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Abstrakt
Tyto teze navazuj́ı na studium gramatických a automatových systémů. Na začátku, práce
pojednává o regulárně ř́ızených CD gramatických systémech využ́ıvaj́ıćı frázově struk-
turované gramatiky jako komponenty. Do systémů jsou zavedena tři nová omezeńı na
derivaćıch a je studován jejich vliv na vyjadřovaćı śılu těchto systémů. Poté, tato práce de-
finuje dva automatové protěǰsky ke kanonickým multi-generatińım nonterminálem a pravi-
dlově synchronizovyným gramatickým systemům, generuj́ıćıch vektory řetězc̊u, a ukazuje,
že všechny tyto vyšetřované systemy si jsou vzájemně ekvivalentńı. Dále táto práce tyto
systémy zobecňuje a zakládá fundamentalńı hierarchii n-jazyk̊u (množin n-tic řetězc̊u).
V souvislosti se zavedenými systémy tyto teze zavád́ı automatově-gramatický převodńık
založený na konečném automatu a bezkontextové gramatice. Tento převodńık je pak stu-
dovaný a použitý jako nástroj př́ımého překladu. V posledńı části jsou v této práci zavedené
automatové systémy jádrem pársovaćı metody založené na stromově ř́ızených gramatikách
s n omezenými cestami.

Abstract
The present thesis continues with study of grammar and automata systems. First of all,
it deals with regularly controlled CD grammar systems with phrase-structure grammars as
components. Into these systems, three new derivation restrictions are placed and their effect
on the generative power of these systems are investigated. Thereafter, this thesis defines
two automata counterparts of canonical multi-generative nonterminal and rule synchro-
nized grammar systems, generating vectors of strings, and it shows that these investigated
systems are equivalent. Furthermore, this thesis generalizes definitions of these systems and
establishes fundamental hierarchy of n-languages (sets of n-tuples of strings). In relation
with these mentioned systems, automaton-grammar translating systems based upon finite
automaton and context-free grammar are introduced and investigated as a mechanism for
direct translating. At the end, in this thesis introduced automata systems are used as the
core of parse-method based upon n-path-restricted tree-controlled grammars.
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and some parts of Chapter 6 are based on papers, which have been written in cooperation
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Horáček for their inspiration and motivation. Last, but certainly not least, I would like to
thank my wife Daniela for her infinite support.
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Chapter 1

Introduction

1.1 Motivation

In the seventh century before Christ, Egyptians believed they are the oldest nation in the
world. The former king, Psantek I., wanted to confirm this assumption. The confirmation
was based on the idea that children, who cannot learn to speak from adults, will use innate
human language. That language was supposed to be Egyptian. For this purpose, Psantek I.
took two children from a poor family and let them to grow up in care of a shepherd in an
environment, where nobody was allowed to speak with these children. Although the test
ultimately failed, it brings us testimony that already in old Egypt, people somehow felt the
importance of languages (the whole story you can see in The story of psychology by Morton
Hunt).

In 1921, Ludwig Wittgenstein published a philosophical work (Logisch-philosophische
Abhandlung) containing claim that says “The limits of my language mean the limits of my
world”. In the computer science, this claim is doubly true. Languages are a way how people
express information and ideas in terms of computer science or information technology. In
essence, any task or problem, which a computer scientist is able to describe, can be described
by a language. The language represents a problem and all sentences belonging into this
language are its solutions.

Fact about the limitation by languages led to the birth of a new research area referred to
as theory of formal languages studying languages from a mathematical point of view. The
main initiator was linguist Noam Chomsky, who, in the late fifties, introduced hierarchy of
formal languages given by four types of language generators. By this work, Noam Chom-
sky inspired many mathematicians and computer scientists so they began to extend this
fundamental hierarchy by adding new models for language definition. Because the theory
of formal languages examines the languages from the precise mathematical viewpoint, its
results are significant for many areas in information technology. Models, which are studied
by the theory, are used in compilers, mathematical linguistics, bioinformatics, especially ge-
netics and simulation of natural biology processes, artificial intelligence, computer graphics,
computer networks, and others.

The classical formal language theory uses three approaches to define formal languages.

1. Grammatical approach, where the languages are generated by grammars.

2. Automata approach, where the languages are recognized by automata.

3. Algebraic approach, where the languages are defined by some language operations.
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To be more precise, in the grammatical approach, a grammar generates its language by
application of derivation steps replacing sequences of symbols by other sequences according
to its prescribed rules. The symbols can be terminal or nonterminal, and the sequences of
these symbols are called strings. In a single derivation step, the grammar, by application
of its rule, replaces a part of string by some other string. Any string, which contains no
nonterminal symbol and which can be generated from a start nonterminal by application
of a sequence of derivation steps, belongs to the language of the grammar. The language
of the grammar is represented by the set of such generated strings.

While a grammar generates language, an automaton represents formal algorithm by
which the automaton can recognize correctly made sequences of symbols belonging into the
language the automaton defines. More specifically, an automaton has string written on its
input tape. By application of prescribed rules, it processes the string symbol by symbol
and changes its current state to determine whether the string belongs to the language
represented by the automaton. If so, the string is accepted by the automaton. The set of
all strings accepted by the automaton is the language that the automaton defines.

All models, investigated in the theory of formal languages, are designed to reflect needs
of given information technology. Today, when a task distribution, parallel and coopera-
tion process are extremely popular, the main attention is focused on controlled models and
systems of models. The necessity of efficient data processing, computer networks, parallel
architectures, parallel processing, and nature motivated computing devices justify studying
of these approaches in terms of the theory of formal models, where the mechanisms rep-
resenting these approaches are called systems of formal models. The main motivation for
investigation of systems lies in a possibility to distribute a task into several smaller tasks,
which are easier to solve and easier to describe. These tasks can be solved sequentially or
in parallel, and usually, due a communication, the cooperating models are more efficient
than the models themselves. The present thesis concentrates on this modern approaches
and brings new, or generalized, formal mechanisms and results into the theory. More spe-
cifically, this thesis mainly deals with systems of automata and grammars and studies their
properties.

This work, at first, continues with studying of sequential grammar systems, known
as cooperating distributed grammar systems (shortly CD grammar systems). These were
introduced in the late eighties as a model for blackboard problem solving. The main
idea standing behind the CD grammar systems is in a cooperation of well-known simple
grammars working on a shared string under a cooperation protocol. Unfortunately, the
increased efficiency, obtained from the cooperation, is given by higher degree of ambiguity
and non-determinism, what is unpleasant for a practical purpose. This thesis introduces
several restrictions limiting the ambiguity or non-determinism, and investigates their effect
on the systems.

The further investigation builds on the work of Roman Lukáš and Alexander Meduna,
who, in 2006, introduced a new variant of parallel grammar systems named as multi-
generating grammar systems. In contrast with classic widely studied parallel communi-
cating grammar systems, where included grammars are used as supporting elements and
the language of a parallel grammar system is generated by one predetermined grammar,
these new systems take into account strings from all their grammars. The final strings
are obtained from all generated strings by a string operation. This thesis introduces two
versions of automata counterpart to these grammar systems and proves their equivalence.
Thereafter, the investigated systems are generalized and a fundamental hierarchy of these
systems is established. Finally, the thesis suggests systems based on mentioned approaches
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as a direct translator of natural languages and parser of languages generated by a specific
type of controlled grammars.

1.2 Organization

The thesis is divided into two main parts. Part I, Survey of Current State of Knowledge,
presents the basic mathematical concepts, used terminology, survey of currently studied
systems of formal models, and several known important results relevant to this thesis. Part
II, New Systems of Formal Models and Results, is the key part of this work, which introduces
and investigates generalized and new variants of systems of formal models. The contents
of the individual chapters are outlined by the following list.

• Chapter 1, Introduction, introduces readers to the field of formal languages and moti-
vates the study of systems of formal models. Furthermore, it describes the structure
of the document.

• Chapter 2, Notation and Basic Definitions, provides information about notation and
mathematical background needed for the understanding of the thesis. Furthermore,
it defines various formalisms used later in the text.

• Chapter 3, Systems of Formal Models, discuss current knowledge about serial and
parallel grammars and automata systems, recalls CD grammar systems and origin
versions of multi-generating grammar systems, and summarizes known results impor-
tant for this publication.

• Chapter 4, Restrictions on CD Grammar Systems, introduces three new restrictions,
limiting a degree of non-determinism, and places them on derivations in CD gram-
mar systems with phrase-structure grammars. The used grammars themselves can
generate any language which can be somehow deterministically generated. Although
the restricted CD grammar system is enhanced by a control unit, two restrictions
significantly decrease the generative power of the investigated systems.

• Chapter 5, n-Accepting Restricted Pushdown Automata Systems, introduces and in-
vestigates two new variants of automata systems as an automata counterpart of multi-
generating grammar systems introduced by Lukáš and Meduna. The introduced au-
tomata systems consist of automata working on acceptation of their own strings.
During a computation, the usability of their rules are limited by other automata. In
contrast with automata systems, studied in the classic theory of formal languages,
the introduced systems accept vector of interdependent strings instead of ordinary
strings. Therefore, this chapter brings new terms, such as n-string and n-language,
into the theory.

• Chapter 6, Classes of n-Languages: Hierarchy and Properties, generalizes multi-
accepting grammar systems and n-accepting restricted automata systems by allowing
of usage different types of grammars and automata in one system. On these sys-
tems, it establishes fundamental hierarchy of n-languages and studies several closure
properties.

• Chapter 7, Rule-Restricted Automaton-Grammar Transducers, deals with language-
translation systems, transducers for short, composed of one automaton accepting input
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string and one grammar generating a corresponding output string. Both these models
are synchronized by their rules which can be used at the same time unit. First of all,
this chapter shows how the leftmost derivation restriction placed on derivation in the
grammar and introduction of rule-priority into the grammar effect the generative and
accepting power of considered transducers. After that, it discusses application-related
perspectives of the studied systems in linguistics.

• Chapter 8, Parsing of n-Path-Restricted Tree-Controlled Languages, suggests an ab-
straction of 3-accepting restricted automata system as a mechanism for parsing-
method based upon a specific type of linguistically motivated controlled grammars,
which are named as n-path-restricted tree-controlled grammars. In addition, this chap-
ter proves that it is possible to parse these controlled grammars in a polynomial time.

• Finally, Chapter 9, Conclusion, summarizes all results obtained in Part II and outlines
new areas for further investigation.
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Chapter 2

Notation and Basic Definitions

This chapter briefly reviews the required terminology, notation, and fundamental terms
from the area of mathematics and formal language theory. Nevertheless, it is assumed that
the reader is familiar with elementary algebra and proof techniques (see [56], [59], [69], [80],
or [101]).

2.1 Sets and Relations

A set is a collection of elements (objects). About any element, we can unambiguously
declare whether it belongs to the set or it does not. The empty set (the set with no
element) is denoted by ∅. A = {a, b} means that A is set of elements a and b. The fact
that object a belongs to A is denoted by a ∈ A. On the other hand, c 6∈ A means that
c does not belong to A. Note that each element can be in the set only once. In the
general mathematics, there are many important sets. For example, N = {1, 2, . . .} is the
set of all natural numbers, N0 = {0, 1, 2, . . .} is the set of all natural numbers with zero,
Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the set all integers, etc.

As one can notice, different sets can have different numbers of elements. In relation to
the number of elements, we define a cardinality of a set A, |A| for short, as follows:

• |A| = 0 iff A = ∅,

• |A| = n iff A = {a1, a2, . . . , an} for n ∈ N,

• |A| =∞ iff number of elements in A is infinity.

If |A| ∈ N0, we say that A is finite; otherwise, we say that A is infinite. Elements of A can
be specified either by their enumeration, e.g. A = {a1, a2, . . . , an}, where a1, a2, . . . , an are
the elements of A, or by symbolic notation of the form A = {a| π(a)} where a is an element
and π(a) is a condition which has to hold, e.g. A = {i| i ∈ N is odd} is the set of all odd
natural numbers.

For two sets A and B, A = B and A 6= B denote that A is equal to B and A is not equal
to B, respectively; A ⊆ B denotes that A is a subset of B; A ⊂ B denotes that A ⊆ B and
A 6= B, i.e. A is a proper subset of B.

Sets of sets are almost always called classes or families of sets. One of this kind of sets
are power sets.
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Definition 2.1 (Power set)
Let A be a set. Then power set of A, 2A for short, is the set of all subsets of A. Formally,
2A = {X| X ⊆ A}.

Probably the most usual operations over sets are union, intersection, and difference,
whose definition is given next.

Definition 2.2 (Union, intersection and difference of sets)
Let A and B be two sets.

• Union of A and B, denoted by A ∪B, is A ∪B = {x| x ∈ A or x ∈ B}.

• Intersection of A and B, denoted by A ∩B, is A ∩B = {x| x ∈ A and x ∈ B}.

• Difference of A and B, denoted by A−B, is A−B = {x| x ∈ A and x 6∈ B}.

From elements of a set, we can make a list of elements, called an (ordered) sequence,
where the sequence can contain an element more than once and the elements appear in a
certain order. Elements in sequences are usually separated by a comma. The length of
sequence x, denoted by |x|, is the number of elements in x, and if |x| ∈ N0, we say that x
is finite; otherwise, we say that x is infinite. Finite sequences are also called tuples.

Definition 2.3 (Cartesian product)
Let A and B be two sets. The Cartesian product of A and B, A × B, is defined as
A×B = {(a, b)| a ∈ A and b ∈ B}.

Note that the order of objects in elements of a cartesian product is important.

Definition 2.4 (Binary relation)
Let A and B be two sets. Binary relation, or relation for short, ρ, from A to B is ρ ⊆ A×B.

Special cases of relations are functions.

Definition 2.5 (Function)
Let A and B be two sets and φ ⊆ A×B be a binary relation from A to B. φ is a function
from A to B, if for all a ∈ A, |{b| b ∈ B, (a, b) ∈ φ}| ≤ 1.

In the context of relations, membership of a pair (a, b) in some relation ρ can be written
as (a, b) ∈ ρ, b ∈ ρ(a), or aρb. Furthermore, if ρ is a function, b = ρ(a) and ρ(a) = b can be
used.

As one can see, the previous definitions do not prohibit conformity of sets A and B,
i.e. relation ρ ⊆ A × A. In this case, the relation ρ is called a relation on A and, on this
relation, several properties can be studied.

Definition 2.6 (Basic properties on relations)
Let ρ ⊆ A×A be a relation. Then, ρ is

• reflexive iff (a, a) ∈ ρ, for all a ∈ A,

• symmetric iff (a, b) ∈ ρ implies that (b, a) ∈ ρ, for all a, b ∈ A,
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• transitive iff (a, b), (b, c) ∈ ρ implies that (a, c) ∈ ρ, for all a, b, c ∈ ρ,

• antisymmetric iff (a, b), (b, a) ∈ ρ implies that a = b, for all a, b ∈ A.

A reflexive, transitive, and antisymmetric relation ρ on a set A is called a partial order
and a pair (A, ρ) is called an ordered set. Let K ⊂ N0 is a final set. Then, max(K) = k,
where k ∈ K and for all h ∈ K, k ≥ h; and min(K) = l, where l ∈ K and for all h ∈ K,
l ≤ h. Furthermore, let (X,≥) is an ordered set and A ⊆ X. We say that x ∈ X is an
upper and lower bound of A, if for all a ∈ A, a ≤ x and x ≤ a, respectively. The least
upper bound is called supremum, written as sup(A). Conversely, the greatest lower bound
is known as infimum, denoted inf(A).

Over relation ρ ⊆ A × A, we can study how many times the property of transitivity
holds. For this purpose we use k-fold products and closures over the ρ.

Definition 2.7 (k-Fold product and closures)
Let ρ ⊆ A×A is a relation over A. For some k ≥ 1, a k-fold product of ρ, ρk is recursively
defined in the following way:

• aρ0b iff a = b

• aρ1b iff aρb

• aρnb iff aρc and cρn−1b

We define the transitive closure of ρ, ρ+, as aρ+b iff aρkb for some k ≥ 1; and the reflexive-
transitive closure of ρ, ρ∗, as aρ∗b iff a = b, for a ∈ A or aρ+b.

2.2 Alphabets, Strings, and Languages

An alphabet is arbitrary finite non-empty set of elements, which are called symbols. A
finite sequence of symbols, w, is referred to as string. For brevity, we simply juxtapose the
symbols and omit all separating commas. If |x| = 0, we write x = ε and call x an empty
string. Let T be an alphabet and x, y be two strings consisting of symbols from T . We
say that x and y are strings over T , and xy the concatenation of x and y. The equation
xε = εx = x is an immediate consequence of the definition. Over any string x, we define set
of prefixes, pref(x) = {y| x = yα}, set of suffixes, suf(x) = {y| x = αy}, set of substrings,
sub(x) = {y| x = αyβ}, and set of symbols used in x, alph(x) = {a| a is included in x}.

Definition 2.8 (Occurrence of symbols)
Let Σ be an alphabet and W ⊆ Σ. Then, occur(w,W ) denotes the number of occurrences
of symbols from W in w.

Definition 2.9 (Reversation of string)
Let x = a1a2 . . . an−1an with ai ∈ Σ for all i = 1, . . . , n. Reverse x, denoted by (x)R, is the
string anan−1 . . . a2a1.

Definition 2.10 (Power of string)
Let x be a string over Σ. Power of x is defined as follows:

• x0 = ε,
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• xi = xixi−1 for x ≥ 1.

Let Σ be an alphabet and Σ∗ be a set of all strings over Σ. Language L is defined as any
subset of Σ∗, symbolically, L ⊆ Σ∗, and the complement of L, written as L, is L = Σ∗ − L.

Definition 2.11 (Concatenation of languages)
Let L1 and L2 be two languages. Concatenation of L1 and L2 is the language L1L2 =
{xy| x ∈ L1 and y ∈ L2}.

Definition 2.12 (Power of language)
Let L be a language. Power of L is defined in the following way:

• L0 = {ε}

• Li = LiLi−1 for i ≥ 1

Definition 2.13 (Iteration and positive iteration of language)
Let L be a language over Σ. Then,

• iteration of language L is defined as L∗ =
∞⋃
i=0

Li and

• positive iteration of language L is defined as L+ =
∞⋃
i=1

Li (i.e. L+ = L∗ − {ε})

2.3 Grammars

In this section, we define devices used for generating languages. Such devices are called
grammars and play the main role in the theory of formal languages.

Definition 2.14 (Grammar)
A Grammar is a quadruple G = (N,T, P, S), where

• N is an alphabet of nonterminal symbols (nonterminals),

• T is an alphabet of terminal symbols (terminals) and N ∩ T = ∅,

• P is a finite set of rules of the form α → β with α ∈ (T ∪ N)∗N(T ∪ N)∗ and
β ∈ (T ∪N)∗, and

• S is the start symbol.

Any string x from (N ∪ T )∗ is called a sentential form of G and if x does not contain
nonterminal symbols, then x is called a sentence. For two sentential forms uαv and uβv,
if there is a rule r = α → β ∈ P , G can make a derivation step from uαv to uβv by rule
r, mathematically written as uαv ⇒ uβv[r], or uαv ⇒ uβv for short. A rule of the form
α→ ε we call an epsilon rule.

Definition 2.15 (Sequence of derivations)
Consider grammar G = (N,T, P, S) and sentential forms χ, χ′.

• χ⇒0 χ[ε], or shortly χ⇒0 χ.
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• χ ⇒n χ′[π], or shortly χ ⇒n χ′, for n ≥ 1, if there exist n + 1 sentential forms,
χ1, χ2, . . . , χn, χn+1, such that χ = χ1, χ′ = χn+1, χi ⇒ χi+1[ri] for all i = 1, 2, . . . , n,
and π = r1r2 . . . rn.

• χ⇒∗ χ′[π], or shortly χ⇒∗ χ′, if χ⇒n χ′[π] for some n ≥ 0.

• χ⇒+ χ′[π], or shortly χ⇒+ χ′, if χ⇒n χ′[π] for some n ≥ 1.

Mathematically, ⇒k, ⇒∗, and ⇒+ denote k-fold product, reflexive-transitive closure,
and transitive closure of ⇒, respectively.

Definition 2.16 (Language generated by grammar G)
Let G = (N,T, P, S) be a grammar. Then, the language generated by grammar G, written
as L(G), is the set of all sentences of G. Mathematically, L = {w| S ⇒∗ w}.

Grammars G1 and G2 are said to be equivalent, if and only if they generate the same
language, i.e. L(G1) = L(G2).

Chomsky Hierarchy of Languages

At the end of 50’s, linguist Noam Chomsky has introduced an initial classification of gram-
mars and the classes of languages they generate. Each of these grammars has a differently
restricted set of rules (see [22]).

Definition 2.17 (Unrestricted grammar and phrase-structure grammar)
A grammarG with no restriction on rules is called an unrestricted grammar. An unrestricted
grammar is called a phrase-structure grammar, PSG, if all its rules have form α→ β, where
α ∈ N+ and β ∈ (N ∪ T )∗. The class of languages that both of these grammars define is
referred to as the class of recursively-enumerable languages, RE for short.

Definition 2.18 (Context-sensitive grammar)
An unrestricted grammar is called a context sensitive grammar, CSG, if all its rules have
form α→ β, where α ∈ (T ∪N)∗N(T ∪N)∗, β ∈ (N ∪ T )∗, and either |α| ≤ |β|, or α = S
and β = ε. The class of languages it describes is referred to as the class of context-sensitive
languages, CS for short.

Definition 2.19 (Context-free and linear grammars)
An unrestricted grammar with all rules of the form A→ β, where A ∈ N and β ∈ (N ∪T )∗

is called a context-free grammar, CFG, and furthermore, if β ∈ T ∗NT ∗, we say that the
grammar is linear, LNG for short. The classes of languages, which can be generated by
context-free and linear grammars, are referred to as the class of context-free languages (CF)
and the class of linear languages (LIN), respectively.

Definition 2.20 (Right-linear grammar)
An unrestricted grammar, where all its rules have form A→ aB with A ∈ N , a ∈ T ∪ {ε},
and B ∈ N ∪ {ε}, is called a right-linear grammar, RLNG, and the class of languages
generated by RLNGs is called the class of regular languages, REG for short.

12
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Figure 2.1: Rule tree (left) and derivation tree (right)

For the classes of languages generated by regular, linear, context-free, context-sensitive,
and unrestricted grammars, respectively, the following theorem holds (see [80]).

Theorem 2.21 REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

Sequences of derivation steps in a context-free grammar can be graphically expressed
as a derivation tree representing rules used during a generation.

Definition 2.22 (Derivation tree and ambiguity)
Let G = (N,T, P, S) be a CFG. For r = A → x ∈ P , the rule tree that represents r is
denoted as A〈x〉. The derivation trees representing derivations in G are defined recursively
as follows:

• One-node tree X is the derivation tree corresponding to X ⇒0 X in G, where X ∈
N ∪ T .

• Let d be the derivation representing A ⇒∗ uBv[ρ] with frontier(d) = uBv, and let
l = B → z ∈ P . The derivation tree representing A ⇒∗ uBv[ρ] ⇒ uzv[l] is obtained
by replacing the (|u|+1)st leaf (from the left) in d, B, with the rule tree corresponding
to l, B〈z〉.

• A derivation tree in G is any tree t for which there is a derivation represented by t.

Set of all derivation trees in G with frontier(x) is denoted by GN(x). If there exists
x ∈ L(G) such that |GN(x)| > 1, we say that a grammar G is ambiguous; otherwise, G
is unambiguous. Furthermore, a context-free language L is inherently ambiguous, if L is
generated by no unambiguous grammar.

Figure 2.1 shows an example of rule tree A〈aAa〉 (left) and derivation tree representing
the derivation S ⇒ aBCa⇒ aaBcaa⇒ aaaca (right).

2.4 Automata

In this section, basic devices for recognition of strings belonging to a given language are
defined. The notation is based on [80].

Finite Automata

Definition 2.23 (Finite automaton)
A finite automaton, FA, is a quintuple M = (Q,Σ, δ, q0, F ), where
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• Q is a finite set of states,

• Σ is an input alphabet,

• R is a finite set of transition rules of the form pa→ q with p, q ∈ Q and a ∈ Σ ∪ {ε},

• q0 ∈ Q is the initial state, and

• F ⊆ Q is a set of final states.

Let M = (Q,Σ, R, q0, F ) be an FA. Configuration of M is any word w ∈ QΣ∗. For two
configurations paw and qw, if there exists a rule r = pa→ q ∈ R, then M can make a move
from paw to qw by r, written as paw ` qw[r], or simply, qaw ` qw.

Definition 2.24 (Sequence of moves in finite automaton)
Let M = (Q,Σ, R, q0, F ) be an FA and χ, χ′ be two configuration of M .

• χ `0 χ′[ε], or simply χ `0 χ′, iff χ = χ′.

• χ `i χ′[π], or simply χ `i χ′, iff there are i+ 1 configurations, χ1, . . . , χi+1, such that
χ = χ1 and χ′ = χi+1, for all 1 ≤ j ≤ i, χj ` χj+1[rj ], and π = r1r2 . . . ri.

• χ `∗ χ′[π], or simply χ `∗ χ′, iff there is an integer i ≥ 0 such that χ `i χ′[π].

• χ `∗ χ′[π] or simply χ `∗ χ′, iff there is an integer i ≥ 1 such that χ `i χ′[π].

Mathematically, `k, `+, and `∗ denote k-fold product, transitive closure, and reflexive-
transitive closure of `, respectively.

Definition 2.25 (Language defined by finite automaton)
Let M = (Q,Σ, R, q0, F ) be an FA. The language of FA M is defined as L(M) = {w| w ∈
Σ∗, q0w `∗ f, and f ∈ F}.

Pushdown Automata

Definition 2.26 (Pushdown automaton)
Pushdown automaton, PDA, is a septuple M = (Q,Σ,Γ, δ, q0, z0, F ), where

• Q is a finite set of states,

• Σ is an input alphabet,

• Γ is a pushdown alphabet,

• R is a finite set of transition rules of the form zpa → γq with p, q ∈ Q, a ∈ Σ ∪ {ε},
z ∈ Γ, and γ ∈ Γ∗,

• z0 ∈ Γ is the first pushdown symbol,

• q0 ∈ Q is the start state, and

• F ⊆ Q is a set of final states.
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Let M = (Q,Σ,Γ, R, q0, z0, F ) be a PDA. A configuration of M is any word w ∈ Γ∗QΣ∗.
For two configuration of M , γApaw and γxqw, if there exists a rule r = Apa → xq ∈ R,
then M can make move from γAqaw to γxqw, written as γApaw ` γxqw[r], or simply
γApaw ` γxqw.

As usual, we define `k, `+, and `∗.

Definition 2.27 (Languages defined by pushdown automaton)
Let M = (Q,Σ,Γ, R, q0, z0, F ) be a PDA. The language of M

• accepting by empty pushdown and final state is L(M) = {w| w ∈ Σ∗, z0q0w `∗
f, and f ∈ F};

• accepting by final state is Lf (M) = {w| w ∈ Σ∗, z0q0w `∗ γf, γ ∈ Γ∗, and f ∈ F};

• accepting by empty pushdown is Lε(M) = {w| w ∈ Σ∗, z0q0w `∗ q, and q ∈ Q}.

Definition 2.28 (k-Turn pushdown automaton)
A k-turn PDA is a PDA in which the length of the pushdown tape alternatively increases
and decreases at most k-times during any sweep of the pushdown automaton.

Definition 2.29 (Stateless pushdown automaton)
Pushdown automaton M is stateless, SPDA, if it has exactly one state.

Turing Machine

Definition 2.30 (Turing machine)
Turing machine, TM, is a 6-tuple M = (Q,Σ,Γ, R, q0, F ), where

• Q is a finite set of states,

• Σ is an input alphabet,

• Γ is a tape alphabet, � ∈ Γ, Σ ⊆ Γ,

• R is a finite set of rules of the form pa→ qbt, where p, q ∈ Q, a, b ∈ Σ, t ∈ {S,R,L},

• q0 ∈ Q is the start state, and

• F ⊆ Q is a set of final states.

Definition 2.31 (Configuration of Turing machine)
Let M = (Q,Σ,Γ, R, q0, F ) be a TM. A configuration of M is a string χ = xpy, where
x ∈ Γ∗, p ∈ Q, y ∈ Γ∗(Γ− {�}) ∪ {�}.

Definition 2.32 (Move in Turing machine)
Let M = (Q,Σ,Γ, R, q0, F ) be a TM and let χ and χ′ be two configurations of M . Then,

• M makes a stationary move form χ to χ′ according to r, written as χ `S χ′[r], or
simply χ `S χ′, if χ = xpay, χ′ = xqby, r = pa→ qbS ∈ R.

• M makes a right move form χ to χ′ according to r, written as χ `R χ′[r], or simply
χ `R χ′, if χ = xpay, r = pa→ qbR ∈ R and
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(1) χ′ = xbqy, y 6= ε or

(2) χ′ = xbq�, y = ε

• M makes a left move form χ to χ′ according to r, written as χ `L χ′[r], or simply
χ `L χ′, if

(1) χ = xcpay, χ′ = xqcby, y 6= ε or b 6= �, r = pa→ qbL ∈ R
(2) χ = xcpa, χ′ = xqc, r = pa→ q�L ∈ R

• M makes a move from χ to χ′ according to r, written as χ ` χ′[r], or simply χ ` χ′
if χ `X χ′[r], for some X ∈ {S,R,L}.

`k, `+, and `∗ are defined as usual.

Definition 2.33 (Language accepted by Turing machine)
Let M = (Q,Σ,Γ, R, q0, F ) be a TM. The language accepted by M , L(M), is defined as
L(M) = {w| w ∈ Σ∗, q0w `∗ xfy;x, y ∈ Σ∗, f ∈ F} ∪ {ε| q0� `∗ xfy;x, y ∈ Γ∗, f ∈ F}.

Definition 2.34 (Time complexity)
Let M be a Turing machine. M runs in O(nk) time if there exists some constant c such
that M runs in at most cnk moves for any input of length n, for k, n ≥ 0.

Definition 2.35 (Linear bounded automaton)
Linear bounded automaton, LBA, is a TM that cannot extend its tape by any rule.

For the classes of languages accepted by the defined automata, the following theorem
holds (see [80]).

Theorem 2.36 Let X ∈ {LBA, TM, FA, PDA, PDAf , PDAε, SPDA, k-turn PDA| k ≥ 1},
where PDA, PDAf , and PDAε denote PDA accepting by final state and empty pusdown,
PDA accepting by final state, and PDA accepting by empty pushdown, respectively; and
let L (X) denoted the class of languages accepted by X. Then,

• REG = L (FA),

• LIN = L (1-turn PDA),

• CF = L (PDA) = L (PDAf ) = L (PDAε),

• CS = L (LBA), and

• RE = L (TM).

2.5 Regulated Formal Models

There is no doubt about the fact that, over its history, the most studied languages of the
Chomsky hierarchy were regular and context-free languages. The main reason probably lies
in the simplicity, possibility of natural graphical representation, and practical use of models
defining these languages. However, for some practical applications, it was discovered that
context-free languages are not sufficient. On the other hand, using of models defining whole
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class of context-sensitive languages were inefficient and needlessly strong. Therefore, new
ways how to describe languages of such types were looked for. In this section, we briefly
recall several approaches, needed for this thesis, increasing the power of existing formal
models by their regulation. Furthermore, on Figure 2.2, where A→ B and A↔ B denote
A ⊂ B and A = B, respectively, we show a hierarchy of languages defined by these models.
More details about regulation can be found in books [37, 85] and papers [4, 8, 35, 41, 45,
57, 77, 79, 78, 81, 65, 83].

Definition 2.37 (Programmed grammar)
A programmed grammar (see [42]) is a septuple G = (N,T, S, P,Λ, σ, φ), where

• N and T are alphabets such that N ∩ T = ∅,

• S ∈ N ,

• P is a finite set of productions of the form A→ β, where A ∈ N and Λ is a finite set
of labels for the productions in P .

• Λ can be interpreted as a function which outputs a production when being given a
label,

• σ and φ are functions from Λ into the 2Λ.

For (x, r1), (y, r2) ∈ (N ∪T )∗×Λ and Λ(r1) = (α→ β), we write (x, r1)⇒ (y, r2) iff either
x = x1αx2, y = x1βx2 and r2 ∈ σ(r1), or x = y, and rule α→ β is not applicable to x, and
r2 ∈ φ(r1).

The language of G is denoted by L(G) and defined as L(G) = {w| w ∈ T ∗, (S, r1) ⇒∗
(w, r2), for some r1, r2 ∈ Λ}. Let L (P, ac) denote the class of languages generated by
programmed grammars. If φ(r) = ∅, for each r ∈ Λ, we are led to the class L (P).

Let G be a programmed grammar. For a derivation D : S= w1 ⇒ w2 ⇒ . . .⇒ wn = w,
w ∈ T ∗, of G, ind(D,G) = max({occur(wi, N)| 1 ≤ i ≤ n}), and for w ∈ T ∗, ind(w,G) =
min({ind(D,G)|D is a derivation of w in G}). The index of G is ind(G) = sup({ind(w,G)|
w ∈ L(G)}). For a language L in the class L (P ) generated by programmed grammars,
ind(L) = inf({ind(G)| L(G) = L}. For the class L (P ), Ln(P ) = {L| L ∈ L (P ) and
ind(L) ≤ n, for n ≥ 1} (see [42]).

Definition 2.38 (Matrix grammar)
A matrix grammar, MAT, is a pair H = (G,C), where G = (N,T, P, S) is a context-
free grammar and C ⊂ P ∗ is a finite set of strings denoted as matrices. A sentential
form of H is any string from (N ∪ T )∗. Let u, v be two sentential forms. Then, we say
that H makes a derivation step from u to v according to r, written as u ⇒ v[m], or
simply u ⇒ v, if m = p1 . . . pm ∈ C and there are v0, . . . , vm, where v0 = u, vm = v,
and v0 ⇒ v1[p1] ⇒ . . . ⇒ vm[pm] in G. Let ⇒∗ and ⇒+ denote reflexive-transitive and
transitive closure of ⇒. The language of H is defined as L(H) = {w| S ⇒ w1[m1]⇒ . . .⇒
wn[mn], wn = w,m1, . . . ,mn ∈ C,w ∈ T ∗, n ≥ 0}. The class of languages generated by
matrix grammars is denoted by L (MAT).

Definition 2.39 (Matrix grammar with appearance checking)
A matrix grammar with appearance checking, MATac, is a pair H = (G,C), where G =
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Figure 2.2: Hierarchy of languages

(N,T, P, S) is a context-free grammar and C is a finite set of strings, matrices, of pairs (p, t)
with p ∈ P and t ∈ {−,+}. A sentential form of H is any string from (N ∪T )∗. Let u, v be
two sentential forms. Then, we say that H makes a derivation step from u to v according
to m, written as u ⇒ v[m], or simply u ⇒ v, if m = (p1, t1) . . . (pm, tm) ∈ C and there
are v0, . . . , vm, where v0 = u, vm = v, and for all i = 0, . . . ,m − 1, either vi ⇒ vi+1[pi+1]
in G, or ti+1 ∈ {−}, vi = vi+1, and pi+1 is not applicable on vi in G. Let ⇒∗ and ⇒+

denote reflexive-transitive and transitive closure of ⇒. The language of H is defined as
L(H) = {w| S ⇒ w1[m1] ⇒ . . . wn[mn], wn = w,m1, . . . ,mn ∈ C,w ∈ T ∗, n ≥ 0}. The
class of languages generated by matrix grammars with appearance checking is denoted by
L (MATac).

Definition 2.40 (Counter automaton)
A k-counter automaton, k-CA, is a finite automaton M = (Q,Σ, δ, q0, F ) with k integers
v = (v1, . . . , vk) in Nk0 as an additional storage. Transition rules in δ are of the form
pa → q(t1, . . . , tn), where p, q ∈ Q, a ∈ Σ ∪ {ε}, and ti ∈ {−} ∪ Z. A configuration of
k-CA is any string from QΣ∗Nk0. Let χ1 = paw(v1, . . . , vk) and χ2 = qw(v′1, . . . , v

′
k) be two

configurations of M and r = pa → q(t1, . . . , tk) ∈ δ, where the following holds: if ti ∈ Z,
then v′i = vi + ti; otherwise, it is satisfied that vi, v

′
i = 0. Then, M makes a move from

configuration χ1 to χ2 according to r, written as χ1 ⇒ χ2[r], or simply χ1 ⇒ χ2. ⇒∗ and
⇒+ represent reflexive-transitive and transitive closure of ⇒, respectively. The language
of M is defined as L(M) = {w| w ∈ Σ∗, q0w(0, . . . , 0)⇒∗ f(0, . . . , 0), f ∈ F}.

Definition 2.41 (Partially blind k-counter automaton)
A partially blind k-counter automaton, k-PBCA, is a finite automaton M = (Q,Σ, δ, q0, F )
with k integers v = (v1, . . . , vk) in Nk0 as an additional storage. Transition rules in δ are of
the form pa→ qt, where p, q ∈ Q, a ∈ Σ ∪ {ε}, and t ∈ Zk. As a configuration of k-PBCA
we understand any string from QΣ∗Nk0. Let χ1 = paw(v1, . . . , vk) and χ2 = qw(v′1, . . . , v

′
k)

be two configurations of M and r = pa → q(t1, . . . , tk) ∈ δ, where (v1 + t1, . . . , vk +
tk) = (v′1, . . . , v

′
k). Then, M makes a move from configuration χ1 to χ2 according to r,

written as χ1 ⇒ χ2[r], or simply χ1 ⇒ χ2. ⇒∗ and ⇒+ represent reflexive-transitive and
transitive closure of ⇒, respectively. The language of M is defined as L(M) = {w| w ∈
Σ∗, q0w(0, . . . , 0)⇒∗ f(0, . . . , 0), f ∈ F}.
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Chapter 3

Systems of Formal Models

Unlike the classic formal languages and automata theory, which studies models accepting
or generating language by one automaton or grammar, a modern computer science aims
to distribute this computation. The main reasons follow from necessities and possibilities
of computer networks, distributed databases, parallel processors, etc., which give us new
terms such as distribution, communication, concurrency, and parallelism.

A formal system is defined as a set of formal models working together under a specified
protocol. Such systems have many advantages. For example, the generative or accept-
ing power of used models usually increases, the (descriptional) complexity of a language
decreases, there is a possibility of parallel cooperation, etc.

The main role in the theory of formal systems is played by cooperation protocols and
used formal models. This chapter considers four basic classes of systems of formal models:
sequential grammar systems, parallel grammar systems, sequential automata systems, and
parallel automata systems.

3.1 Cooperating Distributed Grammar System

A cooperating distributed grammar system, CD grammar system for short, was first intro-
duced in [86] related to two-level grammars. Several years later, by investigation of this
system in relation with multi-agent systems and blackboard problem solving architectures
in [23], studies of CD grammar systems became an intense research area.

A CD grammar system consists of finite number of grammars, called components. These
symbolize agents. The common sentential form, which the agents sequentially modify ac-
cording to a mode given by a certain protocol, represents the current state of the problem
to be solved. The authors of [23] considered five modes under which agents work: ∗-mode
– the active agent works as long as it wants; t-mode – the active agent works as long as it
is able to work; and, ≥ k,≤ k, and = k modes correspond to a time limitation of agents
activity, when the active agent has to make i steps for i ≥ k, i ≤ k, and i = k, respec-
tively. If a terminal string is generated, the problem is solved (see definitions 3.1 through
3.4 specifying CD grammar systems in terms of formal languages).

Definition 3.1 (Cooperating distributed grammar system)
A cooperating distributed grammar system, a CD grammar system for short, is an (n+ 3)-
tuple Γ = (N,T, S, P1, . . . , Pn), where N,T are alphabets such that N ∩T = ∅, V = N ∪T ,
S ∈ N , and Gi = (N,T, Pi, S), 1 ≤ i ≤ n, is a context-free grammar.
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Definition 3.2 (Mode of derivation in CD grammar systems)
Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system.

• For every i = 1, 2, . . . , n, terminating derivation by ith component, written as ⇒t
Pi

,
is defined as

x⇒t
Pi
y iff x⇒∗Pi

y and there is no z ∈ Σ∗ such that y ⇒Pi z.

• For every i = 1, 2, . . . , n, k-steps derivation by ith component, written as ⇒=k
Pi

, is
defined as

x⇒=k
Pi

y iff there are x1, . . . , xk+1 and for every j = 1, . . . , k, xj ⇒Pi xj+1.

• For every i = 1, 2, . . . , n, at most k-steps derivation by ith component, written as
⇒≤kPi

, is defined as

x⇒≤kPi
y iff x⇒=k′

Pi
y for some k′ ≤ k.

• For every i = 1, 2, . . . , n, at least k-steps derivation by ith component, written as
⇒≥kPi

, is defined as

x⇒≥kPi
y iff x⇒=k′

Pi
y for some k′ ≥ k.

Definition 3.3 (Language generated by a CD grammar system)
Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system and f ∈ D be a mode of derivation,
where D = {∗, t} ∪ {≤ k,= k,≥ k| k ∈ N}. Then, the language generated by Γ, Lf (Γ), is

Lf (Γ) = {ω ∈ T ∗| S ⇒f
Pi1

ω1 ⇒f
Pi2

. . .⇒f
Pim

ωm = ω,m ≥ 1, 1 ≤ j ≤ m, 1 ≤ ij ≤ n}.

Definition 3.4 (Classes of languages generated by CD grammar systems)
The classes of languages generated by CD grammar systems we denote by L (CD, n, f),
where f ∈ {∗, t} ∪ {= k,≤ k,≥ k| k ∈ N}, and n ∈ N ∪ {∞} is the number of components.

By the following theorems, we summarize selected basic results regarding the power of
CD grammar systems.

Theorem 3.5 CF = L (CD, 1, t) = L (CD, 2, t) ⊂ L (CD, 3, t) = L (CD,∞, t) ⊂ CS.

Theorem 3.6 If f ∈ {= 1,≥ 1, ∗} ∪ {≤ k| k ≥ 1}, then L (CD,∞, f) = CF.

Theorem 3.7 CF = L (CD, 1, f) ⊂ L (CD, 2, f) ⊆ L (CD, r, f) ⊆ L (CD,∞, f) ⊆
L (MAT), for all f ∈ {= k,≥ k| k ≥ 2} and r ≥ 3.

Other Variants of CD Grammar Systems

The standard CD grammar systems, defined above, use only conditions saying when the
enabled component can, or has to, stop working on a sentential form. Selection of com-
ponent for work is non-deterministic. However, in [26], [24], [33], [6], etc., you can find
discussions about many variants of CD grammar systems with several approaches how to
select working components.
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As a natural extension of CD grammar systems, Mitrana and Păun introduced a hybrid
cooperating distributed grammar systems in [90] and [98]. In contrast with CD grammar
systems, where all components work in the same mode, these systems consists of components
working in different modes.

The generative power of CD grammar systems can be increased by teams. This idea
was introduced and has been firstly investigated in [63]. Formally, a CD grammar sys-
tem with teams is defined as a tuple Γ = (N,T, S, P1, . . . , Pn, R1, . . . , Rm), where Γ =
(N,T, S, P1, . . . , Pn) is an ordinary CD grammar system and Ri ⊆ {P1, . . . , Pn} is a team,
for all i = 1, . . . ,m. At one moment, components from a team simultaneously rewrite corre-
sponding part of a shared sentential form. Precisely, x⇒Ri y iff x = x1A1x2 . . . xsAsxs+1,
y = x1y1x2 . . . xsysxs+1, for all j = 1, . . . , s + 1, xj ∈ (N ∪ T )∗, and for all k = 1, . . . , s,
Ak → yk ∈ P ∈ Ri. For this one step derivation, k-steps derivation, at most k-steps
derivation, at least k-steps derivation, and derivation of any number of steps are defined as
usual. Only terminating derivation has three variants, where the active team stops working
if the team as a whole cannot perform any further step, no component can apply any of its
rules, or at least one component cannot rewrite any symbol of the current sentential form
(see [63, 46, 99]).

Besides mentioned variants, many others appear in the literature from the introduction
of ordinary CD grammar systems in [86] and [23] up to these days, e.g. CD grammar
systems with external storage (see [38, 108, 40, 43]), CD grammar systems consisting of
different components (see [110, 51, 74, 28]), hierarchical systems (see [3]), deterministic
systems (see [88]), etc.

3.2 Parallel Communicating Grammar Systems

Parallel communicating grammar systems, PC grammar systems for short, were introduced
in [100]. These systems consist of a finite number of grammars (components), which work
on their own sentential form. The components are synchronized and make derivation steps
concurrently. During derivation, the communication is performed through special query
symbols. Whenever at least one component generates a query symbol, all components
suspend generating and the grammar system makes a communication step—that is, for
every component in the system, each occurrence of a query symbol in its sentential form
is replaced by the sentential form of the component to which the query symbol is pointing
to. One component of the system is called master and the language of the master is the
language of PC grammar system.

Similarly as in the case of CD grammar systems, the theory of formal languages studies
different variants of PC grammar systems, such as

• returning PC grammar systems, where each component that has sent its sentential
form to another starts from the start nonterminal;

• centralized PC grammar systems, where only the master can generate query symbols;

• non-synchronized PC grammar systems, where all components include rules of the
form A→ A for every nonterminal symbol A;

• PC grammar system with communication by commands, where each component has a
control language and in a certain situation all components send their current sentential
form to other components owning a control language to which the sentential form
belongs to;
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• PC grammar systems with languages given by concatenation of all strings over ter-
minal symbols after the end of generation;

• PC grammar systems using query strings instead of query symbols, where the commu-
nication steps is done after at least one component generates a query string pointing
to another component;

• PC grammar systems, where components make different number of steps;

• and many others, see [26], [25], [60], [104], etc.

Probably the most important features of parallel communicating grammar systems are
communication protocol and types of used components together with the way they work.
Further important feature is synchronization. Habitually, the synchronization of compo-
nents is done by an universal clock (each component make one derivation step in each time
unit), but others synchronization mechanisms are also studied (see [26], [97], [30]). Two
of the most natural variants are synchronization by rules, which can be applied simulta-
neously, and synchronization by nonterminals, which can be rewritten at the same time
unit. Both these approaches Lukáš and Meduna used in [82] and [70], where they have
investigated multi-generative grammar systems.

Multi-Generative Grammar Systems

Multi-generative grammar systems are a variant of parallel communicating grammar sys-
tems, where the communication is provided only by synchronization. This synchronization
restricts either rules, which can be used for each common derivation step, or nonterminals,
which can be simultaneously rewritten. For successful generation, all components have to
produce sentences at the same time. Lukáš and Meduna have considered three types of
languages defined by multi-generative grammar systems—languages consisting of all sen-
tences produced by all components, languages consisting of concatenations of all sentences
produced by all components, and languages consisting of sentences produced by the first
component of a multi-generating grammar system.

Definition 3.8 (Multi-generative nonterminal synchronized grammar system)
A multi-generative nonterminal synchronized grammar system, GN, is an (n+ 1)-tuple

Γ = (G1, . . . , Gn, Q), where

• Gi = (Ni, Ti, Pi, Si) is a context-free grammar, for all i = 1, . . . , n,

• Q is a finite set of control n-tuples of the form (A1, . . . , An), where Ai ∈ Ni for all
i = 1, . . . , n.

Definition 3.9 (Multi-generative rule synchronized grammar system)
A multi-generative rule synchronized grammar system, GR, is an (n+ 1)-tuple

Γ = (G1, . . . , Gn, Q), where

• Gi = (Ni, Ti, Pi, Si) is a context-free grammar for all i = 1, . . . , n,

• Q is a finite set of control n-tuples of the form (r1, . . . , rn), where ri ∈ Pi for all
i = 1, . . . , n.
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Definition 3.10 (Multi-sentential form)
Let Γ = (G1, . . . , Gn, Q) be either GN or GR. Then a multi-sentential form is an n-tuple
χ = (x1, . . . , xn), where xi ∈ (Ti ∪Ni)

∗ for all i = 1, . . . , n.

Definition 3.11 (Derivation step in GN)
Let Γ = (G1, . . . , Gn, Q) be a GN, let χ = (u1A1v1, . . . , unAnvn), χ′ = (u1x1v1, . . . ,
unxnvn), be two multi-sentential forms, where Ai ∈ Ni, ui, vi, xi ∈ (Ni ∪ Ti)∗ for all
i = 1, . . . , n. Let Ai → xi ∈ Pi for all i = 1, . . . , n, and (A1, . . . , An) ∈ Q. Then, χ
directly derives χ′, written as χ⇒ χ′.

Definition 3.12 (Derivation step in GR)
Let Γ = (G1, . . . , Gn, Q) be a GR, let χ = (u1A1v1, . . . , unAnvn), χ′ = (u1x1v1, . . . ,
unxnvn), be two multi-sentential forms, where Ai ∈ Ni, ui, vi, xi ∈ (Ni ∪ Ti)∗ for all
i = 1, . . . , n. Let ri = Ai → xi ∈ Pi for all i = 1, . . . , n, and (r1, . . . , rn) ∈ Q. Then,
χ directly derives χ′, written as χ⇒ χ′.

Definition 3.13 (Multi-language generated by GN and GR)
Let Γ = (G1, . . . , Gn, Q) be either GN or GR. Then, the n-language generated by Γ, n-L(Γ),
is

n-L(Γ) = {(w1, . . . , wn)| (S1, . . . , Sn)⇒∗ (w1, . . . , wn), wi ∈ T ∗i for all i = 1, . . . , n}.

Definition 3.14 (Languages of GN and GR)
Let Γ = (G1, . . . , Gn, Q) be either GN or GR. Then, we define

• the language generated by Γ in union mode, L∪(Γ)), as

L∪(Γ) =

n⋃
i=1

{wi| (w1, . . . , wn) ∈ n-L(Γ)},

• the language generated by Γ in concatenation mode, L•(Γ), as

L•(Γ) = {w1 . . . wn| (w1, . . . , wn) ∈ n-L(Γ)},

• the language generated by Γ in first-component-selection mode, L1(Γ)), as

L1(Γ) = {w1| (w1, . . . , wn) ∈ n-L(Γ)}.

Definition 3.15 (Canonical multi-generative grammar systems)
We say that GN and GR are canonical if all the components of GN and GR can make
only the leftmost derivations, i.e. only the leftmost nonterminal can be rewritten in each
sentential form. Canonical multi-generative rule synchronized grammar systems and canon-
ical multi-generative nonterminal synchronized grammar systems are denoted by CGR and
CGN, respectively.
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REG

LIN

CF

MATL (k-fGN) L (k-fGR)

CS

REL (k-fCGN) L (k-fCGR)

L (CPC,REG)L (NCPC,REG)

L (CPC,CF)L (NCPC,CF)

L (NPC,REG) L (PC,REG)

L (PC,CF)L (NPC,CF)

Figure 3.1: Hierarchy of languages (it is considered that k ≥ 2 and f ∈ {∪, •, 1})

Convention 3.16 If there is an attention on the number of components in a multi-
generative grammar system, we use terms n-generative grammar system, n-GN, n-GR,
n-CGR, n-CGN, sentential n-form, and n-language, for some positive integer n, rather
than multi-generative grammar system, GN, GR, CGN, CGR, multi-sentential form, and
multi-language, respectively.

Definition 3.17 (Classes of n-GN, n-CGN, n-GR, and n-CGR n-languages)
Let X ∈ {GN,CGN,GR,CGR}. The class of n-languages of n-X, L (nX), is defined as
L (nX) = {n-L| n-L is an n-language generated by n-X}.

Definition 3.18 (Classes of n-GN, n-GR, n-CGN, and n-CGR languages)
Let X ∈ {GN,CGN,GR,CGR} and f ∈ {∪, •, 1}. The class of languages generated by an
n-X in f -mode, L (n-fX), is defined as L (n-fX) = {L| L is a language generated in the
f -mode by n-X}.

Let’s say that L (XPC, Y ) with X ∈ {ε,C,N,NC} and Y ∈ {REG,CF} denote the
classes of languages generated by XPC grammar systems with unlimited number of com-
ponents, where N and C before PC say that PC grammar systems are non-returning and
centralized, respectively, and furthermore, Y = REG and Y = CF mean that the com-
ponents of the systems are regular grammars and context-free grammars, respectively. In
Figure 3.1 one can see several important relationships between the classes of languages
defined by parallel grammar systems. The results are taken from [104], [82], and [70].
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3.3 Automata Systems

Automata and automata systems are used in many areas of computer science. One can find
them in computer networks, formal analysis and verifications, pattern matching, parallel
computers, DNA computing, artificial intelligence, etc. In this section, we briefly outline
several important cooperating models in terms of theory of formal languages.

A multiprocessor automaton is based upon finite automata, called processors. These
processors are coordinated by a central arbiter determining which processor is to become
active or inactive (an inactive processor preserves its configuration) at a given step. The
only information that the arbiter has for decision about automata activities are the current
state of each automaton and number of steps proceeding by active automata (see [10]).

Similar system to the multiprocessor automata allows to share information about current
states of processors. In such system, each automaton makes a move with respect of the
current input symbol and states of all automata. If we reduce all these automata to one with
multiple reading head, we make equivalent model called multi-head automaton (see [102]).

In relation to automata, [36] has firstly investigated an idea to apply strategies akin to
those that cooperating distributed grammar systems use. For this purpose, Mitrana and
Dassow introduced special types of multi-stack pushdown automata. However, they do not
form the automata counterpart of CD grammar systems. This was introduced and has been
studied in [29] under the name distributed pushdown automata system.

A distributed pushdown automata system contains a shared one-way input tape, one
reading head, and finite number of components having their own pushdown and finite sets
of states. At any moment, only one component is active. According to a cooperation
protocol, the active component must perform k, at least k, at most k, for k ≥ 1, or it must
work as long as it is able to perform a move.

Parallel communicating automata systems have been investigated both with finite au-
tomata and pushdown automata as components. The first variant, parallel communicating
finite automata system, was introduced by Mart́ın-Vide, Mateescu, and Mitrana in [72].
Finite automata in such systems work independently but on a request, they communi-
cate by states to each other. More precisely, the finite automata are entitled to request the
current state of any other component. In [72] has been discussed several variants, where con-
tacted automaton after communication is/is not returned to the initial state (returning/non-
returning parallel communication automata systems), or, only one automaton has/all au-
tomata have the right to ask the current state from the others (centralized/non-centralized
parallel communication automata systems). By application of these strategies on pushdown
automata, the investigation was continued in [27], where the attention is focused especially
on communication by stacks, i.e. on request an asked automaton send the content of its
pushdown to requesting automata which push it on their pushdowns).

In the same way as in the case of grammar systems discussed above, you can find
many other variants of automata systems in the literature (see [106, 107, 93, 87, 94, 32]).
Generally, we can say that the theory of formal languages reflects the approaches used in
grammar systems into automata systems and studies the accepting power of given systems
in relation to component represented by automata working in many different ways.
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Part II

New Systems of Formal Models
and Results
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Chapter 4

Restrictions on CD Grammar
Systems

Formal language theory has investigated various left restrictions placed on derivations in
grammars working in a context-free way. In ordinary context-free grammars, these restric-
tions have no effect on the generative power. In terms of regulated context-free grammars,
the formal language theory has introduced a broad variety of leftmost derivation restrictions,
many of which change their generative power (see [4, 8, 35, 37, 41, 44, 50, 57, 75, 76, 78, 79]).
In terms of grammars working in a context-sensitive way, significantly fewer left derivation
restrictions have been discussed in the language theory. Indirectly, this theory has placed
some restrictions on the productions so the resulting grammars make only derivations in
a left way (see [4, 8]). This theory also directly restricted derivations in the strictly left-
most way so the rewritten symbols are preceded only by terminals in the sentential form
during every derivation step (see [75]). In essence, all these restrictions result in decreas-
ing the generative power to the power of context-free grammars (see page 198 in [105]).
This chapter generalizes the discussion of this topic by investigating regularly controlled
cooperating distributed grammar systems (see Chapter 4 in [105]) whose components are
phrase-structure grammars restricted in some new ways.

4.1 Three Restrictions on Derivations in Grammar Systems

First of all, we define the restrictions on derivations in phrase-structure grammars. In the
following, we consider V as the total alphabet of G = (N,T, P, S), i.e. V = N ∪ T .

Definition 4.1 (Derivation-restriction of type I)
Let l ∈ N and let G = (N,T, P, S) be a phrase-structure grammar. If there is α→ β ∈ P ,
u = x0αx1, and v = x0βx1, where x0 ∈ T ∗N∗, x1 ∈ V ∗, and occur(x0α,N) ≤ l, then
u l�⇒ v [α→ β] in G, or simply u l�⇒ v.

The k-fold product of l�⇒, where k ≥ 0, is denoted by l�⇒k. The reflexive-transitive
closure and transitive closure of l�⇒ are denoted by l�⇒∗ and l�⇒+, respectively.

The restriction from Definition 4.1 requires that a rule of the form α→ β can be used
only if α is within the first l nonterminals for some l ∈ N. For instance, if there is a
sentential form abABCDEFKL and l = 4, then BC → x1 is applicable on the sentential
form while DE → x2 is not.

27



Definition 4.2 (Derivation-restrictions of type II and III)
Let m,h ∈ N. W (m) denotes the set of all strings x ∈ V ∗ satisfying 1 given next. W (m,h)
denotes the set of all strings x ∈ V ∗ satisfying 1 and 2.

1. x ∈ (T ∗N∗)mT ∗;

2. (y ∈ sub(x) and |y| > h) implies alph(y) ∩ T 6= ∅.

Let u ∈ V ∗N+V ∗, v ∈ V ∗, and u ⇒ v. Then, u h
m◦⇒ v in G, if u, v ∈ W (m,h); and if

u, v ∈W (m), u m◦⇒ v in G.
The k-fold product of h

m◦⇒ and m◦⇒ are denoted by h
m◦⇒k and m◦⇒k, respectively,

where k ≥ 0. The reflexive-transitive closure and transitive closure of h
m◦⇒ are denoted by

h
m◦⇒∗ and h

m◦⇒+ , respectively; and the reflexive-transitive closure and transitive closure
of h

m◦⇒ and m◦⇒ are denoted by m◦⇒∗ and m◦⇒+, respectively.

Informally, the second restriction permits only such derivations, where all sentential
forms have m or less blocks of nonterminals, for m ∈ N, e.g. if m = 2, abABCaDEFKL⇒
abABaDEFKa[L → a], but E → a is not applicable on abABCaDEFKL. The third
restriction extends the second restriction and says how many blocks of nonterminals with
limited length can be in every sentential form. That is, if m,h = 5, L → LLL cannot be
used for the derivation step from abABCaDEFKL.

As already stated, these defined restrictions are investigated in terms of CD grammar
systems, which are controlled by regular languages. See the following convention and defi-
nitions.

Convention 4.3 Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system with phrase-
structure grammars as its components and V = N ∪ T be the total alphabet of Γ. Fur-
thermore, let u ∈ V ∗N+V ∗, v ∈ V ∗, k ≥ 0. Then, we write u l�⇒k

Pi
v, u h

m◦⇒k
Pi
v, and

u m◦⇒k
Pi
v to denote that u l�⇒k v, u h

m◦⇒k v, and u m◦⇒k v, respectively, was performed

by Pi. Analogously, we write u l�⇒∗Pi
v, u h

m◦⇒∗Pi
v, u m◦⇒∗Pi

v, u l�⇒
+
Pi
v, u h

m◦⇒+
Pi
v,

u m◦⇒+
Pi
v, u h

m◦⇒t
Pi
v, and u m◦⇒t

Pi
v.

Definition 4.4 (Languages of restricted and controlled CD grammar system based upon
phrase-structure grammars)
Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system with phrase-structure grammars as
its component and C be a control language. Then,

lL
C(Γ) = {w ∈ T ∗| S l�⇒t

Pi1
w1 l�⇒t

Pi2
. . . l�⇒t

Pip
wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ C}
NL

C(Γ,m, h) = {w ∈ T ∗| S h
m◦⇒t

Pi1
w1

h
m◦⇒t

Pi2
. . . hm◦⇒t

Pip
wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ C}
NL

C(Γ,m) = {w ∈ T ∗| S m◦⇒t
Pi1

w1 m◦⇒t
Pi2

. . . m◦⇒t
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ C}.

Definition 4.5 (Classes of languages)
Let l,m, h ∈ N and let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system with phrase-
structure grammars. We define the following classes of languages.

L (lCDREG) = {lLC(Γ)| C ∈ REG}
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L (NCDREG(m,h)) = {NLC(Γ,m, h)| C ∈ REG}

L (NCDREG(m)) = {NLC(Γ,m)| C ∈ REG}

4.2 Generative Power of Restricted Grammar Systems

At the beginning of this section, we show that for any language L from L (lCDREG) there
exists a pushdown automaton M such that L = L(M) and for every pushdown automaton
M ′, the language L(M ′) is in L (lCDREG).

Lemma 4.6 For every CD grammar system Γ = (N,T, S, P1, . . . , Pn), every finite automa-
ton M̄ and every l ∈ N, there is a pushdown automaton M such that L(M) = lL

L(M̄)(Γ).

Proof of Lemma 4.6. Let Γ = (N,T, S, P1, . . . , Pn), M̄ = (Q̄, Σ̄, δ̄, s̄0, F̄ ), l ≥ 1, and let
Nleft(P ) = {α| α→ β ∈ P}. Consider the following pushdown automaton M = ({s0, f} ∪
{〈γ, s, s̄, i〉| γ ∈ N∗, |γ| ≤ l, s ∈ {q, r, e}, s̄ ∈ Q̄, i ∈ {1, . . . , n}}, T, T ∪N ∪{Z}, δ, s0, Z, {f}),
where Z 6∈ T ∪N and δ contains rules of the following form.

1. s0 → 〈S, q, s̄0, i〉 i ∈ {1, . . . , n}
2. 〈γ, q, s, i〉 → (γ′)R〈ε, r, s, i〉 if γ ∈ N∗, |γ| ≤ l s.t. γ l�⇒1

Pi
γ′

3. a〈ε, r, s, i〉a→ 〈ε, r, s, i〉 i ∈ {1, . . . , n}
4. Z〈ε, r, s, i〉 → f if si→ s′ ∈ δ̄ for some s′ ∈ F̄
5. A〈A1 . . . Ao, r, s, i〉 → 〈A1 . . . AoA, r, s, i〉 if A ∈ N, o < l
6. 〈A1 . . . Al, r, s, i〉 → 〈A1 . . . Al, e, s, i〉 i ∈ {1, . . . , n}
7. a〈A1 . . . Ao, r, s, i〉 → a〈A1 . . . Ao, e, s, i〉 if o < l, a ∈ T
8. Z〈A1 . . . Ao, r, s, i〉 → Z〈A1 . . . Ao, e, s, i〉 if o < l
9. 〈γ, e, s, i〉 → 〈γ, q, s′, i′〉 if sub(γ) ∩Nleft(Pi) = ∅,

si→ s′ ∈ δ̄
i′ ∈ {1, . . . , n}

10. 〈γ, e, s, i〉 → 〈γ, q, s, i〉 if sub(γ) ∩Nleft(Pi) 6= ∅

Proof of L(M) = lL
L(M̄)
f (Γ) is given by the following claims.

First, we prove the following claim.

Claim 4.7 If Z(ζ)R〈γ, q, s, i1〉w `∗ f in M , then γζ l�⇒t
Pi1

w1 l�⇒t
Pi2

w2 . . . l�⇒t
Pip

wp =

w, p ≥ 0 in Γ and i1 . . . ip ∈ suf(L(M̄)).

Proof of Claim 4.7. By induction on the number of rules constructed in 2 used in a sequence
of moves.

Basis: Only one rule constructed in 2 is used. Then,

Z(ζ)R〈γ, q, s, i0〉w ` Z(γ′ζ)
R〈ε, r, s, i0〉w `|γ

′ζ| Z〈ε, r, s, i0〉 ` f,

where γ = γ0αγ1, γ′ = γ0βγ1, α → β ∈ Pi0 , γ ∈ N+, γ′ζ ∈ T ∗. Therefore, γ0 = γ1 = ε,
γ′ζ = w. Then,

γζ l�⇒Pi0
w.

By a rule constructed in 4 i0 ∈ suf(L(M̄)) and the basis holds.
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Induction hypothesis: Suppose that the claim holds for all sequences of moves containing
no more than j rules constructed in 2.

Induction step: Consider a sequence of moves containing j + 1 rules constructed in 2:

Z(ζ)R〈γ, q, s, i0〉w
` Z(γ′ζ)R〈ε, r, s, i0〉w (by a prod. constructed in 2)

`∗ Z(ζ ′)R〈ε, r, s, i0〉w′ (by prod. constructed in 3)

`∗ Z(ζ ′′)R〈γ′′, r, s, i0〉w′ (by prod. constructed in 5)

` Z(ζ ′))R〈γ′′, e, s, i0〉w′ (by a prod. constructed in 6, 7 or 8)

` Z(ζ ′′)R〈γ′′, q, s′, i1〉w′ (by a prod. constructed in 9 or 10)
`∗ f ,

where γ = γ0αγ1, γ′ = γ0βγ1, α → β ∈ Pi0 , ζ ′ ∈ NV ∗ ∪ {ε}, v ∈ T ∗, γ′ζ = vζ ′, vw′ = w,
ζ ′ = γ′′ζ ′′, either si→ s′ or s = s′, and one of the following holds:

• |γ′′| = l, or

• |γ′′| < l and ζ ′′ ∈ TV ∗ ∪ {ε}.

Then, by the rule α→ β,
γ0αγ1ζ l�⇒Pi0

γ0βγ1ζ,

where |γ0αγ1| ≤ l, γ0βγ1ζ = vζ ′ = vγ′′ζ ′′ and, by the induction hypothesis,

vγ′′ζ ′′ l�⇒t
Pi1

vw1 l�⇒t
Pi2

vw2 . . . l�⇒t
Pip

vwp = vw and

i1 . . . ip ∈ suf(L(M̄)),

where p ≥ 0.
If a rule constructed in 9 was used, γ0αγ1ζ l�⇒t

Pi0
γ0βγ1ζ is a t-mode derivation,

i0i1i2 . . . ip ∈ suf(L(M̄)) and the claim holds.
If a rule constructed in 10 was used, i0 = i1, γ0αγ1ζ l�⇒t

Pi1
vw1, i1i2 . . . ip ∈ suf(L(M̄))

and the claim holds.

Let Zs0w ` Z〈S, q, s̄0, i1〉w, by a rule constructed in 1. By Claim 4.7, Z〈S, q, s̄0, i1〉w `∗
f implies S l�⇒t

Pi1
w1 l�⇒t

Pi2
w2 . . . l�⇒t

Pip
wp = w, p ≥ 0 in Γ and i1 . . . ip ∈ suf(L(M̄)).

Claim 4.8 If τ0x0 l�⇒t
Pi1

w1 l�⇒t
Pi2

w2 . . . l�⇒t
Pip

wp = w in Γ, where p ≥ 0, τ0 ∈ N+,

x0 ∈ TV ∗ ∪ {ε}, wi ∈ V ∗, i ∈ {1, . . . , p − 1}, wp ∈ T ∗ and i1 . . . ip ∈ suf(L(M̄)), then

Z(τ2
0x0)

R〈τ1
0 , q, s, i1〉w `∗ f , for some s ∈ Q̄, where τ0 = τ1

0 τ
2
0 , |τ0| ≤ l implies τ1

0 = τ0, and
|τ0| > l implies |τ1

0 | = l.

Proof of Claim 4.8. By induction on the length of derivations.

Basis: Let τ0x0 l�⇒Pi0
τ ′0x0 = w, where τ1

0 = γ0αγ1, τ ′0 = γ0βγ1τ
2
0 , α → β ∈ Pi0 ,

τ ′0x0 ∈ lL
L(M̄)
f (Γ). Therefore, γ0 = γ1 = τ2

0 = ε and for some s ∈ Q̄, si0 → s′ ∈ δ̄, where

s′ ∈ F̄ . M simulates this derivation step in the following way:

Z(τ2
0x0)

R〈τ1
0 , q, s, i0〉w

` Z(τ ′0x0)R〈ε, r, s, i0〉w (by a prod. constructed in 2)

`|τ ′0x0| Z〈ε, r, s, i0〉 (by prod. constructed in 3)
` f (by a prod. constructed in 4).
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Therefore, the basis holds.

Induction hypothesis: Suppose that the claim holds for all derivations of length j or less.

Induction step: Consider a derivation of length j + 1:

τ0x0 l�⇒Pi0
τ ′0x0 = v1τ1x1 l�⇒t

Pi1
v1w1 l�⇒t

Pi2
w2 . . . l�⇒t

Pip
wp = w = v1w

′,

where p ≥ 0, v1 ∈ T ∗, τ0, τ1 ∈ N+, τ ′0 ∈ V ∗, x0, x1 ∈ TV ∗ ∪{ε}, wi ∈ V ∗, i ∈ {1, . . . , p− 1},
wp, w

′ ∈ T ∗. Then, M simulates this derivation as follows:

Z(τ2
0x0)

R〈τ1
0 , q, s, i0〉w

` Z(τ ′0x0)R〈ε, r, s, i0〉w (by a prod. constructed in 2)

= Z(v1τ1x1)R〈ε, r, s, i0〉v1w
′

`|v1| Z(τ1x1)R〈ε, r, s, i0〉w′ (by prod. constructed in 3)

`|τ11 | Z(τ2
1x1)

R〈τ1
1 , r, s, i0〉w′ (by prod. constructed in 5)

` Z(τ2
1x1)

R〈τ1
1 , e, s, i0〉w′ (by a prod. constructed in 6, 7, or 8)

` Z(τ2
1x1)

R〈τ1
1 , q, s

′, i1〉w′ (by a prod. constructed in 9 or 10)
`∗ f (by the induction hypothesis)

If τ0x0 l�⇒Pi0
τ ′0x0 is a t-mode derivation, a rule of type 9 is used during the simulation.

Otherwise, a rule of type 10 is used (and therefore i0 = i1). Hence, the claim holds.

Let S l�⇒Pi0
uτ0x0 l�⇒t

Pi1
. . . l�⇒t

Pip
uw, where p ≥ 0, u,w ∈ T ∗, τ0 ∈ N+ ∪ {ε},

x0 ∈ TV ∗ ∪ {ε} and i1 . . . ip ∈ L(M̄). If uτ0x0 6∈ T ∗, M simulates this derivation in the
following way:

Zs0uw
` Z〈S, q, s, i0〉 (by a prod. constructed in 1)

` Z(uτ0x0)R〈ε, r, s, i0〉uw (by a prod. constructed in 2)

`|u| Z(τ0x0)R〈ε, r, s, i0〉w (by prod. constructed in 3)

`|τ10 | Z(τ2
0x0)

R〈τ1
0 , r, s, i0〉w (by prod. constructed in 5)

` Z(τ2
0x0)

R〈τ1
0 , e, s, i0〉w (by a prod. constructed in 6, 7, or 8)

` Z(τ2
0x0)

R〈τ1
0 , q, s

′, i1〉w (by a prod. constructed in 9 or 10)
`∗ f (by the previous claim)

If uτ0x0 ∈ T ∗, M simulates this derivation in the following way:

Zs0uw
` Z〈S, q, s, i0〉 (by a prod. constructed in 1)

` Z(uτ0x0)R〈ε, r, s, i0〉uw (by a prod. constructed in 2)

`|uτ0x0| Z〈ε, r, s, i0〉w (by prod. constructed in 3)
` f (by a prod. constructed in 4)

Hence and from the previous claims, it follows that the lemma holds. �

By Lemma 4.6, we have the following result.

Theorem 4.9 Let l ∈ N. Then, CF = L (lCDREG).

Proof of Theorem 4.9. One inclusion is clear, the other follows from Lemma 4.6. �
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Theorem 4.9 says that grammar systems under the first restriction are much weaker
than grammar systems without this restriction. Now, we prove that the second restriction
in this chapter has no effect on the generative power.

Theorem 4.10 RE = L (NCDREG(1)).

Proof of Theorem 4.10. It is well-known (see [47] or [48]) that any recursively enumerable
language L is generated by a grammar G in the Geffert normal form, i.e., by a grammar of
the form

G = ({S,A,B,C}, T, P ∪ {ABC → ε}, S) ,

where P contains context-free productions of the form

S → uSa
S → uSv
S → uv

where u ∈ {A,AB}∗, v ∈ {BC,C}∗, and a ∈ T . In addition, any terminal derivation in G
is of the form S `∗ w1w2w by productions from P , where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗,
w ∈ T ∗, and w1w2w `∗ w is derived by ABC → ε.

Clearly, G is a CD grammar system with only one component. Set the control language
to be {1}∗. Then, the theorem holds. �

The last theorem of this chapter says that generative power of grammar systems un-
der the third restriction is less than generative power of grammar systems without any
restriction.

Theorem 4.11 For any m, h ≥ 1, Lm(P) = L (NCDREG(m,h)).

Proof of Theorem 4.11. All strings in the derivation contain no more than m blocks of
nonterminals and these blocks are also of length no more than h. Hence, it is possible to
represent each possible block by a single nonterminal and create an equivalent grammar
system, which contains only context-free productions. From this and from Theorem 7.10
in [42], Theorem 4.11 holds. �
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Chapter 5

n-Accepting Restricted Pushdown
Automata Systems

In this chapter, we introduce two versions of n-accepting restricted pushdown automata sys-
tems that represent automata counterpart of multi-generative grammar systems (see Sec-
tion 3.2). First, we define n-accepting state-restricted pushdown automata systems. By
using prescribed n-state sequences, the restriction of these systems determines which of the
components perform a move and which of them do not. Second, we define n-accepting move-
restricted pushdown automata systems, where the restriction precisely determines which
transition rule can be used in each of the n components.

As the main results, we demonstrate that both restricted systems under discussion are
equally powerful in the sense that an n-language is accepted by a state-restricted system
if and only if the same n-language is accepted by a move-restricted system. In fact, this
crucial result is proven effectively. Indeed, we give a transformation algorithm that converts
any state-restricted system to a move-restricted system so the above equivalence holds.
Furthermore, it is shown that both variants of n-accepting restricted pushdown automata
systems define the same class of n-languages as n-CGR and n-CGN do.

Note. In the rest of the publication we assume that n ∈ N−{1} and by PDA we understand
pushdown automaton accepting by empty pushdown unless stated otherwise.

5.1 n-Accepting State-Restricted Automata Systems

n-Accepting state-restricted automata system consists of set of switch rules and n PDAs (see
Definition 5.1), where each PDA computes on its own input string. During computation,
some automata can be suspended and after some computation steps resumed. In this way,
the system works on the n-string composed of these strings, and the system accepts the
n-string if and only if all PDAs accept their input.

Definition 5.1 (n-Accepting state-restricted automata system)
Let Mi = (Qi,Σ,Γi, δi, si, zi,0, ∅) be a PDA, for all i = 1, . . . , n. Then, an n-accepting
state-restricted automata system, n-SAS, is defined as ϑ = (M1, . . . ,Mn,Ψ), where Ψ is a
finite set of switch rules of the form (q1, . . . , qn)→ (h1, . . . , hn) with qi ∈ Qi and hi ∈ {e, d},
for all i = 1, . . . , n. Symbols e and d are referred to as an enable and disable component of
the automata system, respectively.
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Definition 5.2 (n-Configuration of n-SAS)
Let ϑ = (M1, . . . ,Mn,Ψ) be an n-SAS and Mi = (Qi,Σ,Γi, δi, si, zi,0, ∅) for all i = 1, . . . , n.
An n-configuration is defined as an n-tuple χ = ((x1)h1 , . . . , (xn)hn), where for all i =
1, . . . , n, xi ∈ Γ∗iQiΣ

∗ is a configuration of Mi and hi ∈ {d, e}.

Definition 5.3 (Computation step in n-SAS)
Let n ∈ N, ϑ = (M1, . . . ,Mn,Ψ) be an n-SAS and Mi = (Qi,Σ,Γi, δi, si, zi,0, ∅), for all
i = 1, . . . , n. Let

• χ = ((γ1q1ω1)h1 , . . . , (γnqnωn)hn) and

• χ′ = ((γ′1q
′
1ω
′
1)h ′1 , . . . , (γ′nq

′
nω
′
n)h ′n)

be two n-configurations of the n-SAS with γi, γ
′
i ∈ Γ∗i , qi, q

′
i ∈ Qi and ωi, ω

′
i ∈ Σ∗. ϑ makes a

computation step from n-configuration χ to χ′, denoted χ ` χ′, where for every i = 1, . . . , n,
the following holds:

• if hi = d, then γiqiωi = γ′iq
′
iω
′
i

• if hi = e, then γiqiωi ` γ′iq′iω′i in Mi

• if (q′1, . . . , q
′
n)→ (g1, . . . , gn) ∈ Ψ, then h ′i = gi

• if (q′1, . . . , q
′
n) → (g1, . . . , gn) 6∈ Ψ, for all (g1, . . . , gn) ∈ {e, d}1 × . . . × {e, d}n, then

h ′i = hi

In the standard way, `∗ and `+ denote reflexive-transitive and transitive closure of `,
respectively.

Informally, during single computation step in n-SAS, all enable PDAs make a move
with respect to their transition rules, while the other automata are frozen and do nothing.
Thereafter, the system checks whether there is a member, for the current combination of
states, in its set of switch rules. If so, activities of the PDAs in the systems are changed;
otherwise, the activities remain unchanged.

Definition 5.4 (n-Language of n-SAS)
Let ϑ = (M1, . . . ,Mn,Ψ) be an n-SAS and for every i = 1, . . . , n, Mi = (Qi,Σ,Γi, δi,
si, zi,0, ∅) be a PDA accepting input strings by empty pushdown. Let

• χ0 = ((z1,0s1ω1)e, . . . , (zn,0snωn)e) be the start n-configuration and

• χf = ((q1)h1 , . . . , (qn)hn) be a final n-configuration of n-SAS,

where for all i = 1, . . . , n, qi ∈ Qi, hi,∈ {d, e}, ωi ∈ Σ∗. The n-language of n-SAS is defined
as n-L(ϑ) = {(ω1, . . . , ωn)| χ0 `∗ χf}.

Example 5.5
Consider a 2-SAS ϑ = (M1,M2,Ψ) given by next.

• M1 = ({q0, q1, q2}, {a, b, c}, {., a}, δ1, q0, ., ∅),

• M2 = ({q0, q1}, {a, b}, {., a}, δ2, q0, ., ∅),
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1.PDA 2.PDA Rule(s) Ψ

(.q0aabbcc)
e (.q0aabb)

e

(.aq0abbcc)
e (.aq0abb)

e (r1, r1)

(.aaq0bbcc)
e (.aaq0bb)

e (r2, r2)

(.aq1bcc)
e (.aq1b)

d (r3, r3) (q1, q1)→ (e, d) ∈ Ψ

(.q1cc)
e (.aq1b)

d (r4,−)

(.q2c)
e (.aq1b)

e (r5,−) (q2, q1)→ (e, e) ∈ Ψ

(.q2)e (.q1)e (r6, r4)

(q2)e (q1)e (r7, r5)

Table 5.1: Acceptance of (aabbcc, aabb) by 2-SAS from Example 5.5

• δ1 = { r1 = .q0a→ .aq0, δ2 = { r1 = .q0a→ .aq0,
r2 = aq0a→ aaq0, r2 = aq0a→ aaq0,
r3 = aq0b→ q1, r3 = aq0b→ q1,
r4 = aq1b→ q1, r4 = aq1b→ q1,
r5 = .q1c→ .q2, r5 = .q1 → q1

r6 = .q2c→ .q2, }
r7 = .q2 → q2

}

• Ψ = {(q0, q1)→ (d, d), (q1, q0)→ (d, d), (q1, q1)→ (e, d), (q2, q1)→ (e, e)}

Both PDAs start with pushing as on their pushdowns. As soon as bs are the first input
symbols in both automata, the PDAs remove as from the pushdowns, move to q1, and by
Ψ, the system makes M2 disable—that is, only M1 continues. Note that the PDAs have to
move to the state q1 at the same time. Otherwise, the system makes both automata frozen
and the inputs are not accepted. In the state q1, M1 compares number of as and bs by
removing as from the pushdown and reading bs from its input. After that, if the number
of as and bs coincides, M1 moves to q2 and M2 becomes enabled. By using rules r6 and r4

in M1 and M2, respectively, M1 reads cs from the input of M1 while M2 compares number
of as and bs. One can see that the last step of the successful computation must be done
by rules r7 in M1 and r5 in M2 at the same time. In this way, the 2-SAS accepts 2-strings
from the 2-language 2-L(ϑ) = {(ambmcm, ambm)| m ∈ N}. Example of acceptance of the
2-string (aabbcc, aabb) is shown in Table 5.1.

For any n-CGN, we can construct an n-SAS that defines the same n-language.

Basic Idea. With regard to the organization, for every CFGG in the n-CGN, the n-SAS has
a PDA which simulates top-down parsing based on G (see [80]). The automaton contains
one state for each nonterminal, where the nonterminal can be expanded; in addition, it
contains two other states for comparisons and acceptation. By the states of the automata,
the n-SAS is able to control what its automata do. If some automata compare terminal
symbols on their pushdowns with input symbols, the other automata have to wait until all
automata are ready to the next expansion or until they accept their inputs. The automata
in the n-SAS make the expansions at the same time, and the n-SAS allows the expansions
if and only if the nonterminals on the tops of the pushdowns can be derived at the same
time in the n-CGN. If an expansion is not allowed, the n-SAS suspends all its automata.
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Algorithm 5.6
Construction of n-SAS from n-CGN

Input: n-CGN Γ̂ = (G1, . . ., Gn, Q̂), where Gi = (N̂i, T̂i, P̂i, Ŝi) be a context-free grammar,
for i = 1, . . . , n.

Output: n-MAS ϑ = (M1, . . . ,Mn,Ψ), where for every i = 1, . . . , n, Mi = (Qi, Σ, Γi, δi,
si,0, zi,0, ∅) is a pushdown automaton accepting by empty pushdown, and n-L(ϑ) = n-L(Γ̂).

Method:

• For every i = 1, . . . , n, set Qi = {〈A〉| A ∈ N̂i} ∪ {ri, fi}, Σ =
⋃n
i=1 T̂i, Γi = Σ ∪ N̂i ∪

{A′| A ∈ N̂i} ∪ {∆,∆′}, si,0 = 〈Ŝi〉 and zi,0 = ∆′.

• For all i = 1, . . . , n, δi is constructed as follows:

0. set δi = ∅,
1. add ∆′〈Ŝi〉 → ∆ŜiŜ

′
i〈Ŝi〉 to δi,

2. add a〈A〉 → ari to δi for every a ∈ T̂i and every A ∈ N̂i,

3. add A′〈B〉 → A′ri to δi for every A,B ∈ N̂i,

4. add aria→ ri to δi for every a ∈ T̂i,
5. add A′ri → 〈A〉 to δi for every A ∈ N̂i,

6. add ∆〈A〉 → fi to δi for every A ∈ N̂i,

7. add ∆ri → fi to δi,

8. for all (A → α) ∈ P̂i, add A〈A〉 → θ(α)〈A〉 to δi, where θ is a projection from
(N̂i ∪ T̂i)∗ to (N̂i{A′| A ∈ N̂i}∪ T̂i)∗ such that θ(ω) = ω′, where ω′ is made from
(ω)R by replacing each A ∈ N̂i in (ω)R by AA′. For example, if a, b ∈ Ti and
A ∈ Ni, θ(aAb) = bAA′a.

• Ψ is constructed in the following way:

0. set Ψ = ∅
1. for all (A1, . . . , An) ∈ Q̂, add (〈A1〉, . . . , 〈An〉)→ (e, . . . , e) to Ψ

2. add (f1, . . . , fn)→ (e, . . . , e) ∈ Ψ,

3. for all (q1, . . . , qn) ∈ Q1 × . . . × Qn, where {r1, . . . , rn} ∩ {q1, . . . , qn} 6= ∅, add
(q1, . . . , qn) → (l1, . . . , ln) such that for all o = 1, . . . , n, qo ∈ {ro} ⇔ lo = e, to
Ψ,

4. for other (q1, . . . , gn) ∈ Q1 × . . .×Qn, add (q1, . . . , qn)→ (d, . . . , d) to Ψ.

Lemma 5.7 Algorithm 5.6 is correct.

Proof of Lemma 5.7. We start to prove the following claims.

Claim 5.8 Let (Ŝ1, . . . , Ŝn)⇒∗ (u1A1v1, . . . , unAnvn) in Γ̂, where Ai ∈ N̂i, vi ∈ (N̂i∪ T̂i)∗,
uiωi ∈ T̂ ∗i , for all i = 1, . . . , n, and (u1A1v1, . . . , unAnvn) ⇒∗ (u1ω1, . . . , unωn), then

((∆′〈Ŝ1〉u1ω1)e, . . . , (∆′〈Ŝn〉unωn)e)

`∗ ((∆θ(v1)A1〈Â1〉ω1)h1 , . . ., (∆θ(vn)An〈Ân〉ωn)hn)

in ϑ.
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Proof of Claim 5.8. By induction hypothesis on the length of derivation.

Basis:
Let (Ŝ1, . . . , Ŝn)⇒0 (Ŝ1, . . . , Ŝn), where (Ŝ1, . . . , Ŝn)⇒∗ (ω1, . . . , ωn) and ωi ∈ T̂ ∗i for every
i = 1, . . . , n. Then,

((∆′〈Ŝ1〉ω1)e, . . . , (∆′〈Ŝn〉ωn)e)

` ((∆Ŝ1Ŝ
′
1〈Ŝ1〉ω1)e, . . . , ((∆ŜnŜ

′
n〈Ŝn〉ωn)e) [by 1. of δi and 1. of Ψ]

` ((∆Ŝ1Ŝ
′
1r1ω1)e, . . . , ((∆ŜnŜ

′
nrnωn)e) [by 3. of δi and 3. of Ψ]

` ((∆Ŝ1〈Ŝ1〉ω1)h1 , . . . , ((∆Ŝn〈Ŝn〉ωn)hn) [by 5. of δi]

for h1, . . . , hn ∈ {e, d}.

Induction Hypothesis:
Suppose that Claim 5.8 holds for j or fewer derivation steps, where j is a non-negative
integer.

Induction Step:
Consider any derivation (Ŝ1, . . . , Ŝn)⇒j+1 (u1x1v1, . . . , unxnvn), where for all i = 1, . . . , n,
uixivi = uiu

′
iBiv

′
i, ui, u

′
i ∈ T̂ ∗i , Bi ∈ N̂i}, vi, v′i, xi ∈ (N̂i ∪ T̂i)∗, for uiωi ∈ T̂ ∗i , (u1u

′
1Biv

′
1v1,

. . . , unu
′
nBnv

′
nvn)⇒∗ (u1ω1, . . . , unωn). We can express this derivation as (Ŝ1, . . . , Ŝn)⇒j

(u1A1v1, . . ., unAnvn) ⇒ (u1x1v1, . . . , unxnvn), where for all i = 1, . . . , n, Ai ∈ N̂i. By
induction hypothesis,

((∆′〈Ŝ1〉u1ω1)e, . . . , (∆′〈Ŝn〉unωn)e)

`∗ ((∆θ(v1)A1〈A1〉ω1)h1 , . . . , ((∆θ(vn)An〈An〉ωn)hn).

Obviously, (A1, . . . , An) ∈ Q̂. From Algorithm 5.6, (〈A1〉, . . . , 〈An〉) → (e, . . . , e) ∈ Ψ
and for every Ai → xi ∈ P̂i, there is Ai〈Ai〉 → θ(xi). Therefore, h1, . . . , hn = e and

((∆θ(v1)A1〈A1〉ω1)e, . . . , ((∆θ(vn)An〈An〉ωn)e)
` ((∆θ(x1v1)〈A1〉ω1)e, . . . , ((∆θ(xnvn)〈An〉ωn)e)

= ((∆θ(v′1)(u′1B
′
1B1)R〈A1〉ω1)e, . . . , ((∆θ(v′n)(u′nB

′
nBn)R〈An〉ωn)e).

There is ai ∈ Γi−(N̂i∪{∆,∆′}) on the top of the pushdown in each automaton. Therefore,
from rules of the form 2. and 3. in δi and from 3. in Ψ, it follows

((∆θ(v′1)(u′1B
′
1B1)R〈A1〉ω1)e, . . . , ((∆θ(v′n)((u′nB

′
nBn)R〈An〉ωn)e)

` ((∆θ(v′1)(u′1B
′
1B1)Rr1ω1)e, . . . , ((∆θ(v′n)(u′nB

′
nBn)Rrnωn)e).

Because uiu
′
iBiv

′
i ⇒∗ uiωi, uiωi = uiu

′
iω
′
i. For every component Mi of ϑ, there is a se-

quence of computation steps ∆θ(v′i)BiB
′
i(u
′
i)
Rriu

′
iω
′
i `∗ ∆θ(v′i)BiB

′
iriω

′
i (by 4. of δi) and

∆θ(v′i)BiB
′
iriω

′
i ` ∆θ(v′i)Bi〈Bi〉u′iω′i (by 5. of δi). From 3. in Ψ, each automaton Mi which

is in state 〈Bi〉 is suspended until no automaton Mj is in state rj . Hence,

((∆θ(v′1)(u′1B
′
1B1)Rr1u

′
1ω
′
1)e, . . . , ((∆θ(v′n)(u′nB

′
nBn)Rrnu

′
nω
′
n)e)

`∗ ((∆θ(v′1)B1〈B1〉ω′1)l1 , . . . , ((∆θ(v′n)Bn〈Bn〉ω′n)ln)

for l1 . . . ln ∈ {e, d}. Claim 5.8 holds.

Claim 5.9 If (Ŝ1, . . . , Ŝn) ⇒∗ (ω1, . . . , ωn) in Γ̂, where for every i = 1, . . . , n, ωi ∈ T̂ ∗i ,

there is a sequence of moves (∆′〈Ŝ1〉ω1)e, . . . , (∆′〈Ŝn〉ωn)e) `∗ ((f1)e, . . . , (fn)e) in ϑ.
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Proof of Claim 5.9. Consider any successful derivation (Ŝ1, . . . , Ŝn)⇒∗ (ω1, . . . , ωn). There
must be an n-form of the form (u1A1v1, . . . , unAnvn) such that (Ŝ1, . . ., Ŝn) ⇒∗ (u1A1v1,
. . ., unAnvn) ⇒ (u1x1v1, . . ., unxnvn) = (ω1, . . . , ωn). By Claim 5.8,

((∆′〈Ŝ1〉ωi)e, . . . , (∆′〈Ŝn〉ωn)e)

`∗ ((∆θ(v1)A1〈A1〉ω′1)h1 , . . . , (∆θ(vn)An〈An〉ω′n)hn)

and for all i = 1, . . . , n, ωi = uiω
′
i. Because (A1, . . . , An) ∈ Q̂, (〈A1〉, . . . , 〈An〉) →

(e, . . . , e) ∈ Ψ, for every i = 1, . . . , n, hi = e and ϑ moves to (∆θ(x1v1)〈A1〉ω′1)e, . . . ,
(∆θ(xnvn)〈An〉ω′n)e. For every i = 1, . . . , n, ω′i = xivi, because ωi = uixivi = uiω

′
i. There-

fore, there are these two possibilities of the top symbol on the pushdown in each automaton
of ϑ:

a) The top symbol is ∆, then xivi = ε and ω′i = ε—that is, Mi moves to fi. Furthermore,
if any other automaton Mj is in the state rj , automaton Mi is blocked.

b) The top symbol is ai ∈ T̂i, than ∆(xivi)
R〈Ai〉xivi ` ∆(xivi)

Rrixivi (by rule of the
form 2. of δi) and ∆(xivi)

Rrixivi `∗ ∆ri (by rules type 4. of δi), ∆ri ` fi (by 7) and
automaton Mi is blocked until no other automaton Mj of ϑ is in state rj .

In this way, ϑ moves to n-configuration ((f1)e, . . . , (fn)e) and Claim 5.9 holds.

Claim 5.10 If (∆′〈Ŝ1〉ω1)e, . . . , (∆′〈Ŝn〉ωn)e) `∗ ((f1)e, . . . , (fn)e) in ϑ, there is a sequence
of derivation steps (Ŝ1, . . . , Ŝn)⇒∗ (ω1, . . . , ωn).

Proof of Claim 5.10. Consider any successful acceptance:

(∆′〈Ŝ1〉ω1)e, . . . , (∆′〈Ŝn〉ωn)e) `∗ ((f1)e, . . . , (fn)e) (I)

in ϑ. From Algorithm 5.6 (by 1. of δi), the first step of ϑ must be

(∆′〈Ŝ1〉ω1)e, . . . , (∆′〈Ŝn〉ωn)e)

` ((∆Ŝ1Ŝ
′
1〈Ŝ1〉ω1)l1 , . . . , ((∆ŜnŜ

′
n〈Ŝn〉ωn)ln),

and from construction of Ψ, there are two possibilities of activities of automata in ϑ:

• (〈Ŝ1〉, . . . , 〈Ŝn〉) → (d, . . . , d) ∈ Ψ, but for every i = 1, . . . , n, li = d and ϑ is not
successful for any input.

• Therefore, (〈Ŝ1〉, . . . , 〈Ŝn〉)→ (e, . . . , e) ∈ Ψ and for every i = 1, . . . , n, li = e.

From rules of the form 3. and 5. in δi, ϑ must make two following computation steps:

((∆Ŝ1Ŝ
′
1〈Ŝ1〉ω1)e, . . . , ((∆ŜnŜ

′
n〈Ŝn〉ωn)e)

` ((∆Ŝ1Ŝ
′
1r1ω1)e, . . . , ((∆ŜnŜ

′
nrnωn)e)

` ((∆Ŝ1〈Ŝ1〉ω1)e, . . . , ((∆Ŝn〈Ŝn〉ωn)e).

Consider any n-configuration of the form ((∆A1〈A1〉ω′1)e, . . . , ((∆An〈An〉ω′n)e), where
((∆A1〈A1〉ω′1)e, . . . , ((∆An〈An〉ω′n)e) `∗ ((f1)e, . . . , (fn)e). ϑ makes these computation
steps:

((∆A1〈A1〉ω′1)e, . . . , ((∆An〈An〉ω′n)e)
` ((∆γ1〈A1〉ω′1)e, . . . , ((∆γn〈An〉ω′n)e)

` ((γ′1q1ω
′
1)l1 , . . . , ((γ′nqnω

′
n)ln),
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and (from 2., 3. and 6. of δi and from Ψ) for every i = 1, . . . , n, it holds:

• if γi = ε, then γ′i = ω′i = ε, qi = fi and if γ1, . . . , γn = ε (i.e. for every j = 1, . . . , n,
qj = fj), then li = e; otherwise, li = d,

• else γ′i = ∆γi, qi = ri and li = e.

Hence, there are only three applicable types of moves over each automaton Mi, which is in
state ri:

• aria→ ri where a ∈ T̂i and Mi is still active in the next computation step;

• B′iri → 〈Bi〉 where Bi ∈ N̂i, than the next top symbol on the pushdown must be Bi
and Mi is blocked until any automaton Mj of ϑ is not in state rj ;

• ∆ri → fi and Mi is blocked until any automaton Mj of ϑ is in state rj .

These three types of steps are repeatedly applied on active components of ϑ. Hence, and
from the construction of Ψ, the following configuration of ϑ must be either

i. ((f1)e, . . . , (fn)e) (n-string is accepted), or

ii. ((∆γ′1B1〈B1〉ω′′1)e, . . ., ((∆γ′nBn〈Bn〉ω′′n)e), where for every i = 1, . . . , n, Bi ∈ N̂i and
(〈B1〉, . . . , 〈Bn〉)→ (e, . . . , e) ∈ Ψ.

For others n-tuples of states, ϑ blocked all automata (by 4. of Ψ) and the n-string is not
accepted. It is obvious that we can express (I) as

(∆′〈Ŝ1〉ω1)e, . . . , (∆′〈Ŝn〉ωn)e)

`3 ((∆Ŝ1〈Ŝ1〉ω1)e, . . . , ((∆Ŝn〈Ŝn〉ωn)e)

`m1 ((∆γ
(1)
1 A

(1)
1 〈A

(1)
1 〉ω

(1)
1 )e, . . . , ((∆γ

(1)
n A

(1)
n 〈A(1)

n 〉ω(1)
n )e)

`m2 ((∆γ
(2)
1 A

(2)
1 〈A

(2)
1 〉ω

(2)
1 )e, . . . , ((∆γ

(2)
n A

(2)
n 〈A(2)

n 〉ω(2)
n )e)

...

`mk ((∆γ
(k)
1 A

(k)
1 〈A

(k)
1 〉ω

(k)
1 )e, . . . , ((∆γ

(k)
n A

(k)
n 〈A(k)

n 〉ω(k)
n )e)

`mk+1 ((f1)e, . . . , (fn)e)

for all i = 1, . . . k + 1, mi ≥ 1. The computation of ϑ can be simulated by Γ̂ as

(Ŝ1, . . . , Ŝn)

⇒ (u
(1)
1 A

(1)
1 v

(1)
1 , . . . , u

(1)
n A

(1)
n v

(1)
n )

⇒ (u
(2)
1 A

(2)
1 v

(2)
1 , . . . , u

(2)
n A

(2)
n v

(2)
n )

...

⇒ (u
(k)
1 A

(k)
1 v

(k)
1 , . . . , u

(k)
n A

(k)
n v

(k)
n )

⇒ (u
(k+1)
1 , . . . , u

(k+1)
n ) = (ω1, . . . , ωn),

where for every i = 1, . . . , n and for every j = 1, . . . , k + 1, u
(j)
i ∈ T̂ ∗i , A

(j)
i ∈ N̂i, v

(j)
i ∈

(T̂i ∪ N̂i)
∗, and u

(j)
i ω

(j)
i = ωi. Hence, Claim 5.10 holds.

From Claim 5.8, 5.9, and 5.10, n-L(ϑ) = n-L(Γ̂). Therefore, Lemma 5.7 holds. �
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5.2 n-Accepting Move-Restricted Automata Systems

The second variant of n-accepting automata systems studied in this publication are n-
accepting move-restricted automata systems. In contrast to n-accepting state-restricted
automata systems, all PDAs in the n-accepting move-restricted automata systems work
during whole computation. The restriction is based on limitation of transition rules that
PDAs can select for a common computation step.

Definition 5.11 (n-Accepting move-restricted automata system)
Let Mi = (Qi,Σ,Γi, δi, si, zi,0, ∅) be a PDA for all i = 1, . . . , n. Then, an n-accepting move-
restricted automata system, n-MAS for short, is defined as ϑ = (M1, . . . ,Mn,Ψ), where Ψ
is a finite set of n-tuples of the form (r1, . . . , rn) and for each j = 1, . . . , n, rj ∈ δi.

Definition 5.12 (n-Configuration of n-MAS)
Let ϑ = (M1, . . . ,Mn,Ψ) be an n-MAS and Mi = (Qi,Σ,Γi, δi, si, zi,0, ∅) for all i = 1, . . . , n.
Then, n-configuration is defined as an n-tuple χ = (x1, . . . , xn), where for all i = 1, . . . , n,
xi ∈ Γ∗iQiΣ

∗ is a configuration of Mi.

Definition 5.13 (Computation step in n-MAS)
Let ϑ = (M1, . . . ,Mn,Ψ) be an n-MAS and for each i = 1, . . . , n, Mi = (Qi,Σ,Γi, δi,
si, zi,0, ∅). Let

• χ = (z1γ1q1a1ω1, . . . , znγnqnanωn) and

• χ′ = (z1γ
′
1q
′
1ω1, . . . , znγ

′
nq
′
nωn),

be two n-configurations and for all i = 1, . . . , n, qi, q
′
i ∈ Qi, γ′i, zi ∈ Γ∗i , γi ∈ Γ, ωi ∈ Σ∗,

ai ∈ Σ ∪ {ε}, ri = γiqiai → γ′iq
′
i ∈ δi and (r1, . . . , rn) ∈ Ψ. Then, ϑ makes a computation

step from n-configuration χ to χ′, denoted χ ` χ′, and in the standard way, `∗ and `+

denote the reflexive-transitive and the transitive closure of `, respectively.

Informally, all PDAs in n-MAS have to make moves at the same time and combination
of transition rules concurrently applied by PDAs have to be permitted by Ψ.

Definition 5.14 (n-Language of n-MAS)
Let ϑ = (M1, . . . ,Mn,Ψ) be an n-MAS and for every i = 1, . . . , n, Mi = (Qi,Σ,Γi, δi,
si, zi,0, ∅) be a pushdown automaton accepting input strings by empty pushdown. Let

• χ0 = (z1,0s1ω1, . . . , zn,0snωn) be the start n-configuration and

• χf = (q1, . . . , qn) be a final n-configuration of n-MAS,

where for all i = 1, . . . , n, qi ∈ Qi, ωi ∈ Σ∗. The n-language of n-MAS is defined as
n-L(ϑ) = {(ω1, . . . , ωn)| χ0 `∗ χf}.

Example 5.15
Consider a 2-MAS ϑ = (M1,M2,Ψ), where

• M1 = ({q0, q1, q2}, {a, b, c}, {., a}, δ1, q0, ., ∅),

• M2 = ({q0}, {a, b}, {., a}, δ2, q0, ., ∅),
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1.PDA 2.PDA Rule(s)

.q0aabbcc .q0aabb

.aq0abbcc .aq0abb (r1, r1)

.aaq0bbcc .aaq0bb (r2, r2)

.aq1bcc .aq0b (r3, r3)

.q1cc .aq0b (r4, r4)

.q2c .aq0b (r5, r4)

.q2 .q0 (r6, r3)

q2 q0 (r7, r7)

Table 5.2: Acceptance of (aabbcc, aabb) by 2-MAS from Example 5.15

• δ1 = { r1 = .q0a→ .aq0, δ2 = { r1 = .q0a→ .aq0,
r2 = aq0a→ aaq0, r2 = aq0a→ aaq0,
r3 = aq0b→ q1, r3 = aq0b→ q0,
r4 = aq1b→ q1, r4 = aq0 → aq0,
r5 = .q1c→ .q2, r5 = .q0 → .q0

r6 = .q2c→ .q2, r6 = aq0b→ q0,
r7 = .q2 → q2 r7 = .q0 → q0

} }

• Ψ = {(r1, r1), (r2, r2), (r3, r3), (r4, r4), (r4, r5), (r5, r4), (r5, r4), (r6, r3), (r7, r7)}

The automata system works in a similar way like the n-SAS in Example 5.5 does. Both
PDAs start with pushing as on their pushdowns. As soon as bs are the first input symbols
in both automata, the PDAs remove as from the pushdowns and M1 moves to q1. In
the state q1, M1 compares number of as and bs while M2 is cycling by transition rule r4

or r5. After that, if the number of as and bs coincides, M1 moves to q2 with reading c.
By using rules r6 and r3 in M1 and M2, respectively, M1 reads cs from the input of M1

while M2 is comparing number of as and bs. The last step of the successful computation
is done by rule r7 in M1 and M2 at the same time. The 2-language that ϑ accepts is
2-L(ϑ) = {(ambmcm, ambm)| m ∈ N}. Example of acceptance of the 2-string (aabbcc, aabb)
is shown in Table 5.2.

By Algorithm 5.16, it is shown that for any n-SAS, we are able to construct an n-MAS
that define the same n-language as the origin n-SAS does. Pushdown automata of the
n-MAS are defined in the same way as in n-SAS, but each of these automata, in addition,
includes empty loops for all states. By the set Ψ, n-MAS determines that each automaton
has to use this rule if the automaton is suspended in the n-SAS.

Algorithm 5.16
Construction of n-MAS from n-SAS

Input: n-MAS ϑ = (M1, . . . ,Mn,Ψ), where for all i = 1, . . . , n, Mi = (Qi, Σ, Γi, δi, si, zi,
∅) is a PDA accepting by empty pushdown.

Output: n-SAS ϑ̂ = (M̂1, . . . , M̂n, Ψ̂), where for all i = 1, . . . , n, M̂i = (Q̂i, Σ, Γ̂i, δ̂i, ŝi,
#, ∅) is a PDA accepting by empty pushdown and n-L(ϑ) = n-L(ϑ̂).

Method:
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• For all i = 1, . . . , n, set Q̂i = Qi ∪ {ŝi} and Γ̂i = Γi ∪ {#}.

• The sets δ̂i is constructed in the following way:

1. set δ̂i = ∅,
2. add #ŝi → #zisi to δ̂i, where zi is the initial pushdown symbol of pushdown

automaton Mi,

3. for every r ∈ δi, add r to δ̂i,

4. for every q ∈ Qi and for every a ∈ Γ̂i, add raq = aq → aq to δ̂i,

5. for every q ∈ Qi, add #q → q to δ̂i.

• Ψ̂ =

{(p1, . . . , pn)|
∗ ((z1s1ω1)e, . . . , (znsnωn)e) `∗ ((γ1q1)h1 , . . . , (γnqn)hn) in ϑ,

∗ for all i = 1, . . . , n, #yiqiai ` #α1q
′
1[pi] in M̂i, where pi = yiqi → yiqi and

ai = ε if hi = d; otherwise pi = yiqiai → αiq
′
i,

with ωi ∈ Σ∗, qi, q
′
i ∈ Qi, yi ∈ Γ̂, αi ∈ Γ∗, ai ∈ Σ ∪ {ε}}

∪ {(#q1 → q1, . . . ,#qn → qn)| for all qi ∈ Qi}
∪ {(#ŝ1 → #z1s1, . . . ,#ŝn → #znsn)}.

Lemma 5.17 Algorithm 5.16 is correct.

Proof of Lemma 5.17. For the proof, we establish the following claims.

Claim 5.18 Let ((z1s1ω1)h1 , . . . , (znsnωn)hn) `∗ ((γ1q1ω
′
1)h ′1 , . . . , (γnqnω

′
n)h ′n) in ϑ, then

(#z1s1ω1, . . . ,#znsnωn) `∗ (#γ1q1ω
′
1, . . . ,#γnqnω

′
n) in ϑ̂.

Proof of Claim 5.18. By induction on the number of computation steps.

Basis:
Let ((z1s1ω1)h1 , . . . , (znsnωn)hn) `0 ((γ1q1ω

′
1)h ′1 , . . . , (γnqnω

′
n)h ′n) in ϑ. Visibly, ((z1s1ω1)h1 ,

. . . , (znsnωn)hn) = ((γ1q1ω
′
1)h ′1 , . . . , (γnqnω

′
n)h ′n) and (#γ1q1ω

′
1, . . ., #γnqnω

′
n) `0 (#γ1q1ω

′
1,

. . . ,#γnqnω
′
n) in ϑ̂.

Induction hypothesis:
Suppose that Claim 5.18 holds for j or fewer computation steps.

Induction step:
Let

((z1s1ω1)h1 , . . . , (znsnωn)hn) `j ((γ1q1ω
′
1)h ′1 , . . . , (γnqnω

′
n)h ′1)

` ((γ′1q
′
1ω
′′
1)h ′′1 , . . . , (γ′nq

′
nω
′′
n)h ′′1 )

in ϑ. By the induction hypothesis

(#z1s1ω1, . . . ,#znsnωn) `∗ (#γ1q1ω
′
1, . . . ,#γnqnω

′
n)

in ϑ̂. For every i = 1, . . . , n such that:

• h′i = d, (γiqiω
′
i)

h ′i = (γ′iq
′
iω
′′
i )h ′′i . By 4. of δ̂i, there is a rule ri ∈ δ̂i, where #γiqiω

′
i `

#γiqiω
′
i[ri] in M̂i.
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• h′i = e, γiqiω
′
i ` γ′iqiω′′i [ri] in Mi. However, if ri ∈ δi, then ri ∈ δ̂i and #γiqiω

′
i `

#γ′iq
′
iω
′′
i [ri] in M̂i.

Furthermore, (r1, . . . , rn) ∈ Ψ̂. Therefore, from δ̂i and Ψ̂, (#γ1q1ω
′
1, . . . ,#γnqnω

′
n) `

(#γ′1q
′
1ω
′′
1 , . . . ,#γ

′
nq
′
nω
′′
n) in ϑ̂. Claim 5.18 holds.

Claim 5.19 Let (#z1s1ω1, . . . ,#znsnωn) `∗ (#γ1q1ω
′
1, . . . ,#γnqnω

′
n) in n-MAS ϑ̂, then

((z1s1ω1)h1 , . . . , (znsnωn)hn) `∗ ((γ1q1ω
′
1)h ′1 , . . . , (γnqnω

′
n)h ′n) in ϑ.

Proof of Claim 5.19. By induction on the number of computation steps.

Basis:
Let (#z1s1ω1, . . . ,#znqnωn) `0 (#γ1q1ω

′
1, . . . ,#γnqnω

′
n) in ϑ̂. Surely, (z1s1ω1, . . . , znqnωn)

= (γ1q1ω
′
1, . . . , γnqnω

′
n), and consequently, ((zq1ω

′
1)h1 , . . . , (znqnω

′
n)hn) `0 ((γ1q1ω

′
1)h ′1 , . . . ,

(γnqnω
′
n)h ′n) in ϑ and hi = h ′i for every i = 1, . . . , n.

Induction hypothesis:
Suppose that Claim 5.19 holds for j or fewer computation steps.

Induction step:
Let (#z1s1ω1, . . . ,#znsnωn) `j (#γ1q1ω

′
1, . . . ,#γnqnω

′
n) ` (#γ′1q

′
1ω
′′
1 , . . . , #γ′nq

′
nω
′′
n) in ϑ̂.

By the induction hypothesis ((z1s1ω1)h1 , . . . , (znsnωn)hn) `j ((γ1q1ω
′
1)h ′1 , . . . , (γnqnω

′
n)h ′n) in

ϑ. For every i = 1, . . . , n such that:

• #γiqiω
′
i 6= #γ′iq

′
iω
′′
i , there is a rule ri ∈ δ̂i constructed by 1 of δ̂i such that γiqiω

′
i `

γ′iq
′
iω
′′
i [ri] in M̂i. Therefore, ri ∈ δi and from Ψ̂, h′i = e. That is, γiqiω

′
i ` γ′iq′iω′′i [ri] in

Mi.

• #γiqiω
′
i = #γ′iq

′
iω
′′
i , there must be a rule ri ∈ δ̂i such that #γiqiω

′
i ` #γ′iq

′
iω
′′
i [ri] in

M̂i. From the construction of δ̂i,ri ∈ δi ⇔ h ′i = e. Therefore, either γiqiω
′
i ` γiqiω′i[ri]

in Mi, or hi = d and automaton Mi is blocked.

In this way, ((γ1q1ω
′
1)h ′1 , . . . , (γnqnω

′
n)h ′n) ` ((γ′1q

′
1ω
′′
1)h ′′1 , . . . , (γ′nq

′
nω
′′
n)h ′′n ) in ϑ̂. That is, Claim

5.19 holds.

By 2. of δ̂i and because (#ŝ1 → #z1s1, . . . ,#ŝn → #znsn) ∈ Ψ̂, the first step of ϑ̂
is (#ŝ1ω1, . . . ,#ŝnωn) ` (#z1s1ω1, . . . ,#znsnωn). Similarly, the last step, for acceptance,
is step of the form (#q1, . . . , qn) ` (#q1, . . . , qn) because of 1 in construction of δ̂i and
(#q1 → q1, . . . ,#qn → qn) ∈ Ψ̂. Hence, from Claims 5.18 and 5.19, Lemma 5.17 holds. �

It is well-known that for every PDA M , there is a context-free grammar G such that
L(M) = L(G). The conversion of a PDA into CFG is usually performed by Algorithm 5.20.

Algorithm 5.20
Construction of CFG from PDA

Input: A PDA M = (QM ,ΣM ,ΓM , δM , s0, Z0, ∅)
Output: A CFG G = (NG, TG, SG, PG) such that L(M) = L(G)

Method:

• Set NG = {〈qAp〉| p ∈ QM , A ∈ ΣM} ∪ {S}, PG = {S → 〈aAp〉| p ∈ QM}, TG = ΣM

and i = 1.
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• For each r = Aq0a → Bn . . . B1q1 ∈ δM , where a ∈ ΣM ∪ {ε}, q0, q1 ∈ QM ,
A,B1, . . . , Bn ∈ ΣM , for some n ≥ 0 do:

– ρ(r) = {〈q0Aqn+1〉 → a〈q1B1q2〉 . . . 〈qnBnqn+1〉| q2, . . . , qn+1 ∈ QM}
– Set PG = PG ∪ ρ(r) and i = i+ 1.

Lemma 5.21 For any n-MAS ϑ, there is an n-CGR Γ such that L(ϑ) = L(Γ).

Proof of Lemma 5.21. Consider an n-MAS ϑ = (M1, . . . ,Mn,Ψ). It is indisputable that
Algorithm 5.20 can be applied on each component of automata system and in this way,
the components of n-CGR Γ = (G1, . . . , Gn, Q) can be constructed. Observe that there
is a set of context-free rules ρi(r) constructed for every transition rule r and each PDA
Mi of ϑ, and for every i = 1, . . . , n, L(Mi) = L(Gi). Furthermore, for every i = 1, . . . , n,
Gi simulates Mi step by step (see p.486–491 in [80]). It is easy to see that L(Γ) = L(ϑ)
for Γ = (G1, . . . , Gn, Q) where Q = {(r1, . . . rn)| (p1, . . . , pn) ∈ Ψ and for all i = 1, . . . , n,
ri ∈ ρi(pi)}. �

This chapter is closed by the following theorem saying that the investigated systems
define the same class of n-languages—in other words, the systems are equivalent.

Theorem 5.22 The classes of n-languages given by n-CGN, n-CGR, n-SAS, and n-MAS
coincide.

Proof of Theorem 5.22. From [82], we know that the classes of n-languages generated by
n-CGN and n-CGR coincide. Hence, from Lemma 5.7, Lemma 5.17, and from Lemma 5.21,
Theorem 5.22 holds. �
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Chapter 6

Classes of n-Languages: Hierarchy
and Properties

In the previous chapter, we have shown that multi-generative grammar systems have their
twins in terms of automata, which can accept such n-languages that the grammar systems
generate. However, only context-free grammars and pushdown automata as the components
of systems have been considered. In the following sections, we generalize the theory of n-
languages and discuss hybrid canonical rule-synchronized n-generative grammar systems
and hybrid n-accepting move-restricted automata systems, where components with differ-
ent generative and accepting power can be used in one grammar and automata system,
respectively.

More specifically, in Section 6.1, we introduce grammar systems, which combine right-
linear grammars, linear grammars, and context-free grammars; and automata systems,
which combine finite automata, 1-turn pushdown automata, and pushdown automata in
one instance. After that, in Section 6.2, the class hierarchy based on the mentioned models
is established. In addition, several closure properties are discussed.

6.1 Definitions

Similarly to n-CGR, the hybrid canonical rule-synchronized n-generative grammar system
consists of n generative components (grammars) and a control set of n-tuples of rules. Each
grammar generates its own string in the leftmost way, while the control set determines which
grammar rules can be used at the same derivation step in all components. In this work, we
study combination of right-linear, linear, and context-free grammars (see Definition 6.1).

Definition 6.1 (Hybrid canonical rule-synchronized n-generative grammar system)
A hybrid canonical rule-synchronized n-generative grammar system, shortly HCGR(t1,...,tn),
is an n+ 1-tuple Γ = (G1, . . . , Gn, Q), where

• Gi = (Ni, Ti, Pi, Si) is a right-linear, linear, or context-free grammar for every i =
1, . . . , n,

• Q is a finite set of n-tuples of the form (r1, . . . , rn), where ri ∈ Pi for every i = 1, . . . , n,
and

• for all i = 1, . . . , n, ti ∈ {RLNG,LNG,CFG} denotes type of ith component.
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A sentential n-form of HCGR(t1,...,tn) is an n-tuple χ = (x1, . . . , xn), where xi ∈ (Ni ∪ Ti)∗
for all i = 1, . . . , n.

Consider two sentential n-forms, χ = (u1A1v1, . . . , unAnvn) and χ′ = (u1x1v1, . . . , unxnvn)
with

• Ai ∈ Ni,

• ui ∈ T ∗,

• vi, xi ∈ (N ∪ T )∗,

• ri = Ai → xi ∈ Pi, for all i = 1, . . . , n, and

• (r1, . . . , rn) ∈ Q.

Then, χ ⇒ χ′, and ⇒∗ and ⇒+ are its reflexive-transitive and transitive closure, respec-
tively.

The n-language of Γ is defined as n-L(Γ) = {(w1, . . . , wn)| (S1, . . . , Sn) ⇒∗ (w1, . . . , wn),
wi ∈ T ∗i , for all i = 1, . . . , n}.

The generalized version of n-MAS are hybrid n-accepting move-restricted automata sys-
tems. In accordance with n-MAS (see Section 5.2), a hybrid n-accepting move-restricted
automata system is a vector of automata working on their own input, together with a set of
n-tuples of transition rules. This set restricts moves that the components can make in the
same computation step. If and only if all components accept their input, the automata sys-
tem accepts the n-tuple of these input strings. The generalized version allows combination
of different types of automata in one automata system.

Definition 6.2 (Hybrid n-accepting move-restricted automata system)
A hybrid n-accepting move-restricted automata system, denoted by HMAS(t1,...,tn), is defined
as an n + 1-tuple ϑ = (M1 . . . ,Mn,Ψ) with Mi as a finite or (1-turn) pushdown automa-
ton, for all i = 1, . . . , n, and with Ψ as a finite set of n-tuples of the form (r1, . . . , rn),
where for every j = 1, . . . , n, rj ∈ δj in Mj . Furthermore, for all i = 1, . . . , n, ti ∈
{FA, 1-turn PDA, PDA} indicates the type of ith automaton.

An n-configuration is defined as an n-tuple χ = (x1, . . . , xn), where for all i = 1, . . . , n, xi
is a configuration of Mi. Let χ = (x1, . . . , xn) and χ′ = (x′1, . . . , x

′
n) be two n-configurations,

where for all i = 1, . . . , n, xi ` x′i [ri] in Mi, and (r1, . . . , rn) ∈ Ψ, then ϑ makes a compu-
tation step from χ to χ′, denoted by χ ⇒ χ′, and in the standard way, `∗ and `+ denote
the reflexive-transitive and the transitive closure of `, respectively.

Let χ0 = (x1ω1, . . . , xnωn) be the start and χf = (q1, . . . , qn) be a final n-configuration

of HMAS(t1...,tn), where for all i = 1, . . . , n, ωi is the input string of Mi and qi is state
of Mi. The n-language of HMAS(t1,...,tn) is defined as n-L(ϑ) = {(ω1, . . . , ωn)| χ0 `∗
χf and for every i = 1, . . . , n, Mi accepts}.

Convention 6.3 In a special case, where all components are of type X, we write nX
instead of (X, . . . ,X). For example, a hybrid n-accepting move-restricted automata system,
where all components are PDAs, is denoted by HMASnPDA. If there is no attention on the
number and type of components, we write HMAS and HCGR rather than HMAS(t1,...,tn)

and HCGR(t1,...,tn), respectively.
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Definition 6.4 (Classes of n-Languages)

– L (HMAS(t1,...,tn)) is the class of n-languages accepted by HMAS(t1,...,tn)

– L (HCGR(t1,...,tn)) is the class of n-languages generated by HCGR(t1,...,tn)

6.2 Class Hierarchy and Closure Properties

We start this section by the following lemma, which says that for every HCGR(t1,...,tn)

containing RLNGs and CFGs, we can construct an HMAS(t′1,...,t
′
n), including FAs and PDAs,

that defines the same n-language as the HCGR(t1,...,tn) does.

Lemma 6.5 For every HCGR(t1,...,tn) Γ̂ = (Ĝ1, . . ., Ĝn, Q̂), where Ĝi is either RLNG or
CFG for all i = 1, . . . , n, there is an HMAS(t′1,...,t

′
n) ϑ = (M1, . . . , Mn,Ψ) such that n-L(ϑ) =

n-L(Γ̂) and for all i = 1, . . . , n, Mi is either FA or PDA.

Proof of Lemma 6.5. Consider an HCGR(t1,...,tn) Γ̂ = (Ĝ1, . . . , Ĝn, Q̂) and, by the following
algorithm, construct HMAS(t′1,...,t

′
n) ϑ = (M1, . . . ,Mn,Ψ).

For every i = 1, . . . , n,

• if Ĝi = (N̂i, T̂i, P̂i, Ŝi) is an RLNG, then construct FA Mi = (Qi,Σi, δi, 〈Ŝi〉, Fi) in
the following way:

– set Qi = {〈A〉| A ∈ N̂i};
– set Σi = T̂i;

– set δi = {〈A〉a → 〈B〉| A → aB ∈ P̂i} ∪ {〈A〉 → 〈A〉| 〈A〉 ∈ Qi} ∪ {〈A〉a →
fi| A→ a ∈ P̂i};

– set Fi = {fi};

• if Ĝi = (N̂i, T̂i, P̂i, Ŝi) is a CFG, construct PDA Mi = (Qi,Σi,Γi, δi, q
′
i, ., ∅) as follows:

– set Qi = {q′i, qi};

– set Σi = T̂i;

– set Γi = T̂i ∪ N̂i;

– set δi = {.q′i → .Ŝiqi} ∪ {Aqi → xqi| A → (x)R ∈ P̂i} ∪ {Aqi → Aqi| A ∈
N̂i ∪ {.}} ∪ {aqia→ qi| a ∈ T̂i} ∪ {.qi → qi};

The set Ψ is constructed in this way: set Ψ = {(♦p1 → ♦t1p′1, . . . ,♦pn → ♦tnp′n)}∪{(♦p̂1 →
p̂′1, . . . ,♦p̂n → p̂′n}, where

• ♦ti = ε, pi, p
′
i = 〈Ŝi〉, p̂i ∈ Qi − {fi}, and p̂′i = fi iff Mi is an FA, and pi, p̂i, p̂

′
i = q′i,

p′i = qi, and ♦ti = .Ŝi;

• otherwise, for all ri ∈ δi such that ri is given from some r′i ∈ P̂i and (r′1, . . . , r
′
n) ∈ Q̂,

include (r1, . . . , rn) into Ψ;

• for all ri ∈ δi such that ri is not given from any r′i ∈ P̂i and for at least one i = 1, . . . , n,

ri is of the form aqia→ qi with a ∈ T̂i, include (r1, . . . , rn) into Ψ;

Now, we can prove the following claims.
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Claim 6.6 Let ϑ is automata system given from grammar system Γ̂ by the previous algo-
rithm. If (Ŝ1, . . . , Ŝn) ⇒∗ (u1A1v1, . . . , unAnvn) in Γ̂ with Ai ∈ N̂i, for every i = 1, . . . , n,
and (u1A1v1, . . . , unAnvn) ⇒∗ (ω1, . . . , ωn), then (x1ω1, . . . , xnωn) `∗ (♦(v1)Rt1p1ω

′
1, . . . ,

♦(vn)Rtnpnω
′
n) in ϑ, where for all 1 ≤ i ≤ n, ωi = uiω

′
i, and if Mi is PDA, xi = .q′i, ti = Ai,

pi = qi, and ♦ = .; otherwise, xi = 〈Ŝi〉, ♦ti = ε, and pi = 〈Ai〉.

Proof of Claim 6.6. By induction hypothesis on the number of derivation steps.

Basis. Let (Ŝ1, . . . , Ŝn) ⇒0 (Ŝ1, . . . , Ŝn) in Γ̂. Then, (x1ω1, . . . , xnωn) = (♦p1ω1, . . . ,
♦pnωn) ` (♦t1p1ω1, . . . ,♦tnpnωn) with ♦ti = ε if Mi is an FA; otherwise, ♦tipi = .Ŝiqi and
xi = .q′i. The claim holds.

Induction Hypothesis. Suppose that Claim 6.6 holds for j or fewer derivation steps, where
j is a non-negative integer.

Induction Step. Consider derivation of the form (Ŝ1, . . . , Sn) ⇒j+1 (u′1A1v
′
1, . . . , u

′
nAnv

′
n)

in Γ̂, where (u′1A1v
′
1, . . . , u

′
nAnv

′
n) ⇒∗ (ω1, . . . , ωn). We can express this derivation as

(Ŝ1, . . . , Sn) ⇒j (u1B1v1, . . . , unBnvn) ⇒ (u′1A1v
′
1, . . . , u

′
nAnv

′
n). By the induction hy-

pothesis, (x1ω1, . . . , xnωn) `∗ (♦(v1)Rt1p1ω
′
1, . . . , ♦(vn)Rtnpnω

′
n), where for all i = 1, . . . , n,

ωi = uiω
′
i, and if Mi is PDA, xi = .Ŝiqi, ti = Bi, and pi = qi; otherwise, xi = 〈B̂i〉, ti = ε,

and pi = 〈Bi〉. Because (u1B1v1, . . . , unBnvn)⇒1 (u′1A1v
′
1, . . . , u

′
nAnv

′
n), there have to be n

rules, r′1, . . . , r
′
n, such that uiBivi ⇒ u′iAiv

′
i[r
′
i] in Ĝi. From the construction of ϑ, there are

n rules, r1, . . . , rn, created from r′i in δi. These rules are of the form ri = 〈Bi〉a→ 〈Ai〉 if Mi

is FA, or ri = Biqi → xiqi, otherwise. As (u1B1v1, . . . , unBnvn)⇒1 (u′1A1v
′
1, . . . , u

′
nAnv

′
n)

in Γ̂, (r1, . . . , rn) ∈ Q̂ and (r′1, . . . , r
′
n) ∈ Ψ. Hence, for all i = 1, . . . , n and ω′i = aiω

′′
i with

ai ∈ Σi ∪ {ε}, if Mi is PDA, .(vi)
RBiqiω

′
i ` .(x′iv′i)

Rqiω
′′
i = .(v′i)

RAi(u
′
i)
Rqiω

′′
i ; otherwise,

〈Bi〉aiω′′i ` 〈Ai〉. After this step, some PDAs can have a terminal symbol as the topmost
pushdown symbol. In this case, from the construction of Ψ, these PDAs have to compare
topmost pushdown symbols with their inputs until no terminal symbol is on the top of their
pushdown. The other automata loop and wait until no PDA is reading its input. There-
fore, (♦(v1)Rt1p1ω

′
1, . . . ,♦(vn)Rtnpnω

′
n) `∗ (♦(v′1)Rt′1p

′
1ω
′′
1 , . . . ,♦(v′n)Rt′np

′
nω
′′
n) in ϑ, where

t′i = Ai and p′i = qi in case of PDA; otherwise, t′i = ε and p′i = 〈Ai〉. Claim 6.6 holds.

Claim 6.7 Let ϑ is automata system given from grammar system Γ̂ by the previous
algorithm. If (Ŝ1, . . . , Ŝn) ⇒∗ (ω1, . . . , ωn) in Γ̂ with ωi ∈ T̂i for every i = 1, . . . , n, then
(x1ω1, . . . , xnωn) `∗ (♦p1, . . . , pn) in ϑ, where for all i = 1, . . . , n, if Mi is PDA, pi = qi;
otherwise, pi = fi.

Proof of Claim 6.7. Consider that (Ŝ1, . . . , Ŝn) ⇒∗ (u1A1v1, . . . , unAnvn) ⇒ (u1x1v1, . . . ,
unxnvn) in Γ̂i. Then, uixivi ∈ T̂ ∗i for all i = 1, . . . , n. By Claim 6.6, (x1ω1, . . . , xnωn)
`∗ (♦(v1)Rt1p1ω

′
1, . . . ,♦(vn)Rtnpnω

′
n) in ϑ, where for all i = 1, . . . , n, ωi = uiω

′
i, and if

Mi is PDA, xi = .q′i, ti = Ai, pi = qi, and ♦ = .; otherwise, xi = 〈Ŝi〉, ♦ti = ε, and

pi = 〈Ai〉. Because ri = Ai → xi ∈ Pi for all i = 1, . . . , n, and (r1, . . . , rn) ∈ Q̂, there is
r′i = Aiqi → (xi)

Rqi ∈ δi for every pushdown automaton, Mi, r
′
i = 〈Ai〉xi → fi for every

FA, Mi, and (r′1, . . . , r
′
n) ∈ Ψ. Therefore, the next configuration of each PDA and FA,

Mi, is of the form .(xivi)
Rqixivi and fi, respectively. By the definition of Ψ, each PDA

with terminal symbol on the pushdown’s top makes a move by aqia → qi until . is the
first pushdown symbol. The others loop and read no symbol. As all PDAs have . on the
pushdown top, .s are removed and ϑ accepts. Hence, Claim 6.7 holds.
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Claim 6.8 Let ϑ is automata system given from grammar system Γ̂ by the previous
algorithm. If (x1ω1, . . . , xnωn) `∗ (♦(v1)Rt1p1, . . . ,♦(vn)Rtnpn) in ϑ, where for all i =
1, . . . , n, ωi = uiω

′
i, and if Mi is PDA, xi = .Ŝiqi, ti = Ai, pi = qi, and ♦ = .; otherwise,

xi = 〈Ŝi〉, ♦, ti = ε, and pi = 〈Ai〉, then (Ŝ1, . . . , Ŝn) ⇒∗ (ω1, . . . , ωn) in Γ̂ with ui ∈
T ∗, Ai ∈ N̂i, vi ∈ (T̂i ∪ N̂i)

∗, for every i = 1, . . . , n.

Proof of Claim 6.8. Consider any successful acceptance:

(x1ω1, . . . , xnωn) `∗ (♦p1, . . . ,♦pn), (II)

where for all i = 1, . . . , n, and if Mi is PDA, xi = .q′i, pi = qi, and ♦ = .; otherwise,

xi = 〈Ŝi〉, ♦ = ε, pi = 〈Ai〉, and pi ∈ F̂i. The automata system starts with initialization of
PDAs, i.e. after the first computation step, each PDA, Mi, must have configuration .Ŝiqiωi,
while the configuration of all FAs are unchanged. By the construction of Ψ, the PDAs have
to rewrite their nonterminals on the top of their pushdowns at the same time and it can
do it only if every PDA has a nonterminal symbol on the pushdown top. Otherwise, all
PDAs having terminal symbols on the pushdown tops compare inputs with the terminal
symbols, while the others are looping with reading no symbol. The same holds for . that
ϑ can remove at the same time and only if the FAs are in final states. Therefore, (II) can
be expressed as

(x1ω
(0)
1 , . . . , xnω

(0)
n ) = (♦γ(1)

1 t
(1)
1 p

(1)
1 ω

(1)
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n )
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(k−1)
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ω
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(j)
i and: if Mi is a PDA, then xi = .q′i, ♦γ

(j)
i t

(j)
i ∈ {.}(N̂i ∪ T̂i)∗N̂i, and

p
(j)
i = qi; otherwise, ♦γ(j)

i = ε, p
(j)
i = 〈A(j)

i 〉. The computation of ϑ can be simulated by Γ̂
as:
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⇒ (u
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(1)
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(1)
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(1)
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(2)
1 A

(2)
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(2)
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(2)
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...
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(k−1)
1 v

(k−1)
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(k)
n v

(k−1)
n )

⇒ (u
(k)
1 , . . . , u

(k)
n ) = (ω1, . . . , ωn),

where for every i = 1, . . . , n and every j = 1, . . . , k, u
(j)
i ∈ T̂ ∗i , A

(j)
i ∈ N̂i, v

(j)
i ∈ (T̂i ∪ N̂i)

∗

and u
(j)
i ω

(j)
i = ωi. Hence, Claim 6.8 holds.

From Claim 6.6, Claim 6.7, and Claim 6.8, Lemma 6.5 holds. �

To prove that HCGR(t1,...,tn), based on RLNGs and CFGs, and HMAS(t′1,...,t
′
n), based on

FAs and PDAs, are equivalent, Lemma 6.9 is needed.

Lemma 6.9 For every HMAS(t′1,...,t
′
n) ϑ = (M1, . . . ,Mn,Ψ), where components are FAs

and PDAs, there is an HCGR(t1,...,tn) Γ̂ = (Ĝ1, . . ., Ĝn, Q̂) such that n-L(ϑ) = n-L(Γ̂) and
for all i = 1, . . . , n, Ĝi is either RLNG or CFG.

49



Proof of Lemma 6.9. It is well-known that for every PDA and FA M , there is a CFG and
RLNG G such that L(M) = L(G), respectively. The algorithm, that we use for construction
of CFG G = (NG, TG, PG, SG) from a PDA M = (QM ,ΣM ,ΓM , δM , s0, Z0, ∅) is defined in
the following way:

• set NG = {〈qAp〉| p, q ∈ QM , A ∈ ΓM} ∪ {S}, PG = {S → 〈aAp〉| p ∈ QM}, and
TG = ΣM

• for each r = Aq0a → Bn . . . B1q1 ∈ δM , where a ∈ ΣM ∪ {ε}, q0, q1 ∈ QM ,
A,B1, . . . , Bn ∈ ΓM , for some n ≥ 0 do:

– set ρ(r) = {〈q0Aqn+1〉 → a〈q1B1q2〉 . . . 〈qnBnqn+1〉| q2, . . . , qn+1 ∈ QM};
– set PG = PG ∪ ρ(r);

Similarly, RLNG G = (NG, TG, PG, SG) constructed from FA M = (QM ,ΣM , δM , s0, FM )
has form:

• set NG = {A| A ∈ QM}, SG = q0, PG = ∅, and TG = ΣM ;

• for each r = Aa→ B ∈ δM , where a ∈ ΣM ∪ {ε}, A,B ∈ QM do:

– set ρ(r) = {A→ aB};
– if B ∈ FM , then ρ(r) = ρ(r) ∪ {A→ a};
– set PG = PG ∪ ρ(r);

Consider an HMAS(t′1,...,t
′
n) ϑ = (M1, . . . ,Mn,Ψ). It is clear that the algorithms can be

applied on each component of automata system, and in this way, components of n-generative
grammar system Γ = (G1, . . . , Gn, Q) can be constructed. Note, there is a set of grammar
rules ρi(r) constructed for every transition rule r and each automaton Mi of the automata
system, and for every i = 1, . . . , n, L(Mi) = L(Gi). Furthermore, for every i = 1, . . . , n,
Gi simulates Mi step by step (see p.486–491 in [80]). It is easy to see that L(Γ) = L(ϑ)
for Γ = (G1, . . . , Gn, Q) where Q = {(r1, . . . rn)| (p1, . . . , pn) ∈ Ψ and for all i = 1, . . . , n,
ri ∈ ρi(pi)}. Lemma 6.9 holds. �

Finally, Theorem 6.10 can be established.

Theorem 6.10 L (HMAS(t1,...,tn)) = L (HCGR(t′1,...,t
′
n)), where ti ∈ {FA, PDA} and t′i ∈

{CFG, RLNG} for all i = 1, . . . , n.

Proof of Theorem 6.10. It directly follows from Lemma 6.5 and Lemma 6.9. �

In contrast to ordinary FAs that are closed over union, intersection, complementation,
and concatenation, the class of n-languages accepted by HMASs consisting of finite au-
tomata is closed only over union and concatenation.

Theorem 6.11 If L1 and L2 ∈ L (HMASnFA), then L1 ∪ L2 ∈ L (HMASnFA).

Proof of Theorem 6.11. Consider two n-languages, L1, L2 ∈ L (HMASnFA). Then there

are n-HMASnFAs, ϑ1 = (M1,1, . . . ,M1,n,Ψ1) and ϑ2 = (M2,1, . . . ,M2,n,Ψ2), such that
L1 = L(ϑ1), L2 = L(ϑ2), and for all i = 1, 2 and j = 1, . . . , n, Mi,j = (Qi,j ,Σi,j , δi,j , si,j , Fi,j)
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is a component of ϑi. For these two automata systems, we can construct ϑ12 = (M12,1, . . . ,
M12,n,Ψ12), withM12,j = (Q12,j ,Σ12,j , δ12,j , s12,j , F12,j), in the following way: for all i = 1, 2
and j = 1, . . . , n,

• Q12,j = Q1,j ∪Q2,j ∪ {s12,j}, where s12,j is the new start state of jth automaton,

• δ12,j = δ1,j ∪ δ2,j ∪ {p1,j = s12,j → s1,j , p2,j = s12,j → s2,j},

• Σ12,j = Σ1,j ∪ Σ2,j ,

• F12,j = F1,j ∪ F2,j , and

• Ψ12 = Ψ1 ∪Ψ2 ∪ {(p1,1, . . . , p1,n), (p2,1, . . . , (p2,n)}.

From set Ψ12 it follows that the first computation step has to be (s12,1ω1, . . . , s12,nωn) `
(si,1ω1, . . . , si,nωn) for i = 1, 2, and for ωj ∈ Σ12,j with j = 1, . . . , n. Therefore, (ω1, . . . , ωn)
is in L(ϑ12) iff (ω1, . . . , ωn) ∈ L(ϑ1) or (ω1, . . . , ωn) ∈ L(ϑ2)—that is, (ω1, . . . , ωn) ∈ L(ϑ12)
iff (ω1, . . . , ωn) ∈ L1 ∪ L2. �

Lemma 6.12 For n ≥ 2, an n-language, n-L, defined as n-L = {(aibj , ajbi, ε, . . . , ε)| i, j ∈
N0} is not in L (HMASnFA).

Proof of Lemma 6.12. From the definition of n-accepting move-restricted finite automata
system, it can be seen that only possibility to compare symbols through components is read
them step by step at the same time (or in a quasi parallel way). Hence, for comparing as
in the first component and bs in the second one, the second component has to skip all as,
and then the system can compare as and bs. After this, there is no way how to compare
as in the second component with bs in the first component because finite automata cannot
be returned on the start position. Similar problem arises when the system starts with
comparing bs in the first component and as in the second one. The other components
cannot help, because they have finite number of states. Hence, n-L does not belong to

L (HMASnFA). �

Theorem 6.13 L (HMASnFA) for all n ≥ 2, is not closed under intersection.

Proof of Theorem 6.13. Let L1 = {(aibj , ajbk)| i, j, k ≥ 0}, L2 = {(aibj , akbi)| i, j, k ≥
0}. Both of them belong to L (HMASnFA), because we can construct HMASnFAs ϑ1 =
(M1,M2,Ψ1) and ϑ2 = (M1,M2,Ψ2) such that L(ϑ1) = L1 and L(ϑ2) = L2. All four
automata are given by the definition M = ({q1, q2}, {a, b}, {r1 = q1a → q1, r2 = q1 →
q1, r3 = q1b → q2, r4 = q2b → q2, r5 = q2 → q2}, si, {q1, q2}), and Ψ1 = {(r1, r2), (r3, r1),
(r4, r1), (r5, r3), (r5, r4)} and Ψ2 = {(p, q)| (q, p) ∈ Ψ1}. The intersection of L(ϑ1) and L(ϑ2)

is 2-language L3 = {(aibj , ajbi)| i, j = N0}. Lemma 6.12 says that L3 6∈ L (HMASnFA),

and therefore, L (HMAS2FA) is not closed under intersection.
In general, for n ≥ 2, consider n-languages K1 = {(aibj , ajbk(, ε)n−2)| i, j, k ≥ 0} and

K2 = {(aibj , akbi(, ε)n−2)| i, j, k ≥ 0}. From Lemma 6.12, K1 ∩K2 6∈ L (HMASnFA). �

Consider n-language Y ⊆ Σ∗1 × . . . × Σ∗n and suppose that complementation of Y is
defined as Y = (Σ∗1 × . . .× Σ∗n)− Y . Then, we can establish the following corollary.

Theorem 6.14 L (HMASnFA) for all n ≥ 2 is not closed under complementation.
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Proof of Theorem 6.14. By contradiction. Suppose that L (HMASnFA) for all n ≥ 2 is

closed under complementation. Let L1, L2 ∈ L (HMASnFA). From Theorem 6.11 it follows

that L1 ∪ L2 ∈ L (HMASnFA), and by the supposition, (L1 ∪ L2) ∈ L (HMASnFA) as
well. From De Morgan’s law, (L1 ∪ L2) = (L1 ∩ L2), but it is contradiction, because

L (HMASnFA) for all n ≥ 2, is not closed under intersection. �

Theorem 6.15 If L1 and L2 ∈ L (HMASnFA), then L1 � L2 ∈ L (HMASnFA), where
L1 � L2 = {(w1w

′
1, . . . , wnw

′
n)| (w1, . . . , wn) ∈ L1 and (w′1, . . . , w

′
n) ∈ L2}.

Proof of Theorem 6.15. Consider two n-languages, L1, L2. If L1 and L2 ∈ L (HMASnFA),

then there are HMASnFAs, ϑ1 = (M1,1, . . . ,M1,n,Ψ1) and ϑ2 = (M2,1, . . . ,M2,n,Ψ2),
such that L1 = L(ϑ1), L2 = L(ϑ2) and for all i = 1, 2 and j = 1, . . . , n, Mi,j =
(Qi,j ,Σi,j , δi,j , si,j , Fi,j) is a component of ϑi. For these two automata systems, we can
construct ϑ12 = (M12,1, . . . , M12,n,Ψ12) with M12,j = (Q12,j ,Σ12,j , δ12,j , s1,j , F2,j) in the fol-
lowing way: for every i = 1, 2 and j = 1, . . . , n, Q12,j = Q1,j ∪Q2,j , δ12,j = δ1,j ∪δ2,j ∪{pj =
fj → s2,j | fj ∈ F1,j}, Ψ12 = Ψ1 ∪ Ψ2 ∪ {(p1, . . . , pn)}, and Σ12,j = Σ1,j ∪ Σ2,j . From
Definition 6.2, (w1, . . . , wn) ∈ L1 iff (s1,1w1, . . . , s1,nwn) `∗ (f1, . . . , fn), where for all
i = 1, . . . , n, fi ∈ F1,i, in ϑ1. Clearly, (s1,1w1, . . . , s1,nwn) `∗ (f1, . . . , fn) in ϑ12 as
well, and (s1,1w1w

′
1, . . . , s1,nwnw

′
n) `∗ (f1w

′
1, . . . , fnw

′
n). As (w′1, . . . , w

′
n) ∈ L2 and be-

cause (f1 → s2,1, . . . , fn → s2,n) ∈ Ψ12, (f1w
′
1, . . . , fnw

′
n) ` (s2,1w

′
1, . . . , s2,nw

′
n). Naturally,

(s2,1w
′
1, . . . , s2,nw

′
n) `∗ (f ′1, . . . , f

′
n) with f ′i ∈ F2,i in ϑ2. Hence, (s1,1w1w

′
1, . . . , s1,nwnw

′
n) `∗

(f ′1, . . . , f
′
n) in ϑ12. The theorem holds. �

HMAS with at least one PDA are stronger than HMAS containing only FAs.

Theorem 6.16 L (HMASnFA) ⊂ L (HMAS(t1,...,tn)) where ti ∈ {FA, PDA} for all i =
1, . . . , n, and at least one component is a PDA.

Proof of Theorem 6.16. L (HMASnFA) ⊆ L (HMAS(t1,...,tn)), with at least one i = 1, . . . , n
such that ti = PDA, directly follows from the definitions. It remains to prove that

L (HMASnFA) 6= L (HMAS(t1,...,tn)).

Consider HMAS(PDA,FA), ϑ = (M1,M2,Ψ1) with Ψ = {(r1, r1), (r2, r1), (r3, r1),
(r4, r2), (r5, r2), (r6, r2), (r7, r2), (r8, r3), (r9, r1)}) and the automata defined in the fol-
lowing way: M1 = ({s, q}, {a, b}, {#, a}, {r1 = #s → s, r2 = #sa → #as, r3 = asa →
aas, r4 = #sb → #q, r5 = asb → #q, r6 = #qb → #q, r7 = aqb → #q, r8 = aq → q, r9 =
#q → q}, s,#, ∅) and M2 = ({s}, {a, b}, {r1 = s→ s, r2 = sa→ s, r3 = sb→ s}, s, {s}). It
is not hard to see that ϑ define 2-language 2-L = {(aibj , ajbi)| i, j ∈ N0} and works in this
way: first, automaton M2 loops in state s and reads no symbol, while M1 shifts all as onto
the pushdown. After pushing all as from the M1’s input onto the pushdown, M1 and M2

read bs and as, respectively, and by reading them at the same time, automata compare their
number. If there is more as in M2’s input than bs in M1’s input, then the automata system
is stopped and the input is not accepted. Otherwise, M1 skips to the other state and ϑ
continues with comparing as on the M1’s pushdown and bs in the M2’s input by removing
as from the pushdown in M1 and reading bs from M2’s input. Only if the input was of
the form (aibj , ajbi) with i, j ∈ N0, the automata system removes symbol # from M1’s
pushdown, and ϑ accepts. Because Lemma 6.12 says that 2-L = {(aibj , ajbi)| i, j ∈ N0}
is not in L (HMAS2FA), L (HMAS2FA) 6= L (HMAS(PDA,FA)). In general, for all
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n ≥ 2, there is n-language n-L = {(aibj , ajbi, ε, . . . , ε)| i, j ∈ N0}. The n-languages can

be given by HMAS (PDA,FA,. . . ,FA), where the first two components are defined in the
same way as M1 and M2 was. The other components loop without reading any symbols.

Hence, n-L = {(aibj , ajbi, ε, . . . , ε)| i, j ∈ N0} ∈ L (HMAS(PDA,FA,. . . ,FA)). Therefore,

L (HMASnFA) 6= L (HMAS(t1,...,tn)) with at least one PDA. �

Lemma 6.17 Let Γ̂ ∈ HCGR(t1,...,tn) where ti ∈ {RLNG, CFG}, for all i = 1, . . . , n, and
no more than one component is CFG in Γ̂. Then, Lj = {wj | (w1, . . . , wn) ∈ n-L(Γ̂)} ∈ CF
for every j = 1, . . . , n.

Proof of Lemma 6.17. Consider Γ̂ ∈ HMAS(t1,...,tn) with exactly one CFG. Because we only
want to prove that Lj(Γ̂) = {wj | (w1, w2, . . . , wn) ∈ n-L(Γ̂)} is context-free, by replacing all

terminal symbols by ε in each rule in Pi for all i = 1, . . . , n, where i 6= j, we construct Γ̂′ such
that n-L(Γ̂′) = {(w1, . . . , wn)| (w′1, . . . , w

′
n) ∈ n-L(Γ̂) and for all i = 1, . . . , n, if i = j, then

wi = w′i; otherwise, wi = ε}. By Lemma 6.5, there is HMAS(t′1,...,t
′
n) ϑ with one PDA, such

that n-L(ϑ) = n-L(Γ̂′). As ϑ = (M1, . . . ,Mn,Ψ) can be created from Γ̂′ by the algorithm
used in proof of Lemma 6.5, we can construct a PDA M = (Q,Σ,Γ, δ, s, S, ∅), where
L(M) = Lj(Γ̂′), in the following way: consider that mth component of ϑ is a PDA and set
Σ = Σj , Γ = Γm ∪ Σj , Q = {(q1, . . . , qn)| for every i = 1, . . . , n, qi ∈ Qi}, s = (s1, . . . , sn),
S = Sm and δ = {A(q1, . . . , qn)a → γ(q′1, . . . , q

′
n)| rm = Aqmam → γq′m ∈ δm, ri = qiai →

q′i ∈ δi for all i 6= m, a = aj and (r1, . . . , rn) ∈ Ψ}. It remains to prove Claim 6.18 and
Claim 6.19.

Claim 6.18 Without any loss of generality, suppose that mth component of ϑ is a PDA.
If (α1s1w1, . . . , αnsnwn) `∗ (β1q1w

′
1, . . . , βnqnw

′
n) in ϑ, where for all i = 1, . . . , n, i = m im-

plies αi = Sm, βi ∈ Γ∗i and i 6= m implies αiβi = ε, then Sm(s1, . . . , sn)wj `∗ βm(q1, . . . , qn)
in M .

Proof of Claim 6.18. By induction on the number of derivation steps.

Basis. Let (α1s1w1, . . . , αnsnwn) `0 (α1s1w1, . . . , αnsnwn) in ϑ. Then, Sm(s1, . . . , sn)wj
`0 Sm(s1, . . . , sn)wj in M .

Induction Hypothesis. Suppose that Claim 6.18 holds for j or fewer derivation steps, where
j ∈ N0.

Induction Step. Consider sequence of computation steps of the form (α1s1w1, . . . , αnsnwn)
`j+1 (β1q1w

′
1, . . . , βnqnw

′
n) in ϑ. This sequence of computation steps, we can express as

(α1s1w1, . . . , αnsnwn) `j (α′1p1w
′′
1 , . . . , α

′
npnw

′′
n) ` (β1q1w

′
1, . . . , βnqnw

′
n). By the induction

hypothesis, Sm(s1, . . . , sn)wj `j α′m(p1, . . . , pn)w′′j in M . As ϑ moves from (α′1p1w
′′
1 , . . . ,

α′npnw
′′
n) to (β1q1w

′
1, . . . , βnqnw

′
n), there have to be n rules, r1, . . . , rn, such that α′ipiw

′′
i `

βiqiw
′
i[ri] for all i = 1, . . . , n, and (r1, . . . , rn) ∈ Ψ. Hence and from construction of δ,

α′m(p1, . . . , pn)w′′j ` βm(q1, . . . , qm)w′j in M . Claim 6.18 holds.

Claim 6.19 Consider that mth component of ϑ is a PDA. If Sm(s1, . . . , sn)wj `∗ βm(q1,
. . . , qn) in M , then (α1s1w1, . . . , αnsnwn) `∗ (β1q1w

′
1, . . . , βnqnw

′
n) in ϑ, where for all i =

1, . . . , n, i = m implies αi = Sm, βi ∈ Γ∗i and i 6= m implies αiβi = ε.

Proof of Claim 6.19. By induction on the number of computation steps.
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Basis. Let Sm(s1, . . . , sn)wj `0 Sm(s1, . . . , sn)wj in M . Evidently, (α1s1w1, . . . , αnsnwn)
`0 (α1s1w1, . . . , αnsnwn) in ϑ.

Induction Hypothesis. Suppose that Claim 6.19 holds for j or fewer derivation steps, where
j ∈ N0.

Induction Step. Consider sequence of moves of the form Sm(s1, . . . , sn)wj `j+1 γm(q1, . . . ,
qn)w′j in M . We can express this sequence as Sm(s1, . . . , sn)wj `j βm(p1, . . . , pn)w′′j `
γm(q1, . . . , qn)w′j . By the induction hypothesis, (α1s1w1, . . . , αnsnwn) `j (β1p1w

′′
1 , . . . ,

βnpnw
′′
n), where for all i = 1, . . . , n, if i = m, then αi = Sm; otherwise, αiβi = ε. Since

βm(p1, . . . , pn)w′′j ` γm(q1, . . . , qn)w′j in M , there are n rules, r1, . . . , rn, such that for every
i = 1, . . . , n, βipiw

′′
i ` γiqiw′i[ri] in Mi and (r1, . . . , rn) ∈ Ψ. Hence, (β1p1w

′′
1 , . . . , βnpnw

′′
n)

` (γ1q1w
′
1, . . . , γnqnw

′
n) in ϑ. The claim holds.

Because we can simulate generation of language of each component by a PDA, these
languages have to be context-free. Lemma 6.17 holds. �

Corollary 6.20 Let ϑ ∈ HMAS(t1,...,tn) with t1, . . . , tn ∈ {FA, PDA} and at most one
ti=PDA. Let Lj(ϑ) = {wj | (w1, w2, . . . , wn) ∈ n-L(ϑ)} for all j = 1, . . . , n. Then, Lj ∈ CF.

Theorem 6.21 Let Lj(HMAS(t1,...,tn)) = {Lj | Lj = {wj | (w1, . . . , wn) ∈ K} and K ∈
L (HMAS(t1,...,tn))}, where HMAS(t1,...,tn) is a HMAS with exactly one PDA and n−1 FAs.
Then, Lj(HMAS(t1,...,tn)) = CF.

Proof of Theorem 6.21. Suppose that the first component of a HMAS based upon one PDA
and n − 1 FAs. The HMAS can work in the following way: at the beginning, the PDA
works on its input string while FAs are cycling with reading no symbol. If the PDA accepts
its input, it removes all symbols from the pushdown, inserts the first pushdown symbol,
and continues with the input of the first FA. With aim of the restriction set, the FA
reads its input while the PDA accordingly works with the pushdown. If the PDA accepts
this input string, the HMAS continues with other string. In this way, the FAs can use
pushdown of the PDA, and therefore, they can accept context-free languages. Hence, and
from Corollary 6.20, Theorem 6.21 holds. �

Two 1-turn PDAs in HMAS, where other components are FAs, are enough to recognize
any language from RE by any of the components in the HMAS.

Theorem 6.22 Let Lj(HMAS(t1,...,tn)) = {Lj | Lj = {wj | (w1, . . . , wn) ∈ K} and K ∈
L (HMAS(t1,...,tn))}, where HMAS(t1,...,tn) contains two 1-turn PDAs and n− 2 FAs. Then,
Lj(HMAS(t1,...,tn)) = RE.

Proof of Theorem 6.22. It is well-known that every recursively enumerable language can
be generated by a grammar G in Geffert normal form (see [47]), i.e. by a grammar G =
({A,B,C,D, S}, T, S, P ) where P contains rules only of the form S → uSa, S → uSv,
S → uv, AB → ε, and CD → ε, where u ∈ {A,C}∗, v ∈ {B,D}∗, a ∈ T . In addition, every
sentential form of any successful derivation have to be of the form S ⇒∗ w1w2w where
w1w2 ∈ {A,C}∗{B,D}∗, w ∈ T ∗, and w1w2w ⇒∗ w.

Let G1, . . . , Gn be n grammars in the Geffert normal form and let ϑ = (M1, . . . ,Mn,Ψ)
be an HMAS(t1,...,tn), M1,M2 be two 1-turn PDAs and M3, . . . ,Mn be FAs. M1 and
M2 can generate strings over {A,C, |} and {B,D, |} ∪ {| a ∈

⋃n
i=1 Σi} on the M1’s and
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M2’s pushdown, respectively, in the following way: the PDAs start with symbol | on their
pushdowns. First, ϑ simulates derivations in G1, . . . , Gn. The system starts with G1. If
Gi applies a rule of the form Si → uSiw, ϑ adds (u)R and w on M1’s and M2’s pushdown,
respectively. If Gi makes a derivation step by rule of the form Si → uw, then ϑ adds (u)R|
and w| on M1’s and M2’s pushdown, respectively, and the system starts with simulation of
Gi+1. After the generation, PDAs start to compare topmost symbols on their pushdowns.
At the same computation step, the automata can removeA withB and C withD. Whenever
the | is on the M1’s pushdown top and ϑ works on ith input string (the system starts with
nth input string), M2 compares symbols on its pushdown with input symbols which reads
ith automaton. If the symbols coincide, M2 removes the symbol from the pushdown. As |
is topmost pushdown symbol of both PDAs, the PDAs remove the symbol and start with
(i− 1)th input string. The automata in ϑ read their input only if they compare the input
with content of M2’s pushdown. If and only if all automata read all their input and the
PDAs have empty pushdown, all strings are accepted—that is, ϑ accepts the input n-string.

Evidently, ϑ can simulate derivations of n grammars in Geffert normal form, which can
generate any language from RE. Therefore, Theorem 6.22 holds. �

Corollary 6.23 Let Lj(HMAS(t1,...,tn)) = {Lj | Lj = {wj | (w1, . . . , wn) ∈ K} and K ∈
L (HMAS(t1,...,tn))}, where HMAS(t1,...,tn) contains three 1-turn SPDAs and n− 3 FAs, for
n ≥ 3. Then, Lj(HMAS(t1,...,tn)) = RE.

Corollary 6.24 Let Lj(HCGR(t1,...,tn)) = {Lj | Lj = {wj | (w1, . . . , wn) ∈ K} and K ∈
L (HCGR(t1,...,tn))}, where HCGR(t1,...,tn) is an HCGR with exactly two CFGs and n − 2
RLNGs. Then, Lj(HCGR(t1,...,tn)) = RE.

Corollary 6.25 L (HMAS(t1,...,tn))} with two 1-turn PDAs and n − 2 FAs is equal to

L (HMASnPDA).

Corollary 6.26 L (HCGRnCFG) is equal to L (HCGR(t1,...,tn))} with two CFGs and n−2
RLNGs.

It is well-known that linear grammars and 1-turn PDAs are equivalent. Nevertheless,
HCGRs based upon linear grammars are weaker than HMASs with 1-turn PDAs as com-
ponents.

Theorem 6.27 L (HCGRnLNG) ⊂ L (HMAS(t1,...,tn)), where HMAS(t1,...,tn) has exactly
two 1-turn PDAs and n− 2 FAs.

Proof of Theorem 6.27. Consider HCGRnLNG Γ̂ = (Ĝ1, . . . , Ĝn, Q̂), which generates n-

language n-L(Γ̂) = {(w, ε, . . . , ε)| w ∈ T̂1
∗

and (S1, . . . , Sn) ⇒∗ (w, ε, . . . , ε)}. Since

G1, . . . , Gn are linear, any successful derivation can be expressed as (Ŝ1, . . . , Ŝn) ⇒∗

(uA1v,A2, . . . , An) ⇒ (axv, ε, . . . , ε), where axv ∈ T̂1
∗
. Maximal length of every sen-

tential n-form is m + n, where m = |axv|. Hence, we can construct a linear bounded

automaton M with states of the form (A1, . . . , An), where Ai ∈ N̂i ∪ {ε} and input al-

phabet Γ = T1 ∪ {a| a ∈ T1}. M starts with state (Ŝ1, . . . , Ŝn) and w on its input tape.
During computation, it underlines symbols on the input tape by the following algorithm.

55



Without any loss of generality, suppose that M is in state (A1, . . . , An). If there are n
rules, r1, . . . , rn, where r1 is rule of the form A → uB1v, for i = 2, . . . , n, ri is of the form
Ai → Bi and (r1, . . . , rn) ∈ Q, such that u is equal to the first |u| not-underlined symbols
on the tape and v is equal to the last |v| not-underlined symbols on the tape, M underlines
these symbols and moves to the state (B1, . . . , Bn). As soon as all symbols on the tape
are underlined and the automaton is in the state (ε, . . . , ε), the input is accepted. Hence,
Lj = {w| (w, ε, . . . , ε) ∈ n-L(Γ̂)} belongs to CS. Therefore, Theorem 6.27 holds. �

Better approximation of the power of HCGRs with linear grammars as components is
given by the following lemma.

Lemma 6.28 Let Γ̂ ∈ HCGRnLNG. Then, Lj = {wj | (w1, . . . , wn) ∈ n-L(Γ̂)} ∈ LIN for
every j = 1, . . . , n.

Proof of Lemma 6.29. Because all components are LNGs, without any loss of generality,

we have to only prove that for any HCGRnLNG, Γ̂ = (Ĝ1, . . . , Ĝn, Q̂), there is an LNG,
G = (N,T, P, S) that generate the same language as the first component in the system
does. Since n, number of nonterminals, and number of derivation rules in each component
of the systems are finite, the linear grammar can remember combination of rules used in
previous computation step by one nonterminal and allow only that derivation steps, which
are corresponding with derivation steps in Γ̂. In more detail, the linear grammar will contain
set of nonterminals N = {S} ∪ {〈r1, . . . , rn〉| (r1, . . . , rn) ∈ Q̂}, set T equal to the set of
terminal symbol in G1, and set

P = {S → u1〈r1, . . . , rn〉v1| (r1, . . . , rn) ∈ Q̂, ri = Si → uiXivi, and Si is the start symbol

of Ĝi, ui, vi are strings over alphabet of terminal symbols in Ĝi, Xi is an nonterminal
symbol from Ĝi or ε, for all i = 1, . . . , n}

∪ {〈r1, . . . , rn〉 → u′1〈r′1, . . . , r′n〉v′1| (r1, . . . , rn), (r′1, . . . , r
′
n) ∈ Q̂, ri = Ai → uiBivi,

r′i = Bi → u′iCiv
′
i, and ui, u

′
i, vi, v

′
i are strings over alphabet of terminal symbols in

Ĝi, Ai, Bi, Ci are nonterminal symbols from Ĝi, for all i = 1, . . . , n}

∪ {〈r1, . . . , rn〉 → u′1v
′
1| (r1, . . . , rn), (r′1, . . . , r

′
n) ∈ Q̂, ri = Ai → uiBivi, r

′
i = Bi →

u′iv
′
i, and ui, u

′
i, vi, v

′
i are strings over alphabet of terminal symbols in Ĝi, Ai, Bi are

nonterminal symbols from Ĝi, for all i = 1, . . . , n}.

For the sake of brevity, the rigorous proof of the equality L(G) = L1 is left to the reader. �

Of course, HCGRs can allow to use all combinations of rules included in its components.
In this way, linear grammars contained in such HCGRs generate at least the class of linear
languages. Thus, the following theorem can be established.

Theorem 6.29 Let Γ̂ ∈ HCGRnLNG. Then, Lj = {wj | (w1, . . . , wn) ∈ n-L(Γ̂)} = LIN,
for every j = 1, . . . , n.
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Chapter 7

Rule-Restricted
Automaton-Grammar Transducers

In formal language theory, there exist two basic translation-method categories. The first
category contains interprets and compilers, which first analyse an input string in the source
language and, after that, they generate a corresponding output string in the target language
(see [2], [89], [92], [61], or [109]). The second category is composed of language-translation
systems or, more briefly, transducers. Frequently, these transducers consist of several com-
ponents, including various automata and grammars, some of which read their input strings
while others produce their output strings (see [5], [53], [91], and [111]).

Although transducers represent language-translation devices, language theory often
views them as language-defining devices and investigates the language family resulting from
them. In essence, it studies their accepting power consisting in determining the language
families accepted by the transducer components that read their input strings. Alterna-
tively, it establishes their generative power that determines the language family generated
by the components that produce their strings. The present chapter contributes to this vivid
investigation trend in formal language theory.

In this chapter, we introduce a new type of transducer, referred to as rule-restricted
transducer, based upon a finite automaton and a context-free grammar. In addition, a
restriction set controls the rules which can be simultaneously used by the automaton and
by the grammar.

The present chapter discusses the power of this system working in an ordinary way as
well as in a leftmost way and investigates an effect of an appearance checking placed into the
system. First, we show that the generative power is equal to the generative power of matrix
grammars (see [1] or [37]). Second, the accepting power coincides with the power of partially
blind multi-counter automata (see [49] and [52]). Third, under the context-free-grammar
leftmost restriction, the accepting and generative power of these systems coincides with
the power of context-free grammars. On the other hand, when an appearance checking is
introduced into these systems, the accepting and generative power coincides with the power
of Turing machines.

In the last part of the chapter, we discuss application-related perspectives of the stud-
ied systems in linguistics. Particularly, we concentrate our attention on natural language
translation. First, we demonstrate the basic idea in terms of simple English sentence, per-
forming its analysis and passive transformation. Furthermore, we describe the translation
of selected sentence structures between the Czech, English, and Japanese languages. We
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demonstrate that while English and Czech are structurally similar languages, some aspects
of Japanese differ significantly. We also show that some linguistic Czech-language features
complicate this translation very much. For example, compared to English, there is very
rich inflection in Czech. Other difficult-to-handle features include non-projectivity (crossing
dependencies between words in a sentence), which mainly results from the fact that Czech
is a free-word-order language.

7.1 Rule-restricted transducer

In this section, we define and investigate a rule-restricted transducers consisting of a finite
automaton, a context-free grammar, and a control set of pairs of rules. The finite automaton
reads its own input string and, simultaneously, the context-free grammar generates an
output string. During the computation, the control set determines which rules can be used
at the same computation step performed by both components. The computation of the
system is successful if and only if the finite automaton accepts the input string and the
context-free grammar successfully generates a string of terminal symbols.

Definition 7.1 (Rule-restricted transducer)
The rule-restricted transducer, RT for short, is a triplet Γ = (M,G,Ψ), where M =
(Q,Σ, δ, q0, F ) is a finite automaton, G = (N,T, P, S) is a context-free grammar, and Ψ
is a finite set of pairs of the form (r1, r2), where r1 and r2 are rules from δ and P , respec-
tively.

A 2-configuration of RT is a pair χ = (x, y), where x ∈ QΣ∗ and y ∈ (N ∪T )∗. Consider
two 2-configurations, χ = (pav1, uAv2) and χ′ = (qv1, uxv2) with A ∈ N , u, v2, x ∈ (N∪T )∗,
v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and p, q ∈ Q. If pav1 ⇒ qv1[r1] in M , uAv2 ⇒ uxv2[r2] in G, and
(r1, r2) ∈ Ψ, then Γ makes a computation step from χ′ to χ′, written as χ ⇒ χ′[(r1, r2)],
or simply χ⇒ χ′. In the standard way, ⇒∗ and ⇒+ are reflexive-transitive and transitive
closure of ⇒, respectively.

The 2-language of Γ, 2-L(Γ), is 2-L(Γ) = {(w1, w2)| (q0w1, S) ⇒∗ (f, w2), w1 ∈ Σ∗,
w2 ∈ T ∗, and f ∈ F}. From the 2-language we can define two languages:

• L(Γ)1 = {w1| (w1, w2) ∈ 2-L(Γ)}, and

• L(Γ)2 = {w2| (w1, w2) ∈ 2-L(Γ)}.

By L (RT), L (RT)1, and L (RT)2, the classes of 2-languages of RTs, languages accepted
by M in RTs, and languages generated by G in RTs, respectively, are understood.

It is well-known that finite automata and context-free grammars describe different
classes of languages. Specifically, by the finite automata we can accept regular languages,
whereas the context-free grammars define the class of context-free languages. However, in
Example 7.2 is shown that by the combination of these two models, the system is able to
accept and generate non-context-free languages.

Example 7.2
Consider RT K = (M,G,Ψ) with

M = ({1, 2, 3′, 3, 4, 5′, 5, 6}, {a, b}, δ, 1, {6}), where
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Figure 7.1: Definition of finite automaton M from Example 7.2

– δ = {
p1 = 1a→ 2, p2 = 2→ 1, p3 = 1b→ 3′, p4 = 3′ → 3,
p5 = 3b→ 4, p6 = 4→ 3, p7 = 3a→ 5′, p8 = 5′ → 5,
p9 = 5a→ 5, p10 = 5b→ 6, p11 = 6b→ 6}

(see the graphical representation of M in Figure 7.1),

G = ({S,A,B,C,D,D′}, {a, b}, P, S), where

– P = {
r1 = S → BbD′, r2 = B → Bb, r3 = D′ → D′D,
r4 = B → aA, r5 = D′ → C, r6 = A→ aA,
r7 = C → CC, r8 = D → b, r9 = A→ ε,
r10 = C → a},

Ψ = {(p1, r1), (p1, r2), (p2, r3), (p3, r4), (p4, r5), (p5, r6), (p6, r7), (p7, r8), (p8, r9),
(p9, r8), (p10, r10), (p11, r10)}.

The languages of M and G are L(M) = {aibjakbl| j, k, l ∈ N, i ∈ N0} and L(G) =
{aibjakbl| i, j, k ∈ N, l ∈ N0}, respectively. However, 2-language of K is L(K) = {(aibjaibj ,
ajbiajbi)| i, j ∈ N}.

From the example, observe that the power of the grammar increases due to the possi-
bility of synchronization with the automaton that can dictate sequences of usable rules in
the grammar. The synchronization with the automaton enhances the generative power of
the grammar up to the class of languages generated by matrix grammars.

Theorem 7.3 L (RT)2 = L (MAT).

Proof of Theorem 7.3. First, we prove that L (MAT) ⊆ L (RT)2.

Consider a MAT I = (IG, IC) and construct RT Γ = (ΓM, ΓG,Ψ), such that L(I) = L(Γ)2,
as follows: Set ΓG = IG; construct finite automaton ΓM = (Q,Σ, δ, s, F ) in the following
way: Set F,Q = {s}; for every m = p1 . . . pk ∈ IC, add k − 1 new states, q1, q2, . . . , qk−1,
into Q, k new rules, r1 = s → q1, r2 = q1 → q2, . . . , rk−1 = qk−2 → qk−1, rk = qk−1 → s,
into δ, and k new pairs, (r1, p1), (r2, p2), . . . , (rk−1, pk−1), (rk, pk), into Ψ.

The finite automaton simulates matrices in I by moves. That is, if x1 ⇒ x2[p] in I,
where p = p1 . . . pi for some i ∈ N, then there is q1, . . . , qi−1 ∈ Q such that r1 = s→ q1, r2 =
q1 → q2, . . . , ri−1 = qi−2 → qi−1, ri = qi−1 → s ∈ δ and (r1, p1), . . . , (ri, pi) ∈ Ψ. Therefore,
(s, x1)⇒i (s, x2) in Γ. Similarly, if (s, x1)⇒i (s, x2) in Γ, for i ∈ N, and there is no j ∈ N
such that 0 < j < i and (s, x1)⇒j (s, y)⇒∗ (s, x2), there has to be p ∈ IC and x1 ⇒ x2[p]
in I. Hence, if (s, S)⇒∗ (s, w) in Γ, where w is a string over the set of terminal symbols in

ΓG, then S ⇒∗ w in I; and, on the other hand, if S ⇒∗ w in I for a string over the set of
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terminals in IG, then (s, S) ⇒∗ (s, w) in Γ. The inclusion L (MAT) ⊆ L (RT)2 has been
proven.

For any RT Γ = (ΓM = (Q,Σ, δ, s, F ), ΓG = (ΓN, ΓT, ΓP, ΓS),Ψ), we can construct a
MAT O = (OG,OC) such that L(Γ)2 = L(O) as follows: Set OG = (ΓN ∪{S′}, ΓT,OP, S

′),

OP = ΓP ∪ {p0 = S′ → 〈s〉ΓS}, and OC = {p0}. For each pair (p1, p2) ∈ Ψ with p1 = qa→
r, q, r ∈ Q, a ∈ Σ ∪ {ε}, p2 = A → x, A ∈ ΓN , and x ∈ (ΓN ∪ ΓT )∗, add p1 = 〈q〉 → 〈r〉
into OP and p1p2 into OC. Furthermore, for all q ∈ F , add p = 〈q〉 → ε into OP and p into

OC.
By the following claims we prove that L(Γ)2 = L(O).

Claim 7.4 If (sw, ΓS)⇒∗ (qw′, ω) in Γ, then S′ ⇒∗ 〈q〉ω in O.

Proof of Claim 7.4. By induction on the number of computation steps.

Basis. Let (sw, ΓS) ⇒0 (sw, ΓS) in Γ. Then, S′ ⇒ 〈s〉ΓS[p] in OG and p ∈ OC. Hence,
S′ ⇒ 〈s〉ΓS[p] in O. Claim 7.4 holds for no steps in Γ.

Induction hypothesis. Suppose that Claim 7.4 holds for j or fewer computation steps.

Induction step. Let (sw, ΓS) ⇒j (qw′, ω) ⇒ (q′w′′, ω′) in Γ. Then, by the induction
hypothesis, S′ ⇒∗ 〈q〉ω in O. Without any loss of generality suppose that ω = uAv for
u, v ∈ (ΓN ∪ ΓT )∗, A ∈ ΓN , and (qw′, uAv) ⇒ (q′w′′, uxv) with x ∈ (ΓT ∪ ΓN)∗ and
ω′ = uxv. From the construction of O we know that p1 = A → x and p2 = 〈q〉 → 〈q′〉
is in ΓP and p1p2 ∈ OC. Therefore, S′ ⇒∗ 〈q〉ω ⇒ 〈q′〉uxv = 〈q′〉ω′ in O. Claim 7.4
holds. Furthermore, for all f ∈ F there is a rule p = 〈f〉 → ε ∈ ΓP and p ∈ OC. Hence,
if (sw, ΓS) ⇒∗ (f, ω), where f ∈ F and ω ∈ ΓT

∗ in Γ, S′ ⇒∗ 〈f〉ω ⇒ ω in O. That is,
L(Γ)2 ⊆ L(O).

It remains to prove that L(O) ⊆ L(Γ)2.

Claim 7.5 If S′ ⇒∗ 〈q〉ω in O with ω ∈ ΓT
∗, then (sw, ΓS)⇒∗ (f, ω) in Γ for some w ∈ Σ∗

and f ∈ F .

Proof of Claim 7.5. Consider any successful derivation of the form

S′ ⇒ 〈q0〉ω0[p0]⇒ 〈q1〉ω1[p1]⇒ 〈q2〉ω2[p2]⇒ . . .⇒ 〈qk〉ωk[pk]

in O, where q0 = s, qk = q, ω0 = ΓS, and ωk = ω. As it follows from the construction
of O, for every i = 1, . . . , k, pi = p′ip

′′
i , where p′i = 〈qi−1〉 → 〈qi〉, ωi−1 ⇒ ωi[p

′′
i ] in ΓG,

and for a ∈ Σ ∪ {ε}, (qi−1a → qi, p
′′
i ) ∈ Ψ. That is, (qi−1wi−1, ωi−1) ⇒ (qiwi, ωi) for all

i = 1, . . . , k, and hence, (sw0, ΓS)⇒∗ (qkwk, ωk) with w = w0. Having ωk ∈ ΓT
∗ and using

p = p1p2, where p1 = 〈q〉 → ε ∈ OP , ωk−1 ⇒ ωk[p2], and p ∈ OC, implies q ∈ F , wk = ε,
and w ∈ L(ΓM), and therefore, ωk ∈ L(Γ)2. L(O) ⊆ L(Γ)2.

Theorem 7.3 holds by claims 7.4 and 7.5. �

On the other hand, the context-free grammar in the RT can be exploited as an additional
storage space of the finite automaton to remember some non-negative integers. If the
automaton uses the context-free grammar in this way, the additional storage space is akin
to counters in a multi-counter machine. The following lemma says that the FAs in the RTs
are able to accept every language accepted by partially blind k-counter automata.
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Lemma 7.6 For every k-PBCA I, there is an RT Γ = (M,G,Ψ) such that L(I) = L(Γ)1.

Proof of Lemma 7.6. Let I = (IQ,Σ, Iδ, q0, F ) be a k-PBCA for some k ≥ 1 and construct
RT Γ = (M = (MQ,Σ,Mδ, q0, F ), G = (N,T, P, S),Ψ) as follows: Set T = {a}, Ψ = ∅,
N = {S,A1, . . . , Ak}, P = {A→ ε| A ∈ N}, Mδ = {f → f | f ∈ F}, and MQ = IQ.

For each pa→ q(t1, . . . , tk) in Iδ and for n = (Σk
i=1max(0,−ti)) add:

• q1, . . . , qn into MQ;

• r = S → xS, where x ∈ (N − {S})∗ and occur(Ai, x) = max(0, ti), for i = 1, . . . , k,
into P ;

• r1 = q0a → q1, r2 = q1 → q2, . . ., rn = qn−1 → qn, rn+1 = qn → q into Mδ with
q0 = p; and (ri+1, αi → ε), where αi = Aj and each Aj is erased max(0,−ti)-times
during the sequence, into Ψ (n = 0 means that only pa→ q, S → xS and (r1, r) are
considered);

• (f → f, S → ε) into Ψ for all f ∈ F .

The finite automaton of the created system uses the context-free grammar as an external
storage. Each counter of the I is represented by a nonterminal. Every step from p to q
that modifies counters are simulated by several steps leading from p to q and during this
sequence of steps the number of occurrences of each nonterminal in the grammar is modified
to be equal to the corresponding counter in I. Clearly, L(I) = L(Γ)1. �

Lemma 7.7 states that the context-free grammar is helpful for the finite automaton in
RT at most with the preservation of the non-negative integers without possibility to check
their values.

Lemma 7.7 For every RT Γ = (M,G,Ψ), there is a k-PBCA O such that L(O) = L(Γ)1

and k is the number of nonterminals in G.

Proof of Lemma 7.7. Let Γ = (M = (Q,Σ,Mδ, q0, F ), G = (N,T, P, S),Ψ) be an RT. With-
out any loss of generality suppose that N = {A1, . . . , An}, where S = A1. The par-
tially blind |N |-counter automaton O = (Q ∪ {q′0},Σ,Oδ, q′0, F ) is created in the following
way. For each r1 = pa → q ∈ Mδ and r2 = α → β ∈ P such that (r1, r2) ∈ Ψ, add
pa→ q(v1, . . . , v|N |), where vi = occur(Ai, β)− occur(Ai, α), for all i = 1, . . . , |N |, into Oδ.
Furthermore, add q′0 → q0(1, 0, . . . , 0) into Oδ.

The constructed partially blind |N |-counter automaton has a counter for each nonter-
minal from the grammar of Γ. Whenever the automaton in Γ makes a step and a sentential
form of grammar G is changed, O makes the same step and accordingly changes the number
of occurrences of nonterminals in its counters. �

From Lemma 7.6 and Lemma 7.7, we can establish the following theorem.

Theorem 7.8 L (RT)1 =
∞⋃
k=1

L (k-PBCA).

Proof of Theorem 7.8. It directly follows from Lemma 7.7 and Lemma 7.6. �
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For the better illustration of the accepting and generative power of RT, let us recall
that the class of languages generated by MATs is properly included in RE (see [1] or [37]),
and the class of languages defined by partially blind k-counter automata, with respect to
the number of counters, is superset of CF and properly included in CS (see [49] and [52]).

Although the investigated system is relatively powerful, in defiance of weakness of mod-
els they are used, non-deterministic selections of nonterminals to be rewritten can be rel-
atively problematic from the practical point of view. Therefore, we examine an effect of a
restriction in the form of leftmost derivations placed on the grammar in RT.

Definition 7.9 (Leftmost restriction on derivation in RT)
Let Γ = (M,G,Ψ) be an RT with M = (Q,Σ, δ, q0, F ) and G = (N,T, P, S). Furthermore,
let χ = (pav1, uAv2) and χ′ = (qv1, uxv2) be two 2-configurations, where A ∈ N , v2, x ∈
(N ∪ T )∗, u ∈ T ∗, v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and p, q ∈ Q. If and only if pav1 ⇒ qv1[r1] in
M , uAv2 ⇒ uxv2[r2] in G, and (r1, r2) ∈ Ψ, Γ makes a computation step from χ to χ′,
written as χ⇒lm χ′[(r1, r2)], or simply χ⇒lm χ′. In the standard way, ⇒∗lm and ⇒+

lm are
reflexive-transitive and transitive closure of ⇒lm, respectively.

The 2-language of Γ with G generating in the leftmost way, denoted by 2-Llm(Γ), is
defined as 2-Llm(Γ) = {(w1, w2)| (q0w1, S) ⇒∗lm (f, w2), w1 ∈ Σ∗, w2 ∈ T ∗, and f ∈ F};
we call Γ as leftmost restricted RT; and we define the languages given from 2-Llm(Γ) as
Llm(Γ)1 = {w1| (w1, w2) ∈ 2-Llm(Γ)} and Llm(Γ)2 = {w2| (w1, w2) ∈ 2-Llm(Γ)}. By
L (RTlm), L (RTlm)1, and L (RTlm)2, we understand the classes of 2-languages of left-
most restricted RTs, languages accepted by M in leftmost restricted RTs, and languages
generated by G in leftmost restricted RTs, respectively.

Theorem 7.10 L (RTlm)2 = CF.

Proof of Theorem 7.10. The inclusion CF ⊆ L (RTlm)2 is clear from the definition, because
any time we can construct leftmost restricted RT, where the automaton M cycles with
reading all possible symbols from the input or ε while the grammar G is generating some
output string. Therefore, we only need to prove the opposite inclusion.

We know that the class of context-free languages is defined, inter alia, by pushdown
automata. It is sufficient to prove that every language Llm(Γ)2 of RT can be accepted by
a pushdown automaton. Consider an RT Γ = (M = (Q, ΓΣ, Γδ, q0, F ), G = (N,T, P, S),Ψ)
and define PDA O = (Q,T,OΓ,Oδ, q0, S, F ), where OΓ = N∪T and Oδ is created as follows:

• set Oδ = ∅;

• for each r1 = A → x ∈ P and r2 = pa → q ∈ Γδ such that (r1, r2) ∈ Ψ, add
Ap→ (x)Rq into Oδ;

• for each p ∈ Q and a ∈ T add apa→ p into Oδ;

Now, we have to show that L(O) = Llm(Γ)2.

Claim 7.11 Let (q0w, S) ⇒∗ (pw′, uαv) ⇒∗ (f, ŵ) in RT Γ, where u ∈ T ∗, α ∈ N , and
v ∈ (N ∪ T )∗. Then, Sq0ŵ ⇒∗ (v)Rαpŵ′ in PDA O, where ŵ = uŵ′.

Proof of Claim 7.11. By the induction on the number of computation steps.

Basis. Let (q0w, S) ⇒0 (q0w, S) ⇒∗ (f, ŵ) in Γ. Trivially, Sq0ŵ ⇒0 Sq0ŵ and Claim 7.11
holds.
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Induction hypothesis. Suppose that Claim 7.11 holds for j or fewer computation steps.

Induction step. Let (q0w, S) ⇒j (paw′, uαv) ⇒ (qw′, uxv) ⇒∗ (f, ŵ) in Γ, where a ∈
ΓΣ ∪ {ε}, uxv = uu′βv′ and β is the new leftmost nonterminal. Then, by the induction
hypothesis, Sq0ŵ ⇒∗ (v)Rαpaŵ′ in O.

Since (paw′, uαv) ⇒ (qw′, uxv) in Γ, paw′ ⇒ qw′[r1] in M , uαv ⇒ uxv[r2] in G, and
(r1, r2) ∈ Ψ. From the construction of Oδ, O has rules αp → (x)Rq and bqb → q for all
b ∈ T . Hence, (v)Rαpŵ′ ⇒ (xv)Rqŵ′. Because uxv = uu′βv′, β is the leftmost nonterminal,
and (qw′, uxv) ⇒∗ (f, ŵ), (xv)Rqŵ′ = (u′βv′)Rqu′ŵ′′, and obviously, (u′βv′)Rqu′ŵ′′ ⇒∗
(βv′)Rqŵ′′ in O. Claim 7.11 holds.

The last step of every successful computation of Γ has to be of the form (qa, uαv) ⇒
(f, uxv), with a ∈ T ∪ {ε}, f ∈ F , uxv ∈ T ∗. By Claim 7.11, suppose that O is in
configuration (αv)Rqw′, where uw′ = uxv. From the construction of Oδ, (αv)Rqw′ ⇒
(xv)Rfw′ ⇒∗ f in O. Hence, Llm(Γ)2 ⊆ L(O).

It remains to prove the opposite inclusion—that is, L(O) ⊆ Llm(Γ)2.

Claim 7.12 Let Sq0w ⇒∗ f in PDA O, where f ∈ F . Then, (q0ŵ, S)⇒∗ (f, w) in RT Γ.

Proof of Claim 7.12. Consider any successful acceptance:

Sq0w ⇒∗ f (III)

in PDA O. We can express (III) as α0q0w0 ⇒ v1α1u1q1w0 ⇒∗ v1α1q1w1 ⇒ v2α2u2q2w1 ⇒∗
v2α2q2w2 ⇒ . . . ⇒ vkαkukqkwk−1 ⇒∗ vkαkqkwk ⇒ vkuk+1fwk ⇒∗ f , where α0 = S
and for all i = 1, . . . , k with k ≥ 0, αi ∈ N , ui, uk+1, vk ∈ T ∗, vi ∈ (N ∪ T )∗, wi−1 =
(ui)

Rwi and wk = (vkuk+1)R. Openly, (ui)
Rαi(vi)

R ⇒ (ui+1ui)
Rαi+1(vi+1)R[ri] in G,

qi−1ŵi−1 ⇒ qiŵi[r
′
i], and furthermore, (r′i, ri) ∈ Ψ for all i = 0, . . . , k. Hence, (III) can

be simulated by (q0ŵ0, α0) ⇒ (q1ŵ1, (u1)Rα1(v1)R) ⇒ (q2ŵ2, (u2u1)Rα2(v2)R) ⇒ . . . ⇒
(ukuk−1 . . . u1)Rαk(vk)

R ⇒ (f, (uk+1ukuk−1 . . . u1)R(vk)
R) = (f, w) in Γ. So, Claim 7.12

holds.

As L(O) ⊆ Llm(Γ)2 and Llm(Γ)2 ⊆ L(O), Theorem 7.10 holds. �

Lemma 7.13 For every language L ∈ CF, there is an RT Γ = (M,G,Ψ) such that
Llm(Γ)1 = L.

Proof of Lemma 7.13. Let I = (IN,T, IP, S) be a context-free grammar such that L(I) =
L. For I, we can construct context-free grammar H = (HN,T,HP, S), where HN = IN ∪
{〈a〉| a ∈ T} and HP = {〈a〉 → a| a ∈ T} ∪ {A→ x| A→ x′ ∈ IP and x is created from x′

by replacing all a ∈ T in x′ with 〈a〉}. Surely, L(I) = L(H) even if H replaces only the
leftmost nonterminals in each derivation step. In addition, we construct finite automaton
M = ({q0}, T, δ, q0, {q0}) with δ = {q0 → q0}∪{q0a→ q0| a ∈ T}, and Ψ = {(q0 → q0, A→
x)| A→ x ∈ HP,A ∈ IN} ∪ {(q0a→ q0, 〈a〉 → a)| a ∈ T}.

It is easy to see that any time when H replaces nonterminals from IN in its sentential
form, M reads no input symbol. If and only if H replaces 〈a〉 with a, where a ∈ T , then M
reads a from the input. Since H works in a leftmost way, 2-Llm(Γ) = {(w,w)| w ∈ L(I).
Hence, Llm(Γ)1 = L(I). �
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Similarly, we show that any RT generating outputs in the leftmost way can recognize
no language out of CF.

Lemma 7.14 Let Γ be an RT. Then, for every language Llm(Γ)1, there is a PDA O such
that Llm(Γ)1 = L(O).

Proof of Lemma 7.14. In the same way as in the proof of Theorem 7.3, we construct PDA
O such that L(O) = Llm(Γ)1 for RT Γ = (M = (Q, ΓΣ, Γδ, q0, F ), G = (N,T, P, S),Ψ). We
define O as O = (Q, ΓΣ, N,Oδ, q0, S, F ), where Oδ is created in the following way:

• set Oδ = ∅;

• for each r1 = pa → q ∈ Γδ and r2 = A → x ∈ P such that (r1, r2) ∈ Ψ, add
Apa→ (θ(x))Rq into Oδ, where θ(x) is a function from (N ∪ T )∗ to N∗ that replaces
all terminal symbols in x with ε—that is, θ(x) is x without terminal symbols.

In the following, we demonstrate that L(O) = Llm(Γ)1.

Claim 7.15 Let (q0w, S)⇒∗ (pw′, uαv) in RT Γ, where u ∈ T ∗, α ∈ N , and v ∈ (N ∪T )∗.
Then, Sq0w ⇒∗ (θ(v))Rαpw′ in PDA O.

Proof of Claim 7.15. By the induction on the number of computation steps.

Basis. Let (q0w, S) ⇒0 (q0w, S) in Γ. Then, surely, Sq0w ⇒0 (θ(S))Rq0w. Claim 7.15
holds.

Induction hypothesis. Suppose that Claim 7.15 holds for j or fewer computation steps.

Induction step. Let (q0w, S) ⇒j (paw′, uαv) ⇒ (qw′, uxv) in Γ, where a ∈ ΓΣ ∪ {ε},
uxv = uu′βv′ and β is the leftmost nonterminal. By the induction hypothesis, Sq0w ⇒∗
(θ(v))Rαpaw′ in O.

Because (paw′, uαv) ⇒ (qw′, uxv) in Γ, paw′ ⇒ qw′[r1] in M , uαv ⇒ uxv[r2] in
G, and (r1, r2) ∈ Ψ. From the construction of Oδ, O has a rule αpa → (θ(x))Rq, and
(θ(v))Rαpaw′ ⇒ (θ(v′))Rβqw′ in O. Claim 7.15 holds.

The last step of any successful computation in Γ is of the form (qa, uαv) ⇒ (f, uxv),
where f ∈ F , a ∈ ΓΣ ∪ {ε}, α ∈ N , and uxv ∈ T ∗. Hence, αqa→ f ∈ Oδ and αqa⇒ f in
O. So, Llm(Γ)1 ⊆ L(O).

Claim 7.16 Let Sq0w ⇒∗ (θ(v))Rαpw′ in PDA O. Then, (q0w, S) ⇒∗ (pw′, uαv) in RT
Γ, where u ∈ T ∗, α ∈ N , and v ∈ (N ∪ T )∗.

Proof of Claim 7.16. By the induction on the number of moves.

Basis. Let Sq0w ⇒0 Sq0w. Then, (q0w, S)⇒0 (q0w, S) in Γ and Claim 7.16 holds.

Induction hypothesis. Suppose that Claim 7.16 holds for j or fewer moves.

Induction step. Let Sq0w ⇒j (θ(v))Rαpaw′ ⇒ (θ(xv))Rqw′ in O, where a ∈ ΓΣ ∪ {ε}.
Then, by the induction hypothesis, (q0w, S) ⇒∗ (paw′, uαv) in Γ, where u ∈ T ∗, α ∈ N ,
and v ∈ (N ∪ T )∗.

Because there is a rule αpa → (θ(x))Rq in Oδ, from the construction of Oδ, there are
rules r1 = pa → q ∈ Γδ and r2 = α → x ∈ P , and (r1, r2) ∈ Ψ. Therefore, (paw′, uαv) ⇒
(qw′, uxv) in Γ. So, Claim 7.16 holds. Furthermore, if θ(xv)w′ = ε and q ∈ F , then
(paw′, uαv)⇒ (q, uxv) and L(O) ⊆ Llm(Γ)1.
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Since L(O) ⊆ Llm(Γ)1 and Llm(Γ)1 ⊆ L(O), L(O) = Llm(Γ)1. �

Theorem 7.17 L (RTlm)1 = CF.

Proof of Theorem 7.17. It directly follows from Lemma 7.13 and Lemma 7.14. �

Unfortunately, the price for the leftmost restriction, placed on derivations in the context-
free grammar, is relatively high and both accepting and generative ability of RT with the
restriction decreases to CF.

In the following, we extend RT with possibility to prefer a rule over another—that is,
the restriction sets contain triplets of rules (instead of pairs of rules), where the first rule
is a rule of FA, the second rule is a main rule of CFG, and the third rule is an alternative
rule of CFG, which is used only if the main rule is not applicable.

Definition 7.18 (RT with appearance checking)
The RT with appearance checking, RTac for short, is a triplet Γ = (M,G,Ψ), where M =
(Q,Σ, δ, q0, F ) is a finite automaton, G = (N,T, P, S) is a context-free grammar, and Ψ is
a finite set of triplets of the form (r1, r2, r3) such that r1 ∈ δ and r2, r3 ∈ P .

Let χ = (pav1, uAv2) and χ′ = (qv1, uxv2), where A ∈ N , v2, x, u ∈ (N ∪ T )∗, v1 ∈ Σ∗,
a ∈ Σ ∪ {ε}, and p, q ∈ Q, be two 2-configurations. Γ makes a computation step from χ
to χ′, written as χ⇒ χ′, if and only if for some (r1, r2, r3) ∈ Ψ, pav1 ⇒ qv1[r1] in M , and
either

• uAv2 ⇒ uxv2[r2] in G, or

• uAv2 ⇒ uxv2[r3] in G and r2 is not applicable on uAv2 in G.

The 2-language 2-L(Γ) and languages L(Γ)1, L(Γ)2 are defined in the same way as in Def-
inition 7.1. The classes of languages defined by the first and the second component in the
system are denoted by L (RTac)1 and L (RTac)2, respectively.

By the appearance checking both generative and accepting power of RT grow to the
power of Turing machines.

Theorem 7.19 L (RTac)2 = RE.

Proof of Theorem 7.19. Because L (MATac) = RE (see [37]), we only need to prove that
L (MATac) ⊆ L (RTac)2.

Consider an MATac, I = (IG, IC), and construct RTac Γ = (ΓM, ΓG,Ψ), such that L(I) =
L(Γ)2, as follows: set ΓG = IG; add a new initial nonterminal S′, nonterminal ∆, and
rules ∆ → ∆, ∆ → ε, S′ → S∆ into grammar ΓG; and construct finite automaton ΓM =
(Q,Σ, δ, s, F ) and Ψ in the following way: Set F,Q = {s}, δ = {s → s}, and Ψ = {(s →
s,∆ → ε,∆ → ε), (s → s, S′ → S∆, S′ → S∆)}; for every m = (p1, t1) . . . (pk, tk) ∈ IC,
add q1, q2, . . . , qk−1 into Q, s → q1, q1 → q2, . . . , qk−2 → qk−1, qk−1 → s into δ, and (s →
q1, p1, c1), (q1 → q2, p2, c2), . . . , (qk−2 → qk−1, pk−1, ck−1), (qk−1 → qs, pk, ck) into Ψ, where,
for 1 ≤ i ≤ k, if ti = −, then ci = pi; otherwise, ci = ∆→ ∆.

Since S′ is the initial symbol, the first computation step in Γ is (s, S′)⇒ (s, S∆). After
this step, the finite automaton simulates matrices in I by moves. That is, if x1 ⇒ x2[p] in I,
where p = p1 . . . pi for some i ∈ N, then there is q1, . . . , qi−1 ∈ Q such that r1 = s→ q1, r2 =
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q1 → q2, . . . , ri−1 = qi−2 → qi−1, ri = qi−1 → s ∈ δ and (r1, p1, c1), . . . , (ri, pi, ci) ∈ Ψ.
Therefore, (s, x1) ⇒i (s, x2) in Γ. Notice that if I can overleap some grammar rule in
m ∈ IC, Γ represents the fact by using ∆→ ∆ with the move in ΓM . Similarly, if, for some
i ∈ N, (s, x1) ⇒i (s, x2) in Γ and there is no j < i such that (s, x1) ⇒j (s, y) ⇒∗ (s, x2),
there exists p ∈ IC such that x1 ⇒ x2[p] in I. Hence, if (s, S)⇒∗ (s, w) in Γ, where w is a
string over the set of terminals in ΓG, then S ⇒∗ w in I; and, on the other hand, if S ⇒∗ w
in I for a string over the set of terminals in IG, then (s, S′)⇒ (s, S∆)⇒∗ (s, w∆)⇒ (s, w)
in Γ. �

Theorem 7.20 L (RTac)1 = RE.

Proof of Theorem 7.20. Let I = (IQ,Σ, Iδ, q0, F ) be a k-CA for some k ≥ 1 and construct
RT Γ = (M = (MQ,Σ,Mδ, q0, F ), G = (N,T, P, S),Ψ) as follows: Set T = {a},Ψ =
∅, N = {S,♦, A1, . . . , Ak}, P = {A→ ε,A→ ♦| A ∈ N − {♦}} ∪ {S → S}, and MQ = IQ,

Mδ = {f → f | f ∈ F}. For each pa→ q(t1, . . . , tk) in Iδ, n = Σk
i=1θ(ti), and m = Σk

i=1θ̂(ti),

where if ti ∈ Z, θ(ti) = max(0,−ti) and θ̂(ti) = max(0, ti); otherwise θ(ti) = 1 and
θ̂(ti) = 0, add:

• q1, . . . , qn into MQ;

• r = S → xS, where x ∈ (N − {S,♦})∗ and occur(Ai, x) = θ̂(ti), for each i = 1, . . . , k,
into P ;

• r1 = q0a→ q1, r2 = q1 → q2, . . ., rn = qn−1 → qn, rn+1 = qn → q into Mδ with q0 = p;
and for each i = 1, . . . , n, add (ri+1, τi, τ

′
i), where for each j = 1, . . . , k, if tj ∈ N, for

θ(tj) is, τi = τ ′i = Aj → ε; otherwise, if tj = −, τi = Aj → ♦ and τ ′i = S → S, into Ψ.
Notice that n = 0 means that only q0a → q, S → xS are considered. Furthermore,
add (r1, r, r) into Ψ;

• (f → f, S → ε, S → ε) into Ψ for all f ∈ F .

Similarly as in the proof of Theorem 7.6, the finite automaton of the created system
uses context-free grammar as an external storage, and each counter of the I is represented
by a nonterminal. If I modifies some counters during a move from state p to state q, M
moves from p to q in several steps during which it changes the numbers of occurrences
of nonterminals correspondingly. Rules applicable only if some counters are equal to zero
are simulated by using an appearance checking, where Γ tries to replace all nonterminals
representing counters which have to be 0 by ♦. If it is not possible, Γ applies the rule S → S
and continue with computation. Otherwise, since ♦ cannot be rewritten during the rest of
computation, use of such rule leads to an unsuccessful computation. The formal proof of
the equivalence of languages is left to the reader. Since, L (k-CA) = RE for every k ≥ 2
(see [58]), Theorem 7.20 holds. �

7.2 Applications in Natural Language Translation

In this section, we present several examples illustrating potential applications of the for-
mal models discussed in this paper in natural language processing (NLP), particularly in
translation.
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Currently, mainly because of the availability of large corpora (both unannotated and
annotated) for many languages, statistical approaches with the application of machine learn-
ing are dominant in machine translation and NLP in general. Many machine translation
systems are based on n-gram models and use little or no syntactic information (see [9]).
However, the recent trend consists in incorporating global information of this kind (global
within the scope of the sentence) into translation systems in an effort to improve the results.
This approach is usually called syntax-based or syntax augmented translation (see [64],
[112]). An in-depth description of the formal background of one such system can be found
in [7].

In this paper, we present a new formalism that can be applied within the context
of such systems to describe syntactic structures and their transformations, and we study
its properties. RT provides an alternative to formal models currently used in translation
systems, such as synchronous grammars (see [21]).

One of the main advantages of the RT formalism lies in its straightforward and intu-
itive basic principle. Indeed, we simply read the input with an FA, while generating the
corresponding output using a CFG. Another important advantage is the power of RT (see
section 7.1). RT has the ability to describe features of natural languages that are difficult or
even impossible to capture within a purely context-free framework, such as non-projectivity,
demonstrated below.

RT can be easily extended and adapted for use in statistical NLP as well. For example,
similarly to probabilistic CFG (see [62]), we can assign probabilities to rules, or to pairs of
rules in the control set.

First, to demonstrate the basic principles, we perform the passive transformation of a
simple English sentence

The cat caught the mouse.

The passive transformation means transforming a sentence in active voice into passive,
and it is a well-known principle that is common to many languages. For the above sentence,
the passive form is

The mouse was caught by the cat.

Figure 7.2 shows derivation trees for the above sentences. Throughout this section, we use
the following notation to represent common linguistic constituents:

AUX auxiliary verb P preposition
DET determiner PN pronoun
N noun PP prepositional phrase
NP noun phrase V verb
NP-SBJ noun phrase in the role of subject VP verb phrase

Essentially, what we need to do is the following: swapping the subject and the object,
adding the preposition by in the correct position, and changing the verb into passive, using
the auxiliary verb to be in the appropriate form. The verb to be is irregular and has many
different forms (paradigms) depending not only on tense, but also person and number. In
most cases, we can see the tense directly from the main verb in the active form, but for
the other two categories (person and number), we need to look at the subject (the object
in the original sentence).
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Figure 7.2: Example of the passive transformation

Example 7.21
Consider an RT Γ = (M,G,Ψ), where M = (Q,Σ, δ, 0, F ), G = (N,T, P, S). Let Q =
{0, 1, 2, 3, 4, 5, 6, 7, 8a, 8b, 8c, 8d, 8e, 8f, 9}, Σ = {N1s, N2s, N3s, N1p, N2p, N3p, Vpas, Vps,
Vpp, DET, P, AUXpas1s, AUXpas2s, AUXpas3s, AUXpas1p, AUXpas2p, AUXpas3p, AUXps1s,
AUXps2s, AUXps3s, AUXps1p, AUXps2p, AUXps3p}, F = {9}, N = {S, NP-SBJ, NP, VP,
PP, N?, V?, AUXpas?, AUXps?}, T = Σ. Furthermore, let δ, P , and Ψ are given by next:

δ = { r1 = 0 → 1, r6a = 3Vpas → 5, r10a = 8a → 9,
r2 = 1 → 2, r6b = 3Vps → 5, r10b = 8b → 9,
r3 = 2 → 3, r7 = 5 → 6, ...r4 = 3DET → 4, r8 = 6DET → 7,
r5a = 4N1s → 3, r9a = 7N1s → 8a, r10f = 8f → 9,
r5b = 4N2s → 3, r9b = 7N2s → 8b,

...
...

r5f = 4N3p → 3, r9f = 7N3p → 8f}

P = { p1 = S → NP-SBJ VP, p8a = AUXpas? → AUXpas1s,
p2 = NP-SBJ → NP, p8b = AUXpas? → AUXpas2s,
p3 = NP → DET N?, ...p4a = N? → N1s,
p4b = N? → N2s, p8f = AUXpas? → AUXpas3p,

...
p9a = AUXps? → AUXps1s,
p9b = AUXps? → AUXps2s,

p4f = N? → N3p, ...p5 = VP → V? PP,
p6 = PP → P NP, p9f = AUXps? → AUXps3p,
p7a = V? → AUXpas? Vpp,
p7b = V? → AUXps? Vpp}

Ψ = {(r1, p1), (r2, p5), (r3, p6), (r4, p3), (r5a, p4a), (r5b, p4b), . . . , (r5f , p4f ), (r6a, p7a),
(r6b, p7b), (r7, p2), (r8, p3), (r9a, p4a), (r9b, p4b), . . . , (r9f , p4f ), (r10a, p8a), (r10b, p8b), . . . ,
(r10f , p8f ), (r10a, p9a), (r10b, p9b), . . . , (r10f , p9f )}

One may notice that the input alphabet of the automaton, as well as the terminal alphabet
of the grammar, does not contain the actual words themselves, but rather symbols repre-
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senting word categories and their properties (for example, N3s represents a noun in third
person singular). In the examples throughout this section, we consider syntax analysis and
translation on the abstract level, transforming syntactic structures in languages. That is,
we assume that we already have the input sentence split into words (or possibly some other
units as appropriate), and these words are tagged as, for example, a noun, pronoun, or
verb.

In the computation examples, the text in square brackets shows the words associated
with the symbols for the given example sentence, but note that this is not a part of the
formalism itself. This specifier is assigned to all terminals. Nonterminals are only specified
by words when the relation can be established from the computation so far performed (for
example, we cannot assign a word before we read the corresponding input token).

For the sentence the cat caught the mouse (for the purposes of this text, we disregard
capitalization and punctuation) from the above example, the computation can proceed as
follows:

(0 DET[the] N3s[cat ] Vpas[caught ] DET[the] N3s[mouse], S)
⇒ (1 DET[the] N3s[cat ] Vpas[caught ] DET[the] N3s[mouse], NP-SBJ VP)

[(r1, p1)]
⇒ (2 DET[the] N3s[cat ] Vpas[caught ] DET[the] N3s[mouse], NP-SBJ V? PP)

[(r2, p5)]
⇒ (3 DET[the] N3s[cat ] Vpas[caught ] DET[the] N3s[mouse], NP-SBJ V? P[by ]

NP) [(r3, p6)]
⇒ (4 N3s[cat ] Vpas[caught ] DET[the] N3s[mouse], NP-SBJ V? P[by ] DET[the]

N?) [(r4, p3)]

⇒ (3 Vpas[caught ] DET[the] N3s[mouse], NP-SBJ V? P[by ] DET[the] N3s[cat ])

[(r5c, p4c)]
⇒ (5 DET[the] N3s[mouse], NP-SBJ AUXpas?[be] Vpp[caught ] P[by ] DET[the]

N3s[cat ]) [(r6a, p7a)]
⇒ (6 DET[the] N3s[mouse], NP AUXpas?[be] Vpp[caught ] P[by ] DET[the]

N3s[cat ]) [(r7, p2)]
⇒ (7 N3s[mouse], DET[the] N? AUXpas?[be] Vpp[caught ] P[by ] DET[the] N3s[cat ])

[(r8, p3)]
⇒ (8c, DET[the] N3s[mouse] AUXpas?[be] Vpp[caught ] P[by ] DET[the] N3s[cat ])

[(r9c, p4c)]
⇒ (9, DET[the] N3s[mouse] AUXpas3s[was] Vpp[caught ] P[by ] DET[the] N3s[cat ])

[(r10c, p8c)]

For clarity, in each computation step, the input symbol to be read (if any) and the nonter-
minal to be rewritten are underlined.

First (in states 0, 1, and 2), we generate the expected basic structure of the output
sentence. Note that this is done before reading any input. In states 3 and 4, we read the
subject of the original sentence, states 5 and 6 read the verb, and the rest of the states is
used to process the object. When we read the verb, we generate its passive form, consisting
of to be and the verb in past participle. However, at this point, we know the tense (in this
case, past simple), but do not know the person or number yet. The missing information
is represented by the question mark (?) symbol in the nonterminal AUXpas?. Later, when
we read the object of the original sentence, we rewrite AUXpas? to a terminal. In this case,
the object is in third person singular, which gives us the terminal AUXpas3s (meaning that
the correct form to use here is was).
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Next, we present examples of translation between different languages. We focus on
Japanese, Czech, and English.

One problem when translating into Czech is that there is very rich inflection. The
form of the words reflects many grammatical categories, such as case, gender, and number
(see [54], where the author discusses this issue with regard to computational linguistics).
To illustrate, compare the following sentences in Japanese, English, and Czech.

Zasshi o yondeitta onna no hito wa watashi no shiriai deshita.
Zasshi o yondeitta otoko no hito wa watashi no shiriai deshita.

The woman who was reading a magazine was an acquitance of mine.
The man who was reading a magazine was an acquitance of mine.

Žena, která četla časopis, byla moje známá.
Muž, který četl časopis, byl m̊uj známý.

As we can see, in Czech, nearly every word is different, depending on the gender of the
subject. In contrast, in both Japanese and English, the two sentences only differ in one
word – onna no hito (woman) and otoko no hito (man).1

The above sentences also give us an example of some structural differences between
Japanese and Czech. In Czech and English, the structure of the sentence is very similar,
but in Japanese, there is no word that correspond directly to který (which, who, . . . ).
Instead, this relation is represented by the form of the verb yondeitta (the dictionary form
is yomu, meaning to read). Compare the derivation trees in Figure 7.3.

Example 7.22
Consider an RT Γ = (M,G,Ψ), where M = (Q,Σ, δ, 0, F ), G = (N,T, P, S). Let Q =
{0,m,m1,m2, f, f1, f2, n, n1, n2, 1m, 1f, 1n}, Σ = {NPm, NPf , NPn, NP?, V, DET,#},
F = {1m, 1f, 1n}, N = { S, NP-SBJ, NP?, VP, PN?, V?, X}, T = {NPm, NPf , NPn, Vm,
Vf , Vn, PNm, PNf , PNn}. Let δ, P , and Ψ are defined as follows:

δ = { r1 = 0V → 1, rm1 = mV → m1, rf1 = fV → f1,
r2 = 1 → 0, rm2 = m1 → m2, rf2 = f1 → f2,
r3 = 0NP? → 0, rm3 = m2 → m, ...r4 = 0DET → 0, rm4 = mDET → m,

r5m = 0NPm → m, rm5 = mNP? → m, rf7 = 1f → 1f ,
r5f = 0NPf → f , rm5m = mNPm → m, rn1 = nV → n1,
r5n = 0NPn → n, rm5f = mNPf → m, rn2 = n1 → n2,

rm5n = mNPn → m, ...rm6 = m# → 1m,
rm7 = 1m → 1m, rn7 = 1n → 1n}

1Technically, onna no hito literally translates to woman’s person or female person, with onna itself
meaning woman, female. However, referring to a person only by onna may have negative connotations in
Japanese. Similarly for otoko no hito.
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Figure 7.3: Derivation trees – Japanese (top) and Czech (bottom)

P = { p1 = S → NP-SBJ VP X, p7m = V? → Vm,
p2 = NP-SBJ → NP?, p7f = V? → Vf ,

p3m = NP? → NPm, p7n = V? → Vn,
p3f = NP? → NPf , p8 = S′ → PN? VP,
p3n = NP? → NPn, p9m = PN? → PNm,
p4 = NP? → NP?, p9f = PN? → PNf ,
p5 = NP? → NP? S′, p9n = PN? → PNn,
p6 = VP → V? NP?, p10 = X → ε}
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Ψ = {(r1, p1), (r2, p6), (r3, p4), (r4, p2), (r5m, p4), (r5f , p4), (r5n, p4), (rm1, p5), (rm2, p8),
(rm3, p6), (rm4, p4), (rm5, p4), (rm5m, p3m), (rm5f , p3f ), (rm5n, p3n), (rm6, p10), (rm7, p3m),
(rm7, p7m), (rm7, p9m), (rf1, p5), (rf2, p8), (rf3, p6), (rf4, p4), (rf5, p4), (rf5m, p3m), (rf5f ,
p3f ), (rf5n, p3n), (rf6, p10), (rf7, p3f ), (rf7, p7f ), (rf7, p9f ), (rn1, p5), (rn2, p8), (rn3, p6),
(rn4, p4), (rn5, p4), (rn5m, p3m), (rn5f , p3f ), (rn5n, p3n), (rn6, p10), (rn7, p3n), (rn7, p7n),
(rn7, p9n)}

We have added two dummy symbols: the input symbol #, which acts as the endmarker,
and the nonterminal X, which we generate at the beginning of the computation and then
erase when all the input has been read (including #).

In this example, we read the input sentence in reverse order (right to left). Clearly, this
makes no difference from a purely theoretical point of view, but it may be more suitable
in practice due to the way how Japanese sentences are organized. The computation trans-
forming the sentence zasshi o yondeitta onna no hito wa watashi no shiriai deshita into
žena, která četla časopis, byla moje známá can proceed as follows:

(0 V[deshita] NP?[watashi no shiriai ] DET[wa] NPf [onna no hito]
V[yondeitta] DET[o] NPm[zasshi ] #, S)

⇒ (1 NP?[watashi no shiriai ] DET[wa] NPf [onna no hito] V[yondeitta] DET[o]
NPm[zasshi ] #, NP-SBJ VP X) [(r1, p1)]

⇒ (0 NP?[watashi no shiriai ] DET[wa] NPf [onna no hito] V[yondeitta] DET[o]
NPm[zasshi ] #, NP-SBJ V?[byl ] NP? X) [(r2, p6)]

⇒ (0 DET[wa] NPf [onna no hito] V[yondeitta] DET[o] NPm[zasshi ] #, NP-SBJ
V?[byl ] NP?[m̊uj známý ] X) [(r3, p4)]

⇒ (0 NPf [onna no hito] V[yondeitta] DET[o] NPm[zasshi ] #, NP? V?[byl ]

NP?[m̊uj známý ] X) [(r4, p2)]
⇒ (f V[yondeitta] DET[o] NPm[zasshi ] #, NP? [̌zena] V?[byl ] NP?[m̊uj známý ]

X) [(r5f , p4)]
⇒ (f1 DET[o] NPm[zasshi ] #, NP? [̌zena] S′ V?[byl ] NP?[m̊uj známý ] X)

[(rf1, p5)]
⇒ (f2 DET[o] NPm[zasshi ] #, NP? [̌zena] PN?[který ] VP V?[byl ] NP?[m̊uj známý ]

X) [(rf2, p8)]
⇒ (f DET[o] NPm[zasshi ] #, NP? [̌zena] PN?[který ] V?[četl ] NP? V?[byl ]

NP?[m̊uj známý ] X) [(rf3, p6)]
⇒ (f NPm[zasshi ] #, NP? [̌zena] PN?[který ] V?[četl ] NP? V?[byl ] NP?[m̊uj známý ]

X) [(rf4, p4)]
⇒ (f #, NP? [̌zena] PN?[který ] V?[četl ] NPm[časopis] V?[byl ] NP?[m̊uj známý ]

X) [(rf5m, p3m)]
⇒ (1f, NP? [̌zena] PN?[který ] V?[četl ] NPm[časopis] V?[byl ] NP?[m̊uj známý ])

[(rf6, p10)]
⇒ (1f, NPf [̌zena] PN?[který ] V?[četl ] NPm[časopis] V?[byl ] NP?[m̊uj známý ])

[(rf7, p3f )]
⇒ (1f, NPf [̌zena] PNf [která] V?[četl ] NPm[časopis] V?[byl ] NP?[m̊uj známý ])

[(rf7, p9f )]
⇒ (1f, NPf [̌zena] PNf [která] Vf [četla] NPm[časopis] V?[byl ] NP?[m̊uj známý ])

[(rf7, p7f )]
⇒ (1f, NPf [̌zena] PNf [která] Vf [četla] NPm[časopis] Vf [byla] NP?[m̊uj známý ])

[(rf7, p7f )]
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⇒ (1f, NPf [̌zena] PNf [která] Vf [četla] NPm[časopis] Vf [byla] NPf [moje
známá]) [(rf7, p3f )]

When we first read the word that determines the gender, we move to the state that
represents this gender (state m, n, or f). Note that these states are functionally identical in
the sense that we can read the same input symbols, while performing the same computation
steps in the grammar generating the output. After we have reached the end of input, we
rewrite the nonterminal symbols representing words with as of yet unknown gender to the
corresponding terminal symbols, depending on the state.

Czech is considered a free-word-order language, which means that it allows for a wide
range of permutations of words in a sentence without changing its syntactic structure (the
meaning of the sentence may be affected). This is perhaps the main source of the relatively
high amount of non-projectivity in Czech sentences.

Non-projectivity means that there are cross-dependencies. For example, consider the
English sentence

I ate a cake yesterday which was delicious.

As shown in the dependency tree in Figure 7.4, there is a crossing of dependencies repre-
sented by arrows (yesterday, ate) and (was, cake). Arrows are drawn from child (modifier)
to parent (head).

Arguably, the English example is somewhat artificial – even though the sentence is
well-formed, in most cases it might be more natural to say simply

I ate a delicious cake yesterday.

In contrast, in Czech, a sentence such as

Nev́ım, jaký je mezi nimi rozd́ıl.
(I don’t know what the difference between them is.)

is not at all unusual. The dependency tree for this sentence (see Figure 7.5) is also
non-projective. For further information about the projectivity, and the issue of the non-
projectivity in the Czech language in particular, see [55].

The following example illustrates how the formalism accounts for the non-projectivity.

Example 7.23
Consider an RT Γ = (M,G,Ψ), where M = (Q,Σ, δ, 0, F ), G = (N,T, P, S). Let Q =

73



Nev́ım
(I) don’t know

##jaký
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Figure 7.5: Non-projective dependency tree (Czech)

{0, 1, 2, 3, 4, 5, 6m, 6f, 6n}, Σ = {Nm,Nf ,Nn,V,PN,PNi, DET,P}, F = {0}, N = {S, NP-
SBJ, NP, VP, PP, V?}, T = { Nm, Nf , Nn, V, PNm, PNf , PNn, P},
δ = { r1m = 0Nm → 6m, r5 = 0DET → 0, r11 = 5 → 0,

r1f = 0Nf → 6f , r6 = 0P → 0, r12m = 6m → 0,
r1n = 0Nn → 6n, r7 = 1 → 2, r12f = 6f → 0,
r2 = 0V → 0, r8 = 2 → 0, r12n = 6n → 0,
r3 = 0PN → 1, r9 = 3 → 4, r13 = 0PN → 0,
r4 = 0PNi → 3, r10 = 4 → 5},

P = { p1 = S → NP-SBJ VP, p6m = NP → PNm,
p2 = NP-SBJ → NP, p6f = NP → PNf ,
p3 = NP-SBJ → ε, p6n = NP → PNn,

p4m = NP → Nm, p7 = VP → V? PP NP,
p4f = NP → Nf , p8 = V? → V,
p4n = NP → Nn, p9 = PP → P NP,
p5 = NP → S, p10 = PP → ε}, and

Ψ = {(r1m, p4m), (r1f , p4f ), (r1n, p4n), (r2, p8), (r3, p1), (r4, p10), (r5, p7), (r6, p9), (r7, p3),
(r8, p7), (r9, p5), (r10, p1), (r11, p2), (r12m, p6m), (r12f , p6f ), (r12n, p6n), (r13, p6m)}.

The computation transforming the English sentence I don’t know what the difference between
them is into the (non-projective) Czech sentence nev́ım, jaký je mezi nimi rozd́ıl proceeds
as follows:

(0 PN[I ] V[don’t know ] PNi[what ] DET[the] Nm[difference] P[between]
PN[them] V[is], S)

⇒ (1 V[don’t know ] PNi[what ] DET[the] Nm[difference] P[between] PN[them]
V[is], NP-SBJ VP) [(r3, p1)]

⇒ (2 V[don’t know ] PNi[what ] DET[the] Nm[difference] P[between] PN[them]
V[is], VP) [(r7, p3)]

⇒ (0 V[don’t know ] PNi[what ] DET[the] Nm[difference] P[between] PN[them]
V[is], V? PP NP) [(r8, p7)]

⇒ (0 PNi[what ] DET[the] Nm[difference] P[between] PN[them] V[is], V[nev́ım]
PP NP) [(r2, p8)]

⇒ (3 DET[the] Nm[difference] P[between] PN[them] V[is], V[nev́ım] NP)
[(r4, p10)]

⇒ (4 DET[the] Nm[difference] P[between] PN[them] V[is], V[nev́ım] S) [(r9, p5)]
⇒ (5 DET[the] Nm[difference] P[between] PN[them] V[is], V[nev́ım] NP-SBJ VP)

[(r10, p1)]
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⇒ (0 DET[the] Nm[difference] P[between] PN[them] V[is], V[nev́ım] NP[jaký ]
VP) [(r11, p2)]

⇒ (0 Nm[difference] P[between] PN[them] V[is], V[nev́ım] NP[jaký ] V? PP NP)
[(r5, p7)]

⇒ (6m P[between] PN[them] V[is], V[nev́ım] NP[jaký ] V? PP Nm[rozd́ıl ]) [(r1m,
p4m)]

⇒ (0 P[between] PN[them] V[is], V[nev́ım] PNm[jaký ] V? PP Nm[rozd́ıl ]) [(r12m,
p6m)]

⇒ (0 PN[them] V[is], V[nev́ım] PNm[jaký ] V? P[mezi ] NP Nm[rozd́ıl ]) [(r6, p9)]

⇒ (0 V[is], V[nev́ım] PNm[jaký ] V? P[mezi ] PNm[nimi ] Nm[rozd́ıl ]) [(r13, p6m)]

⇒ (0, V[nev́ım] PNm[jaký ] V[je] P[mezi ] PNm[nimi ] Nm[rozd́ıl ]) [(r2, p8)]

The corresponding derivation tree of G is shown in Figure 7.6.

In the examples presented in this paper, we have made two important assumptions.
First, we already have the input sentence analysed on a low level – we know where every
word starts and ends (which may be a non-trivial problem itself in some languages, such as
Japanese) and have some basic grammatical information about it. Furthermore, we know
the translation of the individual words. For practical applications in natural language
translation, we need a more complex system, with at least two other components – a part-
of-speech tagger, and a dictionary to translate the actual meanings of the words. Then,
the component based on the discussed formal model can be used to transform the syntactic
structure and also ensure that the words in the translated sentence are in the correct form.
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Chapter 8

Parsing of n-Path-Restricted
Tree-Controlled Languages

The previous chapter has introduced and investigated mechanisms for direct translation. In
this chapter, we use an automata system for parsing based upon grammars with restricted
derivation trees, which represents an important trend in todays formal language theory (see
[31, 39, 67, 68, 71, 73, 95]). These grammars generate their languages just like ordinary
context-free grammars do, but their derivation trees have to satisfy some simple prescribed
conditions. The idea of restrictions placed on the derivation trees of context-free grammars
is introduced in [31], and the resulting grammars restricted in this way are referred to as
tree-controlled grammars. In essence, the notion of a tree-controlled grammar is defined as
follows: take a context-free grammar G and a regular language R. A string w generated
by G belongs to the language defined by G and R only if there is derivation tree t for w in
G such that all levels (except the last one) of t are described by R. Based on the original
definition of a tree-controlled grammar, the modifications, where many well-known types
of both controlled grammars and control languages are considered, are studied in [95].

A new type of restriction in a derivation are studied in [71]. They consider a context-
free grammar G and a context-free language R. A string w generated by G belongs to the
language defined by G and R only if there is derivation tree t for w in G such that there
exists a path of t described by R. Based on this restriction, they introduce path-controlled
grammars and study several properties of this model. As they state in the final remarks,
there are many open problems. Some of them are studied in [73] but still many modifications
remain unsolved. In [73], based on the non-emptiness problem for the intersection of two
languages, the authors state the polynomial recognizability. However, they say nothing
about parsing methods of the languages generated by path-controlled grammars at all.

As a generalization of path-controlled grammars, the authors of [67] introduce several
variants of this rewriting model where not just one, but given number of paths in derivation
trees of context-free grammars have to be described by a control language. That is, [67]
deals with a generalization of path-controlled grammars (G,R), where a string w generated
by G belongs to the language defined by G and R only if there is derivation tree t for
w in G such that there exist given n paths of t described by a linear language R, where
n ≥ 1. Such a rewriting system is referred to as n-path tree-controlled grammar. As it is
demonstrated in Section 8.2, this generalized rewriting system can generate some languages
not captured in the rewriting system introduced in [71]. Then, based on the common part of
all restricted paths of the derivation trees of context-free grammars, the authors introduce
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several modifications and state pumping properties of some of them. The possibilities
of parsing methods working in polynomial time for n-path tree-controlled languages are
briefly studied in [66]. This chapter continues with the investigation of these grammars
and establishes a parsing method based on them. After recalling the restrictions placed on
n ≥ 1 paths in the derivation trees of context-free grammars, we introduce LL restriction
(see [103]) and we present the ideas how to parse generated language class (not only how to
decide membership problem), where the core of the parsing method stands on abstraction
of 3-accepting restricted pushdown automata systems. Essentially, we discuss the following
problem: Can we decide whether a string is recognized by n-path tree-controlled grammar
in polynomial time, for n ≥ 1?

8.1 n-Path-Restricted Tree-Controlled Grammars

In this section, as the subject of investigation in this chapter, we recall the derivation-based
generalization of tree-controlled grammars based on n-path restriction as it is introduced
in [67].

Let G = (N,T, P, S) be a context-free grammar and x ∈ T ∗. Let t ∈ G4(x). A path of
t is any sequence of the nodes with the first node equals to the root of t, the last node equals
to a leaf of t, and there is an edge in t between each two consecutive nodes of the sequence.
Let s be any sequence of the nodes of t. Then word(s) denotes the string obtained by
concatenation of all labels of the nodes of s in order from left to right.

A tree-controlled grammar, TC grammar for short, is a pair (G,R), where G = (N,T, P,
S) is a context-free grammar and R ⊆ (N ∪ T )∗ is a control language. The language that
(G,R) generates under the n-path control by R, n ≥ 1, is denoted by n-pathL(G,R) and it
is defined by the following equivalence.

For all x ∈ T ∗, x ∈ n-pathL(G,R) if and only if there exists derivation tree
t ∈ GN(x) such that there is a set Qt of n paths of t such that for each p ∈ Qt, word(p) ∈ R.
Set n-path-TC = {n-pathL(G,R)| (G,R) is a TC grammar}. Hereafter, TC grammars that
generate the language under the n-path control are referred to as n-path TC grammars.

For each context-free grammar G, there is a regular language which describes all paths
in a derivation tree of a string w in G (see Prop. 1 in [71]). Since for each context-free
grammar G, there is no regular control language that increases the generative power of G
with R controling the paths (see Prop 1. and Prop. 2 in [71]), we investigate TC grammar
with non-regular control language. On the other hand, as it is demonstrated in Section 8.2,
linear language used to control the paths in the derivation trees of context-free grammars
is strong-enough mechanism to increase the generative power of context-free grammars.
Thus, we study n-path TC grammars with linear control languages in the rest of this
paper. Therefore, in what follows, for a TC grammar (G,R), we consider R as a linear
language.

8.2 Examples

In this section, we demonstrate two non-context-free languages that belong to n-path-TC.
The languages are first introduced for selected n ≥ 1, and after that, they are presented
in a general case. The specific examples for higher values of n tends to be excessively long
and they are left to the reader.
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Figure 8.1: Illustration of the derivations of a3b3c3d3e3f3 with two paths of the form
SiXiUb ∪ SiY iV d, where i ≥ 1, in Example 8.1 (left) and (a2cdb2)

4
with three paths

of the form ArBsCtDuHuGtF sErIa, where r, s, t, u ≥ 1, in Example 8.3 (right).

Example 8.1
Consider the TC grammar that generates n-pathL(G,R) and n = 2, where

G = ({S,X, Y, U, V }, {a, b, c, d, e, f}, P, S),
P = {S → aSf, S → aXY f, X → bXc, Y → dY e,

X → U, U → bc, Y → V, V → de},
R = {SiXiUb ∪ SiY iV d| i ≥ 1},
2-pathL(G,R) = {ajbjcjdjejf j | j ≥ 1}.

Clearly, 2-pathL(G,R) /∈ CF. The left-hand part of Figure 8.1 illustrates the derivation tree
for the derivation S ⇒∗ a3b3c3c3d3e3f3 in (G,R). Clearly, there are two paths described
by the strings S3X3Ub and S3Y 3V d from R.

Example 8.2
Let (G,R) be a TC grammar that generates n-pathL(G,R), n ≥ 1, where

G = ({S} ∪ {Ai, Bi| 1 ≤ i ≤ n},
{ai| 1 ≤ i ≤ 2n+ 2}, P, S),

P ={S → a1Sa2n+2, S → a1A1A2 . . . Ana2n+2}∪
{Ai+1 → a2i+2Ai+1a2i+3, Ai+1 → Bi+1,
Bi+1 → a2i+2a2i+3| 0 ≤ i ≤ n− 1},

R =
⋃n
i=1{SkAkiBia2i| k ≥ 1}.

Clearly, R ∈ LIN. Consider a derivation in (G,R):

S⇒k ak1Sa
k
2n+2
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⇒ ak1a1A1A2 . . . Ana2n+2a
k
2n+2

⇒n·k ak+1
1 ak2B1a

k
3 . . . a

k
2nBna

k
2n+1a

k+1
2n+2

⇒n ak+1
1 ak+1

2 ak+1
3 . . . ak+1

2n ak+1
2n+1a

k+1
2n+2

Clearly, n ≥ 1 paths are described by R and in this way, (G,R) generates n-pathL(G,R) =
{ak1 . . . ak2n+2| k ≥ 1} /∈ CF.

Example 8.3
Consider the TC grammar (G,R) with n-pathL(G,R), for n = 3, where

G = ({A,B,C,D,E, F,G,H, I}, {a, b, c, d}, P,A),
P = {A→ aA, A→ aB, B → Bb, B → C,

C → cC, C → D, D → Dd, D → HHH,
E → Ea, E → I, F → bF, F → E,
G→ Gc, G→ F, H → dH, H → G, I → a},

R = {ArBsCtDuHuGtF sErIa| r, s, t, u ≥ 0},
3-pathL(G,R) = {(arctdubs)4| r > 0, s, t, u ≥ 0}.

Clearly, 3-pathL(G,R) /∈ CF. The right-hand part of Figure 8.1 illustrates the derivation

tree for the derivation S ⇒∗ (a2cdb2)
4

in (G,R). Clearly, there are three paths described
by A2B3C2D2H2G2F 3E2Ia from R.

Example 8.4
Let m ≥ 0 with even m. Let (G,R) be a TC grammar that generates n-pathL(G,R), n ≥ 1,

where

G = ({Aj , Bj | 1 ≤ j ≤ m} ∪ {C}, {aj | 1 ≤ j ≤ m}, P,A1),
P ={A1 → a1A1, A1 → a1A2, B1 → B1a1, B1 → C, C → a1}∪
{Am → Amam,Am → {Bm}n}∪
{Ai → Aiai, Ai → Ai+1| 2 ≤ i ≤ m− 1 with even i}∪
{Ai → aiAi, Ai → Ai+1| 3 ≤ i ≤ m− 1 with odd i}∪
{Bi → aiBi, Bi → Bi−1| 2 ≤ i ≤ m with even i}∪
{Bi → Biai, Bi → Bi−1| 3 ≤ i ≤ m with odd i},

R = {Ak11 A
k2
2 . . . Akmm Bkm

m B
km−1

m−1 . . . Bk2
2 Bk1

1 Ca1| ki ≥ 0, 1 ≤ i ≤ m}.

Clearly, R ∈ LIN. Observe that n ≥ 1 paths are described by R and

n-pathL(G,R) = {(ak1+1
1 ak33 . . . a

km−1

m−1 a
m
ma

km−2

m−2 a
km−4

m−4 . . . a
k2
2 )n+1

| ki ≥ 0, 1 ≤ i ≤ m} /∈ CF.

The details of a derivation in this general case is left to the reader.

8.3 Syntax analysis of n-path-TC

As it is demonstrated above, some typical non-context-free languages belong to n-path-TC.
Thus it is natural and indisputably important for practical use to study the parsing methods
possibilities for this language class. The first and most important requirement on parsing
is polynomial parsability.
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Theorem 8.5 For TC grammar (G,R) where G is unambiguous context-free grammar
and R is linear control language, the membership x ∈ n-pathL(G,R), n ≥ 1, is decidable in
O(|x|k), for some k ≥ 0.

Proof of Theorem 8.5. For some n ≥ 1, let n-pathL(G,R) be the language of a TC grammar
(G,R) in which G is unambiguous. We assume R is generated by some unambiguous linear
grammar. Since G is unambiguous, it is well-known that we can decide whether x ∈ L(G),
or not, in O(|x|2)—that is, we distinguish two cases: (1) x /∈ L(G) and (2) x ∈ L(G).

• Clearly, if x /∈ L(G), then x /∈ n-pathL(G,R).

• If x ∈ L(G), then, since G is unambiguous, we can construct unique derivation tree
t of x ∈ L(G) in O(|x|2). Since each path of t ends in a leaf, t contains |x| paths.
Clearly, the height of t is polynomially bounded by some l ≥ 2 with respect to |x|.
Thus, for any x ∈ L(G), the length of each path p of t and therefore also |word(p)|
are bounded by l. Because R is unambiguous and |word(p)| ≤ l for each p ∈ Qt,
it is well-known that we can decide if word(p) ∈ L(R) in polynomial time. If for
at least n paths, p1, p2, . . . , pn, of derivation tree of x in G, word(pi) ∈ R holds for
i ∈ 1, 2, . . . , n, then x ∈ n-pathL(G,R). Hence, the membership problem is decidable
in polynomial time.

�

As it straightforwardly follows from above, the proposed way to solve membership prob-
lem leads to a parsing method working, in essence, in two phases:

1. construction of derivation tree t of x in G by top-down parsing method,

2. checking that at least n ≥ 1 paths of t belong to R.

From the practical viewpoint, the situation may occur in which during the phase 1 above
we already know that currently constructed derivation tree cannot contain the required
number of paths described by the strings from R—informally, we do not have to wait with
starting the phase 2 until the phase 1 is completely done (until t is completely constructed).

8.3.1 Top-Down Parsing of n-path-TC

For some n ≥ 1, let n-pathL(G,R) be the language of a TC grammar (G,R) where G =
(N,T, P, S) is an unambiguous context-free grammar and let V = N ∪ T . We assume that
R is generated by unambiguous context-free grammar GR = (NR, V, PR, SR). Adjust the
idea behind Theorem 8.5 as follows:

We construct labelled derivation tree with the set of labels Ψ = {0, 1} and the following
semantics. Let p be a path of derivation tree t in G and e be an edge between any two
consecutive nodes of p. Then, label 0 ∈ Ψ of any e of p represents p is not described by
R—that is, word(p) /∈ R. Label 1 ∈ Ψ of all e of p represents p can potentially be described
by R.

Consider that for the decision if x ∈ L(G), we use well-known top-down parsing method
to construct derivation tree t of x in G—that is, started from S, we construct derivation
tree t according to the rules of G such that the frontier of t is equal to x (for more details,
see [80]).
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Let us suppose that a rule r = A → A1A2 . . . Aj ∈ P , j ≥ 1, is used in the derivation
step X ⇒ Y , X,Y ∈ (N ∪ T )∗ in G. In addition, we need to determine the value of the
labels of the edges between A and each Aj , for j = 1, 2, . . . , n, related to the application of
r. Let t′ be a derivation tree that corresponds with the derivation S ⇒∗ w1A1A2 . . . Ajw2

in G, for some w1, w2 ∈ (N ∪ T )∗. Essentially, t′ is a sub-tree of t. Clearly, each path of t′

is the beginning part of at least one path in t. Next, we distinguish the following cases:

• If all the edges of t′ are labelled, we can proceed to next derivation step in G.

• If some of the edges in t′ are not labelled, we need to compute the values of missing
labels.

For each unlabelled edge e of path p′ in t′, we check whether GR can generate the string
of the form word(p′)w with w ∈ N∗RT ∪ {ε}. Since |word(p′)| is finite, we can check it in
polynomial time. If so, we add label 1 ∈ Ψ to edge e; otherwise, we add label 0 ∈ Ψ to
edge e. Note that this phase can be optimized in such a way that we do the test whether
GR can generate word(p′)w with w ∈ N∗RT ∪ {ε} symbol-by-symbol during the generation
of word(p′) in GR. The details of this optimization represents a straightforward task which
is left to the reader. Next, we distinguish the following cases:

• If t′ contains no leaf with input edge labelled by 1, then x /∈ n-pathL(G,R).

• If t′ contains at least one leaf labelled by symbol of N , we proceed to next derivation
step in G.

• If all the leafs of t′ are labelled by the symbols of T and for at least n of the leafs of
t, there is an edge labelled by 1, then x ∈ n-pathL(G,R).

Thus, it is possible to check whether the paths of derivation tree t of LL context-free
grammar can potentially be described by given unambiguous context-free language already
during the building of t by LL parser. Example 8.6 explains the syntax analysis in detail.

Example 8.6
Consider n-pathL(G,R) where G = ({S, A, B}, {a, b, c, d, e, k}, P , S) with P = {1 =
S → AA, 2 = A → aAd, 3 = A → bBc, 4 = A → e, 5 = B → bBc, 6 = B → k} and
R = {SAmBm−1k| m ≥ 1}. Obviously, L(G) = {ai(bjkcj+e)dias(btkct+e)ds| i, j, t, s ≥ 0}.
Clearly, 1-pathL(G,R) = L(G) with i = j or s = t, and 2-pathL(G,R) = L(G) with i = j
and s = t. The LL table for G is constructed by well-known algorithm (see [103]) and it is
presented in Table 8.1.

The syntax analyser uses two pushdown automata and a list of 3-tuples containing state
of the second automaton, contents of its pusdown, and a pointer to the first-automaton’s
pushdown. The first pushdown automaton simulates the construction of derivation tree by
the LL table in the well-known way.

• If the top-most symbol on the pushdown is a nonterminal A, the first input symbol
is a, and there is a rule A→ x on position [A, a] in the LL table, then the automaton
rewrites A on the pushdown by (x)R (expansion step).

• If a on the pushdown’s top is a terminal and a is the first input symbol, the automaton
reads a from the input and removes a from the pushdown (comparation step).

• Other cases represent a syntax error.
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a b c d e k $
S 1 1 1
A 2 3 4
B 5 6

Table 8.1: LL table for grammar G from Example 8.6.

1. PDA 2.PDA Pointer Tuples

Sqabkcdaed q0 (q0, ε, 1) (q0, ε, 1)

AAqabkcdaed q0 (q0, ε, 1) (q1, ε, 1), (q1, ε, 2)

AdAaqabkcdaed q1 (q1, ε, 2) (q1, ε, 1), (q1, A, 2), (q1, A, 3),
(q1, A, 4)

AdAqbkcdaed Aq1 (q1, A, 4) (q1, ε, 1), (q1, A, 2), (q1, A, 3)

AdcBbqbkcdaed Aq1 (q1, A, 3) (q1, ε, 1), (q1, A, 2), (q1, AA, 3),
(q1, AA, 4), (q1, AA, 5)

AdcBqkcdaed AAq1 (q1, AA, 5) (q1, ε, 1), (q1, A, 2), (q1, AA, 3),
(q1, AA, 4)

Adckqkcdaed AAq1 (q1, AA, 4) (q1, ε, 1), (q1, A, 2), (q1, AA, 3),
(q1, A, 4)

Adcqcdaed Aq1 (q1, A, 4) (q1, ε, 1), (q1, A, 2), (q1, AA, 3),
(q1, A, 0)

Adqdaed AAq1 (q1, AA, 3) (q1, ε, 1), (q1, A, 2), (q1, A, 0)

Aqaed Aq1 (q1, A, 2) (q1, ε, 1), (q1, A, 0)

dAaqaed q1 (q1, ε, 1) (q1, A, 0), (q1, A, 1), (q1, A, 2),
(q1, A, 3)

dAqed Aq1 (q1, A, 3) (q1, A, 0), (q1, A, 1), (q1, A, 2)

deqed Aq1 (q1, A, 2) (q1, A, 0), (q1, A, 1), (q1, AA, 2)

dqd AAq1 (q1, AA, 2) (q1, A, 0), (q1, A, 1)

q Aq1 (q1, A, 1) (q1, A, 0)

Table 8.2: Parsing of abkcdaed corresponding to TC grammar (G,R) from Example 8.6.

Let us return to the example and consider input string abkcdaed. In the beginning,
the top-most symbol on the pushdown of the first automaton is S. Since a is the first input
symbol and there is rule 1 on the position [S, a] in the table, the automaton rewrites S by
AA on its pushdown.

During this computation, the second automaton is parsing the potentially valid paths in
the derivation tree. At the beginning, the list contains one item (q0, Ŝ, 1) where 1 represents
the first position on the first-automaton’s pushdown from the bottom and Ŝ is the start
pushdown symbol of the second automaton. If the first automaton makes a computation
step with symbol a on the pushdown’s top and there is a tuple (q, α, p) in the list where p
is the pointer to the symbol, the second automaton places α onto its pushdown, automaton
moves to q and it makes steps for a as the first input symbol until it does not need next
input symbol. For example, after the expansion from S to AA, the second automaton finds
list-item (q0, Ŝ, 1) and it moves to state q0 and places Ŝ onto the pushdown.

Then, it simulates step Ŝq0S ` βq where Ŝq0S → βq is a transition rule of the second
automaton. If a = A was a nonterminal and first automaton made expansion by rule A→ x,
then the syntax analyser removes the used list-item and if the second automaton did not
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reject input, then there are l tuples (q, β, i) inserted into the list, for all i = t+ 1, . . . , t+ l
with l = |x|, topmost-symbol-position t before the expansion, and β as the current content
of the pushdown. Otherwise, for a as a terminal symbol, the comparison is done. If the
second automaton accepts, the pointer of the used tuple is rewritten to 0 where 0 denotes
accepted path. Assuming that it does not accept with a terminal a, the tuple is removed
from the list.

Consider input string abkcdaed again. For some definition of the second automaton,
the syntax analysis proceeds as it is given in Table 8.2.

As one can see, only one item with 0 in the last component remains in the list—that
is, one path belongs to the control language. If we require that n ≥ 2 paths are described
by the control language, the input string is not accepted.

Notice that the set of tuples can be represented by pushdown automata storing tuples
on its pushdown, where the required tuple is always on the top. On the other hand, the
needless tuples (tuples with 0 in the third component) can be remembered in states and
may not occur on the pushdown. In this way, the core of the investigated parsing can stand
on a 3-accepting move-restricted pushdown automata system.

8.3.2 Bottom-Up Parsing of n-path-TC

Section 8.3.1 deals in principle with top-down parsing method (LL parser) and its weakness
is the assumption that a context-free grammar is unambiguous. Moreover, the method
demonstrated in Example 8.6 assumes that the grammar is LL. Essentially, the same idea
is applicable also on bottom-up parsing methods which can handle a larger range of the
languages. Therefore, we briefly discuss the ideas of parsing methods for n-path-TC in
terms of LR parsing.

One of the advantages of LR parser is that we do not need to require that in TC grammar
(G,R), G is LL grammar. On the other hand, we have to deal with the ambiguity. However,
it is well-known that the question whether a context-free grammar is or is not ambiguous is
undecidable, since this problem can be reduced to the Post Correspondence Problem which
is undecidable (see [96]).

It is also well-known that for some ambiguous context-free grammars, there exists equiv-
alent context-free grammar which is unambiguous. The ambiguity of a context-free gram-
mar can be restricted basically by removing the chain rules (i.e. rules of the form A→ B,
A,B ∈ N). We assume that a context-free grammar contains only usable rules—that is,
only those rules, which can be used during the derivation. Clearly, if G = (N,T, P, S) is a
context-free grammar with r = A → A ∈ P , for some A ∈ N , then G is ambiguous since
r can be used during the derivation of x ∈ L(G) arbitrarily many times and thus generate
arbitrarily many different derivation trees for x in G.

Obviously, since the chain rules generate nothing, they can be removed from a context-
free grammar G without affecting L(G). However, removing the chain rules from G in a
TC grammar (G,R) affects the paths in the derivation trees of x ∈ L(G). Thus the identity

n-pathL(G,R) = n-pathL(G′, R), where G′ is obtained by removing the chain rules from G,
does not hold; however, the equivalence L(G) = L(G′) holds.

Theorem 8.7 For a TC grammar (G,R), whereG is a context-free grammar andR ∈ LIN,
there is TC grammar (G′, R′) such that G′ does not contain chain rules and n-pathL(G,R) =

n-pathL(G′, R′), n ≥ 1.
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Proof of Theorem 8.7. For some n ≥ 1, let n-pathL(G,R) be the language of a TC grammar
(G,R) where G = (N,T, P, S). Let G′ be a context-free grammar obtained from G by
removing the chain rules. Therefore, G′ can be constructed by well-known algorithm in
polynomial time (see 5.1.3.3 in [80]). We get G′ = (N,T, P ′, S) such that for all x ∈ L(G′),
there is no derivation in G′ of the form B ⇒∗ A, for some A,B ∈ N .

The paths in the derivation trees of G′ are described by the strings of the form N∗T .
Basically, we need to read such a strings and remove such symbols A ∈ N which corresponds
to the application of B → A ∈ P in G. This is done by gsm mapping M (see [37] for the
definition) such that M reads the strings s of the form N∗T and nondeterministically
removes or lets unchanged each symbol A ∈ N with B → A ∈ P and BA is substring of s.
Since LIN is closed under gsm mappings (see [34]), also M(R) ∈ LIN. In this way, we get
M(R) such that M(R) 6= R. However, n-pathL(G,R) = n-pathL(G′,M(R)). �

Consider TC grammar (G,R) and let (G′, R′) be constructed as described above. As
one can see, G′ does not need to be unambiguous since the chain rules are not the only
cause of the ambiguity. Consider, however, any x ∈ n-pathL(G′, R′). Obviously, there is a
derivation tree t of x in G′. Since there are no chain rules in G′ and for each x ∈ L(G′),
|x| is finite, the height of t with respect to |x| is bounded by log |x|/log 2. Thus there is at
most m, for some m ≥ 1, derivation trees of x in G′ and G is m-ambiguous.

Theorem 8.8 For TC grammar (G,R) where G is m-ambiguous LR grammar, m ≥ 1,
and an unambiguous language R ∈ LIN , the membership x ∈ n-pathL(G,R), n ≥ 1, is
decidable in O(|x|k), for some k ≥ 0.

Proof of Theorem 8.8. For some n ≥ 1, let n-pathL(G,R) be the language of a TC grammar
(G,R) in which G is m-ambiguous, for some m ≥ 1. Thus, if x ∈ L(G), then we can
construct at most m derivation trees of x ∈ L(G) in O(m.|x|2) by LR parser. Then, if
for at least j paths, p1, p2, . . . , pj , of at least one derivation tree of x in G, it holds that
word(pi) ∈ R for i ∈ 1, 2, . . . , j, then x ∈ n-pathL(G,R). �
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Chapter 9

Conclusion

This thesis discusses and studies formal languages and systems of formal models. Its main
results are published or submitted in [19, 84, 11, 12, 13, 14, 20, 15, 17, 16, 18] and presented
at the Hungarian Academy of Sciences and foreign universities in Paris, Debrecen, and
Nýıregyháza. The following section summaries this results.

9.1 Summary and Further Investigation

This thesis was focused on a study of systems of formal models which plays important
role in the modern information technology and computer science. Since the introduction
of CD grammar systems, many other systems were studied and systems of formal models
have become a vivid research area. Aim of the present thesis was to further investigate
properties of the systems of formal models to their better understanding. This research can
be divided into several main parts.

In the first part, we continued in studying of regularly controlled CD grammar systems,
where we used phrase-structure grammars as components, and introduced three new restric-
tions on derivations in these systems. The first restriction requires that derivation rules
could be applied within the first l nonterminals, for given l ≥ 1. Although phrase-structured
grammars define all languages from RE, regularly controlled CD grammar systems with
phrase-structure grammars as components under such restriction generate only context-free
languages. One may ask, how strong the control language must be to leave the generative
power unchanged. Our assumption is that linear languages are sufficient, but a rigorous
proof has not yet been done. The second restriction allows to have only limited number of
undivided blocks of nonterminals in each sentential form during any successful derivation.
It has been proven that this restriction has no effect on the generative power of these CD
grammar systems even in the case when the restriction allows only one such block. On
the other hand, the restriction limiting the maximum length and number of the blocks
decreases the generative power of these systems to the classes Lm(P ) representing infinite
hierarchy, with respect of m, lying between the classes of linear and context-sensitive lan-
guages. Notice that m is maximal number of blocks and CF − Lm(P ) 6= ∅. Question
whether the stronger control language effects the generative power of CD grammar systems
with phrase-structure grammars subject to the third restriction is still open.

The second part deals with parallel grammar and automata systems based upon CFGs
and PDAs, respectively. More specifically, we introduced two variants of n-accepting re-
stricted pushdown automata systems, accepting n-tuples of interdependent strings, as coun-
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L (HMASnFA)

L (HMAS(FA,...,FA,PDA))

L (HMAS(FA,...,FA,PDA,PDA))

L (HMASnPDA)

L (HMAS(FA,...,FA,1-turn PDA,1-turn PDA))

L (HCGRnRLNG)

L (HCGRnLNG)

L (HCGR(RLNG,...,RLNG,CFG))

L (HCGR(RLNG,...,RLNG,CFG,CFG))

Figure 9.1: Hierarchy of n-languages for n ≥ 2

terparts of canonical n-generating nonterminal/rule synchronized grammar systems based
upon context-free grammars. Both types of the automata systems consist of n PDAs, for
n ≥ 2, and one restriction-set. In the case of n-accepting state-restricted automata sys-
tems, the restriction-set allows to suspend and resume some automata during computation
in relation to combination of current states of the PDAs. In the case of n-accepting move-
restricted automata systems, the restriction-set determines which combination of transition
rules used in the common computation step are permitted. We have proven that these n-
accepting restricted automata systems are able to accept such n-languages that the canon-
ical n-generating grammar systems can generate and vice versa. Furthermore, we have
established fundamental hierarchy of n-languages generating/accepting by these canonical
multi-generating rule synchronized grammar/n-accepting rule-restricted automata systems
with different types of components. First of all, we have shown that both these systems
are equivalent even if we combine RLNGs with CFGs in the grammar systems and FAs
with PDAs in the automata systems. After that, we have established the hierarchy given
by Figure 9.1 (→ and↔ mean ⊂ and =, respectively), where it can be seen, inter alia, that
canonical n-generating rule synchronized grammar systems based upon linear grammars are
significantly weaker than n-accepting move-restricted automata systems, with two 1-turn
PDAs and n− 2 FAs as components.

The second part of this research can be continued by better approximation of power of
the state/move-restricted automata systems based upon FAs (especially in relation to string-
interdependences), or by investigation of restarting and/or stateless finite and pushdown
automata as the components of discussed automata systems.

In the last part, we have suggested rule-restricted systems for processing of linguistically
motivated languages. In this part, we introduced three variants of rule-restricted translating
systems based upon finite automaton and context-free grammar. At first, we have proven
that leftmost restriction placed on derivation in the context-free grammar effects both the
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generative and accepting power of such systems. In addition, we introduced a rule-restricted
transducer system with appearance checking, where the restriction-set Ψ is a set of 3-tuples
containing one rule of the FA and two rules of the CFG. For the common computation step,
the system has to use the first and second rules of a 3-tuple, if it is possible; otherwise,
it can use the first and third rules from the 3-tuple. This system is able to recognize and
generate any language from RE. Thereafter, some examples of natural language translating
are given.

The investigation of processing of linguistically motivated languages continued by gene-
ralization of TC grammars that generate the language under path-based control introduced
in [71]. We have considered TC grammars that generate their languages under n-path
control by linear language which were introduced in [67].

We have demonstrated that for L ∈ n-path-TC under assumption that L is generated
by TC grammar (G,R) in which G and R are unambiguous and, furthermore, G is restricted
to be LL grammar, there is parsing method working in polynomial time. This method can
check whether or not the paths of the derivation tree t of x ∈ L(G) belongs to control
language R in the time of building of t. Moreover, when we consider LR parser for L ∈
n-path-TC under assumption that L is generated by TC grammar (G,R) in which G has
bounded ambiguity (i.e. G is unambiguous or m-ambiguous) and unambiguous language
R ∈ LIN, there is also a parsing method working in polynomial time.

However, the open question is whether there is polynomial time parsing method

• if G is not LL,

• if G is ambiguous.

It is also of interest to quantify the worst case of the parsing complexity more precisely.
The open investigation area is represented by the transformation of n-path TC gram-

mars into some normal forms based on Chomsky normal form of underlying context-free
grammar which would lead to possibility to use parsing methods based on transformation
to Chomsky normal form.
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[20] M. Čermák and A. Meduna. n-Accepting restricted pushdown automata systems. In
7th Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science, pages 110–110. Brno University of Technology, 2011.

[21] D. Chiang. An introduction to synchronous grammars. In 44th Annual Meeting of
the Association for Computational Linguistics, 2006.

[22] N. Chomsky. Three models for the description of language. Information Theory,
IRE Transactions on, 2:113–124, 1956.
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cooperating/distributed grammar systems. Inf. Sci., 69(1-2):1–25, April 1993.

[25] E. Csuhaj-Varjú, J. Kelemen, and G. Păun. Grammar systems with wave-like
communication. Computers and Artificial Intelligence, 15(5), 1996.
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[34] J. Dassow, Gh. Păun, and A. Salomaa. Grammars with controlled derivations. In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, Volume II,
pages 101–154. Berlin: Springer, 1997.
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[110] D. Wajten. On cooperating–distributed extended limited 0l systems. International
Journal of Computer Mathematics, 63:227–244, 1997.

[111] A. Weber. On the valuedness of finite transducers. Acta Informatica, 27:749–780,
1990. 10.1007/BF00264285.

[112] A. Zollmann and A. Venugopal. Syntax augmented machine translation via chart
parsing. In Proceedings of the Workshop on Statistical Machine Translation,
StatMT ’06, pages 138–141, Stroudsburg, PA, USA, 2006. Association for
Computational Linguistics.

95


