighborhoods Umn which completely fit into the

samples are used). For each type of the features, classifiers for five different target error

rates (1%, 2%, 5%, 10% and 20%) were created. The five target error rates resulted in

five gradually faster classifiers which allowed us to explore the speed/precision trade-off

provided by the features on the particular detection task. Ideally, the speed of the classifiers
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should be measured using some efficient implementation of the features. However, such

an approach distorts the results with a different level of optimality of the individual

feature implementations. To remove these, we report here the speed in average number of

evaluated features per classified position.

As seen in Fig. 3.19, Haar-like features, LBP and LRP all perform very similarly on

the face detection task followed by the LRD. On the other hand, clear differences can be

seen on the eye detection task where LBP are the best, the second are the LRP which are

followed by the LRD, while the Haar-like features are the worst. These results show that

it is not possible to select a single best feature set for a variety of detection tasks. The

performance of the features can be influenced by the number of the training samples, the

type of distinguishing information and by the amount of intra-class variance. However, the

experiments show that LRP and LRD provide in general similar detection performance as

Haar-like features and LBP. Also, LRP should perform better than LRD on most tasks.
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Face detection - MIT+CMU dataset

Eye detection - BioID dataset

Figure 3.19: Comparison of performance of image features on face
detection (top) and eye detection (bottom) tasks. The graphs show the
area above ROC (integrating miss-rate over false positives) as a function
of average classifier speed (lower is more precise and to the left is faster).
The classifiers were created by the WaldBoost algorithm for five different
target error rates (1%, 2%, 5%, 10% and 20%) for each type of feature-set.
The five target error rates resulted in five gradually faster classifiers –
shown as a single line. The graphs can be also used to evaluate the
precision/speed trade-off for each type of feature-set for the particular

task.
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3.5 Performance Evaluation of LRD Implementations

LRD implementation was measured within two separate studies. The first one, with an

exact number of weak classifiers (WC) was mainly focusing on the execution speed of LRD

classifier features and the second one explores execution speed of real video. It is difficult

to compare the two studies together, as within the first one the goal was to find out the

LRD performance at different platform and compare it with Haar-like implementation,

while within the second one the analysis was performed based on real data.

Research of exact number of WC observed the performance of LRD related to each

WC. Real video research uses WaldBoost algorithm to speed-up the whole process of

execution. WaldBoost algorithm is a combination of real AdaBoost [78] and Wald’s [94]

sequential probability ratio test. The thresholds are set as Wald proposes in the sequential

probability ratio test, which he proves to be the fastest possible classification strategy for

a given target error rate. Also, as the resulting classifier is monolithic, no information is

lost.

3.5.1 Exact Number of Weak Classifiers

To evaluate the efficiency of the presented GPGPU implementation of the LRD, the

following implementations were compared:

LRD on GPU Using CUDA refers to implementation in 3.3.3.

Even though Cg implementation was fairly efficient, its main disadvantage was

the need of complicated control of the rendering pipeline from the CPU by issuing

commands to render quads, lines or other primitives in a complex pattern that covered

the searched area of the image. This disadvantage was minimized by the properties

of the GPGPU philosophy. The CUDA implementation presented compared to the

Cg one benefits also from some memory arrangement improvements, from improved

training process and other minor advances.

LRD on GPU Using Cg Shading Language refers to implementation in 3.3.3.

An efficient memory layout was used (utilizing 3D textures and other techniques)

to allow the shader to access all the nine values of the LRD mask in 3 or 6 texture

look-ups. The pixel data were stored as components of the .rgba vector, and vector

operations could have been used in the calculation.

For the pre-processing task, which was constituted by several passes of sub-sampling

by an integer fraction (3.3.1), built-in hardware means of texture sampling were used

on the GPU - see Tab. 3.1for results.
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LRD on CPU Using MMX Instruction Set refers to implementation in 3.3.3.

The performance of the GPU implementation was compared to an implementation

on standard Intel CPU using MMX instructions. To simplify the feature evaluation

as much as possible, the convolutions of the image with the sampling function kernel

were pre-computed and stored in the memory in such manner that all the results of

the LRD grid could be fetched into the CPU registers through two 64-bit loads. This

positively affected the evaluation that was performed in MMX CPU instructions

(introduced by Intel).

Haar on CPU+GPU Using Cg Shading Language refers to implementation in 3.1.1.

Within this implementation, only the simplest (two-fold) Haar wavelet features were

used (though also three-fold features are used in the object detectors, whose evalu-

ation is slightly slower).

The Haar wavelets require normalization by the energy in the classified window -

both to evaluate the energy and to evaluate the features themselves, integral images

were used, which was the fastest method available to our knowledge. The calculation

of the integral images constituted the preparatory phase evaluated in the comparison.

Please note that (to our knowledge) there was no effective way of calculating the

integral image in the shading language, and the implementation in CUDA was also

not straightforward and efficient, so the preparatory phase was implemented in the

CPU. The shader code evaluating the classifiers can be found in [73].

The evaluation was performed for different resolutions of the image, for different sizes of

the classified window and for different amount of the weak hypotheses calculated for each

classified window. Note that this evaluation was to determine the evaluation speed of the

weak classifiers only, not the overall performance of the boosted classifier.

In Tab. 3.1, a coarse comparison of the performance of the pre-processing stage is

given. It was difficult to compare the pre-processing for the Haar wavelets with the LRD

convolutions, because the integral image calculation was difficult to implement on the GPU.

Note that this is an important advantage of the LRD over the Haar wavelets, especially

when in GPU implementation. The actual CUDA implementation worked without the

pre-processing, because it relied on the 1Ö 1, 1Ö 2, 2Ö 1 and 2Ö 2 set of mask dimensions.

As indicated by the graph in Fig. 3.14, such limited set of sampling function dimensions

was still sufficient and well comparable with the commonly used Haar features.

Tab. 3.2 includes such regimes of evaluation, that were designed to correspond to real-

time operation even on slower platforms, as is the C code for the CPU (it was considered

slow compared to the parallel architectures as FPGA or GPU). In that table, the CUDA

code did not perform excellently, but a tremendous increase of performance was observed
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LRD LRD LRD HAAR

resol CUDA Cg CPU CPU

320Ö200 0.72 2.52 1.22

640Ö480 1.22 9.13 10.29

800Ö600 3.51 13.80 16.41

1024Ö768 3.75 24.80 27.94

1280Ö1027 4.53 37.45 45.16

Table 3.1: Evaluation of the pre-processing stage (convolutions for the
LRD, integral image for Haar wavelets); the pre-processing needs to be
performed on every frame. Times are given in milliseconds. Note that
pre-processing for the LRD is notably cheaper, even on CPU and performs
excellently on GPU. Note also, that the presented CUDA implementation

requires no pre-processing stage.

when the number of weak classifiers is increased (towards 50 in the table).

frame-time [ms] time-per-wc [ns]

num LRD LRD LRD Haar LRD LRD LRD Haar

resol wc CUDA Cg MMX Cg CUDA Cg MMX Cg

320Ö200 5 13.90 0.244 17.7 0.370 43.44 0.872 55.29 1325

320Ö200 10 13.63 0.527 25.0 0.469 21.29 0.942 46.71 0.839

320Ö200 50 13.50 2.524 82.0 3.010 2.20 0.902 40.04 1.076

640Ö480 5 56.87 1.173 101.8 1.642 37.03 0.810 58.55 1.134

640Ö480 10 53.82 2.232 149.0 2.159 17.52 0.771 51.82 0.745

640Ö480 50 32.95 11.066 493.0 15.731 2.14 0.746 44.05 1.086

Table 3.2: Performance table for LRDonGPU, HAARonGPU and
LRDonMMX; the table contains the times of sole evaluation of the
classier, since the pre-processing for the Haar wavelets (integral image

calculation), cannot be easily implemented in the GPU.

Further exploration showed that the CUDA platform (at its current version 2.0beta)

exhibited relatively slow and constant load-time of the code to be executed. Also the

current implementation of the boosted classier, as indicated in Tab. 3.3, consumed constant

run time for wide range of increasing number of weak classifiers - though the computational

load should be linearly proportional to it. This anomaly should have been further explored

and may be related to some characteristic of the GPU architecture or a flaw in the

compiler. However, if the boosted classier would be a standard AdaBoost [92] or similar,

the number of weak classifiers would be constantly high (hundreds). In such case the

CUDA implementation outperformed tremendously any other solution available to our

knowledge.
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Frame time Feature time

num of Load Exec Total Load Exec Tot

resol WC [ms] [ms] [ms] [ns] [ns] [ns]

128Ö128 5 2.18 4.26 6.44 26.69 52 78.69

256Ö256 5 2.29 11.94 14.23 7 36.43 43.44

512Ö512 5 2.35 46.17 48.53 1.79 35.23 37.02

1024Ö1024 5 3.37 169.67 173.04 0.64 32.36 33

1600Ö1600 5 4.86 403.88 408.74 0.38 31.55 31.93

128Ö128 40 2.18 4.85 7.03 3.32 7.4 10.73

256Ö256 40 2.26 11.38 13.64 0.86 4.34 5.2

512Ö512 40 2.3 42.62 44.93 0.22 4.06 4.28

1024Ö1024 40 2.79 165.58 168.38 0.06 3.94 4.01

1600Ö1600 40 3.47 399.88 403.35 0.03 3.9 3.93

128Ö128 160 2.01 4.37 6.38 0.76 1.66 2.43

256Ö256 160 2.34 11.34 13.69 0.22 1.08 1.3

512Ö512 160 2.36 42.36 44.73 0.05 1.01 1.06

1024Ö1024 160 2.65 165.29 167.95 0.01 0.98 1

1600Ö1600 160 3.6 411.19 414.8 0.01 1 1.01

128Ö128 640 1.98 12.31 14.3 0.19 1.17 1.36

256Ö256 640 2.24 25.54 27.79 0.05 0.6 0.66

512Ö512 640 2.36 98.16 100.52 0.01 0.58 0.59

1024Ö1024 640 2.7 385.54 388.25 0 0.57 0.57

1600Ö1600 640 4.25 1028.21 1032.46 0 0.62 0.63

Table 3.3: Behaviour of the CUDA implementation for a range of image
sizes and number of weak classifier per scanned window. Two parts of
the table show the time consumed per frame and this measure divided
per the number of weak classifiers in the frame. The times are structured
into Load time of the program, Execution time and the sum of these

both.

3.5.2 Real Video

Comparing the performance of these diverse implementations was not trivial. The most

significant performance metric was probably the detector throughput in frames per second

for a sufficiently long video. The processing time for one frame does not reflect the case

where more frames are processed in parallel or pipelined. The processing was divided into

two pipeline stages - transfer to/from the card and detection. Also with four detection

engines on the Uni1p card, up to eight frames could be processed in one moment; this

situation also occurs on the GPU implementation. On the other hand, the time for one

frame was an important metric in situations where separate frames were processed.

The processing time can be split into several phases. The crudest division is on

preprocessing and scanning. The preprocessing can be further divided into construction of

the image pyramid and calculation of the convolutions. In some implementations, some of
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these phases did not exist at all or were interleaved. In that case, the time was measured

for all interleaved phases together, since separate measurement would seriously affect the

performance.

The tests were performed on a computer with:

� CPU Intel Core2 Duo E8200 at 2.66 GHz, 3 GB DDR3 RAM and ASUS NVidia

ENGTX280/HTDP graphics card.

The table below shows all three partial times for one frame, together with the total frame

processing time. These times are in milliseconds. The times for missing or interleaved

phases are left blank, meaning the time is equal to zero. The last column shows the

theoretical throughput in frames per second (only the detection phases were measured, no

video reading/decoding, waiting for the camera or image displaying were counted in).

A recording of television news was used as the test data. Three experiments with

differently sized video were executed:

� low resolution video (640Ö350px, Tab. 3.4);

� broadcasting quality video (720Ö576px, Tab. 3.5); and

� high resolution HD video (1920Ö1080px, Tab. 3.6).

LRD on GPU Using CUDA refers to implementation described in 3.3.3.

LRD on GPU Using GLSL Shading Language refers to implementation described

in 3.3.3.

This was a new implementation, which substitute NVIDIA Cg shading language,

which was used in previous subsection (3.5.1).

LRD on CPU Using SSE Instruction Set refers to implementation described in 3.3.3.

Simple LRD and Haar refers to straightforward CPU implementation of LRD and

Haar evaluation with no special optimizations.

Note that the percentage of participation of the preprocessing and scanning phases do not

have to sum up to 100 %; the rest small amount of time is overhead spent in the auxiliary

parts of the program.
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Preprocessing Scanning Total Throughput

[ms] % [ms] % [ms] [fps]

Simple Haar 7.6 3.9 187.7 95.8 195.9 5.1

Simple LRD 3.2 1.6 191.2 98.0 195.0 5.2

SSE LRD 0.5 1.4 31.3 96.8 32.3 31.1

CUDA LRD 0.2 1.1 12.1 94.5 12.8 78.7

GPU(GLSL) LRD 0.1 1.0 10.0 87.3 11.5 86.9

Table 3.4: Results for Low Resolution Video (640Ö350px).

Preprocessing Scanning Total Throughput

[ms] % [ms] % [ms] [fps]

Simple Haar 20.4 3.5 551.8 96.2 573.8 1.7

Simple LRD 8.5 1.8 448.0 97.8 458.0 2.2

SSE LRD 1.4 1.7 78.4 96.5 81.2 12.3

CUDA LRD 0.5 2.8 17.2 89.7 19.2 52.1

GPU(GLSL) LRD 0.3 1.4 20.4 85.0 24.0 41.6

Table 3.5: Results for Broadcasting Quality Video (720Ö576px).

Preprocessing Scanning Total Throughput

[ms] % [ms] % [ms] [fps]

Simple Haar 48.2 4.3 1059.9 95.3 1111.4 0.9

Simple LRD 20.2 2.5 764.3 97.0 787.9 1.3

SSE LRD 3.2 2.0 153.1 96.0 159.6 6.3

CUDA LRD 1.1 3.4 28.2 86.2 32.7 30.6

GPU(GLSL) LRD 0.5 1.4 25.4 77.3 32.8 30.4

Table 3.6: Results for Full HD Video (1920Ö1080px).
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3.6 Performance Evaluation of LRP Implementations

This section summarizes the two implementations (CUDA and SSE) and experiments

carried out in order to optimize and evaluate the object detection architecture defined

earlier in this chapter. Following subsection describes the measurements made to optimize

the thread rearrangement count and their locations; and are dedicated to compare an

efficient SSE implementation of the same algorithm. CUDA implementation is described

more in details (by discussing the influence of block width on an overall speed of data

processing, determining an optimal thread rearrangement stages and comparison to the

SSE implementation).

3.6.1 Influence of Block Width

As already discussed, the height of the computed block of image defines the number

of threads and its width controls the number of locations computed by each thread.

Measurements shown in Fig. 3.20 illustrates the two main aspects that need to be taken

into account when tuning the implementation for a target application:

� higher block width reduces the computation time, because it lowers the number of

blocks necessary, and

� since the number of blocks is always integer and the blocks must share the same

dimensions in CUDA, block widths that are equal or slightly higher than integer

fractions of the image width are desired.

For a particular application (described among others by video resolution) a proper block

width must be found according to these rules.

Figure 3.20: Influence of Block Width on Detector’s Speed.
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3.6.2 Determining Optimal Thread Rearrangement Stages

The scanning window locations need to be rearranged several times during the classifications

to better use the hardware resources. We have run a number of tests to determine optimal

spots for this rearranging. The tests reported that in the current set-up, no more than

three rearrangements are worth doing. Fig. 3.21 summarizes the detection times for

different stage of the 1st, 2nd and 3rd rearrangement.

The experiments confirmed that the 1st rearrangement matters the most, because

it rearranged a large number of threads. Note that there can be a lower bound of the

1st rearrangement stage imposed by the size of the shared memory. The tests were run

for six different videos (news broadcasting and movie fragments) resized to standard

PAL resolution. Note the difference in the average detection times between different

video contents, but rather uniform optima of the rearrangement stage. However, the

optimal points for rearrangement were notably different for classifiers trained with different

parameters – the shown experiment therefore did not result into fixed rearrangement spots,

but rather illustrated the process of optimization for a given classifier.

3.6.3 Comparison to the SSE Implementation

This subsection gives some measurements done to compare the CUDA implementation

with the SSE processor implementation. Tab. 3.7 contains the pure detection times per

frame for the implementations on six videos of different content and resolution. These

detection times do not include any preparatory phases (video decompression, pyramid

construction, image handing, etc.), only the algorithmic detection times. Tab. 3.8 contains

the total detection times; these were important for the actual use of the detectors. Fig.

3.22 visualizes the pure detection times graphically.

I7-920 C2D E8200

GTX280 9800GTX

video CUDA SSE CUDA SSE

576x256 9.4 12.6 9.0 24.2

720x540 12.5 30.5 16.8 61.1

720x576 11.1 31.4 14.9 56.5

1280x720 20.4 59.3 27.5 118.0

624x256 8.4 10.5 8.0 21.3

640x272 9.5 12.7 8.9 26.0

Table 3.7: Pure detection times [ms] (i.e. without preprocessing) on
different videos, two different hardware setups, CUDA vs. SSE.

The main observations made out of these tests were:
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I7-920 C2D E8200

GTX280 9800GTX

CUDA SSE CUDA SSE

576x256 12.0 14.5 11.6 26.5

720x540 17.5 35.2 22.7 67.1

720x576 15.9 36.1 20.3 62.0

1280x720 36.8 76.4 49.6 141.2

624x256 11.0 12.4 10.5 23.7

640x272 11.9 14.7 11.6 28.6

Table 3.8: Total detection times [ms] on different videos, two different
hardware setups, CUDA vs. SSE.

� CUDA outperformed the processor implementation mainly for large videos. This can

be explained by extra overhead connected with transferring the image to the GPU,

starting the kernel programs, retrieving the results etc. These overhead operations

consumed typically constant time independent of the problem size, so they were

better amortized in high-resolution videos.

� The Intel I7 920 processor outperformed the Core2 Duo E8200 very significantly - it

had twice as many cores and the computational speed was indeed twice as good.
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Figure 3.21: Detection time for different stages of rearrangement. The
results of such measurement will be different for different classifiers.
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Figure 3.22: Visualization of Tab. 3.7.



78 Real-Time Object Detection Using CUDA



Chapter 4

Spectral Image Analysis Using

CUDA

This chapter presents the CUDA implementation of two different algorithms primarily

targeted on spectral image analysis in real-time. The first one - Principal Component

Analysis (PCA), presented in [41], explains our two different approaches to implementation

- one utilizing the SSE instruction set of contemporary CPUs, and one running on GPUs.

The second one is an algorithm of Non-Negative Tensor Factorization (NTF), presented in

[4] that uses CUDA to run contemporary graphics processors in a GPGPU manner and

uses their massive parallelism.

The exact motivation for the research presented in this section was to analyse medical

surgery videos by using PCA. The topic of the problem has been revealed from the start-up

project Optical sensor technology in medical applications of the University of Eastern

Finland. This research was therefore performed within close cooperation of our colleagues

from University of Eastern Finland in Joensuu, namely: Marku Hauta-Kasari and Jukka

Antikainen; as well as, other research co-authors: Jǐŕı Havel, Adam Herout and Pavel

Zemč́ık.

4.1 Principal Component Analysis

Principal Component Analysis (PCA) is an approach that is traditionally used for analysis,

simplification of large data sets, dimensionality reduction, etc. Using modern computer

technology, the PCA can be used on very large data sets where its utilization has previously

been unthinkable and it can also be used in real-time applications. Therefore, the

computational speed of PCA, especially the speed of creation of the co-variance matrix, is

critical and any improvement is appreciated. In this section, implementations using either
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SSE instruction set of current processors or using a GPU are presented. These solutions

are performing PCA on large data sets with relatively low dimensionality.

This research was motivated by the need of using PCA on spectral images in the context

of real-time medical imaging. Accurately defined colour is shown as an important factor

in many scientific and industrial purposes. Normal digital cameras, displays, and even

the human vision system produce colour by using three primary colours: red, green and

blue (RGB). In many cases, the representation based on three colour components cannot

capture all information and spectral imaging and analysis must be used (e.g. wood analysis

[76], mineral detection [23], textile industry [99] and many other interesting targets). One

spectrum can contain tens or even hundreds of wavelength channels which provide a much

better colour presentation than three-colour RGB.

In the case of spectral images, PCA is used mostly for dimensionality reduction [27]

and feature extraction [10]. For example, if the spectral image contains 81 wavelength

channels, spectral dimensionality could be reduced to 6–11, depending on the complexity

of the data set, without losing any important amount of information [49]. PCA is often

used for data of high dimensionalities. Generally, in the case of spectral imaging, the

dimensionality of the input data is not high (commonly 6–81 channels) but the number of

samples (i.e. number of pixels in image or video) is large - millions to billions. Existing

solutions (e.g. [39, 38, 2, 67]) do not exactly suit this purpose and this unique situation

must be covered by a particular solution. Please note that the dimensionality of the data

considered in this research is relatively low, so the computation of eigenvectors – addressed

by the mentioned works - is relatively cheep. It is the computation of the co-variance

matrix, which is costly for the considered data, what is accelerated by the algorithms

presented in this chapter.

The spectral resolution of different image sensors can vary, however, in the presented

approach we suggest considering approximately 6 to 81 channels as from the human vision

point of view, images starting with approximately 6 spectral channels can be considered

as having enough information to accurately represent the colour information for distinct

human observers with differences in colour vision. The upper boundary, 81 channels, is

determined from the visible range of the human vision from 380 to 780 nm when the

spectral information is captured using 5-nm steps. The step of 5 nm is generally considered

to be reasonable in optical spectrum processing in order to accurately distinguish between

colours/materials unless very special requirements on subtle spectral changes are required

[50]. In theory, the range of channel numbers can be wider and the presented approach

handles these cases as well, but the measurements were made for the dimensionalities

practically interesting in spectral image processing.

A surgeon uses a surgery microscope during the operation and the video can be seen
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live on the display. The microscope can be equipped with a standard RGB camera or

spectral camera [46] with additional spectral channels of different wavelengths - existing

solutions support up to 6 channels. PCA can help in revealing information normally

unseen by humans through analysis of spectral information contained in the image in the

wavelengths not seen or distinguishable by the human eye. One of the possible approaches

is to search for the best possible three-component vector space that can represent the

spectral information in the image and then visualize the obtained information in the RGB

colour space.

4.1.1 PCA in Spectral Imaging

PCA is commonly used on datasets of various dimensionalities. In the case of spectral

imaging, the dimensionality is usually in the order of 6–81 components. The dimensions

of the spectral image’s pixels correspond to different light wavelengths. One pixel s of the

spectral image is defined as:

s(λ) = [s(λ1), s(λ2), . . . , s(λn)]T (4.1)

where n is the count of wavelength channels. The spectral image – in the context of

statistical colour analysis - can be perceived as a two-dimensional martix S where each

column presents all wavelengths from one pixel of the spectral image:

S =


s1(λ1) . . . sm(λ1)

...
. . .

...

s1(λn) . . . sm(λn)

 (4.2)

where m is the count of the pixels in the spectral image. For such an image a correlation

matrix can be computed:

R =
1

m
SST (4.3)

From the correlation matrix R, eigen values and eigen vectors are solved so that the

following equation is fulfilled:

RΦ = σΦ (4.4)

where Φ is a matrix of eigen vectors and σ is a diagonal matrix with eigen values on the
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diagonal. Matrix B is formed from the solved eigen vectors:

B =


b1(λ1) . . . b1(λn)

...
. . .

...

bη(λ1) . . . bη(λn)

 (4.5)

where η is the number of wanted base vectors. Innerproduct images are calculated by

using the selected base vectors B and the previously defined 2D matrix of pixels S:

P = BTS (4.6)

4.1.2 Real-Time Implementation of PCA

From the implementational point of view, Eq. 4.3 can be reformulated as a sum of matrices

of the same dimensions computed independently for all image pixels:

R =
1

m
SST

=
1

m

∑
i

[si(λ1) . . . si(λn)]T [si(λ1) . . . si(λn)]

=
1

m

∑
i

si,

(4.7)

where si is a square matrix computed from each image pixel.

This idea is used in the plain-C implementation (Alg. 4.1):

Algorithm 4.1 Computation of correlation matrix – basic implementation.

Require: image pixels si,∀i ∈ {0, . . . ,m− 1}
Ensure: correlation matrix R

1: α[u, v]← 0,∀u, v ∈ {1, . . . , n}
2: for i ∈ {0, . . . ,m− 1} do
3: for v ∈ {1, . . . , n} do
4: for u ∈ {1, . . . , v} do
5: α[u, v]← α[u, v] + si(λu)si(λv)
6: end for
7: end for
8: end for
9: return 1

m
α

which is used as the baseline in measurements and constitutes a starting point of the

SSE and CUDA implementations described further in this section.
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Once the correlation matrix is computed, the eigen-vectors and values are found using

the standard Jacobi iterative method [21]. This algorithm is used also in the SSE and

CUDA solutions described later. The target application of this article - spectral imaging

- counts on a low numbers of components per pixel (3 − 81), so that the algorithm for

finding eigen-vectors and values takes only a small fraction of the computational time and

the choice of the method is not very important.

Intel SSE Instruction Set Approach

SSE offers speeding-up computations by executing instructions in a SIMD manner. Two

basic approaches can be considered when using SSE for PCA computation and for similar

tasks in general: either multiple channels of one pixel are processed in parallel or one

operation is done for several pixels at once. Processing multiple pixels has several

advantages in this case so this approach is used - see Alg. 4.2 for a pseudo-code of the

implementation.

Algorithm 4.2 Correlation matrix computed by SSE.

Require: image pixels si,∀i ∈ {0, . . . ,m− 1}, 4|m
Ensure: correlation matrix R

1: α[u, v]← 0,∀u, v ∈ {1, . . . , n}
2: for i ∈ {0, . . . , m

4
− 1} do

3: for j ∈ {1, . . . , n} do
4: for k ∈ {0, . . . , 3} do
5: ϕ[j, k]← s(4i+k)(λj)
6: end for
7: end for
8: for v ∈ {1, . . . , n} do
9: for u ∈ {1, . . . , v} do

10: α[u, v]← α[u, v] + ϕ[u]ϕ[v]
11: end for
12: end for
13: end for
14: return 1

m
α

A straightforward way of representing the (spectral) image in memory is an array of

pixels, where each pixel is an n-tuple of values. This is the way the input data is stored

and passed on to the algorithm. However, for efficient use of SSE, the image needs to be

stored in a slightly modified manner. When SSE is used to process multiple pixels at once,

the image must be organized as an n-tuple of pixel arrays. Generally, for efficient SSE

operation, the data needs to be aligned to 16 bytes. The algorithm does not rearrange the

whole image in this way but only uses a four-pixel buffer which is re-used for groups of
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four pixels. Steps 3–7 perform this rearrangement into buffer ϕ. Note that the buffer is

addressed as two-dimensional in this preparatory phase, but its values are read as vectors

by the SSE in Step 10.

Step 10 is the only line of the pseudo-code which fully uses the SSE vector (SIMD)

instructions: vector addition ( mm add ps) and vector multiplication ( mm mul ps). This

operation also uses an intrinsic function to load the 4-component float value from memory

into an SSE vector register ( mm load ps). It should be noted that the loading of one

argument of the multiplication can be done once for each pass of the for loop beginning in

Step 8.

The computation of the inner-product image is straightforward and uses the same

principles to speed-up the execution by vector multiplication and addition as in the case

of the correlation matrix computation.

CUDA Approach

The image can be represented in the natural way - as a linear array of pixels, each

composed of n chars or floats (n is the input image pixel’s dimensionality, typically 3

for RGB, but higher for spectral images). This linear memory is buffered by the CUDA

threads into the fast shared memory as described below.

The correlation matrix (Eq. 4.7) is computed as follows. Matrix si is symmetrical, so

for n-dimensional input image pixels, 1
2
n(n+ 1) values need to be calculated and summed.

Each component (or several components when n ≥ 32) of the matrix is calculated by a

CUDA thread. However, to use the GPU efficiently, a minimal number of threads needs

to be running in parallel within a block, so P matrices si are calculated in parallel and

thus T = 1
2
Pn(n+ 1) threads are executed in a block. The input data is buffered in the

shared memory in chunks of C pixels for each of the P matrices computed in parallel.

Alg. 4.3 describes the computations done by one block of threads.

Each block of threads computes a part of the sum from Eq. 4.7. Shared memory is

used for buffering the input pixels: Step 4 reads P chunks of C pixels into the shared

memory. Each thread then processes a given chunk of pixels, computing one component of

the output matrix si (Step 6) and summing it into the accumulator α. The component’s

coordinates within the matrix are denoted as u and v; in our implementation, these values

are stored in a precomputed 1D texture and read by each thread in Step 2. Since the

whole sum computed by the algorithm is subdivided into P parallel groups of threads,

their partial results need to be summed by Step 9 by using the shared memory.

An important characteristic of the presented arrangement is that it can be scaled in

different dimensions to perfectly fit the hardware it is executed on. The dimensionality of
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Algorithm 4.3 Correlation matrix contribution of each block.

Require: block number b ∈ {0, . . . , B − 1}, input image pixels si,∀i ∈ {0, . . . ,m− 1}

Ensure:
RPC∑
i=0

s(bRPC+i), i.e. a part of the sum in (4.7)

1: α← 0
2: for each thread t ∈ {0, . . . , T − 1} determine:
u, v – coordinates within the matrix si
p – index of matrix computed in parallel with others

3: for r = 0 to R− 1 do
4: read pixels s(bRPC+rPC+i),∀i ∈ {0, . . . , PC − 1} by T available threads
5: syncthreads()

6: for each thread α← α +
C−1∑
c=0

s(bRPC+rPC+pC+c)(λu)s(bRPC+rPC+pC+c)(λv)

7: syncthreads()

8: end for
9: threads t ∈ {0, . . . , 1

2
n(n−1)−1} sum up P corresponding (by pair u, v) accumulators

pixels n is given a priori by the application. Based on it, the optimal thread count can

be obtained by setting an appropriate number of parallel groups of threads P – optimal

number of threads for current GPU’s is in the order of 128 and higher, actual measurements

are given in 4.1.3.

The pixel chunk size C can be set arbitrarily to control the use of the shared memory of

the CUDA multiprocessors. One logical option is to fill the whole shared memory with the

buffered pixels. However, using one half, one third or other fraction of the shared memory

might allow running several blocks in parallel on one multiprocessor. The number of

blocks B can also be controlled by arbitrarily setting the number of repetitions R, because

N = BRPC, where N is the total number of pixels processed (to simplify the calculation,

the memory following the image data is filled with zeros to the next multiple of PC so N

is slightly bigger than the actual number of pixels in the image). An optimal value of B

again depends on the hardware used for the calculation – its number of multiprocessors,

number of blocks runnable on one multiprocessor, etc. Measurements (refer to 4.1.3 for

details) show that the number of blocks is surprisingly not a very important factor. The

ideal number according to our findings is identical to the number of multiprocessors present

in the graphics chip (30 for contemporary GPUs). Further parallelization by submitting

more than one block to a multiprocessor does not introduce any speed-up because the

limiting factor seems to be access to global and shared memory.

Each block of threads running by Alg. 4.3 produces a part of the desired sum of

matrices si(4.7). These B matrices have to be summed, which can be performed by a tree
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scheme [25] or by simple linear summation, since B never reaches high values and the

summation is limited anyway by the speed of the global memory.

Since contemporary implementations of CUDA support only 512 threads, the number

of components n is limited to 31, because for a higher n, the number of components in α

exceed the maximal number of threads. For a higher n, more than one component of α is

computed by one thread.

For finding the eigen values, the same function as in the C and SSE version is used,

being reimplemented into CUDA for C with some small modifications. Only one thread is

used in this case because the algorithm (for the practical usable problem sizes) does not

consume any measurable portion of time and its parallelization would be inconvenient due

to a high degree of branching.

The last step of converting the input image into the new base (Eq. 4.6) is

rather straightforward: the whole image is processed by threads in blocks and each thread

multiplies one or more pixels with the eigen-vector and the result is stored in a different

location in the global memory.

4.1.3 Performance Evaluation of PCA Implementation

For performance evaluation of PCA implementation, all experiments were primarily done

with respect to the target application - real-time imaging for surgical operations. However,

the range of tested image dimensions and component count were wider in order to show

the general usability of the PCA algorithms for spectral imaging and other applications.

For experimenting with CUDA, SSE and C versions of the algorithm, a simple frame-

work was created which loads a video (or a set of images) from a selected source, processes

the frames and reports the time durations for a selected implementation. Video in-

put was done via DSVideoLib, a DirectShow wrapper supporting concurrent access to

frame buffers from multiple threads. Time measurement was done using very accurate

QueryPerformanceCounter WinAPI function over a number of frames, so the variability

of the measured times was below 1 %.

The testing was performed on two computers:

� C2D˜E8200+9800GTX Intel Core2Duo E8200 2.66 GHz, 4 GB 2×DDR2-RAM-

1066(533MHz), nVidia GeForce 9800GTX and

� i7-920+GTX280 Intel Core i7-920, 6 GB 3×DDR3-RAM-1066(533MHz), graphics:

nVidia GeForce GTX280

The measurement times reported in this section include computation of the correlation

matrix, eigen vectors and values, and production of one inner-product image. Especially
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for the CUDA algorithm, the time is “all-inclusive”, meaning that transfer of the input

image data to the graphics card, the computation itself, initiation of the transfer of the

inner-product image back to CPU memory, and waiting for the transfer to be complete are

included in the time. Real usage of the real-time PCA computation may avoid especially

the transfer of the inner-product image back because its purpose might be to be displayed

using the graphics card. Also, the original image should be displayed in any case and the

transfer to the GPU would be necessary even if the computation was done on CPU.

Performance on Videos of Different Resolutions

The PAL resolution (720 × 576) videos were actual surgery videos recorded from the

surgery microscope (see Fig. 4.1 for an example of a frame); higher resolution videos were

random videos from TV broadcasting – the algorithm contained no conditions depending

on the image contents, so the actual origin of the video should not influence the measured

time results.

Figure 4.1: An example of a frame from a surgery video and its inner-
product images.

Tab. 4.1 reports the measured time per frame by the C, SSE and CUDA imple-

mentations, running on the two above-mentioned computers. The algorithms have time

complexity linearly proportional to the number of pixels. As expected, the time per-pixel

(for reasonable frame dimensions) was constant for C and SSE versions of the algorithm. In

the case of CUDA, the per-pixel times were slightly improving with the image resolution,

which was caused by some constant overheads related to CUDA initialization, program

loading, data transfer, etc. These constant overheads amortized better for larger images.
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C2D E8200, 9800GTX

resolution C SSE CUDA C/SSE C/CUDA

640Ö480 10.5 4.9 2.3 2.1 4.6

720Ö756 14.4 6.9 3.1 2.1 4.7

1280Ö720 34.8 15.0 6.4 2.3 5.4

1920Ö1080 72.0 35.2 14.4 2.0 5.0

2560Ö1600 143.2 71.1 27.8 2.0 5.2

i7-920, GTX280

resolution C SSE CUDA C/SSE C/CUDA

640Ö480 4.9 2.0 0.4 2.4 11.1

720Ö756 6.4 2.6 0.6 2.4 11.4

1280Ö720 14.1 5.7 0.9 2.5 15.2

1920Ö1080 32.2 13.2 1.9 2.4 16.7

2560Ö1600 63.6 26.6 3.7 2.4 17.2

Table 4.1: Computational times per frame in milliseconds on different
videos (RGB), two different hardware set-ups, C vs. SSE vs. CUDA.

Different Numbers of Spectral Channels

Surgical microscopes can contain several optical slots for cameras. These slots can be

equipped with several cameras where each one of them works on individual wavelength

responses. In this manner, a spectral image from the surgery can be captured in real-time.

Therefore, videos with six or more spectral components were also examined. Measured

times of PCA computation per frame (PAL resolution 720× 576) for different numbers of

channels are presented in Tab. 4.2.

Note that for 31 spectral channels, the SSE version matches the speed of CUDA. The

PCA computation was demanding especially on the memory bandwidth, while the compu-

tational load was relatively low. The memory chips used both by the CPU and GPU used

similar technology, so for some cases, the difference between the computational capacities

became irrelevant. The CUDA solution had the disadvantage of bus communication and

the need to upload the data to the graphics card and read back the inner-product image

(all these actions are included in the computation times). The CUDA algorithm is surely

useful in the cases when the presented measurements report superior performance to

the SSE, which are cases with a lower number of spectral components. When the speed

of the SSE solution matches CUDA, off-loading the computation to the graphics card

still helps the medical software offer immediate responses by keeping the CPU free of

computation. Also, the measurements include downloading the inner-product image back

to CPU memory, which in many cases would not be useful because it is used on the GPU

to be displayed on the display. On the contrary, if the computations were done on the
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C2D E8200, 9800GTX

# of ch. C SSE CUDA C/SSE C/CUDA

3 14.3 7.5 3.1 1.9 4.6

4 17.4 7.8 4.0 2.2 4.3.

5 21.8 8.8 4.9 2.5 4.4

6 24.9 10.9 6.2 2.3 4.0

9 37.9 17.0 8.8 2.2 4.3

16 74.9 28.8 14.7 2.6 5.1

25 150.9 50.3 22.5 3.0 6.7

31 209.3 67.9 44.1 3.1 4.7

i7-920, GTX280

# of ch. C SSE CUDA C/SSE C/CUDA

3 5.9 2.6 0.6 2.3 9.4

4 6.9 2.7 0.7 2.6 9.6

5 8.6 3.0 0.9 2.8 9.7

6 10.0 3.4 1.1 3.0 9.1

9 14.9 4.8 1.8 3.1 8.4

16 29.1 10.3 5.0 2.8 5.9

25 52.5 18.9 11.5 2.8 4.5

31 71.5 26.1 34.5 2.7 2.1

Table 4.2: Computation times per frame in milliseconds on frames
(PAL, 720× 576) of different number of spectral channels; speed-ups SSE

vs. C and CUDA vs. C; two different hardware set-ups.

CPU, the time to upload the resulting images to the graphics card for displaying them

would need to be included.

The Optimal Set-up of CUDA Program Parameters

As mentioned in 4.1.2, one important advantage of the presented CUDA algorithm is

that it can be scaled in different dimensions to fit the graphics hardware and fully use its

potential. We have performed different measurements to explore the possibilities of the

set-up, two most interesting of them are described below.

Fig. 4.2 shows the performance depending on the number of blocks of threads. It

should be noted that GeForce 9800GTX has 16 multiprocessors, GTX280 contains 30

multiprocessors. The graph shows – as could be expected – that the number of blocks

should always be a multiple of the number of multiprocessors, because the blocks performed

identical actions; their duration was, therefore, identical and they were issued in groups

running in parallel on the multiprocessors. What was not as obvious and expected was

that for higher numbers of blocks, the algorithm performed the same or just slightly worse
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than for smaller numbers. For practical implementations (such as the one suggested in

the following 6.2.2), choosing B ' 200 (and corresponding R) was a safe choice. For

appropriate values of C (see 4.1.2, Alg. 4.3), more than one block could run on one

multiprocessor at a time, which could increase the parallelism. However, since no speed-up

was achieved by this arrangement, we could deduce that the limiting factor was access to

the global memory with the input data and further parallelism did not help, but introduced

a small overhead.
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Figure 4.2: Performance of the CUDA implementation depending on
the number of blocks. The best times are for 16 and 30 blocks (marked by
dashed vertical lines), which correspond to the number of multiprocessors

on each graphics chip.

A similar experiment has been carried out to explore the influence of the number

of threads in each thread block – see Fig. 4.3. This measurement confirmed general

recommendations for CUDA programs that the number of threads should be at least 128.

The measurements reported that 256 threads and higher numbers were secure, from 128

the differences were barely measurable.
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Figure 4.3: Performance of the CUDA implementation depending on
the number of threads in each block.

4.2 Non-Negative Tensor Factorization

Non-Negative Tensor Factorization (NTF) can be used - in the context of spectral imaging

- for image compression [3], optimal filter generation [29], and feature extraction [43].

NTF is also used in other scientific and industrial fields, such as global climate analysis,

neuroscience, psychometrics, etc. [75], [6], [11], [57], [84], [48]. The dimensionality of these

problems are often so high that NTF computations take hours so acceleration of this

process is desirable.

This research shows an efficient GPU implementation for general iterative NTF com-

putation by gradient descent, based on Gauss-Seidel and Jacobi methods [29], using the

CUDA programming environment. The efficiency of the algorithm is compared to other

available solutions. This section summarizes iterative NTF computation and fast modi-

fications of this algorithm. Section 4.2.1 describes the proposed CUDA implementation,

namely the decomposition of the problem into parts that can be calculated in parallel.

Section 4.2.2 gives measurements of our implementation’s performance and compares it

with state-of-the-art solutions. The CUDA implementation of NTF was wrapped into a

DLL, which is usable by C programs in both the Windows and Linux environments, and

also by a MATLAB plugin. Information about this publicly available tool is given in 6.2.3.

In contrast to other analytical tools, such as Principal Component Analysis (PCA) or

Singular Value Decomposition (SVD), NTF produces the matrix factors (basis vectors)

that are always non-negative and which meet other requirements that enable real-world
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interpretations. In the context of spectral imaging, NTF allows the decomposition of a

spectral colour into a set of filters that can be manufactured and can be used in optical

systems [59].

Let G ∈ RR×S×T be a third order non-negative tensor to be analysed. Non-negative

tensor factorization of G requires solving a non-linear minimization problem:

min
Ĝ≥0
‖G− Ĝ‖2

F (4.8)

where Ĝ is the tensor of reconstructed data and ‖A‖2
F is the square Frobenius norm.

Also other cost functions such as α or β-divergences could be used [12]. The rank-K

reconstruction is defined by sums of tensor products:

Ĝ =
K∑
k=1

u(k) ⊗ v(k) ⊗w(k) (4.9)

where u(k) ∈ RR, v(k) ∈ RS and w(k) ∈ RT are basis vectors of non-negative values. This

reconstruction process is illustrated in Fig. 4.4.

Figure 4.4: Principle of third order tensor factorization by using sums
of rank-1 tensors.

The most commonly used approaches to non-negative tensor factorization are based

on the Block Gauss-Seidel (BGS) method [22]. Using a combination of Gauss-Seidel

and Jacobi iterative update schemes, Hazan et al. [29] derived a gradient descent that

repeatedly updates u(k), v(k) and w(k); these are calculated using iterative rules (Eq. 4.10–

Eq. 4.12:

uki ←
uki
∑

s,tGi,s,tv
k
sw

k
t∑K

m=1 u
m
i 〈vm, vk〉 〈wm, wk〉

(4.10)

vki ←
vki
∑

r,tGr,i,tu
k
rw

k
t∑K

m=1 v
m
i 〈um, uk〉 〈wm, wk〉

(4.11)

wki ←
wki
∑

r,sGr,s,iu
k
rv

k
s∑K

m=1w
m
i 〈um, uk〉 〈vm, vk〉

(4.12)

where G is the dataset and 〈x,y〉 denotes inner product. Usually, this iterative procedure

must be repeated hundreds or even hundreds of thousands times to converge to the correct
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solution depending on the complexity of the dataset. Therefore, iterative NTF computation

is quite time consuming, and approaches to speeding it up would be useful.

4.2.1 CUDA Implementation of NTF

Our algorithm closely follows the theoretical description in 4.2. The structure of the

calculation is shown by Alg. 4.4. The first line in the algorithm initializes the vectors

u, v and w by using random values between 0 and 1. The NTF problem can be divided

into three sub-problems, corresponding to rules of Eq. 4.10–Eq. 4.12. Functions for

their computation are named STEP in Alg. 4.4. The inner products in the equations’

denominators can be calculated in advance and stored in K×K sized matrices. In Alg. 4.4,

these matrices are named Mu, Mv, and Mw, where Mu = uTu, i.e.:

Mu =


〈u(1),u(1)〉 . . . 〈u(1),u(K)〉
〈u(2),u(1)〉 . . . 〈u(2),u(K)〉

...
. . .

...

〈u(K),u(1)〉 . . . 〈u(K),u(K)〉

 (4.13)

and Mv and Mw are defined similarly. The function for their computation is named

CMAT in Alg. 4.4. These matrices are symmetrical, so only the upper or lower triangle

matrix needs to be calculated and stored.

Algorithm 4.4 Structure of the NTF algorithm.

Require: the input G (size R× S × T ), the method rank K, and the iteration count I
Ensure: the output vectors u, v and w

1: Init u, v and w
2: Mu ← CMAT(u)
3: Mv ← CMAT(v)
4: Mw ← CMAT(w)
5: for i ∈ {0, . . . , I − 1} do
6: u← STEPu(G,u,v,w,Mv,Mw)
7: Mu ← CMAT(u)
8: v← STEPv(G,u,v,w,Mu,Mw)
9: Mv ← CMAT(v)

10: w← STEPw(G,u,v,w,Mu,Mv)
11: Mw ← CMAT(w)
12: end for
13: return u, v and w

Calculating the numerator in the sub-problem steps is the most time consuming

operation. All other calculations, including creating the correlation matrices such as Eq.
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4.13, do not take a significant amount of time in comparison. The numerator calculation

consists mostly of repeated summing of a large array, so it is more demanding of memory

bandwidth than it is computationally intensive. The sub-problem steps only differ in the

direction in which the layers of G are taken. Therefore, the following text will describe

only the step for w, corresponding to Eq. 4.12; the pseudo-code for u and v is identical,

except for renamed variables.

The sub-problem calculation must be divided into CUDA thread blocks. One straight-

forward solution could be to have each block calculate one value of w, so TK blocks are

executed. Because G has T layers and K values are calculated for every layer, this division

into blocks means that every layer is traversed and summed K times. To lower the number

of reads from G (notably speeding up the computation), the calculation can be divided

into T blocks, so every block calculates K values and traverses each layer of G only once.

Figure 4.5: Tiling of one thread block. One slice of G is divided into
N ×N tiles computed by individual blocks of threads.

Because the number of threads in each block will often be lower than the G layer

dimensions R × S, the block must be divided into tiles. Each tile contains a number

of elements equal to the number of threads in the block, which is N2 arranged to a

square matrix. Fig. 4.5 shows the tiling of G and the parts of u and v corresponding

to each tile (for K = 3). Because each element of these parts is accessed N times, these

parts are cached in the shared memory (Cu and Cv). Each tile of G is multiplied by K

corresponding parts of u and v, forming a block of size K ×N ×N , which is then added

to a shared memory buffer α. After all tiles are processed, the buffer is summed via tree

summation [25] to form K values. The rest of the work – calculation of the denominator

and of the output value – only requires K threads. The work done by one block is shown

in Alg. 4.5.
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Algorithm 4.5 Computation Done by One Thread Block.

Require: G, u, v, w, Mu, Mv

block index t, thread indices i, j
Ensure: new iteration w′

1: α[k, i, j]← 0,∀k ∈ {0, . . . , K − 1}
2: for x ∈ {0, . . . , R

N
− 1}, y ∈ {0, . . . , S

N
− 1} do

3: if i < K then
4: Cu[i, j]← u[i, j + xN ]
5: Cv[i, j]← v[i, j + yN ]
6: end if
7: syncthreads()

8: e← G[i+ xN, j + yN ]
9: for k ∈ {0, . . . , K − 1} do

10: α[k, i, j]← α[k, i, j] + eCu[k, i]Cv[k, j]
11: end for
12: end for
13: syncthreads()

14: α[k, 0, 0]←
N−1∑
i=0

N−1∑
j=0

α[k, i, j],∀k ∈ {0, . . . , K − 1}

15: k ← i+ jN
16: if k ∈ {0, . . . , K − 1} then

17: w′[k, t]← w[k, t]α[k, 0, 0]∑K−1
m=0 w[m, t]Mu[k,m]Mv[k,m]

18: end if

The calculation of the correlation matrices takes a negligible amount of time compared

to the rest of the calculation, so no special optimizations were performed. The calculation

of K(K + 1)/2 elements of a correlation matrix (upper or lower triangular part of the

matrix) is simply divided into an equal number of blocks, so every block traverses one pair

of w rows and outputs one element of the correlation matrix.

Because N2 should be a power of two for easy tree summation, reasonable values of N

can be 8 or 16. For N = 8, the block consists of 64 threads; for N = 16 it consists of 256

threads. A bigger value of N means that every element of the cache is used more times,

so 16 was selected. However, a bigger N also requires larger arrays in the shared memory.

The same holds for K, so for N = 16, 16KB of the shared memory is only sufficient for

K < 15. If a greater value of K is needed, a lower value of N must be used. Fortunately,

such cases are not common, so this limitation is mostly theoretical.

Another limitation of the implementation on current graphics chips is the maximum

number of blocks per kernel, which limits the maximum of each dimension of the input

tensor to 65536.
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Both limits can be overcome when necessary, so the only remaining limitation of this

implementation is the memory capacity of the graphics card. Storing tensors requires a

huge amount of memory, so for current high-end graphics cards with two gigabytes of

memory, the limit is a cube with approximately 800 elements in each direction (or a tensor

with varying dimensions of equivalent volume).

4.2.2 Performance Evaluation of NTF Algorithm

In case of NTF algorithm, the computation times were measured using different sizes of

spectral images (Fig. 4.6a); Fig. 4.6b shows rank 3 tensors that were calculated using NTF.

The spatial resolution of the image varied between 100×100 and 1000×1000. The spectral

dimensionality was either 31 or 62 (values common in spectral imaging). Channels in the

31-dimensional spectral images ranged from 420 nm to 720 nm with 10 nm steps captured

by a spectral camera. The 62-channel spectral images were created by interpolating the

31-channel images to 61-channel image by using 5 nm steps. One extra channel was added

by duplication into the red end to achieve double size images (62-channels) which can be

compared easily to 31-channel images. Also, a simulated 600 × 400 × 200 data set was

used to provide a better comparison between our GPU algorithm and another recently

published parallel implementation [75].
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Figure 4.6: (a) RGB representation of the used spectral image; (b)
calculated rank-3 factors in spectral domain.

Computational Times

All tests were performed using Intel Core i7-920 processor, 6 GB of DDR3 RAM and an

NVIDIA GeForce GTX280 with 1 GB of GDDR3 memory. The GPU implementation

presented in this section was compared to a standard C implementation of the same
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method[29] compiled by Microsoft Visual Studio 2009 (compiler ver. 15.00.30729.01). The

GPU version was compiled using NVIDIA’s compiler (CUDA compilation tools, release

3.0, V0.2.1221).

Fig. 4.7 shows the computation times, with 500 iterations, for both implementations.

Speed-ups achieved by the GPU implementation are also displayed as a function of the

spectral image’s spatial size. The CPU calculations used both single and double precision

floating point numbers. The GPU implementation could that time work with single

precision only (fast access to the input tensor required texture lookup, that did not support

double precision). The GPU implementation, which processed inputs with double precision,

computed in single precision and only used fast page-locked memory for data conversion.

The difference between single and double on the GPU was, therefore, the time needed for

conversion from double to single precision.
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Figure 4.7: Computational times with different sizes of spectral images:
(a) CPU times; (b) GPU times; (c) GPU speed-ups – CPU/CUDA; (d)
CPU speed-ups for multiple cores, whereNis the spatial size of the image.

The computation times show that the speed-up factor rises logarithmically with respect

to the size of the spectral image. Speed-ups for the computation times between the
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single-core CPU and GPU versions for practical dataset dimensions are around 60− 100×.

Graph (d) of Fig. 4.7 shows the impact of using multiple threads on the CPU. The

CPU used has four physical cores and eight logical cores via hyper-threading. The rest of

the CPU measurements are done in the single-threaded form, the speed-ups achievable by

multi-threading are limited to 3.5×.

The spikes in the speed-up graphs for the CPU measurements are a consequence of the

cache implementation of the CPU. When the image has certain dimensions, neighbouring

pixels in the x, y, and z axis directions were coherent with the alignment of the CPU cache

records. Thus, some parts of the CPU cache were used heavily, while the rest of the cache

memory was sparsely used or not used at all. Similar behaviour can be observed in various

image processing algorithms. This behaviour could be avoided by deliberately misaligning

image rows in the main memory, but this further complicated the algorithm, introduced

some minor computational overhead, and slightly increased memory consumption. The

CUDA environment did not suffer from similar effects.

The CPU implementation has been tried with both double and single floating-point

precisions. The use of single precision might harm the precision of the results, so the

GPU’s effective inability to use double precision might appear limiting. Our observations,

however, indicate that the floating-point implementation in modern GPUs was precise

enough. In fact, the results from a GPU are comparable to the double precision CPU

result and are much better than using single precision in the CPU. Errors between the

single and double precisions were estimated by using root mean square error (RMSE).

The RMSE difference between the CPU double precision version and the single precision

version was 6.0× 10−5, while the error with the GPU version was only 6.6× 10−8. This

can be explained by considering the summation strategy. When summing a large number

N of items with limited (single) precision:

α =
N∑
i=0

f(i) (4.14)

α ← α + f(i)

i ← i+ 1
(4.15)

Once i becomes high, the mantissas in the memory representations of α and f(i) are

overlapped by smaller and smaller numbers of bits. The accuracy can be increased by

reformulating the accumulation strategy as:

α =

N/K∑
k=0

(k+1)K−1∑
i=kK

f(i)

 (4.16)
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Discussion Regarding Another Parallel Version of NTF

In 2009, Zhang et al. [75] introduced a multiprocessor implementation of the same NTF

algorithm used as the starting point of our solution and evaluated its efficiency for a

600× 400× 200 data set of climatic data. They used a Sun Fire X4600 M2 server for their

computations.

For comparison, we measured the efficiency of both our CPU and GPU implementations

using a dataset of the same size. The CPU computation time for the data set was

290 seconds for 100 iterations (with one core of the Intel Core i7 920 processor) and the

equivalent GPU computation time was 2.36 seconds.

It was not possible to compare the absolute times, since the processors were different

and it was impossible to imitate all circumstances of the measurement. However, Zhang et

al. [75] report that their speed-up by adding further nodes was capped at about 7× while

our GPU algorithm achieved over 100× speed-up compared to the single-core CPU version

(our multi-core version on state-of-the-art processors achieved up to 3.5× speed-up).
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Chapter 5

Real-Time Line Detection Using

CUDA

The Hough transform is a well-known and popular algorithm for detecting lines in raster

images. Standard Hough transform is rather slow to be usable in real time, so different

accelerated and approximated algorithms exist. This study proposes a modified accumula-

tion scheme for the Hough transform, using a new parametrization of lines “PClines”. The

algorithm discussed within this chapter is suitable for computer systems with a small but

fast read-write memory, such as today’s graphics processors. It requires no floating-point

computations or goniometric functions. This makes the algorithm suitable for special and

low-power processors and special-purpose chips. The proposed algorithm was evaluated

both on synthetic binary images and on complex real-world photos of high resolutions.

The results showed that using today’s commodity graphics chips, the Hough transform

can be computed at interactive frame rates, even with a high resolution of the Hough

space and with the Hough transform fully computed.

This chapter presents an insight into our research on real-time line detection using

Hough transform and parallel coordinates. The research presented in this chapter was

performed in close cooperation with the following list of co-authors: Markéta Dubská,

Adam Herout and Jǐŕı Havel.

5.1 Line Detection Using Accelerated High-Resolution

Hough Transform

The Hough transform is a well-known tool for detecting shapes and objects in raster

images. Originally, Hough [34] defined the transformation for detecting lines; later it was

extended for more complex shapes, such as circles, ellipses, etc., and even generalized for
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arbitrary patterns [5].

When used for detecting lines in 2D raster images, the Hough transform is defined by

a parametrization of lines: each line is described by two parameters. The input image is

preprocessed and for each pixel which is likely to belong to a line, voting accumulators

corresponding to lines which could be coincident with the pixel are increased. Next, the

accumulators in the parameter space are searched for local maxima above a given threshold,

which correspond to likely lines in the original image. The Hough transform was formalized

by Princen et al. [74] and described as a hypothesis testing process.

Hough [34] parametrized the lines by their slope and y-axis intercept. A very popular

parametrization introduced by Duda and Hart [16] is denoted as θ − %; it is important

for its inherently bounded parameter space. It is based on a line equation in the normal

form: y sin(θ) + x cos(θ) = %. Parameter θ represents the angle of inclination and % is

the length of the shortest chord between the line and the origin of the image coordinate

system. There exist several other bounded parametrizations, mainly based on intersections

of lines with image’s bounding box [58, 17, 95]. Different properties of these intersects are

used as parameters.

The majority of currently used implementations seems to be using the θ-% paramet-

rization – for example the well-known OpenCV library implements several variants of

line detectors based on the θ-% parametrization and none other. It is mainly because the

parametrization uses a very straightforward transformation from the image space to one

bounded space of parameters and because of its uniform distribution of the discretization

error across the Hough space.

Several research groups invested effort to deal with computational complexity of the

Hough transform based on the θ-% parametrization. Different methods focus on special

data structures, non-uniform resolution of the accumulation array or special rules for

picking points from the input image.

O’Rourke and Sloan developed two special data structures: dynamically quantized

spaces (DQS) [71] and dynamically quantized pyramid (DQP) [82]. Both these methods

use splitting and merging cells of the space represented as a binary tree, or possibly a

quad-tree. After processing the whole image, each cell contains approximately the same

number of votes; that leads to a higher resolution of the Hough space of accumulators at

locations around the peaks.

A typical method using special picking rules is the Randomized Hough Transform

(RHT) [98]. This method is based on the idea, that each point in an n-dimensional Hough

space of parameters can be exactly defined by an n-tuple of points from the input raster

image. Instead of accumulation of a hypersphere in the Hough space for each point, n

points are randomly picked and the corresponding accumulator in the parameter space is
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increased. Advantages of this approach are mostly in rapid speed-up and small storage.

Unfortunately, when detecting lines in a noisy input image, the probability of picking two

points from same line is small, decreasing the probability of finding the true line.

Another approach based on repartitioning the Hough space is represented by the Fast

Hough Transform (FHT) [51]. The algorithm assumes that each edge point in the input

image defines a hyperplane in the parameter space. These hyperplanes recursively divide

the space into hypercubes and perform the Hough transform only on the hypercubes with

votes exceeding a selected threshold. This approach reduces both the computational load

and the storage requirements.

Using principal axis analysis for line detection was discussed by Rau and Chen [8]. Using

this method for line detection, the parameters are first transferred to a one-dimensional

angle-count histogram. After transformation, the dominant distribution of image features

is analysed, with searching priority in peak detection set according to the principal axis.

There exist many other accelerated algorithms, more or less based on the above mentioned

approaches; e.g. HT based on eliminating of particle swarm [9] or some specialized tasks

like iterative RHT [54] for incomplete ellipses and N-Point Hough transform for line

detection [56]. For more information about different existing modifications of Hough

transform, please see [36].

This section presents an algorithm for real-time detection of lines based on the standard

Hough transform using the θ-% parametrization. The classical Hough transform has some

advantages over the accelerated and approximated methods (it does not introduce any

further detection error and it has a low number of parameters and therefore usually requires

less detailed application-specific fine-tuning). That makes the real-time implementation of

the Hough transform desirable. The algorithm uses a modified strategy for accumulating

the votes in the array of accumulators in the Hough space. The strategy was designed to

meet the nature of today’s graphics chips (GPUs).

5.1.1 Real-Time Hough Transform Algorithm

Before discussing the new real-time Hough transform algorithm, let us review the “clas-

sical” Hough transform procedure based on the θ-% parametrization in Alg. 5.1 (the θ-%

parametrization itself is depicted by Fig. 5.1).

Points in the input image I with dimensions Iw and Ih are classified with a binary

decision on line 3 (e.g. by en edge detector and thresholding). Lines 2–6 rasterize

and accumulate curves into the Hough space. The function %̄(θ̄, x, y) calculates the
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Algorithm 5.1 HT for detecting lines based on the θ-% parameterization.

Require: Input image I with dimensions Iw, Ih, Hough space dimensions H%, Hθ

Ensure: Detected lines L = {(θ1, %1), . . .}
1: H(%̄, θ̄)← 0, ∀%̄ ∈ {1, . . . , H%}, θ̄ ∈ {1, . . . , Hθ}
2: for all x ∈ {1, . . . , Iw}, y ∈ {1, . . . , Ih} do
3: if I(x, y) is edge then
4: increment H

(
%̄(θ̄, x, y), θ̄

)
,∀θ̄ ∈ {1, . . . , Hθ}

5: end if
6: end for
7: L = {(θ(θ̄), %(%̄))|%̄ ∈ {1, . . . , H%} ∧ θ̄ ∈ {1, . . . Hθ}∧

at (%̄, θ̄) is a high max. in H}

Figure 5.1: The θ-% parametrization of lines in a coordinate system
with origin in the centre of the input image.

corresponding %̄ for each line passing through point (x, y) at angle θ̄:

%̄(θ̄, x, y) =

[
H%

(
(y − Ih

2
) sin( π

Hθ
θ̄) + (x− Iw

2
) cos( π

Hθ
θ̄)
)√

I2
w + I2

h

+
H%

2

]
. (5.1)

Line 7 detects above-threshold local maxima in the accumulated space and transforms the

discretized Hough space coordinates %̄ and θ̄ to % and θ by the following functions:

%(%̄) =

√
I2
w + I2

h

H%

(
%̄− H%

2

)
,

θ(θ̄) =
π

Hθ

θ̄.
(5.2)

Usually, a small neighbourhood (3× 3 in OpenCV, 5× 5 or 7× 7 in cases of high resolution

of the Hough space) is used for detecting the local maxima by line 7. The accumulator
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value must be above a given threshold to be considered for a “high local maxima”. The

threshold is another input parameter of the algorithm, but since it does not influence the

algorithm’s structure, it is used silently by line 7 for simplicity of the algorithmic notation.

The key characteristic of this algorithm is that line 4 must rasterize the half-period of

the sinus curve and increment the corresponding accumulators in the Hough space. On

some systems, such a large random-access read-write memory might be expensive or even

not available at all.

5.1.2 CUDA Implementation

The key characteristic of Alg. 5.1 in the previous section is that steps 4 must rasterize

the curves (the half-period of the sinus curve in the case of the h. parametrization) and

increment the corresponding accumulators in the Hough space. In some systems, such a

large random-access read-write memory might be expensive or even not available at all.

This section presents an algorithm that overcomes this limitation and which is suitable

for graphics processors and other special-purpose or embedded systems. The principle of

these algorithms can work with other line parametrizations as well.

Hough Transform on a Small Read-Write Memory of Accumulators

The classical Hough transform accesses sparsely a relatively large amount of memory.

This behaviour can diminish the effect of caching. On CUDA and similar architectures,

this effect is even more significant, as the global memory is not cached. To achieve

real-time performance, the memory requirements must be limited to the shared memory

of a multiprocessor (typically 16 kB).

Alg. 5.2 shows the modified Hough transform accumulation procedure. The key

difference from Alg. 5.1 is the actual size of the Hough space. The new algorithm stores

only Hθ × n accumulators, where n is the neighbourhood size required for the maxima

detection. Functions %̄, θ, %, and the edge and maxima detection are identical to Alg. 5.1.

First, the detected edges are stored in a set P (line 1). Then, first n rows of the Hough

space are computed by lines 2–7. The memory necessary for containing the n lines is all

the memory required by the algorithm and even for high resolutions of the Hough space,

the buffer of n lines fits easily in the shared memory of the GPU multiprocessors.

In the main loop (lines 9–18), for every row of the Hough space, the maxima are

detected (line 10), the accumulated neighbourhood is shifted by one row (lines 11–13)

and a new row is accumulated (lines 14–17); please refer to Fig. 5.2 for an illustration of

the algorithm. Thus only the buffer of n lines is being reused. The memory shift can be

implemented using a circular buffer of lines to avoid data copying.
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Algorithm 5.2 HT accumulation strategy using a small read-write memory.

Require: Input image I with dimensions Iw, Ih, Hough space dimensions H%, Hθ,
neighborhood size n

Ensure: Detected lines L = {(θ1, %1), . . .}
1: P ← {(x, y)|x ∈ {1, . . . , Iw} ∧ y ∈ {1, . . . , Ih} ∧ I(x, y) is an edge}
2: H(%̄, i)← 0, ∀%̄ ∈ {1, . . . , Hρ},∀i ∈ {1, . . . .n}
3: for all i ∈ {1, . . . , n} do
4: for all (x, y) ∈ P do
5: increment H(%̄(i, x, y), i)
6: end for
7: end for
8: L← {}
9: for θ̄ = dn

2
e to Hθ − bn2 c do

10: L← L ∪ {(θ(θ̄), %(%̄))|%̄ ∈ {1, . . . H%} ∧ (%̄, dn
2
e) is a high local max. in H}

11: for i = 1 to n− 1 do
12: H(%̄, i)← H(%̄, i+ 1),∀%̄ ∈ {1, . . . , H%}
13: end for
14: H(%̄, n)← 0,∀%̄ ∈ {1, . . . , H%}
15: for all (x, y) ∈ P do
16: increment H(%̄(θ̄ + dn

2
e, x, y), n)

17: end for
18: end for

In the pseudo-code, maxima are not detected at the edges of the Hough space. Eventual

handling of the maxima detection at the edge of the Hough space does not change the

algorithm structure, but it would unnecessarily complicate the pseudo-code. Two solutions

exist – either copying the border data or rasterizing necessary parts of the curves outside

of the Hough space. Both approaches perform similarly and their implementation is

straightforward.

On CUDA, the threads in a block can be used for processing the set of edges P

(lines 15–17 and 4–6) in parallel, using an atomic increment of the shared memory to avoid

read-write collisions. In order to use all the multiprocessors of the GPU, the loop on line 9

is broken to a number (e.g. 90 is suitable for current NVIDIA GeForce graphics chips) of

sub-loops processed by individual blocks of threads.

The algorithm as described above uses exactly H% × n memory cells, typically 16-bit

integer values. In the case when the runtime system has more fast random-access read-write

memory, this memory can be used fully, and instead of accumulating one line of the Hough

space (lines 15–17 of the algorithm), several lines are are accumulated and then scanned

for maxima (line 10). This leads to further speed-up by reducing the number of steps

carried out by the loop over θ̄ (line 9).
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Figure 5.2: Illustration of Alg. 5.2. The grey rectangle represents the
buffer of n lines. For row 4, the above-threshold maxima are detected in
each step within the buffer. Then, the row 7 values are accumulated into
the buffer, using the space of row 2, which will not be needed in future

processing.

Harnessing the Edge Orientation

In 1976 O’Gorman and Clowes came with the idea not to accumulate values for each θ but

just one value instead [66]. The appropriate θ for a point can be obtained from the gradient

of the detected edge which contains this point [80]. One common way to calculate the

local gradient direction of the image intensity is using the Sobel operator. Sobel detector

uses two kernels, each approximates the derivation in horizontal (Gx), respectively vertical

(Gy) direction. Sobel kernels for convolution are as follows: Gx = [1, 2, 1]T · [1, 0,−1] and

Gy = [1, 0,−1]T · [1, 2, 1]. Using these two values, the gradient’s direction can be obtained

as θ = arctan(Gy
Gx

). To avoid errors caused by noise and rasterization, accumulators within

several degrees around the calculated angle are also incremented. From experimental

testing, the interval’s radius equal to 20◦ seems suitable. This approach reduces the

computation time and highlights the maxima peaks. A disadvantage of this method is

its dependency of the results on another user parameter – the radius. Small radius of

the incremented interval of θ can lead into discarding some maxima due to inaccurate θ

location. On the other hand, too high a radius can diminish the performance benefits of

the method.

This approach to utilizing the detected gradient can be incorporated to the new
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accumulation scheme presented in the previous section. When extracting the “edge points”

for which the sinusoids are accumulated in the Hough space (line 1 in Alg. 5.2), also the

edge inclination is extracted:

1: P ← {(α, x, y)|x ∈ {1, . . . , Iw} ∧ y ∈ {1, . . . , Ih}
∧ I(x, y) is an edge with gradient slope α}.

P ← {(α, x, y)|x ∈ {1, . . . , Iw} ∧ y ∈ {1, . . . , Ih} ∧ I(x, y) is an edge with

gradient slope α}.

Then, instead of accumulating all points from set P (lines 4–6), only those points which fall

into the interval with radius w around currently processed θ are processed and accumulated

into the buffer of n lines:

4: for all (α, x, y) ∈ P ∧ i− w < ᾱ < i+ w do

5: increment H(%̄(i, x, y), i+ bn
2
c)

6: end for

and similarly for lines 15–17:

16: for all (α, x, y) ∈ P ∧ θ̄ + bn
2
c − w < ᾱ < θ̄ + bn

2
c+ w do

17: increment H(%̄(θ̄ + bn
2
c, x, y), n)

18: end for.

Please, note that the edge extraction phase (line 1) can sort the detected edges by

their gradient inclination α, so that loops on lines 15–17 and 4–6 do not visit all edges,

but only edges potentially accumulated, based on the current θ̄ (line 9 of Alg. 5.2). For

(partial) sorting of the edges on GPU, an efficient prefix sum can be used [26].

5.1.3 Performance Evaluation of Hough Transform

This section evaluates the speed of the newly presented line-detection algorithm, which is

explained more in detail within 5.1. Two groups of experiments were made:

� the first one was focused on the speed-up in the case when % was calculated for each

θ (see 5.1.2, Alg. 5.2);

� the second test evaluated the situation when the Sobel operator was used for detection

of edge orientation and only an interval of the sinusoid curves was accumulated to

the Hough space (see 5.1.2).

Each test compared the computation time of 4 implementations:

� ASUS nVIDIA GTX480 graphics card (1.5GB GDDR5 RAM) running the new

algorithm;
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� ASUS nVIDIA GTX280 graphics card (1GB GDDR3 RAM) running the same code;

� an OpenMP parallel CPU implementation of the presented algorithm (Intel Core i7-

920, 6GB 3×DDR3-1066(533MHz) RAM – the same machine was used for evaluating

the GPU variants);

� and an OpenMP parallel “standard” implementation running on the same machine.

As the “standard” implementation, the code based on OpenCV functions was used

and optimized by parallelization.

Synthetic Binary Images

As the dataset for this experiment we used automatically generated black-and-white images.

The generator randomly placed L white lines and then inverts pixels on P different positions

in the image. The evaluation was done on 36 images (resolution 1600× 1200): images 1–6,

7–12, 13–18, 19–24, 25–30, 31-36 were generated with L = 1, 30, 60, 90, 120, 150 respectively,

with increasing P = 1, 3000, 6000, 9000, 12000, 15000 for each L. The parameters of the

experiments were H% = 960 and Hθ = 1170 (resolution of the Hough space) and the

threshold for accumulators in the Hough space was 400.

Fig. 5.3 reports the results of the four implementations. Please note that the CUDA

version is several times faster than the commonly used OpenCV implementation (paral-

lelized to utilize the 8 cores of the processor) and achieves real-time or nearly real-time

speeds.

Real-Life Images

The images used in this test were real-world images depicted by Fig. 5.4. For possibility

of comparison with previous test, resolution of Hough space was same; i.e. H% = 960 and

Hθ = 1170; the threshold for accumulators in the Hough space was dependant on the input

image resolution (one fourth of the diagonal); this corresponds to the shortest possible line

detected by Hough transform); the radius of the accumulated interval (see 5.1.2) was 20◦.

Fig. 5.5 contains the measured results. The results indicate that even for complex

real-world images and high-resolution Hough space, the proposed algorithm implemented

on commodity graphics hardware can detect lines at interactive frame rates. Contrary to

the version that works with the whole sinusoids in the Hough space (see 5.1.3), the speed

of the CPU implementation of the presented algorithm is about as fast as the standard

CPU version. This can be explained by better cache coherency when only fractions of

the sinusoids are rasterized. However, for efficient implementation on CUDA and similar

architectures, the presented algorithm is required.
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Figure 5.3: Performance Evaluation on Synthetic Binary Images. Red:
GTX480, Orange: GTX280, Green: Striped algorithm on the CPU, Blue:

Standard HT accumulation.

Figure 5.4: Images used in the test. The number in the top-left corner
of each thumbnail image is the image ID – used on the horizontal axis
in Figure 5.5. The bottom-left corner of each thumbnail states the pixel

resolution of the tested image.
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Figure 5.5: Performance evaluation on real-world images (see Fig. 5.4)
using the Sobel operator and only accumulating intervals of the sinusoids.
Red: GTX480, Orange: GTX280, Green: Striped algorithm on the CPU,

Blue: Standard HT accumulation.
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5.2 Line Detection Using Parallel Coordinates

The following section reviews existing parametrizations of lines suitable for a fast and/or

precise detection of lines. The classical Hough transform (based on any parametrization)

has some advantages over the accelerated and approximated methods (it does not intro-

duce any further detection error and it has a low number of parameters and, therefore,

usually requires less detailed application-specific fine-tuning). This makes the real-time

implementation of the Hough transform desirable.

This study presents an algorithm for real-time detection of lines based on the PClines

parametrization of lines. The algorithm discussed within this section used a modified

strategy for accumulating the votes in the array of accumulators in the Hough space.

The strategy was designed to meet the nature of today’s graphics chips (GPUs) and

other special-purpose computational platforms. The implementation achieves real-time

performance at executing the “full” Hough transform on the GPU.

Parallel coordinates (PC) were invented in 1885 by d’Ocagne [13] and they were further

studied and popularized by Inselberg [37]. The coordinate system used for representing

geometric primitives in parallel coordinates is defined by mutually parallel axes. Each

N-dimensional vector is represented by (N - 1) lines connecting the axes (see Fig. 5.6). In

this thesis, we will be using an Euclidean plane with a u–v Cartesian coordinate system to

define positions of points in the space of parallel coordinates. For defining these points, a

notation (u, v, w)P2 will be used for homogeneous coordinates in the projective space P2

and (u, v)E2 will be used for Cartesian coordinates in the Euclidean space E2:

In the two-dimensional case, points in the x–y space are represented as lines in the

space of parallel coordinates. Representations of collinear points intersect at one point–

the representation of a line (see Fig. 5.7).

Based on this relationship, it is possible to define a point-to-line mapping between

the original x–y space and the space of parallel coordinates. For some cases, such as line

` : y = x; the corresponding point ‘ in the parallel coordinates lies in infinity (it is an

ideal point) and the points on this line are represented by the parallel horizontal lines.

Projective space P2 (contrary to the Euclidean E2 space) provides coordinates for these

special cases. A relationship between line ` : ax + by + c = 0 (denoted as [a, b, c]) in

Cartesian coordinates and its representing point ` in parallel coordinates can be defined

by mapping:

` : [a, b, c]→ ` : (db,−c, a+ b)
P2

(5.3)

where d is the distance between parallel axes x0 and y0.
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Figure 5.6: Representation of a 5-dimensional Vector in Parallel Co-
ordinates. The vector is represented by its coordinates C1, . . . , C5 on
axes x′1, . . . , x

′
5, connected by a complete poly line (composed of 4 infinite

lines).

Parametrization “PClines” for Line Detection

This section gives an overview of the “PClines” parametrization introduced by Dubská et

al. [15]. The text is kept very concise; for more information, the original paper should be

consulted. In the following section, we will use the intuitive slope-intercept line equation

y = mx+ b where m defines the slope of the line and b the y-coordinate of an intersection

between the line and y-axis. Using this parametrization, the corresponding point ` in the

parallel space has coordinates
(
d, b, 1−m

)
P2 . The line’s representation ` is between the

axes x′ and y′ if and only if −∞ < m < 0. For m = 1, ` is an ideal point (a point in

infinity). For m = 0, ` lies on the y′ axis, for vertical lines (m = ±∞), ` lies on the x′

axis. The system defined by parallel axes x′, y′ is further referred as straight (S) space.

The representations of the lines with a positive slope lie in an infinite area outside

the space between axes x′, y′. To enclose also these representations to a finite part, we

propose a twisted (T ) system x′, −y′, which is identical to the straight space, except that

the y′-axis is inverted. In the twisted space, ` is between the axes x′ and −y′ if and only if

0 < m <∞. By combining the straight and twisted spaces, the whole T S plane can be

constructed, as shown in Fig. 5.8.

Fig. 5.8 (left view) shows the original x–y image with three points A, B, and C and

three lines `1, `2, and `3 coincident with the points. The origin of x–y is placed into the

middle of the image for the convenience of the figures and the right view depicts the

corresponding T S space. It should be noted that a finite part of the u–v plane sufficient
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Figure 5.7: Three collinear points in parallel coordinates: (left)
Cartesian space and (right) space of parallel coordinates. Line ` is

represented by point ` in parallel coordinates.

Figure 5.8: Left Original x–y space and right its PClines representation,
the corresponding T S space.

for representing all possible lines in the bordered input image is defined as follows:

−d ≤ u ≤ d

−max
(
W
2
, H

2

)
≤ v ≤ max

(
W
2
, H

2

) (5.4)

where W and H are the width and height of the input raster image, respectively.

Any line ` : y = mx+ b is now represented either by point `S in the straight space or

by `T in the twisted space of the u–v plane:

¯̀
S = (d, b, 1−m)P2 −∞ ≤ m ≤ 0

¯̀
T = (−d,−b, 1 +m)P2 0 ≤ m ≤ ∞

(5.5)

Consequently, any line ` has exactly one image ` in the T S space; except for cases that

m = 0 and m = ±∞, when ` lies in both spaces either on y′ or x′-axis. That allows the T
and S spaces to be “attached” one to another. Figure 3 illustrates the spaces attached

along the x′axis. Attaching also the y′ and −y′axes results in an enclosed Mobius strip.
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Eq. 5.5 defines line-to-point mapping which can be used as a parametrization for the

Hough transform. In this case, the T S space is used as an accumulator space, as depicted

in Alg. 5.3.

Algorithm 5.3 Detection of Lines Using Parallel Coordinates

Require: Input image I with dimensions W , H
Ensure: Detected lines L = {(m1, b1), . . .}

1: S(u, v)← 0,∀u ∈ {−d, . . . , d}, v ∈ {vmin, . . . , vmax}
2: for all x ∈ {1, . . . ,W}, y ∈ {1, . . . , H} do
3: if I(x, y) is an edge then
4: rasterize line in the S space
5: rasterize line in the T space
6: end if
7: end for
8: L← {}
9: L =

{
(m(u), b(u, v))|u ∈ {−d, . . . d}∧
v ∈ {vmin, . . . , vmax} ∧ S(u, v) is a high local max.}

The space T S is discretized directly according to Eq. 5.4; other discretizations (denser

or sparser) would be possible by just linearly mapping the u and v coordinates used in the

algorithm. The condition used in step 3 is application specific and it typically involves an

edge detection operator and thresholding. The lines rasterized in Steps 4 and 5, in fact,

constitute a two-segment polyline defined by three points: (−d,−y)− (0, x)− (d, y); where

(−d,−y) and (0, x) are vertices of the line accumulated in the T half and (0, x) and (d, y)

are vertices of the line accumulated in the S half. Step 9 scans the space of accumulators

S for local maxima above a given threshold-this is a standard Hough transform step. The

line’s parameters m–b are computed by the functions m(u) and b(u, v) based on the u and

v coordinates of the point in the T S space using Eq. 5.3; any other parametrization of

lines can be the output of the algorithm.

Step 9 of the pseudo-code looks for local maxima above a given threshold in the T S
space. Usually, a small neighbourhood (3× 3; 5× 5 or 7× 7 in cases of high resolution of

the Hough space) is used for detecting the local maxima. The accumulator value must

be above a given threshold to be considered for a “high local maxima”. The threshold is

another input parameter of the algorithm, but since it does not influence the algorithm’s

structure, it is used silently by Step 9 for simplicity of the algorithmic notation.

5.2.1 CUDA Implementation

The key characteristic of Alg. 5.3 in the previous section is that steps 4 and 5 must

rasterize the lines in the T and S spaces (or the half-period of the sinus curve in the case
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of the h. parametrization) and increment the corresponding accumulators in the Hough

space. In some systems, such a large random-access read-write memory might be expensive

or even not available at all. It builds upon an algorithm recently published by the authors

of this article [42].

As already discussed, algorithm for rasterization into Hough space in 5.1.2, a prin-

ciple of Hough transform algorithm remains same. The difference is only in a way of

parametrization, originally θ − %, into T S parametrization [28].

Harnessing the edge orientation is also based on 5.1.2 with difference in T S space

modification.

5.2.2 OpenGL Implementation as a Reference

Contrary to the “standard” θ − % parametrization where sinusoids need to be rasterized

into the accumulator space, in the case of PClines, for each edge point detected in the input

image, two-line segments were rasterized. Rasterization of line segments (and blending

the rasterized pixels into a frame buffer) is a natural task for the graphics chips. There is

a separate paper published on OpenGL implementation of the PClines [14]. The whole

process was done by the graphics chip, programmed in OpenGL and GLSL:

� Edges are extracted by a geometry shader which accesses a texture with the input

image and, for each pixel in the input image, it emits zero, two, or three endpoints

of a poly-line to be rasterized into the T S space;

� Line segments are rasterized by OpenGL and blended into the frame buffer;

� The T S space is searched by another geometry shader which emits the parameters

of detected lines.

This implementation using OpenGL and GLSL will be used as a reference and referred to as

“PClinesGL” in the charts. For more information on the algorithm and its implementation,

please refer to the original paper [14].

5.2.3 Performance Evaluation of Parallel Coordinates

This section presents the experimental evaluation of the proposed algorithm of PC, which

are explained in 5.2 and briefly describes a PClines-based algorithm for OpenGL that

was used as a reference in the measurements. 5.2.3 contains the results achieved by a

CUDA implementation of the PClines-based algorithm presented in this section compared

to other implementations.
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The following hardware was used for testing (in bold face is the identifier used later on

in this text):

� GTX480: NVIDIA GTX 480 in a computer with Intel Core i7-920, 6 GB 3×DDR3-

1066 (533 MHz) RAM;

� GTX280: NVIDIA GTX 280 in a computer with Intel Core i7-920, 6 GB 3×DDR3-

1066 (533 MHz) RAM;

� HD5970-1: AMD Radeon HD5970 (single core used) in a computer with Intel Core

i5-660, 4 GB 3×DDR3-1066 (533 MHz) RAM;

� HD5970-2: AMD Radeon HD5970 (both cores used) in a computer with Intel Core

i5-660, 4 GB 3×DDR3-1066 (533 MHz) RAM; and

� i7-920: Intel Core i7-920, 6 GB 3×DDR3-1066 (533 MHz) RAM—the same computer

is used for testing the GTX 480 and GTX 280.

An evaluation of the accuracy of the PClines line parametrization can be found in paper

where the PClines parametrization was introduced in [15]. The measurements reported

that PClines are equal or more accurate than the “standard” θ − % parametrization.

Real-Life Images

Two datasets were used for measuring the performance of different algorithms. The first

one was a set of real photographs with different amounts of edge points and different

dimensions (Fig. 5.9).

The images are sorted according to the number of edge points detected by the Sobel

filter. Only this limited set of images is selected for the graphs to be readable. The images

were selected randomly from a large set of images and they well represent the behaviour

of the algorithms for all images we have observed.

The presented algorithm (referred to below as PClines-CUDA) was compared to

different alternatives:

� Software implementations of the PClines based on a Hough transform implementation

taken from the OpenCV library and parallelized by OpenMP and slightly optimized;

� A CUDA implementation of the standard θ − %. parametrization (ThetaRho-

CUDA). The arrangement of the algorithm is very similar to the presented PClines-

based one;

� The OpenGL implementation of PClines (PClines-OpenGL) as described in 5.2.2.
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Figure 5.9: Images used in the test. The number in the top-left corner
of each thumbnail image is the image ID used on the horizontal axis
in Figs.5.10 and 5.11. The bottom-left corner of each thumbnail image
states the number of edge points and pixel resolution of the tested image.

The results are shown in Fig. 5.10. The measurements verify that the computational

complexity is linearly proportional to the number of edge points extracted from the input

image and the edge-detection phase is linearly proportional to the image resolution. The

GPU-accelerated implementations are notably faster than the software implementation.A

detailed comparison of the GPU-accelerated implementations is shown in Fig. 5.11.

Synthetic Binary Images

The second dataset consisted of automatically generated black-and-white images. The

generator randomly places L white lines in an originally black image and then inverts pixels

on P random positions in the image. The evaluation is done on 36 images (resolution

1600×1200): images 1–6, 7–12, 13–18, 19–24, 25–30, 31–36 are generated with L = 1, 30,

60, 90, 120, 150, respectively, with increasing P = 1, 3000; 6000; 9000; 12000 for each L.

The suitable parameters for images of these properties were H% = 960 and Hθ = 1170

(resolution of the Hough space) and the threshold for accumulators in the Hough space

was 400. The purpose of this test was to accurately observe the dependency of processing

time on the number of lines in the image and on the number of pixels processed as edges.

These two quantities determine the number of repetitions in critical parts of the algorithm.

Fig. 5.12 shows the results of the four implementations; Fig. 5.13 contains a selection

of the graphs-only the hardware-accelerated methods. Once again, it should be noted

that all the accelerated versions are several times faster than the commonly used OpenCV

implementation and achieve real-time or near real-time speeds even for high-resolution
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Figure 5.10: Performance evaluation on real-world images (see Fig. 5.9)
using the Sobel operator and only accumulating an interval on the u-axis

(see 5.2.1).

inputs.

On current graphics chips, the algorithm presented here (PClines–CUDA) and the

previously published algorithm (ThetaRho-CUDA) perform equally fast (it should be

noted that, in Fig. 5.11 and 5.13, their curves totally overlap). On special, embedded,

and low-power architectures, the PClines-based version may perform much better or

can be the only feasible one, because it requires no floating-point computations and no

goniometric functions (which are cheaply available on the GPUs). The only advantages of

the PClines-based algorithm on GPU is, therefore, its better accuracy [15] and its ability

to directly detect parallel lines and sets of lines coincident with one point.

Fig. 5.11 and 5.13 show that, on the pre-Fermi NVIDIA card (GTX280), the OpenGL

version of the PClines-based Hough transform performs better than CUDA. That is because

the atomic increment operation (atomicInc) in the shared memory is not optimized on

this generation of the graphics chips. Very good results also come from recent Radeon

graphics chips (with the OpenGL version). Fig. 5.11 and 5.13 also show that the OpenGL

algorithm by Dubská et al. [14] scales well on the dual-core graphics card Radeon HD5970.

When executed on both the cores, the speed is almost doubled compared to the single-core

version. A comparable scaling is achieved also on the CUDA version of the algorithm.

However, on CUDA, the problem must be “manually” divided into an appropriate number

of blocks within the kernel. Such a division is discussed in 5.2.1.
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Figure 5.11: Performance evaluation on real-world images (see Fig. 5.9)
using the Sobel operator and only accumulating an interval on the u-axis
(Sect. 5.2.3). Only the hardware-accelerated methods are shown here for

better clarity.

Discussion

The Fermi architecture (compared to the previous generation) speeded up the algorithm

in the OpenGL version just the amount which can be expected from the increase in the

number of the streaming multiprocessors. However, the CUDA version presented in this

study speeded up notably more (about 4 times) on the Fermi architecture. This can

be explained by the improved atomic operations in the shared memory, involving the

new design of the L2 cache on the GTX480 [[20]]. Attribution of the performance boost

between the GTX280 and GTX480 to the atomic instructions was verified by running

the algorithm with the non-atomic equivalents of the increment/add instructions (Fig.

5.14). For weaker graphics chips (low-power, mobile, etc.), the OpenGL version of the

PClines-based algorithm might be the right choice.

We have evaluated several different configurations of the shared memory as it is

used by the algorithm. Namely, different number of columns can be allocated for the

circular buffer of columns, as noted in the last paragraph of 5.2.1. We allocated varying

numbers of these columns and observed the results in Fig. 5.15. Different configurations

of the shared memory also illustrate the performance of the algorithm in terms of being

computation/memory bound. We measured instructions per cycle (1/CPI) and the

effective bandwidth in Fig. 5.16. These measurements indicate that the algorithm is

mostly computation bound and using the whole shared memory helps in accessing the
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Figure 5.12: Performance Evaluation on Generated Data

global memory more efficiently. This behaviour reflects the nature of the algorithm which

was designed to be using memory efficiently by processing the data in stripes. This access

strategy helps serialize and minimize the accesses to the global memory.
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Figure 5.13: Performance evaluation on generated data. Only the
hardware-accelerated methods are shown here for better clarity.

Figure 5.14: Comparison of the speed on graphics cards of two different
generations: GTX480 and GTX280. In the case of GTX480, execution
without atomic instructions (atomic add and inc were replaced by non-
atomic equivalents) is about three times faster (blue, red). However,
in the case of GTX280 (magenta, green), the performance when using
atomic instructions is about 259 slower. It should be noted that this
includes only the edge-detection part of the algorithm. This part is the
most time-consuming one and more importantly it is much more prone
to the speed of atomic instructions. The rest of the algorithm is severely
affected by the incorrect results produced by non-atomic operations and

thus their timing was omitted.
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Figure 5.15: Time performance for several selected images from Fig.
5.9 for different configurations of the shared memory usage (i.e., number
of spare columns used by the algorithm). Note that as expected in the
algorithm design, using the whole shared memory for the accumulation
buffer indeed speeds the computation up. However, for high number of
blocks within the kernel, the impact of this improvement is diminished
and also, very large shared memory would not help notably any more (as
illustrated in Fig. 5.16). Time performance for several selected images
from Fig. 5.9 for different configurations of the shared memory usage
(i.e., number of spare columns used by the algorithm). Note that as
expected in the algorithm design, using the whole shared memory for
the accumulation buffer indeed speeds the computation up. However, for
high number of blocks within the kernel, the impact of this improvement
is diminished and also very large shared memory would not help notably

any more (as illustrated in Fig. 5.16).
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Figure 5.16: Usage of the graphics chip in terms of memory and
computation percentual load compared to theoretical limits. Green boxes
represent percentual usage of the computational power of the graphics
board (CPI/theoretical maximum). Red boxes reflect the usage of the
theoretical memory bandwidth (effective bandwidth/ theoretical max).
The graph shows five series of measurements on five different images
(selected from Fig. 5.9); a single measurement within the series represents

one shared memory configuration, equally as in Fig. 5.15.

Figure 5.17: Original x-y space (left) and its PClines representation
the corresponding T S space (right).



Chapter 6

Research Achievements

As all the research activities presented in this thesis were performed as a collective work,

this chapter aims to conclude the research achievements of me, as an author, and my

asset to this thesis. First section provides an overview of work I have done, across all

the research areas corresponding with my overall area of focus (CUDA implementation

and optimization). Second section concludes and presents products whose development

was supported by our research outputs. All those products are however not an outcome

of single individual, but are the result of the group of people, all those, that have been

participating on the research.

6.1 Author’s Achievements and Contribution to Re-

search

This section is divided into three parts in accordance with all researched areas, where each

of them points out the areas that were a subject of my responsibility. Any other details to

research are available in previous chapters.

6.1.1 Real-Time Object Detection Performance Boost

Real-time object detection and boosting its performance, is a very costly task from the

computational resources point of view. As stated in 1.1.1, there was a high demand for

efficient object detection methods and implementations. My inputs to this research were

two proposed CUDA implementations (see 3.2.1 and 3.3.3) that were promising to be more

efficient from various points of view such as portability, maintenance, speed-ups, and time

consumption during the development. It was then compared to, except others, shader

solution (which was the closest solution to CUDA). This was shown to have complicated
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drawing of geometric primitives on the “screen” to control the object detection process.

To be able to perform both implementations, the knowledge of weak classifiers was

beneficial. Knowledge of weak classifier cascade enabled me to conform distribution of

computation capacity between different parts of GPU, what is explained further in this

section.

CUDA implementations brought memory arrangement improvements in comparison

with Cg shader. Another improvement was that it was working without pre-processing

phase, because it relied on the 1Ö 1, 1Ö 2, 2Ö 1 and 2Ö 2 set of mask dimensions. As

indicated by the graph in 3.14, such limited set of sampling function dimensions was still

sufficient and well comparable with the commonly used Haar features.

In Tab. 3.2, the CUDA code did not perform excellently, but a tremendous increase

of performance was observed when the number of weak classifiers is increased (towards

50 in the table). However, if the boosted classier would be a standard AdaBoost [92] or

similar, the number of weak classifiers would be constantly high (hundreds). In such case

the CUDA implementation outperformed tremendously any other solution available to our

knowledge.

The following paragraphs describes in detail particular functional blocks of algorithms

that I was focusing on. Initially I have taken into account two facts:

� the classifier was operating on one fixed-size window; and that

� the execution of the classifier on different locations of the input image was parallel.

Loading and Representing the Classifier Data

I was experimenting with placement of the classifier data in shared, constant and texture

memory; and tried to balance all access of whole algorithm into units of texture memory

and constant memory.

The placement into the shared memory required pre-loading it upon start of each block

from another location, what made this solution the least efficient solution. Two other

options (texture memory or constant memory) seemed to be performing equally well, so

storing the classifier in constant memory was preferred in order to offload the texturing

units which were used for accessing the pyramidal image (see 3.2.1).

Although the access would have been slightly simpler if the data was stored in texturing

memory of CUDA environment; the experiments showed that the overall detection times

are better when the classifier data is stored in the constant memory. This was mainly

because the image was stored in texturing memory and was heavily accessed, so off-loading

the access to classifier data to the constant memory relieved a system bottleneck.
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The constant memory (as well as texturing memory) was cached and the referencing

to the classifier data exhibited a large locality of reference – all the threads were typically

processing the same weak classifier.

Input Image Pre-Processing

To be able to detect the object in different scales, the image must have been scanned in

multiple resolutions. The common approach benefited from the ability of Haar wavelets

calculated using the integral image to be evaluated in arbitrary scales in constant time.

The LRF features could have been evaluated in a similar manner as well, but experiments

showed that especially on the graphics card, it was notably more efficient to construct a

multi-resolution pyramid from the input image, and scan it by the detector. See Fig. 3.6

for the illustration of how the pyramid was built. I used constant colour filling to eliminate

empty spaces by classifier itself.

Also, I didn’t need to pre-process image for various feature sizes, because I choose

to rely on the combinations 1Ö 1, 1Ö 2, 2Ö 1 and 2Ö 2 of the sampling function, what

allowed nice performance improvements. Thanks to built-in texture sampling with bilinear

interpolation (Alg. 3.4) on the usable graphics cards, sums of 2 neighbouring pixels in

vertical or horizontal direction or sum of four neighbouring pixels consumed the same

amount of time as sampling just one source pixel.

Object Detection

My main goal in this subtask was to divide whole work into small tasks for threads as

efficiently as possible. Threads were consuming hardware resources: registers and shared

memory what was limiting the number of threads that could have been efficiently executed

in a block (both the maximal and minimal number of threads).

One thread could also perform the task of smaller granularity (e.g. one or more weak

classifiers), but that would imply too much the inter-thread communication. Image pixels

(or window locations, more precisely) were therefore divided into groups, which were

calculated by the threads. The final solution divided image into rectangular tiles, which

were solved by different thread blocks. Experiments showed that the suitable number of

threads per block was around 128 (detailed measurements were done and are presented

within 4.1.3).

However, executing blocks for only 128 pixels of the image would not have been efficient,

so we chose than one thread will calculate more that one pixel - a whole line of pixels

in the rectangular tile (Fig. 3.10). One thread was computing one or more locations of

the scanning window in the image. The tile could extend over the whole width of the
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image, or just a part of it. Because of the thread rearrangement described in 3.2.1, the

total number of pixels processed by one thread block was limited proportionally to the

size of the shared memory (see 6.1.1).

When object was recognized at window position, the coordinates were written to

the global memory. To avoid collisions of concurrently running threads and blocks,

atomic increment (atomicInc()) of one shared word in the global memory was used for

synchronization.

I have also studied the influence of CUDA block width size (see 3.6.1). As shown from

measurements in Fig. 3.20, bigger block reduced the computation time, because it lowered

the number of blocks necessary, and since the number of blocks is always integer and the

blocks must share the same dimensions in CUDA, block widths that were equal or slightly

higher than integer fractions of the image width were desired. For a particular application

a proper block width must have been found in accordance with these rules.

Thread Rearrangement

In case of branching, the threads were split into groups in accordance to the variant of

code they were executing, and the groups of identical execution paths were run separately

from other groups. Threads were organized into warps and remained in a warp until their

end.

The weak classifier cascade thresholds were set as Wald proposed in the sequential

probability ratio test, which he proved was the fastest possible classification strategy for a

given target error rate. Due to desired focus-of-attention capability of WaldBoost, some

threads terminated with negative decision earlier than others (Fig. 3.9), but the warp

continued to evaluate until the very last thread terminated. This led to relatively low

utilization of the hardware resources.

To address this issue, I proposed thread rearrangement: at some stage of the classifier,

all locations in the image that have not been classified as negative were written into

a memory block shared between the threads, and another phase of the classification

was started (that processed only these locations). This rearrangement could have been

performed several times during the whole classification process. See Fig. 3.11 for an

illustration of two rearrangements.

The intermediate positive (more accurately not-yet-negative) samples were stored into

the shared memory of the multiprocessor similarly as the final detections were written to

the global memory, as described above. The exact count and locations of the rearrangement

steps needed to be determined experimentally.

Generally, the major influence of the rearrangements was during the beginning of the



6.1 Author’s Achievements and Contribution to Research 129

classifier, because the most of the locations were dropped out very early (Fig. 3.9) and only

a small fraction of computational load remained to the further stages. Determining optimal

thread rearrangement stages must have been done experimentally based on knowledge of

classifier discrimination characteristic. Basically, scanning window locations needed to be

rearranged several times during the classifications to better use the hardware resources. In

our environment, no more than three rearrangements were worth doing. My experiments

(Fig. 3.21) confirmed that the 1st rearrangement matters the most, because it rearranged

a large number of threads. The optimal points for rearrangement were notably different

for classifiers trained with different parameters – the shown experiment therefore did not

result into fixed rearrangement spots, but rather illustrated the process of optimization

for a given classifier.

There are many efficient image processing CUDA implementations that use the shared

memory for storing the processed image. The shared memory is very fast and is dozens of

kilobytes large – tiles of the processed image can be loaded into it, and processed by thread

blocks. I have tried variants of this arrangement and experiments I have performed showed

that using the texture memory was more efficient. The texturing units performed bilinear

interpolation between neighbouring pixels, which could have been used for evaluation of

LRP. Most importantly, when using the texturing memory, the execution was as fast as

when using shared memory (apparently because the bottleneck was in the calculation, not

memory access), and the shared memory remained spared for other helpful purposes, as

was the thread rearrangement described above.

I have also tried several arrangements, where the threads were assigned the work

dynamically, so that when the evaluation at one location terminated, the thread “asked

for” another location in the image and processed it. The idea was that the work unit

would not be one location in the image, but one weak classifier. The control required by

this arrangement, and especially the need to synchronize the threads seemed to be too

complex and these attempts were much slower than the finally achieved solution with the

thread rearrangement (although some threads were still idle).

6.1.2 Spectral Image Analysis Performance Boost

My research achievements in the field of spectral image analysis boosting and optimization

were described into details in sections 4.1.2 and 4.2.1. The research performed in those

sections was fully covered by me, but also with the great support of my colleagues. As the

problem research was too complex, following paragraphs are just a brief description.
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Principal Component Analysis

The topic of the problem has been revealed from the start-up project Optical sensor

technology in medical applications of the University of Eastern Finland.

Using modern computer technology, the PCA can be used on very large data sets

where its utilization has previously been unthinkable, and it can also be used in real-time

applications.

This research was motivated by the need of using PCA on spectral images in the

context of real-time medical imaging.

Generally, in the case of spectral imaging, the dimensionality of the input data was not

high (commonly 6–81 channels) but the number of samples (i.e. number of pixels in image

or video) was large - millions to billions. Existing solutions (e.g. [39, 38, 2, 67]) did not

exactly suit this purpose and this unique situation must have been covered by a particular

solution.

My research assumed that the dimensionality of the data was relatively low, so the

computation of eigenvectors, addressed by the mentioned works, was relatively cheap. It

was the computation of the co-variance matrix, which was costly for the considered data,

and my goal was to accelerate the algorithms presented in this part of the research.

In the presented approach I was considering spectral dimensionality from 6 to 81

channels (see 4.1). My goal was to search for the best possible three-component vector

space that could represent the spectral information in the image, and then visualize the

obtained information in the RGB colour space.

Result of my work was effective computation of the correlation matrix (Eq. 4.7). I

had to consider minimal number of CUDA blocks and also the minimal number of CUDA

threads for best usage of available GPU resources. The number of CUDA blocks and its

usage was not such a problem to overcome, as the number of CUDA blocks should be

the same as number of multiprocessors in GPU. Bigger problem was the arrangement of

threads when spectral image didn’t have so many recorded wavelengths and we needed at

least ∼ 100 threads to run [64]. To overcome this problem I came with a solution where

threads were divided into groups – chunks p (Fig. 6.1) and each group processed another

part of si (Eq. 4.7). Threads in the same group iterated and accumulated results in one

chunk of pixels (Alg. 4.3 Step 6) for pre-computed [u, v] coordinates. These pre-computed

coordinates also reflected symetricity of the output matrix.

In the initialization phase of each repetition (Alg. 4.3 Step 4), all threads loaded all

chunks of pixels, which they will process, to shared memory. After initialization and

synchronization, processing phase began with thread arrangement mentioned above (each

thread processed specified coordinates [u, v], threads were divided into groups, and all
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threads traversed over specified number of pixels C (see 4.1.2)). Another problem was

that we could not load enough pixels of si into the shared memory and utilize each CUDA

thread block as much as possible. To overcome this problem, I made algorithm to repeat

with another set of pixels r (Fig. 6.1).

At the end of CUDA block algorithm, we needed to summarize all threads which have

the same [u, v] coordinates, but different groups of pixels si. To resolve this problem, I

used tree summation.

This approach helped us to utilize GPU to maximum and as we measured the results,

we found that the biggest issue in this case was the speed of memory.

Details to the whole proposed algorithm, with measurements of performance impact

for various CUDA thread and block arrangements, can be found in 4.1.2.

t0[0,0]
t1[0,1]
t2[0.2]
...
t20[6.6]

p=0 p=1

t21[0,0]
t22[0,1]
t23[0.2]
...
t41[6.6]

t105[0,0]
t106[0,1]
t107[0.2]
...
t125[6.6]

p=P

r=0

λ 0
λ 1
λ 2
λ 3
λ 4
λ 5

p=0

r=1

p=1

t0[0,0]
t1[0,1]
t2[0.2]
...
t20[6.6]

s0 s1 s2 s3 sPC-1

Figure 6.1: Example of one CUDA block thread arrangement for PCA
correlation matrix computation.

Non-Negative Tensor Factorization

NTF have various fields of usage, but the dimensionality of these problems is often so high

that NTF computations takes hours, so the acceleration of this process was desirable. My

NTF research was focused on the efficient GPU implementation for general iterative NTF

computation by gradient descent, based on Gauss-Seidel and Jacobi methods [29], using

the CUDA programming environment. The aim was to decompose the problem into parts

that can be calculated in parallel. Details on algorithm and design can be found in 4.2.

As the baseline for my algorithm (Alg. 4.4) I have used Hazan’s et al. [29] iterative

rules (Eq. 4.10 – Eq. 4.12). My goal was to divide those rules/equations to smaller tasks,

which could be parallelized. The first opportunity for parallelization were temporary

matrices Mu, Mv, and Mw (Eq. 4.13), created by inner product of vectors u, v and w.
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The second one was numerator of Eq. 4.10 – Eq. 4.12, which was the most significant

time-consuming part of the whole NTF computation. The numerator calculation consisted

mostly of repeated summing of the large array, so it was more demanding for memory

bandwidth than computationally intensive.

After analysis of the iterative formulas, I came with an effective division of the numerator

summing part for threads (Alg. 4.5). Instead of calculating each value of vector u and

v resp. w independently and after that traverse all K layers in the same manner, which

will cause memory bandwidth problems, I calculated whole set of values for each layer

in vector in one pass. High demand for memory bandwidth was solved by lowering the

number of reads from G matrix.

The algorithm depicted on Fig. 6.2 starts with a straightforward solution, where

each CUDA block computes one ui (resp. vi, wi) value from Eq. 4.10, Eq. 4.11 or Eq.

4.12 for whole set of layers K. Than the calculation was divided into independent tiles

of G, so every tile was covered with N × N threads (8 × 8 or 16 × 16 for better tree

summation), which calculated one summation per one vector layer k, and stored it in array

of accumulators α. This traversed G only once, and reduced whole needed bandwidth. In

the next step the whole set of threads moved to next tile, and accumulated new sums to α

of each thread.

Parts of vector u and v resp. w, corresponding to the working tile, were cached in the

shared memory. This gave us a big performance speed-up, because each element of these

cached parts was accessed many times. The reason why tiling is performed is that it was

not possible to fit whole vectors with all layers into fast shared memory.

After traversing all tiles, tree summations were used for final result and then summed

by tree summations [25] to form K values. After all tiles are processed by all CUDA

blocks, the whole set of values for output vector is formed.

Details of whole algorithm design can be found in 4.2.1. With this design of algorithm,

up to 100× speed-up was achieved.

6.1.3 Real-Time Line Detection Performance Boost

Standard Hough transform was known to be too slow to be usable in real time. My task

within this part of the research was again the optimization and implementation of the

proposed algorithm discussed within Chapter 5, suitable for computer systems with a

small but fast read-write memory, such as today’s graphics processors. As we knew that

currently available algorithm was working with large amount of data, what was hard (or

almost impossible) to be processed in real-time in GPUs, we needed to design an algorithm

that would suit these limited but fast resources.
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Figure 6.2: NTF algorithm overview.

To achieve real-time performance, the memory requirements must have been limited

to the shared memory of a multiprocessor. Following sections are concluding my main

achievements within the area of CUDA boosting.

CUDA version proposed by me was several times faster (Fig. 5.3, 5.5, 5.10, 5.11, 5.12,

5.13) than the commonly used OpenCV implementation (parallelized to utilize the 8 cores

of the processor) and achieved real-time or nearly real-time speeds. The real-life image

test showed that the proposed algorithm implemented on commodity graphics hardware

could detect lines at interactive frame rates.

Small Read-Write Memory of Accumulators

The first part of my idea was storing just a small part of Hough space. My goal was to fit

Hough space into small shared memory of a multiprocessor. I have observed that just a

small part of Hough space would be enough for maxima detection performed in next steps.

The new algorithm (Sec. 5.1.2) stored only Hθ × n accumulators (see Fig. 6.3), where

n was the neighbourhood size required for the maxima detection. The memory necessary

for containing the n lines was all the memory required by the algorithm and even for high

resolutions of the Hough space, the buffer of n lines fitted easily in the shared memory

of the GPU multiprocessors. Whole scheme worked on principle of shifts by one or more



134 Research Achievements

rows, where the new row/rows were accumulated. Thus only the buffer of n lines was

being reused. The memory shift was implemented using a circular buffer of lines to avoid

data copying (Alg. 5.2).

In the case, when the runtime system had faster random-access read-write memory,

this memory could be fully used, and instead of accumulating one line of the Hough space,

several lines were accumulated and then scanned for maxima. This led to further speed-up

by reducing the number of steps carried out by the loop over θ̄.

θ

Processed

Maxima detection

Next line for processing

Going to process

Delete old line
and replace
with new line

Hθ x n

Figure 6.3: Small Read-Write Memory of Accumulators

Harnessing the Edge Orientation

The second part of my idea was special edge orientation harnessing. This special approach,

described in 5.1.2, to utilize the detected gradient could have been incorporated to the

new accumulation scheme presented above and in the 5.1.2.

Instead of accumulating all points from set P (see 5.1.2), only those points which

fell into the interval with radius w around currently processed θ were processed and

accumulated into the buffer of n lines.

The edge extraction phase sorted the detected edges by their gradient inclination θ, so

that loops did not visit all edges, but only edges potentially accumulated, based on the

current θ̄. This basically increased the efficiency of point look-up.

First of all I have detected the edges and their orientation (Tab. 6.1a). Consequently I

have had to sort the edges and for each group of them, count the number of edges that fell

into that particular group (Tab. 6.1b). Groups were set to be split into specified width.

Width of each group was based on our Hough space θ resolution.
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For rough sorting of the edges on GPU, an efficient prefix sum was used (Tab. 6.1c)

[26]. Based on these prefix sums I have allocated the buffer, and this buffer was then filled

with edges in accordance with their orientation (Fig. 6.4). When the buffer was prepared,

it was used for filling Hθ × n accumulators. Finally, the rest of the algorithm was left in

the original manner.

X Y θ G

20 120 15º 200
53 165 126º 151
48 975 78º 54
158 304 26º 186
624 546 105º 76
297 89 5º 42
352 805 8º 94
245 312 19º 115
. . . . . . . . . . . .

(a) Sobel operator output

θ range Count

0º-10º 64
10º-20º 81
20º-30º 75
30º-40º 124
40º-50º 106

. . . . . .

θ range Count

0º-10º 0
10º-20º 64
20º-30º 145
30º-40º 220
40º-50º 344

. . . . . .
(b) Edge Counts for α-ranges (c) Prefix-sums for α-ranges

Table 6.1: Example of Harnessing the Edge Orientation

0 64 145 220

0º-10º 10º-20º 20º-30º 30º-...

Figure 6.4: Example of Sorted Edge Buffer

6.2 Developed Products

The research described within this thesis, contributed in development of four products

that are further described in this section. As already mentioned in the beginning of this
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chapter, the following products are not an outcome of single individual, but are the result

of the group of people, all those, that have been participating on the research.

6.2.1 Object Detection Framework

Object detection framework software, developed in 2009, contains general framework for

object detection by classification. It uses classifiers trained by WaldBoost algorithm (see

Chapter 3). The framework contains several modules that implements feature extraction

from image on various architectures (CPU+SSE, GPU, CUDA). The package could be

used in various applications, while the most prominent of them are detection of faces and

facial features. The other possible application include detection of persons, licence plates,

cars and others. The package itself contains runtime framework, classifiers and videos,

it is free of charge and is available on the following link: www.fit.vutbr.cz - products -

Object Detection Framework.

6.2.2 CUDA PCA Plug-in

PCA (see Chapter 4) dynamically linked library and MATLAB plug-in, developed in 2009,

can be used for any purposes – both research or industrial. It is free of charge, and the

library is available on the following link:

www.fit.vutbr.cz - products - CUDA PCA Matlab Library. Researchers using the library

are asked to kindly cite this article in works using the library. A detailed guide to using

the library is a part of the package, however, this section gives a brief summarization of

the library’s design and a sketch of its usage.

The dynamically linked library exports several functions cudaPCA char, cudaPCA float,

cudaPCA double, ssePCA char, ssePCA float, and ssePCA double. Since CUDA sup-

ports only single precision (CUDA does support also double, but it is much slower and

generally hardly usable), the cudaPCA double version only uses page-locked memory for

faster conversion to float and back.

One function prototype is:

cudaPCA_char(unsigned char *pixels,

unsigned width, unsigned height, unsigned n,

float *eigen_vec, float *eigen_val);

and prototypes of the other functions are analogous. The image data is stored in pixels,

which contains width*height*n bytes of image data, row alignment padding is not

supported for simplicity, though modification of the algorithm to support it is possible.

http://www.fit.vutbr.cz/research/prod/index.php?id=107&notitle=1
http://www.fit.vutbr.cz/research/prod/index.php?id=107&notitle=1
http://www.fit.vutbr.cz/research/prod/index.php?id=118&notitle=1
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Identifiers eigen vec and eigen val are output variables, with preallocated buffers for

the eigen vectors and values.

The function in the MATLAB plug-in takes arguments corresponding to the above

mentioned function and returns the eigen vectors and values. The plug-in internally calls

the cudaPCA char or cudaPCA double functions.

6.2.3 CUDA NTF Plug-in

NTF (see Chapter 4) dynamically linked library and MATLAB plug-in, developed in 2009,

can be used for any purpose – both research or industrial. It is free of charge and is

available on the following link: www.fit.vutbr.cz - products - CUDA Nonnegative Tensor

Factorization Library. Researchers using the library are asked to kindly cite this article in

works using the library or its source code. A detailed guide to using the library is part of

the package.

The library interface is designed to be very simple. The dynamically linked library

exports only two functions cudantfFloat and cudantfDouble.

Since CUDA supports only single precision, the variant processing double inputs

computes in single precision and only uses page-locked memory for faster conversion to

float and back. The prototype of the cudantfFloat function is:

cudantfResult cudantfFloat(ds

const float * G, // float[R*S*T]

unsigned R, unsigned S, unsigned T,

unsigned rank, unsigned iterations,

cudantfInit init,

float * U, // float[R*rank]

float * V, // float[S*rank]

float * W // float[T*rank]

);

The double precision function cudantfDouble is similar. Identifiers G, U, V, and W corres-

pond to the same names in Eq. 4.10 – Eq. 4.12; R, S and T are the input tensor dimensions.

The initial values of U, V, and W can be randomly generated or supplied in the output

arrays. This behaviour is specified by the init parameter.

The function in the Matlab plug-in takes three parameters: the input tensor, the

method rank, and the iteration count. It returns the U, V, and W vectors. The plug-in

internally calls the cudantfDouble function with randomly generated initial values.

http://www.fit.vutbr.cz/research/prod/index.php?id=103&notitle=1
http://www.fit.vutbr.cz/research/prod/index.php?id=103&notitle=1
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6.2.4 GStreamer AdaBoost Plug-in

This implementation was developed in 2010 and enables the integration of the AdaBoost

algorithm to any program as a component of the GStreamer framework. The application

is executable both on Linux OS and the embedded devices with operating system Maemo

Linux. The plug-in is available on the following link: www.fit.vutbr.cz - products -

GStreamer Adaboost plugin.

http://www.fit.vutbr.cz/research/prod/index.php?id=154&notitle=1
http://www.fit.vutbr.cz/research/prod/index.php?id=154&notitle=1
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Conclusions

Research performed on CUDA architecture gave us lot of chances for algorithm improve-

ments. Evaluations done within research assignments presented in this thesis showed

us the real performance benefits. Graphic cards capable of GPGPU operations (using

CUDA framework) are nowadays common equipment available in research laboratories,

so the solutions proposed in this thesis does not require any special supercomputer-like

investments.

Gained speed-up was not as high as could have been expected from the rough compu-

tational power of the GPU in comparison with CPU, but this was mainly due to nature of

the algorithms, which did not match the requirements of CUDA and GPU environment in

general.

As demonstrated by the measurements carried out within the research, a computer

equipped with one or more graphics boards with powerful GPUs, can process a multiple

video signals in high resolution in real-time. Using the GPU technology would therefore

find its application in surveillance and other real-world industrial tasks. After all, the next

section provides an overview of impact of our outcome, and therefore lists several possible

applications of proposed solutions.

Eight articles in total - evaluating performance of LRD, LRP, PCA, NTF, Hough

transform and parallel coordinates algorithms - have been produced during the research,

together with four products in form of dynamically linked library and MATLAB plug-ins.

Those have been developed by the group of my colleagues participating on this research.

The experimental implementation of the Local Rank Functions (namely LRD) image

feature using CUDA GPGPU environment , its comparison to other approaches such as

CPU implementation and Haar-like features on the GPU leaded to the conclusion that the

LRD is a vital low-level image feature set, which outperforms the commonly used Haar

wavelets (especially in case of higher resolutions) in several important measures, and that
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fast implementations of object detectors and other image classifiers, should consider the

LRD as an important alternative. Hardware-accelerated implementations speeded-up the

baseline LRD implementations more than by order of magnitude. Measurements have also

shown that the performance on the GPUs was equal for CUDA and GLSL programming.

Optimized algorithm of PCA computation , primarily targeted on spectral image

analysis in real-time, achieved speed-ups that allow processing of high-resolution images

with several colour channels (both common RGB and spectral images) in real-time. PCA

algorithms presented in this thesis allows also many other useful applications where fast

computation is needed, and can help to solve some problems where real-time image

segmentation and pattern recognition tasks are used.

Research of optimized implementation of an efficient NTF algorithm for GPGPU

computation achieved around 60× - 100× speed-up compared to a C implementation

compiled by an optimizing compiler running on a state-of-the-art computer. This results

were considered to be outstanding, when taking into account that Zhang et al. [75] reported

their speed-up by adding further nodes was capped at about 7×. This speed-up value is

attractive in this field, since computation of NTF for typical problems in spectral image

analysis takes hours.

Other positive results were achieved in study of modified algorithm for line detection

using the Hough transform based on θ − % parametrization. This algorithm was designed

to be intensively using a small read-write memory; what made it suitable for execution

on recent graphics processors. The experiments showed that on commodity graphics

hardware, the algorithm can operate at interactive frame rates even on high-resolution

real-life images, while accumulating to a high-resolution Hough space to achieve accurate

line detections. While the algorithm was designed for GPU processing, it outperformed

the standard HT implementation even on the CPU, thanks to better cache usage of the

new accumulation scheme.

Finally, the last, but not least significant improvement was achieved in study of an

algorithm based on the PClines parametrization, which allowed real-time computation

of the “full” Hough transform on high-resolution images. Measurement showed that the

GPU-accelerated algorithm achieved interactive (or faster) detection times even for images

of really high resolutions. Other proposed usage of the algorithm were low-power and

embedded devices, as well as designing specialized circuity such as FPGA, as it requires

no floating-point calculation or goniometric functions.

Considering the fact that CUDA is much more intuitive and compatible to standard C

language programming, CUDA was a good selection for exploiting graphics hardware for

non-rendering tasks, such as object detection, spectral image analysis or line detection.
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7.1 Research Impact

During our research, eight papers (publications) have been published in different journals,

or as a book chapter. Following section provides the citation analysis, in order to assess

our research impact, and gauge the extent of publication’s influence on the academic field.

7.1.1 Citation Analysis

Citation analysis is distinguished as internal, self-citing or reciprocal citations by our

colleagues – where at least one author is already an author of the publication itself; and

external citations refers to authors also from our university, but not in relation with our

research group, or international authors from different academic fields all over the world.

Detailed list of both internal and external citations is not a part of this thesis, but is

available on request, and is also one of the supplements of the thesis. Within this section,

mostly external citations are analysed.

Table 7.1 counts the number of times each article has been cited in general, both

internally and externally. Data were collected via Google Scholar tool. All citations

have been analysed and divided into internal and external citations. Some of them were

published twice (duplicates). Those external have been analysed further, and if available,

the purpose of citation was defined. The purposes were defined as follows:

� Attribution of ideas/research (A) if the citation is in the manner of confirming or

illustrating a point; in the manner of disputing, correcting or questioning; or in the

manner of the use of methods, tools, design, definition or data which are one of the

outputs of our research;

� Providing proof that position is well-researched (P) by providing holistic view of

research, literature review, or using our publication as a primary source;

� Helping to disseminate useful knowledge (H) in the manner of demonstrating other

points of view, or referring to our publication as a source of supplementary informa-

tion;

� Giving a formal credit for research (G) as a normative research practice. This

purpose of citation is not present in our analysis.

7.1.2 Research Impact Conclusion

Our outcomes of real-time object detection using CUDA were primarily used as a reference

providing supplementary information to continuing researches on:
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Publication Number of citations Internal External Duplicates

Local Rank Differences Image

Feature Implemented on GPU
10 6 3 1

GP-GPU Implementation of

the “Local Rank Differences”

Image Feature

9 4 4 1

Low-Level Image Features for

Real-Time Object Detection
11 8 2 1

Real-Time Line Detection

Using Accelerated

High-Resolution Hough

Transform

9 5 4 0

Real-time object detection on

CUDA
18 1 16 1

Non-Negative Tensor

Factorization Accelerated

Using GPGPU

8 0 8 0

Real-Time PCA Calculation

for Spectral Imaging (using

SIMD and GP-GPU)

8 0 6 2

Real-Time Detection of Lines

Using Parallel Coordinates

and CUDA

2 1 1 0

Table 7.1: List of author publications.

� Weak classifier applications, increasing accuracy of AdaBoost classifiers;

� Development of real-time image processing system for anomaly detection;

� Medical imaging applications such as foreground/background classification, 3D pose

detection, and boundary delineation;

� Improvement of performance, and reduction of power consumption in many image

processing applications – using different approach than we have been using during

our research;

� Corner point detection;

� Highly optimized Haar-based face detector that works in real-time over high definition

videos;

� Studying different parallelization strategies of image-filtering algorithms;

� Video photo mosaics;
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� Implementation of Haar-Classifier for face detection and tracking based on the

Haar-Features on System on Chip (SoC) to be used in a human machine interface

and action interpretation;

� Recognition of the scene presented in an image with specific application to scene

classification in field sports video;

LRF algorithm novel [32] also impacted the development of mobile application allowing

user to discover the information about a given building or landmark. The outcome of

Real-time object detection on CUDA [30] supported the consequent research on parallel

algorithm of face detection on images for GPU architecture, using different approach that

the one used during our research.

Our research on spectral image analysis using CUDA was used as a source of information

during consequent researches and some of them are:

� Military applications - target detection surveillance using hyperspectral remote

sensing, demanding real-time or near real-time processing;

� Signal processing - calculating the overall covariance matrix by accumulating a group

of partial covariance matrices;

� Steelworks - parallel dynamic solidification model development;

� Analysis of metabolomics and transcriptomics data;

� Large scale data processing using MapReduce;

� Sclera Vein Recognition;

� Non-negative multiple tensor factorization;

And our last subject of research – real-time line detection using CUDA produced outcomes

that were used as source of information during following different implementations of

Hough transform both on FPGA and GPU, and subsequent research on line detection

both internally and externally.
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Markku Hauta-Kasari. Real-time PCA calculation for spectral imaging (using SIMD
and gp-GPU). Journal of real-time image processing, 7(2):95–103, 2012. (document),
4
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Nomenclature

AGP Accelerated Graphics Port

AMD Advanced Micro Devices

API Application programming interface

ARB Arechitecture Review Board

ASIC Application Specific Integrated Circuit

BGS Block Gauss-Seidel

CPI Clock Per Instruction

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DQP Dynamically Quantized Pyramid

DQS Dynamically Quantized Spaces

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

FBO Frame-Buffer Objects

FHT Fast Hough Transform

FPGA Field-Programmable Gate Array

GLSL OpenGL Shading Language

GPC Graphics Processing Clusters

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HD High-Definition

HLSL High Level Shader Language
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HT Hough Transform

LBP Local Binary Patterns

LD/ST Load/Store

LRD Local Rank Differences

LRF Local Rank Functions

LRP Local Rank Patterns

MMX Multimedia Extension

MTIU Multi Threaded Instruction Unit

MVP Model View Projection

NTF Nonnegative Tensor Factorization

OpenCV Open Source Computer Vision

OpenMP Open Multi-Processing

PAL Phase Alternating Line

PC Parallel Coordinates

PCA Principal Component Analysis

PHIGS Programmer’s Hierarchical Interactive Graphics System

RGB Red Green Blue

RGBA Red Green Blue Alpha

RHT Randomized Hough Transform

RMSE Root Mean Square Error

ROC Receiver Operating Characteristi

SFU Special Function Unit

SGI Silicon Graphics, Inc.

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SLI Scalable Link Interface

SM Streaming Multi-Processor
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SMM SMX naming for Maxwell

SMX Next Generation Streaming Multiprocessor

SOC System On Chip

SP Stream Processor

SSE Streaming SIMD Extensions

SVD Singular Value Decomposition

TandL Transformation and Lightening

TMU Texture Map Unit

TSV Through Silicon Vias

ViRGE Virtual Reality Graphics Engine

WC Weak Classifiers
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Appendix B

Products

Products, that have been developed during our research are more in detail in 6.2. Section
below provides the list of them.

Product list:

1. Antikainen Jukka, Havel Jǐŕı, Herout Adam, Jošth Radovan: CUDA Nonnegative
Tensor Factorization Library, software, 2009

2. Antikainen Jukka, Havel Jǐri, Herout Adaḿ, Jošth Radovanl: CUDA PCA Matlab
Library, software, 2009

3. Beran Vı́tězslav, Havel Jǐŕı, Herout Adam, Hradǐs Michal, Jošth Radovan, Juránek
Roman, Polok Lukáš, Zemč́ık Pavel: Object Detection Framework, software, 2009

4. Mĺıch Jozef, Juránek Roman, Zemč́ık Pavel, Jošth Radovan, Hradǐs Michal, Herout
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