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Chapter 1

Introduction

The formal language theory is an inherent part of the theoretical computer science particu-
larly concerned with the study of the formal models. The formal models are mathematical
objects used to describe the formal languages. The fundamental models include grammars
and automata. The former are used to generate words and the latter accept them.

Grammars are the kind of the rewriting models that start from a specified symbol
(i.e., start symbol). Then, the symbol is modified according to the given set of rewriting
productions. Each production is composed of two components—the left-hand side and
the right-hand side of a production. The application of a production on a word is done
by rewriting a symbol equivalent to the left-hand side of a production by its right-hand
side in the word. This process is known as a derivation step. During the computation
of a derivation step, just one symbol is rewritten in the word. Given a start symbol of a
grammar, a derivation step is computed repeatedly by applying the productions from the
given set. Once the resulting word is composed of the symbols that cannot be rewritten
anymore, the process of applying derivation steps ends and the resulting word belongs to
the language of the grammar.

Essentially, the grammars are composed of a finitely many symbols that are rewritten
by finitely many production in finitely many derivation steps. In this way, the grammars
represent a finite description of even infinite languages. By the notion of infinite languages
are meant those languages that contains infinitely many words. Since the most of the lan-
guages commonly used in practice are infinite, the grammars represent a powerful tool how
to deal with them. In the formal language theory, there exists a huge variety of grammars
which essentially differ in two domains. Specifically, in the complexity of the productions
and in the way how to select appropriate production to be applied in a derivation step.

Generally, the complexity of rewriting productions can be seen from two angles—
theoretical and practical.

• Theoretical viewpoint: As little as possible restrictions placed on the form of the
rewriting productions in a rewriting model is desirable. More specifically, the more
complex rewriting productions are, the larger class of languages may the model gene-
rate. In other words, to generate complex languages, complex productions are needed.
By the notion of a form of a production, namely the number of the symbols on its
left-hand side is meant.

• Practical viewpoint: Grammars are theoretical models that are implemented in many
practical applications. From the perspective of cost-effective implementation, the
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simple rewriting productions are desirable. As simple-enough productions for effective
implementation, those of the form with just one symbol on their left-hand side are
considered. Such kind of productions are referred to as context-free productions, since
they can be applied without any consideration of a context of currently rewritten
symbol.

Non-regulated rewriting models like grammars and automata belong to the well-known
core of the formal language theory and they are frequently used in practice. Indeed, au-
tomata including its variants underlie lexical analysers (see [3] and [36]), context-free gram-
mars represent the basis of both top-down as well as bottom-up parsers (see [3] and [4]),
etc. However, the power of the models with simple productions is indeed smaller than
required for usage in many practical applications. On the other hand, the models that use
only simple productions are usually easier to implement. As a background, it is desirable to
extend context-free grammars as in many applications there are some natural phenomena
which cannot be captured by context-free rewriting. More precisely, the motivation is based
on the observation that many of the languages commonly used in practice, including pro-
gramming and natural languages, are not context-free (see [15], [16], [41], [42], and [46]).
Consequently, that means such languages cannot be generated by a grammar with only
context-free productions. For these reasons, the idea whether or not it would be possible to
use grammars with only context-free productions and increase the corresponding power in
some other way—without changing the form of rewriting productions. Basically, this can
be achieved by two fundamental approaches—using a kind of a regulation of rewriting or
using more than one grammar with context-free productions in a model:

• Using a kind of a regulation of rewriting. By the notion of a regulation, the way how to
select appropriate production to be applied is meant. Indeed, a situation is common
in which, given a word, it is possible to apply several productions. Informally, the
essential idea is represented by the observation that a regulation mechanism some-
how prescribes the order of productions the grammar must follow. Therefore, many
different kinds of such a regulation have been introduced in order to ensure selecting
appropriate production. All of the resulting models based on a kinds of regulation
are collectively referred to as regulated rewriting models.

• Using more than one grammar with context-free productions in a model. Roughly
speaking, the main underlying idea is based on the observation that from the coopera-
tion of several simple models, we can obtain more power than from each of them if they
work separately. These systems were also thoroughly studied and the corresponding
investigation area is referred to as the theory of grammar systems. However, we will
deal with them only rarely in this work.

Informally, the goal of this work is to introduce a model that generates more than
context-free languages and is usable in practice. From the theoretical viewpoint it means,
the model should be able to generate namely the programming languages and the languages
used in linguistics (e.g., multiple repetition, cross-dependencies, and copy-language). From
the practical viewpoint, it should be possible to develop sophisticated parsing methods
working in a polynomial time for the model.

One way to extend the power of context-free grammars is to consider context-sensitive
grammars where the productions are more complex. Indeed, context-sensitive grammars
contain the productions with even more than a single symbol on the left-hand side. However,
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despite their great power, generating complex languages by context-sensitive grammars
actually leads to several fundamental problems making their practical usage problematic
(see [6], [8], [35], [43], [51], and [52]). Specifically, for context-sensitive grammars, many
problems are undecidable, it is difficult to describe the derivation by a graph structure, etc.

One of the many others approaches extending the power of context-free grammars is
represented by matrix grammars introduced by Abraham in [1]. The fundamental under-
lying principle in a derivation step in matrix grammars is that not just one but a fixed
number of context-free productions are required to be applied in a given order. This pro-
vides synchronization among different parts of a generated word and many non-context-free
languages can be generated in this way (see [38], [45], and[53]).

There are lots of other well-known approaches for extending the power of context-free
grammars which preserve the context-free nature of productions. Specifically, Random
Context Grammars (see [50]), Programmed Grammars (see [44]), Ordered Grammars (see
[14]), Indian and Russian Parallel Grammars (see [28]), Indexed Grammar (see [2]), and
many others. However, these approaches do not represent the main topic of this work
although some connections can probably be found.

1.1 Derivation Tree Restricted Models

One of the power-extending approaches is represented by the restrictions placed upon the
derivation trees. Given a grammar, by the notion of a derivation tree, a graph structure
depicting the application of productions on the start symbol up to the resulting word is
meant. Indisputably, the investigation of context-free grammars with restricted derivation
trees represents an important trend in today’s formal language theory (see [7], [9], [11],
[13], [27], [20], [22], [23], [25], [32], [33], [34], [37], [39], [48], and [49]). In essence, these
grammars generate their languages just as ordinary context-free grammars do, but their
derivation trees must satisfy some simple prescribed conditions.

The following two sections give an informal overview of the results related to the inves-
tigation of derivation-tree-restricted grammars. Based on this informal description, Chap. 2
being a strictly formal summary of the results presented here. The definitions needed just
to present the results of the other authors are omitted in this work. However, the appropri-
ate references for the definitions are given. Through this section, it is assumed the reader
is familiar with the fundamentals of the formal language theory. Several results concerning
the derivation-tree-restricted models related to L-systems (see [17], [18], [19], [31], [29],
[30], and [40]) are not included in this work since the investigation presented in this short
dissertation thesis focuses rather on the sequential (i.e., grammars) than parallel rewriting
(i.e., L-systems).

1.1.1 Level Based Restriction

The idea of restrictions placed upon the derivation trees of context-free grammars is in-
troduced by Culik and Maurer in [9] and the resulting grammars restricted in this way
are referred to as tree controlled grammars (see Def. 2.1). In essence, the notion of a tree
controlled grammar is defined as follows: take a context-free grammar, G, and a regular
language, R. A word, w, generated by G belongs to the language defined by G and R
if there is a derivation tree, t, for w in G such that all levels of t (except the last one)
are described by R. Given a tree controlled grammar, (G,R), G and R are referred to
as controlled grammar and control language, respectively. Culik and Maurer investigate
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several basic properties of tree controlled grammars—namely, the membership problem (see
Th. 2.1) and the generative power (see Th. 2.2, Th. 2.3, Th. 2.4, Col. 2.5, and Th. 2.6).

Based on the original definition of a tree controlled grammar, Păun studies the modifi-
cations where many well-known types of both controlled grammars and control languages
are considered in [39]. More precisely, Păun studies controlling the levels of the derivation
trees of a regular grammar by several types of a control language (see Th. 2.7 and Col. 2.8),
controlling the levels of the derivation trees of a context-free grammar without erasing pro-
ductions by several types of a control language (see Th. 2.9, Th. 2.10, Col. 2.11, Th. 2.12,
and Col. 2.13), and controlling the levels of the derivation trees of a context-free grammar
by a finite language (see Th. 2.14 and Col. 2.15).

It is well-known that tree controlled grammars with a context-free grammar controlled
by a regular language characterize the class of recursively enumerable languages (see Th. 2.5).
Thus, the question arises whether or not it is possible to achieve the same generative power
as tree controlled grammars have when the levels of the derivation trees are restricted by a
subregular control language. This problem is studied by Dassow and Truthe in [13], where
many types of subregular languages are considered. Dassow and Truthe study primarily
controlling the levels of the derivation trees of a context-free grammar by two types of a lan-
guage such that one is a subset of the other (see Lem. 2.16) and controlling the levels of the
derivation trees of a context-free grammar by many different types of subregular languages
(see Th. 2.17, Th. 2.18, Th. 2.19, Col. 2.20, Th. 2.21, Th. 2.22, Th. 2.23, and Th. 2.24). The
same authors, Dassow and Truthe, also study hierarchies of subregularly tree controlled
languages in [11] and [12]. They present controlling the levels of the derivation trees of a
context-free grammar by the union of monoids (see Th. 2.25), by regular languages with
restricted descriptional complexity (see Lem. 2.26, Th. 2.27, and Th. 2.28), and by the lan-
guage accepted by a deterministic finite automaton with at most given number of states
(see Th. 2.29).

Stiebe in [47] states that there is a tree controlled grammar for every linearly bounded
queue automaton (see Lem. 2.30). Then, Stiebe proves that controlling the levels of the
derivation trees of a context-free grammar by the language accepted by a minimal finite
automaton with at most five states characterize the class of context-sensitive languages
(see Th. 2.31). If, additionally, erasing productions in a controlled grammar are allowed,
controlling the levels of the derivation trees of a context-free grammar by the language
accepted by a minimal finite automaton with at most five states characterizes the class of
recursively enumerable languages (see Th. 2.32).

Turaev, Dassow, and Selamat in [48] examine tree controlled grammars with bounded
nonterminal complexity and demonstrate that nine/seven nonterminals in a tree controlled
grammar are enough to generate any recursively enumerable language (see Th. 2.33 and
Th. 2.34). Then, they establish that three nonterminals in a tree controlled grammar are
enough to generate any regular language (see Th. 2.35) and any regular simple matrix lan-
guage can be generated by a tree controlled grammar (see Th. 2.36) with three nonterminals.
Finally, they demonstrate that three nonterminals in a tree controlled grammar are enough
to generate any linear language (see Th. 2.37). The same authors in [49] state several further
nonterminal-complexity-related properties of tree controlled grammars (see Lem. 2.38).

A strictly formal summary of the results concerning tree controlled grammars can be
found in Chap. 2.1.
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1.1.2 Path Based Restriction

As an attempt to increase the power of context-free grammars without changing the basic
formalism and loosing some basic properties of context-free languages (decidability, efficient
parsing, etc.), Marcus, Martín-Vide, Mitrana, and Păun in [32] study a new type of a
restriction in a derivation: a derivation tree in a context-free grammar is accepted if it
contains a path described by a control language. More precisely, they consider two context-
free grammars, G and G′. A word, w, generated by G belongs to the language defined
by G and G′ if there is a derivation tree, t, for w in G such that there exists a path of t
described by the language of G′. Based on this restriction, they introduce a path controlled
grammar (see Def. 2.7) and study several properties of this model. Specifically, they study
controlling a path of the derivation trees of several types of grammars by a regular language
(see Th. 2.39) and controlling a path of the derivation trees of a regular grammar by a
linear or context-free language (see Th. 2.41 and Th. 2.42). Then, they establish two kinds
of pumping properties depending on the type of a controlled grammar (see Th. 2.44, and
Th. 2.45), some consequences to the closure properties of path controlled grammars (see
Th. 2.47, Th. 2.48, Th. 2.49), and a basic parsing property for path controlled grammars
(see Th. 2.50). They also investigate the generative power of path controlled grammars (see
Th. 2.43 and Col. 2.46). However, there exists a serious problem with the correctness of the
proof they present.

As a continuation of the investigation of path-based restrictions, Martín-Vide and Mi-
trana study parsing properties of path controlled grammars (see Th. 2.51), closure proper-
ties of path controlled grammars (see Th. 2.52, Th. 2.53, and Th. 2.54), and several decision
problems for path controlled grammars (see 2.55) in [33] and [34].

For a strictly formal summary of the results related to path controlled grammars, see
Chap. 2.2.

1.2 Goals of the Thesis

As it clearly follows from the previous sections, level-based restriction is well-studied and
the most of the important questions have been answered. On the other hand, in the case
of path-based restriction many basic properties including the generative power have not
been successfully investigated yet. Moreover, several other restrictions placed upon the
derivation trees have not yet been introduced at all. Indeed, the restrictions placed upon
the cuts of the derivation tree as well as upon several paths of the derivation trees represent
completely new investigation areas. Thus, the goals of the doctoral thesis consist in three
investigation areas.

• First, to introduce new investigation area represented by cut-based restrictions and
establish the generative power of the model restricted in this way.

• Second, to establish several new results in the investigation of one-path-restricted
grammars introduced in [32].

• Third, to generalize one-path-restricted model into several paths and investigate sev-
eral its properties.
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1.2.1 Preliminaries

For the state of the art as well as the new results presented in the following chapter, it is
assumed that the reader is familiar with the graph theory (see [5]) and the theory of formal
languages (see [35]), including the theory of regulated rewriting (see [10]). However, for
better readability, consider the following preliminaries.

Definition 1.1. For a sequence, s, of the nodes of a derivation tree, the word obtained by
concatenating all symbols of s is denoted as word(s).

Definition 1.2 (Classes of combinational, definite, nilpotent, commutative, circular, suf-
fix-closed, non-counting, power-separating, and ordered languages.). The class of combina-
tional, definite, nilpotent, commutative, circular, suffix-closed, non-counting, power-sepa-
rating, and ordered languages are defined as COMB, DEF, NIL, COM, CIRC, SUF,
NC, PS, ORD = {L: L is a combinational, definite, nilpotent, commutative, circular,
suffix-closed, non-counting, power-separating, and ordered language}, respectively.

Definition 1.3 (Size of regular language). Let R be a regular language. The size of R is
denoted as c(R) and defined as the number of states of a minimum-state finite automaton
that accepts R. For any natural number n ≥ 1, let REGn be the class of all regular
languages R such that c(R) ≤ n.

Definition 1.4 (Target sets of monoids). Let V be an alphabet. Then, MON denote the
class of all languages of the form V ∗. For any natural number n ≥ 1, let MONn be the
class of all languages that can be represented in the form V ∗1 ∪V ∗2 ∪· · ·∪V ∗k with 1 ≤ k ≤ n
where all Vi are alphabets, for 1 ≤ i ≤ k.

Definition 1.5. The class of regular, linear, ε-free context-free, context-free, propagating
scattered context grammars, matrix grammars, context-sensitive, and unrestricted gram-
mars is denoted as REG, LIN, CFε, CF, PSC, MAT, CS, RE, respectively.

Definition 1.6. The set of all regular, linear, ε-free context-free, context-free, context-
sensitive, and unrestricted grammars is denoted as GREG, GLIN, GCFε , GCF, GCS, and
GRE, respectively.
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Chapter 2

State of the Art Survey

This chapter being the formal summary of the crucial derivation-tree-based restriction
results. All proofs related to the presented results are omitted. However, appropriate
reference where one can found the proof if required is always included.

2.1 Tree Controlled Grammars

This chapter being the formal description of level-based restriction placed upon the deriva-
tion trees as it was informally presented in the introduction of this work (see Sec. 1.1.1).

2.1.1 Definitions

In Sec. 1.1.1, tree controlled grammars are described informally. Here, we present the cor-
responding strictly formal definitions.

Definition 2.1 (Tree controlled grammar). A tree controlled grammar is a pair (G,R)
where G = (V, T, P, S) is a controlled grammar and R ⊆ V ∗ is a control language.

Definition 2.2 (Tree controlled language). Let (G,R) be a tree controlled grammar. The
language generated by (G,R) is denoted by L(G,R) and defined by

L(G,R) = {x : x ∈ L(G) and there exists a derivation tree of x in G such that
each word obtained by concatenation of all symbols at any level
of t (except the last one) from left to right is in R}.

Definition 2.3 (Class of tree controlled languages). For X ∈ {CF,CFε,REG} and Y ∈
{RE,CS,CF,REG,FIN}∪{MON,NIL,COMB,ORD,DEF,COM,NC,CIRC,PS,
SUF} ∪ {MONn,REGn : n ≥ 1}, the class of tree controlled languages is denoted as
TC(X,Y) and defined as

TC(X,Y) = {L(G,R) : (G,R) is a tree controlled grammar in which
G ∈ GX and R ∈ Y}.

Definition 2.4 (Nonterminal complexity of tree controlled grammar). Let (G,R) be a tree
controlled grammar. Clearly, R = L(G′) for some G′ = (V ′, T ′, P ′, S′). A nonterminal
complexity of tree controlled grammar is denoted as Var(G,R) and defined as Var(G,R) =
card(V − T ) + card(V ′ − T ′).
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Definition 2.5 (Nonterminal complexity of tree controlled language). Let min(Σ) denote
the smallest number in a given set of natural numbers, Σ. Let L ∈ TC(CFε,REG). An
ε-free nonterminal complexity of tree controlled language is denoted as Varε(L) and defined
as

Varε(L) = min({Var(G,R) : (G,R) is a tree controlled grammar with an ε-free context-
free grammar, G, regular language, R, and L(G,R) = L}).

Let L ∈ TC(CF,REG). A nonterminal complexity of tree controlled language is denoted
as Var(L) and defined as

Var(L) = min({Var(G,R) : (G,R) is a tree controlled grammar with a context-free
grammar, G, regular language, R, and L(G,R) = L}).

2.1.2 Results

The results presented in this section represent the state of the art of level-based restriction
placed upon the derivation trees investigation area. For the informal description of the
corresponding state of the art, see Sec. 1.1.1.

Theorem 2.1 (Th. 3.1 in [9]). If (G,R) is a tree controlled grammar where G is unam-
biguous context-free grammar and R is a regular language, then there exists an algorithm
which for any word, w, with |w| = n determines in O(n2) steps if w ∈ L(G,R).

Theorem 2.2 (Th. 3.2 in [9]). For every tree controlled grammar, (G,R), with ε-free
context-free grammar, G = (V, T, P, S), and regular language, R, the language L(G,R)
is recursive.

Theorem 2.3 (Th. 3.3 in [9]). A language, L, is regular, linear, context-free if and only
if there is a context-free grammar, G = (V, T, P, S), such that L = L(G,T ∗(V − T )),
L = L(G,T ∗(V − T )T ∗), L = L(G,V ∗), respectively.

Theorem 2.4 (Th. 3.5 in [9]). Let Σ be an alphabet. Then, there exists a context-free
grammar, G = (V,Σ, P, S), such that for each recursively enumerable language, L ⊆ Σ∗,
there exists a regular language, R ⊆ V ∗, such that L = L(G,R).

Corollary 2.5 (Col. 3.1 in [9]). Every recursively enumerable language can be generated
by a tree controlled grammar, (G,R), such that G = (V,Σ, P, S) is a context-free grammar,
R is a regular language, and P ⊆ (V − Σ)× ((V − Σ)∗ ∪ Σ).

Theorem 2.6 (Th. 3.6 in [9]). Every recursively enumerable language can be generated by
a tree controlled grammar, (G,R), with a context-free grammar, G = (V, T, P, S) and a
regular language, R ⊆ (V − T )∗.

Theorem 2.7 (Th. 1 in [39]). If G is a regular grammar, then for all R ∈ X, where
X ∈ {RE,CS,CF,REG,FIN}, L(G,R) ∈ REG.

Corollary 2.8 (Col. in Sec. 2 in [39]).

For all X ∈ {RE,CS,CF,REG,FIN}, TC(REG,X) = REG.

Theorem 2.9 (Th. 2 in [39]). TC(CFε,CS) ⊆ CS.

Theorem 2.10 (Th. 3 in [39]). X ⊆ TC(CFε,X), for X ∈ {RE,CS,CF,REG}.
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Corollary 2.11 (Col. in Sec. 2 in [39]). TC(CFε,RE) = RE and TC(CFε,CS) = CS.

Theorem 2.12 (Th. 4 in [39]). CS ⊆ TC(CFε,REG).

Corollary 2.13 (Col. in Sec. 2 in [39]). TC(CFε,X) = CS, for X ∈ {CS,CF,REG}.

Theorem 2.14 (Th. 5 in [39]). TC(X,FIN) = FIN, for X ∈ {CF,CFε}.

Corollary 2.15 (Col. in Sec. 2 in [39]).

Any language over one-letter alphabet in TC(CF,FIN) is regular.

Lemma 2.16 (Lem. 4 in [13]). If X ⊆ Y ⊆ REG, then TC(CFε,X) ⊆ TC(CFε,Y), for
X,Y ∈ {FIN,MON,NIL,COMB,ORD,DEF,COM,NC,CIRC,PS,SUF}.

Theorem 2.17 (Th. 5 in [13]). TC(CFε,SUF) = CS.

Theorem 2.18 (Th. 6 in [13]). TC(CFε,CIRC) = CS.

Theorem 2.19 (Th. 7 in [13]). TC(CFε,ORD) = CS.

Corollary 2.20 (Col. 8 in [13]). TC(CFε,NC) = TC(CFε,PS) = CS.

Theorem 2.21 (Th. 9 in [13]). TC(CFε,COM) = MATε where MATε denotes the
class of languages generated by matrix grammars in which all matrices contains no erasing
productions.

Theorem 2.22 (Th. 10 in [13]). TC(CFε,FIN) = MATfin where MATfin denotes the
class of languages generated by matrix grammars of finite index in which all matrices con-
tains no erasing productions.

Theorem 2.23 (Th. 12 in [13]).

TC(CFε,FIN) ⊂ TC(CFε,NIL) and
TC(CFε,MON) ⊂ TC(NIL).

Theorem 2.24 (Th. 13 in [13]).

RE = TC(CF,REG) = TC(CF,SUF) = TC(CF,ORD) = TC(CF,NC) =
= TC(CF,PS) = TC(CF,COM) = TC(CF,CIRC),

MATfin= TC(CF,FIN) ⊂ TC(CF,NIL) ⊆ RE,
TC(CF,MON) ⊂ TC(CF,NIL), and TC(CF,MON) ⊂ TC(CF,DEF).

Theorem 2.25 (Prop. 4 in [12]).

TC(CFε,MON1) ⊆ TC(CFε,MON2) ⊆ · · · ⊆ TC(CFε,MONj) ⊆ . . . .

Lemma 2.26 (Lem. 10 in [12]).

TC(CFε,REG1) ⊆ TC(CFε,REG2) . . .TC(CFε,REGn) ⊆ . . . .

Theorem 2.27 (Th. 12 in [12]). TC(CFε,REG1) ⊂ TC(CFε,REG2).

Theorem 2.28 (Th. 13 in [12]). TC(CFε,COMB) ⊆ TC(CFε,REG2).
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Theorem 2.29 (Th. 18 in [12]). Every language that is generated by a context-sensitive
grammar with exactly r non-context-free productions p1, p2, . . . , pr and ni symbols on the
left-hand side of the production pi, for 1 ≤ i ≤ r, is also generated by a tree controlled
grammar where the control set is accepted by a deterministic finite automaton with at most
2 + Σr

i=1(ni − 1) states.

Lemma 2.30 (Lem. 5 in [47]). For every linearly bounded queue automaton (see Def. 3 in
[47] for the definition), A, there is a tree controlled grammar, (G,R), such that L(G,R) =
L(A).

Theorem 2.31 (Th. 6 in [47]). TC(CFε,REG5) = CS.

Theorem 2.32 (Th. 7 in [47]). TC(CF,REG5) = RE.

Theorem 2.33 (Th. 4 in [49]). Every recursively enumerable language can be generated by
a tree controlled grammar, (G,R), with context-free grammar, G, and a regular language,
R, such that Var(G,R) ≤ 9.

Theorem 2.34 (Th. 1 in [48]). Every recursively enumerable language can be generated by
a tree controlled grammar, (G,R), with context-free grammar, G, and regular language, R,
such that Var(G,R) ≤ 7.

Theorem 2.35 (Th. 2 in [48]). For any regular language, L, there is a tree controlled
grammar, (G,R), with context-free grammar, G, and a regular language, R, such that
L(G,R) = L and Var(G,R) = 3.

Theorem 2.36 (Th. 4 in [48]). For any regular simple matrix grammar, G, (see [38] for
the definition) there is a tree controlled grammar, (G,R), with context-free grammar, G,
and a regular language, R, such that L(G,R) = L(G) and Var(G,R) = 3.

Theorem 2.37 (Th. 5 in [48]). For any linear language, L, there is a tree controlled gram-
mar, (G,R), such that L(G,R) = L and Var(G,R) = 3.

Lemma 2.38 (Lem. 2 in [49]). For n ≥ 1, let Ln =
⋃n

i=1{a
j
i : j ≥ 1}. Then, Varε(Ln) =

n + 1.

2.2 Path Controlled Grammars

In this chapter, based on the informal survey introduced in Sec. 1.1.2, we present the defi-
nitions and the results related to path controlled grammar.

2.2.1 Definitions

The following definitions are needed for presenting the state of the art in path-based re-
striction placed upon the derivation trees investigation area.

Definition 2.6 (Language of the paths). Let G = (V, T, P, S) be a context-free grammar
and t ∈ G4(w) for some w ∈ L(G). Then,

path(t) = {word(p) : p is a path of t},
path(G4(w)) =

⋃
{path(t) : t ∈ G4(w)}, and

path(G) =
⋃
{path(G4(w)) : for all w ∈ L(G)}.
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Definition 2.7 (Path controlled grammar). A path controlled grammar is a pair (G,G′)
where G = (V, T, P, S) is a controlled grammar and G′ = (V ′, V, S′, P ′) is a controlling
grammar.

Definition 2.8 (Path controlled language). Let (G,G′) be a path controlled grammar.
The language generated by (G,G′) is denoted by L(G,G′) and defined by

L(G,G′) = {w ∈ L(G) : path(w) ∩ L(G′) 6= ∅}.

Definition 2.9 (Class of path controlled languages). For X,Y ∈ {CF,LIN,REG}, the
class of path controlled languages is denoted as PC(X,Y) and defined as

PC(X,Y) = {L(G,G′) : (G,G′) is a path controlled grammar in which G ∈ GX and
G′ ∈ GY}.

2.2.2 Results

This section being the summary of the fundamentals in the state of the art of path-based
restriction placed upon the derivation trees investigation area. For the informal description
of the corresponding state of the art, see Sec. 1.1.2.

Theorem 2.39 (Prop. 1 in [32]). If G is a context-free grammar, then path(G) ∈ REG.

Theorem 2.40 (Prop. 2 in [32]). X = PC(X,REG), for all X ∈ {REG,LIN,CF}.

Theorem 2.41 (Prop. 3 in [32]). PC(REG,X) ⊆ X, for all X ∈ {LIN,CF}.

Theorem 2.42 (Prop. 4 in [32]). If L is a language in X ∈ {LIN,CF} without words of
length one, then L ∈ PC(REG,X).

Theorem 2.43 (Prop. 6 in [32]; see the discussion in Chap. 3). PC(CF,CF) ⊆MAT.

Theorem 2.44 (Prop. 7 in [32]). If L ⊆ V ∗, L ∈ PC(CF,CF), then there are two con-
stants, p and q, such that each word, z ∈ L, with |z| > p can be written in the form
z = u1v1u2v2u3v3u4v4u5, such that 0 < |v1v2v3v4| ≤ q and u1v

i
1u2v

i
2u3v

i
3u4v

i
4u5 ∈ L for all

i ≥ 1.

Theorem 2.45 (Prop. 8 in [32]). If L ⊆ V ∗, L ∈ PC(LIN,LIN), then there are two
constants, p and q, such that each word, z ∈ L, with |z| > p can be written in the form z =
u1v1u2v2u3v3u4v4u5, such that 0 < |v1v2v3v4| ≤ q, |u1u2u3u4| ≤ q, and u1v

i
1u2v

i
2u3v

i
3u4v

i
4u5

∈ L for all i ≥ 1.

Corollary 2.46 (Conseq. in [32]; see the discussion in Chap. 3). PC(CF,CF) ⊂MAT.

Corollary 2.47 (Conseq. in [32]). PC(LIN,LIN) is not closed under concatenation.

Theorem 2.48 (Prop. 9 in [32]). For each language, L ⊆ V ∗, L ∈ PC(LIN,LIN), there
are three linear languages L1 ⊆ V ∗{c}V ∗, L2 = V ∗{c}V ∗, and L3 = V ∗, where c /∈ V , such
that:

• L ⊆ {u1u2u3u4u5| u1cu5 ∈ L1, u2cu4 ∈ L2, u3 ∈ L3}.

• For each word, u1cu5 ∈ L1 (for each word, u2cu4 ∈ L2, for each word, u3 ∈ L3)
there are a word, u2cu4 ∈ L2, and a word, u3 ∈ L3 (a word, u1cu5 ∈ L1, and a
word, u3 ∈ L3, respectively, a word, u1cu5 ∈ L1, and a word, u2cu4 ∈ L2) such that
u1u2u3u4u5 ∈ L.

12



Theorem 2.49 (Prop. 10 in [32]).

CF−PC(LIN,LIN) 6= ∅.
The inclusion PC(LIN,LIN) ⊂ PC(CF,CF) is proper.

Theorem 2.50 (Prop. 11 in [32]). If (G,G′) is a path controlled grammar with linear
grammars G and G′ such that G has a bounded ambiguity, the parsing of words in L(G,G′)
can be done in a polynomial time.

Theorem 2.51 (Prop. 1 in [33]). PC(CF,CF) is closed under the following operations:
union, intersection with regular languages, left and right concatenation with context-free
languages, substitution with ε-free context-free languages, non-erasing homomorphism. It
is not closed under intersection.

Theorem 2.52 (Prop. 2 in [33]). The emptiness problem is decidable for path controlled
grammars.

Theorem 2.53 (Prop. 3 in [33]). The finiteness problem is decidable for path controlled
grammars.

Theorem 2.54 (Prop. 4 in [33]). One cannot algorithmically decide whether or not the
language generated by a given path controlled grammar is context-free.

Theorem 2.55 (Prop. 5 in [33]). The language generated by a given path controlled gram-
mar can be recognized in O(n10) time.
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Chapter 3

New Results and Future Research
Ideas

In this chapter, we briefly present the new definitions as well as the new results. However,
due to maintain a reasonable number of pages of this short doctoral thesis, the results are
presented detailed motivation and without proofs.

Since a restriction placed upon a level, a path, and a cut is, in essence, a restriction
placed upon a derivation tree, we use a slightly modified but equivalent formulation of
the definitions stated in [32], [33], and [34]. Consequently, aforementioned modifications
allow us to investigate all derivation-tree-based restrictions using the same terminology—
i.e., restriction on the levels (see [9], [13], [39], [48], and [49]), the paths (see [7], [20], [21],
[22], [23], [24], [25], [26], [27], [32], [33], and [34]), or the cuts (see [27]). More precisely,
all restrictions placed upon the derivation trees are covered by the general notion of tree
controlled grammar that generates its language under several kinds of the restrictions.

Note that hereafter the notion tree controlled grammar is used in different meaning than
in Chap. 2, see the following definitions of a tree controlled grammar and the definitions of
the languages as well as the classes that tree controlled grammars generate under various
kinds of restrictions that are introduced in the following three chapters.

First we reformulate the fundamental definitions so that all derivation-tree-based re-
strictions can be studied using the same notation. Then, this chapter summarizes the
preliminaries common for all new results presented in the subsequent sections of this work.

Definition 3.1 (Tree controlled grammar). A tree controlled grammar is a pair, (G,R),
where G = (V, T, P, S) is a controlled grammar, and R is a control language over V .

Definition 3.2 (Set of derivation trees). Let (G,R) be a tree controlled grammar where
G = (V, T, P, S), then (G,R)4(x), x ∈ V ∗, denotes the set of the derivation trees with
frontier x in G.

In the research presented through this part, we do not directly deal with level-based
restriction placed upon the derivation trees. However, for the sake of completeness, note
the following definitions related to level-based restriction placed upon the derivation trees.

Definition 3.3 (Language of tree controlled grammar under levels control). Let (G,R) be
a tree controlled grammar. The language that (G,R) generates under the levels control by
R is denoted by levelsL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ levelsL(G,R) if and only if there is a derivation tree, t ∈ G4(x),
such that for all levels, s, of t (except the last one), word(s) ∈ R.
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Definition 3.4 (Class of tree controlled languages under levels control). For some language
classes X and Y, the class of tree controlled languages under the levels control is defined as

levels-TC(X,Y) = {levelsL(G,R) : (G,R) is a tree controlled grammar in which
G ∈ GX and R ∈ Y}

Next, we summarize the most interesting results achieved in this work and point out
some important open questions. Based on the State of the Art in the area of restrictions
placed upon the derivation trees summarized in Sec. 1.1 and Chap. 2, this work deals in
principle with three kinds of derivation-tree based restrictions, cut-based, path-based, and
several-path-based.

3.1 Cut Based Restriction

In this section, we introduce new derivation-tree-based restrictions of tree-controlled gram-
mars which are based on the restriction placed upon the cuts. Then, we introduce several
properties of grammars with restriction placed upon the cuts. Specifically, we investigate
the generative power.

3.1.1 Definitions

Definition 3.5 (Language of tree controlled grammar under cuts control). Let (G,R) be
a tree controlled grammar. The language that (G,R) generates under the cuts control by
R is denoted by cutL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ cutL(G,R) if and only if there is a derivation tree, t ∈ G4(x), and
a set, xM , of its cuts such that

1. for each c ∈ xM , word(c) ∈ R, and

2. xM covers the whole t.

Definition 3.6 (Class of tree controlled languages under cuts control). The class of tree
controlled languages under the cuts control is defined as

cut-TC(CF,REG) = {cutL(G,R) : (G,R) is a tree controlled grammar in which
G is a context-free grammar and R ∈ REG}

and the class of tree controlled languages with ε-free controlled grammar under cuts
control is defined as

cut-TCε(CFε,REG) = {cutL(G,R) : (G,R) is a tree controlled grammar in which
G is an ε-free context-free grammar and
R ∈ REG}.

Definition 3.7 (Ordering relation on the cuts). Let � be a binary relation on a sequence,
xM , of the cuts such that for each two cuts, c1, c2 ∈ xM , c1 � c2 if and only if for each
node, n2, of c2 either there is a node, n1, of c1 such that n2 is a direct descendent of n1, or
n1 = n2. In other words, n1 6= n2 implies n2 is a direct descendent of n1.
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Definition 3.8 (Language of tree controlled grammar under ordered-cuts control). Let
(G,R) be a tree controlled grammar. The language that (G,R) generates under the ordered-
cuts control by R is denoted by ord-cutL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ ord-cutL(G,R) if and only if there is a derivation tree, t ∈ G4(x),
and a sequence, c1x, c2x, . . . , cnx, of the cuts of t, for some nx ≥ 1, such that

1. for all i = 1x, 2x, . . . , nx, word(ci) ∈ R,

2. {c1x, c2x, . . . , cnx} covers the whole t, and

3. cix � c(i+1)x
for all i = 1, 2, . . . , n− 1.

Definition 3.9 (Class of tree controlled languages under ordered-cuts control). The class
of tree controlled languages under the ordered cuts control is defined as

ord-cut-TC(CF,REG) = {ord-cutL(G,R) : (G,R) is a tree controlled grammar in
which G is a context-free grammar
and R ∈ REG}

and the class of tree controlled languages with ε-free controlled grammar under ordered
cuts control is defined as

ord-cut-TCε(CFε,REG) = {ord-cutL(G,R) : (G,R) is a tree controlled grammar in
which G is an ε-free context-free gram-
mar and R ∈ REG}.

3.1.2 Results

Concerning cut-based restriction placed upon the derivation trees, we have introduced two
fundamental types of such kind of a restriction and thus, we have opened a new investiga-
tion area in derivation-tree-restricted models. Next, we have proved that both restrictions
increase the generative power of context-free grammars so they characterize RE:

ord-cut-TC(CF,REG) = cut-TC(CF,REG) = RE.

An important open problem consists of the investigation of cut controlled grammars
where ε-productions are forbidden. Consequently, the grammars restricted in this way
should be placed into the relation with some other well-known language families, such as
CS, and the deciding the question whether or not:

ord-cut-TCε(CFε,REG) = cut-TCε(CFε,REG) = CS.

Next open problem is the descriptional complexity of ord-cut-TC(CF,REG) and
cut-TC(CF,REG). The results stated in above are based on the transformation of an
unrestricted grammar in Pentonnen normal form. However, using Geffert normal form, the
number of nonterminals in the resulting cut controlled grammar would be reduced.

Another future research idea is represented by the controlling the cuts of the derivation
trees in which several types of subregular control languages are considered. In this way, the
question whether or not a kind of a subregural language is enough to increase the generative
power of controlled grammar properly. Consequently, the relation between the generative
power of level-based and cut-based models restricted in this way would be founded out.
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3.2 Path Based Restriction

In this section, we introduce a path-based restriction on tree-controlled grammars that
is equivalent to the model introduced in Sec. 2.2. Next, we formally define the pseudo-
knot structure represented as a language. We introduce new results related to the normal
forms and the presence of erasing productions in a controlled grammar. Then, this section
presents a relationship between biology and the formal language theory in the form of word
representation of pseudoknots generated by path controlled grammars. Last section of this
part being a counterargument against the proof of the generative power of path controlled
grammars that has been considered as correct so far.

3.2.1 Definitions

Definition 3.10 (Language of tree controlled grammar under path control). Let (G,R) be
a tree controlled grammar. The language that (G,R) generates under the path control by
R is denoted by pathL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ pathL(G,R) if and only if there is a derivation tree, t ∈ G4(x), such
that there is a path, p, of t with word(p) ∈ R.

Definition 3.11 (Class of tree controlled languages under path control). For X,Y ∈
{LIN,CF}, the class of tree controlled languages under the path control is defined as

path-TC(X,Y) = {pathL(G,R) : (G,R) is a tree controlled grammar in which
G ∈ GX and R ∈ Y}

and the class of tree controlled languages with ε-free controlled grammar under path
control is defined as

path-TCε(CFε,Y) = {pathL(G,R) : (G,R) is a tree controlled grammar in which G is
an ε-free context-free grammar and R ∈ Y}.

Definition 3.12 (1st normal form of a tree controlled grammar that generates the language
under path control). Let (G,R) be a tree controlled grammar that generates the language
under path control by R, where G = (V, T, P, S). (G,R) is in 1st normal form if every
production, r : A→ x ∈ P , is of the form A ∈ V − T and x ∈ T ∪ (V − T ) ∪ (V − T )2.

Definition 3.13 (2nd normal form of a tree controlled grammar that generates the language
under path control). Let (G,R) be a tree controlled grammar that generates the language
under path control by R, where G = (V, T, P, S). (G,R) is in 2nd normal form if every
production, r : A→ x ∈ P , is of the form A ∈ V − T and x ∈ T ∪ ((V ∪ {E})− T )2 where
E ∩ V = ∅ and E → ε ∈ P . The alphabet of G should now include E, with E 6∈ V .

Definition 3.14 (Pseudoknot). Let Σ be an alphabet. The following languages over Σ are
pseudoknots:

1. {xyxRyR : x, y ∈ Σ∗},
{u1xu2yu3xRu4yRu5 : x, y, ui ∈ Σ∗, 1 ≤ i ≤ 5},

2. {xyxRzzRyR : x, y, z ∈ Σ∗},
{u1xu2yu3xRu4zu5zRu6yRu7 : x, y, z, ui ∈ Σ∗, 1 ≤ i ≤ 7},

3. {xyxRzyRzR : x, y, z ∈ Σ∗},
{u1xu2yu3xRu4zu5yRu6zRu7 : x, y, z, ui ∈ Σ∗, 1 ≤ i ≤ 7},
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4. {xyzxRyRzR : x, y, z ∈ Σ∗},
{u1xu2yu3zu4xRu5yRu6zRu7 : x, y, z, ui ∈ Σ∗, 1 ≤ i ≤ 7}.

Note that presented pseudoknots form obviously non-context-free languages.

3.2.2 Results

As a continuation of the investigation of path-based restrictions introduced in [32] and
studied in [33] and [34], we have considered the impact of ε-productions in path controlled
grammars to the generative power and we have stated that ε-productions can be removed
from a path controlled grammar without affecting its language:

path-TC(CF,CF) = path-TCε(CFε,CF).

Next, we have established two Chomsky-like normal forms for path controlled grammars
(see Def. 3.12 and Def. 3.13) and we have formulated algorithms that transform a path
controlled grammar into its normal form:

• Let L ∈ path-TC(CF,CF). Then, there exists a tree controlled grammar, (G,R),
in 1st normal form such that L = pathL(G,R).

• Let L ∈ path-TC(CF,CF). Then, there exists a tree controlled grammar, (G,R),
in 2nd normal form such that L = pathL(G,R).

A future investigation idea consists of the modifying a general parsing methods that are
based on Chomsky normal form such that it will be able to parse path controlled grammars
in a polynomial time.

Another practical motivated idea is represented the relation between path controlled
grammars and the theory of pseudoknots. We have demonstrated several typical pseudo-
knots used in biology represented by the words (see Def. 3.14) of non-context-free languages.
We have demonstrated some pseudoknots belong to path-TC(LIN,LIN):

{xyxRyR : x, y ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN),
{xyxRzzRyR : x, y, z ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN),
{xyxRzyRzR : x, y, z ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN).

Apparently, there is a huge variety of another pseudoknot structures in biology. For
example, {xyzxRyRzR : x, y, z ∈ Σ∗} and it is an open question whether or not those
pseudoknots can be generated by tree controlled grammars with linear components that
generate the language under path control.

The last presented result deals with a reflection on the generative power of path con-
trolled grammars that has been considered as well-known (see [32]) for more than last ten
years. However, we have presented an argument against the correctness of the proof given
in [32] that states path-TC(CF,CF) ⊆MAT. We have concluded the counterargument
by stating that the aforementioned inclusion still may hold; however, it cannot be proved
in the way given in [32]. More precisely, we have found the language tha can be generated
by a grammar with controlled path. However, this language cannot be generated by the
grammar obtained by the construction introduced in [32]. Apparently, the generative power
of path controlled grammar still represents an open problem.
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3.3 Several Paths Based Restriction

This section being a generalization of path-restricted rewriting model to a restriction placed
upon not just one but several paths. Then, it presents several properties of the model
restricted in this way. Specifically, the generative power of a kind of all-paths-restricted
rewriting model, closure and pumping properties in relation to the number of controlled
paths, and the approximation of the generative power for n-path restricted model. The last
section of this part presents an application related result concerning the parsing of path
restricted languages.

3.3.1 Definitions

Definition 3.15 (Language of tree controlled grammar under all paths control). Let (G,R)
be a tree controlled grammar. The language that (G,R) generates under the all-paths
control by R is denoted by all-pathsL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ all-pathsL(G,R) if and only if there is a derivation tree, t ∈ G4(x),
such that for all paths, s, of t, word(s) ∈ R.

Definition 3.16 (Class of tree controlled languages under all paths control). The class of
tree controlled languages under all paths control is defined as

all-path-TC(CF,REG) = {all-pathsL(G,R) : (G,R) is a tree controlled grammar in
which G is a context-free grammar and
R ∈ REG}.

Definition 3.17. Let (G,R) be a tree controlled grammar. The language of tree controlled
grammar under not common n-path control by R, n ≥ 1, is denoted by nc-n-pathL(G,R)
and defined by the following equivalence:

For all x ∈ T ∗, x ∈ nc-n-pathL(G,R) if there exists a derivation tree, t ∈ G4(x), such
that there is a set, Qt, of n paths of t such that for each path, p ∈ Qt, word(p) ∈ R.

Definition 3.18. For X,Y ∈ {REG,LIN,CF}, the class of tree controlled languages
under not-common n-path control is defined as

nc-n-path-TC(X,Y) = {nc-n-pathL(G,R) :(G,R) is a tree controlled grammar with
G ∈ GX and R ∈ Y}.

Definition 3.19 (Common part of two paths). Let p1, p2 be any different two paths of
a derivation tree, t. Then, p1 and p2 contain at least one common node (the root of t,
root(t)), and p1 ends in a different leaf of t than p2. Let cmn(p1, p2) denote the maximal
number of consecutive common nodes of p1 and p2.

Definition 3.20 (Common node of division of set of paths). Let Qt be a nonempty set of
some paths of a derivation tree, t. The paths of Qt are divided in a common node of t if
and only if for some k ≥ 1, cmn(p1, p2) = k for every pair (p1, p2) ∈ Q2

t . Let all paths of Qt

be divided in a common node of t. If Qt = {p}, then mQt = |word(p)|, otherwise mQt ≥ 1
denotes the maximal number of consecutive common nodes of all paths in Qt.

Definition 3.21 (Language of tree controlled grammar under n-path control). Let (G,R)
be a tree controlled grammar. The language of tree controlled grammar under n-path control
by R, n ≥ 1, is denoted by n-pathL(G,R) and defined by the following equivalence:
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For all x ∈ T ∗, x ∈ n-pathL(G,R) if there exists a derivation tree, t ∈ G4(x), such that
there is a set, Qt, of n paths of t that are divided in a common node of t and for each path,
p ∈ Qt, word(p) ∈ R.

Definition 3.22 (Class of tree controlled languages under n-path control). For X,Y ∈
{REG,LIN,CF}, the class of tree controlled languages under n-path control is defined as

n-path-TC(X,Y) = {n-pathL(G,R) : (G,R) is a tree controlled grammar with
G ∈ GX and R ∈ Y}.

Conventions

Hereafter, tree controlled grammars that generate the language under the n-path control
are referred to as n-path tree controlled grammars.

Note that if we consider 0 controlled paths (i.e., n = 0 and consequently card(Qt) = 0)
in the definition of n-pathL(G,R), then, clearly, the generative power of such a model equals
CF.

Definition 3.23 (Special types of n-path controlled grammars). Let (G,R) be a tree
controlled grammar. Consider n-pathL(G,R), for n ≥ 1. If for each word, z ∈ n-pathL(G,R),
there exist a derivation tree, t ∈ G4(z), a set of its paths, Qt, mQt ≥ 1, and a partition,
word(p) = uvwxy, for each path, p ∈ Qt, satisfying the premise of the pumping lemma for
linear languages such that it holds

1 ≤ mQt ≤ |u|, then n-pathL(G,R) is I-n-pathL(G,R),
|u| < mQt ≤ |uv|, then n-pathL(G,R) is II-n-pathL(G,R),
|uv| < mQt ≤ |uvw|, then n-pathL(G,R) is III-n-pathL(G,R),
|uvw| < mQt ≤ |uvwx|, then n-pathL(G,R) is IV -n-pathL(G,R),
|uvwx| < mQt ≤ |uvwxy|, then n-pathL(G,R) is V -n-pathL(G,R).

Definition 3.24 (Classes of special types of n-path tree controlled languages). For i ∈
{I, II, III, IV, V} and n ≥ 1, the class of i-n-path tree controlled languages is defined as

i-n-path-TC(CF,LIN) = {i-n-pathL(G,R) : (G,R) is tree controlled grammar in
which G is a context-free grammar and
R ∈ LIN}.

3.3.2 Results

It is well-know that path controlled grammars where the controlling grammar is regular
characterize the same language class as its controlled grammar (see [32]) do. We have
proved that the generative power of context-free grammars remains unchanged even if we
restrict all paths in their derivation trees by regular languages:

CF = all-path-TC(CF,REG).

Since for each context-free grammar, there is a regular language that describes all paths
in all its derivation trees; and there is no regular language which increases its generative
power when used to restrict the paths, if we consider tree controlled grammars (G,R)
with R ∈ REG, then, obviously, the generative power of such a model equals CF for any
n ≥ 1. Therefore, we investigate the properties of tree controlled grammar with non-regular
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control language. More specifically, we study tree controlled grammars that generates their
languages under n-path control with linear control languages.

We have introduced a generalization of path controlled grammars so that they generate
the language under the restriction placed on not just one but several paths. Consequently,
we have found some subsets of n-path controlled grammars so their languages satisfy pump-
ing premises similar to well-known premises stated by pumping lemmata for CF, LIN, and
REG—more precisely:

• If L ∈ I-n-path-TC(CF,LIN), n ≥ 1, then there are two constants, k, q ≥ 0, such
that each word, z ∈ L, with |z| ≥ k can be written as z = u1v1u2v2 . . . u4nv4nu4n+1

with 0 < |v1v2 . . . v4n| ≤ q and for all i ≥ 1, u1vi1u2v
i
2 . . . u4nv

i
4nu4n+1 ∈ L.

• If L ∈ III-n-path-TC(CF,LIN), n ≥ 1, then there are two constants, k, q ≥ 0, such
that each word, z ∈ L, with |z| ≥ k can be written as z = u1v1u2v2 . . . u2n+2v2n+2u2n+3

with 0 < |v1v2 . . . v2n+2| ≤ q and for all i ≥ 1, u1vi1u2v
i
2 . . . u2n+2v

i
2n+2u2n+3 ∈ L.

• If L ∈ V-n-path-TC(CF,LIN), n ≥ 1, then there are two constants, k, q ≥ 0, such
that each word, z ∈ L, with |z| ≥ k can be written as z = u1v1u2v2u3v3u4v4u5 with
0 < |v1v2v3v4| ≤ q and for all i ≥ 1, u1vi1u2v

i
2u3v

i
3u4v

i
4u5 ∈ L.

A natural question that still remains open is whether or not there are similar pumping
properties for the languages of II-n-path-TC(CF,LIN) and IV-n-path-TC(CF,LIN).

We have also proved some closure properties, that is

• for n ≥ 1, i ∈ {I, II, III, IV, V} and TG, TR ∈ {REG,LIN,CF}, n-path-TC(TG,
TR), i-n-path-TC(TG, TR) are closed under intersection with regular languages,
union, and non-erasing homomorphism,

• for n ≥ 1, I-n-path-TC(CF,LIN), III-n-path-TC(CF,LIN), and V-n-path-TC
(CF,LIN) are not closed under concatenation, intersection, and complement.

Since n-path controlled grammars are a natural generalization of grammars with just
one path controlled, we have studied several properties that are well-known for path con-
trolled grammars in the case of controlling given n paths. Most importantly, we have tried
to establish the generative power for n path controlled grammar. We have found the ap-
proximation of the generative power that can be applied also on grammars with just one
path controlled. However, this approximation does not say too much since it is well-known
that PSC is not closed under erasing homomorphism. Thus, we have informally concluded
that:

”
We either have the power to check what we need but not to remove it (using PSC)

or vice versa (using MAT).“ More precisely, we have stated the following:

Let L ∈ n-path-TC(CF,CF), for n ≥ 1. Then there exists L′ ∈ PSC with L = h(L′),
for some homomorphism h.

Finally, we have studied several parsing properties of path-based restriction which is
indisputably one of the most important language-class-characterizing property from the
practical viewpoint. Formally, we have studied a polynomial time parsing possibilities and
we have stated that:

• For a tree controlled grammar, (G,R) with an unambiguous context-free grammar,
G, and a linear control language, R, the membership x ∈ nc-n-pathL(G,R), n ≥ 1, is
decidable in O(|x|k), for some k ≥ 0.
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• For a tree controlled grammar, (G,R), where G is a context-free grammar and R ∈
LIN, there is a tree controlled grammar, (G′, R′), such that G′ does not contain unit
productions and nc-n-pathL(G,R) = nc-n-pathL(G′, R′), n ≥ 1.

• For tree controlled grammar (G,R) where G is m-ambiguous LR grammar, m ≥ 1,
and an unambiguous language R ∈ LIN , the membership x ∈ nc-n-pathL(G,R), n ≥ 1,
is decidable in O(|x|k), for some k ≥ 0.

The significant disadvantage of n-path tree controlled grammars is that the number
of n paths satisfying the properties of Def. 3.21 is strictly limited by the length of the
right-hand sides of the productions of underlying context-free grammar. That is, given
a general context-free grammar, G, and a linear language, R, controlling the paths, the
membership of a certain language might be decidable. However, given the same context-
free language as L(G) as a context-free grammar, H, in Chomsky normal form together
with R, we might not be able to find suitable path restriction to obtain the same language.
On the other hand, the derivation trees of tree controlled grammars that generates their
languages under n-path control by a linear language are constructed exactly as in context-
free grammars and, in addition, we have to check some of their paths. Thus, there is
actually great possibility to use well-known parsing methods for context-free languages to
construct the derivation trees and to check their paths. However, in this viewpoint, n-path
tree controlled grammars seems to be a quite fragile formalism since it requires a context-
free grammar to have a production with at least n nonterminals on the right-hand side
which ensures the division of n paths in a common node. Moreover, it means that any
attempt to use a parsing method that transforms a context-free grammar into Chomsky
normal form will basically destroy any path restriction with n ≥ 3. Moreover, several nice
properties of context-free grammars have been lost—e.g., decomposition based on pumping
lemma for linear languages is potentially ambiguous and thus, the membership problem for
i-n-path-TC, i ∈ {I, II, III, IV, V}, is potentially ambiguous also.

There are still many questions to be answered, namely generative power of grammars
with path or paths controlled non-regularly, further closure properties, decision properties,
etc. However, there are several other more general variants of path-based restriction. In-
deed, a modification of the formalism such that the paths do not have to be divided in
a common node of a derivation tree, or a variant where a path in a tree does not have to
start in the root and end in a leaf of the tree have not been investigated yet.
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Abstract
This doctoral thesis studies theoretical properties of grammars with restricted derivation
trees. After presenting the state of the art concerning this investigation area, the research
is focused on the three main kinds of the restrictions placed upon the derivation trees.
First, it introduces completely new investigation area represented by cut-based restriction
and examines the generative power of the grammars restricted in this way. Second, it
investigates several new properties of path-based restriction placed upon the derivation
trees. Specifically, it studies the impact of erasing productions on the generative power of
grammars with restricted path and introduces two corresponding normal forms. Then, it
describes a new relation between grammars with restricted path and some pseudoknots.
Next, it presents a counterargument to the generative power of grammars with controlled
path that has been considered as well-known so far. Finally, it introduces a generalization
of path-based restriction to not just one but several paths. The model generalized in this
way is studied, namely its pumping, closure, and parsing properties.

Keywords

tree controlled grammars, level controlled grammars, path controlled grammars, paths con-
trolled grammars, cut controlled grammars, ordered cut controlled grammars, regulated
rewriting, restricted derivation trees

The original of the complete thesis is available in the library of Faculty of Information
Technology at Brno University of Technology, Brno, Czech republic.
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