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Chapter 1

Introduction

In the seventh century before Christ, Egyptians believed they are the oldest nation in the
world. The former king, Psantek I., wanted to confirm this assumption. The confirmation
was based on the idea that children, who cannot learn to speak from adults, will use innate
human language. That language was supposed to be Egyptian. For this purpose, Psantek I.
took two children from a poor family and let them to grow up in care of a shepherd in an
environment, where nobody was allowed to speak with these children. Although the test
ultimately failed, it brings us testimony that already in old Egypt, people somehow felt the
importance of languages (the whole story you can see in The story of psychology by Morton
Hunt).

In 1921, Ludwig Wittgenstein published a philosophical work (Logisch-philosophische
Abhandlung) containing claim that says “The limits of my language mean the limits of my
world”. In the computer science, this claim is doubly true. Languages are a way how people
express information and ideas in terms of computer science or information technology. In
essence, any task or problem, which a computer scientist is able to describe, can be described
by a language. The language represents a problem and all sentences belonging into this
language are its solutions.

Fact about the limitation by languages led to the birth of a new research area referred to
as theory of formal languages studying languages from a mathematical point of view. The
main initiator was linguist Noam Chomsky, who, in the late fifties, introduced hierarchy of
formal languages given by four types of language generators. By this work, Noam Chom-
sky inspired many mathematicians and computer scientists so they began to extend this
fundamental hierarchy by adding new models for language definition. Because the theory
of formal languages examines the languages from the precise mathematical viewpoint, its
results are significant for many areas in information technology. Models, which are studied
by the theory, are used in compilers, mathematical linguistics, bioinformatics, especially ge-
netics and simulation of natural biology processes, artificial intelligence, computer graphics,
computer networks, and others.

The classical formal language theory uses three approaches to define formal languages:
Grammatical approach, where the languages are generated by grammars, automata ap-
proach, where the languages are recognized by automata, algebraic approach, where the
languages are defined by some language operations.

To be more precise, in the grammatical approach, a grammar generates its language by
application of derivation steps replacing sequences of symbols by other sequences according
to its prescribed rules. The symbols can be terminal or nonterminal, and the sequences of
these symbols are called strings. In a single derivation step, the grammar, by application
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of its rule, replaces a part of string by some other string. Any string, which contains no
nonterminal symbol and which can be generated from a start nonterminal by application
of a sequence of derivation steps, belongs to the language of the grammar. The language
of the grammar is represented by the set of such generated strings.

While a grammar generates language, an automaton represents formal algorithm by
which the automaton can recognize correctly made sequences of symbols belonging into the
language the automaton defines. More specifically, an automaton has string written on its
input tape. By application of prescribed rules, it processes the string symbol by symbol
and changes its current state to determine whether the string belongs to the language
represented by the automaton. If so, the string is accepted by the automaton. The set of
all strings accepted by the automaton is the language that the automaton defines.

1.1 Objectives of the Thesis

All models, investigated in the theory of formal languages, are designed to reflect needs
of given information technology. Today, when a task distribution, parallel and coopera-
tion process are extremely popular, the main attention is focused on controlled models and
systems of models. The necessity of efficient data processing, computer networks, parallel
architectures, parallel processing, and nature motivated computing devices justify studying
of these approaches in terms of the theory of formal models, where the mechanisms rep-
resenting these approaches are called systems of formal models. The main motivation for
investigation of systems lies in a possibility to distribute a task into several smaller tasks,
which are easier to solve and easier to describe. These tasks can be solved sequentially or in
parallel, and usually, due a communication, the cooperating models are more efficient than
the models themselves. The thesis concentrates on these modern approaches and brings
new, or generalized, formal mechanisms and results into the theory. More specifically, this
thesis mainly deals with systems of automata and grammars and studies their properties.

My thesis, at first, continues with studying of sequential grammar systems, known
as cooperating distributed grammar systems (shortly CD grammar systems). These were
introduced in the late eighties as a model for blackboard problem solving. The main
idea standing behind the CD grammar systems is in a cooperation of well-known simple
grammars working on a shared string under a cooperation protocol. Unfortunately, the
increased efficiency, obtained from the cooperation, is given by higher degree of ambiguity
and non-determinism, what is unpleasant for a practical purpose. The thesis introduces
several restrictions limiting the ambiguity or non-determinism, and investigates their effect
on the systems.

The further investigation builds on the work of Lukáš and Meduna, who, in 2006,
introduced a new variant of parallel grammar systems named as multi-generating grammar
systems. In contrast with classic widely studied parallel communicating grammar systems,
where included grammars are used as supporting elements and the language of a parallel
grammar system is generated by one predetermined grammar, these new systems take into
account strings from all their grammars. The final strings are obtained from all generated
strings by a string operation. The thesis introduces two versions of automata counterpart to
these grammar systems and proves their equivalence. Thereafter, the investigated systems
are generalized and a fundamental hierarchy of these systems is established. Finally, the
thesis suggests systems based on mentioned approaches as a direct translator of natural
languages and parser of languages generated by a specific type of controlled grammars.
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Chapter 2

Notation and Basic Definitions

In this work, we assume the reader is familiar with the formal language theory (see [54])
and the basic aspects of computational linguistics (see [61]).

For a set, Q, |Q| denotes the cardinality of Q. Let K ⊂ N0 is a final set. Then,
max(K) = k, where k ∈ K and for all h ∈ K, k ≥ h; and min(K) = l, where l ∈ K and for
all h ∈ K, l ≤ h. Furthermore, let (X,≥) is an ordered set and A ⊆ X. We say that x ∈ X
is an upper and lower bound of A, if for all a ∈ A, a ≤ x and x ≤ a, respectively. The least
upper bound is called supremum, written as sup(A). Conversely, the greatest lower bound
is known as infimum, denoted inf(A).

For an alphabet, V , V ∗ represents the free monoid generated by V (under the operation
concatenation). The identity of V ∗ is denoted by ε. Set V + = V ∗ − {ε}; algebraically, V +

is thus the free semigroup generated by V . For every string w ∈ V ∗, |w| denotes the length
of w, (w)R denotes the mirror image of w, and for A ∈ V , occur(A,w) denotes the number
of occurrences of A in w. For a, b ∈ Z, function max(a, b) returns the greater value from a
and b.

A finite automaton, FA, is a quintuple M = (Q,Σ, δ, q0, F ), where Q is a finite set of
states; Σ is an alphabet; q0 ∈ Q is the initial state; δ is a finite set of transition rules of
the form qa → p, where p, q ∈ Q, and a ∈ Σ ∪ {ε}; and F ⊆ Q is a set of final states.
A configuration of M is any string from QΣ∗. For any configuration qay, where a ∈ Σ,
y ∈ Σ∗, q ∈ Q, and any r = qa → p ∈ δ, M makes a move from configuration qay to
configuration py according to r, written as qay ⇒ py[r], or simply qay ⇒ py. ⇒∗ and
⇒+ represent transitive-reflexive and transitive closure of ⇒, respectively. If w ∈ Σ∗ and
q0w ⇒∗ f , where f ∈ F , then w is accepted by M and q0w ⇒∗ f is an acceptance of w in
M . The language of M is defined as L(M) = {w| w ∈ Σ∗, q0w ⇒∗ f is an acceptance of
w}.

A partially blind k-counter automaton, k-PBCA, is finite automaton M = (Q,Σ, δ, q0, F )
with k integers v = (v1, . . . , vk) in Nk

0 as an additional storage. Transition rules in δ are of
the form pa→ qt, where p, q ∈ Q, a ∈ Σ ∪ {ε}, and t ∈ Zk. As a configuration of k-PBCA
we understand any string from QΣ∗Nk

0. Let χ1 = paw(v1, . . . , vk) and χ2 = qw(v′1, . . . , v
′
k)

be two configurations of M and r = pa → q(t1, . . . , tk) ∈ δ, where (v1 + t1, . . . , vk +
tk) = (v′1, . . . , v

′
k). Then, M makes a move from configuration χ1 to χ2 according to r,

written as χ1 ⇒ χ2[r], or simply χ1 ⇒ χ2. ⇒∗ and ⇒+ represent transitive-reflexive and
transitive closure of ⇒, respectively. The language of M is defined as L(M) = {w| w ∈
Σ∗, q0w(0, . . . , 0)⇒∗ f(0, . . . , 0), f ∈ F}.

A pushdown automaton, PDA, is a septuple M = (Q,Σ,Γ, δ, q0, Z0, F ), where Q is a
finite set of states; Σ is an alphabet; q0 ∈ Q is the initial state, Γ is a pushdown alphabet; δ is
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a finite set of transition rules of the form Zqa→ γp, where p, q ∈ Q, Z ∈ Γ, and a ∈ Σ∪{ε};
γ ∈ Γ∗; Z0 ∈ Γ is the initial pushdown symbol; and F ⊆ Q is a set of final states. A
configuration of M is any string from Γ∗QΣ∗. For any configuration xAqay, where x ∈ Γ∗,
y ∈ Σ∗, q ∈ Q, and any r = Aqa→ γp ∈ δ, M makes a move from configuration xAqay to
configuration xγpy according to r, written as xAqay ⇒ xγpy[r], or simply xAqay ⇒ xγpy.
⇒∗ and ⇒+ represent transitive-reflexive and transitive closure of ⇒, respectively. If
w ∈ Σ∗ and Z0q0w ⇒∗ f , where f ∈ F , then w is accepted by M and Z0q0w ⇒∗ f is an
acceptance of w in M . The language of M is defined as L(M) = {w| w ∈ Σ∗, Z0q0w ⇒∗ f
is an acceptance of w}.

A k-turn PDA is a PDA in which the length of the pushdown tape alternatively increases
and decreases at most k-times during any sweep of the pushdown automaton.

A context-free grammar, CFG, is quadruple G = (N,T, P, S), where N and T are
disjoint alphabets of nonterminal and terminal symbols, respectively; S ∈ N is the start
symbol of G; and P is a finite set of grammar rules of the form A → α, where A ∈ N ,
and α ∈ (N ∪ T )∗. Furthermore, if α ∈ T ∗NT ∗, we say that the grammar is linear, LNG
for short, and if α ∈ TN , we say that the grammar is right-linear, RLNG for short. A
sentential form of G is any string from (N ∪ T )∗. Let u, v ∈ (N ∪ T )∗ and r = A→ α ∈ P .
Then, G makes a derivation step from u to v according to r, written as uAv ⇒ uαv[r], or
simply uAv ⇒ uαv. Let ⇒∗ and ⇒+ denote transitive-reflexive and transitive closure of
⇒. The language of G is defined as L(G) = {w| S ⇒∗ w,w ∈ T ∗}.

A phrase-structure grammar is a quadruple G = (N,T, S, P ), where N and T are
alphabets such that N ∩ T = ∅, S ∈ N , and P is a finite set of productions of the form
α→ β, where α ∈ N+ and β ∈ (N ∪ T )∗. If α→ β ∈ P , u = x0αx1, and v = x0βx1, where
x0, x1 ∈ V ∗, then u ⇒ v [α → β] in G or, simply, u ⇒ v. Let ⇒+ and ⇒∗ denote the
transitive closure of⇒ and the transitive-reflexive closure of⇒, respectively. The language
of G is denoted by L(G) and defined as L(G) = {w ∈ T ∗| S ⇒∗ w}.

A programmed grammar (see [34]) is a septuple G = (N,T, S, P,Λ, σ, φ), where

• N and T are alphabets such that N ∩ T = ∅,

• S ∈ N ,

• P is a finite set of productions of the form A→ β, where A ∈ N and Λ is a finite set
of labels for the productions in P .

• Λ can be interpreted as a function which outputs a production when being given a
label,

• σ and φ are functions from Λ into the 2Λ.

For (x, r1), (y, r2) ∈ (N ∪T )∗×Λ and Λ(r1) = (α→ β), we write (x, r1)⇒ (y, r2) iff either
x = x1αx2, y = x1βx2 and r2 ∈ σ(r1), or x = y, and rule α→ β is not applicable to x, and
r2 ∈ φ(r1).

The language of G is denoted by L(G) and defined as L(G) = {w| w ∈ T ∗, (S, r1) ⇒∗
(w, r2), for some r1, r2 ∈ Λ}. Let L (P, ac) denote the class of languages generated by
programmed grammars. If φ(r) = ∅, for each r ∈ Λ, we are led to the class L (P).

Let G be a programmed grammar. For a derivation D : S= w1 ⇒ w2 ⇒ . . .⇒ wn = w,
w ∈ T ∗, of G, ind(D,G) = max({occur(wi, N)| 1 ≤ i ≤ n}), and for w ∈ T ∗, ind(w,G) =
min({ind(D,G)|D is a derivation of w in G}). The index of G is ind(G) = sup({ind(w,G)|
w ∈ L(G)}). For a language L in the class L (P ) generated by programmed grammars,
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ind(L) = inf({ind(G)| L(G) = L}. For the class L (P ), Ln(P ) = {L| L ∈ L (P ) and
ind(L) ≤ n, for n ≥ 1} (see [34]).

A matrix grammar, MAT, is a pair H = (G,C), where G = (N,T, P, S) is a context-
free grammar and C ⊂ P ∗ is a finite set of strings denoted as matrices. A sentential
form of H is any string from (N ∪ T )∗. Let u, v be two sentential forms. Then, we say
that H makes a derivation step from u to v according to r, written as u ⇒ v[m], or
simply u ⇒ v, if m = p1 . . . pm ∈ C and there are v0, . . . , vm, where v0 = u, vm = v,
and v0 ⇒ v1[p1] ⇒ . . . ⇒ vm[pm] in G. Let ⇒∗ and ⇒+ denote transitive-reflexive and
transitive closure of ⇒. The language of H is defined as L(H) = {w| S ⇒ w1[m1]⇒ . . .⇒
wn[mn], wn = w,m1, . . . ,mn ∈ C,w ∈ T ∗, n ≥ 0}. The class of languages generated by
matrix grammars is denoted by L (MAT).

The classes of regular languages, linear languages, context-free languages, context-
sensitive languages, and recursively enumerable languages are denoted by REG, LIN,
CF, CS, and RE, respectively.
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Chapter 3

State of the Art

Unlike the classic formal languages and automata theory, which studies models accepting
or generating language by one automaton or grammar, a modern computer science aims
to distribute this computation. The main reasons follow from necessities and possibilities
of computer networks, distributed databases, parallel processors, etc., which give us new
terms such as distribution, communication, concurrency, and parallelism.

A formal system is defined as a set of formal models working together under a specified
protocol. Such systems have many advantages. For example, they allow to model distribu-
tion, the generative or accepting power of used models usually increases, the (descriptional)
complexity of a language decreases, there is a possibility of parallel cooperation, etc.

The main role in the theory of formal systems is played by cooperation protocols and
used formal models. This chapter considers four basic classes of systems of formal models:
sequential grammar systems, parallel grammar systems, sequential automata systems, and
parallel automata systems.

3.1 Cooperating Distributed Grammar System

A cooperating distributed grammar system, CD grammar system for short, was first intro-
duced in [57] related to two-level grammars. Several years later, by investigation of this
system in relation with multi-agent systems and blackboard problem solving architectures
in [18], studies of CD grammar systems became an intense research area.

A CD grammar system consists of finite number of grammars, called components. These
symbolize agents. The common sentential form, which the agents sequentially modify ac-
cording to a mode given by a certain protocol, represents the current state of the problem
to be solved. The authors of [18] considered five modes under which agents work: ∗-mode
– the active agent works as long as it wants; t-mode – the active agent works as long as it
is able to work; and, ≥ k,≤ k, and = k modes correspond to a time limitation of agents
activity, when the active agent has to make i steps for i ≥ k, i ≤ k, and i = k, respec-
tively. If a terminal string is generated, the problem is solved (see definitions 3.1 through
3.4 specifying CD grammar systems in terms of formal languages).

Definition 3.1 (Cooperating distributed grammar system)
A cooperating distributed grammar system, a CD grammar system for short, is an (n+ 3)-
tuple Γ = (N,T, S, P1, . . . , Pn), where N,T are alphabets such that N ∩T = ∅, V = N ∪T ,
S ∈ N , and Gi = (N,T, Pi, S), 1 ≤ i ≤ n, is a context-free grammar.
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Definition 3.2 (Mode of derivation in CD grammar systems)
Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system.

• For every i = 1, 2, . . . , n, terminating derivation by ith component, written as ⇒t
Pi

,
is defined as

x⇒t
Pi
y iff x⇒∗Pi

y and there is no z ∈ Σ∗ such that y ⇒Pi z.

• For every i = 1, 2, . . . , n, k-steps derivation by ith component, written as ⇒=k
Pi

, is
defined as

x⇒=k
Pi

y iff there are x1, . . . , xk+1 and for every j = 1, . . . , k, xj ⇒Pi xj+1.

• For every i = 1, 2, . . . , n, at most k-steps derivation by ith component, written as
⇒≤kPi

, is defined as

x⇒≤kPi
y iff x⇒=k′

Pi
y for some k′ ≤ k.

• For every i = 1, 2, . . . , n, at least k-steps derivation by ith component, written as
⇒≥kPi

, is defined as

x⇒≥kPi
y iff x⇒=k′

Pi
y for some k′ ≥ k.

Definition 3.3 (Language generated by a CD grammar system)
Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system and f ∈ D be a mode of derivation,
where D = {∗, t} ∪ {≤ k,= k,≥ k| k ∈ N}. Then, the language generated by Γ, Lf (Γ), is

Lf (Γ) = {ω ∈ T ∗| S ⇒f
Pi1

ω1 ⇒f
Pi2

. . .⇒f
Pim

ωm = ω,m ≥ 1, 1 ≤ j ≤ m, 1 ≤ ij ≤ n}.

Definition 3.4 (Classes of languages generated by CD grammar systems)
The classes of languages generated by CD grammar systems we denote by L (CD, n, f),
where f ∈ {∗, t} ∪ {= k,≤ k,≥ k| k ∈ N}, and n ∈ N ∪ {∞} is the number of components.

By the following theorems, we summarize selected basic results regarding the power of
CD grammar systems.

Theorem 3.5 CF = L (CD, 1, t) = L (CD, 2, t) ⊂ L (CD, 3, t) = L (CD,∞, t) ⊂ CS.

Theorem 3.6 If f ∈ {= 1,≥ 1, ∗} ∪ {≤ k| k ≥ 1}, then L (CD,∞, f) = CF.

Theorem 3.7 CF = L (CD, 1, f) ⊂ L (CD, 2, f) ⊆ L (CD, r, f) ⊆ L (CD,∞, f) ⊆
L (MAT), for all f ∈ {= k,≥ k| k ≥ 2} and r ≥ 3.

Other Variants of CD Grammar Systems

The standard CD grammar systems, defined above, use only conditions saying when the
enabled component can, or has to, stop working on a sentential form. Selection of com-
ponent for work is non-deterministic. However, in [21], [19], [27], [5], etc., you can find
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discussions about many variants of CD grammar systems with several approaches how to
select working components.

As a natural extension of CD grammar systems, Mitrana and Păun introduced a hybrid
cooperating distributed grammar systems in [62] and [68]. In contrast with CD grammar
systems, where all components work in the same mode, these systems consists of components
working in different modes.

The generative power of CD grammar systems can be increased by teams. This idea
was introduced and has been firstly investigated in [44]. Formally, a CD grammar sys-
tem with teams is defined as a tuple Γ = (N,T, S, P1, . . . , Pn, R1, . . . , Rm), where Γ =
(N,T, S, P1, . . . , Pn) is an ordinary CD grammar system and Ri ⊆ {P1, . . . , Pn} is a team,
for all i = 1, . . . ,m. At one moment, components from a team simultaneously rewrite corre-
sponding part of a shared sentential form. Precisely, x⇒Ri y iff x = x1A1x2 . . . xsAsxs+1,
y = x1y1x2 . . . xsysxs+1, for all j = 1, . . . , s + 1, xj ∈ (N ∪ T )∗, and for all k = 1, . . . , s,
Ak → yk ∈ P ∈ Ri. For this one step derivation, k-steps derivation, at most k-steps
derivation, at least k-steps derivation, and derivation of any number of steps are defined as
usual. Only terminating derivation has three variants, where the active team stops working
if the team as a whole cannot perform any further step, no component can apply any of its
rules, or at least one component cannot rewrite any symbol of the current sentential form
(see [44, 37, 69]).

Besides mentioned variants, many others appear in the literature from the introduction
of ordinary CD grammar systems in [57] and [18] up to these days, e.g. CD grammar
systems with external storage (see [31, 76, 32, 35]), CD grammar systems consisting of
different components (see [78, 39, 49, 23]), hierarchical systems (see [2]), deterministic
systems (see [59]), etc.

3.2 Parallel Communicating Grammar Systems

Parallel communicating grammar systems, PC grammar systems for short, were introduced
in [70]. These systems consist of a finite number of grammars (components), which work
on their own sentential form. The components are synchronized and make derivation steps
concurrently. During derivation, the communication is performed through special query
symbols. Whenever at least one component generates a query symbol, all components
suspend generating and the grammar system makes a communication step—that is, for
every component in the system, each occurrence of a query symbol in its sentential form
is replaced by the sentential form of the component to which the query symbol is pointing
to. One component of the system is called master and the language of the master is the
language of PC grammar system.

Similarly as in the case of CD grammar systems, the theory of formal languages studies
different variants of PC grammar systems, such as

• returning PC grammar systems, where each component that has sent its sentential
form to another starts from the start nonterminal;

• centralized PC grammar systems, where only the master can generate query symbols;

• non-synchronized PC grammar systems, where all components include rules of the
form A→ A for every nonterminal symbol A;

• PC grammar system with communication by commands, where each component has a
control language and in a certain situation all components send their current sentential
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form to other components owning a control language to which the sentential form
belongs to;

• PC grammar systems with languages given by concatenation of all strings over ter-
minal symbols after the end of generation;

• PC grammar systems using query strings instead of query symbols, where the commu-
nication steps is done after at least one component generates a query string pointing
to another component;

• PC grammar systems, where components make different number of steps;

• and many others, see [21], [20], [42], [72], etc.

Probably the most important features of parallel communicating grammar systems are
communication protocol and types of used components together with the way they work.
Further important feature is synchronization. Habitually, the synchronization of compo-
nents is done by an universal clock (each component make one derivation step in each time
unit), but others synchronization mechanisms are also studied (see [21], [67], [25]). Two
of the most natural variants are synchronization by rules, which can be applied simulta-
neously, and synchronization by nonterminals, which can be rewritten at the same time
unit. Both these approaches Lukáš and Meduna used in [55] and [46], where they have
investigated multi-generative grammar systems.

Multi-Generative Grammar Systems

Multi-generative grammar systems are a variant of parallel communicating grammar sys-
tems, where the communication is provided only by synchronization. This synchronization
restricts either rules, which can be used for each common derivation step, or nonterminals,
which can be simultaneously rewritten. For successful generation, all components have to
produce sentences at the same time. Lukáš and Meduna have considered three types of
languages defined by multi-generative grammar systems—languages consisting of all sen-
tences produced by all components, languages consisting of concatenations of all sentences
produced by all components, and languages consisting of sentences produced by the first
component of a multi-generating grammar system.

Definition 3.8 (Multi-generative nonterminal synchronized grammar system)
A multi-generative nonterminal synchronized grammar system, GN, is an (n+ 1)-tuple

Γ = (G1, . . . , Gn, Q), where

• Gi = (Ni, Ti, Pi, Si) is a context-free grammar, for all i = 1, . . . , n,

• Q is a finite set of control n-tuples of the form (A1, . . . , An), where Ai ∈ Ni for all
i = 1, . . . , n.

Definition 3.9 (Multi-generative rule synchronized grammar system)
A multi n-generative rule synchronized grammar system, GR, is an (n+ 1)-tuple

Γ = (G1, . . . , Gn, Q), where

• Gi = (Ni, Ti, Pi, Si) is a context-free grammar for all i = 1, . . . , n,
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• Q is a finite set of control n-tuples of the form (r1, . . . , rn), where ri ∈ Pi for all
i = 1, . . . , n.

Definition 3.10 (Multi-sentential form)
Let Γ = (G1, . . . , Gn, Q) be either GN or GR. Then a multi-sentential form is an n-tuple
χ = (x1, . . . , xn), where xi ∈ (Ti ∪Ni)

∗ for all i = 1, . . . , n.

Definition 3.11 (Derivation step in GN)
Let Γ = (G1, . . . , Gn, Q) be a GN, let χ = (u1A1v1, . . . , unAnvn), χ′ = (u1x1v1, . . . ,
unxnvn), be two multi-sentential forms, where Ai ∈ Ni, ui, vi, xi ∈ (Ni ∪ Ti)∗ for all
i = 1, . . . , n. Let Ai → xi ∈ Pi for all i = 1, . . . , n, and (A1, . . . , An) ∈ Q. Then, χ
directly derives χ′, written as χ⇒ χ′.

Definition 3.12 (Derivation step in GR)
Let Γ = (G1, . . . , Gn, Q) be a GR, let χ = (u1A1v1, . . . , unAnvn), χ′ = (u1x1v1, . . . ,
unxnvn), be two multi-sentential forms, where Ai ∈ Ni, ui, vi, xi ∈ (Ni ∪ Ti)∗ for all
i = 1, . . . , n. Let ri:Ai → xi ∈ Pi for all i = 1, . . . , n, and (r1, . . . , rn) ∈ Q. Then, χ
directly derives χ′, written as χ⇒ χ′.

Definition 3.13 (Multi-language generated by GN and GR)
Let Γ = (G1, . . . , Gn, Q) be either GN or GR. Then, the n-language generated by Γ, n-L(Γ),
is

n-L(Γ) = {(w1, . . . , wn)| (S1, . . . , Sn)⇒∗ (w1, . . . , wn), wi ∈ T ∗i for all i = 1, . . . , n}.

Definition 3.14 (Languages of GN and GR)
Let Γ = (G1, . . . , Gn, Q) be either GN or GR. Then, we define

• the language generated by Γ in union mode, L∪(Γ)), as

L∪(Γ) =
n⋃

i=1

{wi| (w1, . . . , wn) ∈ n-L(Γ)},

• the language generated by Γ in concatenation mode, L•(Γ), as

L•(Γ) = {w1 . . . wn| (w1, . . . , wn) ∈ n-L(Γ)},

• the language generated by Γ in first-component-selection mode, L1(Γ)), as

L1(Γ) = {w1| (w1, . . . , wn) ∈ n-L(Γ)}.

Definition 3.15 (Canonical multi-generative grammar systems)
We say, that GN and GR are canonical if all the components of GN and GR can make
only the leftmost derivations, i.e. only the leftmost nonterminal can be rewritten in each
sentential form. Canonical multi-generative rule synchronized grammar systems and cano-
nical multi-generative nonterminal synchronized grammar systems are denoted by CGR
and CGN, respectively.
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REG

LIN

CF

MATL (k-fGN) L (k-fGR)

CS

REL (k-fCGN) L (k-fCGR)

L (CPC,REG)L (NCPC,REG)

L (CPC,CF)L (NCPC,CF)

L (NPC,REG) L (PC,REG)

L (PC,CF)L (NPC,CF)

Figure 3.1: Hierarchy of languages (it is considered that k ≥ 2 and f ∈ {∪, •, 1})

Convention 3.16 If there is an attention on the number of components in a multi-
generative grammar system, we use terms n-generative grammar system, n-GN, n-GR,
n-CGR, n-CGN, sentential n-form, and n-language, for some positive integer n, rather
than multi-generative grammar system, GN, GR, CGN, CGR, multi-sentential form, and
multi-language, respectively.

Definition 3.17 (Classes of n-GN, n-CGN, n-GR, and n-CGR n-languages)
Let X ∈ {GN,CGN,GR,CGR}. The class of n-languages of n-X, L (nX), is defined as
L (nX) = {n-L| n-L is an n-language generated by n-X}.

Definition 3.18 (Classes of n-GN, n-GR, n-CGN, and n-CGR languages)
Let X ∈ {GN,CGN,GR,CGR} and f ∈ {∪, •, 1}. The class of languages generated by an
n-X in f -mode, L (n-fX), is defined as L (n-fX) = {L| L is a language generated in the
f -mode by n-X}.

Let’s say that L (XPC, Y ) with X ∈ {ε,C,N,NC} and Y ∈ {REG,CF} denote the
classes of languages generated by XPC grammar systems with unlimited number of com-
ponents, where N and C before PC say that PC grammar systems are non-returning and
centralized, respectively, and furthermore, Y = REG and Y = CF mean that the com-
ponents of the systems are regular grammars and context-free grammars, respectively. In
Figure 3.1 you can see several important relationships between the classes of languages
defined by parallel grammar systems. The results are taken from [72], [55], and [46].
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3.3 Automata Systems

Automata and automata systems are used in many areas of computer science. One can find
them in computer networks, formal analysis and verifications, pattern matching, parallel
computers, DNA computing, artificial intelligence, etc. In this section, we briefly outline
several important cooperating models in terms of theory of formal languages.

A multiprocesor automaton is based upon finite automata, called processors. These
processors are coordinated by a central arbiter determining which processor is to become
active or inactive (an inactive processor preserves its configuration) at a given step. The
only informations that the arbiter has for decision about automata activities are the current
state of each automaton and number of steps proceeding by active automata (see [7]).

Similar system to the multiprocessor automata allows to share information about current
states of processors. In such system, each automaton makes a move with respect of the
current input symbol and states of all automata. If we reduce all these automata to one with
multiple reading head, we make equivalent model called multi-head automaton (see [71]).

In relation to automata, [29] has firstly investigated an idea to apply strategies akin to
those that cooperating distributed grammar systems use. For this purpose, Mitrana and
Dassow introduced special types of multi-stack pushdown automata. However, they do not
form the automata counterpart of CD grammar systems. This was introduced and has been
studied in [24] under the name distributed pushdown automata system.

A distributed pushdown automata system contains a shared one-way input tape, one
reading head, and finite number of components having their own pushdown and finite sets
of states. At any moment, only one component is active. According to a cooperation
protocol, the active component must perform k, at least k, at most k, for k ≥ 1, or it must
work as long as it is able to perform a move.

Parallel communicating automata systems have been investigated both with finite au-
tomata and pushdown automata as components. The first variant, parallel communicating
finite automata system, was introduced by Mart́ın-Vide, Mateescu, and Mitrana in [48].
Finite automata in such systems work independently but on a request, they communi-
cate by states to each other. More precisely, the finite automata are entitled to request the
current state of any other component. In [48] has been discussed several variants, where con-
tacted automaton after communication is/is not returned to the initial state (returning/non-
returning parallel communication automata systems), or, only one automaton has/all au-
tomata have the right to ask the current state from the others (centralized/non-centralized
parallel communication automata systems). By application of these strategies on pushdown
automata, the investigation was continued in [22], where the attention is focused especially
on communication by stacks, i.e. on request an asked automaton send the content of its
pushdown to requesting automata which push it on their pushdowns).

In the same way as in the case of grammar systems discussed above, you can find many
other variants of automata systems in the literature (see [74, 75, 65, 58, 66, 26]). Generally,
we can say that the theory of formal languages reflects the approaches used in grammar
systems into automata systems and studies the accepting power of given systems in relation
to component represented by automata working in many different ways.
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3.4 New Definitions and Selected Results

3.4.1 Restrictions on CD Grammar Systems

Formal language theory has investigated various left restrictions placed on derivations in
grammars working in a context-free way. In ordinary context-free grammars, these restric-
tions have no effect on the generative power. In terms of regulated context-free grammars,
the formal language theory has introduced a broad variety of leftmost derivation restrictions,
many of which change their generative power (see [3, 6, 28, 30, 33, 36, 38, 41, 50, 51, 52, 53]).
In terms of grammars working in a context-sensitive way, significantly fewer left derivation
restrictions have been discussed in the language theory. Indirectly, this theory has placed
some restrictions on the productions so the resulting grammars make only derivations in a
left way (see [3, 6]). This theory also directly restricted derivations in the strictly leftmost
way so the rewritten symbols are preceded only by terminals in the sentential form during
every derivation step (see [50]). In essence, all these restrictions result in decreasing the
generative power to the power of context-free grammars (see page 198 in [73]). This section
generalizes the discussion of this topic by investigating regularly controlled cooperating dis-
tributed grammar systems (see Chapter 4 in [73]) whose components are phrase-structure
grammars restricted in some new ways.

Now, we define the restrictions on derivations in phrase-structure grammars. In the
following, we consider V as the total alphabet of G = (N,T, P, S), i.e. V = N ∪ T .
Derivation-restriction of type I: Let l ∈ N and let G = (N,T, P, S) be a phrase-structure
grammar. If there is α → β ∈ P , u = x0αx1, and v = x0βx1, where x0 ∈ T ∗N∗, x1 ∈ V ∗,
and occur(x0α,N) ≤ l, then u l�⇒ v [α→ β] in G, or simply u l�⇒ v.

The k-fold product of l�⇒, where k ≥ 0, is denoted by l�⇒k. The reflexive-transitive
closure and transitive closure of l�⇒ are denoted by l�⇒∗ and l�⇒+, respectively.

Derivation-restrictions of type II and III Let m,h ∈ N. W (m) denotes the set of all
strings x ∈ V ∗ satisfying 1 given next. W (m,h) denotes the set of all strings x ∈ V ∗

satisfying 1 and 2.

1. x ∈ (T ∗N∗)mT ∗;

2. (y ∈ sub(x) and |y| > h) implies alph(y) ∩ T 6= ∅.

Let u ∈ V ∗N+V ∗, v ∈ V ∗, and u ⇒ v. Then, u h
m◦⇒ v in G, if u, v ∈ W (m,h); and if

u, v ∈W (m), u m◦⇒ v in G.
The k-fold product of h

m◦⇒ and m◦⇒ are denoted by h
m◦⇒k and m◦⇒k, respectively,

where k ≥ 0. The reflexive-transitive closure and transitive closure of h
m◦⇒ are denoted by

h
m◦⇒∗ and h

m◦⇒+ , respectively; and the reflexive-transitive closure and transitive closure
of h

m◦⇒ and m◦⇒ are denoted by m◦⇒∗ and m◦⇒+, respectively.

Convention 3.19 Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system with phrase-
structure grammars as its components and V = N ∪ T be the total alphabet of Γ. Fur-
thermore, let u ∈ V ∗N+V ∗, v ∈ V ∗, k ≥ 0. Then, we write u l�⇒k

Pi
v, u h

m◦⇒k
Pi
v, and

u m◦⇒k
Pi
v to denote that u l�⇒k v, u h

m◦⇒k v, and u m◦⇒k v, respectively, was performed

by Pi. Analogously, we write u l�⇒∗Pi
v, u h

m◦⇒∗Pi
v, u m◦⇒∗Pi

v, u l�⇒
+
Pi
v, u h

m◦⇒+
Pi
v,

u m◦⇒+
Pi
v, u h

m◦⇒t
Pi
v, and u m◦⇒t

Pi
v.

Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system with phrase-structure gram-
mars as its component and C be a control language. Then, lL

C(Γ) = {w ∈ T ∗| S l�⇒t
Pi1
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w1 l�⇒t
Pi2

. . . l�⇒t
Pip

wp = w, p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ C},NL
C(Γ,m, h) =

{w ∈ T ∗| S h
m◦⇒t

Pi1
w1

h
m◦⇒t

Pi2
. . . h

m◦⇒t
Pip

wp = w, p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤
p, i1i2 . . . ip ∈ C},NL

C(Γ,m) = {w ∈ T ∗| S m◦⇒t
Pi1

w1 m◦⇒t
Pi2

. . . m◦⇒t
Pip

wp = w, p ≥
1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ C}.

Let l,m, h ∈ N and let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system with phrase-
structure grammars. We define the following classes of languages.

L (lCDREG) = {lLC(Γ)| C ∈ REG}

L (NCDREG(m,h)) = {NLC(Γ,m, h)| C ∈ REG}

L (NCDREG(m)) = {NLC(Γ,m)| C ∈ REG}

For these classes, the following theorems are established.

Theorem 3.20 Let l ∈ N. Then, CF = L (lCDREG).

Theorem 3.21 RE = L (NCDREG(1)).

Theorem 3.22 Lm(P) = L (NCDREG(m,h)), for any m ≥ 1 and h ≥ 1.

3.4.2 Parallel Systems of Formal Models

In my thesis, we introduce two n-accepting restricted pushdown automata systems repre-
senting automata counterpart of multi-generative grammar systems (see Section 3.2). First,
we define n-accepting state-restricted pushdown automata systems. By using prescribed
n-state sequences, the restrictions of these systems determines which of the components
perform a move and which of them do not. Second, we define n-accepting move-restricted
pushdown automata systems, where the restriction precisely determines which transition
rule can be used in each of the n components. Both of these systems define sets of n-tuples
of strings (n-languages).

After that, we generalize the theory of n-languages and discussed hybrid canonical
rule-synchronized n-generative grammar systems and hybrid n-accepting move-restricted
automata systems, where components with different generative and accepting power can be
used in one grammar and automata system, respectively. More specifically, we investigate
grammar systems, which combine right-linear grammars, linear grammars, and context-
free grammars; and automata systems, which combine finite automata, 1-turn pushdown
automata, and pushdown automata in one instance.

A hybrid canonical rule-synchronized n-generative grammar system, HCGR(t1,...,tn) for
short, is an n+ 1-tuple Γ = (G1, . . . , Gn, Q), where

• Gi = (Ni, Ti, Pi, Si) is a right-linear, linear, or context-free grammar for every i =
1, . . . , n,

• Q is a finite set of n-tuples of the form (r1, . . . , rn), where ri ∈ Pi for every i = 1, . . . , n,
and

• for all i = 1, . . . , n, ti ∈ {RLNG,LNG,CFG} denotes type of ith component.
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A sentential n-form of HCGR(t1,...,tn) is an n-tuple χ = (x1, . . . , xn), where xi ∈ (Ni ∪ Ti)∗
for all i = 1, . . . , n.

Consider sentential n-forms, χ = (u1A1v1, . . . , unAnvn) and χ′ = (u1x1v1, . . . , unxnvn)
with

• Ai ∈ Ni,

• ui ∈ T ∗,

• vi, xi ∈ (N ∪ T )∗,

• ri = Ai → xi ∈ Pi, for all i = 1, . . . , n, and

• (r1, . . . , rn) ∈ Q.

Then, χ ⇒ χ′, and ⇒∗ and ⇒+ are its reflexive-transitive and transitive closure, respec-
tively.

The n-language of Γ is defined as n-L(Γ) = {(w1, . . . , wn)| (S1, . . . , Sn) ⇒∗ (w1, . . . , wn),
wi ∈ T ∗i , for all 1 ≤ i ≤ n}.

A hybrid n-accepting move-restricted automata system, denoted HMAS(t1,...,tn), is de-
fined as an n + 1-tuple ϑ = (M1 . . . ,Mn,Ψ) with Mi as a finite or (1-turn) pushdown au-
tomaton for all i = 1, . . . , n, and with Ψ as a finite set of n-tuples of the form (r1, . . . , rn),
where for every j = 1, . . . , n, rj ∈ δj in Mj . Furthermore, for all i = 1, . . . , n, ti ∈
{FA, 1-turn PDA, PDA} indicates the type of ith automaton.

An n-configuration is defined as an n-tuple χ = (x1, . . . , xn), where for all i = 1, . . . , n, xi
is a configuration of Mi. Let χ = (x1, . . . , xn) and χ′ = (x′1, . . . , x

′
n) be two n-configurations,

where for all i = 1, . . . , n, xi ⇒ x′i [ri] inMi, and (r1, . . . , rn) ∈ Ψ, then ϑmakes computation
steps from n-configuration χ to n-configuration χ′, denoted χ ⇒ χ′, and in the standard
way,⇒∗ and⇒+ denote the reflexive-transitive and the transitive closure of⇒, respectively.

Let χ0 = (x1ω1, . . . , xnωn) be the start and χf = (q1, . . . , qn) be a final n-configuration

of HMAS(t1...,tn), where for all i = 1, . . . , n, ωi is the input string of Mi and qi is state
of Mi. The n-language of HMAS(t1,...,tn) is defined as n-L(ϑ) = {(ω1, . . . , ωn)| χ0 ⇒∗
χf and for every i = 1, . . . , n, Mi accepts}.

In a special case, where all components are of type X, we write nX instead of (X, . . . ,X).
If there is no attention on the number and type of components, we write HMAS and HCGR
rather than HMAS(t1,...,tn) and HCGR(t1,...,tn), respectively.

L (HMAS(t1,...,tn)) and L (HCGR(t1,...,tn)) are the classes of n-languages accepted by
HMAS(t1,...,tn) and n-languages generated by HCGR(t1,...,tn), respectively.

The basic hierarchy of such systems is given by Figure 3.2.

3.4.3 Rule-Restricted Transducers

In formal language theory, there exist two basic translation-method categories. The first
category contains interprets and compilers, which first analyse an input string in the source
language and, after that, they generate a corresponding output string in the target language
(see [1], [60], [64], [43], or [77]). The second category is composed of language-translation
systems or, more briefly, transducers. Frequently, these trasducers consist of several com-
ponents, including various automata and grammars, some of which read their input strings
while others produce their output strings (see [4], [40], [63], and [79]).
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L (HMASnFA)

L (HMAS(FA,...,FA,PDA))

L (HMAS(FA,...,FA,PDA,PDA))

L (HMASnPDA)

L (HMAS(FA,...,FA,1-turn PDA,1-turn PDA))

L (HCGRnRLNG)

L (HCGRnLNG)

L (HCGR(RLNG,...,RLNG,CFG))

L (HCGR(RLNG,...,RLNG,CFG,CFG))

Figure 3.2: Hierarchy of n-languages for n ≥ 2

Although transducers represent language-translation devices, language theory often
views them as language-defining devices and investigates the language family resulting from
them. In essence, it studies their accepting power consisting in determining the language
families accepted by the transducer components that read their input strings. Alternatively,
it establishes their generative power that determines the language family generated by the
components that produce their strings. The thesis contributes to this vivid investigation
trend in formal language theory.

In this section, we introduce three new variants of transducer, referred to as rule-
restricted transducer, based upon a finite automaton and a context-free grammar. In addi-
tion, a restriction set controls the rules which can be simultaneously used by the automaton
and by the grammar.

An rule-restricted transducer, RT for short, is a triplet Γ = (M,G,Ψ), where M =
(Q,Σ, δ, q0, F ) is a finite automaton, G = (N,T, P, S) is a context-free grammar, and Ψ is a
finite set of pairs of the form (r1, r2), where r1 and r2 are rules from δ and P , respectively.

A 2-configuration of RT is a pair χ = (x, y), where x ∈ QΣ∗ and y ∈ (N ∪T )∗. Consider
two 2-configurations, χ = (pav1, uAv2) and χ′ = (qv1, uxv2) with A ∈ N , u, v2, x ∈ (N∪T )∗,
v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and p, q ∈ Q. If pav1 ⇒ qv1[r1] in M , uAv2 ⇒ uxv2[r2] in G, and
(r1, r2) ∈ Ψ, then Γ makes a computation step from χ′ to χ′, written as χ ⇒ χ′. In the
standard way, ⇒∗ and⇒+ are transitive-reflexive and transitive closure of⇒, respectively.

The 2-language of Γ, 2-L(Γ), is 2-L(Γ) = {(w1, w2)| (q0w1, S) ⇒∗ (f, w2), w1 ∈ Σ∗,
w2 ∈ T ∗, and f ∈ F}. From the 2-language we can define two languages:

• L(Γ)1 = {w1| (w1, w2) ∈ 2-L(Γ)}, and

• L(Γ)2 = {w2| (w1, w2) ∈ 2-L(Γ)}.

By L (RT), L (RT)1, and L (RT)2, the classes of 2-languages of RTs, languages accepted
by M in RTs, and languages generated by G in RTs, respectively, are understood. The
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generative and accepting power are given by the following theorems.

Theorem 3.23 L (RT)2 = L (MAT).

Theorem 3.24 L (RT)1 =
∞⋃
k=1

L (k-PBCA).

Although the investigated system is relatively powerful, in defiance of weakness of mod-
els they are used, non-deterministic selections of nonterminals to be rewritten can be rela-
tively problematic from the practical point of view. Therefore, the effect of a restriction,
in the form of leftmost derivations placed on the grammar in RTs, has been examined.

Let Γ = (M,G,Ψ) be an RT with M = (Q,Σ, δ, q0, F ) and G = (N,T, P, S). Further-
more, let χ = (pav1, uAv2) and χ′ = (qv1, uxv2) be two 2-configurations, where A ∈ N ,
v2, x ∈ (N ∪ T )∗, u ∈ T ∗, v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and p, q ∈ Q. Γ makes a computation step
from χ to χ′, written as χ ⇒lm χ′, if and only if pav1 ⇒ qv1[r1] in M , uAv2 ⇒ uxv2[r2]
in G, and (r1, r2) ∈ Ψ. In the standard way, ⇒∗lm and ⇒+

lm are transitive-reflexive and
transitive closure of ⇒lm, respectively.

The 2-language of Γ with G generating in the leftmost way, denoted by 2-Llm(Γ), is
defined as 2-Llm(Γ) = {(w1, w2)| (q0w1, S) ⇒∗lm (f, w2), w1 ∈ Σ∗, w2 ∈ T ∗, and f ∈ F};
we call Γ as leftmost restricted RT; and we define the languages given from 2-Llm(Γ) as
Llm(Γ)1 = {w1| (w1, w2) ∈ 2-Llm(Γ)} and Llm(Γ)2 = {w2| (w1, w2) ∈ 2-Llm(Γ)}. By
L (RTlm), L (RTlm)1, and L (RTlm)2, we understand the classes of 2-languages of leftmost
restricted RTs, languages accepted by M in leftmost restricted RTs, and languages gen-
erated by G in leftmost restricted RTs, respectively. The leftmost restriction effects the
generative and accepting power as the following theorem says.

Theorem 3.25 L (RTlm)2 = CF and L (RTlm)1 = CF.

Unfortunately, the price for the leftmost restriction, placed on derivations in the context-
free grammar, is relatively high and both accepting and generative ability of RT with the
restriction decreases to CF.

In the thesis, RTs have been extended with the possibility to prefer a rule over another—
that is, the restriction sets contain triplets of rules (instead of pairs of rules), where the
first rule is a rule of FA, the second rule is a main rule of CFG, and the third rule is an
alternative rule of CFG, which is used only if the main rule is not applicable.

An RT with appearance checking, RTac for short, is a triplet Γ = (M,G,Ψ), where
M = (Q,Σ, δ, q0, F ) is a finite automaton, G = (N,T, P, S) is a context-free grammar, and
Ψ is a finite set of triplets of the form (r1, r2, r3) such that r1 ∈ δ and r2, r3 ∈ P .

Let χ = (pav1, uAv2) and χ′ = (qv1, uxv2), where A ∈ N , v2, x, u ∈ (N ∪ T )∗, v1 ∈ Σ∗,
a ∈ Σ ∪ {ε}, and p, q ∈ Q, be two 2-configurations. Γ makes a computation step from χ
to χ′, written as χ⇒ χ′, if and only if for some (r1, r2, r3) ∈ Ψ, pav1 ⇒ qv1[r1] in M , and
either

• uAv2 ⇒ uxv2[r2] in G, or

• uAv2 ⇒ uxv2[r3] in G and r2 is not applicable on uAv2 in G.

The 2-language 2-L(Γ) and languages L(Γ)1, L(Γ)2 are defined in the same way as usual.
The classes of languages defined by the first and the second component in the system are
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denoted by L (RTac)1 and L (RTac)2, respectively. The power of the RTs with appearance
checking is declared by the following theorem.

Theorem 3.26 L (RTac)2 = RE and L (RTac)1 = RE.

3.5 Thesis Summary and Further Investigation

My PhD thesis discusses and studies formal languages and systems of formal models. Its
main results are published or submitted in [16, 56, 8, 9, 10, 11, 17, 12, 14, 13, 15]. This
section summaries these results.

The thesis was focused on a study of systems of formal models which plays important
role in the modern information technology and computer science. Since the introduction of
CD grammar systems, many other systems were studied and systems of formal models have
become a vivid research area. Aim of the thesis was to further investigate properties of the
systems of formal models to their better understanding. This research can be divided into
several main parts.

In the first part, we continued in studying of regularly controlled CD grammar systems,
where we used phrase-structure grammars as components, and introduced three new restric-
tions on derivations in these systems. The first restriction requires that derivation rules
could be applied within the first l nonterminals, for given l ≥ 1. Although phrase-structured
grammars define all languages from RE, regularly controlled CD grammar systems with
phrase-structure grammars as components under such restriction generate only context-free
languages. One may ask, how strong the control language must be to leave the generative
power unchanged. Our assumption is that linear languages are sufficient, but a rigorous
proof has not yet been done. The second restriction allows to have only limited number of
undivided blocks of nonterminals in each sentential form during any successful derivation.
It has been proven that this restriction has no effect on the generative power of these CD
grammar systems even in the case when the restriction allows only one such block. On
the other hand, the restriction limiting the maximum length and number of the blocks
decreases the generative power of these systems to the classes Lm(P ) representing infinite
hierarchy, with respect of m, lying between the classes of linear and context-sensitive lan-
guages. Notice that m is maximal number of blocks and CF − Lm(P ) 6= ∅. Question
whether the stronger control language effects the generative power of CD grammar systems
with phrase-structure grammars subject to the third restriction is still open.

The second part deals with parallel grammar and automata systems based upon CFGs
and PDAs, respectively. More specifically, we introduced two variants of n-accepting re-
stricted pushdown automata systems, accepting n-tuples of interdependent strings, as coun-
terparts of canonical n-generating nonterminal/rule synchronized grammar systems based
upon context-free grammars. Both types of the automata systems consist of n PDAs, for
n ≥ 2, and one restriction-set. In the case of n-accepting state-restricted automata sys-
tems, the restriction-set allows to suspend and resume some automata during computation
in relation to combination of current states of the PDAs. In the case of n-accepting move-
restricted automata systems, the restriction-set determines which combination of transition
rules used in the common computation step are permitted. We have proven that these n-
accepting restricted automata systems are able to accept such n-languages that the canon-
ical n-generating grammar systems can generate and vice versa. Furthermore, we have
established fundamental hierarchy of n-languages generating/accepting by these canonical
multi-generating rule synchronized grammar/n-accepting rule-restricted automata systems

19



with different types of components. First of all, we have shown that both these systems
are equivalent even if we combine RLNGs with CFGs in the grammar systems and FAs
with PDAs in the automata systems. After that, we have established the hierarchy given
by Figure 3.2 (→ and↔ mean ⊂ and =, respectively), where it can be seen, inter alia, that
canonical n-generating rule synchronized grammar systems based upon linear grammars are
significantly weaker than n-accepting move-restricted automata systems, with two 1-turn
PDAs and n− 2 FAs as components.

The second part of the research can be continued by better approximation of power of the
state/move-restricted automata systems based upon FAs (especially in relation to string-
interdependences), or by investigation of restarting and/or stateless finite and pushdown
automata as the components of discussed automata systems.

In the last part, we have suggested rule-restricted systems for processing of linguistically
motivated languages. In this part, we introduced three variants of rule-restricted translating
systems based upon finite automaton and context-free grammar. At first, we have proven
that leftmost restriction placed on derivation in the context-free grammar effects both the
generative and accepting power of such systems. In addition, we introduced a rule-restricted
transducer system with appearance checking, where the restriction-set Ψ is a set of 3-tuples
containing one rule of the FA and two rules of the CFG. For the common computation step,
the system has to use the first and second rules of a 3-tuple, if it is possible; otherwise,
it can use the first and third rules from the 3-tuple. This system is able to recognize and
generate any language from RE. Thereafter, some examples of natural language translating
are given.

The investigation of processing of linguistically motivated languages continued by gene-
ralization of TC grammars that generate the language under path-based control introduced
in [47]. We have considered TC grammars that generate their languages under n-path
control by linear language which were introduced in [45].

We have demonstrated that for L ∈ n-path-TC under assumption that L is generated
by TC grammar (G,R) in which G and R are unambiguous and, furthermore, G is restricted
to be LL grammar, there is parsing method working in polynomial time. This method check
whether or not the paths of the derivation tree t of x ∈ L(G) belongs to control language
R in the time of building of t. Moreover, when we consider LR parser for L ∈ n-path-TC
under assumption that L is generated by TC grammar (G,R) in which G has bounded
ambiguity (i.e. G is unambiguous or m-ambiguous) and unambiguous language R ∈ LIN,
there is also a parsing method working in polynomial time.

However, the open question is whether there is polynomial time parsing method

• if G is not LL,

• if G is ambiguous.

It is also of interest to quantify the worst case of the parsing complexity more precisely.
The open investigation area is represented by the transformation of n-path TC gram-

mars into some normal forms based on Chomsky normal form of underlying context-free
grammar which would lead to possibility to use parsing methods based on transformation
to Chomsky normal form.
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Chapter 4

Abstract

My PhD thesis continues with study of grammar and automata systems. First of all, it
deals with regularly controlled CD grammar systems with phrase-structure grammars as
components. Into these systems, three new derivation restriction are placed and their effect
on the generative power of these systems are investigated. Thereafter, the thesis defines
two automata counterparts of canonical multi-generative nonterminal and rule synchro-
nized grammar systems, generating vectors of strings, and it shows that these investigated
systems are equivalent. Furthermore, the thesis generalizes definitions of these systems and
establishes fundamental hierarchy of n-languages (sets of n-tuples of strings). In relation
with these mentioned systems, automaton-grammar translating systems based upon finite
automaton and context-free grammar are introduced and investigated as a mechanism for
direct translating. At the end, in the thesis introduced automata systems are used as the
core of parse-method based upon n-path-restricted tree-controlled grammars.
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[43] O. Jirák and Z. Křivka. Design and implementation of back-end for picoblaze C
compiler. In Proceedings of the IADIS International Conference Applied Computing
2009, pages 135–138. International Association for Development of the Information
Society, 2009.

[44] L. Kari, A. Mateescu, G. Păun, and A. Salomaa. Teams in cooperating grammar
systems. Journal of Experimental & Theoretical Artificial Intelligence, 7(4):347–359,
1995.

24
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