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Abstract
This doctoral thesis studies theoretical properties of grammars with restricted derivation
trees. After presenting the state of the art concerning this investigation area, the research
is focused on the three main kinds of the restrictions placed upon the derivation trees.
First, it introduces completely new investigation area represented by cut-based restriction
and examines the generative power of the grammars restricted in this way. Second, it
investigates several new properties of path-based restriction placed upon the derivation
trees. Specifically, it studies the impact of erasing productions on the generative power of
grammars with restricted path and introduces two corresponding normal forms. Then, it
describes a new relation between grammars with restricted path and some pseudoknots.
Next, it presents a counterargument to the generative power of grammars with controlled
path that has been considered as well-known so far. Finally, it introduces a generalization
of path-based restriction to not just one but several paths. The model generalized in this
way is studied, namely its pumping, closure, and parsing properties.

Abstrakt
V této disertační práci jsou studovány teoretické vlastnosti gramatik s omezenými derivač-
ními stromy. Po uvedení současného stavu poznání v této oblasti je výzkum zaměřen na tři
základní typy omezení derivačních stromů. Nejprve je představeno zcela nové téma, které
je založeno na omezení řezů a je zkoumána vyjadřovací síla takto omezené gramatiky. Poté
je zkoumáno několik nových vlastností omezení kladeného na cestu derivačních stromů.
Zejména je studován vliv vymazávacích pravidel na vyjadřovací sílu gramatik s omezenou
cestou a pro tyto gramatiky jsou zavedeny dvě normální formy. Následně je popsána nová
souvislost mezi gramatikami s omezenou cestou a některými pseudouzly. Dále je prezen-
tován protiargument k vyjadřovací síle tohoto modelu, která byla dosud považována za
dobře známou vlastnost. Nakonec je zavedeno zobecnění modelu s omezenou cestou na ne
jednu, ale několik cest. Tento model je následně studován zejména z hlediska vlastností
vkládání, uzávěrových vlastností a vlastností syntaktické analýzy.
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Chapter 1

Introduction

The formal language theory is an inherent part of the theoretical computer science particu-
larly concerned with the study of the formal models. The formal models are mathematical
objects used to describe the formal languages. The fundamental models include grammars
and automata. The former are used to generate words and the latter accept them.

Grammars are the kind of the rewriting models that start from a specified symbol
(i.e., start symbol). Then, the symbol is modified according to the given set of rewriting
productions. Each production is composed of two components—the left-hand side and
the right-hand side of a production. The application of a production on a word is done
by rewriting a symbol equivalent to the left-hand side of a production by its right-hand
side in the word. This process is known as a derivation step. During the computation
of a derivation step, just one symbol is rewritten in the word. Given a start symbol of a
grammar, a derivation step is computed repeatedly by applying the productions from the
given set. Once the resulting word is composed of the symbols that cannot be rewritten
anymore, the process of applying derivation steps ends and the resulting word belongs to
the language of the grammar.

Essentially, the grammars are composed of a finitely many symbols that are rewritten
by finitely many production in finitely many derivation steps. In this way, the grammars
represent a finite description of even infinite languages. By the notion of infinite languages
are meant those languages that contains infinitely many words. Since the most of the lan-
guages commonly used in practice are infinite, the grammars represent a powerful tool how
to deal with them. In the formal language theory, there exists a huge variety of grammars
which essentially differ in two domains. Specifically, in the complexity of the productions
and in the way how to select appropriate production to be applied in a derivation step.

Generally, the complexity of rewriting productions can be seen from two angles—
theoretical and practical.

• Theoretical viewpoint: As little as possible restrictions placed on the form of the
rewriting productions in a rewriting model is desirable. More specifically, the more
complex rewriting productions are, the larger class of languages may the model gene-
rate. In other words, to generate complex languages, complex productions are needed.
By the notion of a form of a production, namely the number of the symbols on its
left-hand side is meant.

• Practical viewpoint: Grammars are theoretical models that are implemented in many
practical applications. From the perspective of cost-effective implementation, the
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simple rewriting productions are desirable. As simple-enough productions for effective
implementation, those of the form with just one symbol on their left-hand side are
considered. Such kind of productions are referred to as context-free productions, since
they can be applied without any consideration of a context of currently rewritten
symbol.

Non-regulated rewriting models like grammars and automata belong to the well-known
core of the formal language theory and they are frequently used in practice. Indeed, au-
tomata including its variants underlie lexical analysers (see [4] and [90]), context-free gram-
mars represent the basis of both top-down as well as bottom-up parsers (see [4] and [5]), etc.
However, the power of the models with simple productions is indeed smaller than required
for usage in many practical applications. On the other hand, the models that use only sim-
ple productions are usually easier to implement. As a background, it is desirable to extend
context-free grammars as in many applications there are some natural phenomena which
cannot be captured by context-free rewriting. More precisely, the motivation is based on
the observation that many of the languages commonly used in practice, including program-
ming and natural languages, are not context-free (see [49], [56], [107], [108], and [116]).
Consequently, that means such languages cannot be generated by a grammar with only
context-free productions. For these reasons, the idea whether or not it would be possible to
use grammars with only context-free productions and increase the corresponding power in
some other way—without changing the form of rewriting productions. Basically, this can
be achieved by two fundamental approaches—using a kind of a regulation of rewriting or
using more than one grammar with context-free productions in a model:

• Using a kind of a regulation of rewriting. By the notion of a regulation, the way how to
select appropriate production to be applied is meant. Indeed, a situation is common
in which, given a word, it is possible to apply several productions. Informally, the
essential idea is represented by the observation that a regulation mechanism some-
how prescribes the order of productions the grammar must follow. Therefore, many
different kinds of such a regulation have been introduced in order to ensure selecting
appropriate production. All of the resulting models based on a kinds of regulation
are collectively referred to as regulated rewriting models.

• Using more than one grammar with context-free productions in a model. Roughly
speaking, the main underlying idea is based on the observation that from the coopera-
tion of several simple models, we can obtain more power than from each of them if they
work separately. These systems were also thoroughly studied and the corresponding
investigation area is referred to as the theory of grammar systems. However, we will
deal with them only rarely in this work.

Informally, the goal of this work is to introduce a model that generates more than
context-free languages and is usable in practice. From the theoretical viewpoint it means,
the model should be able to generate namely the programming languages and the languages
used in linguistics (e.g., multiple repetition, cross-dependencies, and copy-language). From
the practical viewpoint, it should be possible to develop sophisticated parsing methods
working in a polynomial time for the model.

One way to extend the power of context-free grammars is to consider context-sensitive
grammars where the productions are more complex. Indeed, context-sensitive grammars
contain the productions with even more than a single symbol on the left-hand side. However,
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despite their great power, generating complex languages by context-sensitive grammars
actually leads to several fundamental problems making their practical usage problematic
(see [12], [22], [89], [109], [130], and [134]). Specifically, for context-sensitive grammars,
many problems are undecidable, it is difficult to describe the derivation by a graph structure,
etc.

One of the many others approaches extending the power of context-free grammars is
represented by matrix grammars introduced by Abraham in [1]. The fundamental under-
lying principle in a derivation step in matrix grammars is that not just one but a fixed
number of context-free productions are required to be applied in a given order. This pro-
vides synchronization among different parts of a generated word and many non-context-free
languages can be generated in this way (see [101], [114], and[139]).

There are lots of other well-known approaches for extending the power of context-free
grammars which preserve the context-free nature of productions. Specifically, Random
Context Grammars (see [125]), Programmed Grammars (see [111]), Ordered Grammars
(see [41]), Indian and Russian Parallel Grammars (see [73]), Indexed Grammar (see [3]),
and many others. However, these approaches do not represent the main topic of this work
although some connections can probably be found.

1.1 Derivation Tree Restricted Models

One of the power-extending approaches is represented by the restrictions placed upon the
derivation trees. Given a grammar, by the notion of a derivation tree, a graph structure
depicting the application of productions on the start symbol up to the resulting word is
meant. Indisputably, the investigation of context-free grammars with restricted derivation
trees represents an important trend in today’s formal language theory (see [17], [24], [27],
[29], [70], [63], [65], [66], [68], [80], [81], [82], [97], [104], [122], and [123]). In essence, these
grammars generate their languages just as ordinary context-free grammars do (see Def. 3.35)
but their derivation trees (see Def. 3.44) must satisfy some simple prescribed conditions.

The following two sections give an informal overview of the results related to the inves-
tigation of derivation-tree-restricted grammars. Based on this informal description, Part II
being a strictly formal summary of the results presented here. The definitions needed just
to present the results of the other authors are omitted in this work. However, the appropri-
ate references for the definitions are given. Through this section, we assume the reader is
familiar with the fundamentals of the formal language theory (see Part I). Several results
concerning the derivation-tree-restricted models related to L-systems (see [60], [61], [62],
[76], [74], [75], and [106]) are not included in this work since the investigation presented
in Part III focuses rather on the sequential (i.e., grammars) than parallel rewriting (i.e.,
L-systems).

1.1.1 Level Based Restriction

The idea of restrictions placed upon the derivation trees of context-free grammars is in-
troduced by Culik and Maurer in [24] and the resulting grammars restricted in this way
are referred to as tree controlled grammars (see Def. 4.1). In essence, the notion of a tree
controlled grammar is defined as follows: take a context-free grammar, G, and a regular
language, R. A word, w, generated by G belongs to the language defined by G and R
if there is a derivation tree, t, for w in G such that all levels (see Def. 2.18) of t (except
the last one) are described by R. Given a tree controlled grammar, (G,R), G and R are
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referred to as controlled grammar and control language, respectively. Culik and Maurer
investigate several basic properties of tree controlled grammars—namely, the membership
problem (see Th. 4.1) and the generative power (see Th. 4.2, Th. 4.3, Th. 4.4, Col. 4.5, and
Th. 4.6).

Based on the original definition of a tree controlled grammar, Păun studies the modifi-
cations where many well-known types of both controlled grammars and control languages
are considered in [104]. More precisely, Păun studies controlling the levels of the derivation
trees of a regular grammar by several types of a control language (see Th. 4.7 and Col. 4.8),
controlling the levels of the derivation trees of a context-free grammar without erasing pro-
ductions by several types of a control language (see Th. 4.9, Th. 4.10, Col. 4.11, Th. 4.12,
and Col. 4.13), and controlling the levels of the derivation trees of a context-free grammar
by a finite language (see Th. 4.14 and Col. 4.15).

It is well-known that tree controlled grammars with a context-free grammar controlled
by a regular language characterize the class of recursively enumerable languages (see Th. 4.5).
Thus, the question arises whether or not it is possible to achieve the same generative power
as tree controlled grammars have when the levels of the derivation trees are restricted by a
subregular control language (see Sec. 3.7). This problem is studied by Dassow and Truthe
in [29], where many types of subregular languages are considered. Dassow and Truthe
study primarily controlling the levels of the derivation trees of a context-free grammar
by two types of a language such that one is a subset of the other (see Lem. 4.16) and
controlling the levels of the derivation trees of a context-free grammar by many different
types of subregular languages (see Th. 4.17, Th. 4.18, Th. 4.19, Col. 4.20, Th. 4.21, Th. 4.22,
Th. 4.23, and Th. 4.24). The same authors, Dassow and Truthe, also study hierarchies of
subregularly tree controlled languages in [27] and [28]. They present controlling the levels
of the derivation trees of a context-free grammar by the union of monoids (see Th. 4.25),
by regular languages with restricted descriptional complexity (see Lem. 4.26, Th. 4.27, and
Th. 4.28), and by the language accepted by a deterministic finite automaton with at most
given number of states (see Th. 4.29).

Stiebe in [118] states that there is a tree controlled grammar for every linearly bounded
queue automaton (see Lem. 4.30). Then, Stiebe proves that controlling the levels of the
derivation trees of a context-free grammar by the language accepted by a minimal finite
automaton with at most five states characterize the class of context-sensitive languages
(see Th. 4.31). If, additionally, erasing productions in a controlled grammar are allowed,
controlling the levels of the derivation trees of a context-free grammar by the language
accepted by a minimal finite automaton with at most five states characterizes the class of
recursively enumerable languages (see Th. 4.32).

Turaev, Dassow, and Selamat in [122] examine tree controlled grammars with bounded
nonterminal complexity and demonstrate that nine/seven nonterminals in a tree controlled
grammar are enough to generate any recursively enumerable language (see Th. 4.33 and
Th. 4.34). Then, they establish that three nonterminals in a tree controlled grammar are
enough to generate any regular language (see Th. 4.35) and any regular simple matrix
language can be generated by a tree controlled grammar (see Th. 4.36) with three nonter-
minals. Finally, they demonstrate that three nonterminals in a tree controlled grammar
are enough to generate any linear language (see Th. 4.37). The same authors in [123] state
several further nonterminal complexity related properties of tree controlled grammars (see
Lem. 4.38).

A strictly formal summary of the results concerning tree controlled grammars can be
found in Chap. 4.
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1.1.2 Path Based Restriction

As an attempt to increase the power of context-free grammars without changing the basic
formalism and loosing some basic properties of context-free languages (decidability, efficient
parsing, etc.), Marcus, Martín-Vide, Mitrana, and Păun in [80] study a new type of a
restriction in a derivation: a derivation tree in a context-free grammar is accepted if it
contains a path described by a control language. More precisely, they consider two context-
free grammars, G and G′. A word, w, generated by G belongs to the language defined
by G and G′ if there is a derivation tree, t, for w in G such that there exists a path of t
described by the language of G′. Based on this restriction, they introduce a path controlled
grammar (see Def. 5.2) and study several properties of this model. Specifically, they study
controlling a path of the derivation trees of several types of grammars by a regular language
(see Th. 5.1) and controlling a path of the derivation trees of a regular grammar by a linear or
context-free language (see Th. 5.3 and Th. 5.4). Then, they establish two kinds of pumping
properties depending on the type of a controlled grammar (see Th. 5.6, and Th. 5.7), some
consequences to the closure properties of path controlled grammars (see Th. 5.9, Th. 5.10,
Th. 5.11), and a basic parsing property for path controlled grammars (see Th. 5.12). They
also investigate the generative power of path controlled grammars (see Th. 5.5 and Col. 5.8).
However, there exists a serious problem with the correctness of the proof they present (see
our discussion in Sec. 8.3.4).

As a continuation of the investigation of path-based restrictions, Martín-Vide and Mi-
trana study parsing properties of path controlled grammars (see Th. 5.13), closure proper-
ties of path controlled grammars (see Th. 5.14, Th. 5.15, and Th. 5.16), and several decision
problems for path controlled grammars (see 5.17) in [81] and [82].

For a strictly formal summary of the results related to path controlled grammars, see
Chap. 5.

1.2 Goals of the Thesis

As it clearly follows from the previous sections, level-based restriction is well-studied and
the most of the important questions have been answered. On the other hand, in the case
of path-based restriction many basic properties including the generative power have not
been successfully investigated yet. Moreover, several other restrictions placed upon the
derivation trees have not yet been introduced at all. Indeed, the restrictions placed upon
the cuts of the derivation tree (see Chap. 7) as well as upon several paths of the derivation
trees (see Chap. 9) represent completely new investigation areas.

Thus, the goals of the doctoral thesis consist in three investigation areas. First, to
introduce new investigation area represented by cut-based restrictions and establish the
generative power of the model restricted in this way. Second, to establish several new
results in the investigation of one-path-restricted grammars introduced in [80]. Third, to
generalize one-path-restricted model into several paths and investigate several its properties.

Since each of these kind of restrictions represents relatively independent derivation-tree-
restriction-related topic, each of them contains its own motivation (see Sec. 7.1, Sec. 8.1, and
Sec. 9.1) and further research ideas sections (see Sec. 7.3.1, Sec. 8.3.1, Sec. 8.3.2, Sec. 8.3.3,
Sec. 8.3.4, Sec. 9.3.1, Sec. 9.3.2, Sec. 9.3.3, and Sec. 9.3.4).
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1.3 Chapter Survey

This doctoral thesis consists of 3 parts that are subsequently divided into 10 chapters.

• Part I, Notation and Basic Definitions, contains two chapters—Basic Mathematical
Definitions and Language and Rewriting. The first being the summary of essential
well-known definitions related to the set theory and the graph theory. The second
being the overview of the fundamental definitions and models of the formal language
theory and the theoretical computer science needed in the subsequent parts of this
work. For the conciseness, in several special cases where a complete list of definitions
should be given just to formally define one specific property, we present only the
reference for those definitions and define the required property directly. However,
these cases are almost rare and they are always duly pointed out.

• Part II, State of the Art, being the formal summary of the crucial derivation-tree-
based restriction results. All results are presented using the terminology introduced
in Part I. Except of one that is controversial (see Sec. 8.3.4), all proofs related to the
presented results are omitted. However, appropriate reference where one can found
the proof if required is always included.

• Part III being the main part of this doctoral thesis and it is composed of five chapters.

– The first reformulates the fundamental definitions so that all derivation-tree-
based restrictions can be studied using the same notation. Then, this chapter
summarizes the preliminaries common for all new results presented in the sub-
sequent chapters of this work.

– The second, Cut Tree Controlled Grammars, introduces a new derivation-tree-
based restriction, the rewriting model based upon aforementioned restriction,
and several properties related namely to its generative power.

– The next chapter, Path Tree Controlled Grammars, deals with the one-path-
restricted rewriting model as it is presented informally in Sec. 1.1.2 and for-
mally in Chap. 8. It introduces new results related to the normal forms and
the presence of erasing productions in a controlled grammar. Then, this chapter
presents a relationship between biology and the formal language theory in the
form of word representation of pseudoknots generated by path controlled gram-
mars. Last section of this part being a counterargument against the proof of
the generative power of path controlled grammars that has been considered as
correct so far.

– The chapter n-Path Tree Controlled Grammars being a generalization of path-
restricted rewriting model to a restriction placed upon not just one but seve-
ral paths. Then, it presents several properties of the model restricted in this
way. Specifically, the generative power of a kind of all-paths-restricted rewrit-
ing model, closure and pumping properties in relation to the number of con-
trolled paths, and the approximation of the generative power for n-path re-
stricted model. The last section of this part presents an application related
result concerning the parsing of path restricted languages.

– Last chapter, Summary, being a brief resume of the most important achieved
results deeply studied in the aforementioned sections and written or co-written
by the author of this doctoral thesis.
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Part I

Notation and Basic Definitions



Chapter 2

Basic Mathematical Definitions

In this two-section chapter, we introduce all fundamental definitions needed for presenting
the current state of the art as well as for the new results in the investigation of grammars
with restricted derivation tress. Since all definitions presented in this chapter belong to
the well-known core of mathematical knowledge, they are presented formally without any
comments. However, for those who need more detailed explanation including several exam-
ples, the bibliographical remarks (see Sec. 3.10) are included. For better readability, several
conventions are introduced.

2.1 Set Theory

The formal language theory is based namely upon the set theory. Indeed, formal languages
are sets of words. This section summarizes the definitions of the notions related to the set
theory.

Definition 2.1 (Set). A set , Σ, is a collection of the elements, which are taken from some
prespecified universe. If a set, Σ, contains an element, a, then this is denoted as a ∈ Σ and
refers to a as a member of Σ. However, if a does not belong to Σ, this is denoted as a /∈ Σ.

Definition 2.2 (Cardinality of a set). Let Σ be a set. The cardinality of Σ, card(Σ), is
the number of members of Σ. The set that has no member is the empty set , denoted ∅, and
card(∅) = 0.

Definition 2.3 (Finite and infinite set). If a set, Σ, has a finite number of members, then
Σ is a finite set ; otherwise, Σ is an infinite set . A finite set Σ is customarily specified by
listing its members; that is, Σ = {a1, a2, . . . , an} where all ai ∈ Σ, for 1 ≤ i ≤ n, are all
members of Σ. An infinite set, Ω, is usually specified by a property, π, so that Ω contains all
elements satisfying π; this specification has the following general format: Ω = {a : π(a)}.

Definition 2.4 (Subset and proper subset). Let Σ and Ω be two sets. Σ is a subset of Ω,
denoted as Σ ⊆ Ω, if each member of Σ belongs to Ω. Σ is a proper subset of Ω, denoted
as Σ ⊂ Ω, if Σ ⊆ Ω and Ω contains an element, a, such that a /∈ Σ. Σ equals Ω, denoted as
Σ = Ω, if Σ ⊆ Ω and Ω ⊆ Σ.

Definition 2.5 (Difference of sets). Let Σ1 and Σ2 be two sets. The difference of Σ1 and
Σ2, symbolically written as Σ1 − Σ2, is defined as Σ1 − Σ2 = {x : x ∈ Σ1 and x /∈ Σ2}.
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Relations

Definition 2.6 (Ordered pair). Let a and b be two elements. Then, (a, b) denotes the
ordered pair consisting of a and b in this order. Let (a, b) and (c, d) be two ordered pairs.
Then, (a, b) = (c, d) if and only if a = c and b = d.

Definition 2.7 (Cartesian product). Let Σ and Ω be two sets. The Cartesian product of
Σ and Ω, denoted as Σ× Ω, is defined as Σ× Ω = {(a, b) : a ∈ Σ and b ∈ Ω}.

Definition 2.8 (Binary relation). Let Σ and Ω be two sets. A binary relation ρ from Σ to
Ω is a subset of Σ× Ω; that is, ρ ⊆ Σ× Ω. If Σ = Ω, then ρ is a relation on Σ.

Conventions

Instead of (a, b) ∈ ρ, we usually write a ∈ ρ(b) or aρb.

Definition 2.9 (Partial order). Let P be a set. A partial order on a nonempty set P is a
binary relation ≤ on P such that for all x, y, z ∈ P : x ≤ x (reflexive), x ≤ y, y ≤ x imply
x = y (antisymmetric), and x ≤ y ≤ z imply x ≤ z (transitive). The pair (P,≤) is called a
partially ordered set.

Definition 2.10 (Total order). Let P be a set and ≤ be a binary relation. A partially
ordered set (P,≤) is totally ordered if for every x, y ∈ P : x ≤ y or y ≤ x.

Definition 2.11 (k-fold product). Let ρ be a binary relation on a set, Σ, and let k be a
natural number. The k-fold product of a binary relation, denoted as ρk, is defined as aρ1b
if and only if aρb; for k ≥ 2, aρkb if and only if there exists c ∈ Σ such that aρc and cρk−1b.

Definition 2.12 (Transitive closure). Let ρ be a binary relation on a set, Σ. The transitive
closure of ρ, denoted as ρ+, is defined as follows: aρ+b if and only if aρib for some i ≥ 1.
Consequently, aρ+b if and only if for some n ≥ 0, aρc1, c1ρc2, . . . , cn−1ρcn, cnρb where
c1, c2, . . . , cn ∈ Σ (the case when n = 0 actually means aρb).

Definition 2.13 (Reflexive and transitive closure). Let ρ be a binary relation on a set, Σ.
The reflexive and transitive closure of ρ, denoted as ρ∗, is defined as aρ∗ if and only if aρ+b
or a = b.

Definition 2.14 (Function). Let Σ and Ω be two sets, and let φ be a binary relation from
Σ to Ω such that for every a ∈ Σ, card({b : b ∈ Ω and aφb}) ≤ 1. Then φ is a function
from Σ to Ω.

2.2 Graph Theory

The process of generating the formal languages is usually captured by the graphs. Therefore,
in this section, we summarize basic notions of the graph theory.

Definition 2.15 (Graph). Let Σ be a set. A graph is a pair, G = (Σ, ρ), where ρ is a binary
relation on Σ. Consider a graph, G = (Σ, ρ). Members of Σ are called nodes, and ordered
pairs in ρ are called edges. If (a, b) ∈ ρ, then (a, b) leaves a and enters b. Let a ∈ Σ. Then,
in-degree of a equals card({b : (b, a) ∈ ρ}) and out-degree of a equals card{c : (a, c) ∈ ρ}).
A sequence of nodes, a0a1 . . . an, where n ≥ 1, is a a graph-path of length n from a0 to an if
(ai−1, ai) ∈ ρ for all i = 1, . . . , n; if, in addition, a0 = an then a0a1 . . . an is a cycle of length
n.
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Conventions

For brevity, a graph is called a directed graph.

Definition 2.16 (Acyclic graph). An acyclic graph is a graph, G = (Σ, ρ), that has no
cycles. If a ∈ Σ is a node having out-degree 0, then a is a leaf . If (a0, a1, . . . , an) is a
graph-path in G, then an is a descendent of a0; in addition, if n = 1, then an is a direct
descendent of a0.

Trees

Definition 2.17 (Tree). A tree is an acyclic graph, G = (Σ, ρ), satisfying these three
properties: G has a specified node whose in-degree is 0; this node represents the root of G,
denoted by root(G); if a ∈ Σ and a 6= root(G), then a is a descendent of root(G) and the
in-degree of a is 1; and each node a ∈ Σ which is not a leaf has its direct descendent, b1
through bn, ordered from the left to the right so that b1 is the leftmost direct descendent
of a and bn is the rightmost direct descendent of a.

Definition 2.18 (Level, path, cut, frontier, depth, elementrary tree, and subtree). Let
G = (Σ, ρ) be a tree.

A level , l, of G is a sequence, s, of all nodes with the same distance from root(G). In
other words, a level, l, is a sequence, s = n1n2 . . . nk, such that there is a graph-path of
length ` in G for all sequences root(G) . . . ni, for 1 ≤ i ≤ k and some l ≥ 1.

A path, p, of G is a sequence, s, of nodes where the first node of s is root(G), last node
of s is a leaf, and there is an edge in G between each two consecutive nodes of s. By other
words, a path, p, is a sequence, s = n1n2 . . . nk, such that s is a graph-path of length k in
G with n1 = root(G), and nk is a leaf of G, for some k ≥ 1.

A cut , c, of G is a sequence, s, of the nodes such that each path of G has precisely one
node in c. By other words, a cut, c, is a sequence, s = n1n2 . . . nk, such that for each path,
p = m1m2 . . .m`, of G, card{{n1, n2, . . . , nk} ∩ {m1,m2, . . . ,m`}} = 1, for k, ` ≥ 1.

The frontier of G, fr(G), is the sequence of G’s leaves ordered from left to right.
The depth of G, depth(G), is the length of the longest path in G; if depth(G) = 1, then

G is an elementary tree.
If G′ = (Σ′, ρ′) represents a tree satisfying these four conditions: Σ′ 6= ∅; Σ′ ⊆ Σ;

ρ′ = (Σ′ × Σ′) ∩ ρ; and in G, no node in Σ− Σ′ is a descendant of a node in Σ′, then G′ is
a subtree of G.

Definition 2.19 (Word representation of sequence of nodes). For a sequence, s, of the
nodes of a derivation tree, the word obtained by concatenating all symbols of s is denoted
as word(s).

Conventions

Let G = (Σ, ρ) be a tree. G is usually described pictorially with each node, a ∈ Σ,
represented by a circle, and each edge, (a, b) ∈ ρ, represented by an arrow from the circle
a to the circle b. For simplicity, we draw a tree, G, with its root on the top and all edges
directed down—thus, the arrows are omitted.
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Chapter 3

Languages and Rewriting

Based upon the definitions of the previous chapter, we formulate the basics of the formal
language theory. After that, we present the definitions of the language-describing models
needed in the following parts of this work.

3.1 Formalization of Languages

Formal languages are defined as sets of words. Therefore, except of the basic set-related
notions presented in the previous chapter, we introduce several language-related definitions
here.

Alphabets and Words

Definition 3.1 (Alphabet and symbol). An alphabet is a finite, nonempty set of elements,
which are called symbols.

Definition 3.2 (Word). Let Σ be an alphabet, then ε is a word over Σ; if x is a word over
Σ and a ∈ Σ, then xa is a word over Σ. Let Σ∗ denote the set of all words over Σ and set
Σ+ = Σ∗ − {ε}.

Definition 3.3 (Length of word). Let x be a word over an alphabet, Σ. The length of x,
|x|, is defined as if x = ε, then |x| = 0; if x = a1a2 . . . an, for some n ≥ 1, where ai ∈ Σ for
all 1 ≤ i ≤ n, then |x| = n.

Definition 3.4 (Concatenation of words). Let x and y be two words over an alphabet, Σ.
Then, xy is the concatenation of x and y. For every word, x, it holds xε = εx = x.

Definition 3.5 (Reversal of word). Let x be a word over an alphabet, Σ. The reversal
of x, reversal(x), is defined as if x = ε, then reversal(x) = ε; if x = a1a2 . . . an, for some
n ≥ 1, and ai ∈ Σ for 1 ≤ i ≤ n, then reversal(a1a2 . . . an) = an . . . a2a1.

Definition 3.6 (Subword). Let x and y be two words over an alphabet, Σ. Then, x is a
subword of y if there exist two words, z and z′, over Σ so zxz′ = y; moreover, if x /∈ {ε, y}
then x is a proper subword of y.
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Languages

Definition 3.7 (Language). Let Σ be an alphabet and let L ⊆ Σ∗. Then, L is a language
over Σ.

Definition 3.8 (Minimal alphabet of word). Let Σ be an alphabet. For a word, w ∈ Σ∗,
alph(w) denotes the set of all symbols of Σ occurring in w.

Definition 3.9 (Minimal alphabet of language). Let Σ be an alphabet and L ⊆ Σ∗. Then,
alph(L) =

⋃
w∈L alph(w) denotes minimal alphabet of L.

Definition 3.10 (Finite and infinite language). Let L be a language. L is finite if card(L) =
n for some n ≥ 0; otherwise, L is infinite.

Definition 3.11 (Class of finite languages). Class of finite languages is defined as FIN =
{L : L is a finite language}.
Definition 3.12 (Concatenation of languages). Let L1 and L2 be two languages. The
concatenation of L1 and L2, L1L2, is defined as L1L2 = {xy : x ∈ L1 and y ∈ L2}.
Definition 3.13 (Union of languages). Let L1 and L2 be two languages. The union of L1

and L2, L1 ∪ L2, is defined as L1 ∪ L2 = {x : x ∈ L1 or x ∈ L2}.
Definition 3.14 (Intersection of languages). Let L1 and L2 be two languages. The inter-
section of L1 and L2, L1 ∩ L2, is defined as L1 ∩ L2 = {x : x ∈ L1 and x ∈ L2}.
Definition 3.15 (Difference of languages). Let L1 and L2 be two languages. The difference
of L1 and L2, L1 − L2, is defined as L1 − L2 = {x : x ∈ L1 and x /∈ L2}.
Definition 3.16 (Complement of language). Let L be a language over an alphabet Σ. The
complement of L, L, is defined as L = Σ∗ − L.

Definition 3.17 (Power of language). Let L be a language. For i ≥ 0, the ith power of L,
Li, is defined as L0 = ε; for all i ≥ 1, Li = LLi−1.

Definition 3.18 (Closure of language). Let L be a language. The closure of L, L∗, is
defined as L∗ =

⋃∞
i=0 L

i.

Translations

Definition 3.19 (Translation). Let Σ be an input alphabet , and let Ω be an output alphabet .
A translation, τ , from Σ∗ to Ω∗ is a binary relation from Σ∗ to Ω∗.

Definition 3.20 (Substitution). Let Σ and Ω be two alphabets, and let τ be a translation
from Σ∗ to Ω∗ such that for all x, y ∈ Σ∗, τ(xy) = τ(x)τ(y). Then, τ is a substitution.

Definition 3.21 (Homomorphism). Let Σ and Ω be two alphabets, and let τ be a substi-
tution from Σ∗ to Ω∗. If τ represents a function from Σ∗ to Ω∗, then τ is a homomorphism.

3.2 Unrestricted Languages

As the most powerful language-generating model, we present the notion of unrestricted
grammars and several related definitions. The great generative power of the aforementioned
model is achieved by unrestricted form of the rewriting productions.

Definition 3.22 (Unrestricted grammar). Unrestricted grammar is a quadruple G =
(V, T, P, S) where V is a total alphabet, T is an alphabet of terminals such that T ⊂ V ,
P ⊆ V ∗(V − T )V ∗ × V ∗ is a finite binary relation, S ∈ V − T is the start symbol.
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Conventions

For the conciseness, see Conventions in Sec. 3.35 for context-free grammars and apply them
for unrestricted grammars analogously.

Definition 3.23 (Derivation). Let G = (V, T, P, S) be an unrestricted grammar, p ∈ P ,
and x, y ∈ V ∗. Then, x lhs(p)y directly derives x rhs(p)y according to p in G; symbolically,
x lhs(p)y⇒x rhs(p)y [p] or, briefly, x lhs(p)y⇒x rhs(p)y. By analogy with the corresponding
definition for a context-free grammar (see Def. 3.37), for all n ≥ 0, define v⇒nw [π] in G,
v⇒+w [π], and v⇒∗w [π].

Definition 3.24 (Generated language). Let G = (V, T, P, S) be an unrestricted grammar.
The language generated by G, L(G), is defined as L(G) = {w : w ∈ T ∗ and S⇒∗w in G}.

Definition 3.25 (Recursively enumerable language). A language, L, is recursively enu-
merable if there is an unrestricted grammar, G, such that L(G) = L.

Definition 3.26 (Class of recursively enumerable languages). The class of recursively enu-
merable languages is defined as RE = {L : L = L(G) for an unrestricted grammar G}.

Definition 3.27 (Pentonnen normal form for unrestricted grammars). An unrestricted
grammar, G = (V, T, P, S), is in Pentonnen normal form if every production, p ∈ P , has
one of these four forms: AB → AC, A→ BC, A→ a, or A→ ε with A,B,C ∈ V − T and
a ∈ T .

Definition 3.28 (Recursive language). A language L is recursive if and only if both L and
L are recursively enumerable languages.

Definition 3.29 (Decidable and undecidable problems). Given a yes/no question Q, a
language, L, can be built by taking all the instances of Q where the answer is yes (with Q
converted to a word somehow). A yes/no question is decidable if the associated language is
recursive. Let G be a grammar. Then, the non-emptiness problem, finiteness problem, and
membership problem is represented by the question

”
Is L(G) 6= ∅?“,

”
Is L(G) finite?“, and

”
Is w ∈ L(G)?“, respectively.

Definition 3.30 (Time complexity). Let M be a Turing machine (see Def. 8.1.1 in [89]).
M runs in a polynomial time O(nk) if there exists some constant c such that M runs in at
most cnk steps for any input of length n, for k, n ≥ 0.

3.3 Context-sensitive Languages

A strictly weaker language-generating model is represented by the context-sensitive gram-
mars in which the form of the rewriting productions is more restrictive. Here, we define
the aforementioned model formally.

Definition 3.31 (Context-sensitive grammar). Let G = (V, T, P, S) be an unrestricted
grammar. G is a context-sensitive grammar if p ∈ P implies | lhs(p)| ≤ | rhs(p)|.

Definition 3.32 (Context-sensitive language). A language, L, is context-sensitive language
if there is a context-sensitive grammar, G, such that L = L(G).

Definition 3.33 (Class of context-sensitive languages). The class of context-sensitive lan-
guages is defined as CS = {L : L = L(G) for an context-sensitive grammar G}.
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Definition 3.34 (Pentonnen normal form for context-sensitive grammars). A context-
sensitive grammar, G = (V, T, P, S), is in Pentonnen normal form if every production,
p ∈ P , has one of these three forms: AB → AC, A→ BC, or A→ a with A,B,C ∈ V − T
and a ∈ T .

3.4 Context-free Languages

From the practical viewpoint, the context-free languages represent the most fundamental
part of the formal language theory. The form of rewriting productions is strictly prescribed
by the constraints placed on their left-hand sides. Indeed, the left-hand side of a production
must contain just one symbol. This section being the summary of context-free-rewriting-
related definitions.

Definition 3.35 (Context-free grammar). A context-free grammar is an quadruple G =
(V, T, P, S) where V is a total alphabet, T is an alphabet of terminals such that T ⊂ V ,
P ⊆ (V − T )× V ∗ is a finite binary relation, S ∈ V − T is the start symbol.

Conventions

Hereafter, the members of P are called productions; accordingly, P is known as the set
of productions. A production, (A, x) ∈ P , is customarily written as A → x. For brevity,
the productions in P are usually labelled; thus, a label p denotes a production u → v as
p : u→ v where u represents the left-hand side of p, denoted as lhs(p), and v represents the
right-hand side of p, denoted as rhs(p). A production, p, is called as ε-production and unit
production if rhs(p) = ε and rhs(p) ∈ V − T , respectively. Whenever a notion nonterminal
is used, it represents a member of V − T . For better readability, we often use the notation
A→ B|C ∈ P with the meaning A→ B ∈ P and A→ C ∈ P .

Definition 3.36 (Direct derivation). Let G = (V, T, P, S) be a context-free grammar,
p ∈ P , and x, y ∈ V ∗. Then, x lhs(p)y directly derives x rhs(p)y according to p in G;
denoted by x lhs(p)y⇒x rhs(p)y [p] or, briefly, x lhs(p)y⇒x rhs(p)y.

Definition 3.37 (Derivation). Let G = (V, T, P, S) be a context-free grammar.

1. For any u ∈ V ∗, G makes a zero-step derivation from u to u according to ε, which is
written as u⇒0u [ε],

2. Let u0, u1, . . . , un ∈ V ∗, for some n ≥ 1, such that ui−1⇒ui [pi] where pi ∈ P ,
for 1 ≤ i ≤ n; that is, u0⇒u1 [p1]⇒u2 [p2]⇒ . . . un [pn]. Then G makes an n-step
derivation from u0 to un according to p1p2 . . . pn, written as u0⇒nun [p1p2 . . . pn].

Let v, w ∈ V ∗.

1. If there exists n ≥ 1 so v⇒nw [π] in G, then v properly derives w according to π in
G, written as v⇒+w [π],

2. If there exists n ≥ 0 so v⇒nw [π] in G, then v derives w according to π in G, written
as v⇒∗w [π].
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Conventions

We frequently apply the simplify v⇒+w [π] and v⇒∗w [π] to v⇒+w and v⇒∗w, respectively.
If S⇒∗w in G, then w is a sentential form of G. A sentential form, w, such that w ∈ T ∗
is a word generated by G. A production, p ∈ P , is called usable production if there is a
derivation S⇒∗x lhs(p)y⇒x rhs(p)y⇒∗w in G, for x, y ∈ V ∗ and w ∈ T ∗.

Definition 3.38 (ε-free context-free grammar). Let G = (V, T, P, S) be a context-free
grammar. G is an ε-free context-free grammar if rhs(p) 6= ε for all p ∈ P .

Definition 3.39 (Generated language). Let G = (V, T, P, S) be a context-free grammar.
The language generated by G, L(G), is defined as L(G) = {w : w ∈ T ∗ and S⇒∗w in G}.

Definition 3.40 (Context-free language). A language L is a context-free language if there
exists a context-free grammar, G, such that L = L(G).

Definition 3.41 (Classes of context-free languages and ε-free context-free languages). The
class of context-free languages is defined as CF = {L : L = L(G) for a context-free
grammar G}. The class of ε-free context-free is defined as CFε = {L : L = L(G) for an
ε-free context-free grammar G}.

Definition 3.42 (Leftmost direct derivation). Let G = (V, T, P, S) be a context-free gram-
mar, p ∈ P , x ∈ T ∗, and y ∈ V ∗. Then, x lhs(p)y directly derives x rhs(p)y according to
p in G in the leftmost way, as denoted by x lhs(p)y⇒lmx rhs(p)y [p] or, more briefly, by
x lhs(p)y⇒lmx rhs(p)y. Extend⇒lm to⇒n

lm,⇒+
lm, and⇒∗lm by analogy with the extension

of ⇒ to ⇒n, ⇒+, and ⇒∗, respectively.

Derivation trees

Definition 3.43 (Production tree). Let G = (V, T, P, S) be a context-free grammar and
p ∈ P . The production tree, pt(p), corresponding to p is a labelled elementary tree, t, such
that lhs(p) labels root(t) and fr(t) is defined as follows:

1. If | rhs(p)| = 0 (that is, p is an ε-production), then fr(t) consists of one node labelled
by ε.

2. If | rhs(p)| ≥ 1, then fr(t) consists of | rhs(p)| nodes that are labelled with the symbols
appearing in rhs(p) from left to right.

Definition 3.44 (Derivation tree). Let G = (V, T, P, S) be a context-free grammar. A
derivation tree of G is a labelled tree, t, satisfying these two conditions:

1. root(t) is labelled with a nonterminal A ∈ V − T .

2. Each elementary subtree t′ appearing in t represents the production tree pt(p) corre-
sponding to a production, p ∈ P .

Definition 3.45 (Derivation tree corresponding to derivation). Let G = (V, T, P, S) be a
context-free grammar. The correspondence between the derivation trees and the derivations
that these trees represent is defined recursively as follows:

1. Let t be a one-node derivation tree such that root(t) is labelled A, where A ∈ V − T .
Then, t corresponds to A⇒∗A [ε] in G.
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2. Let t be the derivation tree corresponding to A⇒∗x lhs(p)y [π] in G. The derivation
tree corresponding to A⇒∗x lhs(p)y [π]⇒x rhs(p)y [p] is constructed by attaching pt(p)
to the |x|+ 1st leaf appearing in fr(t).

Definition 3.46 (Set of derivation trees). Let G = (V, T, P, S) be a context-free grammar.
Then G4(x) denote the set of all derivation trees of x in G with x ∈ V ∗.

Definition 3.47 (Equivalent languages and grammars). Let L1 and L2 be two context-free
languages. If L1 − {ε} = L2 − {ε} then L1 and L2 are equivalent , denoted by L1 = L2. If
G1 and G2 are two context-free grammars such that L(G1) = L(G2) then G1 and G2 are
equivalent.

Definition 3.48 (Chomsky normal form for context-free grammars). A context-free gram-
mar, G = (V, T, P, S), is in Chomsky normal form if every production, p ∈ P , satisfies
rhs(p) ∈ T ∪ (V − T )2.

Lemma 3.1 (Pumping lemma for context-free languages). Let L be a context-free language.
Then, there exists a natural number, k, such that if z ∈ L and |z| ≥ k, then z can be
expressed as z = uvwxyz so that vx 6= ε; |vwx| ≤ k; and uvnwxmy ∈ L, for all m ≥ 0.

Ambiguity

Definition 3.49 (Ambiguity). Let G = (V, T, P, S) be a context-free grammar. If there
exists a word x ∈ L(G) such that S⇒∗lmx [π1] and S⇒∗lmx [π2] with π1 6= π2, then G is
ambiguous; otherwise, G is unambiguous.

Definition 3.50 (Bounded ambiguity). Let G = (V, T, P, S) be a context-free grammar.
If for all words x ∈ L(G) there is at most m, for some m ≥ 1, such that S⇒∗lmx [π1],
S⇒∗lmx [π2], . . . , S⇒∗lmx [πm] with π1 6= π2 6= · · · 6= πm, then G is m-ambiguous.

Definition 3.51 (Inherent ambiguity). Let L be a context-free language. If every context-
free grammar G satisfying L(G) = L is ambiguous, then L is inherently ambiguous.

Pushdown Automata

Definition 3.52 (Pushdown automaton). A pushdown automaton is a septuple M =
(Q,Σ,Γ, R, q0, Z0, F ), where Q is a finite set of states, Σ is an input alphabet, Γ is a push-
down alphabet, R ⊆ (Γ×Q× (Σ∪{ε}))× (Γ∗ ∪Q) is a finite binary relation, q0 ∈ Q is the
start state, Z0 ∈ Γ is the initial pushdown symbol, F ⊆ Q is a se of final states.

Conventions

For the conciseness, see Conventions in Sec. 3.6 for finite automata and apply them for
pushdown automata analogously.

Definition 3.53 (Configuration). Let M = (Q,Σ,Γ, R, q0, Z0, F ) be a pushdown automa-
ton. A configuration of M is a word χ satisfying χ ∈ Γ∗QΣ∗.

Definition 3.54 (Move). Let M = (Q,Σ,Γ, R, q0, Z0, F ) be a pushdown automaton. If
x lhs(r)y is a configuration of M , where x ∈ Γ∗, y ∈ Σ∗, and r ∈ R, then M makes a move
from x lhs(r)y to x rhs(r)y according to r, written as x lhs(r)y ` x rhs(r)y [r]. By analogy
with the corresponding definition for a finite automata (see Def. 3.66), for all n ≥ 0, define
χ `n χ′ [′π] in M , χ `+ χ′ [π], and χ′ `∗ χ′ [π].
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Definition 3.55 (Accepted language). Let M = (Q,Σ,Γ, R, q0, Z0, F ) be a pushdown
automaton and w ∈ Σ∗. The language accepted by M , denoted L(M), is defined as L(M) =
{w : w ∈ Σ∗ and Z0q0w `∗ f for some f ∈ Q}.

3.5 Linear Languages

A much simpler than context-free language-describing model is represented by the notion of
linear grammars. Indeed, during the rewriting process in a linear grammar, there is always
at most one symbol that can be rewritten. The following definitions being the summary of
the linear-rewriting-related definitions.

Definition 3.56 (Linear grammar). Let G = (V, T, P, S) be a context-free grammar. G is
linear grammar if, for all p ∈ P , rhs(p) ∈ T ∗((V − T ) ∪ {ε})T ∗.

Definition 3.57 (Linear language). Let L be a language. L is a linear language if there
exists a linear grammar G such that L(G) = L.

Definition 3.58 (Class of linear languages). The class of linear languages is defined as
LIN = {L : L = L(G) for a linear grammar G}.

Lemma 3.2 (Pumping lemma for linear languages). Let L be a linear language. Then,
there exists a natural number, k, such that if z ∈ L and |z| ≥ k, then z can be expressed as
z = uvwxyz so that |vx| ≥ 1; |uvxy| ≤ k; and uvnwxmy ∈ L, for all m ≥ 0.

3.6 Regular Languages

Regular languages were introduced as a finite characterization of infinite languages of the
words in a specified format. In this section, we present several fundamental definitions
related to the generating as well as the accepting regular languages.

Definition 3.59 (Regular expression). Let Σ be an alphabet. The regular expressions over
Σ and the languages that these expressions denote are defined recursively as: ∅ is a regular
expression denoting the empty set; ε is a regular expression denoting {ε}; a, where a ∈ Σ is
a regular expression denoting {a}; if r and s are regular expressions denoting the languages
R and S, respectively, then: (r · s) is a regular expression denoting RS; (r+ s) is a regular
expression denoting R ∪ S; and (r∗) is a regular expression denoting R∗.

Conventions

To simplify the fully parenthesized regular expressions, we reduce the number of parentheses
in these expressions by assuming that ∗ has a higher precedence than ·, and that · has a
higher precedence than +. Furthermore, we abbreviate these expressions by omitting the
symbol · in them. In addition, the expression rr∗ is usually written as r+ for brevity. For
a regular expression r, L(r) represents the language denoted by r.

Definition 3.60 (Regular grammar). Let G = (V, T, P, S) be a context-free grammar. G
is regular if, for all p ∈ P , rhs(p) ∈ T ((V − T ) ∪ {ε}).

Definition 3.61 (Regular language). Let L be a language. L is a regular language if there
exists a regular grammar G such that L(G) = L.
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Definition 3.62 (Class of regular languages). Class of regular languages is defined as
REG = {L : L = L(G) for a regular grammar G}.

Definition 3.63 (Size of regular language). Let R be a regular language. The size of R is
denoted as c(R) and defined as the number of states of a minimum-state finite automaton
(see Def. 3.76) that accepts R. For any natural number n ≥ 1, let REGn be the class of all
regular languages R such that c(R) ≤ n.

Finite Automata

Definition 3.64 (Finite automaton). A finite automaton is a quintuple M = (Q,Σ, R, s, F )
where Q is a finite set of states, Σ is an input alphabet such that Σ ∩ Q = ∅, R ⊆
(Q× (Σ ∪ {ε}))×Q is a finite binary relation, s ∈ Q is the start state, and F ⊆ Q is a set
of final states.

Conventions

Hereafter, members of R are called computational rules or, simply, rules; as a result, R is
referred to as a finite set of rules. A rule, (pa, q) ∈ R with p, q ∈ Q and a ∈ Σ ∪ {ε}, is
usually written as pa→ q. For brevity, the rules of a finite automaton are usually labelled
and these labels are used to refer to the rules. If the rule pa→ q is labelled r, then we write
r : pa→ q. Here, pa is the left-hand side of rule r, which is denoted by lhs(r); analogously,
the right-hand side of rule r, i.e., q, is denoted by rhs(r).

Definition 3.65 (Configuration). Let M = (Q,Σ, R, s, F ) be a finite automaton. A con-
figuration of M is a word χ satisfying χ ∈ QΣ∗.

Definition 3.66 (Move). Let M = (Q,Σ, R, s, F ) be a finite automaton. If lhs(r)y is a
configuration of M , where y ∈ Σ∗ and r ∈ R, then M makes a move from lhs(r)y to rhs(y)
according to r, written as lhs(r)y ` rhs(y)y [r].

Conventions

When the specification of the rule r used in lhs(r)y ` rhs(r)y [r] is immaterial, simply write
lhs(r)y ` rhs(r)y. Given a finite automaton, M , χM denotes a configuration of M . When
no confusion exists, we use χ instead of χM .

Definition 3.67 (Sequence of moves). Let M = (Q,Σ, R, s, F ) be a finite automaton.

1. Let χ be any configuration of M . M makes zero moves from χ to χ according to ε,
written as χ `0 χ [ε].

2. Let there exist a sequence of configurations χ0, χ1, . . . , χn, for some n ≥ 1 such that
χi−1 ` χi ` [ri], where ri ∈ R, 1 ≤ i ≤ n; that is, χ0 ` χ1 [r1] ` χ2 [r2] · · · ` χn [rn]
Then, M makes n moves from χ0 to χn according to r1r2 . . . rn, written as χ0 `n
χn [r1r2 . . . rn].

Let χ and χ′ be two configurations of M .

1. If there exists n ≥ 1 so χ `n χ′ [ρ] in M , then χ `+ χ′ [ρ].

2. If there exists n ≥ 0 so χ `n χ′ [ρ] in M , then χ `∗ χ′ [ρ].
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Definition 3.68 (Accepted language). Let M = (Q,Σ, R, s, F ) be a finite automaton and
w ∈ Σ∗. The language accepted by M , denoted L(M), is defined as L(M) = {w : w ∈ Σ∗

and sw `∗ f in M for some f ∈ F}.

Definition 3.69 (ε-free finite automaton). Let M = (Q,Σ, R, s, F ) be a finite automaton.
M is an ε-free finite automaton if for all r ∈ R, lhs(r) ∈ QΣ.

Definition 3.70 (Deterministic finite automaton). Let M = (Q,Σ, R, s, F ) be an ε-free
finite automaton such that for all r, r′ ∈ R, r 6= r′ implies lhs(r) 6= lhs(r′). Then, M is a
deterministic finite automaton.

Accessibility, Termination, and Completeness

Definition 3.71 (Accessible state). Let M = (Q,Σ, R, s, F ) be finite automaton. A state
q ∈ Q is accessible if there exists a word w in Σ∗ such that sq `∗ q otherwise, q is
inaccessible.

Definition 3.72 (Terminating state). Let M = (Q,Σ, R, s, F ) be a deterministic finite
automaton. A state q ∈ Q is termination if there exists a word w in Σ∗ such that qw `∗ f
for some f ∈ F ; otherwise, q is nonterminating.

Definition 3.73 (Complete deterministic finite automaton). A deterministic finite automa-
ton M = (Q,Σ, R, s, F ) is complete if {lhs(r) : r ∈ R} = QΣ otherwise, M is incomplete.

Definition 3.74 (Well-specified finite automaton). Let M = (Q,Σ, R, s, F ) be a complete
deterministic finite automaton satisfying these two properties: Q has no inaccessible state,Q
has no more than one nonterminating state. Then, M is a well-specified finite automaton.

Minimization

Definition 3.75 (Distinguishable states). Let M = (Q,Σ, R, s, F ) be a well-specified finite
automaton and p, q ∈ Q so p 6= q. If there exists a word w ∈ Σ∗, so that pw `∗ p′ and
qw `∗ q′ where p′, q′ ∈ Q and card({p′, q′} ∩ F ) = 1, then w distinguishes p from q; at this
point, p and q are distinguishable. If there exists no word that distinguishes p form p, p
and q are indistinguishable.

Definition 3.76 (Minimum-state finite automaton). Let M be a well-specified finite au-
tomaton. Let Mmin be a well-specified finite automaton satisfying these two properties:
Mmin contains only distinguishable states; L(M) = L(Mmin). Then, Mmin is a minimum-
state finite automaton equivalent to M .

3.7 Subregular Languages

In terms of the regulated rewriting theory, even the least powerful of the aforementioned
models can be strong enough to increase the generative power of an underlying model
(see Chap. 4 and Chap. 5). Thus, several even simpler models than regular grammars were
introduced and they are defined in this section. For the definitions 3.77 through 3.85
consider a language, L, and the minimal alphabet V of L, V = alph(L) .

Definition 3.77 (Combinational language). L is combinational language if and only if
L = V ∗A for some A ⊆ V .
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Definition 3.78 (Definite language). L is definite language if and only if L = A ∪ V ∗B
where A and B are finite subsets of V ∗.

Definition 3.79 (Nilpotent language). L is nilpotent language if and only if L is finite or
V ∗ − L is finite.

Definition 3.80 (Commutative language). L is commutative language if and only if L =
Comm(L) where Comm(L) = {ai1ai2 . . . ain : a1a2 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} =
{1, 2, . . . , n}}.

Definition 3.81 (Circular language). L is circular language if and only if L = Circ(L)
where Circ(L) = {ai+1ai+2 . . . ana1a2 . . . ai: n ≥ 1, 1 ≤ i ≤ n, a1a2 . . . an ∈ L}.

Definition 3.82 (Suffix closed language). L is suffix closed language if and only if xy ∈ L,
for some words x, y ∈ V ∗, implies y ∈ L (or equivalently, Suf(L) = L, where Suf(L) =
{y: xy ∈ L for some x ∈ V ∗}).

Definition 3.83 (Non-counting language). L is non-counting language if and only if there
is a natural number, k ≥ 1, such that for any words x, y, z ∈ V ∗, xykz ∈ L if and only if
xyk+1z ∈ L.

Definition 3.84 (Power-separating language). L is power-separating language if and only
if for any x ∈ V ∗ there is a natural number, m ≥ 1, such that either Jm

x ∩L = ∅ or Jm
x ⊆ L

where Jm
x = {xn: n ≥ m}.

Definition 3.85 (Ordered language). L is ordered language if and only if L is accepted by
some finite automaton, M = (Q,V,R, s, F ), where (Q,�) is a totally ordered set and, for
any a ∈ V , there are q1, q2 ∈ Q such that q1 � q2 implies q′1 � q′2 for some q1a ` q′1, q2a `
q′2 ∈ R, q′1, q

′
2 ∈ Q.

Definition 3.86 (Classes of combinational, definite, nilpotent, commutative, circular, suf-
fix-closed, non-counting, power-separating, and ordered languages.). The class of combina-
tional, definite, nilpotent, commutative, circular, suffix-closed, non-counting, power-sepa-
rating, and ordered languages are defined as COMB, DEF, NIL, COM, CIRC, SUF,
NC, PS, ORD = {L: L is a combinational, definite, nilpotent, commutative, circular,
suffix-closed, non-counting, power-separating, and ordered language}, respectively.

Definition 3.87 (Target sets of monoids). Let V be an alphabet. Then, MON denote
the class of all languages of the form V ∗. For any natural number n ≥ 1, let MONn be the
class of all languages that can be represented in the form V ∗1 ∪V ∗2 ∪· · ·∪V ∗k with 1 ≤ k ≤ n
where all Vi are alphabets, for 1 ≤ i ≤ k.

3.8 Regulated Rewriting

This section being a brief summary of the notions related to the regulated rewriting theory
which are required for the discussions in the following parts of this work. That is, we present
several fundamental notions of the matrix grammars and the scattered context grammars.
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Figure 3.1: Hierarchy of language classes (a filled arrow from X to Y denotes X ⊂ Y,
an empty arrow from X to Y denotes X ⊆ Y, and if two classes are not connected by a
directed path then they are incomparable).

Matrix Grammar

Definition 3.88 (Matrix grammar). A matrix grammar is a 5-tuple G = (V, T,M, S)
where V is a total alphabet, T is an alphabet of terminals such that T ⊂ V , M is a finite
set of sequences of the form m : (r1, r2. . . . , rn), where n ≥ 1, with the usual rewriting
productions ri : Ai → xi, where A ∈ V − T , x ∈ V ∗, 1 ≤ i ≤ n, S ∈ V − T is the start
symbol.

Conventions

Let G = (V, T,M, S) be a matrix grammar. The elements of M are called matrices.

Definition 3.89 (Derivation). Let G = (V, T,M, S) be a matrix grammar. A derivation
step in G is defined for u, v ∈ V ∗ if and only if there are words w0, . . . , wn ∈ V ∗, and
a matrix (r1, r2, . . . , rn) ∈ M , ri : Ai → xi, 1 ≤ i ≤ n, with w0 = u,wn = v and
wj−1 = w′j−1Ajw

′′
j−1, wj = w′j−1xjw

′′
j−1, for some w′j−1, w

′′
j−1 ∈ V ∗, for all 1 ≤ j ≤ n. By

analogy with the corresponding definition for a context-free grammar (see Def. 3.37), for all
n ≥ 0, define u⇒nv in G. In a similar manner, introduce u⇒+v and u⇒∗v.

Definition 3.90 (Generated language). Let G = (V, T,M, S) be a matrix grammar. The
language generated by G, L(G), is defined as L(G) = {x : x ∈ T ∗, S⇒∗x}.
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Definition 3.91 (Matrix language). A language L is a matrix language if there exists a
matrix grammar, G, such that L = L(G).

Definition 3.92 (Class of matrix languages). The class of matrix languages is defined as
MAT = {L : L = L(G) for a matrix grammar G}.

Scattered Context Grammars

Definition 3.93 (Scattered context grammar). A scattered context grammar is a quadruple
G = (V, T, P, S) where V is a total alphabet, T is an alphabet of terminals such that T ⊂ V ,
P is a finite set of productions of the form (A1, A2, . . . , An)→ (x1, x2, . . . , xn) where n ≥ 1,
Ai ∈ V − T , and xi ∈ V ∗, for all 1 ≤ i ≤ n, S ∈ V − T is the start symbol.

Definition 3.94 (Derivation). Let G = (V, T, P, S) be a scattered context grammar. If
u = u1A1 . . . unAnun+1, v = u1x1 . . . unxnun+1 and p = (A1, . . . , An) → (x1, . . . , xn) ∈ P
where ui ∈ V ∗ for all 1 ≤ i ≤ n+ 1 then G makes a derivation step from u to v according
to p, written as u⇒v [p] or simply u⇒v. By analogy with the corresponding definition for a
context-free grammar (see Def. 3.37), for all n ≥ 0, define u⇒nv in G. In a similar manner,
introduce u⇒+v and u⇒∗v.

Definition 3.95 (Generated language). Let G = (V, T, P, S) be a scattered context gram-
mar. The language generated by G, L(G), is defined as L(G) = {x : x ∈ T ∗, S⇒∗x}.

Definition 3.96 (Scattered context language). A language L is a scattered context language
if there exists a scattered context grammar, G, such that L = L(G).

Definition 3.97 (Class of scattered context languages). The class of scattered context
languages is defined as SC = {L : L = L(G) for a scattered context grammar G}.

Definition 3.98 (Propagating scattered context grammar). A propagating scattered con-
text grammar is a scattered context grammarG = (V, T, P, S) in which each (A1, A2, . . . , An)
→ (x1, x2, . . . , xn) ∈ P satisfies xi ∈ V +, for all 1 ≤ i ≤ n.

Definition 3.99 (Propagating scattered context language). A language L is a propagating
scattered context language if there exists a propagating scattered context grammar, G, such
that L = L(G).

Definition 3.100 (Class of propagating scattered context languages). The class of prop-
agating scattered context languages is defined as PSC = {L : L = L(G) for a propagating
scattered context grammar G}.

3.9 Language Classes Hierarchy

Through whole this chapter, we have presented several fundamental language-describing
models that differ namely in their generative power. The relations between the language
classes aforementioned in this chapter can be given by Fig. 3.1 (see [48] and [89]). For
brevity, some of the definitions common for all presented grammars are pointed out here.

Definition 3.101 (Set of all grammars of specified type). The set of all regular, linear,
ε-free context-free, context-free, context-sensitive, and unrestricted grammars is denoted as
GREG, GLIN, GCFε , GCF, GCS, and GRE, respectively.
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Conventions

If a type of a grammar represents an immaterial piece of information, it is omitted in these
notations.

Consider a language class X and a language operation o. If X contains every language
resulting from the application of o to any language in X, then X is closed under o; otherwise,
L is not closed under o.

3.10 Transducers

Except of the generating and accepting the formal languages, we often deal with the notion
of translating one word into another or one language into another. There are several
models used for the translating the languages. Two of the most fundamentals are known
as generalized sequential machine mapping and rational transduction.

Generalized Sequential Machine Mapping

Definition 3.102 (Generalized sequential machine mapping). A generalized sequential ma-
chine is a 6-tuple M = (Q,Σ,Ω, τ, s, F ) where Q is finite set of states, Σ is an input alpha-
bet, Ω is an output alphabet, τ is a finite subset of (S × Σ) × (S × Ω∗) called transition
function, s ∈ Q is initial state, F ⊆ Q is a finite set of final states.

Definition 3.103 (Configuration). Let M = (Q,Σ,Ω, τ, s, F ) be a generalized sequential
machine. A configuration of M is (p, u) with p ∈ Q, u ∈ Σ∗. A configuration (p, u) is
initial, final if p = s, p ∈ F , respectively.

Definition 3.104 (Generalized sequential machine mapping of word). Let M = (Q,Σ,Ω, τ,
s, F ) be a generalized sequential machine. For every input word u ∈ Σ∗, generalized sequen-
tial machine mapping of u, gsm mapping for short, is denoted as GSMM (u) and defined as
GSMM (u) = {v ∈ Ω∗ : (t, v) ∈ τ(s, u) is a final configuration}.

Definition 3.105 (Generalized sequential machine mapping of language). LetM = (Q,Σ,Ω,
τ, s, F ) be a generalized sequential machine. A generalized sequential machine mapping of
a language L, gsm mapping for short, is denoted as GSMM (L) and defined as GSMM (L) =⋃

u∈LGSMM (u).

Rational Transduction

Definition 3.106 (Rational transducer). A rational transducer is a 6-tupleM = (Q,Σ,Ω, τ,
s, F ) where Q is finite set of states, Σ is an input alphabet, Ω is an output alphabet, τ is
a finite subset of (S×Σ∗)× (S×Ω∗) called transition function, s ∈ Q is initial state, F ⊆ Q
is a finite set of final states.

Definition 3.107 (Configuration). Let M = (Q,Σ,Ω, τ, s, F ) be a rational transducer. A
configuration of M is (p, u) with p ∈ Q, u ∈ Σ∗. A configuration (p, u) is initial, final if
p = s, p ∈ F , respectively.

Definition 3.108 (Rational transduction of word). Let M = (Q,Σ,Ω, τ, s, F ) be a rational
transducer. For every input word u ∈ Σ∗, rational transduction of u is denoted as RTM (u)
and defined as RTM (u) = {v ∈ Ω∗ : (t, v) ∈ τ(s, u) is a final configuration}.
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Definition 3.109 (Rational transduction of language). Let M = (Q,Σ,Ω, τ, s, F ) be a
rational transducer. A rational transduction of a language L is denoted as RTM (L) and
defined as RTM (L) =

⋃
u∈LRTM (u).
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Chapter 4

Tree Controlled Grammars

This chapter being the formal description of level-based restriction placed upon the deriva-
tion trees as it was informally presented in the introduction of this work (see Sec. 1.1.1).

4.1 Definitions

In Sec. 1.1.1, tree controlled grammars are described informally. Here, we present the cor-
responding strictly formal definitions.

Definition 4.1 (Tree controlled grammar). A tree controlled grammar is a pair (G,R)
where G = (V, T, P, S) is a controlled grammar and R ⊆ V ∗ is a control language.

Definition 4.2 (Tree controlled language). Let (G,R) be a tree controlled grammar. The
language generated by (G,R) is denoted by L(G,R) and defined by

L(G,R) = {x : x ∈ L(G) and there exists a derivation tree of x in G such that
each word obtained by concatenation of all symbols at any level
of t (except the last one) from left to right is in R}.

Definition 4.3 (Class of tree controlled languages). For X ∈ {CF,CFε,REG} and Y ∈
{RE,CS,CF,REG,FIN}∪{MON,NIL,COMB,ORD,DEF,COM,NC,CIRC,PS,
SUF} ∪ {MONn,REGn : n ≥ 1}, the class of tree controlled languages is denoted as
TC(X,Y) and defined as

TC(X,Y) = {L(G,R) : (G,R) is a tree controlled grammar in which G ∈ GX
and R ∈ Y}.

Definition 4.4 (Nonterminal complexity of tree controlled grammar). Let (G,R) be a tree
controlled grammar. Clearly, R = L(G′) for some G′ = (V ′, T ′, P ′, S′). A nonterminal
complexity of tree controlled grammar is denoted as Var(G,R) and defined as Var(G,R) =
card(V − T ) + card(V ′ − T ′).

Definition 4.5 (Nonterminal complexity of tree controlled language). Let min(Σ) denote
the smallest number in a given set of natural numbers, Σ. Let L ∈ TC(CFε,REG). An
ε-free nonterminal complexity of tree controlled language is denoted as Varε(L) and defined
as

Varε(L) = min({Var(G,R) : (G,R) is a tree controlled grammar with an ε-free context-
free grammar G, regular language R, and L(G,R) = L}).
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Let L ∈ TC(CF,REG). A nonterminal complexity of tree controlled language is denoted
as Var(L) and defined as

Var(L) = min({Var(G,R) : (G,R) is a tree controlled grammar with a context-free
grammar G, regular language R, and L(G,R) = L}).

4.2 Examples

The following three examples illustrate the definitions of tree controlled grammars intro-
duced in the previous section as well as the languages they generate.

Example 4.1. Consider tree controlled grammar (G,R) where

G = ({S, a}, {a}, P, S),
P = {S → a, S → SS},
R = {S∗ : n ≥ 0}.

Clearly, L(G,R) = {a2n : n ≥ 0} /∈ CF and L(G,R) ∈ TC(CF,REG).

Example 4.2. Consider tree controlled grammar (G,R) where

G = ({S,A,B,C, a, b, c}, {a, b, c}, P, S),
P = {S → ABC, A→ aA, A→ a, B → bB, B → b, C → cC, C → c},
R = {S,ABC, aAbBcC}.

Clearly, L(G,R) = {anbncn : n ≥ 1} /∈ CF and L(G,R) ∈ TC(CF,FIN).

Example 4.3. Consider tree controlled grammar (G,R) where

G = ({S,A,B,C,D,E, a, b}, {a, b}, P, S),
P = {S → AB, A→ aAb, B → Ba, A→ ab,

B → a, A→ aCb, C → Cb, C → c},
R = {S,AB, aAbBa, aCba,Cb}.

Clearly, L(G,R) = {anbn+man : n ≥ 1,m ≥ 0} /∈ CF and L(G,R) ∈ TC(CF,FIN).

4.3 Results

The results presented in this section represent the state of the art of level-based restriction
placed upon the derivation trees investigation area. For the informal description of the
corresponding state of the art, see Sec. 1.1.1.

Theorem 4.1 (Th. 3.1 in [24]). If (G,R) is a tree controlled grammar where G is unam-
biguous context-free grammar and R is a regular language, then there exists an algorithm
which for any word, w, with |w| = n determines in O(n2) steps if w ∈ L(G,R).

Theorem 4.2 (Th. 3.2 in [24]). For every tree controlled grammar, (G,R) with ε-free
context-free grammar, G = (V, T, P, S), and regular language, R, the language L(G,R) is
recursive.
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Theorem 4.3 (Th. 3.3 in [24]). A language, L, is regular, linear, context-free if and only
if there is a context-free grammar, G = (V, T, P, S), such that L = L(G,T ∗(V − T )),
L = L(G,T ∗(V − T )T ∗), L = L(G,V ∗), respectively.

Theorem 4.4 (Th. 3.5 in [24]). Let Σ be an alphabet. Then, there exists a context-free
grammar, G = (V,Σ, P, S), such that for each recursively enumerable language, L ⊆ Σ∗,
there exists a regular language, R ⊆ V ∗, such that L = L(G,R).

Corollary 4.5 (Col. 3.1 in [24]). Every recursively enumerable language can be generated
by a tree controlled grammar, (G,R), such that G = (V,Σ, P, S) is a context-free grammar,
R is a regular language, and P ⊆ (V − Σ)× ((V − Σ)∗ ∪ Σ).

Theorem 4.6 (Th. 3.6 in [24]). Every recursively enumerable language can be generated
by a tree controlled grammar, (G,R), with a context-free grammar, G = (V, T, P, S), and a
regular language, R ⊆ (V − T )∗.

Theorem 4.7 (Th. 1 in [104]). If G is a regular grammar, then for all R ∈ X, where
X ∈ {RE,CS,CF,REG,FIN}, L(G,R) ∈ REG.

Corollary 4.8 (Col. in Sec. 2 in [104]).

For all X ∈ {RE,CS,CF,REG,FIN}, TC(REG,X) = REG.

Theorem 4.9 (Th. 2 in [104]). TC(CFε,CS) ⊆ CS.

Theorem 4.10 (Th. 3 in [104]). X ⊆ TC(CFε,X), for X ∈ {RE,CS,CF,REG}.

Corollary 4.11 (Col. in Sec. 2 in [104]). TC(CFε,RE) = RE and TC(CFε,CS) = CS.

Theorem 4.12 (Th. 4 in [104]). CS ⊆ TC(CFε,REG).

Corollary 4.13 (Col. in Sec. 2 in [104]). TC(CFε,X) = CS, for X ∈ {CS,CF,REG}.

Theorem 4.14 (Th. 5 in [104]). TC(X,FIN) = FIN, for X ∈ {CF,CFε}.

Corollary 4.15 (Col. in Sec. 2 in [104]).

Any language over one-letter alphabet in TC(CF,FIN) is regular.

Lemma 4.16 (Lem. 4 in [29]). If X ⊆ Y ⊆ REG, then TC(CFε,X) ⊆ TC(CFε,Y), for
X,Y ∈ {FIN,MON,NIL,COMB,ORD,DEF,COM,NC,CIRC,PS,SUF}.

Theorem 4.17 (Th. 5 in [29]). TC(CFε,SUF) = CS.

Theorem 4.18 (Th. 6 in [29]). TC(CFε,CIRC) = CS.

Theorem 4.19 (Th. 7 in [29]). TC(CFε,ORD) = CS.

Corollary 4.20 (Col. 8 in [29]). TC(CFε,NC) = TC(CFε,PS) = CS.

Theorem 4.21 (Th. 9 in [29]). TC(CFε,COM) = MATε where MATε denotes the
class of languages generated by matrix grammars in which all matrices contains no erasing
productions.

Theorem 4.22 (Th. 10 in [29]). TC(CFε,FIN) = MATfin where MATfin denotes the
class of languages generated by matrix grammars of finite index in which all matrices con-
tains no erasing productions.

30



Theorem 4.23 (Th. 12 in [29]).

TC(CFε,FIN) ⊂ TC(CFε,NIL) and
TC(CFε,MON) ⊂ TC(NIL).

Theorem 4.24 (Th. 13 in [29]).

RE = TC(CF,REG) = TC(CF,SUF) = TC(CF,ORD) = TC(CF,NC) =
= TC(CF,PS) = TC(CF,COM) = TC(CF,CIRC),

MATfin= TC(CF,FIN) ⊂ TC(CF,NIL) ⊆ RE,
TC(CF,MON) ⊂ TC(CF,NIL), and TC(CF,MON) ⊂ TC(CF,DEF).

Theorem 4.25 (Prop. 4 in [28]).

TC(CFε,MON1) ⊆ TC(CFε,MON2) ⊆ · · · ⊆ TC(CFε,MONj) ⊆ . . . .

Lemma 4.26 (Lem. 10 in [28]).

TC(CFε,REG1) ⊆ TC(CFε,REG2) . . .TC(CFε,REGn) ⊆ . . . .

Theorem 4.27 (Th. 12 in [28]). TC(CFε,REG1) ⊂ TC(CFε,REG2).

Theorem 4.28 (Th. 13 in [28]). TC(CFε,COMB) ⊆ TC(CFε,REG2).

Theorem 4.29 (Th. 18 in [28]). Every language that is generated by a context-sensitive
grammar with exactly r non-context-free productions p1, p2, . . . , pr and ni symbols on the
left-hand side of the production pi, for 1 ≤ i ≤ r, is also generated by a tree controlled
grammar where the control set is accepted by a deterministic finite automaton with at most
2 + Σr

i=1(ni − 1) states.

Lemma 4.30 (Lem. 5 in [118]). For every linearly bounded queue automaton (see Def. 3 in
[118] for the definition), A, there is a tree controlled grammar, (G,R), such that L(G,R) =
L(A).

Theorem 4.31 (Th. 6 in [118]). TC(CFε,REG5) = CS.

Theorem 4.32 (Th. 7 in [118]). TC(CF,REG5) = RE.

Theorem 4.33 (Th. 4 in [123]). Every recursively enumerable language can be generated
by a tree controlled grammar, (G,R), with context-free grammar, G, and regular language,
R, such that Var(G,R) ≤ 9.

Theorem 4.34 (Th. 1 in [122]). Every recursively enumerable language can be generated
by a tree controlled grammar, (G,R), with context-free grammar, G, and regular language,
R, such that Var(G,R) ≤ 7.

Theorem 4.35 (Th. 2 in [122]). For any regular language, L, there is a tree controlled gram-
mar, (G,R), with context-free grammar, G, and regular language, R, such that L(G,R) = L
and Var(G,R) = 3.

Theorem 4.36 (Th. 4 in [122]). For any regular simple matrix grammar, G, (see [101] for
the definition) there is a tree controlled grammar, (G,R), with context-free grammar, G,
and regular language, R, such that L(G,R) = L(G) and Var(G,R) = 3.

Theorem 4.37 (Th. 5 in [122]). For any linear language, L, there is a tree controlled
grammar, (G,R), such that L(G,R) = L and Var(G,R) = 3.

Lemma 4.38 (Lem. 2 in [123]). For n ≥ 1, let Ln =
⋃n

i=1{a
j
i : j ≥ 1}. Then, Varε(Ln) =

n+ 1.
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Chapter 5

Path Controlled Grammars

In this chapter, based on the informal survey introduced in Sec. 1.1.2, we present the defi-
nitions and the results related to path controlled grammar.

5.1 Definitions

The following definitions are needed for presenting the state of the art in path-based re-
striction placed upon the derivation trees investigation area.

Definition 5.1 (Language of the paths). Let G = (V, T, P, S) be a context-free grammar
and t ∈ G4(w) for some w ∈ L(G). Then,

path(t) = {word(p) : p is a path of t},
path(G4(w)) =

⋃
{path(t) : t ∈ G4(w)}, and

path(G) =
⋃
{path(G4(w)) : for all w ∈ L(G)}.

Definition 5.2 (Path controlled grammar). A path controlled grammar is a pair (G,G′)
where G = (V, T, P, S) is a controlled grammar and G′ = (V ′, V, S′, P ′) is a controlling
grammar.

Definition 5.3 (Path controlled language). Let (G,G′) be a path controlled grammar.
The language generated by (G,G′) is denoted by L(G,G′) and defined by

L(G,G′) = {w ∈ L(G) : path(w) ∩ L(G′) 6= ∅}.

Definition 5.4 (Class of path controlled languages). For X,Y ∈ {CF,LIN,REG}, the
class of path controlled languages is denoted as PC(X,Y) and defined as

PC(X,Y) = {L(G,G′) : (G,G′) is a path controlled grammar in which G ∈ GX and
G′ ∈ GY}.

5.2 Examples

The following two examples illustrate the definitions of path controlled grammars intro-
duced in the previous section as well as the languages they generate.

Example 5.1. Consider path controlled grammar (G,G′) where
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G = ({S,B,D, a, b, c, d}, {a, b, c, d}, P, S),
P = {S → aSd, S → aBd, B → bBc, B → D, D → bc},
L(G′) = {SnBnDb : n ≥ 1}.

Clearly, L(G,G′) = {akbkckdk : k ≥ 1} /∈ CF and L(G,G′) ∈ PC(LIN,LIN).

Example 5.2. Consider path controlled grammar (G,G′) where

G = ({S,A,B,C,D, a, b}, {a, b}, P, S),
P = {S → aS, S → aB, B → Bb, B → A, A→ bA,

A→ C, C → Ca, C → D, D → a},
L(G′) = {SnBmAmCnDa : n,m ≥ 1}.

Clearly, L(G,G′) = {akblakbl : k, l ≥ 1} /∈ CF and L(G,G′) ∈ PC(LIN,LIN).

5.3 Results

This section being the summary of the fundamentals in the state of the art of path-based
restriction placed upon the derivation trees investigation area. For the informal description
of the corresponding state of the art, see Sec. 1.1.2.

Theorem 5.1 (Prop. 1 in [80]). If G is a context-free grammar, then path(G) ∈ REG.

Theorem 5.2 (Prop. 2 in [80]). X = PC(X,REG), for all X ∈ {REG,LIN,CF}.

Theorem 5.3 (Prop. 3 in [80]). PC(REG,X) ⊆ X, for all X ∈ {LIN,CF}.

Theorem 5.4 (Prop. 4 in [80]). If L is a language in X ∈ {LIN,CF} without words of
length one, then L ∈ PC(REG,X).

Theorem 5.5 (Prop. 6 in [80]; see the discussion in Sec. 8.3.4). PC(CF,CF) ⊆MAT.

Theorem 5.6 (Prop. 7 in [80]). If L ⊆ V ∗, L ∈ PC(CF,CF), then there are two con-
stants, p and q, such that each word, z ∈ L, with |z| > p can be written in the form
z = u1v1u2v2u3v3u4v4u5, such that 0 < |v1v2v3v4| ≤ q and u1vi1u2v

i
2u3v

i
3u4v

i
4u5 ∈ L for all

i ≥ 1.

Theorem 5.7 (Prop. 8 in [80]). If L ⊆ V ∗, L ∈ PC(LIN,LIN), then there are two
constants, p and q, such that each word, z ∈ L, with |z| > p can be written in the form z =
u1v1u2v2u3v3u4v4u5, such that 0 < |v1v2v3v4| ≤ q, |u1u2u3u4| ≤ q, and u1vi1u2v

i
2u3v

i
3u4v

i
4u5

∈ L for all i ≥ 1.

Corollary 5.8 (Conseq. in [80]; see the discussion in Sec. 8.3.4). PC(CF,CF) ⊂MAT.

Corollary 5.9 (Conseq. in [80]). PC(LIN,LIN) is not closed under concatenation.

Theorem 5.10 (Prop. 9 in [80]). For each language, L ⊆ V ∗, L ∈ PC(LIN,LIN), there
are three linear languages L1 ⊆ V ∗{c}V ∗, L2 = V ∗{c}V ∗, and L3 = V ∗, where c /∈ V , such
that:

• L ⊆ {u1u2u3u4u5| u1cu5 ∈ L1, u2cu4 ∈ L2, u3 ∈ L3}.
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• For each word, u1cu5 ∈ L1 (for each word, u2cu4 ∈ L2, for each word, u3 ∈ L3),
there are a word, u2cu4 ∈ L2, and a word, u3 ∈ L3 (a word, u1cu5 ∈ L1, and a
word, u3 ∈ L3, respectively, a word, u1cu5 ∈ L1, and a word, u2cu4 ∈ L2) such that
u1u2u3u4u5 ∈ L.

Theorem 5.11 (Prop. 10 in [80]).

CF−PC(LIN,LIN) 6= ∅.
The inclusion PC(LIN,LIN) ⊂ PC(CF,CF) is proper.

Theorem 5.12 (Prop. 11 in [80]). If (G,G′) is a path controlled grammar with linear
grammars G and G′ such that G has a bounded ambiguity, the parsing of words in L(G,G′)
can be done in a polynomial time.

Theorem 5.13 (Prop. 1 in [81]). PC(CF,CF) is closed under the following operations:
union, intersection with regular languages, left and right concatenation with context-free
languages, substitution with ε-free context-free languages, non-erasing homomorphism. It
is not closed under intersection.

Theorem 5.14 (Prop. 2 in [81]). The emptiness problem is decidable for path controlled
grammars.

Theorem 5.15 (Prop. 3 in [81]). The finiteness problem is decidable for path controlled
grammars.

Theorem 5.16 (Prop. 4 in [81]). One cannot algorithmically decide whether or not the
language generated by a given path controlled grammar is context-free.

Theorem 5.17 (Prop. 5 in [81]). The language generated by a given path controlled gram-
mar can be recognized in O(n10) time.
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Part III

New Results in Restrictions Placed
upon Derivation Trees



Chapter 6

Introduction

This part being a continuation of the derivation-tree-based-restrictions investigation and
represents the results written or co-written by the author. It is assumed that the reader
is familiar with the graph theory (see [11]) and the theory of formal languages (see [89]),
including the theory of regulated rewriting (see [26]). All preliminaries needed for un-
derstanding the following definitions, results, examples, and conclusions are presented in
Part I. For the conciseness, this chapter introduces the terminology and definitions that
are common for all concepts presented in the rest of this work. The examples are included
everywhere it is deemed appropriate.

6.1 Common Preliminaries

Since a restriction placed upon a level, a path, and a cut is, in essence, a restriction
placed upon a derivation tree, we use a slightly modified but equivalent formulation of the
definitions stated in [80], [81], and [82]. Consequently, aforementioned modifications allow
us to investigate all derivation-tree-based restrictions using the same terminology—e.g.,
restriction on the levels (see [24], [29], [104], [122], and [123]), the paths (see [17], [70], [68],
[80], [81], and [82]), or the cuts (see [70]). More precisely, all restrictions placed upon the
derivation trees are covered by the general notion of tree controlled grammar that generates
its language under several kinds of the restrictions.

Note that hereafter the notion tree controlled grammar is used in different meaning than
in Part II, see the following definitions of a tree controlled grammar and the definitions of
the languages as well as the classes that tree controlled grammars generate under various
kinds of restrictions that are introduced in the following three chapters.

The following definitions are common for the rest of this part, thus they are pointed
out in its beginning.

Definition 6.1 (Tree controlled grammar). A tree controlled grammar is a pair, (G,R),
where G = (V, T, P, S) is a controlled grammar, and R is a control language over V .

Definition 6.2 (Set of derivation trees). Let (G,R) be a tree controlled grammar where
G = (V, T, P, S), then (G,R)4(x), x ∈ V ∗, denotes the set of the derivation trees with
frontier x in G.

In the research presented through this part, we do not directly deal with level-based
restriction placed upon the derivation trees. However, for the sake of completeness, note
the following definitions related to level-based restriction placed upon the derivation trees.
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Definition 6.3 (Language of tree controlled grammar under levels control). Let (G,R) be
a tree controlled grammar. The language that (G,R) generates under the levels control by
R is denoted by levelsL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ levelsL(G,R) if and only if there is a derivation tree, t ∈ G4(x),
such that for all levels, s, of t (except the last one), word(s) ∈ R.

Definition 6.4 (Class of tree controlled languages under levels control). For some language
classes X and Y, the class of tree controlled languages under the levels control is defined as

levels-TC(X,Y) = {levelsL(G,R) : (G,R) is a tree controlled grammar in which
G ∈ GX and R ∈ Y}
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Chapter 7

Cut Tree Controlled Grammars

This chapter introduces the second part of the author’s journal paper [70]:

Koutný, J., Meduna, A.
Tree-controlled grammars with restrictions placed upon cuts and paths.
Kybernetika, 48:11, 2012.

7.1 Motivation

In this chapter, we study restrictions placed on tree cuts, and in this way, we actually open
a new investigation area concerning restrictions placed upon the derivation trees. Indeed,
all the other related studies discussed the restrictions placed on paths or levels, not on cuts
(see [17], [24], [29], [68], [80], [81], [82], [104], [122], and [123]).

As a cut of a tree is one of the basic tree property as well as a level and a path, the natural
question is to study also cut-based restrictions placed upon the derivation trees. The goal
of the study in this area is to compare the impact of controlling the cuts in the derivation
trees on the generative power of context-free grammars and, consequently, compare the
results with level-based and paths-based restrictions placed upon the derivation trees.

More specifically, we introduce the notion of a tree controlled grammar in which we
restrict its derivation-tree cuts by a prescribed regular language so that for each derivation
tree in the grammar there is a set X of tree cuts that cover all the tree and X is described
by given regular language. Then, we consider all these grammars and prove that they
characterize the class of recursively enumerable languages. Finally, we introduce a binary
relation over the derivation-tree cuts in these grammars and prove that the class of languages
generated by them is also identical with the class of recursively enumerable languages.

7.2 Definitions

In this section, we introduce new derivation-tree-based restrictions of tree-controlled gram-
mars which are based on the restriction placed upon the cuts.

Definition 7.1 (Language of tree controlled grammar under cuts control). Let (G,R) be
a tree controlled grammar. The language that (G,R) generates under the cuts control by
R is denoted by cutL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ cutL(G,R) if and only if there is a derivation tree, t ∈ G4(x), and
a set, xM , of its cuts such that
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1. for each c ∈ xM , word(c) ∈ R, and

2. xM covers the whole t.

In other words, 1. states that xM contains only those cuts, which are described by R and
the meaning of 2. is that if n is a node of t, then there is c ∈ xM such that c contains n.

Definition 7.2 (Class of tree controlled languages under cuts control). The class of tree
controlled languages under the cuts control is defined as

cut-TC(CF,REG) = {cutL(G,R) : (G,R) is a tree controlled grammar in which
G is a context-free grammar and R ∈ REG}

and the class of tree controlled languages with ε-free controlled grammar under cuts
control is defined as

cut-TCε(CFε,REG) = {cutL(G,R) : (G,R) is a tree controlled grammar in which
G is an ε-free context-free grammar and
R ∈ REG}.

Definition 7.3 (Ordering relation on the cuts). Let � be a binary relation on a sequence,
xM , of the cuts such that for each two cuts, c1, c2 ∈ xM , c1 � c2 if and only if for each
node, n2, of c2 either there is a node, n1, of c1 such that n2 is a direct descendent of n1, or
n1 = n2. In other words, n1 6= n2 implies n2 is a direct descendent of n1.

Definition 7.4 (Language of tree controlled grammar under ordered-cuts control). Let
(G,R) be a tree controlled grammar. The language that (G,R) generates under the ordered-
cuts control by R is denoted by ord-cutL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ ord-cutL(G,R) if and only if there is a derivation tree, t ∈ G4(x),
and a sequence, c1x, c2x, . . . , cnx, of the cuts of t, for some nx ≥ 1, such that

1. for all i = 1x, 2x, . . . , nx, word(ci) ∈ R,

2. {c1x, c2x, . . . , cnx} covers the whole t, and

3. cix � c(i+1)x
for all i = 1, 2, . . . , n− 1.

In other words, 1. states that a sequence of the cuts contains only those cuts, which are
described by R, 2. says that the set defined by a sequence of the cuts covers the whole t,
and the meaning of 3. is that the cuts in a sequence do not cross, although they can have
some common nodes.

Definition 7.5 (Class of tree controlled languages under ordered-cuts control). The class
of tree controlled languages under the ordered cuts control is defined as

ord-cut-TC(CF,REG) = {ord-cutL(G,R) : (G,R) is a tree controlled grammar in which
G is a context-free grammar and R ∈ REG}

and the class of tree controlled languages with ε-free controlled grammar under ordered
cuts control is defined as

ord-cut-TCε(CFε,REG) = {ord-cutL(G,R) : (G,R) is a tree controlled grammar in which
G is an ε-free context-free grammar and
R ∈ REG}.
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Figure 7.1: An illustration of cut-based restrictions.

To illustrate Def. 7.1 and Def. 7.4 above, suppose that in a tree controlled grammar,
(G,R), there is a derivation tree given in Fig. 7.1, where abcde is a word composed of
terminal symbols.

• In Def. 7.1, to have abcde in cutL(G,R), for example the set xM = {S,AD,CcB, abcB,
Ade} with word(s) ∈ R, for all s ∈ xM , is correct. Note that, however, xM is not
correct in terms of Def. 7.4 since the cuts cross each other in xM .

• In Def. 7.4, to have abcde in ord-cutL(G,R), for example the sequence xM = S, AB,
CcB, abcD, abcde with word(s) ∈ R, for each item s of xM , is correct, since the cuts
do not cross.

7.3 Results

This section presents the results achieved in the investigation area defined in the previous
section.

7.3.1 Generative Power

Theorem 7.1. RE = ord-cut-TC(CF,REG)

Proof. Let L be a recursively enumerable language. Without any loss of generality, we
assume that L is generated by an unrestricted grammar, G = (V, T, P, S), in Penton-
nen normal form (see Sec. 3.27). Let (G′, R) be a tree controlled grammar that genera-
tes ord-cutL(G′, R) ∈ ord-cut-TC(CF,REG), where G′ = (V ′, T, P ′, S), V ′ = V ∪ Q,
Q = {〈A,B,C〉 : AB → AC ∈ P}, and P ′ is defined in the following way:

1. for A→ x ∈ P , A ∈ V − T , x ∈ {ε} ∪ T ∪ (V − T )2, add A→ x to P ′,

2. for AB → AC ∈ P , A,B,C ∈ (V −T ), add the set of two productions {B → 〈A,B,C〉,
〈A,B,C〉 → C} to P ′.

Without any loss of generality, we assume that Q ∩ V = ∅. The regular language R is
defined as follows:

R = V ∗ ∪ {V ∗A〈A,B,C〉V ∗ : AB → AC ∈ P,A ∈ V − T, 〈A,B,C〉 ∈ Q}.

We define the function h from (V ′)∗ into V ∗ by:

for all C ∈ V , h(C) = C,
for all 〈A,B,C〉 ∈ Q, h(〈A,B,C〉) = C.

40



To show that L(G) = L(G′, R), we first prove the next claim.
Claim. S⇒mw, w ∈ V ∗, in G, if and only if S⇒nv, v ∈ (V ′)∗, in (G′, R), where

w = h(v), v ∈ R, for m,n ≥ 0.

Only-If Part : That is, if S⇒mw, w ∈ V ∗, in G, then S⇒∗v, v ∈ (V ′)∗, in (G′, R), where
w = h(v), v ∈ R, for m ≥ 0. This is established by induction on m ≥ 0.

Basis: Let m = 0. The only w is S since S⇒0S in G. Clearly, S⇒0S in (G′, R) with
S = h(S), and since S ∈ V ∗, S ∈ R.

Induction Hypothesis: Let us suppose that the only-if part holds for all derivations of
length m or less, for some m ≥ 0.

Induction Step: Consider a derivation S⇒m+1x in G, x ∈ V ∗. Since m + 1 ≥ 1, there
is some y ∈ V + and p ∈ P such that S⇒my⇒x [p] in G, and by the induction hypothesis,
S⇒∗y′, y′ ∈ (V ′)∗, in (G′, R) with h(y′) = y and y′ ∈ R. Next, as far as p is concerned, we
distinguish two cases:

1. p is of the form AB → AC, A,B,C ∈ V − T ,

2. p is of the form A→ α, A ∈ V − T , α ∈ {ε} ∪ T ∪ (V − T )2.

Let us discuss 1. through 2. in detail.

1. Let p be of the form AB → AC, A,B,C ∈ V − T . Then, y′ = y1ABy2 ∈ R,
y1, y2 ∈ (V ′)∗, and B → 〈A,B,C〉 ∈ P ′ is applied in (G′, R). Thus, we obtain
x′ = y1A〈A,B,C〉y2, with h(x′) = x and since x′ ∈ V ∗A〈A,B,C〉V ∗, x′ ∈ R. For
each 〈A,B,C〉 ∈ Q, there is 〈A,B,C〉 → C ∈ P ′ with h(〈A,B,C〉) = h(C) = C.
Thus, x′⇒z′ with h(z′) = h(x′) = x, and since z′ ∈ V ∗, z′ ∈ R.

2. Let p be of the form A→ α, A ∈ V −T , α ∈ {ε}∪T ∪(V −T )2. Then, y′ = y1Ay2 ∈ R,
y1, y2 ∈ (V ′)∗, and A → α ∈ P ′ is applied in (G′, R). Thus, we obtain x′ = y1αy2
with h(x′) = x, and since x′ ∈ V ∗, x′ ∈ R.

Observe that 1. through 2. cover all possible forms of p so that the only-if part holds
true.

If Part : That is, if S⇒nv, v ∈ (V ′)∗, in (G′, R), then S⇒∗w, w ∈ V ∗, in G where
w = h(v), v ∈ R, for n ≥ 0. This is established by induction on n ≥ 0.

Basis: For n = 0, the only v is S since S⇒0S in (G′, R), with h(S) = S and since
S ∈ V ∗, S ∈ R. Clearly, S⇒0S in G.

Induction Hypothesis: Let us suppose that the if part holds for all derivations of length
n or less, for some n ≥ 0.

Induction Step: Consider a derivation of the form S⇒n+1x′ in (G′, R), where x′ ∈ (V ′)∗.
Since n+ 1 ≥ 1, there is some y′ ∈ V + such that S⇒ny′⇒x′ [p] in (G′, R) and y′ ∈ R, and
by the induction hypothesis, S⇒∗y in G with h(y′) = y. Next, as far as p is concerned, we
distinguish three cases:

1. p is of the form B → 〈A,B,C〉, B ∈ V ′, 〈A,B,C〉 ∈ Q,

2. p is of the form 〈A,B,C〉 → C, 〈A,B,C〉 ∈ Q, C ∈ V ′,

3. p is of the form A→ α, A ∈ V ′, α ∈ {ε} ∪ T ∪ (V − T )2.

Let us discuss 1. through 3. in detail.
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1. Let p be of the form B → 〈A,B,C〉, B ∈ V ′, 〈A,B,C〉 ∈ Q. Then, y = y1By2 and
since x′ ∈ R, y1 is of the form y1 = z1A, for some z1 ∈ V ∗. Thus, p : AB → AC ∈ P
is applied in G and x = y1Cy2 with h(x′) = x, y1 = z1A.

2. Let p be of the form 〈A,B,C〉 → C, 〈A,B,C〉 ∈ Q, C ∈ V ′. Then, y = y1Cy2 = x
with h(x′) = x.

3. Let p be of the form A→ α, A ∈ V ′, α ∈ {ε} ∪ T ∪ (V − T )2. Then, y = y1Ay2 and
p : A→ α is applied in G. Thus, x = y1αy2 with h(x′) = x.

Observe that 1. through 3. cover all possible forms of p so that the if part holds true.

The proof of the inclusion RE ⊆ ord-cut-TC(CF,REG) can be easily obtained from
the claim above. From the definition of a cut, the following properties straightforwardly
follow:

1. Every sentential form is a special case of a cut. Therefore, let wM be the sequence of
all sentential forms corresponding to the derivation tree of any w ∈ L(G).

2. wM covers each node of the derivation tree of w in G at least once. Thus, wM covers
the derivation tree of any w ∈ L(G).

3. Considering the order of sentential forms of w ∈ L(G) in the derivation S⇒∗w in G,
xM satisfies condition 3. stated in the definition of ord-cutL(G,R).

Thus, S⇒∗w in G if and only if S⇒∗w in (G′, R), w ∈ T ∗. Therefore, L(G) =

ord-cutL(G′, R) and consequently RE ⊆ ord-cut-TC(CF,REG).
Clearly, ord-cut-TC(CF,REG) ⊆ RE and, thus, RE = ord-cut-TC(CF,REG).

Theorem 7.2. RE = cut-TC(CF,REG)

Proof. Clearly, cut-TC(CF,REG) ⊆ RE. Obviously, by the definitions Def. 7.1 and
Def. 7.4 in the previous section, ord-cut-TC(CF,REG) ⊆ cut-TC(CF,REG). Thus
RE ⊆ cut-TC(CF,REG) follows from RE ⊆ ord-cut-TC(CF,REG) (see Th. 7.1).
Therefore, RE = cut-TC(CF,REG).

Corollary 7.3. ord-cut-TC(CF,REG) = cut-TC(CF,REG)

Proof. It straightforwardly follows from RE = ord-cut-TC(CF,REG) (Th. 7.1) and
RE = cut-TC(CF,REG) (Th. 7.2).

Discussion, Notes, and Further Research Ideas

We have introduced two types of cut-based restrictions on the derivation trees of context-
free grammars, and we have proved that both of them increase the generative power of
context-free grammars so they characterize RE (see Th. 7.1 and Th. 7.2).

A crucially important open problem area consists of the determination of the gene-
rative power of these grammars without ε-productions. In other words, future investi-
gations concerning this subject should try to place ord-cut-TCε(CFε,REG) as well as
cut-TCε(CFε,REG) into the relation with some other well-known language families, such
as CS (see Sec. 3.3).
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Obviously, CS ⊆ ord-cut-TCε(CFε,REG) can be established by analogy with demon-
strating RE ⊆ ord-cut-TC(CF,REG) in the proof of Th. 7.1, in which covering the whole
derivation tree by sentential forms is considered. Indeed, the only difference between Pent-
tonen normal form for general grammars and context-sensitive grammars (see Def. 3.27 and
Def. 3.34) is that in the former, the productions of the form A→ ε are allowed; while in the
later, they are not. An open problem is whether or not ord-cut-TCε(CFε,REG) ⊆ CS
holds, which would mean ord-cut-TCε(CFε,REG) = CS.

Clearly, CS ⊆ cut-TCε(CFε,REG) can be demonstrated similarly as establishing
RE ⊆ cut-TC(CF,REG) in the proof of Th. 7.2, in which ord-cut-TC(CF,REG) ⊆
cut-TC(CF,REG) is considered. Obviously, based upon a similar argument, we can
demonstrate ord-cut-TCε(CFε,REG) ⊆ cut-TCε(CFε,REG). An open problem is
whether or not cut-TCε(CFε,REG) ⊆ CS holds, which would imply cut-TCε(CFε,REG)
= CS.

Furthermore, the results stated in Th. 7.1 and Th. 7.2 can be strengthen by considering
a transformation into Geffert normal form (see [43]). As opposed to Pentonnen normal form
(see Def. 3.27), in Geffert normal form only a limited number of nonterminals is allowed.
This way of transformation would imply the following:

Conjecture 7.4. For any recursively enumerable language, L, there is a tree controlled
grammar, (G,R), with a context-free grammar, G = (V, T, P, S), that generates the language
under cuts control by R such that card(V − T ) ∈ {3, 4, 5} (depending on the variant of
Geffert normal form used) with cutL(G,R) = L.

Similarly as in the investigation of controlling the levels of the derivation trees of context-
free grammars (see Chap. 4) by regular languages, controlling the cuts leads to increasing
the generative power of context-free grammars so the resulting model characterize the class
of recursively enumerable languages (see Th. 7.1 and Th. 7.2). Thus, inspired by [29] and
[27] (see Sec. 4.3), an important open problem area consists of the determination of the
generative power of cut-based restrictions on the derivation trees of context-free grammars
in which several types of subregular languages (see Sec. 3.7) are used to control the cuts.
This would lead to establishing a hierarchy of language classes similar as it is stated in [29]
(see Sec. 4.3). Consequently, some interesting relation between level-based and cut-based
restrictions on the derivation trees would be found out.
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Chapter 8

Path Tree Controlled Grammars

This chapter introduces the author’s journal paper [69] that is in press in the time of
finishing this doctoral thesis:

Koutný, J., Meduna, A.
On normal forms and erasing rules in path controlled grammars.
Schedae Informaticae, in press.

Next, this chapter introduces the author’s conference paper [66]:

Koutný, J.
On path-controlled grammars and pseudoknots.
In Proceedings of the 18th Conference STUDENT EEICT 2012 Volume 3, 2012.

Finally, this chapter introduces the second part of the author’s journal paper [67] that is
under consideration in the time of finishing this doctoral thesis:

Koutný, J., Křivka, Z., and Meduna, A.
On grammars with controlled paths.
Acta Cybernetica, submitted.

8.1 Motivation

The motivation to study path-based restrictions including the state of the art concerning
this topic is summarized in Sec. 1.1.2. The present chapter is based on some open problems
pointed out in [80], [81], and [82], therefore it represents a natural continuation of the
investigation in this research area.

Erasing Productions

In the theory of regulated rewriting, the impact of ε-productions on the generative power
of a rewriting model is usually studied. However, for grammars with controlled paths, the
impact of ε-productions on the generative power has not been studyied yet. Typically,
beyond the class of context-free grammars, ε-productions significantly affect the generative
power of a studied model (see [26], [72], [88], [119], and [139]). Moreover, grammars without
ε-productions are crucially important from the practical viewpoint. Indeed, in the terms
of language-recognition-related studies such as syntax analysis in the theory of compilers,
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the underlying grammars containing no ε-productions imply much easier construction of a
parser and, as a consequence, much easier implementation.

We demonstrate ε-productions do not affect the generative power of path controlled
grammars. Indeed, ε-productions outside the controlled path can be removed by a well-
known algorithm (see Alg. 5.1.3.2.3 in [89]) and since a path is defined as a sequence of
non-terminal symbols followed by just one terminal symbol (see Def 2.18), ε-productions
cannot be used along the controlled path by the definition. Thus, this result is significant
for the study given in Sec. 9.3.4 that deals with a polynomial time parsing methods for the
grammars with controlled paths. Indeed, a path controlled grammar, (G,R), can be easily
transformed into an equivalent path controlled grammar, (G′, R), in which G′ contains no
ε-productions.

Normal Forms

Normal forms (see Sec. 3.27, Sec. 3.34, and Sec. 3.4) for any formal model are one of the
fundamental model-characterizing properties (see [10], [22], [31], [42], [50], and [124]) which
is important both from the theoretical as well as practical viewpoints. From the theoretical
viewpoint, normal forms are often used to facilitate some kind of proofs—typically, the
proofs based on the transformation of investigated formal model to a well-known one or
vice versa. From the practical viewpoint, normal forms underlie some general parsing
methods used in compiler construction (see [90]). Since path controlled grammars generate
several non-context-free languages used in linguistics (see Sec. 5.2), parsing methods for
path controlled grammars are desirable to be established (see [17]).

Despite all the effort so far, we are not able to transform a path controlled grammar
into an equivalent path controlled grammar with controlled grammar in Chomsky normal
form (see Sec. 3.4). Indeed, we have concluded that we need either unit productions or
ε-productions. Then, based on these assumptions, we have formulated two normal forms
for path controlled grammars including corresponding transformation algorithms. Roughly
speaking, compared to Chomsky normal form (see Sec. 3.4), 1st normal form adds only
unit productions (see Conv. for Def. 3.35), 2nd normal form adds just one ε-production (see
Conv. for Def. 3.35).

Relation to Pseudoknots

A pseudoknot is introduced as the turnip yellow mosaic virus (see [117]) and it is a nucleic
acid secondary structure with two or more stem-loop structures such that half of one stem is
inserted between the two halves of another stem. Although pseudoknots form knot-shaped
three-dimensional patterns, they are not true topological knots. The biological significance
of pseudoknots rely on RNA molecules that form pseudoknots (see [54]). The fundamental
problem in the pseudoknot theory in relation to the formal language theory is identification
of a pseudoknot—the membership problem in terms of the theoretical computer science. It
is well-known that the general problem of predicting the lowest free energy structures with
pseudoknots is NP-complete (see [77] and [78]; the definition of NP-completeness can be
found in Sec. 10.3.3.1 in [89]).

Inspired by biology (see [117]), we just present some pseudoknots in the form of word
representation (see [57] for formal definition of general pseudoknot). However, as opposed
to biology where RNA is based on the finite alphabet (adenin—A, guanin—G, cytosin—C,
and uracil—U), we generalize the pseudoknots over arbitrarily alphabet, Σ. The pseudo-
knots are defined both as stem-only form as well as the form with arbitrarily word between

45



the stems. Then, we demonstrate some typical pseudoknots generated by path controlled
grammars for which the membership problem is decidable in a polynomial time (see [81]).
Further detailed information concerning the computer-science-related investigation of pseu-
doknots can be found in [34], [53], and [79].

Counterargument to the Proof of Generative Power

The generative power of path controlled grammars is investigated in Prop. 6 in [80]. There,
it is stated that the class of the languages generated by path controlled grammars with
context-free components is strictly included in the class of the languages generated by
matrix grammars. The proof is given by the transformation of a path controlled grammar
into an equivalent matrix grammar.

However, the construction used in the proof does not seem to be correct. On the other
hand, despite all efforts to repair the construction making the proof correct, we are not
able to transform a path controlled grammar to an equivalent matrix grammar. Therefore,
we describe the counterargument against the correctness of this result’s proof. Then, we
conclude that the generative power of path controlled grammars still represents a crucially
important open problem.

8.2 Definitions

In this section, we introduce a path-based restriction on tree-controlled grammars that is
equivalent to the model introduced in Chap. 5. Then, we formally define the pseudoknot
structure represented as a language.

Definition 8.1 (Language of tree controlled grammar under path control). Let (G,R) be
a tree controlled grammar. The language that (G,R) generates under the path control by
R is denoted by pathL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ pathL(G,R) if and only if there is a derivation tree, t ∈ G4(x), such
that there is a path, p, of t with word(p) ∈ R.

Definition 8.2 (Class of tree controlled languages under path control). For X,Y ∈
{LIN,CF}, the class of tree controlled languages under the path control is defined as

path-TC(X,Y) = {pathL(G,R) : (G,R) is a tree controlled grammar in which
G ∈ GX and R ∈ Y}

and the class of tree controlled languages with ε-free controlled grammar under path
control is defined as

path-TCε(CFε,Y) = {pathL(G,R) : (G,R) is a tree controlled grammar in which G is
an ε-free context-free grammar and R ∈ Y}.

Definition 8.3 (1st normal form of a tree controlled grammar that generates the language
under path control). Let (G,R) be a tree controlled grammar that generates the language
under path control by R, where G = (V, T, P, S). (G,R) is in 1st normal form if every
production, r : A→ x ∈ P , is of the form A ∈ V − T and x ∈ T ∪ (V − T ) ∪ (V − T )2.

Definition 8.4 (2nd normal form of a tree controlled grammar that generates the language
under path control). Let (G,R) be a tree controlled grammar that generates the language
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under path control by R, where G = (V, T, P, S). (G,R) is in 2nd normal form if every
production, r : A→ x ∈ P , is of the form A ∈ V − T and x ∈ T ∪ ((V ∪ {E})− T )2 where
E ∩ V = ∅ and E → ε ∈ P . The alphabet of G should now include E, with E 6∈ V .

Definition 8.5 (Pseudoknot). Let Σ be an alphabet. The following languages over Σ (see
Fig. 8.1) are pseudoknots:

1. {xyxRyR : x, y ∈ Σ∗},
{u1xu2yu3xRu4yRu5 : x, y, ui ∈ Σ∗, 1 ≤ i ≤ 5},

2. {xyxRzzRyR : x, y, z ∈ Σ∗},
{u1xu2yu3xRu4zu5zRu6yRu7 : x, y, z, ui ∈ Σ∗, 1 ≤ i ≤ 7},

3. {xyxRzyRzR : x, y, z ∈ Σ∗},
{u1xu2yu3xRu4zu5yRu6zRu7 : x, y, z, ui ∈ Σ∗, 1 ≤ i ≤ 7},

4. {xyzxRyRzR : x, y, z ∈ Σ∗},
{u1xu2yu3zu4xRu5yRu6zRu7 : x, y, z, ui ∈ Σ∗, 1 ≤ i ≤ 7}.

Note that presented pseudoknots form obviously non-context-free languages.

x xR

y yR

z zR

x

xR

y

yR

x

xR

y

yR

z

zR

x

xR y

yR

z

zR

Figure 8.1: Pseudoknot examples, (top-left) {xyxRyR : x, y ∈ Σ∗}, (top-right)
{xyxRzzRyR : x, y, z ∈ Σ∗}, (bottom-left) {xyxRzyRzR : x, y, z ∈ Σ∗}, (bottom-right)
{xyzxRyRzR : x, y, z ∈ Σ∗}.

8.3 Results

This section presents the results achieved in the investigation area defined in the previous
section.
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8.3.1 Erasing Productions

Lemma 8.1. For a tree controlled grammar (G,R) there is a tree controlled grammar,
(G′, R), such that pathL(G,R) = pathL(G′, R) and G′ is ε-free.

Proof. Let (G,R) where G = (V, T, P, S) be a tree controlled grammar that generates

pathL(G,R). Without any loss of generality, assume G contains only usable productions.
Basically, from all correct derivation trees for any z ∈ L(G), we select just those of them
containing a path p with word(p) ∈ R.

Consider t ∈ (G,R)4(z), for any z ∈ pathL(G,R). Clearly, there is a path p of t such that
word(p) = A1 . . . A`a with A1, . . . , A` ∈ V − T , for ` ≥ 1, A1 = S, and a ∈ T . Consider
the productions Ai → xiAi+1yi, for 1 ≤ i ≤ `− 1, used when passing from Ai to Ai+1 on p
and, corresponding to p, the production A` → x`a y` used in the last step of the derivation
in G. Since word(p) ∈ {S}(V −T )∗T , no Ai → xiAi+1yi is ε-production, for 1 ≤ i ≤ `− 1 .

Consider that any xiyi, 1 ≤ i ≤ `, contains B ∈ V − T that does not belong to
p. Consider a subword z′ of z that is derived from B. Since G is context-free, z′ can be
generated from B without using ε-productions (see the well-known Alg. 5.1.3.2.3 in [89] used
for transformation of a context-free grammar to an equivalent ε-free context-free grammar).

Therefore, transformation G into G′ where G′ is ε-free by aforementioned algorithm
cannot affect the language describing a controlled path. Thus, such a transformation cannot
restrict or extend pathL(G,R) properly and therefore pathL(G,R) = pathL(G′, R) holds.

Corollary 8.2. For Y ∈ {LIN,CF}, path-TC(CF,Y) = path-TCε(CFε,Y).

Discussion, Notes, and Further Research Ideas

We have considered the impact of ε-productions in path controlled grammars to the gen-
erative power. As opposed to level-controlled grammars (see Chap. 4), ε-productions in
path-controlled grammars do not restrict nor extend the generative power (see Lem. 8.1
and Col. 8.2).

On the other hand, when controlling the paths, the control language must be at least
linear to extend the generative power (see Chap. 5) beyond context-free languages whereas
for controlling levels (see Chap. 4) or cuts (see Chap. 7), a regular language is enough.
As a result, we have stated that ε-productions can be removed from a path controlled
grammar without affecting its language. Note that by introducing path-based restriction,
the independence of context-free grammars on ε-productions have not been lost.

8.3.2 Normal Forms

Theorem 8.3. Let L ∈ path-TC(CF,CF). Then, there exists a tree controlled grammar,
(G,R), in 1st normal form such that L = pathL(G,R).

Proof. Alg. 1 is based on well-known Alg. 5.1.4.1.1 in [89] used for transformation of a con-
text-free grammar to an equivalent context-free grammar in Chomsky normal form. When-
ever a production A → X1X2 . . . Xn for n ≥ 3 is transformed into the productions A →
X1〈X2 . . . Xn〉, . . . , 〈Xn−1Xn〉 → Xn−1Xn, if word(p) = uAXiv ∈ R for a path p, for
i = 1, 2 . . . n, rational transducer M nondeterministically replaces AXi as a subword of
word(p) by a sequence A〈X2 . . . Xn〉 〈X3 . . . Xn〉 . . . 〈Xi−1 . . . Xn〉Xi. Whenever new non-
terminal a′ for a ∈ V −T is introduced, rational transducer M replaces a as a last symbol of
word(p) by a sequence a′a. Since CF is closed under rational transduction, R′ ∈ CF.
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Algorithm 1: Conversion of a tree controlled grammar (G,R) to a tree controlled
grammar (G′, R′) in 1st normal form that generates the same language under path
control.

Input: A tree controlled grammar (G,R) where G = (V, T, P, S) and G is ε-free.
Output: A tree controlled grammar (G′, R′) where G′ = (V ′, T, P ′, S) satisfying

pathL(G,R) = pathL(G′, R′) and (G′, R′) is in 1st normal form.
1 begin
2 P ′ := {r : r : A→ x ∈ P, x ∈ T ∪ (V − T ) ∪ (V − T )2};
3 Paux := {r : r : A→ x ∈ P, |x| ≤ 2, r /∈ P ′};
4 V ′ := V ;
5 assume rational transducer M(Q,V ′, V ′, τ, s, F ) with RTM (R) = R;
6 foreach r : A→ X1X2 . . . Xn ∈ P where
7 Xi ∈ V , i = 1, 2, . . . , n for some n ≥ 3 do
8 begin
9 Paux := Paux ∪ {A→ X1〈X2 . . . Xn〉,
10 〈X2 . . . Xn〉 → X2〈X3 . . . Xn〉,
11 . . .
12 〈Xn−2 . . . Xn〉 → Xn−2〈Xn−1Xn〉,
13 〈Xn−1Xn〉 → Xn−1Xn};
14 V ′ := V ′ ∪ {〈Xi . . . Xn〉 : i = 2, . . . , n− 1};
15 τ = τ ∪ {(f, uA〈X2 . . . Xn〉〈X3 . . . Xn〉 . . . 〈Xi−1 . . . Xn〉Xiv) :
16 (f, uAXiv) ∈ τ(s, uAXiv),
17 f ∈ F, u, v ∈ (V ′)∗, A,Xi ∈ V ′ for some 2 ≤ i ≤ n};
18 end
19 end
20 foreach r : A→ x ∈ Paux with alph(x) ∩ T 6= ∅ do
21 begin
22 replace each terminal a ∈ T with a new symbol a′ ∈ V ′ in x;
23 V ′ := V ′ ∪ {a′};
24 P ′ := P ′ ∪ {a′ → a};
25 τ := τ ∪ {(f, ua′a) : (f, ua) ∈ τ(s, ua), f ∈ F, u ∈ (V ′)∗, a ∈ V − T};
26 end
27 end
28 P ′ := P ′ ∪ {r : A→ x : p ∈ Paux, x ∈ T ∪ (V ′)2};
29 produce G′ = (V ′, T, P ′, S);
30 produce R′ = RTM (R);
31 produce (G′, R′);
32 end
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Theorem 8.4. Let L ∈ path-TC(CF,CF). Then, there exists a tree controlled grammar,
(G,R), in 2nd normal form such that L = pathL(G,R).

Algorithm 2: Conversion of a tree controlled grammar (G,R) to a tree controlled
grammar (G′, R′) in 2nd normal form that generates the same language under path
control.

Input: A tree controlled grammar (G,R) in 1st normal form where G = (V, T, P, S).
Output: A tree controlled grammar (G′, R′) where G′ = (V ′, T, P ′, S) satisfying

pathL(G,R) = pathL(G′, R′) and (G′, R′) is in 2nd normal form.
1 begin
2 V ′ := V ∪ {E : E ∩ V = ∅};
3 P ′ := P ∪ {E → ε};
4 foreach r : A→ x ∈ P with x ∈ V − T do
5 P ′ := P ′ ∪ {A→ xE};
6 end
7 produce G′ = (V ′, T, P ′, S);
8 produce R′ = R;
9 produce (G′, R′);
10 end

Proof. Alg. 2 is a straightforward modification of Alg. 1. First, new symbol E ∈ V and the
production E → ε ∈ P ′ are created, then each production A → x ∈ P with x ∈ V − T
is replaced by A → xE ∈ P ′. Clearly, this transformation does not affect the language
describing a controlled path and thus R = R′ ∈ CF.

Examples

Next, we demonstrate two examples of typically non-context-free languages that belong to
path-TC(CF,CF) and corresponding tree controlled grammars both in general as well
as 1st and 2nd normal form. The following examples demonstrate the languages capturing
multiple copy up to four parts and cross-referencing of two parts.

Example 8.1. Consider the tree controlled grammar that generates pathL(G,R) where

G = ({S,B,D, a, b, c, d}, {a, b, c, d}, P, S),
P = {S → aSd, S → aBd, B → bBc, B → D, D → bc},
R = {SnBnDb : n ≥ 1}.

Clearly, pathL(G,R) = {akbkckdk : k ≥ 1} /∈ CF.
Next, let us transform (G,R) in 1st normal form by Alg. 1 that outputs (G′, R′) where

G′ = ({S,B,D, 〈Sd〉, 〈Bd〉, 〈Bc〉, a′, b′, c′, d′, a, b, c, d, e, f}, {a, b, c, d, e, f}, P ′, S),
P ′ = {S → a′〈Sd〉, S → a′〈Bd〉, B → b′〈Bc〉, B → D, D → b′c′,

〈Sd〉 → Sd′, 〈Bd〉 → Bd′, 〈Bc〉 → Bc′,
a′ → a, b′ → b, c′ → c, d′ → d},

R′ = {(S〈Sd〉)nS〈Bd〉(B〈Bc〉)nDb′b : n ≥ 1}.

Clearly, pathL(G′, R′) = {akbkckdk : k ≥ 1} /∈ CF and (G′, R′) is in 1st normal form.
Finally, let us transform (G,R) in 2st normal form by Alg. 2 that outputs (G′′, R′′) where
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G′ = ({S,B,D,E, 〈Sd〉, 〈Bd〉, 〈Bc〉, a′, b′, c′, d′, a, b, c, d, e, f}, {a, b, c, d, e, f}, P ′, S),
P ′′ = {S → a′〈Sd〉, S → a′〈Bd〉, B → b′〈Bc〉, B → DE, D → b′c′,

〈Sd〉 → Sd′, 〈Bd〉 → Bd′, 〈Bc〉 → Bc′, E → ε,
a′ → a, b′ → b, c′ → c, d′ → d},

R′′ = {(S〈Sd〉)nS〈Bd〉(B〈Bc〉)nDb′b : n ≥ 1}.

Clearly, pathL(G′′, R′′) = {akbkckdk : k ≥ 1} /∈ CF and (G′′, R′′) is in 2nd normal form.

Example 8.2. Consider the tree controlled grammar that generates pathL(G,R) where

G = ({S,A,B,C,D, a, b}, {a, b}, P, S),
P = {S → aS, S → aB, B → bB, B → A, A→ bA, A→ C,

C → Ca, C → D, D → a},
R = {SmBnAnCmDa : m,n ≥ 1}.

Clearly, pathL(G,R) = {akblakbl : k, l ≥ 1} /∈ CF.
Next, let us transform (G,R) in 1st normal form by Alg. 1 that outputs (G′, R′) where

G′ = ({S,A,B,C,D, a′, b′, a, b}, {a, b}, P ′, S),
P ′ = {S → a′S, S → a′B, B → b′B, B → A, A→ b′A, A→ C,

C → Ca′, C → D, D → a′, a′ → a, b′ → b},
R′ = {SmBnAnCmDa′a : m,n ≥ 1}.

Clearly, pathL(G,R) = {akblakbl : k, l ≥ 1} /∈ CF and (G′, R′) is in 1st normal form.
Finally, let us transform (G,R) in 2st normal form by Alg. 2 that outputs (G′′, R′′) where

G′′ = ({S,A,B,C,D,E, a′, b′, a, b}, {a, b}, P ′′, S),
P ′′ = {S → a′S, S → a′B, B → b′B, B → AE, A→ b′A, A→ CE,

C → Ca′, C → DE, D → a′, a′ → a, b′ → b, E → ε},
R′′ = {SmBnAnCmDa′a : m,n ≥ 1}.

Clearly, pathL(G,R) = {akblakbl : k, l ≥ 1} /∈ CF and (G′′, R′′) is in 2nd normal form.

Discussion, Notes, and Further Research Ideas

We have studied two normal forms for path controlled grammars (see Def. 8.3 and Def. 8.4).
Both of them are based on Chomsky normal form for context-free grammars (see Sec. 3.4).
Although we were not able to establish Chomsky normal form for path controlled-grammars,
we have introduced the normal form (see Th. 8.3) allowing unit productions (and no ε-
productions) and the normal form (see Th. 8.4) allowing just one ε-production (and no unit
productions). Then we have formulated algorithms (see Alg. 1 and Alg. 2) that transform
a path controlled grammar into its normal forms.

Let us point out that it is well-known that the membership problem for path controlled
grammar is decidable in a polynomial time (see [81] and [82]). In further research, both of
these newly established normal forms for path controlled grammars should be taken into
consideration in the relation with the results of [17]. Next, it should try to modify general
parsing methods that are based on Chomsky normal form such that they will be able to
parse path controlled grammars in a polynomial time.

Since there is the well-known algorithm for context-free grammars that transforms any
context-free grammar in Chomsky normal form into an equivalent context-free grammar
in Greibach normal form (see [89]), future investigations should consider aforementioned
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algorithm and reformulate it so that it modifies not only controlled grammar but also its
controlling language. In other words, such an algorithm should take a path controlled
grammar in general or in 1st or 2nd normal form and produce an equivalent path controlled
grammar in a kind of Greibach-like (see [10], [42], [50], [124]) normal form.

8.3.3 Relation to Pseudoknots

Theorem 8.5. {xyxRyR : x, y ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN).

Proof. Consider the tree controlled grammar (G,R) that generates pathL(G,R) where

G = ({S,A,B,A′, B′, C,D,U, V, a, b, 0, 1}, {a, b, 0, 1}, P, S),
P = {1 : S → aA|bB,

2 : A→ aA|aB|0C0|1D1, 3 : B → bB|bA|0C0|1D1,
4 : C → 0C0|1D1|A′|B′, 5 : D → 1D1|0C0|A′|B′,
6 : A′ → aA′|bB′|U, 7 : B′ → bB′|aA′|V,
8 : U → a, 9 : V → b},

R = {Suvh(uR)z : u ∈ {A,B}∗, v ∈ {C,D}∗, z ∈ {Ua, V b}}
where h is the homomorphism defined by h(A) = A′, h(B) = B′.

Explanation: Starting from S, (G,R) by 1 generates w = aA or w = bB. Then, (G,R)
repeatedly uses 2, 3 to generate w = xA or w = xB where x ∈ {a, b}∗ with the derivation
tree containing a path Su where u ∈ {A,B}∗. Next, (G,R) by 2, 3 generates C or D in
a sentential form and thus w = x0C0 or w = x1D1 where x ∈ {a, b}∗ with the derivation tree
containing a path SuC or SuD where u ∈ {A,B}∗, respectively. Then, (G,R) repeatedly
uses 4, 5 to generate w = xyCy or w = xyDyR where x ∈ {a, b}∗, y ∈ {0, 1}∗ with the
derivation tree containing a path Suv where u ∈ {A,B}∗, v ∈ {C,D}∗. By 4, 5, (G,R)
generates w = xyA′yR or w = xyB′yR where x ∈ {a, b}∗, y ∈ {0, 1}∗ with the derivation
tree containing a path SuvA′ or SuvB′ where u ∈ {A,B}∗, v ∈ {C,D}∗, respectively. Then,
(G,R) uses 6, 7 to generate w = xyx′A′yR or w = xyx′B′yR where x, x′ ∈ {a, b}∗, y ∈
{0, 1}∗ with the derivation tree containing a path Suvu′ where u ∈ {A,B}∗, v ∈ {C,D}∗,
u′ ∈ {A′, B′}∗, and the equivalence u′ = h(uR) is ensured by the controlling language R.
Next, (G,R) uses 6, 7 to generate w = xyx′UyR or w = xyx′V yR where x, x′ ∈ {a, b}∗,
y ∈ {0, 1}∗ with the derivation tree containing a path Suvu′U or Suvu′V , respectively,
where u ∈ {A,B}∗, v ∈ {C,D}∗, u′ ∈ {A′, B′}∗, and u′ = h(uR). Finally, (G,R) uses
8, 9 to generate w = xyxRyR ∈ T ∗ with the derivation tree containing a path Suvu′Ua
or Suvu′V b where u ∈ {A,B}∗, v ∈ {C,D}∗, u′ ∈ {A′, B′}∗ with u = h(uR). Thus,
(G,R) generates pathL(G,R) = {w : w = xyxRyR, x ∈ {a, b}∗, y ∈ {0, 1}∗} that forms the
pseudoknot. Clearly, both G and R are linear.

Using the same idea as in the proof of Th. 9.2, we can demonstrate the following.

Theorem 8.6. {xyxRzzRyR : x, y, z ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN).

Theorem 8.7. {xyxRzyRzR : x, y, z ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN).

Proof. Since the idea of the construction is the same, tree controlled grammars generating
the pseudoknots stated in Th. 9.3 and Th. 9.4 that actually proves the theorems are omitted.
However, the schemes of the derivation trees in corresponding tree controlled grammars are
sketched in Fig. 8.2 where the derivation trees of linear grammars that contain a path
described by linear languages are presented.
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Figure 8.2: Schemes of the structure of the derivation trees of linear grammars that contain
a path described by linear language, (left) {xyxRyR : x, y ∈ Σ∗ for some Σ}, (middle)
{xyxRzyRzR : x, y, z ∈ Σ∗ for some Σ}, (right) {xyxRzzRyR : x, y, z ∈ Σ∗ for some Σ}.
Observe that the parts branched on the same level of the derivation tree (schematic view)
are handled by the base linear grammar without use of the path control.

Corollary 8.8. The pseudoknots 1 to 3 from in Def. 8.5 belong to path-TC(LIN,LIN)
both in stem-only form as well as in the form with arbitrarily word between the stems.

Discussion, Notes, and Further Research Ideas

We have demonstrated several typical pseudoknots used in biology represented by the words
(see Def. 8.5). It is well-known that aforementioned pseudoknots do not belong to CF.
Inspired by path controlled grammars introduced in [80], we have demonstrated some pseu-
doknots belong to path-TC(LIN,LIN) (see Th. 8.5, Th. 8.6, and Th. 8.7). As it clearly
follows from Fig. 8.2, there are some other combinations of stem positions resulting in the
language of pseudoknots-like words in path-TC(LIN,LIN) not mentioned in this work.
However, those structures do not belong to the basic pseudoknots used in biology.

The open question is whether or not {xyzxRyRzR : x, y, z ∈ Σ∗} and other pseudoknot-
like structures (e.g., {xyxRzyRwzRwR : x, y, z, w ∈ Σ∗}) can be generated by tree con-
trolled grammars with linear components that generate the language under path control.
To answer this question, Ogdens-like lemma (see [98]) should be established and used to
disprove that those languages belong to path-TC(LIN,LIN). If they do not, it would
mean either we need stronger components (e.g., path-TC(CF,CF)) or even we need to
control more than one path (e.g., n-path-TC(CF,CF) or its variants, see Chap. 9). Note
that such a kind of Ogdens lemma should be significantly stronger than the lemma estab-
lished in Th. 5.7 (see Prop 8 Pumping Lemma in [80]) since Ogdens lemma considers not
only the subwords but also their positions (see [98]).
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8.3.4 Counterargument to the Proof of Generative Power

This section being the counterargument against the result path-TC(CF,CF) ⊆ MAT
presented in [80]. For the completeness and better readability, using the terminology of
Sec. 8.2, we present the theorem and construction part of its proof given in Prop. 6 in [80].

Theorem 8.9. (Prop. 6 in [80]) path-TC(CF,CF) ⊆MAT

Proof. Let (G,R) be a path controlled grammar with a context-free grammar, G = (V, T, P,
S), and a context-free grammar, G′ = (V ′, V, S′, P ′), such that L(G′) = R. Let N = V − T
and N ′ = V ′−V . Without any loss of the generality, we may assume that L(G′) ⊆ {S}N∗T .
We define the matrix grammar G′ = {N ′′ ∪ T ′′, T ′′, S′′,M}, with

N ′′= N ∪N ′ ∪ {X, X̂ : X ∈ N ∪ T} ∪ {S′′},
T ′′ = T ∪ {[A,B] : A ∈ N,B ∈ N ∪ T},
M ={(S′′ → SS′)} ∪ {(r) : r ∈ P} ∪ {(X → h(x) : X → x ∈ P ′}∪

{(A→ uXv, (̂A)→ [A,X]) : A→ uXv ∈ P,X ∈ N ∪ T}∪
{((a)→ a, →̂a) : a ∈ T}.

where h is the homomorphism from (N ′ ∪N ∪ T )∗ into (N ′ ∪ {X̂ : X ∈ N ∪ T})∗ defined
by h(X) = X, if X ∈ N ′, and h(X) = X̂, if X ∈ N ∪ T .

After the construction part of the proof, the explanation of the idea follows. The
idea tries to demonstrate that the derivation in G′′ is finished only after removing all
symbols with a hat from a sentence form (see Proof of Prop. 6 in [80] for the details).
When the derivation is finished, the authors use a gsm mapping that reads and leaves
unchanged the beginning part of its input word until the first symbol of the form [A,B],
where A ∈ N,B ∈ N , is reached. Then, the gsm mapping removes the rest of the input
word, checking at the same time whether or not for each consecutive symbols [A,B][C,D],
where A,C ∈ N,B,D ∈ N , on the input tape, B = C; and whether or not the last two
symbols of the input word are [A, a]a, where A ∈ N, a ∈ T . If both conditions are satisfied,
the resulting word on the input contains only terminal symbols and since MAT is closed
under gsm mappings, it belongs to L(G′′).

However, let us describe the argument against the correctness of aforementioned proof.

Example 8.3. Consider tree controlled grammar (G,R) where G = (V, T, P,A) is context-
free grammar with

V= {A,B,D,X, a, b, d},
T= {a, b, d},
P= {A→ bB|dD|X,B → aA,D → aA,X → aX|a},

and R = {ABADAX+a}. Clearly, L(G) = {(ba+ da)+a+} and pathL(G,R) = {bada+}.
Without any loss of generality, consider GR = (V ′, T ′, P ′, S′) with

V ′= {S′, Y ′, A,B,D,X, a, b, d},
T ′= {A,B,D,X, a, b, d},
P ′= {S′ → ABADAY ′a, Y ′ → XY ′|X}

such that L(GR) = R. Apparently, both components of (G,R) are context-free (i.e., G
is context-free grammar and R is context-free language). Thus, as Prop. 6 in [80] states,
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(G,R) can be converted to an equivalent matrix grammar G′′ specified by the construction
given in the proof of aforementioned proposition.

Next, we describe the counterexample proving that L(G′′) 6= pathL(G,R) making the
proof of Prop. 6 in [80] incorrect. Let us consider G′′ = (V ′′ ∪ T ′′, T ′′, P ′′, A′′) constructed
for (G,R) as in aforementioned proposition, that is

V ′′ = {A,B,D,X,A,B,D,X, a, b, d, Â, B̂, D̂, X̂, â, b̂, d̂, S′′, S′, Y ′},
T ′′ = {a, b, d} ∪ {[A,A], [A,B], . . . [A, a], [B,A], [B,B], . . . [B, d], [C,A], . . . },
M = {(A′′ → AS′)}∪

{(A→ bB), (A→ dD), (A→ X), (B → aA), (D → aA), (X → aX), (X → a)}∪
{(S′ → ÂB̂ÂD̂ÂY ′â), (Y ′ → X̂Y ′), (Y ′ → X̂)}∪
{(A→ bB, Â→ [A, b]), (A→ bB, Â→ [A,B]), (A→ dD, Â→ [A, d]),

(A→ dB̂, Â→ [A,D]), (A→ X, Â→ [A,X]), (B → aA, B̂ → [B, a]),

(B → aA, B̂ → [B,A]), (D → aA, D̂ → [D, a]), (D → aA, D̂ → [D,A]),

(X → aX, X̂ → [X, a]), (X → aX, X̂ → [X,X]), (X → a, X̂ → [X, a])}∪
{(a→ a, â→ a), (b→ b, b̂→ b), (d→ d, d̂→ d)}

Let us show pathL(G,R) 6= L(G′′). Indeed, consider the derivation A⇒bB⇒baA⇒badD
⇒badaA⇒badaX⇒badaaX⇒badaaa ∈ pathL(G,R) and consider its derivation tree in G.

Clearly, starting from A, G must use A → bB ∈ P to ensure the existence of a path
starting with AB. Note that the word dabaaa /∈ pathL(G,R) since the only way to generate
dabaaa ∈ L(G) is to use A → dD to rewrite start nonterminal A. Next steps of the
derivation are obvious.

Now, consider corresponding derivation in G′′ constructed above. G′′ must start by
using the matrix (A′′ → AS′). Then, G′′ by using the matrices (S′ → ÂB̂ÂD̂ÂY ′â), (Y ′ →
X̂Y ′), (Y ′ → X̂) generates AÂB̂ÂD̂ÂX̂X̂â representing the path G′′ needs to check. Now,
G′′ by using the matrices of the form (U → vV , Û → [U, V ]) simulates a derivation step
in G and rewrite corresponding (this formulation is used in Prop. 6 in [80]) symbol on the
path. Roughly speaking, the matrices allow to simulate a derivation step in G but they
cannot ensure rewriting the corresponding symbol on the path. Indeed, let us assume G′′

needs to rewrite Â but the matrices only allow to rewrite any Â not the corresponding Â
(actually, G′′ needs to rewrite leftmost Â in this case and this cannot be ensured in matrix
grammars at all).

Consider Fig. 8.3 that depicts allowed derivation in G′′ where the path ABADAXXa
needs to be checked (this corresponds to the word ÂB̂ÂD̂ÂX̂X̂â in the right-hand part
of the figure); however, the simulated derivation tree (left-hand part of the figure) con-
tains a path ADABAXXaa that is, not allowed in pathL(G,R). Clearly, G′′ produces
dabaaa[A,B][B,A][A,D][D,A][A,X][X,X][X, a]a. Then, the gsm mapping (see the proof
of Prop. 9 in [80]) removes [A,B][B,A] . . . a since both the conditions stated in the afore-
mentioned proof are fulfilled and the resulting word is dabaaa ∈ L(G′′). However, dabaaa /∈
pathL(G,R) as it is demonstrated above.

Discussion, Notes, and Further Research Ideas

The inclusion stated by Prop. 9 in [80] still may hold. However, it cannot be proved
in the presetned way. On the other hand, the consequence stated by the application of
Prop. 7 in [80] (Pumping Lemma) holds—there is the matrix language {anbncndnen, n ≥
0} /∈ path-TC(CF,CF). Clearly, path-TC(CF,CF) surely covers at least all context-
free languages (consider V ∗ as a control language). However, it is still unanswered if
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Figure 8.3: Derivation dabaaa ∈ L(G′′). However, dabaaa /∈ L(G,R) and thus L(G′′) 6=
L(G,R). For the conciseness, the details of derivations S′⇒∗ÂB̂ÂD̂ÂX̂X̂â are omitted in
this figure.

path-TC(CF,CF) is strictly under or incomparable to matrix languages. Apparently, the
construction used in Prop. 6 in [80] works correctly in the case when left-most matrix gram-
mar (see [114]) is considered instead of matrix grammar. However, this is of no interest since
left-most matrix grammars characterize the class of recursively enumerable languages. Any
our attempt to modify aforementioned construction to work correctly ended in a failure,
thus the generative power of tree controlled grammars that generate the language under
path control still remains open. The only approximation so far is a conjecture obtained as
a direct consequence of Th. 9.13:

Conjecture 8.10. Let L ∈ path-TC(CF,CF). Then, there exists L′ = L{�q} ∈ PSC
for q ≥ 2.

Conjecture 8.11. Let L ∈ path-TC(CF,CF). Then, there exist L′ ∈ PSC with L =
h(L′) for some homomorphism h.
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Chapter 9

n-Path Tree Controlled Grammars

This chapter introduces the first part of the author’s journal paper [70]:

Koutný, J., Meduna, A.
Tree-controlled grammars with restrictions placed upon cuts and paths.
Kybernetika, 48:11, 2012.

The conference version of the paper [70] was presented at 15th Conference and Competition
STUDENT EEICT 2009 [63]:

Koutný, J.
Regular paths in derivation trees of context-free grammars.
In Proceedings of the 15th Conference STUDENT EEICT 2009 Volume 4, 2009.

Next, this chapter introduces the author’s conference paper [68]:

Koutný, J., Křivka, Z., Meduna, A.
Pumping properties of path-restricted tree-controlled languages.
In 7th Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science, 2011.

Aforementioned conference paper [68] represents a significantly extended and revised version
of the author’s conference paper [64]:

Koutný, J.
On n-path-controlled grammars.
In Proceedings of the 16th Conference STUDENT EEICT 2010 Volume 5, 2010.

Then, this chapter introduces the author’s journal paper [67] that is under consideration in
the time of finishing this doctoral thesis:

Koutný, J., Křivka, Z., and Meduna, A.
On grammars with controlled paths.
Acta Cybernetica, submitted.

Finally, this chapter introduces the the author’s journal paper [17]:

Čermák, M., Koutný, J., Meduna, A.
Parsing based on n-path tree-controlled grammars.
Theoretical and Applied Informatics, 2011:16, 2012.
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The conference version of the paper [17] was presented at 17th Conference and Competition
STUDENT EEICT 2011 [65]:

Koutný, J.
Syntax analysis of tree-controlled languages.
In Proceedings of the 17th Conference STUDENT EEICT 2011 Volume 3, 2011.

9.1 Motivation

In this chapter, we study restrictions placed on several paths, and in this way, we actually
open a new investigation area concerning path-based restrictions placed upon the derivation
trees because all the other related studies discussed the restrictions placed on just one path
(see [80], [81], [82], [122], and [123]).

The derivations in context-free grammars can be seen in the notions of graph theory—
by the derivation trees (see Sec. 3.4). From this viewpoint, the derivation starts in the root
of a tree (which corresponds to the start symbol of a grammar), continues by sequential
application of context-free productions, and ends in the leafs (which corresponds to the
terminals of a grammar) without considering any context. From this rough idea, it can be
easily seen that during the derivation in a context-free grammar, the paths of the corre-
sponding derivation tree are formed. The paths of a derivation tree have several well-known
properties. Namely all paths start in the common node (i.e., the root) and each of them
ends in a different node (i.e., a leaf). Considering two different paths, clearly, there is a
node in which both paths split. Taking this into account, we can manage some context
information during the derivations in context-free grammars. Namely, the common part of
all restricted paths can form the original part of each individual path and this way context
information can be distributed through different branches of a derivation tree. Roughly
speaking, the branches of a derivation tree communicate through their common nodes.
As opposed to context-sensitive grammars; however, a derivation tree is constructed as in
context-free case. Indeed, each branch of a tree can be constructed individually regardless
of the other branches.

As a generalization of path controlled grammars (see Chap. 5), we introduce a model
where not just one but given number of paths in the derivation trees of a context-free
grammar must be described by a control language. That is, we deal with a generalization
of path controlled grammars (G,R), where a word, w, generated by G belongs to the
language defined by G and R only if there is a derivation tree, t, for w in G such that
there exist given n paths of t described by a linear language, R, where n ≥ 1. Such a
rewriting system is referred to as n-path tree controlled grammar. Then, we demonstrate
that this generalized model can generate some languages not captured in the model with
one controlled path introduced in Chap. 5.

All Paths Restriction

In [80], it is established that controlling just one path of the derivation trees of context-free
grammars by a linear control language increases the generative power of context free gram-
mars (see Sec. 1.1.2). On the other hand, also in [80], it is demonstrated that controlling just
one path of the derivation trees of context-free grammars by any regular control language
does not increase the generative power of context-free grammars properly (see Sec. 1.1.2).
Thus, in terms of controlling more than just one path in the derivation trees of context-free
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grammars by linear languages, the simple and natural question arises whether or not the
controlling all paths in the derivation trees of context-free grammar by any regular language
increases the generative power of context-free grammars.

More specifically, we restrict every root-to-leaf path in the derivation trees of context-
free grammars by some control languages. We demonstrate that if these control languages
are regular, the generative power of context-free grammars remains unchanged—they char-
acterize the class of context-free languages. This result is of some interest when compared
to the study given in [24], which restricts tree levels rather than paths in this way and
proves that the resulting grammars characterize the class of recursively enumerable lan-
guages even when considering regular control languages. Let us also point out that our
result significantly generalizes the study of [80], which only requires that there is at least
one root-to-leaf path in derivation tree restricted by a regular language. Indeed, by Th. 5.2
(see Prop. 2 in [80]), if the derivation trees are restricted so they must contain at least one
path in the given control regular language, then this restriction does not affect the genera-
tive power of context-free grammars. Therefore, we prove that this is true even if all paths
are restricted in this way.

Pumping Properties and Closure Properties

In the formal language theory, a pumping property states that for a particular language to
be a member of a language class, any sufficiently long word in the language contains a part
that can be removed, or repeated any number of times, with the resulting word remaining
in that language (see [9], [14], [21], [35], [47], [89], [132], [135], [137]). A pumping property
for a language class is typically used to determine if a particular language does not belong
to a given language class (however, it cannot be used to determine if a language belongs to
a given class); and to determine if a given class is not closed under given operation over the
languages (usually based on a proof by contradiction). Therefore, we state several pumping
properties of some languages generated by grammars with controlled paths.

Generative Power Approximation

The generative power for one path controlled grammars is not well-known since the trans-
formation of a grammar with one controlled path into a matrix grammar (see Sec. 8.3.4)
does not satisfy the equivalence of the languages generated by both grammars. Since the
generative power of any rewriting model is one of the fundamental language-characterizing
properties, it is desirable to investigate also the model with restricted paths in this manner.

As opposed to matrix grammars, in path-based restrictions placed upon the derivation
trees the rewriting is regulated vertically (i.e., from the root to the leafs of a tree). As it is
demonstrated in (see Sec. 8.3.4), we have not been able to correct the construction based
upon the transformation of a path controlled grammar into an equivalent matrix grammar.
In scattered context grammars it is possible to identify the desired position to be rewrit-
ten more accurately than in matrix grammars. Therefore, we investigate the relationship
between grammars with restricted paths and scattered context grammars. Moreover, it is
desirable to investigate also the relationship between the language classes generated by the
model with just one path restricted and the model with several path restricted.
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Syntax Analysis

For a rewriting model to be usable in practice, its polynomial time parsability is crucially
important property. The idea of recognition of the words generated by the grammars with
controlled paths is introduced in [80] (see Chap. 5), where it is demonstrated that path
controlled languages (with just one restricted path) can be recognized in a polynomial
time. More detailed discussion concerning a polynomial time recognition of the languages
generated by the grammars with controlled paths can be found in [81] where the membership
problem is reduced to the non-emptiness problem of the intersection of two languages (see
Chap. 5). As a result, [82] demonstrates that the membership problem for path controlled
languages is decidable in a polynomial time. However, for the vast majority of practical
applications, it is essential to find out not only whether or not given word belongs to the
language of given rewriting model, but also how the model can generate it. Therefore, for a
given word, it is desirable to find out which productions the model must use and in which
order to generate it.

Moreover, the method presented in [81] for just one controlled path cannot be straight-
forwardly modified for the model with n ≥ 2 controlled paths. Indeed, it would lead to the
question if such intersection contains at least n elements that is much more difficult problem
than non-emptiness. However, the problem for n = 1 controlled paths corresponds to the
method introduced in [81]. Thus, we introduce the LL (see [4] and [89] for the definition
of LL property) restriction and we present the ideas how to parse the language class the
LL model generates (not only how to decide the membership problem). Essentially, we
discuss the following problem: Can we decide whether a word is recognized by a n-path tree
controlled grammar in a polynomial time, for n ≥ 1?

9.2 Definitions

In this section, we introduce new derivation-tree-based restriction that is based on the
generalization of the one path restricted model from the previous chapter to given number
of paths.

Definition 9.1 (Language of tree controlled grammar under all paths control). Let (G,R)
be a tree controlled grammar. The language that (G,R) generates under the all-paths
control by R is denoted by all-pathsL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ all-pathsL(G,R) if and only if there is a derivation tree, t ∈ G4(x),
such that for all paths, s, of t, word(s) ∈ R.

Definition 9.2 (Class of tree controlled languages under all paths control). The class of
tree controlled languages under all paths control is defined as

all-path-TC(CF,REG) = {all-pathsL(G,R) : (G,R) is a tree controlled grammar in
which G is a context-free grammar and
R ∈ REG}.

Definition 9.3. Let (G,R) be a tree controlled grammar. The language of tree controlled
grammar under not common n-path control by R, n ≥ 1, is denoted by nc-n-pathL(G,R)
and defined by the following equivalence:

For all x ∈ T ∗, x ∈ nc-n-pathL(G,R) if there exists a derivation tree, t ∈ G4(x), such
that there is a set, Qt, of n paths of t such that for each path, p ∈ Qt, it holds word(p) ∈ R.
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Figure 9.1: An illustration of common node of division for the paths.

Definition 9.4. For X,Y ∈ {REG,LIN,CF}, the class of tree controlled languages under
not-common n-path control is defined as

nc-n-path-TC(X,Y) = {nc-n-pathL(G,R) :(G,R) is a tree controlled grammar with
G ∈ GX and R ∈ Y}.

Definition 9.5 (Common part of two paths). Let p1, p2 be any different two paths of a
derivation tree, t. Then, p1 and p2 contain at least one common node (the root of t, root(t)),
and p1 ends in a different leaf of t than p2. Let cmn(p1, p2) denote the maximal number of
consecutive common nodes of p1 and p2.

Definition 9.6 (Common node of division of set of paths). Let Qt be a nonempty set of
some paths of a derivation tree, t. The paths of Qt are divided in a common node of t if
and only if for some k ≥ 1, cmn(p1, p2) = k for every pair (p1, p2) ∈ Q2

t (see Fig. 9.1). Let
all paths of Qt be divided in a common node of t. If Qt = {p}, then mQt = |word(p)|,
otherwise mQt ≥ 1 denotes the maximal number of consecutive common nodes of all paths
in Qt.

Definition 9.7 (Language of tree controlled grammar under n-path control). Let (G,R) be
a tree controlled grammar. The language of tree controlled grammar under n-path control
by R, n ≥ 1, is denoted by n-pathL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ n-pathL(G,R) if there exists a derivation tree, t ∈ G4(x), such that
there is a set, Qt, of n paths of t that are divided in a common node of t and for each,
p ∈ Qt, it holds word(p) ∈ R.

Definition 9.8 (Class of tree controlled languages under n-path control). For X,Y ∈
{REG,LIN,CF}, the class of tree controlled languages under n-path control is defined as

n-path-TC(X,Y) = {n-pathL(G,R) : (G,R) is a tree controlled grammar with
G ∈ GX and R ∈ Y}.

Conventions

Hereafter, tree controlled grammars that generate the language under the n-path control
are referred to as n-path tree controlled grammars.

To illustrate Def. 9.1, Def. 9.6, and Def. 9.7 above, suppose that in a tree controlled
grammar, (G,R), there is a derivation tree given in Fig. 9.1, where abcde is a word composed
of terminal symbols.

• In Def. 9.1, to have abcde in all-pathsL(G,R), all of the words SACa, SACb, SAc,
SBDd, SBDe must be in R.
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• In Def. 9.6, let Qt = {SACa, SAc}, then the paths of Qt are divided in common node
and mQt = 2; let Qt = {SACa, SACb, SAc}, then the paths of Qt are not divided in
common node and mQt is undefined.

• In Def. 9.7, to have abcde in n-pathL(G,R), for some n ≥ 1, at least n of the words
SACa, SACb, SAc, SBDd, SBDe must be in R.

Note that if we consider 0 controlled paths (i.e., n = 0 and consequently card(Qt) = 0)
in the definition of n-pathL(G,R), then, clearly, the generative power of such a model equals
CF.

Since for each context-free grammar, there is a regular language that describes all paths
in all its derivation trees (see Prop. 1 in [80]); and there is no regular language which
increases its generative power when used to restrict the paths (see Prop. 2 in [80] and
Sec. 9.3.1), if we consider tree controlled grammars (G,R) with R ∈ REG, then, obviously,
the generative power of such a model equals CF for any n ≥ 1. Therefore, we investigate the
properties of tree controlled grammar with non-regular control language. More specifically,
we study tree controlled grammars that generates their languages under n-path control
with linear control languages.

Definition 9.9 (Special types of n-path controlled grammars). Let (G,R) be a tree con-
trolled grammar. Consider n-pathL(G,R), for n ≥ 1. If for each word, z ∈ n-pathL(G,R),
there exist a derivation tree, t ∈ G4(z), a set of its paths, Qt, mQt ≥ 1, and a partition,
word(p) = uvwxy, for each path, p ∈ Qt, satisfying the premise of Lem. 3.2 such that it
holds

1 ≤ mQt ≤ |u|, then n-pathL(G,R) is I-n-pathL(G,R),
|u| < mQt ≤ |uv|, then n-pathL(G,R) is II-n-pathL(G,R),
|uv| < mQt ≤ |uvw|, then n-pathL(G,R) is III-n-pathL(G,R),
|uvw| < mQt ≤ |uvwx|, then n-pathL(G,R) is IV -n-pathL(G,R),
|uvwx| < mQt ≤ |uvwxy|, then n-pathL(G,R) is V -n-pathL(G,R).

Definition 9.10 (Classes of special types of n-path tree controlled languages). For i ∈
{I, II, III, IV, V} and n ≥ 1, the class of i-n-path tree controlled languages is defined as

i-n-path-TC(CF,LIN) = {i-n-pathL(G,R) : (G,R) is tree controlled grammar in
which G is a context-free grammar and
R ∈ LIN}.

Examples

We demonstrate two non-context-free languages that belong to n-path-TC(CF,CF),
more precisely, to III-n-path-TC(CF,CF). First, the languages are presented for some
n ≥ 1, then we present a general case. The specific examples for higher values of n
tends to be excessively long and they are left to the reader. To illustrate the definition of
III-n-path-TC(CF,CF), consider Ex. 9.1 and Ex. 9.3 and the corresponding derivation
trees in Fig. 9.2.

Example 9.1. Consider the tree controlled grammar (G,R) that generates III-n-pathL(G,R)
and n = 2, where
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G = ({S,X, Y, U, V, a, b, c, d, e, f}, {a, b, c, d, e, f}, P, S),
P = {S → aSf, S → aXY f, X → bXc, Y → dY e,

X → U, U → bc, Y → V, V → de},
R = {SmXmUb ∪ SmY mV d : m ≥ 1},
III-2-pathL(G,R) = {akbkckdkekfk : k ≥ 1}.

Clearly, III-2-pathL(G,R) /∈ CF. The left-hand part of Fig. 9.2 illustrates the derivation
tree for the derivation S⇒∗a3b3c3d3e3f3 in (G,R). Clearly, there are two paths described
by the words S3X3Ub and S3Y 3V d from R.

Example 9.2. Let (G,R) be a tree controlled grammar that generates III-n-pathL(G,R),
n ≥ 1, where

G = ({S} ∪ {Ai, Bi : 1 ≤ i ≤ n} ∪ {ai : 1 ≤ i ≤ 2n+ 2},
{ai : 1 ≤ i ≤ 2n+ 2}, P, S),

P ={S → a1Sa2n+2, S → a1A1A2 . . . Ana2n+2}∪
{Ai+1 → a2i+2Ai+1a2i+3, Ai+1 → Bi+1,
Bi+1 → a2i+2a2i+3 : 0 ≤ i ≤ n− 1},

R =
⋃n

i=1{SkAk
iBia2i : k ≥ 1}.

Clearly, R ∈ LIN. Consider a derivation in (G,R):

S⇒kak1Sa
k
2n+2

⇒ak1a1A1A2 . . . Ana2n+2a
k
2n+2

⇒n·kak+1
1 ak2B1a

k
3 . . . a

k
2nBna

k
2n+1a

k+1
2n+2

⇒nak+1
1 ak+1

2 ak+1
3 . . . ak+1

2n ak+1
2n+1a

k+1
2n+2

Clearly, n paths are described by R and in this way (G,R) generates III-n-pathL(G,R) =
{ak1ak2 . . . ak2n+2 : k ≥ 1} /∈ CF.

Example 9.3. Consider the tree controlled grammar (G,R) with III-n-pathL(G,R), for
n = 3, where

G = ({A,B,C,D,E, F,G,H, I, a, b, c, d}, {a, b, c, d}, P,A),
P = {A→ aA, A→ aB, B → Bb, B → C,

C → cC, C → D, D → Dd, D → HHH,
E → Ea, E → I, F → bF, F → E,
G→ Gc, G→ F, H → dH, H → G, I → a},

R = {ArBsCtDuHuGtF sErIa : r, s, t, u ≥ 0},
III-3-pathL(G,R) = {(arctdubs)4 : r > 0, s, t, u ≥ 0}.

Clearly, III-3-pathL(G,R) /∈ CF. The right-hand part of Fig. 9.2 illustrates the derivation

tree for the derivation A⇒∗(a2cdb2)4 in (G,R). Clearly, there are three paths described by
A2B3C2D2H2G2F 3E2Ia from R.

Example 9.4. Let m ≥ 0 with even m. Let (G,R) be a tree controlled grammar that
generates III-n-pathL(G,R), n ≥ 1, where

G = ({Aj , Bj , aj : 1 ≤ j ≤ m} ∪ {C}, {aj : 1 ≤ j ≤ m}, P,A1),
P ={A1 → a1A1, A1 → a1A2, B1 → B1a1, B1 → C, C → a1}∪
{Am → Amam,Am → {Bm}n}∪
{Ai → Aiai, Ai → Ai+1 : 2 ≤ i ≤ m− 1 with even i}∪
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{Ai → aiAi, Ai → Ai+1 : 3 ≤ i ≤ m− 1 with odd i}∪
{Bi → aiBi, Bi → Bi−1 : 2 ≤ i ≤ m with even i}∪
{Bi → Biai, Bi → Bi−1 : 3 ≤ i ≤ m with odd i},

R = {Ak1
1 A

k2
2 . . . Akm

m Bkm
m B

km−1

m−1 . . . B
k2
2 B

k1
1 Ca1 : ki ≥ 0, 1 ≤ i ≤ m}.

Clearly, R ∈ LIN. Consider a derivation in (G,R), for some even m ≥ 0:

A1⇒k1ak11 A1⇒ak1+1
1 A2⇒k2ak1+1

1 A2a
k2
2 ⇒a

k1+1
1 A3a

k2
2

⇒∗ak1+1
1 ak33 a

k5
5 . . . a

km−1

m−1 Ama
km
m . . . ak66 a

k4
4 a

k2
2

⇒ak1+1
1 ak33 a

k5
5 . . . a

km−1

m−1 (Bm)nakmm . . . ak66 a
k4
4 a

k2
2

⇒n·kmak1+1
1 ak33 a

k5
5 . . . a

km−1

m−1 (akmm Bm)nakmm . . . ak66 a
k4
4 a

k2
2

⇒nak1+1
1 ak33 a

k5
5 . . . a

km−1

m−1 (akmm Bm−1)
nakmm . . . ak66 a

k4
4 a

k2
2

⇒n·km−1ak1+1
1 ak33 a

k5
5 . . . a

km−1

m−1 (akmm Bm−1a
km−1

m−1 )nakmm . . . ak66 a
k4
4 a

k2
2

⇒∗ak1+1
1 . . . a

km−1

m−1 (akmm a
km−2

m−2 . . . a
k2
2 B1a

k1
1 . . . a

km−3

m−3 a
km−1

m−1 )nakmm . . . ak22
⇒nak1+1

1 . . . a
km−1

m−1 (akmm a
km−2

m−2 . . . a
k2
2 Ca

k1
1 . . . a

km−3

m−3 a
km−1

m−1 )nakmm . . . ak22
⇒nak1+1

1 . . . a
km−1

m−1 (akmm a
km−2

m−2 . . . a
k2
2 a

k+1
1 . . . a

km−3

m−3 a
km−1

m−1 )nakmm . . . ak22

Thus, n paths are described by R and this way, (G,R) generates

III-n-pathL(G,R) = {(ak1+1
1 ak33 . . . a

km−1

m−1 a
km
m a

km−2

m−2 a
km−4

m−4 . . . a
k2
2 )n+1 :

ki ≥ 0, 1 ≤ i ≤ m} /∈ CF.

9.3 Results

This section presents the results achieved in the investigation area defined in the previous
section.

9.3.1 All Paths Restriction

Theorem 9.1. CF = all-path-TC(CF,REG)

Proof. Let L ∈ all-path-TC(CF,REG). We assume that L is generated by a tree con-
trolled grammar, (G,R), where G = (V, T, P, S) is a context-free grammar, R is a regular
language over V , and (G,R) generates the language all-pathsL(G,R).

Next, we assume R is accepted by a deterministic finite automaton M = (QM , V , RM ,
sM , FM ). Since the paths of a derivation tree of a context-free grammar are of the form xb
with x ∈ (V − T )+, b ∈ T , we assume that each r ∈ RM is of the form pa → q with either
(a) a ∈ V − T and q /∈ FM , or (b) a ∈ T and q ∈ FM .

Let G′ be a context-free grammar G′ = (V ′, T, P ′, S′), where V ′ = Q ∪ T , Q = {〈A,
qA〉 : A ∈ V , qA ∈ QM , qA→ qA ∈ RM for some q ∈ QM}, S′ = 〈S, sS〉, sMS → sS ∈ RM ,
and P ′ is defined in the following way:

If

1. A→ B1B2 . . . Bn ∈ P , n ≥ 1;

2. qA→ qA ∈ RM , for some q ∈ QM ;

3. qABi → qBi ∈ RM , for each Bi, i = 1, 2, . . . , n;

then add 〈A, qA〉 → B1B2 . . . Bn to P ′, where, for i = 1, 2, . . . , n,

64



if Bi ∈ V − T , then Bi = 〈Bi, qBi〉 with qABi → qBi ∈ RM ,
if Bi ∈ T , then Bi = Bi.

Without any loss of generality, we assume that V ∩QM = ∅. We define the function g
from G′4(y), y ∈ (V ′)∗, into (G,R)4(x), x ∈ V ∗, as

for all nodes labelled by a ∈ T , g(a) = a;
for all nodes labelled by 〈A, q〉 ∈ Q, g(〈A, q〉) = A.

To show that all-path-TC(CF,REG) ⊆ CF, we first prove the next claim.
Claim: t ∈ (G,R)4(x), x ∈ V ∗, if and only if d ∈ G′4(y), y ∈ (V ′)∗, such that g(d) = t.

Only-If Part : That is, if t ∈ (G,R)4(x), x ∈ V ∗, then d ∈ G′4(y), y ∈ (V ′)∗, such that
g(d) = t. This is established by induction on the number of the production trees, denoted
by m, in t ∈ (G,R)4(x), x ∈ V ∗.

Basis: Let m = 0. Since m = 0 implies the zero-length derivation, the only production
tree in t contains only the node S that corresponds to the start symbol of G. Clearly, the
only production tree in d is the node that corresponds to the start symbol of G′ – that is,
〈S, sS〉 with g(〈S, sS〉) = S.

Induction Hypothesis: Suppose that the only-if part holds for all t ∈ (G,R)4(uvw),
u, v, w ∈ V ∗, that contains m or fewer production trees, for some m ≥ 0.

Induction Step: Consider any t ∈ (G,R)4(uvw) that contains m + 1 production trees.
Clearly, there is some subtree t′ ∈ (G,R)4(v) of t such that t′ is a production tree.

Next, we remove just one production tree from t. If root(t′) = B, then there is t′′ ∈
(G,R)4(uBw), where u,w ∈ V ∗, B ∈ V − T , that contains m production trees. There is
also r : B → v ∈ P (and its production tree r4) and t′′ is a subtree of t. Hence, by the
induction hypothesis, there is also d′′ ∈ G′4(y) such that g(d′′) = t′′.

Since uBw⇒uvw [r] in G, qBBi → qBi ∈ RM , for each Bi in v, i = 1, 2, . . . , |v|. There-
fore, there is r′ ∈ P ′ (and its production tree r′4) such that g(r′4) = r4. Thus, we obtain
d ∈ G′4(y) with g(d) = t.

If Part : That is, if d ∈ G′4(y), y ∈ (V ′)∗, then t ∈ (G,R)4(x), x ∈ V ∗, such that
g(d) = t. This is established by induction on the number of the production trees, denoted
by j, in d ∈ G′4(y), y ∈ (V ′)∗.

Basis: Let j = 0. Since j = 0 implies the zero-length derivation, the only production
tree in d contains only the node 〈S, sS〉 that corresponds to the start symbol of G′. Clearly,
the only production tree in t contains only the node S that corresponds to the start symbol
of (G,R) and g(〈S, sS〉) = S.

Induction Hypothesis: Suppose that the if part holds for all d ∈ G′4(uvw), u, v, w ∈
(V ′)∗, that contains j or fewer production trees, for some j ≥ 0.

Induction Step: Consider any d ∈ G′4(uvw) that contains j + 1 production trees.
Clearly, there is some subtree d′ ∈ G′4(v) of d such that d′ is a production tree.

Next, we remove just one production tree from d – that is, if root(d′) = 〈B, q〉, then
there is d′′ ∈ G′4(u〈B, q〉w), where u,w ∈ (V ′)∗, 〈B, q〉 ∈ V ′−T , that contains j production
trees. There is also r : 〈B, q〉 → v ∈ P ′ (and its production tree r4) and d′′ is a subtree of
d. Hence, by the induction hypothesis, there is also t′′ ∈ (G,R)4(x) such that g(d′′) = t′′.

Since u〈B, q〉w⇒uvw [r] in G′, there is r′ ∈ P (and its production tree r′4) such that
g(r′4) = r4. For each 〈Bi, qBi〉 in v, there is some q ∈ QM such that qBi → qBi ∈ RM , i =
1, 2, . . . , |v|. Thus, we obtain t ∈ (G,R)4(x) with g(d) = t.

We can now easily obtain all-path-TC(CF,REG) ⊆ CF as follows.
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• Let t ∈ (G,R)4(x), with x ∈ T ∗. Clearly x ∈ L(G,R), there is d ∈ G′4(y) such that
g(d) = t, and x = y ∈ L(G′). Thus L(G,R) ⊆ L(G′).

• Let d ∈ G′4(y), with y ∈ T ∗. Clearly y ∈ L(G), there is t ∈ (G,R)4(x) such that
g(d) = t, and y = x ∈ L(G,R). Thus, L(G′) ⊆ L(G,R).

Therefore, L(G,R) = L(G′) and thus all-path-TC(CF,REG) ⊆ CF.

Let L be a context-free language. Without any loss of generality, we assume that L
is generated by a context-free grammar, G = (V, T, P, S). Let (G′, R) be a tree controlled
grammar that generates all-pathsL(G′, R) ∈ all-path-TC(CF,REG), where G′ = G, R =
(V − T )+T . Clearly L(G) = L(G′, R), therefore CF ⊆ all-path-TC(CF,REG). Thus,
all-path-TC(CF,REG) = CF.

Discussion, Notes, and Further Research Ideas

As a generalization of tree controlled grammars that generate the language under path-
based control introduced in [80] (see Chap. 5), we have proved that the generative power of
context-free grammars remains unchanged even if we restrict all paths in their derivation
trees by regular languages.

9.3.2 Pumping Properties and Closure Properties

Theorem 9.2. If L ∈ I-n-path-TC(CF,LIN), n ≥ 1, then there are two constants,
k, q ≥ 0, such that each word, z ∈ L, with |z| ≥ k can be written as

z = u1v1u2v2 . . . u4nv4nu4n+1

with 0 < |v1v2 . . . v4n| ≤ q and for all i ≥ 1, u1vi1u2v
i
2 . . . u4nv

i
4nu4n+1 ∈ L.

Proof. Let (G,R), where G = (V, T, P, S) and R ∈ LIN, be a tree controlled grammar
that generates I-n-pathL(G,R). Without any loss of generality, we assume there is a linear
grammar, G′ = (V ′, V, P ′, S′), with L(G′) = R.

Consider t ∈ (G,R)4(z), for any z ∈ I-n-pathL(G,R). Clearly, for each path p ∈ Qt,
word(p) = A1 . . . A`a with A1, . . . , A` ∈ V − T , for ` ≥ 1, and a ∈ T . Consider the
productions Ai → xiAi+1yi, for 1 ≤ i ≤ `−1, used when passing from Ai to Ai+1 on p and,
corresponding to p, the production A` → x`ay` used in the last step of the derivation in G.

Consider that any xiyi, 1 ≤ i ≤ `, contains B ∈ V − T that does not belong to any
p ∈ Qt. Clearly, there is a subword z′ of z derived from B. Since L(G) ∈ CF, then if
|z′| ≥ k1, where k1 ≥ 0, then there are two subwords z′1, z

′
2 of z′ that can be pumped and

by Lem. 3.1, z′1, z
′
2 are bounded in length. See Fig. 9.3, (top-left).

If L(G) is infinite, every p ∈ Qt is arbitrarily long, therefore also word(p) ∈ L(G′) is
arbitrarily long. Thus, if word(p) = upvpxpypzp with |upvpxpypzp| ≥ k2, for some k2 ≥ 0,
then upvpxpypzp satisfies upv

j
pxpy

j
pzp ∈ L(G′), for j ≥ 1. Hence, the derivations starting

from the symbols of vp and yp can be repeated in G. Since (G,R) generates I-n-pathL(G,R),
it follows that the derivations starting both from the symbols of vp and yp in G can be
different for each p ∈ Qt.

Consider the derivations starting from vp and yp in G. This leads to the pumping of
four subwords of z—two in the left-hand side, two in the right-hand side corresponding to
each p ∈ Qt. Thus, we obtain 4n pumped subwords of z—denote them as v4m+1, v4m+2,
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v4m+3, v4m+4, 0 ≤ m ≤ n − 1. See Fig. 9.3, (top-right). By Lem. 3.1, the subwords v1, v2,
. . . , v4n are bounded in length, therefore |v1v2 . . . v4n| ≤ q.

Theorem 9.3. If L ∈ III-n-path-TC(CF,LIN), n ≥ 1, then there are two constants,
k, q ≥ 0, such that each each word, z ∈ L, with |z| ≥ k can be written as

z = u1v1u2v2 . . . u2n+2v2n+2u2n+3

with 0 < |v1v2 . . . v2n+2| ≤ q and for all i ≥ 1, u1vi1u2v
i
2 . . . u2n+2v

i
2n+2u2n+3 ∈ L.

Proof. Let (G,R), where G = (V, T, P, S) and R ∈ LIN, be a tree controlled grammar
that generates III-n-pathL(G,R). Without any loss of generality, we assume there is linear
a grammar, G′ = (V ′, V, P ′, S′), with L(G′) = R.

Consider t ∈ (G,R)4(z), for any z ∈ III-n-pathL(G,R). Clearly, for each path p ∈ Qt,
word(p) = A1 . . . A`a with A1, . . . , A` ∈ V − T , for ` ≥ 1, and a ∈ T . Consider the
productions Ai → xiAi+1yi, for 1 ≤ i ≤ `−1, used when passing from Ai to Ai+1 on p and,
corresponding to p, the production A` → x`ay` used in the last step of the derivation in G.

Consider that any xiyi, 1 ≤ i ≤ `, contains B ∈ V − T that does not belong to any
p ∈ Qt. Clearly, there is a subword z′ of z derived from B. Since L(G) ∈ CF, then if
|z′| ≥ k1, where k1 ≥ 0, then there are two subwords z′1, z

′
2 of z′ that can be pumped and

by Lem. 3.1, z′1, z
′
2 are bounded in length. See Fig. 9.3, (top-left).

If L(G) is infinite, every p ∈ Qt is arbitrarily long, therefore also word(p) ∈ L(G′) is
arbitrarily long. Thus, if word(p) = upvpxpypzp with |upvpxpypzp| ≥ k2, for some k2 ≥ 0,
then upvpxpypzp satisfies upv

j
pxpy

j
pzp ∈ L(G′), for j ≥ 1. Hence, the derivations starting

from the symbols of vp and yp can be repeated inG. Since (G,R) generates III-n-pathL(G,R),
it follows that the derivations starting from the symbols of vp inG are common for all p ∈ Qt,
and the derivations starting from the symbols of yp in G can be different for each p ∈ Qt.

Consider the derivations starting from vp in G. This leads to the pumping of two
subwords v1, v2n+2 of z—one in the left-hand side, one in the right-hand side corresponding
to the common part of all p ∈ Qt.

Consider the derivations starting from yp in G. This leads to the pumping of two
subwords of z—one in the left-hand side, one in the right-hand side corresponding to each
p ∈ Qt. Thus, we obtain 2n pumped subwords of z—denote them as v2m+2, v2m+3, 0 ≤
m ≤ n − 1. See Fig. 9.3, (bottom-left). By Lem. 3.1, the subwords v1, v2, . . . , v2n+2 are
bounded in length, therefore |v1v2 . . . v2n+2| ≤ q.

Theorem 9.4. If L ∈ V-n-path-TC(CF,LIN), n ≥ 1, then there are two constants,
k, q ≥ 0, such that each word, z ∈ L, with |z| ≥ k can be written as

z = u1v1u2v2u3v3u4v4u5

with 0 < |v1v2v3v4| ≤ q and for all i ≥ 1, u1vi1u2v
i
2u3v

i
3u4v

i
4u5 ∈ L.

Proof. Let (G,R), where G = (V, T, P, S) and R ∈ LIN, be a tree controlled grammar
that generates V -n-pathL(G,R). Without any loss of generality, we assume there is a linear
grammar, G′ = (V ′, V, P ′, S′), with L(G′) = R.

Consider t ∈ (G,R)4(z), for any z ∈ V -n-pathL(G,R). Clearly, for each path p ∈ Qt,
word(p) = A1 . . . A`a with A1, . . . , A` ∈ V − T , for ` ≥ 1, and a ∈ T . Consider the
productions Ai → xiAi+1yi, for 1 ≤ i ≤ `−1, used when passing from Ai to Ai+1 on p and,
corresponding to p, the production A` → x`ay` used in the last step of the derivation in G.
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Consider that any xiyi, 1 ≤ i ≤ `, contains B ∈ V − T that does not belong to any
p ∈ Qt. Clearly, there is a subword z′ of z derived from B. Since L(G) ∈ CF, then if
|z′| ≥ k1, where k1 ≥ 0, then there are two subwords z′1, z

′
2 of z′ that can be pumped and

by Lem. 3.1, z′1, z
′
2 are bounded in length. See Fig. 9.3, (top-left).

If L(G) is infinite, every p ∈ Qt is arbitrarily long, therefore also word(p) ∈ L(G′) is
arbitrarily long. Thus, if word(p) = upvpxpypzp with |upvpxpypzp| ≥ k2, for some k2 ≥ 0,
then upvpxpypzp satisfies upv

j
pxpy

j
pzp ∈ L(G′), for j ≥ 1. Hence, the derivations starting

from the symbols of vp and yp can be repeated in G. Since (G,R) generates V -n-pathL(G,R),
it follows that the derivations starting both from the symbols of vp and yp in G are common
for all p ∈ Qt.

Consider the derivations starting from vp and yp in G. This leads to the pumping of
four subwords v1, v2. v3, v4 of z—two in the left-hand side, two in the right-hand side
corresponding to the common part of all p ∈ Qt. See Fig. 9.3, (bottom-right). By Lem. 3.1,
the subwords v1, v2, v3, v4 are bounded in length, therefore |v1v2v3v4| ≤ q.

Theorem 9.5. For n ≥ 1, i ∈ {I, II, III, IV, V} and TG, TR ∈ {REG,LIN,CF},
n-path-TC(TG, TR), i-n-path-TC(TG, TR) are closed under intersection with regular lan-
guages, union, and non-erasing homomorphism.

Proof. Let n ≥ 1 and L1, L2 ∈ n-path-TC(TG, TR). Assume tree controlled grammars
(G1, R1), (G2, R2) where G1 = (V1, T1, P1, S1), G2 = (V2, T2, P2, S2), respectively.

Intersection with regular languages: It holds by the same argument as Prop. 1 in [81], where
the construction is based on the evidence that REG, LIN, CF is closed under intersection
with regular languages as well as under finite substitution on a linear language, and the
independence on n ≥ 1.

Union: Let (G,R) be a tree controlled grammar with G = (V1 ∪V2 ∪{S}, T1 ∪T2, P1 ∪P2 ∪
{S → S1, S → S2}, S), where V1∩V2 = ∅, S /∈ V1∪V2, and R = {S}R1∪{S}R2. Obviously,

n-pathL(G,R) = n-pathL(G1, R1) ∪ n-pathL(G2, R2). Analogously for i-n-path-TC(TG, TR),
i ∈ {I, II, III, IV, V}.

Non-erasing homomorphism: Let h : T ∗1 → (T1
′)+ be a homomorphism. Let (G,R) be

a tree controlled grammar with G = (V1, T1
′, P ∪ {a → h(a) : a ∈ T1}, S), where T1′ =⋃

a∈T1
alph(h(a)) and R = {paa′ : pa ∈ R1, a ∈ T1, h(a) = xa′y, x, y ∈ T1′∗, a′ ∈ T ′1}.

Assume T1 ∩ T1′ = ∅. Clearly, n-pathL(G,R) = h(L1) ∈ n-path-TC(TG, TR). Analogously
for i-n-path-TC(TG, TR), where i ∈ {I, II, III, IV, V}.

Theorem 9.6. For n ≥ 1, I-n-path-TC, III-n-path-TC, and V-n-path-TC are not
closed under concatenation, intersection, and complement.

Proof. Consider n ≥ 1.

Concatenation: By Ex. 9.2, L = {aj1a
j
2 . . . a

j
2n+2 : j ≥ 1} ∈ III-n-path-TC, but by

Lem. 9.3 LL /∈ III-n-path-TC. By Lem. 9.2 and Lem. 9.4 for the classes I-n-path-TC
and V-n-path-TC, respectively, there is an analogous example.

Intersection: Let L1 = {aj1a
j
2 . . . a

j
2n+2a

k
2n+3 : j, k ≥ 1}, L2 = {ak1a

j
2 . . . a

j
2n+2a

j
2n+3 : j ≥ 1}.

Clearly L1, L2 ∈ III-n-path-TC. Obviously, by Lem. 9.3, L1 ∩ L2 = {aj1a
j
2 . . . a

j
2n+3 : j ≥
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1} /∈ III-n-path-TC. It can be proved analogously for I-n-path-TC and V-n-path-TC.

Complement: Since for n ≥ 1, i-n-path-TC, where i ∈ {I, III, V}, are closed under union
and not closed under intersection, it clearly follows from De-Morgan laws.

Discussion, Notes, and Further Research Ideas

As one of the fundamental important language-class-characterizing properties, we have
established pumping property for I-n-path-TC(CF,LIN), III-n-path-TC(CF,LIN),
and V-n-path-TC(CF,LIN). These properties can be used exactly in the same way
as well-known pumping properties for REG, LIN, CF to prove that a particular language
does not belong to the given language class. The main open problem is to find out whether
or not there are pumping properties also for II-n-path-TC and IV-n-path-TC.

9.3.3 Generative Power Approximation

Lemma 9.7. Let TG, TR ∈ {REG,LIN,CF}. Then TG ⊆ path-TC(TG, TR) and for
n ≥ 1, if L ∈ n-path-TC(TG, TR), then for all x ∈ L it holds |x| ≥ n.

Lemma 9.8. For TG ∈ {LIN,CF} and n ≥ 1, n-path-TC(TG,REG) ⊆ TG.

Proof. It follows from Th. 4.1 in [70] and Prop. 2 in [80]. Exactly the same technique is
used to prove n-path-TC(TG,REG) ⊆ TG.

Lemma 9.9. For TG ∈ {LIN,CF} and n ≥ 2, n-path-TC(TG,REG) ⊂ TG.

Proof. The proper inclusion is obtained by combining Lem. 9.8 with 2nd statement of
Lem. 9.7.

Lemma 9.10. For n ≥ 1, i ∈ {I, II, III, IV, V}, and TG, TR ∈ {REG,LIN,CF},

i-n-path-TC(TG, TR) ⊆ n-path-TC(TG, TR).

Proof. It follows from Def. 9.8 and Def. 9.9. For each L ∈ i-n-path-TC(TG, TR), i ∈
{I, II, III, IV, V}, there exists a tree controlled grammar (G,R) such that n-pathL(G,R) =
L, n ≥ 1.

Theorem 9.11. Depending on n ≥ 1, there are infinite language hierarchies specified as⋃n
i=1 j-i-path-TC(CF,LIN), for j ∈ {I, III, V}.

Proof. For n ≥ 1,
⋃n

i=1 III-i-path-TC(CF,LIN) ⊂
⋃n+1

i=1 III-i-path-TC(CF,LIN) by
Lem. 9.3. Analogously by Lem. 9.2 for

⋃n
i=1 I-i-path-TC(CF,LIN) and by Lem. 9.4 for⋃n

i=1 V-i-path-TC(CF,LIN).

Theorem 9.12. For every n ≥ 1 and TG, TR ∈ {REG,LIN,CF}, for each L ∈ TG, there
are

L1 ∈ n-path-TC(TG, TR) and L2 ∈ FIN such that L ⊆ L1 ∪ L2.

Proof. Assume G = (V, T, P, S) with G ∈ GTG
and L(G) = L. Let (G,R) be a tree

controlled grammar where R ⊆ (V − T )∗T and n ≥ 1. By 2nd statement of Lem. 9.7, for
each z ∈ L with |z| ≥ n, z ∈ n-pathL(G,R). Consider Lf = {z ∈ L : |z| < n} ∈ FIN.
Clearly, L ⊆ n-pathL(G,R) ∪ Lf .

69



Theorem 9.13. Let L ∈ n-path-TC(CF,CF), for n ≥ 1. Then, there exists

L′ = L{�q} ∈ PSC for q ≥ 2n+ 1.

Proof. First, consider the following construction and then its explanation. Let (G,R) be
a tree controlled grammar that generates n-pathL(G,R), where G = (V, T, P, S), N = V −T ,
and R is a control language over V . Without any loss of generality, we assume a context-
free grammar G′ = (V ′, V, P ′, S′) with L(G′) = R ⊆ {S}N∗T . Consider the following
definitions:

N•◦ = {•i, ◦i : 1 ≤ i ≤ n},
NX =

⋃n
i=1{Xi : X ∈ V },

N
X̂

=
⋃n

i=1{X̂i : X ∈ V },
PST = {(S′′ → SN ◦1 S′1 ◦2 S′2 · · · ◦n S′n)},
PG = {(r) : r ∈ P},
PG′ =

⋃n
i=1{(Xi → h(xi,1 . . . xi,m)) : X → x1 . . . xm ∈ P ′,m ≥ 1},

PCMN = {(A→ u1Xu2,N→ N, ◦1 → •1, Â1 → ◦1, . . . , ◦n → •n, Ân → ◦n) :
A→ u1Xu2 ∈ P,X ∈ V },

PMID = {(A→ u1X1u2X2u3 . . . unXnun+1,N→ H,
◦1 → •1, Â1 → ◦1, . . . , ◦n → •n, Ân → ◦n) :
A→ u1X1u2X2u3 . . . unXnun+1 ∈ P,X1, . . . , Xn ∈ V },

PUNQ =
⋃n

i=1{(A→ uXv,H→ H, ◦i → •i, Âi → ◦i) : A→ uXv ∈ P,X ∈ V },
PT =

⋃n
i=1{(a→ a,H→ H, ◦i → •i, âi → •i) : a ∈ T},

Pf = {H→ �} ∪ {•i → � : 1 ≤ i ≤ n},

where N ′ = V ′ − V and h is the homomorphism from (N ′ ∪ V )∗ to (N ′ ∪N
X̂

)∗ defined by:

if X ∈ N ′: h(X) = X;
if X ∈ V : h(X) = X̂.

Without any loss of generality, we assume that N , N ′, N•◦, NX , and N
X̂

are pairwise
disjoint. Let G′′ = (V ′′, T ∪ {�}, P ′′, S′′) be a propagating scattered context grammar with

V ′′ = N ∪N•◦ ∪N ′ ∪NX ∪NX̂
∪ T ∪ {S′′,N,H,�},

P ′′ = PST ∪ PG ∪ PG′ ∪ PCMN ∪ PMID ∪ PUNQ ∪ PT .

Explanation: For better readability, note that the symbols of N•◦ are used to indicate
left position in each controlled path, NX are used as nonterminal on the controlled paths,
N

X̂
are used for a control language, the production in PST is the only production with

the start symbol on the left-hand side, the production s in PG are used to rewrite beyond
controlled paths, PG′ generates generate a control language, PCMN rewrite in a common
part of the paths, PMID rewrite the last common node of controlled paths, PUNQ rewrite
in the unique parts of controlled paths, PT generate terminals, and Pf finish a derivation.

First, G′′ generates x = SN ◦1 S′1 ◦2 S′2 · · · ◦n S′n. Obviously, from each symbol S′i,
for 1 ≤ i ≤ n, by r ∈ PG′ , G′′ constructs the word zi of the form Âi,1Âi,2 . . . Âi,kâi
where Ai,1Ai,2 . . . Ai,kai ∈ L(G′), for some k ≥ 1. Observe that each zi is constructed
nondeterministically. Thus, we obtain the word of the form SN◦1 z1 ◦2 z2 · · · ◦n zn, where zi
corresponds to the i-th controlled path, for 1 ≤ i ≤ n. Then, G′′ continues in a derivation
SN ◦1 z1 ◦2 z2 · · · ◦n zn⇒∗w��|z1|�|z2| . . .�|zn| where w ∈ T ∗ in the following way (see the
illustration on Fig. 9.4):
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1. Indicated by N, G′′ simulates the derivation from A ∈ N on the common part of all
controlled paths using r ∈ PCMN to (i) generate a symbol B ∈ NX , (ii) rewrite N to

N, (iii) for each 1 ≤ i ≤ n, rewrite ◦i to •i and replace one occurrence of Âi ∈ NX̂
with ◦i.

2. G′′ simulates the derivation starting from A ∈ N in which all controlled paths are
divided—in the last common symbol of all controlled paths. That is, G′′ uses r ∈
PMID to (i) generate n symbols B ∈ NX , (ii) replace N by H, (iii) for each 1 ≤ i ≤ n,

rewrite ◦i to •i and replace one Âi ∈ NX̂
with ◦i.

3. Indicated by H, G′′ simulates the derivation starting from A ∈ N in the unique part
of each controlled path. That is, G′′ uses r ∈ PUNQ to (i) generate a symbol B ∈ NX ,

(ii) rewrite H to H, (iii) for some i, 1 ≤ i ≤ n, rewrite ◦i to •i and replace Âi ∈ NX̂
with ◦i.

4. G′′ replaces all occurrences of •i and H by �.

5. G′′ uses r ∈ PG to simulate every derivation starting from each A ∈ N that belongs
to no controlled path.

Note that the grammar G′′ works in the leftmost way—this is done by using the symbols
•i and ◦i, 1 ≤ i ≤ n, that ensure that any skipped symbol from N

X̂
cannot be rewritten

anymore. Clearly, the derivation is finished only after removing all symbols Âi ∈ NX̂
, for

all 1 ≤ i ≤ n. In this way, we obtain a word of the form x = w��|z1|�|z2| . . .�|zn| where
w ∈ L and the derivation tree contains n paths described by R. Thus, the number of �s
in x is equal to the length of all controlled paths plus 1—i.e., |w| ≥ 2n + 1 (since each
controlled path is of the length at least 2).

Note that the construction can be easily modified for n = 1 where the division node is
omitted and thus, the markers N and H are not needed anymore.

Corollary 9.14. Let L ∈ n-path-TC(CF,CF), for n ≥ 1. Then, there exists L′ ∈ PSC
with L = h(L′).

Proof. By Th. 9.13, for each L ∈ n-path-TC(CF,CF), for n ≥ 1 there is L′ = L{�q} ∈
PSC for q ≥ 2n + 1. Consider a tree controlled grammar (G,R) with n-pathL(G,R) =
L where G = (V, T, P, S) and PSC grammar G′ = (V ′, T, P ′, S) with L(G′) = L′. Let
h : V ∗ → (V ′)∗ be the morphism defined by h(�) = ε, otherwise h(A) = A. Clearly,
L = h(L′).

Discussion, Notes, and Further Research Ideas

Based on the aforementioned counterargument against the generative power of path con-
trolled grammars (see Sec. 8.3.4), we have tried to establish the generative power for n-path
controlled grammar. Despite all our effort so far, we were able to find only its approxi-
mation. However, this approximation does not say too much since it is well-known that
PSC is not closed under erasing homomorphism (see Col. in 3.18 in [92]), thus we have
informally concluded that:

”
We either have the power to check what we need but not to

remove it (using PSC) or vice versa (using MAT).“
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9.3.4 Syntax Analysis

Theorem 9.15. For a tree controlled grammar, (G,R) with an unambiguous context-free
grammar, G, and a linear control language, R, the membership x ∈ nc-n-pathL(G,R), n ≥ 1,
is decidable in O(|x|k), for some k ≥ 0.

Proof. We assume R is generated by some unambiguous linear grammar. Since G is un-
ambiguous, it is well-known that we can decide whether or not x ∈ L(G) in O(|x|2). We
distinguish two cases. Clearly, if x /∈ L(G), then x /∈ nc-n-pathL(G,R). If x ∈ L(G), since G
is unambiguous, we can construct unique derivation tree, t, of x ∈ L(G) in O(|x|2). Since
each path of t ends in a leaf, t contains |x| paths. Clearly, the height of t is polynomially
bounded by some l ≥ 2 with respect to |x|. Thus, for any x ∈ L(G), the length of each
path p of t and therefore also |word(p)| are bounded by l. Because R is unambiguous
and |word(p)| ≤ l for each p ∈ Qt, it is well-known that we can decide whether or not
word(p) ∈ L(R) in a polynomial time. If for at least n paths, p1, p2, . . . , pn, of derivation
tree of x in G, word(pi) ∈ R holds, for i ∈ 1, 2, . . . , n, then x ∈ nc-n-pathL(G,R).

As it straightforwardly follows from Th. 9.15, the proposed way to solve the membership
problem leads to a parsing method working, in essence, in two phases: (1) construction of
a derivation tree, t, of x in G by top-down parsing method, and (2) checking that at least
n ≥ 1 paths of t belong to R. However, from the practical viewpoint, the situation may
occur in which during the phase (1) above we already know that currently constructed
derivation tree cannot contain the required number of paths described by the words of
R. Informally, we do not have to wait with starting the phase (2) until the phase (1) is
completely done (i.e., until t is completely constructed).

Top-Down Parsing of nc-n-path-TC(CF,LIN)

Consider nc-n-pathL(G,R), for some n ≥ 1, as the language of a tree controlled grammar
(G,R) where G = (V, T, P, S) is an unambiguous context-free grammar. We assume R is
generated by an unambiguous context–free grammar, GR = (VR, V, PR, SR). Adjust the
idea behind Th. 9.15 as follows.

We construct a labelled derivation tree with the set of labels Ψ = {0, 1} and the following
semantics. Let p be a path of derivation tree, t, in G and e be an edge between any two
consecutive nodes of p. Then, label 0 ∈ Ψ of any e of p represents p is not described by R
(i.e., word(p) /∈ R). Label 1 ∈ Ψ of all e of p represents p can potentially be described by
R.

Consider that for the decision whether or not x ∈ L(G), we use the well-known top-
down parsing method to construct a derivation tree, t, of x in G. Let us suppose that
a production, r : A → A1A2 . . . Aj ∈ P , j ≥ 1, is used in the derivation step X⇒Y ,
X,Y ∈ V ∗ in G. In addition, we need to determine the value of the labels of the edges
between A and each Aj , for j = 1, 2, . . . , n, related to the application of r. Let t′ be a
derivation tree that corresponds to the derivation S⇒∗w1A1A2 . . . Ajw2 in G, for some
w1, w2 ∈ V ∗. Essentially, t′ is a subtree of t. Clearly, each path of t′ is the beginning part
of at least one path in t. Next, we distinguish the following cases: if all the edges of t′ are
labelled, we can proceed to next derivation step in G; if some of the edges in t′ are not
labelled, we need to compute the values of missing labels.

For each unlabelled edge, e, of a path, p′, in t′, we check whether or not GR can generate
the word of the form word(p′)w with w ∈ (VR − V )∗T ∪ {ε}. Since |word(p′)| is finite, it
can be checked in a polynomial time. If so, we add label 1 ∈ Ψ to edge e; otherwise, we
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add label 0 ∈ Ψ to edge e. Note that this phase can be optimized in such a way that we do
the test whether or not GR can generate word(p′)w with w ∈ (VR−V )∗T ∪{ε} symbol-by-
symbol during the generation of word(p′) in GR. Next, we distinguish the following cases:
if t′ contains no leaf with input edge labelled by 1, then x /∈ nc-n-pathL(G,R); if t′ contains
at least one leaf labelled by symbol of V − T , we proceed to the next derivation step in G;
or if all the leafs of t′ are labelled by the symbols of T and for at least n of the leafs of t,
there is an input edge labelled by 1, then x ∈ nc-n-pathL(G,R).

Thus, it is possible to check whether or not the paths of derivation tree t of LL context-
free grammar can potentially be described by given unambiguous context–free language
already during the building of t by LL parser. The following example explains the syntax
analysis in more detail.

Example 9.5. Consider the tree controlled grammar (G,R) that generates nc-n-pathL(G,R)
where

G = ({S, A, B, a, b, c, d, e, k}, {a, b, c, d, e, k}, P , S),
P = {1 : S → AA, 2 : A→ aAd, 3 : A→ bBc,

4 : A→ e, 5 : B → bBc, 6 : B → k},
R = {SAmBm−1k : m ≥ 1}.

Obviously, L(G) = {ai(bjkcj+e)dias(btkct+e)ds : i, j, t, s ≥ 0}. Clearly, nc-1-pathL(G,R)
= L(G) with i = j or s = t, and nc-2-pathL(G,R) = L(G) with i = j = s = t. The LL table
for G is constructed by the well-known algorithm (see [112]) and it is presented in Tab. 9.1.

a b c d e k $
S 1 1 1
A 2 3 4
B 5 6

Table 9.1: LL table for grammar G from Ex. 9.5.

Idea: The syntax analyser uses two pushdown automata and a list of 3-tuples contain-
ing state of the second automaton, contents of its pusdown, and a pointer to the first-
automaton’s pushdown. The first pushdown automaton simulates the construction of a
derivation tree by the LL table in the well-known way. More precisely, if the top-most
symbol on the pushdown is a non-terminal A, the first input symbol is a, and there is a
production A→ x on position [A, a] in the LL table, then the automaton rewrites A on the
pushdown by reversal(x) (expansion step); if a on the pushdown’s top is a terminal and a
is the first input symbol, the automaton reads a from the input and removes a from the
pushdown (comparative step); and other cases represent a syntax error.

Let us return to the example and consider the input word abkcdaed. In the beginning,
the top-most symbol on the pushdown of the first automaton is S. Since a is the first input
symbol and there is production 1 on the position [S, a] in the table, the automaton rewrites
S by AA on its pushdown.

During the computation, the second automaton is checking the potentially valid paths in
the derivation tree. At the beginning, the list contains one item (q0, Ŝ, 1) where 1 represents
the first position on the first-automaton’s pushdown from the bottom and Ŝ is the start
pushdown symbol of the second automaton. If the first automaton makes a computation
step with symbol a on the pushdown’s top and there is a tuple (q, α, p) in the list where p
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is the pointer to the symbol, the second automaton places α onto its pushdown, automaton
moves to q and it makes the moves for a as the first input symbol until it does not need
next input symbol. For example, after the expansion from S to AA, the second automaton
finds list-item (q0, Ŝ, 1) and it moves to state q0 and places Ŝ onto the pushdown.

Then, it simulates the move Ŝq0S ` βq where Ŝq0S → βq is a computatinal rule of the
second automaton. If a = A was a non-terminal and first automaton made expansion by
production A → x, then the syntax analyser removes the used list-item and if the second
automaton did not reject the input, then there are l tuples (q, β, i) inserted into the list,
for all i = t + 1, . . . , t + l with l = |x|, top-most-symbol-position t before the expansion,
and β as the current content of the pushdown. Otherwise, for a as a terminal symbol,
the comparison is done. If the second automaton accepts, the pointer of the used tuple is
rewritten to 0 where 0 denotes accepted path. Assuming that it does not accept with a
terminal, a, the tuple is removed from the list.

Consider the input word abkcdaed again. For some definition of the second automaton,
the syntax analysis proceeds as it is given in Tab. 9.2.

1. PDA 2. PDA Pointer Tuples
Sqabkcdaed q0 (q0, ε, 1) (q0, ε, 1)

AAqabkcdaed q0 (q0, ε, 1) (q1, ε, 1), (q1, ε, 2)

AdAaqabkcdaed q1 (q1, ε, 2) (q1, ε, 1), (q1, A, 2), (q1, A, 3),
(q1, A, 4)

AdAqbkcdaed Aq1 (q1, A, 4) (q1, ε, 1), (q1, A, 2), (q1, A, 3)

AdcBbqbkcdaed Aq1 (q1, A, 3) (q1, ε, 1), (q1, A, 2), (q1, AA, 3),
(q1, AA, 4), (q1, AA, 5)

AdcBqkcdaed AAq1 (q1, AA, 5) (q1, ε, 1), (q1, A, 2), (q1, AA, 3),
(q1, AA, 4)

Adckqkcdaed AAq1 (q1, AA, 4) (q1, ε, 1), (q1, A, 2), (q1, AA, 3),
(q1, A, 4)

Adcqcdaed Aq1 (q1, A, 4) (q1, ε, 1), (q1, A, 2), (q1, AA, 3),
(q1, A, 0)

Adqdaed AAq1 (q1, AA, 3) (q1, ε, 1), (q1, A, 2), (q1, A, 0)

Aqaed Aq1 (q1, A, 2) (q1, ε, 1), (q1, A, 0)

dAaqaed q1 (q1, ε, 1) (q1, A, 0), (q1, A, 1), (q1, A, 2),
(q1, A, 3)

dAqed Aq1 (q1, A, 3) (q1, A, 0), (q1, A, 1), (q1, A, 2)

deqed Aq1 (q1, A, 2) (q1, A, 0), (q1, A, 1), (q1, AA, 2)

dqd AAq1 (q1, AA, 2) (q1, A, 0), (q1, A, 1)

q Aq1 (q1, A, 1) (q1, A, 0)

Table 9.2: Parsing of abkcdaed corresponding to tree controlled grammar (G,R) from
Ex. 9.5.

As it can be seen, only one item with 0 in the last component remains in the list—there
is one path belonging to the control language. If we require n ≥ 2 paths described by the
control language, the input word is not accepted.
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Bottom-Up Parsing of nc-n-path-TC(CF,LIN)

The previous section deals in principle with top-down parsing method (LL parser). However,
the weakness of LL parser is the assumption that a context-free grammar is unambiguous.
Moreover, the method demonstrated in Ex. 9.5 assumes that the grammar is LL. Essentially,
the same idea is applicable also on bottom-up parsing methods (e.g., LR parser) which can
handle a larger range of the languages. Therefore, we briefly discuss the ideas of parsing
methods for nc-n-path-TC(CF,LIN) in terms of LR parsing (see [4] and [89] for the
definition of LR property).

One of the advantages of bottom-up parsers is that we do not need to require that in
a tree controlled grammar, (G,R), G is LL grammar. On the other hand, concerning the
bottom-up parsing, we have to deal with the ambiguity. However, it is well-known that the
question whether or not a context-free grammar is ambiguous is undecidable. Indeed, the
problem can be reduced to the Post Correspondence Problem which is well-known to be
undecidable (see [105]).

It is also well-known that for some ambiguous context-free grammars, there exists equiv-
alent context-free grammar which is unambiguous. The ambiguity of a context-free gram-
mar can be restricted basically by removing the unit productions. We assume that a
context-free grammar contains only usable productions—only those productions, which can
be used during the derivation. Clearly, if G = (V, T, P, S) is a context-free grammar with
r : A → A ∈ P , for some A ∈ V − T , then G is ambiguous since r can be used during the
derivation of x ∈ L(G) arbitrarily many times and thus generate arbitrarily many different
derivation trees for x in G.

Obviously, since the unit productions generate nothing, they can be removed from a
context-free grammar G without affecting L(G). However, removing the unit productions
from G in a tree controlled grammar (G,R) affects the paths of the derivation trees of
x ∈ L(G). Thus the identity nc-n-pathL(G,R) = nc-n-pathL(G′, R), where G′ is obtained by
removing the unit productions from G, does not hold. However, the equivalence L(G) =
L(G′) holds.

Theorem 9.16. For a tree controlled grammar, (G,R), where G is a context-free grammar
and R ∈ LIN, there is a tree controlled grammar, (G′, R′), such that G′ does not contain
unit productions and nc-n-pathL(G,R) = nc-n-pathL(G′, R′), n ≥ 1.

Proof. Consider G = (V, T, P, S) and let G′ be a context-free grammar obtained from
G by removing the unit productions. Therefore, G′ can be constructed by well-known
algorithm in a polynomial time (see 5.1.3.3 in [89] used for transformation of a context-free
grammar to an equivalent context-free grammar without unit productions). Thus, we get
G′ = (V, T, P ′, S) such that for all x ∈ L(G′), there is no derivation in G′ of the form
B⇒∗A, for some A,B ∈ V − T .

The paths in the derivation trees of G′ are described by the words of the form (V −T )∗T .
Basically, we need to read such a words and remove such symbols A ∈ V − T which
corresponds to the application of B → A ∈ P in G. This is done by gsm mapping M such
that M reads the words s of the form (V − T )∗T and nondeterministically removes or lets
unchanged each symbol A ∈ (V −T ) with B → A ∈ P and BA is subword of s. Since LIN
is closed under gsm mappings (see [25]), also M(R) ∈ LIN. This way, we get M(R) with
M(R) 6= R. However, nc-n-pathL(G,R) = nc-n-pathL(G′,M(R)).

Consider a tree controlled grammar, (G,R), and let, (G′, R′), be constructed as de-
scribed above. Clearly, G′ does not need to be unambiguous since the unit productions
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are not the only cause of the ambiguity. Consider, however, any x ∈ nc-n-pathL(G′, R′).
Obviously, there is a derivation tree t of x in G′. Since there are no unit productions in
G′ and for each x ∈ L(G′), |x| is finite, the height of t with respect to |x| is bounded by
log |x|/log 2. Thus there is at most m, for some m ≥ 1, derivation trees of x in G′ and G′

is m-ambiguous.

Theorem 9.17. For a tree controlled grammar, (G,R), where G = (V, T, P, S) is m-
ambiguous LR grammar, m ≥ 1, and an unambiguous language R ∈ LIN , the membership
x ∈ nc-n-pathL(G,R), n ≥ 1, is decidable in O(|x|k), for some k ≥ 0.

Proof. If x ∈ L(G), then we can construct at most m derivation trees of x ∈ L(G) in
O(m.|x|2) by LR parser. Then, if for at least j paths, p1, p2, . . . , pj , of at least one derivation
tree of x in G it holds that word(pi) ∈ R for i ∈ 1, 2, . . . , j, then x ∈ nc-n-pathL(G,R).

Hence, the syntax analysis of nc-n-path-TC(CF,LIN) with LR grammar G and un-
ambiguous linear control language can be done in a polynomial time also in the case of LR
parsing.

Discussion, Notes, and Further Research Ideas

We have demonstrated that for L ∈ nc-n-path-TC(CF,LIN) under the assumption that
L is generated by a tree controlled grammar, (G,R), in which both G as well as R are
unambiguous and, furthermore, G is restricted to be LL grammar, there is parsing method
working in a polynomial time. This method can check whether or not the paths of a deriva-
tion tree, t, of x ∈ L(G) belong to control language, R, in the time of building t. Moreover,
when we consider LR parser for L ∈ nc-n-path-TC(CF,LIN) under assumption that L
is generated by tree controlled grammar, (G,R), in which G has bounded ambiguity (i.e.,
G is unambiguous or m-ambiguous) and an unambiguous language, R ∈ LIN, there is also
a parsing method working in a polynomial time.

However, the open question is whether or not there is a polynomial time parsing method
if G is not LL or if G is ambiguous. It is also of interest to quantify the worst case of the
parsing complexity more precisely.

The open investigation area is represented by the transformation of n-path tree con-
trolled grammars into some Chomsky-like normal forms which would lead to the possibility
to use general parsing methods based on Chomsky normal form.

Concerning the parsing methods for tree controlled grammars (and also similar rewrit-
ing system), there is great possibility to use n-Accepting Restricted Pushdown Automata
Systems, which deals with the sets of n-tuples of words. These systems are studied in [15],
[16], and [18].

76



Figure 9.2: Illustration of the derivations of a3b3c3d3e3f3 with two paths of the form
SnXnUb ∪ SnY nV d, where n ≥ 1, in Ex. 9.1 (left) and (a2cdb2)

4 with three paths of the
form ArBsCtDuHuGtF sErIa, where r, s, t, u ≥ 0, in Ex. 9.3 (right).
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Figure 9.3: Illustration of the idea behind the proof of Th. 9.2, Th. 9.3, and Th. 9.4. On
all four parts, there is an example of a derivation tree of word z in a tree controlled
grammar (G,R), where G = (V, T, P, S), for given n ≥ 1: (top-left) a derivation starting
from B ∈ N , where B does not belong to any controlled path, leads to a derivation of
subword z′ of z; (top-right) a derivation of z ∈ I-n-pathL(G,R), where there are two different
iterative parts for each controlled path, leads to a derivation of 4n iterative parts of z;
(bottom-left) a derivation of z ∈ III-n-pathL(G,R), where there is one common iterative
part for all controlled paths and one different iterative part for each controlled path, leads
to a derivation of 2n + 2 iterative parts of z; and (bottom-right) a derivation of z ∈
V -n-pathL(G,R), where there are two iterative parts common for all controlled paths, leads
to a derivation of four iterative parts of z.
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Figure 9.4: Illustration for the simulation of a tree controlled grammar (G,R) from Ex. 9.1
by propagating scattered context grammar G′′. For the conciseness, the details of deriva-
tions S′1⇒∗Ŝ1Ŝ1X̂1X̂1Û1b̂1 and S′2⇒∗Ŝ2Ŝ2Ŷ2Ŷ2V̂2d̂2 as well as the applications of H → �
and •i → � are omitted in this figure. The derivation tree of a sentence in III-n-pathL(G,R)
is given on the left-hand part of Fig. 9.2. For better readability, the figure is rotated.
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Chapter 10

Summary

In this concluding chapter, we summarize the most interesting results achieved in this work
and point out some important open questions. Based on the State of the Art in the area
of restrictions placed upon the derivation trees summarized in Sec. 1.1 and Chap. II, this
work deals in principle with three kinds of derivation-tree based restrictions, cut-based,
path-based, and several-path-based, provided that each of these investigation areas are
introduced and motivated in Chap. 7, Chap. 8, and Chap. 9, respectively. Note that each of
the sections of Part III represents relatively independent derivation-tree-restriction-related
topic, therefore each of them contains its own detailed concluding section (see Sec. 7.3.1,
Sec. 8.3.2, Sec. 8.3.3, Sec. 8.3.4, Sec. 9.3.1, Sec. 9.3.2, Sec. 9.3.3, and Sec. 9.3.4). Next, we
briefly summarize the results achieved in each of the three aforementioned derivation-tree-
based restriction areas.

10.1 Cut Based Restriction

Concerning cut-based restriction placed upon the derivation trees, we have introduced two
fundamental types of such kind of a restriction and thus, we have opened a new investiga-
tion area in derivation-tree-restricted models. Next, we have proved that both restrictions
increase the generative power of context-free grammars so they characterize RE (see Th. 7.1
and Th. 7.2):

ord-cut-TC(CF,REG) = cut-TC(CF,REG) = RE.

An important open problem consists of the investigation of cut controlled grammars
where ε-productions are forbidden. Consequently, the grammars restricted in this way
should be placed into the relation with some other well-known language families, such as
CS, and the deciding the question whether or not:

ord-cut-TCε(CFε,REG) = cut-TCε(CFε,REG) = CS.

Next open problem is the descriptional complexity of ord-cut-TC(CF,REG) and
cut-TC(CF,REG). The results stated in Th. 7.1 and Th. 7.2 are based on the transfor-
mation of an unrestricted grammar in Pentonnen normal form. However, using Geffert
normal form, the number of nonterminals in the resulting cut controlled grammar would
be reduced.

Another future research idea is represented by the controlling the cuts of the derivation
trees in which several types of subregular control languages are considered. In this way, the
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question whether or not a kind of a subregural language is enough to increase the generative
power of controlled grammar properly. Consequently, the relation between the generative
power of level-based and cut-based models restricted in this way would be founded out.

10.2 Path Based Restriction

As a continuation of the investigation of path-based restrictions introduced in [80] and
studied in [81] and [82], we have considered the impact of ε-productions in path controlled
grammars to the generative power and we have stated that ε-productions can be removed
from a path controlled grammar without affecting its language (see Lem. 8.1 and Col. 8.2):

path-TC(CF,CF) = path-TCε(CFε,CF).

Next, we have established two Chomsky-like normal forms for path controlled grammars
(see Def. 8.3 and Def. 8.4) and we have formulated algorithms (see Alg. 1 and Alg. 2) that
transform a path controlled grammar in its normal form:

• Let L ∈ path-TC(CF,CF). Then, there exists a tree controlled grammar, (G,R),
in 1st normal form such that L = pathL(G,R).

• Let L ∈ path-TC(CF,CF). Then, there exists a tree controlled grammar, (G,R),
in 2nd normal form such that L = pathL(G,R).

A future investigation idea consists of the modifying a general parsing methods that are
based on Chomsky normal form such that it will be able to parse path controlled grammars
in a polynomial time.

Another practical motivated idea is represented the relation between path controlled
grammars and the theory of pseudoknots. We have demonstrated several typical pseudo-
knots used in biology represented by the words (see Def. 8.5) of non-context-free languages.
We have demonstrated some pseudoknots belong to path-TC(LIN,LIN) (see Th. 8.5,
Th. 8.6, and Th. 8.7):

{xyxRyR : x, y ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN),
{xyxRzzRyR : x, y, z ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN),
{xyxRzyRzR : x, y, z ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN).

Apparently, there is a huge variety of another pseudoknot structures in biology. For
example, {xyzxRyRzR : x, y, z ∈ Σ∗} and it is an open question whether or not those
pseudoknots can be generated by tree controlled grammars with linear components that
generate the language under path control.

The last presented result deals with a reflection on the generative power of path con-
trolled grammars that has been considered as well-known (see [80]) for more than last ten
years. However, we have presented an argument against the correctness of the proof given
in [80] that states path-TC(CF,CF) ⊆MAT. We have concluded the counterargument
by stating that the aforementioned inclusion still may hold; however, it cannot be proved
in the way given in [80]. More precisely, we have found the language tha can be generated
by a grammar with controlled path. However, this language cannot be generated by the
grammar obtained by the contruction introduced in [80]. Apparently, the generative power
of path controlled grammar still represents an open problem.
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10.3 Several Paths Based Restriction

It is well-know that path controlled grammars where the controlling grammar is regular
characterize the same language class as its controlled grammar (see [80]) do. We have
proved that the generative power of context-free grammars remains unchanged even if we
restrict all paths in their derivation trees by regular languages (see Th. 9.1):

CF = all-path-TC(CF,REG).

We have introduced a generalization of path controlled grammars so that they generate
the language under the restriction placed on not just one but several paths. Consequently,
we have found some subsets of n-path controlled grammars so their languages satisfy pump-
ing premises similar to well-known premises stated by pumping lemmata for CF, LIN, and
REG (see Th. 9.2, Th. 9.3, an Th. 9.4)—more precisely:

• If L ∈ I-n-path-TC(CF,LIN), n ≥ 1, then there are two constants, k, q ≥ 0, such
that each word, z ∈ L, with |z| ≥ k can be written as

z = u1v1u2v2 . . . u4nv4nu4n+1

with 0 < |v1v2 . . . v4n| ≤ q and for all i ≥ 1, u1vi1u2v
i
2 . . . u4nv

i
4nu4n+1 ∈ L.

• If L ∈ III-n-path-TC(CF,LIN), n ≥ 1, then there are two constants, k, q ≥ 0, such
that each word, z ∈ L, with |z| ≥ k can be written as

z = u1v1u2v2 . . . u2n+2v2n+2u2n+3

with 0 < |v1v2 . . . v2n+2| ≤ q and for all i ≥ 1, u1vi1u2v
i
2 . . . u2n+2v

i
2n+2u2n+3 ∈ L.

• If L ∈ V-n-path-TC(CF,LIN), n ≥ 1, then there are two constants, k, q ≥ 0, such
that each word, z ∈ L, with |z| ≥ k can be written as

z = u1v1u2v2u3v3u4v4u5

with 0 < |v1v2v3v4| ≤ q and for all i ≥ 1, u1vi1u2v
i
2u3v

i
3u4v

i
4u5 ∈ L.

A natural question that still remains open is whether or not there are similar pumping
properties also for II-n-path-TC(CF,LIN) and IV-n-path-TC(CF,LIN).

We have also proved some closure properties (see Th. 9.5 and Th. 9.6), that is

• n-path-TC(TG, TR), i-n-path-TC(TG, TR) are closed under intersection with regu-
lar languages, union, and non-erasing homomorphism, for TG, TR ∈ {REG,LIN,CF}
and n ≥ 1, i ∈ {I, II, III, IV, V};

• I-n-path-TC(CF,LIN), III-n-path-TC(CF,LIN), and V-n-path-TC(CF,LIN)
are not closed under concatenation, intersection, and complement, for n ≥ 1.

Since n-path controlled grammars are a natural generalization of grammars with just
one path controlled, we have studied several properties that are well-known for path con-
trolled grammars in the case of controlling given n paths. Most importantly, we have tried
to establish the generative power for n path controlled grammar. We have found the ap-
proximation of the generative power that can be applied also on grammars with just one
path controlled. However, this approximation does not say too much since it is well-known
that PSC is not closed under erasing homomorphism. Thus, we have informally concluded
that:

”
We either have the power to check what we need but not to remove it (using PSC)

or vice versa (using MAT).“ More precisely, we have stated the following (see Th. 9.13):
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Let L ∈ n-path-TC(CF,CF), for n ≥ 1. Then there exists L′ ∈ PSC with L = h(L′)
for a homomorphism h.

Finally, we have studied several parsing properties of path-based restriction which is
indisputably one of the most important language-class-characterizing property from the
practical viewpoint. Formally, we have studied a polynomial time parsing possibilities and
we have stated that (see Th. 9.15, Th. 9.16, and Th. 9.15):

• For a tree controlled grammar, (G,R) with an unambiguous context-free grammar,
G, and a linear control language, R, the membership x ∈ nc-n-pathL(G,R), n ≥ 1, is
decidable in O(|x|k), for some k ≥ 0.

• For a tree controlled grammar, (G,R), where G is a context-free grammar and R ∈
LIN, there is a tree controlled grammar, (G′, R′), such that G′ does not contain unit
productions and nc-n-pathL(G,R) = nc-n-pathL(G′, R′), n ≥ 1.

• For tree controlled grammar (G,R) where G is m-ambiguous LR grammar, m ≥ 1,
and an unambiguous language R ∈ LIN , the membership x ∈ nc-n-pathL(G,R), n ≥ 1,
is decidable in O(|x|k), for some k ≥ 0.

The significant disadvantage of n-path tree controlled grammars is that the number of
n paths satisfying the properties of Def. 9.7 is strictly limited by the length of the right-
hand sides of the productions of underlying context-free grammar. That is, given a general
context-free grammar, G, and a linear language, R, controlling the paths, the membership
of a certain language might be decidable. However, given the same context-free language as
L(G) as a context-free grammar, H, in Chomsky normal form together with R, we might
not be able to find suitable path restriction to obtain the same language. On the other
hand, the derivation trees of tree controlled grammars that generates their languages under
n-path control by a linear language are constructed exactly as in context-free grammars
and, in addition, we have to check some of their paths. Thus, there is actually great
possibility to use well-known parsing methods for context-free languages to construct the
derivation trees and to check their paths (see Sec. 9.3.4). However, in this viewpoint, n-
path tree controlled grammars seems to be a quite fragile formalism since it requires a
context-free grammar to have a production with at least n nonterminals on the right-hand
side which ensures the division of n paths in a common node. Moreover, it means that any
attempt to use a parsing method that transforms a context-free grammar into Chomsky
normal form will basically destroy any path restriction with n ≥ 3. Moreover, several nice
properties of context-free grammars have been lost—e.g., decomposition based on pumping
lemma for linear languages is potentially ambiguous and thus, the membership problem for
i-n-path-TC, i ∈ {I, II, III, IV, V}, is potentially ambiguous also.

There are still many questions to be answered, namely generative power of grammars
with path or paths controlled non-regularly, further closure properties, decision properties,
etc. However, there are several other more general variants of path-based restriction. In-
deed, a modification of the formalism such that the paths do not have to be divided in
a common node of a derivation tree, or a variant where a path in a tree does not have to
start in the root and end in a leaf of the tree.
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[103] Gh. Păun. On the generative capacity of conditional grammars. Information and
Control, 43:9, 1979.
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