BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

NN

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

FAKULTA INFORMACNICH TECHNOLOGII
f"' USTAV INFORMAGNICH SYSTEMU

SYNCHRONOUS FORMAL SYSTEMS BASED ON
GRAMMARS AND TRANSDUCERS

SYNCHRONNIi FORMALNi SYSTEMY ZALOZENE NA GRAMATIKACH A PREVODNICICH

PHD THESIS EXTENDED ABSTRACT
TEZE DISERTACNIi PRACE

AUTHOR PETR HORACEK
AUTOR PRACE

SUPERVISOR Prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCI PRACE

BRNO 2014



Abstract

This doctoral thesis studies synchronous formal systems based on grammars and trans-
ducers, investigating both theoretical properties and practical application perspectives. It
introduces new concepts and definitions building upon the well-known principles of regu-
lated rewriting and synchronization. An alternate approach to synchronization of context-
free grammars is proposed, based on linked rules. This principle is extended to regulated
grammars such as scattered context grammars and matrix grammars. Moreover, based on a
similar principle, a new type of transducer called the rule-restricted transducer is introduced
as a system consisting of a finite automaton and context-free grammar. New theoretical
results regarding the generative and accepting power are presented. The last part of the
thesis studies linguistically-oriented application perspectives, focusing on natural language
translation. The main advantages of the new models are discussed and compared, using
select case studies from Czech, English, and Japanese to illustrate.

Abstrakt

Tato disertac¢ni prace studuje synchronni formalni systémy zalozené na gramatikach a pre-
vodnicich a zkouméa jak jejich teoretické vlastnosti, tak i perspektivy praktickych ap-
likaci. Préace predstavuje nové koncepty a definice vychézejici ze zndmych principt fizeného
prepisovani a synchronizace. Navrhuje alternativni zptsob synchronizace bezkontextovych
gramatik, zaloZeny na propojeni pravidel. Tento princip rozsifuje také na fizené gramatiky,
konkrétné gramatiky s rozptylenym kontextem a maticové gramatiky. Dale je predstaven
na podobném principu zaloZzeny novy druh pievodniku, tzv. pravidlové omezeny prevod-
nik. Jedna se o systém slozeny z konecného automatu a bezkontextové gramatiky. Prace
prezentuje nové teoretické vysledky ohledné generativni a prijimajici sily. Posledni ¢ast
prace zkouma moznosti lingvisticky orientovanych aplikaci se zamerenim na preklad priro-
zeného jazyka. Diskutuje a srovnava hlavni vyhody novych modeld s vyuzitim vybranjch
pripadovych studii z ¢eského, anglického a japonského jazyka pro ilustraci.

Keywords

formal systems, grammars, transducers, regulated rewriting, synchronization, natural lan-
guage syntax, natural language translation

Va4 Vd
Klicova slova
formalni systémy, gramatiky, prevodniky, Fizené prepisovani, synchronizace, syntaxe priro-
zeného jazyka, preklad prirozeného jazyka

Citation

Petr Horacek: Synchronous Formal Systems Based on Grammars and Transducers, PhD
thesis, Brno, FIT BUT, 2014

Citace

Petr Horacek: Synchronous Formal Systems Based on Grammars and Transducers, diser-
tac¢ni prace, Brno, FIT VUT v Brné¢, 2014



Contents

1 Introduction
1.1 Motivation . . . . . . . . e e e e e e e e
1.2 Thesis Organization . . . . . . .. .. .. o e
1.2.1 Introduction . . . . .. .. . . . ...
1.2.2  Synchronous Formal Systems . . . . ... ... ... ... .. ....
1.2.3 Application Perspectives and Final Remarks . . .. ... .. .. ..
1.3 Extended Abstract Organization . . . . ... ... ... ... ........

2 Synchronous Systems Based on Grammars
2.1 Rule-Synchronized Context-Free Grammar . . . . . . . . .. ... ... ...
2.1.1 Generative Power . . . . . . . .. ...
2.2 Synchronous Scattered Context Grammar . . . . . . ... ... ... ....
2.2.1 Generative Power . . . . . .. ... L0
2.3 Synchronous Matrix Grammar . . . . . .. .. ... ... ...
2.3.1 Generative Power . . . . . . ... L Lo

3 Synchronous Systems Based on Transducers
3.1 Rule-Restricted Transducer . . . . . .. .. ... ... ... ... ...
3.1.1 Generative Power . . . . . . .. . ... ... e
3.1.2 Accepting Power . . . .. .. .. ...
3.2 Rule-Restricted Transducer with Leftmost Restriction . . .. ... ... ..
3.2.1 Generative Power . . . . . .. ...
3.2.2 Accepting Power . . . . .. ...
3.3 Rule-Restricted Transducer with Appearance Checking . . . . . . .. .. ..
3.3.1 Generative Power . . . . . .. ... L
3.3.2 Accepting Power . . . . ...

4 Linguistic Applications: Perspectives
4.1 Synchronous Grammars . . . . . . . .. .. . e
4.2 Rule-Restricted Transducers . . . . . . . . . .. ... o
4.3 SUMMATY « . o v v v et e e e e e e e e e e

5 Conclusion
5.1 Further Research Prospects . . . . . . . . . ... .. . ... ...,

A Curriculum Vitae

SO TR NN

12
13
13
14

15
15
16
17
19
19
20
20
21
22

23
24
29
33

34
35

39



Chapter 1

Introduction

Formal language theory is an essential part of theoretical computer science. It defines
and studies languages as sets of strings (words, sentences), which are finite sequences of
symbols. This definition covers natural languages (e.g. Czech, English, or Japanese) as
well as artificial languages (such as programming languages).

To describe languages mathematically, formal language theory studies models which
define them. Many of these models are based on rewriting systems—that is, formal systems
which gradually change strings by rewriting some of their symbols in each step, according
to a given set of rules. Most rewriting systems fall into one of the two basic categories:
generative language models (generally known as grammars), and accepting language models
(generally known as automata). A generative model defines a language by generating all
strings of this language. In other words, a string belongs to this language if and only if it
can be generated by the model. An accepting model analyzes a string and either accepts,
or rejects it. The language defined by the accepting model is the set of all strings which
the model accepts.

The applications of formal language theory are found in many scientific disciplines. It
provides mathematical background primarily in areas that deal with languages themselves
(linguistics, programming language theory etc.) but there are also other topics that can be
formalized as languages (e.g. DNA and RNA sequences in biology).

Of particular interest to our work is the area of computational linguistics. Specifically,
we focus on formal description of natural language syntax and its transformations. We study
the application perspectives of known formal models and introduce new related concepts
and definitions. We also study the theoretical properties of the models and present new
results.

1.1 Motivation

Natural language processing is a field of theoretical informatics and linguistics and is con-
cerned with the interactions between computers and human (natural) languages. It is
defined as a theoretically motivated range of computational techniques for analyzing and
representing naturally occurring texts (which means any language) at one or more levels of
linguistic analysis for the purpose of achieving human-like language processing for a range
of tasks or applications (according to [4]).

The history goes back to the the late 1940s, when there was an effort to understand and
formally describe the syntax of natural languages. A big step forward was the publishing of



the book called Syntactic Structures, by Noam Chomsky, introducing the idea of generative
grammar.

At first, computer processing of natural languages was in interest of artificial inteligence
as a part of human-computer interaction. Subsequently, it split into two separate disciplines.
Today, natural language processing studies many other aspects of natural languages besides
their syntax (such as morphology or semantics). This discipline is focused mainly on prac-
tical applications. Some of the most frequent tasks are information retrieval, information
extraction, question answering, summarization, and machine translation, and in broader
scope, we can even include tasks as speech recognition and speech synthesis.

The second discipline encompasses a set of formalisms, which are, in general, known
as formal language theory. Formal language theory is considered a part of theoretical
computer science, and it focuses mainly on theoretical studies of various formal models and
their properties. Its applications are now found in many other areas besides computational
linguistics.

One of the major trends in formal language theory is regulated rewriting. This concept
was introduced already in the 1960s, as the models of the now traditional Chomsky hierarchy
have been found unsatisfactory for certain practical applications. For example, it has been
argued that some linguistic phenomena could not be described by context-free grammars,
while context-sensitive and unrestricted grammars were inefficient for practical use (because
of the complexity of parsing). Because of this, ways to increase the power of context-free
grammars—while retaining their practical applicability—were investigated.

Regulated rewriting essentially means that we take a certain known formal model (usu-
ally a context-free grammar, for reasons mentioned above) and in some way regulate (hence
the name) the way in which it generates (or, in the case of automata, accepts) sentences.
This can be done by adding some mathematically simple mechanism that controls the use
of rules (such as in programmed grammars), or by changing the form of rules themselves
(as, for example, in scattered context grammars). Thus, the expressive power is increased
by limiting available derivations (or computations).

The purpose of our work is twofold. From a theoretical point of view, we contribute to
the study of formal language theory by introducing new formal models and investigating
their properties. Rather than trying to create completely new formalisms from scratch,
we establish the new models as generalizations, extensions, or modifications of well-known
and well-studied formal models (such as context-free grammars and finite automata) and
principles (such as regulated rewriting and synchronization).

In [22], we have presented an alternate approach to synchronization, based on linking
rules instead of nonterminals. In this fashion, we have extended the principle to models
with regulated rewriting, specifically matrix grammars and scattered context grammars.
We have continued with further theoretical study of synchronous grammars based on linked
rules, and particularly of synchronous versions of regulated grammars, in [20] and [23].

In [6], we have introduced a new type of transducer, the rule-restricted automaton-
grammar transducer, as a system consisting of a finite automaton, which is used to read an
input string, and a context-free grammar, which simultaneously produces a corresponding
output string. Also in [6], we have investigated the theoretical properties—namely, the
generative and accepting power—of this new system and its variants.

For an overview of our new results, see the following Section 1.2, specifically the parts
describing Chapter 2 and Chapter 3 for results concerning synchronous grammars and
transducers, respectively.

Meanwhile, from a more practical viewpoint, we investigate how some of the well-



known and well-studied models from formal language theory can be adapted or extended
for applications in natural language processing. In other words, the ideas and concepts
behind the new formal models mentioned above are motivated by the possibility of their
linguistic applications.

Inspired by such works as [32], where the authors discuss linguistically-oriented ap-
plications of scattered context grammars (using examples from the English language), we
explore similar application perspectives of other regulated formal models as well. In [18], we
have discussed potential applications of matrix grammars in the description of the Japanese
syntax. Subsequently, we have been focusing on translation of natural languages.

Machine translation is one of the major tasks in natural language processing. With
increasing availability of large corpora, corpus-based systems became favoured over rule-
based, using statistical methods and machine-learning techniques. They mostly rely on
formal models that represent local information only, such as n-gram models. However,
recently, there have been attempts to improve results by incorporating syntactic information
into such systems (see [26], [12], or [5]).

To do so, we need formal models that can describe syntactic structures and their trans-
formations. Based on the principles of synchronous grammars (see [3]), we have proposed
synchronous versions of some regulated grammars, such as matrix grammars (see [12]) and
scattered context grammars (see [32]). We first introduced the idea in [19], and further
elaborated upon it in [22]. Revised definitions, a study of theoretical properties, and a
further discussion of linguistically-oriented application perspectives can be found in [23];
applications in particular are also investigated in [21].

Other type of models we can use are transducers (see [2]). Unlike synchronous gram-
mars, which generate a pair of sentences in one derivation and thus define translation, trans-
ducers take a given input sentence and transform it into a corresponding output sentence.
Frequently, these transducers consist of several components, including various automata
and grammars, some of which read their input strings while others produce their output
strings (see [15] or [30]). In [6], we have introduced the rule-restricted automaton-grammar
transducer and its variants, and discussed its advantages for natural language translation,
illustrated by examples from Czech, English, and Japanese.

1.2 Thesis Organization

This doctoral thesis is divided into three parts and seven chapters, organized as follows.

1.2.1 Introduction

The first chapter introduces the topic of our work and presents the motivation behind it.
It also describes the structure of this document and provides an overview of its contents.

Following this introductory chapter, Chapter 2 provides the mathematical background
required for understanding of the topics discussed in this work. First, we summarize the
well-known essential concepts and definitions from set theory, such as sets and relations.
Subsequently, we use these notions to present an introduction to formal language theory. We
give formal definitons of concepts such as alphabet, string, and language. We also introduce
formal models that define languages, namely grammars and automata. We define different
types of languages and present the resulting hierarchy of the respective language classes.
Finally, we describe and formally define several models related to the concept of regulated
rewriting.



In Chapter 3, we present a brief introduction to computational linguistics. The first
section of this chapter provides an overview of select formal models related to natural lan-
guage processing. We discuss both models of historical and practical importance. Trans-
formational grammars, augmented transition networks and generalized phrase structure
grammars are examples of the former category, while the latter includes head-driven phrase
structure grammars, lexical functional grammars, and lexicalized tree-adjoining grammars.
We also mention probabilistic context-free grammar as an example of a formal model used
in statistical natural language processing.

We present the basic concept of dependency grammars as well. Although for the most
part our work does not deal with dependency grammars, they certainly deserve a mention
as an important alternative to phrase structure grammars, which is is also often used in
practice. Moreover, we sometimes use the notion of dependency (and some related notions,
particularly nonprojectivity, the crossing of dependencies) when discussing application per-
spectives of our formal models (Chapter 6).

Finally, we consider the application of some traditional models from formal language
theory as an alternative. We focus on models with regulated rewriting. In particular, we
discuss linguistically-oriented application perspectives of scattered context grammars and
their variant, transformational scattered context grammars.

The second section of Chapter 3 introduces the area of machine translation, which is
one of major tasks of natural language processing. First, we briefly review the historical
development and classification of translation systems. Subsequently, we provide a summary
of recent trends in this area, and we show how our work relates to them.

1.2.2 Synchronous Formal Systems

The second part of this thesis consists of two theoretically oriented chapters. These chapters
contain both informal explanations and formal definitions of the new models, and present
the related theoretical results that we have established.

More specifically, Chapter 4 deals with synchronous grammars. First, we briefly recall
the well-known synchronous context-free grammars. We then introduce the notion of new
synchronous grammars as systems consisting of two context-free grammars with linked
rules instead of linked nonterminals. This allows us to naturally extend the principle of
synchronization beyond context-free grammars. We present synchronous versions of some
regulated grammars, namely scattered-context grammars and matrix grammars.

Further, we study theoretical properties of these grammars. Specifically, we investigate
their generative power and achieve the following three main results. First, if we synchro-
nize context-free grammars by linking rules as proposed and defined in this chapter, we
obtain generative power coinciding with the power of matrix grammars. Consequently, we
significantly increase the power in this way because the traditional synchronous CFGs only
generate the family of context-free languages. Second, perhaps unsurprisingly, the class
of languages defined by synchronous scattered context grammars equals the class of recur-
sively enumerable languages. Finally, we show that if we synchronize matrix grammars by
linking matrices, we obtain no increase in power. That is, synchronous matrix grammars
have the same generative power as matrix grammars.

Chapter 5 introduces a new type of transducer, referred to as rule-restricted automaton-
grammar transducer, based upon a finite automaton and a context-free grammar. A re-
striction set controls the computation. It defines which rules can be simultaneously used
by the automaton and by the grammar. We discuss the power of this system working in



an ordinary way as well as in a leftmost way (more precisely, the context-free grammar
is restricted to leftmost derivation). In addition, we introduce an appearance checking,
which allows us to check whether some symbols are present in the rewritten string, and we
investigate its effect on the power.

We achieve the following main results. First, we show that the generative power of
rule-restricted transducers is equal to the generative power of matrix grammars. Second,
the accepting power coincides with the power of partially blind multi-counter automata.
Third, under the context-free-grammar leftmost restriction, the accepting and generative
power of these systems coincides with the power of context-free grammars. On the other
hand, when an appearance checking is introduced into these systems, the system can accept
and generate all recursively enumerable languages.

1.2.3 Application Perspectives and Final Remarks

In the final part of this thesis, we consider the newly introduced models from a more practi-
cal viewpoint. Specifically, Chapter 6 explores their application perspectives with particular
focus on natural language translation. We discuss and compare their main advantages il-
lustrating them by examples from Czech, English, and Japanese.

One of the main advantages of both types of presented models is their power, as they
are able to describe even some non-context-free structures. The new synchronous grammars
also provide high flexibility, allowing for elegant and efficient description of language fea-
tures. On the other hand, rule-restricted transducers are based on a simple, straightforward
principle, which can be an advantage for practical implementation.

The concluding Chapter 7 summarizes all achieved results. In particular, using a graph-
ical representation, we show how our new results relate to a known hierarchy of language
classes. We also discuss further research prospects, both in theoretical and practical direc-
tion.

1.3 Extended Abstract Organization

In this extended abstract of the doctoral thesis, we assume that the reader is familiar with
the fundamental concepts and models of modern formal language theory (see [30] or [39])
and natural language processing (see [1] or [35]). We therefore omit Chapters 2 and 3 of
the full thesis, which cover these topics.

Chapters 2 and 3 of this extended abstract are abridged versions of Chapters 4 and 5
of the thesis (the theoretically-oriented Part II, presenting new definitions and results for
synchronous grammars and transducers).

Chapters 4 and 5 correspond to Part III of the thesis, specifically to Chapter 6 dealing
with linguistically-oriented application perspectives and Chapter 7 concluding the thesis,
respectively.



Chapter 2

Synchronous Systems Based on
Grammars

In essence, synchronous grammars are grammars or grammar systems that generate pairs
of sentences in one derivation, instead of single sentences (as for example in CFGs). In
this way, they allow us to describe translations. That is, in each pair, the first string is a
sentence of the source language, and the second string is a corresponding sentence of the
target language.

Although the term synchronous context-free grammar (SCFG for short) is relatively
recent, the essential principle was introduced already in the late 1960s in syntax-directed
translation schemata [3] and syntax-directed transduction grammars [27]. These models
were originally developed as formal background for compilers of programming languages.
Subsequently, synchronous grammars have been succesfully used natural language process-
ing as well, particularly in machine translation (see Section 3.2 of the full thesis).

Informally, we can see SCFG (see [3] or [9]) as a modification of CFG where every rule
has two right-hand sides, the first of which is applied to the input sentential form (source),
and the second to the output sentential form (target). Nonterminals are linked, which
means that in each derivation step, we rewrite both the selected nonterminal symbol in the
input sentential form and its appropriate counterpart in the output sentential form.

Example 2.1. The following two rules are a fragment of a synchronous CFG which trans-
forms arithmetic expressions from infix notation (e.g. 3 x 5+ 4) to postfix notation (e.g.
35 x4+). E, F, and T are nonterminals, + and X are terminals, E is the start symbol.

1: E—=En+ Tz, Eo Ty +
2: T—To x Fz, Ta Fa x

A derivation using these rules may look like this:

(Emz, Em) = (Em + Taw, Ems T +) [1]
= (Em + Tae + Taz, Eas Tag + Tea +) [1]
= (Em + Tme x Fag + Tam, Em Tae Fag < + Tam +) [2]

The boxed numbers are used to denote linked nonterminals. That is, two nonterminals
are linked if they have the same number (e.g. @ and [@). Every derivation in a SCFG starts
with a pair of linked nonterminals, such as (Em@z), E@z) here (the starting number 42 is chosen
arbitrarily). Whenever we make a derivation step, we assign new, unique numbers to each
newly introduced pair of linked nonterminals, as seen in the derivation example above.



In each derivation step, we can only rewrite linked nonterminals (nonterminals sharing
the same boxed number). Note that when applying rule 2 above, we rewrite the first
occurence of T in both sentential forms, which is allowed, as it is Ts in both cases. We
could also choose to rewrite the second occurence in both sentential forms (Tzz). However,
we cannot choose the first T in one sentential form and the second T in the other, because
the assigned numbers do not correspond (T and Traz), and thus the two nonterminals are
not considered linked.

The original ideas, concepts, definitions, and theoretical results presented in this chapter
were first published in [22] and [23].

2.1 Rule-Synchronized Context-Free Grammar

In [22] and [23], we have proposed synchronization based on linked rules instead of nonter-
minals. Informally, such synchronous grammar is a system of two grammars, Gy and Gp, in
which the corresponding rules share labels. For example, if we apply rule labelled 1 in the
input grammar Gy, we also have to apply rule labelled 1 in the output grammar Gp, and
this makes for a single derivation step in the synchronous grammar. In other words, the
input and output sentence have the same parse (a sequence of rules applied in a derivation,
denoted by their labels).

Example 2.2. Rules (G| on the left, Go on the right):

1: E-E+T 1: E-ET+
2: T—-TxF 2: T—-TF x

An example of a derivation using these rules in G follows.
E=E+T[l]=E+TxF]|[2
A corresponding derivation in Go is:
E=ET+[1]=ETF x + [2]
The parse is (1,2).

However, note that we place no restriction on the linked rules. For instance, unlike
in synchronous CFGs, we do not have to rewrite the same nonterminal in both sentential
forms in one derivation step. Both the right-hand sides and the left-hand sides of linked
rules may be completely different, for example:

3: A—>BaC 3: P—>QBRbd

In other words, rule-synchronized CFGs can be seen as a generalization of the traditional
synchronous CFGs, as the latter can be defined as special case of rule-synchronized CFGs,
where each two linked rules have the same left-hand side (that is, they rewrite the same
nonterminal).

Formally, we define a rule-synchronized CFG as follows.

Definition 2.1 (Rule-synchronized CFG). A rule-synchronized CFG (RSCFG for short)
H is a quintuple H = (G1,Go, ¥, ¢1,90), where



e G;= (N1, Ty, Pr,Sr) and Go = (No,To, Po, So) are CFGs,
e VU is a set of rule labels, and

e 7 is a function from ¥ to Pr and o is a function from ¥ to Pp.

We say that two rules p; € Pr and ppo € Pp are linked, if and only if there is some label
p € ¥ such that ¢;(p) = pr and ¢o(p) = po. That is, each two linked rules share the same
label.

We use the following notation (presented for input grammar G, analogous for output
grammar Gp):

p:A]—>1'] (p](p):A]—)J}]

where p € U, A; — x5 € Py

xr =¢, yr [p] derivation step in G
where z7,yr € (NUT)*,pe ¥ applying rule ¢;(p)

Tr =, Y1 [p1...pn) derivation in G applying
where x;,yy € (NUT)*,p e Wfor 1 <i<n rules ©7(p1) ... p1(pn)

Definition 2.2 (Translation in RSCFG). Let H = (G1,Go, V¥, ¢1,p0) be an RSCFG. The
translation defined by H, denoted by T'(H ), is the set of pairs of sentences, which is defined
as
T(H) = {(wr,wo) : wreTf,wo €Ty,
S1 =¢, wrla], So =¢, wo [a] for some o € U*}.
Originally [22], we considered RSCFG only as a variant of synchronous CFG. However,

there is in fact a significant difference. While the latter does not increase the generative
power over CFG, RSCFG does, as is shown in the next subsection.

2.1.1 Generative Power

Synchronous grammars define translations—that is, sets of pairs of sentences. To be able
to compare their generative power with well-known models such as CFGs, which define
languages, we can consider their input and output language separately.

Definition 2.3 (Input and output language). Let H be an RSCFG. Then, we define
e the input language of H, denoted by L;(H), as L;(H) = {wr: (wr,wo) € T(H)},
and
e the output language of H, denoted by Lo(H), as Lo(H) = {wo: (wr,wo) € T(H)}.

Example 2.3. Consider an RSCFG H = (G1,Go, ¥, ¢1,90) with the following rules
(nonterminals are in capitals, linked rules share the same label, S; and So are the start
symbols of G and G, respectively):

Gy Go

1: S — ABC 1: So — A
2: A — dA 2: A — B
3: B — bB 3: B — (C
4: C — cC 4: C —= A
5: A — =« 5: A — B
6: B — ¢ 6: B —
7: C = ¢ 7: O — ¢



An example of a derivation follows.

Sy = ABC [1] So = A [1]
= aABC 2] = B [2]
~  aAbBC 3] = C 3
=  aAbBcC 4] = A [4]
= aaAbBcC 2] = B [2]
=  aaAbbBcC  [3] = C [3]
=  aaAbbBecC  [4] = A [4]
= aabbBccC  [5] = B [5]
= aabbccC 6] = ' [6]
= aabbcc [7] = ¢ [T

We can easily see that L;(H) = {a"b"c": n > 0}, which is well known not to be a
context-free language. This shows that RSCFGs are stronger than (synchronous) CFGs.!
Where exactly do synchronous grammars with linked rules stand in terms of generative
power?

Let Z(RSCFG) denote the class of languages generated by RSCFGs as their input
language. Note that the results presented below would be the same if we considered the
output language instead.

In some of the proofs below, we use a function that removes all terminals from a sen-
tential form, formally defined as follows.

Definition 2.4. Let G = (N,T,P,S) be a CFG. Then, we define the function 6 over
(NUT)* as follows:

1. For all w € T*, f(w) = €.

2. For all w = xgA1294s ... 2,_1A,x, for some n > 1, where x; € T* for all0 < i <n
and A; € N forall 1 <j<mn, §(w)=A145... A,.

The idea here is that if we consider only context-free rules, the applicability of rules to
a given sentential form only depends on nonterminals. Therefore, we can remove terminals
without affecting computational control.

For every RSCFG, we can construct an equivalent MAT, using matrices to simulate the
principle of linked rules.

Lemma 2.1. For every RSCFG H, there is a MAT H' such that L(H') = L;(H).

Proof. Let H = (G1,Go,V,¢1,00) be an RSCFG, where G; = (N7, 17, Pr, S1), Go =
(No,To, Po,So). Without loss of generality, assume N;NNp =0, S ¢ N;UNp. Construct
a MAT H' = (G, M), where G = (N, T, P, S), as follows:

1. Set N = N;UNpU {S}, T=1T;, P= {S — S[SO}, M = {S — S]SO}.
2. For every label p € ¥, add rules p;, po to P and add matrix prpo to M, where

e pr = ¢r(p) and

Strictly speaking, to make this claim, we also have to show that every context-free language can be
generated by a RSCFG. That is however evident from the definition.

10



e po = A — x such that po(p) = A — 2/, 2 = 0(z').

Basic idea. H' simulates the principle of linked rules in H by matrices. That is, for
every pair of rules (A7 — x7, Ao — o) such that p;(p) = A; — z1,00(p) = Ao — z0 for
some p € ¥ in H, there is a matrix m = A; — ;Ao — 0(zo) in H'. If, in H, 1 = ys [p]
in Gy and zo = yo[p] in Go, then there is a derivation step z;0(xp) = y10(yo) [m]
in H'. Note that since the rules are context-free, the presence (or absence) of terminals
in a sentential form does not affect which rules we can apply. Furthermore, because the
nonterminal sets Ny and No are disjoint, the sentential form in H’ always consists of two
distinct parts such that the first part corresponds to the derivation in G and the second
part to the derivation in Go.

The complete formal proof of L(H') = L;(H) can be found in the thesis. O

On the other hand, for every MAT, we can construct an equivalent RSCFG. We take
advantage of that fact that there is an “additonal” CFG in an RSCFG, and use it to
simulate matrices.

Lemma 2.2. For every MAT H, there is a RSCFG H' such that Ly(H') = L(H).

Proof. Let H = (G, M) be a MAT, where G = (N, T, P,S). Without loss of generality,
assume N N {Sy,So,X} = 0. Construct an RSCFG H' = (G;,Go, Y, pr,00), where
Gr= (N],T[,P],S]), Go = (NO>TOaPO7SO)a as follows:

1. Set Ny = NU{S, X}, Tr =T, Pr={S; = SX, X — ¢}, No = {S0, X}, To = {#},
PO:{SO%X7X_>#}ﬂ QOI:(Z)a SOO:@

2. Set ¥ ={0,1}, ¢1(0) = St = SX, po(0) = So = X, p1(1) = X = &, po(1) = X —
7.

3. For every matrix m = p € M, where p € P,

(a) add rule p to Pr,

(b) add rule X — X to Pp,

(c) add new label (m) to ¥, and
)

(d) set @r({m)) = p, po((m)) = X — X.

4. For every matrix m =p1...p, € M, where n > 1 and p; € P for all 1 <1i < n,

(a) add rules p1,...,p, to Py,
(b) add new nonterminals (Xm)1,...,(Xm),—1 to No,

(c) add rules X — (Xm)1, (Xm); — (Xm)a, ..., (Xm)p—2 — (Xm)p_1,
(Xm)p—1 — X to Po,

(d) add new labels (m)q,...,(m), to ¥, and
(e) set ¢r and po as follows:

e or((m)1) = p1, po((m)1) = X — (Xm)1,
o or({(m);) = pi, po((Mm);) = (Xm);—1 — (Xm); for all 1 < i < n, and

2This removes all terminals from the right-hand side of the rule. Note that if we leave the rule unchanged,
we obtain the concatenation of the input and the output sentence. Further, if we want L(H') = Lo(H)
instead of L(H') = L;(H), we can simply modify pr instead of po in this step.

11



o or({m)n) = pn, po({(Mhn) = (Xm)pn_1 — X.

Basic idea. One may notice that G constructed by the above algorithm is nearly iden-
tical to the original CFG G in H. Indeed, it performs essentially the same role: generating
a sentence. Meanwhile, G restricts available derivations according to matrices from H.
Each nonterminal in GGp represents a certain state of the system. For example, suppose
that we have the nonterminal (Xm)s as the current sentential form in Go. This means
that we are currently simulating the matrix m, we have succesfully applied the second rule
of this matrix, and now we need to apply its next rule. The nonterminal X is a special
case. It represents the state where we can either choose a new matrix to simulate, or end
the derivation. It appears at the start of a derivation (along with the original start symbol
from H, S) and can only appear again immediately after a successful simulation of a whole
matrix (one derivation step in H).

In other words, H' simulates matrices in H by derivation in Go. That is, if z = y [m]
in H, where m = py...p, for some n > 1, then there is a sequence of derivation steps
X = (Xm)1 [(mh] = (Xm)z [(m)o] = ... = (Xm)p—2 [(M)n—2] = (Xm)n_1 [(M)n—1] =
X [(m),] in Go and ¢r({(m);) = p; for 1 < i < n. Now observe that in Go constructed
by the above algorithm, every nonterminal except X can only appear as the left-hand side
of no more than one rule. This means that after rewriting X to (Xm);, the only way for
the derivation to proceed is the above sequence, and the entire matrix is simulated. Note
that for matrices that only have one rule (that is, if n = 1), X = X in G by using rule
X — X, and we can immediately continue with another matrix. The simulation ends by
rewriting X to the only terminal # in Gp and, simultaneously, deleting X in G (using
rule X — ¢). This ensures that the derivation in Gy cannot end by producing a sentence
prematurely—that is, when the simulation of a matrix is incomplete—because there will
always be at least one nonterminal left at that point (precisely X).

The complete formal proof of L;(H') = L(H) can be found in the thesis. O

Note that Gp constructed by the above algorithm is not only context-free, but also
regular.
From Lemma 2.1 and Lemma 2.2, we can establish the following theorem.

Theorem 2.3.
Z(RSCFG) = Z(MAT)

Proof. From Lemma 2.1, it follows that .Z(RSCFG) C Z(MAT). From Lemma 2.2, it
follows that .2 (MAT) C .Z(RSCFG). Therefore, Z(RSCFG) = 2 (MAT). O

2.2 Synchronous Scattered Context Grammar

The principle of synchronization based on linked rules can be naturally extended to other
models beside CFGs. Indeed, the definition of synchronous SCG is analogous to Defini-
tion 2.1 for RSCFG. Essentially, we only need to replace context-free rules with scattered
context rules. The notation is also analogous.

Definition 2.5 (Synchronous SCG). A synchronous SCG (SSCG for short) H is a quintuple
H = (G]7 GO) v, PI, @O)? where

e Gy = (N, Ty, Pr,Sr) and Go = (No,To, Po, So) are SCGs,

12



e VU is a set of rule labels, and
e (o is a function from ¥ to P; and o is a function from ¥ to Pp.

Further, the translation defined by H, denoted by T'(H), is the set of pairs of sentences,
which is defined as

T(H) = {(wr,wo) : wr€T},wo €Ty,
S1 =¢, wrla], So =¢, wo [a] for some o € U*}.

We define the input and output language of SSCG by analogy with Definition 2.3 for
RSCFGs. Further, let Z(SSCG) denote the class of all languages generated by SSCGs as

their input language.

2.2.1 Generative Power

It is known that SCGs can generate all recursively enumerable languages (see [29]). Perhaps
not surprisingly, the same is true for SSCGs. From their definition, it is easy to see that
SSCGs cannot be weaker than SCGs. If we want to construct an SSCG equivalent to a
given SCG, we can, for instance, essentially duplicate the original SCG and designate each
two identical rules from input and output grammar as linked.

Theorem 2.4.

Z(SSCG) =RE
Proof. Clearly, .Z(SSCG) C RE must hold. From definition, it follows that .Z(SCG) C
Z(SSCG). Because .Z(SCG) = RE [29], RE C .Z(SSCG) also holds. O

2.3 Synchronous Matrix Grammar

In the case of matrix grammars, the situation is slightly more complicated. How should
we link the rules with regard to matrices? There are many options. For instance, we could
strictly require that all rules in one matrix in the input grammar be linked to rules in
one matrix in the output grammar, in respective order (consequently, requiring each two
matrices that have their rules linked to have the same length). Alternatively, we could link
only the first rule in each matrix. However, perhaps the most straightforward and intuitive
approach is to link whole matrices rather than individual rules.

The notation used here is analogous to the one presented in Section 2.1 for RSCFGs,
only replacing rules by matrices.

Definition 2.6 (Synchronous matrix grammar). A synchronous matriz grammar (SMAT
for short) H is a septuple H = (G, M1,Go, Mo, V, 1, ¢0), where

e (Gr, M) and (Go, Mp) are MATSs, where

- G] = (N[,T[,P[,S[) and
— Go = (No,To, Po, S0),

e U is a set of matriz labels, and

e (o is a function from ¥ to M; and ¢ is a function from ¥ to Mop.

13



Further, the translation defined by H, denoted by T(H), is the set of pairs of sentences,
which is defined as

T(H) ={(wr,wo) : wr€Tf,wo €Ty,
St =gy Wi lal, 5o =g, M) wo lo] for some a € U}

We define the input and output language of SMAT by analogy with Definition 2.3 for
RSCFGs. Further, let .Z(SMAT) denote the class of all languages generated by SMATS as
their input language.

2.3.1 Generative Power

Following a similar reasoning as in the case of SSCGs, we can immediately conclude that
SMATSs must be at least as powerful as MATs. To elaborate, to construct an SMAT equiv-
alent to a given MAT, we can, as with SSCGs, let both input and output grammar equal
the original grammar and designate the identical matrices in input and output grammar as
linked.

The fact that we can also construct an equivalent MAT for every SMAT is much less
immediately obvious. In essence, we can join each two linked matrices (from input and
output grammar) into one matrix.

Theorem 2.5.
Z(SMAT) = Z(MAT)

Proof. The inclusion .Z(MAT) C Z(SMAT) follows from definition. It only remains to
prove that Z(SMAT) C Z(MAT). For every SMAT H = (G, M;,Go, Mo, ¥, ¢r1,00),
where G; = (N;, 11, Pr,S1), Go = (No,To, Po,So0), we can construct a MAT H =
(G, M), where G = (N, T, P,S), such that L(H') = L;(H), as follows. Without loss of
generality, assume Ny N Np =0, S ¢ N; U No.

1. Set N=N;UNoU{S}, T=T;, P={S — S;So}, M ={S — S;So}.

2. For every label p € VU, add rules prq,...,pr,, PO1,--->POm to P and add matrix
DI ---PIpPO1 - - - POy, t0 M, where

® pry...pr, = wr(p) and

o for 1 <j<m, po; = Aj — x; such that po(p)[j] = 4; = 7}, z; = 0(1‘;)5

Basic idea. H' simulates H by combining the rules of each two linked matrices in
H into a single matrix in H’. That is, for every pair of matrices (mj,mop) such that
mr = ¢1(p), mo = po(p) for some p € ¥ in H, there is a matrix m = mymy, in H', where
myg is equal to mo with all terminals removed (formally defined above). If, in H, 1 = yr [p]
in Gy and zo = yo [p] in Go, then there is a derivation step x;0(xo) = yr0(yo) [m] in
H'. Note that since the rules are context-free, the presence (or absence) of terminals in
a sentential form does not affect which rules we can apply. Furthermore, because the
nonterminal sets Ny and No are disjoint, the sentential form in H’ always consists of two
distinct parts such that the first part corresponds to the derivation in G and the second
part to the derivation in Go.

The complete formal proof of L(H') = L;(H) can be found in the thesis. O

3 Again, this removes all terminals from the right-hand side of the rules (see Theorem 2.3). m[j] denotes
the j-th rule in matrix m.

14



Chapter 3

Synchronous Systems Based on
Transducers

In formal language theory, there exist two basic translation-method categories. The first
category contains interprets and compilers, which first analyse an input string in the source
language and, consequently, they generate a corresponding output string in the target
language (see [2], [25], [34], [37], or [40]). The second category is composed of language-
translation systems or, more briefly, transducers. Frequently, these trasducers consist of
several components, including various automata and grammars, some of which read their
input strings while others produce their output strings (see [15], [36], and [411]).

Although transducers represent language-translation devices, language theory often
views them as language-defining devices and investigates the language family resulting
from them. That is, it studies their accepting power consisting in determining the language
families accepted by the transducer components that read their input strings. Alterna-
tively, it establishes their generative power that determines the language family generated
by the components that produce their strings. The present chapter contributes to this vivid
investigation trend in formal language theory.

In this chapter, we introduce a new type of transducer, referred to as rule-restricted
(automaton-grammar) transducer, based upon an FA and a CFG. We discuss the power
of this system working in an ordinary way as well as in a leftmost way and investigate an
effect of an appearance checking placed into the system.

The original ideas, concepts, definitions, and theoretical results presented in this chapter
were first published in [6].

3.1 Rule-Restricted Transducer

The rule-restricted (automaton-grammar) transducer is a hybrid system consisting based
on a straightforward idea: we read an input sentence with an FA while generating an
appropriate output sentence with a CFG. A control set determines which rules from the
FA and the CFG can be used simultaneously. The computation of the system is successful
if and only if the FA accepts the input string and the CFG generates a string of terminals.

Definition 3.1 (Rule-restricted transducer). The rule-restricted transducer (RT for short)
I is a triple I' = (M, G, ¥), where

o M =(Q,%,4,q,F) is an FA,

15



Figure 3.1: Definition of FA M from Example 3.1

e G=(N,T,P,S) is a CFG, and

e U is a finite set of pairs of the form (r1,r2), where r; and 7o are rules from ¢ and P,
respectively.

A 2-configuration of I is a pair x = (z,y), where z € Q¥* and y € (N UT)*. Consider
two 2-configurations, x = (pavi, uAvy) and x' = (qu1, uzve) with A € N, u, v, x € (NUT)*,
v € X%, a € XU{e}, and p,q € Q. If pavy = qui [r1] in M, uAve = uxve [ro] in G, and
(ri,72) € ¥, then I' makes a computation step from x’ to X/, written as x = x’. In the
standard way, =* and =T are transitive-reflexive and transitive closure of =, respectively.

The 2-language of T, 2-L(T"), is 2-L(T") = {(w1,w2): (qow1,S) =* (f,w2), w1 € ¥¥,
wy € T*, and f € F}. From the 2-language we can define two languages:

o L(I'); ={w;i: (wi,w2) € 2-L(I")}, and
o L(P)Q = {’IUQZ (wl,wg) S 2—L(F)}.

By Z(RT), Z(RT)1, and .Z(RT)s, the classes of 2-languages of RT's, languages accepted
by M in RTs, and languages generated by G in RTs, respectively, are understood.

3.1.1 GGenerative Power

It is well-known that FAs and CFGs describe different classes of languages. Specifically,
by FAs we can accept regular languages, whereas CFGs define the class of context-free
languages. However, in Example 3.1 it is shown that by the combination of these two
models, the system is able to accept and generate even non-context-free languages.

Example 3.1. Consider RT K = (M, G, ¥) with

e M given by graphical representation in Figure 3.1
e G=({S,A,B,C,D,D'},{a,b}, P,S), where

r: S BbD', ry: B— Bb, r3: D' — D'D,
ry : B — aA, rs : D)= C, 1¢: A— dA,
r;: C— CC, rg : D — b, rg: A—e,
7’10:C—>a

_pP=

o U = {(p1,m1), (p1,72), (P2,73), (P3,74), (P4,75), (P5,76), (P6,77), (P7,78), (Ps,79),
(P9, 18), (P10,710), (P11,710)}-
The languages of M and G are L(M) = {a't/a*b': j k,1 € N;i € Ng} and L(G) =
{a'Va*V!: i,5,k € N,I € Ny}, respectively. However, the 2-language of K is L(K) =
{(a'Va't’,a’b'alb?): i,j € N}.

16



From the example, observe that the power of the grammar increases due to the possi-
bility of synchronization with the automaton that can dictate sequences of usable rules in
the grammar. The synchronization with the automaton enhances the generative power of
the grammar up to the class of languages generated by MATs.

Theorem 3.1.
Z(RT)y = £ (MAT)

Proof. 1. First we prove that .Z(MAT) C .Z(RT)s,.

Consider a MAT [ = (;G, ;C) and construct an RT I' = (rM, rG, ¥), such that L(I) =
L(T)q, as follows. Set rG = ;G. Construct tM = (Q, %, 4, s, F) in the following way:

1. Set F,Q = {s}.
2. For every m =p1...p; € ;C, add:

(a) k— 1 new states, q1,¢q2,...,qk—1, into @,

(b) k new rules, r1 =5 — q1,72 = q1 —> G2, -, The1 = Qh—2 — Qh—1,Tk = Qh—1 — 5,
into J, and

(C) k new pairs, (rhpl)a (T27p2)7 ey (kahpkfl), (Tkapk>7 into W.

The FA M simulates matrices in I by transitions. That is, if 21 = x5 [p] in I, where
p = pi1,...,p; for some 7 € N, then there is ¢q,...,q,_1 € @ such that 1y = s — ¢1,72 =
g1 = g2, Tim1 = Gi—2 = ¢i—1,Ti = ¢i—1 = S € § and (r1,p1),. .., (ri,pi) € ¥. Therefore,
(s,z1) =" (s,x2) in I'. Similarly, if (s,z1) =" (s,22) in I, for 7 € N, and there is no j € N
such that 0 < j < i and (s,z1) =7 (s,y) = (s, 72), there has to be p € ;C and 1 = z2 [p]
in /. Hence, if (s,5) =* (s,w) in I', where w is a string over the set of terminals in G,
then S =* w in [I; and, on the other hand, if S =* w in I for a string over the set of
terminals in ;G, then (s,S) =* (s,w) in I'. The inclusion .Z(MAT) C .Z(RT), has been
proven.

II. Next, we prove the inclusion .Z(RT); C Z(MAT). For any RT I' = (rM =
(Q,%,0,s,F),rG = (pN,pT,pP,rS),¥), we can construct a MAT O = (oG, oC) such
that L(T")2 = L(O) as follows:

1. Set oG = (rNU{S"},rT,0P,S"), oP =rPU{py =S" — (s)rS}, and oC = {po}.

2. For each pair (p1,p2) € ¥ with p1 = qa = 7, ¢,7 € Q, a € XU{e}, po = A — =z,
AerN and z € (PN UpT)*, add p1 = (q) — (r) into o P and pips into oC.

3. Furthermore, for all ¢ € F, add p = (q) — ¢ into o P and p into oC.
The complete formal proof of L(I')y = L(H) can be found in the thesis. O

3.1.2 Accepting Power

On the other hand, the CFG in the RT can be exploited as an additional storage space
of the FA to remember some non-negative integers. If the automaton uses the CFG in
this way, the additional storage space is akin to counters in a multi-counter machine. The
following lemma says that the FAs in RTs are able to accept every language accepted by
partially blind k-counter automata.

Lemma 3.2. For every k-PBCA I, there is an RT T = (M, G, ¥) such that L(I) = L(T');.

17



Proof of Lemma 3.2. Let I = (;Q, %, 16, qo, F) be a k-PBCA for some k& > 1 and construct
aRT T =(M=(m®, %, m,q,F),G=(N,T,P,S),¥) as follows:

1. Set T =0, U =0, N={S,Ar,..., A}, P={A—e: Ac N}, u6={f = f: f €
F}, and pQ = 1Q.

2. For each pa — q(t1,...,t) in ;6 and for n = (3¥_; max(0, —¢;)) add:

(a) q1,---,qn into pQ;

(b) r = S — xS, where z € (N — {S})* and occur(4;,z) = max(0,t;), for i =
1,...,k, into P;

() m=qoa = q,"2=q1 = q2, -+, Tn = Gn-1 — Gn, Tn+1 = @ — ¢ into py0 with
go = p; and (rj41,; — €), where o; = A; and each A; is erased max(0, —t;)-
times during the sequence, into ¥ (n = 0 means that only pa — ¢, S — =S and
(r1,7) are considered);

(d) (f— f,S —¢)into U for all f € F.

The FA of the created system uses the CFG as an external storage. Each counter of I is
represented by a nonterminal. Every step from p to ¢ that modifies counters is simulated by
several steps leading from p to ¢ and during this sequence of steps the number of occurrences
of each nonterminal in the grammar is modified to be equal to the corresponding counter
in I. Clearly, L(I) = L(I');. O

Lemma 3.3 states that the CFG is helpful for the FA in RT at most with the preservation
of the non-negative numbers without possibility to check their values.

Lemma 3.3. For every RTI' = (M,G, V), there is a k-PBCA O such that L(O) = L(I');
and k is the number of nonterminals in G.

Proof of Lemma 3.3. Let T' = (M = (Q,%, m0,q0, F),G = (N,T,P,S),¥) be an RT.
Without any loss of generality, suppose that N = {A4,...,A,}, where S = A;. The
partially blind card(N)-counter automaton O = (Q, X, 09, qo, F') is created in the following
way. For each r1 = pa — ¢ € yd and 7 = a — [ € P such that (r1,r2) € ¥, add
pa — q(v1, ..., Veard(N)), Where v; = occur(A;, 8) — occur(A;, o) for all i = 1, ..., card(N).

The constructed partially blind card(/V)-counter automaton has a counter for each non-
terminal from the grammar of I'.  Whenever the automaton in I' makes a step and thes
entential form of the grammar G is changed, O makes the same step and accordingly changes
the number of occurrences of nonterminals in its counters. O

From Lemma 3.2 and Lemma 3.3, we can establish the following theorem.

Theorem 3.4. -
Z(RT), = | ] £(k-PBCA)
k=1
Proof. It directly follows from Lemma 3.2 and Lemma 3.3. 0

For better illustration of the accepting and generative power of RT, let us recall that
the class of languages generated by MATs is properly included in the class of RE languages
[1, 12], and the class of languages defined by partially blind k-counter automata, with
respect to number of counters, is superset of the class of CF languages and properly included
in the class of CS languages [13, 14].

18



3.2 Rule-Restricted Transducer with Leftmost Restriction

Although the investigated system is relatively powerful, in defiance of weakness of models
that are used, nondeterministic selections of nonterminals to be rewritten can be relatively
problematic from the practical point of view. Therefore, we examine an effect of a restriction
in the form of leftmost derivations placed on the CFG in RT.

Definition 3.2 (Leftmost restriction on derivation in RT). Let I' = (M, G, ¥) be an RT
with M = (Q,%,0,q0, F) and G = (N, T, P,S). Furthermore, let x = (pavi,uAvy) and
X' = (qu1, uzvy) be two 2-configurations, where A € N, vy, z € (NUT)*, u € T*, v; € ¥,
a € YU{e}, and p,q € Q. T makes a computation step from y to /', written as x =, x/, if
and only if pavy = qui [r1] in M, uAve = uzvy [re] in G, and (r1,72) € V. In the standard
way, = and jlfn are transitive-reflexive and transitive closure of =,,, respectively.

The 2-language of T' with G generating in the leftmost way, denoted by 2-L;,,(T), is
defined as 2-Lj, (I') = {(wi,w2): (qow1,S) =, (f,ws2), w1 € ¥*, wy € T*, and f € F};
we call T' a leftmost restricted RT; and we define the languages given from 2-L;,(T") as
le(F)l = {w1: (wl,wg) € 2—le(P)} and le(F)Q = {’LUQZ ('U)l,'l,UQ) € 2—le(P)}.

By Z(RTy), Z(RTyn)1, and £ (RT},, )2, we understand the following language classes,
respectively: 2-languages of leftmost restricted RT's, languages accepted by M in leftmost
restricted RT's, and languages generated by G in leftmost restricted RTs.

3.2.1 Generative Power

Unfortunately, the price for the leftmost restriction, placed on derivations in the CFG, is
relatively high and both accepting and generative ability of RT with the restriction decreases
to the definition of context-free languages.

Theorem 3.5.
Z(RTy,)2 = CF

Proof. The inclusion CF C £ (RT}, )2 is clear from the definition, because any time we
can construct leftmost restricted RT, where the automaton M cycles with reading all pos-
sible symbols from the input or £ whilst the grammar G is generating some output string.
Therefore, we only need to prove the opposite inclusion.

We know that the class of context-free languages is defined, inter alia, by nondetermin-
istic PDAs. It is therefore sufficient to prove that every language L;,,(I')2 of RT can be
accepted by a nondeterministic PDA. Consider an RT I" = (pM = (Q, 1%, 19,90, F),G =
(N, T,P,S),¥) and define a PDA O = (Q,T, 01,06, qo, S, F), where oI' = N UT and od
is created as follows:

1. Set o6 = 0.

2. For each r; = A — = € P and ry = pa — ¢q € pd such that (r1,72) € ¥, add
Ap — (z)fq into 6.

3. For each p € @, and a € T add apa — p into 4.

The complete formal proof of L(O) = L, (I')2 can be found in the thesis.
As L(O) C Ljn(T")2 and Ly, (I')2 € L(O), Theorem 3.5 holds. O

19



3.2.2 Accepting Power

First, we show that any context-free language can be accepted by some leftmost restricted
RT.

Lemma 3.6. For every language L € CF, there is an RT ' = (M,G,¥) such that
Lim(D); = L.

Proof of Lemma 3.6. Let I = (;N,T,;P,S) be a CFG such that L(I) = L. For I, we
can construct a CFG H = (gN,T,ygP,S), where yN = INU{{(a): a € T} and gP =
{{(a) > a: ae TYU{A = 2z: A— 2/ € P and z is created from 2’ by replacing all a €
T in o’ with (a)}. Surely, L(I) = L(H) even if H replaces only the leftmost nonterminals
in each derivation step. In addition, we construct an FA M = ({qo}, 7,0, q0,{q0}) with
0={q — q}U{gpa — q: a€ T}, and ¥ = {(q0 = 90, A > z): A—z € ygP Ac
iIN}U{(q0a — qo,{a) »a): acT}.

It is easy to see that any time when H replaces nonterminals from ;N in its sentential
form, M reads no input symbol. If and only if H replaces (a) with a, where a € T', then M
reads a from the input. Since H works in a leftmost way, 2-L;,,,(I') = {(w,w): w € L(I).
Hence, L, (I")1 = L(I). O

Similarly, we show that any RT generating outputs in the leftmost way can recognize
no language out of CF.

Lemma 3.7. Let I' is an RT. Then, for every language L, (T')1, there is a PDA O such
that L, (T')1 = L(O).

Proof of Lemma 3.7. In the same way as in the proof of Theorem 3.1, we construct PDA
O such that L(O) = Lj,(T'); for RTT' = (M = (Q,r%,rd,q, F),G = (N, T,P,S), V). We
define O as O = (Q,r%, N, 00, qo, S, F'), where ¢ is created in the following way:

1. Set pé = 0.

2. For each r1 = pa — q € 10 and ro = A — = € P such that (r1,r2) € ¥, add
Apa — (8(x))Rq into o6, where 6(x) is a function from (N UT)* to N* that replaces
all terminal symbols in z with e—that is, #(z) is * without terminal symbols.!

The complete formal proof of L(O) = L;;,,(I")2 can be found in the thesis. O

Theorem 3.8.
Z(RTy,)1 = CF

Proof. Tt directly follows from Lemma 3.6 and Lemma 3.7. O

3.3 Rule-Restricted Transducer with Appearance Checking

We can also extend RT with the possibility to prefer a rule over another—that is, the
restriction sets contain triples of rules (instead of pairs of rules), where the first rule is a
rule of FA, the second rule is a main rule of CFG, and the third rule is an alternative rule
of CFG, which is used only if the main rule is not applicable.

!See page 10 for further explanation and precise formal definition of § (Definition 2.4).

20



Definition 3.3 (RT with appearance checking). RT with appearance checking (RT,. for
short) I is a triple I' = (M, G, ¥), where

o M= (Qazaéaq()vF) is an FAa
e G=(N,T,P,S) is a CFG, and
e U is a finite set of triples of the form (71,72, 73) such that r; € 6 and ry,7r3 € P.

Let x = (pavi,uAvy) and X' = (qui,uzvse), where A € N, vo,z,u € (NUT)*, v1 € X*,
a € X U{e}, and p,q € @, be two 2-configurations. I' makes a computation step from y to
X', written as x = X/, if and only if for some (r1,72,73) € ¥, pav; = qui [r1] in M, and
either

o uAvy = uxvy [re] in G, or
e uwAvz = uxve [r3] in G and ry is not applicable on uAvs in G.

The 2-language 2-L(I") and languages L(I")1, L(I')2 are defined in the same way as in
Definition 3.1. The classes of languages defined by the first and the second component in
the system is denoted by -Z(RT,.); and -Z(RTg.)2, respectively.

3.3.1 Generative Power

By the appearance checking both generative and accepting power of RT grow to define
the class of all recursively enumerable languages. To prove that the former holds, we take
advantage of the known fact that matrix grammars with appearance checking can generate
any language in RE [12], and show that, in turn, RT,. can simulate MAT,.

Theorem 3.9.
Z(RT4)2 =RE

Proof. Since Z(MAT,.) = RE [12], we only need to prove that .Z(MAT,.) C Z(RT4)2.

Consider a MAT,. with appearance checking I = (;G,;C) and construct a RT I' =
(rM,1rG,¥), such that L(I) = L(T"), as follows:

1. Set G = ;G.

2. Add a new initial nonterminal S’, nonterminal A, and rules A — A, A — ¢, 5" — SA
into grammar rG.

3. Construct an FA r M = (Q, 3,0, s, F) and ¥ in the following way:
(a) Set F=Q={s},d={s— s} ,and ¥V ={(s > s,A =, A —¢),(s > s5 —
SA,S" — SA)}.

(b) For every m = (platl) ce (pkatk> € [Ca add q1,q2, - .., qk—1 into Q’ S —q1,q1 —
Q2,5 qk—2 = Qk—1,qk—1 — § into 6, and (s = q1,p1,¢1), (@1 — @2,p2,¢2),- - -,
(@k—2 = Qr—1,Pr—1,Ck—1), (Q—1 — gs, Pk, k) into ¥, where, for 1 < i < k, if
t; = —, then ¢; = p;; otherwise, ¢; = A — A.

21



Since S is the initial symbol, the first computation step in I" is (s, S") = (s, SA). After
this step, the FA simulates matrices in I by computation step. That is, if 21 = x2[p] in
I, where p = p1,...,p; for some ¢ € N, then there is ¢q;,...,¢—1 € @ such that r; = s —
q1,72 = q1 — q2,.. S Ti-1 = ¢i—2 — qi—1,7i = ¢i—1 — S € 0 and (rl,pl,cl), cee (n,pi,ci) S
V. Therefore, (s,z1) = (s,x2) in I'. Notice that if I can overleap some grammar rule in
m € ;C, I represents the fact by using A — A with the move in p M. Similarly, if, for some
i €N, (s,21) =" (s,22) in T and there is no j < i such that (s,z1) =7 (s,y) =* (s,z2),
there exists p € ;C such that 1 = x2 [p] in I. Hence, if (s,5) =* (s,w) in I, where w is a
string over the set of terminals in pG, then S =* w in I; and, on the other hand, if S =* w
in I for a string over the set of terminals in ;G, then (s,5") = (s, SA) =* (s, wA) = (s, w)
in I. O

3.3.2 Accepting Power

RT,.’s can accept any recursively enumerable language, as evidenced by their ability to
simulate k-CAs.

Theorem 3.10.
Z(RTu)1 = RE

Proof. Let I = (;Q,%, 16,90, F) be a k-CA for some k > 1 and construct a RT I' =
(M,G,¥), where M = (;Q, %, M6, q0, F), G=(N,T,P,S), as follows:

1. Set T={a}, ¥ =0,P={A —c,A—0: Aec N—-—{0}}U{S — S}, uQ = 1Q,
mMo={f—f: feF} and N={S,0,A1,...,Ax}.

2. For each pa — q(t1,...,t) in (6, n =¥ 0(¢;), and m = 25;15(:5
0(t;) = max(0, —t;) and 6(t;) = max(0,t;); otherwise 6(t;) = 1 and

i), where if t; € Z,
G(t,) = 0, add:

(a) qQ;---qn nto MQa
(b) r = S — x5, where z € (N — {S,0})* and occur(4;,z) = 0(t;), for each
i=1,...,k, into P;

(¢c) "1 =qoa = q1, T2 =q1 — G2, -+ T = Gn—-1 — qn, "nt+1 = qn — q into 3y with

go = p; and for each i = 1,...,n, add (141, 7, 7;), where for each j =1,... k,
if t; € N, for 0(t;) is, 7; = 7] = Aj — ¢; otherwise, if t; = —, 7, = A; — O and
7/ =S5 — S, into ¥. Notice that n = 0 means that only goa — ¢, S — =S are
considered. Furthermore, add (r1,7,7) into ¥;

(d (f—f,S —¢&,S—¢)into ¥ for all f € F.

Similarly as in the proof of Lemma 3.2, the FA of the created system uses the CFG as
an external storage, and each counter of I is represented by a nonterminal. If I modifies
some counters during a move from state p to state g, M moves from p to ¢ in several steps
during which it changes the numbers of occurrences of nonterminals correspondingly. Rules
applicable only if some counters are equal to zero are simulated by using an appearance
checking, where I tries to replace all nonterminals representing counters which have to be
0 by ¢. If it is not possible, I applies the rule S — S and continues with computation.
Otherwise, since ¢ cannot be rewritten during the rest of computation, the use of such rules
leads to an unsuccessful computation. The formal proof of the equivalence of languages is
left to the reader. Since £ (k-CA) = RE for every k > 2 [17], Theorem 3.10 holds. O

22



Chapter 4

Linguistic Applications:
Perspectives

In this chapter, we discuss the advantages of the new formal models in regard to their
potential applications in natural language processing, and particularly in translation, where
they can provide an alternative to the existing models (see Chapter 3 of the full thesis for
an overview). To illustrate, we use examples from Czech, English, and Japanese. (No
prior knowledge of Czech or Japanese is required for understanding, although it can be an
advantage.)

Throughout the course of this chapter, we use the following notation to represent some
common linguistic constituents:

ADJ adjective ADV adverb

AUX auxiliary verb DET determiner

N noun NP noun phrase
NP-SBJ NP in the role of subject NUM numeral

P preposition PN pronoun

PN-INT  interrogative pronoun PP prepositional phrase
PP-TMP PP, temporal PP-DIR PP, directional

A% verb VP verb phrase

Further, note that in the example sentences presented below, we generally disregard
punctuation and capitalization. For example, we consider Where are you going? and where
are you going identical for the purposes of this text.

Finally, in most of the case studies presented in this chapter, we assume that we already
have the input sentence split into words (or possibly some other lexical units as appropriate),
and these words are classified as, for example, a noun, pronoun, or verb. Then, we consider
syntax analysis and translation on an abstract level, transforming syntactic structures in
languages rather than actual meanings.

Often, you will notice that the input alphabet of the automaton or the terminal alphabet
of the grammar do not contain actual words themselves, but rather symbols representing
word categories and properties. For example, we can use N3s to denote a noun in third
person singular. While such representation is sufficient in our examples here, where, for
clarity, we usually only focus on some select aspects at a time, in practice we need much more
information about each word. In that case, we can, for instance, use structures resembling
attribute-value matrices from head-driven phrase structure grammars (see Section 3.1 of
the full thesis) as symbols.

23



4.1 Synchronous Grammars

First, we explore the application perspectives of our newly introduced synchronous gram-
mars, or more precisely, synchronous versions of MATs and SCGs. The original results,
observations, and examples presented in this section were published in [21] and [23].

To demonstrate the basic principle, consider a simple Japanese sentence

Takeshi-san wa raishuu Oosaka ni ikimasu.

We will transform this sentence (or, more precisely, the structure of this sentence) into
its English counterpart

Takeshi is going to Osaka next week.

In the following examples, words in angled brackets (()) are words associated with a
terminal or nonterminal symbol in a given sentence or structure. Note that this is included
only to make the examples easier to follow and understand, and is not an actual part of
the formalism itself.

Example 4.1. Consider a RSCFG H = (G;,Go, Y, ¢1,90), where G; = (N1, Tr, Pr, Si)
and Gp = (No,To, Po, So) such that

e N; = {S;, NP-SBJ, VP, PP-TMP, PP-DIR},
T; = {NP, V, DET},

No = {So, NP-SBJ, VP, PP-TMP, PP-DIR},

To = {NP, V, AUX, DET, P},

1: S; — NP-SBJ VP, 2 : NP-SBJ — NP DET(wa),
o Py — 3: VP — PP-TMP PP-DIR V, 4 : PP-TMP — NP,
4z . PP-TMP — ¢, 5 : PP-DIR — NP DET(n3), ’
5z : PP-DIR — ¢
1: Sp — NP-SBJ VP, 2 : NP-SBJ — NP,
o Py 3: VP - AUX V PP-DIR PP-TMP, 4 : PP-TMP — NP,
4z . PP-TMP — ¢, 5 : PP-DIR — P(to) NP,
5z : PP-DIR — ¢

7

Strictly according to their definitions, synchronous grammars generate pairs of sen-
tences. However, in practice, we usually have the input sentence in the source language,
and we want to translate it into the target language. That is, we want to generate the
corresponding output sentence. In that case, the translation can be divided into two steps
as follows.

1. First, we parse the input sentence using the input grammar. In Gy, a derivation that
generates the example sentence may proceed as follows:

S; = NP-SBJ VP [1]
= NP(Takeshi-san) DET(wa) VP [2]
= NP(Takeshi-san) DET(wa) PP-TMP PP-DIR V (ikimasu) [3]
= NP(Takeshi-san) DET(wa) NP (raishuu) PP-DIR V (ikimasu) [4]
= NP(Takeshi-san) DET(wa) NP (raishuu) NP(Qosaka) DET(n3)

V (ikimasu) [5]

24



We have applied rules denoted by labels 1 2 3 4 5, in that order.

2. Next, we use the sequence obtained in the first step (1 2 3 4 5), and apply the
corresponding rules in the output grammar. Then, the derivation in G proceeds as

follows:
So = NP-SBJ VP [1]
= NP(Takeshi) VP [2]
= NP(Takeshi) AUX(is) V(going) PP-TMP PP-DIR [3]
= NP(Takeshi) AUX(is) V(going) PP-DIR NP(next week) [4]
= NP(Takeshi)y AUX(is) V(going) P(to) NP(Osaka) NP(next week) [5]

Also note the rules 4z and 5z (in both input and outpur grammar), which can be used
to erase PP-TMP and PP-DIR. This represents the fact that these constituents may be
omitted.

The full thesis further elaborates upon this example, demonstrating different grammat-
ical categories and syntactic structures.

Let us now consider translation between Czech and English. Czech is a relatively chal-
lenging language in terms of natural language processing. It is a free-word-order language
with rich inflection (see [10]).

For example, consider the Czech sentence

Duva rizovi slont prisli na predndsku.
(Two pink elephants came to the lecture.)

All of the following permutations of words also make for a valid sentence:

dva ruzovi sloni prisli na predndsku dva ruzovi sloni na predndsku prisl
ruzovi sloni prisli na predndsku dva ruzovi sloni na predndsku prisli dva
dva sloni prisli na predndsku riZovi dva sloni na predndsku prisl ruZovi
sloni prisli na predndsku dva ruzovi sloni na predndsku prisli dva ruzZovi

There may be differences in meaning or emphasis, but the syntactic structure remains
the same. Why is this problematic? Compare the syntax trees in Figure 4.1. Because of the
crossing branches (non-projectivity), the second tree cannot be produced by any CFG. Of
course, it is still possible to construct a CFG that generates the sentence ruzovi sloni prisli
na predndsku dva if we consider a different syntax tree, for example such as in Figure 4.2.
However, this tree no longer captures the relation between the noun sloni and its modifying
numeral dva (represented by the dotted line). We need to know this relation for instance to
ensure agreement between the words (person, number, gender...), so that we can choose
their appropriate forms.

In a purely context-free framework, this can be complicated. The necessary information
has to be propagated through the derivation tree, even if the structure is not actually
affected, and this can result in a high number of rules. Recall that in generalized phrase
structure grammars, for instance, this is countered by the introduction of metarules and
features (see Section 3.1 of the full thesis). With MATSs, we can instead represent the
relations using matrices.

25



Example 4.2. Here, we present an example of SMAT H =
that describes the translations between the English sentence two pink elephants came to
the lecture and any of the above Czech sentences, correctly distinguishing between male
and female gender in Czech (to demonstrate female gender, we also include opice in Czech,
Note that H is actually more general (for example allowing multi-
It is designed for easy extension to include other grammatical categories

monkeys in English).
ple adjectives).

S S

/\ /\
/N/\W

NUM ADJ N ADJ N NUM

R N B N

dva riZovisloni prisli  na predndsku ruzovi sloni prisli  na prednasku  dva

Figure 4.1: Syntax trees for example sentences in Czech

S
e
NP VP NUM
ADJ N V. PP
| T

ruZovi sloni prisli na predndsku  dva

Figure 4.2: Modified syntax tree

(Gcm Mcm Gem Mena \Ila Pz, (Pen)

(person...) as well as different syntactic structures.

For Czech, let G, contain the following context-free rules (nonterminals are in capitals,

S¢ is the start symbol):

s: S.. — NP VP NUM ADJS, np :

vp: VP — ADVS V ADVS, numg :
adjs :  ADJS — ADJ ADJS, adjs; :
advs :  ADVS — ADV ADVS, advs; :
n, : N — N, ns :
Nyym - Nm — Nm7 nyy .
Vm : V=V, I
adj,, : ADJ — ADJ,,, adjy :
adv: ADV — PP, num,, :
numy :  NUM — NUMy, dict; :
dicts : Ny — opice, dicts,, :
dictzy : 'V — prisly, dicty,, :
dictyy :  ADJy — miZové, dicts,, :
dictsy :  NUM; — dve, dictg :

Similarly, for English, let G, contain the following rules (again, nonterminals are i

26

NP — NUM ADJS N,
NUM — ¢,

ADJS — ¢,

ADVS — &,

N — Nf,

Nf — Nf,

V — Vf,

ADJ — ADJy,
NUM — NUM,,,
N.,, — sloni,

V., — prisli,
ADJ,, — rizovi,
NUM,,, — dwva,

PP — na prednadsku



capitals, and Se, is the start symbol):

s: Sen — NP VP, np : NP — NUM ADJS N,
vp: VP — V ADVS, num, : NUM — ¢,
adjs :  ADJS — ADJ ADJS, adjs. :  ADJS — ¢,
advs :  ADVS — ADV ADVS, advs. :  ADVS — ¢,
adv: ADV — PP, dict; : N — elephants,
dicte : N — monkeys, dicts : 'V — came,
dicty :  ADJ — pink, dicts :  NUM — two,

dictg : PP — to the lecture

Finally, let M., and M., contain the following matrices:

M., My, M., Men,
s: s S np : np np
up 1 Vp vp num :  Numg €
nume : nNum, UMM  nume adjs : adjs adjs
adjse : adjsc adjs;  adjs; advs : advs advs
advs, : advs; advs, advs. N & Iy, €
ng : ny e Um - Vim Dymm S
vp o Vg € odjy, © adjm Ny €
adjy :  adjy ngyp € adv : adv adv
NUMyy, @ DUy, Ny € numyg :  NUMy Dfp €
dict1 . dict1 diCtl diCtQ : diCtQ diCtQ
dicts,, :  dictsy, dicts dictgf : dictgf dicts
dictyy, :  dictyy, dicty dictyp :  dictyy dicty
dicts,, :  dictsy, dicts dict5f : diCt5f dicts
dictg :  dictg dictg

In this example, we have chosen to include the words themselves directly in the grammar
rules (rather than assuming a separate dictionary) to illustrate this approach as well. For
instance, consider the rule dicts,, in G.,. This rule encodes the fact that the word dva (in
Czech) is a numeral, of male gender (in practice, there can be much more information). We
call this kind of rules dictionary rules.

Further, note for example the matrix adjs in M.., which ensures agreement between
noun and adjective (both must be in female gender). Another interesting matrix is adjs;,
which terminates generation of adjectives. In the Czech sentence in this example, we have
two positions where adjectives can be placed (directly within the noun phrase or at the end
of the sentence). In English, there is only one possible position (within the noun phrase).
This is why the rule ADJS — ¢ is used twice in Czech, but only once in English.

Also observe that the linked matrices (sharing the same label) in M., and M., may
contain completely different rules and they can even be empty (£), in which case the corre-
sponding grammar does not change its sentential form in that step. The definitions of MAT
and SMAT allow for this kind of flexibility when describing both individual languages and
their translations.

Example of a derivation in Czech follows.

27



N O O O e e I

NP VP NUM ADJS [s]

NUM ADJS N VP NUM ADJS [np]

NUM ADJS N ADVS V ADVS NUM ADJS [vp]
ADJS N ADVS V ADVS NUM ADJS [num]
ADJ ADJS N ADVS V ADVS NUM ADJS [adjs]
ADJ N ADVS V ADVS NUM [adjs.]

ADJ N ADVS V ADV ADVS NUM [adus]

ADJ N V ADV NUM [advs.]

ADJ N,, V ADV NUM |[n,,]

ADJ Ny, V,, ADV NUM |[v,,]

ADJ,, Ny, Vi, ADV NUM [adjn]

ADJ,, Ny, Vyp PP NUM [adv]

ADJ,, N,, V,,, PP NUM,, [numy,]

ADJ,, sloni V,, PP NUM,, [dict;]

ADJ,, sloni prisli PP NUM,, [dictsy,]

razovi sloni prisli PP NUM,, [dictsy,]

ruzovi sloni prisli na predndsku NUM,, [dicts]
ruzovi sloni prisli na predndasku dva [dictsy,]

The corresponding derivation in English may look like this:

Sen

The entire derivation tree for the Czech sentence is shown in Figure 4.3. The dotted lines
represent relations described by matrices. The triangle from N,, to N,, is an abstraction
which in this particular case essentially means that this step is repeated until all agreement
issues are resolved.
We can achieve similar results using SSCGs. For example the matrix adj; in M., can
be represented by two scattered-context rules (ADJ, N;) — (ADJ¢, N¢) and (N¢, ADJ) —
(Ny, ADJy). Note that we need two rules, because the nonterminal order is important in
SCG (this is one of the key differences between SMAT and SSCG). In this case, we need
an additional rule in SSCG. However, this can also be an advantage, because it allows us
to easily distinguish between left and right modifiers. For example, if we only have the first

L O O 2 2 A

NP VP [s]

NUM ADJS N VP [np]

NUM ADJS N V ADVS [up]

NUM ADJS N V ADVS [num]

NUM ADJ ADJS N V ADVS [adjs]

NUM ADJ N V ADVS [adjs.]

NUM ADJ N V ADV ADVS [adus]

NUM ADJ N V ADV |advs,]

NUM ADJ N V ADV [ny)]

NUM ADJ N V ADV [v,,]

NUM ADJ N V ADV [adjy,]

NUM ADJ N V PP [adv]

NUM ADJ N V PP [numy,]

NUM ADJ elephants V,,, PP [dict;]

NUM ADJ elephants came PP [dicts,]

NUM pink elephants came PP [dicts]

NUM pink elephants came to the lecture [dicts)
two pink elephants came to the lecture [dictsy]

28



NP VP NUM ADJS
/’\ /\
NUM ADJS N ADVS V ADVS €
I N
e ADJ ADJS ng ADV ADVS
A N ,,
ADJ,, e Np Vi PP € NUM,,
| | | |
ruZovi sloni prisli  na predndsku dva

Figure 4.3: Derivation tree of G,

rule (ADJ, Ny) — (ADJy, Ny), it means that the adjective always has to occur on the left
of the noun.

4.2 Rule-Restricted Transducers

In this section, we discuss the applications perspectives of RTs. The original results, obser-
vations, and examples presented here were first published in [6].

The thesis includes several case studies, the first of which demonstrates the basic prin-
ciples of RTs using a simple example of passive transformation in English. Subsequent
examples consider some of the more complex features and structures of natural languages.

Here, we present one of the examples dealing with translation between different lan-
guages. We focus on Japanese, Czech, and English. One problem when translating into
Czech is that there is very rich inflection and the form of the words reflects many gram-
matical categories, such as case, gender, or number (see [16], where the author discusses
this issue with regard to computational linguistics). To illustrate, compare the following
sentences in Japanese, English, and Czech.

Zasshi o yondeitta onna no hito wa watashi no shiriai deshita.
Zasshi o yondeitta otoko no hito wa watashi no shiriai deshita.

The woman who was reading a magazine was an acquitance of mine.
The man who was reading a magazine was an acquitance of mine.

Zena, kterd cetla casopis, byla moje zndmd.
Muz, ktery cetl casopis, byl muj znamy.

As we can see, in Czech, nearly every word is different, depending on the gender of the
subject. In contrast, in both Japanese and English, the two sentences only differ in one

29



word, namely onna no hito (woman) and otoko no hito (man).!

The above sentences also give us an example of some structural differences between
Japanese and Czech. In Czech and English, the structure of the sentence is very similar,
but in Japanese, there is no word that correspond directly to ktery (which, who, ...).
Instead, this relation is represented by the form of the verb yondeitta (the dictionary form
is yomu, meaning to read). Compare the syntax trees in Figure 4.4.

Example 4.3. Consider an RT I' = (M, G, V), where M = (Q,%,6,0,F), G = (N, T, P,
S) such that

L Q = {07 m7 m17m27 f’ f]‘? f27n’ n]‘?n2? 1m7 1f7 ]‘n}’
e ¥ = {NP,,, NP}, NP,,, NP, V, DET, #},

F={lm,1f 1n},

N = {8, &', NP-SBJ, NP;, VP, PN, V, X},

e T'={NP,,, NP;, NP,, Vp,,, V¢, V,,, PN,,, PN¢, PN, },
( ry . OV — 1, ro: 1 =0, rg3 : ONP; — 0,
ry : ODET — 0, r5m : ONP,, — m, rsf : ONP; — f,
r5n - ONP,, — n, rmi : mV — ml, Tme : ml — m2,
Tm3 : M2 — m, Tma : MDET — m, Tms : MNP? — m,
= Tmsm : MNPy, — m,  rpsp 0 mNPp —m,  rps5, : mNP, = m, >,
Tme @ M#F — 1m, rm7 ¢ 1lm — 1m, res fV = f1,
reot f1— f2, regr o 1f = 1f,
rn1 © NV — nl, rp2 ¢ nl — n2,
rn7 - In — 1n )
p1 : S — NP-SBJ VP X, po : NP-SBJ — NP,
P3m : NP7 — NP,,, p3f - NP, — NPJC7
P3n NP? — NPm P4 NP? — NP?,
Ps NP? — NP? S/, Pe - VP — V? NP?,
[ ] P =
Prm 2 Vo = Vi, prr : Ve — Vy, ’
P ¢ Vo — Vyp, ps S — PN, VP,
Pom - PN, — PNm, Doy : PN; — PNf,
Pon : PN2 — PN, Po: X — ¢

o U= {(Tl,pl), (7“27106), (7“3,]?4), (7“47192), (7“5m,P4)7 (T5f,p4), (7‘5n,p4), (Tml,P5), (T’m2,
p8); (Tm37p6)7 (rm47p4)7 (Tm57p4)7 (Tm5m7p3m)a (Tm5f7p3f)a (rm5n7p3n>7 (Tmﬁ,pm),
(rm7,03m), (Tm7:,P7m)s (Pm7,Pom), (T71,05), (rr2,p8), (rf3,P6), (rf4,P4), (rf5,P4),
(7 f5m> P3m)s (Ty55,031)s (7505 P3n)s (Tr6,P10), (157, 037), (Ty7,071)s (747, D0f)s (T, P5),
(rn2,08), (Tn3:06)s (Tna,P4), (Tn5,04)s (TnsmsP3m), (TnsgsP3f)s (Tnsn, P3n)s (T, P10)s
(Tn7ap3n)a (Tn%p?n)v (Tn’?apgn)}'

We have added two dummy symbols: the input symbol #, which acts as the endmarker,
and the nonterminal X, which we generate at the beginning of the computation and then
erase when all the input has been read (including #).

!Technically, onna no hito literally translates to woman’s person or female person, with onna itself
meaning woman, female. However, referring to a person only by onna may have negative connotations in
Japanese. This is analogous for otoko no hito.

30



S

/\

NP-SBJ VP
T~ T
NP DET NP A%
T
S’ NP
!
T
NP DET V
NPA NP; NP,
T~ i
zasshi o yondeitta onna no hito wa  watashi no shiriai deshita
S
NP-SBJ VP
/\
NP A% NP
T
NP S’
T
PN VP
/\
A% NP
T~
zZena kterd cetla casopis byla moje zndmd

Figure 4.4: Syntax trees for Japanese (top) and Czech sentence

31



In this example, we read the input sentence in reverse order (right to left). Clearly, this
makes no difference from a purely theoretical point of view, but it can be more suitable in
practice due to the way how Japanese sentences are organized.

The computation transforming the sentence zasshi o yondeitta onna no hito wa watashi
no shiriai deshita into Zena, ktera cetla casopis, byla moje zndmd can proceed as follows:

=

(0 V{deshita) NP>(watashi no shiriai) DET(wa) NP ¢(onna no hito)
V(yondeitta) DET (o) NP, (zasshi) #, S)

(1 NP7 (watashi no shiriai) DET(wa) NP ¢(onna no hito) V(yondeitta)
DET(o) NP,,(zasshi) #, NP-SBJ VP X) [(r1,p1)]

(0 NP7 (watashi no shiriai) DET(wa) NP ¢(onna no hito) V(yondeitta)
DET(o) NP,,(zasshi) #, NP-SBJ V. (byl) NP7 X) [(r2,p¢)]

(0 DET(wa) NP f(onna no hito) V(yondeitta) DET (o) NP,,(zasshi) #,
NP-SBJ V- (byl) NP7 (mij znamy) X) [(rs, p4)]

(0 NP¢(onna no hito) V(yondeitta) DET (o) NP, (zasshi) #, NP

Vo (byl) NP+(mij znamy) X) [(r4, p2)]

(f V{yondeitta) DET (o) NP,,(zasshi) #, NP+ (Zena) V-(byl)

NP (maij zndmy) X) [(rs, pa)]

(f1 DET(0) NP,,(zasshi) #, NP2 (Zena) S’ Vo (byl) NP2 (maij znamy) X)
[(rf1,ps5)]

(f2 DET(0) NP,,(zasshi) #, NP7 (Zena) PNo(ktery) VP V- (byl)

NP2 (maj znamy) X) [(rf2,ps)]

(f DET(0) NP,,,(zasshi) #, NP+(Zena) PNy (ktery) Vo (céetl) NP, Vo(byl)
NP7 (maj znamy) X) [(rf3,ps)]

(f NPy, (zasshi) #, NP2(Zena) PN+ (ktery) Vo (cetl) NP> Vo(byl)

NP7 (maj zndmy) X) [(rf4,pa)]

(f #, NP2(Zena) PNo(ktery) Vo(cetl) NP, (cCasopis) Vo (byl)

NP7 (mij zndmy) X) [(r f5m, P3m)]

(1f, NP2 (zZena) PNy (ktery) Vo(cetl) NP,,(casopis) V- {byl)

NPy (mij zndmy)) [(rf6,p10)]

(1f, NPs(Zena) PNo(ktery) Vo(cetl) NP, (casopis) Vo (byl)

NP2 (mij zndmy)) [(rs7, pss)]

(1f, NP¢(Zena) PNy (kterd) V-(cetl) NP, (casopis) V2 (byl)

NP (mij zndmy)) [(r sz, pog)]

(1f, NP¢(Zena) PNy (kterd) V¢(cetla) NP,,(casopis) Vo (byl)

NP (migj zndmy)) [(ry7, pry)]

(1f, NP¢(Zena) PNy(kterd) V¢(cetla) NP,,(casopis) Vs(byla)

NP (mij znamy)) [(r¢7,p7¢)]

(1f, NP¢(Zena) PNy (kterd) V¢(cetla) NP,,(casopis) Vs (byla)

NP j(moje zndmd)) [(ry7,psy)]

When we first read the word that determines the gender, we move to the state that
represents this gender (state m, n, or f). Note that these states are functionally identical in
the sense that we can read the same input symbols, while performing the same computation
steps in the grammar generating the output. After we have reached the end of input, we
rewrite the nonterminal symbols representing words with as of yet unknown gender to the
corresponding terminal symbols, depending on the state.

32



4.3 Summary

In the first two sections of this chapter, we have tried to point out and illustrate the key
advantages of the proposed formal models using select case studies from the Czech, English,
and Japanese language. Here, we summarize them, and compare the respective strengths
and weaknesses of the new synchronous grammars and RTs. The observations presented
are based on our previously published papers [0], [21], and [23].

One of the main advantages of both types of models is their power. As shown in Chap-
ters 2 and 3, both synchronous grammars (with linked rules) and RTs (without leftmost
restriction) are able to describe even some non-context-free languages. Although arguably
relatively rare in practice, there are some features of natural languages that are difficult or
impossible to properly capture with CFGs only (such as cross-dependencies). Furthermore,
even in cases when a purely context-free description is possible, it may require a high num-
ber of rules. Our new models can provide a more economical description thanks to their
increased generative power and, in case of RT's, also accepting power.

Another advantage of our new synchronous grammars is their high flexibility, especially
if we synchronize models that have higher generative power themselves, such as regulated
grammars. In particular, let us consider the case of SMAT. As shown above (Theorem 2.5),
if we synchronize MATs in the proposed fashion, we do not obtain any further increase in
power of the whole system compared to RSCFG or MAT. However, more powerful individual
components allow for easier—and again, more economical—description of each individual
language.

Unlike synchronous grammars, which are symmetric and therefore can be used for bidi-
rectional translation, RTs can only describe translation in one direction. Furthermore,
because their components are relatively simple (an FA and a CFG), RTs are also less flex-
ible than, for example, SMATs and SSCGs. Consequently, the description of linguistic
structures and features can be more complex (essentially, requiring more rules).

On the other hand, the simplicity of components can also be seen as an important
advantage of RT, especially from a practical viewpoint. Both FAs and CFGs are well-
known and well-studied not only from a theoretical point of view, but also with regards to
practical implementations. For example, there are well-known methods of efficient parsing
for CFGs.

Another advantage of RT lies in its the straightforward and intuitive basic principle
(read input with an FA, generate output with a CFG), which directly corresponds to the
translation task in practice. In contrast, in synchronous grammars, both components gen-
erate sentences.

Finally, note that both types of introduced formal models can be extended for use in
statistical natural processing as well. We can, for example, assign weights (or probabilities)
to rules similarly to probabilistic CFGs or weighted synchronous grammars.

33



Chapter 5

Conclusion

In this doctoral thesis, we have presented new grammar systems that can formally describe
translations (or, more specifically, transformations of syntactic structures). We have dis-
cussed some of the theoretical properties of the new models, in particular their generative
and accepting power.

More specifically, we have introduced the idea of synchronization based on linked rules
as a modification of the well-known synchronous grammars. We have extended this prin-
ciple beyond CFGs, to models with regulated rewriting, defining sychronous MATs and
synchronous SCGs.

Further, we have introduced the rule-restricted automaton-grammar transducer, based
on the natural idea of reading some input with an FA and producing an appropriate output
with a CFG, and provided precise formal definitons. We have also considered two of its
variants, namely leftmost restricted RTs and RTs with appearance checking.

We have established the following main results:

1. Rule-synchronized CFGs are more powerful than CFGs, as they characterize the same
class of languages as MATSs (see Section 2.1).

2. Synchronous MATSs have the same power as MATs (see Section 2.3).

3. Synchronous SCGs are able to generate all recursively enumerable languages (see
Section 2.2).

4. RTs can generate any language that can be generated by some MAT, and they can
accept any language that can be accepted by some k-PBCA (see Section 3.1).

5. Leftmost restricted RTs can only accept and generate context-free languages (see
Section 3.2). Note that this is still an increase in accepting power compared to FAs.

6. RTs with appearance checking can both accept and generate all recursively enumer-
able languages (see Section 3.3).

We have also discussed application perspectives of the new models in translation of
natural languages, using select case studies from Czech, English, and Japanese to illustrate
(see Chapter 4). Besides natural language processing, the models can be useful in other
translation and transformation tasks, such as programming language compilation.

34



5.1 Further Research Prospects

Further research prospects include the study of other theoretical properties of the proposed
models, such as descriptional complexity. Although we have already shown which language
classes our new models define, how efficiently they can do so remains an open problem.
That is, we can investigate the effects of different limits placed on, for example, the number
of nonterminal symbols in grammars, states in automata, or rules in both. In MATSs, we
can also limit the length of matrices, and similarly in SCGs, the length of scattered context
rules (as sequences of context-free rules).

As we have done with RTs by introducing an appearance checking and a leftmost re-
striction, we can consider other variants of our models and investigate their properties.
For example, we could restrict SSCGs by using propagating SCGs (which are known to be
strictly weaker than SCGs with erasing rules). We can also introduce and study systems
consisting of other well-known grammars and automata.

Extension to more than two components is possible as well. In such case, we could
further investigate the relations to known grammar systems (see [10], [31], or [33]) and
automata systems (see [7], [11], or [28]).

Finally, note that although our synchronous grammars and RT's represent different ap-
proaches and, consequently, are defined differently, there is a significant similarity in their
basic principles. In essence, they are all systems in which the cooperation of components is
achieved by synchronization of their rules. It might be useful to introduce a more general for-
malism allowing for various components, and thus encompassing all such rule-synchronized
systems.

From a more practical viewpoint, an important area to investigate is syntax analysis.
For practical applications, we need to be able to parse sentences efficiently. There are well-
known parsing methods for CFGs, such as (generalized) LR parsing or chart parsing, but
for models with regulated rewriting, the situation is more complicated. While there have
been some research in this area, particularly for SCGs (see [24] or [38]), efficient parsing
with matrix grammars and scattered context grammars still represents an open problem.

In the examples presented in this work, we have made two important assumptions.
First, we already have the input sentence analysed on a low level—that is, we know where
every word starts and ends (which may be a non-trivial problem in itself in some languages,
such as Japanese) and have some basic grammatical information about it. Furthermore,
we assume that we know the translation of the individual words.

For practical applications in natural language translation, we would need a more com-
plex system, with at least two other components: a part-of-speech tagger (lexical analyzer),
and a dictionary to translate the actual meanings of the words (although we can do this
directly within a grammar by using dictionary rules, as shown in Example 4.2, a separate
dictionary generally allows for more efficient encoding). Then, the component based on the
discussed formal models could be used to transform the syntactic structure of a sentence
and ensure that the words in the translated sentence are in the correct form.

35



Bibliography

1]

S. Abraham. Some questions of language theory. In Proceedings of the 1965
conference on Computational linguistics, COLING ’65, pages 1-11, Stroudsburg, PA,
USA, 1965. Association for Computational Linguistics.

A. V. Aho. Compilers: Principles, Techniques, and Tools. Pearson/Addison Wesley,
2007.

A. V. Aho and J. D. Ullman. Syntax directed translations and the pushdown
assembler. J. Comput. Syst. Sci., 3(1):37-56, February 1969.

J. Allen. Natural language understanding (2nd edition). Benjamin/Cummings series
in computer science. Benjamin/Cummings Pub. Co., 1995.

O. Bojar and M. Cmejrek. Mathematical model of tree transformations. In Project
FEuromatrixz Deliverable 3.2, Prague, 2007. Charles University.

M. Cermak, P. Horac¢ek, and A. Meduna. Rule-restricted automaton-grammar

tranduscers: Power and linguistic applications. Mathematics for Applications,
1(1):13-35, 2012.

M. Cermak and A. Meduna. n-accepting restricted pushdown automata systems. In
13th International Conference on Automata and Formal Languages, pages 168—183.
Computer and Automation Research Institute, Hungarian Academy of Sciences, 2011.

D. Chiang. An introduction to synchronous grammars. In 44th Annual Meeting of
the Association for Computational Linguistics, 2006.

D. Chiang. Grammars for Language and Genes: Theoretical and Empirical
Investigations. Theory and applications of natural language processing. Springer,
2011.

E. Csuhaj-Varju, J. Kelemen, Gh. Paun, and J. Dassow, editors. Grammar Systems:
A Grammatical Approach to Distribution and Cooperation. Gordon and Breach
Science Publishers, Inc., Newark, NJ, USA, 1st edition, 1994.

E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana, and Gy. Vaszil. Parallel
communicating pushdown automata systems. Int. J. Found. Comput. Sci.,
11(4):633-650, 2000.

J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 19809.

36



[13] S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages.
Elsevier Science Inc., New York, NY, USA, 1975.

[14] S. A. Greibach. Remarks on blind and partially blind one-way multicounter
machines. Theor. Comput. Sci., 7:311-324, 1978.

[15] E. M. Gurari and O. H. Ibarra. A note on finite-valued and finitely ambiguous
transducers. Theory of Computing Systems, 16:61-66, 1983. 10.1007/BF01744569.

[16] J. Haji¢. Disambiguation of Rich Inflection: Computational Morphology of Czech.
Wisconsin Center for Pushkin Studies. Karolinum, 2004.

[17] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 2000.

[18] P. Horac¢ek. Formal models in processing of japanese language. In Proceedings of the
16th Conference and Competition STUDENT EEICT 2010 Volume 5, pages 161-165.
Brno University of Technology, 2010.

[19] P. Horacek. Parse driven translation. In Proceedings of the 17th Conference and
Competition STUDENT EEICT 2011 Volume 3, pages 480-484. Brno University of
Technology, 2011.

[20] P. Horac¢ek. On generative power of synchronous grammars with linked rules. In
Proceedings of the 18th Conference STUDENT EEICT 2012 Volume 3, pages
376-380. Brno University of Technology, 2012.

[21] P. Horac¢ek. Application perspectives of synchronous matrix grammars. In
Proceedings of the 19th Conference STUDENT EEICT 2013 Volume 3, pages
202-206. Brno University of Technology, 2013.

[22] P. Horac¢ek and A. Meduna. Regulated rewriting in natural language translation. In
7th Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science, pages 35—42, Brno, CZ, 2011. Brno University of Technology.

[23] P. Horacek and A. Meduna. Synchronous versions of regulated grammars:
Generative power and linguistic applications. Theoretical and Applied Informatics,
24(3):175-190, 2012.

[24] O. Jirdk and D. Kolaf. Comparison of classical and lazy approach in scg compiler. In
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011:
International Conference on Numerical Analysis and Applied Mathematics, volume
1389, pages 873-876. American Institute of Physics, 2011.

[25] O. Jirdk and Z. Kfivka. Design and implementation of back-end for picoblaze c
compiler. In Proceedings of the IADIS International Conference Applied Computing
2009, pages 135—138. International Association for Development of the Information
Society, 2009.

[26] M. Khalilov and J. A. R. Fonollosa. N-gram-based statistical machine translation
versus syntax augmented machine translation: comparison and system combination.
In Proceedings of the 12th Conference of the European Chapter of the Association for
Computational Linguistics, EACL ’09, pages 424-432, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics.

37



[27]

28]

[29]

[30]

[31]

32]

[33]

P. M. Lewis and R. E. Stearns. Syntax-directed transduction. J. ACM,
15(3):465-488, July 1968.

C. Martin and V. Mitrana. Parallel communicating automata systems. Journal of
Applied Mathematics and Computing, pages 237-257, 2008.

A. Meduna. A trivial method of characterizing the family of recursively enumerable
languages by scattered context grammars. EATCS Bulletin, 1995(56):1-3, 1995.

A. Meduna. Automata and Languages: Theory and Applications. Springer, London,
2000.

A. Meduna and R. Lukas. Multigenerative grammar systems. Schedae Informaticae,
2006(15):175-188, 2006.

A. Meduna and J. Techet. Scattered Context Grammars and their Applications. WIT
Press, UK, GB, 2010.

R. Meersman and G. Rozenberg. Cooperating grammar systems. In J. Winkowski,
editor, Mathematical Foundations of Computer Science 1978, volume 64 of Lecture
Notes in Computer Science, pages 364-373. Springer Berlin Heidelberg, 1978.

T. Mine, R. Taniguchi, and M. Amamiya. Coordinated morphological and syntactic
analysis of japanese language. In Proceedings of the 12th international joint
conference on Artificial intelligence - Volume 2, pages 1012-1017. Morgan Kaufmann
Publishers Inc., 1991.

R. Mitkov, editor. The Ozxford Handbook of Computational Linguistics. Oxford
University Press, 2003.

M. Mohri. Finite-state transducers in language and speech processing. Comput.
Linguist., 23(2):269-311, June 1997.

S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

F. Popowich. Chart parsing of scattered context grammars. Applied Mathematics
Letters, 7(1):35-40, 1994.

G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages.
Springer-Verlag, Berlin, 1997.

P. Saloun. Parallel LR parsing. In Proceedings of the Fifth International Scientific
Conference Electronic Computers and Informatics 2002. The University of
Technology Kosice, 2002.

A. Weber. On the valuedness of finite transducers. Acta Informatica, 27:749-780,
1990. 10.1007/BF00264285.

A. Zollmann and A. Venugopal. Syntax augmented machine translation via chart
parsing. In Proceedings of the Workshop on Statistical Machine Translation, StatM'T
'06, pages 138-141, Stroudsburg, PA, USA, 2006. Association for Computational
Linguistics.

38



Appendix A

Curriculum Vitae

Personal Information

Name

Degree
Citizenship
Nationality
Date of Birth
Birthplace

Petr Horacek

Ing.

Czech Republic

czech

December 24, 1983
Nové Mésto na Moravé

Contact Information

Address
E-mail
Phone
LinkedIn

Education
2009 — present

2007 — 2009
2003 — 2007
1995 — 2003

Beranka 1360, 593 01 Bystfice nad Pernstejnem, CZ
horacekp@seznam.cz

+420 605 871 469
http://www.linkedin.com/in/horacekp

Faculty of Information Technology, Brno University of Technology
e doctoral study (PhD.)
e theoretical computer science, formal language theory,
natural language processing
e http://www.fit.vutbr.cz/"ihoracekp/

Faculty of Information Technology, Brno University of Technology
e master study (Ing.)
e specialization: Computer Graphics and Multimedia

Faculty of Information Technology, Brno University of Technology
e bachelor study (Bc.)
e specialization: Information Technology

Gymnazium Bystfice nad Pernstejnem

39


http://www.linkedin.com/in/horacekp
http://www.fit.vutbr.cz/~ihoracekp/

	Introduction
	Motivation
	Thesis Organization
	Introduction
	Synchronous Formal Systems
	Application Perspectives and Final Remarks

	Extended Abstract Organization

	Synchronous Systems Based on Grammars
	Rule-Synchronized Context-Free Grammar
	Generative Power

	Synchronous Scattered Context Grammar
	Generative Power

	Synchronous Matrix Grammar
	Generative Power


	Synchronous Systems Based on Transducers
	Rule-Restricted Transducer
	Generative Power
	Accepting Power

	Rule-Restricted Transducer with Leftmost Restriction
	Generative Power
	Accepting Power

	Rule-Restricted Transducer with Appearance Checking
	Generative Power
	Accepting Power


	Linguistic Applications: Perspectives
	Synchronous Grammars
	Rule-Restricted Transducers
	Summary

	Conclusion
	Further Research Prospects

	Curriculum Vitae

