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Abstract
This doctoral thesis studies synchronous formal systems based on grammars and trans-
ducers, investigating both theoretical properties and practical application perspectives. It
introduces new concepts and definitions building upon the well-known principles of regu-
lated rewriting and synchronization. An alternate approach to synchronization of context-
free grammars is proposed, based on linked rules. This principle is extended to regulated
grammars such as scattered context grammars and matrix grammars. Moreover, based on a
similar principle, a new type of transducer called the rule-restricted transducer is introduced
as a system consisting of a finite automaton and context-free grammar. New theoretical
results regarding the generative and accepting power are presented. The last part of the
thesis studies linguistically-oriented application perspectives, focusing on natural language
translation. The main advantages of the new models are discussed and compared, using
select case studies from Czech, English, and Japanese to illustrate.

Abstrakt
Tato disertační práce studuje synchronní formální systémy založené na gramatikách a pře-
vodnících a zkoumá jak jejich teoretické vlastnosti, tak i perspektivy praktických ap-
likací. Práce představuje nové koncepty a definice vycházející ze známých principů řízeného
přepisování a synchronizace. Navrhuje alternativní způsob synchronizace bezkontextových
gramatik, založený na propojení pravidel. Tento princip rozšiřuje také na řízené gramatiky,
konkrétně gramatiky s rozptýleným kontextem a maticové gramatiky. Dále je představen
na podobném principu založený nový druh převodníku, tzv. pravidlově omezený převod-
ník. Jedná se o systém složený z konečného automatu a bezkontextové gramatiky. Práce
prezentuje nové teoretické výsledky ohledně generativní a přijímajicí síly. Poslední část
práce zkoumá možnosti lingvisticky orientovaných aplikací se zameřením na překlad přiro-
zeného jazyka. Diskutuje a srovnává hlavní výhody nových modelů s využitím vybraných
případových studií z českého, anglického a japonského jazyka pro ilustraci.
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Chapter 1

Motivation and Organization

Formal language theory is an essential part of theoretical computer science. It defines
and studies languages as sets of strings (words, sentences), which are finite sequences of
symbols. This definition covers natural languages (e.g. Czech, English, or Japanese) as
well as artificial languages (such as programming languages).

To describe languages mathematically, formal language theory studies models which
define them. Many of these models are based on rewriting systems—that is, formal systems
which gradually change strings by rewriting some of their symbols in each step, according
to a given set of rules. Most rewriting systems fall into one of the two basic categories:
generative language models (generally known as grammars), and accepting language models
(generally known as automata). A generative model defines a language by generating all
strings of this language. In other words, a string belongs to this language if and only if it
can be generated by the model. An accepting model analyzes a string and either accepts,
or rejects it. The language defined by the accepting model is the set of all strings which
the model accepts.

The applications of formal language theory are found in many scientific disciplines. It
provides mathematical background primarily in areas that deal with languages themselves
(linguistics, programming language theory etc.) but there are also other topics that can be
formalized as languages (e.g. DNA and RNA sequences in biology).

Of particular interest to our work is the area of computational linguistics. Specifically,
we focus on formal description of natural language syntax and its transformations. We study
the application perspectives of known formal models and introduce new related concepts
and definitions. We also study the theoretical properties of the models and present new
results.

1.1 Motivation

Natural language processing is a field of theoretical informatics and linguistics and is con-
cerned with the interactions between computers and human (natural) languages. It is
defined as a theoretically motivated range of computational techniques for analyzing and
representing naturally occurring texts (which means any language) at one or more levels of
linguistic analysis for the purpose of achieving human-like language processing for a range
of tasks or applications (according to [4]).

The history goes back to the the late 1940s, when there was an effort to understand and
formally describe the syntax of natural languages. A big step forward was the publishing of

4



the book called Syntactic Structures, by Noam Chomsky, introducing the idea of generative
grammar.

At first, computer processing of natural languages was in interest of artificial inteligence
as a part of human-computer interaction. Subsequently, it split into two separate disciplines.
Today, natural language processing studies many other aspects of natural languages besides
their syntax (such as morphology or semantics). This discipline is focused mainly on prac-
tical applications. Some of the most frequent tasks are information retrieval, information
extraction, question answering, summarization, and machine translation, and in broader
scope, we can even include tasks as speech recognition and speech synthesis.

The second discipline encompasses a set of formalisms, which are, in general, known
as formal language theory. Formal language theory is considered a part of theoretical
computer science, and it focuses mainly on theoretical studies of various formal models and
their properties. Its applications are now found in many other areas besides computational
linguistics.

One of the major trends in formal language theory is regulated rewriting. This concept
was introduced already in the 1960s, as the models of the now traditional Chomsky hierarchy
have been found unsatisfactory for certain practical applications. For example, it has been
argued that some linguistic phenomena could not be described by context-free grammars,
while context-sensitive and unrestricted grammars were inefficient for practical use (because
of the complexity of parsing). Because of this, ways to increase the power of context-free
grammars—while retaining their practical applicability—were investigated.

Regulated rewriting essentially means that we take a certain known formal model (usu-
ally a context-free grammar, for reasons mentioned above) and in some way regulate (hence
the name) the way in which it generates (or, in the case of automata, accepts) sentences.
This can be done by adding some mathematically simple mechanism that controls the use
of rules (such as in programmed grammars), or by changing the form of rules themselves
(as, for example, in scattered context grammars). Thus, the expressive power is increased
by limiting available derivations (or computations).

The purpose of our work is twofold. From a theoretical point of view, we contribute to
the study of formal language theory by introducing new formal models and investigating
their properties. Rather than trying to create completely new formalisms from scratch,
we establish the new models as generalizations, extensions, or modifications of well-known
and well-studied formal models (such as context-free grammars and finite automata) and
principles (such as regulated rewriting and synchronization).

In [40], we have presented an alternate approach to synchronization, based on linking
rules instead of nonterminals. In this fashion, we have extended the principle to models
with regulated rewriting, specifically matrix grammars and scattered context grammars.
We have continued with further theoretical study of synchronous grammars based on linked
rules, and particularly of synchronous versions of regulated grammars, in [38] and [41].

In [10], we have introduced a new type of transducer, the rule-restricted automaton-
grammar transducer, as a system consisting of a finite automaton, which is used to read an
input string, and a context-free grammar, which simultaneously produces a corresponding
output string. Also in [10], we have investigated the theoretical properties—namely, the
generative and accepting power—of this new system and its variants.

For an overview of our new results, see the following Section 1.2, specifically the parts
describing Chapter 4 and Chapter 5 for results concerning synchronous grammars and
transducers, respectively.

Meanwhile, from a more practical viewpoint, we investigate how some of the well-
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known and well-studied models from formal language theory can be adapted or extended
for applications in natural language processing. In other words, the ideas and concepts
behind the new formal models mentioned above are motivated by the possibility of their
linguistic applications.

Inspired by such works as [63], where the authors discuss linguistically-oriented ap-
plications of scattered context grammars (using examples from the English language), we
explore similar application perspectives of other regulated formal models as well. In [36], we
have discussed potential applications of matrix grammars in the description of the Japanese
syntax. Subsequently, we have been focusing on translation of natural languages.

Machine translation is one of the major tasks in natural language processing. With
increasing availability of large corpora, corpus-based systems became favoured over rule-
based, using statistical methods and machine-learning techniques. They mostly rely on
formal models that represent local information only, such as n-gram models. However,
recently, there have been attempts to improve results by incorporating syntactic information
into such systems (see [50], [86], or [6]).

To do so, we need formal models that can describe syntactic structures and their trans-
formations. Based on the principles of synchronous grammars (see [13]), we have proposed
synchronous versions of some regulated grammars, such as matrix grammars (see [21]) and
scattered context grammars (see [63]). We first introduced the idea in [37], and further
elaborated upon it in [40]. Revised definitions, a study of theoretical properties, and a
further discussion of linguistically-oriented application perspectives can be found in [41];
applications in particular are also investigated in [39].

Other type of models we can use are transducers (see [2]). Unlike synchronous gram-
mars, which generate a pair of sentences in one derivation and thus define translation, trans-
ducers take a given input sentence and transform it into a corresponding output sentence.
Frequently, these transducers consist of several components, including various automata
and grammars, some of which read their input strings while others produce their output
strings (see [30] or [69]). In [10], we have introduced the rule-restricted automaton-grammar
transducer and its variants, and discussed its advantages for natural language translation,
illustrated by examples from Czech, English, and Japanese.

1.2 Organization

This doctoral thesis is divided into three parts and seven chapters, organized as follows.

1.2.1 Introduction

The first chapter introduces the topic of our work and presents the motivation behind it.
It also describes the structure of this document and provides an overview of its contents.

Following this introductory chapter, Chapter 2 provides the mathematical background
required for understanding of the topics discussed in this work. First, we summarize the
well-known essential concepts and definitions from set theory, such as sets and relations.
Subsequently, we use these notions to present an introduction to formal language theory. We
give formal definitons of concepts such as alphabet, string, and language. We also introduce
formal models that define languages, namely grammars and automata. We define different
types of languages and present the resulting hierarchy of the respective language classes.
Finally, we describe and formally define several models related to the concept of regulated
rewriting.
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In Chapter 3, we present a brief introduction to computational linguistics. The first
section of this chapter provides an overview of select formal models related to natural lan-
guage processing. We discuss both models of historical and practical importance. Trans-
formational grammars, augmented transition networks and generalized phrase structure
grammars are examples of the former category, while the latter includes head-driven phrase
structure grammars, lexical functional grammars, and lexicalized tree-adjoining grammars.
We also mention probabilistic context-free grammar as an example of a formal model used
in statistical natural language processing.

We present the basic concept of dependency grammars as well. Although for the most
part our work does not deal with dependency grammars, they certainly deserve a mention
as an important alternative to phrase structure grammars, which is is also often used in
practice. Moreover, we sometimes use the notion of dependency (and some related notions,
particularly nonprojectivity, the crossing of dependencies) when discussing application per-
spectives of our formal models (Chapter 6).

Finally, we consider the application of some traditional models from formal language
theory as an alternative. We focus on models with regulated rewriting. In particular, we
discuss linguistically-oriented application perspectives of scattered context grammars and
their variant, transformational scattered context grammars.

The second section of Chapter 3 introduces the area of machine translation, which is
one of major tasks of natural language processing. First, we briefly review the historical
development and classification of translation systems. Subsequently, we provide a summary
of recent trends in this area, and we show how our work relates to them.

1.2.2 Synchronous Formal Systems

The second part of this thesis consists of two theoretically oriented chapters. These chapters
contain both informal explanations and formal definitions of the new models, and present
the related theoretical results that we have established.

More specifically, Chapter 4 deals with synchronous grammars. First, we briefly recall
the well-known synchronous context-free grammars. We then introduce the notion of new
synchronous grammars as systems consisting of two context-free grammars with linked
rules instead of linked nonterminals. This allows us to naturally extend the principle of
synchronization beyond context-free grammars. We present synchronous versions of some
regulated grammars, namely scattered-context grammars and matrix grammars.

Further, we study theoretical properties of these grammars. Specifically, we investigate
their generative power and achieve the following three main results. First, if we synchro-
nize context-free grammars by linking rules as proposed and defined in this chapter, we
obtain generative power coinciding with the power of matrix grammars. Consequently, we
significantly increase the power in this way because the traditional synchronous CFGs only
generate the family of context-free languages. Second, perhaps unsurprisingly, the class
of languages defined by synchronous scattered context grammars equals the class of recur-
sively enumerable languages. Finally, we show that if we synchronize matrix grammars by
linking matrices, we obtain no increase in power. That is, synchronous matrix grammars
have the same generative power as matrix grammars.

Chapter 5 introduces a new type of transducer, referred to as rule-restricted automaton-
grammar transducer, based upon a finite automaton and a context-free grammar. A re-
striction set controls the computation. It defines which rules can be simultaneously used
by the automaton and by the grammar. We discuss the power of this system working in

7



an ordinary way as well as in a leftmost way (more precisely, the context-free grammar
is restricted to leftmost derivation). In addition, we introduce an appearance checking,
which allows us to check whether some symbols are present in the rewritten string, and we
investigate its effect on the power.

We achieve the following main results. First, we show that the generative power of
rule-restricted transducers is equal to the generative power of matrix grammars. Second,
the accepting power coincides with the power of partially blind multi-counter automata.
Third, under the context-free-grammar leftmost restriction, the accepting and generative
power of these systems coincides with the power of context-free grammars. On the other
hand, when an appearance checking is introduced into these systems, the system can accept
and generate all recursively enumerable languages.

1.2.3 Application Perspectives and Final Remarks

In the final part of this thesis, we consider the newly introduced models from a more practi-
cal viewpoint. Specifically, Chapter 6 explores their application perspectives with particular
focus on natural language translation. We discuss and compare their main advantages il-
lustrating them by examples from Czech, English, and Japanese.

One of the main advantages of both types of presented models is their power, as they
are able to describe even some non-context-free structures. The new synchronous grammars
also provide high flexibility, allowing for elegant and efficient description of language fea-
tures. On the other hand, rule-restricted transducers are based on a simple, straightforward
principle, which can be an advantage for practical implementation.

The concluding Chapter 7 summarizes all achieved results. In particular, using a graph-
ical representation, we show how our new results relate to a known hierarchy of language
classes. We also discuss further research prospects, both in theoretical and practical direc-
tion.
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Chapter 2

Mathematical Background

This chapter recalls the fundemental terminology from mathematics and formal language
theory that is of key importantance to the topics discussed in this work.

We assume that the reader is familiar with basic mathematical terms, concepts, and
notations. In particular, knowledge and understanding of elementary algebra, logic, and
common proof techniques is assumed (see [8], [45], and [53]).

2.1 Set Theory

Before we can talk about formal languages and the models that define them, we first need
to introduce several notions from set theory (see [23], [33], or [42]).

2.1.1 Sets and Sequences

In mathematics, there are many well-known, important sets, such as the set of all integers,
Z = {. . . ,−2,−1, 0, 1, 2, . . . }, natural numbers, N = {1, 2, . . . }, or natural numbers ex-
tended with zero, N0 = {0, 1, 2, . . . }. Intuitively, the notion of set as a collection of certain
elements is easy to imagine. Now let us define it formally.

Definition 2.1 (Set). A set is a collection of elements, which are taken from some pre-
specified universe. If an element a from this universe is contained in some set Σ, we say
that a is a member of Σ, denoted by a ∈ Σ. Otherwise, we say that a is not a member of Σ,
denoted by a /∈ Σ. The set that has no members is called the empty set and it is denoted
by ∅.

Definition 2.2 (Cardinality of a set). Let Σ be a set. The cardinality of Σ, denoted by
card(Σ), is the number of members of Σ. Note that card(∅) = 0.

Definition 2.3 (Finite and infinite set). Let Σ be a set. If Σ has a finite number of
members, that is, card(Σ) ∈ N0, we say that Σ is a finite set, otherwise, if card(Σ) = ∞,
we say that Σ is an infinite set.

We usually specify a finite set Σ by listing its members—that is, Σ = {a1, a2, . . . , an},
where ai ∈ Σ for all 1 ≤ i ≤ n. For example, the finite set A = {1, 2} contains two elements,
1 and 2, and card(A) = 2. In contrast, an infinite set Ω is usually specified by a common
property π. Then, a given element is a member of Ω if and only if it satisfies this property.
We write this specification as Ω = {a : π(a)}.
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We can also compare sets. We can decide whether two given sets are equal, or whether
one set is included in another.

Definition 2.4 (Set equivalence). Let Σ and Ω be sets. We say that Σ and Ω are equal,
denoted by Σ = Ω, if and only if for all a ∈ Σ, a ∈ Ω holds, and for all b ∈ Ω, b ∈ Σ holds.
Otherwise Σ 6= Ω.

Definition 2.5 (Subset). Let Σ and Ω be sets. If for all a ∈ Σ, a ∈ Ω holds, we say that
Σ is a subset of Ω, denoted by Σ ⊆ Ω, otherwise Σ 6⊆ Ω. Further, if Σ ⊆ Ω and Σ 6= Ω, we
say that Σ is a proper subset of Ω, denoted by Σ ⊂ Ω, otherwise Σ 6⊂ Ω.

For example, for the sets of numbers mentioned above, N ⊂ N0 ⊂ Z holds. Also note
that for any two sets Σ = Ω if and only if Σ ⊆ Ω and Ω ⊆ Σ.

There are many operations that we can define over sets. For our purposes, we only need
to introduce three of the most basic ones, namely intersection, union, and difference.

Definition 2.6 (Set operations). Let Σ and Ω be sets. We define the following operations:

• The intersection of Σ and Ω, denoted by Σ ∩ Ω, as Σ ∩ Ω = {a : a ∈ Σ ∧ a ∈ Ω}; if
Σ ∩ Ω = ∅, we say that Σ and Ω are disjoint.

• The union of Σ and Ω, denoted by Σ ∪ Ω, as Σ ∪ Ω = {a : a ∈ Σ ∨ a ∈ Ω}.

• The difference of Σ and Ω, denoted by Σ− Ω, as Σ− Ω = {a : a ∈ Σ ∧ a /∈ Ω}.

Besides sets, we will also need sequences. This is a similar notion to set, with two
important differences. First, a sequence may contain an element more than once, and
second, the elements appear in certain order.

Definition 2.7 (Sequence). Let a1, a2, . . . , an for some n ∈ N be elements taken from some
pre-specified universe. Then, (a1, a2, . . . , an) denotes the (finite) sequence consisting of
elements a0, a1, . . . , an, in that order. Further, let x = (a1, a2, . . . , ak) and y = (b1, b2, . . . , bl)
for some k, l ∈ N be sequences. Then, x = y if and only if k = l and for all 1 ≤ i ≤ k,
ai = bi.

For example, {1, 2} = {2, 1} but (1, 2) 6= (2, 1). Also note that, while we only deal with
finite sequences in this work, it is possible—and indeed usual—to define infinite sequences
(analogous to inifinite sets) as well.

Definition 2.8 (Length of a sequence). Let x = (a1, a2, . . . , an) for some n ∈ N be a
sequence. Then, the length of x, denoted by |x|, is defined as |x| = n.

A finite sequence of length n is also called an n-tuple. Further, a 2-tuple is also called
an (ordered) pair, and for 3 ≤ n ≤ 7, the respective n-tuples are called a triple, quadru-
ple, quintuple, sextuple, and septuple (we could continue in this fashion but it becomes
increasingly uncommon).

2.1.2 Relations

Relations are another important notion of set theory. To introduce them formally, we first
need to define one more operation over sets, the Cartesian product.

Definition 2.9 (Cartesian product). Let Σ and Ω be sets. The Cartesian product of Σ
and Ω, denoted by Σ× Ω, is defined as Σ× Ω = {(a, b) : a ∈ Σ, b ∈ Ω}.
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Definition 2.10 (Relation). Let Σ and Ω be sets. A (binary) relation ρ from Σ to Ω is
any set ρ such that ρ ⊆ Σ× Ω.

Instead of (a, b) ∈ ρ, we usually write a ∈ ρ(b) or aρb.

Definition 2.11 (k-fold product). Let ρ be a relation from Σ to Σ and k ∈ N0. The k-fold
product of ρ, denoted by ρk, is recursively defined as follows:

1. aρ0b if and only if a = b,

2. aρ1b if and only if aρb,

3. aρnb if and only if there is a c ∈ Σ such that aρn−1c and cρb.

Definition 2.12 (Closure). Let ρ be a relation from Σ to Σ. The transitive closure of ρ,
denoted by ρ+, is defined as follows: aρ+b if and only if for some k ∈ N, aρkb. Further, the
transitive and reflexive closure of ρ, denoted by ρ∗, is defined as follows: aρ∗b if and only if
aρ+b or a = b.

Definition 2.13 (Function). Let Σ and Ω be sets and let φ be a relation from Σ to Ω such
that for all a ∈ Σ, card({b : b ∈ Ω, (a, b) ∈ φ}) ≤ 1. Then, we call φ a function from Σ to Ω.

By definition, for a given function φ and a given element a, there may be at most one
b satisfying b ∈ φ(a). Therefore, in case of functions we usually write b = φ(a) instead of
b ∈ φ(a).

Let max be a function from Z× Z to Z defined as follows: for x, y ∈ Z, max(x, y) = x
if and only if x ≥ y, otherwise max(x, y) = y. That is, max(x, y) returns the greater value
from x and y. Note that, for brevity, we write max(x, y) instead of max((x, y)).

2.2 Formal Language Theory

Using the notions from Section 2.1, we can now introduce the fundamental terms and
concepts of formal language theory (see [34], [43], [55], [60], [74], or [75]).

2.2.1 Formalization of Languages

Informally, we consider languages as sets of sentences or sets of words. Indeed, the formal
notion of language is similar. A formal language is a set of strings over some given alphabet.

Definition 2.14 (Alphabet and symbols). An alphabet is a finite, nonempty set. Its
members are called symbols.

Definition 2.15 (String). Let Σ be an alphabet. A string over Σ is recursively defined as
follows:

1. ε is a string over Σ. ε denotes the string with no symbols, and we call it the empty
string.

2. If x is a string over Σ and a ∈ Σ, then xa is a string over Σ.

Further, let Σ∗ denote the set of all strings over Σ.

Definition 2.16 (Language). Let Σ be an alphabet. A language over Σ is any set L such
that L ⊆ Σ∗.
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The following definitions presents select operations over strings.

Definition 2.17 (String operations). Let x and y be strings over an alphabet Σ. Then,
we define the following operations:

• The concatenation of x and y as xy. For any string x, let xε = εx = x.

• The length of x, denoted by |x|, as follows:

1. If x = ε, then |x| = 0.

2. If x = a1a2 . . . an for some n ≥ 1, where ai ∈ Σ for all 1 ≤ i ≤ n, then |x| = n.

• The reversal of x, denoted by (x)R, as follows:

1. If x = ε, then (x)R = ε.

2. If x = a1a2 . . . an−1an for some n ≥ 1, where ai ∈ Σ for all 1 ≤ i ≤ n, then
(x)R = anan−1 . . . a2a1.

• The (i-th) power of x, denoted by xi, as follows:

1. x0 = ε,

2. xi = xxi−1 for i ≥ 1.

Definition 2.18 (Substring). Let x and y be strings over Σ. We say that x is a substring
of y, if there are strings u, v ∈ Σ∗ such that y = uxv.

Let x be a string over Σ and let x1, x2, . . . , xn for some n ∈ N be substrings of x such
that x = x1x2 . . . xn. Then, we call x1x2 . . . xn a factorization of x.

Definition 2.19 (Occurence of symbols). Let x be a string over an alphabet Σ and let
Ω ⊆ Σ. Then, occur(x,Ω) denotes the number of occurrences of symbols from Ω in x.

Since languages are sets, we can apply all set operations (union, intersection etc.) on
languages as well. We also introduce operations specific to languages, such as concatenation,
where the sentences of the resulting language are formed by concatenation of sentences of
the original languages, formally defined below.

Definition 2.20 (Concatenation of languages). Let L1 and L2 be languages. We define
the concatenation of L1 and L2, denoted by L1 · L2 or simply L1L2, as L1 · L2 = {xy : x ∈
L1, y ∈ L2}.

Definition 2.21 (Language class). Any set of languages is called a language class.

2.2.2 Grammars and Language Classes

Generally, there are two basic types of language-defining models, namely grammars and
automata. The former are formal devices that generate strings, while the latter accept
strings. Informally, a grammar is based on the following basic principle. We start from
some abstract symbol, and according to some given rules, we rewrite it to some string. Then,
we take some symbols from this string and again rewrite them according to some rules, thus
obtaining a new string, and then continue in the same fashion. Now we only we need to
know when to terminate this process. To that end, we designate some of the symbols as
terminal, and we finish when we obtain a string consisting solely of these terminal symbols.
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Definition 2.22 (Grammar). An (unrestricted generative) grammar G is a quadruple
G = (N,T, P, S), where

• N is a nonterminal alphabet,

• T is a terminal alphabet, N ∩ T = ∅,

• P is a finite relation from (N ∪ T )+ to (N ∪ T )∗, represented as a set of derivation
rules of the form

x→ y,

where x ∈ (N ∪ T )+, y ∈ (N ∪ T )∗, and

• S ∈ N is the start symbol.

Any string w ∈ (N ∪ T )∗ is called a sentential form of G. Further, if w ∈ T ∗, we call
w a sentence. Let uxv and uyv be two sentential forms and let p = x → y ∈ P . Then,
we say that uxv directly derives uyv in G according to rule p, written as uxv ⇒G uyv [p]
or simply uxv ⇒ uyv. Alternatively, we say that G makes a derivation step from uxv to
uyv (according to rule p), and any sequence of derivation steps starting by rewriting S is
called a derivation. As with any relation, ⇒k, ⇒+, and ⇒∗ denote the k-fold product, the
transitive closure, and the transitive and reflexive closure of ⇒, respectively.

The language generated by G, denoted by L(G), is defined as L(G) = {w : S ⇒∗ w}.

Let G = (N,T, P, S) be a grammar. For a rule p = x → y ∈ P , we say that x is the
left-hand side of p and y is the right-hand side of p. Further, let w be a sentential form of
G. We say that p = x→ y is applicable to w if and only if x is a substring of w.

We say that a derivation S ⇒∗ w is successful if and only if it produces a sentence
(w ∈ T ∗). Conversely, we say that a derivation S ⇒∗ w is unsuccessful if and only if
occur(w,N) ≥ 1 and there is no rule applicable to w (informally, the derivation cannot
continue but there are still some nonterminals left).

Chomsky Hierarchy of Languages

In the late 1950s, the linguist Noam Chomsky introduced an initial classification of gram-
mars and their respective language classes [16], now famous as the Chomsky hierarchy of
languages. This classification is based on different restriction placed on the form of rules.

Definition 2.23 (Context-sensitive grammar). Let G = (N,T, P, S) be a grammar. We
say that G is a context-sensitive grammar (CSG for short), if and only if all the rules in P
are of the form

uAv → uxv,

where A ∈ N and x, u, v ∈ (N ∪ T )∗.

Definition 2.24 (Context-free grammar). Let G = (N,T, P, S) be a CSG. We say that G
is a context-free grammar (CFG for short), if and only if all the rules in P are of the form

A→ x,

where A ∈ N and x ∈ (N ∪ T )∗.
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Definition 2.25 (Regular grammar). Let G = (N,T, P, S) be a CFG. We say that G is a
(right) regular grammar (RG for short), if and only if all the rules in P are of the form

A→ aB,

where A ∈ N , a ∈ T ∪ {ε}, and B ∈ N ∪ {ε}.

Based on the above types of grammars, we define the respective types of languages and
language classes.

Definition 2.26 (Language types and classes). Let L be a language. We say that L is a:

• recursively enumerable language, if and only if there is a grammar G such that L(G) =
L;

• context-sensitive language, if and only if there is a CSG G such that L(G) = L;

• context-free language, if and only if there is a CFG G such that L(G) = L;

• regular language, if and only if there is a RG G such that L(G) = L.

Further, let RE, CS, CF, and REG denote the class of all recursively enumerable, context-
sensitive, context-free, and regular languages, respectively.

For the above language classes, it holds that REG ⊂ CF ⊂ CS ⊂ RE (see [60]).

2.2.3 Automata

While grammars generate languages, automata are language acceptors. That is, an au-
tomaton reads a string and decides whether or not this string belongs to a certain language.
Informally, an automaton is a formal system that has different states, and it moves between
these states based on its input, according to some given rules. Generally, some of the states
are designated as final, and an automaton accepts a string if and only if it reads all its
symbols and in doing so, reaches a final state. In formal language theory, there are many
well-known types of automata. Here, we only define two of the most fundamental ones,
namely (nondeterministic) finite automaton and pushdown automaton.

Definition 2.27 (Finite automaton). A finite automaton (FA for short) M is a quintuple
M = (Q,Σ, δ, q0, F ), where

• Q is a finite set of states,

• Σ is an input alphabet,

• δ is a finite relation from Q× (Σ ∪ {ε}) to Q, represented as a set of transition rules
of the form

pa→ q,

where p, q ∈ Q, a ∈ Σ ∪ {ε},

• q0 ∈ Q is the start state, and

• F ⊆ Q is a set of final states.
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Any string χ ∈ QΣ∗ is called a configuration of M . Let pax and qx be two configurations
of M and let r = pa → q ∈ δ. Then, we say that M makes a move (or computation step)
from pax to qx according to rule r, written as pax⇒M qx [r] or simply pax⇒ qx. As with
any relation, ⇒k, ⇒+, and ⇒∗ denote the k-fold product, the transitive closure, and the
transitive and reflexive closure of ⇒, respectively.

The language accepted by M , denoted by L(M), is defined as L(M) = {w : q0w ⇒∗
f, f ∈ F}.

Further, let L (FA) denote the class of all languages accepted by FAs.

Informally, a pushdown automaton is an extension of FA with the added ability to
“remember” some symbols by storing them in the pushdown. At any given time, only
the top of the pushdwon is accessible—that is, symbols can only be placed on top of the
pushdown and only the topmost symbol can be read and removed.

Definition 2.28 (Pushdown automaton). A pushdown automaton (PDA) M is a septuple
M = (Q,Σ,Γ, δ, q0, S, F ), where

• Q is a finite set of states,

• Σ is an input alphabet,

• Γ is a pushdown alphabet,

• δ is a finite relation from Γ×Q×(Σ∪{ε}) to Γ∗×Q, represented as a set of transition
rules of the form

Apa→ wq,

where A ∈ Γ, p, q ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Γ∗,

• q0 ∈ Q is the start state,

• S ∈ Γ is the initial pushdown symbol, and

• F ⊆ Q is a set of final states.

Any string χ ∈ Γ∗QΣ∗ is called a configuration of M . Let xApay and xwqy be two
configurations of M and let r = Apa → wq ∈ δ. Then, we say that M makes a move (or
computation step) from xApay to xwqy according to rule r, written as xApay ⇒M xwqy [r]
or simply xApay ⇒ xwqy. As with any relation, ⇒k, ⇒+, and ⇒∗ denote the k-fold
product, the transitive closure, and the transitive and reflexive closure of ⇒, respectively.

The language accepted by M , denoted by L(M), is defined as L(M) = {w : Sq0w ⇒∗
f, f ∈ F}.

Further, let L (PDA) denote the class of all languages accepted by PDAs.

For both FA and PDA, we call any sequence of computation steps starting from the
start state a computation.

Let M = (Q,Σ, δ, q0, F ) be an FA. For a rule r = pa → q ∈ δ, we say that pa is the
left-hand side of p and q is the right-hand side of p. Further, let χ be a sentential form of
M . We say that r = pa→ q is applicable to χ if and only if χ = pax for some x ∈ Σ∗.

We say that a computation q0x ⇒∗ py is successful if and only if p ∈ F and y = ε
(informally, we have read the whole input string and reached an end state). A succesful
computation q0w ⇒∗ f is called an acceptance of w. Conversely, we say that a computation
q0x⇒∗ py is unsuccessful if and only if there is no rule applicable to py and |y| ≥ 1 or p /∈ F
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(informally, the computation cannot continue but the conditions for succesful acceptance
are not met).

The above notions are analogous for PDA.
As for the respective language classes, it is known that L (FA) = REG and L (PDA) =

CF (see [60]).

2.2.4 Regulated Rewriting

Here, we present several formal models based on the principle of regulated rewriting (see [20],
[21], [25], [52], [58], [62], or [64]). In this work, we primarily deal with matrix grammars
(see [1] and [21]) and scattered context grammars (see [29] and [63]).

Grammars

One of the earliest examples of regulated grammars is matrix grammar, introduced already
in 1965 [1]. In essence, it is a system consisting of a CFG and a controlling set, which
restricts available derivations in the CFG by specifying sequences of rules that must be
applied directly after each other.

Definition 2.29 (Matrix grammar). A matrix grammar (MAT for short) H is a pair
H = (G,M), where

• G = (N,T, P, S) is a CFG and

• M is a finite language over P (M ⊂ P ∗); members of M are called matrices.

Any string w ∈ (N ∪ T )∗ is called a sentential form of H. Further, if w ∈ T ∗, we
call w a sentence. Let u and v be two sentential forms. We say that u directly derives
v in H according to matrix m, written as u ⇒H v [m] or simply u ⇒ v, if and only if
m = p1 . . . pn ∈ M and there are strings x0, . . . , xn such that x0 = u, xn = v, and for all
0 ≤ i < n, xi ⇒ xi+1 [pi+1] in G. Note that this makes for one derivation step in H (during
which an arbitrary number of derivation steps in G may be performed, or even none at all,
if m = ε). As with any relation, ⇒k, ⇒+, and⇒∗ denote the k-fold product, the transitive
closure, and the transitive and reflexive closure of ⇒, respectively.

The language generated by H, denoted by L(H), is defined as L(H) = {w : S ⇒∗ w}.

We can extend matrix grammar with the possibility to skip select rules in a matrix if
they are not applicable. This is an example of the principle known as appearance checking
(recall that a given rule is applicable to a sentential form if and only if its left-hand side
appears in the sentential form).

Definition 2.30 (Matrix grammar with appearance checking). A matrix grammar with
appearance checking (MATac) H is a pair H = (G,M), where

• G = (N,T, P, S) is a CFG and

• M is a finite set of strings of pairs (p, t), where p ∈ P and t ∈ {−,+}; members of M
are called matrices.

Any string w ∈ (N ∪ T )∗ is called a sentential form of H. Further, if w ∈ T ∗, we
call w a sentence. Let u and v be two sentential forms. We say that u directly derives
v in H according to matrix m, written as u ⇒H v [m] or simply u ⇒ v, if and only if
m = (p1, t1) . . . (pn, tn) ∈M and there are strings x0, . . . , xn such that x0 = u, xn = v, and
for all 0 ≤ i < n, either
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• xi ⇒ xi+1 [pi+1] in G, or

• ti+1 ∈ {−}, xi = xi+1, and pi+1 is not applicable on xi in G.

As with any relation, ⇒k, ⇒+, and ⇒∗ denote the k-fold product, the transitive closure,
and the transitive and reflexive closure of ⇒, respectively.

The language generated by H, denoted by L(H), is defined as L(H) = {w : S ⇒∗ w}.

Another well-known example is scattered context grammar, first introduced in 1969 [29].
Informally, it is a modification of CFG where, instead of rewriting one nonterminal to one
string, we simultaneously rewrite n nonterminals to n strings in one derivation step.

Definition 2.31 (Scattered context grammar). A scattered context grammar (SCG) G is
a quadruple G = (N,T, P, S), where

• N is a nonterminal alphabet,

• T is a terminal alphabet, N ∩ T = ∅,

• P is a finite set of rules of the form

(A1, . . . , An)→ (x1, . . . , xn),

where n ≥ 1 and for all 1 ≤ i ≤ n, Ai ∈ N , xi ∈ (N ∪ T )∗, and

• S ∈ N is the start symbol.

Any string w ∈ (N ∪ T )∗ is called a sentential form of G. Further, if w ∈ T ∗, we call
w a sentence. Let u and v be two sentential forms. We say that u directly derives v in
G according to rule p, written as u ⇒G v [p] or simply u ⇒ v, if and only if there is a
factorization of u = u1A1 . . . unAnun+1 and v = u1x1 . . . unxnun+1 where for all 1 ≤ i ≤
n+ 1, ui ∈ (N ∪T )∗, such that p = (A1, . . . , An)→ (x1, . . . , xn) ∈ P . As with any relation,
⇒k, ⇒+, and ⇒∗ denote the k-fold product, the transitive closure, and the transitive and
reflexive closure of ⇒, respectively.

The language generated by G, denoted by L(G), is defined as L(G) = {w : S ⇒∗ w}.

The further notions regarding rules (sides, applicability) and derivations (successful,
unsuccessful) for MAT, MATac, and SCG are analogous with unrestricted grammars (see
Definition 2.22).

Further, let L (MAT), L (MATac), and L (SCG) denote the class of all languages
generated by matrix grammars, matrix grammars with appearance checking, and scat-
tered context grammars, respectively. It is known that CF ⊂ L (MAT) ⊂ CS [21],
L (MATac) = RE [21], and L (SCG) = RE [59].

Automata

Although the term regulated rewriting is primarily associated with grammars, there are
also some well-known automata closely related to this concept, such as counter automata
(see [27], [28], [35], or [81]).

Definition 2.32 (k-counter automaton). A k-counter automaton (k-CA) M is an FA M =
(Q,Σ, δ, q0, F ) with k integers v = (v1, . . . , vk) in Nk

0 as an additional storage. Transition
rules in δ are of the form pa→ q(t1, . . . , tn), where p, q ∈ Q, a ∈ Σ∪{ε}, and ti ∈ {−}∪Z.
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Figure 2.1: Hierarchy of select language classes (for k ≥ 2). L1 → L2 denotes L1 ⊂ L2

and L1 ↔ L2 denotes L1 = L2

A configuration of k-CA is any string from QΣ∗Nk
0. Let χ1 = paw(v1, . . . , vk) and

χ2 = qw(v′1, . . . , v
′
k) be two configuration of M and r = pa → q(t1, . . . , tk) ∈ δ, where the

following holds: if ti ∈ Z, then v′i = vi+ ti; otherwise, it is satisfied that vi, v′i = 0. Then, M
makes a move (or computation step) from configuration χ1 to χ2 according to r, written as
χ1 ⇒ χ2 [r], or simply χ1 ⇒ χ2. As with any relation, ⇒k, ⇒+, and ⇒∗ denote the k-fold
product, the transitive closure, and the transitive and reflexive closure of ⇒, respectively.

The language accepted by M , denoted by L(M), is defined as L(M) = {w : w ∈
Σ∗, q0w(0, . . . , 0)⇒∗ f(0, . . . , 0), f ∈ F}.

Definition 2.33 (Partially blind k-counter automaton). A partially blind k-counter au-
tomaton (k-PBCA) M is an FA M = (Q,Σ, δ, q0, F ) with k integers v = (v1, . . . , vk) in Nk

0

as an additional storage. Transition rules in δ are of the form pa → qt, where p, q ∈ Q,
a ∈ Σ ∪ {ε}, and t ∈ Zk.

As a configuration of k-PBCA we understand any string from QΣ∗Nk
0. Let χ1 =

paw(v1, . . . , vk) and χ2 = qw(v′1, . . . , v
′
k) be two configurations of M and r = pa →

q(t1, . . . , tk) ∈ δ, where (v1 + t1, . . . , vk + tk) = (v′1, . . . , v
′
k). Then, M makes a move

(or computation step) from configuration χ1 to χ2 according to r, written as χ1 ⇒ χ2 [r],
or simply χ1 ⇒ χ2. As with any relation, ⇒k, ⇒+, and ⇒∗ denote the k-fold product, the
transitive closure, and the transitive and reflexive closure of ⇒, respectively.

The language accepted by M , denoted by L(M), is defined as L(M) = {w : w ∈
Σ∗, q0w(0, . . . , 0)⇒∗ f(0, . . . , 0), f ∈ F}.

For k ∈ N, let L (k-CA) and L (k-PBCA) denote the class of all languages accepted by
k-CAs and k-PBCAs, respectively. It is known that for any k ≥ 2, L (k-CA) = RE [35],
and CF ⊂ L (k-PBCA) ⊂ CS [27, 28].

2.2.5 Hierarchy of Languages

Throughout this chapter, we have introduced a number of language-defining models and
their respective language classes. For a summary of their relations, see the graphical rep-
resentation in Figure 2.1. FIN denotes the class of all finite languages (finite sets).
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Chapter 3

Computational Linguistics:
An Overview

This two-part chapter serves as an introduction to the field of computational linguistics
(see [4], [9], [56], [68], or [70]). More specifically, in the first part, we discuss different kinds
of formal models applied in natural language processing, both from historical and practical
point of view. In the second part of this chapter, we briefly introduce the task of machine
translation and some of its recent trends.

3.1 Formal Models in Natural Language Processing

This section provides an overview of various formalisms that have been used in computa-
tional linguistics and particularly in the description of natural language syntax. Note that
we only recall the core principles and concepts that are relevant to our work. Detailed
information about particular formal models can be found in referenced literature.

The content of this section is partially based on results of the MŠMT FRVŠ grant
project FR97/2011/G1 and on [85].

3.1.1 Dependency Grammars

In 1959, Lucien Tesnière presented the theory of structural syntax [79], which is now con-
sidered the starting point of modern dependency grammar theory. Since then, the term
dependency grammars has grown to encompass many particular formalisms, such as word
grammar [44], functional generative description [77], meaning-text theory [66], or extensible
dependency grammar [22]. Here, we review the common core principles behind these formal
models.

The fundamental notion of dependency is based on the idea that the syntactic structure
of a sentence consists of binary asymmetrical relations between words. That is, one word is
the head of a phrase, and other words modify it. For example, in the phrase pink elephants
jumped, there is a relation between the words elephants and jumped such that the noun
elephants modifies the verb jumped by providing further specification (who jumped). The
noun is then itself modified by the adjective pink.

Words in dependency relation are often called parent and child, although, depending on
the particular formalism, other terms may be used as well (such as governor and dependent
or head and modifier). In this work, we choose the terms parent and child, as they are
perhaps the most general.
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Figure 3.1: Example of dependency tree (with labels)

If w is the child of v (thus, v is the parent of w), we write w → v.1 As usual,→∗ denotes
the transitive and reflexive closure of →. We say that there is a path from w to v if and
only if w →∗ v.

Let s = w1w2 . . . wn be a sentence. A dependency tree has the following properties:

• Single head – each word has one and only one parent (except for the root node, which
has none).

• Connected – all words form a connected graph. That is, for all 1 ≤ i ≤ n, 1 ≤ j ≤ n,
there is a path from wi to wj or a path from wj to wi.

• Acyclic – the graph does not contain cycles. That is, for all 1 ≤ i ≤ n, 1 ≤ j ≤ n, the
following holds: if wi → wj , then wj →∗ wi never holds.

• Projective – there is no crossing between dependencies. That is, for all 1 ≤ i ≤ n,
1 ≤ j ≤ n, the following holds: if wi → wj , then for all wk such that i < k < j, there
is either a path from wk to wi, or a path from wk to wj .

In general, the first three conditions must always be satisfied. On the other hand, while
some dependency formalisms assume projectivity, other allow non-projective dependency
trees as well.

An example of a projective dependency tree can be seen in Figure 3.1. Note that we
can assign labels to the branches (dependencies) to provide further information about the
way in which a child modifies its parent word. For instance, here we can see that board is
an object of the verb joined. Figure 3.2 shows an example of non-projectivity, as there is a
crossing between branches (yesterday → ate and was → cake).

Dependency grammars are often used in practice because of their relative simplicity,
robustness, and portability. Their principles are easy to understand, they allow for faster
manual annotation of sentences in corpora (in phrase structure grammars discussed below,
the trees are generally much more complicated, and we need some base set of grammar
rules), and also for efficient parsing, which is a very important factor in practical imple-
mentations. They are uniformly applicable to many different languages, and, in general,
they can parse any sentence. Permutations of words are possible without affecting syntactic
structure, which can be an advantage when dealing with free-word-order languages (such
as Czech).

1Note that in some dependency formalisms, the arrows are drawn in the opposite direction (from parent
to child) instead.
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Figure 3.2: Non-projective dependency tree
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Vinken joined the board as a nonexecutive director

Figure 3.3: Example of phrase structure tree

3.1.2 Phrase Structure Grammars

Traditionally, the term phrase structure grammars refers to the grammars of the Chomsky
hierarchy. Indeed, RGs, CFGs, and CSGs are all examples of phrase structure grammars.
However, particularly in the field of natural language processing, the term has been used
to denote any formal grammars that are based on the constituency relation (in contrast to
the dependecy relation in dependency grammars). Throughout this text, we assume the
latter interpretation.

Phrase structure grammars create hierarchical structures over sentences, based on the
idea that a sentence is composed of several constituents (words or phrases), and each con-
stituent itself consists of one or more constituents. The lowest-level constituents are (usu-
ally) words. A group of elements forms a constituent whenever they have been introduced
by the application of the same rule.

We usually present the structure of a sentence in the form of phrase structure tree (or
syntax tree), which recapitulates the process by which a sentence is generated by the rules
of a grammar. An example of a syntax tree (adapted from Penn Treebank) is given in
Figure 3.3. For instance, the node NP represents a noun phrase, a constituent formed by,
for example, a determiner (DT) and a noun (NN). Also compare the dependency tree in
Figure 3.1, which describes the same sentence.

Note that while the dependency relation is a one-to-one relation (for every word in
a sentence, there is exactly one corresponding node in the syntactic structure), the con-
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stituency relation is a one-to-one-or-more correspondence—that is, there is at least one
node corresponding to each word (but there can be more).

Phrase structure grammars are generally considered to be more suitable for languages
with fixed word order and clear constituency structures. A major advantage over depen-
dency grammars lies in the fact that we have explicit information about the constituents
of a sentence. This is also the main reason why we choose to focus on phrase structure
grammars rather than dependency grammars in our work.

In this section, we will take a closer look at transformational grammar [70], general-
ized phrase structure grammar [26], and head-driven phrase structure grammar [72]. Other
examples of phrase structure grammars used in computational linguistics include lexical
functional grammar [24], (lexicalized) tree-adjoining grammar [49], or combinatory catego-
rial grammar [7].

Transformational Grammars

Developed by Noam Chomsky in 1957 [17], transformational grammars are among the oldest
formal models in computational linguistics. They are based on the idea that a sentences in a
natural language has two levels of representation: a deep structure and a surface structure.
The former represents the core semantic relations of a sentence, while the latter closely
follows its phonological form. Transformations realize the mapping of deep structures onto
surface structures.

A transformational grammar H consists of three components: a phrase structure gram-
mar (usually a CFG) G, called the base of H, a set of transformations T , and a set of restric-
tions on these transformations R (specifying that some transformations in T are obligatory).
Then, deep structures are derivation trees generated by G, and surface structures are trees
which can be obtained from deep structures by successively applying transformations from
T (according to restrictions in R). The language generated by a transformational gram-
mar H, denoted by L(H), is the set of strings that we may read off the surface structures
generated by H.

Transformational grammars (with context-free bases) are strictly stronger than CFGs,
as we can use transformations to obtain the intersection of two context-free languages.

Generalized Phrase Structure Grammar

Generalized phrase structure grammar (GPSG for short) was created in an attempt to
show that it is possible to describe natural languages in a context-free framework, without
using transformations. To recreate the effects of transformations (from transformational
grammars), GPSG introduces features and metarules.

There are two types of features: atom-valued and category-valued. Atom-valued features
have Boolean values (denoted by + and −), and are represented by symbols such as [−INF ]
(finite, an inflected verb, e.g. eats), [+INF ] (infinitival, e.g. to eat), or [−INV ] (inverted,
indicating subject-auxiliary inversion, as in Is John sick? ). Category-valued features es-
sentially have nonterminal symbols as their values. For example, consider a transitive verb
phrase VP. VP[SLASH = NP] (or VP/NP for short) represents this verb phrase with a
missing noun phrase (object), for example in wh-questions (e.g. Who did John hit? ).

Two important operations in GPSG are feature extension and feature unification. The
former essentially means adding a new feature to a feature specification (a set of features).
For example, for a feature specification {[+N ], [+V ]} (adjective, which is a category with
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both noun- and verb-like qualities), a possible extension is {[+N ], [+V ], [+PRED]} (ad-
jective in a predicative position). Feature unification combines two feature specifications
into one. It is similar to the set union with the exception that, if the original specifications
contain contradicting features (such as +N and −N), unification is undefined.

Metarules allow generalizations. In essence, they are rules that generate grammar rules.
That is, instead of specifying all context-free rules directly, we only give some select ones,
and use metarules to describe how to obtain related rules from them. This allows for a
more economical and efficient description. Formally, a metarule is a function from grammar
rules to grammar rules.

Ultimately, GPSGs have not been used in many practical applications, but their princi-
ples inspired some of the much more successful models, such as head-driven phrase structure
grammars.

Head-driven Phrase Structure Grammar

Head driven phrase structure grammar (HPSG for short) is a generative grammar in the
sense that it can generate strings and, consequently, languages, but it is unification-based
rather than derivational. All HPSG components (i.e. grammar principles, grammar rules,
and lexical entries) are formalized as typed feature structures.

HPSG is sometimes considered a direct successor to GPSG, but there is influence from
other formalisms as well (such as lexical functional grammar). For example, HPSG cate-
gories are more complex than those in GPSG and HPSG makes more specific claims about
universals and variation. HPSG is more suitable for computer implementation because of
its emphasis on precise mathematical modeling of linguistic entities, uniform representation,
and modularity, and as such it is often used in practice in natural language processing.

An important concept in HPSG is the sign, which is the type of feature structure that
represents a constituent. It is a collection of information, including phonological, syntactic,
and semantic constrains, and it is usually represented as an attribute-value matrix (AVM
for short). AVMs encode feature structures where each attribute (feature) has a type is
paired with a value. One of the common forms of AVM notation follows.

type

attribute value

attribute value
...


Signs receive either the subtype word, or phrase, depending on their phrasal status.

These subtypes differ in that they conform to different constraints, but both contain at-
tributes such as phonology (PHON) and syntax/semantics (SYNSEM). PHON has as its
value a list of phonological descriptions. An example of an AVM (for the English word
walks) is shown in Figure 3.4. Note that a value can be either atomic (such as singular
for number), or complex (such as SYNSEM), in which case it can itself be represented by
another (nested) AVM.

3.1.3 Automata as Natural Language Models

Besides formal grammars, automata have been also used in computational linguistics. In
fact, augmented transition networks (see [70]) are among the oldest natural language mod-
els. The main advantage of automata is their closeness to practical implementation.
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Figure 3.4: AVM example
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Figure 3.5: NDA for a simple fragment of English

Augmented Transition Network

Augmented transition networks have been created as a generalization and extension of
nondeterministic finite state acceptors, which are in turn based on FAs.

Definition 3.1. A nondeterministic finite state acceptor (NDA for short) M is a FA
M = (Q,C, δ, q0, F ) extended with an alphabet X, which is called the input vocabulary,
and a function CAT from Σ to C such that CAT(x) is the defined category of x. C is called
the category vocabulary.

The input vocabulary X consists of words of a natural language, while the category vo-
cabulary C contains grammatical categories of the language (such as NP for noun phrase,
VP for verb phrase, or V for verb). The function CAT assigns to each word its appropriate
category (for instance, in English, CAT(dog) = N). Transition rules are defined over cate-
gories (rather than words). An example of a NDA (for a simple fragment of English) given
by its graphical representation is shown in Figure 3.5.

The NDA model in itself has been found unsatisfying because the transitions do not
capture the effects of constituency. For instance, in Figure 3.5, we can intuitively see that
the path from S0 to S2 represents a noun phrase, but there is no way to formally describe
this in the NDA. NDA fails to capture an important generalization in the structure of a
language.

To solve this problem, recusive transition network (RTN for short) has been introduced.
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Figure 3.6: RTN example (restructuralizaton of NDA in Figure 3.5)

In RTNs, we allow state transitions to refer to nonterminals (phrase structures) as well as
terminals. That is, we allow a transition between two consecutive states to be made by
reading a string x instead of a single symbol (a single word). The transition can be made
only if x belongs to the appropriate category (noun phrase in the above example), and this
holds if x itself has been accepted by another RTN (for that category). As the RTN’s name
implies, this can be done recursively (e.g. for recognizing A, we call B, which in turns calls
A again). An example of a RTN is given in Figure 3.6. Note that it is a restructuralization
of the NDA in Figure 3.5.

RTNs allow generalizations, but they are still not without drawbacks. For example,
there is no way to relate a wh-question with its indicative form. Moreover, some non-local
dependencies (such as subject-verb agreement) are impossible to express. RTN has been
further extended by adding registers, which may hold arbitrary information about input
vocabulary (for example, whether a word is in singular or plural). The resulting model is
called augmented transition network (ATN for short). It is known that ATNs are Turing-
complete, that is, they can accept any recursively enumerable language (see [70]).

3.1.4 Statistical Natural Language Processing

With the increasing availability of large corpora (both annotated and unannotated) for
various languages, corpus-based statistical approaches have become prominent in modern
natural language processing. They abandon or at least limit the use of hand-crafted rules
in favour of machine-learning techniques, which allow for automated extraction of general-
ized information from a training corpus. A comprehensive overview of statistical natural
language processing can be found in [56].

In statistical natural language processing, we often use relatively simple language mod-
els, such as n-gram models. Essentially, n-grams are n-tuples of words that appear next to
each other in text (preserving the order). In practical use, trigrams (triples of words) are
perhaps the most common version.

Unlike grammars and automata, n-gram models do not create any structures over texts,
sentences, or phrases, and this fact is both their main advantage and disadvantage. It allows
for simple and very efficient implementation, which is an important factor for practical
applications. On the other hand, it means that we can only work with local information.
That is, we only know the immediate context of each word. We have no information about
the syntactic structure of a phrase or sentence as a whole, and any potential long-distance
dependencies are not captured. However, despite this limitation, n-gram models have been
successfully applied in many areas of natural language processing.

Grammars and automata are also used in statistical natural language processing. In
fact, many of the formal models discussed above can be—and indeed have been—adapted
for statistical methods. Often, we can simply assign probabilities (or weights) to rules, as
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it is done for example in probabilistic CFG (see [48] or [56]).

Probabilistic Context-Free Grammar

Informally, a probabilistic CFG (also known as stochastic CFG) is a CFG where a certain
fixed probability is assigned to each rule. In this way, some derivations become more likely
than other.

Definition 3.2 (Probabilistic context-free grammar). A probabilistic context-free grammar
(PCFG for short) G is a quintuple G = (N,T,R, S, P ), where

• N = {A1, A2 . . . , An} is a nonterminal alphabet,

• T = {w1, w2 . . . , wm} is a terminal alphabet,

• R = {Ai → ζj : ζj ∈ (N ∪ T )∗, 1 ≤ i ≤ n} is a set of rules,

• S = A1 is the start symbol, and

• P is a corresponding set of probabilities on rules such that for all 1 ≤ i ≤ n,∑
j

P (Ai → ζj) = 1.

Further notions such as sentential form, sentence, derivation, and generated language
are defined by analogy with CFGs (see Definition 2.24).

In a natural way, the probability of a derivation ∆ in a PCFG G, denoted by P (∆|G),
is given by the product of probabilities of all applied rules. Subsequently, the sentence
probability of a sentence s in G, denoted by P (s|G), is the sum of probabilities of all
possible derivations in G that result in s.

PCFGs are typically used to answer the following three questions:

1. What is the probability of a sentence s according to a PCFG G?

P (s|G) = ?

2. What is the most likely parse ∆ of a sentence s according to a PCFG G?

arg max
∆

P (∆|s,G) = ?

3. How do we set the rule probabilites of G to maximize the probability of a sentence s?

arg max
G

P (s|G) = ?

Note that the last question is essential for machine learning. The goal is to set the rule
probabilities in such a way that resulting the sentence probabilities reflect their frequency
in the training corpus.
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3.1.5 Regulated Rewriting as an Alternative

One of the major trends in formal language theory is regulated rewriting. The basic idea is
to increase the generative power of a given formal model (usually a CFG) by adding some
mathematically simple mechanism that controls (or, regulates) the sentence generation.
Such models can be useful in NLP as well, because they allow us to capture even features
of natural languages that are difficult or impossible to describe with only context-free rules.

In particular, our work is heavily inspired by [63], which proposes the use of SCGs and
transformational SCGs in the description of the English language.

Transformational Scattered Context Grammar

Informally, a transformational SCG is a modification of SCG where derivations start with
a string (taken from a given language) instead of a single start symbol.

Definition 3.3 (Transformational scattered context grammar). A transformational scat-
tered context grammar (TSCG for short) G is a quadruple G = (N,T, P, I), where

• N is a nonterminal alphabet,

• T is a terminal alphabet called the output vocabulary, N ∩ T = ∅,

• P is a finite set of rules of the form

(A1, . . . , An)→ (x1, . . . , xn),

where n ≥ 1 and for all 1 ≤ i ≤ n, Ai ∈ N , xi ∈ (N ∪ T )∗, and

• I ⊆ N ∪ T is the input vocabulary.

Further notions such as sentential form, sentence, and derivation are defined by analogy
with SCGs (see Definition 2.31). The transformation that G defines from K ⊆ I∗, denoted
by T (G,K), is defined as T (G,K) = {(x, y) : x⇒∗G y, x ∈ K, y ∈ T ∗}.

To demonstrate scattered context in English syntax, several case studies are discussed
in [63]. To illustrate, here we recall a simple example dealing with neither-nor clauses.
Specifically, we want to negate the clause.

Neither Thomas nor his wife went to the party.
⇒ Both Thomas and his wife went to the party.

Example 3.1. Let T be the set of all English words (including all their inflectional
forms). Let G = (N,T, P, I) be a TSCG, where N = I = {〈x〉 : x ∈ T} and P =
{(〈neither〉, 〈nor〉)→ (〈both〉, 〈and〉)} ∪ {(〈x〉)→ (x) : x ∈ T − {neither, nor}}.

A derivation in G performing the negation of the example sentence may proceed as
follows:

〈neither〉 〈thomas〉 〈nor〉 〈his〉 〈wife〉 〈went〉 〈to〉 〈the〉 〈party〉
⇒ both 〈thomas〉 and 〈his〉 〈wife〉 〈went〉 〈to〉 〈the〉 〈party〉
⇒ both thomas and 〈his〉 〈wife〉 〈went〉 〈to〉 〈the〉 〈party〉
⇒ both thomas and his 〈wife〉 〈went〉 〈to〉 〈the〉 〈party〉
⇒5 both thomas and his wife went to the party
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Note that we assume here that the set of all English words, T , is finite and fixed. Such
assumption is reasonable in practice, as we all commonly use a finite and fixed vocabulary
in everyday English. However, in [63], the authors also rise an interesting point that, at
least from a theoretical point of view, the set of all well-formed English words is infinite.

For example, consider the following sentences:

Your grandparents are all your grandfathers and all your grandmothers.
Your great-grandparents are all your great-grandfathers and all your great-grandmothers.

Your great-great-grandparents are all your great-great-grandfathers and all your
great-great-grandmothers.

...

We can continue in this fashion indefinitely—even if the resulting sentences become less
and less common—which gives us the infinite language L = {your {great-}igrandparents
are all your {great-}igrandfathers and all your {great-}igrandmothers : i ≥ 0}. Note that
L is not context-free.

Example 3.2. Let G = (N,T, P, S) be a SCG, where T = {all, and, are, grandfathers,
grandmothers, grandparents, great-, your}, N = {S,#}, and P consists of the following
three rules:

(S) → (your #grandparents are all your #grandfathers and all your #grandmothers),
(#,#,#) → (#great-,#great-,#great- ),

(#,#,#) → (ε, ε, ε)

An example of a derivation follows.

S ⇒ your #grandparents are all your #grandfathers
and all your #grandmothers

⇒ your #great-grandparents are all your #great-grandfathers
and all your #great-grandmothers

⇒ your great-grandparents are all your great-grandfathers
and all your great-grandmothers

3.2 Introduction to Machine Translation

Machine translation (see [51], [68], and [83]) is one the main parts of the motivation behind
our work. In this section, we briefly review its history, core principles, and recent trends.

3.2.1 History and Classification

Machine translation is among the oldest tasks in the field of natural language processing.
According to [68], the first documented idea of using computers for translation of natural
languages is from 1947, by Warren Weaver. Subsequently, an extensive research in the area
began.

The practical results, however, were generally disappointing, as the task was proving
much more difficult than expected. In the 1960s, there still were only few working trans-
lation systems, and even in their case, the output quality was mostly unsatisfactory. This
led to a decline in interest. The research was greatly slowed down, and it was only fully
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restarted in the 1970s. There has been major development since then, with a number of
practically applied systems.

Historically, machine translation systems can be divided into several categories based on
various criteria. Depending on the number of languages, we distinguish between bilingual
systems, which are designed specifically for a translation between a given pair of languages
(for example Czech and English), and multilingual systems, which are able to process several
different languages.

Furthermore, machine translation systems can be either unidirectional (performing
translation in one direction only, e.g. from Czech to English, but not vice-versa), or bidi-
rectional (able to translate in both directions, e.g. both from Czech to English and from
English to Czech). Multilingual systems are usually bidirectional, while bilingual systems
may often be unidirectional only.

There have been three classic approaches to the design of machine translation systems:

• Direct translation – this is the oldest approach. From the start, the system is designed
for a given pair of languages only (therefore it is by definition always a bilingual sys-
tem). The translation is realized directly from the source language to the target
language. The syntax and semantic analysis of the source text is limited to the nec-
essary minimum (for example to resolve ambiguities). These systems usually contain
a large bilingual dictionary as their core and only a simple program for the analysis
and generation of text.

• Interlingual translation – with this approach, we assume that it is possible to convert
the source texts to some abstract lexical-semantic representation called interlingua,
which is language-independent (or at least common for several different languages).
The translation then consists of two main phases. First, we analyse the text in the
source language and obtain its representation in interlingua. Subsequently, we can
generate corresponding texts in various target languages from this representation.

• Transfer – this approach is similar to interlingual translation as it also uses an in-
ternal abstract representation. However, we use different representations for different
languages. The translation is perfomed in three steps. As with interlingual transla-
tion, we first create an abstract representation of the source text. Then, we convert
this internal representation into another abstract representation, which corresponds
to the target language. From this representation we can generate the target text.

Direct translation is based on intuitive approach. Besides its simplicity, an important
advatange of direct translation lies in the fact that since we only deal with two select
languages, we can focus on their specific aspects and features. Unfortunately, this also
means that direct translation systems are not general. That is, they cannot be easily
modified for different languages than the ones that they are originally designed for.

In contrast, the main motivation behind interlingual translation is generality. Ideally,
if the interlingua is indeed completely language-independent, adding a new language to
the system would only require a specification of conversion between the language and the
interlingua, without any need for changes in the rest of the system. In practice, however,
there are various key differences between natural languages, which makes it very difficult
to design an universal representation.

The last approach, transfer, is an effort to combine the advantages of both direct and
interlingual translation. Because we have a different abstract representation for each lan-
guage, we can study and describe the key features of each particular natural language
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separately. On the other hand, the system as a whole is still general enough to allow for,
for example, the addition of new languages.

3.2.2 Recent Trends

Following a similar general trend in natural language processing, statistical machine trans-
lation quickly came to the center of attention, with a shift from traditional the rule-based
systems to corpus-based ones (as multilingual corpora also became more available). These
systems mostly rely on formal models that represent local information only, such a n-gram
models mentioned above.

However, in the recent years, there have been attempts to improve the translation
quality by incorporating non-local, syntactic information (usually within the scope of a
sentence). These approaches are generally called syntax-based, syntax-aided, or syntax
augmented translation (see [50] or [86]). The formal background (namely synchronous tree
substitution grammars) of one such syntax-based translation system (from the EuroMatrix
project) is described in-depth in [6].

In order to use syntactic information, we need formal models that can capture it, such
as grammars and automata. Furthermore, for translation, we also need to formally describe
transformations of syntactic structures. In particular, our work is inspired by synchronous
grammars, (see [13] or [15]).

Synchronous Grammars

Informally, a synchronous grammar is a grammar that generates pairs of sentences, and
in this way, it can define translations. More specifically, there is a generalization of CFG
called the synchronous context-free grammar (SCFG for short), where, in essence, every
rule has two right-hand sides. The principles of synchronous grammars are discussed in
more detail in Chapter 4.

Relatively recently, SCFGs have been successfully applied in statistical machine transla-
tion (see [12], [80], and [84]). There is also a modification called weighted SCFG (see [14]),
where we assign fixed weights to rules (similarly to probabilities in PCFG).

Besides SCFG, a synchronous version of tree-adjoining grammar called synchronous
tree-adjoining grammar has also been introduced and explored in the context of natural
language processing (see [78]).
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Part II

Synchronous Formal Systems
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Chapter 4

Synchronous Systems Based on
Grammars

In essence, synchronous grammars are grammars or grammar systems that generate pairs
of sentences in one derivation, instead of single sentences (as for example in CFGs). In
this way, they allow us to describe translations. That is, in each pair, the first string is a
sentence of the source language, and the second string is a corresponding sentence of the
target language.

Although the term synchronous context-free grammar (SCFG for short) is relatively
recent, the essential principle was introduced already in the late 1960s in syntax-directed
translation schemata [3] and syntax-directed transduction grammars [54]. These models
were originally developed as formal background for compilers of programming languages.
Subsequently, synchronous grammars have been succesfully used natural language process-
ing as well, particularly in machine translation (for more details, see Section 3.2).

Informally, we can see SCFG (see [13] or [15]) as a modification of CFG where every
rule has two right-hand sides, the first of which is applied to the input sentential form
(source), and the second to the output sentential form (target). Nonterminals are linked,
which means that in each derivation step, we rewrite both the selected nonterminal symbol
in the input sentential form and its appropriate counterpart in the output sentential form.

Example 4.1. The following two rules are a fragment of a synchronous CFG which trans-
forms arithmetic expressions from infix notation (e.g. 3 × 5 + 4) to postfix notation (e.g.
3 5× 4 +). E, F, and T are nonterminals, + and × are terminals, E is the start symbol.

1 : E → E 1 + T 2 , E 1 T 2 +
2 : T → T 1 × F 2 , T 1 F 2 ×

A derivation using these rules may look like this:

(E 42 , E 42 ) ⇒ (E 43 + T 44 , E 43 T 44 +) [1]
⇒ (E 45 + T 46 + T 47 , E 45 T 46 + T 47 +) [1]
⇒ (E 45 + T 48 × F 49 + T 47 , E 45 T 48 F 49 × + T 47 +) [2]

The boxed numbers are used to denote linked nonterminals. That is, two nonterminals
are linked if they have the same number (e.g. 1 and 1 ). Every derivation in a SCFG starts
with a pair of linked nonterminals, such as (E 42 , E 42 ) here (the starting number 42 is chosen
arbitrarily). Whenever we make a derivation step, we assign new, unique numbers to each
newly introduced pair of linked nonterminals, as seen in the derivation example above.
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In each derivation step, we can only rewrite linked nonterminals (nonterminals sharing
the same boxed number). Note that when applying rule 2 above, we rewrite the first
occurence of T in both sentential forms, which is allowed, as it is T 46 in both cases. We
could also choose to rewrite the second occurence in both sentential forms (T 47 ). However,
we cannot choose the first T in one sentential form and the second T in the other, because
the assigned numbers do not correspond (T 46 and T 47 ), and thus the two nonterminals are
not considered linked.

The original ideas, concepts, definitions, and theoretical results presented in this chapter
were first published in [40] and [41].

4.1 Rule-Synchronized Context-Free Grammar

In [40] and [41], we have proposed synchronization based on linked rules instead of nonter-
minals. Informally, such synchronous grammar is a system of two grammars, GI and GO, in
which the corresponding rules share labels. For example, if we apply rule labelled 1 in the
input grammar GI , we also have to apply rule labelled 1 in the output grammar GO, and
this makes for a single derivation step in the synchronous grammar. In other words, the
input and output sentence have the same parse (a sequence of rules applied in a derivation,
denoted by their labels).

Example 4.2. Rules (GI on the left, GO on the right):

1 : E → E + T 1 : E → E T +
2 : T → T × F 2 : T → T F ×

An example of a derivation using these rules in GI follows.

E ⇒ E + T [1] ⇒ E + T × F [2]

A corresponding derivation in GO is:

E ⇒ E T + [1] ⇒ E T F × + [2]

The parse is (1, 2).

However, note that we place no restriction on the linked rules. For instance, unlike
in synchronous CFGs, we do not have to rewrite the same nonterminal in both sentential
forms in one derivation step. Both the right-hand sides and the left-hand sides of linked
rules may be completely different, for example:

3 : A → B a C 3 : P → Q B R b d

In other words, rule-synchronized CFGs can be seen as a generalization of the traditional
synchronous CFGs, as the latter can be defined as special case of rule-synchronized CFGs,
where each two linked rules have the same left-hand side (that is, they rewrite the same
nonterminal).

Formally, we define a rule-synchronized CFG as follows.

Definition 4.1 (Rule-synchronized CFG). A rule-synchronized CFG (RSCFG for short)
H is a quintuple H = (GI , GO,Ψ, ϕI , ϕO), where
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• GI = (NI , TI , PI , SI) and GO = (NO, TO, PO, SO) are CFGs,

• Ψ is a set of rule labels, and

• ϕI is a function from Ψ to PI and ϕO is a function from Ψ to PO.

We say that two rules pI ∈ PI and pO ∈ PO are linked, if and only if there is some label
p ∈ Ψ such that ϕI(p) = pI and ϕO(p) = pO. That is, each two linked rules share the same
label.

We use the following notation (presented for input grammar GI , analogous for output
grammar GO):

p : AI → xI ϕI(p) = AI → xI
where p ∈ Ψ, AI → xI ∈ PI

xI ⇒GI
yI [p] derivation step in GI

where xI , yI ∈ (N ∪ T )∗, p ∈ Ψ applying rule ϕI(p)

xI ⇒n
GI

yI [p1 . . . pn] derivation in GI applying
where xI , yI ∈ (N ∪ T )∗, pi ∈ Ψ for 1 ≤ i ≤ n rules ϕI(p1) . . . ϕI(pn)

Definition 4.2 (Translation in RSCFG). Let H = (GI , GO,Ψ, ϕI , ϕO) be an RSCFG. The
translation defined by H, denoted by T (H), is the set of pairs of sentences, which is defined
as

T (H) = {(wI , wO) : wI ∈ T ∗I , wO ∈ T ∗O,
SI ⇒∗GI

wI [α], SO ⇒∗GO
wO [α] for some α ∈ Ψ∗}.

Originally [40], we considered RSCFG only as a variant of synchronous CFG. However,
there is in fact a significant difference. While the latter does not increase the generative
power over CFG, RSCFG does, as is shown in the next subsection.

4.1.1 Generative Power

Synchronous grammars define translations—that is, sets of pairs of sentences. To be able
to compare their generative power with well-known models such as CFGs, which define
languages, we can consider their input and output language separately.

Definition 4.3 (Input and output language). Let H be an RSCFG. Then, we define

• the input language of H, denoted by LI(H), as LI(H) = {wI : (wI , wO) ∈ T (H)},
and

• the output language of H, denoted by LO(H), as LO(H) = {wO : (wI , wO) ∈ T (H)}.

Example 4.3. Consider an RSCFG H = (GI , GO,Ψ, ϕI , ϕO) with the following rules
(nonterminals are in capitals, linked rules share the same label, SI and SO are the start
symbols of GI and GO, respectively):

GI GO

1 : SI → ABC 1 : SO → A
2 : A → aA 2 : A → B
3 : B → bB 3 : B → C
4 : C → cC 4 : C → A
5 : A → ε 5 : A → B′

6 : B → ε 6 : B′ → C ′

7 : C → ε 7 : C ′ → ε
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An example of a derivation follows.

SI ⇒ ABC [1] SO ⇒ A [1]
⇒ aABC [2] ⇒ B [2]
⇒ aAbBC [3] ⇒ C [3]
⇒ aAbBcC [4] ⇒ A [4]
⇒ aaAbBcC [2] ⇒ B [2]
⇒ aaAbbBcC [3] ⇒ C [3]
⇒ aaAbbBccC [4] ⇒ A [4]
⇒ aabbBccC [5] ⇒ B′ [5]
⇒ aabbccC [6] ⇒ C ′ [6]
⇒ aabbcc [7] ⇒ ε [7]

We can easily see that LI(H) = {anbncn : n ≥ 0}, which is well known not to be a
context-free language. This shows that RSCFGs are stronger than (synchronous) CFGs.1

Where exactly do synchronous grammars with linked rules stand in terms of generative
power?

Let L (RSCFG) denote the class of languages generated by RSCFGs as their input
language. Note that the results presented below would be the same if we considered the
output language instead.

In some of the proofs below, we use a function that removes all terminals from a sen-
tential form, formally defined as follows.

Definition 4.4. Let G = (N,T, P, S) be a CFG. Then, we define the function θ over
(N ∪ T )∗ as follows:

1. For all w ∈ T ∗, θ(w) = ε.

2. For all w = x0A1x2A2 . . . xn−1Anxn for some n ≥ 1, where xi ∈ T ∗ for all 0 ≤ i ≤ n
and Aj ∈ N for all 1 ≤ j ≤ n, θ(w) = A1A2 . . . An.

The idea here is that if we consider only context-free rules, the applicability of rules to
a given sentential form only depends on nonterminals. Therefore, we can remove terminals
without affecting computational control.

For every RSCFG, we can construct an equivalent MAT, using matrices to simulate the
principle of linked rules.

Lemma 4.1. For every RSCFG H, there is a MAT H ′ such that L(H ′) = LI(H).

Proof. Let H = (GI , GO,Ψ, ϕI , ϕO) be an RSCFG, where GI = (NI , TI , PI , SI), GO =
(NO, TO, PO, SO). Without loss of generality, assume NI∩NO = ∅, S /∈ NI∪NO. Construct
a MAT H ′ = (G,M), where G = (N,T, P, S), as follows:

1. Set N = NI ∪NO ∪ {S}, T = TI , P = {S → SISO}, M = {S → SISO}.

2. For every label p ∈ Ψ, add rules pI , pO to P and add matrix pIpO to M , where

• pI = ϕI(p) and

1Strictly speaking, to make this claim, we also have to show that every context-free language can be
generated by a RSCFG. That is however evident from the definition.
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• pO = A→ x such that ϕO(p) = A→ x′, x = θ(x′).2

Basic idea. H ′ simulates the principle of linked rules in H by matrices. That is, for
every pair of rules (AI → xI , AO → xO) such that ϕI(p) = AI → xI , ϕO(p) = AO → xO for
some p ∈ Ψ in H, there is a matrix m = AI → xIAO → θ(xO) in H ′. If, in H, xI ⇒ yI [p]
in GI and xO ⇒ yO [p] in GO, then there is a derivation step xI θ(xO) ⇒ yI θ(yO) [m]
in H ′. Note that since the rules are context-free, the presence (or absence) of terminals
in a sentential form does not affect which rules we can apply. Furthermore, because the
nonterminal sets NI and NO are disjoint, the sentential form in H ′ always consists of two
distinct parts such that the first part corresponds to the derivation in GI and the second
part to the derivation in GO.

Claim 4.2. If SI ⇒∗ wI [α], SO ⇒∗ wO [α] in H for some α ∈ Ψ∗, then S ⇒∗ wI θ(wO) in
H ′.

Proof of Claim 4.2. By induction on the number of derivation steps in H.
Basis. Let SI ⇒0 SI [ε], SO ⇒0 SO [ε] in H. Then, S ⇒ SISO [p] in G, p ∈ M , and

thus S ⇒ SISO [p] in H ′. Claim 4.2 holds for zero derivation steps in H.
Induction hypotesis. Suppose that Claim 4.2 holds for j or fewer derivation steps in H.
Induction step. Let SI ⇒j wI [α]⇒ w′I [p], SO ⇒j wO [α]⇒ w′O [p] in H. Then, by the

induction hypotesis, S ⇒∗ wI θ(wO) in H ′. Without loss of generality, suppose that

• wI = uIAIvI , wO = uOAOvO,

• w′I = uIxIvI , w′O = uOxOvO,

where AI ∈ NI , AO ∈ NO, uI , vI , xI ∈ (NI ∪ TI)∗, and uO, vO, xO ∈ (NO ∪ TO)∗. That
is, ϕI(p) = AI → xI , ϕO(p) = AO → xO. From the construction of H ′, we know that
pI = AI → xI ∈ P , pO = AO → θ(xO) ∈ P , and pIpO ∈ M . Therefore, in H ′, S ⇒∗
wI θ(wO) = uIAIvI θ(uOAOvO) ⇒ uIxIvI θ(uOxOvO) [pIpO] = wI θ(wO). Claim 4.2 holds.
Furthermore, if SI ⇒∗ wI [α], SO ⇒∗ wO [α] in H, where wI ∈ T ∗I , wO ∈ T ∗O, then
θ(wO) = ε, and thus S ⇒∗ wI in H ′. LI(H) ⊆ L(H ′).

Claim 4.3. If S ⇒∗ w in H ′, then there are strings wI , wO such that w = wI θ(wO) and
SI ⇒∗ wI [α], SO ⇒∗ wO [α] in H for some α ∈ Ψ∗.

Proof of Claim 4.3. By induction on the number of derivation steps in H ′.
Basis. Consider the first derivation step in H ′. Because S → SISO is the only rule in

P with S as its left-hand side, this must be S ⇒ SISO. Then, SI ⇒0 SI [ε], SO ⇒0 SO [ε]
in H. Claim 4.3 holds for one derivation step in H ′.

Induction hypotesis. Suppose that Claim 4.3 holds for j or fewer derivation steps in H ′.
Induction step. Let S ⇒ SISO ⇒j−1 w ⇒ w′ [m] in H ′. Then, by the induction

hypotesis, SI ⇒∗ wI [α], SO ⇒∗ wO [α] in H for some wI , wO such that w = wI θ(wO).
From the construction of H ′, we know that m = pIpO, where for some p ∈ Ψ, pI = AI →
xI = ϕI(p) and pO = AO → θ(xO) such that AO → xO = ϕO(p). Therefore, there must be
a factorization of w and w′ such that

• w = wI θ(wO) = uIAIvI θ(uOAOvO),

2This removes all terminals from the right-hand side of the rule. Note that if we leave the rule unchanged,
we obtain the concatenation of the input and the output sentence. Further, if we want L(H ′) = LO(H)
instead of L(H ′) = LI(H), we can simply modify pI instead of pO in this step.
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• w′ = w′I θ(w
′
O) = uIxIvI θ(uOxOvO),

where AI ∈ NI , AO ∈ NO, uI , vI , xI ∈ (NI ∪TI)∗, and uO, vO, xO ∈ (NO ∪TO)∗. Therefore,
in H,

• SI ⇒∗ wI [α] = uIAIvI ⇒ uIxIvI [p] = w′I and

• SO ⇒∗ wO [α] = uOAOvO ⇒ uOxOvO [p] = w′O.

Claim 4.3 holds. Furthermore, if S ⇒∗ w in H ′, where w ∈ T ∗, then wI ∈ T ∗I and θ(wO) = ε,
thus wO ∈ T ∗O. L(H ′) ⊆ LI(H).

By Claim 4.2, LI(H) ⊆ L(H ′), and by Claim 4.3, L(H ′) ⊆ LI(H), therefore L(H ′) =
LI(H). Lemma 4.5 holds.

On the other hand, for every MAT, we can construct an equivalent RSCFG. We take
advantage of that fact that there is an “additonal” CFG in an RSCFG, and use it to
simulate matrices.

Lemma 4.4. For every MAT H, there is a RSCFG H ′ such that LI(H ′) = L(H).

Proof. Let H = (G,M) be a MAT, where G = (N,T, P, S). Without loss of generality,
assume N ∩ {SI , SO, X} = ∅. Construct an RSCFG H ′ = (GI , GO,Ψ, ϕI , ϕO), where
GI = (NI , TI , PI , SI), GO = (NO, TO, PO, SO), as follows:

1. Set NI = N ∪{SI , X}, TI = T , PI = {SI → SX,X → ε}, NO = {SO, X}, TO = {#},
PO = {SO → X,X → #}, ϕI = ∅, ϕO = ∅.

2. Set Ψ = {0, 1}, ϕI(0) = SI → SX, ϕO(0) = SO → X, ϕI(1) = X → ε, ϕO(1) = X →
#.

3. For every matrix m = p ∈M , where p ∈ P ,

(a) add rule p to PI ,

(b) add rule X → X to PO,

(c) add new label 〈m〉 to Ψ, and

(d) set ϕI(〈m〉) = p, ϕO(〈m〉) = X → X.

4. For every matrix m = p1 . . . pn ∈M , where n > 1 and pi ∈ P for all 1 ≤ i ≤ n,

(a) add rules p1, . . . , pn to PI ,

(b) add new nonterminals 〈Xm〉1, . . . , 〈Xm〉n−1 to NO,

(c) add rules X → 〈Xm〉1, 〈Xm〉1 → 〈Xm〉2, . . . , 〈Xm〉n−2 → 〈Xm〉n−1,
〈Xm〉n−1 → X to PO,

(d) add new labels 〈m〉1, . . . , 〈m〉n to Ψ, and

(e) set ϕI and ϕO as follows:

• ϕI(〈m〉1) = p1, ϕO(〈m〉1) = X → 〈Xm〉1,

• ϕI(〈m〉i) = pi, ϕO(〈m〉i) = 〈Xm〉i−1 → 〈Xm〉i for all 1 < i < n, and

• ϕI(〈m〉n) = pn, ϕO(〈m〉n) = 〈Xm〉n−1 → X.

37



Basic idea. One may notice that GI constructed by the above algorithm is nearly iden-
tical to the original CFG G in H. Indeed, it performs essentially the same role: generating
a sentence. Meanwhile, GO restricts available derivations according to matrices from H.
Each nonterminal in GO represents a certain state of the system. For example, suppose
that we have the nonterminal 〈Xm〉2 as the current sentential form in GO. This means
that we are currently simulating the matrix m, we have succesfully applied the second rule
of this matrix, and now we need to apply its next rule. The nonterminal X is a special
case. It represents the state where we can either choose a new matrix to simulate, or end
the derivation. It appears at the start of a derivation (along with the original start symbol
from H, S) and can only appear again immediately after a successful simulation of a whole
matrix (one derivation step in H).

In other words, H ′ simulates matrices in H by derivation in GO. That is, if x⇒ y [m]
in H, where m = p1 . . . pn for some n ≥ 1, then there is a sequence of derivation steps
X ⇒ 〈Xm〉1 [〈m〉1] ⇒ 〈Xm〉2 [〈m〉2] ⇒ . . . ⇒ 〈Xm〉n−2 [〈m〉n−2] ⇒ 〈Xm〉n−1 [〈m〉n−1] ⇒
X [〈m〉n] in GO and ϕI(〈m〉i) = pi for 1 ≤ i ≤ n. Now observe that in GO constructed
by the above algorithm, every nonterminal except X can only appear as the left-hand side
of no more than one rule. This means that after rewriting X to 〈Xm〉1, the only way for
the derivation to proceed is the above sequence, and the entire matrix is simulated. Note
that for matrices that only have one rule (that is, if n = 1), X ⇒ X in GO by using rule
X → X, and we can immediately continue with another matrix. The simulation ends by
rewriting X to the only terminal # in GO and, simultaneously, deleting X in GI (using
rule X → ε). This ensures that the derivation in GI cannot end by producing a sentence
prematurely—that is, when the simulation of a matrix is incomplete—because there will
always be at least one nonterminal left at that point (precisely X).

Formally, if x ⇒ y [m] in H, where m = p1 . . . pn for some n, then, in H ′, x ⇒n

y [m1 . . .mn] in GI and X ⇒n X [m1 . . .mn] in GO. Conversely, if, in H ′, x ⇒n y [α] in
GI and X ⇒n X [α] in GO for some n ≥ 1, α ∈ Ψ∗, and there is no k < n such that
x⇒k z [β]⇒∗ y [γ] in GI and X ⇒k X [β]⇒∗ X [γ] in GO for some β, γ ∈ Ψ∗, there has to
be m ∈M such that x⇒ y [m] in H. Therefore, if for some α ∈ Ψ∗, SI ⇒∗ wX [α]⇒ w [1],
SO ⇒∗ X [α] ⇒ ε [1] in H ′, where w ∈ T ∗I , then S ⇒∗ w in H. On the other hand, if
S ⇒∗ w in H, where w ∈ T ∗, then α ∈ Ψ∗, SI ⇒∗ wX [α]⇒ w [1], SO ⇒∗ X [α]⇒ f [1] in
H ′ for some α ∈ Ψ∗. Thus, LI(H ′) = L(H), and Lemma 4.4 holds.

Note that GO constructed by the above algorithm is not only context-free, but also
regular.

From Lemma 4.1 and Lemma 4.4, we can establish the following theorem.

Theorem 4.5.
L (RSCFG) = L (MAT)

Proof. From Lemma 4.1, it follows that L (RSCFG) ⊆ L (MAT). From Lemma 4.4, it
follows that L (MAT) ⊆ L (RSCFG). Therefore, L (RSCFG) = L (MAT).

4.2 Synchronous Scattered Context Grammar

The principle of synchronization based on linked rules can be naturally extended to other
models beside CFGs. Indeed, the definition of synchronous SCG is analogous to Defini-
tion 4.1 for RSCFG. Essentially, we only need to replace context-free rules with scattered
context rules. The notation is also analogous.
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Definition 4.5 (Synchronous SCG). A synchronous SCG (SSCG for short)H is a quintuple
H = (GI , GO,Ψ, ϕI , ϕO), where

• GI = (NI , TI , PI , SI) and GO = (NO, TO, PO, SO) are SCGs,

• Ψ is a set of rule labels, and

• ϕI is a function from Ψ to PI and ϕO is a function from Ψ to PO.

Further, the translation defined by H, denoted by T (H), is the set of pairs of sentences,
which is defined as

T (H) = {(wI , wO) : wI ∈ T ∗I , wO ∈ T ∗O,
SI ⇒∗GI

wI [α], SO ⇒∗GO
wO [α] for some α ∈ Ψ∗}.

We define the input and output language of SSCG by analogy with Definition 4.3 for
RSCFGs. Further, let L (SSCG) denote the class of all languages generated by SSCGs as
their input language.

4.2.1 Generative Power

It is known that SCGs can generate all recursively enumerable languages (see [59]). Perhaps
not surprisingly, the same is true for SSCGs. From their definition, it is easy to see that
SSCGs cannot be weaker than SCGs. If we want to construct an SSCG equivalent to a
given SCG, we can, for instance, essentially duplicate the original SCG and designate each
two identical rules from input and output grammar as linked.

Theorem 4.6.
L (SSCG) = RE

Proof. Clearly, L (SSCG) ⊆ RE must hold. From definition, it follows that L (SCG) ⊆
L (SSCG). Because L (SCG) = RE [59], RE ⊆ L (SSCG) also holds.

4.3 Synchronous Matrix Grammar

In the case of matrix grammars, the situation is slightly more complicated. How should
we link the rules with regard to matrices? There are many options. For instance, we could
strictly require that all rules in one matrix in the input grammar be linked to rules in
one matrix in the output grammar, in respective order (consequently, requiring each two
matrices that have their rules linked to have the same length). Alternatively, we could link
only the first rule in each matrix. However, perhaps the most straightforward and intuitive
approach is to link whole matrices rather than individual rules.

The notation used here is analogous to the one presented in Section 4.1 for RSCFGs,
only replacing rules by matrices.

Definition 4.6 (Synchronous matrix grammar). A synchronous matrix grammar (SMAT
for short) H is a septuple H = (GI ,MI , GO,MO,Ψ, ϕI , ϕO), where

• (GI ,MI) and (GO,MO) are MATs, where

– GI = (NI , TI , PI , SI) and
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– GO = (NO, TO, PO, SO),

• Ψ is a set of matrix labels, and

• ϕI is a function from Ψ to MI and ϕO is a function from Ψ to MO.

Further, the translation defined by H, denoted by T (H), is the set of pairs of sentences,
which is defined as

T (H) = {(wI , wO) : wI ∈ T ∗I , wO ∈ T ∗O,
SI ⇒∗(GI ,MI) wI [α], SO ⇒∗(GO,MO) wO [α] for some α ∈ Ψ∗}.

We define the input and output language of SMAT by analogy with Definition 4.3 for
RSCFGs. Further, let L (SMAT) denote the class of all languages generated by SMATs as
their input language.

4.3.1 Generative Power

Following a similar reasoning as in the case of SSCGs, we can immediately conclude that
SMATs must be at least as powerful as MATs. To elaborate, to construct an SMAT equiv-
alent to a given MAT, we can, as with SSCGs, let both input and output grammar equal
the original grammar and designate the identical matrices in input and output grammar as
linked.

The fact that we can also construct an equivalent MAT for every SMAT is much less
immediately obvious. In essence, we can join each two linked matrices (from input and
output grammar) into one matrix.

Theorem 4.7.
L (SMAT) = L (MAT)

Proof. The inclusion L (MAT) ⊆ L (SMAT) follows from definition. It only remains to
prove that L (SMAT) ⊆ L (MAT). For every SMAT H = (GI ,MI , GO,MO,Ψ, ϕI , ϕO),
where GI = (NI , TI , PI , SI), GO = (NO, TO, PO, SO), we can construct a MAT H ′ =
(G,M), where G = (N,T, P, S), such that L(H ′) = LI(H), as follows. Without loss of
generality, assume NI ∩NO = ∅, S /∈ NI ∪NO.

1. Set N = NI ∪NO ∪ {S}, T = TI , P = {S → SISO}, M = {S → SISO}.

2. For every label p ∈ Ψ, add rules pI1, . . . , pIn, pO1, . . . , pOm to P and add matrix
pI1 . . . pInpO1 . . . pOm to M , where

• pI1 . . . pIn = ϕI(p) and

• for 1 ≤ j ≤ m, pOj = Aj → xj such that ϕO(p)[j] = Aj → x′j , xj = θ(x′j).
3

Basic idea. H ′ simulates H by combining the rules of each two linked matrices in
H into a single matrix in H ′. That is, for every pair of matrices (mI ,mO) such that
mI = ϕI(p),mO = ϕO(p) for some p ∈ Ψ in H, there is a matrix m = mIm

′
O in H ′, where

m′O is equal to mO with all terminals removed (formally defined above). If, in H, xI ⇒ yI [p]
in GI and xO ⇒ yO [p] in GO, then there is a derivation step xI θ(xO) ⇒ yI θ(yO) [m] in

3Again, this removes all terminals from the right-hand side of the rules (see Theorem 4.5). m[j] denotes
the j-th rule in matrix m.
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H ′. Note that since the rules are context-free, the presence (or absence) of terminals in
a sentential form does not affect which rules we can apply. Furthermore, because the
nonterminal sets NI and NO are disjoint, the sentential form in H ′ always consists of two
distinct parts such that the first part corresponds to the derivation in GI and the second
part to the derivation in GO.

Claim 4.8. If SI ⇒∗ wI [α], SO ⇒∗ wO [α] in H for some α ∈ Ψ∗, then S ⇒∗ wI θ(wO) in
H ′.

Proof of Claim 4.8. By induction on the number of derivation steps in H.
Basis. Let SI ⇒0 SI [ε], SO ⇒0 SO [ε] in H. Then, S ⇒ SISO [p] in G, p ∈ M , and

thus S ⇒ SISO [p] in H ′. Claim 4.8 holds for zero derivation steps in H.
Induction hypotesis. Suppose that Claim 4.8 holds for j or fewer derivation steps in H.
Induction step. Let SI ⇒j wI [α] ⇒ w′I [p], SO ⇒j wO [α] ⇒ w′O [p] in H. Then, by

the induction hypotesis, S ⇒∗ wI θ(wO) in H ′. Furthermore, if wI ⇒ w′I [p] in (GI ,MI),
wO ⇒ w′O [p] in (GO,MO), where ϕI(p) = pI1 . . . pIn for some n, ϕO(p) = pO1 . . . pOm

for some m, then, in GI , wI ⇒ wI1 [pI1] ⇒ . . . ⇒ wIn [pIn] = w′I , and, in GO, wO ⇒
wO1 [pO1]⇒ . . .⇒ wOn [pOm] = w′O. Without loss of generality, suppose that

• wI = uI1AI1vI1 ⇒ uI1xI1vI1 [pI1] = uI2AI2vI2 ⇒ . . . ⇒ uInxInvIn [pIn] = w′I ,
where for 1 ≤ i ≤ n, AI i ∈ NI , uI i, vI i, xI i ∈ (NI ∪ TI)∗, and

• wO = uO1AO0vO1 ⇒ uO1xO1vO1 [pO1] = uO2AO2vO2 ⇒ . . . ⇒ uOmxOmvOm [pOm] =
w′O, where for 1 ≤ j ≤ m, AOj ∈ NO, uOj , vOj , xOj ∈ (NO ∪ TO)∗.

That is, ϕI(p) = AI1 → xI1 . . . AIn → xIn, ϕO(p) = AO1 → xO1 . . . AOm → xOm. From
the construction of H ′, we know that for 1 ≤ i ≤ n, pI i = AI i → xI i ∈ P , for 1 ≤ j ≤ m,
p′Oj = AOj → θ(xOj) ∈ P , and t = pI1 . . . pInp

′
O1 . . . p

′
Om ∈M . Therefore, in G:

1. S ⇒∗ wI θ(wO) = uI1AI1vI1 θ(wO),

2. uI1AI1vI1 θ(wO)⇒ uI1xI1vI1 θ(wO) [pI1] = uI2AI2vI2 θ(wO),

3. uI2AI2vI2 θ(wO)⇒ . . .⇒ uInxInvIn θ(wO) [pIn] = w′I θ(wO) = w′I θ(uO1AO1vO1),

4. w′I θ(uO1AO1vO1)⇒ w′I θ(uO1xO1vO1) [p′O1] = w′I θ(uO2AO2vO2),

5. w′I θ(uO2AO2vO2)⇒ . . .⇒ w′I θ(uOmxOmvOm) [p′Om] = w′I θ(w
′
O),

and thus in H ′, S ⇒∗ wI θ wO ⇒ w′I θ(w
′
O) [t]. Claim 4.8 holds. Furthermore, if SI ⇒∗

wI [α], SO ⇒∗ wO [α] in H, where wI ∈ T ∗I , wO ∈ T ∗O, then θ(wO) = ε, and thus S ⇒∗ wI

in H ′. LI(H) ⊆ L(H ′).

Claim 4.9. If S ⇒∗ w in H ′, then there are strings wI , wO such that w = wI θ(wO) and
SI ⇒∗ wI [α], SO ⇒∗ wO [α] in H for some α ∈ Ψ∗.

Proof of Claim 4.9. By induction on the number of derivation steps in H ′.
Basis. Consider a single derivation step in H ′. Because S → SISO is the only rule in

P with S as its left-hand side, this must be S ⇒ SISO. Then, SI ⇒0 SI [ε], SO ⇒0 SO [ε]
in H. Claim 4.9 holds for one derivation step in H ′.

Induction hypotesis. Suppose that Claim 4.9 holds for j or fewer derivation steps in H ′.
Induction step. Let S ⇒ SISO ⇒j−1 w ⇒ w′ [t] in H ′. Then, by the induction

hypotesis, SI ⇒∗ wI [α], SO ⇒∗ wO [α] in H for some wI , wO such that w = wI θ(wO).
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From the construction of H ′, we know that t = pI1 . . . pInp
′
O1 . . . p

′
Om, where for some

p ∈ Ψ,

• pI1 = AI1 → xI1 . . . pIn = AIn → xIn = ϕI(p) and

• p′O1 = AO1 → θ(xO)1 . . . p
′
On = AOm → θ(xOm) such that pO1 = AO1 → xO1 . . . pOm =

AOm → xOm = ϕO(p).

Then, if S ⇒ SISO ⇒j−1 w ⇒ w′ [t] in H ′, S ⇒∗ w = wI θ(wO) = uI1AI1vI1 θ(wO) ⇒
uI1xI1vI1 θ(wO) [pI1] = uI2AI2vI2 θ(wO) ⇒ . . . ⇒ uInxInvIn θ(wO) [pIn] = w′I θ(wO) =
w′I θ(uO1AO1vO1) ⇒ w′I θ(uO1xO1vO1) [p′O1] = w′I θ(uO2AO2vO2) ⇒ . . . ⇒
w′I θ(uOmxOmvOm) [p′Om] = w′I θ(w

′
O) in G, where for 1 ≤ i ≤ n, AI i ∈ NI , uI i, vI i, xI i ∈

(NI ∪ TI)∗, and for 1 ≤ j ≤ m, AOj ∈ NO, uOj , vOj , xOj ∈ (NO ∪ TO)∗. Therefore,

• wI = uI1AI1vI1 ⇒ uI1xI1vI1 [pI1] = uI2AI2vI2 ⇒ . . .⇒ uInxInvIn [pIn] = w′I in GI

and

• wO = uO1AO0vO1 ⇒ uO1xO1vO1 [pO1] = uO2AO2vO2 ⇒ . . . ⇒ uOmxOmvOm [pOm] =
w′O in GO,

and thus in H,

• SI ⇒∗ wI [α] = uIAIvI ⇒ uIxIvI [p] = w′I and

• SO ⇒∗ wO [α] = uOAOvO ⇒ uOxOvO [p] = w′O.

Claim 4.9 holds. Furthermore, if S ⇒∗ w in H ′, where w ∈ T ∗, then wI ∈ T ∗I and θ(wO) = ε,
thus wO ∈ T ∗O. L(H ′) ⊆ LI(H).

By Claim 4.8, LI(H) ⊆ L(H ′), and by Claim 4.9, L(H ′) ⊆ LI(H), therefore L(H ′) =
LI(H). Thus, the inclusion L (SMAT) ⊆ L (MAT) has been proven, and Theorem 4.7
holds.
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Chapter 5

Synchronous Systems Based on
Transducers

In formal language theory, there exist two basic translation-method categories. The first
category contains interprets and compilers, which first analyse an input string in the source
language and, consequently, they generate a corresponding output string in the target
language (see [2], [47], [67], [71], or [76]). The second category is composed of language-
translation systems or, more briefly, transducers. Frequently, these trasducers consist of
several components, including various automata and grammars, some of which read their
input strings while others produce their output strings (see [5], [30], [69], and [82]).

Although transducers represent language-translation devices, language theory often
views them as language-defining devices and investigates the language family resulting
from them. That is, it studies their accepting power consisting in determining the language
families accepted by the transducer components that read their input strings. Alterna-
tively, it establishes their generative power that determines the language family generated
by the components that produce their strings. The present chapter contributes to this vivid
investigation trend in formal language theory.

In this chapter, we introduce a new type of transducer, referred to as rule-restricted
(automaton-grammar) transducer, based upon an FA and a CFG. In addition, a restriction
set controls the rules which can be simultaneously used by the automaton and by the
grammar.

We discuss the power of this system working in an ordinary way as well as in a leftmost
way and investigate an effect of an appearance checking placed into the system.

The original ideas, concepts, definitions, and theoretical results presented in this chapter
were first published in [10].

5.1 Rule-Restricted Transducer

The rule-restricted (automaton-grammar) transducer is a hybrid system consisting of an
FA and a CFG. The basic idea is straightforward: we read an input sentence with an FA
while generating an appropriate output sentence with a CFG. A control set determines
which rules from the FA and the CFG can be used simultaneously. The computation of the
system is successful if and only if the FA accepts the input string and the CFG generates
a string of terminals.
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Definition 5.1 (Rule-restricted transducer). The rule-restricted transducer (RT for short)
Γ is a triple Γ = (M,G,Ψ), where

• M = (Q,Σ, δ, q0, F ) is an FA,

• G = (N,T, P, S) is a CFG, and

• Ψ is a finite set of pairs of the form (r1, r2), where r1 and r2 are rules from δ and P ,
respectively.

A 2-configuration of Γ is a pair χ = (x, y), where x ∈ QΣ∗ and y ∈ (N ∪ T )∗. Consider
two 2-configurations, χ = (pav1, uAv2) and χ′ = (qv1, uxv2) with A ∈ N , u, v2, x ∈ (N∪T )∗,
v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and p, q ∈ Q. If pav1 ⇒ qv1 [r1] in M , uAv2 ⇒ uxv2 [r2] in G, and
(r1, r2) ∈ Ψ, then Γ makes a computation step from χ′ to χ′, written as χ ⇒ χ′. In the
standard way, ⇒∗ and⇒+ are transitive-reflexive and transitive closure of⇒, respectively.

The 2-language of Γ, 2-L(Γ), is 2-L(Γ) = {(w1, w2) : (q0w1, S) ⇒∗ (f, w2), w1 ∈ Σ∗,
w2 ∈ T ∗, and f ∈ F}. From the 2-language we can define two languages:

• L(Γ)1 = {w1 : (w1, w2) ∈ 2-L(Γ)}, and

• L(Γ)2 = {w2 : (w1, w2) ∈ 2-L(Γ)}.

By L (RT), L (RT)1, and L (RT)2, the classes of 2-languages of RTs, languages accepted
by M in RTs, and languages generated by G in RTs, respectively, are understood.

5.1.1 Generative Power

It is well-known that FAs and CFGs describe different classes of languages. Specifically,
by FAs we can accept regular languages, whereas CFGs define the class of context-free
languages. However, in Example 5.1 it is shown that by the combination of these two
models, the system is able to accept and generate even non-context-free languages.

Example 5.1. Consider RT K = (M,G,Ψ) with

• M = ({1, 2, 3′, 3, 4, 5′, 5, 6}, {a, b}, δ, 1, {6}), where

– δ =


p1 : 1a → 2, p2 : 2 → 1, p3 : 1b → 3′, p4 : 3′ → 3,
p5 : 3b → 4, p6 : 4 → 3, p7 : 3a → 5′, p8 : 5′ → 5,
p9 : 5a → 5, p10 : 5b → 6, p11 : 6b → 6


See graphical representation of M in Figure 5.1.

• G = ({S,A,B,C,D,D′}, {a, b}, P, S), where

– P =


r1 : S → BbD′, r2 : B → Bb, r3 : D′ → D′D,
r4 : B → aA, r5 : D′ → C, r6 : A → aA,
r7 : C → CC, r8 : D → b, r9 : A → ε,
r10 : C → a


• Ψ = {(p1, r1), (p1, r2), (p2, r3), (p3, r4), (p4, r5), (p5, r6), (p6, r7), (p7, r8), (p8, r9),

(p9, r8), (p10, r10), (p11, r10)}.

The languages of M and G are L(M) = {aibjakbl : j, k, l ∈ N, i ∈ N0} and L(G) =
{aibjakbl : i, j, k ∈ N, l ∈ N0}, respectively. However, the 2-language of K is L(K) =
{(aibjaibj , ajbiajbi) : i, j ∈ N}.
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Figure 5.1: Definition of FA M from Example 5.1

From the example, observe that the power of the grammar increases due to the possi-
bility of synchronization with the automaton that can dictate sequences of usable rules in
the grammar. The synchronization with the automaton enhances the generative power of
the grammar up to the class of languages generated by MATs.

Theorem 5.1.
L (RT)2 = L (MAT)

Proof. I. First we prove that L (MAT) ⊆ L (RT)2.

Consider a MAT I = (IG, IC) and construct an RT Γ = (ΓM, ΓG,Ψ), such that L(I) =
L(Γ)2, as follows. Set ΓG = IG. Construct ΓM = (Q,Σ, δ, s, F ) in the following way:

1. Set F,Q = {s}.

2. For every m = p1 . . . pk ∈ IC, add:

(a) k − 1 new states, q1, q2, . . . , qk−1, into Q,

(b) k new rules, r1 = s→ q1, r2 = q1 → q2, . . . , rk−1 = qk−2 → qk−1, rk = qk−1 → s,
into δ, and

(c) k new pairs, (r1, p1), (r2, p2), . . . , (rk−1, pk−1), (rk, pk), into Ψ.

The FA ΓM simulates matrices in I by transitions. That is, if x1 ⇒ x2 [p] in I, where
p = p1, . . . , pi for some i ∈ N, then there is q1, . . . , qi−1 ∈ Q such that r1 = s → q1, r2 =
q1 → q2, . . . , ri−1 = qi−2 → qi−1, ri = qi−1 → s ∈ δ and (r1, p1), . . . , (ri, pi) ∈ Ψ. Therefore,
(s, x1)⇒i (s, x2) in Γ. Similarly, if (s, x1)⇒i (s, x2) in Γ, for i ∈ N, and there is no j ∈ N
such that 0 < j < i and (s, x1)⇒j (s, y)⇒∗ (s, x2), there has to be p ∈ IC and x1 ⇒ x2 [p]
in I. Hence, if (s, S) ⇒∗ (s, w) in Γ, where w is a string over the set of terminals in ΓG,
then S ⇒∗ w in I; and, on the other hand, if S ⇒∗ w in I for a string over the set of
terminals in IG, then (s, S) ⇒∗ (s, w) in Γ. The inclusion L (MAT) ⊆ L (RT)2 has been
proven.

II. For any RT Γ = (ΓM = (Q,Σ, δ, s, F ), ΓG = (ΓN, ΓT, ΓP, ΓS),Ψ), we can construct
a MAT O = (OG,OC) such that L(Γ)2 = L(O) as follows:

1. Set OG = (ΓN ∪ {S′}, ΓT,OP, S
′), OP = ΓP ∪ {p0 = S′ → 〈s〉ΓS}, and OC = {p0}.

2. For each pair (p1, p2) ∈ Ψ with p1 = qa → r, q, r ∈ Q, a ∈ Σ ∪ {ε}, p2 = A → x,
A ∈ ΓN and x ∈ (ΓN ∪ ΓT )∗, add p1 = 〈q〉 → 〈r〉 into OP and p1p2 into OC.

3. Furthermore, for all q ∈ F , add p = 〈q〉 → ε into OP and p into OC.

By the following claims, we prove that L(Γ)2 = L(O).
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Claim 5.2. If (sw, ΓS)⇒∗ (qw′, ω) in Γ, then S′ ⇒∗ 〈q〉ω in O.

Proof of Claim 5.2. By induction on the number of computation steps.

Basis. Let (sw, ΓS) ⇒0 (sw, ΓS) in Γ. Then, S′ ⇒ 〈s〉ΓS [p] in OG and p ∈ OC. Hence,
S′ ⇒ 〈s〉ΓS [p] in O. Claim 5.2 holds for zero steps in Γ.

Induction hypothesis. Suppose that Claim 5.2 holds for j or fewer computation steps.

Induction step. Let (sw, ΓS) ⇒j (qw′, ω) ⇒ (q′w′′, ω′) in Γ. Then, by the induction
hypothesis, S′ ⇒∗ 〈q〉ω in O. Without any loss of generality, suppose that ω = uAv for
u, v ∈ (ΓN ∪ ΓT )∗, A ∈ ΓN , and (qw′, uAv) ⇒ (q′w′′, uxv) with x ∈ (ΓT ∪ ΓN)∗ and
ω′ = uxv. From the construction of O we know that p1 = A → x and p2 = 〈q〉 → 〈q′〉
is in ΓP and p1p2 ∈ OC. Therefore, S′ ⇒∗ 〈q〉ω ⇒ 〈q′〉uxv = 〈q′〉ω′ in O. Claim 5.2
holds. Furthermore, for all f ∈ F there is a rule p = 〈f〉 → ε ∈ ΓP and p ∈ OC. Hence,
if (sw, ΓS) ⇒∗ (f, ω), where f ∈ F and ω ∈ ΓT

∗ in Γ, S′ ⇒∗ 〈f〉ω ⇒ ω in O. That is,
L(Γ)2 ⊆ L(O).

It remains to prove that L(O) ⊆ L(Γ)2.

Claim 5.3. If S′ ⇒∗ 〈q〉ω in O with ω ∈ ΓT
∗, then (sw, ΓS) ⇒∗ (f, ω) in Γ for some

w ∈ Σ∗ and f ∈ F .

Proof of Claim 5.3. Consider any successful derivation of the form

S′ ⇒ 〈q0〉ω0 [p0]⇒ 〈q1〉ω1 [p1]⇒ 〈q2〉ω2 [p2]⇒ . . .⇒ 〈qk〉ωk [pk]

in O, where q0 = s, qk = q, ω0 = ΓS, and ωk = ω. As it follows form the construction
of O, for every i = 1, . . . , k, pi = p′ip

′′
i , where p′i = 〈qi−1〉 → 〈qi〉, ωi−1 ⇒ ωi [p′′i ] in ΓG,

and for a ∈ Σ ∪ {ε}, (qi−1a → qi, p
′′
i ) ∈ Ψ. That is, (qi−1wi−1, ωi−1) ⇒ (qiwi, ωi) for all

i = 1, . . . , k, and hence, (sw0, ΓS) ⇒∗ (qkwk, ωk). Having ωk ∈ ΓT
∗ and using p = p1p2,

where p1 = 〈q〉 → ε ∈ OP , ωk−1 ⇒ ωk [p2], and p ∈ OC, implies q ∈ F and w ∈ L(M), and
therefore ωk ∈ L(Γ)2. L(O) ⊆ L(Γ)2.

By claims 5.2 and 5.3, L(Γ)2 = L(O) holds. Thus, the inclusion L (RT)2 ⊆ L (MAT)
has been proven, and Theorem 5.1 holds.

5.1.2 Accepting Power

On the other hand, the CFG in the RT can be exploited as an additional storage space
of the FA to remember some non-negative integers. If the automaton uses the CFG in
this way, the additional storage space is akin to counters in a multi-counter machine. The
following lemma says that the FAs in RTs are able to accept every language accepted by
partially blind k-counter automata.

Lemma 5.4. For every k-PBCA I, there is an RT Γ = (M,G,Ψ) such that L(I) = L(Γ)1.

Proof of Lemma 5.4. Let I = (IQ,Σ, Iδ, q0, F ) be a k-PBCA for some k ≥ 1 and construct
a RT Γ = (M = (MQ,Σ,Mδ, q0, F ), G = (N,T, P, S),Ψ) as follows:

1. Set T = ∅, Ψ = ∅, N = {S,A1, . . . , Ak}, P = {A→ ε : A ∈ N}, Mδ = {f → f : f ∈
F}, and MQ = IQ.

2. For each pa→ q(t1, . . . , tk) in Iδ and for n = (Σk
i=1 max(0,−ti)) add:
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(a) q1, . . . , qn into MQ;

(b) r = S → xS, where x ∈ (N − {S})∗ and occur(Ai, x) = max(0, ti), for i =
1, . . . , k, into P ;

(c) r1 = q0a → q1, r2 = q1 → q2, . . ., rn = qn−1 → qn, rn+1 = qn → q into Mδ with
q0 = p; and (ri+1, αi → ε), where αi = Aj and each Aj is erased max(0,−ti)-
times during the sequence, into Ψ (n = 0 means that only pa→ q, S → xS and
(r1, r) are considered);

(d) (f → f, S → ε) into Ψ for all f ∈ F .

The FA of the created system uses the CFG as an external storage. Each counter of I is
represented by a nonterminal. Every step from p to q that modifies counters is simulated by
several steps leading from p to q and during this sequence of steps the number of occurrences
of each nonterminal in the grammar is modified to be equal to the corresponding counter
in I. Clearly, L(I) = L(Γ)1.

Lemma 5.5 states that the CFG is helpful for the FA in RT at most with the preservation
of the non-negative numbers without possibility to check their values.

Lemma 5.5. For every RT Γ = (M,G,Ψ), there is a k-PBCA O such that L(O) = L(Γ)1

and k is the number of nonterminals in G.

Proof of Lemma 5.5. Let Γ = (M = (Q,Σ,Mδ, q0, F ), G = (N,T, P, S),Ψ) be an RT.
Without any loss of generality, suppose that N = {A1, . . . , An}, where S = A1. The
partially blind card(N)-counter automaton O = (Q,Σ,Oδ, q0, F ) is created in the following
way. For each r1 = pa → q ∈ Mδ and r2 = α → β ∈ P such that (r1, r2) ∈ Ψ, add
pa→ q(v1, . . . , vcard(N)), where vi = occur(Ai, β)− occur(Ai, α) for all i = 1, . . . , card(N).

The constructed partially blind card(N)-counter automaton has a counter for each non-
terminal from the grammar of Γ. Whenever the automaton in Γ makes a step and thes
entential form of the grammar G is changed, O makes the same step and accordingly changes
the number of occurrences of nonterminals in its counters.

From Lemma 5.4 and Lemma 5.5, we can establish the following theorem.

Theorem 5.6.

L (RT)1 =

∞⋃
k=1

L (k-PBCA)

Proof. It directly follows from Lemma 5.4 and Lemma 5.5.

For better illustration of the accepting and generative power of RT, let us recall that
the class of languages generated by MATs is properly included in the class of RE languages
[1, 21], and the class of languages defined by partially blind k-counter automata, with
respect to number of counters, is superset of the class of CF languages and properly included
in the class of CS languages [27, 28].
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5.2 Rule-Restricted Transducer with Leftmost Restriction

Although the investigated system is relatively powerful, in defiance of weakness of models
that are used, nondeterministic selections of nonterminals to be rewritten can be relatively
problematic from the practical point of view. Therefore, we examine an effect of a restriction
in the form of leftmost derivations placed on the CFG in RT.

Definition 5.2 (Leftmost restriction on derivation in RT). Let Γ = (M,G,Ψ) be an RT
with M = (Q,Σ, δ, q0, F ) and G = (N,T, P, S). Furthermore, let χ = (pav1, uAv2) and
χ′ = (qv1, uxv2) be two 2-configurations, where A ∈ N , v2, x ∈ (N ∪ T )∗, u ∈ T ∗, v1 ∈ Σ∗,
a ∈ Σ∪{ε}, and p, q ∈ Q. Γ makes a computation step from χ to χ′, written as χ⇒lm χ′, if
and only if pav1 ⇒ qv1 [r1] in M , uAv2 ⇒ uxv2 [r2] in G, and (r1, r2) ∈ Ψ. In the standard
way, ⇒∗lm and ⇒+

lm are transitive-reflexive and transitive closure of ⇒lm, respectively.
The 2-language of Γ with G generating in the leftmost way, denoted by 2-Llm(Γ), is

defined as 2-Llm(Γ) = {(w1, w2) : (q0w1, S) ⇒∗lm (f, w2), w1 ∈ Σ∗, w2 ∈ T ∗, and f ∈ F};
we call Γ a leftmost restricted RT; and we define the languages given from 2-Llm(Γ) as
Llm(Γ)1 = {w1 : (w1, w2) ∈ 2-Llm(Γ)} and Llm(Γ)2 = {w2 : (w1, w2) ∈ 2-Llm(Γ)}.

By L (RTlm), L (RTlm)1, and L (RTlm)2, we understand the following language classes,
respectively: 2-languages of leftmost restricted RTs, languages accepted by M in leftmost
restricted RTs, and languages generated by G in leftmost restricted RTs.

5.2.1 Generative Power

Unfortunately, the price for the leftmost restriction, placed on derivations in the CFG, is
relatively high and both accepting and generative ability of RT with the restriction decreases
to the definition of context-free languages.

Theorem 5.7.
L (RTlm)2 = CF

Proof. The inclusion CF ⊆ L (RTlm)2 is clear from the definition, because any time we
can construct leftmost restricted RT, where the automaton M cycles with reading all pos-
sible symbols from the input or ε whilst the grammar G is generating some output string.
Therefore, we only need to prove the opposite inclusion.

We know that the class of context-free languages is defined, inter alia, by nondetermin-
istic PDAs. It is therefore sufficient to prove that every language Llm(Γ)2 of RT can be
accepted by a nondeterministic PDA. Consider an RT Γ = (ΓM = (Q, ΓΣ, Γδ, q0, F ), G =
(N,T, P, S),Ψ) and define a PDA O = (Q,T,OΓ,Oδ, q0, S, F ), where OΓ = N ∪ T and Oδ
is created as follows:

1. Set Oδ = ∅.

2. For each r1 = A → x ∈ P and r2 = pa → q ∈ Γδ such that (r1, r2) ∈ Ψ, add
Ap→ (x)Rq into Oδ.

3. For each p ∈ Q, and a ∈ T add apa→ p into Oδ.

Now we have to show that L(O) = Llm(Γ)2.

Claim 5.8. Let (q0w, S) ⇒∗ (pw′, uαv) ⇒∗ (f, ŵ) in RT Γ, where u ∈ T ∗, α ∈ N , and
v ∈ (N ∪ T )∗. Then, Sq0ŵ ⇒∗ (v)Rαpŵ′ in PDA O, where ŵ = uŵ′.
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Proof of Claim 5.8. By induction on the number of computation steps.

Basis. Let (q0w, S) ⇒0 (q0w, S) ⇒∗ (f, ŵ) in Γ. Trivially, Sq0ŵ ⇒0 Sq0ŵ and Claim 5.8
holds for zero computation steps in Γ.

Induction hypothesis. Suppose that Claim 5.8 holds for j or fewer computation steps.

Induction step. Let (q0w, S) ⇒j (paw′, uαv) ⇒ (qw′, uxv) ⇒∗ (f, ŵ) in Γ, where a ∈
ΓΣ ∪ {ε}, uxv = uu′βv′ and β is the new leftmost nonterminal. Then, by the induction
hypothesis, Sq0ŵ ⇒∗ (v)Rαpaŵ′ in O.

Since (paw′, uαv) ⇒ (qw′, uxv) in Γ, paw′ ⇒ qw′ [r1] in M , uαv ⇒ uxv [r2] in G, and
(r1, r2) ∈ Ψ. From the construction of Oδ, O has rules αp → (x)Rq and bqb → q for all
b ∈ T . Hence, (v)Rαpŵ′ ⇒ (xv)Rqŵ′. Because uxv = uu′βv′, β is the leftmost nonterminal,
and (qw′, uxv) ⇒∗ (f, ŵ), (xv)Rqŵ′ = (u′βv′)Rqu′ŵ′′, and obviously, (u′βv′)Rqu′ŵ′′ ⇒∗
(βv′)Rqŵ′′ in O. Claim 5.8 holds.

The last step of every successful computation of Γ has to be of the form (qa, uαv) ⇒
(f, uxv), with a ∈ T ∪ {ε}, f ∈ F , uxv ∈ T ∗. By Claim 5.8, suppose that O is in configu-
ration (αv)Rqw′, where uw′ = uxv. From construction of Oδ, (αv)Rqw′ ⇒ (xv)Rfw′ ⇒∗ f
in O. Hence, Llm(Γ)2 ⊆ L(O).

It remains to prove the opposite inclusion—that is, L(O) ⊆ Llm(Γ)2.

Claim 5.9. Let Sq0w ⇒∗ f in PDA O, where f ∈ F . Then, (q0ŵ, S)⇒∗ (f, w) in RT Γ.

Proof of Claim 5.9. Consider any successful acceptance:

Sq0w ⇒∗ f (I)

in PDA O. Without any loss of generality, we can express (I) as α0q0w0 ⇒ v1α1u1q1w0 ⇒∗
v1α1q1w1 ⇒ v2α2u2q2w1 ⇒∗ v2α2q2w2 ⇒ . . .⇒ vkαkukqkwk−1⇒∗ vkαkqkwk ⇒ vkuk+1fwk

⇒∗ f , where α0 = S and for all i = 1, . . . , k with k ≥ 0, αi ∈ N , ui, uk+1, vk ∈
T ∗, vi ∈ (N ∪ T )∗, wi−1 = (ui)

Rwi and wk = (vkuk+1)R. Openly, (ui)
Rαi(vi)

R ⇒
(ui+1ui)

Rαi+1(vi+1)R [ri] in G, qi−1ŵi−1 ⇒ qiŵi [r′i], and furthermore, (r′i, ri) ∈ Ψ for
all i = 0, . . . , k. Hence, (I) can be simulated by (q0ŵ0, α0) ⇒ (q1ŵ1, (u1)Rα1(v1)R) ⇒
(q2ŵ2, (u2u1)Rα2(v2)R)⇒ . . .⇒ (ukuk−1 . . . u1)Rαk(vk)R ⇒ (f, (uk+1ukuk−1 . . . u1)R(vk)R)
= (f, w) in Γ. Thus, Claim 5.9 holds.

As L(O) ⊆ Llm(Γ)2 and Llm(Γ)2 ⊆ L(O), Theorem 5.7 holds.

5.2.2 Accepting Power

First, we show that any context-free language can be accepted by some leftmost restricted
RT.

Lemma 5.10. For every language L ∈ CF, there is an RT Γ = (M,G,Ψ) such that
Llm(Γ)1 = L.

Proof of Lemma 5.10. Let I = (IN,T, IP, S) be a CFG such that L(I) = L. For I, we
can construct a CFG H = (HN,T,HP, S), where HN = IN ∪ {〈a〉 : a ∈ T} and HP =
{〈a〉 → a : a ∈ T} ∪ {A → x : A → x′ ∈ IP and x is created from x′ by replacing all a ∈
T in x′ with 〈a〉}. Surely, L(I) = L(H) even if H replaces only the leftmost nonterminals
in each derivation step. In addition, we construct an FA M = ({q0}, T, δ, q0, {q0}) with
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δ = {q0 → q0} ∪ {q0a → q0 : a ∈ T}, and Ψ = {(q0 → q0, A → x) : A → x ∈ HP,A ∈
IN} ∪ {(q0a→ q0, 〈a〉 → a) : a ∈ T}.

It is easy to see that any time when H replaces nonterminals from IN in its sentential
form, M reads no input symbol. If and only if H replaces 〈a〉 with a, where a ∈ T , then M
reads a from the input. Since H works in a leftmost way, 2-Llm(Γ) = {(w,w) : w ∈ L(I).
Hence, Llm(Γ)1 = L(I).

Similarly, we show that any RT generating outputs in the leftmost way can recognize
no language out of CF.

Lemma 5.11. Let Γ is an RT. Then, for every language Llm(Γ)1, there is a PDA O such
that Llm(Γ)1 = L(O).

Proof of Lemma 5.11. In the same way as in the proof of Theorem 5.1, we construct PDA
O such that L(O) = Llm(Γ)1 for RT Γ = (M = (Q, ΓΣ, Γδ, q0, F ), G = (N,T, P, S),Ψ). We
define O as O = (Q, ΓΣ, N,Oδ, q0, S, F ), where Oδ is created in the following way:

1. Set Oδ = ∅.

2. For each r1 = pa → q ∈ Γδ and r2 = A → x ∈ P such that (r1, r2) ∈ Ψ, add
Apa→ (θ(x))Rq into Oδ, where θ(x) is a function from (N ∪ T )∗ to N∗ that replaces
all terminal symbols in x with ε—that is, θ(x) is x without terminal symbols.1

In the following, we demonstrate that L(O) = Llm(Γ)1.

Claim 5.12. Let (q0w, S)⇒∗ (pw′, uαv) in RT Γ, where u ∈ T ∗, α ∈ N , and v ∈ (N ∪T )∗.
Then, Sq0w ⇒∗ (θ(v))Rαpw′ in PDA O.

Proof of Claim 5.12. By induction on the number of computation steps.

Basis. Let (q0w, S) ⇒0 (q0w, S) in Γ. Then, surely, Sq0w ⇒0 (θ(S))Rq0w. Claim 5.12
holds for zero computation steps in Γ.

Induction hypothesis. Suppose that Claim 5.12 holds for j or fewer computation steps.

Induction step. Let (q0w, S) ⇒j (paw′, uαv) ⇒ (qw′, uxv) in Γ, where a ∈ ΓΣ ∪ {ε},
uxv = uu′βv′ and β is the leftmost nonterminal. By the induction hypothesis, Sq0w ⇒∗
(θ(v))Rαpaw′ in O.

Because (paw′, uαv) ⇒ (qw′, uxv) in Γ, paw′ ⇒ qw′ [r1] in ΓM , uαv ⇒ uxv [r2] in
G, and (r1, r2) ∈ Ψ. From the construction of Oδ, O has a rule αpa → (θ(x))Rq, and
(θ(v))Rαpaw′ ⇒ (θ(v′))Rβqw′ in O. Claim 5.12 holds.

The last step of any successful computation in Γ is of the form (qa, uαv) ⇒ (f, uxv),
where f ∈ F , a ∈ ΓΣ ∪ {ε}, α ∈ N , and uxv ∈ T ∗. Hence, αqa→ f ∈ Oδ and αqa⇒ f in
O. So, Llm(Γ)1 ⊆ L(O).

Claim 5.13. Let Sq0w ⇒∗ (θ(v))Rαpw′ in PDA O. Then, (q0w, S) ⇒∗ (pw′, uαv) in RT
Γ, where u ∈ T ∗, α ∈ N , and v ∈ (N ∪ T )∗.

1See page 35 for further explanation and precise formal definition of θ (Definition 4.4).

50



Proof of Claim 5.13. By induction on the number of moves.

Basis. Let Sq0w ⇒0 Sq0w in O. Then, (q0w, S)⇒0 (q0w, S) in Γ and Claim 5.13 holds for
zero moves in O.

Induction hypothesis. Suppose that Claim 5.13 holds for j or fewer moves.

Induction step. Let Sq0w ⇒j (θ(v))Rαpaw′ ⇒ (θ(xv))Rqw′ in O, where a ∈ ΓΣ ∪ {ε}.
Then, by the induction hypothesis, (q0w, S) ⇒∗ (paw′, uαv) in Γ, where u ∈ T ∗, α ∈ N ,
and v ∈ (N ∪ T )∗.

Because there is a rule αpa → (θ(x))Rp in Oδ, from the construction of Oδ, there are
rules r1 = pa → q ∈ Γδ and r2 = α → x ∈ P , and (r1, r2) ∈ Ψ. Therefore, (paw′, uαv) ⇒
(qw′, uxv) in Γ. So, Claim 5.13 holds. Furthermore, if θ(xv)w′ = ε and q ∈ F , then
(paw′, uαv)⇒ (f, uxv) and L(O) ⊆ Llm(Γ)1.

Since L(O) ⊆ Llm(Γ)1 and Llm(Γ)1 ⊆ L(O), L(O) = Llm(Γ)1.

Theorem 5.14.
L (RTlm)1 = CF

Proof. It directly follows from Lemma 5.10 and Lemma 5.11.

5.3 Rule-Restricted Transducer with Appearance Checking

We can also extend RT with the possibility to prefer a rule over another—that is, the
restriction sets contain triples of rules (instead of pairs of rules), where the first rule is a
rule of FA, the second rule is a main rule of CFG, and the third rule is an alternative rule
of CFG, which is used only if the main rule is not applicable.

Definition 5.3 (RT with appearance checking). RT with appearance checking (RTac for
short) Γ is a triple Γ = (M,G,Ψ), where

• M = (Q,Σ, δ, q0, F ) is an FA,

• G = (N,T, P, S) is a CFG, and

• Ψ is a finite set of triples of the form (r1, r2, r3) such that r1 ∈ δ and r2, r3 ∈ P .

Let χ = (pav1, uAv2) and χ′ = (qv1, uxv2), where A ∈ N , v2, x, u ∈ (N ∪ T )∗, v1 ∈ Σ∗,
a ∈ Σ ∪ {ε}, and p, q ∈ Q, be two 2-configurations. Γ makes a computation step from χ to
χ′, written as χ ⇒ χ′, if and only if for some (r1, r2, r3) ∈ Ψ, pav1 ⇒ qv1 [r1] in M , and
either

• uAv2 ⇒ uxv2 [r2] in G, or

• uAv3 ⇒ uxv2 [r3] in G and r2 is not applicable on uAv2 in G.

The 2-language 2-L(Γ) and languages L(Γ)1, L(Γ)2 are defined in the same way as in
Definition 5.1. The classes of languages defined by the first and the second component in
the system is denoted by L (RTac)1 and L (RTac)2, respectively.
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5.3.1 Generative Power

By the appearance checking both generative and accepting power of RT grow to define
the class of all recursively enumerable languages. To prove that the former holds, we take
advantage of the known fact that matrix grammars with appearance checking can generate
any language in RE [21], and show that, in turn, RTac can simulate MATac.

Theorem 5.15.
L (RTac)2 = RE

Proof. Since L (MATac) = RE [21], we only need to prove that L (MATac) ⊆ L (RTac)2.

Consider a MATac with appearance checking I = (IG, IC) and construct a RT Γ =
(ΓM, ΓG,Ψ), such that L(I) = L(Γ)2, as follows:

1. Set ΓG = IG.

2. Add a new initial nonterminal S′, nonterminal ∆, and rules ∆→ ∆, ∆→ ε, S′ → S∆
into grammar ΓG.

3. Construct an FA ΓM = (Q,Σ, δ, s, F ) and Ψ in the following way:

(a) Set F = Q = {s}, δ = {s→ s}, and Ψ = {(s→ s,∆→ ε,∆→ ε), (s→ s, S′ →
S∆, S′ → S∆)}.

(b) For every m = (p1, t1) . . . (pk, tk) ∈ IC, add q1, q2, . . . , qk−1 into Q, s→ q1, q1 →
q2, . . . , qk−2 → qk−1, qk−1 → s into δ, and (s → q1, p1, c1), (q1 → q2, p2, c2), . . . ,
(qk−2 → qk−1, pk−1, ck−1), (qk−1 → qs, pk, ck) into Ψ, where, for 1 ≤ i ≤ k, if
ti = −, then ci = pi; otherwise, ci = ∆→ ∆.

Since S′ is the initial symbol, the first computation step in Γ is (s, S′)⇒ (s, S∆). After
this step, the FA simulates matrices in I by computation step. That is, if x1 ⇒ x2 [p] in
I, where p = p1, . . . , pi for some i ∈ N, then there is q1, . . . , qi−1 ∈ Q such that r1 = s →
q1, r2 = q1 → q2, . . . , ri−1 = qi−2 → qi−1, ri = qi−1 → s ∈ δ and (r1, p1, c1), . . . , (ri, pi, ci) ∈
Ψ. Therefore, (s, x1) ⇒i (s, x2) in Γ. Notice that if I can overleap some grammar rule in
m ∈ IC, Γ represents the fact by using ∆→ ∆ with the move in ΓM . Similarly, if, for some
i ∈ N, (s, x1) ⇒i (s, x2) in Γ and there is no j < i such that (s, x1) ⇒j (s, y) ⇒∗ (s, x2),
there exists p ∈ IC such that x1 ⇒ x2 [p] in I. Hence, if (s, S)⇒∗ (s, w) in Γ, where w is a
string over the set of terminals in ΓG, then S ⇒∗ w in I; and, on the other hand, if S ⇒∗ w
in I for a string over the set of terminals in IG, then (s, S′)⇒ (s, S∆)⇒∗ (s, w∆)⇒ (s, w)
in Γ.

5.3.2 Accepting Power

RTac’s can accept any recursively enumerable language, as evidenced by their ability to
simulate k-CAs.

Theorem 5.16.
L (RTac)1 = RE

Proof. Let I = (IQ,Σ, Iδ, q0, F ) be a k-CA for some k ≥ 1 and construct a RT Γ =
(M,G,Ψ), where M = (MQ,Σ,Mδ, q0, F ), G = (N,T, P, S), as follows:
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1. Set T = {a},Ψ = ∅, P = {A → ε,A → ♦ : A ∈ N − {♦}} ∪ {S → S}, MQ = IQ,

Mδ = {f → f : f ∈ F}, and N = {S,♦, A1, . . . , Ak}.

2. For each pa→ q(t1, . . . , tk) in Iδ, n = Σk
i=1 θ(ti), and m = Σk

i=1θ̂(ti), where if ti ∈ Z,
θ(ti) = max(0,−ti) and θ̂(ti) = max(0, ti); otherwise θ(ti) = 1 and θ̂(ti) = 0, add:

(a) q1, . . . , qn into MQ;

(b) r = S → xS, where x ∈ (N − {S,♦})∗ and occur(Ai, x) = θ̂(ti), for each
i = 1, . . . , k, into P ;

(c) r1 = q0a → q1, r2 = q1 → q2, . . ., rn = qn−1 → qn, rn+1 = qn → q into Mδ with
q0 = p; and for each i = 1, . . . , n, add (ri+1, τi, τ

′
i), where for each j = 1, . . . , k,

if tj ∈ N, for θ(tj) is, τi = τ ′i = Aj → ε; otherwise, if tj = −, τi = Aj → ♦ and
τ ′i = S → S, into Ψ. Notice that n = 0 means that only q0a → q, S → xS are
considered. Furthermore, add (r1, r, r) into Ψ;

(d) (f → f, S → ε, S → ε) into Ψ for all f ∈ F .

Similarly as in the proof of Lemma 5.4, the FA of the created system uses the CFG as
an external storage, and each counter of I is represented by a nonterminal. If I modifies
some counters during a move from state p to state q, M moves from p to q in several steps
during which it changes the numbers of occurrences of nonterminals correspondingly. Rules
applicable only if some counters are equal to zero are simulated by using an appearance
checking, where Γ tries to replace all nonterminals representing counters which have to be
0 by ♦. If it is not possible, Γ applies the rule S → S and continues with computation.
Otherwise, since ♦ cannot be rewritten during the rest of computation, the use of such rules
leads to an unsuccessful computation. The formal proof of the equivalence of languages is
left to the reader. Since L (k-CA) = RE for every k ≥ 2 [35], Theorem 5.16 holds.
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Part III

Application Perspectives and
Concluding Remarks
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Chapter 6

Linguistic Applications:
Perspectives

In this chapter, we discuss the advantages of the new formal models in regard to their
potential applications in natural language processing, and particularly in translation, where
they can provide an alternative to the existing models (see Chapter 3 for an overview). To
illustrate, we use examples from Czech, English, and Japanese. (No prior knowledge of
Czech or Japanese is required for understanding, although it can be an advantage.)

Throughout the course of this chapter, we use the following notation to represent some
common linguistic constituents:

ADJ adjective ADV adverb
AUX auxiliary verb DET determiner
N noun NP noun phrase
NP-SBJ NP in the role of subject NUM numeral
P preposition PN pronoun
PN-INT interrogative pronoun PP prepositional phrase
PP-TMP PP, temporal PP-DIR PP, directional
V verb VP verb phrase

Further, note that in the example sentences presented below, we generally disregard
punctuation and capitalization. For example, we consider

Where are you going?

and

where are you going

identical for the purposes of this text.
Finally, in most of the case studies presented in this chapter, we assume that we already

have the input sentence split into words (or possibly some other lexical units as appropriate),
and these words are classified as, for example, a noun, pronoun, or verb. Then, we consider
syntax analysis and translation on an abstract level, transforming syntactic structures in
languages rather than actual meanings.

Often, you will notice that the input alphabet of the automaton or the terminal alphabet
of the grammar do not contain actual words themselves, but rather symbols representing
word categories and properties. For example, we can use N3s to denote a noun in third
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person singular. While such representation is sufficient in our examples here, where, for
clarity, we usually only focus on some select aspects at a time, in practice we need much
more information about each word. In that case, we can, for instance, use structures
resembling AVMs from HPSGs (see Section 3.1) as symbols.

6.1 Synchronous Grammars

First, we explore the application perspectives of our newly introduced synchronous gram-
mars, or more precisely, synchronous versions of MATs and SCGs. The original results,
observations, and examples presented in this section were published in [39] and [41].

To demonstrate the basic principle, consider a simple Japanese sentence

Takeshi-san wa raishuu Oosaka ni ikimasu.

We will transform this sentence (or, more precisely, the structure of this sentence) into
its English counterpart

Takeshi is going to Osaka next week.

In the following examples, words in angled brackets (〈〉) are words associated with a
terminal or nonterminal symbol in a given sentence or structure. Note that this is included
only to make the examples easier to follow and understand, and is not an actual part of
the formalism itself.

Example 6.1. Consider a RSCFG H = (GI , GO,Ψ, ϕI , ϕO), where GI = (NI , TI , PI , SI)
and GO = (NO, TO, PO, SO) such that

• NI = {SI , NP-SBJ, VP, PP-TMP, PP-DIR},

• TI = {NP, V, DET},

• NO = {SO, NP-SBJ, VP, PP-TMP, PP-DIR},

• TO = {NP, V, AUX, DET, P},

• PI =


1 : SI → NP-SBJ VP, 2 : NP-SBJ → NP DET〈wa〉,
3 : VP → PP-TMP PP-DIR V, 4 : PP-TMP → NP,

4z : PP-TMP → ε, 5 : PP-DIR → NP DET〈ni〉,
5z : PP-DIR → ε

,

• PO =


1 : SO → NP-SBJ VP, 2 : NP-SBJ → NP,
3 : VP → AUX V PP-DIR PP-TMP, 4 : PP-TMP → NP,

4z : PP-TMP → ε, 5 : PP-DIR → P〈to〉 NP,
5z : PP-DIR → ε

.

Strictly according to their definitions, synchronous grammars generate pairs of sen-
tences. However, in practice, we usually have the input sentence in the source language,
and we want to translate it into the target language. That is, we want to generate the
corresponding output sentence. In that case, the translation can be divided into two steps
as follows.
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Form Paradigm Person Neutral Negative

1st singular am aren’t
Present 3rd singular is isn’t

Other are aren’t
Primary Preterite 1st singular, 3rd singular was wasn’t

Other were weren’t
Irrealis 1st singular, 3rd singular were weren’t
Plain form be —

Secondary Gerund-participle being —
Past participle been —

Table 6.1: Paradigms of the verb to be in English [63]

1. First, we parse the input sentence using the input grammar. In GI , a derivation that
generates the example sentence may proceed as follows:

SI ⇒ NP-SBJ VP [1]
⇒ NP〈Takeshi-san〉 DET〈wa〉 VP [2]
⇒ NP〈Takeshi-san〉 DET〈wa〉 PP-TMP PP-DIR V〈ikimasu〉 [3]
⇒ NP〈Takeshi-san〉 DET〈wa〉 NP〈raishuu〉 PP-DIR V〈ikimasu〉 [4]
⇒ NP〈Takeshi-san〉 DET〈wa〉 NP〈raishuu〉 NP〈Oosaka〉 DET〈ni〉

V〈ikimasu〉 [5]

We have applied rules denoted by labels 1 2 3 4 5, in that order.

2. Next, we use the sequence obtained in the first step (1 2 3 4 5), and apply the
corresponding rules in the output grammar. Then, the derivation in GO proceeds as
follows:

SO ⇒ NP-SBJ VP [1]
⇒ NP〈Takeshi〉 VP [2]
⇒ NP〈Takeshi〉 AUX〈is〉 V〈going〉 PP-TMP PP-DIR [3]
⇒ NP〈Takeshi〉 AUX〈is〉 V〈going〉 PP-DIR NP〈next week〉 [4]
⇒ NP〈Takeshi〉 AUX〈is〉 V〈going〉 P〈to〉 NP〈Osaka〉 NP〈next week〉 [5]

Also note the rules 4z and 5z (in both input and outpur grammar), which can be used
to erase PP-TMP and PP-DIR. This represents the fact that these constituents may be
omitted.

Next, compare the following sentences in Japanese (left) and English.

Watashi wa raishuu Oosaka ni ikimasu. I am going to Osaka next week.
Anata wa raishuu Oosaka ni ikimasu. You are going to Osaka next week.
Takeshi-san wa raishuu Oosaka ni ikimasu. Takeshi is going to Osaka next week.

In English, the form of the auxiliary verb to be depends on many grammatical categories
such as tense, number, or, as shown in this example, person: am for first person (present
tense, singular), are for second, and is for third (see Table 6.1).

On the other hand, note that the verb in the Japanese sentences (ikimasu, long form
of iku) remains the same (out of the grammatical categories mentioned, only tense would
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affect inflection). If we want to translate such sentence from Japanese to English, we need
to choose the correct form of the verb. We can get the necessary information by looking at
the subject.

Example 6.2. Consider a SMAT H = (GI ,MI , GO,MO,Ψ, ϕI , ϕO), where GI = (NI , TI ,
PI , SI) and GO = (NO, TO, PO, SO) such that

• NI = {SI , NP-SBJ, VP, PP-TMP, PP-DIR},

• TI = {NP, NP1, NP2, NP3, V, DET},

• NO = {SO, NP-SBJ, VP, PP-TMP, PP-DIR, AUXx},

• TO = {NP, NP1, NP2, NP3, V, AUX1, AUX2, AUX3, DET, P},

• PI =


1 : SI → NP-SBJ VP, 2a : NP-SBJ → NP1 DET〈wa〉,

2b : NP-SBJ → NP2 DET〈wa〉, 2c : NP-SBJ → NP3 DET〈wa〉,
3 : VP → PP-TMP PP-DIR V, 4 : PP-TMP → NP,

4z : PP-TMP → ε, 5 : PP-DIR → NP DET〈ni〉,
5z : PP-DIR → ε

,

• PO =



1 : SO → NP-SBJ VP, 2a : NP-SBJ → NP1,
2b : NP-SBJ → NP2, 2c : NP-SBJ → NP3,
3 : VP → AUXx V PP-DIR PP-TMP, 4 : PP-TMP → NP,

4z : PP-TMP → ε, 5 : PP-DIR → P〈to〉 NP,
5z : PP-DIR → ε, 6a : AUXx → AUX1,
6b : AUXx → AUX2, 6c : AUXx → AUX3


,

• MI = {m1 : 1,m2a : 2a,m2b : 2b,m2c : 2c,m3 : 3,m4 : 4,m4z : 4z,m5 : 5,m5z : 5z}, and

• MO = {m1 : 1,m2a : 2a 6a,m2b : 2b 6b,m2c : 2c 6c,m3 : 3,m4 : 4,m4z : 4z, m5 : 5,
m5z : 5z}.

An example of a derivation follows.

SI ⇒ NP-SBJ VP [m1]
⇒ NP-SBJ PP-TMP PP-DIR V〈ikimasu〉 [m3]
⇒ NP1〈watashi〉 DET〈wa〉 PP-TMP PP-DIR V〈ikimasu〉 [m2a]
⇒ NP1〈watashi〉 DET〈wa〉 NP〈raishuu〉 PP-DIR V〈ikimasu〉 [m4]
⇒ NP1〈watashi〉 DET〈wa〉 NP〈raishuu〉 NP〈Oosaka〉 DET〈ni〉

V〈ikimasu〉 [m5]

SO ⇒ NP-SBJ VP [m1]
⇒ NP-SBJ AUXx〈be〉 V〈going〉 PP-DIR PP-TMP [m3]
⇒ NP1〈I〉 AUX1〈am〉 V〈going〉 PP-DIR PP-TMP [m2a]
⇒ NP1〈I〉 AUX1〈am〉 V〈going〉 PP-DIR NP〈next week〉 [m4]
⇒ NP1〈I〉 AUX1〈am〉 V〈going〉 P〈to〉 NP〈Osaka〉 NP〈next week〉 [m5]

Depending on person of the subject, we apply one of the matrices m2a, m2b, or m2c.
In the input grammar (Japanese), these matrices contain only one rule, which involves
the subject itself. The verb is unaffected. In the output grammar (English), the matrices
contain two rules, which ensure agreement between the subject and the (auxiliary) verb.
Instead of SMAT, we can also use SSCG to the same effect, with scattered context rules
such as (NP-SBJ, AUXx) → (NP1, AUX1).
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S

VP

NP-SBJ PP-TMP PP-DIR V DET

Takeshi-san wa raishuu doko ni ikimasu ka

S

PN-INT VP

PN AUX NP-SBJ V PP-DIR PP-TMP

where is Takeshi going ε next week

Figure 6.1: Syntax trees for Japanese (top) and English question

Let us have a look at some other syntactic structures. For instance, to form a question
in Japanese, we can simply take a statement and append the particle ka at the end of the
sentence. However, in English, we need change the order of the words, placing the auxiliary
verb in front of the subject. Compare the following sentences in Japanese (left) and English.

Takeshi-san wa raishuu Oosaka ni ikimasu ka. Is Takeshi going to Osaka next week?
Takeshi-san wa raishuu doko ni ikimasu ka. Where is Takeshi going next week?
Takeshi-san wa itsu Oosaka ni ikimasu ka. When is Takeshi going to Osaka?

Observe that in Japanese, the only difference between the three questions is the word
Oosaka being replaced by doko (where), or raishuu by itsu (when). The word order and
sentence structure is unaffected. (However, do note that there are also other ways the
questions can be phrased in Japanese.)

On the other hand, in English, the structure of the sentence changes further, as il-
lustrated by the syntax trees in Figure 6.1. The interrogative pronoun (where, when) is
removed from its “original” position—that is, the position of the corresponding preposi-
tional phrase—and placed at the beginning of the sentence.1

To reflect this in our grammar, we can add nonterminal symbol PN-INT to NO and
terminal symbol PN to both TI and TO. To PI , we add rules

1q : S → NP-SBJ VP DET〈ka〉,
4q : PP-TMP → PN〈itsu〉,
5q : PP-DIR → PN〈doko〉 DET〈ni〉,

1This is a common principle known as wh-movement, which is present in many languages besides English.
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and to PO, rules

1q : S → AUXx NP-SBJ VP,
3q : VP → V PP-DIR PP-TMP,

1qi : S → PN-INT AUXx NP-SBJ VP,
7q : PN-INT → PN

Finally, we add matrices m1q,m1qi : 1q 3, m4q : 4q, m5q : 5q to MI and matrices m1q : 1q 3q,
m1qi : 1qi 3q, m4q : 7q 4z, m5q : 7q 5z to MO (recall that the rules 4z and 5z erase PP-TMP
and PP-DIR, respectively).

An example of a derivation follows.

SI ⇒ NP-SBJ PP-TMP PP-DIR V〈ikimasu〉 DET〈ka〉 [m1qi]
⇒ NP3〈Takeshi-san〉 DET〈wa〉 PP-TMP PP-DIR V〈ikimasu〉 DET〈ka〉 [m2c]
⇒ NP3〈Takeshi-san〉 DET〈wa〉 NP〈raishuu〉 PP-DIR V〈ikimasu〉

DET〈ka〉 [m4]
⇒ NP3〈Takeshi-san〉 DET〈wa〉 NP〈raishuu〉 PN〈doko〉 DET〈ni〉 V〈ikimasu〉

DET〈ka〉 [m5q]

SO ⇒ PN-INT AUXx〈be〉 NP-SBJ V〈going〉 PP-DIR PP-TMP [m1qi]
⇒ PN-INT AUX3〈is〉 NP3〈Takeshi〉 V〈going〉 PP-DIR PP-TMP [m2c]
⇒ PN-INT AUX3〈is〉 NP3〈Takeshi〉 V〈going〉 PP-DIR NP〈next week〉 [m4]
⇒ PN〈where〉 AUX3〈is〉 NP3〈Takeshi〉 V〈going〉 NP〈next week〉 [m5q]

Note that the matrices ensuring subject-verb agreement (see Example 6.2) work without
any changes for all of the structures discussed above. Clearly, it is possible to capture the
relation within a context-free grammar. In that case, however, the necessary grammatical
information has to be propagated through the derivation tree. This means that we have to
add separate rules covering all possibilities (person, number. . . ) for each of the structures,
even though the structures themselves are not actually affected. Using SMAT or SSCG, we
are able to describe the relation more easily, with only a relatively small number of rules.

Arguably, the presented example is somewhat special in that to be is an irregular verb.
In English, we usually only need to distinguish two cases: third person singular and anything
else. In languages with rich inflection, such as Czech, this advantage becomes even more
important.

Let us now consider translation between Czech and English. Czech is a relatively chal-
lenging language in terms of natural language processing. It is a free-word-order language
with rich inflection (see [31]).

For example, consider the Czech sentence

Dva růžoví sloni přišli na přednášku.
(Two pink elephants came to the lecture.)

All of the following permutations of words also make for a valid sentence:

dva růžoví sloni přišli na přednášku dva růžoví sloni na přednášku přišli
růžoví sloni přišli na přednášku dva růžoví sloni na přednášku přišli dva
dva sloni přišli na přednášku růžoví dva sloni na přednášku přišli růžoví
sloni přišli na přednášku dva růžoví sloni na přednášku přišli dva růžoví
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S

NP VP

NUM ADJ N V PP

dva růžoví sloni přišli na přednášku

S

NP VP

ADJ N V PP NUM

růžoví sloni přišli na přednášku dva

Figure 6.2: Syntax trees for example sentences in Czech

S

NP VP NUM

ADJ N V PP

růžoví sloni přišli na přednášku dva

Figure 6.3: Modified syntax tree

There may be differences in meaning or emphasis, but the syntactic structure remains
the same. Why is this problematic? Compare the syntax trees in Figure 6.2. Because of the
crossing branches (non-projectivity), the second tree cannot be produced by any CFG. Of
course, it is still possible to construct a CFG that generates the sentence růžoví sloni přišli
na přednášku dva if we consider a different syntax tree, for example such as in Figure 6.3.
However, this tree no longer captures the relation between the noun sloni and its modifying
numeral dva (represented by the dotted line). We need to know this relation for instance to
ensure agreement between the words (person, number, gender. . . ), so that we can choose
their appropriate forms.

As mentioned above, in a purely context-free framework, this can be complicated. The
necessary information has to be propagated through the derivation tree, even if the structure
is not actually affected, and this can result in a high number of rules. Recall that in GPSGs,
for instance, this is countered by the introduction of metarules and features (see Section 3.1).
With MATs, we can instead represent the relations using matrices.

Example 6.3. Here, we present an example of SMATH = (Gcz,Mcz, Gen,Men,Ψ, ϕcz, ϕen)
that describes the translations between the English sentence two pink elephants came to
the lecture and any of the above Czech sentences, correctly distinguishing between male
and female gender in Czech (to demonstrate female gender, we also include opice in Czech,
monkeys in English). Note that H is actually more general (for example allowing multi-
ple adjectives). It is designed for easy extension to include other grammatical categories
(person. . . ) as well as different syntactic structures.
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For Czech, let Gcz contain the following context-free rules (nonterminals are in capitals,
Scz is the start symbol):

s : Scz → NP VP NUM ADJS, np : NP → NUM ADJS N,
vp : VP → ADVS V ADVS, numε : NUM → ε,

adjs : ADJS → ADJ ADJS, adjsε : ADJS → ε,
advs : ADVS → ADV ADVS, advsε : ADVS → ε,

nm : N → Nm, nf : N → Nf ,
nmm : Nm → Nm, nff : Nf → Nf ,

vm : V → Vm, vf : V → Vf ,
adjm : ADJ → ADJm, adjf : ADJ → ADJf ,
adv : ADV → PP, numm : NUM → NUMm,

numf : NUM → NUMf , dict1 : Nm → sloni ,
dict2 : Nf → opice, dict3m : Vm → přišli ,

dict3f : Vf → přišly , dict4m : ADJm → růžoví,
dict4f : ADJf → růžové , dict5m : NUMm → dva,
dict5f : NUMf → dvě , dict6 : PP → na přednášku

Similarly, for English, let Gen contain the following rules (again, nonterminals are in
capitals, and Sen is the start symbol):

s : Sen → NP VP, np : NP → NUM ADJS N,
vp : VP → V ADVS, numε : NUM → ε,

adjs : ADJS → ADJ ADJS, adjsε : ADJS → ε,
advs : ADVS → ADV ADVS, advsε : ADVS → ε,
adv : ADV → PP, dict1 : N → elephants,

dict2 : N → monkeys, dict3 : V → came,
dict4 : ADJ → pink , dict5 : NUM → two,
dict6 : PP → to the lecture

Finally, let Mcz and Men contain the following matrices:

Mcz Men Mcz Men

s : s s np : np np
vp : vp vp num : numε ε

numε : numε numε numε adjs : adjs adjs
adjsε : adjsε adjsε adjsε advs : advs advs
advsε : advsε advsε advsε nm : nm ε

nf : nf ε vm : vm nmm ε
vf : vf nff ε adjm : adjm nmm ε

adjf : adjf nff ε adv : adv adv
numm : numm nmm ε numf : numf nff ε

dict1 : dict1 dict1 dict2 : dict2 dict2

dict3m : dict3m dict3 dict3f : dict3f dict3

dict4m : dict4m dict4 dict4f : dict4f dict4

dict5m : dict5m dict5 dict5f : dict5f dict5

dict6 : dict6 dict6
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In this example, we have chosen to include the words themselves directly in the grammar
rules (rather than assuming a separate dictionary) to illustrate this approach as well. For
instance, consider the rule dict5m in Gcz. This rule encodes the fact that the word dva (in
Czech) is a numeral, of male gender (in practice, there can be much more information). We
call this kind of rules dictionary rules.

Further, note for example the matrix adjf in Mcz, which ensures agreement between
noun and adjective (both must be in female gender). Another interesting matrix is adjsε,
which terminates generation of adjectives. In the Czech sentence in this example, we have
two positions where adjectives can be placed (directly within the noun phrase or at the end
of the sentence). In English, there is only one possible position (within the noun phrase).
This is why the rule ADJS → ε is used twice in Czech, but only once in English.

Also observe that the linked matrices (sharing the same label) in Mcz and Men may
contain completely different rules and they can even be empty (ε), in which case the corre-
sponding grammar does not change its sentential form in that step. The definitions of MAT
and SMAT allow for this kind of flexibility when describing both individual languages and
their translations.

Example of a derivation in Czech follows.

Scz ⇒ NP VP NUM ADJS [s]
⇒ NUM ADJS N VP NUM ADJS [np]
⇒ NUM ADJS N ADVS V ADVS NUM ADJS [vp]
⇒ ADJS N ADVS V ADVS NUM ADJS [num]
⇒ ADJ ADJS N ADVS V ADVS NUM ADJS [adjs]
⇒ ADJ N ADVS V ADVS NUM [adjsε]
⇒ ADJ N ADVS V ADV ADVS NUM [advs]
⇒ ADJ N V ADV NUM [advsε]
⇒ ADJ Nm V ADV NUM [nm]
⇒ ADJ Nm Vm ADV NUM [vm]
⇒ ADJm Nm Vm ADV NUM [adjm]
⇒ ADJm Nm Vm PP NUM [adv ]
⇒ ADJm Nm Vm PP NUMm [numm]
⇒ ADJm sloni Vm PP NUMm [dict1]
⇒ ADJm sloni přišli PP NUMm [dict3m]
⇒ růžoví sloni přišli PP NUMm [dict4m]
⇒ růžoví sloni přišli na přednášku NUMm [dict5]
⇒ růžoví sloni přišli na přednášku dva [dict6m]

The corresponding derivation in English may look like this:

Sen ⇒ NP VP [s]
⇒ NUM ADJS N VP [np]
⇒ NUM ADJS N V ADVS [vp]
⇒ NUM ADJS N V ADVS [num]
⇒ NUM ADJ ADJS N V ADVS [adjs]
⇒ NUM ADJ N V ADVS [adjsε]
⇒ NUM ADJ N V ADV ADVS [advs]
⇒ NUM ADJ N V ADV [advsε]
⇒ NUM ADJ N V ADV [nm]
⇒ NUM ADJ N V ADV [vm]
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S

NP VP NUM ADJS

NUM ADJS N ADVS V ADVS ε

ε ADJ ADJS Nm ε ADV ADVS

ADJm ε Nm Vm PP ε NUMm

růžoví sloni přišli na přednášku dva

Figure 6.4: Derivation tree of Gcz

⇒ NUM ADJ N V ADV [adjm]
⇒ NUM ADJ N V PP [adv ]
⇒ NUM ADJ N V PP [numm]
⇒ NUM ADJ elephants Vm PP [dict1]
⇒ NUM ADJ elephants came PP [dict3m]
⇒ NUM pink elephants came PP [dict4m]
⇒ NUM pink elephants came to the lecture [dict5]
⇒ two pink elephants came to the lecture [dict6m]

The entire derivation tree for the Czech sentence is shown in Figure 6.4. The dotted lines
represent relations described by matrices. The triangle from Nm to Nm is an abstraction
which in this particular case essentially means that this step is repeated until all agreement
issues are resolved.

We can achieve similar results using SSCGs. For example the matrix adjf in Mcz can
be represented by two scattered-context rules (ADJ, Nf )→ (ADJf , Nf ) and (Nf , ADJ)→
(Nf , ADJf ). Note that we need two rules, because the nonterminal order is important in
SCG (this is one of the key differences between SMAT and SSCG). In this case, we need
an additional rule in SSCG. However, this can also be an advantage, because it allows us
to easily distinguish between left and right modifiers. For example, if we only have the first
rule (ADJ, Nf ) → (ADJf , Nf ), it means that the adjective always has to occur on the left
of the noun.

6.2 Rule-Restricted Transducers

In this section, we discuss the applications perspectives of RTs. The original results, obser-
vations, and examples presented here were first published in [10].

First, to demonstrate the basic idea, we perform the passive transformation of a simple
English sentence

The cat caught the mouse.
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S

NP-SBJ VP

NP V NP

DET N DET N

the cat caught the mouse

⇒

S

NP-SBJ VP

NP V PP

DET N AUX Vpp P NP

DET N

the mouse was caught by the cat

Figure 6.5: Example of the passive transformation in English

The passive transformation means transforming a sentence in active voice into passive,
and it is a well-known principle that is common to many languages. For the above sentence,
the passive form is

The mouse was caught by the cat.

Figure 6.5 shows the corresponding syntax trees. Essentially, what we need to do is the
following:

1. swap the subject and the object,

2. add the preposition by in correct position, and

3. change the verb into passive form, using the auxiliary verb to be in appropriate form.

The verb to be is irregular and has many different forms (paradigms) depending not
only on tense, but also on person and number (see Table 6.1 on page 57). In most cases,
we can see the tense directly from the main verb in the active form, but for the other two
categories (person and number), we need to look at the subject (the object in the original
sentence).

Example 6.4. Consider an RT Γ = (M,G,Ψ), where M = (Q,Σ, δ, 0, F ), G = (N,T, P ,
S) such that

• Q = {0, 1, 2, 3, 4, 5, 6, 7, 8a, 8b, 8c, 8d, 8e, 8f , 9},

• Σ = {N1s, N2s, N3s, N1p, N2p, N3p, Vpas, Vps, Vpp, DET, P, AUXpas1s, AUXpas2s,
AUXpas3s, AUXpas1p, AUXpas2p, AUXpas3p, AUXps1s, AUXps2s, AUXps3s, AUXps1p,
AUXps2p, AUXps3p},

• F = {9},

• N = {S, NP-SBJ, NP, VP, PP, N?, V?, AUXpas?, AUXps?},

• T = Σ,
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• δ =



r1 : 0 → 1, r2 : 1 → 2, r3 : 2 → 3,
r4 : 3DET → 4, r5a : 4N1s → 3, r5b : 4N2s → 3,
r5c : 4N3s → 3, r5d : 4N1p → 3, r5e : 4N2p → 3,
r5f : 4N3p → 3, r6a : 3Vpas → 5, r6b : 3Vps → 5,
r7 : 5 → 6, r8 : 6DET → 7, r9a : 7N1s → 8a,
r9b : 7N2s → 8b, . . . r9f : 7N3p → 8f ,
r10a : 8a → 9, r10b : 8b → 9, r10f : 8f → 9


,

• P =



p1 : S → NP-SBJ VP, p2 : NP-SBJ → NP,
p3 : NP → DET N?, p4a : N? → N1s,
p4b : N? → N2s, . . .
p4f : N? → N3p, p5 : VP → V? PP,
p6 : PP → P NP, p7a : V? → AUXpas? Vpp,
p7b : V? → AUXps? Vpp, p8a : AUXpas? → AUXpas1s,
p8b : AUXpas? → AUXpas2s, . . .
p8f : AUXpas? → AUXpas3p, p9a : AUXps? → AUXps1s,
p9b : AUXps? → AUXps2s, . . .
p9f : AUXps? → AUXps3p



,

• Ψ = {(r1, p1), (r2, p5), (r3, p6), (r4, p3), (r5a, p4a), (r5b, p4b), . . . , (r5f , p4f ), (r6a, p7a),
(r6b, p7b), (r7, p2), (r8, p3), (r9a, p4a), (r9b, p4b), . . . , (r9f , p4f ), (r10a, p8a), (r10b, p8b),
. . . , (r10f , p8f ), (r10a, p9a), (r10b, p9b), . . . , (r10f , p9f )}.

For the sentence the cat caught the mouse from the above example, the computation
can proceed as follows:

(0 DET〈the〉 N3s〈cat〉 Vpas〈caught〉 DET〈the〉 N3s〈mouse〉, S)
⇒ (1 DET〈the〉 N3s〈cat〉 Vpas〈caught〉 DET〈the〉 N3s〈mouse〉, NP-SBJ VP)

[(r1, p1)]
⇒ (2 DET〈the〉 N3s〈cat〉 Vpas〈caught〉 DET〈the〉 N3s〈mouse〉, NP-SBJ V?

PP) [(r2, p5)]
⇒ (3 DET〈the〉 N3s〈cat〉 Vpas〈caught〉 DET〈the〉 N3s〈mouse〉, NP-SBJ V?

P〈by〉 NP) [(r3, p6)]

⇒ (4 N3s〈cat〉 Vpas〈caught〉 DET〈the〉 N3s〈mouse〉, NP-SBJ V? P〈by〉
DET〈the〉 N?) [(r4, p3)]

⇒ (3 Vpas〈caught〉 DET〈the〉 N3s〈mouse〉, NP-SBJ V? P〈by〉 DET〈the〉
N3s〈cat〉) [(r5c, p4c)]

⇒ (5 DET〈the〉 N3s〈mouse〉, NP-SBJ AUXpas?〈be〉 Vpp〈caught〉 P〈by〉
DET〈the〉 N3s〈cat〉) [(r6a, p7a)]

⇒ (6 DET〈the〉 N3s〈mouse〉, NP AUXpas?〈be〉 Vpp〈caught〉 P〈by〉 DET〈the〉
N3s〈cat〉) [(r7, p2)]

⇒ (7 N3s〈mouse〉, DET〈the〉 N? AUXpas?〈be〉 Vpp〈caught〉 P〈by〉 DET〈the〉
N3s〈cat〉) [(r8, p3)]

⇒ (8c, DET〈the〉 N3s〈mouse〉 AUXpas?〈be〉 Vpp〈caught〉 P〈by〉 DET〈the〉
N3s〈cat〉) [(r9c, p4c)]

⇒ (9, DET〈the〉 N3s〈mouse〉 AUXpas3s〈was〉 Vpp〈caught〉 P〈by〉 DET〈the〉
N3s〈cat〉) [(r10c, p8c)]
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For clarity, in each computation step, the input symbol to be read (if any) and the
nonterminal to be rewritten are underlined. Moreover, the text in angled brackets (〈〉)
shows the words associated with the symbols for the given example sentence, but note
that this is not a part of the formalism itself. This specifier is assigned to all terminals.
Nonterminals are only specified by words when the relation can be established from the
computation performed so far (for example, we cannot assign a word before we read the
corresponding input token).

First (in states 0, 1, and 2), we generate the expected basic structure of the output
sentence. Note that this is done before reading any input. In states 3 and 4, we read the
subject of the original sentence, states 5 and 6 read the verb, and the rest of the states is
used to process the object. When we read the verb, we generate its passive form, consisting
of to be and the verb in past participle. However, at this point, we know the tense (in this
case, past simple), but do not know the person or number yet. The missing information
is represented by the question mark symbol (?) in the nonterminal AUXpas?. Later, when
we read the object of the original sentence, we rewrite AUXpas? to a terminal. In this case,
the object is in third person singular, which gives us the terminal AUXpas3s (meaning that
the correct form to use here is was).

Next, we present examples of translation between different languages. We focus on
Japanese, Czech, and English.

One problem when translating into Czech is that there is very rich inflection and the
form of the words reflects many grammatical categories, such as case, gender, or number
(see [31], where the author discusses this issue with regard to computational linguistics).
To illustrate, compare the following sentences in Japanese, English, and Czech.

Zasshi o yondeitta onna no hito wa watashi no shiriai deshita.
Zasshi o yondeitta otoko no hito wa watashi no shiriai deshita.

The woman who was reading a magazine was an acquitance of mine.
The man who was reading a magazine was an acquitance of mine.

Žena, která četla časopis, byla moje známá.
Muž, který četl časopis, byl můj známý.

As we can see, in Czech, nearly every word is different, depending on the gender of the
subject. In contrast, in both Japanese and English, the two sentences only differ in one
word, namely onna no hito (woman) and otoko no hito (man).2

The above sentences also give us an example of some structural differences between
Japanese and Czech. In Czech and English, the structure of the sentence is very similar,
but in Japanese, there is no word that correspond directly to který (which, who, . . . ).
Instead, this relation is represented by the form of the verb yondeitta (the dictionary form
is yomu, meaning to read). Compare the syntax trees in Figure 6.6.

2Technically, onna no hito literally translates to woman’s person or female person, with onna itself
meaning woman, female. However, referring to a person only by onna may have negative connotations in
Japanese. This is analogous for otoko no hito.
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žena která četla časopis byla moje známá

Figure 6.6: Syntax trees for Japanese (top) and Czech sentence
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Example 6.5. Consider an RT Γ = (M,G,Ψ), where M = (Q,Σ, δ, 0, F ), G = (N,T, P ,
S) such that

• Q = {0,m,m1,m2, f, f1, f2, n, n1, n2, 1m, 1f, 1n},

• Σ = {NPm, NPf , NPn, NP?, V, DET, #},

• F = {1m, 1f, 1n},

• N = {S, S′, NP-SBJ, NP?, VP, PN?, V?, X},

• T = {NPm, NPf , NPn, Vm, Vf , Vn, PNm, PNf , PNn},

• δ =



r1 : 0V → 1, r2 : 1 → 0, r3 : 0NP? → 0,
r4 : 0DET → 0, r5m : 0NPm → m, r5f : 0NPf → f,
r5n : 0NPn → n, rm1 : mV → m1, rm2 : m1 → m2,
rm3 : m2 → m, rm4 : mDET → m, rm5 : mNP? → m,

rm5m : mNPm → m, rm5f : mNPf → m, rm5n : mNPn → m,
rm6 : m# → 1m, rm7 : 1m → 1m, rf1 : fV → f1,
rf2 : f1 → f2, . . . rf7 : 1f → 1f,
rn1 : nV → n1, rn2 : n1 → n2, . . .
rn7 : 1n → 1n


,

• P =



p1 : S → NP-SBJ VP X, p2 : NP-SBJ → NP?,
p3m : NP? → NPm, p3f : NP? → NPf ,
p3n : NP? → NPn, p4 : NP? → NP?,
p5 : NP? → NP? S′, p6 : VP → V? NP?,

p7m : V? → Vm, p7f : V? → Vf ,
p7n : V? → Vn, p8 : S′ → PN? VP,
p9m : PN? → PNm, p9f : PN? → PNf ,
p9n : PN? → PNn, p10 : X → ε


,

• Ψ = {(r1, p1), (r2, p6), (r3, p4), (r4, p2), (r5m, p4), (r5f , p4), (r5n, p4), (rm1, p5), (rm2,
p8), (rm3, p6), (rm4, p4), (rm5, p4), (rm5m, p3m), (rm5f , p3f ), (rm5n, p3n), (rm6, p10),
(rm7, p3m), (rm7, p7m), (rm7, p9m), (rf1, p5), (rf2, p8), (rf3, p6), (rf4, p4), (rf5, p4),
(rf5m, p3m), (rf5f , p3f ), (rf5n, p3n), (rf6, p10), (rf7, p3f ), (rf7, p7f ), (rf7, p9f ), (rn1, p5),
(rn2, p8), (rn3, p6), (rn4, p4), (rn5, p4), (rn5m, p3m), (rn5f , p3f ), (rn5n, p3n), (rn6, p10),
(rn7, p3n), (rn7, p7n), (rn7, p9n)}.

We have added two dummy symbols: the input symbol #, which acts as the endmarker,
and the nonterminal X, which we generate at the beginning of the computation and then
erase when all the input has been read (including #).

In this example, we read the input sentence in reverse order (right to left). Clearly, this
makes no difference from a purely theoretical point of view, but it can be more suitable in
practice due to the way how Japanese sentences are organized.

The computation transforming the sentence zasshi o yondeitta onna no hito wa watashi
no shiriai deshita into žena, která četla časopis, byla moje známá can proceed as follows:
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(0 V〈deshita〉 NP?〈watashi no shiriai〉 DET〈wa〉 NPf 〈onna no hito〉
V〈yondeitta〉 DET〈o〉 NPm〈zasshi〉 #, S)

⇒ (1 NP?〈watashi no shiriai〉 DET〈wa〉 NPf 〈onna no hito〉 V〈yondeitta〉
DET〈o〉 NPm〈zasshi〉 #, NP-SBJ VP X) [(r1, p1)]

⇒ (0 NP?〈watashi no shiriai〉 DET〈wa〉 NPf 〈onna no hito〉 V〈yondeitta〉
DET〈o〉 NPm〈zasshi〉 #, NP-SBJ V?〈byl〉 NP? X) [(r2, p6)]

⇒ (0 DET〈wa〉 NPf 〈onna no hito〉 V〈yondeitta〉 DET〈o〉 NPm〈zasshi〉 #,

NP-SBJ V?〈byl〉 NP?〈můj známý〉 X) [(r3, p4)]
⇒ (0 NPf 〈onna no hito〉 V〈yondeitta〉 DET〈o〉 NPm〈zasshi〉 #, NP?

V?〈byl〉 NP?〈můj známý〉 X) [(r4, p2)]
⇒ (f V〈yondeitta〉 DET〈o〉 NPm〈zasshi〉 #, NP?〈žena〉 V?〈byl〉

NP?〈můj známý〉 X) [(r5f , p4)]
⇒ (f1 DET〈o〉 NPm〈zasshi〉 #, NP?〈žena〉 S′ V?〈byl〉 NP?〈můj známý〉 X)

[(rf1, p5)]
⇒ (f2 DET〈o〉 NPm〈zasshi〉 #, NP?〈žena〉 PN?〈který〉 VP V?〈byl〉

NP?〈můj známý〉 X) [(rf2, p8)]
⇒ (f DET〈o〉 NPm〈zasshi〉 #, NP?〈žena〉 PN?〈který〉 V?〈četl〉 NP? V?〈byl〉

NP?〈můj známý〉 X) [(rf3, p6)]
⇒ (f NPm〈zasshi〉 #, NP?〈žena〉 PN?〈který〉 V?〈četl〉 NP? V?〈byl〉

NP?〈můj známý〉 X) [(rf4, p4)]
⇒ (f #, NP?〈žena〉 PN?〈který〉 V?〈četl〉 NPm〈časopis〉 V?〈byl〉

NP?〈můj známý〉 X) [(rf5m, p3m)]
⇒ (1f, NP?〈žena〉 PN?〈který〉 V?〈četl〉 NPm〈časopis〉 V?〈byl〉

NP?〈můj známý〉) [(rf6, p10)]
⇒ (1f, NPf 〈žena〉 PN?〈který〉 V?〈četl〉 NPm〈časopis〉 V?〈byl〉

NP?〈můj známý〉) [(rf7, p3f )]
⇒ (1f, NPf 〈žena〉 PNf 〈která〉 V?〈četl〉 NPm〈časopis〉 V?〈byl〉

NP?〈můj známý〉) [(rf7, p9f )]
⇒ (1f, NPf 〈žena〉 PNf 〈která〉 Vf 〈četla〉 NPm〈časopis〉 V?〈byl〉

NP?〈můj známý〉) [(rf7, p7f )]
⇒ (1f, NPf 〈žena〉 PNf 〈která〉 Vf 〈četla〉 NPm〈časopis〉 Vf 〈byla〉

NP?〈můj známý〉) [(rf7, p7f )]

⇒ (1f, NPf 〈žena〉 PNf 〈která〉 Vf 〈četla〉 NPm〈časopis〉 Vf 〈byla〉
NPf 〈moje známá〉) [(rf7, p3f )]

When we first read the word that determines the gender, we move to the state that
represents this gender (state m, n, or f). Note that these states are functionally identical in
the sense that we can read the same input symbols, while performing the same computation
steps in the grammar generating the output. After we have reached the end of input, we
rewrite the nonterminal symbols representing words with as of yet unknown gender to the
corresponding terminal symbols, depending on the state.

As already noted in the previous section, Czech is considered a free-word-order language.
That is, it allows for a wide range of permutations of words in a sentence without changing
its syntactic structure (the meaning of the sentence may be affected). This is perhaps the
main source of the relatively high amount of non-projectivity in Czech sentences.
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Figure 6.7: Non-projective dependency tree (Czech)

Non-projectivity means that there are cross-dependencies. For example, recall the En-
glish sentence

I ate a cake yesterday which was delicious.

from Section 3.1.1 and its dependency tree shown in Figure 3.2. Arguably, the English
example is somewhat artificial. Even though the sentence is well-formed, in most cases it
might be more natural to say simply

I ate a delicious cake yesterday.

In contrast, in Czech, a sentence such as

Nevím, jaký je mezi nimi rozdíl.
(I don’t know what the difference between them is.)

is not at all unusual. The dependency tree for this sentence (see Figure 6.7) is also non-
projective.

For further information about projectivity, and the issue of non-projectivity in the Czech
language in particular, see [32].

The following Example 6.6 illustrates how our formalism can account for some non-
projectivity.

Example 6.6. Consider an RT Γ = (M,G,Ψ), where M = (Q,Σ, δ, 0, F ), G = (N,T, P ,
S) such that

• Q = {0, 1, 2, 3, 4, 5, 6m, 6f, 6n},

• Σ = {Nm, Nf , Nn, V, PN, PNi, DET, P},

• F = {0},

• N = {S, NP-SBJ, NP, VP, PP, V?},

• T = {Nm, Nf , Nn, V, PNm, PNf , PNn, P},

• δ =



r1m : 0Nm → 6m, r1f : 0Nf → 6f, r1n : 0Nn → 6n,
r2 : 0V → 0, r3 : 0PN → 1, r4 : 0PNi → 3,
r5 : 0DET → 0, r6 : 0P → 0, r7 : 1 → 2,
r8 : 2 → 0, r9 : 3 → 4, r10 : 4 → 5,
r11 : 5 → 0, r12m : 6m → 0, r12f : 6f → 0,
r12n : 6n → 0, r13 : 0PN → 0


,
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• P =



p1 : S → NP-SBJ VP, p2 : NP-SBJ → NP,
p3 : NP-SBJ → ε, p4m : NP → Nm,
p4f : NP → Nf , p4n : NP → Nn,
p5 : NP → S, p6m : NP → PNm,
p6f : NP → PNf , p6n : NP → PNn,
p7 : VP → V? PP NP, p8 : V? → V,
p9 : PP → P NP, p10 : PP → ε,


,

• Ψ = {(r1m, p4m), (r1f , p4f ), (r1n, p4n), (r2, p8), (r3, p1), (r4, p10), (r5, p7), (r6, p9), (r7,
p3), (r8, p7), (r9, p5), (r10, p1), (r11, p2), (r12m, p6m), (r12f , p6f ), (r12n, p6n), (r13, p6m)}.

The computation transforming the English sentence I don’t know what the difference
between them is into the (non-projective) Czech sentence nevím, jaký je mezi nimi rozdíl
proceeds as follows:

(0 PN〈I 〉 V〈don’t know〉 PNi〈what〉 DET〈the〉 Nm〈difference〉 P〈between〉
PN〈them〉 V〈is〉, S)

⇒ (1 V〈don’t know〉 PNi〈what〉 DET〈the〉 Nm〈difference〉 P〈between〉
PN〈them〉 V〈is〉, NP-SBJ VP) [(r3, p1)]

⇒ (2 V〈don’t know〉 PNi〈what〉 DET〈the〉 Nm〈difference〉 P〈between〉
PN〈them〉 V〈is〉, VP) [(r7, p3)]

⇒ (0 V〈don’t know〉 PNi〈what〉 DET〈the〉 Nm〈difference〉 P〈between〉
PN〈them〉 V〈is〉, V? PP NP) [(r8, p7)]

⇒ (0 PNi〈what〉 DET〈the〉 Nm〈difference〉 P〈between〉 PN〈them〉 V〈is〉,
V〈nevím〉 PP NP) [(r2, p8)]

⇒ (3 DET〈the〉 Nm〈difference〉 P〈between〉 PN〈them〉 V〈is〉, V〈nevím〉 NP)
[(r4, p10)]

⇒ (4 DET〈the〉 Nm〈difference〉 P〈between〉 PN〈them〉 V〈is〉, V〈nevím〉 S)
[(r9, p5)]

⇒ (5 DET〈the〉 Nm〈difference〉 P〈between〉 PN〈them〉 V〈is〉, V〈nevím〉
NP-SBJ VP) [(r10, p1)]

⇒ (0 DET〈the〉 Nm〈difference〉 P〈between〉 PN〈them〉 V〈is〉, V〈nevím〉
NP〈jaký〉 VP) [(r11, p2)]

⇒ (0 Nm〈difference〉 P〈between〉 PN〈them〉 V〈is〉, V〈nevím〉 NP〈jaký〉 V?

PP NP) [(r5, p7)]
⇒ (6m P〈between〉 PN〈them〉 V〈is〉, V〈nevím〉 NP〈jaký〉 V? PP Nm〈rozdíl〉)

[(r1m, p4m)]
⇒ (0 P〈between〉 PN〈them〉 V〈is〉, V〈nevím〉 PNm〈jaký〉 V? PP Nm〈rozdíl〉)

[(r12m, p6m)]
⇒ (0 PN〈them〉 V〈is〉, V〈nevím〉 PNm〈jaký〉 V? P〈mezi〉 NP Nm〈rozdíl〉)

[(r6, p9)]
⇒ (0 V〈is〉, V〈nevím〉 PNm〈jaký〉 V? P〈mezi〉 PNm〈nimi〉 Nm〈rozdíl〉)

[(r13, p6a)]
⇒ (0, V〈nevím〉 PNm〈jaký〉 V〈je〉 P〈mezi〉 PNm〈nimi〉 Nm〈rozdíl〉)

[(r2, p8)]

The corresponding derivation tree of G is shown in Figure 6.8.
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Figure 6.8: Derivation tree of G

6.3 Summary

In the first two sections of this chapter, we have tried to point out and illustrate the key
advantages of the proposed formal models using select case studies from the Czech, English,
and Japanese language. Here, we summarize them, and compare the respective strengths
and weaknesses of the new synchronous grammars and RTs. The observations presented
are based on our previously published papers [10], [39], and [41].

One of the main advantages of both types of models is their power. As shown in Chap-
ters 4 and 5, both synchronous grammars (with linked rules) and RTs (without leftmost
restriction) are able to describe even some non-context-free languages. Although arguably
relatively rare in practice, there are some features of natural languages that are difficult or
impossible to properly capture with CFGs only (such as cross-dependencies). Furthermore,
even in cases when a purely context-free description is possible, it may require a high num-
ber of rules. Our new models can provide a more economical description thanks to their
increased generative power and, in case of RTs, also accepting power.

Another advantage of our new synchronous grammars is their high flexibility, especially
if we synchronize models that have higher generative power themselves, such as regulated
grammars. In particular, let us consider the case of SMAT. As shown above (Theorem 4.7),
if we synchronize MATs in the proposed fashion, we do not obtain any further increase in
power of the whole system compared to RSCFG or MAT. However, more powerful individual
components allow for easier—and again, more economical—description of each individual
language.

Unlike synchronous grammars, which are symmetric and therefore can be used for bidi-
rectional translation, RTs can only describe translation in one direction. Furthermore,
because their components are relatively simple (an FA and a CFG), RTs are also less flex-
ible than, for example, SMATs and SSCGs. Consequently, the description of linguistic
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structures and features can be more complex (essentially, requiring more rules).
On the other hand, the simplicity of components can also be seen as an important

advantage of RT, especially from a practical viewpoint. Both FAs and CFGs are well-
known and well-studied not only from a theoretical point of view, but also with regards to
practical implementations. For example, there are well-known methods of efficient parsing
for CFGs.

Another advantage of RT lies in its the straightforward and intuitive basic principle
(read input with an FA, generate output with a CFG), which directly corresponds to the
translation task in practice. In contrast, in synchronous grammars, both components gen-
erate sentences.

Finally, note that both types of introduced formal models can be extended for use in
statistical natural processing as well. We can, for example, assign weights (or probabilities)
to rules similarly to probabilistic CFGs or weighted synchronous grammars.
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Chapter 7

Conclusion

In this doctoral thesis, we have presented new grammar systems that can formally describe
translations (or, more specifically, transformations of syntactic structures). We have dis-
cussed some of the theoretical properties of the new models, in particular their generative
and accepting power.

More specifically, we have introduced the idea of synchronization based on linked rules
as a modification of the well-known synchronous grammars. We have extended this prin-
ciple beyond CFGs, to models with regulated rewriting, defining sychronous MATs and
synchronous SCGs.

Further, we have introduced the rule-restricted automaton-grammar transducer, based
on the natural idea of reading some input with an FA and producing an appropriate output
with a CFG, and provided precise formal definitons. We have also considered two of its
variants, namely leftmost restricted RTs and RTs with appearance checking.

We have established the following main results:

1. Rule-synchronized CFGs are more powerful than CFGs, as they characterize the same
class of languages as MATs (see Section 4.1).

2. Synchronous MATs have the same power as MATs (see Section 4.3).

3. Synchronous SCGs are able to generate all recursively enumerable languages (see
Section 4.2).

4. RTs can generate any language that can be generated by some MAT, and they can
accept any language that can be accepted by some k-PBCA (see Section 5.1).

5. Leftmost restricted RTs can only accept and generate context-free languages (see
Section 5.2). Note that this is still an increase in accepting power compared to FAs.

6. RTs with appearance checking can both accept and generate all recursively enumer-
able languages (see Section 5.3).

Figure 7.1 summarizes the results in a graphical representation.
We have also discussed application perspectives of the new models in translation of

natural languages, using select case studies from Czech, English, and Japanese to illustrate
(see Chapter 6). Besides natural language processing, the models can be useful in other
translation and transformation tasks, such as programming language compilation.
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Figure 7.1: Hierarchy of select language classes (for k ≥ 2) incorporating new results
(highlighted by dotted frames). L1 → L2 denotes L1 ⊂ L2 and L1 ↔ L2 denotes
L1 = L2

7.1 Further Research Prospects

Further research prospects include the study of other theoretical properties of the proposed
models, such as descriptional complexity. Although we have already shown which language
classes our new models define, how efficiently they can do so remains an open problem.
That is, we can investigate the effects of different limits placed on, for example, the number
of nonterminal symbols in grammars, states in automata, or rules in both. In MATs, we
can also limit the length of matrices, and similarly in SCGs, the length of scattered context
rules (as sequences of context-free rules).

As we have done with RTs by introducing an appearance checking and a leftmost re-
striction, we can consider other variants of our models and investigate their properties.
For example, we could restrict SSCGs by using propagating SCGs (which are known to be
strictly weaker than SCGs with erasing rules). We can also introduce and study systems
consisting of other well-known grammars and automata.

Extension to more than two components is possible as well. In such case, we could
further investigate the relations to known grammar systems (see [18], [61], or [65]) and
automata systems (see [11], [19], or [57]).

Finally, note that although our synchronous grammars and RTs represent different ap-
proaches and, consequently, are defined differently, there is a significant similarity in their
basic principles. In essence, they are all systems in which the cooperation of components is
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achieved by synchronization of their rules. It might be useful to introduce a more general for-
malism allowing for various components, and thus encompassing all such rule-synchronized
systems.

From a more practical viewpoint, an important area to investigate is syntax analysis.
For practical applications, we need to be able to parse sentences efficiently. There are well-
known parsing methods for CFGs, such as (generalized) LR parsing or chart parsing, but
for models with regulated rewriting, the situation is more complicated. While there have
been some research in this area, particularly for SCGs (see [46] or [73]), efficient parsing
with matrix grammars and scattered context grammars still represents an open problem.

In the examples presented in this work, we have made two important assumptions.
First, we already have the input sentence analysed on a low level—that is, we know where
every word starts and ends (which may be a non-trivial problem in itself in some languages,
such as Japanese) and have some basic grammatical information about it. Furthermore,
we assume that we know the translation of the individual words.

For practical applications in natural language translation, we would need a more com-
plex system, with at least two other components: a part-of-speech tagger (lexical analyzer),
and a dictionary to translate the actual meanings of the words (although we can do this
directly within a grammar by using dictionary rules, as shown in Example 6.3, a separate
dictionary generally allows for more efficient encoding). Then, the component based on the
discussed formal models could be used to transform the syntactic structure of a sentence
and ensure that the words in the translated sentence are in the correct form.
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[20] J. Dassow, H. Fernau, and Gh. Păun. On the leftmost derivation in matrix grammars.
International Journal of Foundations of Computer Science, 10(1):61–80, 1999.
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Appendix A

Index to Language Classes

The following table lists all language classes discussed throughout this text. For each class,
the list includes the abbreviated notation, the full description, and the number of the page
where it is first introduced.

Notation Language class Page

CF Context-free languages 14
CS Context-sensitive languages 14
FIN Finite languages 18
RE Recursively enumerable languages 14
REG Regular languages 14
L (k-CA) Accepted by k-counter automata (k ∈ N) 18
L (k-PBCA) Accepted by partially blind k-counter automata 18
L (FA) Accepted by finite automata 15
L (MAT) Generated by matrix grammars 17
L (MATac) Generated by MATs with appearance checking 17
L (PDA) Accepted by pushdown automata 15
L (RSCFG) Generated by rule-synchronized context-free grammars 35
L (RT)1 Accepted by rule-restricted transducers 44
L (RT)2 Generated by rule-restricted transducers 44
L (RTac)1 Accepted by RTs with appearance checking 51
L (RTac)2 Generated by RTs with appearance checking 51
L (RTlm)1 Accepted by RTs with leftmost restriction 48
L (RTlm)2 Generated by RTs with leftmost restriction 48
L (SCG) Generated by scattered context grammars 17
L (SMAT) Generated by synchronous matrix grammars 40
L (SSCG) Generated by synchronous scattered context grammars 39
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