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A B S T R A C T

A merit of this thesis is to introduce a unified image restoration approach based
on a convolutional neural network which is to some degree degradation type in-
dependent. Convolutional neural network models were trained for two different
tasks, a motion deblurring of license plate images and a removal of artifacts related
to lossy image compression. The capabilities of such models are studied from two
main perspectives. Firstly, how well the model can restore an image compared to
the state-of-the-art methods. Secondly, what is the model’s ability to handle several
ranges of the same degradation type.

An idea of the unified end-to-end approach is based on a recent development of
neural networks and related deep learning in a field of computer vision. The ex-
isting hand-engineered methods of image restoration are often highly specialized
for a given degradation type and in fact, define state of the art in several image
restoration tasks. The end-to-end approach allows to directly train the required
model on specifically corrupted images, and, further, to restore various levels of
corruption with a single model.

For motion deblurring, the end-to-end mapping model derived from models
used in computer vision is deployed. Compression artifacts are restored with simi-
lar end-to-end based model further enhanced using specialized objective functions
together with a network skip architecture.

A direct comparison of the convolutional network based models and engineered
methods shows that the data-driven approach provides beyond state-of-the-art re-
sults with a high ability to generalize over different levels of degradations. Based
on the achieved results, this work presents the convolutional neural network based
methods suggesting a possibility having the unified approach used for wide range
of image restoration tasks.
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A B S T R A K T

Tématem práce je použití konvolučních neuronových sítí pro obecnou restauraci
obrazu. Ta se typicky provádí za pomoci specializovaných metod pro konkrétní
typ poškození. Model konvoluční sítě zde představuje jednotný přístup, který je
aplikován na dva různé typy degradace obrazu, pohybem rozmazané snímky regis-
tračních značek a artefakty vznikající vysokou kompresí. Na modely konvolučních
sítí je nahlíženo ze dvou úhlů. A to jak dobře si konvoluční sítě vedou v porovnání
se současnými metodami pro restauraci konkrétního typu poškození a jak velký
rozsah poškození je právě jeden model ještě schopen zpracovat.

Klasické metody jsou charakteristické svým úzkým zaměřením na konkrétní typ
poškození. Díky své specializaci tyto metody dosahují velmi dobrých výsledků a
reprezentují tak dosažené poznání v oboru. Naproti tomu je představena myšlenka
jednotného přístupu, tedy mapování poškozeného obrazu přímo na restaurovaný
obraz. Ta je primárně ovlivněna současným vývojem konvolučních neuronových
sítí a jejich hlubokého učení v počítačovém vidění. Právě učením konvoluční sítě
lze jednoduše získat model zaměřený na konkrétní typ poškození. Ten je současně
nezřídka schopen pokrýt širokou škálu úrovní konkrétního poškození.

V práci je představena metoda přímého mapování z rozmazaného na ostrý
obraz pro restauraci pohybem rozmazaných snímků. Ta je odvozena od modelů
využívaných v počítačovém vidění pro sémantickou segmentaci obrazu. V případě
odstranění kompresních artefaktů je tento přístup rozšířen o specifické učení mod-
elu a různé modifikace samotné architektury sítě.

Modely konvolučních sítí v porovnání s tradičními metodami dosahují kvali-
tativně lepších výsledků. Zároveň se zde představené modely jednoduše vypořá-
dají s širokým rozsahem konkrétního poškození. Ukazuje se tak, že právě modely
konvolučních sítí by mohly reprezentovat jednotný přístup pro restauraci různých
typů poškozeni.
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Konvoluční neuronové sítě; hluboké učení; restaurace obrazu; dekonvoluce; JPEG
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1
I N T R O D U C T I O N

In 1943 Warren S. McCulloch, a neurophysiologist, together with Walter Pitts, a
mathematician, published their work A logical calculus of the idea immanent in ner-
vous activity which is in the field of artificial neural networks considered to be one
of the first attempts to define and design a model of a very simplified network re-
flecting the real neural architecture. During more than 70 years, the neural network
based models were developed into more complex and in several aspects more by
nature inspired architectures. Nowadays, the most visible Artificial Neural Net-
work (NN) impact is in the tasks of speech recognition and computer vision where
the ongoing research develops fast and almost continuously reveals new knowl-
edge. Namely, in the computer vision, the Artificial Neural Networks are found
in the state-of-the-art image classification, scene labeling and captioning, object
detection and localization. The capabilities which the Artificial Neural Networks
demonstrate in the speech recognition and computer vision captured the attention
of other computer-based research communities. Naturally, the most visible influ-
ence can be found in the speech and vision-related tasks such as speech and image
processing which comprise the broad field of signal processing.

The primary objective of this thesis involves the NN deployment in image
restoration which, by its nature, is part of the more general image processing field.
Such an idea does not evolve for the first time. However, the presented image
restoration is framed by a unified approach based on a data-driven Convolutional
Neural Network (CNN) model. This idea is introduced in more detail on two exam-
ples of common image restoration tasks such as an image deblurring, i. e. restoring
the blurred image into its sharp representation, and an image artifacts removal.

A well-established approach exists to restore the degradation caused by blur
which consists of several steps. First, the model of the process blurring the image
has to be defined. Based on this model, the so-called Point Spread Function (PSF)
is derived. Second, having the PSF, the blurred image can be reversed into its sharp
representation using deconvolution. The approach differs in the case of image ar-
tifacts removal. The degradation process has to be modeled as well; however, the
method to remove or at least to suppress the artifacts is diametrically different
from the one for deblurring.

Based on the success of various NNs in tasks of computer vision, similar models
are deployed in the image restoration comprising a unified data-driven approach.
Compared to the traditional engineered methods designed for a particular type of
corruption restoration, the NN allows using the same NN based model just trained
on different data. A single model used for arbitrary corruption restoration would
be the desired outcome, which, considering the capabilities the neural networks
have, should not be so much unrealistic. However, this is not the case. This thesis

1



introduction 2

focuses on the utilization of a NN as the primary approach in image restoration,
which may differ in training or particular architecture providing significant and
state-of-the-art comparable results. There exist various published methods in im-
age processing which make use of NN. Nevertheless, it is very occasional that the
approach solely considers an end-to-end mapping provided by the NN. Usually,
NN comprises a part of the more complex processing pipeline, which points out
back to the engineered and per task specialized approaches.

A NN deployment in image processing shares with other fields a clearly visible
pattern which reflects the interesting history behind the NN itself. The waves of
NN interest can be tracked down throughout its history till the 40s. The concept of
the Artificial Neural Network model has several times captured a close attention
as well as have been several times forsaken. For example, the model considered
as the origin of NN was a hardwired architecture without the ability to learn and
yet it started the research we build on up to the day. Promising results of several
architectures introduced in 50s, note that the models were represented physically,
were quickly shadowed by the universal Von Neumann architecture being behind
the vast majority of computer architectures. Despite various important discoveries
in 60s, 70s1, and the first half of 80s2, one of the several NN returns in computer
vision is considered to be the work of LeCun et al. [1] who introduced the CNN
for handwritten digit recognition. The proposed model achieved the state-of-the-
art results and the CNN quickly captured the attention of the computer vision
community. However, due to several causes, the general NNs were forsaken by
the community only a few years later. Recently, apart from the others, the work of
Krizhevsky et al. [2] rehabilitated the artificial neural networks in the computer-
vision community again.

It is the approach published by Krizhevsky et al., which this thesis builds on.
The CNN designed for the image restoration tasks, namely for the motion deblur-
ring and high compression related image artifacts removal comprise the proposed
unified approach. This work aims at providing the image restoration CNN models
which, based on the results, are comparable with the traditional state-of-the-art
engineered methods or even beyond them, to show that the idea of the end-to-end
CNN mapping based approach is mature to be considered in real applications.
There are various examples of motion deblurring and compression artifacts re-
moval tasks where the deployment of the CNN based restoration may provide
several benefits compared to the engineered methods. In the case of motion de-
blurring, it includes generally any surveillance system such as a traffic surveillance
where the motion blur may worsen the car identification due to poor light condi-
tions or a production line monitoring system, where, considering the possibility to
quickly tune the deblurring model or even to have a universal model for several
blur lengths and directions, it may allow using low-quality image capture devices.
Examples of image artifacts removal utilization reflect the low-quality bandwidth

1 The backpropagation, i. e. the algorithm used for training the networks, was published.
2 The introduction of Neocognitron, which became the influential predecessor of Convolutional Neu-

ral Network



introduction 3

for a high amount of data transfer, i. e. images may be heavily compressed and re-
stored on the client device. A similar situation occurs with the web images where
the required storage capacity may be reduced utilizing the restoration of highly
compressed images on the client device as well.

the objective Based on the NN exploitation in the field of computer vision
and the actual state of the art in image restoration, the main hypothesis of this
thesis and the related objectives can be summarized as follows. Most of the differ-
ent image restoration methods is replaceable by a unified approach represented by CNN
models which are end-to-end trained and often achieves state-of-the-art or even beyond re-
sults. These models may differ in particular architecture or in the objectives they
are trained for. The term unified covers the data-driven approach which adapts
to a certain type of degradation, it does not inherently mean a single model. Dif-
ferent training objectives provide various speeds of convergence and rarely better
models as well. The end-to-end mapping considers the direct transformation from
a corrupted representation of a restored image. To provide the evidence showing
the validity of such a hypothesis, two various image restoration tasks are selected.
Firstly, the deblurring, namely the motion deblurring, is evaluated on the specific
text images including the license plates captured by the surveillance system. In
this task, the primary attention will be given on the capability of deblurring itself
under the assumption of not known blur parameters, i. e. the model will provide a
blind deconvolution. CNN deblurring model will be examined to reveal its capac-
ity which may allow using a single model for a large range of possible blurs.

Secondly, it is the high compression related image artifacts removing, which
substantially differs from deblurring methods. These artifacts relate to a missing
image information lost by a high lossy compression compared to the blurred image
where the information persists just hidden in the transformed data. Besides other
aspects, the artifacts comprise a non-linear corruption compared to the linear blur
degradation. In this task, the same approach of CNN as in motion deblurring
comprise the unified approach. Next to the simple architecture used in the direct
end-to-end mapping approach, several different objectives the model is trained for
together with an architecture extension are studied. Finally, the CNN based image
restoration applied directly on the JPEG coefficients instead of pixels is proposed
and described. Considering the deployment of a CNN model in different data
domain, the achieved results may support the idea of a single CNN based approach
for different tasks of image restoration.

thesis outline The structure of this thesis consists of five main chapters with
introduction and conclusion. engineered image restoration briefly intro-
duces the motion blur and the high compression artifacts together with several en-
gineered restoration methods. convolutional neural networks provides
the formal definition of NN, the novel techniques used for training the models and
also the description of the most important architectures that the models presented
in this thesis are based on. image processing based on neural networks
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consists of various NN and CNN based approaches used in the image processing
during last 20 years with a more or less direct relation to the presented restoration
approach. cnn image restoration comprises the core hypothesis of this thesis
with the detailed description of the objectives framed by the principle idea of a sin-
gle unified approach. experiments provides the evaluations and results showing
the validity of the presented hypothesis and also offers the possible extensions to
the introduced models with the hints for further research. conclusion summa-
rizes the whole work, highlights achievements, and with a conclusion based on the
results closes this thesis.



2
E N G I N E E R E D I M A G E R E S T O R AT I O N

Image restoration is generally a transformation of a damaged image on an undis-
torted image. This chapter introduces the selected degradations and describes vari-
ous hand engineered widely used methods for their restoration. Image restoration1,
in the scope of this thesis, consists of two different inverse problems. Motion de-
blurring can be understood as a linear inverse transformation described as decon-
volution. In contrary, a restoration of lossy JPEG compression represents the non-
linear inverse transformation which, generally, is an ill-posed2 problem because
the transformation can be non-invertible. JPEG compression, with a low-quality
setting, produces the blocking artifact and the ringing — Gibbs phenomenon.

In this thesis, an image is understood as a finite matrix. Precisely, an image ex-
pressed as a continues function f (x, y) of two coordinates in the plane is sampled
into a matrix M× N, where each sample is quantized to an integer value of K in-
tervals [3]. Three types of images are considered, latent3 image represents an ideal
image which does not suffer from any corruption and it is denoted as x. An undis-
torted image represents the estimation of the latent image and is denoted as x̂.
Finally, a distorted image is the result of the process modifying a latent image and
is denoted as y. In this work, the terms like degradation, corruption, damage, etc.,
are understood as synonyms for a general process modifying the latent images.

Both types of degradation can be decomposed into an operator applied to a
discrete image and additive noise. An approximated model of degradation [4]
considering the discrete property and additive noise can be written

y = Ux + W , (2.1)

where y is the degraded image, x is the latent image, U represents the discrete
operator, motion blur or JPEG artifacts, and W is an additive noise. The discrete
operator U can be represented as a linear operation, i. e. convolution, or a non-
linear operation, the discrete cosine transform with quantization.

Both of degradations and the methods of its restoration are introduced. Motion
blur is described with examples of some simple yet typical linear operators and
its outcomes. Next, a basic motion blur Point Spread Function (PSF) estimation is
introduced to compute the Wiener filter and produce the estimated sharp image.
A state-of-the-art text-oriented deconvolution method L0-regularized intensity and
gradient prior [5] is described to be later on compared with the introduced data-
driven learned CNN based approach.

1 As both degradations can be well modeled, the inverse transformation is therefore referred as restora-
tion. Image enhancement, on the other hand, does not suppose a strong model.

2 An incorrectly or improperly posed problem.
3 The original meaning is related to exposed photosensitive material — photographic film.

5



2.1 motion blur 6

JPEG compression based degradation is mentioned with the emphasize on
stages of transformation pipeline where the compression artifacts come from.
Methods dealing with these artifacts are mentioned with a description of the cur-
rent state-of-the-art Shape Adaptive Discrete Cosine Transform method [6, 7]. The
majority of hand engineered methods usually consist of several steps based on
an analytical solution. This chapter briefly introduces several of such methods to
highlight the difference between data-driven methods which a CNN is a part of.

2.1 motion blur

Digital image restoration related, beside others, to the motion blur massively ap-
peared with the space programs in 1950s. The rising amount of aerial pictures
taken during the missions were often subject to many photographic degradations
including the motion blur [8]. This is often caused by a shake of a camera or a
moving object in the scene. Degraded images can be uniformly or non-uniformly
blurred. A convenient example of the easier case, uniform blur, can be found in
surveillance systems where the camera is fixed and a moving object appears cap-
tured with longer exposure. A uniform blur is represented solely by a single PSF
applied on the entire image. Non-uniform blur may often be related to an optics
distortion, camera rotation, or objects moving in the scene with different speed or
in various distances and consists of several PSF describing the blur in a particular
part in the image. Both types of blur, uniform and non-uniform is shown in Fig-
ure 2.1. Direct solution of (2.2) leads to the inverse filter with all the drawbacks
mentioned further. In a case of considering the noise and keeping the assump-
tion of linearity, the Wiener filter is usually used. This may be based on known
or unknown PSF. In such a case the transformation called a non-blind or blind
deconvolution. Often the existing methods of blind deconvolution concentrated in
estimating the single blur PSF for the entire image. This is valid for a restricted set
of applications but generally, such an assumption is far being satisfied in the case
of objects which in the scene move independently.

In case of an uniform motion blur, the equation (2.1) can be derived into a model
described as

y = x ∗ g + w , (2.2)

where y is the captured motion blurred image, x is the sharp latent image. The op-
erator U (2.1) becomes the convolution ∗ with a shift invariant PSF g representing
a degradation due to motion and optics imperfections, and, finally, w is an ad-
ditive random noise with zero mean Gaussian distribution. Figure 2.2 shows the
example of motion blurred license plate image with the corresponding PSF. The
presented model (2.2) rarely, if any, match the realistic conditions, e. g. optics is not
exactly shift-invariant, digital imaging sensors do not have the precise Gaussian
distribution of noise etc.
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(a) (b)

Figure 2.1: An uniform motion blur (a) with a vector field representing the spatial blur and
a non-uniform blur (b).

2.1.1 Motion Blur Restoration

A straightforward solution based on simple deconvolution with known blur PSF
yields to the inverse filter [9] with, in practice, straight drawbacks. The motion blur
equation (2.2) can be represented in the frequency domain using the F Fourier
Transform (FT). Regards to the convolution theorem4, the motion blur model (2.2)
is expressed as Y = XG + W, where Y = F (y), X = F (x), G = F (g), and
W = F (w). In case the blurred image is noise free, the estimated restored image
x̂ is expressed as

x̂ = F−1
(

YG−1
)

, (2.3)

which is simply the inverse Fourier transform F−1 of the blurred image Y di-
vided by the inverse filter G−1 in the frequency domain. A drawback of such an
approach is the assumption of no noise W which, in contrary, is practically al-
ways a part of the model. Rewriting (2.3) to include the added noise yields to
x̂ = F−1 ((Y−W)G−1). Usually, the G is a low-pass filter which produces to near
zero outcomes of high spatial frequencies. These are on the other hand strongly
amplified in the case of the inverse filter.

The deconvolution based on optimizing the Mean Square Error (MSE) between a
latent clean image x and the estimated restored image x̂ and considering additive
random noise w is called the Wiener filter [9]. It is an optimal linear filter based
on the assumptions of the stationary signals and zero mean noise with Gaussian
distribution. The stationarity assumption yields to a known autocorrelation in the
sense it is expected to be not dependent on the spatial position in the image. The
estimated restored image x̂ and the loss function L which the Wiener filter h mini-
mizes is written

x̂ = h ∗ (y + w) (2.4)

L = E (x− x̂)2. (2.5)

Optimizing the MSE of the loss function between the latent and estimated image
according to h is the Wiener filter in Fourier domain described as

H = G−1 |G|2

|G|2 + W
S

, (2.6)

4 Under suitable conditions the convolution in spatial domain transformed by FT is element-wise
multiplication in frequency domain.
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(a) (b)
(c)

Figure 2.2: The sharp image x (a) blurred with the motion blur PSF g (b). The result is an
uniformly blurred image y (c).

where H is the Wiener filter, G is the Fourier spectrum of a PSF, W is the mean
power spectral density of noise w, and S is the mean power spectral density of the
original image x. The S is usually unknown and therefore the signal-to-noise ratio
1/SNR is estimated instead of W/S. Having the definition of the linear optimal
filter the motion blur PSF estimation is needed to compute the Wiener restoration.

The Motion Blur PSF Estimation

There exist several methods for PSF estimation and the following deconvolution.
The focus of this thesis is not in these methods directly but in the machine learn-
ing based NN methods for several tasks of image processing. Nevertheless, the
concepts of these engineered methods reflect into some NN based approaches as
well. Yet the image processing is dominated by the engineered methods, the NN
based approaches are usually compared with them.

cepstrum and radon transform based approaches The straightfor-
ward approach estimating the blur PSF is to represent the blurred image so that
the blur, specifically motion blur, becomes easily to estimate. There are two sim-
ple yet well working under specific assumptions approaches based on the image
cepstrum C or the Radon transform R. The cepstrum C is defined as the logarithm
of the Fourier domain transformed back to the spatial representation based on the
inverse FT, and is written

C (g) = F−1
(

log
∣∣F (g)

∣∣) , (2.7)

where g is the motion blur PSF. An estimation of the blur PSF parameters based
on a blurred image cepstrum is described in [10].

The identification of motion blur direction and length is based on the assump-
tion of additivity under the logarithm of convolution in the Fourier domain. The
cepstrum of the motion blurred image is written

C (x ∗ g) = F−1
(

log
∣∣F (x ∗ g)

∣∣) (2.8)

C (x ∗ g) = F−1
(

log
∣∣F (x)

∣∣+ log
∣∣F (g)

∣∣) , (2.9)

which preserves the added negative spikes of C(g) to the latent non-distorted im-
age C(x). The angle of motion blur is approximated by the inverse tangent of the
straight line slope connecting the origin with the negative peak. The length is equal
to the distance between the negative peak and the origin. The cepstrum C of the
uniformly motion blurred license plate image is shown in Figure 2.3b with two vis-
ible black dots representing the negative peaks. Problems occur in case the motion
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(a) (b)

Figure 2.3: On the left (a) is the logarithm spectrum of uniformly motion blurred image
Figure 2.2c with clearly visible parallel lines related to the angle of the motion
blur. On the right (b) is the cepstrum of the identical motion blur image with
two black dots representing the negative pikes related to blur direction and
length.

is not linear and the blurred image contains a high amount of noise. According to
the [10], the method based on PSF estimation from the blurred image cepstrum is
accurate for various lengths till the level of noise is small.

Radon transform is, next to the cepstrum, another simple projection approach
to estimate the motion blur parameters, i. e. its length and direction. The Radon
transform is written

Rρ,θ (x) =
∫ +∞

−∞

∫ +∞

−∞
xi,j δ

(
ρ− i cos (θ)− j sin (θ)

)
di dj , (2.10)

where x is the input image integrated along the line determined by the angle θ

of its normal and the distance ρ from the origin. The δ function simply returns
one in case the projection line defined by the ρ, θ lies on the i, j coordinates and
zero otherwise. Radon transform is usually computed in the maximum inscribed
square of the input image x.

The Radon transform method based approaches [10, 11, 12] usually expect the
log |F (y)| input, i. e. the logarithm of Fourier transform of a blurred image. The
motion blur parameters can be derived from the specific parallel lines present in
log
(
F (y)

)
Figure 2.3a, where the angle between the parallel line normal and the

horizontal axis is equal to the direction angle θ of the motion blur [12].
The Radon transform is used to reveal these parallel lines in the logarithm spec-

trum of a degraded image Figure 2.4. The length is estimated as N/d, where N is
the image dimension and d is the distance between two successive parallel lines.
Another way to identify the motion blur parameters, e. g. the direction is to com-
pute the arg maxθ Var

(
Rρ,θ

(
logF (y)

))
, where the Var is the variance of the set

of values obtained by varying ρ. The arg maxθ depends fundamentally on the ori-
entation of the blur kernel [11].

the image prior-based methods The frequency domain-based methods,
including cepstrum or Radon transform, are not used in case of complex non-
uniform blur degradation. In regards, there are various methods based on the
natural image statistics, i. e. natural image priors. These methods often differ in
the specific image prior definition while the optimization based on the Maximum
A Posteriori (MAP) is usually common.
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Figure 2.4: The radon transform of the logarithm spectrum Figure 2.3a of uniformly
blurred image presents the spikes corresponding to the parameterization of
the lines in the logarithm spectrum.

In MAP estimation, the most likely estimate of the blur kernel g is searched
given the sharp image x̂ and the observed blurred image y, using the known image
formation model and noise. The general MAP estimation is written

P (g | y) =
P (y | g) P(g)

P(y)

ĝMAP = arg max
g

P (g | y) ,
(2.11)

where ĝMAP is the estimated blur kernel, y the blurred image based on the equa-
tion (2.2), and q the unknown latent PSF.

An image prior based on the assumption the blurred edges are degraded sharp
step edges in the latent sharp image was proposed by Joshi et al. [13]. The method
utilizes the sub-pixel difference of Gaussian edge detector to find the location and
orientation of blurred edges. The sharp edges are predicted from their blur appear-
ance based on the sub-pixel accuracy of the edges pose. Based on the predicted
sharp and given blurred image, the uniform or spatially-varied PSF is estimated
using the MAP estimation. Such an approach seems to work quite well till the mo-
tion blur is in some reasonable length. In a case of longer motion blur, the methods
are prone to fail. This is related to the assumption of localizing the not degraded
sharp edges which can not be hold [13].

The prior based on the histogram of derivatives was evaluated by Levin [14].
The prior assumption is based on the observation that the histogram of several
artificially blurred images derivatives significantly differs. The PSF can be most
likelihood estimated according to change of the histogram shape. However, the
presented evaluation is based on vertical blur direction only and the assumption
the image contains blurred foreground and sharp background. The estimated PSF
is then used for deconvolution of the blurred segment. The approach has several
limitations based on the segment identification, blur direction and length estima-
tion, which highly depend on the image statistics the model is computed from and
the assumption of a simple blur model.

The approach combining the image prior based on the edges and several differ-
ent yet ideally consecutive observations of the same scene introduced Cho et al.
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[15]. The presented method come out from estimating the motion model based on
various images of the same scene. First, the images are segmented into to several
corresponding segments. According to the number of segments, the number of
spatially different PSF can be estimated. Second, based on the correspondences, an
affine transformation is estimated from a segment in the first image to the corre-
sponding segment in a second image. Since the motion blurs represented by PSF
are commutative [15], their application on corresponding segments with known
affine transformation between can define an equation to be optimized which is
regularized by the edge preserving based term. Naturally, the approach is prone
to texture fewer images implying the problem with segmentation and consequently
the correspondence.

Another gradient based image prior was used in [16] to estimate the camera
shake PSF to consequently deblur the image. Specifically, the prior based on the
histogram of derivatives of naturally sharp images was learned. The goal was to
model a non-uniform blur on the assumption that the cause is based on the camera
rotation with one global blur operator. Strictly written, in this case, the PSF is not
the convolution kernel but the global operator. Blur kernel is estimated based on
marginalizing the posterior distribution p(x, g | y) of latent sharp image x and blur
kernel g conditioned by the observed blur image y.

In case the method is focused on a specific domain, e. g. the text deblurring by
Pan et al. [5], the image prior differs from the one used in natural images. The
state-of-the-art considered text image deblurring method, L0-regularized, is based
on the assumption that clean and blurred images can be differentiated based on
the pixel intensities and related gradients. The pixel intensity Pt(x) = ||x||0 which
is a number of non-zero values, and gradients of non-zero values observed from
document images Pt(∇x) were used as the prior to estimate the PSF. The prior for
text document images is thus

P(x) = σPt (x) + Pt (∇x) (2.12)

where σ is the hyper-parameter representing the pixel intensity weight. The main
idea of P(x) is developed based on the assumption that text and background in the
gray-scale image document without blur have near uniform intensity values. The
loss function which is minimized to estimate the PSF based on the defined prior is

L = ||x ∗ g− y||22 + γ||g||22 + λP (x) (2.13)

where x is the latent sharp text image, g is the blur PSF, y is the blurred observed
image, γ and λ are the weights. The proposed method simply yet effectively restore
the blurred text images and is considered to be the state-of-the-art for text image
deblurring.

2.1.2 Summary on Motion Deblurring

Deblurring may provide unsatisfactory results even when the precise blur kernel
is known, non-blind deconvolution, due to image noise or aspects of the image
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capturing process which is not present in the convolutional model. Cho et al. [17]
analyzed some common types of outliers that cause deconvolution to fail, namely
the pixel saturation and non-Gaussian noise. A new deconvolution method was
proposed which contains an explicit component for outliers modeling. The pixel
of the image is divided based on linear model blur fulfillment, inliers that can be
well recovered using traditional deconvolution methods, and outliers which are
iteratively refined based on expectation-maximization. The latent image is then
restored solely based on the inliers.

Levin et al. [18] published their analysis of blind deconvolution algorithms. Au-
thors stated the several published methods and algorithms are based on estimation
the not-blurred image x̂ and PSF kernel g simultaneously. The estimation of x̂ is of-
ten build upon the natural image statistics e. g. the histogram of derivatives [14, 16]
followed by the PSF estimation based on (2.2). Results of the survey pointed out
that the natural image priors do not overcome the limitations of such an approach
as the favorable solution under the priors usually yield to a blurry image. The re-
search of more precise priors of natural images was not discouraged but the effort,
according to the study, shall be more directed to estimators. In this work cited pub-
lications [5, 13, 14, 16] are unfortunately not compared from several reasons Levin
et al. [18] but the majority tend to be based on estimating both, latent sharp image
x̂ and the PSF g. All the described motion deblurring methods have in common
the engineered approach including the recent state-of-the-art methods. This is in
contrary with the later presented CNN based methods which are built on the idea
that the network should learn the deblurring itself.

2.2 jpeg image compression

Citing the ITU [19] Recommendations, Joint Photographic Experts Group (JPEG) was
formed in 1986 to establish a standard for the sequential progressive gray-scale and
color images. The abbreviation JPEG used for the file format itself is an informal
name for the JPEG File Interchange Format (JFIF) [20] used mainly for images pro-
cessed by computer software or Exchangeable Image File Format (EXIF) [21] used
by imaging cameras. A typical compression ratio of lossy JPEG is approximately
10:1. In the case of the higher compression ratio, the image degradation becomes
much more perceptible indicated by the blocking and ringing artifacts Figure 2.5.
This section provides the short description of JPEG compression pipeline focus-
ing on the source of artifacts. Follow an introduction of several methods used for
restoration including deblocking or deringing.

JPEG compression artifacts suppression has several considerable applications
where data acquisition is expensive, difficult or demanding. For instance, the im-
age or video playing over unreliable or low-bandwidth data connection. Image
processing with low compression quality in surveillance systems encompasses ap-
plication from traffic to production line monitoring. Its massive employment can
be in the low-quality images preview in systems where the storage together with
bandwidth capacity matters.
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(a) (b)

Figure 2.5: The JPEG artifacts in the form of the blocking (a) on the left and ringing (b) on
the right which is visible on the edges. The monarch image is here compressed
with the quality 10 and it is selected from LIVE1 image dataset [22].

2.2.1 JPEG Compression Pipeline

The compression pipeline as introduced in [19] consists of various steps which
differ according the lossy or lossless compression. The first one, lossy, is Discrete
Cosine Transform (DCT) based Figure 2.6 and allows depending on the characteris-
tics of the particular image as well as on desired picture quality to set the required
amount of compression. Lossy image compression, generally, achieves high com-
pression ratios through an elimination of information that does not contribute to
a human perception of images, or contributes as little as possible. The second one,
lossless coding, is based on predictor definition and Huffman or arithmetic coding
rather than DCT.

Firstly, the image color space is transformed from RGB to Y′CBCR representing
the luma Y′, CB blue-difference, and CR red-difference chroma components. Usu-
ally, the chroma components are down-sampled due to lower human sensitivity to
colors compared to brightness intensities. Secondly, during encoding, the input im-
age is split into 8× 8 blocks which are transformed by the forward DCT into a 64
values referred as the DCT coefficients which represent the particular frequencies
the DCT block consist of. General DCT transform of 2D image is written

Bpq = αpαq

M−1

∑
m=0

N−1

∑
n=0

Xmn cos
π (2m + 1) p

2M
cos

π (2n + 1) q
2N

, (2.14)

where Bpq is the computed DCT coefficient from all the values of the image block
sample X with the size M, N. The coefficient block size is equal to the image block,
i. e. 0 ĺ p < M and 0 ĺ q < N. The values of αp and αq are defined as

αp =


1√
M

, p = 0

2√
M

, 1 ĺ p ĺ M− 1
αq =


1√
N

, q = 0

2√
N

, 1 ĺ q ĺ N − 1 ,
(2.15)

where in case of JPEG compression the constants M, N are equal to 8, 8. The first
value represents the DC coefficient, an average intensity for the entire block, while
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Figure 2.6: The JPEG compression pipeline with the highlighted DCT encoder part.

the rest of 63 values are called the AC coefficients. The DCT coefficients are quan-
tized using corresponding values from the quantization table. The uniform quan-
tizer [19] is defined by the equation

Bpq = round
(

Bpq

Qpq

)
, (2.16)

where Bpq is the rounded quantized coefficient, Bpq is the DCT coefficient, and Qpq

is the corresponding value from the quantization table. The quantization step in
JPEG compression pipeline is actually the cause of non-linear degradation based
on the compression amount. The quantized DC coefficient is then treated sepa-
rately from the remaining quantized AC coefficients. Its value is based on the
difference of the previous DC value i. e. the very first DC coefficient is the refer-
ence one for all the subsequent DCs. Next, the coefficients are passed to an entropy
encoding process which, lossless, compress the data. Decoding is proceed in the
reverse order, where the dequantized coefficients B are transformed by the Inverse
Discrete Cosine Transform (IDCT) defined as

Xmn =
M−1

∑
p=0

N−1

∑
q=0

αpαq Bpq cos
π (2m + 1) p

2M
cos

π (2n + 1) q
2N

, (2.17)

where the notation is the same as in the DCT equation (2.14). According to im-
age degradation sources, the main causes are 8 × 8 block sampling and related
quantization step with following rounding operation.
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Figure 2.7: The cosine basis visualization (a) with the indicated zig-zag direction (b) and a
particular quantization table used for the quality Q20 (c).
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2.2.2 JPEG Artifacts Restoration

The common JPEG related artifacts are the blocking and ringing. Both are tightly
tied together. Block artifact is based on the 8× 8 block splitting and subsequent
quantization. The block segmentation employed in the JPEG standard results in
discontinuities at the blocks dividing edges. The more it is apparent the more
high frequencies are suppressed. The ringing artifact (Gibbs phenomenon) is the
induced oscillation resulting from the inverse DCT of quantized block values and
proceeds from the same cause as the blocking artifact — loss of the higher frequen-
cies Figure 2.5.

A large number of methods designed to reduce compression artifacts exist rang-
ing from relatively simple and fast hand-designed filters [23] to fully probabilistic
image restoration methods with complex priors [24].

One of the base post-processing approach widely used in the FFmpeg5 frame-
work is the Simple Postprocessing (SPP) filter [23]. The method is based on the idea
of re-encoding the decoded JPEG image with the several shifts i. e. encoding vari-
ous shifted overlapping blocks. The result pixel intensity is equal to the weighted
mean of all the contributing re-encoded blocks. Despite relative simplicity this
post-processing enhancement method performs well compared to other methods
operating on block boundaries in all bitrates, i. e. various quality compression.

In video compression domain, advanced in-loop filters (deblocking and sample
adaptive offset filters) known from video compression standards like H.264 or
H.265 are obligatorily applied.

A completely different approach is the restoration based directly on the DCT
coefficients which were introduced in [25]. Authors applied the DCT-based lapped
transform on the signal already in the DCT domain in order to undo the harm
done by DCT processing. According to the paper, the odd-symmetric DCT coeffi-
cients excessive energy indicate the blocking artifact. The incorporating non-linear
weighting of such DCT coefficients provides the selective removal of the blocking
artifact without affecting the real structure of the image.

A document image model prior incorporated into the decoding JPEG images
mainly based on the text was introduced in [24]. The image is segmented via
its luminance component into three disjunct regions based on its content i. e. the
picture, background, and text. While picture regions are decoded with a JPEG
decoder, background and text regions are decoded with an appropriate algorithm
designed for the given block class. Text and background decoding is posed as an
inverse problem in Bayesian framework based on the regularized MAP. In a case
of document images, the method is able to decode the text blocks such that they
are free from ringing artifacts with largely smoothed block artifacts.

Currently considered the state-of-the-art deblocking method is the Shape Adap-
tive Discrete Cosine Transform (SA-DCT) [6, 7]. The thresholded or attenuated
transform coefficients are used to reconstruct a local estimate based on a local
polynomial approximation of the signal within the adaptive-shape support. Since

5 A complete, cross-platform solution to record, convert and stream audio and video.
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this shape supports can overlap the possible local overlapping estimates are there-
fore averaged using adaptive weights that depend on the region statistics. However,
similarly to other deblocking methods [23, 25], SA-DCT over smooths images and
it is not able to sharpen edges.

2.2.3 Summary on JPEG Artifacts Removal

Several of the introduced methods, the video in-loop deblocking methods, SA-DCT
deblocking (only to estimate parameters), and methods derived from the lapped
DCT transform rely on the cognizance of the DCT grid. The described sample of
JPEG restoration methods can be divided into two main categories, pixel based,
where the restoration is solely done in the image domain, and the DCT based
working primarily with the coefficients. Restoring the image directly from coef-
ficients violates the standard [19] and leads to incompatibility with existing de-
coders. Though the idea of processing the DCT directly can benefit from the de-
quantization step or already mentioned lapped transform. A lot of pixel based
methods exist including simple averaging the shifted re-compressed image blocks
up to a sparse filtering based on machine learning methods. Later in the work
introduced CNN based JPEG artifacts reduction contributes to both i. e. DCT coef-
ficients and pixel based categories.

2.3 summary on engineered image restoration

Two different image degradation types were introduced, motion blur and the JPEG
related artifacts. The blur in the image is usually a consequence of a single reason,
the long exposure time, which is often caused by several factors. The motion blur is
a linear transformation where the image information is not reduced but only trans-
formed. This yields to the straightforward solution, i. e. the deconvolution of the
blurred image to restore the latent sharp image. Several related problems can and
often do occur like the noise in the image which makes the deconvolution hard and
requires specialized approaches. Often the estimation of PSF is performed with the
external knowledge represented like the prior as for example the distribution of
gradients in the sharp image.

The JPEG artifacts solely caused by the high compression ratio differs from the
motion blur primarily in lost image information. The artifact removal is therefore
completely different from the methods for deblurring. However, the prior in the
form of a regular grid is often used to deal with the blocking artifacts. An im-
portant thing to notice is the diversity of approaches the engineered restoration
consists of.



3
C O N V O L U T I O N A L N E U R A L N E T W O R K S

A Convolutional Neural Network is a merit of this thesis. Their theoretical back-
ground, together with the description of image degradation, comprises the basis
of the CNN image restoration. The purpose of this chapter is to provide the formal
definition of NN and based on this to gradually move to a formulation of CNN.
Particular drawbacks, or precisely features, the NN have, and which directly arise
from the provided definition, directs the attention to CNN. Although, there are
other reasons and probably more important, if compared to the NN drawbacks,
why the CNN was proposed and recently prioritized. Regardless, these are in-
cluded in the following CNN related paragraphs.

The description of two important CNN application is given. The majority of the
recent approaches, including the one presented in this work, are directly based on
the later introduced application, the Imagenet classification by Krizhevsky et al. [2].
However, the older predecessor, handwritten digit recognition published by LeCun
et al. [1], defined the convolution filter as shared weights throughout the layer
which on all the recent approaches build on.

Several today training related extension, modification, and approaches are de-
scribed. The majority of them is accepted as the methods allowing for training
deep models. Herein it is the activation function or a batch normalization layer.
Furthermore, several approaches are considered providing better network model
capabilities as described convolution stacking.

Nevertheless, first, a brief introduction to a history of NN and CNN is given.
Interestingly, there are three noticeable periods when the CNN were in the center
of attention throughout the last 70 years. The very first wave of interest starts with
the general introduction of NN architecture in the form of the simplified biological
neuron-inspired unit called Temporal Propositional Expressions (TPE) [26] which
was later named as McCulloch Pitts Neuron (MCP). Later on, Perceptron [27, 28],
a binary classifier with a linear decision boundary, was presented. The significant
architecture and its application were Adaptive Linear Element (ADALINE) sub-
sequently arranged into a network known as Many Adaline (MADALINE) [29].
While the MCP related work did not provide any learning algorithm, Perceptron
provided a class error based weight update, and ADALINE introduced the gradi-
ent descent of quadratic error-based learning approach. ADALINE was expected
to be a predecessor for an adaptive computer, a piece of hardware able to mod-
ify its weighted connections. Despite its application in speech recognition, echo
suppression, and weather forecasting, the concept of parallel processing was over-
shadowed by a rapidly developing digital computers based on serial processing
Van Neumann architecture. As Widraw noticed1, MADALINE based computer

1 Science in action Dr. Widrow’s youtube: https://goo.gl/iuJPky
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supposed to be used for ten years, starting from the beginning of the sixties, for
variety pattern recognition problems, language translation, information retrieval
and other data processing tasks. The overall expectation at that time was that this
concept would become a major innovative in data processing. Widraw was right.
However, he was wrong with the timing.

Von Neumann architecture based computers put the NN on a sidetrack till the
eighties. During the time of NN interest decline, in 70s, there had been published
a thesis of Werbos [30] which proposed backpropagation learning for NN. Unfor-
tunately, this work passed unnoticed for a decade till the backpropagation was
re-invented [31] or more precisely experimentally shown that it can be used for
NN training. Besides that, substantially important became the Convolutional Neu-
ral Network introduced by LeCun et al. [1] in computer vision. The concept of
CNN showed a tremendous success recognizing the handwritten zip codes. De-
spite this, the NN and CNN also became again forsaken for next decade because
of several reasons mainly based on the lack of sufficient amount of appropriate
data, and the unavailable computation power [32].

The third “renaissance” of NN begins in 2012 with the significant result the ar-
chitecture of Krizhevsky et al. [2] provided in ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC). Plethora of methods and extensions based on the CNN
were subsequently published and directly influenced this work. Among the rele-
vant methods, this includes, besides others, the work of Long et al. [33] and Noh
et al. [34] focused on a Fully Convolutional Network for image semantic segmen-
tation, Hradis et al. [35] and their CNN application for text image deblurring, and
Dong et al. [36, 37] with their direct mapping approach of superresolution network
later used for image artifacts reduction as well. Nowadays, the significant impact
of the CNN based methods is apparent in various fields where some of them are
not directly related to computer vision.

3.1 neural networks

A simple neuron which is building unit of a fully connected feed-forward NN is
defined as a dot product followed by the activation function and is written

y = f (w, x)

f (w, x) = h

(
M

∑
i=0

wixi

)
,

(3.1)

where y is the output, h(·) represents the non-linear activation function, often a
sigmoid for its simple differentiation, and w denotes the weight vector of size
M + 1 which is because it consists of a bias w0 and the weights wi where 1 < i ĺ

M. The vector x includes an additional bias x0 = 1 and the input data xi where
1 < i ĺ M. The result of a dot product ∑M

i=0 wixi defines the activation [38]. The
NN is therefore a triplet defined as 〈x,W , ·〉, where x is the input vector, W is a
set of weights vectors and · represents dot product.
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Arbitrarily wide (N neurons in layer) and deep (L number of layers) restoration
network can be defined

y0 = x

fl = hl (Wlyi−1)

FL (W , y0) = ( fL ◦ fL−1 ◦ . . . ◦ f1) (y0) ,

(3.2)

where fi (·) is the i-th layer which include several neurons and their activation
functions hi (·), the neurons weights of i-th layer are represented by a subset of
vectors Wi, and the layers arrangement is defined via a composition operator ◦.
All the trainable parameters are represented as a set W of vectors w. There exists
a subset of weights vectorsWl per layer l. The notation follows

Wl = {w0, . . . , wN−1}
W = {W1, . . . ,WL} .

(3.3)

With the formulation of NN, the drawbacks of its application in computer vision
are introduced. NN is not implicitly invariant to several transformations [38]. For
example, these transformations include translation, rotation, and scale. Despite
this, there are various approaches which support or even provide the invariance to
the NN based application.

data augmentation The training data can be augmented by all possible cases
of the transformation which the model should be invariant to [39]. The aug-
mentation may be based on the artificial training data transformation before
they are presented to the network during training.

build invariance Another way how to achieve an invariance is to provide an
architecture which is naturally invariant to a particular transformation. The
CNN is a common example of a model based on the neurons which act
as filters. These filters, represented as shared trainable weights, are locally
computed from the entire input with. Together with max-pooling layers, such
networks can reach the translation invariance.

The NNs without the non-linearity in its activation functions h(·), actually repre-
sent the linear model regardless the number of layers and can be directly replaced
by a single layer network. The function the NN performs can be defined according
to the last layer output. In the case of single neuron output with a thresholded
value, the network provides a binary classification. If the activation function of
such a neuron is a sigmoid, the network provides a thresholded logistic regres-
sion of preprocessed data. The network with the last layer providing the softmax
function computes the multi-classification. Finally, the network with the last layer
without the activation function performs the regression.
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3.2 convolutional neural networks

A Convolutional Neural Network represents a feed forward network designed in
regards to the observation and several studies2 concerning on processing the vi-
sual stimuli by mammals. A comprehensive theory exists how the visual cortex,
the part of a brain responsible for vision, works. The primary visual cortex con-
sists of cells which are sensitive to simple and complex features. In a CNN, these
sensitives cells are represented by spatial filters implemented as convolutions. The
neurons, i. e. the convolutional filters, exploit the strong local spatial correlation
which often appears in the natural images. These filters are implemented as con-
volution kernels where the kernel values represent the trainable parameters. From
the implementation point of view, the image is not convolved with a single kernel
but with several kernels sharing the weights. Sometimes, the neurons represented
by the convolutional filters are therefore denoted as the shared weights. The network
usually first learns filters similar to several simple wavelets which can be found in
its front layers. The network with added subsequent layers can compose these
simple wavelets and therefore builds complex features. The intermediate results
of feed-forwarding the input data, i. e. the outcomes of convolutional layers, are
denoted as the activation respectively feature maps. These represent the filtered
input of the previous layer with accentuated responses on the learned filters. A
CNN can be mathematically expressed as well as the NN formulation, i. e. it is a
composition of networks layers represented by functions as was defined in (3.2).

The NN can be reformulated into the CNN as a triplet 〈x,W , ∗〉, where x rep-
resents the input image, W is the set of weight tensors, and ∗ is the convolution
operator. Usually, the neurons, i. e. filters in case of CNN, comprise a tensor with
a spatial dimensions w, h and number of channels ch. The set of weight tensors
W , therefore, includes subsets of weight tensors Wl per layer. A subset l of layer
weights isWl = {W0, . . . , WN}, where Wn represents a particular nth filter weights.

The Neocognitron networks published by Fukushima and Miyake [40] at the be-
ginning of 80s were considered to be a predecessor of CNNs. The network which
was used for handwritten digit recognition by LeCun et al. [1] at the turn of 80s
and 90s was the milestone in CNN showing potential power such models can have.
Twelve years later, Krizhevsky et al. [2] published a work on a deep CNN for image
classification, a breakthrough CNN, which became the fundamental architecture in
various other computer vision related tasks.

cnn for hand-written digit recognition LeCun et al. [1] used the net-
work shown in Figure 3.1 with shared weights based on the assumption that fea-
tures useful in one part of the image is likely to be useful in other parts as well. A
neuron, in such a case represented as small convolution filter with the local recep-
tive field, a filter size, is applied to the image with its states stored in the feature
map. Besides the reduction of a lot of parameters, weights W , the network be-

2 Starting with work of Hubel and Wiesel who were for their work on the information processing in
the visual system awarded in 1981 by Nobel Prize.
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Figure 3.1: The architecture of LeCun et al. [1] for hand written digits recognition with
the shared weights in the 1st and 3rd layer, pooling 2nd and 4th layer, and 5th
dense fully connected layer.

comes spatial invariant based on the neuron’s local receptive field. The mentioned
parameter reduction allowed training the model in a reasonable time even in the
beginning of 90s. The following layers were designed similarly, ie neurons con-
volving the feature maps of previous layers. The only different was an outermost
fully-connected layer with ten outputs providing the digit probability. The original
network consists of 4 layers where first and third layer are considered to be the fea-
ture extractors while 2nd and 4th the sub-sampling layers. The concept of shared
weights layers followed by the sub-sampling layers is considered as a reminiscent
of neocognitron architecture published by Fukushima and Miyake [40].

Neocognitron together with its successor CNN were primarily inspired by the
architecture of primary visual cortex. The very first idea was to achieve the ability
to recognize stimulus patterns according to the differences in their shapes. Neocog-
nitron provided several ideas to build CNN, however, the time it was proposed, a
backpropagation used for learning was not widely known, and the network was
unsupervised trained via self-organization [40]. The CNN trained with backpropa-
gation showed significant results at the time the handwritten digits recognition was
published. Although, there were still problems to train these networks contribut-
ing to the fact that other well-working machine learning approaches assembled
from separated feature extraction and classification, features and support vector
machines, for instance, overshadowed the whole approach.

cnn for large scale vision recognition Krizhevsky et al. [2] success-
fully trained a deep CNN later known as AlexNet in the ImageNet Large Scale
Visual Recognition Challenge and achieved substantial results which overcame at
that time the state-of-the-art methods by more than 10 %, i. e. from 26.2 % to 16.4 %
in top-53 error classification task.

Such improvements are often attributed to several aspects including the available
computation power in the form of Graphics Processing Unit (GPU), availability
of large datasets as ImageNet [41], and the Rectified Linear Unit (ReLU) [32, 42].
While two first reasons are understandable, it the ReLU activation function which

3 The quality of a labeling was evaluated based on the label that best matches the ground truth label
for the image of top 5 classes.
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Figure 3.2: The architecture of Krizhevsky et al. [2]. The model was designed to run on
two GPUs, i. e. half channels of the particular layer were per GPU. The last
three layers are dense fully connected.

contributes a lot to the wide spread of depth CNN. The ReLU primarily helped to
suppress the problem of vanishing gradients.

The CNN of Krizhevsky et al. [2] consists of 5 convolutional and 3 fully-
connected layers Figure 3.2. The importance of the convolutional layers was an-
alyzed as it, in this particular model, contains less than 5 % of all network param-
eters. The reduction of the weights related to convolutional layers resulted in an
inferior performance which points out the importance of learned features and also
supports the assumption of the importance of the network depth.

While training data consisted of quite a large part of ImageNet4, the network,
despite, tended to over-fit due to its enormous number of parameters—60 millions.
Besides the data augmentation, a problem of over-fitting was substantially reduced
based on a dropout introduced in [43] and later in detail analyzed in [44]. The idea
of dropout comes from the assumption that model combination often improves
the performance of machine learning methods. There are randomly dropped out
several hidden or visible neurons and all its incoming and outgoing connections
which yield to a smaller amount of weights, i. e. model, and at the same time
efficiently combining many different CNN architectures. The dropout therefore
forces the network to learn more salient features [43, 44].

In the following years of ILSVRC competition, CNN based approaches became
the primary matter of an interest bringing other new concepts based rather on
architecture, i. e. more deep and complex structures. The CNN became the main
framework several later introduced approaches are based on. An example is the
very deep convolutional network VGG of Simonyan and Zisserman [45], or the
Inception network of Szegedy et al. [46] utilizing the idea of network in network

4 ImageNet consists of more than 14 M images.
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and at the same time reducing the number of weights of 60 millions in AlexNet
with the top-5 error 16.4 % to 5 millions in GoogLeNet with 6.6 % top-5 error, which
became the winner of ILSVRC 2014. In 2015, the best model ResNet [47] achieved
3.6 % top-5 error with a deep network of 152 layers.

3.2.1 Convolutions in CNN

Convolutions in CNNs represent the workhorse of a network computation. The
GPU architecture and fast matrix algorithms focused the attention to convolutions
represented as matrix multiplication. A discrete 2D convolution with a filter g of
size (w/2 + 1, h/2 + 1) is written

(x ∗ g)m,n =
h/2

∑
j=−h/2

w/2

∑
i=−w/2

xm−i,n−j gi,j , (3.4)

where x represents the convolved image. Several vectorization approaches based
on unrolling the convolutions and utilizing the GPU were published [48, 49, 50].
The tensor xT lowered to a matrix xM and a tensor the filters are stored in gT

lowered to a matrix gM shows the Figure 3.3 is based on [48] latterly abbreviated
as im2col method. A drawback of this approach is the duplication of elements
overlapping in the receptive field i. e. when the stride is smaller than the filter size.
The result matrix representations size depends on the input data size xT = [m, n, c]
width, height, channels, filter size gT = [h, w, c] filter width, filter height, channels,
and its number f , and the stride s the step size filter slides over the input data.
Matrix xM is than (m− h + 1)× (n− w + 1) and matrix gM = hwc× f .

Currently, the trend is to use smaller filters, for instance of the size 3× 3, stacked
in more layers. Such a pattern is distinct from the ILSVRC challenge, specifically,
AlexNet uses in the first layer the filters size 11× 11, VGG network is based solely
on 3× 3 filters, and GoogLeNet factorizes 7× 7 filters used in the year 2014 into
several smaller convolutions [51] a year later.

Another trend is a convolution architecture based on utilization of a convolution
separability. This leads to stack of horizontal convolution of 1× n form and its
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Figure 3.3: Convolution lowered into the matrix multiplication. The tensor of data xT and
filters gT is lowered into the data xM and filter gM matrix.
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Figure 3.4: The illustration of stacked convolutions (a) compared to single large convolu-
tion kernel (b).

orthogonal corresponding convolution n× 1 which yields to a spatial convolution
with n× n filter. Such an architecture can be found in the Inception of GoogLeNet
network [46, 51].

The benefit of stacking the smaller convolutions is merely based on reducing
the parameters, increasing the number of nonlinearities, and often decreasing the
number of floating point operations compared to convolution with one big filter.
The effectiveness related to multiplication and add operations increases with the
input size. On the other hand, the filter size affects the number of weights W in
the network. Therefore the convolution theorem, i. e. the convolution expressed
as a point-wise product in the Fourier domain, is recently in the shadow of fast
matrix multiplication implementation. Its utilization would be appropriate in case
of bigger filters where such an assumption is in contradiction with actual trend of
computing small stacked filters.

3.2.2 Fully Convolutional Network (FCN)

In both works of LeCun et al. [1] and Krizhevsky et al. [2] which steered the at-
tention towards CNN, the number of weights in the convolutional layers was in
the substantial minority compared to a number of weights in the fully connected
layers. The part of the network which consists of convolutional layers represents
the feature extraction while the fully connected layers represent the classification
part. Nevertheless, the fully connected layers can be replaced by the convolutional
layers with filters of size [1, 1, c] which provide the ability to compute an arbitrary
input data size. The FCNs are usually referred as end-to-end or pixel-to-pixel. Se-
mantic segmentation followed by several image processing approaches became the
important application where FCN were used.

Long et al. [33] introduced the per pixel image segmentation based on networks
omitting the fully connected layers trained directly pixel-to-pixel. This work encap-
sulates several ideas currently dominant in other works. Authors directly transfers
the recent classification models AlexNet, VGG, or GoogLeNet to dense prediction
based on the fine-tuned FCN architecture.

The original networks based on fully connected layers highly amortize the com-
putation in a case of overlapping input patches. For instance, AlexNet’s input of
fixed size 227× 227 produces a class vector which in a naïve use of the patch-to-
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Figure 3.5: The examples of two transposed convolutions, in CNN known as deconvolu-
tion, with a kernel size 3 and stride 2 on the left (a) and the same size kernel
but stride 3 on the right (b).

pixel classification would consist of repeated computation of the overlapping data
again and again. Such waste calculation is suppressed by using the FCN on bigger
inputs, i. e. reducing the number of overlapping patches.

In a feed-forward step, the input image is processed by several convolutional lay-
ers which yields to cropping the image, if no padding is used, and the pool layers
which subsample the data. The upsampling was computed by the trainable back-
ward convolution, i. e. a deconvolution layer, which maps convolution output back
to its input. Because of relatively coarse results, the FCN was extended by a skip
architecture [38] delivering the finer spatial information to more deep layers. Final
results, evaluated beside others on Pascal Visual Object Classes (Pascal VOC), out-
performed the state-of-the-art methods including R-CNN giving the 20 % relative
improvement, i. e. the 62.7 % mean intersection over the union between ground
truth and the predicted segmentation.

Noh et al. [34] extended the FCN of pixel-wise semantic segmentation pointing
out several limitations of Long et al. [33] work. Namely, the problem of fine de-
tails related to a scale of the object in the image was addressed. The approach of
deconvolution with the skip architecture was replaced by unpooling, and decon-
volution layers included in a deeper model denoted a DeconvNet (30 compared to
8 layers [33]) which expects the already proposed object instances in the image as
the input. DeconvNet consists of two parts, first 15 layers of the VGG network are
followed by the same but mirrored architecture providing the up-sampling based
on the unpooling and deconvolution layers.

The unpooling of max-pooled regions is the non-invertible operation approxi-
mated from recorded maxima locations within each pooling region. The decon-
volution architecture, in contrary to the convolutional one, firstly creates a hier-
archical structure where the first filters capture the overall shape while the later
deconvolution filters provide the class-specific fine details. In summary, it behaves
the opposite way compared to convolutional architecture. The reported results on
Pascal VOC were 72.5 % of mean intersection over union.

This work is primarily based on the concept of FCN which, related to image
processing, was introduced in several recent papers and its applications are quoted
in Chapter 4.
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3.3 network training

Given the NN architecture with an arbitrary width and depth, the model is usually
trained with a gradient descent based approach [52] utilizing the backpropagation
for efficient gradient computation. An objective function represented by the opti-
mization of a loss function, specifically a minimization in a case of gradient descent,
is in the case of regression output usually based on the square `2-norm where `

corresponds to a particular `p space. The minimization of a loss function is written

arg min
W

1
2

N

∑
i=1

∥∥FL (W , xi)− ti
∥∥2

2 (3.5)

where FL (·) is the NN output based on the input vector xi, model weightsW , and
ti represents the ith related ground truth vector. The selection of a loss function
depends on the task the NN should be trained for. The loss function corresponds
to minimizing the cross-entropy between an empirical distribution defined by the
training data5 and a distribution described by the model. For instance, the classi-
fication is usually based on the cross-entropy minimization between the Bernoulli
distribution used for binary classification or soft-max distribution used for multi-
class classification with the distribution defined by the training set. On the other
hand, the loss function as defined in (3.5) represents the cross-entropy between the
Gaussian and empirical distribution [53].

Usually, the loss function of deeper architecture with non-linearity activation
functions is non-convex, i. e. it does not guarantee the optimization will converge.
The non-convexity seems like an inconvenient property because the model opti-
mization tends to get stuck in the local minimum. Such an observation emphasizes
the importance of the initialization as the achieved minima can differ principally
based on the optimization beginning. Empirical results show that the several local
minima of non-convex loss function usually provide more or less well working
models in case of similar initialization.

3.3.1 Initialization

The NN training starts by an initialization of the network, i. e. its weights. The
importance of the initialization was quite underestimated till the introduction of
unsupervised pretraining based on the deep belief nets [54] and Auto-Encoders
(AEs) [55] training. Various recommendations based on empirical observations
were summarized and gradually extended in several papers including [56, 57, 58]

The purpose and impact of the initialization strategy are solely related to the
gradient based optimization of the loss function (3.5). The typical trait of the high
dimensional space which the NN model is part of is a problem of global optimum
which is practically never reached. Therefore, the optimization often gets stuck in
the local optima which rely heavily on the network initialization. The problem of

5 The size of training data is an application related value which spans from hundreds up to millions
of samples.
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various local optima existence can be partial suppressed. The standard approach
is, with some constraints, to randomly and several times initialize the network
consequently train it and in the end select the best performing model or combine
better-working models together. Such an approach is handled by the technique
called dropout [44] which also provides the regularization of the network.

Generally, the random initialization of the network should fulfill two main as-
sumptions. Firstly, the initialization of layer weights should avoid or break the
symmetry [56]. The symmetry is indicated as identical weights values shared be-
tween neurons of the same layer. Based on the same weights values of the neurons,
i. e. the symmetry, the network produces the same output, hence having the same
gradient and therefore performing the same update which yields to same change
for all the symmetry neurons.

Secondly, the input values, the training data, are assumed to have variance 1,
expected to be normalized, transformed to have the mean around zero and to
be uncorrelated if possible. Following the expected input, the weights should be
relatively small numbers with a reasonable variance [42, 58]. Various approaches to
getting the proper values in the initialization are briefly described in the following
text.

The earlier proposed initialization emphasized the weights values with the range
over the tanh linear regions. These are all the values around zero, where the tanh
function behaves almost linearly Figure 3.7b. That should keep enough large gra-
dients and force to train the network the linear part of the mapping before the
more complicated non-linear part. The weights were suggested to be initialized
by randomly sampled values with a zero mean and a standard deviation based
on the number of neuron inputs, i. e. the number of trainable convolutional filter
coefficients

Var
(
Wij
)
=

1
nij

, (3.6)

where Wij represents weights of a single neuron j in a layer i and nij number of
the inputs to a neuron [58]. In the equation above the variance instead of standard
deviation, i. e. the square root of the variance, is used.

Based on the study focused on properties of backpropagated gradients, the
Xavier initialization [57] was proposed

Var (Wi) =
2

ni + ni+1
, (3.7)

where the variance is related to the number ni of neurons of the ith layer and
the number ni+1 of neurons in the following layer. The Xavier initialization allows
avoiding the time consuming per layer pretraining described in Image Denois-
ing Based on Auto-Encoder which was formerly used to initialize deep models.
The Xavier initialization reflects the back-propagated gradients related to the net-
works using the sigmoid activation function which, as was noticed, is almost lin-
ear around zero and outputs the gradient for the negative input values as well
Figure 3.7a. In contrary, the ReLU Figure 3.7c activation function always returns
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zero for non positive input, which yielded He et al. [59] to propose a modified
initialization

Var (Wi) =
2
ni

. (3.8)

Taking such a property into consideration. Here ni represents the number of neu-
rons in the ith layer.

The initialization of a deep model is still under research. There exist recently
published papers, which evaluate the impact of several initialization types as for
instance the work of Dmytro and Matas [60].

3.3.2 Backpropagation

The weights W of particular NN are updated based on a backward propagation
of errors, the backpropagation. Backpropagation comprises a chain rule of loss
function differentiation w.r.t. network’s weights W . Backpropagation in the form
of a computational graph can be used to compute the required gradients using a
reverse automatic differentiation [61]. That allows decomposing the backpropaga-
tion computation on layer related differentiations, which, for instance, can be seen
in caffe framework [62]. A simple 2 layer network with its partial differentiations
used in backpropagation is shown in Figure 3.6 and is written as

F2 (W , x) =W2

(
h1 (W1x)

)
, (3.9)

where x represents the input data, W1 are the weights of first layer as defined
in (3.3), W2 are the weights of second layer, and h is the activation function. For
simplicity and clarity, the single NN components are substituted into a functional
form

F2 (W , x) = f2

(
h
(

f1 (x)
))

, (3.10)

where x is the input data, f1 (x) = W1x, h(·) is the activation function and
f2 = W2h(·). In accordance with this NN, the backpropagation is computed as
network graph path factorization which represents the chain rule. Differentiation
of the loss function C (·) defined in (3.5) is thus written

∂C
(

F2 (W , x) , t
)

∂W . (3.11)

Factorizing the computational graph, the derivation w.r.t.W1 andW2 of the loss
function C(·) is equal to

∂C
∂W2

=
∂C
∂ f2

∂ f2

∂W2

∂C
∂W1

=
∂C
∂ f2

∂ f2

∂h
∂h
∂ f1

∂ f1

∂W1
.

(3.12)

The weight updates 4W are computed based on the partial derivatives ∂C
∂W1

and ∂C
∂W2

based on various gradient descent algorithms. Backpropagation is highly
affected by the gradients size. The size of a gradient in the case of a saturated
neuron with the sigmoid-based activation function becomes almost zero and yields
to a problem of vanishing gradients the backpropagation may suffer with.
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Figure 3.6: A shallow two layer network with the partial differentiations for the backprop-
agation chainrule.

3.3.3 Unstable Gradients

are Problem of unstable gradients made it difficult to train deep architectures based
on backpropagation till 2006 [57, 63] when the ReLU was firstly introduced. This is
solely related to gradient based methods using backpropagation where the weights
are iteratively updated according to the propagated errors. The problems occur
when the gradients become too small, and since they are multiplied with gradi-
ents of next layer they decrease exponentially. The smaller gradient the smaller
update the slower learning. The frontest layers, i. e. layers near to the input, are
therefore trained very slowly because of gradually smaller gradients propagated
back through the network.

The two main sources of vanishing gradients were described in [57], namely
inappropriate activation functions and the improper network initialization. The
sigmoid (3.17) was often the most used activation function because of the easy dif-
ferentiation and the squeeze transformation of input into the (0, 1) interval, which
was considered as a suitable property for training the network. Initialization of the
network is, therefore, important as the high or low weights multiplied with the
input can lead to so-called saturated neuron, i. e. the output is too close to 0 or 1
which causes the almost zero gradients in a case of the sigmoid activation function.

continually in combination with improper network initialization.
The problem of unstable gradients is addressed by several activation functions

including ReLU, PReLU, ELU and batch normalization which keeps the forwarded
data normalized. The precise impact of both, activation functions and the for-
warded data normalization are yet under research.

3.3.4 Weight Update

During NN training, the C (·) loss function is differentiated and the error back
propagated using the backpropagation. The network weights can be updated based
on the gradients reflecting the amount of error they cause. The amount of their
change, i. e. the size of a step towards the minima, is controlled by a learning rate
γ. The weight updates can be computed with different approaches. The majority
of the update strategies aim to speed up the convergence process and reach a
better semi-optimal minimum. The following text introduces several widely used
weights update approaches.
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gradient descent Gradient descent is based on moving a small distance
controlled by learning rate γ in the direction of the negative gradient, i. e. towards
the minimum of C (·) loss function with respect to weights. The update can be
formulated as

4Wτ+1 =Wτ − γ∇C
(

FL (Wτ, x) , t
)

Wτ+1 =Wτ + 4Wτ+1 ,
(3.13)

where Wτ represent the actual weights of the network FL which consist of L
layers. The loss is computed every iteration from all training data x, t to obtain
Wτ+1. Replacing the scalar learning rate γ with the inverse of the loss Hessian ma-
trix [52] which is gradient proportional can speed up the optimization from linear
to quadratic convergence due to the per weight wi controlled update. The basic
gradient descent is seldom applied as the computation of the related gradients can
become intractable on large datasets.

stochastic gradient descent Replacing the batch gradient descent com-
putation with the mini-batch, i. e. using the Stochastic Gradient Descent (SGD)
as in [1] allows to learn on-line based on large data. The Cn (·) loss function is
computed from stochastically selected independent train data which comprise the
mini-batch of size n. Loss function based on the maximum-likelihood of sampled
data reflects the batch loss function C (·) = ∑N

n Cn (·). The form of stochastic gradi-
ent (3.13) with C (·) replaced by Cn (·) defines the SGD. For instance, in Krizhevsky
et al. [2], the mini-batch consisted of 128 samples.

sgd with momentum SGD does not behave optimally in case of variously
deformed shape representing the loss function Cn [64] which can yield to the
refracted trajectory or oscillation during approaching the minimum. Momentum
SGD, in contrary, computes the update of W based on the previous momentum µ

altered by actual gradients in the form

4Wτ+1 = µ 4Wτ − γ∇C
(

FL (Wτ, x) , t
)

Wτ+1 =Wτ + 4Wτ+1 .
(3.14)

In SGD with momentum update, the µ coefficient damps the kinetic energy to
prevent the infinite move. The update step using a momentum provides better
convergence in the sense of speed and better minimum [65, 66] compared to an
ordinary SGD. The majority of experiments presented in this thesis are utilizing
the SGD with momentum.

sgd with nesterov momentum A possible enhancement of the momentum
SGD was shown in [67, 68] based on the Nesterov adaptive momentum. First, the
update of previous step is added to actual weights according which the actual loss
is differentiated, and based on such prediction a new update is estimated

4Wτ+1 = µ 4Wτ − γ∇C
(

FL (Wτ + µ 4Wτ, x) , t
)

Wτ+1 =Wτ + 4Wτ+1 .
(3.15)
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adam Recently published adaptive moment estimation Adam for stochastic
gradient optimization [69] provides an efficient and fast convergence. Adam is
referred to be well suited for non-stationary loss and noisy and sparse gradients.
According to empirical results based on the NN evaluation on CIFAR dataset and
assessment of CNN on MNIST dataset images [69], Adam achieved better model
compared to SGD with Nesterov momentum. The learning rate adaptation is con-
trolled by the second order moment of the loss gradient. According to the au-
thors, the improvement was marginal. However, its benefit comes from adapting
the learning rate based on particular CNN layer. The update computation is writ-
ten

∇C = ∇C
(

FL (Wτ, x) , t
)

mτ+1 = β1 mτ + (1− β1)∇C

vτ+1 = β2 vτ + (1− β2)∇C2

4Wτ+1 = − γ√
vτ+1 + ε

mτ+1

Wτ+1 =Wτ + 4Wτ+1 ,

(3.16)

where Adam update is controlled by four hyper-parameters β1 and β2 behaving
similarly like momentum, the ε preventing zero in the denominator, and the learn-
ing rate γ.

There are often used other SGD based methods, namely the adaptive sub-
gradient methods for online learning and stochastic optimization AdaGrad [70],
an adaptive learning rate method AdaDelta [71], unpublished RMSprop6, and
other more or less rare algorithms. Besides the first order methods, second or-
der, Newton methods like Limited Memory Broyden–Fletcher–Goldfarb–Shannon
(LM-BFGS) [72] are rarely used as well.

3.4 activation functions

According to a description of network training, the following text reflects the ac-
tivation functions which besides being the source of nonlinearity in the network
affect the gradient and feed forward data scale. Therefore they are closely related
to training and in fact recently allowed to train very deep networks. Earlier, squelch
activation functions based on sigmoid were usually used including the sigmoid it-
self and a hyperbolic tangent tanh. Recently, the ReLU based functions are almost
solely used in the CNNs models. The importance of these *LU functions is strongly
related to a problem of vanishing gradients and saturated neurons.

sigmoid Formerly often used a non-linear activation function in NN was the
sigmoid activation function Figure 3.7a. Its definition is written

h(x) =
1

1 + e−x , (3.17)

where the output h(x) is always in the interval (0, 1). Sigmoid was earlier used
quite often because of its suitable differentiation. Based on the work of Glorot

6 https://www.coursera.org/learn/neural-networks

https://www.coursera.org/learn/neural-networks
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and Bengio [57], several sigmoid drawbacks were identified. First, the problem
with vanishing gradients can occur as the input value saturates the neuron, the
outcome is close to 0 or 1. Second, the output is constantly rising propagating
through the network as the function is not centered around 0 which slows down
the convergence [57].

The not zero centered problem of the sigmoid function addresses the hyperbolic
tangent on Figure 3.7b precisely defined by LeCun et al. [58]

h(x) = 1.7159 tanh
(

2
3

x
)

, (3.18)

where the output values are in the interval ≈ (−1.7, 1.7). However, the problem of
vanishing gradients during training may remain for deep architectures due to its
tiny gradients in the case of higher input values.

rectified linear unit The sigmoid based activation functions became re-
cently often replaced by the ReLU activation function Figure 3.7c. ReLU were ear-
lier suggested based on the study of cortical neurons and later used in recurrent
networks [42]. However, it became prioritized mainly because of significant results
provided by AlexNet by Krizhevsky et al. [2] where such activation functions were
used. The ReLU support the model sparsity which is a suitable property of deep
networks where a reasonable amount of sparsity is related to a model generaliza-
tion capabilities. The ReLU which is a biologically plausible model is defined

h(x) = max (0, x) . (3.19)

The network with ReLU activation functions can be understood as a sparse repre-
sentation of an exponential number of linear models that share parameters. The
nonlinearity is given by different feed-forwarded data through network paths [73].

A disadvantage of ReLU results from its linear characteristics of the input being
above the threshold. Firstly, in a case of neuron saturation using ReLU activation
function the non-linear property can be shadowed and therefore the neuron can
become overly linear. Secondly, high input value can produce during training a
large error which is used to update corresponding weights. Such a large error can
lead to a dead neuron in such a way that the neuron will not activate based on
other input data. Nevertheless, the dead neuron can be re-activated again in case
the sufficiently large value appears which may cause the neuron activation again.
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Figure 3.7: The activation functions including the sigmoid (a), note different vertical scale,
tanh (b) suggested by LeCun et al. [58], and recently most often used ReLU (c).



3.4 activation functions 33

-3

 0

 3

-5  0  5

PReLU

(a)

-3

 0

 3

-5  0  5

ELU

(b)

Figure 3.8: The Parametrized Rectified Linear Unit (a) with the trainable parameter α defin-
ing the negative slope. The continuous Exponential Linear Unit (b).

In contrary to the assumption of favorable sparsity supported by true zero acti-
vation, He et al. [59] introduced the Parametrized Rectified Linear Unit (PReLU)
activation function Figure 3.8a which avoids the true zero. PReLU was introduced
in a work presenting a CNN model surpassing the human-level performance in
ImageNet classification achieving 4.94 % top-5 error. PReLU is written

h(x) =

x if x > 0

αx if x ĺ 0
, (3.20)

where α is a trainable parameter usually initialized to 0.25 [59]. An inconvenient
property of ReLU and PReLU is their discontinuity in 0 and that they are not
zero centered. The undefined differentiation in this point has to be defined ad-
hoc. The zero centered property is desired because usually a faster convergence is
achieved in case the values average is close to zero [58]. Recent work of Clevert et al.
[74] presents the Exponential Linear Unit (ELU) activation function Figure 3.8b
addressing both, the discontinuity and non zero center of ReLU and PReLU. ELU
is defined

h(x) =

x if x ľ 0

α (ex − 1) if x < 0
, (3.21)

where α is trainable parameter usually initialized by 1 [74]. Results, published
in [74], shows beneficial properties of ELU together with faster convergence. On
the other hand, ELU compared with the ReLU network is about 5 % slower. Nev-
ertheless, the whole subject of activation functions is still under research.

3.4.1 Batch Normalization

An approach of designing the activation functions to produce suitable outputs
keeping the distribution centered around zero in some reasonable variance inter-
val can be looked into from the other point of view, the data itself. That is the
underlying idea how to deal with an internal covariate shift which is understood as
the changes in the output data distribution of network layer during training. Such
a shift leads to several problems requiring careful initialization settings, per layer
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learning rate tuning etc. Ioffe and Szegedy [75] addressed the problem directly
by including the normalization into the NN model itself. Batch normalization also
keeps the feed forwarded data in an almost constant scale which in the case of
ReLU prevents the dead neurons caused by an high error.

The learning speed improvement based on the input data normalization, more
precisely whitening, i. e. centered around 0 with covariance 1 and decorelated was
mentioned already in [58]. Direct whitening of layers activations, activation func-
tion inputs, brings complications during training when the gradient descent do
not take the normalization into account. That was empirically proofed and theoret-
ically outlined in [75].

The normalization is based on mini-batch statistics defined as

x̂i =
xi − E [xi]√

Var [xi]
, (3.22)

where the mean E [xi] and variance are computed from the training data xi.
Such a transformation do not allow the network shift or scale the data if needed.

It also can suppress the non-linearity in the case of sigmoid activation function
(see the function shape around 0). That is why the batch normalization is defined

BNγ,β (xi) = γx̂i + β , (3.23)

where γ and β are trainable parameters allowing the network to shift and scale the
normalized activation if needed during training. Using batch normalization allows
to rapidly speed up training as the learning rate can be increased. An ensemble of
GoogLeNet models based on batch normalization reached the 4.9% top-5 error on
ILSVRC

3.5 summary on cnn

The Artificial Neural Network was predicted to become the important data-driven
approach in several tasks. However, the expectation was often too high and to-
gether with a too optimistic time prediction of the deployment, the NNs were
several times abandoned. At the beginning of the nineties, the important work of
LeCun and Hinton on CNN restored the community interest. That is the time the
basis of CNN was given and where ends the part of NN history introduction.

The NN formulation was given with an intention to move to the CNN. Given
the definition of CNN, two important approaches were described. These include
the hand-written digit recognition and the Krizhevsky network used in the Im-
ageNet Large Scale Visual Recognition Challenge. Followed convolution and its
implementation in the form of matrix multiplication together with the transposed
convolution usually called the deconvolution in the CNN community. The closely
CNN related type of network, the FCN was introduced which omits the fixed fully
connected layers using the fully convolutional architecture. The last part consisted
of training which consists of initialization, weight update, different activation func-
tion description and the related problem of unstable gradients.
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I M A G E P R O C E S S I N G B A S E D O N N E U R A L N E T W O R K S

Image processing includes the wide domain of various low-level image tasks. The
recent restoration approaches for several corruption types based on NN follows.
Specifically, the restoration methods for natural or text blurred images are pre-
sented together with work of Hradis et al. [35] which is directly extended in this
thesis. The denoising methods build on the Auto-Encoder (AE), NN, and CNN
networks follow with a description of AE and its modification Denoising Auto-
Encoder (DAE) used in other low-level image processing tasks. Recently, the de-
noising is often included directly in the CNN models deployed for several tasks
which are often noise affected. A pixel classification for object segmentation, which
preceded the FCN and which comprises the basis for following introduced archi-
tectures, are described. The super-resolution approaches are presented with an
introduction of Super-Resolution CNN (SR-CNN) which is closely related to the
JPEG artifacts reduction method described by the end of this chapter and which
the proposed models later in this work are compared with.

4.1 deblurring

The overview of deblurring methods have one central common part the NN. First,
the specific methods for text deblurring are introduced. These are end-to-end based
approaches directly mapping the blurred image to its estimated sharp representa-
tion. In contrary, the majority of referred methods for natural image deblurring are
used to estimate the inverse Point Spread Function (PSF) with which the image is
later on deconvolved.

4.1.1 Text Image Deblurring

a shallow nn based text deblurring Tansley et al. [76] already in 1996
published a short paper about NN based image deconvolution used for text deblur-
ring. The text images significantly differ from the natural images. That, generally,
yields to a task with a strong prior based on the font type, clear distinction be-
tween the foreground and background, and others restrictions of to text images
compared to natural ones. A utilization of NN proceeded from the idea to train
the model to reflect the prior itself i. e. the data-driven model. An optimal linear
filter based on the assumption of convolution linearity was modeled by the NN
with a single linear neuron (3.1) followed by the sigmoid function. Such a simple
and shallow network was used to classify the pixels to be part of the background
or foreground based on the thresholded sigmoid function. The NN was trained on
patches of size 13× 13 which also defined the NN perception field. A single value

35
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output, the foreground or background classification, corresponded to the center
of the input patch. The trained network was slid over the whole blurred image to
obtain the deblurred binary text image.

That represented the end-to-end mapping, where the network learned the PSFs
and noise allowing to deblur the input. Despite the fact, the network consisted of
single neuron only, i. e. 170 parameters, the results of this data-driven approach
outperformed the optimal linear filter and simultaneously incorporate the noise
information.

The introduced end-to-end mapping of the degraded image to its clean and
sharp representation is a very simple predecessor of the method presented by
Hradis et al. [35] and later reapplied in this thesis which is based on much larger
model in regard to width and depth incorporating many various convolutional
kernels stacked into several layers and interposed by ReLU based non-linear acti-
vation functions.

a deep cnn based text deblurring An image deblurring based on CNN
presented in [35] was motivated by processing the handheld or phone camera
taken text images including several notes or public information boards. The best
performing model consisted of 15 layers interleaved by non-linear ReLU and pro-
vided a blind-deblurring approach for images blurred with single or multiple PSF
functions as well. The architecture of the deep model was inspired by the vision-
based approaches introduced by Krizhevsky et al. [2].

Compared to the shallow NN based text deblurring model [76] of 170 param-
eters, the largest 15 layer presented model with a global perception field 50× 50
consisted of 2.3 × 106 trainable parameters. The L15 network was a regression
model which produced the normalized pixel values. This end-to-end model was
directly trained on a pair of noisy blur and clear patches where the minimum size
of input was due to the large global perception bigger than 50 pixels to provide
the about the same amount smaller output. The approach of training followed the
trends of earlier introduced approaches for tasks of computer vision [2, 45] i. e. the
backpropagation followed by the SGD weight update.

The experiment results based on various deep models yielded to affirm the
assumption that the performance of CNN is beside other aspects strongly re-
lated to the model depth The final model, 15-layer end-to-end mapping network,
achieved the state-of-the-art results and went beyond compared to the non-blind
L0-regularized method [5]. There were two different metrics to evaluate the model
based on the Peak Signal to Noise Ratio (PSNR) and the Optical Character Recogni-
tion (OCR) accuracy recognition as well. This approach, broadly speaking, became
the subject of exploitation for the task of motion deblurring presented in this thesis
related to the surveillance images of cars with the motion blurred license plates.
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4.1.2 Natural Image Deblurring

Natural images, compared to the text images, represent much wider domain and
complex problem for the NN based methods. Therefore, the end-to-end mapping
approaches occur less often compared to several methods estimating the inverse
PSF. The exceptions, i. e. end-to-end mapping approaches, are represented by the
work of Schuler et al. [77] and Xu et al. [78]. The almost traditional approach of
inverse PSF estimation represented by several different methods utilizing the NN
follow.

nn based restoration of deconvolved image Schuler et al. [77] pre-
sented an end-to-end mapping approach of blurred and consequently deconvolved
image. The method relied on 2-step procedure which consisted of a direct deconvo-
lution step and mapping of a deconvolved yet corrupted image to its clean repre-
sentation. The deconvolution was based on the regularized inversion of a blur PSF
in Fourier domain obtaining the directly deconvolved image y′, i. e. a uniform PSF
was expected. The NN model consisted of 4 layers of in total 1.6× 107 trainable
parameters and was trained using the backpropagation and SGD optimizing the
`2-norm loss function. Training data were artificially blurred with fixed amount
of noise and consisted of pairs (y′, x), where x represents the ground truth clean
image and y′ the directly deconvolved blurred image y obtained applying the blur
PSF g

y = x ∗ g

y′ = F−1 (RF (y)) ,
(4.1)

where R is the regularized deblurring operator and F (·) is the Fourier transform.
The final NN model was compared based on deblurring the naturally and the
artificially blurred data with the state-of-the-art method represented by BM3D.
The NN model delivered slightly better results.

Beside the deblurring, the same model was trained to restore the images cor-
rupted by the Poisson noise with the similarly good results which showed the
benefit of this machine learned model as the semi-universal solution. Interestingly,
the same model trained for the complete end-to-end mapping, i. e. deblurring re-
turned worse results compared to restoring the already deconvolved images. From
the today’s point of view, it is interesting that the one model trained for various
amount of blur and noise significantly worsen the results which yield to the neces-
sity of having a trained model for a specific amount of blur, i. e. such an approach
is close to the non-blind deconvolution.

separable deconvolution based on cnn The end-to-end mapping
model for image deblurring was presented by Xu et al. [78]. The proposed ap-
proach, in contrary to the NN model of [77], was based on a CNN model encap-
sulating two main steps of the deblurring pipeline. The deep CNN for non-blind
image deblurring was based a on a deconvolution and a denoising part Figure 4.1.
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Figure 4.1: The architecture of deep deconvolution method [78].

The part for deblurring was proposed according to conventional engineered decon-
volution method. The convolution separability theorem and the analysis of pseudo
inverse PSF obtained by the Wiener filter yielded to an architecture where the first
layer consisted of 38 1× 121 filters and the second layer of 38 121× 1 filters. The
filter size was empirically chosen based on the plausible deconvolution results
achieved using the Wiener filter. The Wiener based PSF estimation filter was also
used to initialize the first two layers of the CNN model which, compared to ran-
dom initialization, yielded to better results. The second part of the final model
consisted of a denoising network based on the network presented by Eigen et al.
[79] which consisted of 4 layers. The denoising subnetwork was used for several
types of noise including the JPEG artifacts, clipped saturated values, etc.

The single sub-networks were trained separately and later on fine-tuned together
using the end-to-end learning. Such a model which consisted of two pretrained
parts was compared with engineered methods including the outliers handling in
non-blind deconvolution [17], and the learning based method NN Based Restora-
tion of Deconvolved Image [77]. The final model outperformed both the engineered
state-of-the-art methods and the NN based image restoration method. The model
was trained for a specific blur represented by a uniform PSF. The direct end-to-end
mapping is recently not so common as the approaches estimating the inverse PSF
which are later used for deconvolution. All the remaining approaches are more or
less PSF based and provide various levels of performance compared to state-of-the-
art considered methods.

non-uniform psf estimation The non-uniform deblurring CNN approach
which estimates the probability distribution of fixed PSF per patch over the whole
blurred image was presented by Sun et al. [80]. The set of possible PSF lengths
consisted of 13 samples in the range from 1 to 25 with the interval of 2 where
the length 1 was considered as identity i. e. a zero move. The directions were rep-
resented by 6 samples from 0 to 150 with the step of 30. There were 78 combi-
nation in total but only 73 preserved because of 6 of length 1, the identity, were
squeezed into one. The training set consisted of pairs of blurred image patches
and corresponding PSFs. The final 6 layer CNN included approximately 6.5× 105

of trainable parameters Figure 4.2.
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Figure 4.2: The presented architecture for non-uniform PSF estimation [80].

The set of possibly predicted PSFs was extended up to 361 samples. That was
achieved by feeding the original patch and its 5 rotated versions with the step 6 in
the range 0 – 24 into the CNN to estimate the probability of PSF not included in
the training set.

The input image, divided into overlapping patches, was processed by the CNN
model to estimate the probabilities of 361 PSFs representing the different motion
blurs. A final dense motion blur field of the input image was computed using
Markov random field to enforce the motion smoothness. With the dense non-
uniform motion PSFs estimated by CNN, the blurry image was deconvolved to
estimate the sharp image.

Experiments were evaluated using both, artificial and naturally blurred images.
The qualitative comparison was based on computing the MSE of CNN and several
state-of-the-art considered methods estimating PSF. Based on the synthetic motion
blurred images, the CNN based PSF estimation approach achieved the beyond
state-of-the-art results.

iterative psf estimation in fourier domain Schuler et al. [81] pub-
lished their end-to-end trained NN natural image deconvolution method based on
stacked network architectures providing the non-uniform blind deblurring. The
base model consisted of 3 parts, feature extraction, PSF estimation, and latent
sharp image estimation. Furthermore, a final deep architecture consisted of these
3 stacked base models.

The first part of a base model, feature extraction, consisted of learned filters pro-
ducing the gradient like image representations. The learned filters extracted the
features found in the blurred or sharp images. These convolutional layers were in-
terlaced with non-linear tanh activation functions. The first trainable part is shown
in Figure 4.3 The second part, the PSF estimation was computed in the Fourier
domain from sharp and blurry features of the input image. The estimated PSF
was later on used in the third part, image estimation. The training took mostly
on the feature extraction represented by the convolutional layers. The second and
third part depended solely on hyper-parameters for regularization and were rather
fixed.

The proposed architecture of base models had a multi-scale support of PSF sizes
from 17× 17 up to 33× 33. The deep architecture was gradually trained. First, one
base model including the feature extraction and PSF estimation parts was trained.
The training was based on minimizing the `2-norm between the ground truth blur
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Figure 4.3: Iterative PSF estimation in Fourier domain [81].

PSF and the estimated PSF from an input blur image. Later on, the architecture was
trained end-to-end using backpropagation and the AdaDelta weight update based
on the `2-norm of estimated sharp image and its corresponding ground truth.

The experiments were evaluated considering several tasks including noised blur
image, a model for specific image content, spatially varying blur in the image, and
several scales of the blur, i. e. a non-uniform PSF. The network was able to adapt
and learn the filters which were able to counter the added Gaussian noise. The
specific model trained on specific image content provided improved performance
compared to the general model for the trained type of image content. This method
bridges the real end-to-end mapping approaches with the more classical PSF esti-
mation oriented methods. The model structure, which includes the pure machine
learning based part with the semi-engineered Fourier domain related part, com-
prised a quite complicated combination of an engineered with learning methods.

psf estimation in fourier domain An approach focused on Fourier do-
main for motion deblurring was introduced by Chakrabarti [82]. Their model con-
sisted of two parts, the rough estimation based on NN similar to CNN and the
second part utilizing the optimization to obtain the refined final restored image.
The method was designed to restore the uniformly motion blurred image blindly.

The particular NN estimated the complex Fourier coefficients of the inverse blur
PSF. The input was a 65 × 65 patch which, based on the NN architecture, was
decomposed into 4 different frequency bands to provide a multi-resolution fre-
quency decomposition. The output PSF in Fourier domain was of size 33× 33. The
NN architecture used the weight-sharing approach related to filters of CNN, with
the difference that in spatial domain expected space locality was replaced by in
Fourier domain frequency locality Figure 4.4. Training was based on SGD using
the objective function `2-norm between estimated and ground truth sharp image
patch. The final model consisted of approximately 4.5× 107 parameters.

The image reconstruction consisted of two steps. First, the overlapping input
image patches were deconvolved with NN estimated PSF and combined using the
Hanning window approach of weighted average into the rough deblurred image
estimation. Second, the whole roughly restored image was used to estimate the
global motion blur PSF and finally deconvolved. The last PSF was a fixed size
support of 51× 51 allowing to compute blind deconvolution.
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Figure 4.4: The processing pipeline utilizing the NN to estimate the Fourier PSF coeffi-
cients [82]. The image is per patch restored. Finally, the whole such a restored
image is used to estimate the global PSF. That is used to deconvolve the im-
age to obtain the final restored image. Note the shared filters between low and
middle frequencies utilizing the frequency locality in Fourier domain.

The achieved results are comparable with the state-of-the-art methods yet did
not significantly outperform them. Nevertheless, the benefit of the NN approach
is, compared to engineered methods, in a relatively fast implementation based on
parallelization using the GPU.

multi-frame psf estimation in fourier domain Wieschollek et al.
[83] presented the multi-frame based deblurring method tightly related to
the Chakrabarti [82] approach of estimation the inverse PSF in Fourier domain.
Authors combined the deblurring method based on the inverse PSF deconvolution
with the method of Fourier Burst Accumulation (FBA) which combines several
images of same content into one sharp image. FBU was trained to get the data-
dependent weighted average.

The whole architecture was divided into 3 parts. First, the slightly modified NN
of [82] was used to estimate the inverse PSF of every frame from the input group
of patches. Second, the deconvolution of the input patches with the estimated
PSF led to roughly estimated sharp patches represented in the frequency domain.
Finally, third part consisted of the trainable FBA which combined the estimated
sharp patches into one sharp image.

This approach, based on the multi-frame images, assumed the static scene only.
The results, according to authors, were comparable with the state-of-the-art meth-
ods mainly represented by the baseline composed from the PSF estimating NN [82]
and the fixed not learned FBA. However, no qualitative comparison was provided.

4.1.3 Summary on Deblurring

Interestingly, the majority of he presented general data-driven approaches for
deblurring based on NN did not significantly outperform the engineered meth-
ods. The exception represents the Separable Deconvolution Based on CNN which,
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based on the combining of deblurring and denoising networks achieved the be-
yond state-of-the-art results on natural images. The benefit of recently published
methods often lay in the parallel processing allowing to exploit the GPU and re-
duce the restoration time. An exceptional performance provides the text image
focused end-to-end mapping approach of text deblurring introduced by Hradis
et al. [35] which significantly outperformed the state-of-the-art methods.

4.2 denoising

The task of denoising based on NN is in the recent literature solely focused on
restoring several types of noise including the additive Gaussian noise, salt-and-
pepper noise and usually some kind of structural noise like stripe corruption. Two
slightly different approaches emerged, generally, the NN based methods which
consist of the fully connected or convolutional networks, and the Auto-Encoder
(AE) based approaches earlier primarily used for deep architectures initialization.
Recently, in contrary to the deblurring approaches, the strategy of training the
denoising networks is to learn the end-to-end mapping of noised image to its
uncorrupted representation. The model specifications including mostly the model
size are emphasized to track the change of model size in recent history.

4.2.1 Image Denoising Based on NN

Recently, the models trained for other low-level image processing related tasks
including deblurring reckon the already noise-corrupted input data. Slightly older
approaches presented by Jain and Seung [84] and Burger et al. [85] are described
to emphasize the gradually simplified procedure of training clearly visible in the
denoising NN.

gradually trained cnn for natural image denoising A CNN used
for low-level image processing was evaluated by Jain and Seung [84] in the task
of recovery the underlying image from an observation that has been subject to
Gaussian noise, i. e. directly written, the noised image restoration. A CNN model
was evaluated for both blind and non-blind denoising.

The incremental per layer training was based on the SGD using the backpropa-
gation optimizing the `2-norm i. e. the loss function defined between the clean and
noised image. First, one hidden layer was trained. After 30 epochs, where an epoch
is a unit of a measure which indicates that all the training data were provided to
actually trained model, weights from the first hidden layer were copied into the
second layer. Such a step was repeated till the fifth CNN layer. The network was
solely trained on artificially noised natural images.

The CNN model was compared with the state-of-the-art discriminative Markov
random field based method, Bayes least squares-Gaussian scale mixture (BLS-
GSM). The CNN model of 5 layers in total gave slightly better results compared
to BLS-GSM. A single CNN model was able to cover various Gaussian noise pa-
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rameters providing almost identical results compared to CNN trained for a single
particular level of Gaussian noise. Such an approach led to a model which was
able to provide a blind restoration of an image with unknown noise parameters.

The CNN model for blind deconvolution consisted of 5 layers where 4 hidden
layers had 24 filters each of size 5× 5. Interestingly, the filters in hidden layers con-
volved over 8 randomly chosen activation maps of the previous layer which from
today’s point of view reminds the channel grouping. The whole model consisted
of almost 1.6× 104 parameters.

gaussian, jpeg , and structured noise restoration based on nn

An image denoising approach based on NN was proposed by Burger et al. [85].
The goal was to train the NN to directly map the additive Gaussian noised in-
put to its clean output representation. Several other types of noise were studied
including the JPEG compression artifacts, salt-and-pepper noise, and structured
stripe noise. The NN model which achieved the best results was based on a fully
connected network which consisted of 5 layers where the input had size 17× 17
and the 4 hidden layers were connected through 2 047 weights each i. e. the model
consisted of approximately 9× 103 trainable parameters using the tanh activation
function. The evaluation consisted of denoising only two images which were arti-
ficially corrupted by Gaussian noise with a fixed parameter. The model achieved
state-of-the-art results but did not significantly outperform them.

Experiments with several Gaussian noise levels showed, similarly to [84], that
the NN model had a sufficient capacity to provide next to the non-blind also the
blind restoration. Also, in compliance of big data assumption, the increase of train-
ing dataset led to better results. The evaluation of other noise types proved the
model capabilities for the universal denoising. However, the results did not out-
perform the state-of-the-art method represented by sparse 3D transform-domain
collaborative filtering (BM3D). In the case of JPEG compression artifacts, salt-and-
pepper, and stripe based noise, the model outperformed the compared methods
including the BM3D and SPP filters often used in FFmpeg [23].

4.2.2 Image Denoising Based on Auto-Encoder

The Auto-Encoder (AE) based methods for denoising yet in the recent past com-
prised the major type of the machine learned approaches. A significant contribu-
tion of AE first took a form of the initialization step in deep architectures where the
gradually pretrained AE provided a way to train or fine-tune several deep architec-
tures [32]. The denoising itself based on the AE was something like a side product
of learning the discriminative features used in computer vision. The concept of AE
and description of several methods follows.

denoising auto-encoder for feature learning An Auto-Encoder
(AE) is a type on NN which was primarily used to train the network providing
efficient task related coding. An AE denoising model was published by Vincent
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Figure 4.5: An Auto-Encoder (a) and Denoising Auto-Encoder (b) .

et al. [55]. The task of denoising was used as a criterion for an unsupervised AE
training with the goal to obtain the useful higher level representation of an input
data i. e. the discriminative features.

An auto-encoder consists of encoder fW(·) mapping data from the input space P
to the encoder space Q and decoder gW ′(·) decoding back from the encoder space
to the input data space P as shown in Figure 4.5a. Both, encoder and decoder are
often defined in the form of an ordinary neuron (3.1). Such an auto-encoder is
written

AE (x) = gW ′ ( fW (x)) , (4.2)

where AE (·) represents the auto-encoder and W ′ and W are the trainable param-
eters of decoder and encoder, and x is the input image. In case of stacked AE the
encoder and decoder are defined

fW (x) =
(

fWL−1 ◦ . . . ◦ fW1 ◦ fW0

)(
x
)

gW ′ (y) =
(

gW ′0 ◦ gW ′1 ◦ . . . ◦ gW ′L−1

)
(y) ,

(4.3)

where ◦ is the composition operator, x is the input image, y is the encoded repre-
sentation, and L defines number of encoding respectively decoding layers.

Training of AE is based on unsupervised approach, where the model is learning
the representation of the input data, usually sparse or in contrary dense, which can
be transformed back, decoded to the original input. An AE, based on the linearity
constraints, can perform the principal component analysis (PCA) decomposition,
in the encoder step, the input image is decomposed based on the eigenvectors
and related eigenvalues while the former image representation is composed in the
decoder step. AE is therefore trained on input images x based on the criterion of
reconstruction the input image x after the feed-forward through the AE.

The modification of the training approach introduced the Denoising Auto-
Encoder (DAE) which primarily differs from AE in reconstructing the noised input
y. This is the noise q(·) (2.1) corrupted representation of a clean image x which the
DAE should decode as shown in Figure 4.5b. Therefore,

y = q (x)

DAE (y) = gW ′ ( fW (y))

x̂ = DAE (y) ,

(4.4)
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where x̂ represents the estimated clean image x from the noise corrupted input
image y. Usually, the training is performed based on SGD with a squared `2-norm
loss function (3.5).

Stacked Denoising Auto-Encoder (SDAE) is composed of gradually trained
DAEs which, later combined, defines a deep architecture Figure 4.6. The sub-
sequent DAE is trained based on the clean image x processed by the previous
DAE encoder fWi−1 . The gradual training, having the first DAE0 trained based on
the (4.4), is written

y′0 = fW0 (x)

y′1 = q
(
y′0
)

DAE1
(
y′1
)
= gW ′1

(
fW1

(
y′1
))

,

(4.5)

where the DAE1 is trained by optimizing the `2-norm (3.5) of pair
(
y1, DAE1 (y1)

)
.

The clean image x is processed by the DAE0’s encoder part fW0 to get the y′0 rep-
resentation which is noised by the q (·) function. The y′0 is then used as the input
into next DAE1 which is trained the same way the DAE0 was. From there, the
procedure can be repeated according to the required number of layers [55].

Such an approach should force the model to learn more complex mapping than
the identity, i. e. one that extracts useful features not only for denoising but also for
a classification later used as input of arbitrary classifier. The evaluation of how use-
ful these features were was provided by experiments based on providing learned
features to several classifier tasks, MNIST1 digit classification together with audio
genre identification. Three types of noise q (·) were considered, Gaussian noise,
salt-and-pepper noise, and so-called masking noise where some fractions of an
image were missing.

The results showed that high performance i. e. well discriminative features can
be achieved using simple and generic types of noise while the difference between
noise used for training was negligible. It was also shown that a deep network pre-
training strategy, stacking of DAE, brought in most cases an improvement, based
on the features used for classification, compared to ordinary auto-encoders stack-
ing which often leads to just copying the input or similarly uninteresting transfor-
mations. Unfortunately, no evaluation of SDAE for image restoration was provided.
It was solely used for a deep architecture initialization which consisted of encoder
functions fW trained as SDAE. The biggest model consisted of 4 layers which re-
sulted in approximately 1.2× 104 trainable parameters.

denoising and in-painting based on stacked auto-encoder An ap-
proach of denoising inspired by SDAE introduced in [55] was presented by Xie
et al. [86]. Compared to the scheme in (4.5) [55], the SDAE training was modified

1 Mixed National Institute of Standards and Technology database.
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Figure 4.6: A stacked denoising auto-encoder (a) and a deep architecture initialized by a
stacked DAE (b).

to reflect the essential denoising task instead of learning the discriminative features
for classification. A piece of the model structure for training is written

y0 = q (x0)

y′1 = fW1 (y0)

DAE2
(
y′1
)
= gW ′2

(
fW2

(
y′1
))

x̂ = DAE2
(
y′1
)

,

(4.6)

where the input data x0 is corrupted with the noise function q (·) represented as the
noised image y0. The training of the first SDAE differs from the approach of [55] in
gradually using the noise corrupted y0 transformations instead of the clean image
x based on the encoders fWi . Both approaches are illustrated in FIGURE. The loss
function was based on regularized square `2-norm, and the model was optimized
using the LM-BFGS [72] approach, where the regularization induces the sparsity
in the hidden layer of actually trained DAE [86].

The architecture based on the SDAE consisted of 2 stacked DAE and is written

x̂ =

(
gW ′0
◦ gW ′1

◦ fW1
◦ fW0

) (
q (x)

)
, (4.7)

where ◦ is a composition operator of fWi the encoding functions and gW ′i
cor-

responding decoding functions, and where q (x) is the noised input image. The
SDAE model based on NN consisted of 2 DAE, 4 layers initialized with 2 encoders
weights Wi and 2 decoder weights W ′i .

This architecture, called sparse SDAE, was trained, fine-tuned, with standard
backpropagation to denoise the Gaussian additive noise and salt-and-pepper noise
achieving comparable results with state-of-the-art methods represented by BLS-
GSM. With an alternative training scheme proposed the results of stacked denois-
ing autoencoders reached the performance comparable to traditional linear sparse
coding algorithm on a simple task of denoising the Gaussian noise. Authors also
focused on the blind and non-blind in-painting which differs in the availability of a
user region selection of in-painted area, where in both cases model based on sparse
SDAE performed well. These results, unfortunately, were not compared with any
relevant approach.
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sparse transformation learned by auto-encoder Cho [87] added the
sparse transformation r (·) of encoded noisy image y′ (4.6), which showed a posi-
tive contribution of sparse representation in denoising task and subsequent feature
learning. The idea of sparsification is based on the assumption that strongly noised
image data q (x) does not belong to the input data space P and therefore is further
expected that the encoded image y′ = fW (q (x)) will be outside the encoder space
Q i. e. such a representation need to be projected to the Q space to be correctly
decoded by gW ′ (·). The projection of y′ onto space Q is proposed as

r
(
y′
)
= arg min

q∈Q
d
(
y′, q

)
, (4.8)

where d (·, ·) is a suitable distance metric. The simple sparsification [87] r (·) was
introduced as a function to decrease each component of y′ i. e. to be sparse.

The evaluated architectures included the simple sparsification function r (·) in their
bottleneck

x̂ = (gW ′ ◦ r ◦ fW ) (q (x)) , (4.9)

where encoder and decoders consisted of 1, 2, or 4 layers. The r (·) placement influ-
ence was not further studied. As in the previous approaches, the final architecture
was fine-tuned using the backpropagation. The 4 layer final model consisted of
approximately 103 trainable parameters where the input patch had size 8× 8.

The denoising performance was measured based on the `2-norm. The compar-
ison of models with and without the simple sparsification showed the benefit of
sparse representation which was the higher the higher was the amount of noise,
specifically Gaussian or salt-and-pepper noise. In contrary, in the case of small
amount of noise the results based on the sparse representation were worse. With
more hidden layers the benefit of sparse representation was in case [87] smaller.

4.2.3 Summary on Denoising

The brief overview of denoising methods based on several types of neural net-
works showed a good performance yet not significantly outperforming the engi-
neered methods. The presented models were relatively shallow yet in the past per-
ceived as quite deep architectures. Unfortunately, despite the fact that the referred
papers are somehow demarcating themselves from the previous works, authors
never compared among themselves. From the actual point of view, the approaches
based on auto-encoders and stacked denoising autoencoders were solely used for
initialization of the architectures which were subsequently fine-tuned using the
backpropagation. The question is if such an approach is valuable in recent days
of networks with more than 100 layers [47]. The presented models had at most
1.6× 104 trainable parameters.
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Figure 4.7: JPEG quality transcoder neural network from [88]. There were 64 networks
for each JPEG coefficient per channel (Y′CBCR) with specialized reception field
considering the coefficients along the horizontal and vertical directions only.
This is the network for a fifth coefficient of luma Y′ channel.

4.3 jpeg artifacts removal

The degradation based on JPEG compression, namely the blocking and ringing
artifacts, are often restored by the engineered methods like SPP [23] or SA-DCT [7].
In contrary, several types of the machine learning based approaches utilizing the
NN were introduced including the JPEG quality transcoding and post-processing
methods. The methods making the use of information the corruption is partly
structurally based yield to flexible NN approaches which provide state-of-the-art
or beyond results.

jpeg quality transcoding using nn A JPEG Quality Transcoder (JQT)
based on NN was introduced by Lazzaro and Wawrzynek [88]. A highly com-
pressed JPEG image is transcoded to a larger JPEG image with reduced compres-
sion artifacts. That is proceeded without the already non-available source uncom-
pressed image. Such an approach benefits from no intervention into decoding stan-
dard which allows utilizing all the existing decoders.

This method transformed the quantized DCT coefficients to provide visually but
also quantitatively better-decoded image compared to the originally compressed
one based on the estimating the quantization error (2.16). Considering the 64 coeffi-
cients in a JPEG block, the 64 different NN architectures Figure 4.7 were proposed
to estimate the difference

4Bpq = Bpq Qpq − Bpq , (4.10)

between the dequantized Bpq Qpq input coefficient and the original Bpq coefficient.
The method worked with all three Y′CBCR color planes. All 64 different networks
which vary in a number of hidden neurons and the structure of perception field
were trained base on optimizing the specific objective function related to percep-
tual quality metric defined by authors using the backpropagation.
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All the 64 networks were trained independently. Network input consisted of the
horizontal and vertical neighbor coefficients of a particular Bpw coefficient in all 3
color planes Y′CBCR. Network output comprised 3 coefficients, one of each color
plane. A reconstructed pixel was computed in the block the coefficients were trans-
formed from under the assumption that only coefficient B̂pq has been quantized.
An error based on the perceptual quality metric was measured and based on it the
network weights W were updated. This procedure, reconstruct, measure, and the
update, was repeated for all the 64 pixels in the block. The final model consisted of
approximately 64× 2× 102 trainable parameters, where 64 represents the number
of networks.

reducing blocking artifacts by an adaptive nn A NN based algo-
rithm for compression artifacts, particularly block, and ringing, was proposed by
Zhang et al. [89]. Compared to the previous approach [88], the method is primarily
related to block type instead of pixel information. The blocks the JPEG image con-
sist of were divided into 3 classes, namely the plain, edge, and texture class, where
the plain class characterized the smooth block, edge block included high variance,
and the texture class was parametrized as something in-between. The classifica-
tion was proposed based on the assumption that the blocks of the same class have
common features compared to other classes. A particular multilayer network was
trained for each block type.

The proposed architecture consisted of approximately 1.3× 104 trainable param-
eters having 2 layers with the sigmoid-based activation functions. The input was
a 5× 5 patch, where all values were transformed by subtraction from the central
pixel except the central pixel itself. An output value was the transformed pixel.
The model was trained using the standard backpropagation and SGD.

For evaluation, two different metrics were used. The traditional PSNR and a sub-
jective error metric which should more accurately reflect the human perception of
the restored image. The trained models, per each block class, achieved the compa-
rable state-of-the-art results which were measured only on a few images were the
compressed image had approximately 27.8 dB and were restored to achieve 29 dB.

artifacts reduction by cnn Recently, a CNN based approach introduced
by Dong et al. [37] utilize the end-to-end mapping to suppress the block and ring-
ing artifacts related to JPEG compression. The proposed artifact reduction CNN
model, AR-CNN, is based on the model used for super-resolution task SR-CNN.
The final AR-CNN consisted of 4 layers interpreted as 4 network parts Figure 4.8.
First, the extraction part consisted of layers introduced as feature extractor fol-
lowed by the second part presented as a feature enhancement. Third part provided
the mapping of extracted and enhanced features and the last part, the reconstruc-
tion, provided the final restored image.

The suboptimal network initialization forced to train the network gradually,
where first the shallow base network was trained and later on the learned weights
were transferred to more deep model. The model was initialized based on training
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Figure 4.8: ARCNN introduced by [37] which consists of 4 layers end-to-end mapping the
JPEG restored image to its restored representation. The intermediate activation
maps are shown.

the parameters using the high-quality JPEG compression followed by fine-tuning
on low quality. AR-CNN consisted of approximately 105 trainable parameters.

The final model was evaluated and compared with baseline SR-CNN model and
the state-of-the-art engineered SA-DCT [7] method. The achieved results outper-
formed the state-of-the-art which was evaluated on several datasets including the
Berkeley segmentation dataset [90] with the LIVE1 dataset [22]. The average PSNR
of the LIVE1 evaluated dataset was 30 dB improved to 31.29 dB.

4.3.1 Summary on JPEG Artifacts Removal

All the presented methods provide a significant performance of JPEG artifacts im-
age restoration. Unfortunately, the metric like PSNR on which these methods could
be compared are not always appropriate because it does not have to correlate with
the perceived image aesthetic. Therefore, an interesting result can occur like worse
PSNR of one restoration method compared to another restoration method while
the perceived quality can be counter the PSNR based one. The presented methods
are of two classes, the coefficient based method proceed the artifact reduction in a
way that no more engagement is needed, while the other strictly post-processing
based methods require being performed after the decoding step. From the model
size point of view, the approaches employ the bigger models, the more recent they
are.

4.4 segmentation

CNNs, in the field of image processing, were formerly used for image segmen-
tation based on per pixel processing. Such an approach was highlighted in the
recent time by Long et al. [33] described in Fully Convolutional Network (FCN)
which became substantial for the FCN networks utilized for deblurring and JPEG
artifacts restoration presented in this thesis. Several previous approaches of CNN
based segmentation follow.
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crack detection based on cnn CNN based sewer crack detection was
published by Browne and Ghidary [91] where the CNN was introduced as a
method of adaptive image processing which formed a link between adaptive filters
and networks. Application of CNN to image processing on a mobile robot was de-
scribed. The network consisted of 5 layers where the input and output had single
filter with Sigmoid based activation while the 3 hidden from input to output 4, 3,
and 2 each of size 4× 4 with tanh activation function. Thus, the model consisted of
624 trainable parameters. The task was defined as a raw image per pixel filtering
and consequently identifying the crack location which allowed detailed analysis
including the width and length observation. Taking into account the variability in
light conditions, orientation, scale, and other crack-like structures this task was
considered complex and challenging. The work, unfortunately, was not compared
with other man designed methods, although, according to the authors, 95% of
crack pixels were recognized correctly where the training and evaluation were
both performed on 15 images only. Authors emphasized the benefit of translation
invariant weight sharing, learned filters together with other promising possibilities
of CNN application.

3d volumes segmentation based on cnn Jain et al. [92] compared the
CNN model and the Markov random field based model on the electron micro-
scopic images in the task of voxel data restoration. The property of shared weight
filters defining the CNN was utilized to emphasize the local image filtering. The
CNN provided superior results because, according to authors, it can be trained
to represent a highly sophisticated model, where the same is much more difficult
with Markov random fields. Interestingly, when the CNN architecture was mod-
ified to be similar to Markov random field model the obtained results became
similar.

The CNN model consisted roughly of 3.4× 104 trainable parameters structured
in 6 convolutional layers where each of 5 hidden layer included of 8 filters of size
5× 5× 5 and using the sigmoid activation function. The model was trained with
SGD based on the cross-entropy cost function optimization, usually used for bi-
nary classification. To obtain a robust segmentation, the super-sampled restoration
based on 2× up-sampled input by having 8 filters each looking at the same loca-
tion and producing 2× 2× 2 interleaved result provided more robust restoration
i. e. not merging the objects with very thin boundary into one.

4.4.1 Summary on Segmentation

The application of CNN for image segmentation based on identifying the sewer
cracks was proposed in 2003 together with various similar applications. The
achieved results were often on the state-of-the-art level without a distinct improve-
ment over other methods. This changed with the introduction of Fully Convolu-
tional Network (FCN) for semantic image segmentation by Long et al. [33] which
compared to 6× 102 [91] had up to 1.3× 108 trainable parameters. Based on the
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deep CNN, the per-pixel segmentation substantially outperformed the engineered
methods.

4.5 super-resolution

The task of a super-resolution aims to provide a higher resolution of an input
image, thus deliver more details related to higher pixel density. The scope of this
thesis is not directly related to the super-resolution itself. Nevertheless, the earlier
work of JPEG artifact removal presented by [37], and which was also influential in
the work presented in this thesis, was based on the SR-CNN model.

A brief overview of the super-resolution approaches is given. That includes a for-
merly presented Auto-Encoder (AE), precisely the Denoising Auto-Encoder (DAE)
based approach, the highly influential SR-CNN, and the improvements simultane-
ously introduced by this work and the super-resolution community, the residual
based learning.

the super-resolution pipeline with an auto-encoder The concept
of a DAE, next to the other low-level image processing tasks, was employed in
a super-resolution pipeline by Cui et al. [93] who presented a model called deep
network cascade which gradually upscaled an input image. The cascade consisted
of blocks where each included the nonlocal self-similarity search method and the
stacked DAE.

The input image was interpolated to obtain the rough estimate of the upscaled
high-resolution image. The base assumption was that more high-frequency details
could be obtained from several overlapping image patches. That is, actually, a com-
mon assumption of several super-resolution methods. Every patch was taken from
the same image yet always differently transformed i. e. scaled, blurred, etc. The
input patch was then searched for the similar nonlocal patches. The roughly esti-
mated patch was combined from sampled similar patches via a weighted average.
Such an estimated patch contained an abundant, yet distorted, textural informa-
tion. A collaborative DAE was used to denoise and refine the upscaled and roughly
estimated image patch. The block of similar patch search method and the DAE was
repeatedly run till the satisfying solution was achieved.

The cascade consisted of number, related to required scale, blocks which gradu-
ally produced a fixed scale up-sampled and clean image. The advantage compared
to engineered methods is the possibility to stack any number of the upscaling
blocks to achieve an arbitrary scale factor yet having the state-of-the-art results.

A new approach, which puts all these steps into a single end-to-end based model,
was introduced by Dong et al. [36, 94]. The CNN was used to cover the whole
pipeline of combining the patches of a low-resolution image into one and subse-
quently refining it to obtain a more dense pixel representation, the high-resolution
image.
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Figure 4.9: Super-resolution end-to-end model presented by Dong et al. [36] is the prede-
cessor of AR-CANA model used for JPEG artifacts restoration.

super-resolution end-to-end cnn model Interestingly, the JPEG arti-
facts removal approaches based on the CNN can be tracked down to the super-
resolution task, where the influential end-to-end mapping feed forward model the
Super-Resolution CNN (SR-CNN) was introduced by Dong et al. [36, 94]. It could
be understood as a significant step which yielded from an engineered pipeline to a
single model adapted by pure data-driven approach for the super-resolution task.

The only preprocessing step used fro employing the SR-CNN is the initial image
upscaling to the desired size. The network consisted of 3 layers only. The first con-
volutional layer was identified as the patch extraction layer where the preprocessed
upscaled input image is processed with 64 trained filters. The two subsequent lay-
ers, which consisted of 1× 1 spatial filters, combined the previous activation maps
and interleaved by the ReLU units provided a non-linear mapping. The last layer
predicted the final high-resolution reconstruction Figure 4.9.

The proposed SR-CNN achieved the significant performance considering the
model simplicity and application simplicity. On the other hand, the particular
scale required the specifically trained model which was impractical considering
arbitrary scale. The interesting and yet negative factor of SR-CNN was the huge
number of training iterations to achieve comparable or beyond results compared
with state of the art. Both drawbacks of the SR-CNN method were effectively ad-
dressed by Kim et al. [95] who presented the modified objective target and CNN
model able to cover arbitrary scale.

residual based learning of super-resolution cnn The SR-CNN
method immediately grabbed the attention which led to the highly improved much
deeper model introduced by [95] based on the VGG [45] very deep convolutional
network. The single model for multiple scales consisted of 20 layers which com-
pared to 3 layers of SR-CNN brought a significant increase in the depth. Also, the
overall receptive field increased from 13× 13 to 41× 41. The major difference lied
in the objective the very deep network was trained for. The residual training was
engaged which allowed to reduce the number of training iteration by 104 from 108

to 104 and yet achieve considerably better results compared to SR-CNN.
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The residual learning forces the network to map the input image to the differ-
ence between the high-resolution and low-resolution image. The interpretation of
such an objective function is that the network models much less complex prob-
lem compared to the mapping from low to the high-resolution image. The final
step, after the utilization of the CNN model, is simply the addition of the mapped
residual image to the input low-resolution image.

The very deep model with the residual learning achieved superior results com-
pared to the SR-CNN and other engineered methods considered as state of the
art. Besides, the one model is sufficient to be trained fro arbitrary number scales.
Meanwhile, the very similar approach of residual learning yet extended by the
skip architecture was simultaneously presented for JPEG artifacts removal.

4.5.1 Summary on Super-Resolution

The utilization of NN based methods for the task of super-resolution rapidly
changed and evolved from introducing the CNN by Krizhevsky et al. [2]. Com-
pared to the traditional approaches, where the NN based methods were a part of
often complex pipeline consisting of several methods carefully combined [93], the
nowadays solutions are solely based on the single CNN models. The progress of
development and achieved results in recent time are significantly beyond the com-
pared engineered methods. A convenient example is a qualitative shift seen on the
relatively shallow SR-CNN to the very deep model of Kim et al. [95] which was
based on the VGG network introduced by the computer vision community [45].
The trend of successful utilization of deep CNN in computer vision is thus directly
projected to the image processing specifically the super-resolution task.

4.6 summary on image processing based on nn

A short overview of approaches for several types of image processing was pre-
sented. The tasks included deblurring, denoising, JPEG artifact removal, segmen-
tation, and super-resolution. All these methods differ in many aspects including
the architecture, a number of parameters, the way they are trained, etc. However,
they have also something in common, specifically, the gradual simplification from
the complex expert designed models to the single end-to-end mapping approaches.
Such a trend is distinct from the chronological point of view.

An example is the relatively complicated AE model, primarily used for pretrain-
ing the deep computer vision models and later just “incidentally” employed for
denoising, which is recently replaced by CNN based models which can restore
more types of corruption yet with the higher quality at once. Nevertheless, this
should not be mistaken with the model size, which is, in contrary, getting bigger.

A lot of methods exist which are adapted according to expert knowledge, e. g.
the models estimating the inverse PSF later one used for deconvolution. Other NN
methods are solely focused on processing the data in the Fourier domain etc.
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Nevertheless, there are state-of-the-art methods based solely on the end-to-end
mapping from corrupted to restored image which is trained without any task-
specific model design. These include the text deblurring method with highly con-
strained textual image data, the super-resolution model based on the general VGG
network used for image classification, and the JPEG artifact reduction model being
one of the actual state-of-the-art considered methods.

The utilization of NN in image processing tasks has been highly influenced by
the development of computer vision. That is clearly visible anytime the computer
vision models significantly extended state of the art. The recent highly successive
development in computer vision attracts, not for a first time, the image processing
community to adopt these approaches for low-level image processing tasks.



5
C N N I M A G E R E S T O R AT I O N

Image restoration based on CNN representing an unified approach is the core idea
of this thesis. The unified method is based on an assumption of a single end-to-end
model which directly maps the degraded image on the restored image. This model
is purely data driven and in fact, may differ in its architecture which comprises
the number of neurons, depth of a model and layers arrangement together with
their type. That allows the end-to-end models shift the effort from designing the
specific methods towards training objective definitions. The end-to-end approach
allows simplifying extend or adapt the model on certain degradation level which
involves just to train a model on new data.

The field of image restoration includes various types of degradations. Within
the scope of this thesis, two different tasks of restoration were selected. It is the
motion deblurring which together with the additive noise represents a linear trans-
formation. The other is artifacts removal approach which deals with a non-linear
transformation caused by the quantization step in the JPEG compression pipeline.
These two types of degradations are a subject of restoration method based on the
data-driven CNN models.

The majority of engineered restoration approaches comprise a particular process-
ing pipeline. The deployment of NN in image restoration is usually associated with
a certain step in the pipeline. These are, in fact, the vast majority of image process-
ing NN approaches described in the previous chapter. Namely, the L0 regularized
method [5] represents the most recent approach for blurred text image restora-
tion. The Shape Adaptive Discrete Cosine Transform (SA-DCT) [6] is considered to
be an up-to-date advanced method for JPEG artifact removal. Both represent the
engineered approaches with the first-class results.

However, the recently introduced CNN based end-to-end methods provide sig-
nificant outcomes often beyond what the widely used engineered approaches can
achieve. The recent data-driven methods are represented by the text image denois-
ing CNN [35] or JPEG artifact removal CNN model [37] which is an extension of
the super-resolution model [36].

This chapter formulates the CNN based methods for license plate deblurring
and JPEG artifacts removal. The presented models are based on almost only on the
existing approaches often used in the field of computer vision. Both introduced ap-
proaches, compared to the vision related CNN methods, are extended and adapted
for the image restoration requirements, which yields to regression instead of clas-
sification models. The main concepts are introduced which were used to train and
deploy the network in both image restoration tasks. Follows the description of
direct mapping approach. The improvements based on the skip architecture are in-
troduced with the relation to gradient vanishing and neuron exploding problems.

56
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Several different objectives of the direct mapping and an initialization proposals
are given. The data resampling is proposed to make the objective easier to learn.
The chapter is closed by an introduction to the end-to-end approach for the non-
image data restoration focused directly on the JPEG coefficients.

hypothesis Most of the different image restoration methods is replaceable by a unified
approach represented by CNN models which are end-to-end trained and often achieves state-
of-the-art or even beyond results. These models may differ in particular architecture
or in the objectives they are trained for. The term unified covers the data-driven
approach which adapts to a particular type of degradation, it does not inherently
mean a single model. Different training objectives provide various speeds of con-
vergence and rarely better models as well. The end-to-end mapping considers the
direct transformation from a corrupted representation of a restored image. On
the other hand, this approach would allow just to obtain a model for a particu-
lar type of degradation which needs to be restored. The following text comprises
several ideas, assumptions, and considerations framed by the unified CNN based
approach for image restoration. Based on the provided experiments, it often does
not finally depend on the extensions primarily in the sense of performance, but
in particular cases, different train objectives speed up the training in the sense of
convergence time.

5.1 end to end mapping

To introduce the end-to-end mapping based on the data-driven learned CNN
model, the usual restoration pipelines of deblurring and image artifacts removal
are quickly summarized. The common approach of deblurring is to estimate the
PSF the image was corrupted with and to use it to restore its sharp representation.
The restoration can be computed locally using the deconvolution with the inverse
PSF or globally based on some specific global operator. However, estimating the
PSF in a case of the blind scenario is an ill-posed problem. Several approaches were
presented using the natural image priors, the histogram of gradients in the sharp
image distribution, the specific spectrum properties in the frequency domain and
other priors. Both steps, the PSF estimation, and the consequent deconvolution are
prone to fail due to the noise, significant outliers, and other related causes. Thus,
image deblurring is a specialized processing pipeline. The methods for JPEG arti-
facts removal, from the simple yet widely used SPP included in FFmpeg up to the
SA-DCT utilizing the adaptive shape support to estimate the restoration, present
the engineered post-processing approaches. These are entirely different from the
methods for deblurring. Being highly specialized is the only common thing they
share.

That is not the case of the end-to-end mapping approach considered in this
thesis. This data-driven approach is based on the CNN, specifically the Fully Con-
volutional Network. The general FCN model is trained to process the input image
directly. The image is transformed, scattered through the network layers in the
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(a) (b)

Figure 5.1: The end-to-end mapping (a) is a direct transformation from the degraded
image to its restored representation. In contrary, the recent engineered and
learned methods (b) usually estimate the PSF to deconvolve the image.

feedforward transformation. That consists of gradually applied nonlinearity op-
erators and convolutions. The whole network is trained to estimate the restored
image or the error being the difference between the degraded and restored im-
age. The last layer finally outputs the data straight in the pixel format with an
arbitrary number of channels. Compared to the majority of previously learned
methods, which comprise several steps including PSF estimation and consequent
restoration, this approach provides quantitative simplification and simultaneously
the qualitative improvement. The direct end-to-end mapping compared to the dif-
ferent approach based on a PSF estimation is shown in Figure 5.1. The definition
is written

x̂ = FL (W , y) , (5.1)

where L defines the number of layers, x̂ is the estimated non-degraded latent image
x, y represents the input image corrupted by an arbitrary distortion, and W are
the network weights and biases.

The common assumption related to the CNN depth, i. e. number of layers, is
that the deeper models provide better results [32, 96]. That is in regards to re-
viewing the network as a complex data transformation where the layers compose
a feature hierarchy representation. This thesis put the emphasize on the end-to-
end models considering the ability to generalize over various parameter ranges
in a restoration task to provide a single and unified model. The regression model
is proposed, which in contrary to the classification, is generally harder to train1

together with higher acquirements on the numerical precision. Finally, the end-to-
end mapping architecture allows to be quite easily trained for specific parameters
in case if needed, i. e. refine the model in case the parameters are roughly known.
This approach was initially applied in the text denoising model presented in [35],
for superresolution tasks [36, 94], and also for artifacts reduction [37]. Within this
thesis, the end-to-end model is studied for two specific yet different image tasks,
the motion deblurring, and artifacts removal.

5.2 architecture extension

Deeper networks may have problems with exploding and vanishing gradients and
they may take a long time to learn to propagate information through a large num-

1 Classification outcomes are much more limited compared to regression results, namely, compare
classifying into two classes and the real number prediction.
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Figure 5.2: The skip architecture allows propagating the low-level image features from the
front layer in the network to deeper layers.

ber of layers efficiently. The problems with the gradients can be eliminated by
proper initialization [56, 57, 58] which takes effect in the beginning and predicts
the overall training speed. The skip architecture influences the network weights
during the whole training. This behavior is significant in a case the whole natural
image propagates through a deep network in the end-to-end mapping approach.

Training deep models in case of image restoration are still quite a challenge. The
problems with propagating information through many layers can be alleviated by
bypassing some more deep layers [33]. Such an approach, the skip architecture, can
beneficially improve the novel end-to-end methods as it contributes to building a
deeper model. The goal of the skip architecture in the image restoration is to allow
the network to pass geometric information easily from the input to the output,
and to allow for more complex reasoning about the image content in the middle
layers, e. g. in case of artifacts removal, what is an artifact and what local context
information should be used to restore the image.

An arbitrary CNN model FL of depth L which utilizes the skip architecture is
shown on Figure 5.2 and could be written as

fl‖s(x) = hl‖s

(
Wl‖s

(
fl−1 (x) ‖ fs (x)

))
FL (W , x) =

(
fL ◦ . . . ◦ fl‖s ◦ . . . ◦ fs ◦ . . . ◦ f1

)
(x)

y = FL(W , x) ,

(5.2)

where the operator ‖ denotes the concatenation and fs is the skip layer, i. e. the one
to be transfered, and fl‖s is the layer to which the skip one is concatenated to. The
fl‖s layer is defined as a function which is computed on the concatenated activation
maps obtained from fl−1 and previous layer fs. The W denotes the CNN weights,
trainable parameters including the biases and hl is an arbitrary activation function.
The skip architecture does not have to utilize the concatenation only but can be
based on addition as can be found in Long et al. [33] who adds the activations
together. The skip architecture utilizing the concatenation of activations from the
arbitrary previous layer is proposed to a more challenging task of JPEG artifacts
removing.

5.3 specialized objectives

The end-to-end mapping forces the network to transfer the whole general image
through all the convolutional layers interleaved by non-linearities and to restore
the degraded image parts while not touching the uncorrupted patches. It shows
that such a straight approach requires more training, measured by a number of
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Figure 5.3: Pixel-to-Residual mapping network scheme.

iteration, however, it does not have to reach the best optimum in a case of restoring
complex natural images. Moreover, the learning of such autoencoder-like mapping
in situations where the input images are highly correlated with the desired outputs
may be wasteful especially for broad and deep networks. It may be one of the
main reasons why Dong et al. [37] were not able to scale up their networks and
why they required approximately 107 iterations to train their AR-CNN. Similar
problems were reported by Kim et al. [95].

residual In specific tasks, the residual image can be learned instead of a
highly variable natural image. Such an idea was first introduced by He et al. [47, 59]
for a super-resolution based on the CNN, where the input and output images are
highly correlated. The same approach for JPEG artifact removal is almost simul-
taneously introduced in this thesis which supports layers to learn a residual of
their inputs. Instead of training the network to restore the whole image, the task
could be defined to only complete the degraded image, i. e. to restore the resid-
ual 4x between the input corrupted image y and the original latent uncorrupted
image x. The residual objective is suitable for the task like JPEG compression arti-
facts removal, where the repeated blocking artifact occurs. The residual objective
is written

arg min
W

1
2

N−1

∑
i=0

∥∥FL (W , yi)− 4xi
∥∥2

2 , (5.3)

where the latent residual is defined as 4x = x− y. The x corresponds to the ground
truth image while the x̂ is the result obtained by the CNN processing. The residual
learning scheme is shown in Figure 5.3. Kim et al. [95] were able to speed up
the training by the factor of up to 104× with the residual learning and it allowed
them to learn much deeper networks, 20 layers compared to three in [36] and four
in [37].

edge enhancement Mean square error used in many image restoration
methods does not necessarily well correlate with the image quality perceived by
humans. With convolutional networks, it is relatively easy to use more perceptu-
ally valid error measures as long as they can be efficiently differentiated. There-
fore, next to the residual objective, the edge enhancement learning is proposed to
support the human edge sensitivity perception. The partial first derivatives of the
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Figure 5.4: Scheme of a restoration network trained with the emphasize on edges.

image with the image itself are the inputs into the loss function. The input is in
the form of the transformed image xe defined as

xe =
[
x, x ∗ gx, x ∗ gy

]
, (5.4)

where gx and gy represent the Sobel [97] horizontal respectively vertical operators.
The xe is thus the concatenation of the original image and its horizontal and vertical
edge enhanced representation. The objective utilizing the edge priors in ye and xe

is defined

arg min
W

1
2

N−1

∑
i=0

∥∥FL (W , ye i)− xe i
∥∥2

2 . (5.5)

The scheme of edge enhancement deployed in the network architecture shows Fig-
ure 5.4. The assumption is that the addition of the first derivatives should force the
network to focus specifically on high-frequency structures such as edges, ringing
artifacts, and blocking artifacts and it could lead to perceptually better restorations.
The combined edge emphasized loss can be easily implemented in all existing
convolutional network frameworks by defining the Sobel derivative kernels as a
convolutional layer with predefined fixed filters.

psnr The quality of the restored images is measured is measured in several
metrics, e. g. the signal focused PSNR and more human perception adapted Struc-
tural Similarity (SSIM) index [98, 99]. The loss function usually used based on the
squared `2-norm can be with several assumptions swapped to the loss emphasiz-
ing function. The network, therefore, can focus on restoring the image to be more
visually plausible or to provide better values measured by particularly metric. The
loss function based on PSNR is introduced together with its differentiation needed
for the backpropagation, i. e. the chain rule. PSNR based on the MSE is defined

MSE (x̂, x) =
1

MN

M−1

∑
m=0

N−1

∑
n=0

(x̂mn − xmn)
2 (5.6)

PSNR (x̂, x) = 10 log10

(
MAX2

MSE (x̂, x)

)
, (5.7)

where x̂ = FL (W , y) is the network restored image and x is the latent uncorrupted
image, and MAX represents the maximum intensity value the image can be of, i. e.
1 in the case oh having the image values in the range [0, 1]. The loss function based
on the PSNR is then defined

arg min
W

(
−10 log10

(
MAX2

MSE (x̂, x)

))
, (5.8)



5.4 task specific modifications 62

where the minus sign is present to keep the minimization, i. e. the gradient de-
scent approach. Within the CNN based image restoration, the PSNR objective is
proposed. Its differentiation w.r.t. to the input, i. e. the restored image is written

∂ PSNR(x̂, x)
∂x̂

=
∂10 log10

(
MAX2

MSE(x̂,x)

)
∂x̂

, (5.9)

which equals to the partial differentiation written in the Jacobian matrix yielding to
just rescaled error

k = 20

(
log (10)

M−1

∑
m=0

N−1

∑
n=0

(x̂mn − xmn)
2

)−1

∂PSNR(x̂, x)
∂x̂

=


(x00 − t00) k . . . (x0N − t0N) k

...
. . .

...

(xN0 − tM0) k . . . (xMN − tMN) k

 ,

(5.10)

where the small errors has higher cost compared to the large ones. The interpre-
tation of PSNR loss function in the task of JPEG compression artifacts removal is
based on the sensitivity to distortions in the stationary regions of the image like
the sky and the clearly visible blocking artifacts in such a region. Finetuning the
model could utilize these properties to focus on the ostensibly small errors yet
more noticeable compared to high errors in the image areas with heterogeneous
structure.

5.4 task specific modifications

All the mentioned methods operate directly with the image pixels. In a case of
a JPEG file, this leads to an additional postprocessing, which is computed after
decoding the image. On the other hand, utilizing the technique of JQT [88] allows
to process the DCT coefficients directly. In this thesis, the new approach of CNN
based JPEG file coefficients processing to suppress or remove the high compres-
sion related artifacts is proposed. A scheme of such a network which transforms
the JPEG coefficients to coefficients representing the restored image is shown in
Figure 5.5 where, nevertheless, the loss is computed through the pixels.

The coding and decoding pipeline described in Section 2.2.1 transforms the 8× 8
image patches into the 8× 8 of DCT coefficients which correspond to specific fre-
quencies in that patch. These coefficients noted as B are sorted based on their
frequencies in the zig-zag manner. Based on the user specified compression qual-
ity the predefined quantization table Q is selected and the DCT coefficients are
quantized and rounded as defined in (2.16). The quantization affects the amount
of blocking and ringing artifacts and implicates two potential types of CNN input,
the quantized DCT coefficients B, where the network is forced to learn the quanti-
zation table Q as well, and the DCT coefficients B already per element multiplied
by the quantization table, the QB.

The non-linearity caused by the quantization of otherwise linear DCT trans-
form (2.14) affects the network loss function. The properties of the loss computed
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Figure 5.5: DCT-to-Pixel mapping network with a predefined IDCT layer.

on quantized B or quantization table multiplied coefficients QB differ from the loss
calculated on the decoded values – the pixels. That means that the network trained
on minimizing the loss of coefficients is actually producing different restoration
compared to training the network based on the pixel loss. That is given by the
different gradients of the loss computed on pixels versus the coefficients QB.
Next, the T.81 recommendation [19] states the IDCT transformed values have to
be clipped to fit into the range of the image domain which also influences the loss.

The IDCT layer is defined to being able to compute the loss function directly on
the pixels and further backpropagate the loss computed gradients. To follow the
chain rule of differentiation described in (3.12) the differentiation of IDCT (2.17)
w.r.t. the input dequantized coefficients QB is defined in (5.15). Therefore, the back-
propagation through the IDCT layer equals to

∂F−1
c (QB)
∂QB 4d = Fc (g) , (5.11)

where the partial differentiation of the IDCT F−1
c multiplied by the gradients 4d

from the layer above is equal to the discrete cosine transform Fc.
The inference of the IDCT differentiation consists of several steps. First, consider

to dequantized coefficients QB to be denoted as c which is defined as c = QB.
First, the partial differentiation of the F−1

c w.r.t. c is written

∂F−1
c (c)mn

∂c
=


∂F−1

c (c)mn
∂c00

. . . ∂F−1
c (c)mn

∂c0,N−1
...

. . .
...

∂F−1
c (c)mn

∂cM−1,0
. . . ∂F−1

c (c)mn
∂cM−1,N−1

 , (5.12)

where the differentiated element of the Jacobian matrix reduces from the summa-
tion to a single expression

∂F−1
c (c)mn
∂cpq

= αpαq cos
(

π (2m + 1) p
2M

)
cos

(
π (2n + 1) q

2N

)
. (5.13)

Second, all the Jacobian matrices (5.12) written in the general expression define the
whole 8× 8 differentiated patch w.r.t. c in the form of

∂F−1
c (c)
∂c

=


∂F−1

c (c)00
∂c . . .

∂F−1
c (c)0,N−1

∂c
...

. . .
...

∂F−1
c (c)M−1,0

∂c . . .
∂F−1

c (c)M−1,N−1
∂c

 . (5.14)

Based on this expression, the backpropagation of gradient 4d is equal to the
summation of per element multiplication of the top layer gradients 4d and the
corresponding partial differentiations ∂F−1

c (c)mn/∂cpq. That is written as the equation
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Figure 5.6: The illustration of the backward gradient propagation (a) through the IDCT
layer from right to left. D are the gradients computed in the loss function. The
contributions of all the gradients to every coefficient QBpq shows the left part
of the figure (a) and is equal to the discrete cosine transform Fc (D). The 4 pixel
blocks of size 8× 8 (b) resampled to the 4 64 channel vectors.

Fc (·)pq =
M−1

∑
m=0

N−1

∑
n=0

4dmn
∂F−1

c (c)mn
∂cpq

, (5.15)

which, if expanded, directly equals to the discrete cosine transform Fc ()

Fc (·)pq = αpαq

M−1

∑
m=0

N−1

∑
n=0

4dmn cos
(

π (2m + 1) p
2M

)
cos

(
π (2n + 1) q

2N

)
. (5.16)

The illustration of the gradients backpropagation through the IDCT layer is
shown in Figure 5.6a Based on the defined inverse discrete cosine transform layer,
the network the decoding layer is deployed in is defined

FL (W , x) =
(
F−1

c ◦ fL−1 ◦ . . . ◦ f1

)
(x)

y = FL(W , x) ,
(5.17)

where the loss function is computed directly on the F−1
c output of a layer, i. e.

pixels.
In a case of JPEG artifacts, it is simple to define the prior, e. g. the blocking

artifacts occur every 8th pixel. That can be utilized in the form of resampled input
which is illustrated in Figure 5.6b. The input patches are resampled from 8 × 8
into 64D vectors. Meanwhile, the resampled input is proposed to be used with
the DCT coefficients. The same technique is introduced for the pixel input data.
However, the motivation to resample the data differs in both cases, coefficients
and pixels. The resampled input data in the cases of the quantized or dequantized
coefficients provides the network the possibility to learn the spatial filters which
can utilize the continuity of the related frequencies represented by the coefficients.
The resampling, within the pixels based method, is suitable due to the blocking
artifact properties, namely its fixed position and repeating structure. Resampling
these 8× 8 blocks into the 64D channel vectors can directly support the network
to utilize the blocking prior.
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5.5 summary

The general end-to-end mapping Convolutional Neural Network approach has
been introduced with several adjustments for the text based image motion de-
blurring and JPEG artifacts removal. The concept of the end-to-end mapping has
been clarified. Nevertheless, it is not an entirely new technique, this thesis puts
the emphasize on such an approach because it has an impressive potential to be
successfully deployed in a variety of different tasks. The end-to-end data-driven
direct mapping has been slightly improved using the skip architecture which con-
catenates the previous activations to the activations deeper in the network. This
skip allows to transfer the features of input data deeper into the network and
provide a more complex basis for further reasoning.

A set of specialized objectives has been introduced. These allow the network to
focus on a specific subject to learn like the residual learning which is much less
model capacity demanding compared to the full image end-to-end approach. An
edge enhancement technique based on the Sobel operators has been proposed to
support the heterogeneous structures in the images. The loss function based on
the PSNR has been introduced to allow the narrowly focused optimization which
compared the usually used MSE based loss function forces the network to rate the
errors differently.

Finally, in a case of JPEG artifacts removal, the possibility to suppress the ar-
tifacts directly in the DCT domain is described. The specialized IDCT layer is
proposed to allow the direct end-to-end mapping yet training on the pixel loss
function instead of coefficient loss function which has different properties. The
coefficients arrangement allows utilizing the samples-coefficients between connec-
tivity and directly learn the adapted spatial filters. The similar prior and the same
approach has been introduced for pixels, where the resampled data organization
from 8× 8 block to the 64D channel vector allows the network to adapt directly on
the fixed blocking artifacts. The extensions and techniques of CNN based model
show the applicability and deployment in the tasks of image restoration which is
empirically proved later in this work.



6
E X P E R I M E N T S

The CNN models based on the proposals given in the previous chapter are de-
ployed and studied in the field of image restoration. Namely, it is the motion de-
blurring of images captured by the surveillance system and the high compression
JPEG artifacts removing. Various experiments show the strengths yet also some
weaknesses the CNN models have. The presented approach is viewed from two dif-
ferent perspectives. Firstly, the contribution which the proposed methods deliver
in comparison with the other widely used approaches is shown. Secondly, the
description of how the models behave, which includes the model generalization
possibilities, several model extension impact, and other more or less task-specific
traits, is presented. Almost all the experiments have very similar structure. This
consist of the way data are retrieved, a model specification, a description of the
training procedure, and finally the achieved results with their interpretation.

The vast majority of data is artificially produced from the latent undistorted, i. e.
ground truth, images. Interestingly, model based on artificial data works very well
as it is shown later in this chapter on the image deblurring task. However, it is
not so much surprising in the case of artifacts removal, where this is the only way
to acquire the training data. It is important to mention that all the experiments
were performed using caffe [62], the fast open framework for deep learning which
allowed to concentrate on the model itself instead of the network implementation.

In the beginning, the attention is directed to the deblurring of license plate im-
ages [SHMZ16]. That presents the end-to-end mapping model of 15 layer network.
Besides the reported results beyond state of the art, an interesting generalization
ability these models have is revealed. Various models are trained for an identical
degradation of different levels. That shall provide a perspective how well the CNN
approach restores the images of different degradation level compared to blind and
non-blind approaches. The part describing the JPEG artifacts removal [SHBZ16]
addresses the majority of the proposed network enhancements including the dif-
ferent objectives, extended architecture, and processing of DCT coefficients instead
of pixel.

The last part of this chapter names the possible CNN exploitations in various
fields including the surveillance systems, data storage, transfer based services, and
user photo-based applications. The future work and possible research directions
based on the results of this thesis are outlined. Finally, the very last brief summary
closes this chapter.

66
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6.1 cnn for motion deblurring

The majority of methods mentioned in the image processing based on neu-
ral networks used for deblurring do not utilize the direct end-to-end mapping.
The only exception is the work of Hradis et al. [35] who focused on noise cor-
ruption and out of focus blurred text restoration. The other methods deploy the
end-to-end mapping but not as an integral solution but more as a subtask [77, 78]
which estimates the PSF to be later used in the deconvolution itself. An exper-
iment with the non-blind and blind approach as well is performed on the task
of license plate motion deblurring utilizing the 15 layer architecture introduced
by [35]. This experiment addresses the model generalization properties and the
comparison with blind and non-blind deconvolution approaches .

6.1.1 Architecture

This 15 layer fully convolutional network architecture, L15 CNN, is selected to
train the motion deblurring end-to-end mapping model. The reason this model has
been selected is the success of this model based on the out-of-focus text deblurring
results published in [35]. The motion deblurring L15 network definition, based on
the notation in (3.2), is written

L15 (W , y) = ( f15 ◦ f14 ◦ . . . ◦ f1) (y)

x̂ = L15(W , y) ,
(6.1)

where y is the degraded input image, W are the network weights including bi-
ases, fi represents the ith convolutional layer with the consequent activation ReLU
function, and x̂ is the restored estimation of the latent sharp image x. Besides the
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Figure 6.1: L15 architecture with a number of filters per layer, their spatial size, and the pre-
view of grouped channels in the second half of the network. L15 consists solely
of convolutional layers followed by the ReLU activation layers (not shown) pro-
viding the FCN model.

formal notation, the Figure 6.1 and Table 6.1 show and describe the exact network
architecture with several channels grouped together.

The spatial sizes of the network filters and the composition of the layers provides
the network with the receptive field of 50 px. The implementation of convolutions
yields to 25 px crop of the input image. That is caused by computing the convo-
lutions without any padding. The L15 network architecture consists of grouped
data and related filters in its second half. That helps to reduce the total number of
parameters. The grouping is shown in Figure 6.2b. Such an architecture is trained
on data generated according to various motion blur parameters, namely the length
and direction.

6.1.2 Data

All the data the presented network is trained on, are artificially generated. A ran-
dom blur kernel is computed representing simple linear motion blur PSF. The
kernels are generated with the sub-pixel accuracy to cover the generally nondis-
crete space, That is achieved by drawing a line representing the motion blur PSF
with the 100× scale and finally resampled into the required length using pixel
area relation method which gives moiré-free results in image decimation. The final
motion blur kernel has odd dimensions. The same technique is used to sample
various directions. The drawn line, representing the motion blur, is rotated based
on the sampled direction. This kernel is subsampled into right sized PSF. The mo-
tion blurred image is further corrupted by an additive white noise sampled from
the user defined parameters. That helps to generate artificially blurred images

Table 6.1: L15 model architecture. The group parameter represents splitting the input into
several groups connected solely with a related group of filters and providing the
corresponding group of outputs. The architecture is further defined by the filter
spatial size and number of channels i. e. filters of each layer.

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Groups 1 1 1 1 1 1 1 4 2 1 2 2 1 2 1
Filter size 19 1 1 1 1 3 1 5 5 3 5 5 1 7 7
Channel count 128 320 320 320 128 128 512 128 128 128 128 128 256 64 3
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reflecting the natural images captured in the real-world conditions. Such a data
processing allows generating arbitrary linear motion blur PSF used to produce the
final blurred image. With the sub-pixel accuracy, the data augmentation allows
generating random sized training dataset.

In a case of the end-to-end mapping approach, it is crucial that the ground
truth x images are not corrupted. The data used for generating the artificially
blurred images are images captured with various imperfections. These are mostly
based on the conditions what the real surveillance system operates in. A small
fraction of all images was therefore mostly blur distorted or captured in a poor
light, i. e. contained high levels of noise. For this reason, the ground truth dataset
was processed to filter out the highly corrupted images. The detection of such
images was based on an approach based on the high and low-frequency ratio. An
ad-hoc threshold was chosen based on the observation to filter out the degraded
images. The final dataset consists of 140 k clean and sharp license plate images.

Nevertheless, the disjunct set of naturally blurred data was collected including
721 images of various motion blurred license plates. These were used for verifi-
cation the model works well on naturally blurred images as well, where the blur
PSF usually is not a straight line but reflects some curved trajectory. These images
were taken by two static surveillance cameras controlling the road under differ-
ent angles with the restricted range of directions the vehicles could approach. The
cameras were set to capture the images with near uniformly sampled exposition
times from 6 ms to 12 ms with the step of 2 ms on the road where the official speed
limit is up to 90 km h−1. These images were cropped around the license plate and
normalized to the size of 264× 128 px. They were carefully manually annotated
with license plate characters such that OCR accuracy could be evaluated. The ap-
proximate direction range the captured cars did approach were 37° to 57° and 59°
to 79°, see the Figure 6.3.

3×3

4

2

(a)
3×3

4

2

(b)

Figure 6.2: On the left figure (a) is a part of a network where the second layer includes 2
filters with spatial size 3×3 and 4 channels i. e. fan-in2 = 3× 3× 4, fan-out2 =

3 × 3 × 2. On the right figure (b) the example of grouping is shown, where
the activation map is split into two groups which yield to a filter applied only
inside this group, the blue color.
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Figure 6.3: The illustration of the surveillance system images and the correspondent results
of L15. The blue circle shows the approximate direction range the cars usually
approach, where the left range equals to 37° to 57° and the right range to 59°
to 79°. The blurred input and restored license plate images are shown.

6.1.3 Training

The pairs of artificial blurred image and its sharp undistorted representation (yi, xi)

were divided into two disjoint parts. The training set which consisted of 126 k pairs
and the testing set which had 14 k pairs of images. All the images were of the same
size 264× 128 px. The model was trained on fixed size crops with the dimension
of 66 × 66 px, where 5 randomly sampled crops per training image created the
set of 630 k input crops. Because the receptive field of the model is 50 px, the
output images, the model produce, are only 16× 16 px central patches of the input
cropped images. The pair of training data is shown in Figure 6.4.

The whole network was initialized using the modified1 Xavier initialization [57]

Var (Wi) =

√
3

fan-outi
, (6.2)

where the variance distribution of the initialized convolutional layer weights Wi

is related to the number of filters, precisely on the fan-outi parameter which is
defined as spatial filter size × number of filters in the layer fi (Figure 6.2a). The
network was trained for 400 k iterations with a mini-batch of 54 samples. The
objective was based on minimization the loss function defined as

1
2N

N

∑
i=1

∥∥L15 (W , yi)− x̂i
∥∥2

2 , (6.3)

where N is the number of training pairs in the mini-batch of degraded image yi

and its ground truth sharp central patch representation xi. The network took on
average 3 days to train on a single Nvidia GeForce 980 GPU. Initial learning rate
was set to 4× 10−5 and it was reduced five times by a factor of 2. The weight update
was performed based on the SGD with the momentum equal to 0.9 and the weight
decay 5× 10−4. All the input data were normalized and centered around zero.

6.1.4 Semi Non-Blind Restoration

Two experiments were performed to assess the behavior of deblurring CNN on mo-
tion blur length and a range of blur directions. These experiments were performed

1 Based on the implementation in Caffe [62].
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Figure 6.4: The training image pair with the illustrated blurred crop on the left and the
equivalent sharp center patch on the right. In the middle is the magnified mo-
tion blur PSF.

on the artificially blurred images. The restored image quality was measured based
on PSNR (5.7). The deblurring model is first trained on specific motion blur pa-
rameters defined as the range of the motion blur length and the range of direction.

There were 4 models trained with the fixed direction range to 20° and gradu-
ally increasing the motion blur lengths including 0–5 px, 0–9 px, 0–13 px and 0–
17 px. The length was always uniformly sampled from the corresponding range.
Figure 6.5a shows the results of these networks for different blur lengths. These
results indicate that networks trained for shorter blur length range perform bet-
ter inside these ranges. However, their results degrade rapidly outside the trained
range. The restoration quality starts to degrade already at the border of the re-
spective ranges. That is probably because no larger blurs are represented in the
respective training sets. The reconstruction quality decreases linearly for longer
blur kernels.

The second experiment is shown in Figure 6.5b assess the performance of the net-
works for different blur direction ranges. Seven models were trained, one model
per different direction range, including the uniformly sampled, 10°, 20°, 40°. 60°,
90°, 130°, and 180° wide ranges of possible directions. Note that the blur kernels
are symmetric and consequently the largest range of 180° covers all the possible
directions. All the directions were blurred with a length uniformly sampled from
0–13 px. The observed results show similar trends as in the experiment with differ-
ent blur lengths, the networks trained for tighter direction ranges perform better
inside these ranges, but their performance degrades rapidly outside the respective
direction ranges.

6.1.5 Blind Restoration of Naturally Blurred Data

Six models were trained to provide the evaluation on the naturally blurred test
images captured by two surveillance cameras. These networks were all trained on
blur kernels covering both cameras, i. e. the range of the blur directions was 50°
wide, which shall be sufficient according to the possible directions of approach-
ing vehicles. The networks were trained for blur lengths 0–9 px, 0–11 px, 0–15 px,
0–19 px, 0–21 px, and 0–23 px. The L0-regularized blind deconvolution method by
Pan et al. [5] was selected as a representative of the traditional blind deblurring
methods to serve as the baseline for a model comparison. This method is specifi-
cally optimized for images containing text and it should be suitable for the license
plate images as well. Optimal parameters of L0-regularized were selected using
the grid search directly on the test images.
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Figure 6.5: The graph on the left shows the result of specific length range trained model
on several blur lengths. On the right, the presents results of models trained on
specific ranges evaluated on several direction ranges.

Figure 6.6 shows results on the naturally blurred images as an accuracy of an
Optical Character Recognition system. The deployed OCR system2 is optimized
for license plates and is used in commercial traffic surveillance systems. The net-
works trained for shorter blur perform poorly as the set contains blurs up to 19 px
long. The networks trained for sufficiently long blurs significantly outperform the
baseline blind deconvolution method of Pan et al. [5]. The improvement is from
the character error of 23% down to 9% compared to the L0-regularized which cor-
responds to relative improvement by a factor more than 2. It is worth to emphasize
that the OCR accuracy keeps approximately the same for the models trained for
long blurs. In a case of nonblind restoration, the L0-regularized method tuned per
license plate to performs similarly to the blind approach based on CNN. However,
this requires the known motion blur parameters for each license plate. Figure 6.7
presents the original blurred images, reconstructed license plates by L0-regularized
blind deconvolution and the L15 restorations.

 0.6

 0.7

 0.8

 0.9

 1

 9  11  13  15  17  19  21  23

O
C

R
 a

cc
u

ra
cy

Trained length range [px]

L15
Blind L0-regularized
Blurred
Blind L0-regularized per lp

Figure 6.6: The OCR accuracy results of the originally blurred images, L0-regularized blind
and non-blind deconvolved images and the L15 restorations.

2 UnicamLPR, http://www.camea.cz/

http://www.camea.cz/
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Original

Blind L0

L15

Figure 6.7: The naturally blurred license plates sorted from left to right based on the blur
amount with the corresponding deconvolved results of L0-regularized method
and the restored L15 images.

6.1.6 Summary on motion deblurring

The evaluated L15 architecture contains of 2.3 M unique weight parameters, i. e. the
model occupies approximately 9 MiB in memory. Compared to convolutional net-
works used in computer vision tasks, this network is still small and computation-
ally relatively efficient. It requires 2.3 M multiply-accumulate operations per pixel.
The CNN proved to be effective for the naturally blurred images even though they
were trained only on images which were blurred artificially with a simple line
kernel. The deblurring CNN provided superior accuracy of a consequent OCR
compared to the state-of-the-art L0-regularized blind deconvolution tuned for text
images [5]. These results show for the first time that CNNs provide quantitatively
better deblurring quality compared to engineered state-of-the-art blind methods
in a practical application.

The experiments showed that the quality of reconstructed images could be im-
proved by customizing the CNNs for the specific range of blurs. However, the im-
provement is only modest in the target application, and general networks trained
for a wide range of blurs still provide the high-quality results. The reconstruction
quality declines linearly, in PSNR, with the increasing length of the blur kernels
which makes it easy to predict possible reconstruction quality for larger blurs. Al-
though the networks can reconstruct real images which suggest that the kernels
used for training do not have to match the shape of kernels in a real application too
closely, the reconstruction quality degrades quite sharply for blurs which parame-
ters like direction and length range are outside the trained values. The deblurring
CNN are well suited for embedded applications due to their flexibility, relatively
low computational power requirements, robustness, and the absence of any tun-
able parameters. The deblurring CNNs can be considered mature and ready to be
deployed in the traffic surveillance systems.

6.2 cnn for jpeg artifacts removal

The end-to-end mapping network architecture is deployed for JPEG compression
artifacts removal. Its utilization is principally based on the achieved results of the
CNN model in motion deblurring. The artifacts are caused and clearly visible by
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a low compression quality. That is caused by setting the higher frequency related
coefficients during the quantization step to zero. On the other hand, this loss is
redeemed by achieving the high compression ratio. The way the coefficients are
omitted is related to the human perception where the less sensitivity correlates
with the high frequencies and vice versa.

Several metrics exist to assess the perceptual quality of images objectively. In
this work, the restoration is measured based on PSNR, PSNR-B, and SSIM met-
rics. Generally, the most commonly used quality metric is the MSE [99] (5.6). This
quantity is computed by averaging squared intensity differences of the distorted
image and the reference image. That is often expressed in a logarithmic scale as
the Peak Signal to Noise Ratio (PSNR) (5.7). Unfortunately, PSNR and MSE are not
necessarily well correlated with the perceptual quality.

The SSIM [98] that compares local patterns of pixel intensities should better
correlate with human perceptual quality. Since the attention is focused on the
JPEG artifacts, the blocking artifacts, a block-sensitive metric referred to as the
PSNR-B [100] is used to provide additional insights. PSNR-B modifies the original
PSNR by including an additional blocking effect factor (BEF). Some experiments
report IPSNR which is a PSNR increase compared to PSNR of the degraded image.
IPSNR is more stable across different dataset and it directly reflects the quality
improvement.

In regard to the color space Y′CBCR which represents the luma Y′, CB blue-
difference, and CR red-difference chroma components, the most details are covered
in the Y′ luma channel. That is the primary reason why the main attention in
this work is focused almost on the Y′ luma channel only. Note, that the JPEG
compression is by definition a nonlinear degradation compared to the almost only
linear based motion blur.

In contrary to the deep L15 network, several small architectures are introduced
including the 4, 5 and 8 layer networks L4, L5, and L8 respectively. The L4 net-
work is a simple model similar to the AR-CNN [37] with the main distinctions in
the training and related objective function. The results are compared to AR-CNN,
to the widely regarded deblocking oriented SA-DCT [6, 7], and to a simple postpro-
cessing filter SPP included in the FFmpeg framework [23]. The deepest L8 network
introduces an extended skip architecture described in Section 5.2. The L5 network
is used to compute, besides the pixels, directly mapping on the DCT coefficients
as well. Regarding the specific architecture and different training dataset, L5 is not
directly comparable with the other architectures.

6.2.1 Architectures

The L4 is a shallow network trained regarding direct, edge enhancement, and resid-
ual objective. The network size is comparable with the AR-CNN which is actually
recognized as the state-of-the-art CNN based method. The entire L4 network re-
ceptive field is 19 px where, considering the block size of 8× 8, the whole JPEG
block and half is covered on each side, which provides the network with possibly
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Figure 6.8: The L4 (a) is a simple and shallow FCN network. The L8 (b) deploys the skip
architecture which allows transferring the layer representation deeper into the
network. The activation maps of the first layer are transfered into 4th and 6th
layer.

sufficient spatial information. The L8, except to be a deeper model, differs mainly
in the skip architecture defined as

f4 (x) = h4

(
W4
(

f3 (x) ‖ f1 (x)
))

f6 (x) = h6

(
W6
(

f5 (x) ‖ f1 (x)
))

L8 (W , y) = ( f8 ◦ f7 ◦ . . . ◦ f1) (y)

x = L8(W , y) ,

(6.4)

where the operator ‖ denotes the concatenation. The layers represented by f4 and
f6 are defined as functions which are computed on the concatenated activation
maps obtained from f1 and previous f3 and f5 layers. The receptive field of whole
L8 network is 25 px. L4 and L8 include solely the convolutional layers followed by
the nonlinear ReLU units. Both architectures are shown in Figure 6.8.

The last architecture, L5, illustrated in Figure 6.9, is slightly deeper compared to
the most shallow L4 network, but in the same time much wider than any here pre-
sented network. Such a width is closely related to the data the network is fed with
as it mainly is the DCT coefficients resampled from the 2D 8× 8 blocks into the 1D
64 channels vectors as illustrated in Figure 5.6b. The same L5 architecture is trained
for identically resampled pixels with an assumption that the block structure, which
is coded directly into the input data arrangement, provides an additional informa-
tion the CNN can utilize. The L5 model has several modifications related to the
type of input data. In the case of pixel input data, L5 is a straight end-to-end map-
ping architecture, while in the case of the coefficients input data, the network is
extended by a fixed IDCT layer similarly as in Figure 5.5 which allows computing

Table 6.2: L4 and L8 architectures. The architecture is defined by the filter spatial size and
number of channels, i. e. filters of each layer.

Layer 1 2 3 4

Filter size 11 3 3 3
Channels 32 64 64 64

L4

1 2 3 4 5 6 7 8

11 3 3 3 1 5 1 5
32 64 64 64+32 64 64+32 128 1

L8
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Figure 6.9: L5 architecture compared to L4 or L8 has much wider layers, number of filters
to process the input of 64 channels.

the loss of pixels instead of coefficients. All the L5 architectures are trained using
the residual objective. The L5 model is based on the convolutional layers followed
by the trainable PReLU [59].

6.2.2 Data

The majority of the experiments were computed on images from BSDS500 [90] and
LIVE1 [22] datasets. The L4 and L8 networks were trained solely on the merged
train and validation part of BSDS500 which contains 400 images. The L5 training
was based on the INRIA holidays dataset [101] where the included images were
downsampled to correspond the size of images from the other datasets and to
suppress the already occurring JPEG artifacts in the original ground truth data.

The images were transformed, as was stated earlier, to the grayscale represen-
tation using the Y′CBCR color model keeping the luma Y′ component only. Only
the grayscale images were considered because the attention was solely focused on
the ringing and blocking artifacts while the chromatic distortions were left out. Al-
though, the networks can process color images in a case they are trained for them
as well. The grayscale images were compressed with the MATLAB JPEG encoder
into five disjoint sets based on the JPEG quality. Specifically, the images were com-
pressed with the quality 10, 20, 40, 50, and 60. The DCT coefficients were extracted
and stored together with the related quantization tables.

The networks were evaluated on the test set from BSDS500 which includes 100
high-quality compressed images and on the LIVE1 dataset containing 29 color
images of uncompressed BMP format. All the evaluation images were transformed
to grayscale the same way as the training images and also compressed using the
same encoder. It is important to use the same encoder because the quantization
tables may differ between different encoder implementations.

6.2.3 Training

The training of presented models differs according to the objective, architecture,
and data. The formerly presented L4 and L8 networks were trained the same way
except for the several objective experiments which were evaluated with L4 archi-
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tecture only. The L5 based models differ already in the solver itself. Namely L5
used the Adam solver instead of SGD with momentum.

The importance of the network initialization has been formerly emphasized in
several publications [56, 57, 58]. In this work, the assumption of zero mean of
the network initialization is recognized as helpful as it prevents mean offsets of
activations to propagate through the layers. In case the mean was not zero, any
mean offset in input values would result in the non-zero mean of output activations
which could force the ReLU non-linearities to get fully stuck either in the positive
linear interval or, even worse, in the negative interval where gradients are not
propagated rendering the unit useless.

This problem is eliminated by explicitly forcing individual filters to have zero
mean during initialization. Such initialization allows to use significantly higher
initial learning rates, especially together with residual learning, and it results in
trained networks with significantly fewer saturated neurons. The L4 and L8 based
models were initialized using the Xavier approach (6.2) and shift to have the zero
mean per filter.

All the filters can be forced to have zero mean during the whole training. Such
constraint almost entirely eliminates any potential for unit saturation, but it pre-
vents networks to utilize the DC component of input signals. Although reasonably
good results were achieved with this constraint in the preliminary experiments, it
was not decided to use the offset suppression in the presented experiments. The
L4 and L8 based models were trained using the SGD with the momentum with the
minibatch of 64 64× 64 px patches and 4 128× 128 px patches respectively. Solver
related parameters are collected in Table 6.3. The patches were randomly sampled
from the training images.

In all the experiments, the loss was normalized by the number of output pixels

1
N × xwxhxch

N

∑
i=1

∥∥F (W , yi)− xi
∥∥2

2 , (6.5)

where yw is the output patch width, yh the height and ych number of channels.
Such scaling influences the scale of gradients and results in some cases in relatively
high learning rates and low weight decay parameters. The number of L4, L8, and

Table 6.3: L4, L8 and L5 training parameters including solver type, learning rate (lr), mo-
mentum (m), and weight decay (wd).

Network solver lr m wd

L4 Direct SGD 0.4 0.97 5× 10−7

L4 Residual SGD 8 0.97 5× 10−7

L4 Edge enh. SGD 0.05 0.97 5× 10−4

L8 Skip arch. SGD 4 0.95 5× 10−7

Network solver lr β1 β2 ε wd

L5 ADAM 5× 10−4 0.9 0.999 10−8 0
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L5 training iterations was fixed to 250 k which is significantly less compared to
AR-CNN’s 107 iterations.

The L5 based models were trained based on the residual objective and using
the ADAM solver [69]. The specific solver parameters are given in Table 6.3. The
learning rate was five times decreased by the factor of 3. The L5 models were all
equally trained using 250 k iterations, where the minibatch per iteration consisted
of 24 samples. The models were initialized per layer with the Gaussian distribution
with zero mean and the standard deviation equal to 10−1 for the first layer, 10−2

for all the middle layers, and 0.5× 10−2 for the last 5th layer.

6.2.4 Artifacts Removal Quality

The results are compared to AR-CNN [37], to the widely regarded deblocking
oriented SA-DCT [6, 7], and to a simple postprocessing filter SPP included in the
FFmpeg framework [23]. While L4 architecture was used in most experiments and
it was trained for various compression quality levels, L8 was trained only for JPEG
quality 20. If not stated otherwise, the residual version of networks was used. The
results of L5 are included with the note that it was trained on the INRIA Holiday
dataset instead of BSDS500 used for L4 and L8.

The evaluation of removing the artifacts on LIVE1 dataset with JPEG quality
10 and 20 is presented in Table 6.4. The results achieved on BSDS500 test dataset
are written in Table 6.5. L8 model outperforms all the other methods with signifi-
cantly higher scores in all three quality metrics with the exception on BSDS500 test
dataset, where the L5, trained completely on different data, achieved a higher SSIM
result. Although L4 model performs worse compared to L8, it still surpasses the
other methods in most cases even though it is much smaller and computationally
efficient compared to both L8 and L5. Interestingly, the L5 performance is between
the L4 and L8 having good results based on the SSIM meanwhile surprisingly
worse on the B-PSNR. Examples of resulting images are presented in Figure 6.14.
There are still visible blocking artifacts of L4 and L8 models trained with residual
objective while the L5 model with the worse results based on the PSNR metric
seems to restore such a type of artifact very well. That is seen on the monotonic
parts of the image like for example the sky.

Table 6.4: Image restoration quality on LIVE1 test dataset for JPEG quality 10 and 20.

Q10 Q20
method PSNR PSNR-B SSIM PSNR PSNR-B SSIM

distorted 27.77 25.33 0.791 30.07 27.57 0.868
spp 28.37 27.77 0.806 30.49 29.22 0.877
SA-DCT 28.65 28.01 0.809 30.81 29.82 0.878
AR-CNN 28.98 28.70 0.822 31.29 30.76 0.887
L4 Residual 29.08 28.71 0.824 31.42 30.83 0.890
L5 Pixel – – – 31.42 30.63 0.890
L8 Residual – – – 31.51 30.92 0.891
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Table 6.5: Image restoration quality on BSDS500 test dataset for JPEG quality 10 and 20.

Q10 Q20
method PSNR PSNR-B SSIM PSNR PSNR-B SSIM

distorted 27.58 24.97 0.769 29.72 26.97 0.852
spp 28.13 27.49 0.782 30.11 28.68 0.859
AR-CNN 28.74 28.38 0.796 30.80 30.08 0.868
L4 Residual 28.75 28.29 0.800 30.90 30.13 0.871
L5 Pixel – – – 30.94 29.91 0.873
L8 Residual – – – 30.99 30.19 0.872

jpeg quality generalization The attention was focused on the generaliza-
tion ability of the trained networks regard to a different compression quality. The
ability of CNNs to handle various compression qualities is assessed by the exper-
iment which consisted of training the single L4 model for one particular quality
and consequently evaluating such a model on all the other qualities. The results
in Figure 6.10 show that L4 trained on a range of qualities, from Q10 up to Q60,
provides stable results across the equal quality range. However, the quality-specific
networks perform better for their respective qualities which yield to a possibility
to train the high specialized models in case of the quality of degraded images is
known. On the other hand, the quality-specific networks generalize only to simi-
lar qualities. In practice, a single network should easily be able to handle smaller
quality ranges, e. g. from 10 up to 20 quality points wide, when trained on data
from such a range.
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Figure 6.10: Generalization ability of L4 networks trained with normal, residual, and edge
preserving objectives for different JPEG quality levels.
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Figure 6.11: Generalization for different sized train set.

dataset size The quality of restoration achieved by larger networks may suf-
fer due to inadequate size of a training set. In order to assess how the L4 and L8
models behave with respect to training dataset size, the residual versions of the
networks were trained on 4, 16, 64, 256, and 400 images from BSDS500 training
set. The L4 and L8 models contain approx 70 k and 220 k learnable parameters re-
spectively which suggest that L8 model should require a larger training set for the
same generalization. Figure 6.11 shows results of models trained and evaluated on
differently sized training datasets together with the evaluation on the correspond-
ing independent test dataset. Both networks clearly overfit on the smaller datasets.
L8 model overfits significantly more, and it would require more images to reach
proper generalization, while L4 seems to reach its maximal generalization already
on the relatively small dataset of 400 images.

6.2.5 Impact of The Objective

All the L4 models were trained for direct mapping, residual, and edge enhance-
ment objectives to evaluate the contribution of each. Although the architecture
and initialization of all the L4 networks were the same, the suitable learning rates
(lr) and weight decay coefficients (wd) had to be selected based on the parameters
grid search for each learning objective separately. The solver parameters are no-
ticed in Table 6.3. All the parameters were selected regarding JPEG quality 10 and
they were used for all the other qualities as well.

The learning progress is shown in Figure 6.12. The residual network converges
much faster compared to the both direct and edge enhancement objectives. The
results on LIVE1 based on PSNR, PSNR-B and SSIM metrics are presented in
Table 6.6. The results show that the residual based model converges faster and
achieves the best restoration quality compared to other objectives. The edge en-
hancement objective converges a slightly faster in the beginning but stops to de-
velop quite soon letting the direct mapping to overcome its results. It could be
expected that the direct objective-based training may achieve a similar restoration
quality compared with the residual objective-based training with a clear disadvan-
tage in the form of time needed to converge.
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Figure 6.12: Development of L4 with different training objectives.

The progress of training the filters of the first layer during training in differ-
ent objective based models is shown in Figure 6.13. All the networks formed
reasonable-looking filters. The residual objective trained model formed more com-
plex higher frequency filters compared to the other networks. The edge preserving
network learned some low-pass filters which are probably needed to transfer the
general image appearance through the network. These filters are missing in the
residual objective trained model. The filters of the direct objective trained model
remain noisy, which could be due to different weight decay coefficient the low
learning rate, or their combination. It also implies that the direct mapping would
get slightly better results if trained for more iterations which are indicated regard-
ing the IPSNR shown in Figure 6.12.

The results indicate that the residual learning is beneficial for JPEG artifact re-
moval regarding restoration quality and training speed. On the other hand, the
edge preserving objective does not improve the quality as is shown in the case of
L4.

dct coefficients DCT coefficient based restoration was computed using the
L5 architecture with an atypical layers width providing much more filters per layer
compared to the L4 or L8 models. The L5 can not be compared directly to both
L4 and L8 pixel based models because L5 models were trained on the different
training set, the INRIA Holiday [101]. The input data were normalized by a single
fixed value to be approximately in the interval from −1 up to 1. The L5 models
operating with quantized DCT coefficients – B, JPEG dequantized coefficients –
QB, and directly with pixels were evaluated with the results presented in Table 6.7.

The training dataset was later on augmented by shifting the images by a uni-
formly sampled shift size in the range from 0 up to 7 pixels in both directions.

Table 6.6: Results of L4 networks with different objectives on LIVE1 dataset with quality 10.

Objective PSNR PSNR-B SSIM

Distorted 27.58 24.97 0.769
Direct mapping 28.99 28.66 0.820
Edge preserving 28.69 28.40 0.813
Residual learn. 29.08 28.71 0.824
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Figure 6.13: Filters from the first layer of L4 networks with normal/residual/edge preserv-
ing objective at different stages of training. Iterations are showed below the
images.

These shifted original images were then encoded into the JPEG. 64× more data be-
came available leaving the blocking artifact in the same position within the image.
The L5 pixel–pixel mapping model trained on the augmented dataset achieved
16% higher IPSNR compared with the same model trained on the original smaller
amount if training data but with the same amount of training iterations. Despite
the lower achieved PSNR compared to the L8 network, the result images are block-
ing free while both L4 and L8 models, unfortunately, preserve surpassed still visi-
ble blocking artifacts.

The different type data based L5 models, coefficients, dequantized coefficients
and pixels, show very similar results, where the differences are apparently related
to the model initialization. The exception is the case in which the JPEG DCT coeffi-
cients B are multiplied by the quantization table Q. The results of L5 model oper-
ating with such data are slightly better compared to other L5 models. It is appar-
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Table 6.7: The different input data and loss function based L5 architecture results. The
structure of the model name describes the settings, i. e. the input data and the
loss-computed-data. The B is the JPEG quantized DCT coefficient, QB is the B
multiplied by the quantization table, pix stands for pixel data. L5 B–pix repre-
sents the L5 model with the JPEG DCT quantized coefficient input data and the
loss computed on pixels.

LIVE1 BSDS500
method PSNR PSNR-B SSIM PSNR PSNR-B SSIM

distorted 30.07 27.57 0.868 29.72 26.97 0.852
L5 B–B 31.25 30.51 0.890 30.81 29.82 0.871
L5 QB–QB 31.31 30.52 0.890 30.85 29.84 0.872
L5 B–pix 31.25 30.51 0.890 30.81 29.82 0.871
L5 pix–pix 31.23 30.49 0.889 30.78 29.81 0.871

L5 pix–pix C-PSNR 31.44 30.63 0.892 30.94 29.92 0.873

L5 pix–pix aug 31.42 30.63 0.892 30.94 29.90 0.873

ent that the DCT based restoration models can be successfully deployed without
the requirement of any post-processing of the decoded JPEG image. That allows
keeping the existing decoders and just use the networks in a preprocessing step
being similar to JPEG Quality Transcoder (JQT) approach. The blocking artifacts
are well removed by models operating with the resampled input pixels from the
8× 8 blocks into the 64 channel vectors. Regarding the results, it is highly proba-
ble that such resampled input data explicitly helps the model to train focus on the
blocking fixed size and periodicity.

6.2.6 Summary on Artifacts Restoration

The CNN based models, namely L4, L5, and L8 were presented. All three out-
performed state of the art with most significant results achieved by the L8 model
based on the residual training and skip architecture. The residual objective proved
to be appropriate for JPEG artifacts restoration and allowed to train the model
faster regard to the number of iterations and achieved results. However, the edge
enhancement objective did not show any benefits compared to the direct map-
ping which would provide any reason to prioritize such a learning objective. The
importance of the dataset size in regard to the model capacity showed both ex-
periments, the observed L4 and L8 models trained on several dataset sizes and
the L5 model trained on the 64× augmented training dataset which provides more
than 16% of IPSNR increase compared to the same model on the original training
dataset size. The CNN based models ability to generalize was investigated with
the results showing the single model covering a wide range of compression quali-
ties with restoration level. However, the specialized model for specific quality can
deliver slightly better results measured by the PSNR metric. The experiments pro-
vided support for the JQT which transforms the low-quality JPEG coefficients to
the coefficients representing higher quality restored image. The input image blocks
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Figure 6.14: Visual comparison of restored monarch image from LIVE1 [22] dataset orig-
inally compressed with JPEG quality 20. L4 restores the ringing artifacts but
the blocking is to a certain extent preserved. L8-skip compared to L4 pro-
vides obviously better results restoring the blocking artifacts. Note, that both
L5 smooth the blocking artifacts but performs slightly worse on the ringing
artifacts compared to L8 and L4 as well.

resampled from 8× 8 spatial size into the 64 channel vectors provided the L5 archi-
tecture with the subsidiary information feasible to compute high quality blocking
artifacts restoration.

The pixel based architectures, L4 and L8, are with their 70 k and 220 k weight pa-
rameters significantly smaller compared to the motion deblurring L15 model with
2.3 M weights. Using cuDNN3 v3 implementation of convolutions on GeForce GTX

3 Nvidia GPU-accelerated library of primitives for deep neural networks.
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780, the 1 Mpx image takes approximately 220 ms with network L4 and roughly
1052 ms with L8 to be restored. The L4 and L8 networks require approximately
140 k and 440 k floating point operations per pixel.

6.3 summary of contributions

The core of this thesis is framed by a unified method of image restoration based
on Convolutional Neural Network. The data-driven approach has been deployed
for particular tasks of image restoration. It is the deconvolution, namely the mo-
tion deblurring, which is well described and where the hard part is to estimate
the unknown blur parameters such as the length and direction. Further, it is the
compression artifacts removal task, which instead of deconvolution restores an im-
age by suppressing the artificial boxing and ghost edges of ringing artifacts. In
both cases, i. e. license plate motion deblurring and JPEG artifacts removal, the
presented CNN provides beyond state-of-the-art results. Compared to the engi-
neered methods, which significantly differ from each other according to the task
they focus on, the CNN approach allows to quickly train a specialized or a uni-
versal model solely dependent on the training data. The case of a specific model
is related to a limited range of parameters the degradation can be modeled with,
e. g. the limited range of lengths the motion blur can consist of. In contrary, the
universal model can be used for various levels of particular degradation. That is
the case of the single model used for an arbitrary range of motion blur lengths and
directions. Considering the results presented in this thesis, the hypothesis is fulfilled.

This work extends the approach of text deblurring based on CNN introduced
by Hradis et al. [35], which is based on the 15 layer CNN model trained purely on
artificially blurred data. This model performs well for various ranges of motions
blur lengths and directions. The results on artificially blurred data show model
ability to recover an arbitrary range of blur parameters. Simultaneously, the end-
to-end model easily outperforms the blind deconvolution L0-regularized method
and competes very well compared to the non-blind variation of the same text
image specialized L0-regularized method. Further, the L15 model can restore the
naturally blurred images as well. Based on the OCR accuracy, L15 CNN model
delivers significantly better results compared to L0-regularized method which is
considered to be state of the art. The motion deblurring based on CNN reveals how
simple it is to obtain a model with the beyond state-of-the-arts outcomes. Model,
which generalizes very well and which can handle a wide range of possible blur
parameters.

The CNN approach for image compression artifacts restoration presented in
this work significantly improves the-state-of-the-art results. Similarly to the L15
model for license plate motion deblurring, the introduced models besides the be-
yond state-of-the-art results provide a significant generalization ability over vari-
ous JPEG compression qualities. The analysis of the architectures and the objec-
tives the networks are trained for is given. The residual objective used for artifacts
restoration is presented allowing to speed up the training process together with
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better outcomes compared to the direct objective. The experiments pointed out the
contribution of input data reorganization referring to the deblocking. The work
shows that the CNN model used for image restoration in the pixel domain is suit-
able for transforming the highly compressed JPEG coefficients to the coefficients
representing the image, which decoded, becomes artifacts free. The JPEG compres-
sion artifacts removal supports the idea of a unified approach to image restoration.
There are many others tasks of image restorations. Nevertheless, even these are not
reviewed in this thesis, here presented results indicates a possible performance in-
crease in the sense of accuracy and quality based on the data-driven CNN models.

6.4 future work

The combination of all described approaches including the skip architecture, resid-
ual objective with further relatively smaller kernel stacking, e. g. like the inception
network [46, 51], may provide the results yet far beyond state of the art. Unfor-
tunately, the amount of computational time is directly proportional to the model
complexity. Therefore, the recently used architectures take several days to train
which makes the exhaustive architecture state space search quite difficult.

The image restoration CNN based models were and yet significantly are influ-
enced by the computer vision research. Based on results in computer vision, the
next steps shall lead to architectures of stacked filters comprising the model build
from relatively small kernels interleaved with a higher amount of non-linearities,
like ReLU, PReLU as used in the L5 models, or recently introduced ELU. Further,
classification instead of regression may provide the network with a much easier
problem to learn, i. e. the output would be one of 256 possible values representing
the image intensity. In such a case an ensemble of models in a form as presented
in [HKSS14] or just utilizing the dropout in a network can be simply used to
achieve better results.

In the case of JPEG artifacts restoration, the transposed convolution can offer
interesting outcomes. It is worth considering networks utilizing the transposed
convolution – sometimes noted as deconvolution which spatially scatters the data.
That includes various scenarios like deconvolution, in the beginning, gradually
stacked deconvolution, and deconvolution at the end of the network. The deconvo-
lution, precisely transposed convolution, is understood as the reverse convolution
where the single input value, the result of a convolution, is partially distributed
to its source values Figure 3.5. Here, the possible future research regarding JPEG
DCT coefficients is likely to provide interesting results.

Although the PSNR based objective did not directly show any significant bene-
fit over the simple MSE loss function, the SSIM loss function is worth a try. The
related idea of inpainting the corrupted image to obtain the perceptually plausible
image could be used in situations where the scene fidelity is not necessary. Apart
from the restoration tasks, the CNN can be deployed in other image processing
challenges including in robotics often used visual based parameters estimation.
These may include the image matching for the loop closer detection extending the
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work [IPSS16] in the mapping and environment reconstruction applications, the
rotation-translate estimation between several consequent images, the scene seg-
mentation, the depth from an image estimation, several sensors fusion [SZ10], or
descriptors learning [SS11].

Plethora of degradations and corruptions types exist, where the CNN utilization
may improve the restoration results compared to the engineered methods, e. g. the
whole family of deconvolution methods. In this thesis, the deconvolution CNN is
utilized for license plate images deblurring, which is a very narrow image domain
compared to the natural images. The end-to-end mapping for such tasks may be
much too hard for recent network models. Nevertheless, no such known research
has been yet done in this field. A regression CNN models introduced to compute
the image restoration are likely to be suitable for similar tasks related to inpainting.
An inpainting model can be used to estimate the shape and a texture of partially
occluded objects in an image or generate details which may provide better per-
ceptual image quality. An interesting approach to image generation is based on
adversarial networks, where the generator network tries to fool the discriminator
network with generated images instead of real images. Last but not least, the in-
painting may by used for several objects anonymization including the human faces,
license plates, advertisements and generally anything in the image.



7
C O N C L U S I O N

This thesis focuses on an image restoration based on models of convolutional neu-
ral networks. Particularly, two different tasks were chosen, motion deblurring of
license plate images taken by a surveillance system and artifacts removal caused
by low quality of JPEG compression. Usually, the methods of image restoration
are hand-engineered. That yields to a variety of approaches which are comprised
of certain processing pipelines related to a type of degradation. Specifically, in
motion deblurring, the pipeline consists of PSF estimation and a subsequent de-
convolution to restore the latent sharp image. Compression artifacts restoration
methods try to smooth the discontinuities made by blocking or suppress ringing
on edges.

In this work, in contrary, a direct end-to-end mapping based on convolutional
neural networks is presented. Restoration relies on a data-driven trained model
which directly transforms a degraded image to an undistorted image. Recently in-
troduced convolutional neural network architecture, i. e. AlexNet, inspired a model
deployed for license plate motion deblurring. Several experiments show that a
single model is sufficient for various motion blurs differing in lengths and direc-
tions which allow the comparison with blind deconvolution methods. The model
trained solely on artificially blurred data outperforms the considered state-of-the-
art method deployed on naturally blurred images where the achieved OCR based
error accuracy is 9 % compared to 23 % error accuracy of L0-regularized method.

Further, a nonlinear degradation based on the JPEG compression is restored ex-
ploiting the same end-to-end approach of data-driven trained models. Compared
to motion deblurring, restoration of compression artifacts is a harder problem
due to the missing image information. While the approach is the same, various
training and architecture related extensions are introduced including the resid-
ual objective, skip architecture, and loss computed on an image data in a case of
JPEG coefficient transformation. These extensions contribute to train model which
achieved in artifacts suppression state-of-the-art results. Particularly, L8 model
achieved 31.51 PSNR compared to 31.29 PSNR of recently introduced AR-CNN and
30.81 PSNR of hand-engineered SA-DCT. In the case of JPEG artifacts restoration,
direct transformation of JPEG coefficients based on the convolutional network is
proposed. Such transformed coefficients allow restoring the artifacts degraded im-
age before decoding itself.

The results achieved in both tasks contribute to the idea of utilizing CNNs as
a unified approach to image restoration. It is worth to try to follow the ongoing
research in computer vision, where the majority of CNN related trends come from.
That includes stacking the spatially small filters interleaved by more nonlinearities
providing even better models. An interesting yet challenging deblurring of natural
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images should be investigated further. In the case of JPEG coefficients transforma-
tion, the fixed IDCT layer can be substituted by the trained transposed convolution
allowing the network to adapt the decoding step. Considering the fact that all the
presented models are regression based CNN, they can be therefore deployed for
a task of inpainting as well. That would allow restoring incomplete data in an
image, i. e. occluded objects or simply too much-degraded image regions. The im-
pact of CNN models in various research domains is high. There is a lot of other
applications the deployment of data-driven models is worth to try.

This thesis begins with an introduction reminding a year the research on NN
is considered to begin. After more than 70 years later the actual state of the art
of CNN dynamically evolves providing a significant impact in various domains
including the image restoration as well.
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