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Abstrakt
Tato disertačńı práce se zabývá vylepšeńım systémů pro rozpoznáváńı činnost́ı člověka.
Současný stav věděńı v této oblasti jest prezentován. Toto zahrnuje zp̊usoby źıskáváńı
digitálńıch obraz̊u a vidéı společně se zp̊usoby reprezentace těchto entit za použit́ı poč́ıtače.
Dále jest prezentováno jak jsou použity extraktory př́ıznakových vektor̊u a extraktory pros-
torově-časových př́ıznakových vektor̊u a zp̊usoby př́ıpravy těchto dat pro daľśı zpracováńı.
Př́ıkladem následného zpracováńı jsou klasifikačńı metody. Pro zpracováńı se obecně ob-
vykle použ́ıvaj́ı části videa s proměnlivou délkou. Hlavńı př́ınos této práce je vyřčená
hypotéza o optimálńı délce analýzy video sekvence, kdy kvalita řešeńı je porovnatelná
s řešeńım bez restrikce délky videosekvence. Algoritmus pro ověřeńı této hypotézy jest
navržen, implementován a otestován. Hypotéza byla experimentálně ověřena za použit́ı
tohoto algoritmu. Při hledáńı optimálńı délky bylo též dosaženo jistého zlepšeńı kvality
klasifikace. Experimenty, výsledky a budoućı využit́ı této práce jsou taktéž prezentovány.

Kĺıčová slova
Optimálńı analyzovaná délka akce, lokálńı video př́ıznaly, bag-of-words representace videa,
visuálńı slovńık, SVM.

Abstract
This thesis focuses on the improvement of human action recognition systems. It reviews
the state-of-the-art in the field of action recognition from video. It describes techniques of
digital image and video capture, and explains computer representations of image and video.
This thesis further describes how local feature vectors and local space-time feature vectors
are used, and how captured data is prepared for further analysis, such as classification
methods. This is typically done with video segments of arbitrarily varying length. The
key contribution of this work explores the hypothesis that the analysis of different types
of actions requires different segment lenghts to achieve optimal quality of recognition. An
algorithm to find these optimal lengths is proposed, implemented, and tested. Using this
algorithm, the hypothesis was experimentally proven. It was also shown that by finding the
optimal length, the prediction and classification power of current algorithms is improved
upon. Supporting experiments, results, and proposed exploitations of these findings are
presented.
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Chapter 1

Introduction

Nowadays the world is heading towards to a total monitoring of everything what is going on.
That induces a creation of systems for detection, let us say, anomalies that are physically
happening around us. One of the needs is, for example, the monitoring of some public
areas for violent behavior detection. This can be achieved by a number of humans that
are located at monitored places and are able to prevent other beings from performing such
activities. This solution is very expensive in terms of a huge number of humans that are
performing the monitoring, and all of them are potentially in danger on a place.

Contemporary techniques give an opportunity to adapt above presented procedure and
deploy video cameras to the places where monitoring needs to be performed, and the humans
are observing the situation remotely. This solution reduces the number of observers on
place, and the safety of such humans is higher than before. Such monitoring procedure is
often called as surveillance.

As time has gone by the cameras’ quality is higher and higher, the output signal can be
digitized, and the possibility of processing of the camera signal by computers comes forward.
Such processing can be split into two main areas; it is (1) still image processing, detection
and localization of humans, faces, animals, or general objects and (2) video processing,
such as behavior detection in front of the camera, car accident detection, smoke detection,
fight detection, etc. All those detections may be very valuable for the surveillance systems.
It is highly needed to remove the human factor from surveillance application and let the
computer detect all dangerous or unwanted situations that may happen but that situation
did not come up yet.

Nowadays such computer detection techniques are being used as a support of the surveil-
lance system’s operator and he/she finally decides whether the detection is valid and further
reactions need to be performed.

This work focuses on the human action recognition from digitized video streams but
current research in such field generally approaches the problem in a way, that some new
algorithm is proposed and afterwards tested on the standardized sets of video sequences
and the solution’s quality is then measured. All sets of video sequences generally contain
totally variable video streams. The main problems can be seen (i) as the variable length of
samples, (ii) on the fact that samples contain an amount of other actions and somewhere at
the end or inside of the sample the wanted action is performed, (iii) the presented behavior
is fully or partially done outside of video frames. Majority of researches use the whole
example as one entity and above presented facts are simply not taken into account.

The main question remains; it is whether some, let us say, optimal analysis length of
action can be found and consequently whether on-line detection system, which processes
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only such restricted length of the video, can be built and whether that system produces
comparable results to the currently well known solutions.

In this thesis the action recognition solutions were investigated and the technique which
leads to the state-of-the-art performance were replicated. The whole video processing may
be understood as a series of transformation which are described in subsequent chapters.
In Chapter 2 the image and video representations in a computer are discussed. Chapter
3 presents some possible techniques of a representation of image or video contents in a
computer, and Chapter 4 summarizes the pipeline and its components that may be used for
action recognition processing and which as well as reaches the state-of-the-art performance.
Chapter 5 presents the definition of the optimal analysis length and the algorithm for
obtaining of that property of human action recognition processing. The conclusion of the
work is presented in Chapter 6.
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Chapter 2

Image representation

Human being is able to perceive the outer environment/world as a three dimensional vast
space with a special equipment which is called the eyes. In the following sections, the
image function is mathematically defined including the codomain of the image function
with possibilities of transformation of the codomain values for further processing. In the
last section the mathematical background of the domain digitizing and of the codomain of
analog image function is presented.

2.1 Definition of the image function

The outer world can be mathematically described as a three dimensional orthogonal space
[78, 18] with three axis x, y, z as shown in Figure 2.1. When the observation of outer
environment is wanted, some specialized sensor, which is able to retrieve similar information
about the neighborhood as the human eye does, needs to be used. The origin of the
orthogonal space (it is the point [0, 0, 0] in Figure 2.1) needs to be specified in one point
of the outer world, and since this has been done, the wanted location of the sensor can be
parametrized as a position within our model as [xl, yl, zl] as shown in Figure 2.1, where
xl ∈ (−∞,+∞), yl ∈ (−∞,+∞) and zl ∈ (−∞,+∞). This point describes precisely the
location of the sensor but it is not enough to specify exactly the point of view where the
sensor is capturing some information from outer world.

The basic plane in used orthogonal space needs to be defined. Let B[x2, y2, z2] be
the points in orthogonal space where x1 ∈ (−∞,+∞), y1 ∈ (−∞,+∞) and z1 = 0. All
these points defined above determine the x-y plane. The situation is analogous in other two
possible basic planes: x-z and y-z planes. It should be noted that huge number of other
planes, which are not orthogonal to axes, may be constructed and will not be required to
be defined for rest of this chapter.

The sensor orientation schema is shown in Figure 2.2. It is defined by two angles α and
β, where α ∈ (0, 2π) and β ∈ (0, 2π). β is the angle between the optical axis of the camera
and the x-y plane. When β = 0, all potential points of the optical axis lie within that x-y
plane. When β = π

2 , optical axis of the camera is orthogonal to x-y plane and the optical
axis of the camera which comes out in the front of the camera is in the same direction as
increasing of values on the z axis. More simply, in this case the camera is capturing what is
happening above the x-y plane as shown in Figure 2.2. Analogously to that, α is the angle
between the optical axis of the sensor and the x-z plane.

Formally the sensor position is defined as:
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L(xl, yl, zl, α, β, φ) (2.1)

where xl, yl and zl is the position of camera and α, β specify the sensor orientation and
φ represents the sensor rotation around optical axis. Domain of that function is defined:

xl ∈ (−∞,+∞), yl ∈ (−∞,+∞), zl ∈ (−∞,+∞),

α ∈ 〈0, 2π〉, β ∈ 〈0, 2π〉, φ ∈ 〈0, 2π〉

Image obtained at this position is simply defined as:

O
′′
(X,Y, L, τ) (2.2)

where L describes the sensor position as defined above and

X ∈ (−∞,+∞), Y ∈ (−∞,+∞) (2.3)

and τ ∈ 〈0, T ) in case of video streams and τ = 0 in case that still image is obtained.
T represents the maximum length of a recorded video.

More precise definition is:

O
′
(X,Y, xl, yl, zl, α, β, φ, τ) (2.4)

where all known variables have the same meaning as defined above. The variables X and
Y specify the area from outer world which is captured by sensor. Sensor is positioned ac-
cording to the variables xl, yl, zl, α, β, φ as defined above. Theoretically the captured area
is infinite, practically a sensor which captures infinite area does not exist. The situation is
schematically shown in Figure 2.3. The obtained rectangular area has two main character-
istics, it is height and width which can be acquired, and these are dependent on the viewing
angle γ and δ. γ angle controls a possible span in vertical direction (Figure 2.3a) and γ
angle controls the possible span in horizontal direction (Figure 2.3b). In fact, these two
angles define elliptical area which is cropped into an output rectangular area. A content of
this output rectangular area is constrained by variables xc and yc.

Thus, the area obtained using a sensor is

O
′
(xc, yc, xl, yl, zl, α, β, φ, τ) (2.5)

where known variables have the same meaning as defined above and

xc ∈ 〈−w/2,+w/2〉,
yc ∈ 〈−h/2,+h/2〉

w is with of an image and h is height of an image and formally w ∈ (0,+∞) and h ∈ (0,+∞).
The width and height of the image is now defined little bit unusual way. It is because of

fact that the start point of the captured area lies on the optical axis and thus in the center
of the captured area. For the better understanding an displacement of image position [0,0]
to top left corner is commonly performed [18].

O(x, y, xl, yl, zl, α, β, φ, τ) = O
′
(x+ w/2, y + w/2, xl, yl, zl, α, β, φ, τ) (2.6)
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where x ∈ 〈0, w〉, y ∈ 〈0, h〉, w ∈ (0,+∞) and h ∈ (0,+∞); w is width of an image and h
is height of an image.

The huge subset of videos or images, which are obtained, do not have an exact local-
ization information [84, 44, 50]. This kind of information can be obtained, for example, in
controlled environment, where sensors are accurately positioned and the “local” zero posi-
tion of the environment can be easily selected. In real situation, on the planet earth, the
accurate positions of sensors are nearly impossible to be obtained; the global zero position
of the environment is not defined and in case that the camera is held by human, the move-
ment of it cannot be obtained and also small movement variances cannot be measured. For
this work, the exact position of the sensors is not used, thus can be omitted.

The mapping can be defined as follows

f = {g | g : (x, y, xl, yl, zl, α, β, φ, τ)→ (x, y, τ)} (2.7)

2.2 Codomain of the image function

The image function f(x, y, τ), as described in Equation (2.7), produces color values

f(x, y, τ) ∈ C (2.8)

where x ∈ 〈0, w〉, y ∈ 〈0, h〉, w ∈ (0,+∞) and h ∈ (0,+∞) and τ = 0 in case of images and
τ = 〈0, T ) in case of video streams; C contains all colors, formally

C = {c | c : 〈λ1, λ2〉 → R0+} (2.9)

where λ1 represents lowest wave length [18, 71] boundary of visible light and λ2 is the
highest wave length boundary of visible light, the approximate values are λ1 = 370nm and
λ2 = 720nm and R0+ ∈ 〈0,+∞).

The representation using wave length of visible light is problematic. Generally, colors
are in computer represented using a color model [18]. One of the widely commonly used
one is the RGB model [18]. This model consists of three basic color channels, it is R (red
channel), G (green channel) and B (blue channel). By mixing of these three components
the similar perception may be observed. The RGB model is formally defined, as follows

fRGB(x, y, τ) = (

∫ λ2

λ=λ1

αR(λ)f(x, y, τ)dλ,∫ λ2

λ=λ1

αG(λ)f(x, y, τ)dλ,∫ λ2

λ=λ1

αB(λ)f(x, y, τ)dλ) (2.10)

where αR(λ) represents the function which extracts only spectral values which are related
to red color, the similar meaning is defined for functions αG(λ) and αB(λ), respectively.
Image of this function is defined

fRGB(x, y, τ) ∈ R3
0+ (2.11)

where R3
0+ = (x1, x2, x3) and x1, x2, x3 ∈ 〈0,+∞).

Multiple color representation models exists, basic overview can be found in [18]. In this
work another “color” model is needed to be defined because of it is widely used in computer
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vision. It is the gray-scale model [18]. In this model only the illumination amplitude of
the sensor is considered. This can be obtained by using specialized sensors which cells are
sensitive only to illumination but nowadays this signal is more frequently obtained from
RGB signal in the following way

fGRAY (x, y, τ) = {0.299ER(fRGB(x, y, τ))

+0.587EG(fRGB(x, y, τ))

+0.114EB(fRGB(x, y, τ))}
(2.12)

where ER is a function which performs extraction only of the red component of an output
of the fRGB function; the EG and EB functions extract the other components, respectively.
Image of this function is defined

fGRAY (x, y, τ) ∈ R0+ (2.13)

The functions fRGB and fGRAY are fully defined in its analog form.

2.3 Digital form of the image function

For digital image processing fRGB or fGRAY function needs to be digitized [1, 68]. It is
done by using sampling of the domain values of the fRGB or fGRAY function. Formally,
this is modelled by using multiplication of the input image function with the Dirac impulse
[33]. Dirac impulse has the following properties:

(a) its width is sufficiently approaching the zero,

(b) its height is sufficiently approaching the +∞ and

(c) area under the curve is equal to 1.

When obtaining one sample of the function fGRAY the multiplication of fGRAY function
with Dirac impulse returns, formally , the average value of the function on an interval which
length is the same as the width of the dirac impulse in case of one dimensional signal. The
average value of a small area in case of two dimensional image and theoretically the average
value of a small cube in case of three dimensional signal.

The real sensors’ cells capture the values from wider intervals in case of one dimensional
signal and from larger areas in case of two dimensional signal than Dirac impulse does.

In case of two dimensional signal the spatial space is uniformly sampled by a grid. Grid’s
sampling frequency must be conformed to the Nyquist-Shannon-Kotelnikov theorem [1]:

fs ≥ 2f (2.14)

where fs is the sampling frequency and f is the maximum frequency which may be found
in the input signal. If Equation (2.14) is not met, the output signal will be aliased and not
reconstructible back to the analog form. Special optic devices, such as lens or special filters
etc., are used in the front of the image sensors to guarantee this requirement.

The position, at which the input signal is sampled, is called pixel. The signal can be
then described as follows

fRGB(x, y, τ) ∈ R3
0+ (2.15)
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or
fGRAY (x, y, τ) ∈ R0+ (2.16)

where x ∈ 〈0, w〉, y ∈ 〈0, h〉, w, h ∈ N, w is with of an image in pixels and h is height of
an image in pixels. The image of the functions presented above still contains analog values
which needed to be converted to digital form too. This is achieved by quantization process
[68]. First of all, the minimum and maximum analog value of the input signal needs to be
established and according to this interval the certain number of levels is uniformly emplaced
to the interval of analog values. When converting all samples of an analog signal to digital
values the closest level’s value is used as an output. The number of levels is often chosen as
the power of 2. Generally, the converter is called n-bit analog-to-digital converter (ADC)
and the interval of output values is defined as 〈0, 2n− 1〉. In case that the number of levels
is 256 = 28 the converter is called as 8-bit ADC and the interval of values is 〈0, 255〉.

The resulting signal can be described as follows

fRGB(x, y, τ) ∈ (〈0, 2n − 1〉, 〈0, 2n − 1〉, 〈0, 2n − 1〉) (2.17)

or
fGRAY (x, y, τ) ∈ 〈0, 2n − 1〉 (2.18)

where x ∈ 〈0, w〉, y ∈ 〈0, h〉, w, h ∈ N, n represents the digital converter characteristics as
described above and the assumption, that every channel of function fRGB is converted by
n-bit ADC, is done.

Physically, the image sensors are constructed as a grid of cells. Every cell contains three
small illumination sensitive areas equipped with filters for red, green and blue channel of
the RGB color model. Therefore, each sensor captures directly that part of light spectrum
which is needed, as defined in RGB color model. The obtained analog values from each cell
are digitized usually using 8-bit ADC and the sensor generally outputs directly digitized
form of captured scene. In this case the analog signal path is reduced to avoid noise injection
or crosstalk. Unfortunately, the noise is accumulated to the output signal directly in the
cell of the sensor, because of a purity level of the material which was used for creating of
the sensor. But there is a high probability that the area of neighborhooding pixels will be
disturbed by a noise in a similar manner.
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Chapter 3

Content representation

When digital image or sequence of digital images is acquired and stored in compressed or
uncompressed form, subsequent algorithmic processing is possible using computer. The
main goal of computer vision is to understand to its content preferably in a similar way as
the human being does.

In the area of computer vision, the content representation can be modeled using for
example local low-level features which are extracted from images or videos. It is generally
done by extrema searching and each extrema location is described by using neighborhood
area of the extrema. The searched space is called spatial domain when the image is searched
and is two dimensional. In case of videos the domain is extended with time domain, we call
it spatio-temporal domain which is three-dimensional.

The neighborhood area, as defined above, from which some description will be com-
puted, is predefined and it is a small matrix of pixels in case of images and small cube of
pixels in case of videos. The output of the description process is generally called feature
vector, with one important characteristic, each feature vector obtained using one type of
feature extractor with the same settings outputs a number of feature vectors with the same
dimensionality.

Formally, the feature vectors are obtained from discretized image function
fRGB(x, y, τ) as defined in section 2.3; the feature extraction M is defined:

M(fRGB) = {(x, y, τ,D) | keypoint(fRGB, x, y, τ) = 1 ∧ D = fextract(fRGB, x, y, τ)}
(3.1)

where keypoint(fRGB, x, y, τ) is the function which determines whether at a given position
in the given image function a key point, which should be described, exists. Codomain of the
function is defined: keypoint(fRGB, x, y, τ) ∈ {0, 1}. The fextract(fRGB, x, y, τ) function
performs extraction of the feature vector which is stored as a set D at a given position in
the given image function. The other variables are defined:

x ∈ 〈0,width〉

y ∈ 〈0,height〉

τ ∈ 〈0,T〉

and in the case of images τ = 0. Generally the notation represents a set of quadruples of
variable length. Each quadruple contains the position information (x, y, τ) and the feature
vector as a vector of numbers D. The cardinality of the set represents the number of local
features extracted and it can be noted as |M(fRGB)|.
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Generally, the number of output feature vectors is different for each processed image
or video. This characteristic brings the need for additional processing, where a number of
local feature vectors are processed and converted to one fixed-sized representation, where
one video or subvideo or image or part of an image is represented using one “higher-level”
feature vector.

In Section 3.1 and in Section 3.2, a basic overview of well known image features will be
presented as well as the space-time feature extraction techniques whose are frequently used
today. Section 3.3 presents the dense sampling technique based on a fact that under certain
conditions searching of keypoints can be skipped. The Section 3.4 presents basic principles
for transforming of a set of local low-level features to one fixed-sized representation.

It should be noted that the rest of this chapter refers to many sources and generally it
can be said that every source uses slightly different mathematical notation. The notation
is adopted without changes to avoid inaccuracies of presented facts.

3.1 Image feature extractors

In this Section, generally known image feature extraction algorithms will be presented, such
as SIFT [55, 54], SURF [6] and as well as the latest algorithms, such as FREAK [60].

SURF

Herbert Bay et al. presented a novel scale- and rotation-invariant detector and descriptor
in [6]. The detection process is based on Hessian matrix and the description process is
based on the Haar wavelet filters.

The detector is based on Hessian matrix because of its good performance in accuracy.
Blob-like structures are detected at locations where the determinant is maximum and the
determinant of Hessian is also used for the scale selection.

Given a point x = (x,y) in an image I, the Hessian matrix H(x, σ) in x at scale σ is
defined as follows

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lxy(x, σ)

]
(3.2)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative ∂2

∂x2
g(σ) with

the image I in point x, and similarly for Lxy(x, σ) and Lxy(x, σ).
Gaussians are optimal for scale-space analysis but in practise they have to be discretised

and cropped. This leads to a loss in repeatability under certain image rotations. This is
a weakness for Hessian-based detectors in general. The computation of hessian matrix is
approximated using box filters. These approximate second order Gaussian derivatives can
be evaluated at a very low computational cost using integral images and, in advance, the
calculation time therefore is independent of the filter size.

The 9 × 9 box filters in figure 3.1 are approximations of a Gaussian with σ = 1.2 and
represent the lowest scale (i.e. highest spatial resolution). The approximations are denoted
as Dxx, Dyy and Dxy. The weights applied to the rectangular regions are kept simple for
computational efficiency, but the further balancing of the relative weights in the expression

for the Hessian’s determinant with
|Lxy(1.2)|F |Dxx(9)|F
|Lxx(1.2)|F |Dxy(9)|F ' 0.9 is needed. |x|F is the Frobenius

norm, this yields
det(Happrox) = DxxDyy − (0.9Dxy)

2 (3.3)
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Figure 3.1: Left to right: the approximation of the second order Gaussian partial derivative
in y- (Dyy) and xy-direction (Dxy). The grey regions are equal to zero. The picture is taken
from [6].

Furthermore, the filter responses are normalised with respect to their size. This guarantees
a constant Frobenius norm for any filter size.

Scale-space representation is created using up-scalling of the filter size. The output of
the 9×9 filter (as shown in Figure 3.1) is considered as the initial scale layer which is referred
as s = 1.2 (it corresponds to Gaussian derivatives with σ = 1.2). The following layers are
obtained by filtering the image with gradually bigger masks. That leads to the filter sizes
9×9, 15×15, 21×21, 27×27, etc. At larger scales, the step between consecutive filter sizes
should also scale accordingly. Hence, for each new octave, the filter size increase is doubled
(going from 6 to 12 to 24). Simultaneously, the sampling intervals for the extraction of the
interest points can be doubled as well.

As the ratios of the filter layout remain constant after scaling, the approximated Gaus-
sian derivatives scale accordingly. Furthermore, as the Frobenius norm remains constant
for the filters, they are already scale normalised.

In order to localise interest points in the image and over scales a non-maximum sup-
pression in a 3 × 3 × 3 neighbourhood is applied. The maxima of the determinant of the
Hessian matrix are then interpolated in scale and image space with the method proposed by
Brown et al. [13]. Scale space interpolation is especially important according to proposed
scale-space representation, because of the difference in scale between the first layers of every
octave is relatively large.

The SURF descriptor describes the distribution of intensity content within the interest
point neighborhood. The Haar wavelet responses in x and y direction within a circular
neighbourhood of radius 6s around the interest points, with s the scale at which the keypoint
was detected. The sampling step is scale dependent and chosen to be s. The size of the
wavelets are also scale dependent and are set to 4s. Again integral images can be used for
fast filtering.

Once the wavelet responses are calculated and weighted with a Gaussian (σ = 2.5s)
centered at the interest point, the responses are represented as vectors in a space with the
horizontal response strength along the abscissa and the vertical response strength along the
ordinate. The dominant orientation is estimated by calculating the sum of all responses
within a sliding orientation window covering an angle of π

3 . The horizontal and vertical
responses within the window are summed. The two summed responses then yield a new
vector. The longest such vector defines the orientation of the interest point. The size of
the sliding window is a parameter, which must be chosen carefully.

When the orientation of the key point is established, the extraction of feature descriptor
can be performed. The rectangular area centered around the interest point and oriented
along the interest point orientation is used for that purpose. The size of window is set
to 20s. The region is split up regularly into smaller 4 × 4 square sub regions. This step
preserves important spatial information.

For each sub-region the Haar wavelet responses at 5× 5 regularly spaced sample points
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are computed. Haar wavelet response in horizontal direction is denoted as dx and response
in vertical direction is denoted as dy. It should be noted that the Haar wavelets are cal-
culated in the unrotated image and the responses are then interpolated according to key
point orientation. The responses dx, dy are first weighted with a Gaussian (σ = 3.3s)
centered at the interest point. Then, the responses dx and dy are summed up over each
sub-region and form a first set of entries in the feature vector. In order to improve the
output description the sum of the absolute values of the Haar wavelet responses |dx| and
|dy| is extracted. Hence, each sub-region has a four-dimensional descriptor vector v for its
underlying intensity structure v = (

∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|). Concatenating this for all

4 × 4 sub-regions, this results in a descriptor vector of length 64. The wavelet responses
are invariant to a bias in illumination. Invariance to contrast is achieved by turning the
descriptor into a unit vector.

SIFT

David G. Lowe presented innovative approach for local features extraction in [55, 54] which
is called SIFT keypoint detector. The approach is based on detection of keypoints in an
image and its description using feature vectors which are invariant to image size change,
translation, rotation and partially invariant to illumination change, affine transformations
and 3D projection. Features are localized in spatial domain as well as in frequency domain, a
probability of wrong detection ,while the area is partially occluded by another object or some
noise is present in image, is reduced. From one input image, usually hundreds of feature
vectors are extracted using an effective algorithm. Features are very distinguishing, even
when the comparison against huge database of feature vectors is performed, the probability
of correct comparison is very high. Computational demandingness is reduced by using
cascade filtering where time demanding operations are performed only on preselected areas
whose passed a selection test.

The procedure of feature extraction may be summarizes as follows:

1. Scale-space pyramid creation

2. extrema detection accros the whole scale-space

3. removing of unstable extrema (e.g. extrema on the edges, etc.)

4. description of neighborhood of remaining extrema

The whole scale-space is searched for positions, whose are invariant with respect to image
translation, scalling and rotation, and are minimally affected by noise and small distortions.
It has been shown in [51] that under some general assumptions on scale invariance, the
Gaussian kernel and its derivatives are the only possible smoothing kernels for scale space
analysis.

Rotation invariance is achieved by selection of the positions of a minima and a maxima
of function difference of Gaussian [18], this function is applied in the whole scale space.
This can be computed in a efficient way by creation of image pyramid and key points can
be localized across all scales with a high variance, this procedure provides stable image
characterizing.

2D Gauss function is separable, its convolution with input image can be effectively
computed by using two 1D Gauss function in horizontal and vertical directions:

g(x) =
1√
2πσ

e−x
2/2σ2

(3.4)

14



For keypoints localisation all smoothing operations are done with σ =
√

2, it can be ap-
proximated with sufficient accuracy using a 1D kernel with 7 points. By doing this image
A is obtained, afterwards it is smoothed again by using the same arguments, image B is
obtained which is effectively smoothed with parameters: σ = 2. The difference of Gaussians
function is now computed by subtracting image B from image A. For creation of subsequent
pyramid level already smoothed B image is resized using bilinear interpolation with a pixel
spacing of 1.5 in each direction. Pixel spacing 1.5 means that new pixel will be computed
as a combination of 4 adjacent pixels. According to that procedure all pyramid levels are
computed.

Maxima (or minima) of this scale space function are determined by comparing each
pixel in the pyramid to its neighborhood. First of all, a pixel is compared to its eight
neighbors at the same level of the pyramid. If the tested pixel is a maxima (or minima)
at this pyramid level, then the closest pixel location is calculated at the subsequent lowest
level of the pyramid (1.5 resampling level is taken into account). If the pixel remains higher
(or lower) than this closest pixel and its 8 pixel neighborhood, then the test is repeated for
the level above.

Each key point location, which were detected, is described. The smoothed image A at
each level of the pyramid is processed to extract image gradients (Mij) and orientations
(Rij), computation is done using pixel differences:

Mij =
√

(Ai,j −Ai+1,j)2 + (Ai,j −Ai,j+1)2 (3.5)

Rij = atan2(Ai,j −Ai+1,j , Ai,j −Ai,j+1) (3.6)

Difference of two pixels is a very simple task to compute and the result is precise enough
thanks to higher level of image smoothness. Robustness to illumination change is improved
because of thresholding of gradient value to a value which equals to 10% of maximum
possible gradient value. This reduces the effect of a change in illumination direction for a
surface with 3D relief, as an illumination change may result in large changes to gradient
magnitude but is likely to have less influence on gradient orientation.

A canonical orientation is assigned to each key location so that the image descriptors
are invariant to rotation. The orientation is determined by the peak in a histogram of
local image gradients. The orientation histogram is created using a Gaussian-weighted
window with σ of three times that of the current smoothing scale. These weights are
multiplied by the thresholded gradient values and accumulated in the histogram at locations
corresponding to the orientation, Rij . 360 degree range of rotations is covered by the
histogram with 36 bins. The histogram is smoothed prior to peak selection.

Each key position is now identified by a stable location, scale and orientation; the
local image region, in a manner invariant to these transformations, can be described. In
addition, it is desirable to make this representation robust against small shifts in local
geometry, such as arise from affine or 3D projection. This robustness can be obtained by
representing the local image region with multiple images representing each of a number of
orientations (reffered to as orientation planes). Each orientation plane contains only the
gradients corresponding to that orientation, with linear interpolation used for intermediate
orientations. Each orientation plane is blurred and resampled to allow for larger shifts in
positions of the gradients.

For each keypoint, the pixel sampling, from the pyramid level at which the key point
was detected, is used. All pixels which fall in a circle of 8 pixels radius around the key
location are inserted into the orientation plane. The orientation is measured relative to
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Figure 3.2: Human retina model, the biological pathways leading to action potentials is
emulated by simple binary tests over pixel regions. The picture is taken from [60].

that of the key by subtracting the key’s orientation. Eight orientation planes are used ,
each is sampled over 4 × 4 grid of locations, with a sample spacing 4 times that of the
pixel spacing used for gradient detection. The blurring is done by allocation the gradient
of each pixel among its 8 closest neighbors in the sample grid, using linear interpolation in
orientation and the two spatial dimensions.

The same process is repeated for a second level of the pyramid one octave higher. This
time 2× 2 sample region is used (instead of 4× 4). Approximately the same region will be
examined at both scales, so that any nearby occlusions will not affect one scale more than
the other. Therefore, the total number of samples in the SIFT vector , from both scales, is
8× 4× 4 + 8× 2× 2 of 160 elements, giving enough measurements for high specificity.

FREAK

Alahi et al. in [60] presented the fast binary descriptor which is constructed with respect to
the known information about human’s retina, it is called the FREAK (fast retina keypoint).

It is believed that the human retina extracts details from images using Difference of
Gaussians [25] of various sizes and encodes such differences with action potentials (see
Figure 3.1). The topology of the retina is very important. First, several photoreceptors
influence the ganglion cell. The region where light influences the response of a ganglion
cell is the receptive field. Its size and dendritic field increases with radial distance from the
foveola (Figure 3.3b). The spatial distribution of ganglion cells reduces exponentially with
the distance to the foveal. They are splitted into these areas: foveal, fovea, parafoveal and
perifoveal. Each area holds an interesting role in the process of detecting and recognizing
objects. The higher resolution is captured in the fovea whereas a low resolution objects
are captured in the perifoveal. The decreasing of resolution can be interpreted as a body
resource optimization. The analogy is presented in the Figure 3.1.

The sampling grid, inspired by the retina, is used. That grid is circular with the
difference of having higher density of points near the center. The density of points drops
exponentially (see Figure 3.3a). Each sample point needs to be smoothed to be less sensitive
to noise. According to the retina model, the different kernels size for every sample points
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(a) Visualization of the den-
sity of ganglion cells over the
retina.

(b) Retina areas

Figure 3.3: The distribution of ganglion cells over the retina is splitted into four areas: a.
the foveola, b. fovea, c. parafoveal, d. perifoveal. The picture is taken from [60].

is used. The size is exponentially changed and the receptive fields are overlapped. The
topology of receptive fields are illustrated in Figure 3.4. Each circle represents the standard
deviation of the Gaussian kernels [52] applied to the corresponding sampling points.

The changing of the size of the Gaussian kernels [52] with respect to the log-polar retinal
pattern and the overlapping of the receptive fields lead to better performance. Another re-
dundancy which brings more discriminative power is added. Let us consider three receptive
fields A,B and C with intensities IA, IB and IC , where IA > IB, IB > IC and IA > IC . In
case that the fields do not have an overlap, the last test IA > IC do not add any additional
discriminant information. However, in case that the fields overlap, partially new informa-
tion can be encoded. Generally, adding such redundancy allows to use less receptive fields
which is known strategy employed in compressed sensing.

The binary descriptor F is constructed by thresholding the difference between pairs of
receptive fields with their corresponding Gaussian kernel. F is a binary string formed by a
sequence of one-bit Difference of Gaussians:

F =
∑

0≤a<N
2aT (Pa) (3.7)

where Pa is a pair of receptive fields, N is the desired size of the descriptor, and

T (Pa) =

{
1 if I(P r1a − P r2a ) > 0
0 otherwise

(3.8)

with I(P r1a ) is the smoothed intensity of the first receptive field of the pair Pa.
With relatively small number of receptive fields, thousands of pairs are possible; it leads

to a large descriptor which may not be useful to efficiently describe the image. Hence, the
best pairs have to be learnt from training data according to this procedure:

1. A matrix D of nearly fifty thousand of extracted keypoints is created. Each row
corresponds to a keypoint represented with its large descriptor made of all possible
pairs in the retina sampling parent illustrated in Figure 3.4. 43 receptive fields, leading
to approximately one thousand pairs, is used.
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Figure 3.4: Illustration of the FREAK sampling pattern. Each circle represents the recep-
tive field where the image is smoothed with its corresponding Gaussian kernel. The picture
is taken from [60].

2. The mean of each column is computed. In order to obtain a discriminant feature,
high variance is desired. A mean of 0.5 leads to the highest variance of a binary
distribution.

3. The columns are ordered with respect to the highest variance.

4. The best column is kept (mean of 0.5) and remaining columns which have low corre-
lation with the other selected columns are iteratively added

A coarse-to-fine ordering of the output pairs is automatically preferred. The selected output
pairs are clustered into four groups (128 pairs per group). It was observed that the first
512 pairs are the most relevant and adding more pairs is not increasing the performance.
A symmetric scheme is captured due to the orientation of the pattern along the global
gradient. The first cluster involves mainly peripheral receptive fields whereas the last ones
implicates highly centered fields.

According to the retina model, the descriptor matching can be cascaded. Firstly, the
first 16 bytes of the FREAK descriptor, which represent coarse information, is matched.
In case the distance is smaller than threshold the comparison continues. Generally, the
comparison of first 16 bytes of descriptor discards 90% of the candidates.

The keypoint rotation is estimated by summing the local gradients over selected short
distance pairings. The long pairs are used to compute the global orientation but only from
selected pairs with symmetric receptive fields with respect to the center.

3.2 Video feature extractors

In this Section, generally known space-time feature description algorithms will be presented,
such as STIP [47, 48], HesSSTIP [88], Cuboids [20], Dense Trajectories [82] and ω-flow [38].

STIP

The keypoint detection of this extractor is based on the idea of the Harris interest points
detector [30, 73]; i.e. to detect locations in a spatial image fsp where the image values have
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significant variations in both directions. For a given scale of observation σ2l , such interest
points can be found from a windowed second moment matrix integrated at scale σ2i = sσ2l

µsp = gsp(·;σ2i ) ∗
(

(Lspx )2 Lspx L
sp
y

Lspx L
sp
y (Lspy )2

)
(3.9)

where Lspx and Lspy are Gaussian derivatives defined as

Lspx (·;σ2l ) = ∂x(gsp(·;σ2l ) ∗ fsp)
Lspy (·;σ2l ) = ∂y(gsp(·;σ2l ) ∗ fsp)

(3.10)

and where gsp is the spatial Gaussian kernel

gsp(x, y;σ2) =
1

2πσ2
exp

(
−(x2 + y2)

2σ2

)
(3.11)

As the eigenvalues λ1, λ2, (λ1 ≤ λ2) of µsp represent characteristics variations of fsp in
both image directions, two significant values o λ1, λ2 indicate the presence of an interest
point. To detect such points, the positive maxima of the corner function should be detected

Hsp = det(µsp)− k trace2(µsp) = λ1λ2 − k(λ1 + λ2)
2 (3.12)

The idea as presented above for spatial domain can be extended into the spatio-temporal
domain by requiring the image values in space-time to have large variations in both the
temporal and the spatial dimensions. Such points will be spatial interest points with a
distinct location in time corresponding to the moments with non constant motion of the
image in a local spatio-temporal neighborhood [46].

Spatio-temporal image sequence is modelled using a function f : R2 × R → R and its
linear scale-space representation L : R2 × R × R2

+ 7→ R is constructed by convolution of f
with an anisotropic Gaussian kernel with distinct spatial variance σ2l and temporal variance
τ2l

L(·;σ2l , τ2l ) = g(·;σ2l , τ2l ) ∗ f(·) (3.13)

where the spatio-temporal separable Gaussian kernel is defined as

g(x, y, t;σ2l , τ
2
l ) =

exp
(
− (x2+y2)

2σ2
l
− t2

2τ2l

)
√

(2π)3σ4l τ
2
l

(3.14)

Similar to the spatial domain, the extended spatio-temporal second-moment matrix is con-
sidered. It is a 3-by-3 matrix composed of first order spatial and temporal derivatives
averaged with a Gaussian weighting functiong(·;σ2i , τ2i )

µ = g(·;σ2i , τ2i ) ∗

 (Lx)2 LxLy LxLt
LxLy (Ly)

2 LyLt
LxLt LyLt (Lt)

2

 (3.15)

where the integration scales are σ2i = sσ2l and τ2i = sτ2l , while the first order derivatives are
defined as Lξ = (·;σ2l , τ2l ) = ∂ξ(g ∗ f) this definition of second-moment matrix µ has been
previously used in the context of optic flow computation.

To detect interest points,the regions in f having significant eigenvalues λ1, λ2, λ3 of µ
are searched. For such purposes the extension of the Harris corner function (3.12) defined
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for the spatial domain can be extended into the spatio-temporal domain by combining the
determinant and the trace of µ in the following way

H = det(µ)− k trace3(µ) = λ1λ2λ3 − k(λ1 + λ2 + λ3)
3 (3.16)

To show that the positive local maxima of H correspond to points with high values of
λ1, λ2, λ3(λ1 ≤ λ2 ≤ λ3), the ratios α = λ2/λ1 and β = λ3/λ1 can be defined, and thus, H
can be rewritten in the following way

H = λ31(αβ − k(1 + α+ β)3) (3.17)

Then, from the requirement H ≥ 0 k ≤ αβ/(1 + α + β)3 is obtained and it follows that
as k increases towards its maximal value k = 1/27, both ratios α and β tend to one.
For sufficiently large values of k, positive local maxima of H correspond to points with
high variation of the image gray-values in both the spatial and temporal dimensions. Thus,
spatio-temporal interest points of f can be found by detecting local positive spatio-temporal
maxima in H.

To characterize motion and appearance of local keypoint locations, the histogram de-
scriptors of space-time volumes in the neighborhood of detected points are computed. The
size of each volume (∆x,∆y,∆t) is related to the detection scales by ∆x,∆y = 2kσ,∆t =
2kτ . Each volume is subdivided into a nx × ny × nt grid of cells; for each cell, 4-bin his-
togram of gradient orientation [48] (HOG) and 5-bin histogram of optical flow [48] (HOF)
are computed. Normalized histograms are concatenated into HOG and HOF descriptors
and are similar in spirit to the well known SIFT descriptor. Authors recommend to use the
following paremeters for histograms creation: k = 9, nx, xy = 3, nt = 2. The both output
histograms can be concatenated, in this case the output descriptor is called HOG/HOF.

HesSTIP

Bay et al. proposed in [6] the use of the Hessian matrix for statio-temporal feature detection:

H(·, σ2, τ2) =

Lxx Lxy Lxt
Lyx Lyy Lyt
Ltx Lty Ltt

 (3.18)

The strength of each interest point at a certain scale is then computed by S = |det(H)|.
This can be considered as a spatio-temporal extension of the saliency measure for blob
detection as proposed in [7]. However, a positive value of S does not guarantee all eigenvalues
of H(·, σ2, τ2) having the same sign.

Using the Hessian matrix, scale selection can be realized in various ways. The γ-
normalization and Simultaneous Localization and Scale Selection will be presented.

Using γ-normalization , the saliency measure is altered to ensure that the correct scales
σ0 and τ0 are found on a perfect Gaussian blob g(x, y, t;σ20, τ

2
0 ). At the center of this blob,

the determinant is determined by the first term LxxLyyLtt as all other terms vanish. The
γ-normalized determinant at the center can be written as

Lγnormxx Lγnormyy Lγnormtt = σ2pτ2qLxxLyyLtt (3.19)

To obtain the extrema, det(H)γnorm should be differentiated with respect to the spatial
and temporal scale parameters σ2 and τ2, and set these derivatives equal to zero. All terms
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but the first vanish at the center of Gaussian blob. From this analysis, it follows that the
local extrema σ̃ and τ̃ coincide with the correct scales σ0 and τ0 if p = 5/2 and q = 5/4 is
set.

It should be noted, that these values are related to the values a, b, c and d for the
normalization of the Laplacian, namely p = 2a + c and q = 2b + d. This reflects the fact
that the determinant at the center of the Gaussian blob reduces to the product of two
spatial second-order derivatives and one temporal second-order derivative. A γ-normalized
operator is obtained with γ 6= 1. This induces, however, that the measure used for scale
selection is not truly scale invariant, and it cannot be used to find local maxima over scales.

In contrast with the normalized Laplacian, scale invariance and good scale selection can
be achieved simultaneously with the scale-normalized determinant of the Hessian. Using
p = 2 and q = 1 (implies γ = 1) in equation (3.19), the following relationship between the
local extrema (σ̃, γ̃) and the correct scales (σ0, τ0) for a Gaussian blob is obtained:

σ̃2 =
2

3
σ20 τ̃2 =

2
3τ20 (3.20)

In general, it can be shown that, in D dimensions, the determinant of the scale normal-
ized Hessian, with γ = 1, reaches an extremum at the center of a Gaussian blob g(x′σ0)
with σ0 = [σ0,1, . . . , σ0,D, for al scales

σ̃ =

√
2

D
σ0 (3.21)

Even through the fact that the detected scale σ̃, τ̃ do not coincide with the correct scales
σ0, τ0, they are related by a fixed scale factor. This fact makes it trivial to obtain the latter.

Since now a single, scale-invariant measure, that can be used both for the localisation as
well as for the selection of the temporal and spatial scale, is known; a non-iterative method
can be used for that purpose. To this purpose, the local extrema over the 5D space is
selected, the space can be denoted by (x, y, t, σ, τ). The scale of each interest point found
must be multiplied with the factor

√
3/2 to obtain the real scales of the underlying signal.

This brings a clear speed advantage over the iterative procedure of [45], avoids problems
with convergence and allows for the extraction of any number of features simply by changing
the threshold of the saliency measure.

Description of neighborhood of the detected interest points an extended version of the
SURF descriptor [6] is implemented. Around each interest point with spatial scale σ and
temporal scale τ , a rectangular volume is defined. The volume has dimensions: sσ×sσ×sτ
with s a user defined magnification factor (typically 3). The volume is subsequently divided
into M ×M ×N bins, where M is the number of bins in the spatial domain and N is the
number of bins in temporal domain, respectively. The bins are filled by a weighted sum of
uniformly sampled responses of the 3 axis-aligned Haar-wavelets dx, dy, dt. For each bin,
the vector v = (

∑
dx,
∑
dy,
∑
dt) is stored.

In case that the invariance to (spatial) rotation is required, the dominant orientation is
computed (as proposed in [6]) except that, for the spatio-temporal case all Haar-wavelets
used in this step are stretched out over the full length of the temporal scale of the interest
point.

Cuboids

Dollar et al. [20] proposed a variation of space-time interest points detector and descriptor
to deal with a special problem domains, such as, rodent behaviour recognition or facial
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expressions, etc. The detector is designed to err on the side of detecting too many features
rather than too few, nothing than object recognition schemes based on spatial interest
points deal well with irrelevant and possibly misleading features generated by scene clutter
and imperfect detectors. The resulting representation is still orders of magnitude sparser
than a direct pixel representation. The response function is calculated by application of
separable linear filters. A stationary camera or a process that can account for camera
motion is assumed. The response function has the form:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (3.22)

where g(x, y;σ) is the 2D Gaussian smoothing kernel, applied only along the spatial di-
mensions and hev and hod are a quadrature pair [28] of 1D Gabor filters which are applied
temporally.The even part of the filter is defined as

hev(t; τ, ω) = −cos(2πtω)e−t
2/τ2 (3.23)

and the odd part of the filter is defined as

hod(t; τ, ω) = −sin(2πtω)e−t
2/τ2 (3.24)

The term ω = 4/τ is generally used, it is efficiently giving the response function R two
parameters σ and τ , corresponding roughly to the spatial and temporal scale of the detector.

The detector is set up to fire whenever variations in local image intensities contain peri-
odic frequency components. Generally, no reason to believe, that only periodic movements
are interesting, exists. Periodic motions, such as a bird flapping its wings, will indeed evoke
the strongest responses, however, the detector responds strongly to a range of other mo-
tions, including at spatio-temporal corners positions. Generally, any region with spatially
distinguishing characteristics undergoing a complex motion can induce a strong response.
Areas undergoing pure translational motion will in general not induce a response as a mov-
ing, smoothed edge will cause only a gradual change in intensity at a given spatial location.
Areas without spatially distinguishing features cannot induce a response.

At each interest points (local maxima of the response function defined above) a cuboid
is extracted. The cuboid contains the spatio-temporally windowed pixel values. The size of
the cuboids is set to contain most of the volume of data that contributed to the response
function at that interest point.

The authors of the detector later decided to use some kind of descriptor to be able to use
Euclidean distance to simply compare two output descriptions. It includes, (1) normalized
pixel values, (2) the brigthness gradient and (3) windowed optical flow. The brightness
gradient is calculated at each spatio-temporal location (x, y, t), giving rise to three channels
(Gx, Gx, Gt) each the same size as the cuboid. To extract motion information Lucas-Kanade
optical flow [56] between each pair of consecutive frames is calculated. This induces the
creation of two channels (Vx, Vy). Each channel is the same size as the cuboid minus one
frame.

Dense Trajectories

Wang et al. [82] presented alternate approach for space-time features extraction called
Dense Trajectories. These are extracted for multiple spatial scales (Figure 3.5). Feature
points are sampled on a grid spaced by W pixels and tracked in each scale separately.
Experimentally, it was observed that sampling step size o W = 5 is dense enough to give
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Figure 3.5: Dense trajectory illustration. Left: Feature points are scaled densely for multi-
ple spatial scales. Middle: Tracking process is performed in the corresponding spatial scale
over L frames. Right: Descriptors are based on the trajectory shape represented by relative
point coordinates as well as appearance and motion information over a local neighborhood
of N × N pixels along the trajectory. In order to capture the structure information, the
trajectory neighborhood is divided into a spatio-temporal grid of size nσ × nσ × nτ . The
picture is taken from [82].

good results. 8 spatial scales spaced by a factor 1/
√

2 were used. Each point Pt = (xt, yt)
at frame t is tracked to the next frame t+ 1 by median filtering in a dense optical flow field
ω = (ut, vt)

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ σ)|(xt,yt) (3.25)

where M is the median filtering kernel, and (xt, yt) is the rounded position of (xt, yt). This
is more robust than bilinear interpolation used in [77], especially for points near motion
boundaries. Once the dense optical flow field is computed, points can be tracked very
densely without additional cost. Points of subsequent frames are concatenated to form a
trajectory: (Pt, Pt+1, Pt+2, . . . ). To extract dense optical flow the algorithm, presented by
Farneback [24], was used.

A common problem in tracking is drifting. Trajectories tend to drift from their initial
location during tracking. To avoid this situation the trajectory length shall be limited
to L frames. As soon as a trajectory exceeds length L, it is discarded from the tracking
subsystem (Figure 3.5 middle). To assure a dense coverage of the video, the presence of a
track on the dense grid is verified in every frame. If no tracked point is found in a W ×W
neighborhood, this feature point is sampled and added to the tracking process. The length
of the trajectory was chosen experimentally to L = 15 fames.

In homogeneous image areas without any structures, it is impossible to track points. In
such cases the same criterion as in [72] is used. When a feature point is sampled the smaller
eigenvalue of its autocorrelation matrix is checked. In case that it is below a threshold, this
point will not be included in the tracking process. Since for action recognition dynamic
information is mainly interested, static trajectories are prunned in a pre-processing stage.
Trajectories with sudden large displacements, most likely to be erroneous, are also removed.

The shape of a trajectory encodes local motion patterns. Given a trajectory of length
L, the shape is described by a sequence S = (∆Pt, . . . ,∆Pt+L−1) of displacement vectors
∆Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − y − t). The resulting vector is normalized by the
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sum of magnitudes of the displacement vectors:

S
′

=
(∆Pt, . . . ,∆Pt+L−1)∑t+L−1

j=t ||∆Pj ||
(3.26)

This vector is referred as a trajectory vector descriptor. These trajectories were also evalu-
ated when computed at multiple temporal scales, in order to recognise actions with different
speeds. However, this did not practically improve the results. Therefore, length of each
trajectory were fixed to length L.

A description of keypoint’s 3D neighborhood have become a popular way of video repre-
sentation [20, 41, 48, 88]. To leverage the motion information in case of dense trajectories,
descriptors are computed within a space-time volume around the trajectory (illustration
can be seen in Figure 3.5 middle). The size of the volume is N ×N pixels and L frames. To
embed structure information in the representation, the volume is subdivided into a spatio-
temporal grid nσ ×nσ ×nτ . The default parameters, which were experimentally obtained,
are N = 32, nσ = 2, nτ = 3.

The descriptors, which were proposed to be obtained along the trajectory, include:
HOG [48], HOF [48] and MBH [17]. HOG (histogram of oriented gradients) focuses on
static appearance information; HOF (histogram of optical flow) captures the local motion
information. For both HOG and HOF. orientations are quantized into 8 bins using full
orientations, with an additional zero bin for HOF (i.e., in total 9 bins). Both descriptors
are normalized with their L2 norm.

Optical flow computes the absolute motion, which inevitably includes camera motion
[35]. Dalal et al. [17] proposed the MBH (motion boundary histogram) descriptor for
human detection, where derivatives are computed separately for the horizontal and vertical
components of the optical flow. This descriptor encodes the relative motion between pixels.

The MBH descriptor separates the optical flow field Iω = (Ix, Iy) into its x and y
component. Spatial derivatives are computed for each of them and orientation information
is quantized into histograms, similarly to the HOG descriptor. 8-bin histogram for each
component is obtained and each component is normalized separately with the L2 norm.
Since MBH represents the gradient of the optical flow, constant motion information is
supressed and only information about changes in the flow field (i.e. motion boundaries)
is kept. Compared to video stabilization [35] and motion compensation [79], this is a
simple way to eliminate noise due to background motion. This type of descriptor yields
excellent results when combined with dense trajectories descriptor. For both HOF and MBH
descriptors the dense optical flow that is already computed to extract dense trajectories is
re-used, because of efficiency reasons.

ω-flow and ω-descriptors

The approach was proposed by Mihir Jain et al. in [38]. The approach is basically based
on a extraction of trajectories from video stream where a separation of a dominant motion
and a residual motion at stage of trajectories obtaining and as well as at stage of trajectory
description is performed.

The separation as described above, in most cases, will account to distinguishing the
impact of camera movement and independent actions. It should be noted that 3D camera
motion is not being recovered: The 2D parametric motion model describes the global motion
between two frames.
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The 2D affine motion model is considered. Simplest motion models such as the 4-
parameter model formed by the combination of 2D translation, 2D rotation and scaling, or
more complex ones such as the 8-parameter quadratic model (equivalent to a homography),
could be used as well. The affine model is a good trade-off between accuracy and and
efficiency which is of primary importance when processing a huge video database. It does
have limitations, it implies a single plane assumption for the static background. However,
this is not that penalizing (especially for outdoor scenes) if differences in depth remain
moderated with respect to distance to the camera. The affine flow vector at point p = (x, y)
and at time t, is defined as

waff (pt) =

[
c1(t)
c2(t)

]
+

[
a1(t) a2(t)
a3(t) a4(t)

] [
xt
yt

]
(3.27)

Horizonal and vertical components of waff (pt) are defined

uaff (pt) = c1(t) + a1(t)xt + a2(t)yt

vaff (pt) = c2(t) + a3(t)xt + a4(t)yt

The optical flow vector at point p at time t is denoted as

w(pt) = (u(pt), v(pt))

The flow vector ω(pt) obtained by removing the affine flow vector from the optical flow
vector is defined as

ω(pt) = w(pt)− waff (pt) (3.28)

The dominant motion (which is estimated as waff (pt)) is usually due to the camera motion.
In this case, Equation (3.28) amounts to canceling (or compensating) the camera motion. It
should be noted that this is not always truth. For example in case of close-up on a moving
actors, the dominant motion will be the affine estimation of the apparent actor motion.
The interpretation of the motion compensation output will not be that straightforward in
this case, however the resulting ω-field will still exhibit different patterns for the foreground
action part and the background part. The compensated flow (as described above) will be
referred as ω-flow.

Figure 3.6 illustrates the example videos (Subfigure 3.6a), where a man is moving away
from a car and subsequently camera is following walking to the right, thus inducing a
global motion to the left in the video. Subfigure 3.6b shows trajectories obtained from
optical flow where both camera and scene motion can be observed, this brings noise to the
characterization of the current action. In contrast, the ω-trajectories (Subfigure 3.6c) are
more active on the actor moving on the foreground, while those localized in the background
are now parallel to the time axis enhancing static part of the scene. The ω-trajectories
are therefore more relevant for action recognition, since they are more regularly and more
exclusively following the actor’s motion.

Authors proposed to extract HOG, HOF, Trajectory and MBH descriptors along the
compensated trajectories in a similar manner as in [82], these are now called as ω-HOG
[38], ω-HOF [38], ω-Trajdesc [38] and ω-MBH [38]. Apart from these a brand new ω-CDS
[38] were introduced. Firstly, a number of notes about the compensated descriptors (ω-
HOG, ω-HOF, etc.) will be presented, and finally the DCS and ω-DCS descriptors will be
introduced.
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(a) consecutive frames (b) trajectories from Optical flow (c) ω-trajectories

Figure 3.6: Example of trajectories which are obtained from optical flows (middle column)
and from compensated optical flows (right column). The green tail is the trajectory over
15 frames with red dot indicating the current frame. The picture is taken from [38].

HOG captures more context with the modified trajectories. More precisely, the original
HOG descriptor is computed from a 2D+t sub volume aligned with the corresponding
trajectory and hence represents the appearance along the trajectory shape. When using
ω-flow, the video sequence is not aligned. As a result, the ω-HOG descriptor is no more
computed around the very same tracked physical point in the space-time volume but around
points lying in the patch of the initial feature point, whose size depends on the affine
flow magnitude. ω-HOG can be viewed as a “patch-based” computation capturing more
information about the appearance of the background or of the moving foreground.

When computing the HOF descriptor the ω-flow impacts on both trajectory compu-
tation and the descriptor computation itself. Therefore, HOF can be computed along
ω-trajectory and along those trajectories extracted from flow and can encode both kinds of
flows (ω-flow or flow). Theoretically, all possible combinations can be used and, in addition
to that, versions tracked along one trajectory type can be combined. The ω-HOF descrip-
tor is constructed along a trajectory obtained using ω-flow and it consists of two combined
parts. Computation of first part is based on ω-flow and computation of second frame is
based on standard optical flow. It has been shown [38] that this configuration improves
results’ accuracy.

Since MBH is computed from gradient of flow and cancels the constant motion, there
is practically no benefit in using ω-flow to compute the MBH descriptors. However, by
tracking ω-flow and computing of the MBH descriptors using a standard flow, the perfor-
mance may be slightly improved [38]. The configuration where the trajectory is computed
using the ω-flow and the descriptor is also computed using the ω-flow is referred as ω-MBH
descriptor.

Mihir Jain et al. [38] proposed the new Divergence-Curl-Shear descriptor (DCS), which
encodes scalar first-order motion features, namely the motion divergence [23], curl [23] and
shear [23]. It captures physical properties of the flow pattern that are not involved in the
best existing descriptors for action recognition, except in the work of [3] which exploits
divergence and vorticity among a set of eleven kinematic features computed from optical
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flow.
By kinematic features, local first-order differential scalar quantities, computed on the

flow field, are meant. The divergence, the curl (or vorticity) and the hyperbolic terms are
considered. They inform on the physical pattern of the flow so that they convey useful
information on actions in videos. They can be computed from the first order derivatives of
the flow at every point p at every frame t as

div(pt) = ∂u(pt)
∂x + ∂v(pt)

∂y

curl(pt) = −∂u(pt)
∂y + ∂v(pt)

∂x

hyp1(pt) = ∂u(pt)
∂x − ∂v(pt)

∂y

hyp2(pt) = ∂u(pt)
∂y + ∂v(pt)

∂x

(3.29)

The divergence is related to axial motion, expansion and scaling effects, the curl to rotation
in the image plane. The hyperbolic terms express the shear of the visual flow corresponding
to more complex configuration. The shear quantity is only taken into account

shear(pt) =

√
hyp2

1(pt) + hyp2
2(pt) (3.30)

For computing of the DCS descriptor, the spatial derivatives are computed for the horizontal
and vertical components of the flow field. These values are used to compute the divergence,
curl and shear scalar values as shown in Equation (3.29) and in Equation (3.30). All
possible pairs of kinematic features are considered, namely (divergence, curl), (divergence,
shear) and (curl, shear). At each pixel the orientation and magnitude of the 2D vector
corresponding to each of these three pairs are computed. The orientation is quantized into
histograms and the magnitude is used for weighting, in a similar way as in SIFT [55]. The
motivation for this type of encoding is that the joint distribution of kinematic features
conveys more information than exploiting them independently.

8-bin histogram for each of the three feature pairs or components of DCS is obtained.
The range of possible angles is 2π for the (div, curl) pair and π for the other pairs, because
the shear is always positive. The descriptor is computed for a space-time volume aligned
with a trajectory as usually.

In order to capture spatio-temporal structure of kinematic features, the volume (32×32
pixels and L = 15 frames) is subdivided into a spatio-temporal grid of size nx × ny × nt,
with nx = ny = 2 and nt = 3. For each pair of kinematic features, each cell in the grid is
represented by a histogram. The resulting local descriptors have a dimensionality equal to
288 = nx × ny × nt × 8× 3.

Similarly as in the case of the ω-MBH descriptor, the ω-DCS descriptor is computed
along the ω-flow trajectory using ω-flow values as an input for divergence, curl and shear
scalar values computation.

3.3 Dense sampling

In some scenarios the searching for keypoints may be omitted. Especially, in the case when
the searching for key points is very time consuming operation and thus, for example, cannot
be performed. The searching can be replaced by dense sampling technique. It consists in
creating a grid of keypoints across the width and height of the space domain in case of
images. For videos, the sampling is also performed at certain uniformly defined frames of
the video, thus temporal domain is also sampled in this manner.
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The main parameters of dense sampling are the grid specifications. In case of images
the grid is defined by the number of skipped pixels in both horizontal and vertical axes of
the spatial domain; generally, the number of skipped frames is the same for both axes. In
the case of videos the another parameter is added it is the number of skipped frames in
temporal domain. The processing can also be applied to each layer of the image pyramid
[15](as similarly used in many feature extractors). In this case the additional parameters
are the scalling factor between the two layers of the image pyramid and the number of layers
of the pyramid. The dense points extraction is performed on each layer of the pyramid and
description of the keypoint is performed on the “image” of the corresponding layer.

It should be noted that the number of outputting feature vectors is constant for the
same-sized images and video sequences (i.e. the same resolution of video stream and the
same number of frames) and for the same settings of the dense sampling. The number of
outputting feature vectors is generally higher when compared with key point searching, and
therefore, the description process needs to be performed on the higher number of keypoints.
From a different point of view this fact increases the extraction time.

3.4 Fixed-sized representation

The number of feature vectors which depict an image or a video sequence is generally
dependent on a content of an image or a video sequence and on the type of a local low-level
feature extractor. A number of techniques for extraction were presented in sections 3.1 and
3.2; they output a set of feature vectors whose are formally described in Equation 3.1. For
better readability the definition is stated again:

M(fRGB) = {(x, y, τ,D) | keypoint(fRGB, x, y, τ) = 1 ∧ D = fextract(fRGB, x, y, τ)}
(3.31)

The set of local feature vectors can be converted to one representation per image or video.
The FE function, which extracts only the corresponding feature vector from the structure
which produces the extraction function, it is defines as:

FE( (x, y, τ,D) ) = D (3.32)

The dimensionality of the extracted feature vectors is defined as |FE(M)|. The model for
transformation is defined as

C = (c1, c2, . . . , cn) (3.33)

where n represents the number of vectors in the model and dimensionality of each model
vector is the same as the dimensionality of the extracted feature vectors, thus |c1| = |c2| =
· · · = |cn| = |FE(M)|. For each extracted local feature vector the assign(D,C) function is
evaluated, The codomain of the function is defined:

assign(D,C) ∈ (v1, v2, . . . , vn), where v1, v2, . . . , vn ∈ 〈0, 1〉 (3.34)

and D represents the investigated local feature vector, C is the model and the number of
outputting items n of the function is equal to the number of items of the transformation
model.

Therefore, the fixed-sized representation for image function fRGB and feature extractor
M and model C can be obtained:

BOW (fRGB,M,C) =
∑

i∈FE(M(fRGB))

assign(i, C) (3.35)
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This representation is called Bag-Of-Words [74, 82, 38, 48] and is suitable for image classi-
fication and action recognition [82, 38, 48].
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Chapter 4

Feature processing

The feature representation of an image or a video sequence needs to be processed and
decided whether the wanted situation or object or action is happening or is detected in.
This can be achieved for example by using a processing pipeline which is presented in
Section 4.1. The processing contains two main processing blocks, it is the conversion to
fixed-sized description and the classifier unit which are described in Sections 4.2 and 4.3.

Especially, in the field of action recognition, and when the local space-time features are
used, the extended version of such processing is needed to be used to provide the state-of-
the-art classification performance [82, 48, 62]. The processing is shown and described in
Section 4.4.

4.1 Basic pipeline schema

Data transformation diagram is shown in Figure 4.1. The input entity (an image or a video)
is (from left to right according to Figure 4.1) processed and its feature representation
is obtained in the Feature extract box [82, 88]. This box outputs a various number of
feature vectors, those are used in the Vocabulary search box. This block produces a set of
nearest clusters related to particular input feature vector. From these sets a bag-of-words
representation is constructed in the Hist box. The Bag-of-words [74] representation is one
fixed-sized feature representation of input entity (image or video). This representation is
used as an input to the classifier box which decides the type (class) of the input entity.

The above mentioned procedure requires a visual vocabulary creation, only then the
whole processing is possible. Visual vocabulary is created (as shown in the upper part of
Figure 4.1) from entities (images or videos) of the training set of a dataset. Those are
transformed to feature vectors using the same feature extract box with the same settings
as the one which is described above. The output feature vectors define the feature space
which needs to be quantized and modelled using a clustering algorithm. The Clustering
box constructs a visual vocabulary (or by other words, the quantized representation of its
input feature space) which is latter used for bag-of-words representation creation.

I would like to present a theoretical usage of the described pipeline; please, consider
a situation where a set of real-world entities exists and the need of distinguishing among
them exists. The initial conditions are

(i) An algorithm M which generates a feature representation of the real-world entity
exists and is applicable to each type of entity.
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(ii) A number of wanted entities is collected and a number of unwanted (other) entities
(counter examples) is collected as well. All these entities are collected in a dataset D
and are split into two main parts: the training one (DTR) and the testing one (DTE).
Formally, the dataset is defined as

D = {DTR, LTR, DTE , LTE} (4.1)

where LTR and LTE are the sets of labels for both parts DTR and DTE and the number
of items in label set and corresponding input images set is equal; this condition is
compulsory for all (in this case both) doublets in the dataset.

DTR = {fRGB1 , . . . , fRGBr}

DTE = {fRGB1 , . . . , fRGBs}
(4.2)

represents all the image functions in the dataset and

LTR = {l1, . . . , lr}

LTE = {l1, . . . , ls}
(4.3)

are the corresponding labels for each sample in the dataset; l1, . . . , lr and
l1, . . . , ls ∈ {+1,−1}.

Using the presented pipeline (from Figure 4.1), the recognition system can be built according
to the following procedure:

(1) The training entities are used for the visual vocabulary creation (as depicted in the
upper part of Figure 4.1) using feature extraction algorithm M and the clustering
algorithm.

M(DTR) −→ C : C = clustering({M(fRGB1), . . . ,M(fRGBr)}, Pc);

C = {c1, . . . , cn};

mk ∈M(fRGBi), |FE(mk)| = |cj |

for all mk ∈M(fRGBi) and for all i ∈ {1, . . . , r} and j ∈ {1, . . . , n}

(4.4)

where c1, . . . , cn represent vectors of the resulting vocabulary, FE(mk) extracts only
the descriptor vector as suggested in Equation (3.32), Pc represents a set of parame-
ters of the clustering algorithm and everywhere |x| represents the dimensionality of
the vector x. The clustering procedure usually internally removes the all unneces-
sary information about the location of the input feature vectors.

(2) All entities in the training part of the dataset are transformed to its bag-of-words
representation as suggested in the pipeline

{M(DTR), C} −→ BTR : BTR = {B1, . . . , Br}; |C| = |Bi| for each i ∈ {1, . . . , r};

Bi = bow(M(fRGBi), C, Pb) for each i ∈ {1, . . . , r}
(4.5)
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and are subsequently used for training of the classifier, the training of the classifier
outputs the model Z.

{BTR, LTR} −→ Z : Z = (z1, . . . , za)|za ∈ 〈0, 255〉 ∧ za ∈ N;

Z = train({B1, . . . , Br}, {L1, . . . , Lr}, Pt)
(4.6)

The terms Pb and Pt are the parameters’ sets of the related functions, Z simply
represents a variable-sized vector of bytes in a computer.

(3) All entities in the testing part of the dataset are transformed to its bag-of-words
representation using presented pipeline

{M(DTE), C} −→ BTE : BTE = {B1, . . . , Br}; |C| = |Bi| for each i ∈ {1, . . . , r};

Bi = bow(M(fRGBi), C, Pb) for each i ∈ {1, . . . , r}
(4.7)

and latter are used for testing of the classifier, the testing procedure can be con-
sidered as a transformation from bag-of-words feature vector to classifier’s response
(generally a real number).

{BTE , Z} −→ R : R = {R1, . . . , Rs}|Ri ∈ R for each i ∈ {1, . . . , s};

R = test({B1, . . . , Bs}, Z, Pt)
(4.8)

The terms Pb and Pt are the parameters’ sets of the related functions.

(4) All testing responses are used for measuring the classifier’s quality.

R −→ Q : R = {R1, . . . , Rs}; Ri ∈ R for each i ∈ {1, . . . , s}; Q ∈ 〈0, 1〉 ∧Q ∈ R
(4.9)

Algorithm 1: Basic pipeline algorithm

The processing pipeline has two main parts. The first one covers the conversion of the output
of the feature extract box and produces the bag-of-words representation, it is mainly the Clustering
box and the Hist box. The methods which may be used for these purposes are presented in Section
4.2. The second part is the whole Classifier box; the possible methods are presented in Section 4.3.

4.2 Fixed-sized descriptor creation

Fixed-sized descriptor is created by using two independent processes. First one is a searching of a
vocabulary and second one is to use the nearest codewords to produce a histogram of occurencies
which serves as an output representation. In this section multiple methods for creation of such
vocabulary are listed and widely used one is presented. The bag-of-words unit will be presented
more in detail.

The visual vocabulary can be created by using clustering algorithm, the various methods such
as the subsequent ones exist

• Hierarchical clustering [29],

• k-means [29, 89],
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Figure 4.1: Processing pipeline scheme

• Voronoi tesselation [19],

• etc.

The widely used method in such a feature space quantization is the k-means method, which is
more in detail described in subsequent subsection. The last subsection presents the principle of the
bag-of-words method.

k-means

Let z1, z2, . . . be a random sequence of points (vectors) in En, each point being selected inde-
pendently of the preceding ones using a fixed probability measure p. Thus P [za ∈ A] = p(A)
and P [zn+1 ∈ A|z1, z2, . . . , zn] = p(A), n = 1, 2, . . . , for A any measurable set in En. Rela-
tive to given k-tuple x = (x1, x2, . . . , xk), xi ∈ En, i = 1, 2, . . . , k, a minimum distance partition
S(x) = {S1(x), S2(x), . . . , Sk(x)} of En is defined by

S1(x) = T1(x), S2(x) = T2(x)S
′

1(x), . . . ,

Sk(x) = Tk(x)S
′

1(x)S
′

2(x)S
′

k−1(x)
(4.10)

where
Ti(x) = {ξ : ξ ∈ En, |ξ − xi| ≤ |ξ, xj | , j = 1, 2, . . . , k}. (4.11)

The set Si(x) contains the points in En nearest to xi, with tied points being assigned arbitrarily
to the set of lower index. It should be noted that with this convention concerning tied points,
if xi = xj and i < j then Sj(x) = ∅. Sample k-means xn = (xn1 , x

n
2 , . . . , x

n
k ), xni ∈ En, i =

1, . . . , k, with associated integer weights (wn1 , w
n
2 , . . . , w

n
k ), are now defined as follows: x1i = zi, w

1
i =

1, i = 1, 2, . . . , k, and for n = 1, 2, . . . , ifzk+n ∈ Sni , x
n+1
i = (xni w

n
i + zn+k)/(wni + 1), wn+1

i =
wni + 1 and xn+1

j = xnj , w
n+1
j = wnj for i 6= j, where Sn = Sn1 , S

n
2 , . . . , S

n
k is the minimum distance

partition relative to xn.
Stated informally, the k-means procedure consists of simply starting with k groups each of which

consists of a single random point, and thereafter adding each new point to the group whose mean
the new point is nearest. After a point is added to a group, the mean of that group is adjusted in
order to take account of the new point. Thus at each stage the k-means are, in fact, the means of
the groups they represent (hence the term k-means).

In studying the asymptotic behaviour of the k-means, the convenient assumptions were made,

(i) p is absolutely continuous with respect to Lebesgue measure [76] on En, and
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(ii) p(R) = 1 for a closed and bounded convex set R ⊂ R.

For a given k-tuple x = (x1, x2, . . . , xk) — such an entity being referred to hereafter as a k-point —
let

W (x) =
∑k
i=1

∫
Si
|z − xi|2 dp(z),

V (x) =
∑k
i=1

∫
Si
|z − ui(x)|2 dp(z),

(4.12)

where S = {S1, S2, . . . , Sk} is the minimum distance partition relative to x,
and ui(x) =

∫
Si
zdp(z)/p(Si) or ui(x) = xi, according to whether p(Si) > 0 or p(Si) = 0. If

xi = ui(x), i = 1, 2, . . . , k we say the k-point is unbiased
The principal result is as follows.

(i) The sequence of random variables W (x1),W (x2), . . . converges and W∞ = limn→∞W (xn) is
equal to V (x) for some x in the class of k-points x = (x1, x2, . . . , xk) which are unbiased, and
have the property that xi 6= xj if i 6= j.

(ii) Let uni = ui(x
n) and pni = p(Si(x

n)); then

m∑
n=1

(
k∑

n=1

pni |xni − uni |

)/
m→ 0 as m→∞. (4.13)

The aforementioned Theorems can be proved, more information can be found, for example, in
[37, 57, 70].

In a number of cases covered by (i) in the preceding list, all the unbiased k-points have the

same value of W . In this situation, (i) implies
∑k
i=1 p

n
i |xni − uni | converges to zero. An example

is provided by the uniform distribution over a disk i E2. If k = 2, the unbiased k-point (x1, x2)
with x1 6= x2 consist of the family of points x1 and x2 opposite one another on a diameter, and at
a certain fixed distance from the center of the disk. (There is one unbiased k-point with x1 = x2,
both x1 and x2 being at the center of the disk in this case.) The k-means thus converge to some
such relative position, but (i) does not quite permit us to eliminate the interesting possibility that
the two means oscillate slowly but indefinitely around the center.

(i) provides the convergence of
∑k
i=1 p

n
i |xni − uni | to zero in a slightly broader class of situations.

This is where the unbiased k-point x = (x1, x2, . . . , xn) with xi 6= xj for i 6= j, are all stable in the
sense that for each such x, W (y) ≥W (x) (and hence V (y) ≥ V (x)) for all y in a neighborhood of x.
In this case, each such x falls in one of finitely many equivalence classes such that W is constant on
each class. This is illustrated by the above example, where there is only a single equivalence class.
If each of the equivalence classes contains only a single point, (i) implies convergence of xn to one
of those points.

K-means methos has two main parameters, the number of output vectors (clusters) and the
number of iterations performed by the algorithm, these two parameters need to be carefully set
while used in some experiments.

Bag Of Words model

The very basic version of the bag-of-words function (as formally suggested in Equation 4.7) is to
remove every information about the location of the keypoint and simply obtain the list of words
in the vocabulary which are the closest ones to some of input feature vectors. This list is then
converted to output binary vector, where bins with the indexes of the words in the list are set to 1.
The transformation can be formally described as follows

{M(fRGB), C} −→ H : H = (h1, . . . , hn); C = {ca, . . . , cn};

(for each m ∈M(fRGB) : i = closest(FE(m), C) ∧ if (hi == 0)⇒ hi = 1)
(4.14)

where function closest returns index of the closest word in the vocabulary.
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Other option is to count the number of occurencies and fill up the output histogram directly
with the number of occurencies for each word in the vocabulary.

{M(fRGB), C} −→ H : H = (h1, . . . , hn); C = {ca, . . . , cn};

(for each m ∈M(fRGB) : i = closest(FE(m), C) ∧ hi = hi + 1)
(4.15)

The above presented versions are called the set-of-words method and bag-of-word method with
a hard assignment, respectively. The main disadvantage of the hard assignment version is that
only slightly different input local feature vectors may be accumulated into totally different output
histogram bins (nearest codewords are different); this may cause total dissimilarity of two similar
input vectors.

The above issue is addressed in the soft assignment approach; the soft assignment is performed
as follows. A small group of the clusters very close to the vector being processed is retrieved instead
of a single cluster. A weight is assigned to each cluster in such group; the weight corresponds to
the closeness to the vector being processed. Finally, each clusters’ weight is added to relevant bin
of the output histogram. Formally, the situation can be described as follows

{M(fRGB), C} −→ H : H = (h1, . . . , hn); C = {c1, . . . , cn};

(for each m ∈M(fRGB) : W = assign(FE(m), C, Pa) ∧H = H ⊕W |W = (w1, . . . , wn)∧

H ⊕W = (h1 + w1, . . . , hn + wn))
(4.16)

where assign function returns the partial histogram with the same size as the output histogram,
where the affected bins have the nonzero values and Pa is the set of parameters for the assign
function. Common parameter for assign functions is the number of searched closest vectors, which
will be affected by single call of the assign function. The assign function can be described formally
as follows

(i) Firstly, the closest vectors need to be searched

{F,C, Pa} −→ Z : Z = {(z1, i1), . . . , (zc, ic)};Z = search(F,C, Pa); (4.17)

The search function returns the doublets with the distance to the visual word and the index
of the word in the vocabulary, c is the number of returned closest vectors.

(ii) Secondly, a weighting function f is applied

Z −→ w : Z = {(z1, i1), . . . , (zc, ic)}; w = {(w1, i1), . . . , (wc, ic)};

for each (zj , ij) ∈ Z : (wj , ij) = (f , ij) ;
(4.18)

(iii) Finally, the output partial histogram is constructed

w −→W : w = {(w1, i1), . . . , (wc, ic)};

W = (W1,W2, . . . ,Wn), initially Wa = 0 for each a ∈ {1, . . . n};

and then for each (wj , ij) ∈ w : W(ij) = wj ;

(4.19)

The output vector W has the same dimensionality n as the visual vocabulary and c bins in
the output partial histogram are affected by the content of the input w.

Several weighting strategies can be applied. The basic one

Z −→ w : Z = {(z1, i1), . . . , (zc, ic)}; w = {(w1, i1), . . . , (wc, ic)};

for each (zj , ij) ∈ Z : (wj , ij) =
((

min(Z)
zj

)
, ij

)
;

(4.20)

is computed as the ratio between the distance of the descriptor point to its c nearest visual words,
where the min(Z) function returns the minimal value of the distance value of all tuples in Z and
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zj is the currently processed distance. This behaviour can be simply described as the closest vector
has the weight of 1 and the other ones have the weight lower than 1 depending on the distance.

Jiang et al. [39] use the sorted list of c nearest visual words and design the weighting function
based on the rank of the visual word in this list. Transformation shown in Equation (4.18) can be
updated as follows

Z −→ w : Z = {(z1, i1), . . . , (zc, ic)}; w = {(w1, i1), . . . , (wc, ic)};

for each (zj , ij) ∈ Z : (wj , ij) =
((

1
2rank(Z,j)−1

)
, ij
)

;
(4.21)

where function rank(Z, j) returns the the rank of the visual word l in the distance item in Z. The
list is ordered by the distances.

Philbin et al. [61] use the idea, that is usual in soft-assignment (for example in estimating
Gaussian Mixture Models), that the weight assigned to a visual word is an exponential function of
the distance to the cluster center thus Equation (4.18) can be updated as follows

Z −→ w : Z = {(z1, i1), . . . , (zc, ic)}; w = {(w1, i1), . . . , (wc, ic)};

for each (zj , ij) ∈ Z : (wj , ij) =

((
e−

z2j

2σ2

)
, ij

)
;

(4.22)

The σ should be chosen so that a substantial weight is only assigned to a small number of visual
words. The σ value for SIFT descriptors has been experimentally evaluated and suggested in [61].
It should be noted that the σ value is highly dependent not only on used feature description method
but also on data domain.

The above presented approaches do not take into account the positions where the individual
feature vectors were obtained. This can be used and the input local feature vectors can be split into
groups according to its position in an image. The bag-of-words representation is computed for each
group, and individual vectors are concatenated in predefined order. This approach may improve the
over-all results of the designed recognition system.

When the spatio-temporal features are used, not only the position in the space domain but also
the position in the temporal domain are known. In a similar matter the temporal domain can be
splitted accordingly.

4.3 Classification methods

A classifier is a procedure that accepts a set of features and produces a class label for them. There
could be two, or many, classes, though it is usual to produce multi-class classifiers out of two-class
classifiers. Classifiers are built by taking a set of labeled examples and using them to come up with
a rule that assigns a label to any new example. In general, we have a training dataset (xi ,yi); each
of the feature vectors xi consists of measurements of the properties of different types of object, and
the yi are labels giving the type of the object that generated the example. Classifiers are a crucial
tool in high-level vision, action recognition, etc., because many problems can be abstracted in a
form that looks like classification.

Generally, variety of classification algorithms exist. In computer vision or pattern recognition
field are commonly used Neural Networks, Support Vector Machines and AdaBoost algorithms these
days. The Neural Networks algorithm is on the decline when used purely as the general classifier of
feature vectors. The AdaBoost algorithm is widely used for detection and localization of objects in
the images. It is based on the composing of a weak classifiers or hypotheses into a boosted (strong)
classifier.

Support Vector machines are today the most frequently used algorithms in the processings such
as presented in Section 4.1 when fixed-sized representation of input objects needs to be classified.
It has been shown that support vector machines reach the state-of-the-art performance in action
recognition [82, 38, 83].

Neural networks are today widely used in feature learning procedures, where the feature extrac-
tors are created automatically for a given purpose. The algorithm is also called deep learning [8].
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Generally can be said, that such feature extractors creating requires huge amount of input images
or videos. The action recognition using deep learning is also presented in [4, 49].

Neural Networks

The concept of an artifical neural network that could be useful for pattern recognition started in the
1950s. For example, Bledsoe and Browning [11] developed “n-tuple” type of classifier that involved
bit-wise recording and lookup of binary feature data, leading to the “weightless” or “logical” type
of ANN.

The simple perceptron is a linear classifier that classifies patterns into two classes. It takes a
feature vector x = (x1, x2, . . . , xN ) as its input, and produces a single scalar output

∑N
i=1 wixi, the

classification process being completed by applying a threshold function at θ. The mathematics is
simplified by writing −θ as w0, and taking it to correspond to an input x0 that is maintained at a
constant value of unity. The output of the linear part of the classifier is then written in the form:

d =

N∑
i=1

wixi − θ =

N∑
i=1

wixi + w0 =

N∑
i=0

wixi (4.23)

and the final output of the classifier is given by:

y = f(d) = f

(
N∑
i=0

wixi

)
(4.24)

This type of neuron can be trained using a variety of procedures, such as the fixed increment rule
[87]. The basic concept of this algorithm was to try to improve the overall error rate by moving the
linear discriminant plane a fixed distance toward a position where no misclassification would occur
– but only doing this when a classification error had occured:

wi(k + 1) = wi(k) y(k) = ω(k) (4.25)

wi(k + 1) = wi(k) + η[ω(k)− y(k)]xi(k) y(k) 6= ω(k) (4.26)

In these equations, th parameter k represents the kth iteration of the classifier and ω(k) is the class
of the kth training pattern. It is clearly important to know whether this training scheme is effective
in practice. In fact, it is possible to show that if the algorithm is modified so that its main loop is
applied sufficiently many times, and if the feature vectors are linearly separable, then the algorithm
will converge to a correct error-free solution.

Unfortunately, most sets of feature vectors are not linearly separable. Thus, it is necessary to
find an alternative procedure for adjusting the weights. This is achieved by the Widrow-Hoff delta
rule [34], which involves making changes in the weights in proportion to the error δ = ω − d made
by the classifier. It should be noted that the error is calculated before thresholding to determine the
actual class, i.e., δ is calculated using d rather than f(d). Thus, we obtain the Widrow-Hoff delta
rule in the form:

wi(k + 1) = wi(k) + ηδxi(k) = wi(k) + η[ω(k)− y(k)]xi(k) (4.27)

There are two important ways in which the Widrow-Hoff rule differs from the fixed increment rule:

1. An adjustment is made to the weights whether or not the classifier makes an actual classifi-
cation error.

2. The output function d used for training is different from the function y = f(d) used for testing.

These differences underline the revised aim of being able to cope with nonlinearly separable fea-
ture data. However, the fixed increment rule is not designed to cope with nonseparable data and
results in instability during training and instability to arrive at an optimal solution. On the other
hand, the Widrow-Hoff rule copes satisfactorily with this type of data. An interesting addendum
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Figure 4.2: Single-layer perceptron. The single-layer perceptron employs a number of simple
perceptrons in a single layer. Each output indicates a different class (or region of feature
space).

is that although the fixed increment rule apparently reaches an optimal solution, the rule becomes
“complacent” once a zero error situation has occured, whereas an ideal classifier would arrive at a
solution that minimizes the probability of error. Clearly, the Widrow-Hoff rule goes some way to
solving this problem.

It has been considered what can be achieved by a simple perceptron. Clearly, although it
is only capable of dichotomizing feature data, a suitably trained array of simple perceptrons –
the single layer perceptron of Figure 4.2 – should be able to divide feature space into a large
number of subregions bounded (in multidimensional space) by hyperplanes. However, in a multiclass
application, this approach would require a very large number of simple perceptrons – up to cC2 =
1
2c(c − 1) for a c-class system. Hence, there is a need to generalize the approach by other means.
In particular, multilayer perceptron (MLP) networks – which would emulate the neural networks in
the brain – seem poised to provide a solution since they should be able to recode the outputs of the
first layer of simple perceptrons.

Rosenblatt [65] himself proposed such networks, but was unable to propose general means for
training them systematically. In 1969, Minsky and Papert [58] published their famous monograph,
and in discussing the MLP raised the specter of “the monster of vacuous generality”; they drew
attention to certain problems that apparently would never be solved using MLPs. For example,
diameter-limited perceptrons (those that view only small regions of an image within a restricted
diameter) would be unable to measure large-scale connectedness within images. These considerations
discouraged effort in this area, and for many years attention was diverted to other areas such as
expert systems. It was not until 1986 that Rumelhart et al. [67] were successful in proposing a
systematic approach to the training of MLPs. Their solution is known as the back-propagation
algorithm.

The problem of training an MLP can be simply stated: a general layer of an MLP obtains its
feature data from the lower layers and receives its class data from higher layers. Hence, if all the
weights in the MLP are potentially changeable, the information reaching a particular layer cannot be
relied upon: there is no reason why training a layer in isolation should lead to overall convergence of
the MLP toward an ideal classifier (however defined). In addition, it is not evident what the optimal
MLP architecture should be. While it might be thought that this is a rather minor difficulty, in fact
this is not so: indeed, this is but one example of the so-called “credit assignment problem”.

One of the main difficulties in predicting the properties of MLPs and hence of training them
reliably is the fact that neuron outputs swing suddenly from one state to another as their inputs
change by infinitesimal amounts. Hence, we might consider removing the thresholding functions from
the lower layers of MLP networks to make them easier to train. Unfortunately, this would result
in these layers acting together as larger linear classifiers, with far less discriminatory power than
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initialize weights with small random numbers;
select suitable value of learning rate coefficient η in the range 0-1;
do {

for all patterns in the training set {
for all nodes j in the MLP {

obtain feature vector x and target output value t;
compute MLP output y;
if (node is in output layer)

δj = yj(1− yj)(tj − yj)
else

δj = yj(1− yj)(
∑

m δmWjm)
adjust weights i of node j according to wij = wij + ηδjyi

}
}

} until changes are reduced to some predetermined level;

Figure 4.3: Pseudocode of the Back-Propagation Algorithm

the original classifier (in the limit we would have a single linear classifier with a single thresholded
output connection, so the overall MLP would act as a single-layer perceptron).

The key to solving these problems was to modify the perceptrons composing the MLP by giving
them a less “hard” activation function than the Heaviside function. As we have seen, a linear
activation function would be of little use, but one of “sigmoid” shape, such as the tanh function, is
effective, and indeed is almost certainly the most widely used of the available functions. Once these
softer activation functions were used, it became possible for each layer of the MLP to “feel” the data
more precisely and thus training procedures could be set up on a systematic basis. In particular, the
rate of change of the data at each individual neuron could be communicated to other layers which
could then be trained appropriately – though only on an incremental basis. We shall not go through
the detailed mathematical procedure, or proof of convergence, beyond stating that it is equivalent
to energy minimization and gradient descent on a (generalized) energy surface. Instead, we give an
outline of the backpropagation algorithm in Figure 4.3. Nevertheless, some notes on the algorithm
are in order:

1. The outputs of one node are the inputs of the next, and an arbitrary choice is made to label all
variables as output (y) parameters rather than as input (x) variables; all output parameters
are in the range 0 to 1.

2. The class parameter ω has been generalized as the target value t of the output variable y.

3. For all except the final outputs, the quantity δj has to be calculated using the formula δj =
yj(1 − yj)(

∑
m δmwjm), the summation having to be taken over all the nodes in the layer

above node j.

4. The sequence for computing the node weights involves starting with the output nodes and
then proceeding downward one layer at a time.

5. If there are no hidden nodes, the formula reverts to the Widrow-Hoff delta rule, except that
the input parameters are now labeled yi, as indicated above.

6. It is important to initialize the weights with random numbers to minimize the chance of the
system becoming stuck in some symmetrical state from which it might be difficult to recover.

7. Choice of value for the learning rate coefficient η will be a balance between achieving a high
rate of learning and avoidance of overshoot: normally a value of around 0.8 is selected.

39



When there are many hidden nodes, convergence of the weights can be very slow, and indeed
this is one disadvantage of MLP networks. Many attempts have been made to speed convergence,
and a method that is almost universally used is to add a “momentum” term to the weight update
formula, it being assumed that weights will change in a similar manner during iteration k to the
change during iteration k − 1:

wij(k + 1) = wij(k) + ηδjyi + α[wij(k)− wij(k − 1)] (4.28)

where α is the momentum factor. This technique is primarily intended to prevent networks becoming
stuck at local minima of the energy surface.

SVM

Support vector machines method is a supervised learning method widely used in computer vision,
chemistry, matematics, etc. Generally, it is based on searching of a optimal separating hyperplane
between the d-dimensional vectors (input samples) which are labelled into two classes. The training
process creates a svm model using labels and feature points, testing procedure “labels” each unknown
testing sample by response which indicates the class current sample belongs to.

The following description is structured into multiple sections. Firstly, the optimal separation
hyperplane is matematically defined; Secondly, the separation hyperplane is defined in a situation
when the input data are not separable. Finally, the support vector machine is constructed and
existence of kernel function is provided and the description of widely used kernel functions is shown.

The Optimal hyperplane

Let us determine that two finite subsets of vectors x from the training set

(y1, x1), . . . , (y`, x`), x ∈ Rn, y ∈ {−1, 1} (4.29)

one subset I for which y = 1, and the another one II for which y = −1 are separable by the
hyperplane

(x ∗ φ) = c (4.30)

if there exist both a unit vector φ(|φ| = 1) and a constant c such that the inequalities

(xi ∗ φ) > c, if xi ∈ I
(xj ∗ φ) < c, if xj ∈ II

(4.31)

hold true where we denoted by (a ∗ b) the inner product between vectors a and b.
Let us determine for any unit vector φ two values

c1(φ) = max
xi∈I

(xi ∗ φ),

c1(φ) = min
xj∈I

(xj ∗ φ).
(4.32)

Consider the unit vector φ0 which maximizes the function

ρ(φ) =
c1(φ)− c2(φ)

2
, |φ| = 1 (4.33)

under the condition that inequalities (4.31) are satisfied. The vector φ0 and the constant

c0 =
c1(φ0) + c2(φ0)

2
(4.34)

determine the hyperplane that separates vectors x1, . . . , xa of the subset I from x1, . . . , xa of the
subset II, (a + b = `) and has the maximal margin (4.33). We call this hyperplane the maximal
margin hyperplane or the optimal hyperplane.
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A theorem with the following definition exists: The optimal hyperplane is unique. Proof of the
Theorem exceeds the need of this text and the persons concerned can found it for example in [81].

The goal is to have an effective methods for constructing the optimal hyperplane. To do so
we consider an equivalent statement of the problem: Find a pair consisting of a vector ψ0 and a
constant (threshold) b0 such that they satisfy the constraints

(xi ∗ ψ0) + b0 ≥ 1,
(xj ∗ ψ0) + b0 ≤ −1,

(4.35)

and the vector ψ0 has the smallest norm

|ψ|2 = (ψ ∗ ψ). (4.36)

A theorem with the following definition exists: Vector ψ0 that minimizes (4.36) under con-
straints (4.35) is related to the vector that forms the optimal hyperplane by the equality

φ0 =
ψ0

|ψ0|
. (4.37)

The margin ρ0 between the optimal hyperplane and separated vectors is equal to

ρ(φ0) = sup
φ0

1

2

(
min
i∈I

(xi ∗ φ0)−max
i∈II

(xi ∗ φ0)

)
=

1

|ψ0|
. (4.38)

Proof of the Theorem above exceeds the need of this text and the persons concerned can found it
for example in [81].

Thus the vector ψ0 with the smallest norm satisfying constraints (4.35) defines the optimal
hyperplane. The vector ψ0 with the smallest norm satisfying constraints (4.35) with b = 0 defines
the optimal hyperplane passing through the origin.

To simplify preceding notation, rewriting of the constraint (4.35) in the equivalent form is needed

yi((xi ∗ ψ0) + b) ≥ 1, i = 1, . . . , `. (4.39)

Therefore in order to find the optimal hyperplane the following quadratic optimization has to be
solved: To minimize the quadratic form (4.36) subject to the linear constraints (4.39).

The problem can be solved in the primal space – the space of parameters ψ and b. However,
the deeper results can be obtained by solving this quadratic optimization problem in the dual space
– the space of Lagrange multipliers. Below this type of solution will be considered.

In order to solve this quadratic optimization problem, the saddle point of the Lagrange function
[9] has to be found

L(ψ, b, α) =
1

2
(ψ ∗ ψ)−

∑̀
i=1

αi(yi[(xi ∗ ψ) + b]− 1), (4.40)

where αi ≥ 0 are the Lagrange multipliers. To find the saddle point that function has to be
minimized over ψ and b and has to be maximized over the nonnegative Lagrange multipliers αi ≥ 0.

According to the Fermat theorem [81], the minimum points of this functional have to satisfy the
conditions

∂L(ψ,b,α)
∂ψ = ψ −

∑`
i=1 yiαixi = 0,

∂L(ψ,b,α)
∂b = ψ −

∑`
i=1 yiαi = 0.

(4.41)

From these conditions it follows that for the vector ψ that defines the optimal hyperplane, the
equalities

ψ =
∑̀
i=1

yiαixi, (4.42)

∑̀
i=1

yiαi = 0 (4.43)
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holds true. By substituting (4.42) into (4.40) and taking into account (4.43) can be obtained

W (α) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

yiyjαiαj(xi ∗ xj). (4.44)

It should be noted that the notation has been changed from L(ψ, b, α) to W (α) to reflect the last
transformation. Now to construct the optimal hyperplane the coefficients a0i have to be found that
maximize the function (4.44) in the nonnegative quadrant

αi ≥ 0, i = 1, . . . , `, (4.45)

under the constraint (4.43). Using these coefficients α0
i , i = 1, . . . , `, in Equation (4.42) the solution

is obtained

ψ0 =
∑̀
i=1

yiα
0
ixi. (4.46)

The value of b0 is chosen to maximize margin (4.33). It should be doted that the optimal solution
ψ0 and b0 must satisfy the Kuhn-Tucker conditions [43]

α0
i (yi((xi ∗ ψ0) + b0)− 1) = 0 i = 1, . . . , ` (4.47)

It can be concluded that from conditions (4.47) nonzero values α0
i correspond only to the vectors

xi that satisfy the equality
yi((xi ∗ ψ0) + b0) = 1. (4.48)

Geometrically, these vectors are the closest to the optimal hyperplane and are called support vectors.
The support vectors play a crucial role in constructing a new type of learning algorithm since the
vector ψ0 that defines the optimal hyperplane is expanded with nonzero weights on support vectors:

ψ0 =
∑̀
i=1

yiα
0
ixi. (4.49)

Therefore the optimal hyperplane has the form

f(x, α0) =
∑̀
i=1

yiα
0
i (xs ∗ x) + b0, (4.50)

where (xs ∗ x) is the inner product of two vectors.
It should be noted that both the separation hyperplane (4.50) and the objective function of the

optimization problem

W (α) =
∑̀
i=1

αi −
∑̀
i,j=1

yiyjαiαj(xi ∗ xj) (4.51)

do not depend explicitly on the dimensionality of the vector x but depend only on the inner product
of two vectors. This fact will allow later constructing of separating hyperplanes in high-dimensional
spaces even in infinite-dimensional Hilbert spaces [31].

The Optimal hyperplane of the nonseparable case

In this section the concept of the optimal hyperplane for the nonseparable case will be generalized.
Let the set of training set

(y1, x1), . . . , (y`, x`), x ∈ Rn, y ∈ {−1, 1} (4.52)

be such that it cannot be separated without error by a hyperplane. According to the definition of
nonseparability (see Equation 4.31), this means that there is no pair ψ, b such that

(ψ ∗ ψ) ≤ 1

ρ2
= A2 (4.53)
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and the inequalities
ya((xi ∗ φ) + b) ≥ 1, i = 1, 2, . . . , ` (4.54)

hold true. The goal is to construct the hyperplane that makes the smallest number of errors. To
get a formal setting of this problem the nonnegative variables are introduced

ξ1, . . . , ξ` (4.55)

In terms of these variables the problem of finding the hyperplane that provides the minimal number
of training errors has the following formal expression: Minimize the functional

Φ(ξ) =
∑̀
i=1

θ(ξi) (4.56)

subject to the constraints

yi((xi ∗ ψ) + b) ≥ 1− ξi, i = 1, 2, . . . , ` ξi ≥ 0 (4.57)

and the constraint
(ψ ∗ ψ) ≤ A2, (4.58)

where θ(ξ) = 0 if ξ = 0 and θ(ξ) = 1 if ξ > 0. It is known that for the nonseparable case
this optimization in NP-complete [27]. Therefore the following approximation to this problem is
considered: To minimize the functional

Φ(ξ, b) =

ell∑
i=1

ξi (4.59)

under the constraints (4.57) and (4.58). The hyperplane

(ψ0 ∗ x) + b = 0 (4.60)

constructed on the basis of the solution of this optimization problem is called the generalized optimal
hyperplane or, for simplicity, the optimal hyperplane.

To solve this optimization problem the saddle point of the Lagrangian have to be found

L(ψ, b, α, β, γ) =
∑̀
i=1

ξi −
1

2
γ(A2 − (ψ ∗ ψ))−

∑̀
i=1

αi(yi((ψ ∗ xi) + b)− 1 + ξi)−
∑̀
i=1

βiξi. (4.61)

The minimum with respect to ψ, b, ξi and the maximum with respect to nonnegative multipliers
αi, βi, γ is searched. The parameters that minimize the Lagrangian must satisfy the conditions

∂L(ψ,b,ξ,α,β,γ)
∂ψ = γψ −

∑`
i=1 yiαixi = 0,

∂L(ψ,b,ξ,α,β,γ)
∂b = ψ −

∑`
i=1 yiαi = 0,

∂L(ψ,b,ξ,α,β,γ)
∂ξi

= 1− αi − βi = 0.

(4.62)

From these conditions can be derived

ψ =
1

γ

∑̀
i=1

αiyixi, (4.63)

∑`
i=1 αiyi = 0,

αi + βi = 1.
(4.64)
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By substituting (4.63) into the Lagrangian and taking into account (4.64) the functional can be
obtained

W (α, γ) =
∑̀
i=1

αi −
1

2γ

∑̀
i,j=1

αiαjyiyj(xi ∗ xj)−
γA2

2
, (4.65)

which must be maximized under the constraints∑`
i=1 yiαi = 0,

0 ≤ αi ≤ 1,
γ ≥ 0

(4.66)

Functional (4.65) can be maximized under the constraints (4.66) by solving a quadratic optimization
problem several times for fixed values of γ and conducting maximization with respect to γ by a line
search. Another possibility is to find the parameter γ that maximizes (4.65) and substitute it back
into (4.65). Is is easy to check that the maximum of (4.65) is achieved when

γ =

√∑`
i,j=1 αiαjyiyj(xi ∗ xj)

A
. (4.67)

Putting this expression back into (4.65) it is obtained that to find the desired hyperplane the
following functional has to be maximized

W (α) =
∑̀
i=1

αi −A

√√√√∑̀
i,j

αiαjyiyj(xi ∗ xj). (4.68)

subject to constraints ∑`
i=1 yiαi = 0,

0 ≤ αi ≤ 1.
(4.69)

The vector of parameters α0 = (α0
1, . . . , α

0
` ) defines the generalized optimal hyperplane

f(x) =
A√∑`

i,j=1 α
0
iα

0
jyiyj(xi ∗ xj)

∑̀
i=1

α0
iui(x ∗ xi) + b. (4.70)

The value of the threshold b is chosen to satisfy the Kuhn-Tucker conditions [43].

α0
t

 A√∑`
i,j=1 α

0
iα

0
jyiyj(xi ∗ xj)

∑̀
i=1

α0
iui(x ∗ xi) + b

 = 0, t = 1, . . . , ` (4.71)

constructing SVM, kernel functions

The support vector machine is the implementation of the following idea: Mapping of the input
vectors x into the high-dimensional feature space Z through some chosen nonlinear mapping. And
in this space the optimal separating hyperplane is constructed but two problems arise in: (i) How
to find a separating hyperplane that generalize well and (ii) How to treat such high-dimensional
spaces computationally.

The generalization ability of the constucted hyperplane is high (even if the feature space has
a high dimensionality) in the case when it is expected that is created from a small number of
support vectors. It should be noted that for constructing the optimal separating hyperplane in
the feature space Z, the feature space in explicit form do not need to be considered. Only inner
products between support vectors and the vectors of the feature space have to be calculated (see,
for example, (4.51) or (4.65)).
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Let us consider a general property of the inner product in a Hilbert space. Suppose the mapping
of the vector x ∈ Rn into a Hilbert space [31] with coordinates

z1(x), . . . , zn(x), . . . (4.72)

According to the Hilbert-Schmidt theory the inner product in a Hilbert space has an equivalent
representation

(z1 ∗ z2) =

∞∑
r=1

arzr(x1)z(x2)⇐⇒ K(x1, x2), ar ≥ 0, (4.73)

where K(x1, x2) is a symmetric function satysfying the Mercer conditions [2].
The Mercer’s theorem with the following definition exists: To guarantee that a continuous sym-

metric function K(u, v) in L2(C) has an expansion

K(u, v) =

∞∑
k=1

akzk(x1)zk(x2) (4.74)

with positive coefficients ak > 0 (i.e., K(u, v) describes an inner product in some feature space), it
is necessary and sufficient that the condition∫

C

∫
C

K(u, v)g(u)g(v)dudv ≥ 0 (4.75)

be valid for all g ∈ L2(C) (C being a compact subset of Rn).
The remarkable property of the structure of the inner product in Hilbert space leads to con-

struction of the support vector machine with properties that for any kernel function K(u, v) which is
satistying the Mercer’s condition a feature space (z1(u), . . . , zk(u), . . . where the function generates
the inner product (4.74) exists. This allows the construction of decision functions that are nonlinear
in the input space

f(x, α) = sign

( ∑
support vectors

yiα
0
iK(x, xi) + b

)
(4.76)

and are quivalent to linear decision function in the feature space z1(x), . . . , zk(x), . . .

f(x, α) = sign

( ∑
support vectors

yiα
0
iK(x, xi) + b

)
(4.77)

(K(x, xi) is the kernel that generates the inner product for this feature space). Therefore to construct
function (4.76) the methods for constructing linear hyperplanes presented above can be used where
instead of the inner product defined as (x, xi) the kernel defined as K(x, xi) will be used. The
procedure shall be described as follows:

1. To find the coefficients αi in the separable case

yif(xi, α) = 1 (4.78)

it is sufficient to find the maximum of the functional

W (α) =
∑̀
i=1

αi −
1

2

∑̀
i=1

αiαjyiyjK(xi, xj) (4.79)

subject to the constraints ∑̀
i=1

αiyi = 0, (4.80)

αi ≥ 0, i = 1, 2, . . . , `. (4.81)
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2. To find the optimal soft margin solution for the nonseparable case, it is sufficient to maximize
(4.79) under constraints ∑̀

i=1

αiyi = 0, (4.82)

0 ≤ αi ≤ C. (4.83)

3. Finally, to find the optimal solution for a given margin ρ = 1/A

f(x, α) = sign

 A√∑`
i,j=1 α

0
iα

0
jyiyjK(xi, xj)

∑̀
i=1

α0
i yiK(xi, x) + b

 (4.84)

the functional

W (α) =
∑̀
i=1

αi = A

√√√√∑̀
i,j=1

αiαjyiyjK(xi, xj) (4.85)

has to be maximized subject to constraints

∑̀
i=1

αiyi = 0, (4.86)

0 ≤ αi ≤ 1. (4.87)

The kernel functions which are widely used for pattern recognition are listed below. It should be
noted that the complete list of kernels can be found, for example, in [36].

1. Polynomial kernel,

2. Radial basis kernel,

3. Two-layer neural network kernel,

4. χ2 distance kernel.

The polynomial support vector machines are based on a d-degree polynomial decision rules
denoted as K(x, xi) = [(x ∗ xi) + 1]d. This symmetric function, rewritten in coordinates space,
describes the inner product in the feature space that contains all the products xi1 , . . . , xid up to the
degree d.

Classical radial basis function (RBF) [14] machines use the following set of decision rules

f(x) = sign

(
N∑
i=1

αiKγ(|x− xi|)− b

)
(4.88)

where Kγ(|x− xi|) depends on the distance |x− xi| between two vectors. The function Kγ(z) is a
positive definite monotonic function function for any fixed γ; it tends to zero as |z| goes to infinity.

The most popular function of this form is Kγ(|x− xi|) = e−γ|x−xi|
2

.

Two-layer Neural Support Vector Machine is defined when the kernels K(x, xi) = S[(x ∗ xi)],
where S(u) is a sigmoid function, are chosen. In contrast to kernels for polynomial machines or for
radial basis function machines, the sigmoid kernel

S[x ∗ xi] =
1

1 + eν(x∗xi)−c
(4.89)
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Given: (x1, y1), . . . , (xm, ym) where xi ∈ X, yi ∈ Y = −1,+1
Initialize Da(i) = 1/m.
For t = 1, . . . , T :

1. Train weak learner using distribution Dt.

2. Get weak hypothesis ht : X → {−1,+1} with error εt = Pri∼Dt [ht(xi) 6= yi].

3. Choose αt = 1
2

(
1−εt
εt

)
.

4. Update:

Dt+1(i) = dt(i)
Zt
×
{
e−αt if ht(xi) = yi
eαt if ht(xi) 6= yi

= dt(i) exp(−αtyiht(xi)
Zt

(4.90)

where Zt is a normalization factor (chosen so that dt+1 will be a distribution)

Output the final hypothesis:

H(x) = sign

(
T∑
t=1

αtht(x)

)
(4.91)

Figure 4.4: Schema of the AdaBoost boosting algorithm

satisfies the Mercer condition only for some values of parameters c and ν. For example if |x| =
1, |x| = 1 the parameters c and ν of the sigmoid function has to satisfy the unequality c ≤ ν.

χ2 kernel has the following form

K(x, y) =
1

2

n∑
i=1

(xi − yi)2

(xi + yi)

and is based on χ2 distribution [59].

AdaBoost

The AdaBoost algorithm were introduced in [26]. Pseudocode for that algorithm is given in Figure
4.4. The algorithm takes as an input a training set (x1, y1), . . . , (xm, ym) where each xi belongs
to some instance space X, and each label yi is in some label set Y . For simplifying purposes the
Y = −1,+1 can be assumed. AdaBoost “calls” a given weak learning algorithm repeatedly in a
series of rounds t = 1, . . . , T . One of the main ideas of the algorithm is to maintain a distribution on
training example i on round t is denoted Dt(i). Initially, all weights are set to the same value, but
on each round, the weights of incorrectly classified examples are increased so that the weak learner
is forced to focus on the hard examples in the training set.

The weak learner’s job is to find a weak hypothesis ht : X → {−1,+1} appropriate for the
distribution Dt. The quality of a weak hypothesis is measured by its error

εt = Pri∼Dt [ht(xi) 6= yi] =
∑

i:ht(xi)6=yi

Dt(i) (4.92)
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It should be noted that the error is measured with respect to the distribution Dt on which the weak
learner was trained. Practically, the weak learner may be an algorithm that can use the weights Dt

on the training samples. Alternatively, when this is not possible, a subset of the training examples
can be sampled according to Dt, and these resampled examples can be used to train the weak
learner.

Once the weak hypothesis ht has been received, AdaBoost chooses a parameter αt as in Figure
4.4. Intuitively, αt measures the importance that is assigned to to ht. It should be noted that αt ≥ 0
id εt ≤ 1/2, and that αt gets larger as εt gets smaller.

The distribution Dt is subsequently updated using the rule shown in Figure 4.4. The effect of
this rule is to increase the weight of examples misclassified by ht, and to decrease the weight of
correctly classified examples. Thus, the weight tends to concentrate on “hard” examples.

The final hypothesis H is a weighted majority vote of the T weak hypotheses where αt is the
weight assigned to ht. It has been shown that AdaBoost and its analysis can be extended to handle
weak hypotheses whose return real-valued or confidence-rated predictions. That is, for each instance
x, the weak hypothesis ht returns a prediction ht(x) ∈ R whose sign is the predicted label (-1 or
+1) and whose magnitude gives a measure of “confidence” in the prediction.

The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error εt of ht as 1

2 − γt. Since a hypothesis that guesses each instance’s class at
random has an error of 1/2 (on binary problems), γt thus measures how much better than random
are ht’s predictions. It has been proved [26] that the training error (the fraction of mistakes on the
training set) of the final hypothesis H is at most

Π
t

[2
√
εt(1− εt)] = Π

t

√
1− 4γ2t ≤ e

−2
∑
t
γ2
t

(4.93)

Thus, if each weak hypothesis is slightly better that random so that γt ≥ γ for some γ > 0, then
the training error falls exponentionally.

A similar property is enjoyed by previous boosting algorithms. However, previous algorithms
required that such a lower bound γ be known a priori before boosting begins. In practice, knowledge
of such a bound is very difficult to obtain. AdaBoost, on the other hand, is adaptive in that is adapts
on the error rates of the individual weak hypotheses.

The bound given in Equation (4.93), combined with the bounds on generalization error given
below, prove that AdaBoost is indeed a boosting algorithm in the sense that it can efficiently convert
a weak learning algorithm into a strong learning algorithm.

It has been shown [26] how to bound the generalization error of the final hypothesis in terms
of its training error, the sample size m, the VC-dimension1 d of the weak hypothesis space and the
number of boosting rounds T . Specific technique has been used to show that the generalization
error is, with high probability, at most

P̂ r[H(x) 6= y] + Ô

(√
Td

m

)
(4.94)

where P̂ r[·] denotes empirical probability on the training sample. This bound suggests that boosting
will overfit if run for too many rounds, i.e. as T becomes large. In fact, this sometimes does happen.
However, it has been observed empirically that boosting often does not overfit, even when run for
thousand of rounds. Moreover, it was observed that AdaBoost would sometimes continue to drive
down the generalization error long after the training error had reached zero, clearly contradicting
the spirit of the bound above.

In response to these empirical findings, it has been presented an alternative analysis [5] in terms
of the margins of the training examples. The margin of example (x, y) is defined

y
∑
t
αtht(x)∑
t
αt

. (4.95)

1The VC-dimension is a standard measure of the “complexity” of a space of hypotheses, for more infor-
mation see [12].
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It is a number in [−1,+1] which is positive if and only if H correctly classifies the example. Moreover,
the magnitude of the margin can be interpreted as a measure of confidence in the prediction. Larger
margins on the training set translate into a superior upper bound on the generalization error. The
generalization error is at most

P̂ r[margin(x, y) ≤ θ] + Ô

(√
Td

m

)
(4.96)

for any θ > 0 with high probability. It should be noted that this bound is entirely independent on
T , the number of rounds of boosting. It has been proved that boosting is particularly aggressive at
reducing the margin since it concentrates on the examples with the smallest margins.

Finally, It should be noted that a number of AdaBoost algorithm variants exists, for instance
Real Adaboost [66], WaldBoost [75] etc., exists.

4.4 Extended pipeline schema

The extended pipeline is shown in Figure 4.5 and basically it is the extension of the procedure which
has been described in Section 4.1. The extension consists of an usage of multiple feature extractors
[82, 88] as well as visual vocabularies, several classifiers and finally it should lead to the creation of
better output classifier. This approach has generally a potential to improve the quality of a video
processing solution because every solved problem has its own particularity and this processing can
select well performing feature extractors for such purpose.

All those facts cause an usage of more of bag-of-words [74] units. The outputs from bag-of-words
units ale called a channels and are “concatenated” into one long multiple channels feature vector.
Every element in this feature vector consists of one bag-of-words full representation which is not
divided into smaller parts.

From the multiple channels feature vector a number of selections are constructed and from each
selection a classifier is created. The term selection is considered as a “reduction” of number of
channels, one extreme possibility is when all channels are selected, on the other side is when only
one channel is selected. More classifiers are produced in this way and the best one needs to be
selected.

Selected best classifier uses only finite set of input channels which were selected in corresponding
selection unit. Classifier produced by this pipeline should be used for prediction of unwanted entites,
only corresponding feature extractors need to be provided for the computation (this can reduce the
computation effort).

The selection of best classifier is demanding problem, it can be solved by using technique called
leave-one-out [21] where all the classifiers are trained using the training data, where one sample has
been removed and thereafter the test is performed using the removed sample. This procedure is
repeated several times and everytime a different sample is removed from the sample set (this can
be repeated up to size of the training data minus one). The best classifier can be evaluated by
computing multiple statistic metrics. In this work another technique is used. It is the usage of
validation dataset which also leads to selection of the best performing classifier.

Theoretical usage of the pipeline can be formally descripted as follows; The initial conditions
are

(i) A set of algorithms M1, . . . ,Mm for feature vector production exist.

(ii) A dataset D = {DTR, LTR, DV A, LV A, DTE , LTE} with wanted examples and as well as with
counter examples exists. All parts are defined in the same way as in Equations (4.2) and (4.3):

DTR = {fRGB1
, . . . , fRGBr}, DTE = {fRGB1

, . . . , fRGBs}, DV A = {fRGB1
, . . . , fRGBt}

LTR = {l1, . . . , lr}, LTE = {l1, . . . , ls}, LV A = {l1, . . . , lt}
(4.97)
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Figure 4.5: Extended pipeline schema
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The recognition system can be built according to the following procedure

(1) All training samples are used to create a number of vocabularies for each extraction algorithm.

{Mi(DTR)} −→ Ci,c , for each Mi ∈M and for each c ∈ {1, 2, . . . } (4.98)

the transformation function is defined in Equation (4.4)

(2) The bag-of words representation is created for all extraction algorithms and for corresponding
vocabularies.

{Mi(DTR), Ci,c} −→ BTR(i,c) , for each Mi ∈M and for each c ∈ {1, 2, . . . } (4.99)

the transformation function is defined in Equation (4.5)

(3) All types of bag-of-words representations (as produced in the step above) are concatenated
into one long multiple channel feature vector

{BTR(1,1), BTR(1,2), . . . , BTR(1,c), BTR(2,1), . . . } −→ K : K = (K1,K2, . . . ),

for each i ∈ {1, . . . |M |} and for each c ∈ {1, 2, . . . }
(4.100)

where K1 = BTR(1,1), K2 = BTR(1,2), . . . .

(4) Create a number of selections: S = {S1, S2, . . . , Ss} for each Si ∈ S : Si ⊆ K∧ for each
i ∈ {1, . . . , s} and j ∈ {1, . . . , s} applies Si 6= Sj

(5) Create classifiers based on selections:

{Si, LTR} −→ Zi : for each Si ∈ S; Zi = (zi(1), . . . , zi(a))|zi(a) ∈ 〈0, 255〉 ∧ zi(a) ∈ N;

Zi = trainM(Si, {L1, . . . , Lr}, Pt)
(4.101)

where the trainM function performs the training of the classifier and accepts a set of input
representations (specified as Si) and is able to produce a classifier Zi.

(6) Step (2) is repeated for validation part of the dataset

{Mi(DV A), Ci,c} −→ BV A(i,c) , for each Mi ∈M and for each c ∈ {1, 2, . . . } (4.102)

(7) The multiple channels feature vector K ′ of validation dataset is created from validation
dataset identically as in step (3) and the selections S′ are produced as in step (4).

(8) Perform test on each sample of validation dataset

{S′i, Zi} −→ Ri : for each doublet S′i, Zi|i ∈ {1, . . . , |S′|};

Ri = {Ri(1), . . . , Ri(t)}|Ri(y) ∈ R for each y ∈ {1, . . . , t};

Ri = testM(S′i, Zi, Pt)

(4.103)

where the testM function performs the testing of the classifier Zi and accepts a set of input
representations (specified as S′i) and is able to produce responses, t is the size of validation
dataset.

(9) Evaluate a quality of classifier of each particular combination

Ri −→ Qi : for each i ∈ {1, . . . , |S′|}; Qi ∈ 〈0, 1〉 ∧Q ∈ R for each i ∈ {1, . . . , |S′|} (4.104)

and select the best classifier

{{Z1, Z2, . . . }, {Q1, Q2, . . . }} −→ Zb : where b = max({Q1, Q2, . . . }) (4.105)

function max returns the index of the best performing classifier. The best performing selec-
tion Sb is also identified.
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(10) Step (2) is repeated for testing part of the dataset

{Mi(DTE), Ci,c} −→ BTE(i,c) , for each Mi ∈M and for each c ∈ {1, 2, . . . } (4.106)

It should be noted that according to selection Sb not necessarily all channels need to be
evaluated.

(11) The testing part of the dataset selection S′′b is created identically as in step (3) and in step
(4).

(12) Perform testing of the classifier Zb using the testing part of the dataset.

{S′′b , Zb} −→ R : R = {R1, . . . , Rs}|Ry ∈ R for each y ∈ {1, . . . , s};

R = testM(S′′b , Zb, Pt)
(4.107)

and evaluate the quality of the solution

R −→ Q : R = {R1, . . . , Rt}; Ri ∈ R for each i ∈ {1, . . . , t}; Q ∈ 〈0, 1〉 ∧Q ∈ R (4.108)

Algorithm 2: Extended pipeline algorithm

Standard classification methods, as described in Section 4.3, can be used as functions trainM
and testM in the algorithm above but the input set of vectors needs to be transformed to one
input vector. Simple concatenation of all input vectors can be used for such purpose. More valuable
method is to use multi-kernel support vector machines method [16, 90](especially in the field of
action recognition as shown in [82, 48, 62]).

The bag-of-words feature vectors are combined using multi-kernel support vector machine with
a multichannel gaussian kernel [40, 16]. The kernel shall be defined as:

K(A,B) = exp(−
∑
c∈C

1

Ac
Dc(A,B)) (4.109)

where Ac is the scaling parameter which is determined as a mean value of mutual distances Dc

between all the training samples (Equation 4.112) for the channel c from a set of channels C,
Dc(A,B) is the χ2 distance between two bag-of-words vectors, A and B are the input vectors of the
form:

Ai = ( a1 . . . an1︸ ︷︷ ︸
channel 〈1,n1〉

, an1+1 . . . an2︸ ︷︷ ︸
channel 〈n1+1,n2〉

, . . . , ani−1 . . . ani︸ ︷︷ ︸
channel 〈ni−1,ni〉

) (4.110)

where set of channels C can be defined as:

C = {〈1, n1〉, 〈n1 + 1, n2〉, . . . , 〈ni − 1, ni〉} (4.111)

The bag-of-words distance Dc(A,B) is defined as:

Dc(A,B) =
1

2

∑
n∈c

(an − bn)2

an + bn
(4.112)

The best ratio of combined channels {ck, cl, . . . , cz} ∈ C for a given training set is estimated
using a coordinate descend method. The set of input channels needs to be specified outside of the
training process. Althought this SVM building procedure requires the number of input parameters
that affect the classifier accuracy; these parameters are automatically evaluated using the cross-
validation approach [32]. The classifier creation process may be seen as a black-box unit which for
a given input automatically creates the best performing classifier.

52



Chapter 5

Optimal analysis length

Many scientific papers concerning human action recognition focus on the improving some part
or some parts of the video processing pipeline. Currently, the improvements are mainly in the
development of new local space-time features [47, 88, 20, 82] and in combining known space-time
features [82, 38]. Other solutions where the processing pipeline is different also exist such as deep-
learning techniques [49]. All proposed procedures have something in common; the use of a dataset
for evaluating quality.

Datasets usually contain a number of videos with variable length, the proposed actions are
usually located anywhere within a particular example. When using processing similar to the one
presented in Section 4.1, the bag-of-words unit processes the whole video sequence which is poten-
tially large and will have varying size. Such a procedure is called off-line processing.

Some scenarios require the usage of a processing step, in which the number of frames processed by
the bag-of-words unit is fixed to a predefined value. In other words, the bag-of-words representation
is extracted from a sub-shot of the video with constant length. This is called on-line processing.

The following sections are organized as follows, in Section 5.1 the main contribution of the
thesis is presented. Information about datasets available today and used in current research is
given in Section 5.2. The main experiments done in this thesis require a state-of-the-art method,
which is presented and evaluated in Section 5.3. The main experiments about on-line processing are
presented in Section 5.4. Finally, Section 5.5 presents the summary and potential applications.

5.1 Determining the optimal length of the analyzed video

The contribution of this thesis is in: (i) to state the hypothesis that an optimal analysis length exists
for on-line action recognition solutions and (ii) the proof of this hypothesis through an algorithmic
solution.

The optimal length of analyzed video `o exists for each on-line human action recognition system
where the solution has a quality qo which is comparable to the off-line solution quality q, formally
qo ≥ q − ε and this assumption applies for each arbitrarily small ε. For appropriate values of ε,
the optimal analysis length of videos of certain actions can be much smaller than the potentially
unrestricted length, which is processed by the off-line solution.

Subsequently, according to the hypothesis, for certain actions an analysis action length may
exist, such that the on-line solution gives better quality than the off-line solution.

Such an algorithmic proof of the statements has two inputs:

(i) A dataset with start and end positions of each annotated action (DS),

(ii) A state-of-the-art method in which quality is expressed by a function M: DS −→ R.

Formally, the algorithm can be interpreted as a mapping:

(M, DS, q, ε) −→ ((`o, qo), (`b, qb)) (5.1)
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L represents all lengths to be analyzed (in number of frames)

L = 〈`min, `max〉 ∩ N (5.2)

Metrics of qualities for each length of sequence are represented by a vector D.

D = {(`i, qi) | `i ∈ L, qi = M(CO(DS, `i))} (5.3)

The optimal analysis length of the video is `o, and the analysis length where the maximum quality
is achieved is `b. Solution quality qo and qb are defined as well.

(`o, qo) ∈ D |∀(`j , qj) ∈ D, `j < `o, qj < q − ε) (5.4)

(`b, qb) ∈ D |∀(`j , qj) ∈ D, qj ≤ qb (5.5)

The function CO(DS, `i) returns a dataset (which is based on DS) where each video sample
has constant length `i.

It should be noted that it is not guaranteed that (lo, qo) exist but it does for most cases.
A practical way to obtain (lo, qo) and (lb, qb) is described in the algorithm below:

(1) Get `min and `max

(2) for i = `min:`max {
D[i]= M(CO(DS, i))

}

(3) perform:

o = NULL; for i = `min:`max {
if( D[o]≥ (q - ε) ) { o = i; break; }

}
and return `o = o and qo = D[o].

(4) perform:

b = `min; for i = `min:`max {
if( D[i]>D[b] ) { b = i; }

}
and return `b = b and qb = D[b].

Algorithm 3: Verification algorithm pseudocode.

It should be noted that the algorithm is not optimal. The main reason why it has been con-
structed, is to prove the presented hypothesis, and to obtain the optimal analysis length. The
creation of a more powerful algorithm is not the focus of this thesis.

The experimental proof of the hypothesis using this algorithm is shown below.

5.2 Action recognition datasets

A dataset needs to be selected before performing some experiments. The list of datasets being
currently used has to be found out, explored and finally the suitable one must be selected. In case
that no dataset for wanted purpose is already created, the experiments must be based on newly
created one.

This section presents available datasets and includes also the selection of the most suitable one
which will be used in experiments.
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• KTH [69]
This dataset was introduced by Chritian Schulds et al. in 2004. It consists of 6 action classes,
namely: walking, jogging, running, boxing, hand waving and hand clapping. All videos were
acquired by a static camera in a controlled environment. The whole dataset consists of 600
videos which are split into three parts: training part (192 videos), validation part (192 videos)
and testing part (216 videos). The solution which reached the 100% accuracy has been already
provided by research comunity.

Example screenshots1 from dataset are shown below

    Running                       Boxing                  Hand waving              Hand clapping

• Weizmann [10]
The dataset was introduced by Moshe Blank et al. in 2005. It consists of 10 action classes,
namely: walk, run, jump, gallop sideways, bend, one hand wave, two hands wave, jump in
place, jumping jack and skip. All videos were acquired by a static camera in a homogeneous
outdoor environment. The whole dataset consists of 90 videos with small resolution.

Various examples2 are shown in the image below; each line consists of 5 frames of the same
action with a temporal distance, these actions are gradually shown: two hands wave, run,
walk.

• IXMAS [86, 85]
The dataset was introduced by H. Kuehne et al. in 2006. It consists of 11 action classes which
are performed 3 times by 10 actors. To demonstrate the view invariance, the actors freely
change their orientation for each aquisition and no further indications on how to perform the
actions beside the labels were given. The videos are captured in a controlled environment,
the action classes are namely: check watch, cross arms, schratch head, sit down, get up, turn
around, walk, wave, punch kic and pick up.

1Pictures are taken from [69]
2Pictures are taken from [10]
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• UCF sports [64]
The dataset was introduced by Mikel D. Rodriguez et al. in 2008. It consists of 9 action
classes collected from broadcast television channels such as the BBC and ESPN. Actions in
this dataset include diving, golf swinging, kicking, lifting, horseback riding, running, skating,
swinging a baseball bat and pole vaulting. The dataset contains over 200 video sequences at
a resolution of 720 × 480. The collection represents a natural pool of actions featured in a
wide range of scenes and view points.

• Youtube [53]
The dataset was introduced by Jingen Liu et al. in 2008. It consists of 11 action classes,
namely: basketbal shooting, volleybll spiking, trampoline jumping, soccer juggling, horseback
riding, cycling, diving, swinging, golf swinging, tennis swinging and walking (with a dog). The
dataset contains the 1168 video sequnce in total. The videos were not created within a human
controlled environment.

• HMDB [42]
The dataset was introduced by H. Kuehne et al. in 2011. It consists of 51 action classes with,
at least, 101 examples for each action class. The total number of action clips is 6766 and are
extracted from wide range of sources. Each clip was validated by at least two human observers
to ensure consistency. Additional meta information allows precise selection of testing data,
as well as training and evaluation of recognition systems.

• Hollywood2 [48]
The Hollywood2 dataset was introuced in 2009 by Ivan Laptev et al. with 12 action classes
and 10 scene classes annotated, which is acquired from 69 Hollywood movies. The dataset3

is built from movies containing human actions and processed using script documents and
subtitle files which are publicly available. The script documents contain the scene captions,
dialogs and the scene descriptions; however, they are usually not quite precisely synchronized
with the video. The subtitles have video synchronization so they are matched to the movie
scripts and this fact can be used for improvements in video clip segmentation. By analyzing
the content of movie scripts, the twelve most frequent action classes and their video clip
segments are obtained. These segments are split into test and training subsets so that the
two subsets do not share segments from the same movies.

These 12 action classes are included in the dataset: answering the phone, driving car, eating,
fighting, getting out of the car, hand shaking, hugging, kissing, running, sitting down, sitting
up and standing up. The framerate of the videos is 25 fps. Complete set of examples of the
frames contained in these video sequences are shown in Appendix A. Subsequently, examples4

of the classes: answering the phone, standing up are shown.

3The Hollywood2 dataset can be downloaded from: http://www.di.ens.fr/∼laptev/actions/hollywood2/
4Pictures are taken from [48]
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Two training parts of the dataset exist: the automatic part generated using the above men-
tioned procedure, and the clean part which is manually corrected using visual information
from the video. The test part is manually corrected in the same way as in the clean training
part of the dataset. In both cases, the correction is performed in order to eliminate “noise”
from the dataset and consequently to create better classifiers. In the work described above,
some experiments were performed. The processing chain consisted of feature extraction the
SIFT [55] image and STIP [47] space-time extractors, both converted into a bag-of-words
representation and then used in multichannel χ2 Support Vector Machine for classification
purposes. The results are measured using a mean average precision metric across all of the
classes and presented as the first evaluation performed on this dataset.

The Hollywood2 dataset, described above, was selected for testing of the state-of-the-art method
as well as in the optimal analysis length obtaining experiments. The Hollywood2 dataset has been
chosen, because of two facts: (i) it contains the real-world actions performed by humans which are
generally valuable to be detected and (ii) the dataset is “hard” enough to be “solved”, the today’s
best algorithms reaches approximately the 0.6 of mean average precision [83, 62, 63, 82, 38, 3].

5.3 Off-line action recognition experiments

The main achievement of the experiments in this section is confirmation that the suitable combina-
tion of different features for action recognition (as described in Section 4.4) produces the state-of-
the-art results. This has been evaluated using one of the most challenging datasets Hollywood2[48]
available today. The following twelve action classes were evaluated, namely: answering the phone,
driving car, eating, fighting, getting out of the car, hand shaking, hugging, kissing, running, sitting
down, sitting up and standing up.

In our experiments, the clean part of the training dataset was used for classifiers’ training
procedure (823 samples). The automatic part of the training dataset was re-anotated and used
for validation purposes (810 samples). The original testing dataset (884 samples) was used for
measuring the solution using average precision for every class, over-all classes the mean average
precision is reported.

The following feature extractors were used in the experiment, in parentheses the associated list
of descriptors is stated, every combination extractor vs. descriptor was used as a standalone features
set plus all the dense trajectories descriptors were concatenated together used as well:

• Dense Trajectories (Trajectory, HOG, HOF, MBH),

• HesSTIP (ESURF)

• Cuboids (Cuboids)

• STIP (HOGHOF)

Some vocabularies were created using k-means algorithm with 12 iterations; this number presents
compromise between the processing duration and the output vocabulary achievement. For creating
those vocabularies the cca 2 millions of local low-evel features were used and were extracted from
all training videos of the dataset. Vocabulary sizes were set to 1000, 6000 and 8000, all possible
combinations, feature extractors vs. vocabularies sizes were used.

The soft-assignment approach, based on [61] as presented earlier in Equation (4.22), was used for
bag-of-words representation with the following parameters: σ = 1, the number of searched closest
vectors is 16; these values were evaluated in [22] and are suitable for bag-of-words creation from
space-time low-level features.

Bag-of-words representations generated from all the possible combinations feature extractors
vs. vocabularies become the input channels to the SVM creation process. SVMs were created as
described in chapter 4.4. The dataset used induces the multiclass classification. The one-against-rest
approach was used and no relation between classes has been considered.
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Table 5.1: Results of average precision of the four best performing experiments on the
validation dataset.

Selected
Action 1 2 3 4 BEST Classifier

answering the phone 0.379 0.299 0.322 0.423 0.423 4
driving car 0.571 0.62 0.554 0.578 0.62 2
eating 0.327 0.355 0.295 0.37 0.37 4
getting out of the car 0.377 0.237 0.304 0.273 0.377 1
running 0.629 0.683 0.736 0.702 0.736 3
sitting down 0.487 0.559 0.511 0.574 0.574 4
sitting up 0.286 0.204 0.385 0.331 0.385 3
standing up 0.486 0.55 0.394 0.527 0.55 2

fighting 0.625 0.594 0.55 0.561 0.625 1
hand shaking 0.493 0.541 0.439 0.594 0.594 4
hugging 0.355 0.339 0.417 0.369 0.417 3
kissing 0.531 0.630 0.594 0.609 0.630 2

mean average precision 0.462 0.468 0.458 0.478 0.484

The number of input channels in our experiment is 24 and the total number of possibilities is
then: (

24
1

)
+

(
24
2

)
+ · · ·+

(
24
24

)
' 16.7 . 106. (5.6)

We have searched about 0,1% of the desired space in a semi-automatic way and the four most
interesting results (combinations) for validation part of the dataset are presented in Table 5.1. The
average precision is reported for each class and the mean average precision is reported for the whole
validation dataset.

Table 5.2 represents the results for our class-based best input channel combinations (as shown in
Table 5.1) achieved using the test part of the Hollywood2 dataset in column OUR and it is compared
to the three other authors’ papers [82] and [49] and [80] which represent the today’s state-of-the-art
for Hollywood2 dataset.

Our combination-based solution outperformed all other state-of-the-art methods in four classes,
namely driving car, running, sitting down, standing up; in other casses, the solution does not reach
the state-of-the-art performance but it is still comparable.

As the performace of classifiers based on the combination of features is known after the validation
phase, best solution based on the combination of the features or other approach can be chosen
individually for each type of action; therefore, improvement in four out of twelve actions leads into
the best known classification mechanism shown in Table 5.2 as well.

5.4 Optimal length experiments

The purpose of the experiments performed in this section is the verification of the hypothesis about
the optimal analysis length proposed in Section 5.1.

We have used the pipeline presented in Chapter 4.4 and the Hollywood2 [48] dataset presented
in Chapter 5.2. This dataset, as mentioned earlier, contains twelve action classes from Hollywood
movies, namely: answering the phone, driving car, eating, fighting, getting out of the car, hand
shaking, hugging, kissing, running, sitting down, sitting up and standing up.

We investigated the recognition algorithm behavior in such a way that pieces of video containing
the action were presented to the algorithm at randomly selected positions inside the actions. For
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Table 5.2: Results of average precision of the selected classifiers, compared to the state-of-
the-art.

BEST
Action OUR Wang [82] Q. V. Le [49] Ullah [80] KNOWN

answering the phone 0.259 0.326 0.299 0.248 0.326
driving car 0.91 0.880 0.852 0.881 0.91
eating 0.491 0.652 0.597 0.614 0.491
getting out of the car 0.408 0.527 0.454 0.474 0.527
running 0.834 0.821 0.757 0.743 0.834
sitting down 0.655 0.625 0.594 0.613 0.655
sitting up 0.206 0.200 0.257 0.255 0.257
standing up 0.663 0.652 0.647 0.604 0.663

fighting 0.723 0.814 0.772 0.765 0.814
hand shaking 0.286 0.296 0.203 0.384 0.384
hugging 0.364 0.542 0.382 0.446 0.542
kissing 0.601 0.658 0.579 0.615 0.658

mean average precision 0.533 0.583 0.533 0.553 0.589

example, the actions were known to start earlier than the beginning of the processed piece of video,
and ended only after the end of the presented piece of video. For this purpose, we had to reannotate
the Hollywood2 dataset (all three its parts - train, autotrain and test) to obtain precise beginning
and ending frames of the actions.

In our experiments, we have been trying to depict a dependency between the length of video
shot, being an input to the processing, and the accuracy of the output. We have set the minimum
shot length to 5 frames, more precisely the 5 frames from which the space-time point features are
extracted. The maximum shot length was set to 100 frames and the frame step was set to 5 frames.

The space-time features extractor process N previous and N consequent frames of the video
sequence in order to evaluate the points of interest for a single frame. Therefore, 2*N should be
added to every figure concerning the number of frames to get the total number of frames of the
video sequence to be processed. In our case, N was equal to 4 so that, for example, the 5 frames
processed in Figure 5.1 mean 13 frames of the video.

A classifier has been constructed for every video shot length considered. The training samples
were obtained from the training part of the dataset in the following way: the information of the start
and stop position in the currently processed sample was used and large number of the randomly
selected subshots were obtained. The training dataset has 823 video samples in total and from each
sample, we extracted 6 subshots on average.

The actual evaluation of the classifier has been done four times in order to obtain the information
about reliability of the solution. Also, the above mentioned publications used the 823 samples for
evaluation purposes and we wanted our results to be directly comparable. The results shown in
Table 5.3 and Figure 5.1 present the average of the results of the four runs. For this purpose
we have randomly determined a position of starting frame of a testing subshot within a testing
sample four times. The above approach brings us two benefits - the final solution accuracy can be
measured using an average precision metric and the results obtained through the testing can be
easily comparable to the published state-of-the-art solutions. The results were compared with the
accuracy achieved on the video sequences with completely unrestricted size that are close to the
state-of-the-art [62].

The parameters for feature processing and classification purposes were as follows: the tested fea-
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Figure 5.1: Dependency of the average precision on the length of the shot achieved for
all classes contained in the Hollywood2 dataset. The dependency is split into 3 separate
charts in order to improve readability. It should be noted that the big marks indicating the
average action length shown in the charts for actions shorter than 100 frames.
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Table 5.3: Results of the experiments. The first four columns show the accuracy (average
precision) for the selected video sizes, the consequent column shows the reference accuracy
reached for unrestricted video size, and the final column shows the minimum number of
frames needed to achieve 90% of the precision achieved using the unrestricted video size.
Column description: A – Unrestricted video size accuracy, B – Number of frames to achieve
90% accuracy

Video size (frames) A B
Action 5 10 30 90

driving car 0.757 0.798 0.852 0.874 0.848 10
running 0.739 0.765 0.752 0.769 0.812 10
fighting 0.459 0.479 0.543 0.675 0.718 90
eating 0.2 0.203 0.309 0.498 0.326 25

kissing 0.599 0.541 0.540 0.535 0.597 5
getting out of the car 0.335 0.36 0.471 0.277 0.358 5
hugging 0.214 0.217 0.273 0.235 0.264 25
sitting up 0.142 0.179 0.138 0.17 0.163 10

standing up 0.721 0.758 0.612 0.273 0.598 5
sitting down 0.587 0.649 0.442 0.33 0.654 10
hand shaking 0.395 0.38 0.229 0.172 0.232 5
answering the phone 0.201 0.243 0.139 0.08 0.225 10
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ture extractor is the dense trajectories extractor, which produces four types of descriptors, namely:
HOG, HOF, DT and MBH. These four feature vectors were used separately. For each descriptor a
vocabulary of 4000 words was produced using the k -means method and the bag-of-words represen-
tation was produced with the following parameters: σ = 1, the number of searched closest vectors
is 16; these values and codebook size were evaluated in [62] and are suitable for bag-of-words cre-
ation from space-time low-level features. In the multi-kernel SVM creation process all four channels
(bag-of-words representations of HOG, HOF, DT and MBH descriptors) are combined together, no
searching for a better combination is performed.

The above described evaluation procedure was repeated for every class contained in the Holly-
wood2 dataset. For each class, we are presenting the graph of dependency between the video sample
shot length and the system best accuracy, as well as the figure showing the number of frames needed
to achieve 90% of state-of-the-art accuracy.

It should be noted that the first group of results (driving car, running, fighting, eating) corre-
sponds well to the expectation that the accuracy will be increasing with the length of the shot. The
second group (kissing, getting out of the car, huggung, sitting up) showed approximatelly constant
accuracy depending on the length. This was probably due to the fact that the actions in these
shots are recognized based on some short motions inside the actions. The final group (standing
up, sitting down, hand shaking, answering the phone) showed decreased accuracy depending on the
length. The reason is that the actions were too short (length shown using markers in Figure 5.1)
and so increasing the length of the shot only “increased noise” and did not bring any additional
information. The expectations were also not fulfilled for generally poorly recognised actions.

Based on our experiments, for example, the running activity can be recognized in 10 frames of
space-time features with 0.765 accuracy (90% of the state-of-the-art) which corresponds to the 18
frames in total and approximately 0.72s of real-time.

5.5 Summary and proposed future exploitation

The off-line experiments in Section 5.3 show that state-of-the-art results have been achieved. In
certain cases, the method even exceeds the state-of-the-art. This method will be referred to as
“extended off-line processing”. The extended off-line processing has been parametrized and used
for verification of the existence of an optimal analysis length of action (as described in Section 5.4).
In these experiments, the input size of video samples was restricted as needed by the verification
algorithm, and the processing used for obtaining the quality of partial solutions is reffered as “on-
line processing”. The optimal analysis lengths were obtained for each class in the Hollywood2
dataset. For 4 classes out of 12 in the Hollywood2 dataset, the on-line processing outperformed the
state-of-the-art off-line solution.

According to the results achieved, an exploitation is proposed. On-line processing could improve
the performance in two real problems:

• action recognition of the live video stream,

• searching of a huge video database.

When a live video stream is processed, an “unlimited” length of the video cannot be processed
because the an unlimited computation time would be required, and also the time required to reach
a decision would also be “unlimited”, which is impossible.

In live video stream processing systems, the decision needs to be made with a reasonable delay.
The goal is to reach a delay as close to the theoretical limit of zero, while an unlimited computation
time is also an unreachable hard limit. The length of a processed video has to be set rationally
and this length directly influences the actual detection delay. If the action length is much longer
than the processed sub-shot of the video, the algorithm will be able to detect an action from a few
beginning video frames of the action.

In the case of searching through huge databases, the same assertions as the ones in the previous
paragraph apply, with one exception. The action must be detected at the analysis position within
the sub-shot containing the action. A search through the huge database can be performed at any
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possible position; not only at the beginning of the action. This guarantees better quality of search
matches. The dependency evaluated in the on-line experiments depicts the relation between the
analysis action length and the solution quality which is achievable when sequences with restricted
length are used. Nevertheless, the conflict between the detection delay and the accuracy is still here.

The heuristically calculated “optimal analysis action length” is designed to help with the selec-
tion of a resonable analysis length because it achieves a good on-line solution quality (for example,
90% of off-line solution) while minimizing the analysis action length.
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Chapter 6

Conclusion

The goal of this thesis was to improve human action recognition. The state-of-the-art in human
action recognition has been explored, and an off-line recognition system based on multiple types of
space-time features was implemented. This off-line system improves upon existing human action
recognition solutions in certain situations.

The experiments presented in this thesis showed that the off-line solution was able to outperform
the stat-of-the-art off-line methods for 4 of 12 action types from the Hollywood2 dataset; the results
were comparable for the other 8 action types.

As the main contribution, the thesis explored a hypothesis that an optimal length of video-
segments for recognition of different actions for on-line processing exists. The optimality was defined
as a minimal video-segment length which provides close to off-line recognition quality (see Section
5.1). The existence of the optimal analysis length was verified experimentally by a novel algorithm
which finds the optimal segment lengths.

The proposed algorithm was used to find the optimal video-segment lengths for on-line recogni-
tion for the Hollywood2 dataset with allowable quality drop set to 10%. The performed experiments
showed that the optimal lengths exist for all actions in the Hollywood2 dataset and that 11 actions
can be detected by using 25 video frames and only one action (fighting) requires 90 video frames.
The on-line solution outperformed the off-line recognition as it was actually able to find segment
lengths which gave better results than the whole videos from the dataset. The experiments showed
that the actions can be divided into three basic groups: (i) the actions for which the recognition
quality increases with the segment length, (ii) the actions for which the recognition quality is nearly
constant for different segment lengths, (iii) the actions for which the quality decreases with increasing
segment length.

The evaluation was performed on a computer cluster due to the large amount of data and high
requirements for computational resources. When further using the on-line solution, where optimal
analysis length is used, the process is not so computationally demanding as above.

Future usage of results of this work includes the on-line detection in live video streams and
content-based search for large video databases. In both cases the smaller detection latency and
better accuracy can be achieved. The proposed verification algorithm shall be improved to be
able to reach higher efficiency and smaller computational demandingness while finding the optimal
analysis length. Overall, the proposed approach could be further adapted to allow automatical
conversion of a general off-line recognition system to an on-line system.
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points. In Zborńık pŕıspevkov prezentovaných na konferencii ITAT, september 2011, pages
39–45. Faculty of Mathematics and Physics, 2011.

[23] Raudies F., Mingolla E., and Neumann H. Active gaze control improves optic flow-based
segmentation and steering. PLoS ONE 7(6): e38446., 2012.
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Appendix A

Hollywood2 dataset sample images
The dataset contains these twelve action classes: answering the phone, driving car, eating, fighting,
getting out of the car, hand shaking, hugging, kissing, running, sitting down, sitting up and standing
up. All videos are obtained from hollywood movies, from an archive located in: ftp://ftp.irisa.
fr/local/vistas/actions/Hollywood2-actions.tar.gz. Subsequently, the illustrative examples
will be presented herein.

• driving car

• eating

71

ftp://ftp.irisa.fr/local/vistas/actions/Hollywood2-actions.tar.gz
ftp://ftp.irisa.fr/local/vistas/actions/Hollywood2-actions.tar.gz


• fighting

• getting out of the car

• hand shaking
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• hugging

• kissing

• running
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• sitting down

• sitting up
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• standing up

• answering the phone
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