
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 
BRNO UNIVERSITY OF TECHNOLOGY 

 
 
 
 
 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ 
FACULTY OF INFORMATION TECHNOLOGY 
DEPARTMENT OF COMPUTER SYSTEMS 

 
 

 
 
 
EXPLOITATION OF GPU IN GRAPHICS AND 
IMAGE PROCESSING ALGORITHMS 
 

VYUŹITÍ GPU PRO ALGROTITMY GRAFIKY A ZPRACOVÁNÍ 
OBRAZU 
 
 
 
 
 
 
 
 
 
 

PHD PRÁCE 
PHD THESIS 
 
 

 
 
AUTOR PRÁCE  ING. RADOVAN JOŠTH 
AUTHOR 

 
VEDOUCÍ PRÁCE DOC. ADAM HEROUT, PH.D. 
SUPERVISOR 

 

BRNO 2014  



Contents 

Introduction      1 
Real-Time Object Detection    2 
Spectral Image Analysis    10 
Real-Time Line Detection    18 
Conclusion      22 
References      25 

1. Introduction 
 

Back in 2007, when we started the research for the 
needs of this thesis, there was a limited number of 
implementations which could enable an effective and 
energy-efficient use of Graphics Processing Units 
(GPUs). There were many publications describing the 
new, fast implementations of algorithms on Central 
Processing Unit (CPU), but there was a gap and very 
high demand for improvements of current algorithms 
that were primarily designed for CPUs that time (even 
though there were also some solutions for specialized 
processors such as FPGA, DSP, etc.). Based on very 
high computational potential of GPU, we have decided 
to utilize it on behalf of general-purpose computing on 
graphics processing units (GPGPU) - focusing on 
computer vision and image processing algorithms. These 
pixel-based applications are very well suited to GPGPU 
technology. 

We have selected a set of existing and successfully 
implemented algorithms with good performance results 



2 
 

and optimized them for GPGPU. The whole research 
was divided into three areas: 

• Speed-up of real-time object detection 
algorithms using CUDA; 

• Optimizations of spectral image analysis 
algorithms; 

• Modifications of real-time line detection 
algorithm (Hough transform). 

 
GPGPU makes a significant impact affecting wide 

range of application domains, such as weather 
forecasting, fluid-flow, or molecular dynamics. 
Algorithms that we were focusing on, can find an 
application on the field of computer vision, physics, 
astronomy, medicine and many others. 

 

2. Real-Time Object Detection 
 

Object detection, having a wide range of 
applications, was in 2001 subject of research for Viola 
and Jones [1], who introduced very successful face 
detector which was combining boosting, Haar low-level 
feature calculated on integral image, and a focus-of-
attention cascade of classifiers. The detector provided a 
precision of detection high enough for practical 
applications. Success of Viola and Jones encouraged 
further research in similar approaches and resulted in a 
great number of modifications to this original detector.  

Real-time object detection and boosting its 
performance, is a very costly task from the 
computational resources point of view. My inputs to this 



3 
 

research were two proposed CUDA implementations 
that were promising to be more efficient from various 
points of view such as portability, maintenance, speed-
ups, and time consumption during the development. It 
was then compared to, except others, shader solution 
(which was the closest solution to CUDA). This was 
shown to have complicated drawing of geometric 
primitives on the “screen” to control the object detection 
process. 

To be able to perform both implementations, the 
knowledge of weak classifiers was beneficial. 
Knowledge of weak classifier cascade enabled me to 
conform distribution of computation capacity between 
different parts of GPU, what is explained further in this 
section.  

The following paragraphs describes in detail 
particular functional blocks of algorithms that I was 
focusing on. Initially I have taken into account two facts: 

• the classifier was operating on one fixed-size 
window; and that 

• the execution of the classifier on different 
locations of the input image was parallel. 

 
2.1 Loading and Representing the Classifier Data 
 

I was experimenting with placement of the classifier 
data in shared, constant and texture memory; and tried to 
balance all access of whole algorithm into units of 
texture memory and constant memory. 

The placement into the shared memory required 
pre-loading it upon start of each block from another 
location, what made this solution the least efficient 



4 
 

solution. Two other options (texture memory or constant 
memory) seemed to be performing equally well, so 
storing the classifier in constant memory was preferred 
in order to offload the texturing units which were used 
for accessing the pyramidal image. 

Although the access would have been slightly 
simpler if the data was stored in texturing memory of 
CUDA environment; the experiments showed that the 
overall detection times are better when the classifier data 
is stored in the constant memory. This was mainly 
because the image was stored in texturing memory and 
was heavily accessed, so off-loading the access to 
classifier data to the constant memory relieved a system 
bottleneck.  

The constant memory (as well as texturing memory) 
was cached and the referencing to the classifier data 
exhibited a large locality of reference – all the threads 
were typically processing the same weak classifier. 
 
2.2 Input Image Pre-Processing 
 

To be able to detect the object in different scales, 
the image must have been scanned in multiple 
resolutions. The common approach benefited from the 
ability of Haar wavelets calculated using the integral 
image to be evaluated in arbitrary scales in constant 
time. The LRF features could have been evaluated in a 
similar manner as well, but experiments showed that 
especially on the graphics card, it was notably more 
efficient to construct a multi-resolution pyramid from 
the input image, and scan it by the detector. See Figure 1 
for the illustration of how the pyramid was built. I used 



5 
 

constant colour filling to eliminate empty spaces by 
classifier itself. 

 
Figure 1: Multi-Resolution Pyramid Constructed from the Input Image. 

Also, I didn't need to pre-process image for various 
feature sizes, because I choose to rely on the 
combinations 1 × 1, 1 × 2, 2 × 1 and 2 × 2 of the 
sampling function, what allowed nice performance 
improvements. Thanks to built-in texture sampling with 
bilinear interpolation on the usable graphics cards, sums 
of 2 neighboring pixels in vertical or horizontal direction 
or sum of four neighboring pixels consumed the same 
amount of time as sampling just one source pixel. 
 
2.3 Object Detection 
 

My main goal in this subtask was to divide whole 
work into small tasks for threads as efficiently as 
possible. Threads were consuming hardware resources: 
registers and shared memory what was limiting the 
number of threads that could have been efficiently 
executed in a block (both the maximal and minimal 
number of threads).  



6 
 

One thread could also perform the task of smaller 
granularity (e.g. one or more weak classifiers), but that 
would imply too much the inter-thread communication. 
Image pixels (or window locations, more precisely) were 
therefore divided into groups, which were calculated by 
the threads. The final solution divided image into 
rectangular tiles, which were solved by different thread 
blocks. Experiments showed that the suitable number of 
threads per block was around. 

 However, executing blocks for only 128 pixels of 
the image would not have been efficient, so we chose 
that one thread will calculate more than one pixel - a 
whole line of pixels in the rectangular tile (Figure 2). 
One thread was computing one or more locations of the 
scanning window in the image. The tile could extend 
over the whole width of the image, or just a part of it. 
Total number of pixels processed by one thread block 
was limited proportionally to the size of the shared 
memory.  

 
Figure 2: Remaining Candidates for Positive Response after 10 Weak 

Classifiers. 



7 
 

When object was recognized at window position, 
the coordinates were written to the global memory. To 
avoid collisions of concurrently running threads and 
blocks, atomic increment of one shared word in the 
global memory was used for synchronization. 

I have also studied the influence of CUDA block 
width size. The results shown that bigger block reduced 
the computation time, because it lowered the number of 
blocks necessary, and since the number of blocks is 
always integer and the blocks must share the same 
dimensions in CUDA, block widths that were equal or 
slightly higher than integer fractions of the image width 
were desired. For a particular application a proper block 
width must have been found in accordance with these 
rules.  
 
2.4 Thread Rearrangement 
 

In case of branching, the threads were split into 
groups in accordance to the variant of code they were 
executing, and the groups of identical execution paths 
were run separately from other groups. Threads were 
organized into warps and remained in a warp until their 
end. 

The weak classifier cascade thresholds were set as 
Wald proposed in the sequential probability ratio test, 
which he proved was the fastest possible classification 
strategy for a given target error rate. Due to desired 
focus-of-attention capability of WaldBoost, some 
threads terminated with negative decision earlier than 
others, but the warp continued to evaluate until the very 



8 
 

last thread terminated. This led to relatively low 
utilization of the hardware resources.  

To address this issue, I proposed thread 
rearrangement: at some stage of the classifier, all 
locations in the image that have not been classified as 
negative were written into a memory block shared 
between the threads, and another phase of the 
classification was started (that processed only these 
locations). This rearrangement could have been 
performed several times during the whole classification 
process.  

The intermediate positive (more accurately not-yet-
negative) samples were stored into the shared memory 
of the multiprocessor similarly as the final detections 
were written to the global memory, as described above. 
The exact count and locations of the rearrangement steps 
needed to be determined experimentally. 

Generally, the major influence of the 
rearrangements was during the beginning of the 
classifier, because the most of the locations were 
dropped out very early and only a small fraction of 
computational load remained to the further stages. 
Determining optimal thread rearrangement stages must 
have been done experimentally based on knowledge of 
classifier discrimination characteristic. Scanning 
window locations needed to be rearranged several times 
during the classifications to better use the hardware 
resources. In our environment, no more than three 
rearrangements were worth doing. My experiments 
confirmed that the 1st rearrangement matters the most, 
because it rearranged a large number of threads. The 
optimal points for rearrangement were notably different 



9 
 

for classifiers trained with different parameters – the 
shown experiment therefore did not result into fixed 
rearrangement spots, but rather illustrated the process of 
optimization for a given classifier. 

There are many efficient image processing CUDA 
implementations that use the shared memory for storing 
the processed image. The shared memory is very fast 
and is dozens of kilobytes large – tiles of the processed 
image can be loaded into it, and processed by thread 
blocks. I have tried variants of this arrangement and 
experiments I have performed showed that using the 
texture memory was more efficient. The texturing units 
performed bilinear interpolation between neighbouring 
pixels, which could have been used for evaluation of 
LRP. Most importantly, when using the texturing 
memory, the execution was as fast as when using shared 
memory (apparently because the bottleneck was in the 
calculation, not memory access), and the shared memory 
remained spared for other helpful purposes, as was the 
thread rearrangement described above. 

I have also tried several arrangements, where the 
threads were assigned the work dynamically, so that 
when the evaluation at one location terminated, the 
thread “asked for” another location in the image and 
processed it. The idea was that the work unit would not 
be one location in the image, but one weak classifier. 
The control required by this arrangement, and especially 
the need to synchronize the threads seemed to be too 
complex and these attempts were much slower than the 
finally achieved solution with the thread rearrangement 
(although some threads were still idle). 
  



10 
 

3. Spectral Image Analysis 
 

My research achievements boosting the spectral 
image analysis performance can be divided into two 
parts:  

• Principal component analysis 
• Non-negative tensor factorization 

 
3.1 Principal Component Analysis 
 

The topic of the problem has been revealed from the 
start-up project Optical sensor technology in medical 
applications of the University of Eastern Finland.  

Using modern computer technology, the PCA can 
be used on very large data sets where its utilization has 
previously been unthinkable, and it can also be used in 
real-time applications.  

This research was motivated by the need of using 
PCA on spectral images in the context of real-time 
medical imaging.  

Generally, in the case of spectral imaging, the 
dimensionality of the input data was not high 
(commonly 6–81 channels) but the number of samples 
(i.e. number of pixels in image or video) was large - 
millions to billions. Existing solutions (e.g. [2] [3] [4] 
[5]) did not exactly suit this purpose and this unique 
situation must have been covered by a particular 
solution.  

My research assumed that the dimensionality of the 
data was relatively low, so the computation of 
eigenvectors, addressed by the mentioned works, was 
relatively cheap. It was the computation of the co-



11 
 

variance matrix, which was costly for the considered 
data, and my goal was to accelerate the algorithms 
presented in this part of the research.  

In the presented approach I was considering spectral 
dimensionality from 6 to 81 channels. My goal was to 
search for the best possible three-component vector 
space that could represent the spectral information in the 
image, and then visualize the obtained information in the 
RGB colour space.  

Result of my work was effective computation of the 
correlation matrix (Equation 1). 

  

 
Equation 1 

I had to consider minimal number of CUDA blocks and 
also the minimal number of CUDA threads for best 
usage of available GPU resources. The number of 
CUDA blocks and its usage was not such a problem to 
overcome, as the number of CUDA blocks should be the 
same as number of multiprocessors in GPU. Bigger 
problem was the arrangement of threads when spectral 
image didn't have so many recorded wavelengths and we 
needed at least ~100 threads to run [6]. To overcome this 
problem I came with a solution where threads were 
divided into groups – chunks p (Figure 3) and each 
group processed another part of si (Equation 1).  

 



12 
 

 
Figure 3: Example of one CUDA block thread arrangement for PCA correlation 
matrix computation. 

Threads in the same group iterated and accumulated 
results in one chunk of pixels (Algorithm 1, step: 6) for 
pre-computed [u,v]  coordinates. These pre-computed 
coordinates also reflected symetricity of the output 
matrix.  
 

 
Algorithm 1: Correlation matrix contribution of each block. 

In the initialization phase of each repetition 
(Algorithm 1, step: 4), all threads loaded all chunks of 
pixels, which they will process, to shared memory. After 
initialization and synchronization, processing phase 



13 
 

began with thread arrangement mentioned above (each 
thread processed specified coordinates [u,v] , threads 
were divided into groups, and all threads traversed over 
specified number of pixels C. 

Another problem was that we could not load enough 
pixels of si into the shared memory and utilize each 
CUDA thread block as much as possible. To overcome 
this problem, I made algorithm to repeat with another set 
of pixels r (Figure 3).  

At the end of CUDA block algorithm, we needed to 
summarize all threads which have the same [u,v]  
coordinates, but different groups of pixels si . To resolve 
this problem, I used a tree summation. 

This approach helped us to utilize GPU to 
maximum and as we measured the results, we found that 
the biggest issue in this case was the speed of memory. 
 
3.2 Non-Negative Tensor Factorization 
 

NTF have various fields of usage, but the 
dimensionality of these problems is often so high that 
NTF computations takes hours, so the acceleration of 
this process was desirable. My NTF research was 
focused on the efficient GPU implementation for general 
iterative NTF computation by gradient descent, based on 
Gauss-Seidel and Jacobi methods [7], using the CUDA 
programming environment. The aim was to decompose 
the problem into parts that can be calculated in parallel. 



14 
 

 
Algorithm 2: Structure of NTF algorithm 

As the baseline for my algorithm (Algorithm 2) I 
have used Hazan's et al. [7] iterative rules (Equation 2).  

 

 
Equation 2 

My goal was to divide those rules/equations to 
smaller tasks, which could be parallelized. The first 
opportunity for parallelization were temporary matrices 
Mu , Mv , and Mw (Equation 3), created by inner product 
of vectors u , v and w . The second one was the 
numerator of Equation 2, which was the most significant 
time-consuming part of the whole NTF computation. 
The numerator calculation consisted mostly of repeated 



15 
 

summing of the large array, so it was more demanding 
for memory bandwidth than computationally intensive. 

 

 
Equation 3 

 
After analysis of the iterative formulas, I came with 

an effective division of the numerator summing part for 
threads (Algorithm 3). Instead of calculating each value 
of vector u and v resp. w independently and after that 
traverse all K layers in the same manner, which will 
cause memory bandwidth problems, I calculated whole 
set of values for each layer in vector in one pass. High 
demand for memory bandwidth was solved by lowering 
the number of reads from G matrix. 



16 
 

 
Algorithm 3: Computation Done by One Thread Block. 

The algorithm depicted on Figure 4 starts with a 
straightforward solution, where each CUDA block 
computes one ui (resp. vi , wi ) value from Equation 2 for 
whole set of layers K . Than the calculation was divided 
into independent tiles of G , so every tile was covered 
with N×N threads ( 8×8 or 16×16 for better tree 
summation), which calculated one summation per one 
vector layer k , and stored it in array of accumulators α . 
This traversed G only once, and reduced whole needed 
bandwidth. In the next step the whole set of threads 
moved to next tile, and accumulated new sums to α of 
each thread.  



17 
 

 
Figure 4: NTF algorithm overview 

Parts of vector u and v resp. w, corresponding to the 
working tile, were cached in the shared memory. This 
gave us a big performance speed-up, because each 
element of these cached parts was accessed many times. 
The reason why tiling is performed is that it was not 
possible to fit whole vectors with all layers into fast 
shared memory. 

After traversing all tiles, tree summations were used 
for final result and then summed by tree summations [8] 
to form K values. After all tiles are processed by all 
CUDA blocks, the whole set of values for output vector 
is formed. 

With this design of algorithm, up to 100×speed-up 
was achieved. 



18 
 

4. Real-Time Line Detection 
 

Standard Hough transform was known to be too 
slow to be usable in real time. My task within this part 
of the research was again the optimization and 
implementation of the proposed algorithm suitable for 
computer systems with a small but fast read-write 
memory, such as today’s graphics processors. As we 
knew that currently available algorithm was working 
with large amount of data, what was hard (or almost 
impossible) to be processed in real-time in GPUs, we 
needed to design an algorithm that would suit these 
limited but fast resources.  

To achieve real-time performance, the memory 
requirements must have been limited to the shared 
memory of a multiprocessor. Following sections are 
concluding my main achievements within the area of 
CUDA boosting. 

CUDA version proposed by me was several times 
faster (Figure 5, Figure 6) than the commonly used 
OpenCV implementation (parallelized to utilize the 8 
cores of the processor) and achieved real-time or nearly 
real-time speeds. The real-life image test showed that 
the proposed algorithm implemented on commodity 
graphics hardware could detect lines at interactive frame 
rates. 



19 
 

 
Figure 5: Performance Evaluation on Synthetic Binary Images. 

 
Figure 6: Performance evaluation on real-world images. 

 



20 
 

4.1 Small Read-Write Memory of Accumulators 
 

The first part of my idea was storing just a small 
part of Hough space. My goal was to fit Hough space 
into small shared memory of a multiprocessor. I have 
observed that just a small part of Hough space would be 
enough for maxima detection performed in next steps.  

The new algorithm stored only Hθ× n accumulators 
(see Figure 7), where n was the neighborhood size 
required for the maxima detection. The memory 
necessary for containing the n lines was all the memory 
required by the algorithm and even for high resolutions 
of the Hough space, the buffer of n lines fitted easily in 
the shared memory of the GPU multiprocessors. Whole 
scheme worked on principle of shifts by one or more 
rows, where the new row/rows were accumulated. Thus 
only the buffer of n lines was being reused. The memory 
shift was implemented using a circular buffer of lines to 
avoid data copying (Algorithm 4). 

 

 
Figure 7: Small Read-Write Memory of Accumulators. 



21 
 

 

 
Algorithm 4: HT accumulation strategy using a small read-write memory. 

In the case, when the runtime system had faster 
random-access read-write memory, this memory could 
be fully used, and instead of accumulating one line of 
the Hough space, several lines were accumulated and 
then scanned for maxima. This led to further speed-up 
by reducing the number of steps carried out by the loop 
over θ.  
 
4.2 Harnessing the Edge Orientation 
 

The second part of my idea was special edge 
orientation harnessing. Instead of accumulating all 
points from set P, only those points which fell into the 
interval with radius w around currently processed θ were 
processed and accumulated into the buffer of n lines. 



22 
 

The edge extraction phase sorted the detected edges 
by their gradient inclination θ, so that loops did not visit 
all edges, but only edges potentially accumulated, based 
on the current θ. This basically increased the efficiency 
of point look-up.  

First of all I have detected the edges and their 
orientation. Consequently I have had to sort the edges 
and for each group of them, count the number of edges 
that fell into that particular group. Groups were set to be 
split into specified width. Width of each group was 
based on our Hough space θ resolution.  

For rough sorting of the edges on GPU, an efficient 
prefix sum was used [9]. Based on these prefix sums I 
have allocated the buffer, and this buffer was then filled 
with edges in accordance with their orientation (Figure 
8). When the buffer was prepared, it was used for filling 
Hθ×n accumulators. Finally, the rest of the algorithm 
was left in the original manner.  

 

 
Figure 8: Example of Sorted Edge Buffer. 

 

5. Conclusion 
 

Research performed on CUDA architecture gave us 
lot of chances for algorithm improvements. Evaluations 
done within research assignments presented in this thesis 
showed us the real performance benefits.  



23 
 

Gained speed-up was not as high as could have been 
expected from the rough computational power of the 
GPU in comparison with CPU, but this was mainly due 
to nature of the algorithms, which did not match the 
requirements of CUDA and GPU environment in 
general.  

As demonstrated by the measurements carried out 
within the research, a computer equipped with one or 
more graphics boards with powerful GPUs, can process 
a multiple video signals in high resolution in real-time. 
Using the GPU technology would therefore find its 
application in surveillance and other real-world 
industrial tasks.  

Eight articles in total - evaluating performance of 
LRD, LRP, PCA, NTF, Hough transform and parallel 
coordinates algorithms - have been produced during the 
research, together with four products in form of 
dynamically linked library and MATLAB plug-ins. 
Those have been developed by the group of my 
colleagues participating on this research.  

The experimental implementation of the Local Rank 
Functions (namely LRD) image feature using CUDA 
GPGPU environment [10] [11] [12] [13], leaded to the 
conclusion that the LRD is a vital low-level image 
feature set, which outperforms the commonly used Haar 
wavelets (especially in case of higher resolutions) in 
several important measures, and that fast 
implementations of object detectors and other image 
classifiers, should consider the LRD as an important 
alternative. Hardware-accelerated implementations 
speeded-up the baseline LRD implementations more 
than by order of magnitude. Measurements have also 



24 
 

shown that the performance on the GPUs was equal for 
CUDA and GLSL programming.  

Two optimized algorithms of PCA computation [14] 
achieved speed-ups that allow processing of high-
resolution images with several color channels (both 
common RGB and spectral images) in real-time.  

Research of optimized implementation of an 
efficient NTF algorithm for GPGPU computation 
achieved around 60× - 100× speed-up compared to a C 
implementation compiled by an optimizing compiler 
running on a state-of-the-art computer. These results 
were considered to be outstanding, when taking into 
account that Zhang et al. [15] reported their speed-up by 
adding further nodes was capped at about 7×.  

Other positive results were achieved in study of 
modified algorithm for line detection using the Hough 
transform based on θ - ϱ parameterization [16]. The 
experiments showed that on commodity graphics 
hardware, the algorithm can operate at interactive frame 
rates even on high-resolution real-life images, while 
accumulating to a high-resolution Hough space to 
achieve accurate line detections. While the algorithm 
was designed for GPU processing, it outperformed the 
standard HT implementation even on the CPU, thanks to 
better cache usage of the new accumulation scheme. 

Finally, the last, but not least significant 
improvement was achieved in study of an algorithm 
based on the PClines parameterization [17], which 
allowed real-time computation of the “full” Hough 
transform on high-resolution images. Measurement 
showed that the GPU-accelerated algorithm achieved 



25 
 

interactive (or faster) detection times even for images of 
really high resolutions.  

Considering the fact that CUDA is much more 
intuitive and compatible to standard C language 
programming, CUDA was a good selection for 
exploiting graphics hardware for non-rendering tasks, 
such as object detection, spectral image analysis or line 
detection.  
 

6. References 
 

[1] P. Viola and M. Jones, “Rapid object detection 
using a boosted cascade of simple features,” in Computer Vision 
and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 
2001 IEEE Computer Society Conference on, vol. 1. IEEE, 2001, 
pp. I–511. 

[2] I. T. Jolliffe, Principal Component Analysis, 
2nd ed. Springer, Oct. 2002. [Online]. Available: http://-
www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0387954422  

[3] E. J. Jackson, A User’s Guide to Principal 
Components (Wiley Series in Probability and Statistics). Wiley-
Interscience, Sep. 2003. [Online]. Available: http://-
www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0471471348  

[4] M. Andrecut, “Parallel GPU implementation of 
iterative PCA algorithms,” Journal of Computational Biology, 
vol. 16, no. 11, pp. 1593–1599, 2009. 

[5] J. Ohmer, F. Maire, and R. Brown, 
“Implementation of kernel methods on the GPU,” in Digital Image 
Computing: Techniques and Applications, 2005. DICTA’05. 
Proceedings 2005. IEEE, 2005, pp. 78–78. [Online]. Available: 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1587680  

[6] CUDA C Programming Guide 6.0, NVIDIA 
Corporation, Feb 2014. 



26 
 

[7] T. Hazan, S. Polak, and A. Shashua, “Sparse 
image coding using a 3D non-negative tensor factorization,” in 
Computer Vision, 2005. ICCV 2005. Tenth IEEE International 
Conference on, vol. 1, Oct. 2005, pp. 50–57Vol. 1. 

[8] M. Harris et al., “Optimizing parallel reduction in 
CUDA,” NVIDIA Developer Technology, vol. 2, p. 45, 2007. 

[9] M. Harris, S. Sengupta, and J. D. Owens, “Parallel 
prefix sum (scan) with CUDA,” GPU gems, vol. 3, no. 39, pp. 851–
876, 2007. 

[10] A. Herout, R. Josth, P. Zemck, and M. Hradis, 
“Gp-GPU implementation of the “Local Rank Differences” image 
feature,” in Computer Vision and Graphics. Springer, 2009, pp. 
380–390. 

[11] L. Polok, A. Herout, P. Zemck, M. Hradiš, 
R. Juránek, and R. Jošth, “Local Rank Differences” image feature 
implemented on GPU,” in Advanced Concepts for Intelligent Vision 
Systems. Springer, 2008, pp. 170–181. 

[12] A. Herout, R. Jošth, R. Juránek, J. Havel, 
M. Hradiš, and P. Zemck, “Real-time object detection on CUDA,” 
Journal of Real-Time Image Processing, vol. 6, no. 3, pp. 159–170, 
2011. 

[13] A. Herout, P. Zemck, M. Hradiš, R. Juránek, 
J. Havel, R. Jošth, and M. Žádnk, “Low-level image features for 
real-time object detection,” ÍN-TECH Education and Publishing, 
p. 25, 2009. 

[14] R. Jošth, J. Antikainen, J. Havel, A. Herout, 
P. Zemck, and M. Hauta-Kasari, “Real-time PCA calculation for 
spectral imaging (using SIMD and gp-GPU),” Journal of real-time 
image processing, vol. 7, no. 2, pp. 95–103, 2012. 

[15] B. T. L. Qiang Zhang, Michael W. Berry and 
T. Samuel, A Parallel Nonnegative Tensor Factorization Algorithm 
for Mining Global Climate Data. Springer Berlin / Heidelberg, 
2009, vol. 5545, pp. 405–415. 

[16] R. Jošth, M. Dubská, A. Herout, and J. Havel, 
“Real-time line detection using accelerated high-resolution hough 
transform,” in Image Analysis. Springer, 2011, pp. 784–793. 

[17] J. Havel, M. Dubská, A. Herout, and R. Jošth, 
“Real-time detection of lines using parallel coordinates and 
CUDA,” Journal of Real-Time Image Processing, pp. 1–12, 2012. 


