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ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ
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Abstract

This thesis deals with probabilistic models for automatic speaker verification. In particular, the
Probabilistic Linear Discriminant Analysis (PLDA) model, which models i–vector representation
of speech utterances, is analyzed in detail. The thesis proposes extensions to the standard state-
of-the-art PLDA model. The newly proposed Full Posterior Distribution PLDA also models the
uncertainty associated with the i–vector generation process. A new discriminative approach to
training the speaker verification system based on the PLDA model is also proposed.

When comparing the original PLDA with the model extended by considering the i–vector
uncertainty, results obtained with the extended model show up to 20% relative improvement
on tests with short segments. As the test segments get longer (more than one minute), the
performance gain of the extended model is lower, but it is never worse than the baseline. Training
data are, however, usually available in the form of segments which are sufficiently long and
therefore, in such cases, there is no gain from using the extended model for training. Instead,
the training can be performed with the original PLDA model and the extended model can be
used if the task is to test on the short segments.

The discriminative classifier is based on classifying pairs of i–vectors into two classes rep-
resenting target and non-target trials. The functional form for obtaining the score for every
i–vector pair is derived from the PLDA model and training is based on the logistic regres-
sion minimizing the cross-entropy error function between the correct labeling of all trials and
the probabilistic labeling proposed by the system. The results obtained with discriminatively
trained system are similar to those obtained with generative baseline, but the discriminative
approach shows the ability to output better calibrated scores. This property leads to a better
actual verification performance on an unseen evaluation set, which is an important feature for
real use scenarios.
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Chapter 1

Introduction

Automatic speaker recognition (SRE) is a process of comparing bio-metric signals produced by
the human vocal tract and answering the question to whom the given signal belongs or simply
whether two signals were produced by the same individual.

Similarly to the DNA, image of the iris, contour lines of the fingerprints, etc. — voice
is a common type of bio-metric data, which every individual can produce and which is easy to
capture. Thanks to its nature of being easily obtained, the the bio-metric systems based on voice
find a broad use in law-enforcement and intelligence. This property, however, is not desired in
the authentication systems. Therefore, in such scenarios of using voice for authentication, the
voice verification is usually combined with other methods like knowing the secret password or
providing additional bio-metric signals. If the voice is to be a single source of bio-metric data and
the system knows the supposedly secret content of the speech and is able to use this knowledge,
then we consider the SRE system as text-dependent, otherwise we talk about a text-independent
system.

Speech is also a very complex signal carrying not only the desired content, but also other
various information. After it is produced by a vocal tract, which is characteristic to every
speaker and therefore it inputs most of the speaker-related information to the signal, it passes
through some environment to a point where it is recorded. This environment or channel has a
great effect on the quality of such signal, which causes the degradation in performance of SRE
systems. This behavior is, of course, an important topic for research and we will address it in
this work as well.

An SRE system is built with an assumption that the information relevant to the speaker
in the given recording is independent on the information related to channel, language, content
(in case of the text-independent system), etc. Current state-of-the-art systems are designed to
decouple the information contained in the signal into the speaker- and channel-related parts. As
already mentioned, the problem can be viewed as answering two types of questions: (i) Who is
speaking in this recording? — then we talk about the speaker identification or (ii-a) Is it the
same speaker speaking in these two (or even more) recordings? or (ii-b) Is this speaker speaking
in this recording? — then we talk about speaker verification.

Both questions (ii-a) and (ii-b) represent a so-called speaker verification trial. If the correct
answer is “yes” then the trial is called a target trial. If “no” is the correct answer, then we talk
about a non-target trial.

As we can see, speaker verification constitutes a two-class problem, where the task is to
decide whether a test utterance belongs to a given speaker, or, equivalently, whether a set of
recordings (e.g. one enrollment and one test utterance) belongs to the same speaker. These
two very similar formulations are equivalent, but they correspond to two different discriminative

1



1.1 Motivation and Contribution 2

approaches. We will address the latter formulation when describing a discriminative approach
later.

An example for the verification task can be a scenario widely used by a law enforcement.
Given some utterances belonging to a particular person, the goal is to search in a collection of
data and find the recordings corresponding to the given person. A speaker verification can be
turned into identification, by restricting the set of compared utterances.

Speaker identification is then a multi-class classification problem, where the task is to assign
a correct label to the utterance, where each label corresponds to one of the speakers from the
set of known speakers. The assumption, whether the test segment belongs to the set of known
speakers, constitutes two classification problems: the closed set identification — the segment is
always assumed to belong to one of the speakers, and the open-set identification — the segment
does not have to belong to any of the speakers. The open-set problem is a more difficult scenario.
If a new speaker is to be added to the known speaker set, a procedure called enrollment is carried
out. It consists of collecting a sufficient amount of speech data, assigning it a unique speaker
label and creating a corresponding speaker model.

1.1 Motivation and Contribution

My work on the topics of this thesis started when I was building subsystems for the NIST
SRE 2010 in the team of people from Agnitio, Brno and Crim (ABC). Later during the 2010
BOSARIS workshop held in Brno, I was working on the analysis of systems submitted by the
ABC team to the NIST SRE 2010. The main focus was on Probabilistic Linear Discriminant
Analysis using i–vectors as features as it showed excellent results in the evaluations. At that
time it was already becoming apparent that PLDA and i–vectors will become a new state-
of-the-art in SRE. I was also working with Lukáš Burget on one of the research directions,
where the goal was to formulate a discriminative way of training the PLDA-like model. The
goal of obtaining a discriminatively trained SRE system based on the PLDA was successfully
achieved [Burget et al., 2011, Cumani et al., 2011] and for a very short time (until the intro-
duction of the i–vector length normalization [Garcia-Romero, 2011]), this technique was pro-
viding the best results. I continued my work on discriminative training, dataset design and
calibration [Ferrer et al., 2012, Ferrer et al., 2011] as a member of BUT and SRI team in the
IARPA Biometrics Exploitation & Science Technology (BEST) program. Later on, I was work-
ing with Sandro Cumani on various topics in SRE, the main being the extension of the PLDA
model [Cumani et al., 2014], which takes into account the uncertainty about the i–vector. As
the uncertainty of the i–vector estimate depends mainly on the duration of speech segments from
which the i–vectors are extracted, the proposed extension turned out to be effective mainly for
short segments. At the same time when developing the PLDA extension, I was also working both
on a speaker- and language modeling, calibration and fusion [Plchot et al., 2013] for a DARPA
RATS (Robust Automatic Transription of Speech) project in a team led by BBN Technologies.
Working on RATS allowed me to compare generative PLDA with its discriminative counterpart
in a very noisy and degraded acoustic environment.

1.1.1 Claims

The goal of this thesis is to investigate the contemporary state-of-the-art techniques in text-
independent speaker verification field. The main focus is on the analysis and further improve-
ment of the Probabilistic Linear Discriminant Analysis (PLDA). The main contributions can be
summarized in the following points:
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• Analysis of the PLDA: I analyzed the performance of presented methods on various
datasets representing different levels of acoustic signal distortions and channel variabilities.
Also a direct comparison of the main techniques considered as the state-of-the-art before
introduction of PLDA is provided on a common dataset.

• Extension of the PLDA: The proposed extended PLDA model takes into account an un-
certainty of the input features, which improves performance on the short speech segments
with respect to the original PLDA model.

• Discriminative training of the PLDA: The proposed discriminative approach to PLDA
model training offers an interesting alternative to the currently preferred generative ap-
proach. Presented results suggest that the discriminatively trained PLDA model offers
well calibrated outputs and therefore poses as a viable option for a practical use.



Chapter 2

Gaussian Mixture Modeling of

Acoustic Features

The main role of the GMM is to estimate an underlying distribution of acoustic features extracted
from speech segments and inherently model the hidden classes, which are being formed by
individual speakers, various acoustic channels or some other common properties. This ability
of unsupervised modeling of classes is later exploited by a supervised algorithm focused on
extracting the information about the distributions of particular classes, e.g. those associated
with speaker identities.

Let us define a speech segment as a set of F -dimensional acoustic features: X = {x1x2 . . . xτ}.
A GMM [Bishop, 2006] is then defined as a weighted sum (mixture) of a set of C multivariate
normal distributions of the form:

p(x|G) =

C∑

c=1

w(c)N

(
x;µ(c),Σ(c)

)
, (2.1)

where p(x|G) is the probability of x given the GMM model G with C mixtures and w(c) are
individual mixture weights, also called mixing coefficients, satisfying the constraints that w(c) ≥
0 and

∑C
c=1w

(c) = 1. N(x;µ(c),Σ(c)) is a F -variate Gaussian component PDF with mean µ(c)

and covariance matrix Σ(c):

N

(
x;µ(c),Σ(c)

)
=

1

(2π)F/2|Σ(c)|1/2
e−

1
2
(x−µ(c))

T
Σ(c)−1

(x−µ(c)). (2.2)

The whole GMM G is then represented by parameters

λ =
〈
w(c),µ(c),Σ(c)

〉
with c = 1 . . . C, (2.3)

or more conveniently by the supervectors and the matrix of stacked parameters as:

λ = 〈w,µ,Σ〉 =

〈

w(1)

...

w(C)


 ,



µ(1)

...

µ(C)


 ,




Σ(1) 0 · · · 0

0 Σ(2) · · · 0
...

...
. . .

...

0 0 · · · Σ(C)




〉
(2.4)

. (2.5)
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It should be noted, that the covariance matrices can be full rank or constrained to be diagonal.
Sometimes, the parameters can be also shared among the Gaussian components. In general, the
configuration with full covariance matrices needs more training data to properly estimate all
the parameters. Often the GMM with larger amount of components with diagonal covariance
matrices is used instead of the configuration with full rank covariance matrices.

For evaluating the GMM model given the data, and therefore also for estimating its pa-
rameters, it is necessary to define the quantities associated with individual GMM components.
Having observed the data point xi, posterior probabilities p(c|xi)—also referred to as occupation

probabilities and shortly denoted as γ
(c)
i —can be computed using the Bayes rule:

γ
(c)
i =

w(c)N

(
xi;µ

(c),Σ(c)
)

∑C
c=1w

(c)N

(
xi;µ(c),Σ(c)

) . (2.6)

The configuration of the posterior probabilities for each feature vector is referred to as the
alignment of the data to the mixture components. In this text, we will always assume, that the
alignment of the feature vectors to Gaussian components is always based on UBM.

It is also convenient to define Baum-Welch statistics. Having our speech segment X which
consists of i = 1 . . . τ feature vectors of dimensionality F and the alignment of each feature
vector xi defined by (2.6), the Baum-Welsch [Kenny et al., 2007] statistics are defined as

N (c) =
τ∑

i=1

γ
(c)
i (2.7)

f (c) =
τ∑

i=1

γ
(c)
i xi (2.8)

S(c) =

τ∑

i=1

γ
(c)
i xixi

T . (2.9)

We refer to these as the zero-, the first-, and the second-order statistics (or cumulants) respec-
tively. For the simplification of the derivations, often the statistics centered around the UBM
mean are defined as

f̃ (c) = f (c) −N (c)µ(c) (2.10)

S̃(c) = S(c) − f (c)µ(c)T − µ(c)f (c)
T
+N (c)µ(c)µ(c)T (2.11)

For further simplification, the statistics can be stacked into the form of supervector and
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matrices as:

N =




N (1)I 0 · · · 0

0 N (2)I · · · 0
...

...
. . .

...

0 0 · · · N (C)I




f =



f (1)

...

f (C)




S =




S(1) 0 · · · 0

0 S(2) · · · 0
...

...
. . .

...

0 0 · · · S(C)


 ,

(2.12)

where the identity matrices in (2.12) have the same dimensionality as the feature vector. Stacked
centered statistics f̃ and S̃ are created according to the same scheme as their non-centered
version.

2.1 Maximum Likelihood Estimate of Parameters

Given enough training data and some initial GMM configuration λ(0), we want to estimate the
new parameters, which best matches the underlying distribution of the data. A possible approach
is to perform a Maximum-Likelihood (ML) estimate [Reynolds and Rose, 1995, Bishop, 2006]
and search for the solution of

λML = argmax
λ

p(X|λ) (2.13)

Assuming that the statistical independence of the frames/feature vectors, the likelihood of the
data X, given the model parameters λ, is given as

p(X|λ) =
τ∏

i=1

G(xi;λ) . (2.14)

Usually, the logarithm of the likelihood is required for evaluating the model and estimating the
parameters. Its basic form is given as

log p(X|λ) =
τ∑

i=1

log
C∑

c=1

w(c)N

(
xi;µ

(c),Σ(c)
)
. (2.15)
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For any choice of distributions qi(c) over the Gaussian components, we can rewrite this likelihood
as

log p(X|λ) =
τ∑

i=1

log p(xi|λ) =
τ∑

i=1

C∑

c=1

qi(c)

︸ ︷︷ ︸
1

log
p(xi, c|λ)

p(c|xi, λ)

qi(c)

qi(c)

=
τ∑

i=1

[
C∑

c=1

qi(c) log
(
w(c)N

(
xi;µ

(c),Σ(c)
))

−

C∑

c=1

qi(c) log qi(c) +

C∑

c=1

qi(c) log
qi(c)

γ
(c)
i

]
,

(2.16)

where the last term
C∑

c=1

qi(c) log
qi(c)

γ
(c)
i

= DKL(qi(c)‖γ
(c)
i ) (2.17)

corresponds to the Kullback-Leibler (KL) divergence between qi(c) and the posterior distribution

p(c|xi, λ) = γ
(c)
i . Hence, if we set qi(c) to the true posterior γ

(c)
i , the KL divergence vanishes

and the likelihood can be expressed as

log p(X|λ) =

τ∑

i=1

[
C∑

c=1

γ
(c)
i log

(
w(c)N

(
xi;µ

(c),Σ(c)
))

−

C∑

c=1

γ
(c)
i log γ

(c)
i

]
. (2.18)

Using the Baum-Welch statistics, we can further rewrite the log-likelihood [Kenny et al., 2004]
and get

log p(X|λ) =
C∑

c=1

[
N (c) log

1

(2π)F/2|Σ(c)|1/2

−
1

2
tr
(
Σ(c)−1

(
S(c) − f (c)µ(c)T − µ(c)f (c)

T
+N (c)µ(c)µ(c)T

))]

−

τ∑

i=1

C∑

c=1

γ
(c)
i log

γ
(c)
i

w(c)
,

(2.19)

which is the correct likelihood, if the statistics were collected with the true posterior distribution

γ
(c)
i . If the true posterior distribution is not available and is provided via different model, e.g.

Universal Background Model (UBM), then this function serves as an approximation and a lower-
bound of the correct likelihood, since the omitted KL divergence is always non-negative.

Unfortunately, direct optimization of the parameters given the data is analytically in-
tractable. However, ML estimates of the parameters can be obtained iteratively by means
of EM algorithm [Dempster et al., 1977, Bishop, 2006].

For the E-step of the EM algorithm, the auxiliary function can be constructed from (2.19)
as

QGMM(λ, λ(0)) =
C∑

c=1

[
N

(c)
λ0

log
1

(2π)F/2|Σ(c)|1/2

−
1

2
tr

(
Σ(c)−1

(
S
(c)
λ0

− f
(c)
λ0

µ(c)T − µ(c)f
(c)
λ0

T
+N

(c)
λ0

µ(c)µ(c)T
))]

+
C∑

c=1

logw(c).

(2.20)
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By fixing the alignment of the data using the current model estimate λ(0), we obtain γi
(c)
λ0

and

collect the statistics {N
(c)
λ0

, f
(c)
λ0

, S
(c)
λ0
}. In the M-step of the algorithm, the new ML estimate of

parameters is then computed as

θML = argmax
λ

QGMM(λ, λ(0)) (2.21)

for which the update formulas are given as:

µ
(c)
ML =

1

N (c)
f (c)

Σ
(c)
ML =

1

N (c)
S(c) − µ

(c)
MLµ

(c)
ML

T

w
(c)
ML =

N (c)

τ
.

(2.22)

Repeating the E and M steps guarantees not to decrease the likelihood and iterating is usually
stopped when the likelihood increase in two consecutive iterations is smaller than some conver-
gence threshold. For more detailed derivations following roughly our notation, we refer the kind
reader to [Glembek, 2012].

2.2 Latent Variable Models for Speaker Recognition

In this Section, we will describe essential techniques based on Factor Analysis [Bishop, 2006].
These techniques build upon the MAP estimate of the speaker-dependent GMM, while taking
into account either inter- or intra-session variability or both of them at the same time. To
study the problematic in detail, we refer the reader to the following publications [Kenny, 2005,
Kenny et al., 2007, Kenny et al., 2005].

Let us begin with a brief description of MAP adaptation in terms of hidden variable models
by following [Kenny, 2005]. Continuing with the notation of GMM from previous section, we
will define the a speaker-dependent supervector g(s) as a latent variable model for speaker s as

g(s) = µ+Dz(s). (2.23)

The speaker-dependent supervector is distributed according to g ∼ (µ,DDT) and a CF × S

matrix D acts as a prior on the UBM mean supervector µ. Latent variable zs is a S-dimensional
speaker-dependent hidden vector distributed according to the standard normal distribution,
N(z|0, I). The S in the dimensionalities of the variabilities denotes an arbitrary positive number
and will be discussed later in the end of Section 2.2.1.

The log-likelihood of data and hidden variable is based on the general GMM log-likelihood
function as defined in Section 2.1. We will assume fixed data alignment [Kenny, 2005] and
represent the log-likelihood by the means of the Baum-Welch statistics collected using UBM.
As already discussed in the previous section, this is an approximated log-likelihood acting as
a lower-bound to the real log likelihood. Using the Universal Background Model to collect the
statistics for all observations X = {x1x2 . . .xτ} corresponding to the speaker s, we get

log p(X|D, z) = G+H(z)

G =

C∑

c=1

(
N

(c)
X

log
1

(2π)F/2|Σ(c)|1/2

)
−

1

2
tr
(
Σ−1S̃X

)

H(z) = zTDTΣ−1f̃X −
1

2
zTDTΣ−1NXDz,

(2.24)
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where Σ is a block diagonal covariance matrix of the UBM composed as in (2.3), NX, f̃X and S̃X

are stacked zero-, first- and second-order centered statistics collected with the UBM according
to (2.8), (2.10) and (2.7).

The joint log-likelihood of the observed data X and the hiden variable is given by

log p(X, z|D) = log p(X|D, z)p(z)

= KΣ + (zTDTΣ−1f̃X −
1

2
zTDTΣ−1NXDz−

1

2
zTz),

(2.25)

where the term KΣ is a constant (also referred to as a normalization term), which does not
depend on z and D. Leaving out the KΣ, the posterior of the hidden variable z, given the data
X observed for speaker s, is given as:

log p(z|X) ∝ log p(X, z) ∝ (zTDTΣ−1f̃X −
1

2
zTDTΣ−1NXDz−

1

2
zTz). (2.26)

By completion of squares, the posterior for z is also Gaussian

p(z|X) ∼ N(z|µz,Γ
−1
z ) (2.27)

with precision matrix and mean given by

Γz = (DTΣ−1NXD+ I) (2.28)

µz = Γ−1
z DTΣ−1f̃X (2.29)

The mean of supervector posterior p(g|X) (i.e. its MAP estimate) is the given as

ĝ = µ+Dµz

= µ+D(DTΣ−1NXD+ I)−1DTΣ−1f̃X

= µ+ (NX +Σ(DDT)−1)−1f̃X

(2.30)

2.2.1 Training Prior Hyper-Parameters

In the previous section, we discussed how to artificially supply a prior by means of another
model (UBM). Now, we will describe how to train it from the data in a ML fashion. The
training objective is to maximize the likelihood of the training data p(X|D, z). Similarly to
the GMM training, the ML estimate of the parameters can be obtained by means of EM algo-
rithm [Brümmer, 2009]. While the other parameters {µ,Σ,w} could be also re-estimated, here
we will consider, re-estimating only the matrix D. Taking the z as a hidden variable, the EM
auxiliary function is then constructed as

Q(D,D0) =
∑

s

〈log p(Xs, z|D0)〉z|Xs,w|D0
, (2.31)

where p(Xs, z|D0) is the joint probability of the observations Xs for speaker s. Considering that

p(Xs, z|D) = log p(Xs|D, z) + log p(z) (2.32)

and p(z) being set to a standard normal distribution and kept fixed, there is no need to re-
estimate parameters of p(z), as any changes in the prior distribution can be equivalently accom-
plished by appropriately changing µ and D. Therefore, we can simplify the auxiliary function
as

Q(D,D0) =
∑

s

〈log p(Xs|z,D0)〉z|Xs,D0
. (2.33)
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By looking at the expression for the joint likelihood (2.25) and realizing that KΣ does not
depend on D, we can further express the auxiliary function as

Q(D,D0) =
∑

s

〈
zTDTΣ−1f̃Xs

−
1

2
zTDTΣ−1NXs

Dz

〉

z|Xs,D0

=
∑

s

tr

[
Σ−1

(
f̃Xs

〈z〉DT −
1

2
NXs

D〈zzT〉DT

)]
,

(2.34)

where the expectations are taken over z|Xs,D0. Now, in order to minimize the auxiliary function,
we can take its derivative with respect to D and set it to zero:

∂

∂D

∑

s

tr

[
Σ−1

(
f̃Xs

〈z〉DT −
1

2
NXs

D〈zzT〉DT

)]
= 0, (2.35)

which gives ∑

s

Σ−1
(
f̃Xs

〈z〉 −NXs
D〈zzT〉

)
= 0. (2.36)

We need to solve the linear system

D(c)
∑

s

N
(c)
Xs

〈zXs
zTXs

〉 =
∑

s

f̃
(c)
Xs
〈zTXs

〉, (2.37)

where c is spanning the rows of the matrices corresponding to individual UBM components.
The expectation over the hidden variable 〈z〉 is given as a mean of the posterior distribution of

z given the D0 (see (2.29)) and 〈zzT〉 = 〈z〉〈zT〉 + Γ
(−1)
z , where Γ

(−1)
z is the covariance matrix

(see (2.28)) of the posterior of z given D0 . Finally, the closed-form solution for computing the
hyper-parameters is :

Dc =
∑

s

[
f̃
(c)
Xs
µzXs

(N
(c)
Xs

(µzXs
µz

T
Xs

+ Γz
(−1)
Xs

))−1
]
. (2.38)

The framework described in this section allows for setting different dimensionalities and con-
straints for D. In theory, we could take D as a full CF ×CF matrix. This would be impractical,
since the amount of parameters to train would be very large. For this reason, D is often con-
strained to be diagonal or low rank. Taking D as a low-rank CF × S matrix constraints the
speaker-dependent supervector to lie in a S-dimensional subspace, which is a widely used ap-
proach. The use of the subspace modeling will be shown in the following sections.



Chapter 3

Probabilistic Linear Discriminant

Analysis and i–vectors

In the last four years, SRE systems based on the i–vectors and Probabilistic Linear Discrimi-
nant Analysis (PLDA) became state-of-the art. In PLDA model, an i–vector φ is considered
to be a realization of a random variable Φ, whose generation process can be described in terms
of a set of latent variables. Different PLDA models exist, which use different numbers of hid-
den variables as well as different priors. The two favourite models are heavy-tailed PLDA
(HTPLDA)[Kenny, 2010], where Student’s t-distribution is imposed on the latent variables and
the PLDA [Prince and Elder, 2007], which assumes Gaussian priors.

3.1 I–vector approach

The main idea behind the i–vector model is to transform the large utterance specific GMM
supervector s into a small subspace, while retaining most of the important variability. From the
perspective of speaker recognition, the supervector s contains both the speaker and inter-session
characteristics of a given speech segment and is modeled according to:

s = u+Tw , (3.1)

where u is the UBM GMMmean supervector, composed of C GMM components of dimension
F . T is a low-rank rectangular matrix representing M bases spanning the sub–space including
important inter and intra–speaker variability in the supervector space. The subspace defined by
the matrix T is often referred to as ”i–vector subspace” or ”total variability subspace”. Vector
w is a realization of a latent variable W, of size M , having a standard normal prior distribution

W ∼ N(0, I). (3.2)

The principle of i–vectors resides in tying the latent variable to every utterance, independent
of speaker. The same steps as already described for the subspace modeling in Section 2.2 will
apply also to i–vectors.

Ultimately, the aim is to estimate the parameters of the posterior distribution of the latent
variable W for each set of τ input features extracted from the given speech segment X =
{x1x2 . . .xτ}. Assuming the standard normal prior for W, the posterior distribution is also
Gaussian:

W|X ∼ N(φX,Γ
−1
X

). (3.3)

11
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with mean vector and precision matrix as in (2.28 and 2.29):

φX = Γ−1
X

TTΣ−1f̃X

ΓX = I+
C∑

c=1

N
(c)
X

T(c)TΣ(c)−1
T(c) , (3.4)

respectively. As in chapter 2, in these equations, N
(c)
X

(2.7) are the zero–order statistics collected
with the UBM for the set of feature vectors in X, T(c) is the F×M sub-matrix of T corresponding

to the c–th mixture component such that T =
(
T(1)T, . . . ,T(C)T

)T
, and f̃X is the supervector

stacking the first–order statistics f̃
(c)
X

, centered (see (2.10)) around the corresponding UBM
means, Σ(c) is the UBM c–th covariance matrix, Σ is a block diagonal matrix composed of

matrices Σ(c), and γ
(c)
t is the occupation probability of feature vector xt for the c-th Gaussian

component.
The i-vector φ – a low dimensional fixed-length vector, which represents the segment X of a

variable length, is then computed as the MAP point estimate of the variable W, i.e., the mean
of the posterior distribution PW|X(w).

A Maximum-Likelihood estimate of matrixT can be obtained by following the steps from Sec-
tion 2.2.1. Each submatrix Tc can be re-estimated as in (2.38):

Tc =
∑

X

[
f̃
(c)
X
φX(N

(c)
X

(φXφ
T
X + Γ−1

X
)−1
]
. (3.5)

Note that the we do not require any speaker labels and theTmatrix is trained in an unsupervised
way. The GMM subspace framework is then used as a feature extractor of the low-dimensional
vectors containing most of the relevant variability from the original data – both useful and
harmful for the target classification task. The presence of the unwanted variability in the
i–vectors has to be dealt with when using i–vectors as features for classifiers or when using
i–vectors directly for scoring.

3.2 Probabilistic Linear Discriminant Analysis

All PLDA models for speaker recognition [Kenny, 2010, Brümmer and de Villiers, 2010] repre-
sent the speaker identity in terms of a latent variable Y which is assumed to be tied across
all segments of the same speaker. Usually, inter–speaker variability for a speech segment Xi

is represented by hidden variable Xi. The hidden variables Xi are assumed to be i.i.d. with
respect to the speech segments.

In the most common PLDA model, an i–vector φ is the sum of multiple terms [Kenny, 2010]:

φ = m+Uy +Vx+ e (3.6)

where m is the i–vector mean, y is a realization of the speaker identity variable Y, x is the
realization of channel variable X and e is the realization of the residual noise E.

The role of matrices U and V is to constrain the dimension of the sub–spaces for y and x,
providing the bases for a speaker subspace, often called ”eigenvoices“ and bases for a channel
subspace, usually called ”eigenchannels”. In this work, we will assume standard normal priors
for the speaker identity variable Y and channel variable X. The noise E is assumed to be
Gaussian distributed with the diagonal covariance matrix of the residual data variability D−1:
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Y ∼ N(0, I) (3.7)

X ∼ N(0, I) (3.8)

E ∼ N(0,D−1). (3.9)

In case of this PLDA model, an across-class covariance matrix is defined as Σac = UTU,
which is often low rank and limits the speaker variability to live in a subspace spanned by the
columns of the reduced rank matrix U. Similarly, a within-class covariance matrix is defined as
Σwc = VTV +D−1.

3.3 Trial scoring

Given the sets of enrollment and test segments forming a speaker verification trial, we obtain
a speaker verification score. In this section, we will define the score as a log-likelihood ratio
between the hypotheses that all of the segments were generated by the same speaker and that
each set of segments was generated independently by a different speaker.

Since i–vectors are assumed independent given the hidden variables, the likelihood that a set
of n speech segments X1 . . .Xn belongs to the same speaker (hypothesis Hs) can be evaluated
as:

l (X1 . . .Xn|Hs) = PΦ1...Φn
(φ1 . . .φn|Hs)

=

∫

y

∫

x1

· · ·

∫

xn

n∏

i=1

[
PΦi|Y,Xi

(φi|y,xi)PXi
(xi) dxi

]
· PY(y)dy , (3.10)

where φi is the i–vector extracted from segment Xi, PΦ1...Φn|Hs
(φ1 . . .φn) is the joint proba-

bility of the i–vectors given the same speaker hypothesis Hs, PX(x) and PY(y) are the prior
distributions for X and Y, respectively. PΦ|Y,X (φ|y,x) is the conditional distribution of an
i–vector given the hidden variables. It is related to the distribution PE(e) of the noise term by
PΦ|Y,X (φ|y,x) = PE(φ −m−Uy −Vx).

In order to obtain an inference about the speaker identity, we ask the question, whether a set
of n enrollment segments Xe1 . . .Xen for a known (target) speaker and a set of m test segments
of a single unknown speaker Xt1 . . .Xtm belong to the same speaker or not. Specifically, we want
to compute the log-likelihood ratio of the segments being observed under the same speaker and
different speaker hypotheses

s = log
l (Xe1 . . .Xen ,Xt1 . . .Xtm |Hs)

l (Xe1 . . .Xen ,Xt1 . . .Xtm |Hd)
. (3.11)

Since speaker factors are assumed independent, the speaker verification log–likelihood ratio
s can be formulated as:

s = log
l (Xe1 . . .Xen ,Xt1 . . .Xtm |Hs)

l (Xe1 . . .Xen |Hs) l (Xt1 . . .Xtm |Hs)
. (3.12)

It is worth noting, that the log-likelihood ratio calculated in this way is symmetric in terms
of swapping the enroll and test sets. Also note that standard i–vector, which is extracted by
MAP point estimate of the posterior distribution of W given X, and classified by PLDA, does
not embed the intrinsic uncertainty of its estimate. We will address this fact in the next chapter,
where we will extend the PLDA model and no longer consider the segment X being represented
by a single i–vector, but to the i–vector distribution W|X.
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3.4 Simplified PLDA Model

It is convenient to assume that the noise term E has a full covariance matrix, so that the terms
Vx and e in (3.6) can be merged. Therefore, in our approach a distribution of i–vector φ is
modeled as:

φ = m+Uy+ e . (3.13)

In this model, we restrict only the speaker variability to reside in the subspace spanned by the
reduced rank matrix U. The across class covariance matrix is again defined as Σac = UTU.
Channel variability is then modeled by a full rank within class covariance matrix Σwc = Λ−1.
Speaker factors and the residual noise priors are assumed to be Gaussian, i.e.:

Y ∼ N(0, I) , E ∼ N(0,Λ−1) , (3.14)

where Λ is the precision matrix of noise E. According to (3.13) and (3.14), the conditional
distribution of an i–vector random variable Φ given a value y for the speaker identity Y is:

Φ| (Y = y) ∼ N(m+Uy,Λ−1) . (3.15)

Omitting the channel factors, which in our model are now embedded in the noise term, the
likelihood that the n speech segments X1 . . .Xn belong to the same speaker can be computed by
means of a simplified expression of (3.10) as:

l(X1 . . .Xn|Hs) = PΦ1...Φn
(φ1 . . .φn|Hs)

=

∫

y

n∏

i=1

PΦi|Y(φi|y)PY(y)dy . (3.16)

3.4.1 Closed-Form Solution for Scoring

In order to compute the likelihood of a set of n i–vectors φ1 . . .φn (or corresponding speech
segments X1 . . .Xn, we observe that the joint log-likelihood of the i–vectors and the hidden
variables is:

logPΦ1...Φn,Y(φ1 . . .φn,y|Hs) =
n∑

i=1

log PΦ|Y(φi|y) + logPY(y)

=

n∑

i=1

[
−
1

2
(φi −m−Uy)TΛ (φi −m−Uy)

]
+

1

2
yTy + k , (3.17)

where k is a constant collecting the terms that do not depend on speaker identity y. Since
equation 3.17 is a quadratic function, using “completion of squares”, we can observe that the
posterior distribution of Y given a set of i–vectors is Gaussian

Y|Φ1 . . .Φn ∼ N(ŷ,P−1), (3.18)

with precision matrix and mean:

P = I+UTΛU

ŷ = P−1UT
n∑

i=1

Λ (φi −m) . (3.19)
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The likelihood that a set of segments belongs to the same speaker can be written as:

PΦ1...Φn
(φ1 . . .φn|Hs) =

P (φ1 . . .φn|y0)P (y0)

P (y0|φ1 . . .φn)
, (3.20)

where y0 is an arbitrary vector, which does not cause the denominator to be zero. For the
convenience, we can set the y0 = 0, so that Uy0 = 0 and derive a closed form solution for the
same speaker hypothesis [Brümmer and de Villiers, 2010]:

log PΦ1...Φn
(φ1 . . .φn|Hs) =

n∑

i=1

[
1

2
log |Λ| −

M

2
log 2π −

1

2
(φi −m)TΛ(φi −m)

]

−
1

2
log |P|+

1

2
ŷTPŷ −

S

2
log 2π , (3.21)

where M is the i–vector dimension, and S is the speaker factor dimension.



Chapter 4

Full Posterior Distribution PLDA

Model

In this chapter, we will demonstrate, how to extend the standard PLDA model, where we
considered the utterance to be sufficiently well represented by a single i–vector. We will show
that the simple and effective PLDA framework can still be used even if a speech segment is no
more represented by a single i–vector but by its posterior distribution. In particular, we will
derive the formulation of likelihood for a standard Gaussian PLDA model based on the i–vector
posterior distribution, and propose a new PLDA model where the inter–speaker variability is
assumed to have an utterance–dependent distribution. We will show that it is possible to rely
on the standard PLDA framework simply replacing the PLDA likelihood definition.

It is well known, that the goodness of the i–vector estimate depends mainly on the covariance
of the distribution, which accounts for the “uncertainty” of the i–vector extraction process. This
ucertainity of the i–vector estimate is however not exploited by many standard and popular clas-
sifiers based on i–vectors, such as the ones based on cosine distance scoring [Dehak et al., 2010],
PLDA [Kenny, 2010], discriminative PLDA [Burget et al., 2011] or SVMs [Cumani et al., 2013].

The i–vector covariance depends on the zero–order statistics estimated using a UBM for the
set of observed features (see equation (3.4) in Chapter 3.1). These statistics are affected by
several factors such as the noise level, the channel characteristics, and the acoustic content of
the observed features, but the predominant factor is the number of the observed feature frames
– duration of a given utterance. Shorter utterances tend to produce larger covariances, so that
i–vector estimates become less reliable.

4.1 Incorporating the I–vector Posterior Distribution into

PLDA

The standard i–vector, which is extracted by MAP point estimate of the posterior distribution of
W given X does not embed the intrinsic uncertainty of its estimate. Remembering the likelihood
computation for the standard PLDA (see 3.10), we can extend this model by considering all
possible i–vectors, which correspond to the speech segments X1 . . .Xn.

We refer to this new model as the PLDA based on the “Full Posterior Distribution” (FPD–
PLDA) of W given X. As previously mentioned, we now assume that every segment X is no
represented by a single i–vector corresponding to the most likely value of the latent variable w

in the i–vector model (3.1). Instead segment X will be represented by the i–vector extractor
distribution W|X (see (3.3)). Therefore, the uncertainty in i–vector estimate will be taken into

16



4.2 Extending the Classical Simplified PLDA 17

account. In the following text, we will refer to the posterior distribution W|X simply as to
i–vector posterior distribution.

The PLDA model allows computing the likelihood of a speech segment given a realization
w of the random variable W|X. The likelihood of a set of segments X1 . . .Xn, thus, can be
evaluated by integrating the PLDA likelihood (see equations 3.10 and 3.17) over all possible
realizations following the posterior distribution W|X1 . . .Xn.

l (X1 . . .Xn|Hs) =

∫

w1

· · ·

∫

wn

PW1...Wn
(w1 . . .wn|Hs)

n∏

i=1

[
PWi|Xi

(wi)dwi

]
, (4.1)

where the first factor is the likelihood of the segments according to the original PLDA model
given realizations w1, . . . ,wn of the i–vector posterior random variables, computed as in (3.10),
and the second factor is the posterior probability of realizations w1, . . . ,wn representing seg-
ments X1 . . .Xn according to the i–vector extractor model. Using the form of (3.10) in (4.1),
the likelihood can be rewritten as:

l (X1 . . .Xn|Hs) =

∫

w1

· · ·

∫

wn

∫

y

∫

x1

· · ·

∫

xn

n∏

i=1

[
PWi|Y,Xi

(wi|y,xi)

· PXi
(xi)PWi|Xi

(wi) dxidwi

]
PY(y)dy . (4.2)

It is worth noting that, if the posterior for W|X is replaced by a delta distribution centered
in the posterior mean δ(φX), the likelihood of the original PLDA model using MAP–estimated
i–vectors, given by (3.10), is obtained.

4.2 Extending the Classical Simplified PLDA

We will continue with the derivations using the simplified PLDA model introduced in the pre-
vious chapter (3.4). Starting from the point where we introduced the likelihood of a set of
segments given the same speaker hypothesis in 3.16, we introduce the full i–vector posterior into
the equation and we get:

l (X1 . . .Xn|Hs) =

∫

wi

· · ·

∫

wn

∫

y

PY(y) ·

n∏

i=1

[
PWi|Y(wi|y)PWi|Xi

(wi)dwi

]
dy

=

∫

y

PY(y)
n∏

i=1

[ ∫

wi

PWi|Y(wi|y)PWi|Xi
(wi)dwi

]
dy , (4.3)

According to the Gaussian assumptions given in (3.3) and (3.14), the inner integral can be
computed as

∫

wi

PWi|Y(wi|y)PWi|Xi
(wi)dwi =

∫

wi

1

(2π)
M

2
∣∣Λ−1

∣∣ 12
e−

1
2
(wi−m−Uy)TΛ(wi−m−Uy)

·
1

(2π)
M

2
∣∣Γ−1

i

∣∣ 12
e−

1
2
(wi−φi)

TΓi(wi−φi)dwi , (4.4)
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where φi and Γi are the mean and precision matrix of Wi|Xi computed as in (3.4). Integral
(4.4) can be interpreted as the convolution of two Gaussian distributions, leading to:

l(X1 . . .Xn|Y = y) =
n∏

i=1

1

(2π)
M

2
∣∣Λ−1 + Γ−1

i

∣∣ 12
(4.5)

· e(φi−m−Uy)T(Λ−1+Γ
−1
i )

−1
(φi−m−Uy) .

Comparing (4.5) and (3.17), we can see that now the covariance matrix of noise becomes segment-
dependent as [Λ−1 + Γ−1]. Considering the similarity of both models, we can say that the
FPD-PLDA can be equivalently represented (likelihood calculation can be “similated”) by the
standard PLDA modeling the usual i–vectors (i.e. i–vector posterior means), while assuming
modified utterance dependent prior imposed on residual noise

Ei ∼ N
(
0,
[
Λ−1 + Γ−1

i

])
. (4.6)

4.3 Scoring with FPD-PLDA

The log–likelihood that a set of segments belongs to the same speaker can be obtained by means
of the same steps followed for the standard Gaussian PLDA model, just using the modified
likelihood in (4.5). The new PLDA model can be described as:

φ = m+Uy+ e , (4.7)

as in (3.13), but with an segment–dependent distribution of the residual noise E . The i–vector
associated to speech segment Xi is again the mean φi of the i–vector posterior Wi|Xi, but the
priors of the PLDA parameters are given by:

Ei ∼ N(0,Λ−1 + Γ−1
i ) ∼ N(0,Λ−1

eq,i) ,Y ∼ N(0, I) , (4.8)

where
Λeq,i =

(
Λ−1 + Γ−1

i

)−1
. (4.9)

In the following text, to simplify the notation, we will refer to distributions without explicitly
naming the corresponding hidden variable, e.g., we will write P (y) rather than PY(y).

To compute the likelihood of a set of n i–vectors φ1 . . .φn (i.e., of the set of speech segments
X1 . . .Xn), we follow the same steps as in the previous section on the standard PLDA. Similarly
to 3.17, we observe that the joint log–likelihood of the i–vectors and the hidden variables is:

logP (φ1 . . .φn,y|Hs) =

n∑

i=1

log P (φi|y) + logP (y)

=
n∑

i=1

[
−
1

2
(φi −m−Uy)TΛeq,i (φi −m−Uy)

]
(4.10)

+
1

2
yTy+ k ,

The posterior distribution of y given a set of i–vectors is again Gaussian:

y|φ1 . . .φn ∼ N(ŷ,P−1), (4.11)
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with parameters:

P = I+
n∑

i=1

UTΛeq,iU (4.12)

ŷ = P−1UT
n∑

i=1

Λeq,i (φi −m) . (4.13)

The likelihood of a set of segments belonging to the same speaker can be written as

P (φ1 . . .φn|Hs) =
P (φ1 . . .φn|y0)P (y0)

P (y0|φ1 . . .φn)
, (4.14)

which is the same form as in the original PLDA and setting y0 = 0 for the convenience will
produce the similar equation to (3.21). Using (4.11), and (4.5) we finally get

log P (φ1 . . .φn|Hs) =
n∑

i=1

[
1

2
log |Λeq,i| −

M

2
log 2π −

1

2
(φi −m)TΛeq,i(φi −m)

]

−
1

2
log |P|+

1

2
ŷTPŷ −

S

2
log 2π , (4.15)

where M is the i–vector dimension, and S is the speaker factor dimension. Again that the
difference to the standard PLDA lies in the segment-based Λeq,i, which greatly affect the com-
putational complexity of scoring.

4.4 Parameter Estimation

The model presented in (4.7) allows obtaining a simple expression for computing the log–
likelihood ratio of a speaker recognition trial. However, it does not allow the update formulas
to be easily derived. An equivalent expression of (4.7), where the contributions of the i–vector
posterior covariance and of the residual noise are decoupled, is more suitable for the estimation
of model parameters [Kenny et al., 2013]. To this extent, the segment–dependent residual term
Ei can be written as:

Ei = CiXi +E , (4.16)

where Ci is is given by the Cholesky decomposition CiC
T
i = Γ−1

i , Xi is a standard Gaussian
distributed random variable, Xi ∼ N(0, I), and E is the PLDA residual term introduced in
(3.14). The corresponding PLDA model is then given by:

φi = m+Uy+Cixi + ei , (4.17)

where xi is a realization of Xi. It is worth noting that (4.17) formally corresponds to the PLDA
model in (3.6) with the channel sub–space matrix V replaced by a segment–dependent matrix
Ci. The same steps to derive the EM algorithm for the PLDA model (3.6) can be easily modified
to estimate the parameters of the FPD–PLDA model. The details of the derivation of the EM
algorithm can be found in [Kenny et al., 2013] or [Brümmer, 2010] with modifications related
to this model.
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4.5 I–vector Pre-Processing

We assume that i–vectors are standard-normal distributed and both speaker and channel effects
modeled by the Gaussian PLDA are additive, statistically independent and normally distributed.
In [Kenny, 2010], Patrick Kenny clearly demonstrated that these assumptions are not satisfied,
which leads to a sub-optimal performance of the model. Additionally the score normalization was
needed (s-norm) to obtain better results contradicting the intuition that a good generative model
should produce well calibrated likelihood ratios which do not need to be further normalized.

A simple method of normalizing i–vectors to suit the Gaussian PLDA model was introduced
in [Garcia-Romero, 2011]. The normalization generally consists of two steps: data whitening
and length normalization. Whitening is the process where we enforce the total covariance matrix
of i–vectors to be identity. The whitening can be performed as

φwht = D1/2ETφ, (4.18)

where E and D are the orthogonal matrix of eigenvectors (in columns of E) and diagonal
matrix of eigenvalues of the total covariance matrix estimated on training i–vectors, respectively.
Length normalization is a nonlinear transformation where we divide each i–vector by its norm
and transform it to a vector of unit length:

φnorm =
φ

‖φ‖
. (4.19)

4.5.1 Length Normalization

Performing a transformation of the data into the unit length indeed again violates the Gaussian
assumptions as the samples drawn from the high-dimensional standard normal Gaussians lie
far away from the unit sphere. In fact, the samples are mostly present in a thin shell of a
multidimensional sphere, of which distance from the origin is increasing with the dimensionality
of data. If we are considering 600−dimensional i–vectors and knowing that the distribution of
lengths of standard-normal distributed i–vectors follows Chi distribution, inner radius would be
approximately 24 (see the mode of the Chi distribution in Figure 4.1).

When comparing the actual lengths of the i–vectors extracted from the training data and
held out evaluation data, we observe completely different distributions of the lengths. In Fig-
ure 4.1, we present a situation of the i–vectors extracted for the Domain Adaptation Chal-
lenge [MITLL, 2103]. There are three different datasets (training, adaptation and evaluation set)
used in the Adaptation Challenge coming from various LDC data collections. The training set
consists of all telephone calls from the all speakers taken from Switchboard-I and Switchboard-II
(all phases) corporas. The adaptation set is composed of all telephone calls from all speakers
taken from the NIST SRE data collections from years 2004, 2005, 2006 and 2008. Finally, the
evaluation set is the telephone data from NIST SRE 2010 evaluations.

Not only we can observe a considerable shift in the lengths distributions of the individual
databases, but all distributions have a longer right tail. The PDF of Chi distribution with 600
degrees of freedom representing the distribution of 600 dimensional standard normal distributed
vectors is depicted in black color. As the i–vector extractor was trained on the training data,
the i–vector length distribution of this dataset is closest to the expected distribution.

These shifts between datasets indeed lead to problems. As pointed out in
[Garcia-Romero, 2011], the shift in the i–vector lengths would introduce a global scaling in
the obtained scores (see equations 3.21 or 5.10). Scaling could be partly recovered by means of
the linear calibration. However, especially in the cases, when the evaluation data are composed
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Figure 4.1: Histograms of the i–vector length distributions of three sets of Domain Adaptation
Challenge. A probability density function of Chi distribution with 600 degrees of freedom
depicted in black represents the distribution of 600 dimensional standard normal distributed
vectors.

of recordings coming from different sources, there would be more such scalings and one global
calibration would not be sufficient to overcome this problem.

By performing normalization to unit length, we place all i–vectors on a surface of a common
unit sphere and effectively greatly compress all distances between them. Also we replace a
distribution of their lengths by a constant. With a proper scaling, the constant could be even
set into the mode of the Chi distribution, which in the end is not necessary. This way, we
made the distribution of the i–vector lengths closer to the distribution of lengths of the i–vectors
following standard-normal distribution. We also avoided problems with the score scaling. It is
important to note, that before actual length normalization, we must ensure that the i–vectors
are normalized to zero mean. Although zero mean of the i–vectors is also assumed by the i–
vector extraction model, it is often not the case for i–vectors extracted from some held out data.
After all of these transformations, the PLDA is trained on normalized i–vectors. Alternatively
the cosine scoring can be directly performed.

4.5.2 Application to Full Posterior Distribution

This section presents the length normalization applied to the i–vector posterior distribution. A
straightforward approach is to replace the i–vector distribution W|X by Ŵ = W|X

‖W|X‖ , which

forces all realizations of Ŵ to lie on the unit sphere. However, since the resulting random
variable Ŵ would not be Gaussian distributed, it would not be possible to rely on the simple
derivations of Section 3.4, and to avoid the higher complexity introduced by the use of a non
Gaussian distribution.

Alternatively, the length normalization can be seen as a non–linear transformation F (φ0) of
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the observed i–vector φ0, which can be approximated by its first order Taylor expansion around
the i–vector itself. The expansion is given by:

F (φ) = F (φ0) + JF (φ0)(φ − φ0) + o(‖φ− φ0‖) , (4.20)

where JF (φ0) is the Jacobian of F computed at φ0 and F is the function F (x) = x
‖x‖ . The

linear transformation which approximates the length normalization function around the i–vector
is then:

F̂ (φ) = F (φ0) + JF (φ0)(φ− φ0) = v +
(I− vvT)

‖φ0‖
φ (4.21)

where v = φ0
‖φ0‖

and I is the identity matrix.
The extension to the full i–vector posterior consists in computing the first order Taylor

expansion of F centered at the posterior distribution mean φX, and applying the resulting
linear transformation to the i–vector posterior W|X ∼ N(φX,Γ

−1
X

). The expansion of F around
φX is:

F̂ (φX) = vX +
(I − vXv

T
X
)

‖φX‖
φX = vX +AφX , (4.22)

where vX = φX

‖φX‖ and A =
(I−vXv

T
X
)

‖φX‖ . Thus, the transformed distribution is given by:

Ŵ ∼ N

(
F̂ (φX),AΓ−1

X
AT
)

∼ N

(
φX

‖φX‖
,

1

‖φX‖
2 (I− vXv

T
X)Γ

−1
X

(I − vXv
T
X)

)
, (4.23)

Expression (4.23) can be further approximated as:

W ∼ N

(
φX

‖φX‖
,

Γ−1
X

‖φX‖
2

)
. (4.24)

In the experimental section, we show that these linearizations of the length normalization
are effective. In particular, the approximation (4.24) allows a simplification of (4.23) with-
out incurring in any performance degradation. We will refer to (4.23) as “Projected Length
Normalization” (FPD1), and to (4.24) as “Length Normalization” (FPD2).



Chapter 5

Discriminative Training of PLDA

In this chapter, we propose to estimate verification scores using a discriminative model rather
than a generative PLDA model. More specifically, the speaker verification score for a pair of
i-vectors is computed using a function having the functional form derived from the standard
PLDA model. The parameters of the function, however, are estimated using a discriminative
training criterion. We use an objective function that directly addresses the speaker verification
task, i.e. the discrimination between “same-speaker” and “different-speaker” trials. In other
words, a binary classifier that takes a pair of i-vectors as an input, is trained to answer the
question of whether or not the two i-vectors come from the same speaker. We show that the
functional form derived from PLDA can be interpreted as a binary linear classifier in a non-
linearly expanded space of i-vector pairs. We have experimented with two discriminative linear
classifiers, namely linear support vector machines (SVM) and logistic regression. The advantage
of logistic regression is its probabilistic interpretation: the linear output of this classifier can
be directly interpreted as the desired log-likelihood ratio verification score. We will concentrate
more on training with logistic regression and we will use the abbreviation DPLDA (Discrminative
PLDA) for such systems later in Chapter 6.

5.1 Original Model

In order to effectively deploy the discriminative approach to speaker recognition, we need to
derive an efficient scheme for obtaining scores for the training examples. We will build our model
on previously presented LDA principles and consider a special form of PLDA, a two-covariance
model, where the simplification is obtained by merging together the residual noise and inter-
session components. In this model, both speaker and inter-session variabilities are modeled
using across-class and within-class full covariance matrices Σac and Σwc. The two-covariance
model is a generative linear-Gaussian model, where latent vectors y representing speakers (or
more generally classes) are assumed to be distributed according to prior distribution

p(y) = N(y;µ,Σac). (5.1)

For a given speaker represented by a vector ŷ, the distribution of i-vectors is assumed to be

p(φ|ŷ) = N(φ; ŷ,Σwc). (5.2)

The maximum likelihood estimates of the model parameters, µ, Σac, and Σwc, can be obtained
by means of EM algorithm similar to the previous sections. Alternatively, if we want to only

23
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obtain a reasonable initialization of the parameters for the discriminative training, the param-
eters can be directly estimated on the training data as for standard LDA. The training data
(i-vectors) come from a database comprising recordings of many speakers (to capture across-class
variability), each recorded in several sessions (to capture within-class variability).

5.2 Verification Score of a Trial

To obtain an effective way of scoring, we will consider a trial to be composed only by two i–
vectors (φ1, φ2). Note, that multi-session scoring, when more i–vectors are available for enroll
or test or both, can be easily achieved by averaging the corresponding i–vectors and using the
resulting means as single i–vectors. The averaging of i–vectors does not cause any significant
problems or deterioration of the performance [Villalba et al., 2013] and in fact is widely used in
the community.

We will follow the same steps as in 3.4.1 but with the constraint of a single i–vector per
enroll and test part of the evaluation trial. In the case of a same-speaker trial (hypothesis Hs),
a single vector ŷ representing a particular speaker is generated from the prior p(y), for which
both φ1 and φ2 are generated from p(φ|ŷ). For a different-speaker trial (hypothesis Hd), two
vectors ŷ1, ŷ2) representing two different speakers are independently generated from p(y). For
each, one of the i-vectors φ1 and φ2 is generated. The speaker verification score can be again
calculated as a log-likelihood ratio between the two hypotheses Hs and Hd as

s = log
p(φ1,φ2|Hs)

p(φ1,φ2|Hd)
. (5.3)

The joint likelihood of the two independent i–vectors being generated from a particular speaker
factor ŷ is the product of two likelihoods:

p(φ1,φ2|ŷ) = p(φ1|ŷ) p(φ2|ŷ). (5.4)

Considering the hypothesisHs that these two i–vectors can be generated by any speaker common
for both of them, we marginalize over all possible speakers:

p(φ1,φ2|Hs) =

∫
p(φ1,φ2|y) p(y)dy. (5.5)

For the different speaker hypothesis Hd we again marginalize over all possible speakers and
compute the likelihood of the i–vectors being generated independently by any two speakers:

p(φ1,φ2|Hd) =

∫
p(φ1|y1) p(y1) dy1

∫
p(φ2|y2) p(y2) dy2,

= p(φ1) p(φ2). (5.6)

Plugging the conditional likelihoods (5.5) and (5.6) into the log-likelihood ration (5.3) we obtain

s = log
p(φ1,φ2|Hs)

p(φ1,φ2|Hd)
(5.7)

= log

∫
p(φ1|y)p(φ2|y)p(y)dy

p(φ1)p(φ2)
. (5.8)

The integrals, which can be interpreted as convolutions of Gaussians, can be evaluated analyti-
cally giving

s = logN

([
φ1

φ2

]
;

[
µ

µ

]
,

[
Σtot Σac

Σac Σtot

])
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− logN

([
φ1

φ2

]
;

[
µ

µ

]
,

[
Σtot 0

0 Σtot

])
, (5.9)

where the total covariance matrix is given as Σtot = Σac + Σwc. By expanding the log of
Gaussian distributions and simplifying the final expression, we obtain

s = φT
1 Λφ2 + φT

2 Λφ1 +φT
1 Γφ1 +φT

2 Γφ2

+ (φ1 +φ2)
T
c+ k, (5.10)

where

Γ = −
1

4
(Σwc + 2Σac)

−1 −
1

4
Σ−1

wc +
1

2
Σ−1

tot

Λ = −
1

4
(Σwc + 2Σac)

−1 +
1

4
Σ−1

wc

c = ((Σwc + 2Σac)
−1 −Σ−1

tot)µ

k = log |Σtot| −
1

2
log |Σwc + 2Σac| −

1

2
log |Σwc|

+µT (Σ−1
tot − (Σwc + 2Σac)

−1)µ. (5.11)

We recall that the computation of a bilinear form xTAy can be expressed in terms of the
Frobenius inner product as xTAy = 〈A,xyT〉 = vec(A)Tvec(xyT), where vec(·) stacks the
columns of a matrix into a vector. Therefore, the log-likelihood ratio score can be written as a
dot product of a vector of weights wT, and an expanded vector ϕ(φ1,φ2) representing a trial:

s = wTϕ(φ1,φ2)

=




vec(Λ)
vec(Γ)

c

k




T 


vec(φ1φ
T
2 + φ2φ

T
1 )

vec(φ1φ
T
1 + φ2φ

T
2 )

φ1 + φ2

1


 . (5.12)

Hence, we have obtained a generative generalized linear classifier [Bishop, 2006], where the
probability for a same-speaker trial can be computed from the log-likelihood ratio score using
the sigmoid activation function as

p(Hs|φ1,φ2) = σ

(
log

p(φ1,φ2|Hs)

1− p(φ1,φ2|Hs)
+ log

p(Hs)

1− p(Hs)

)
= σ(s + logit(p(Hs))). (5.13)

Adding the logit(p(Hs)) score, which adjusts the constant k in the vector of weights, allows for
setting different priors for both hypotheses.

5.3 Discriminative classifier

In this section, we describe how we train the weights w directly, in order to discriminate between
same-speaker and different-speaker trials, without having to explicitly model the distributions
of i-vectors. To represent a trial, we keep the same expansion ϕ(φ1,φ2) as defined in (5.12).
Hence, we reuse the functional form for computing verification scores that provided excellent
results with generative PLDA.
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5.3.1 Logistic Regression

The set of training examples r1 . . . r|T| ∈ T, which we continue referring to as training trials,
comprises both different-speaker and same-speaker trials. By trial r we understand a combina-
tion of two i–vectors r = (φ1,φ2). By introducing the variable for trial, our score for a particular
trial becomes sr = wTϕ(r) = wTϕ(φ1,φ2). Let us also define the coding scheme t ∈ {−1, 1} to
represent labels for the different-speaker, and same-speaker trials, respectively. Assigning each
trial a log-likelihood ratio sr and the correct label tr, the log probability of recognizing the trial
correctly can be expressed as

log p(tr|r) = − log(1 + exp(−srtr)). (5.14)

This is easy to see from equation (5.13) and recalling that σ(−s) = 1 − σ(s). In the case of
logistic regression, the objective function to maximize with respect to the optimized parameters
w is the log posterior probability of correct labeling of all training examples, i.e. the sum of
expressions (5.14) evaluated for all training trials.

Q =
∑

r∈T

log p(tr|sr(w)) (5.15)

=
∑

r∈T

−log (1 + exp(−trsr(w))) (5.16)

Equivalently, this can be expressed by minimizing the cross-entropy error function, which is a
sum over all training trials

E(w) =
∑

r∈T

αrELR(trsr) (5.17)

where the logistic regression loss function

ELR(trsr) = log(1 + exp(−trsr)) (5.18)

is simply the negative log probability (5.14) of correctly recognizing a trial.
To control over-fitting to training data and to keep the optimized parameters from reaching

large values, we can introduce a regularization by adding a penalty term to the error function.
The simplest form of the regularization penalty is the sum of squares of all parameters, leading
to a modified error function

Ẽ(w) =
∑

r∈T

αrELR(trsr) +
λ

2
‖w‖2, (5.19)

where ‖w‖2 = wTw and the coefficient λ is a constant controlling the tradeoff between the
error function and the regularizer. This L2 regularizer can be extended by incorporating a prior
knowledge of the parameters w and therefore allow it to limit the distance of the optimized pa-
rameters from some particular offset (for example the parameters estimated from the generative
model). The error function then takes the form of

Ẽ(w) =
∑

r∈T

αrELR(trsr) +
λ

2
‖w − ŵ‖2. (5.20)

This regularization can be seen as imposing an isotropic Gaussian prior on the parameters
[Bishop, 2006]. The ŵ defines the mean of the isotropic Gaussian prior and the regularization
constant λ can be seen as a parameter to control the variance of this prior.
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The coefficients αn allow us to weight individual trials. When set to zero, it can be used
to “turn off” some unwanted trials – for example same i–vector trials or cross-gender trials.
We use these coefficients also to assign different weights to same-speaker and different-speaker
trials. This allows us to select a particular operating point, around which we want to optimize
the performance of our system without relying on the proportion of same- and different-speaker
trials in the training set. The advantage of using the cross-entropy objective for training is that
it reflects performance of the system over a wide range of operating points (around the selected
one). We can show that by setting the α coefficients proportional to the number of same-
(|T1|) and different-speaker trials (|T2|) as 1

2log(2)|T1|
and 1

2log(2)|T2|
, our error function without

regularization becomes

ET(w) =
1

2log(2)

(
1

|T1|

∑

r∈T

log(1 + exp(sr(w))) +
1

|T2|

∑

r∈T

log(1 + exp(sr(w)))

)
(5.21)

= Cllr,w(T),

which is the Cllr performance measure for the speaker verification task as defined
in [Brümmer and du Preez, 2006]. This probabilistic behavior of the logistic regression clas-
sifier is one of its advantages against the SVM as it trains the weights so that the score
sr = wTϕ(r) = wTϕ(φ1,φ2) can be interpreted as the log-likelihood ratio between hypotheses
Hs and Hd, and therefore, the calibration step is not so necessary.



Chapter 6

Experimental Results

This chapter will present results obtained with the presented techniques on various datasets.
First, to put the presented techniques into the historical context, we will present a short de-
scription and performance comparison of the past state-of-the-art techniques on a common SRE
2010 dataset.In Section 6.2, we will take the standard PLDA without any i–vector normalization
as a baseline and present (still on SRE 2010 dataset) the effects of discriminatively trained PLDA
and i–vector length normalization.Finally, we will compare all presented PLDA techniques on
NIST SRE 2012 dataset in Section 6.4. The superiority of the full-posterior PLDA for short
segments, where the uncertainty of extracted i–vectors is high, will be demonstrated on modified
NIST SRE 2010 datasets.

6.1 Comparison of Techniques on NIST SRE 2010

In Figure 6.1, we can observe the evolution of the SRE systems. Clearly, the introduction of
the channel adaptation has dramatically increased the performance, especially when the system
was evaluated on data coming from different collection or simply containing channel effects not
present during the UBM training.

JFA was another milestone, which greatly improved the performance at the time when it
was introduced. Surprisingly, the effect is not so big on the NIST SRE 2010. However this
technique led to the introduction of i–vectors and we can observe another substantial gain in
the performance with the cosine distance scoring of i–vectors.

If we compare PLDA with the cosine distance scoring, we do not see much of a difference
between the two systems. In fact the cosine distance scoring is better on the low miss-rate region
of the DET curve. However, this situation has changed in favor of PLDA after applying length
normalization.

6.2 Evolution of the PLDA

After the NIST SRE 2010 evaluation, PLDA was in the center of the interest of the research
community. Shortly after the NIST workshop and Odyssey 2010 conference in Brno, we have
introduced a discriminative way of training the PLDA parameters. It was the BOSARIS work-
shop in Brno, where both the training using SVM [Cumani et al., 2013] and logistic regres-
sion [Burget et al., 2011] were developed.

In Figure 6.2, we can observe the effect of both discriminatively trained PLDA, length
normalization and additional condition-dependent mean normalization (mean of the training

28
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Figure 6.1: Comparison of SRE techniques on female subset of NIST SRE 2010 condition 5

i–vectors coming from the telephone data was removed from the evaluation data). All of the
PLDA systems are trained on the same dataset as described in the previous section. The baseline
PLDA system represented by the blue DET curve is taken from the previous section, the red
DET curve represents the discriminatively trained PLDA system, with no length normalization
or other transformation of i–vectors. DPLDA was trained with all of the parameters initialized
as matrices of zeros. The target prior probability was set to 0.001 to reflect the NIST SRE
2010 primary metric. The regularization was performed by means of early stopping during this
experiment. It took approximately 30 iterations for the algorithm to converge.

The Magenta line represents the system with length normalization that was tuned to get
the best overall results for all NIST SRE 2010 conditions. In this system, i–vectors were first
reduced into 150 dimensions and then the PLDA with both full rank matrices representing
speaker and channel subspaces was trained. The last system represented by the black DET
curve is a modification of the magenta system which consists only in the condition dependent
mean normalization. This has further improved the PLDA system on the telephone condition.
It should be noted, that this approach was specific to the particular training list used during
these experiments. During our other experiments with the PLDA, we have extended our training
list with the additional telephone and microphone data and the positive effect of this condition-
dependent mean normalization was reduced.

The discriminative training can apparently deal with the non-Gaussian behavior of the i–
vectors and produce significantly better results than the baseline PLDA. However, the discrim-
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inative PLDA was not superior to the generative trained version for very long time. Shortly
after this approach was developed, a length normalization was introduced, and standard PLDA
with the i–vector pre-processing as described in chapter 4.5 has reached the performance of the
heavy-tailed version of the PLDA. It should be noted that the length normalization applied on
i–vectors before DPLDA training did not noticeably change the result. Also the DET-curve
for the HT-PLDA would practically overlap with the magenta curve representing the standard
PLDA with length normalization.
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Figure 6.2: Comparison of PLDA systems on female subset of NIST SRE 2010 condition 5: Blue
system is a standard PLDA without length normalization, red DET curve represents discrimina-
tively trained PLDA (DPLDA), magenta and black corresponds to the standard PLDA system
with length normalization and additional condition dependent mean normalization.

6.3 Analysis of PLDA and DPLDA on RATS Data

Evaluating SRE performance on the RATS data poses many more challenges than simply taking
the state-of-the-art system and running it on the data. This extremely noisy data has brought
a lot of attention to developing different variants of robust acoustic features and voice activity
detection. It would be out of the scope of this work to discuss the RATS-specific techniques
and we refer the reader to a general system description [Plchot et al., 2013] of our submission
for the RATS evaluation in 2013, from which we derive our baseline system.

It is important to mention the composition of the training set for PLDA. After tuning the
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Table 6.1: Comparison of the PLDA and DPLDA systems trained on all data, 10s segments
or 30 s segmets. Results are given on the RATS Patrol development sets. 30s-30 s and 10s-10 s
correspond to the duration of the enrollment and test utterances. The metrics are FA 10, which
correspond to the false alarm rate at miss rate 10% and MISS 2.5 is a miss rate at false alarm
rate 2.5%. EER stands for equal-error rate.

30 s – 30 s 10 s – 10 s

System FA 10 MISS 2.5 EER FA 10 MISS 2.5 EER

PLDA all 3.53 13.36 6.21 10.04 27.01 10.04

DPLDA all 3.68 13.89 6.30 10.03 28.11 10.02

PLDA 30 s 3.32 12.62 6.06 9.99 26.41 9.99

DPLDA 30 s 3.12 12.09 5.81 9.29 26.43 9.66

PLDA 10 s 3.54 13.21 6.17 9.29 25.75 9.65

DPLDA 10 s 3.48 13.24 6.08 9.01 25.94 9.49

composition of our training data, the general consensus was to use as many short cuts from the
segments as possible along with the original long segments. The reason for this composition is
greatly influenced by the evaluations, where the emphasis is put on the performance obtained
on the 30 s and 10 s cuts. There is also a 3 s and 120 s test condition in RATS SRE evaluation
protocol. The 120 s condition is getting less attention as the program goals for this test were
mostly achieved. The 3 s condition was considered too hard especially in the first two phases of
the RATS project and we did not focus on tuning for these durations.

The final training list for our baseline PLDA system was a compromise between the perfor-
mance on the short duration segments and a reasonable amount of data for training the DPLDA
system. In total, it contained 210 thousand segments, out of which 70 thousand were randomly
selected 30 s cuts and another 70 thousand were randomly selected 10 s cuts. The training of
PLDA followed the same recipe as previously described, with LDA dimensionality reduction
to 200 dimensions and length normalization. Corresponding DPLDA systems were trained us-
ing parameters initialized to zeros. As the trials in the RATS SRE evaluations are defined as
multi-session (6 enrollment segments versus one test), our development test sets also follow this
scheme. In order to obtain the scores with the DPLDA system, we used i–vector averaging
to represent the multi-session trial as a standard one-to-one i–vector trial. We performed the
multi-session scoring with standard PLDA, but it should be noted that doing the averaging does
not significantly change the results.

Results of the experiments reported on the metrics of the RATS program are summarized
in table 6.1. We report only results obtained on the RATS Patrol team development test sets
as the key for the official evaluation set of the program was not available at the time of writing
this text.

It can be seen that training both systems on the whole dataset yields slightly worse per-
formance than training a duration-dependent system. Also the DPLDA system is performing
slightly worse than the PLDA system when trained on all data. The situation has finally turned
in favor of DPLDA when training duration-dependent systems. In these scenarios, the DPLDA
outperformed PLDA on almost all metrics.
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6.4 Full Posterior Distributions PLDA

The proposed PLDA model aims at addressing the uncertainty in i–vector estimates. Thus, a
dataset was defined that consists of speech segments, from NIST SRE10 extended core condition,
which were cut, after Voice Activity Detection, to obtain segments of variable duration in the
range 3–30, 10–30, 3-60, and 10–60 seconds, respectively. These sets of segments have been
scored according to the official NIST SRE 2010 conditions 1–5 [NIST, 2010].

All experiments were performed using i–vector posteriors with dimensionality 400. The
PLDA was trained with a speaker variability sub–space of dimensionality 120, and full channel
variability sub–space. Although both female and male speaker tests were performed, we report
more detailed results on the female datasets only, because the NIST SRE 2010 core test on
female speakers is known to be more difficult, thus more often compared in the literature.

Table 6.2 summarizes the results of the tests performed on the NIST SRE 2010 female
extended conditions, including the core condition (condition 5), in terms of percent Equal Error
Rate and normalized minimum Detection Cost Function (DCFold and DCFnew) as defined by
NIST for SRE08 and SRE10 evaluations [NIST, 2010]. In this table, the PLDA and FPD–PLDA
systems are compared using the original interview data, or telephone conversations, without any
cut. Labels “tel” and “tel+mic” refer to the datasets used for training the PLDA parameters,
including telephone data only, or additional microphone data. Labels “Std” and “FPD” refer to
the standard and the Full Posterior Distribution PLDA, respectively. The first two rows give the
baseline results, obtained using standard i–vectors trained on telephone data only, for the five
NIST 2010 conditions. It can be observed that the matched conditions 5 and 1 — tel–tel and
int–int, respectively, achieve the best results, whereas the difficulty of the task decreases from
condition 2 to condition 4. The same behavior is confirmed for the other experimental conditions,
shown in the remaining lines, and for the other tests using variable duration segments. The new
model not only keeps the accuracy of the standard model, as expected for long segments, but
also shows a slight relative improvement in three conditions (2,3,4). The third row describes the
effect of using the i–vector covariance also in training. As expected, since the training segments
have long durations, the results are similar to the ones reported in the second row. The last
three rows show the effect of adding microphone data in training the PLDA parameters: sensible
performance improvement is obtained, excluding, as expected, the matched tel–tel condition 5.

Since the system trained with the “tel” list performs worse than the one trained with the
“tel+mic” list, all the remaining experiment on the NIST 2010 data, whenever not mentioned,
have been performed with the latter. Table 6.3 compares, in its first three rows, the performance
of the PLDA and FPD–PLDA classifiers using the two length–normalization methods described
in Chapter 4.5 on the 3–60 seconds cuts. The results of the last row show that there is no
advantage in using the full i–vector posterior in training the PLDA models. The effect of the
two length–normalization approaches is comparable, thus in the following we will present only
the results obtained with the Projected Length Normalization (FPD2) (4.24).

6.4.1 Comparison on NIST 2012

Pooled results for female and male speakers are reported in Table 6.4 for the NIST 2012 SRE
. The i–vector dimension was increased to 600. Moreover, Linear Discriminant Analysis was
performed to reduce the i–vector dimensionality to 200, before applying i–vector whitening
and length normalization. Since the resulting i–vectors are already small, no dimensionality
reduction was applied for the speaker sub–space, i.e. the speaker sub–space was set to 200.

The results comparing standard PLDA and FPD–PLDA are given in Table 6.4 in terms of
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minimum and actual Cprimary. Note, that in contrast to min-DCF, there is no analytic version
of the “minimum” Cprimary. By “minimum”, we mean a Cprimary as defined by NIST, but with
calibration performed on the evaluation data

These results show that the Asymmetric FPD–PLDA is almost equivalent to the standard
PLDA. For minimum Cprimary, it gains for conditions 2 and 5, which include short and variable
duration segments. An excellent result have been obtained with discriminatively trained PLDA
in terns of the actual Cprimary, where the calibration loss for DPLDA system is low compared
to the other two techniques. These results confirm that DPLDA is a technique with a built-in
calibration, which is a very useful property for a real use scenario.



6
.4

F
u
ll
P
o
sterio

r
D
istrib

u
tio

n
s
P
L
D
A

34

Table 6.2: Results for the core extended NIST SRE2010 female tests in terms of % EER, minDCFold × 1000 and minDCFnew × 1000 using different training lists
and PLDA models. Label “tel” and “tel+mic” refer to the datasets used for training the PLDA, including or not microphone data. “Std” and “FPD” labels refer to
standard PLDA and FPD–PLDA, respectively. I–vector posterior length–normalization is performed by means of (4.24).

List Train Test
condition 2 condition 3 condition 4 condition 1 condition 5

EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew

tel Std Std 4.2 224 641 2.5 113 445 1.7 102 411 2.0 84 346 2.0 100 339

tel Std FPD 3.9 214 638 2.3 111 462 1.6 101 419 1.7 81 346 2.0 100 346

tel FPD FPD 3.9 214 635 2.4 110 450 1.6 99 415 1.8 79 345 2.0 98 336

tel+mic Std Std 2.6 124 460 2.2 103 405 1.1 65 303 1.8 68 258 1.9 105 335

tel+mic Std FPD 2.3 114 455 2.1 103 402 1.0 60 296 1.7 63 254 2.0 103 347

tel+mic FPD FPD 2.3 112 455 2.0 100 396 1.0 59 288 1.6 60 253 2.0 101 344

Table 6.3: Results for cuts of 3–60 second test data, using different length–normalization approaches. The PLDA parameters are trained using both microphone and
telephone data. Labels “Std” and “FPD” refer to standard PLDA and FPD–PLDA, respectively, and the numeric suffix of FPD corresponds to the i–vector posterior
length–normalization method.

Train Test
condition 2 condition 3 condition 4 condition 1 condition 5

EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew

Std Std 9.1 384 812 7.8 368 832 7.3 312 695 7.0 273 630 6.7 337 729

Std FPD1 (eq. 4.23) 6.7 327 791 6.1 343 838 5.2 259 676 4.8 232 603 6.2 322 722

Std FPD2 (eq. 4.24) 6.7 328 791 6.2 343 838 5.2 259 676 4.7 232 603 6.2 323 722

FPD2 FPD2 6.5 327 796 6.3 355 837 5.0 255 676 4.6 229 601 6.3 328 731
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Table 6.4: NIST SRE 2012 core-extended test: comparison of DPLDA, PLDA and Asymmetric FPD–PLDA on minimum and actual Cprimary. The
numbers associated to the conditions refer to the mean duration of the segments, after voice activity detection, and to the corresponding standard
deviation.

System

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5
interview phone call interview phone call phone call

without added noise without added noise with added noise phone with added noise from a noisy environment
45s – 41 56s – 48 75s – 37 110s – 56 57s – 48

DPLDA (min) 0.230 0.261 0.206 0.287 0.249
PLDA (min) 0.255 0.206 0.244 0.265 0.222

FPD–PLDA (min) 0.253 0.193 0.241 0.264 0.211

DPLDA (act) 0.250 0.300 0.215 0.339 0.333
PLDA (act) 0.336 0.292 0.294 0.370 0.342

FPD–PLDA (act) 0.336 0.292 0.293 0.389 0.344



Chapter 7

Conclusions

This work proposes two variants of the Probabilistic Discriminant Analysis, which, in its stan-
dard form, is currently considered as the state-of-the art technique in the text-independent
speaker recognition. Preceding state-of-the art techniques have been put into the context with
the standard PLDA, which also serves as a baseline for the proposed modifications. The per-
formed comparison of all techniques on the NIST SRE 2010 dataset presents a historical progress
in the SRE technology. In Figure 6.1, we can identify two milestones in the SRE technology. It is
an introduction of the channel compensation techniques and using i–vectors as low-dimensional,
information-rich features for modeling.

Discriminative PLDA

The functional form of the standard PLDA model for evaluating the speaker verification trial
has been used as a basis for designing the discriminative approach to training of the PLDA
parameters. A single discriminative model then directly addresses the symmetric speaker ver-
ification task: a discrimination between the same- and different-speaker trial formed by two
i–vectors. Although the discriminative training was initially bringing substantial improvements
with respect to original PLDA, after the application of the length normalization of i–vectors,
the standard PLDA model achieves slightly better performance in the minimum DCF and EER
metrics.

The performed comparative study of PLDA and DPLDA in various acoustic environments
has also shown slightly better overall performance of the standard generative PLDA in terms
of minimum DCF and EER evaluation metrics. In the domain of highly degraded RATS data,
the discriminative approach has shown minor improvements in the duration-dependent systems
with respect to generative baseline. These experiments, however, show a theoretical best possible
performance not taking into account any calibration loss.

Minimizing the cross-entropy error function as an objective for discriminative training of
DPLDA forces the system to output scores in form of calibrated log-likelihood ratios. The
possibility of weighting individual trials allows for setting the desired operating point of the
system already during training, which makes the consecutive calibration step less necessary. The
quality of the calibration of the DPLDA scores has been confirmed by the experiments where
the calibration loss on an unseen evaluation set is lower than for the other PLDA variants. This
behavior is a desirable property in a real use scenario, where the actual error rates matter much
more than the theoretical minimum error rates.

36
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Full Posterior Distribution PLDA

In generative approach, a PLDA model which exploits the uncertainty of the i-vector extraction
process has been presented. The basic idea lies in the formulation of the PLDA likelihood, which
has been derived for a Gaussian PLDA model based on the i–vector posterior distribution. The
new formulation of likelihood evaluation defines a new PLDA model, where the inter–speaker
variability is assumed to have a segment–dependent distribution.

Taking into account the posterior distribution of all i–vectors representing an utterace also
leads to the need of normalize this distribution in line with the already established length
normalization of i–vectors. Two i–vector pre–processing techniques complying with the new
PLDA model have been proposed and their effects were compared on the system accuracy.
It was shown that an approximate version of a linearized length normalization is sufficiently
accurate.

The complexity of the PLDA and FPD–PLDA implementations has been analyzed and an
Asymmetric FPD–PLDA approach has been proposed. The asymmetric approach allows for a
substantial complexity reduction in a practical detection scenario with known target speakers.

The results obtained both on the extended core tests and on short cuts of different duration
of the NIST SRE 2010, and on the extended tests of NIST SRE 2012, confirm that the FPD–
PLDA outperforms PLDA mostly for short variable duration test segments. No loss in the
performance has been observed for the standard tests containing long test segments. It was
also experimentally demonstrated that for the scenarios when sufficiently long utterances are
available for training the PLDA model, we can use the standard PLDA for training and FPD-
PLDA for scoring. Therefore in most real use cases, there is no need to perform more expensive
FPD-PLDA training.

Future Work

The FPD-PLDA can clearly outperform the baseline when testing on short utterances and
DPLDA excels at producing well-calibrated scores. Therefore both techniques present a viable
option for a real use and should be evaluated in production systems. In my opinion, there are
more unknowns in the discriminative approach to be explored. A possible direction for future
research could be to address the problem of overtraining the model on the training data and
propose more sophisticated ways of regularization. Also an automatic forming of all possible
trials in the discriminative training by taking all possible i–vector pairs does not correspond
to the real test and could be redesigned. For example forming the trials out of the same
utterance, just recorded over different microphone introduces many artificial positive examples,
which should be avoided. From the perspective of the functional form for scoring, other blocks
can be added to simulate the i–vector pre-processing or condition-dependent calibration.
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Glembek, O., Heřmanský, H., Mesgarani, N., Soufifar, M. M., Thomas, S., Zhang, B., and
Zhou, X. (2013). Developing a speaker identification system for the darpa rats project. In
Proceedings of ICASSP 2013, pages 6768–6772. IEEE Signal Processing Society.

[Prince and Elder, 2007] Prince, S. J. D. and Elder, J. H. (2007). Probabilistic linear discrim-
inant analysis for inferences about identity. In 11th International Conference on Computer
Vision.



Bibliography 40

[Reynolds and Rose, 1995] Reynolds, D. A. and Rose, R. C. (1995). Robust text-independent
speaker identification using gaussian mixture speaker models. Speech and Audio Processing,
IEEE Transactions on, 3(1):72–83.

[Villalba et al., 2013] Villalba, J., Diez, M., Varona, A., and Lleida, E. (2013). Handling record-
ings acquired simultaneously over multiple channels with plda. In Proceedings of Interspeech
2013, Lyon, France.


