
D E PA RT M E N T O F C O M P U T E R G R A P H I C S A N D M U LT I M E D I A

ústav počítačové grafiky a multimédií

S C A L A B L E M U LT I S E N S O R 3 D R E C O N S T R U C T I O N

F R A M E W O R K
nástroj pro 3d rekonstrukci z dat z více typů senzorů

P H . D . T H E S I S
disertační práce

A U T H O R I N G . M A R E K Š O L O N Y
autor práce

S U P E RV I S O R P R O F. D R . I N G . PAV E L Z E M Č Í K
vedoucí práce

S U P E RV I S O R - S P E C I A L I S T D R . I N G . V I O R E L A I L A
školitel-specialista

B R N O 2 0 1 6

Ing. Marek Šolony: Scalable Multisensor 3D Reconstruction Framework, Dissertation

Thesis, c© 2016

A B S T R A C T

Realistic 3D models of the environment are beneficial in many fields, from natu-

ral or man-made structure inspection, robotic navigation and map building, to the

movie industry, in particular, scene survey and special effects integration to scenes.

It is common practice to capture the scene with multiple different types of sen-

sors such as monocular, stereoscopic or spherical cameras or 360
◦laser scanners to

achieve large coverage of the scene. The advantage of the laser scanners and spheri-

cal cameras is that they capture the full surrounding scene as a consistent seamless

image. Using easy to operate and manipulate hand-held conventional cameras, the

details of the scene obstructed areas are easily covered.

The 3D reconstruction consists of three steps–data acquisition, data processing

and registration, and refinement of the reconstruction. The contribution of this

thesis is a careful analysis of the image registration from several types of cam-

eras (planar and spherical), as well as 3D laser measurements to obtain an initial

estimation of the sensor position and the 3D structure. They are further refined by

a unified representation system capable of integrating multisensor measurements

and obtain an accurate 3D reconstruction of the environment.

The evaluation of the multisensor 3D reconstruction is performed on multiple

synthetic, and real-world datasets. The accuracy comparison with commercial mul-

tisensor 3D reconstruction software shows that our proposed solution achieves

more accurate results. While the commercial solutions are limited to specific type

of sensors, our framework can integrate any types of measurements and con-

straints.

K E Y W O R D S

3D reconstruction; multisensor; graph optimisation; structure from motion.

iii

A B S T R A K T

Realistické 3D modely prostředí jsou užitečné v mnoha oborech, od inspekce

přírodních struktur nebo budov, navigace robotů a tvorby map až po filmový

průmysl při zaměřování scény nebo pro integraci speciálních efektů. Je běžné při

snímání takové scény použít různých typů senzorů, jako například monokulární,

stereoskopické nebo sférické kamery nebo 360
◦laserové skenery, pro dosažení

velkého pokrytí scény. Výhoda laserových skenerů a sférických kamer spočívá

právě v zachycení celého okolí jako jeden celistvý snímek. Použitím konvenčních

monokulárních kamer lze naproti tomu snadno pokrýt zastíněné části scény nebo

zachytit detaily.

Proces 3D rekonstrukce sestává ze tří kroků: snímání, zpracování dat a regis-

trace a zpřesnění rekonstrukce. Přínos této disertační práce je podrobná analýza

metod registrace obrazu ze sférických a planárních kamer a implementace unifiko-

vaného systému sensorů a měření pro 3D rekonstrukci, jež umožňuje rekonstrukci

ze všech dostupných dat.

Hlavní výhodou navržené unifikované reprezentace je, že umožňuje společně op-

timalizovat všechny pózy sensorů a bodů scény aplikací nelineárních optimaliza-

čních metod. Tím dosahuje lepší přesnosti rekonstrukce aniž by se výrazně zvýšily

výpočetní nároky.

K L Í Č O VÁ S L O VA

3D rekonstrukce; více senzrů; optimizace grafu; 3D struktura z pohybu kamery.

iv

B I B L I O G R A P H I C C I TAT I O N

Ing. Marek Šolony: Scalable Multisensor 3D Reconstruction Framework, doctoral thesis

Brno, Brno University of Technology, Faculty of Information Technologies, 2016.

D E C L A R AT I O N

I declare that this thesis has been written by me under the guidance of Dr. Ing.

Viorela Ila and prof. Dr. Ing. Pavel Zemčík. All sources and literature that I have

used during my work on the thesis are correctly cited with complete reference to

the respective sources.

Brno, 2016

Ing. Marek Šolony, August 31,

2016

c© Ing. Marek Šolony, 2016.

v

A C K N O W L E D G E M E N T S

First and foremost I would like to thank my supervisors Viorela Ila and Pavel

Zemcik for the guidance and support. Especially Viorela for patience, countless

advices, encouragement and well deserved kick in the ass without which I would

not finish my thesis.

I would like to thank my colleagues, Lukas Polok who together with Viorela let

me be part of SLAM++ team and Evren Imre for many useful insights on some 3D

reconstruction problems.

I’d like to express my gratitude to my family and friends for support, holy trinity

(not the biblical one) for many evenings I didn’t remember the day after and the

crew of the office L203 for keeping a healthy level of insanity in workplace.

vii

C O N T E N T S

1 introduction 1

2 related work 3

2.1 Structure from Motion (SFM) . 3

2.2 Bundle Adjustment (BA) . 6

2.3 Simultaneous Localisation and Mapping (SLAM) 8

2.4 3D Reconstruction Applications . 9

3 practical application 13

3.1 Available Sensors . 13

3.2 Available Datasets . 16

4 background 21

4.1 Image processing . 21

4.2 Projective Geometry . 24

4.3 Projective Geometry Estimation . 30

4.4 Camera Pose Estimation . 33

4.5 Robust Estimators . 38

4.6 Structure Triangulation . 39

4.7 Bundle Adjustment (BA) . 40

4.8 3D Reconstruction Pipeline . 45

5 multisensor frontend 47

5.1 Feature Detection and Descriptor Extraction in Data 47

5.2 Stereo Spherical image depth computation 50

5.3 Multisensor Registration . 51

5.4 Evaluation of the Front-end Application 57

6 multisensor 3d reconstruction back-end 63

6.1 SLAM++ . 63

6.2 System Representation . 74

6.3 System Building . 79

7 experiments and evaluation 81

7.1 Evaluation of Stereo Spherical Image Reconstruction 81

7.2 Multisensor Reconstruction Accuracy 85

8 conclusion 93

references 95

ix

1
I N T R O D U C T I O N

The 3D reconstruction problem in the field of computer vision aims for the creation

of a detailed and accurate model of real-life objects or environments from a set of

measurements. Since the introduction of digital photography, the image process-

ing algorithms became one of the most researched topics in the field of computer

vision, establishing the basics of recreating 3D structure from camera motion [115].

After four decades of research, the 3D reconstruction topic became a mature area,

defining projective camera geometry, statistical inference methods and established

techniques for the estimation of sensor pose and 3D structure [50]. Recently, the

computational power of modern computers and high-performance graphics pro-

cessing units, have opened the possibilities for the 3D reconstruction algorithms to

reconstruct highly detailed 3D representations of large-scale environments in real

time. Thus the development effort has focused on the processing of a large amount

of data from multiple types of sensors to create a consistent 3D model.

The reconstructed 3D models are used in a large variety of applications in fields

ranging from computer graphics, virtual reality, architecture to medicine, movie

and gaming industry and robotics. The model of an environment offers valuable

information for city planning or modification of existing buildings as well as visu-

alization of such modifications. Similarly, the 3D reconstruction can be used as a

tool for maintaining the cultural heritage, allowing the virtual presentation of the

cultural landmark or artistic object without physical damage to the original object.

The non-invasive scene 3D reconstruction finds application in forensics and crime

scene investigation, where a crime scene can be scanned to capture all scene details

for further interaction and reviewing.

In the film industry, it is advantageous to know the metric 3D information about

the environment for Computer Graphics Imagery (CGI) modeling and insertion

of special effects, virtual actors or objects into the scene. According to the scale of

the scene, as well as available budget expenses, different types of on-site scene cap-

ture techniques can be utilized. The laser ranging technology provides very precise

depth information at the cost of expensive equipment and a need for expert op-

eration. Another option is the processing of images from monocular, stereoscopic

or spherical cameras or even from multiple types of sensors simultaneously and

constructing the model by fusing partial reconstructions from individual cameras.

1

For 3D reconstruction of the environment, it is common to scan the scene with

one sensor, but using multiple sensor types is more beneficial. Laser scanners or

360
◦field of view cameras are able to reconstruct the whole scene using only a few

scans, but they are more expensive and require an expert to operate. Other sensors

such as monocular cameras are easy to use, but to cover the whole scene, a large

number of photos with satisfactory visual overlap have to be taken. A better 3D

model of a scene is the one created by combining the models from different sensors

- a model of a whole scene is created with surrounding scene reconstructed from

laser scanners or 360
◦view cameras and detailed parts of a scene reconstructed

from handheld monocular cameras.

The contribution of this thesis is a 3D reconstruction system capable of incor-

porating data from multiple types of sensors such as monocular, stereoscopic or

spherical cameras and laser scanning devices and produce an accurate represen-

tation of the environment. The focus lies on unified representation of different scan-

ning devices, measurements and the spatial relations between them, so one system

containing all sensors and measurements is built and optimised to achieve higher

accuracy of the reconstruction. The system containing data from multiple types

of sensors is optimised using very efficient non-linear graph optimisation library

SLAM++[5, 6, 7]1.

To evaluate the best data processing approach for multisensor registration we

perform an exhaustive analysis of registration of two spherical images and of a

registration of spherical and planar image.

The state of the art reconstruction algorithms and applications are introduced

in Chapter 2, followed by the application describing the motivation, sensors used

for 3D reconstruction and datasets used for evaluation in Chapter 3. In Chapter 4

we describe the principles of the 3D reconstruction and epipolar geometry which

defines the spatial constraints between sensors and their measurements. Models of

different sensors are described and ideas behind reconstruction algorithms are ex-

plained. Chapter 5 explains our approach to the processing of data and registration

of different types of sensors. Different types of descriptors and image correction

methods are explored and the chapter is concluded with experiments evaluating

accuracy and quality of initial registration estimation. The unified representation

of sensors and measurements is defined in Chapter 6 and the optimisation frame-

work for the refinement of initial estimation is introduced. The evaluation of the

quality of the reconstructions using different combinations of sensors is described

in Chapter 7 and the conclusions to the thesis are presented in Chapter 8.

1 https://sourceforge.net/projects/slam-plus-plus/

2

2
R E L AT E D W O R K

In this chapter, we overview some of the 3D reconstruction techniques, used by

recent 3D reconstruction applications. Different techniques can be employed to

obtain a 3D structure of a scene, such as structured light, shape from silhouettes

or shadows. We focus on the large-scale reconstruction scenarios, therefore we

describe approaches that use multiple images or scans for the 3D reconstruction,

which are more suitable for this task.

We focus on the methods tied to 3D reconstruction - Structure from Motion

(SFM), Bundle Adjustment (BA) and Simultaneous Localisation and Mapping

(SLAM). It is important to note that the borders between the methods are not

always clearly defined and are often combined together to solve 3D reconstruction

problem. In this thesis, we adopt term SFM for algorithms and methods that esti-

mate the poses of cameras using the information from local motion. i. e., detection

of corresponding areas in the images of a scene captured from different camera

positions. We refer to BA as an optimisation step - methods and algorithms for re-

fining of the initial estimation of the camera poses and 3D structure using multiple

measurements. SLAM algorithms are described in the context of robotics, requir-

ing to produce accurate robot trajectory and often scene structure, in many cases

also involving data fusion with other sensors.

2.1 Structure from Motion (SFM)

The SFM has been an active area of research for last two decades, finding its appli-

cation in solving many practical problems such as image-based modeling, motion

capture or robotic navigation. The aim of SFM algorithms is to recover the camera

poses and 3D structure relying on visual corresponding areas in a set of camera im-

ages captured from different positions. We differentiate between sparse and dense

reconstruction methods which either use only a subset of image points for struc-

ture computation or attempt to compute depth information for the whole image.

Standard sparse SFM pipeline starts by detection of corresponding areas between

images, estimates geometry of the cameras and uses triangulation algorithm to

compute the 3D structure of the scene. Knowledge of projective geometry and

especially Epipolar geometry [50] is utilized to establish the relations between the

3

cameras and scene and to create the 3D model of the scene. Detailed information

about the projective and epipolar geometry is given in Chapter 4.

The corresponding areas usually consist of corners of objects, edges of objects or

curves and their contours, generally called 2D feature points. To detect the 2D fea-

ture points various methods for detection [100] are used, and descriptor extraction

algorithms further assign a local descriptor encoding the local area characteristics

for each feature point. Using the descriptors, the sets of feature points are associ-

ated to their corresponding points in other images [77], and these measurements

are input for SFM algorithm.

Often the input data for SFM is a video, which contains a lot of redundant

information. The problem of selecting a subset of optimal images for 3D recon-

struction is known as keyframe selection [5]. For the purpose of 3D reconstruction,

the keyframes are selected base on criteria such as sufficient baseline to perform ac-

curate triangulation, sufficient overlap or degeneracy avoidance. Degenerate cases

when the epipolar geometry cannot be defined are rotation around camera cen-

tre or presence of one planar surface in the scene. To avoid such cases, factors

such as frame-to-frame point correspondences, geometrical robust information or

point-to-epipolar line cost can be taken into account [111].

The SFM is often applied in image-based 3D modelling, creating geometry of 3D

scenes from low-cost camera images. Using the 3D reconstruction pipeline [87] the

3D structure of a real scenes or landmarks can be recovered from images or video.

The reconstruction of urban environments can improve the accuracy of the feature

based method by exploiting the prior information of a scene, such as orthogonality

or presence of planar surfaces [102].

A large-scale 3D reconstruction from hundreds of thousands of images available

on the photo-sharing services has been successfully performed on a cluster of com-

puters [3] thanks to massive parallelization and adaptation of the SFM methods

most efficient in the parallel computing environment. Furthermore, the solution

presented in [37] improves the processing time by applying geometric and appear-

ance constraints to input data and by optimising the implementation for modern

graphics processors and multi-core architectures. The presented system is able to

reconstruct large-scale environments from millions of images in a time span of

a day. Another large-scale stereo reconstruction approaches [38] reconstruct the

surface by fusing registered depth maps. The adaptive data structures allow the in-

tegration of depth images of different scales, thus creating seamless representation

containing both rough and fine details of the scene.

4

SFM methods that produce sparse reconstruction can be furthermore extended

to dense reconstruction [40], and the point cloud representation can be trans-

formed to polygonal mesh for further processing or visualization [98, 38].

The dense SFM methods for are based either on image cross-correlation or optical-

flow computation for depth computation. The cross-correlation methods [93, 84]

produce a dense set of correspondences, by finding best matching blocks of im-

age pixels between images based on cross-correlation similarity measures [9]. The

cross-correlation approaches are very sensitive to rotation and scale changes, there-

fore they work best on the calibrated stereo image pairs, where the rotation and

scaling changes are insignificant. The scale and rotation invariant normalized cross-

correlation matching algorithm has been presented in [124]. This method uses

sparse feature point detection in images from which the orientation and scale is

estimated and the cross-correlation search window orientation and size is adjusted

according to those measures.

Optical flow algorithms rely on the relation between photometric correspon-

dence vectors and spatiotemporal derivatives of luminance in image sequence [53]

and are suitable for processing images from moving camera. They compute the

motion vectors of the pixels in the image sequence for each image point.

A method presented in [82] is able to process stream of images, computing tex-

tured depth maps at selected keyframes and to use the images to improve the

quality of the model by minimising the photometric error. The real-time perfor-

mance is achieved through acceleration on GPU hardware.

Pollefeys et al. [88] present an automatic real-time 3D reconstruction system of

urban scenes from the video. The standard 2D tracking and matching pipeline is

extended by data from GPS and inertial sensors to achieve more precise reconstruc-

tion and graphics hardware acceleration for results available in real-time. Depth

images are fused into a 3D mesh for dense reconstruction.

The 3D reconstruction from stereo spherical images was first described in [39]

where the epipolar geometry between two spherical images and mapping from

spherical coordinates to longitude-latitude image coordinates is derived. The exper-

iments demonstrate the extension of the standard 3D reconstruction procedures to

spherical images. Kim and Hilton [62] introduce the application of multi-resolution

Partial Differential Equation method to estimate the disparity map for scene recon-

struction, which produces floating-point disparity values to achieve accurate and

smooth depth. The registration of the spherical-stereo pairs is initialized using

SURF [10] feature matching between the wide-baseline images. This estimation is

further refined using Iterative Closest Point (ICP) algorithm.

5

Methods utilizing range based LIDAR [91] sensors mounted on a moving vehi-

cle, combine 3D point cloud data with SFM methods, processing the panoramic

images, to cope with the limited vertical range of LIDAR and to add colour infor-

mation to the reconstructed 3D model of urban environments.

The integration of SFM algorithms into Augmented Reality (AR) systems can im-

prove the user experience since the camera localisation and tracking does not need

to rely on markers inserted into the observed scene. Approach using 2D feature

tracking [26] is able to recover motion of the camera from point correspondences

between the frames without noticeable jitters. A complex markerless camera track-

ing solution has been presented [79], which consists of two main parts. The offline

stage is responsible for extracting feature and descriptors in the scene and creating

a database of recognizable landmarks and online tracking stage estimates the cam-

era positions according to established correspondences between the image from

the camera and known landmarks.

Recently, many researchers also focus on the SFM in challenging environments

such as underwater areas and ocean floor [12]. The accurate sparse 3D structure

from the SFM algorithms can serve as a foundation for dense reconstruction of the

ocean floor.

2.2 Bundle Adjustment (BA)

The overall 3D reconstruction error stemming from measurement error, matching

error or imprecise camera calibration can be reduced using Bundle Adjustment

(BA) [114]. BA methods perform a refinement with respect to camera poses and

3D structure positions to produce a jointly optimal solution consistent with defined

constraints. Non-linear optimisation methods are employed to find a configuration

of parameters that minimize the sum of squared errors which is usually defined as

a non-linear function which projects the 3D scene points into the camera images

and measures the distance from the observed feature in the image. SFM methods

often use BA as a final step of the algorithm or during the data processing after

a certain amount of processed images. This helps to minimize the reconstruction

error and to cope with camera drift.

BA problem is defined as a solving of non-linear least squares problem [17]. This

problem is usually addressed by repeatedly solving a sequence of linear systems.

Efficient solving of this problem has been researched in [72], employing Cholesky

factorisation of the system matrix. This solution is efficient for solving small to

mid-scale problems, but when a large-scale 3D reconstruction is considered, the

computation time does not scale well with increasing number of input data. It

6

is possible to accelerate the system matrix factorisation by applying the Schur’s

complement [122] trick, which divides the matrix to the camera and point part which

leads to solving smaller system and therefore reducing computational complexity.

The large-scale 3D reconstruction problems are often sparse, observing structure

point only from a subset of data frames, so significant amount of research has been

dedicated to efficiently store and manipulate sparse structures [29, 31]. In [83], au-

thors present out-of-core approach to BA which divide the problem into multiple

sub-problems with their own coordinate systems and performs the optimization

in parallel. This allows for saving computation time by caching locally optimized

measurements and reusing them in separator system. A faster convergence for

solving the system linear equations by conjugate gradients has been achieved by us-

ing suitable pre-conditioners [18]. This approach improves convergence, especially

for large-scale problems.

Alternative approaches involve exploration of strategies of applying BA algo-

rithms during the processing of input data. A hierarchical approach is presented

in [103], where the input data is divided into groups containing long enough fea-

ture trajectories. The BA is applied to a reduced system built by introducing virtual

keyframes which contain the local structure of each segment, gaining speed-up com-

pared to conventional approach processing the whole dataset.

The recent advancements in sparse linear algebra allowed an efficient solution

for BA problems by using formulation in the terms of graph models. Fast matrix

factorization applied to the sparse matrices representing these models produce a

computationally efficient solution [33, 105, 67, 7]. The problem is formulated as

a non-linear optimisation on graphs [33, 67], where the nodes are the 3D points

and the 3D camera poses and 3D structure points and the edges are the measure-

ments - images of the 3D structure points on the projection surface of the camera

(see Section 4.7.1). The optimisation problem finds the optimal cameras-points con-

figuration, given the imprecise relative positions of the 3D points obtained from

the initialisation step. A significant increase in processing speed is gained in [56],

formulating the problem as structureless, optimizing only the parameters of the

camera by algebraic elimination of the 3D structure points. At the same time, the

problem is represented as graphical model updated incrementally only when a

new camera is introduced into the system.

The increasing computational power of modern multicore processors, graphical

processing units (GPU) and parallel computing was exploited in [121] to create

time efficient BA algorithms. Time improvements the in the computation of inexact

step of Levenberg-Marquardt are presented, using efficient GPU implementation,

as well as single precision arithmetic combined with normalization methods to

7

achieve similar accuracy to double precision solvers saving computational time

and memory.

2.3 Simultaneous Localisation and Mapping (SLAM)

In robotic applications, to solve the problems such as automatic navigation or ob-

stacle avoidance, the map of the environment needs to be estimated. The ability

to build a map allows the mobile robotics to perform various tasks in complex,

unknown environments without relying on the external reference system such as

GPS. The estimation of the map and simultaneous localization is known as SLAM

problem.

The first SLAM algorithms were based on filtering, an online model consisting of

actual robot position, landmark positions (map) and a covariance matrix encoding

the uncertainty of the actual state. Many of the filtering approaches are based of

Extended Kalman Filter (EKF) [104], its variations [55], particle filters [78, 109]

or information filters [110] which keep the track of the inverse covariance rather

than covariance matrix. Although EKF methods proved to be very efficient for

localisation and mapping in small and medium-sized environments [32, 61], they

suffer from the computational complexity and inaccuracy due to the linearisation

when creating large-scale 3D reconstruction [22].

An intuitive way to represent SLAM problem has been proposed in [74] as a

graph based formulation. This formulation represents SLAM problem as an optimi-

sation of graph, where the vertices represent robot poses and landmark positions

and edges represent measurements. Although the measurements are affected by

noise, the solution to the graph is a configuration of the nodes that is maximally

consistent with the measurements. An efficient technique for solving this SLAM

representation has been introduced as soothing and mapping [33]. Soothing meth-

ods estimate the full trajectory of the robot as well as all landmarks from the

set of measurements. The sparse nature of the SLAM is exploited and efficient

implementation and manipulation with sparse matrices is employed for solving

factorization of either information matrix (containing inverse covariances) or mea-

surement Jacobian. An important factor for fast factorization is choosing a good

variable ordering [1], because of the variable elimination is performed to compute

the values of the variables, therefore an ordering heuristic is applied.

In on-line robotic applications, the solution for localisation and mapping has to

be available in real-time. The state of the robot trajectory and map changes with

every new measurement, which involves building new linear system and applying

matrix factorisation. For very large problems the building and solving of a non-

8

linear problem, each step can become very expensive. Therefore the incremental

SLAM solutions focus on efficient system solving either by keeping the matrix in

factorized form [60] and computing only the parts affected by new measurements

or by using Bayes tree structures [59] which allow efficient incremental algorithms.

The SLAM presented in [66] is able to build 3D multi-level maps of the large-

scale indoor environment and localize the vehicle at the same time, using mea-

surements from 3D LIDAR. The graph-based optimisation is utilized to keep the

consistency of the map.

The general SLAM formulation allows additional sensor measurements such as

odometry, GPS or IMU to be incorporated into the SLAM system to further improve

the accuracy of localisation and mapping. The SLAM is applied for solving of Vi-

sual Odometry (VO) problem [65], where information from multiple sensors are

merged to estimate reliable ego-motion of a vehicle. The images from the stereo-

scopic camera are used to estimate the motion of a camera and the fusion with

information from IMU sensor significantly improve the accuracy in tilt and roll

axes. To further reduce the estimation error, sparse BA [72] is applied to optimise

the camera poses and landmark positions.

In the context of augmented reality, SLAM algorithms have been designed to

track the movement of a hand-held camera based on the camera images [63]. The

real-time functionality is achieved by separating the computational heavy map

building and updating from localization tasks to run in parallel. To reduce pro-

cessing time, the map building processes only key-frames, because consecutive

images contain a lot of redundant information. On the other hand, the localisation

task runs at high frequency to keep the pose of the camera up-to-date.

The incremental processing of data causes a cumulative error in the camera

position, so a loop closure methods [27, 52] are employed to detect previously

visited areas to relate the camera positions and reduce the error.

2.4 3d reconstruction applications

These techniques for the 3D reconstruction have been successfully applied in mul-

tiple software systems. Photo tourism [105] is able to create 3D models of fre-

quently photographed famous historical buildings or tourist attractions such as

Notre Dame from thousands of planar images available on internet services e.g.,

Flickr1. Processing an unordered set of images is computationally expensive, so the

main focus of the algorithm is the detection of visually similar images, to create

reconstruction order that leads to complete model of the scene. The computation

1 https://www.flickr.com/

9

usually requires several days of processing on a cluster of computers. The software

contains image-modeling front-end from large photo collections as well as photo

explorer which uses image rendering techniques for smooth translation between

images that allows virtual photo tours of famous locations.

Bundler2 is one of the first SFM software able to process an unordered set of

images. Its earlier version was used in Photo Tourism project which was later devel-

oped into Photosynth3 for Microsoft. Bundler’s front-end software is able to detect

and match feature points across the input image set and to incrementally recon-

struct the sparse 3D structure of the scene. A Modified version of Sparse Bundle

Adjustment [72] is applied in the process as an underlying optimization engine to

refine the reconstruction.

VisualSFM4 represents an user-friendly application for image 3D reconstruction

exploiting multicore parallelism [121], fast feature extraction and matching [119]

and bundle adjustment [120]. Further, the reconstructed camera and structure in-

formation from VisualSFM can be used as an input for Patch-based Multi-view

Stereo Software (PMVS) by Furukawa et al. [40] to obtain dense 3D reconstruction.

PMVS starts with correspondences estimated by SFM algorithm and iteratively ex-

pands the depth to surrounding pixels. The false correspondences are filtered out

using visibility constraints, by removing patches of depth map that lead to visi-

bility conflict (occlusion) with other patches. The increased set of corresponding

points is further used to refine the extrinsic and intrinsic camera parameters in

final BA step.

The OpenMVG5 is a library for image processing and multiple view geometry

estimation, including algorithms for feature matching of a unordered set of im-

ages, SFM pipeline, optimisation, and visualization tools, as well as simple exam-

ples explaining basic functionality. The library also contains a database of intrinsic

camera parameters, which can be extracted from image Exchangeable image file

format (EXIF) data. The output of the library is a sparse 3D point cloud data and

camera poses.

The StereoScan application [43] allows real-time 3D reconstruction by fusing in-

formation from dense depth maps and camera position estimation based on visual

odometry. The real-time processing is achieved by separating the camera pose es-

timation process from map building process which links multiple views together

and reconstructs reliable point clouds using known camera positions.

2 http://www.cs.cornell.edu/ snavely/bundler/
3 https://photosynth.net/
4 http://ccwu.me/vsfm/
5 https://github.com/openMVG/openMVG

10

Microsoft’s Kinect Fusion creates a detailed 3D model of the indoor scene using

the Kinect device. Only the depth information is used to track the camera position

and to reconstruct the 3D model of the scene in real time. The real-time, interactive

capabilities are possible thanks to the accelerated data processing on the Graphics

Processing Unit (GPU), but also non-interactive, offline processing is available. The

system finds application in low-cost handheld scanning and geometry-aware and

physics-based augmented reality applications.

Commercial software Capturing Reality6 allows 3D reconstruction from multiple

sensor types - monocular cameras and CLIDAR device. The multisensor recon-

struction is achieved by transforming coloured 3D point cloud generated by CLI-

DAR to six planar images by projecting the 3D data to six sides of a cube, and

using them for registration to images from monocular cameras.

6 www.capturingreality.com

11

3
P R A C T I C A L A P P L I C AT I O N

The scalable multisensor 3D reconstruction framework was developed for the task

of reconstruction of large outdoor scenes for European project IMPART1 in col-

laboration with two movie companies, FilmLight2 and DoubleNegative3. One of the

goals was to integrate all measurements acquired by sensors in order to create a re-

construction of the 3D environment. The available tools, at the time, were too slow

for this purpose. The need for in situ visualizations of the 3D reconstructed envi-

ronment and taking a decision on which parts of the scene needs more sampling,

motivated the development of a fast and accurate system for 3D reconstruction

from multiple sensors.

In this chapter we describe sensors used for 3D reconstruction, their advantages

and disadvantages and introduce the datasets captured in the scope of the IMPART

project.

3.1 available sensors

The first step of 3D reconstruction consists of data acquisition. Two main categories

of data acquisition sensors exist - active and passive. Active scanning devices emit

some kind of radiation or light and detect its reflection from an object to obtain

depth map and recreate the object or environment (LIDAR, RADAR, structured

light). Passive scanning sensors, on the other hand, do not emit light themselves,

but rather use reflected natural light instead (CCD cameras).

Monocular Cameras

The conventional cameras are a cheap and easy solution to obtain 3D reconstruc-

tion. The monocular cameras produce planar 2D images by projecting the 3D scene

onto a 2D camera projective plane. The cues from the images, such as silhouettes,

shading, texture or motion can be exploited to estimate the 3D geometry of an

object or scene. The processing of the video sequences from monocular cameras

1 https://impart.upf.edu/
2 http://www.filmlight.ltd.uk/
3 http://www.dneg.com/

13

a) b)

Figure 1: a) Spheron4camera b) Same part of the scene projected into different (vertical)

part of spherical image.

allows easier detection of corresponding parts of the scene thanks to the big spa-

tial overlap between the consecutive images. The estimation of camera poses and

3D structure of the environment from multiple images of a scene is in literature

referred as Structure from Motion (SFM).

Spherical Cameras

Spherical cameras use spherical projection - projecting 3D point of a scene onto a

surface of a sphere to create an image capturing the whole surrounding scene.

Conventional cameras, due to the limited field of view, require capturing a large

number of images in order to reconstruct large outdoor or indoor scenes. In appli-

cations involving large scenes, an acceptable coverage with conventional cameras

can be problematic due to both, time-consuming acquisition process as well as

large memory requirements. Spherical cameras provide images which cover the

whole surrounding space, so using spherical images from one or multiple view-

points is a feasible way to create 3D models of large environments.

Devices such as Spheron4 capture a spherical image by a vertical line-scan cam-

era with wide-angle lens rotating around the centre of projection. The final high-

resolution image is created by joining scans into a single image that covers 360◦

in horizontal and ∼ 180◦ in vertical field of view. This process is equivalent to

4 https://www.spheron.com/

14

projecting the scene around the camera onto a unit sphere. For storage purposes

the spherical image is stored as rectangular longitude-latitude image by mapping

from spherical model to 2D dimensions of the rectangle. The advantage of spher-

ical images is that they can be used to recreate relatively large outdoor or indoor

scenes from only a handful of spherical images. Spheron devices are mounted on

rigs that allow for precise vertical movement for capturing stereo spherical image

pairs with defined vertical baseline.

The main disadvantage of the spherical images and their longitude-latitude rep-

resentation is the distortion introduced by projection from the sphere to the rect-

angular plane. The same parts of the scene can appear very different depending

on where in the longitude-latitude image they are projected to (Figure 1 b)). This

can cause problems when extracting and matching features, especially when the

images are captured with wide baseline.

Smaller devices capable of capturing spherical images or even videos have be-

come available on the market with the increasing popularity of virtual reality tech-

nologies. LG 3605 is a small, dual-lens spherical camera supporting image capture

up to 16Mpix and video up to 3Mpix. Sphericam 26 is aimed for an immersive video

for virtual reality devices and offers 4K video capture stitched from six optimally

placed camera sensors.

Stereoscopic Systems

Stereoscopic systems are based on the research of human vision. They assume

a pair of cameras separated by constant horizontal or vertical baseline and they

provide the 3D information in the form of depth maps, encoding the depth infor-

mation for every pixel in the image. The depth information is estimated from the

disparity, which is a difference in the object location between the images from the

stereo pair.

Known camera parameters and baseline allow the rectification [71], which con-

siderably simplifies the stereo correspondence problem and the computation of

a disparity map is straight-forward. Compared to reconstruction from a monoc-

ular camera, it is easier to reconstruct dense 3D structure because the disparity

map provides depth information for each image element, whereas the monocular

reconstruction pipeline produces a sparse representation of the environment and

requires further post-processing to obtain dense reconstruction. Another advan-

tage is that known stereoscopic base-line assures metric reconstruction, whereas

5 http://www.lg.com
6 http://www.sphericam.com/product/vr-360-camera/

15

monocular camera reconstruction is always up to unknown scale unless some prior

knowledge of a scene is available.

Range sensors

Range detection devices provide information about a depth of the observed object

or a scene. Laser scanning devices, also called LIDAR, are often utilized to acquire

a dense model of a scene. They employ time-of-flight techniques to estimate the

distance of a scene point by measuring the time the light beam travels between

LIDAR and the point. LIDARs often include rotating mirror that allows to change

the angle of the laser beam and thus scanning area around the device. 2D devices

are often used in robotics for obstacle avoidance and navigation but usually are

combined with other sensors to capture the 3D structure of the scene. Specialized

3D LIDARs with added vertical field of view are able to capture dense structured

3D point clouds representing the scene. Some devices such as Faro7 are capable

also to fuse colour information from wide angle lens camera located at the LI-

DAR sensor with the 3D point cloud data to create the coloured 3D model of the

environment.

3.2 available datasets

Several datasets containing data from different types of sensors were acquired to

evaluate our multisensor processing framework and other applications developed

in IMPART project. The planar images have been captured by standard hand-held

Canon and Samsung cameras, covering surrounding area of captured scene. The

spherical images were acquired with a SpheroCam-HDR8 system, which captures

vertical scan lines by a turning camera with fisheye lenses, synthesizes them and

provides up to 50 Mpix latitude-longitude image. The CLIDAR data capture was

performed using Faro Focus3D7 device providing a 3D point cloud data with as-

signed colour information for each point. Details about the content of each dataset

are shown in table 1.

CCSR dataset

The CCSR dataset is an outdoor dataset of an enclosed area of approximately 250m2.

The scene was captured by a spherical camera from three positions with the dis-

placement of 5− 6m and three CLIDAR scans are available from approximately

7 http://www.faro.com
8 https://www.spheron.com/

16

Table 1: Dataset details. ∗The number of monocular planar images for Synthetic dataset is

a sum of the images of each scenario.

CCSR Cathedral Atrium Studio Synthetic

Spherical Images 3 3 5 4 −

Spherical baseline ∼ 6m ∼ 23m ∼ 3m ∼ 1.5m −

CLIDAR Scans 3 7 − − 3

CLIDAR baseline ∼ 6m ∼ 7m − − ∼ 6m

Planar images 243 92 50 − 30∗

Area 250m2 2500m2 400m2 100m2 250m2

same positions as spherical images. Each capture of a spherical image was done at

two different heights to produce stereo image pairs. The hand-held Canon camera

has been used to capture the planar images and covers the whole surrounding

area. Many subsets of the images are captured with small baseline.

The scene contains visual reflective markers accompanying the CLIDAR Faro

sensor which serves for the easy correspondence estimation and sensor registration.

Using the Faro software9, precise positions of the sensors can be computed. This

poses can be used as a reference for comparison of the accuracy of registration of

CLIDAR sensor integrated into our system.

Cathedral dataset

The Cathedral dataset covers an area of approximately 2500m2 and captures the

scene in front of Guildford Cathedral building, surrounding smaller buildings and

parking lot. In order to test how the system performs in the case of large sensor

displacements, the spherical cameras were placed at positions far apart (approx.

23 m). Seven CLIDAR scans are available for this dataset, which were captured

on a different day, so lightning conditions and small details in the scene may be

different than in spherical images. The planar images cover only the cathedral

building, images of no other objects were captured.

Atrium dataset

The Atrium dataset captures a semi enclosed, outdoor area of approximately 400m2

using five spherical camera scans. The planar images capture whole surrounding

9 http://www.faro.com/en-us/products/faro-software/scene/overview

17

a) b)

c) d)

e)

Figure 2: Example data from the datasets, up planar images, down spherical image, a)

CCSR, b) Cathedral, c) Atrium, d) Synthetic and e) Studio dataset

area. The datasets Cathedral, CCSR and Atrium were captured as a part of an Euro-

pean project IMPART10 and are available upon request11.

Studio dataset

Studio dataset was captured for the purpose of evaluating the accuracy of spheri-

cal image registration. The physical distances between the poses of the spherical

cameras were measured as well as the distances to certain distinctive points in the

scene. The spherical cameras were precisely placed and aligned to face the same

direction. The indoor scene was captured from four spherical camera poses.

10 impart.upf.edu
11 kahlan.eps.surrey.ac.uk/impart/

18

Figure 3: Synthetic datasets configurations illustration. Black outlines represent data avail-

able from aligned CLIDAR sensors (red). Short baseline configuration of virtual

cameras is depicted by blue markers, long baseline camera configuration is rep-

resented by green markers.

Synthetic dataset

For the purpose of evaluating multisensor 3D registration algorithm, especially

the registration of CLIDAR/spherical images and planar images, we used dense

CLIDAR data to generate artificial views from virtual planar cameras with known

calibration and position in the scene. This way we are able to generate images from

virtual sensors with known 3D poses which are used as a ground truth for com-

parison with estimated poses. Synthetic dataset contains images generated from

CLIDAR data of CCSR dataset. The registration of CLIDAR sensors is available

from the Faro software which utilizes visual reflective markers for the computa-

tion of the sensor pose.

Multiple scenarios were considered for the synthetic datasets, as illustrated in

Figure 3:

• Short baseline - The images were generated from virtual cameras with close

distance to each other (∼ 0.3m). These images contain big overlap.

• Long baseline - The baseline between virtual sensors was approximately 2.5m

and contain bigger change (∼ 30◦) in rotation compared to small baseline

dataset. The images contain smaller overlap.

• Combined baseline - This dataset contains images both with small and large

baseline and rotations between sensors. This dataset imitates the real scene

capturing using a handheld camera.

• Noise in depth data - The LIDAR depth data are generally very precise. There-

fore to evaluate accuracy of registration of multisensor data in the presence

of noise such as in case of stereo spherical image depth map, the depth map

19

available from CLIDAR was artificially perturbed by zero mean Gaussian

noise with standard deviation σ = 0.15m. This dataset simulates registration

of monocular images and stereo spherical images.

20

4
B A C K G R O U N D

This chapter describes image processing, projective geometry, representation of

camera models, geometry between cameras observing the scene and the funda-

mental algorithms for estimation of camera pose and 3D structure.

4.1 image processing

The estimation of the relative pose between two images requires a set of reliable

point correspondences. We will focus on sparse feature detection and descriptor

extraction methods because they are generally faster to estimate correspondence

set, able to handle variant scene illumination and suitable to find relations between

different types of sensors usually in wide baseline scenarios.

The methods based on feature point detection and descriptor extraction choose

a subset of distinctive image points, assign them a descriptor according to the local

area around them, and perform the correspondence search between images using

those sets. These methods produce sparse correspondence sets.

4.1.1 Feature Detection

Feature detectors detect the feature points on visual distinctive parts of the scene

such as corners, edges of textured objects. The Harris corner detector [47] is a pop-

ular feature detector based on detecting local intensity changes by image deriva-

tions, selecting corner and edge points. Although this algorithm is able to detect

the points with good repeatability, it is very sensitive to image scaling transfor-

mations and therefore it is applicable for reconstruction with small baseline (e.g.

moving camera), but not suitable for large baseline multiple view reconstruction

problem.

The feature detector invariant to scale and rotation transformation has been pre-

sented in Lowe’s Scale-Invariant Feature Transform (SIFT) [73]. Feature points are

located at local extrema of a difference of Gaussian function in scale-space, which

is created by applying Gaussian convolution with varying sizes of kernel to orig-

inal image. For each feature point, the orientation is computed based on local

image gradient directions. The gradients are used to achieve illumination invari-

21

ance and whole descriptor vector is normalized. The further processing of the data

is performed relative to assigned orientation and scale providing partial affine in-

variance - invariance to translation, rotation and scaling transformations, but not

invariant to the angles defining the orientation of the camera. Therefore the SIFT

features are best used for images with a change in viewpoint between cameras up

to 50◦[73].

Addressing the computational complexity issue of SIFT detector, Speeded-Up

Robust Features (SURF) [11] detector finds the compromise between computation

time and number of reliable detected points.

The Feature from Accelerated Segment Test (FAST) [94] feature detector was

created to increase performance of SIFT -like detectors, detecting feature points at

corners. FAST detects more feature points nearly 50 times faster than SIFT. For best

results, this detector should be used in combination with SIFT or SURF descriptor

extractors.

The KAZE [6] features detect the features in non-linear scale space by non-linear

diffusion filtering instead of Gaussian scale space like in SIFT or SURF features.

The advantage is the reduction of noise and retaining of object boundaries which

leads to better matching accuracy.

The affine invariance of detected feature points has been researched in ASIFT

[80], which is an extension of SIFT. This algorithm aims to find reliable points in

images captured from vastly different viewpoints, therefore containing significant

image deformation. By applying a number of affine transformations simulating the

different angles of camera, features and descriptors are extracted multiple times for

the same image. The affine invariance comes at the cost of computation time when

performing descriptor extraction and matching for a higher number of feature

points.

Another affine invariant approach Maximally Stable Extremal Regions (MSER)

[75] detects stable feature regions, which is achieved by detecting areas that stay

similar after applying a number of transformations. Studies show that MSER per-

form best mostly on flat surfaces, and also for changes in illumination.

4.1.2 Descriptor Extraction

For the task of finding the corresponding points between images, the feature points

have to be assigned with information, called descriptors, describing their adjacent

area. The most common way to describe feature points is using a vector of num-

bers, constructed by varying methods. This process involves the image processing

of the area around the feature point. The robustness and stability of the descrip-

22

tor are very important property for the correspondence problem. The descriptors

have to be sufficiently invariable to geometric transformations such as change of

viewpoint, viewing distance, scale and to photometric changes such as scene il-

lumination. The best descriptor extractor for the specific feature type is usually

specified or provided by the authors of the feature detector algorithm.

The SIFT descriptor is extracted for the feature points detected at particular

scales. The orientation of the features is computed according to local image gra-

dient, and the descriptor is represented relative to the orientation thus assuring

the invariance to the rotation. For a window of 16× 16 pixels around the feature

location, gradients of the pixel values are computed. This window is divided into

4 × 4 pixel windows and orientations of these segments are put into 8-bin his-

togram. The descriptor values are computed from the histograms of magnitude

and orientation values in a region around the feature point. Usually, the SIFT de-

scriptor contains 128 elements, but also descriptors with lower dimension can be

used sacrificing the matching quality.

The orientation of SURF descriptor is detected by analysing Haar wavelet re-

sponses in x and y image directions around the feature point. Similarly to the

SIFT, the descriptor is defined relative to the orientation. The descriptor elements

are computed from a square region centered at the feature point and rotated ac-

cording to the dominant orientation. The region is split to 4× 4 sub-regions and

for each region, the Haar wavelet responses are extracted.

The Oritented FAST and Rotated BRIEF (ORB) [95] feature detector and extractor

combines the FAST detector employing image pyramid to achieve scale invariance,

with The Binary Robust Independent Elementary Feature BRIEF [19] descriptors ex-

tended by better feature orientation computation. BRIEF is a 128, 256 or 512 binary

string encoding the SIFT descriptor.

The KAZE descriptors detect orientation similarly to SURF approach. The de-

scriptor is extracted using M-SURF [4] descriptor adapted to the nonlinear scale

space.

Original descriptor for MSER describes the extremal regions by their intensity

values, but also approaches describing directly the shape of regions can be used

[36].

4.1.3 Feature Matching

Features matching algorithm finds the corresponding points between the sets of

feature points extracted from images. The quality of the matches is important for

the estimation of 3D geometry. For a SIFT-like descriptors, the matching pair can

23

C Π

A B

CD

A'
B'

C'
D'

P

Figure 4: Projective geometry of an object into projective plane. The parallel lines are not

preserved.

be found by analysing the metric e.g., Euclidean distance of the descriptors - de-

termining the nearest neighbour. The simplest matching algorithm computes the

metrics between all possible feature points from images and the pairs with best

scores are selected. Although the algorithm promises best possible matches, the

processing time can be high with a large number of feature points.

A faster approach is to use Fast Library for Approximate Nearest Neighbor

(FLANN) [81] which performs the approximate nearest neighbour search in high

dimensional space. This approach contains a collection of algorithms from which

the best one and also optimal parameters are chosen depending on the dataset.

The search is based on K-means tree.

Using only the descriptor information for the correspondence estimation can

lead to many outlying correspondence pairs due to the similar structures in the

scene or different illumination. The common practice for more reliable matching

is to validate the matched features by performing a geometry estimation using the

detected matches and rejecting the matches that do not satisfy the geometry model.

This process is called robust matching (Section 4.3.1).

4.2 projective geometry

The projective geometry is an important tool for mathematically describing the

geometry of cameras and transformations associated with the process of creating

a camera image of a scene. It provides a generalization of several properties and

allows to represent all transformations preserving projective properties in matrix

form. For example observing the image created by camera projection (Figure 4), we

can notice that the parallelism of lines are no longer preserved in camera image.

24

C
z

y

x

f

Z

m{c}

m{c}∧

Π

Figure 5: Pinhole camera model. It can be seen that given focal length f, the position of the

projected point {c}m in the projection plane Π is {c}m̂ = [fXZ , fYZ , f]>.

The projective geometry describes the intersection of two parallel lines by setting it

to infinity and using homogeneous form points to manipulate all points including

the ones at infinity.

We will focus on the definition of camera models in the projective space as-

sociated to real vector space R3, where a point is represented by homogeneous

coordinates m = [X, Y,Z, 1]> and two vectors m1,m2 represent same point if there

exists a real non-zero scalar k such that m1 = km2. More details about projective

geometry can be found at [50].

4.2.1 Sensor Models

In the following sections we describe the models of different sensors and the details

of the imaging process of cameras.

Pinhole Camera Model

The simplest model of describing a camera is called pinhole camera model. Pinhole

camera model is a specialization of the general projective camera model. This

model utilizes central projection which assumes a line passing through 3D world

point and centre of projection, intersecting image plane Π in point where the image

is formed as shown in Figure 5. The projection of the 3D point {c}m = [X, Y,Z, 1]>

to the camera plane is performed by applying a series of matrix transformation

operations specified by a camera model. Assuming that the camera centre of pro-

jection lies in the centre of world coordinate frame, its optical axis is oriented along

the z− axis and the distance of the camera projection plane from centre of projec-

25

tion, called focal length f, is equal to one, the homogeneous representation of the

projection can be described by equation:

{i}m =


X
Z

Y
Z

1

 ≈

1 0 0 0

0 1 0 0

0 0 1 0



X

Y

Z

1

 . (1)

In the terms of geometric relations, this projection transforms the 3D point {c}m

from camera coordinate frame to camera projection plane coordinate frame. Please

note that we are using notation {c}m for a 3D point in the coordinate frame of

camera, notation {i}m for a point in coordinate frame of image (pixel coordinates),

and notation {c}m̂ for a point in the coordinate frame of projection surface of the

camera, also known as normalized image coordinates.

The equation (1) assumes that the 3D point coordinates are in camera coordinate

frame, i.e., coordinate frame with origin in the centre of projection. This is not

usually valid in real scenarios where camera pose and 3D points are defined in

world coordinate frame. Therefore to project the 3D point {w}m to camera projection

plane, first it must be transformed from world coordinate frame into the camera

coordinate frame. This is achieved by using a rigid transformation [R | t], where R

is the rotation of the camera coordinate frame and t = −RC, C being position of

the camera centre in the world coordinate frame:

{c}m = [R | t]{w}m . (2)

Rotation matrix R is a 3 × 3 matrix, element of Special Orthogonal group SO3,

which is a group of all valid rotations around the origin in 3D Euclidean space.

The matrix [R | t] represents extrinsic camera parameters.

The focal length of the real world cameras is generally different than one, there-

fore to transform the point {c}m from camera coordinate frame to point {i}m in the

image coordinate frame the projection has to be scaled to take this into account.

Also the principal point c = [cx, cy, 1] is introduced which defines the coordinates

of centre of projection plane in a coordinate frame of the image. Focal length and

principal point are called intrinsic camera parameters. They are independent from

the structure of the scene or camera position or rotation and can be estimated by

camera calibration [99]. Upper triangular matrix K:

K =


fx 0 cx

0 fy cy

0 0 1

 , (3)

26

containing intrinsic parameters f and c, and defining central projection is called

camera calibration matrix. We can write equations (1) and (2) as:


u

v

1

 ≈

fx 0 cx

0 fy cy

0 0 1

 [R | t]


X

Y

Z

1

 , (4)

or shortly as:
{i}m ≈ K[R | t]{w}m . (5)

If the calibration matrix K of the camera is known, the normalized coordinates
{c}m̂ can be computed using equation:

{c}m̂ = K−1{i}m . (6)

The extrinsic camera parameters together with camera calibration matrix K form

the camera projection matrix P, a 3× 4 matrix which defines a projection of a 3D

point form a world coordinate frame to 2D image coordinate frame:

P = K[R | t] . (7)

Due to the imperfection of lens in cameras, the real cameras suffer from distor-

tion. The most common model to describe distortion is radial distortion model [117].

Using first two coefficients d1,d2 of the radial distortion, the relation between ideal

undistorted point (u, v) and real measured point (û, v̂) coordinates are given by

equation:

û = cx + (u− cx)(1+ d1r+ d2r
2),

v̂ = cy + (v− cy)(1+ d1r+ d2r
2) ,

(8)

where r = (u− cx)
2 + (v− cy)

2.

Spherical Camera Model

Central panoramic cameras [108], unlike the pinhole cameras, use the imaging surface

of a sphere instead of a planar one. In the projective geometry, the projection of

a 3D projective space onto a spherical surface is topologically equivalent to the

projection onto a projective plane.

Figure 6 shows the model of a spherical camera with a centre of projection

C and an unit sphere with centre in the centre of projection is defined. The line

passing through the 3D point {c}m and the camera centre C intersects the spherical

surface Π in two points, so it is necessary to assume only half-lines to remove the

27

Π m{c}

m{c}∧

C

x

y

zθ

φ

m'{c}∧

Figure 6: Model of spherical camera.

projection ambiguity. The set of all projections of visible 3D points captured by

spherical camera is called spherical image, and the spherical projection is defined by

a map from 3D space to a surface of a sphere.

The 3D point {c}m̂ on the surface of unit sphere can be computed as:

{c}m̂ =
{c}m

‖{c}m‖
, (9)

where ‖{c}m‖ =
√
X2 + Y2 +Z2 is a L2 norm of a vector {c}m.

Similar to the pinhole camera model, the pose of spherical camera in the world

coordinate frame is defined by transformation matrix [R | t], composed of relative

rotation R and translation t, which transforms the 3D point {w}m from the world

coordinate frame into the local coordinate frame of the spherical camera:

{c}m = [R | t]{w}m . (10)

The spherical coordinates are often expressed with angle parameters [θ,ϕ] (Fig-

ure 6), longitude θ describing the angle between z axis and projection of vector

C{w}m to plane defined by axis xz, and latitude ϕ being the angle of vector C{w}m

and axis y. Assuming that the radius of the sphere is one, the mathematical trans-

formation between spherical coordinates and angular coordinates is given by equa-

tions:

{c}m̂ =


x

y

z

 =


sinθ sinϕ

cosϕ

cosθ sinϕ

 ,

θ
ϕ

 =

arctan (xz)

arccos y

 .

(11)

28

Multiple formats to store spherical image are used depending on the application.

Full panoramatic image stores spherical image as a 2D rectangular image with x

axis representing longitude and y axis representing latitude. The range along the x

axis is ui ∈ [−π,π] and axis y vi ∈ [−π/2,π/2] and the mapping between longitude-

latitude and pixel coordinates is given by equation:

{i}m =


u

v

1

 =


θ+π
2π (M− 1) + 1

N−
ϕ+π/2
π (N− 1) + 1

1

 , (12)

where M and N are dimensions of the image horizontally and vertically. Other

possible format is a cubic panorama [34] consisting of six images representing

projection of spherical image onto unit cube.

Stereo Camera Model

Stereo camera system consists of two general cameras separated by distance called

baseline b. The depth perception arises from the disparity, which is a difference in

the location of the projections of the same 3D point in two different cameras.

Assuming that the images are precisely aligned or if the extrinsic and intrinsic

calibration of the cameras is known, the stereo-matching problem can be reduced

to a one-dimensional search on a line. The disparity map, containing disparity

information for each image element, is computed by processing all the elements of

the stereo image pair, and therefore the 3D position of any valid 2D point can be

obtained through a simple triangulation.

If we assume horizontal baseline, the disparity d between corresponding images
{i}mL = [uL, vL, 1] and {i}mR = [uR, vR, 1] of a same 3D point {w}m is defined as

the difference of the horizontal coordinates:

d({i}mL) = uL − uR . (13)

The depth Z (the distance between the left camera and the 3D point {w}m) can be

calculated by triangulation:

Z = f
b

d({i}mL)
. (14)

After depth of the point Z is estimated, the X and Y coordinates of 3D points can

be computed using equations:

Y =
uLZ

f
, X =

vLZ

f
. (15)

29

LIDAR Model

All LIDAR devices work on the principle of measuring time between optical pulse

generation and its receiving. A laser pulse is generated in certain direction, reflects

upon interaction with an object and returns to the device. High speed counter

measures the time of flight between generation of the pulse and its return. The

distance d of the object is computed using following equation:

d =
tvl
2

, (16)

where vl is a constant - speed of light, and t is a measured time between generating

a pulse and its return. Modern LIDARs use rotating head capable of a tilt to scan

surrounding area around the device. The data is represented by a 3D point cloud.

In this thesis we model LIDAR devices as a sensor with a pose [R | t] in world

coordinate frame, similar to pinhole or spherical camera model, and expect the

data to be a cloud of 3D points in the coordinate frame of sensor with intensity

or colour information. For detailed information about processing of LIDAR signal

and computation of the point cloud we refer reader to [70].

4.3 projective geometry estimation

The aim of the 3D geometry estimation process is to estimate the relations between

the cameras observing the scene, the 3D points and their 2D images. The projective

geometry and relations between cameras is a well researched topic [50] in the field

of computer vision. In this section, we describe the fundamentals of geometry be-

tween cameras and the process of estimation of the relative pose between cameras

satisfying the defined geometric constraints, and in further chapters we extend this

theory to spherical cameras. In the geometry estimation algorithms we assume cal-

ibrated case of the camera, so the normalized image coordinates of the points in are

known. Therefore we will derive the relations in terms of points in the projective

surface of the cameras instead of 2D points in image coordinate system. Assuming

the known camera calibration matrix these points can be computed according to

Equation 6.

4.3.1 Epipolar Constraint

Based on the projective camera model, two cameras capturing a scene from differ-

ent positions are constrained by geometric relations between camera centres, 3D

points and their 2D images defined by epipolar geometry.

30

m m

Π

[R|t]

e e'
C C'

e

l l'

m{w}

{c} {c'}∧∧

Figure 7: Epipolar geometry between two planar cameras.

Figure 7 shows two cameras are observing same scene. The 3D point {w}m, the

camera centres C and C ′ and the corresponding points in the projection planes of

cameras {c}m̂, {c
′}m̂ are coplanar i.e., lie on the same plane Πe, called epipolar plane.

Epipolar plane intersects the camera projection plane in epipolar lines l, l ′ which

contain the images of 3D point. The epipole e - a distinct point in the camera image

plane is formed by projection of other’s camera centre point as if was considered

as a point in space. Epipoles will always lie on the epipolar plane and epipolar

lines, independent of the position of 3D point. Epipolar points may lie in infinity

if the camera projection planes are coincident.

According to epipolar geometry, to mathematically describe the relation between

the images {c}m̂, {c
′}m̂ of 3D point {w}m, without loss of generality, we can assume

that the centre of first camera lies in the origin of world coordinate system and

its rotation matrix is identity. The second camera is positioned according to rigid

transformation [R | t]. If the points {c}m and {c ′}m are the coordinates of the images

of 3D point {w}m in the coordinate system of cameras C and C ′ respectively, the

points are related by rigid transformation:

{c ′}m = R {c}m+ t . (17)

And in the terms of images {c}m̂, {c
′}m̂ and their scales λ and λ ′:

λ ′{c
′}m̂ = Rλ{c}m̂+ t . (18)

This equation relates the vectors {c}m̂, {c
′}m̂ through the rigid transformation [R | t].

In order to eliminate scales, both sides can be pre-multiplied by skew-symmetric

matrix [t]x:

λ ′[t]x
{c ′}m̂ = [t]xRλ

{c}m̂ . (19)

31

Skew-symmetric matrix of a vector t = [t1, t2, t3] is a square matrix denoted [t]x

in a form:

[t]x =


0 −t3 t2

t3 0 −t1

−t2 t1 0

 . (20)

This matrix form is used to represent a cross product as a matrix-vector multipli-

cation.

Another pre-multiplying with {c ′}m̂> yields left side of equation to be equal to

zero, since the vector [t]x {c ′}m̂ is perpendicular to vector {c ′}m̂T and thus its inner

product {c ′}m̂>[t]x
{c ′}m̂ = 0 is zero. Right side of equation is thus equal to zero,

and the scale λ can be eliminated because it is non-zero, non-negative variable:

{c ′}m̂> [t]xR
{c}m̂ = 0 . (21)

The Equation 21 describes the principle of epipolar geometry and the 3x3 matrix

E = [t]xR (22)

is the algebraic representation of epipolar geometry and describes the relative

transformation between two cameras and is called the essential matrix [50].

4.3.2 Epipolar Geometry Estimation

Several methods [50] address the problem of estimation of essential matrix, which

are based on the solving of the system of linear equations. Given the corresponding

points {c}m̂ = [x,y, z], {c
′}m̂ = [x ′,y ′, z ′], the equation (21) can be written in terms

of the elements of E, [e0, e1 . . . e8]:

x ′xe0 + x
′ye1 + x

′ze2 + y
′xe3 + y

′ye4 + y
′ze5 + z

′xe6 + z
′ye7 + z

′ze8 = 0 . (23)

Using muliple n pairs of corresponding points, we can create a system in the form

of:

Au = 0 , (24)

with matrix A and vector u equal to:

A =


x ′0x0 x ′0y0 x ′0z0 y ′0x0 y ′0y0 y ′0z0 z ′0x0 z ′0y0 z ′0z0

...
...

...
...

...
...

...
...

...

x ′nxn x ′nyn x ′nzn y ′nxn y ′nyn y ′nzn z ′nxn z ′nyn z ′nzn

 ,

u = [e0, e1, e2, e3, e4, e5, e6, e7, e8]> .
(25)

32

The solution of the essential matrix which minimizes the error can be found by

solving this system of equations. To improve the solution, the matrix is forced to

have the smallest singular value equal to zero using the SVD algorithm, enforcing

the singularity constraint det(E) = 0. When more correspondences are available

and overdetermined system is solved, it is advised to normalize the input points

by moving their centroid to the origin of the coordinate system and scaling the

points so the maximal point distance from the origin is
√
2 [50].

The estimation of the Essential matrix is possible also from fewer points than

8. The procedure presented in [69] is able to obtain the solution by enforcing the

equality of non-zero singular values in the matrix.

4.3.3 Epipolar Geometry for Guided matching

The guided matching reduces the number of outliers in the set of corresponding

image pairs computed by matching algorithm by introducing matching constraints

derived from epipolar geometry relations between the cameras. Assume only im-

age {c}m̂ (Figure 7) is known and we want to know how the corresponding point
{c ′}m̂ is constrained. The epipolar plane Πe defined by camera centres and vec-

tor {c}m̂ intersects projection plane of second camera in epipolar line l ′ = E {c}m̂.

The corresponding image {c ′}m̂ of 3D point {w}m lies on this line, satisfying equa-

tion l ′ {c
′}m̂ = 0, so in the terms of stereo correspondence algorithm the search is

restricted to 1D space.

4.4 camera pose estimation

Camera registration algorithms estimate the relative transformation between two

cameras based on visual information from the camera images. We assume that

the intrinsic camera parameters are known for both cameras and that the cameras

capture overlapping parts of the scene. In the initialization phase, the areas of the

scene that are observed by both cameras are detected by extracting the 2D feature

points and matching against feature points of other images, creating a set of 2D-

2D corresponding points. Depending on the available information, three situations

may arise:

• The 3D depth information in the coordinate frame of the camera is known for

the 2D correspondences in both images (from depth map or previous camera

registration). In this case, the relative camera position can be estimated from

the alignment of the 3D structure from one camera to other.

33

C C'

m{c}
m{c} m{c} m{c'} m{c'} m{c'}1

1 22 3 3

C C'

m{c}
m{c} m{c}1

2 3

[R|t]

a) b)

Figure 8: Relative pose from 3D points alignment. a) The corresponding pairs of 3D points

are established. b) The relative transformation is found by estimation of the trans-

formation between two 3D point sets.

• The 3D depth information is available for one camera, but from 2D-2D cor-

respondences, we can establish the relations between 3D points and their 2D

images in the second camera. From those correspondences, the pose of the

second camera can be estimated using Perspective-n-Point (PnP) algorithm.

• No 3D information is available, only 2D-2D correspondences between cam-

eras without known poses. In this case, we can perform the initialisation -

estimation of the relative pose between cameras only from 2D-2D correspon-

dences. It is important to find the best pair of images for the initialization of

the system. The images from nearby cameras suffer from large triangulation

errors due to small baseline. On the other hand, images captured by cameras

with large baseline tend to contain little or no overlap between the images

thus failing to detect enough good corresponding points.

In following sections we will look at these situations in more detail.

4.4.1 Pose from 3D structure alignment

If the 3D object points corresponding to 2D image points are known for both cam-

eras, the problem of the estimation of the relative transformation between cam-

eras can be formulated as finding transformation between two sets of 3D points

(Figure 8). The transformation estimation between two sets of 3D corresponding

points is addressed in [8]. The optimal transformation [R | t] relates corresponding

3D points in sets s = [s0, s1, . . . , sn] and d = [d0,d1, . . . ,dn] by:

si = Rdi + t , (26)

34

where R is a 3× 3 rotation matrix and t is a 3× 1 translation vector. The solution

to the optimal transformation can be found by minimizing least squares error:

ER(R, t) =
n∑
i

‖si − (Rdi + t)‖2 . (27)

By finding the centroids ŝ, d̂ of the 3D point sets and transforming the points the

coordinate frame so the centroid of new point sets sc,dc lie in the origin of this

coordinate frame removes the translation component from the error term (27) and

the equation can be rewritten to:

ER(R) =

n∑
i=0

scTi s
c
i + d

cT
i d

c
i − 2s

cT
i Rd

c
i . (28)

The error is minimized when the term scTi Rd
c
i is maximised which equals to max-

imising tr(R,H), where H is a correlation matrix [8]:

H =

n∑
i=0

dci s
cT
i . (29)

Operation tr denotes trace, a sum of diagonal elements of square matrix. The solu-

tion is found by singular value decomposition (SVD) which decomposes the matrix

H = USV> to product of matrices - two unitary matrices U and V and a diagonal

matrix S. The optimal rotation matrix R is:

R = VU> . (30)

The optimal translation can be obtained from the translation that aligns centroids

ŝ, d̂ of the point sets:

t = ŝ− Rd̂ . (31)

4.4.2 Iterative Closest Point (ICP) for 3D Point Cloud Registration

If the 3D data is available for each camera, the relative pose can be estimated

without prior detection of point correspondences by performing 3D point-cloud

registration. The 3D points can be obtained from the depth map computed as in

Section 4.2.1 and registered using ICP algorithm.

The ICP algorithm has been widely adopted to align two given point sets [14,

96]. It finds a rigid 3D transformation (rotation R and translation t) between two

overlapping clouds of points by alternating between closest point computation for

correspondence estimation and iteratively minimising squared-error of registration

between the corresponding points from one set to the other:

ER(R, t) =
ns∑
i

nd∑
j

λi,j‖si − (Rdj + t)‖2 , (32)

35

C

m{c}∧

m{c}∧

m{c}∧

0

1

2

m{w}

m{w}

m{w}

0

1

2

d0

d1

d2 C

m{w}

m{w}

0

2

β

w0

w2

d2

a) b)

Figure 9: Illustration of P3P problem; a) Relations between world points {w}m0,1,2 and

corresponding points {c}m̂0,1,2 in camera projection surface. b) One of triangles

used for building equations (33) by applying cosine law.

where ns and nd are the number of points in the model set s and reference set d,

respectively, and λi,j are the weights for a point match.

In each ICP iteration, the rigid 3D transformation can be efficiently calculated

by singular value decomposition (SVD) [50].

The disadvantage of ICP algorithm is that it requires good initialisation and

when applied to point cloud registration, the ICP algorithm can become very slow

with large number of 3D points.

4.4.3 Pose from 3D-2D correspondences

The camera pose estimation algorithm, or the Perspective-n-Point (PnP) algo-

rithm, computes the 6DOF pose of the camera given the correspondences be-

tween 3D points in the world coordinate frame and their 2D projections in the

camera image and camera calibration matrix. The P3P algorithm [42] solves the

minimal form of the PnP algorithm, requiring minimum of n = 3 point cor-

respondences. The camera pose estimation problem can be formulated as a ge-

ometric problem based on the reprojection equation of a camera (1). The rela-

tions between the 3D and 2D points are used to build a system of equations

(Figure 9), based on the law of cosines: given the three 3D points {w}m0,1,2,

their corresponding points {c}m̂0,1,2 in the camera projection surface, camera

centre C, distances w0 = ‖C{w}m0‖,w1 = ‖C{w}m1‖,w2 = ‖C{w}m2‖, angles

α = ∠{c}m̂1C
{c}m̂2,β = ∠{c}m̂0C

{c}m̂2,γ = ∠{c}m̂0C
{c}m̂1, distances d0 =

‖{w}m0
{w}m1‖, d1 = ‖{w}m1

{w}m2‖, d2 = ‖{w}m0
{w}m2‖. We form the follow-

ing system:

36

w21 +w
2
2 −w1w2 2 cosα− d20 = 0 ,

w22 +w
2
0 −w0w2 2 cosβ− d21 = 0 ,

w20 +w
2
1 −w0w1 2 cosγ− d20 = 0 .

(33)

By solving the set of linear equations in (33) the distances d0,d1,d2 can be ob-

tained and from that the coordinates of 3D points {c}m0,1,2 in the coordinate frame

of the camera computed. The camera pose is estimated by finding the rigid trans-

formation between the world 3D points {w}m0,1,2 and local 3D points {c}m0,1,2.

This algorithm produces up to four solutions for the pose estimation problem, but

using fourth point removes the ambiguity.

Another approach for solving the PnP problem has been presented in [68]. The

Efficient PnP algorithm solves the problem for n > 4 corresponding points in linear

time complexity. This method expresses each 3D point as a weighted sum of four

virtual control points and the coordinates of those control points are unknowns of

the problem.

4.4.4 Pose from 2D-2D correspondences

Without any prior 3D information, the relative pose between cameras can be esti-

mated directly from epipolar geometry. To estimate the relative pose of the cam-

eras, without loss of generality we can assume the position of the first camera in

the centre of the coordinate frame with zero rotation along the coordinate axis:

[I | 0]. The second camera pose can be expressed relative to the first in terms of

rotation and translation [R | t]. From (22) we can observe that the essential matrix

E is a product of a relative rotation R and a skew-symmetric translation matrix

[t]x. Factorizing the essential matrix using the SVD algorithm [50], E = USVT , de-

composes the Essential matrix to three matrices, two unitary matrices U and V

and a diagonal matrix S. We can obtain up to four possible solutions for relative

transformation between the cameras:

P ′ = [UWVT |± u3], [UWTVT |± u3] ,

W =


0 −1 0

1 0 0

0 0 1

 ,
(34)

where u3 is a last column of U, and using the cheirality [118] constraint, the correct

solution can be identified. The concept of cheirality has been introduced in [50].

37

The sign of the cheirality value indicates whether the 3D point lies in front of cam-

era or behind it. For the estimated camera poses the cheirality of the corresponding

points has to be positive. The obtained relative transformation is computed up to

an arbitrary scale. From the relative transformation the camera projection matrices

are P = K[I | 0] and P ′ = K[R | t] according to (7).

Studying the relations between more than two cameras, multiple methods have

been developed - trifocal tensor [112] or quadrifocal tensor [48] which captures the

geometric relations between three and four cameras respectively. These methods

are useful for estimating camera poses from correspondences over multiple images.

Finding corresponding points in multiple images can be a limiting factor, due to

occlusion or insufficient correspondence matching.

4.5 robust estimators

The pose estimation algorithms are sensitive to outliers [46]. In geometry estima-

tion, such problems are typically solved with the help of robust estimators. M-

Estimators [123, 106] reduce the effect of the outliers by applying weighting func-

tion, reducing the problem to weighted least-squares estimation. M-Estimators re-

quire a good initial guess and work best for the low presence of outliers.

RANSAC [35] applies a hypothesise-and-test framework on small, randomly se-

lected sets of correspondences. For the model hypothesis generation, a small subset

of the data is used. The validity of such hypothesis is evaluated on the rest of the

data and the hypothesis with the highest number of inlier data is stored to be chal-

lenged by next hypothesis. RANSAC terminates when it is confident that a better

solution is unlikely [24], returning initial pose estimate and the correspondence set

supporting the hypothesis.

The modification of RANSAC - MLESAC [113] evaluates the quality of the con-

sensus set by computing its likelihood, improving the accuracy through better

hypothesis assessment. The locally optimised (LO) RANSAC [25] performs an op-

timisation of the solution using inlying data to further improve the estimation accu-

racy. Biased sampling [23] steers the hypothesis generation towards samples with

a better likelihood of being inliers (as indicated by the correspondence ranking).

WaldSAC [24] allows the rejection of poor hypotheses without testing the entire

correspondence set, and therefore, provides significant computational savings.

38

m
m

[R|t]
C C'

{c}

{c'}∧

∧

Figure 10: Triangulation problem. In the presence of noise in the measurements, the rays

cast from camera centres C,C ′ through image points {c}m̂, {c
′}m̂ will not inter-

sect in 3D space.

4.6 structure triangulation

Assuming known camera poses, the 3D points corresponding to the point pair

computed by matching algorithm can be estimated by triangulation. The aim of

triangulation algorithm is to find the intersection of the lines defined by the cam-

era centres of projection C,C ′ and image coordinates {c}m̂, {c
′}m̂ of 3D point (Fig-

ure 10). In real-world scenarios, due to the presence of the noise, the lines in 3D

space will not usually intersect. Therefore multiple methods such as mid-point al-

gorithm [13], Direct Linear Transform (DLT) [50] or optimal triangulation [49] have

been presented to find the closest point to both lines. The disadvantage of the

mid-point and dlt methods is that the reconstruction is not invariant to affine nor

projective transformation because perpendicularity is not preserved under those

transformations.

The DLT method computes the position of a 3D point by solving a system of

linear equations given the camera poses and corresponding image points. For each

camera we have a measurement equation {c}m̂ = [R | t] {w}m, {c
′}m̂ = [R ′ | t ′] {w}m

for the same unknown 3D point {w}m. These equations can be expressed in the

terms of cross product eliminating the scale: {c}m̂× ([R | t] {w}m) = 0. This produces

three equations:

x(p>2
{w}m) − z(p>0

{w}m) = 0 ,

y(p>2
{w}m) − z(p>1

{w}m) = 0 ,

x(p>1
{w}m) − y(p>0

{w}m) = 0 ,

(35)

where p0,1,2 are the corresponding rows of transformation matrix [R | t]> and
{c}m̂ = [x,y, z]> are elements of vector {c}m̂. Each corresponding image point cre-

ates three equations, but only two of them are linearly independent. The unknown

3D point has three degrees of freedom so we require at least two corresponding

39

m

[R|t]

e e'
C C'

l l'

{c}∧

m{c}

d m{c'}

m{c'}∧

d'

m{w}

Figure 11: Optimal triangulation problem. The optimal image points {c}ṁ, {c
′}ṁ lie on the

corresponding epipolar lines, closest to the measured points {c}m̂, {c
′}m̂.

image points to solve for it. Equations generated from both corresponding points

can be used to build overdetermined linear system in the form of A{w}m = 0, and

solved for unknown {w}m with A equal to:

A =


xp>2 − zp

>
0

yp>2 − zp
>
1

x ′p
′T
2 − z ′p

′T
0

y ′p
′T
2 − z ′p

′T
1

 . (36)

SVD method can be used to solve this system of equations for position of 3D point
{w}m.

Given the corresponding pair {c}m̂, {c
′}m̂, the key idea of the optimal triangula-

tion algorithm (Figure 11) is to find a pair of points {c}ṁ, {c
′}ṁ that best satisfies

the epipolar constraint {c ′}ṁ>E{c}ṁ = 0. The points satisfying epipolar constraint

must lie on the corresponding epipolar lines, e.g. the point {c ′}ṁ lies on the epipo-

lar line l = E>{c ′}ṁ and vice versa. At the same time these points should lie as

close as possible to the original points {c}m̂, {c
′}m̂. Therefore we seek to minimize:

d({c}m̂, {c}ṁ)2 + d({c
′}m̂, {c

′}ṁ)2 , (37)

where the function d({c}m̂, {c}ṁ) computes distance between parameter points. So-

lution to this triangulation problem can be found using iterative minimization

methods or by applying non-iterative polynomial method presented in [49]. The

advantage of the optimal triangulation is the affine and projective invariance.

4.7 Bundle Adjustment (BA)

The sensor measurements inherently contain noise which propagates to the estima-

tion of sensor poses and computation of the 3D structure. Multiple measurements

40

p p
0 1

M0

z z0 2

𝛴0

M1 M2

z1 z3

Figure 12: Graph representation of two sensors p0,p1 observing points M0,M1,M2 with

measurements zk with covariances Σk (for simplicity only covariance of mea-

surement z0 is shown).

of the same variable allow to find optimal configuration of sensor poses and 3D

points that minimises the measurement error. This refinement process is usually

performed as a final step of reconstruction pipeline by applying optimisation al-

gorithm. The measurement error functions are generally non-linear, so non-linear

approaches have to be used to find the solution.

4.7.1 Graph Representation

We model the static environment and parametrise it as positions of the struc-

ture points together with the poses and parameters of sensors by state variables

θ = [θ1 . . . θn]. The sensors observe the environment indirectly by measurements

z = [z1 . . . zm].

For simple and flexible representation highlighting the structure of such a com-

plex optimisation problem, we adopt a graph representation. Graph model is a

graph containing vertices defining the system variables, such as sensor or point po-

sitions, connected by edges, representing spatial constraints between the variables

derived from measurements or prior knowledge. The cardinality of the factors de-

fine how many variables the edge connects e.g., unary factors define constraints

for a single variable, binary relate two or ternary three variables of the system.

Figure 12 illustrates a simple scenario of two sensors observing three points. The

vertices represent the sensor poses {p0,p1} ∈ θ and point positions {M0,M1,M2} ∈
θ, and factors zk describe the measurements of the variables.

41

The goal of the BA is to obtain the Maximum Likelihood Estimation (MLE) of a

set of variables θ, containing the state variables e.g., sensor poses, environment

information, given the set of relative measurements z:

θ∗ = argmax
θ

P(θ | z) = argmin
θ

(
− log(P(θ | z))

)
. (38)

Due to the sensor noise, the measurements are also affected by noise:

zk = h(θik, θjk) − vk , (39)

where the sensor model function h(θik, θjk) computes zero noise measurement

according to the actual configuration of variables θik, θjk and vk is normally dis-

tributed zero-mean noise with covariance Σk:

P(zk | θik, θjk) ∝ exp
(
−
1

2
‖ zk − h(θik, θjk) ‖2Σk

)
. (40)

Finding the MLE from (38) is done by solving the following non-linear least

squares problem:

θ∗ = argmin
θ

(1
2

m∑
k=1

∥∥zk − h(θik, θjk)
∥∥2
Σk

)
. (41)

4.7.2 Non-linear Solving

To find the solution of the NLS, iterative methods such as Gauss-Newton (GN) or

Levenberg-Marquard (LM) can be applied. These iterative approaches start with an

initial configuration point θ0 and, at each step, a correction δ towards the solution

is computed. For small ‖δ‖, a Taylor series expansion leads to linear approxima-

tions in the neighbourhood of θ0

ẽ(θ0 + δ) ≈ e(θ0) + Jδ , (42)

where e = [e1, . . . , em]> is the set of all nonlinear errors, called residuals, between

the estimated and the actual measurement:

ek(zk,θ) = zk − hk(θik , θjk) , (43)

and furthermore J is the Jacobian matrix which gathers the derivatives of the com-

ponents of e with respect to the state. Thus, at each iteration q, a linear LS problem

is solved:

δ∗ = argmin
δ

1

2
‖A δ− b‖2 , (44)

42

where A = Σ−>\2J(θq) is the system matrix, b = −e(θq) the right hand side (r.h.s.)

and δ = (θ−θq) the correction to be calculated [33]. The the minimum is attained

where the first derivative equals zero:

A> A δ−A>b = 0 or Λδ−η = 0 , (45)

with Λ = A>A, the square symmetric system matrix, called the information matrix

and η = A>b, the right hand side. This is commonly referred to as the normal

equation.

4.7.3 Linear Solving

The linearised version of the problem introduced above can be efficiently solved us-

ing sparse direct optimization methods, either performing Cholesky or QR factor-

izations, followed by backsubstitution. Cholesky factorisation yields Λ = R>R, where

R> is the Cholesky factor and a forward and back substitutions on R>d = A>b and

Rδ = d, first recovers d and then the actual solution δ.

Alternatively, the normal equation in (45) can be skipped and QR factorisation can

be applied directly to matrix A in (44), yielding A = QR, where Q is orthogonal

and R is upper triangular, similar to R of Cholesky factorization up to the sign

(Cholesky will always have positive entries on the diagonal). The solution δ can be

directly obtained by backsubstitution in Rδ = d where d = R−TA>b. Note, that Q

is not explicitly formed. instead b is modified during factorisation to obtain d.

After computing δ, the new linearisation point becomes

θq+1 = θq ⊕ δ , (46)

where the operator ⊕ is a corresponding composition operator depending on the

type of the variables.

4.7.4 Structure of Linearised system

The system information matrix Λ contains approximations of second derivatives

of error functions eij (39). Because the error function eij is dependent only on the

state variables θi and θj, it will affect the structure of the Jacobian to be non-zero

only in the rows corresponding to θi and θj:

Jij =
δeij(θ)

δθ
=

[
0 . . .

δeij(θi)

δθi
. . . 0 . . .

δeij(θj)

δθj
. . . 0

]
. (47)

43

a)

J0 𝛴0
-1T J0 𝛬0

b)
+ ... + =

𝛬0 𝛬n 𝛬

Figure 13: Transformation of the system graph from Figure 12 to matrix representation.

Blue part of matrix represents zero blocks, red parts are non-zero blocks. a)

Structure of the Jacobian, covariance matrix and partial information matrix. b)

Sparse structure of system information matrix computed as a sum of partial

information matrices of each measurement (48).

Each measurement produces one row in the Jacobian matrix with non-zero ele-

ments on the corresponding column positions. The system information matrix Λ

and the coefficient vector η are computed according to:

Λ =
∑

<i,j>∈S
JTijΣ

−1
ij Jij ,

η =
∑

<i,j>∈S
eTijΣ

−1
ij Jij ,

(48)

where S is a set of indices of variables that the measurements relate.

In practice, it is advantageous to keep the information matrix Λ as the system

representation because its size depends only on the number of variables, whereas

the Jacobian matrix A dimensions grow also with measurement count. Augment-

ing the system with a new variable involves the increase of the system matrix size.

Updating with the corresponding measurement is an additive operation on the

system matrix. Given the initial configuration set of the variables and a set of con-

straints, the optimal configuration of variables can be found following the MLE

described in Section 4.7.2.

44

Feature & Descriptor
 Extraction

Geometry EstimationMatching

Structure & Motion
 Refinement

Structure Computation

Input Data

Figure 14: Pipeline of the reconstruction. Full lines represent order of processing blocks,

dotted lines (green) describe data dependencies of each block. Blue blocks are

part of front-end, estimating initial sensor poses and 3D structure. Red block

represents back-end and is responsible for refinement of the initial estimations.

(best seen in colour)

4.8 3d reconstruction pipeline

Figure 14 illustrates the flow of the visual 3D reconstruction algorithm. The algo-

rithm can be divided into two parts–front-end part responsible for initial estimation

of the sensor positions and 3D structure, and back-end part that refines this initial

estimate by applying a non-linear optimization algorithm. For simplicity of the

reconstruction algorithm we assume that the cameras produce monocular images

as their output, and further in Chapter 5 we describe in detail how the data from

other sensors such as spherical cameras and CLIDAR are incorporated.

1. First step of the 3D reconstruction is the data acquisition and selection of

input data. The set of images should contain overlapping parts of the scene

and depict a static scene.

2. The processing continues with detecting feature points in the input images

and extracting their descriptors.

3. The descriptors are used by a matching algorithm to establish the correspon-

dence pairs between sets of feature points from images, assuming the im-

ages contain an overlap. False correspondence pairs are filtered out using

RANSAC algorithm and Epipolar geometry model of the cameras.

4. Once the corresponding pairs are established the pose of the camera can be

computed, depending on the available information, by one of the 3D pose

estimation algorithms (Section 4.4). If no 3D points are associated with the

2D feature points, which is typical for processing the first pair of cameras, the

poses of the cameras is computed by decomposition of the Essential matrix.

45

Otherwise if the 3D information is available for some of the feature points,

the camera pose is estimated using PnP algorithm.

5. The estimated camera poses and corresponding pairs are used as an input

for triangulation algorithm to compute the 3D structure.

Due to the noise in the measurements, the camera poses and structure points

are also subject to error. Therefore it is necessary to apply BA algorithm to refine

the camera poses and 3D structure. BA applies non-linear optimisation algorithms

to find optimal solution for camera poses and structure positions that minimizes

the reconstruction error.

46

5
M U LT I S E N S O R F R O N T E N D

The multisensor reconstruction algorithm consists of two main parts - multisensor

front-end and multisensor back-end. The multisensor front-end is responsible for pro-

cessing the data from sensors and estimation of the positions and rotations of sen-

sors in the scene, the spatial relations between them and initial computation of 3D

structure. The multisensor back-end builds internal representation of the system

and further refines the front-end estimation in a process called optimisation (Chapter

6). The front-end processing follows the reconstruction pipeline (Figure 14) - fea-

ture and descriptors extraction from data, matching, geometry estimation and 3D

structure triangulation. In this chapter, we describe specific approaches applied in

multisensor front-end.

5.1 feature detection and descriptor extraction in data

The relations between the sensors are estimated from a sparse set of correspond-

ing data points. Using sparse sets of correspondences is computationally efficient

and reliable for wide baseline registration. Finding the correspondences between

two sparse sets of feature points is based on matching algorithms which compare

the descriptors of the feature points and according to a similarity function choose

the point pairs with highest scores. When working under wide baseline, the fea-

tures corresponding to the same 3D point can visually differ due to the projective

transformations of camera models. To cope with the visual difference, robust fea-

ture descriptors and matching methods have to be utilized to detect corresponding

image points.

Full spherical panoramic image registration has been a focus of research of [86].

The spherical image data is stored as a high-resolution longitude-latitude image.

Straightforward approach for feature and descriptor extraction in spherical images

is to extract the descriptors directly from the latitude-longitude image. The latitude-

longitude image is heavily distorted mainly in the upper and lower part of the

image due to the spherical projection surface, which causes the lines to be mapped

to curves (Figure 15).

One of the two image pre-processing algorithms can be applied - projecting

the spherical image onto a cube [34], creating six images with reduced spherical

47

Figure 15: Distortion of the lines in longitude-latitude image.

distortion and using them for descriptor extraction, or a projection of the spherical

image around the feature point to the plane tangent to sphere [21]. Comparison of

the matching quality of different methods is described further in this chapter.

Cubic Projection

By projecting the spherical image to the six sides of a unit cube co-centric with the

sphere, it is possible to create six planar images with reduced distortion present in

longitude-latitude image [34]. Using these six cubic images (Figure 16), standard

algorithms for processing of projective images can be applied. The disadvantage

of this method is that

Tangential Projection

The reduction of the spherical distortion as well as preservation the continuity

of the spherical image along left and right border can be achieved by projecting

the spherical image onto a plane tangent to the sphere at the feature point. This

approach extracts a patch around the feature point and performs the descriptor

extraction on this image patch.

The patch is extracted around the feature point, in a coordinate system of a

plane tangent to the sphere at the feature point. The basis of the coordinate frame

are determined as shown in Figure 17. The coordinates of the feature point {c}m̂

are computed using (11). Vector u = [0, 1, 0]> is chosen to correspond with the

direction of the y− axis of the spherical camera. The vectors v,w are computed

to form the orthogonal basis for the local coordinate system around feature point
{c}m̂ using equations:

48

Figure 16: Six cubic images generated from spherical image by projecting the data onto six

sides of a cube.

m

u

w

v

{c}∧

x

y

z

Figure 17: Tangential space.

49

Figure 18: Correction of an extracted patch - From spherical latitude-longitude image (left)

the corrected patch (right bottom) is computed using tangential projection.

w = {c}m̂×u ,

v = w× {c}m̂ ,
(49)

therefore the corners of the tangent patch can be computed as:

ai =
{c}m̂+

[
± λ v

2 ||v||
,±λ w

2 ||w||

]
, (50)

where λ is a scale that defines the size of the patch. For specific size of the patch

N in pixel units, the scale can be computed from the knowledge of the pixel width

M of the source longitude-latitude image:

α = 2 π
N

M
,

λ = 2 tan
(α
2

)
.

(51)

By applying the inverse transformation from points on the tangent patch to the

spherical image, the image can be sampled and colour information of the patch

pixels computed (Figure 18).

5.2 stereo spherical image depth computation

Spherical scan devices such as SpheroCam1 allow for easy vertical stereo spher-

ical image pair acquisition by precisely controlling the height of the sensor. The

known baseline between the image pair and the vertical alignment of the images

can be used as inputs for disparity estimation algorithms to obtain the scene depth

information.

1 www.spheron.com

50

a) b) c)

Figure 19: Computation of depth data from stereo spherical image pairs of Cathedral (top)

and CCSR (bottom) datasets; a) source stereo images, b) depth information en-

coded in colour channels, c) visualization of depth data

A number of studies have been reported on the disparity estimation problem

since the 1970 [101, 92, 41, 51]. Most disparity estimation algorithms solve the

correspondence problem in a discrete domain such as integer or half-pixel levels

which are not sufficient to recover a smooth surface. Especially spherical stereo im-

age pairs can show more serious artifacts in the disparity image because they have

a serious radial distortion. A variational approach which theoretically works on a

continuous domain can be a solution for accurate floating-point disparity estima-

tion. Partial Differential Equation (PDE) [62] based variational disparity estimation

method generates accurate disparity fields with sharp depth discontinuities for sur-

face reconstruction. The visualization of the depth data, computed by the method

of [62], is shown in the Figure 19.

5.3 multisensor registration

In a multisensor scenario, where the image data is captured by different types of

sensors, it is desirable to process all available information to create a 3D model of

a scene and to use the relations between all sensors to achieve better accuracy and

coverage of the scene. We have defined the epipolar geometry in Section 4.3.2 and

the relations and geometry estimation between planar images in Section 4.4. In this

section, we will analogously describe the relations between different sensors - two

spherical cameras, spherical and planar camera and CLIDAR scan and spherical

camera. These sensors are often used for large-scale scene reconstruction, each

51

m

[R|t]

eC
C'

e'

eΠ

m{w}

{c}

m{c'}

∧

∧

Figure 20: Epipolar geometry between two spherical cameras.

with advantages and disadvantages. Monocular cameras can capture small details

and obstructed parts of the scene but cover a small field of view, whereas spherical

cameras and CLIDAR devices cover large parts of the scene but may not cover all

details.

5.3.1 Epipolar geometry of Spherical Camera

Compared to pinhole camera projection, the spherical projection is geometrically

equivalent, but in the case of the spherical camera, the scene is projected onto a unit

sphere instead of projective plane [76]. The epipolar geometry is valid also between

two spherical cameras if the data normalization to unit vectors is performed. This

normalization transforms the pixel coordinates, or latitude-longitude coordinates

to a unit vector on a sphere according to (11) and (12). The following epipolar

relations are defined assuming normalized coordinates of the images of 3D point
{w}m - {c}m̂, {c

′}m̂which together with the camera centres C,C ′ define the epipolar

plane.

In Figure 20, we can observe that the 3D point {w}m is projected into spherical

imaging surfaces, creating point images {c}m̂ and {c ′}m̂, and together with camera

centres C,C ′ are coplanar. The epipolar plane Πe intersects the spherical surfaces

in epipolar circles with their centres in the camera projection centre. The line coin-

ciding with camera centres C,C ′ intersects the spherical surfaces in epipoles e, e ′.

If the points {c}m̂ and {c ′}m̂ are corresponding points in this stereo system, then

essential matrix relates them by:

{c ′}m̂>E{c}m̂ = 0 . (52)

52

Note that according to (22), the first part, n ′ = {c ′}m̂>E = {c ′}m̂>[t]xR, creates a

vector perpendicular to translation vector [t]xR between camera centres C,C ′ and

to vector {c ′}m̂, therefore defining a normal to the epipolar plane Πe instead of

general representation of a line as in case of pinhole cameras. The inner product

of this normal vector n ′ and vector {c}m̂ is equal to zero:

n ′{c}m̂ = 0 , (53)

i.e. the point {c}m̂ lies in the epipolar plane Πe. Analogously this relation is valid

for normal vector n = E{c}m̂ and vector {c ′}m̂>.

5.3.2 Spherical - Spherical Camera Registration

Accurate registration of the spherical images is an important step in the multisen-

sor 3D reconstruction process. Spherical images, compared to traditional cameras,

capture large portion of a scene and therefore only few stereo image pairs are

needed to reconstruct whole scene. Each spherical stereo pair yields a 3D point

cloud model of a scene with respect to centre of the stereo spherical camera. To ac-

quire consistent model of a entire scene, these models have to be correctly aligned

using one of the alignment methods.

Two methods can be applied for the registration of stereo spherical image pairs

- ICP or 3D pose alignment with correspondence estimation. The ICP registration

uses 3D point cloud data from each sensor and iteratively finds the alignment of

the point clouds that minimizes distance between closest 3D points. This approach

requires good initialisation and generally larger amount of 3D points, especially

when registering data captured with wide baseline. Another disadvantage is the

computational complexity of ICP methods when using large amount of 3D points.

The 3D pose alignment with correspondence estimation approach estimates the

relative transformation between sensors by robust matching with the geometry

described in Section 4.4.1 as a model. The descriptors from the 2D features are

assigned to their corresponding 3D points for each sensor, and the matching is per-

formed between the 3D points. The feature matching stage seeks for nearest neigh-

bours, by comparing the associated descriptors. The correspondences are ranked

by the MR-Rayleigh metric [116]. However, the 3D reconstruction framework often

operates under wide-baseline conditions, which significantly reduces the number

of viable matchings. Therefore, the implementation often resorts to a compromise

between ambiguity and quantity, and considers the multiple nearest neighbours,

instead of the best. Each candidate is verified for reciprocity, i.e. whether the points

are in each other’s neighbourhoods. Excessively ambiguous matches are rejected

53

by truncating the neighbourhoods so that, the ratio of the similarity scores for the

worst candidate within the neighbourhood and the best candidate outside is above

a threshold.

In our reconstruction pipeline, we prefer the latter method because the pose

estimation using only sparse subset of corresponding 3D points followed by re-

finement achieves similar accuracy results to ICP method but with better time

efficiency. The comparison of the methods is shown in Section 7.1.

In the case of registration of monocular spherical image, the PnP algorithm (Sec-

tion 4.4.3) can be applied to find the relative transformation using the 2D-2D corre-

spondences between spherical images to create 3D-2D correspondences. Assuming

that we use the normalized unit vectors to represent the points correspondences

and that at least four correspondences are available to estimate the pose of the new

registered spherical camera.

5.3.3 Spherical - Planar Camera Registration

Although the 3D structure of the environment reconstructed from stereo spherical

image pairs provides dense scene structure it may contain noise and inaccuracy

due to the mismatches during disparity map estimation caused by insufficient il-

lumination or lack of texture in the parts of scene. The information from planar

images can recreate more details of the scene or improve the accuracy of reconstruc-

tion by estimating the structure from multiple registered planar cameras. Also, the

images from the hand-held camera are easy to obtain to cover the areas obscured

by objects in the scene.

The registration of planar and spherical cameras is based on visual correspon-

dences. The camera models of the spherical and monocular cameras are both pro-

jective models, but with different projection surfaces. Due to the fact that the spher-

ical cameras capture complete scene around the camera, the overlap between spher-

ical and monocular image is usually present but small in the spherical image. This

can lead to a small number of corresponding points and a large number of outliers,

therefore a robust algorithm is required to determine the relative transformations

between the cameras. Also, the distortion in the longitude-latitude images has to

be taken into account (Section 5.1).

The epipolar relations between monocular planar image and a spherical image

projected onto unit cube has been researched in [20]. We define the relations with

the spherical image in its spherical form, because it is a convenient format for

internal representation directly produced by industrial cameras.

54

m

[R|t]

e
C

C'
e'

le

re

eΠ

m{w}

{c} m{c'}
∧

∧

Figure 21: Epipolar geometry between spherical and planar camera.

Following the notation of Figure 21, we assume geometry of planar and spherical

camera, where {c}m̂ is a vector of image point in planar camera imaging surface

and {c ′}m̂ a vector of image point on unit sphere of imaging surface of spherical

camera. The camera centres C,C ′, 3D point {w}m and its images define epipolar

plane Πe which intersects the projection surface of the camera in epipolar line le
and the projection surface of the spherical camera in epipolar circle re. Assuming

known essential matrix E, (52) will be valid also for this scenario, because the

le = {c ′}m̂>E defines epipolar line in the planar image and the image {c}m̂ lies on

the line, as well as equation n = {c}m̂E> defines normal of a epipolar plane which

the point {c ′}m̂ contains.

In the Figure 22, the registration of the longitude-latitude and planar image is

shown. The guided matching algorithm applying the epipolar geometry described

in this section finds set of corresponding matches between the images, but still

some outliers are present because the spherical-planar epipolar constraint restricts

the corresponding point to lie on epipolar plane or line and therefore any point

lying on those will satisfy the constraint. Therefore these matches are further fil-

tered using the 3D-2D registration model (Section 4.4.3) to obtain reliable set of

corresponding points and relative transformation between the sensors.

5.3.4 CLIDAR Registration

CLIDAR scans provide an accurate dense 3D structure of the scene in the form

of point cloud with assigned colour. Often the reconstruction using only a few

CLIDAR scans is sufficient for many applications, but in a large-scale scenario,

it is advantageous to extend the 3D model with data from other sensors such as

spherical cameras or handheld cameras to achieve better range, more detailed re-

55

a) b)

Figure 22: Correspondences estimation: a) Guided matching using spherical-planar epipo-

lar constraint. b) Guided matching using spherical-planar constraint and 3D-2D

registration scheme described in Section 4.4.3.

construction or to cover obstructed parts of the scene. For this purpose, the relative

transformations between sensors have to be estimated.

The CLIDAR devices such as FARO2 are composed of multiple sensors, a range

measuring laser scanner and camera capable of capturing colour information. The

precise calibration allows for mapping between 3D points and colour information.

The devices also provide tools to extract the longitude-latitude image from the

colour information captured by camera and the 3D point cloud provides depth

for each element of longitude-latitude image. So this data is equivalent to the data

from stereo spherical image pair and can be used for the estimation of relative

pose of sensors.

In the case where the longitude-latitude image is not available from CLIDAR

device and only the coloured 3D point cloud is provided, coloured 3D point cloud

can be transformed to the form of spherical (and depth) image by projecting the 3D

points onto unit sphere with the centre in the frame origin of the point cloud using

(9). For each such projected 3D point the pixel position is found by computing the

longitude-latitude coordinates and applying (12). The source 3D point cloud and a

longitude-latitude image created from CLIDAR scan from Cathedral dataset using

this procedure are shown in the Figure 23.

2 www.faro.com

56

Figure 23: Coloured 3D point cloud from CLIDAR device (top). Generated longitude-

latitude image from point cloud data (bottom).

The generated longitude-latitude image and its corresponding depth informa-

tion can be used for registration either with other longitude-latitude images (Sec-

tion 5.3.2) or with monocular planar images (Section 5.3.3).

5.4 evaluation of the front-end application

In this section, we aim to evaluate the accuracy of the estimation of relative trans-

formation between sensors, especially between the two spherical cameras and be-

tween spherical and monocular camera. The longitude-latitude images contain a

distortion most noticeable in the areas at the top or bottom of the image, due

to the latitude-longitude representation where smaller sections of a sphere are

represented by the same amount of pixels. This problem can result in difficulties

when finding correspondences, especially when finding correspondences between

longitude-latitude and image from a monocular camera.

We address this problem by applying spherical distortion correction algorithms

to reduce the distortion before the feature point descriptors are extracted. The

correction methods (Section 5.1) project part of the spherical image into a planar

image, reducing the distortion of longitude-latitude image representation. The cu-

57

bic projection method projects whole spherical image to six sides of a unit cube,

creating six planar images in which the descriptors are extracted. The tangential

projection method projects the local area around the feature point to the plane tan-

gent to the sphere at the feature position.

Other registration problem arises from the wide baseline of the sensors and

also the difference in scale of the spherical images, which usually cover whole

surrounding scene and planar images which capture a small area of view. The

use of scale-invariant descriptors with high repeatability such as SIFT or KAZE

solves the issue of different scales of images. We also explore the quality of affine

invariant version of SIFT - ASIFT, which should provide more correspondence

pairs under wide baseline sensor placement.

We evaluate the quality of correspondence estimation between two images and

accuracy of registration with respect to the used descriptor type (SIFT, KAZE)

and a method of image distortion correction. We compare the number, quality of

matches and the accuracy of image registration using the cubic projection method

and tangent projection method compared to the basic method - descriptor extraction

directly from longitude-latitude image. Note that the evaluation in this section

involves poses estimated by front-end application, without system optimisation.

5.4.1 Spherical-Spherical image registration

To evaluate the spherical-to-spherical image registration, we use the Studio dataset

spherical images which contain ground truth measurements of the distances be-

tween the centres of spherical camera positions as well as distances to distinctive

points in the scene (Table 2). For each method (longitude-latitude image, cubic images,

tangent space) and descriptor type (SIFT, KAZE), we perform the registration of

spherical images, and measure the number of valid correspondence matches (us-

ing RANSAC with geometry estimation constraint) used for the estimation of the

relative position, and compute the error in the measured distances between spher-

ical cameras and known ground truth information. To achieve the fair comparison

of descriptors, the feature point set was extracted individually and the descriptors

(SIFT, KAZE) were extracted for those feature points. We were not able to apply

this to the ASIFT approach due to the different extraction process.

Another dataset that we used for spherical registration experiments is the Syn-

thetic dataset, containing spherical images generated from CLIDAR data (Table 2).

Although the ground truth sensor poses for this dataset are known from Faro soft-

ware, we compute the error as difference of relative transformations between con-

secutive sensor positions obtained from the front-end application and Faro soft-

58

ware, to be comparable with Studio dataset, where only relative translations be-

tween sensors are known.

Further evaluation has been performed on datasets CCSR, Atrium, and Cathedral

to compare the number of inlying matches used for relative pose estimation de-

pending on the used descriptor extraction method in different baseline settings

between capture poses ∼ 3m, 6m, 23m for Atrium, CCSR, Cathedral respectively (Ta-

ble 3).

Summary

The relative transformation could be estimated using all three types of descrip-

tors with a similar number of estimated correspondence pairs, see Table 2. For

the registration of images from sensors with large baseline (Cathedral), ASIFT fea-

ture and descriptor extractor provided the highest number of estimated correspon-

dences. This is due to the extraction of the descriptors also from affine transformed

longitude-latitude images and therefore achieving affine invariability. On the other

hand, ASIFT detector produces a very high amount of feature points which leads

to more time expensive processing.

Comparing the feature and descriptor extraction directly from longitude-latitude

images and extraction from six generated cubic images, the number of established

correspondences is lower for the cubic method, mostly due to the image borders in

six generated images removing information for descriptors compared to longitude-

latitude image. The overall translation error is similar or slightly lower for all de-

scriptor types using the cubic method compared to the extraction directly from

longitude-latitude image. The approach utilizing tangent projection for descrip-

tor extraction provided a similar number or more correspondence pairs as direct

method but resulted mostly in slightly lower translation error than the other two

methods.

All methods and descriptor types proved to be feasible for the registration of

stereo spherical image pairs, with tangent projection method achieving lowest er-

rors in most of the datasets while maintaining a high number of correspondence

pairs. For the processing of datasets with long baseline (more than 15m), using

ASIFT features and descriptors assures the highest amount of correspondence

pairs. For datasets with smaller baseline, SIFT or KAZE extractor provides suffi-

cient amount of correspondence pairs with the advantage of lower computation

time compared to the ASIFT extractor.

59

Table 2: Correspondence pairs counts and accuracy of the registration of spherical images

for every descriptor type (d - directly from longitude-latitude image, c - projec-

tion to 6 cubic images, t - projection of the image to tangent plane) for Studio

and Synthetic dataset. Multiple numbers in each column represents measurements

between consecutive spherical images, e.g. first number in Matches column rep-

resents number of correspondence matches between first and second longitude-

latitude image.

Studio

Matches Error [mm] Error [◦]

SIFT d 2114/2064/3120 1/24/13 1.2/2.4/0.2

SIFT c 2571/2023/2868 1/28/8 1.2/2.4/0.2

SIFT t 2615/2044/3070 1/26/9 1.2/2.5/0.2

ASIFT d 4541/2987/4801 6/41/8 1.3/2.5/0.2

ASIFT c 1321/1806/3387 2/35/10 1.2/2.5/0.1

KAZE d 2426/1972/2887 1/25/10 1.2/2.5/0.1

KAZE c 2345/1930/2718 1/26/11 1.3/2.3/0.2

KAZE t 2435/1986/2945 1/21/11 1.2/2.5/0.2

Synthetic

Matches Error [mm] Error [◦]

SIFT s 1448/2300 46/87 1.7/1.3

SIFT c 1354/1982 39/79 1.7/1.2

SIFT t 1423/2235 32/80 1.7/1.3

ASIFT s 1666/2129 37/81 1.7/1.3

ASIFT c 1226/1262 36/81 1.6/1.5

KAZE s 1456/2189 55/90 1.7/1.3

KAZE c 1392/1908 55/88 1.7/1.2

KAZE t 1411/2176 52/83 1.7/1.3

5.4.2 Spherical-Planar image registration

To create a consistent 3D reconstruction from spherical and planar images the rel-

ative poses of the sensors have to be estimated. For this task, a sufficient number

of corresponding features in both types of images has to be determined. Generally,

the spherical images capture surrounding area on much bigger scale than the pla-

60

Table 3: Correspondence pairs counts of the registration of spherical images depending on

the descriptor type (d - directly from longitude-latitude image, c - projection to 6

cubic images, t - projection of the image to tangent plane) for Atrium, CCSR and

Cathedral datasets. Multiple numbers in each column represents measurements

between consecutive spherical images, e.g. first number in Matches column rep-

resents number of correspondence matches between first and second longitude-

latitude image.

Atrium CCSR Cathedral

SIFT d 2555/1924/1838/2130 1390/1145 334/165

SIFT c 2221/1980/1780/1858 1158/964 317/161

SIFT t 2334/1949/1731/1902 1316/1082 315/261

ASIFT d 2638/1909/1698/1897 1804/1864 717/597

ASIFT c 1938/1566/1565/1802 1172/1310 564/638

KAZE d 2091/1785/1543/1445 1204/1012 274/147

KAZE c 1789/1609/1481/1427 1106/927 289/214

KAZE t 2177/1769/1608/1703 1173/1025 274/254

nar images which always capture only small portion of the scene, therefore the de-

scriptors have to be scale invariant. The distortion in the longitude-latitude images

also plays important role in finding correspondences. Using the best descriptor

type and distortion correction method (Section 5.1) can lead to more established

correspondences and therefore to more accurate pose estimation. In this section,

we evaluate the accuracy of registration of planar images to the spherical image

depending on the descriptor type and the method of spherical image distortion

correction.

We evaluate the registration algorithm on Synthetic dataset, with ground truth

information about poses of spherical camera and virtual planar cameras. The re-

sults in the Table 4 show percentage of correctly registered cameras and the mean

pose error and variance compared to the ground truth for each descriptor type and

distortion correction method.

Summary

For the Synthetic dataset, the registration algorithm was able to register all planar

images to the spherical image using SIFT and ASIFT descriptors. KAZE descriptors

failed to register two images from the Synthetic dataset for each correction method.

61

Table 4: Spherical-Planar image registration results for different types of descriptors and

distortion correction methods used (d - directly from longitude-latitude image, c

- projection to 6 cubic images, t - projection of the image to tangent plane). The

values in the parenthesis represent variance.

Synthetic CCSR

Matched [%] Error [mm] Error [◦] Matched [%]

SIFT d 100% 80(0.003) 0.521(0.089) 52%

SIFT c 100% 51(0.001) 0.368(0.019) 50%

SIFT t 100% 44(0.001) 0.380(0.020) 55%

ASIFT d 100% 67(0.002) 0.39(0.017) 60%

ASIFT c 100% 60(0.003) 0.46(0.038) 58%

KAZE d 90% 84(0.008) 0.54(0.176) 24%

KAZE c 90% 82(0.007) 0.54(0.086) 23%

KAZE t 90% 65(0.002) 0.42(0.116) 24%

The ASIFT descriptors performed comparably in both combinations with direct

extraction and cubic projection method, but did not achieve the accuracy of SIFT

descriptors with cubic or tangential projection method.

Overall, the cubic projection method managed to lower the error for all types of

descriptors. Furthermore, using the tangent projection method proved to be most

accurate of the correction methods.

Regarding the CCSR dataset, many planar images could not be registered due to

the camera capturing very small part of the scene or ground, where not enough dis-

tinctive features could be found to establish a sufficient number of correspondence

pairs. Using the KAZE features failed for the biggest number of the CCSR dataset

rendering this method not very suitable for processing of real-world dataset. SIFT

and ASIFT descriptors with tangent correction and direct method succeeded in most

cases of the planar-spherical image registration. The cubic method failed at more

images than other two methods due to the borders in six generated images leading

to less information in descriptors.

62

6
M U LT I S E N S O R 3 D R E C O N S T R U C T I O N B A C K - E N D

The multisensor back-end is tied to the front-end part, and its purpose is to re-

fine the initial sensor poses and structure estimation provided by the front-end

algorithm. The internal representation consists of variables representing the sensor

poses and structure points parameters, and of edges derived from the measurement

data. The initial configuration of the sensor and structure parameters is provided

by the front-end application and it encodes the initial state of the system. Given

this state, we can compute the expectations–predictions of the measurements. The

difference between measurement expectation and actual measurement describes

how well the actual configuration of system fits the measurements.

The aim of the back-end is the optimisation of this system of variables and

constraints between them to estimate the variable configuration that minimizes

the error between expected and real measurements. This involves optimising a

non-linear function over a large parameter space. In this chapter, we describe the

optimisation framework and the variable and edge types used by the multisensor

back-end to obtain the best configuration of the sensor poses and structure points.

6.1 slam++

The joint pose and structure refinement is implemented on our open-source, non-

linear graph optimisation library, called SLAM++ [5]. This C++ library is a very

efficient implementation of several non-linear least squares solvers, based on fast

sparse block matrix manipulation for solving the linearised problems. SLAM++

was primarily developed for efficient solving of SLAM problems in robotics, which

can be formulated as a non-linear least squares problem similarly as described in

Section 4.7.2, where variables represent robot trajectory and/or landmark posi-

tions, and the edges consist of relative measurements of the landmarks from robot

positions. SLAM problem is mathematically equivalent to BA. The general imple-

mentation allows for the definition of variables and edges for solving BA prob-

lems as well. SLAM++ produces fast, but accurate estimations, which most of the

time outperforms similar state-of-the-art implementations of graph optimisation

systems [60, 59, 67].

63

6.1.1 Sparse block matrix structure

Solving the BA, SLAM and SFM non-linear problems involves operations with

matrices having a block structure (Section 4.7.4), because the variables usually have

more than one degree of freedom (DOF). For example the pose of sensor in 3D is

a variable represented by six parameters - three defining position and three rotation

of the sensor. The associated system matrix can be interpreted as partitioned into

sections corresponding to each variable, called blocks, which can be manipulated

at once.

The dimensions of the system matrix are usually very large, but only a small

number of blocks are non-zero. It is due to the fact that a measurement only affects

a few variables, for example, the field of view of cameras is limited so they do

not observe all 3D points, i.e. not all variables are connected by measurements

and therefore only a few blocks in the system matrix are non-zero. Therefore it

is necessary to use sparse block structures for memory efficient storage and use

sparse algorithms for matrix operations [29, 31].

In the existing state of the art implementations of sparse block matrix schemes

[67, 2], the arithmetic efficiency is mostly reduced, compared to element-wise

sparse matrices. That can be explained intuitively by the need for two extra nested

loops for block rows and block columns that reduce the arithmetics to flow control

instruction ratio and thus also computational efficiency. SLAM++ implementation

elegantly solves this issue using metaprogramming [89, 5].

For the least square problems, the size of the blocks corresponds to the number

of degrees of freedom of the variables. Therefore, the possible block sizes of a

given problem are known in advance–at compile time. It is thus possible to hint

the individual operations on matrices with lists of possible block sizes occurring

in the operands.

SLAM++ takes advantage of advanced metaprogramming concepts: type lists are

employed to represent and manipulate the sets of possible block sizes. Those are

used in the matrix operations to generate decision trees that handle all possible

loop sizes in a given matrix. This allows for optimization using loop unrolling and

vectorization at the block level. It can be easily shown that if log2 of the number of

different block sizes is smaller than the average block size, the resulting code will

contain less branching and thus will run faster. Note that in C++, this functionality

is accessible using simple and easy to read syntax where the list of block sizes is

passed to each individual matrix operation call in angled brackets.

The vectorization and loop unrolling, in addition to other algorithmic and data

structure improvements lead to substantial advantages over element-wise sparse

64

a) b) c)

Figure 24: Sparse matrix structure, a) SLAM pose and landmark problem. b) BA problem

- natural order b) BA problem - reordered. The non-zero blocks are in blue, the

b) and c) matrices contain same amount of non-zero blocks.

implementations, as well as over the other existing sparse block matrix implemen-

tations.

Additionally, in the process of solving a linearised system, direct methods are

often employed. Some of the other existing implementations such as g2o [67],

iSAM [60] or Ceres [2] use some sparse block matrix schemes internally but rely

on element-wise sparse factorization [28, 30]. This requires converting the system

matrices, leading to reduced efficiency. SLAM++ contains highly efficient sparse

block Cholesky factorization and thus avoids this conversion.

The information matrices associated with SLAM problems are usually very

sparse (about 0.1–0.25%). Since the odometry is often involved, edges exist be-

tween consecutive poses, yielding a block diagonal matrix. Additional edges in

the form of loop closures and landmark observations add the off-diagonal non-

zeros. In landmark SLAM, the landmarks typically form only a small fraction of

the system (Figure 24, a)).

Similarly, the information matrices associated with the BA problems are also

very sparse, 0.005–0.025%. Unlike landmark SLAM, however, the landmarks form

the major part of the system, e.g. 92/57957 in Guildford Cathedral.On the other

hand, in SLAM datasets 100/10000 in CityTrees10k or 151/6969 in Victoria Park.

Additionally, the BA systems typically lack odometry and thus they form bipartite

graphs. This is often seen as an “arrow shape” (Figure 24, c)) matrix when the

sensor pose vertices are ordered before the landmark position vertices.

65

6.1.2 Optimisation

SLAM++ provides two iterative non-linear optimisation methods–Gauss-

Newton (GN) and Levenberg-Marquardt (LM). For the BA problems, the LM

method provides more reliable results because the initial estimation can be rela-

tively far from the minimum and the GN easily diverges. LM is based on efficient

damping strategies which allow convergence even from poor initial solutions. For

that, LM solves a slightly modified variant of (45), which involves a damping factor

λ:

(Λ+ λD̄)δ = η , (54)

where D̄ can be either the identity matrix, D̄ = I, or the diagonal of the matrix Λ,

D̄ = diag(Λ).

Special structure of the BA problem can be exploited to achieve more efficient

solving of linearised system. Schur complement is employed to solve the linearised

problem in (54). The system matrix is split in four blocks separating camera and

points variables: A B

B> C

 ·
p
m

 =

ηp
ηm

 . (55)

This is a common practice in solving 3D reconstruction problems, where the cam-

era poses are linked only through the points. It results in block diagonal A and

C matrices, which can be easily inverted by inverting the individual blocks. If

C is invertible, the Schur complement of the submatrix C is A−BC−1B>, and

is used to solve for the camera pose variables first. This is done by solving

Schur(A)p = ηm −BC−1ηp, which is amenable to using both direct or iterative

solvers (e.g. [72] used a dense Cholesky solver, [64] used a sparse one). The points

can then be obtained by two matrix-vector products m = C−1(ηm −B>p).

Performing matrix inversion and multiplication in the Schur complement form

brings a reduction in computational time compared to performing Cholesky fac-

torisation of the whole system. To improve convergence, after every iteration of

the non-linear solver, the state of the cameras is fixed and three iterations optimis-

ing only the points are performed. This is based on the observation, that while a

single camera may depend on a large number of points, a single point is usually

only observed from two or three cameras, and as such the positions of the points

are harder to estimate precisely. When the cameras are fixed, the cameras are com-

puted as P = C−1ηp so not whole Schur complement needs to be computed. The

extra iterations allow the points to settle before performing the following non-

linear solver iterations. The extra iterations reduce residual as efficiently as the

66

full nonlinear iterations [2], only at much smaller computational cost. A similar

technique was described in [57].

6.1.3 Incremental approach

For applications that run in real time, augmenting the system with new variables

and measurements needs to be performed efficiently every step. In [7], we present

an approach that takes advantage of the sparse-block structure of SLAM and BA

problems, and avoids the assembly of the linearised system each iteration by in-

crementally updating the factorised form R of the linear system Λ and changing

the linearisation point only when needed. The incremental updates are performed

only on the parts of the matrix that are affected by new measurements.

Incrementally updating the system matrix

Updating the system with a new measurement is additive in information form [6].

We denote Ω = JTijΣ
−1
ij Jij and ω = −JijΣ

−1/2
ij eij to be the increments in informa-

tion, where Jij is the Jacobian of the new measurement. In general, the measure-

ment function h(·) involves only two variables, (θi, θj). For this reason and for

simplicity, the following formulation will be restricted to measurements between

two variables but its application remains general. The corresponding Jacobian, J,

is very sparse (47) and this translates into a sparse Ω and ω. The update step

only partially changes the information matrix Λ and the information vector η. For

simplicity of the notations, in the following formulations, the system matrices are

split in parts that change (Λ11, η1) and parts that remain unchanged (Λ00, Λ10
and η0):

Λ̃ =

Λ00 Λ>10

Λ10 Λ11 +Ω

 η̃ =

 η0

η1 +ω

 . (56)

In the formulation above we deliberately considered that the current measure-

ment to be integrated involves the last variable added to the system. This is the

situation usually encountered in incremental SLAM problem. Note that this as-

sumption is not necessarily needed, the formulation in (56) stays general.

As shown above, only a small part of the information matrix and the information

vector are changed in the update process and the same happens with its factorized

form R. The updated R̃ factor and the corresponding r.h.s. d̃ can be written as:

R̃ =

R00 R01

0 R̃11

 d̃ =

d0
d̃1

 . (57)

67

Λ~

Λ Λ

Λ~

~
00 01

11

R

RR00
01

11
~

~
Λ~

Λ~

ord

ord1

ResChol

Figure 25: Data flow diagram of incremental block Cholesky factorisation. Light blue parts

of matrix do not change, pink are parts that will change, red blocks represent

the update and dark blue blocks non-zero elements.

The updated part of the Cholesky factor and the corresponding right hand side

can be computed as:

R̃11 = chol(R
>
11R11 +Ω) , (58)

d̃1 = R̃
>
11 \ (η̃1 − R

>
01d0) . (59)

This fast incremental update approach suffers from two important problems.

Firstly, without periodic reorderings, the factorized form becomes less and less

sparse, slowing down the solving. Another problem is that within an iterative non-

linear solver the linearization point can change every iteration, invalidating the

entire factorization.

Incremental Ordering

The recently introduced data structure, the Bayes tree [59], offers the possibility

to develop incremental algorithms where reordering and re-linearization are per-

formed fluidly, without the need of periodic updates. Inspired by this strategy,

SLAM++ proposes an elegant and highly efficient incremental reordering which

combines the efficiency of matrix implementation [7].

The order of the rows and columns in the system matrix Λ directly influences the

number of non-zero elements, also called fill-in, in the factorised matrix R and af-

fects the speed of updates. It has been presented [59] that reordering the variables

every step significantly reduces the fill-in of the factorised matrix, but performing

the full reordering of whole system matrix Λ would be inefficient and would es-

sentially lead to a batch solver. Therefore the partial reordering strategy of the part

of the factorised matrix affected by the update is facilitated. Whole system matrix

reordering and factorisation is performed only when linearisation point changes

or when the updated part of factorised matrix is significantly big.

68

Figure 26: Covariance computed for camera poses and structure points of Cathedral

dataset.

The approach in [5] shows how an efficient incremental ordering can be obtained

by considering a partial ordering on a submatrix of Λ̃, which is slightly larger than

Λ̃11 = Λ11 +Ω and which satisfies the conditions of being square and not having

any non-zero elements above or left of it (Figure 25). This guarantees that the or-

dering heuristics such as approximate minimum degree [7] will have information

about the non-zero entries in Λ̃10 = Λ̃
>
01, which would otherwise cause unwanted

fill-in.

The factorisation of the Λ̃ matrix can be performed using Resumed Cholesky algo-

rithm implemented in SLAM++. This algorithm is able to compute factorisation by

columns while only using the calculated values to the left of this column. There-

fore it is possible to resume the factorisation of the right part of R while only using

the reordered part of Λ and the unchanged part of the factor R00. The advantage

of this approach is the overall simplicity of the incremental updates to the factor,

while also saving substantial time by avoiding recalculation of R00.

6.1.4 Covariance Recovery

In some applications, the estimation of the covariance of the variables is necessary

to assert the reconstruction or to evaluate mutual information required in active

mapping. The calculation of the covariance amounts to inverting the system ma-

trix Σ = Λ−1. For large systems this operation is prohibitive, since it results in a

fully dense matrix. Many applications require computation of covariances only for

a few elements of the system matrix, usually the covariances of the diagonal ele-

ments and of the last column. For example in BA application those covariances of

diagonal elements represent uncertainty of camera poses and 3D point positions.

69

a) b) c) d) e)

f) g) h) i)

Figure 27: Illustration of SLAM datasets: a) Manhattan, b) 10k, c) City10k, d) CityTrees10k,

e) Sphere, f) Intel, g) Killian Court, h) Victoria Park, i) Parking Garage

SLAM++ elaborates on the recursive formula for covariance estimation of [15, 44,

58] which allows computation of covariances for specific elements from factorised

matrix R. To compute multiple elements of the covariance matrix, such as the whole

block diagonal, these formulas are efficient only if all the intermediate results are

stored.

We mentioned that most of the algorithmic speedups can be applied in case the

linearisation point is kept the same. As demonstrated in (56), the contribution of

new measurements is additive. In [4] we show that the same update of covariance

matrix is subtractive, i.e. the new measurement adds information to the system and

reduces uncertainty. The proposed scheme allows for incremental calculation of Σ

on demand, whenever needed. Calculating the covariances incrementally leads to

about two orders of magnitude speed-up, compared to the other state of the art

implementations.

6.1.5 SLAM++ efficiency results

The SLAM community developed very efficient solvers due to the need of fast

processing in robotics. To evaluate the SLAM++ efficiency, we compare the imple-

mentation with similar state of the art solvers such as iSAM [60], g2o [67], gtsam

implementation of the iSAM2 algorithm [59] and SPA [72]. The evaluation is per-

formed on standard simulated robotic datasets - Manhattan [85], 10k [45], City10k,

CityTrees10k [60], Sphere [45], and four real datasets - Intel [54], Killian Court [16],

Victoria park [54] and Parking Garage [67].

70

All the tests were performed on an Intel Core i5 CPU 661 with 8 GB of RAM and

running at 3.33 GHz. This is a quad-core CPU without hyperthreading and with

full SSE instruction set support. During the tests, the computer was not running

any time-consuming processes in the background. Each test was run ten times and

the average time was calculated in order to avoid measurement errors, especially

on smaller datasets.

SPA and g2o are based on similar sparse block matrix scheme which is main-

tained until the matrix factorisation is performed, then the switch to format to be

able to use libraries CSparse [28] and CHOLMOD [30] to perform factorisation,

which is a time-consuming process. Those are state of the art element-wise im-

plementations of operations on sparse matrices. SPA is optimized for 2D SLAM

problem, g2o implementation is general, allowing any type of SLAM, BA or SFM

problem. iSAM requires periodic batch steps to reduce the fill-in. iSAM2 is based

on Bayes tree data structure, allows incremental reordering and fluid relinearisa-

tion.

Batch Solving

Timing results for running batch solving are shown in Table 5. The last row re-

ports the values of χ2 error. We denote A− SLAM an algorithm that builds linear

system in (44) and Λ − SLAM an algorithm that increments information matrix

in (45). The algorithm is also evaluated using factorisation from CSparse (CS) and

CHOLMOD (CM) libraries. The comparison in batch mode shows a speed-up of

10% when compared to the fastest implementation which is mainly due to the

proposed block matrix scheme. Note that the small speed-up is due to the fact

that in this benchmark, the factorization accounts most of the solving time and the

compared solvers use the same implementations.

Incremental Solving

Two incremental algorithms, first updating only the system matrix Λ, performing

factorisation every step (denoted IncΛ) and second keeping the factorised matrix L

up to date (IncL), were evaluated using block Cholesky (BC) factorisation proposed

in [5], factorisation from CSparse (CS) and CHOLMOD (CM) libraries.

In the Table 6, the execution times of the processing of the datasets are shown.

The flags b100 represent the frequency of batch computations (factorisation of

whole system matrix Λ) each 100 vertices inserted. For the results without those

flags, the nonlinear system was solved every step in order to obtain the current

estimation, or only when needed in the case of our incremental algorithm. The

incremental algorithm provides a solution with each new update.

71

Manhattan 10K 100K City10K Trees10K Intel Killian

g2o(CS) 0.061 0.554 10.814 0.486 0.136 0.007 0.008

g2o(CH) 0.060 0.550 9.418 0.449 0.139 0.007 0.009

iSAM(CS) 1.364 2.952 24.958 1.421 0.625 0.036 0.054

A-SLAM(CS) 0.057 0.634 10.479 0.464 0.139 0.013 0.009

A-SLAM(CH) 0.061 0.698 12.009 0.531 0.147 0.008 0.010

Λ-SLAM(CS) 0.042 0.485 9.221 0.420 0.092 0.005 0.007

Λ-SLAM(CH) 0.047 0.580 11.056 0.456 0.109 0.006 0.008

χ2 6112 171545 8685 31931 548 559 5 · 10−6

Table 5: Comparison of the batch solvers (CH refers to CHOLMOD and CS to CSparse

library).

0	

5	

10	

15	

20	

25	

30	

35	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	
 9000	
 10000	

χ2
	

×	

10
00
0	

vertex	

iSAM(b100)	
 iSAM2	
 allBatch-­‐Λ	
 Inc-­‐L	

Figure 28: Quality of the estimations on 10k dataset.

The incremental algorithm is different from the algorithms of g2o and SPA,

where a batch step is performed every n variables inserted into the system and

no solutions are available in-between, so the results are comparable only to IncΛ

for n = 1. iSAM and iSAM2 provide solution every step, with iSAM requiring pe-

riodic batch step (by default every 100 steps). Keeping the same linearisation point

for long time leads to error increases and decreases between those steps (seen in

Figure 28).

The incremental implementation achieves the fastest results on all datasets ex-

cept CityTrees10k dataset, which is caused by the dense structure of the problem.

In this case, reordering is advantageous over incremental reordering. The closest

results to IncL algorithm are from iSAM2. The difference between those algorithms

is that IncL relinearizes affected variables only when needed.

The block Cholesky factorisation algorithm was tested on full system matrices

in the incremental algorithm and compared with CSparse and CHOLMOD algo-

72

Manhattan 10K City10K Trees10K Sphere Intel Killian Victoria Garage

SPA 24.16 518.34 309.56 N/A N/A 1.48 5.67 N/A N/A

g2o 22.51 500.37 302.50 175.12 145.49 1.30 5.02 81.19 20.37

iSAM(b100) 4.83 279.93 77.57 22.93 36.22 1.29 4.21 11.92 52.22

iSAM2 4.93 91.74 60.98 32.69 31.27 0.62 1.19 16.35 3.66

IncΛ CS 8.60 287.70 202.84 19.53 216.49 0.65 1.71 23.16 17.32

IncΛ CH 10.73 236.28 181.14 24.48 71.49 0.79 2.10 28.26 23.93

IncΛ BC 7.21 242.21 188.85 17.57 78.37 0.51 1.24 18.71 11.34

IncL BC 3.05 79.65 53.95 19.31 9.87 0.35 1.05 11.20 3.41

error-iSAM2 6205 171600 31951 794 775 559 8e− 5 370 1.26

error-IncL BC 6111 171919 31931 12062 727 558 5e− 5 144 1.31

Table 6: Performance and accuracy tests on multiple datasets. The accuracy is measured as

a sum of squared errors. The accuracy for landmark datasets (Trees10K, Victoria

Park) are different because of different landmark parametrisation and therefore

incomparable.

rithms. The fastest results were achieved using the block Cholesky algorithm for

all tested datasets.

Covariance Recovery

Table 7 shows the time performance of SLAM++ incremental covariance recovery

strategy compared with g2o and iSAM implementations. The block-diagonal and

the last block column of the covariance matrix are recovered at every step in all

the cases. These are the only elements of the covariance matrix required for taking

active decisions based on the current estimation and efficient search for data asso-

ciation in an online SLAM application. The SLAM++ covariance computation for

BA datasets were performed in [90].

Manhattan 10K City10K Trees10K Sphere Intel Killian Victoria Garage

iSAM 206.58 6712.03 4585.15 1009.91 6051.73 6.23 19.27 310.57 237.13

g2o 18.42 5902.46 3742.66 938.97 5536.48 6.92 21.59 293.09 216.28

SLAM++ 4.37 179.69 55.87 30.98 24.64 0.54 1.43 13.89 10.77

SLAM++ Total 13.88 388.67 219.43 60.41 105.35 1.11 2.99 37.11 27.08

Table 7: Time performance in seconds for the covariance recovery method on multiple

SLAM datasets. Last row reports total processing time–solving the SLAM problem

and covariance computation.

73

In conclusion, the proposed implementation significantly outperforms all the

existing implementations due to the proposed incremental covariance update algo-

rithm and the blockwise implementation of the recursive formula.

6.2 system representation

We utilize hyper-graph structure to represent the optimisation problem (Sec-

tion 4.7.1). SLAM++ implements variables structures to define sensors poses and

points in 2D or 3D space and edge structures to impose constraints between the

variables. In this section, we describe the internal representation of the variable

and edge structures used in multisensor SLAM++ application.

6.2.1 Variables

The configuration of the system consists of variables such as sensor poses and

structure points. Each variable is defined by a number of parameters according

to the number of its degrees of freedom. The initial estimation of the variables is

provided by the front-end application. In the graph, the variables represent the

vertices.

All variables extend the implementation class CSEBaseVertexImpl which mod-

els the parameter block used for the representation of vertex with specified degree

of freedom. The variable classes also implement the update (46), which needs to be

handled differently for each variable. For example, whereas the update of the 3D

point is per-element addition, the update of 6DOF position variable is an operation

on se(3) which is the Lie algebra [107] of the special Euclidean group SE(3).

3D Point

Code 1: Implementation of a 3D point variable.

1 class CVertexXYZ : public CSEBaseVertexImpl<CVertexXYZ, 3>

The reconstructed environment is represented by 3D points computed from sensor

measurements e.g., triangulation algorithm from corresponding points between

cameras or from depth information from stereo cameras or LIDAR. Due to the

presence of noise in the measurements and camera positions, the computed posi-

tion of the 3D points is also perturbed by noise, therefore it is necessary to define

the 3D points as variables to be able to refine the structure by optimising the sys-

74

tem. The 3D structure point is represented by a vectorM = [x,y, z]> ∈ R describing

the position of the point in the world coordinate frame.

Monocular camera

Code 2: Implementation of a monocular camera variable.

class CVertexCam : public CSEBaseVertexImpl<CVertexCam, 6>

protected:

Eigen::Matrix<double, 5, 1, Eigen::DontAlign> m_v_intrinsics;

The camera pose consists of position and orientation. The position is defined by

three parameters representing the position of the sensor in the world coordinate

frame and the rotation is represented by three axis-angle parameters. The axis-angle

representation, in the form of αe, compared to the rotation matrix representation

uses only three quantities to describe the rotation. Unit vector e = [e0, e1, e2] indi-

cates the axis of rotation and the angle α describes magnitude of rotation.

The camera pose variable has six degrees of freedom and is represented by a vec-

tor p = [x,y, z,αe0,αe1,αe2], element of se(3), defining the rigid transformation

of the camera in the world coordinate frame.

Furthermore the monocular camera is parametrised by intrinsic camera parame-

ters - focal length f, principal point c and a first order radial distortion coefficient

d of the monocular camera. Having the intrinsic camera parameters as a variable

allows for calibration refinement - estimation of camera intrinsic parameters to

better fit the data.

There are two options for modeling the intrinsic camera parameters - as a part

of the monocular camera variable or as a separate variable. The former option

extends the camera variable by a five-parameter vector τ = [fx, fy, cx, cy,d] and

then the optimisation refines the parameters specifically for this camera variable.

The option involving separate intrinsic variable allows for sharing of intrinsic cam-

era parameters between multiple cameras, optimising the separate variable linked

to multiple monocular camera variables. This is achieved via ternary reprojection

edges described in Section 6.2.2.

Intrinsic Camera Parameters

Code 3: Implementation of an intrinsic parameters variable.

class CVertexIntrinsics : public CSEBaseVertexImpl<CVertexIntrinsics,

5>

75

For modelling of shared camera calibration, for example, when multiple images

were captured by the same camera, the variable for intrinsic parameters is in-

troduced. Intrinsic camera parameters variable contains information about fo-

cal length f, principal point c and a first order radial distortion coefficient d

of the monocular camera. This variable is represented by five parameter vector

τ = [fx, fy, cx, cy,d].

Stereo Spherical Camera and CLIDAR

Code 4: Implementation of spherical camera and LIDAR variable.

class CVertexSpheron : public CSEBaseVertexImpl<CVertexSpheron, 6>

In Section 5.3.2 we show that the CLIDAR data can be represented and processed

similar to the stereo spherical cameras. Therefore the variable representation of

spherical camera and CLIDAR device is the same. This variable is used to repre-

sent the 6DOF pose of these sensors in the world coordinate frame. Similar to the

monocular camera variable, the position and orientation is represented by a vector

p = [x,y, z,αe0,αe1,αe2], element of special Euclidean group SE(3), defining the

rigid transformation of the sensor in the world coordinate frame.

6.2.2 Edges

Code 5: Implementation of a base edge type.

template <class CDerivedEdge, class CVertexTypeList, int

_n_residual_dimension, int _n_storage_dimension = -1>

class CBaseEdgeImpl : public CBaseEdge

The measurements impose relations between variables, represented by edges con-

necting the variables involved in the measurement. Furthermore we assume inde-

pendent Gaussian measurement noise, for each measurement zk, represented by

covariance matrix Σk. Each edge gives rise to residual (43) and the goal of the

back-end is to find the configuration of the variables θ that minimize the sum of

squared residuals by solving the non-linear least squares problem (41), following

the approach described in Section 4.7.2.

The implementation class CBaseEdgeImpl (Code 5) is templated by list of vertex

types. This edge contains dimension of the residual vector and a dimension of

measurement vector. Based on the number of variables that the edge connects, we

differentiate between unary, binary and hyper-edges.

76

Unary Edge

The unary edge constraints only one variable and its purpose is to provide a prior

information. In the context of BA and SLAM applications, the unary edge is used

to fix the position of the first camera p0 to world coordinates. The residual of unary

edge has form of:

e(p0) = 0	 p0 , (60)

where vector 0 defines desired fixed camera pose and operand 	 is an inverse pose

composition of SE3 group.

Reprojection Edge

Code 6: Implementation of reprojection edge without shared intrinsic parameters.

class CEdgeP2C3D : public CBaseEdgeImpl<CEdgeP2C3D, MakeTypelist(

CVertexCam, CVertexXYZ), 2>

Code 7: Implementation of reprojection edge with shared intrinsic parameters–note the

definition of third vertex type CVertexIntrinsics that the edge connects.

class CEdgeP2CI3D : public CBaseEdgeImpl<CEdgeP2CI3D, MakeTypelist(

CVertexCam, CVertexXYZ, CVertexIntrinsics), 2>

Reprojection constraint describes the process of projecting a 3D structure point

into the 2D image. Reprojection edge can have binary or ternary cardinality. The

binary reprojection edge (Code 6) connects camera pose variable extended with

camera intrinsic parameters and a 3D point. The ternary reprojection edge (Code 7)

connects the variables of 3D point, sensor pose and camera parameters.

This edge is established from measurements of a feature point positions in the

image of a camera. The reprojection residual function is defined as a difference

between the observed 2D point measurement and expected 2D position computed

as a function of 3D point {w}mi, camera pose pj and the vector containing camera

intrinsic parameters τk:

eijk(zij, {w}mi,pj, τk) = zij − hreprojection(
{w}mi,pj, τk) . (61)

The reprojection function hreprojection computes the expected position of the image

of 3D point in the camera projection plane using (5) in Section 4.2.1.

77

p p0 1

M0
p
4

τ0

p
3

p
2

z z1 z2

z

3

z

4

z0

5

Figure 29: Graph representation of multisensor optimisation problem. Graph contains

seven variables, three monocular camera variables (blue), one variable represent-

ing shared intrinsic camera parameters (pink), two variables for stereo spherical

camera and CLIDAR device (orange) and one variable representing observed

3D point (red). Unary edge e0(p0) defines prior measurement for pose of cam-

era p0, reducing the free gauge effect. Edges e(z1,M0,p0, τ0), e(z2,M0,p1, τ0)

are a ternary reprojection edges with shared intrinsic parameters τ0. Edge

e(z3,M0,p2) is a binary reprojection edge with intrinsic parameters as a part

of variable p2. Finally, the edges e(z4,p3,M0), e(z5,p4,M0) are the 3D point

edges.

3D Point Edge

Code 8: Implementation of 3D point edge.

class CEdgeSpheronXYZ : public CBaseEdgeImpl<CEdgeSpheronXYZ,

MakeTypelist(CVertexSpheron, CVertexXYZ), 3>

The 3D point edge defines the constraint between sensor position and a measured

3D point. This binary edge connects variables of 6DOF pose (spherical camera or

LIDAR) and 3D point. The residual function is the displacement between position

of predicted 3D point and the measurement of the point 3D position:

eij(zij, {w}mi,pj) = zij − ({w}mi 	 pj) , (62)

where the operation 	 is an inverse pose composition of SE3 group i.e., transforms

the coordinates of point {w}mi from world frame to the coordinate frame of sensor.

78

6.3 system building

The initial configuration of the sensor poses and 3D points is provided by the

front-end application using one of the pose estimation and triangulation algo-

rithms (Section 5.3). The system integrates one by one the camera/sensor poses

and corresponding 3D points observed from it. As the data are processed, the mea-

surements between the sensors or between the sensors and 3D points are added as

edges. Each edge is linearised and added to the system matrix Λ by building the

update matrix Ω (56), calculated from Jacobian of the measurement function, and

following the incremental strategy described in previous section. The constraints

can be inserted into the system in any order. This way a large connected graph is

built with edges interconnecting different variables. Figure 29 shows graph repre-

sentation of simple multisensor system.

The initial configuration of the system is refined by the optimisation procedure

(Section 6.1), finding the solution that minimizes the error functions of the system.

79

7
E X P E R I M E N T S A N D E VA L U AT I O N

In this chapter, we aim to experimentally evaluate several aspects of the multisen-

sor 3D reconstruction application. We focus on the evaluation in terms of accuracy

for different sensor combinations. First, we evaluate the 3D reconstruction from

stereo longitude-latitude images, which is the most challenging sensors to inte-

grate. Then we add integration of monocular cameras and CLIDAR sensors and

evaluate multisensor scenarios.

7.1 evaluation of stereo spherical image reconstruction

We first evaluate the 3D reconstruction from spherical stereo images only. Dense

registration using ICP, described in Section 4.4.2, has been successfully used in the

literature for the 3D reconstruction from spherical images [62]. Therefore, ICP is

used as a reference in the time and accuracy evaluations of the refinement method.

We refer to the refinement by ICP method as ICP. To calculate the initial estimate

of the camera poses and the 3D structure, the SURF descriptors were extracted in

the longitude-latitude images using tangential projection to reduce the spherical dis-

tortion effect, and guided matching (Section 4.3.3) with geometry model described

in Section 4.4.1 was performed to estimate the relative pose.

We use dense ICP to define a ground truth for testing the accuracy of our method

in the outdoor datasets where there are no manual measurements available. For

that, manually matched sparse features are used to calculate an initial estimate for

the ICP registration, and it will be further referred as GT-ICP.

Accuracy evaluation of Stereo Spherical image registration

In our pipeline we can identify two sources of errors that can affect the final re-

construction, a) the error of the depth map and b) the camera pose estimation

error. To analyse the accuracy of the stereo spherical registration, ground truth

data were measured for all three datasets. Smaller sensor displacement and flat

ground surface of the Studio dataset allowed for precise positioning of spherical

cameras, and manual measurements of distances from the spherical camera posi-

tions to several objects in the scene (Figure 30) as well as distances between camera

poses. For the outdoor datasets, Cathedral and CCSR, the ground truth data was

81

Table 8: Depth map accuracy results: Differences between GT and measurements in the

depth map. Each row represents the error between measured and ground truth

distance for actual spherical camera position. Structure of the cameras and objects

is shown in Figure 30. Certain distances were not measured for ground truth, those

cells are marked by N/A symbol.

Error [mm]

Object 1.1 Object 1.2 Object 2 Object 3

P1 18 12 2 3

P2 N/A N/A 7 8

P3 N/A N/A 78 1

P4 17 32 13 3

TableCarpet

Sofa

P1

P2
P3

P4

Object 1

Object 2Object 3

Figure 30: Scheme of measured distances to objects in scene for Studio dataset.

generated by manually matching sparse features to create an initialisation for the

dense ICP (GT-ICP). For the ICP registration a standard implementation provided

by the PCL library [97] was used. The Studio dataset contains 4 pairs of stereo

longitude-latitude images with 2m and 1m distance between the spherical camera

positions. The 3 stereo pairs of CCSR dataset was captured from positions ∼ 6m

apart, and 3 stereo pairs of Cathedral dataset share baseline ∼ 23m apart.

The error of the depth map was evaluated for the Studio dataset by comparing

the calculated depth from the dense stereo processing with the measured ground

truth. In this dataset, the cameras were placed in four different positions with

measured distances in between, and distance to objects in the scene were also mea-

sured. Table 8 shows the errors between the manually measured and the estimated

3D positions. The depth map error is, in average, of 1.6 cm for the Studio dataset.

82

We can say that is a very good depth calculation from stereo longitude-latitude im-

ages for indoor scenes, nevertheless, we should expect larger errors in the outdoor

scenes.

In order to evaluate the joint camera and structure estimation, two types of er-

rors are evaluated, a) camera pose estimation error and b) structure error. To com-

pute the pose estimation error, the transformations between the GT-ICP and the

estimated poses are calculated. The errors in translation and rotation are reported

separately, by computing the norm of the translation and the angle of rotation, re-

spectively. For each dataset, pair-wise spherical camera registrations are evaluated.

The structure error is computed in Studio dataset as an average error of distances

to known objects in the scene. In the case of Cathedral and CCSR datasets, the

structure error is given by the average euclidean distance between two dense point

clouds–one from GT-ICP and second from optimized solution.

Table 9 confirms our expectations that both, ICP and SLAM++ have similar ac-

curacy, and that larger errors in pose estimation correlate with errors in structure

estimation. Note that for longer baselines, the SLAM++ copes better with the errors

in the initial estimation compared to ICP which requires very good initialisations.

This is due to the fact that unlike ICP which relies only on matches between con-

secutive spherical cameras for each registration, SLAM++ also considers matches

over multiple spherical images.

Table 9: Accuracy results: Top: Structure Error. Bottom: Camera pose error evaluated sepa-

rately for the rotation and translation.

Criteria Method
Studio Cathedral CCSR

S1-S2 S2-S3 S3-S4 S1-S2 S2-S3 S1-S2 S2-S3

Pose err.

SLAM++ [mm] 4.6 7.9 11.2 708.7 371.4 374.9 119.3

ICP [mm] 10.7 36.1 50.8 678.3 740.5 261.1 149.9

SLAM++ [◦] 1.14 0.57 0.89 5.48 3.91 0.81 1.66

ICP [◦] 5.03 0.81 1.38 4.85 4.83 0.52 2.71

Structure err.
SLAM++ [mm] 16.1 1120.2 488.9

ICP [mm] 35.4 1765.6 394.7

Time evaluation

The disadvantage of applying ICP for image registration is its processing time. The

proposed approach offers much faster solutions in this direction. Table 1, bottom,

83

Cathedral Studio

a)

b)

c)

Figure 31: 3D reconstruction from stereo spherical images. a) Inliers after matching with

RANSAC algorithm (for better visibility only a fraction of matches is shown

for Studio dataset). Please note that the crossing lines in the left column are

not outliers, the image is spherical so the left part of the image continues on

the right. b) Initial 3D points (red) and camera poses (orange) and optimised

3D points (green) and camera poses (yellow). d) Final dense 3D reconstruction

created by integration points from depth maps.

shows that SLAM++ is, for all datasets, almost three orders of magnitude faster

than the ICP algorithm. The good time performance stems from the fact that it

optimises for a sparse set of points and from the actual efficient implementation of

non-linear least squares solver SLAM++.

By analysing the processing time of each step of the pipeline in Table 1, we see

that the time of optimising the camera poses is now very small compared to the

other processing times in the pipeline, while using ICP, the registration time would

84

Table 10: Time processing evaluation for refinement using SLAM++ and ICP.

Processing

Feat. & desc. extract [s] 8.15 7.02 6.32

Initial estimation [s] 6.99 11.41 25.65

Refinement

ICP [s] 146.057 366.024 995.43

SLAM++[s] 0.120 0.091 0.134

have been the predominant time and would have constituted a bottleneck in large

applications.

7.2 multisensor reconstruction accuracy

We processed several multisensor datasets using the proposed multisensor 3D re-

construction pipeline. The detailed information about datasets can be found in Ta-

ble 13. The accuracy evaluation of the reconstruction from monocular and CLIDAR

sensors is performed on Synthetic dataset with known ground truth described in

Section 3.2. The computed error is per-pose all-to-all relative pose error (RPE) ob-

tained as a sum of differences between all estimated and all ground truth camera

relative poses divided by number of cameras n:

eRPE =
1

n

∑
ij

|pij 	 pGTij | , (63)

where the pij and pGTij is a relative transformation between two estimated camera

positions and ground truth camera positions respectively and operation 	 performs

inverse pose composition. The results are also compared with the commercial soft-

ware CapturingReality1 for which the RPE is computed as well.

The initial sensor poses are estimated using the multisensor pipeline. CLIDAR

coloured 3D point cloud is transformed to the form of longitude-latitude image

by process described in Section 5.3.4. SIFT features and descriptors are extracted

from image data and the tangential projection is applied to longitude-latitude im-

ages to reduce the effect of spherical distortion. The correspondences are found

using guided matching (Section 4.3.3) with geometry model depending on the reg-

istered sensors. For stereo longitude-latitude images the 3D-3D registration model

1 www.capturingrality.com

85

Table 11: Per-pose all-to-all RPE error of our approach and CapturingReality software com-

pared to ground truth of Synthetic dataset. The evaluation of CapturingReality in

the presence of noise could not be performed due to different handling of input

CLIDAR data.

Our approach CapturingReality

Synthetic-short
RPE [mm] 2.1 3.1

RPE [◦] 0.034 0.043

Synthetic-long
RPE [mm] 4.3 8.3

RPE [◦] 0.016 0.132

Synthetic-combined
RPE [mm] 4.3 23.9

RPE [◦] 0.034 0.312

Synthetic-short-noise
RPE [mm] 2.3 N/A

RPE [◦] 0.034 N/A

Synthetic-long-noise
RPE [mm] 4.5 N/A

RPE [◦] 0.021 N/A

Synthetic-combined-noise
RPE [mm] 6.1 N/A

RPE [◦] 0.037 N/A

(Section 4.4.1) is used, and for longitude-latitude and planar image the spherical-

planar epipolar geometry (Section 5.3.3) is applied.

Table 11 shows the per-pose all-to-all registration RPE error of registration of

multiple scenarios of Synthetic dataset consisting of 3 CLIDAR scans and 10 gen-

erated planar images per scenario–containing images from virtual cameras with

short baseline (Synthetic-short), long baseline (Synthetic-long) and combination of

the long and short (Synthetic-combined). These datasets were evaluated with two

different noise levels in CLIDAR depth data. First configuration uses depth data di-

rectly from CLIDAR device, which according to manufacturer, has standard devia-

tion of depth error 2mm. For the second experiment, the depth data was perturbed

by a normally distributed noise with standard deviation of 150mm to evaluate the

effect of depth map noise on reconstruction accuracy.

The input for both algorithms, our and CapturingReality consists of CLIDAR 3D

point clouds and a set of synthetic planar images. Initial camera parameters were

provided for both applications to assure the same initial conditions.

For short baseline scenario, both algorithms achieve similar accuracy results,

our approach being slightly more accurate. For long and combined baseline our

86

Table 12: Average reprojection error in pixels of 3D reconstructions from monocular,

monocular+spherical and monocular+lidar configurations.

Monocular Monocular + Sph Monocular + CLIDAR All

CCSR [px] 0.371 0.357 0.354 0.354

Cathedral [px] 0.236 0.226 0.222 0.224

Atrium [px] 0.342 0.312 − −

Synthetic-combined [px] 0.260 − 0.259 −

Table 13: Dataset and processing details.

Characteristics Catedral CCSR Atrium
Synth.

short

Synth.

long

Synth.

comb.

CLIDAR scans 7 3 − 3 3 3

Spherical stereo pairs 3 3 5 − − −

Monocular images 92 243 50 10 10 10

Avg. spherical-spherical

matches
288 1199 1979 1800 1800 1800

Avg. spherical-planar

matches
54 73 34 50 62 54

System Vertices 114668 196541 40358 4840 3829 4416

System Edges 460721 641268 118775 20869 16697 13579

approach achieves better results with accuracy of ∼ 4mm RPE per pose. This is

because of more non-linear iterations (∼ 25) of BA solver. I was not possible to

specify or check for a number of iterations for CapturingReality. Even in the pres-

ence of noise in-depth data our algorithm achieves accurate results. The evaluation

of CapturingReality in the presence of noise could not be performed due to different

handling of input CLIDAR data.

Further, we compute the reprojection error of the structure, computed as the av-

erage of differences of projected the structure points and their measured positions.

Figures 34, 33 and 35 show the 3D reconstructions from different types of sensors

are shown for Cathedral, CCSR and Atrium datasets, introduced in Section 3.2. Fig-

ures 34, 33 a), b), c) show separate reconstruction for CLIDAR, monocular cameras

87

and spherical cameras respectively. The reconstruction from spherical cameras suf-

fers from artefacts caused by inaccuracies in disparity map. In both Figures 34

and 33, the images d), e) show reconstruction from spherical cameras, and monoc-

ular cameras superimposed with green colour and with colour information from

the images. Image f) shows reconstruction using all sensors. Only sparse structure

from longitude-latitude images is shown, i.e. the points for which the correspon-

dence was established with points from other sensors. The coverage of obstructed

area by structure from monocular cameras can be seen in Figure 33, f).

The table 12 displays accompanying reprojection errors for each sensor combi-

nation. In the visualizations of results (Figure 34,33 c), 35 b)) it is visible that for

the spherical reconstruction the whole reprojected disparity map contains big dis-

tortions. But when this spherical data is used in the combination with monocular

images, the reprojection error drops from 0.371 to 0.357 for CCSR and 0.236 to 0.226

for Cathedral compared to reprojection error of reconstruction only from monocu-

lar images. Lowest reprojection error is achieved using monocular and CLIDAR

sensors.

According to the evaluation of Synthetic dataset, the presented multisensor 3D

reconstruction pipeline compared to the CapturingReality achieves more accurate

results. The accuracy stems from the quality of established corresponding points

and joint optimisation by SLAM++. The joint processing of stereo spherical and

monocular data improves the reprojection error of monocular reconstruction and

structure from monocular reconstruction improves the noisy stereo spherical depth

map. The accurate depth data from CLIDAR allows for easy integration.

88

a) CLIDAR only b) Monocular only

c) Spherical only d) Spherical + Monocular (green)

e) Spherical + Monocular f)
CLIDAR + Spherical (sparse)

+ Monocular

Figure 32: Reconstructions of the Cathedral dataset

89

a) CLIDAR only b) Monocular only

c) Spherical only d) Spherical + Monocular (green)

e) Spherical + Monocular f)
CLIDAR + Spherical (sparse)

+ Monocular

Figure 33: Reconstructions of the CCSR dataset90

a) CLIDAR only b) CLIDAR + Monocular (green)

Figure 34: Reconstruction of Synthetic dataset.

a) Monocular only b) Spherical only

c) Spherical only + Monocular (green) d) Spherical + Monocular

Figure 35: Reconstructions of the Atrium dataset

91

8
C O N C L U S I O N

The contribution of this thesis is the formulation of the multisensor 3D recon-

struction using a unified representation for different sensors and measurements

in terms of sparse BA and based on that, obtaining a complete solution from all

available data without the need of manual alignment of models created by single

sensor reconstruction algorithms. The representation consists of variables defining

the poses of the sensors and structure points and edges encoding the relations be-

tween variables.

A sparse 3D reconstruction pipeline consists of a front-end which processes the

sensor data and provides an initial estimate of the sensor position and the 3D

structure, which is further optimized by the back-end. In this thesis, we analysed

algorithms for reduction of spherical distortion in images from spherical cameras

and images generated from CLIDAR devices to achieve higher initial registration

accuracy. We evaluated multiple feature extractors, matching and registration accu-

racy of longitude-latitude images and planar images. This thesis proposes an algo-

rithm that computes the tengential projection which reduces the effect of spherical

distortion in longitude-latitude images and achieves better accuracy compared to

registration using the longitude-latitude images in uncorrected form.

After the initialisation, the unified system built from measurements of multi-

sensor data is refined by joint sensor pose and structure optimisation. This offers

a robust estimation capable of exploiting relationships between multiple sensors

and refining the solution according to those constraints. This is formulated as an

optimization on graphs where the vertices represent the variables and the edges

of the graph are derived from the measurements. The graph optimization is im-

plemented in the SLAM++ non-linear least squares optimisation library developed

in collaboration with my colleagues L. Polok and V. Ila. The SLAM++ is a very

efficient library based on fast sparse block matrix manipulation.

The future work will include integration of the incremental optimisation ap-

proach of SLAM++ for time-efficient incremental data processing. Furthermore,

the processing of data from additional sensors will be implemented as well as

support for processing of videos from monocular and spherical cameras, includ-

ing key-frame selection. Another area of the interest is the estimation of the dense

93

depth map from the spherical images more accurately using the depth information

from other sensors.

94

P U B L I C AT I O N S

[P1] V. Ila, L. Polok, M. Šolony, and P. Svoboda. Slam++. a highly efficient and

temporally scalable incremental slam framework. The International Journal of

Robotics Research, 2016(123):1–22, 2016.

[P2] M. Šolony, E. Imre, V. Ila, L. Polok, H. Kim, and P. Zemčík. Fast and accurate

refinement method for 3d reconstruction from stereo spherical images. In

Proceedings of the 10th International Conference on Computer Vision Theory and

Applications, pages 1–8. Institute of Electrical and Electronics Engineers, 2015.

[P3] L. Polok, M. Šolony, V. Ila, P. Smrž, P. Zemčík, J. Clifford, and S. Pabst. A gpu-

accelerated bundle adjustment solver. In GPU Technology Conference. NVIDIA

Helsinki Ltd, 2015.

[P4] V. Ila, L. Polok, M. Šolony, P. Zemčík, and P. Smrž. Fast covariance recovery in

incremental nonlinear least square solvers. In Proceedings of IEEE International

Conference on robotics and Automation, pages 1–8. IEEE Computer Society, 2015.

[P5] L. Polok, V. Ila, M. Šolony, P. Zemčík, and P. Smrž. Efficient implementation

for block matrix operations nonlinear least squares problems for robotic ap-

plications. In Proceedings of 2013 IEEE International Conference on Robotics and

Automation, pages 123–131. IEEE Computer Society, 2013.

[P6] V. Ila, L. Polok, P. Smrž, M. Šolony, and P. Zemčík. Incremental cholesky

factorization for least squares problems in robotics. In Proceedings of The 2013

IFAC Intelligent Autonomous Vehicles Symposium, pages 1–8. IEEE Computer

Society, 2013.

[P7] V. Ila, L. Polok, P. Smrž, M. Šolony, and P. Zemčík. Incremental block cholesky

factorization for nonlinear least squares in robotics. In In proceedings of The

Robotics: Science and Systems 2013 Conference, pages 1–8. MIT Press, 2013.

[P8] M. Šolony, P. Žák, V. Beran, and M. Španěl. Camera localization using in-

complete chessboard pattern. In Proceedings of the International Conference on

Computer Vision Theory and Applications, pages 415–418. Institute for Systems

and Technologies of Information, Control and Communication, 2011.

95

B I B L I O G R A P H Y

[1] P. Agarwal and E. Olson. Variable reordering strategies for slam. In Proceed-

ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), October 2012.

[2] S. Agarwal, K. Mierle, and Others. Ceres solver. http://ceres-solver.org,

2010.

[3] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building rome

in a day. In Twelfth IEEE International Conference on Computer Vision (ICCV

2009), Kyoto, Japan, September 2009. IEEE.

[4] M. Agrawal, K. Konolige, and M. R. Blas. Computer Vision – ECCV 2008:

10th European Conference on Computer Vision, Marseille, France, October 12-18,

2008, Proceedings, Part IV, chapter CenSurE: Center Surround Extremas for

Realtime Feature Detection and Matching, pages 102–115. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008.

[5] M. T. Ahmed, M. N. Dailey, J. L. Landabaso, and N. Herrero. Robust key

frame extraction for 3d reconstruction from video streams. In VISAPP (1),

pages 231–236, 2010.

[6] P. F. Alcantarilla, A. Bartoli, and A. J. Davison. Computer Vision – ECCV 2012:

12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012,

Proceedings, Part VI, chapter KAZE Features, pages 214–227. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012.

[7] P. Amestoy, T. A. Davis, and I. S. Duff. Amd, an approximate minimum

degree ordering algorithm). ACM Transactions on Mathematical Software,

30(3):381–388, 2004.

[8] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-

d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-9(5):698–700, Sept 1987.

[9] P. Aschwanden and W. Guggenbül. Experimental results from a compara-

tive study on correlation type registration algorithms. In W. Förstner and

S. Ruwiedel, editors, Robust computer vision: Quality of Vision Algorithms,

pages 268–282. Wichmann, Karlsruhe, Allemagne, March 1992.

97

http://ceres-solver.org

[10] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Speeded-up robust features

(surf). Computer Vision and Image Understanding, 110(3):346 – 359, 2008. Simi-

larity Matching in Computer Vision and Multimedia.

[11] H. Bay, T. Tuytelaars, and L. Gool. Computer Vision – ECCV 2006: 9th European

Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I,

chapter SURF: Speeded Up Robust Features, pages 404–417. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2006.

[12] C. Beall, B.J. Lawrence, V. Ila, and F. Dellaert. 3D Reconstruction of Under-

water Structures. 2010.

[13] P. A. Beardsley, A. Zisserman, and D. W. Murray. Navigation using affine struc-

ture from motion, pages 85–96. Springer Berlin Heidelberg, Berlin, Heidelberg,

1994.

[14] P. Besl and N. McKay. A method for registration of 3-d shapes. IEEE Trans.

Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[15] Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial

and Applied Mathematics, 1996.

[16] M.C. Bosse, P.M. Newman, J.J. Leonard, and S. Teller. Simultaneous local-

ization and map building in large-scale cyclic environments using the Atlas

framework. 23(12):1113–1139, Dec 2004.

[17] D. C. Brown. The bundle adjustment - progress and prospects. 1976.

[18] M. Byrod and K. Astrom. Bundle adjustment using conjugate gradients with

multiscale preconditioning. In BMVC, 2009.

[19] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua.

BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 34(7):1281–1298, 2012.

[20] G. Carmichael. Matching spherical panoramas and planar photographs,

2009.

[21] J. L. De Carufel and R. Laganière. Matching cylindrical panorama sequences

using planar reprojections. In Computer Vision Workshops (ICCV Workshops),

2011 IEEE International Conference on, pages 320–327, Nov 2011.

[22] J. A. Castellanos, J. Neira, and J. D. Tardós. Limits to the consistency of

ekf-based slam, 2004.

98

[23] O. Chum and J. Matas. Matching with PROSAC - Progressive Sample Con-

sensus. In Proc. CVPR, pages 220–226, 2005.

[24] O. Chum and J. Matas. Optimal Randomized RANSAC. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 30(8):1472–1482, 2008.

[25] O. Chum, J. Matas, and J. Kittler. Locally Optimized RANSAC. In Lecture

Notes in Computer Science, volume 2781, pages 236–243. Springer, 2003.

[26] K. Cornelis, M. Pollefeys, and L. Van Gool. Tracking based structure and

motion recovery for augmented video productions. In Proceedings of the ACM

Symposium on Virtual Reality Software and Technology, VRST ’01, pages 17–24,

New York, NY, USA, 2001. ACM.

[27] M. Cummins and P. Newman. Invited Applications Paper FAB-MAP:

Appearance-Based Place Recognition and Mapping using a Learned Visual

Vocabulary Model. In 27th Intl Conf. on Machine Learning (ICML2010), 2010.

[28] T. Davis. Csparse. http://www.cise.ufl.edu/research/sparse/CSparse/,

2006.

[29] T. A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of Algo-

rithms 2). Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2006.

[30] T. A. Davis and W. W. Hager. Modifying a sparse cholesky factorization,

1997.

[31] T. A. Davis and W. W. Hager. Modifying a sparse cholesky factorization.

SIAM J. Matrix Anal. Appl., 20(3):606–627, May 1999.

[32] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time

single camera slam. IEEE Trans. Pattern Anal. Mach. Intell., 29(6):1052–1067,

June 2007.

[33] F. Dellaert and M. Kaess. Square root sam: Simultaneous localization and

mapping via square root information smoothing. Intl. J. of Robotics Research,

IJRR, 25(12):1181–1204, December 2006.

[34] M. Fiala and G. Roth. Automatic alignment and graph map building of

panoramas. IEEE Int. Workshop on Haptic Audio Visual Environments and their

Applications, pages 103–108, 2005.

99

http://www.cise.ufl.edu/research/sparse/CSparse/

[35] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartogra-

phy. Commun. ACM, 24(6):381–395, June 1981.

[36] P. E. Forssen and D. G. Lowe. Shape descriptors for maximally stable ex-

tremal regions. In Computer Vision, 2007. ICCV 2007. IEEE 11th International

Conference on, pages 1–8, Oct 2007.

[37] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, Ch. Wu,

Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys. Computer Vision

– ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete,

Greece, September 5-11, 2010, Proceedings, Part IV, chapter Building Rome on

a Cloudless Day, pages 368–381. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2010.

[38] S. Fuhrmann and M. Goesele. Fusion of depth maps with multiple scales. In

Proceedings of the 2011 SIGGRAPH Asia Conference, SA ’11, pages 148:1–148:8,

New York, NY, USA, 2011. ACM.

[39] K. Fukumori. Spherical stereo for the construction of immersive vr environ-

ment. In Proceedings of the 2005 IEEE Conference 2005 on Virtual Reality, VR

’05, pages 217–222, 328, Washington, DC, USA, 2005. IEEE Computer Society.

[40] Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview stereopsis.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–1376,

Aug 2010.

[41] A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple window-

ing. In Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE

Computer Society Conference on, pages 858–863, Jun 1997.

[42] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete solution classifica-

tion for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach.

Intell., 25(8):930–943, August 2003.

[43] A. Geiger, J. Ziegler, and C. Stiller. Stereoscan: Dense 3d reconstruction in

real-time. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 963–968,

June 2011.

[44] G. H. Golub and R. J. Plemmons. Large-scale geodetic least-squares ad-

justment by dissection and orthogonal decomposition. Linear Algebra Appl.,

pages 34:3–38, 1980.

100

[45] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree parameteri-

zation for efficiently computing maximum likelihood maps using gradient

descent. In In Proc. of Robotics: Science and Systems (RSS, 2007.

[46] A. R. Hanson and R. Kumar. Robust methods for estimating pose and a

sensitivity analysis, 1994.

[47] Ch. Harris and M. Stephens. A combined corner and edge detector. In In

Proc. of Fourth Alvey Vision Conference, pages 147–151, 1988.

[48] R. I. Hartley. Computation of the quadrifocal tensor. In ECCV, 1998.

[49] R. I. Hartley and P. Sturm. Computer Analysis of Images and Patterns: 6th Inter-

national Conference, CAIP ’95 Prague, Czech Republic, September 6–8, 1995 Pro-

ceedings, chapter Triangulation, pages 190–197. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1995.

[50] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[51] Y. S. Heo, K. M. Lee, and S. U. Lee. Robust stereo matching using adap-

tive normalized cross-correlation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 33(4):807–822, April 2011.

[52] K. L. Ho and P. Newman. Detecting loop closure with scene sequences.

International Journal of Computer Vision, 74(3):261–286, 2007.

[53] B. K.P. Horn and B. G. Schunck. Determining optical flow. Technical report,

Cambridge, MA, USA, 1980.

[54] A. Howard and N. Roy. The robotics data set repository (Radish), 2003.

[55] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. On the complexity and

consistency of ukf-based slam. In Robotics and Automation, 2009. ICRA ’09.

IEEE International Conference on, pages 4401–4408, May 2009.

[56] V. Indelman, R. Roberts, and F. Dellaert. Incremental light bundle adjustment

for structure from motion and robotics. Robotics and Autonomous Systems,

70:63 – 82, 2015.

[57] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.-S. Kweon. Pushing the

envelope of modern methods for bundle adjustment. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 34(8):1605–1617, 2012.

101

[58] M. Kaess and F. Dellaert. Covariance recovery from a square root informa-

tion matrix for data association. Robot. Auton. Syst., 57(12):1198–1210, Decem-

ber 2009.

[59] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert.

isam2: Incremental smoothing and mapping using the bayes tree. The Inter-

national Journal of Robotics Research, 31(2):216–235, 2012.

[60] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental smooth-

ing and mapping with efficient data association. pages 1670–1677, Rome,

Italy, April 2007.

[61] N. Karlsson, E. di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and

M. E. Munich. The vslam algorithm for robust localization and mapping. In

Proceedings of the 2005 IEEE International Conference on Robotics and Automation,

pages 24–29, April 2005.

[62] H. Kim and A. Hilton. 3d scene reconstruction from multiple spherical stereo

pairs. International Journal of Computer Vision, 104(1):94–116, 2013.

[63] G. Klein and D. Murray. Parallel tracking and mapping for small ar

workspaces. In Proceedings of the 2007 6th IEEE and ACM International Sym-

posium on Mixed and Augmented Reality, ISMAR ’07, pages 1–10, Washington,

DC, USA, 2007. IEEE Computer Society.

[64] K. Konolige. Sparse sparse bundle adjustment. In British Machine Vision

Conference, Aberystwyth, Wales, 08/2010 2010.

[65] K. Konolige, M. Agrawal, and J. Solà. Robotics Research: The 13th International

Symposium ISRR, chapter Large-Scale Visual Odometry for Rough Terrain,

pages 201–212. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[66] R. Kummerle, D. Hahnel, D. Dolgov, S. Thrun, and W. Burgard. Autonomous

driving in a multi-level parking structure. In Robotics and Automation, 2009.

ICRA ’09. IEEE International Conference on, pages 3395–3400, May 2009.

[67] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. G2o:

A general framework for graph optimization. In Robotics and Automation

(ICRA), 2011 IEEE International Conference on, pages 3607–3613, May 2011.

[68] V. Lepetit, F.Moreno-Noguer, and P.Fua. Epnp: An accurate o(n) solution to

the pnp problem. International Journal Computer Vision, 81(2), 2009.

102

[69] H. Li and R. Hartley. Five-point motion estimation made easy. In 18th Inter-

national Conference on Pattern Recognition (ICPR’06), volume 1, pages 630–633,

2006.

[70] B. Lohani. Airborne altimetric lidar: Principle data collection processing and

applications. 2008.

[71] C. Loop and Z. Zhang. Computing rectifying homographies for stereo vi-

sion. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society

Conference on., volume 1, page 131 Vol. 1, 1999.

[72] M. I. A. Lourakis and A. A. Argyros. Sba: A software package for generic

sparse bundle adjustment. ACM Trans. Math. Softw., 36(1):2:1–2:30, March

2009.

[73] D. G. Lowe. Object recognition from local scale-invariant features. In Com-

puter Vision, 1999. The Proceedings of the Seventh IEEE International Conference

on, volume 2, pages 1150–1157 vol.2, 1999.

[74] F. Lu and E. Milios. Globally consistent range scan alignment for environ-

ment mapping. Autonomous Robots, 4(4):333–349, 1997.

[75] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo

from maximally stable extremal regions. In Proceedings of the British Machine

Vision Conference, pages 36.1–36.10. BMVA Press, 2002. doi:10.5244/C.16.36.

[76] B. Micusik and T. Pajdla. Estimation of omnidirectional camera model from

epipolar geometry. In Computer Vision and Pattern Recognition, 2003. Proceed-

ings. 2003 IEEE Computer Society Conference on, volume 1, pages I–485–I–490

vol.1, June 2003.

[77] K. Mikolajczyk and C. Schmid. A performance evaluation of local de-

scriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(10):1615–1630, Oct 2005.

[78] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam: A factored

solution to the simultaneous localization and mapping problem. In Eigh-

teenth National Conference on Artificial Intelligence, pages 593–598, Menlo Park,

CA, USA, 2002. American Association for Artificial Intelligence.

[79] J. Mooser, S. You, U. Neumann, and Q. Wang. Applying robust structure

from motion to markerless augmented reality. In Applications of Computer

Vision (WACV), 2009 Workshop on, pages 1–8, Dec 2009.

103

[80] J.-M. Morel and G. Yu. Asift: A new framework for fully affine invariant

image comparison. SIAM J. Img. Sci., 2(2):438–469, April 2009.

[81] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic

algorithm configuration. In In VISAPP International Conference on Computer

Vision Theory and Applications, pages 331–340, 2009.

[82] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense tracking

and mapping in real-time. In Proceedings of the 2011 International Conference

on Computer Vision, ICCV ’11, pages 2320–2327, Washington, DC, USA, 2011.

IEEE Computer Society.

[83] K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle adjustment for large-

scale 3d reconstruction. In 2007 IEEE 11th International Conference on Computer

Vision, pages 1–8, Oct 2007.

[84] H. K. Nishihara. Prism: A practical real-time imaging stereo matcher. Tech-

nical report, Cambridge, MA, USA, 1984.

[85] E. Olson. Robust and Efficient Robot Mapping. PhD thesis, Massachusetts

Institute of Technology, 2008.

[86] A. Pagani and D. Stricker. Structure from motion using full spherical

panoramic cameras. In Computer Vision Workshops (ICCV Workshops), 2011

IEEE International Conference on, pages 375–382, Nov 2011.

[87] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric recon-

struction in spite of varying and unknown internal camera parameters. In

Computer Vision, 1998. Sixth International Conference on, pages 90–95, Jan 1998.

[88] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp,

C. Engels, D. Gallup, S.-J. Kim, P. Merrell, C. Salmi, S. Sinha, B. Talton,

L. Wang, Q. Yang, H. Stewénius, R. Yang, G. Welch, and H. Towles. De-

tailed real-time urban 3d reconstruction from video. International Journal of

Computer Vision, 78(2):143–167, 2007.

[89] L. Polok, V. Ila, and P. Smrž. Cache efficient implementation for block matrix

operations. pages 698–706. ACM, 2013.

[90] L. Polok, V. Ila, and P. Smrž. 3d reconstruction quality analysis and its accel-

eration on gpu clusters. In Proceedings of European Signal Processing Conference

2016, pages 1–8. Institute of Electrical and Electronics Engineers, 2016.

104

[91] T. Pylvänäinen, J. Berclaz, T. Korah, V. Hedau, M. Aanjaneya, and

R. Grzeszczuk. 3d city modeling from street-level data for augmented reality

applications. In 2012 Second International Conference on 3D Imaging, Modeling,

Processing, Visualization Transmission, pages 238–245, Oct 2012.

[92] A. Redert, E. Hendriks, and J. Biemond. Correspondence estimation in image

pairs, 1999.

[93] N. Roma, J. Santos-Victor, and J. Tomé. A comparative analysis of cross-

correlation matching algorithms using a pyramidal resolution approach,

2002.

[94] E. Rosten and T. Drummond. Fusing points and lines for high performance

tracking. In Tenth IEEE International Conference on Computer Vision (ICCV’05)

Volume 1, volume 2, pages 1508–1515 Vol. 2, Oct 2005.

[95] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alterna-

tive to sift or surf. In 2011 International Conference on Computer Vision, pages

2564–2571, Nov 2011.

[96] S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP Algorithm. In

International Conference on 3-D Imaging and Modeling, pages 145–152, 2001.

[97] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE

International Conference on Robotics and Automation (ICRA), Shanghai, China,

May 9-13 2011.

[98] N. Salman and M. Yvinec. Surface Reconstruction from Multi-View Stereo.

Lecture notes in computer science, September 2009.

[99] J. Salvi, X. Armangué, and J. Batlle. A comparative review of camera cali-

brating methods with accuracy evaluation. Pattern Recognition, 35(7):1617 –

1635, 2002.

[100] F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered im-

age sets, or "how do i organize my holiday snaps?". In Proceedings of the

7th European Conference on Computer Vision-Part I, ECCV ’02, pages 414–431,

London, UK, UK, 2002. Springer-Verlag.

[101] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms. International Journal of Computer

Vision, 47(1):7–42, 2002.

105

[102] G. Schindler, P. Krishnamurthy, and F. Dellaert. Line-based structure from

motion for urban environments. In Proceedings of the Third International

Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06),

3DPVT ’06, pages 846–853, Washington, DC, USA, 2006. IEEE Computer So-

ciety.

[103] H.-Y. Shum, Q. Ke, and Z. Zhang. Efficient bundle adjustment with vir-

tual key frames: A hierarchical approach to multi-frame structure from mo-

tion. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2538–2543, June 1999.

[104] R. Smith, M. Self, and P. Cheeseman. A stochastic map for uncertain spatial

relationships. In Proceedings of the 4th International Symposium on Robotics

Research, pages 467–474, Cambridge, MA, USA, 1988. MIT Press.

[105] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo

collections in 3d. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages

835–846, New York, NY, USA, 2006. ACM.

[106] Ch. V. Stewart. Robust parameter estimation in computer vision. SIAM

Review, 41(3):513–537, 1999.

[107] H. Strasdat, A. Davison, and E. Edwards. Local Accuracy and Global Consis-

tency for Efficient SLAM. Imperial College London, 2012.

[108] T. Svoboda, T. Pajdla, and V. Hlaváč. Computer Vision — ECCV’98: 5th Eu-

ropean Conference on Computer Vision Freiburg, Germany, June, 2–6, 1998 Pro-

ceedings, Volume I, chapter Epipolar geometry for panoramic cameras, pages

218–231. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[109] S. Thrun. Particle filters in robotics. In Proceedings of the 17th Annual Confer-

ence on Uncertainty in AI (UAI), 2002.

[110] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-Whyte.

Simultaneous localization and mapping with sparse extended information

filters. International Journal of Robotics Research, 2004. To Appear.

[111] P. H. S. Torr, A. W. Fitzgibbon, and A. Zisserman. The problem of degen-

eracy in structure and motion recovery from uncalibrated image sequences.

International Journal of Computer Vision, 32(1):27–44, 1999.

[112] P. H. S. Torr and A. Zisserman. Robust parameterization and computation

of the trifocal tensor. Image and Vision Computing, 15:591–605, 1997.

106

[113] P. H. S. Torr and A. Zisserman. MLESAC: A New Robust Estimator with

Application to Estimating Image Geometry. Computer Vision and Image Un-

derstanding, 78(1):138–156, 2000.

[114] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgib-

bon. Bundle Adjustment — A Modern Synthesis, pages 298–372. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2000.

[115] S. Ullman. The interpretation of structure from motion. Proceedings of the

Royal Society of London B: Biological Sciences, 203(1153):405–426, 1979.

[116] V.Fragoso and M. Turk. SWIGS: A Swift Guided Sampling Method. In Proc.

of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Portland,

Oregon, June 2013.

[117] Juyang Weng, Paul Cohen, and Marc Herniou. Camera calibration with dis-

tortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. In-

tell., 14(10):965–980, October 1992.

[118] T. Werner and T. Pajdla. Cheirality in epipolar geometry. In Computer Vi-

sion, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol-

ume 1, pages 548–553 vol.1, 2001.

[119] Ch. Wu. Siftgpu: A gpu implementation of scale invariant feature transform.

2007.

[120] Ch. Wu. Towards linear-time incremental structure from motion. In Proceed-

ings of the 2013 International Conference on 3D Vision, 3DV ’13, pages 127–134,

Washington, DC, USA, 2013. IEEE Computer Society.

[121] Ch. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore bundle adjust-

ment. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR ’11, pages 3057–3064, Washington, DC, USA, 2011. IEEE

Computer Society.

[122] F. Zhang. The Schur complement and its applications, volume 4. Springer, 2005.

[123] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A robust technique

for matching two uncalibrated images through the recovery of the unknown

epipolar geometry. Artif. Intell., 78(1-2):87–119, October 1995.

[124] F. Zhao, Q. Huang, and W. Gao. Image matching by normalized cross-

correlation. In 2006 IEEE International Conference on Acoustics Speech and Signal

Processing Proceedings, volume 2, pages II–II, May 2006.

107

L I S T O F A C R O N Y M S

AR Augmented Reality. 6

BA Bundle Adjustment. ix, 3, 6, 7, 9, 10, 40, 42, 46, 63–67, 69, 71, 73, 77, 87,

93, 109

CLIDAR Light Detection and Ranging. 11, 16, 17, 45, 51, 52, 58

DLT Direct Linear Transform. 39

EKF Extended Kalman Filter. 8

EXIF Exchangeable image file format. 10

FLANN Fast Library for Approximate Nearest Neighbor. 24

GPS Global Positioning System. 8, 9

GPU Graphics Processing Unit. 11

ICP Iterative Closest Point. 5, 35, 36, 53, 54, 81–84

IMU Interial Measurement Unit. 9

LIDAR Light Detection and Ranging. 6, 9, 13, 16, 19, 20, 30, 55–57, 74, 76, 78,

81, 85–91, 93, 109

MSER Maximally Stable Extremal Regions. 22, 23

PDE Partial Differential Equation. 5, 51

PMVS Patch-based Multi-view Stereo Software. 10

PnP Perspective-n-Point. 34, 36, 37, 54

RANSAC Random Sample Consensus. 33, 38, 45

SFM Structure from Motion. ix, 3–6, 10, 14, 64, 71

SIFT Scale-Invariant Feature Transform. 21–23, 58, 60–62, 85

SLAM Simultaneous Localisation and Mapping. ix, 3, 8, 9, 63–65, 67, 70, 71,

73, 77, 109

SURF Speeded-Up Robust Features. 22, 23, 81

SVD Singular Value Decomposition. 33, 40

VO Visual Odometry. 9

109

L I S T O F F I G U R E S

Figure 1 Spherical camera . 14

Figure 2 Dataset examples . 18

Figure 3 Illustration of synthetic dataset virtual camera poses 19

Figure 4 Projective geometry . 24

Figure 5 Pinhole camera model . 25

Figure 6 Model of spherical camera. 28

Figure 7 Epipolar geometry between two planar cameras. 31

Figure 8 Relative pose from 3D points alignment 34

Figure 9 Illustration of P3P problem 36

Figure 10 Triangulation . 39

Figure 11 Optimal triangulation . 40

Figure 12 Graph representation example 41

Figure 13 Structure of linearised problem 44

Figure 14 Pipeline of the reconstruction 45

Figure 15 Distortion of the lines in longitude-latitude image. 48

Figure 16 Six cubic images generated from spherical image by project-

ing the data onto six sides of a cube. 49

Figure 17 Tangential space. 49

Figure 18 Correction of an extracted patch using tangential projection. 50

Figure 19 Computation of depth data from stereo spherical image pairs 51

Figure 20 Epipolar geometry between two spherical cameras. 52

Figure 21 Epipolar geometry between spherical and planar camera. . . 55

Figure 22 Correspondences estimation of longitude-latitude and

monocular image . 56

Figure 23 Coloured 3D point cloud from CLIDAR device 57

Figure 24 Sparse matrix structure of BA and SLAM problems 65

Figure 25 Data flow diagram of incremental block Cholesky factorisation 68

Figure 26 Covariance computed for camera poses and structure points

of Cathedral dataset. 69

Figure 27 Illustration of SLAM datasets 70

Figure 28 Quality of the estimations on 10k dataset. 72

Figure 29 Graph representation of multisensor optimisation problem . 78

111

Figure 30 Scheme of measured distances to objects in scene for Studio

dataset. 82

Figure 31 3D reconstruction from stereo spherical images 84

Figure 32 Reconstructions of the Cathedral dataset 89

Figure 33 Reconstructions of the CCSR dataset 90

Figure 34 Reconstruction of Synthetic dataset. 91

Figure 35 Reconstructions of the Atrium dataset 91

112

	Abstract
	Declaration
	Acknowledgements
	Contents
	Introduction
	Related Work
	sfm
	ba
	slam
	3D Reconstruction Applications

	Practical Application
	Available Sensors
	Available Datasets

	Background
	Image processing
	Projective Geometry
	Projective Geometry Estimation
	Camera Pose Estimation
	Robust Estimators
	Structure Triangulation
	ba
	3D Reconstruction Pipeline

	Multisensor Frontend
	Feature Detection and Descriptor Extraction in Data
	Stereo Spherical image depth computation
	Multisensor Registration
	Evaluation of the Front-end Application

	Multisensor 3D Reconstruction Back-end
	SLAM++
	System Representation
	System Building

	Experiments and Evaluation
	Evaluation of Stereo Spherical Image Reconstruction
	Multisensor Reconstruction Accuracy

	Conclusion
	References
	List of Figures

