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Abstrakt

V dnesni dobé jsou vicevlaknové programy bézné a s nimi i chyby v soubéznosti. Béhem
poslednich let bylo vytvoreno mnoho technik pro detekci takovychto chyb, a i presto maji
vyvojari softwaru problém nalézt spravné nastroje pro analyzu svych programi. Duvod
je jednoduchy, fungujici neznamend vzdy prakticky. Hodné nastroji implementujicich de-
tekeéni techniky je obtizné pouzitelnych, prizpusobenych pro konkrétni typy programi nebo
synchronizace, nebo Spatné skaluji, aby zvladly analyzovat rozsahly software. Pro nékteré
typy chyb v soubéznosti dokonce ani neexistuji nastroje pro jejich detekci, i presto ze vyvo-
jari softwaru na tyto chyby casto narazeji ve svych programech. Hlavnim cilem této prace je
navrhnout nové techniky pro detekci chyb ve vicevlaknovych programech. Tyto techniky by
mély byt schopny analyzovat rozsahlé programy, umoznit detekci méné studovanych typu
chyb v soubéznosti, a podporovat Sirokou skalu programii s ohledem na to, jaké programové
konstrukce pouzivaji.

Abstract

Nowadays, multi-threaded programs are quite common and so are concurrency errors. Over
the years, many techniques were developed to detect such errors, yet software developers still
struggle to find the right tools to analyse their programs. The reason is simple, working
does not always mean practical. Many tools implementing the detection techniques are
hard to use, tailored for a specific kind of programs or synchronisation, or do not scale well
to handle large software. For some types of concurrency errors, no tools even exist, yet
many software developers encounter such errors in their programs. The main goal of this
thesis is to develop new techniques for detecting errors in multi-threaded programs. These
techniques should be able to handle complex programs, allow one to detect some of the less
studied types of concurrency errors, and support a broad variety of programs.
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Chapter 1

Introduction

From the beginning of the era of computers, the most common way of increasing the
performance of a computer (and programs running on it) was to increase the clock rate
of its processor. A higher clock rate allowed the processor to execute more instructions in
the same time interval, thus increasing the performance of any code ran by it by simply
executing it faster. However, about ten years ago, the processors reached the 3 GHz clock
rate, and it turned out that going above this threshold is difficult because of problems like
heat or gate delays.

When increasing the clock rate of a processor stopped to be the best way to increase
the performance of a computer, the manufacturers started to look for other ways to further
increase the performance. The idea how to proceed came from servers. As even the most
powerful processor was not efficient enough to accommodate the demands of servers, these
computers were usually using several processors to have enough computational power to
handle their workload. The drawback of using multi-processor computers was that they
needed specialised motherboards supporting more than one processor, and such mother-
boards were quite expensive, large, and often required more sophisticated cooling. Generally
speaking, they were not fit to be used in standard desktop computers.

Increasing the number of processors a desktop computer can utilise was the right way to
go, however, the question was how to do it in a way that is compatible with the hardware
commonly used in desktop computers. The problem was solved by IBM as early as in
the year 2001 when they created the first dual-core processor POWERA4. This was the
first (general-purpose) processor that contained two independent processing units (called
cores), each of them able to run program instructions separately. From the point of view
of a computer, it was the same as having two separate processors, however, physically, it
was a single processor compatible with the hardware used in desktop computers. Still, it
took another four years for this kind of processors to be used more widely. In 2005, both
Intel and AMD released their first dual-core processors, and so began the era of multi-core
Processors.

When multi-core processors became a common part of desktop computers, it became
clear that more cores do not always mean better performance. The reason was one fun-
damental difference between multi-processor servers and multi-core desktop computers.
Servers usually handle a huge amount of requests, however, each of these requests may be
processed separately, i.e., by different programs or different instances of the same program.
The important thing here is that there exists a large amount of (often small) programs and
each can be run on any of the available processors. Even if each of these programs can
utilise only a single processor, it does not matter as there are many other programs to be



ran on the remaining processors to fully utilise them. The more processors there is, the
more programs is able to run at the same time, and the more work the server can handle
during a given amount of time.

However, in case of desktop computers, the situation is different. The main difference
is the disparity of workloads. Desktop computers usually handle the requests of a single
user and the user usually does one thing at a time, i.e., uses one program at a time. If this
program cannot utilise more than a single processor, then adding more processors (cores)
does not increase its performance. This simple fact led to a need to write multi-threaded
programs, i.e., programs which split its work into threads (lightweight processes) where
each thread may be executed by a different processor (core).

Up until the era of multi-cores, multi-threaded programs were needed mainly for high
performance computing. Such programs were developed by specialists having deep knowl-
edge about multi-threaded computation and problems related to it. Nowadays, every mod-
erately complex program is usually multi-threaded in order to provide the best performance
possible. The problem is that writing multi-threaded programs is significantly harder than
writing single-threaded programs. It is not sufficient to just split the computation into
several parts and execute each part in a separate thread. Some parts may be dependant
on other parts, requiring them to be executed first, some parts may access the same re-
sources and cannot do so simultaneously, etc. In the end, the programmer must properly
synchronise these threads. Failing to do so may lead to errors. On the other hand, over-
synchronising the program, i.e., not allowing the other threads to run even when it is safe
to do so, may prevent the errors, but may also degrade the performance of the program.

As multi-threaded programs are usually used to achieve maximum performance, pro-
grammers rarely end up oversynchronising them. This also means that they usually tend
to synchronise only the parts which they think needs it. Unfortunately, many program-
mers are unable to correctly identify the parts that needs to be synchronised. This may
lead to various concurrency errors caused by a missing synchronisation. Such errors usu-
ally manifest very rarely, and thus it is very hard to detect and localise them. Because
of that, techniques for detecting such errors are needed to help the programmers to fix
them. Indeed, reports [34, 88, 136] emphasize that it often takes more than a month to fix
a concurrency-related error and that nearly 70 % of the fixes are buggy when first released.
The topic of detecting errors in multi-threaded programs is both interesting and challeng-
ing, and also very relevant nowadays as the multi-core processors are not only present in
desktop computers now, but also in devices like tablets, mobile phones, etc.

1.1 Detecting Errors in Multi-threaded Programs

Detecting errors in multi-threaded programs is much harder than in sequential programs
because they may manifest only under very rare interleavings of actions executed by the
different threads. Such interleavings are not very likely to be spot during classical testing,
but they can occur in the production where the software is run for a much longer time,
on different machines, under different load, and in different environment settings. This
situation in turn stimulates research efforts devoted to all sorts of advanced methods for
testing, analysis, and verification of multi-threaded programs.

Formal methods of verification, such as, e.g., model checking [14,31], may potentially
be able to precisely analyze a given program. Unfortunately, these precise approaches do
not scale well for complex software systems. The size of the state space to be analyzed
in such systems is simply too big to be handled by the precise approaches despite various



optimizations that are used in advanced formal verification techniques. Therefore, more
lightweight approaches such as static and dynamic analyses or intelligent testing are often
used. These approaches use approximations of the analyzed programs to cope with the
complexity of the systems, which can pay off in the number of detected errors despite such
approaches can both miss errors as well as produce false alarms [8].

Static analyses, such as [76], usually focus on searching for purely syntactic error pat-
terns (possibly slightly refined, e.g., by using some information on the behavior of the
verified programs pre-computed by suitable dataflow or type analyses). Such analyses scale
well to even large code bases and may provide valuable information to the developer [$0], but
they often cannot discover concurrency-related errors because they do not model threads
and their interactions [76]. Of course, there also exist static analyses which do consider
concurrent threads, such as, e.g., [9,123]. These analyses are able to detect concurrency-
related errors, but they often produce many false alarms due to the abstractions they work
with.

Testing [12, 75, 119, 163] relies on (possibly repeated) execution of a given program.
It can precisely analyze all aspects of concurrent behavior, but it can only consider the
witnessed execution paths and thread interactions. To increase the chances that testing
will find concurrency-related errors, one can use (1) dynamic analysis [19,15] techniques
extrapolating the witnessed behaviour and/or (2) techniques allowing one to increase the
number of different interleavings witnessed in repeated test runs (such as systematic test-
ing [75, 119, 163] or noise injection [12]). As this thesis concentrates mainly on dynamic
analysis and testing, we discuss these approaches in more detail below.

Stress testing. Many discussions on various forums suggest to use stress testing for
discovering concurrency-related errors by simply executing a large number of threads com-
peting for shared resources. This approach increases the possibility of spotting concurrency
errors a little, and it can help to reveal some concurrency errors—usually those which man-
ifest quite often. This may lead developers to a false conviction that the program is tested
enough [131].

Noise injection. Noise injection inserts delays into the execution of selected threads
with the aim of forcing new (legal) interleavings, which have so far not been witnessed and
tested. This approach allows one to test more interleavings of synchronization-sensitive
actions in shorter time because the system is not that much overloaded by other actions.
Noise injection is also able to test legal interleavings of actions which are far away from
each other in terms of execution time and in terms of the number of concurrency-relevant
events [12] between those actions during average executions provided that strong enough
noise is injected into some of the threads. In a sense, the approach is similar to running
the program inside a model checker such as JPF [151] with a random exploration algorithm
enabled. However, model checkers such as JPF are often limited in the programming
constructs they natively support. Moreover, making purely random scheduling decisions
may be less efficient than using some of the noise heuristics which influence the scheduling
at some carefully selected places important from the point of view of synchronization only.
The approach of noise injection is mature enough to be used for testing of real-life software,
and it is supported by industrial-strength tools, such as IBM Java Concurrency Testing
Tool (ConTest) [12] or the Microsoft Driver Verifier where the technique is called delay
fuzzing [1]. Within IBM, ConTest allowed many bugs to be discovered, and as far as we
can say, it is still in industrial use.



Systematic testing. Systematic testing, c.f., e.g., [75,119,120,158,163] has become quite
popular recently. The technique uses a deterministic control over the scheduling of threads.
A deterministic scheduler is sometimes implemented using intense noise injection keeping
all threads blocked except the one chosen for making a progress. Often, other threads which
do not execute synchronization-relevant instructions or which do not access shared memory
are also allowed to make progress concurrently.

The systematic testing approach can be seen as execution-based model checking which
systematically tests as many thread interleaving scenarios as possible. Before execution
of each instruction which is considered as relevant from the point of view of detecting
concurrency-related errors, the technique computes all possible scheduler decisions. The
concrete set of instructions considered as concurrency-relevant depends on the particular
implementation of the technique (often, shared memory accesses and synchronization rel-
evant instructions are considered as concurrency relevant). Each such decision point is
considered a state in the state space of the system under test, and each possible decision
is considered an enabled transition at that state. The decisions that are explored from
each state are recorded in the form of a partially ordered happens-before graph [119], to-
tally ordered list of synchronization events [158], or simply in the form of a set of explored
decisions [75, 163]. During the next execution of the program, the recorded scheduling de-
cisions can be enforced again when doing a replay or changed when testing with the aim of
enforcing a new interleaving scenario.

As the number of possible scheduling decisions is high for complex programs, several op-
timizations and heuristics reducing the number of decisions to explore have been proposed.
The locality hypothesis [119] says that most concurrency-related errors can be exposed us-
ing a small number of preemptions. This hypothesis is exploited in the CHESS tool [119]
which limits the number of context switches taking place in the execution (iteratively in-
creasing the bound on the allowed number of context switches). Moreover, the tool also
utilizes a partial-order reduction algorithm blocking exploration of states equal to the al-
ready explored states (based on an equivalence defined on happens-before graphs). The
Maple tool [163] limits the number of context switches to two and additionally gets use of
the value-independence hypothesis which states that exposing a concurrency error does not
depend on data values. Moreover, the Maple tool does not consider interleavings where two
related actions executed in different threads are too far away from each other. The distance
of such actions is computed by counting actions in one of the threads, and the threshold is
referred to as a vulnerability window [163].

However, despite a great impact of the above mentioned reductions, the number of
thread interleavings to be explored remains big for real-life programs and therefore the
approach provides great benefit mainly in the area of unit testing [75, , 163]. The sys-
tematic testing approach is not as expensive as full model checking, but it is still quite
costly because one needs to track which scheduling scenarios of possibly very long runs
have been witnessed and systematically force new ones. The approach makes it easy to
replay an execution where an error was detected, but it has problems with handling various
external sources of non-determinism (e.g., input events).

Systematic testing offers several important benefits over noise injection. Its full control
over the scheduler allows systematic testing to precisely navigate the execution of the pro-
gram under test, to explore different interleavings in each run, and to also replay interesting
runs (if other sources of nondeterminism, such as input values, are handled). It allows the
user to get information about what fraction of (discovered) scheduling decisions has already
been covered by the testing process. However, the approach does also suffer from various



problems. The approach has problems to deal with external sources of non-determinism
(user actions in GUI, client requests) as well as with continuously running programs where
its ability to reuse already collected information is limited. In all those problematic cases,
noise injection can be successfully used. Moreover, the performance degradation introduced
by noise injection is significantly lower.

Dynamic analysis. Another way to improve traditional concurrency testing is to use
dynamic analysis which collects various pieces of information along the executed path and
tries to extrapolate the witnessed behavior in order to find errors which are in the program
but did not necessarily occur during the execution. Many problem-specific dynamic analyses
have been proposed for detecting special classes of errors, such as data races [15,97,133,137],
atomicity violations [109], or deadlocks [2,19,83]. These techniques may find more bugs in
fewer executions than classical testing. Some of the techniques, e.g., [15], are even sound
(i.e., do not miss an error) and precise (i.e., do not suffer from false alarms) with respect to
the observed execution path. However, most of the approaches are unsound and typically
produce many false alarms.

Efficiency of dynamic analysis can be increased when a different execution path is an-
alyzed during each execution of the test. A combination of noise injection or systematic
testing and dynamic analysis can thus lead to a synergy effect. However, monitoring of the
program behavior by a dynamic analysis algorithm typically introduces further synchro-
nization among threads and represents a form of noise affecting thread scheduling, which
may be important to take into account when applying regular noise injection heuristics.

Combined techniques. Finally, there are tools and techniques that combine various
approaches to test multi-threaded programs. For instance, multiple techniques get use of
information obtained by static and/or dynamic analysis in navigating systematic testing
tools. An example of such a technique is the recently published active testing approach,
targeting certain types of errors, such as data races [110], atomicity violations [130], and
deadlocks [83]. The technique uses results of approximate static and/or dynamic analyses
to hint systematic testing where a potential error can be found. The technique works in two
stages. During the first prediction phase, a static and/or dynamic analysis is performed and
warnings about specific concurrency errors are collected. In the second validation phase, the
test is repeatedly executed with a deterministic scheduler. The scheduler behaves as a ran-
dom scheduler until some thread reaches an action discovered during the prediction phase.
If such an action is spotted, all threads that are about to execute this action are stopped.
Whenever more threads are stopped, the scheduler enforces all possible interleavings.

1.2 Goals of the Thesis

The main goal of the thesis is to develop new techniques for detecting concurrency errors.
This goal is naturally very broad as it is next to impossible to create a technique that would
be able to detect any kind of error in any given program. While the existing techniques
can detect various kinds of concurrency errors in different classes of programs, they cer-
tainly do not cover everything, leaving a lot of space for new techniques. Moreover, many
of the existing techniques also have trouble handling larger programs or require complex
configuration in order to provide reasonable results, making them hard to use in practice.



Hence, this thesis focuses in particular on four main aspects (sub-goals) that the invented
techniques should accomplish:

1. Increase efficiency of the current approaches.
2. Be practical, i.e., easily usable in practice.
3. Support a broader variety of programs, i.e., more program constructions.

4. Support more properties to be checked, i.e., detect less commonly studied kinds of
erTors.

The first and most important sub-goal is to develop techniques that are able to analyse
complex real world multi-threaded programs and find errors in them. While many of
the existing techniques aim at this goal, they are still limited in either their efficiency or
precision. For example, model checking can possibly detect any kind of error, as it searches
the whole state space of a program, but, it will take forever to search the state space
of a larger program. Utilising various state space reduction or abstraction techniques may
allow the model checking to be used for larger programs, but, on one hand, introduce various
sources of imprecision and, on the other hand, the cost of the resulting analysis will still
stay quite high. In contrast, dynamic analysis can handle programs with millions of lines
of code, but, it analyses a concrete execution of a program (a small part of its state space)
only, and so it may miss many errors. To minimise the amount of errors missed, one usually
performs some extrapolation of the execution, but, this may introduce false alarms. This
thesis mainly focuses on (1) increasing the efficiency of current dynamic analysis techniques
by combining them with other approaches like noise injection or bounded model checking
to exploit their strengths and suppress their weaknesses, and (2) developing new dynamic
analysis techniques utilising precise yet effective extrapolations.

The second sub-goal ensures that the techniques are usable in practice, i.e., can be used
by companies and other software developers to analyse any program they have. There exist
many techniques which look good on a paper, but their practical usability is very limited.
These techniques often work only for small programs, do not support various language
features, or require a large amount of work to make the analysis of a program possible (e.g.,
model the environment, write conditions to be checked, provide program invariants, etc.).
All of this makes these techniques difficult to use in practice as the software developers
cannot spend months to get their programs to a state in which they can be analysed. The
created techniques should be as automated as possible, i.e., the users should be able to
use them out of the box, without any input or work needed from their side. Ideally, the
users should take their program, choose the analysis to perform, run the analysis and get
some results. Naturally, analyses are more precise and/or effective if the users provide some
additional information about the program. While it is good to allow the users to do such
a thing, this information should never be required in order to use the technique.

The last two sub-goals are partially related to the second one, the practical usage of
the techniques. When software developers want to analyse their programs, they need to
find a technique which (1) is able to analyse the class of programs they have, e.g., the
implementation of the technique supports the language the programs are written in, and
(2) is able to detect the errors which these programs may contain (usually, they will first
try the techniques which detect the most common types of errors and then try to use
other techniques which deal with less common types of errors). While there exists a lot of
different techniques for detection of the most common types of errors, their implementation



often supports only a concrete class of programs. Even when one can say that the other
classes of programs are less common and so techniques for analysing them are not needed
that much, we hear quite often from software developers that the only reason they are not
analysing their programs is because there is no implementation of a given technique which
can handle their class of programs. A similar problem is the less common kinds of errors.
Again, while one may argue that these errors are rare and it is not worth the effort to
invent techniques to detect them, we found out that many companies in fact encounter
these kinds of errors in their software. So it is not that there is no demand for techniques
for detecting such errors, it is just hard to develop techniques for detecting them. The
main problem is that these errors are often tied to the semantics of the program an thus
it is next to impossible to create a technique that would work for any program. This
thesis addresses these problems by (1) building a framework that allows one to easily create
custom dynamic analyses for analysing multi-threaded C/C++ programs, a common class
of programs which is surprisingly often not supported by the implementations of various
existing techniques, and (2) inventing new techniques for detecting some of the less-studied
kinds of concurrency errors such as order violations.

1.3 Plan of the Thesis and Achieved Results

This section describes the organisation of the whole thesis and also links the following
chapters to the sub-goals mentioned in the previous section. Each of the chapters is based
on one or more published papers.

The thesis is organised chronologically based on how the research was conducted and
can be roughly divided into three parts. The first part serves as a general overview of the
types of concurrency errors and techniques used for their detection. The second part focuses
on improving existing approaches for error detection and laying foundations for developing
new techniques and/or analysing new classes of programs. The third part then builds on
this foundation and focuses on analysing programs which use new means of synchronisation
and developing techniques to detect some of the less studied types of concurrency errors.
The rest of this section contains a more detailed summary of each of the thesis chapters.

Chapter 2 serves as an introduction to the world of concurrency errors. It describes
various kinds of errors one may encounter in a multi-threaded program and presents existing
techniques used to detect them. It also provides an overview of the state-of-the-art research
in this area, showing which concurrency errors are well-studied and which barely have any
techniques for their detection. The content of this chapter targets mainly sub-goals 3 and
4 as it shows which kinds of programs and errors are less studied and thus interesting
for further research. This chapter is based on a paper presented at Eurocast 2011 and
a technical report associated with it.

Chapter 3 presents our proposal of improving the error detection by combining imprecise
yet fast dynamic analysis with slow but precise (bounded) model checking to increase the
chances to detect errors. The main idea is to use the imprecise information provided by the
dynamic analysis to guide the bounded model checker to the part of the program’s state
where a potential error was detected by the dynamic analysis. This greatly improves the
performance of the bounded model checker as it does not need to search the whole state
space, just the interesting parts of it. While the principles of the technique are general, the
current implementation targets Java programs. The content of this chapter targets mainly
the first two sub-goals as the resulting technique is fully automated and can handle large
programs. This chapter is based on a paper presented at RV 2011 and a technical report
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associated with it.

Chapter 4 describes our proposal of the ANaConDA framework. This framework allows
one to easily implement new (noise-based) techniques for analysing C/C++ programs on the
binary level. The motivation to create this framework came from the industry. While there
exist many tools for Java implementing various analyses proposed in the literature, many
companies cannot use them because they are developing C/C++ programs which these
tools are unable to analyse. Although it is possible to reimplement these tools to support
C/C++ programs, it is not an easy task without some utilities that would ease the process.
While for Java, one may find various frameworks that would simplify this task, there are
barely any such tools for C/C++. To address this problem, our research shifted from
analysing Java programs to C/C++ programs. It was decided that the framework would
perform the analysis on the binary level as it allows one to perform an analysis without
the need to have the source code of the program (or a library) available. Such analysis is
also more precise as it sees all the changes and optimisations done by the compiler to the
original source code. However, working on the binary level also brings some new challenges
to be solved, so this chapter also describe various caveats of monitoring the execution of
a program on a binary level. The content of this chapter targets mainly sub-goal 3 as the
framework allows one to analyse one of the less studied classes of programs. This chapter is
based on parts of two papers presented at PADTAD 2012 and RV 2012 (awarded the best
tool paper award).

Chapter 5 discusses several new noise injection techniques which increase the chances
to detect errors. These techniques are based on injecting various delays into the execution
of a multi-threaded program in order to influence the scheduling of its threads and alter its
usual execution. In many cases, critical errors occur only in a very specific and quite rare
executions, and the noise injection techniques try to increase the chances that such execu-
tions will occur even within a limited number of test runs to help the detection techniques
to spot errors. Note that noise injection techniques are quite general and can be used in
conjunction with many different error detection techniques. The content of this chapter
targets mainly the first two sub-goals as the invented noise injection techniques improve
the efficiency of many detection techniques, and while tailoring the noise configuration may
help to achieve higher efficiency, even a random noise usually makes a big difference. This
chapter is based on parts of papers presented at PADTAD 2012 and published in the STVR
journal.

Chapter 6 deals with analysing programs which use transactional memory, a new kind
of simple to use yet effective synchronisation. This new form of synchronisation is lately
finding its way into the industry and monitoring and debugging this kind of programs
proved to be very problematic. This chapter discusses various approaches to monitor these
programs as well as how these approaches influence the behaviour of the monitored program
which may be important, e.g., for performance analyses. The content of this chapter targets
mainly sub-goal 3 as it allows one to monitor and analyse programs using a new type of
synchronisation. This chapter is based on a paper presented at MEMICS 2014.

Chapter 7 concludes the research done within the thesis by introducing a new technique
for detecting concurrency errors using contracts. A contract is a rather generic concept
that allows one to handle not only some of the less studied concurrency errors such as order
violations or missed signals, but also errors specific for a given context, e.g., errors tied
to the semantic of a concrete program. This technique belongs among the extrapolating
dynamic analyses that are capable of detecting errors even if they did not occur in the
execution of a program. We instantiate the principle of extrapolating dynamic analysis in
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a novel way for the given context, and, moreover, we show that it can be combined with
noise injection too. This technique was already used to detect several errors in industry
code which were then fixed using the information provided by it. The content of this chapter
targets mainly sub-goals 1 and 4 as the invented technique can effectively detect some of
the a less studied types of concurrency errors even in complex industry code. This chapter
is based on two papers, one presented at Eurocast 2015 and one submitted to ICST 2017,
and a technical report associated with the second paper.

Chapter 8 summarises the work described in this thesis and discusses possible directions
for future work.
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Chapter 2

Concurrency Errors

This chapter presents an overview of errors one may encounter in multi-threaded programs
and also discusses various techniques for their detection. It pinpoints the kinds of errors
and also classes of programs which are less studied and thus interesting for further research.

2.1 Introduction

Many works devoted to detection of concurrency errors have been published in recent years
and many of them presented definitions of concurrency errors that the proposed algorithms
are able to handle. These definitions are usually expressed in different terms suitable for
a description of the particular considered algorithms, and they surprisingly often differ
from each other in the meaning they assign to particular errors. To help understanding
the errors and developing techniques for detecting them, this chapter strives to provide
a uniform taxonomy of concurrency errors common in current programs, together with
a brief overview of techniques so far proposed for detecting such errors. Note that while
many of the techniques mentioned in this chapter are implemented to target Java programs,
most of them can be applied to other programming languages as well.

The inconsistencies in definitions of concurrency errors are often related to the fact
that authors of various analyses adjust the definitions according to the method they pro-
pose. Sometimes the definitions differ fundamentally (e.g., one can find works claiming that
an execution leads to a deadlock if all threads terminate or end up waiting on a blocking
instruction, without requiring any circular relationship between such threads required in
the most common definition of deadlocks). However, often, the definitions have some shared
basic skeleton which is parameterised by different underlying notions (such as the notion of
behavioural equivalence of threads). In our description, we try to systematically identify
the generic skeletons of the various notions of concurrency errors as well as the underlying
notions parameterising them.

For the considered errors, we try to also provide a brief overview of the different existing
techniques for detecting them. In these overviews, we (mostly) do not mention the approach
of model checking which can, of course, be used for detecting all the different errors, but its
use in practice is often limited by the state explosion problem (or, even worse, by a need to
handle infinite state spaces) as well as the need to model the environment of a program being
verified. That is why the use of model checking is usually limited in practice to relatively
small, especially critical programs or components (e.g., drivers). For similar reasons, we do
not discuss the use of theorem proving in the rest of the chapter either.
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Related work. Of course, there have been several attempts to provide a taxonomy of
concurrency errors in the past decades, c.f., e.g., [23, 104, 108]. In [23], authors focus on
concrete bug patterns bound to concrete synchronisation constructs in Java like, e.g., the
sleep() command. In [108], a kind of taxonomy of bug patterns can also be found. The
authors report results of analysis of concurrency errors in several real-life programs. A de-
tailed description of all possible concurrency errors that can occur when the synchronised
construct is used in Java is provided in [104] where a Petri net model of the synchronisation
construct is analysed. In comparison to these works, our aim is to provide uniform defi-
nitions of common concurrency errors that are not based on some specific set of programs
or some specific synchronisation means, and we always stress the generic skeleton of the
definitions and the notions parameterising it. We do not rely on concrete bug patterns
because they are always incomplete, characterising only some specific ways how a certain
type of error can arise.

Plan of the chapter. Our discussion of common concurrency errors is divided into two
main sections. (1) Section 2.2 covers various errors in safety, i.e., errors that cause something
bad to happen. In particular, data races, atomicity violation, order violation, deadlocks,
and missed signals are discussed. (2) Section 2.3 covers various errors in liveness, i.e.,
errors that prevent something good from happening, as well as errors mixing liveness and
safety. Concretely, starvation, livelocks, non-progress behaviour, and blocked threads are
discussed. In all cases, the particular error is first defined, trying to stress the main concept
of the error and the notions by which it is parameterised, followed by a brief discussion of
various known techniques for detecting the particular error. Finally, in Section 2.4, a short
conclusion is given.

2.2 Safety Errors

Safety errors violate safety properties of a program, i.e., cause something bad to happen.
They always have a finite witness leading to an error state.

2.2.1 Data Races

Data races are one of the most common (mostly) undesirable phenomena in concurrent
programs. To be able to identify an occurrence of a data race in an execution of a concurrent
program, one needs to be able to say (1) which variables are shared by any two given threads
and (2) whether any given two accesses to a given shared variable are synchronised in some
way. A data race can then be defined as follows.

Definition 1. A program execution contains a data race iff it contains two unsynchronised
accesses to a shared variable and at least one of them is a write access.

Note, however, that not all data races are harmful-—data races that are not errors are
often referred to as benign races.
Detection of Data Races

Data races are a well studied concurrency problem and therefore there exist many different
techniques for their detection. Dynamic techniques which analyse one particular execution
of a program are usually based on computing the so-called locksets and/or happens-before
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relations along the witnessed execution. Static techniques often either look for concrete
code patterns that are likely to cause a data race or they compute locksets and/or happens-
before relations over all executions considered feasible by the static analyser. There also
exist static detection techniques that use type systems to detect data races. We discuss the
basic principles of some of these techniques in the rest of this subsection.

The techniques based on locksets [137] build on the idea that all accesses to a shared
variable should be guarded by a lock. The lockset is defined as a set of locks that guard all
accesses to a given variable. Detectors then use an observation that if the lockset associated
with a certain shared variable is non-empty, then there is at least one lock such that every
access to the shared variable from any thread is protected by this lock, and hence there is
no possibility of simultaneous accesses, and so a data race is not possible.

The happens-before-based techniques exploit the so-called happens-before relation [94]
(denoted —) which is defined as the least strict partial order that includes every pair of
causally ordered events. For instance, if an event x occurs before an event y in the same
thread, then x — y. Also, when x is an event creating some thread and y is an event in that
thread, then x — y. Similarly, if some synchronisation or communication means is used
that requires an event x to precede an event y, then x — y. All notions of synchronisation
and communication, such as sending and receiving a message, locking and unlocking a lock,
sending and receiving a notification, etc., are to be considered. Detectors build (or ap-
proximate) the happens-before relation among accesses to shared variables and check that
no two accesses (out of which at least one is for writing) can happen simultaneously, i.e.,
without the happens-before relation between them.

Type systems provide a syntactic method for proving the absence of certain program
behaviours by classifying phrases according to the kinds of values they compute [132].
A formal type system provides a powerful and efficient checker of correctness of the code
mainly if the programming language is strongly and statically typed (i.e., each variable has
a deterministic type in each point of computation, and the types can be inferred without
executing the code). Detection of concurrency bugs is usually done by extending the initial
type system with a number of additional types that handle concurrency. These additional
types are usually expressed by code annotations. A type system then searches for violations
of rules defined over the newly defined types. Sometimes, the notion of typestates, intro-
duced in [1415], is used. Typestates extend the ordinary types that do not change through
the lifetime of an object by allowing them to change during the course of the computation.
A typestate property can be captured by a finite state machine where the nodes represent
states of the type and the arcs correspond to operations that lead to state transitions.

Lockset-based algorithms. The first algorithm which used the idea of locksets was
Eraser [137]. The algorithm maintains for each shared variable v, a set C(v) of candidate
locks for v. When a new variable is initialised, its candidate set C(v) contains all possible
locks. Eraser updates C(v) by intersecting C(v) and the set L(¢) of locks held by the current
thread whenever v is accessed. Eraser warns about a data race if C(v) becomes empty for
some shared variable v along the execution being analysed. In order to reduce the number
of false alarms, Eraser introduces an internal state s(v) for each shared variable v used
to identify whether v is used exclusively by one thread, v is read by multiple threads, or
multiple threads change the value of v. The lockset C(v) is then modified only when the
variable is shared and a data race is reported only if C(v) becomes empty and v is in the
state denoting the situation when multiple threads access v for writing.

The original Eraser algorithm designed for C programs was then modified for programs
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written in object-oriented languages, c.f., e.g., [21,29, , 164]. The main modification
(usually called as the ownership model) is inspired by the common idiom used in object-
oriented programs where a creator of an object is actually not the owner of the object.
Then one should take into account that the creator always accesses the object first and no
explicit synchronisation with the owner is needed because the synchronisation is implicitly
taken care by the Java virtual machine. This idea is reflected by inserting a new internal
state of the shared variables. The modification introduces a small possibility of having false
negatives [0, 153] but greatly reduces the number of false alarms caused by this object-
oriented programming idiom.

A static data race detector that approximates locksets using an interprocedural data-
flow analysis has been presented in [16]. The detection has three phases: (1) The control
flow of each procedure is obtained and a call graph of the whole system is constructed.
(2) A top-down data-flow analysis based on locksets is performed over the constructed
graphs. A data race is suspected if an access to a shared variable is not guarded by a lock
that is present in the lockset constructed for the variable along a path being analysed.
(3) A final inspection algorithm then ranks each detected possible bug and reports only
those that are real with a higher probability. However, the approach still produces many
false alarms and it also has high memory requirements.

Better results were obtained, e.g., in [35, 122] where two more static analyses were
incorporated into the machinery. An alias analysis [127] identifies a set of variables that
refer to the same memory location, and an escape analysis [127] identifies a set of objects
that are accessible in more than one thread. The first analysis enables the method to join
locksets of different variables referencing the same data, and the escape analysis allows the
method to limit the computation of locksets for variables that could be shared only.

A computation of locksets has also been implemented in the Java PathFinder (JPF)
model checker [151]. JPF performs explicit state model checking, and therefore the RaceDe-
tector checker computes a lockset for each shared variable and each state of the state space.

A problem of techniques based on locksets is that they do not support other synchro-
nisation than locks and therefore produce too many false alarms when applied to common
concurrent software.

Happens-before-based algorithms. Most happens-before-based algorithms use the so-
called wvector clocks introduced in [115]. The idea of vector clocks for a message passing
system is as follows. Each thread has a vector of clocks T, indexed by thread identifiers.
One position in T, represents the own clock of t. The other entries in T,. hold logical
timestamps indicating the last event in a remote thread that is known to be in the happens-
before relation with the current operation of t. Vector clocks are partially-ordered in a point-
wise manner (E) with an associated join operation (U) and the minimal element (0). The
vector clocks of threads are managed as follows: (1) Initially, all clocks are set to 0. (2) Each
time a thread ¢ sends a message, it sends also its T,. and then ¢ increments its own logical
clock in its Ty, by one. (3) Each time a thread receives a message, it increments its own
logical clock by one and further updates its T, according to the received vector T7,. to
Tye =Ty UT,,.

Recently, a new variation of the vector-clock algorithm has been published [1]. The
modification allows a distributed computation of vector clocks. Each thread maintains not
a vector but a tree structure holding values of vector clocks. However, according to the
best of our knowledge, there is no detector that uses this new algorithm yet.

Algorithms [133, 134] detect data races in systems with locks via maintaining a vector
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clock C; for each thread t (corresponding to T, in the original terminology above), a vector
clock L, for each lock m, and two vector clocks for write and read operations for each shared
variable x (denoted W, and Ry, respectively). W, and R, simply maintain a copy of C, of
the last thread that accessed x for writing or reading, respectively. A read from x by a
thread is race-free if W, C C; (it happens after the last write of each thread). A write to x
by a thread is race-free if Wy C C; and R, C C, (it happens after all accesses to the variable).

Maintaining such a big number of vector clocks as above generates a considerable over-
head. Therefore, in [60], the vector clocks of variables from above were mostly replaced
by the so-called epochs associated with each variable v that are represented as tuples (¢, ¢)
where ¢ identifies the thread that last accessed v and ¢ represents the value of its clock.
The idea behind this optimisation is that, in most cases, a data race occurs between two
subsequent accesses to a variable. In such cases, epochs are sufficient to detect unsynchro-
nised accesses. However, in cases where a write operation needs to be synchronised with
multiple preceding read operations, epochs are not sufficient, and the algorithm has to build
an analogy of vector clocks for sequences of read operations.

The happens-before relation can also be approximated statically. A very expensive and
quite precise static analysis has been introduced in [I14]. The algorithm proposed in this
paper aims at computing the so-called may-happen-in-parallel relation (MHP) which is the
complement of the happens-before relation. MHP is approximated in two steps. Initially,
any pair of instructions is assumed to be able to happen in parallel (the MHP is total).
Then, the initial set of pairs is pruned such that only those which cannot be seen to happen
in succession remain in the set. A data race is reported if two accesses to a shared variable
are in the MHP relation.

The original algorithm for computing MHP relations is very inefficient and is able to
handle very small programs only. Therefore, several modifications have been proposed. The
approach presented in [125] tries to compute MHP relations using a data-flow framework.
The data-flow analysis is performed over the so-called parallel execution graph. This graph
combines control-flow graphs of all threads that could be started during the execution with
special edges induced by synchronisation actions in the code. The size of the graph increases
exponentially with the size of the program and with the number of threads. Further, the
data-flow computation of MHP relations has been slightly improved in [15] by the so-called
thread creation trees (TCT) that help to compute a rough over-approximation of MHP
relations before the data-flow evaluation is used. However, the obtained static analysis is
still quite expensive.

A somewhat similar approach has also been used in the JPF model checker [151]. The
PreciseRaceDetector detects data races by checking whether two accesses to the same vari-
able may happen in parallel. In every state that JPF visits, the algorithm checks all actions
that can be performed next. If this collection of actions contains at least two accesses to
the same variable from different threads, then a data race is reported. Compared to the
static analyses presented above, the detection in JPF is completely precise: It announces
a data race only if it can really happen.

A bit different detection approach has been introduced in TRaDe [30] where a topological
race detection [00] is used. This technique is based on an exact identification of objects
which are reachable from a thread. This is accomplished by observing manipulations with
references which alter the interconnection graph of the objects used in a program—hence the
name topological. Then, vector clocks are used to identify possibly concurrently executed
segments of code, called parallel segments. If an object is reachable from two parallel
segments, a race has been detected. A disadvantage of this solution is a considerable
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overhead.

An advantage of the algorithms mentioned above is their precision. However, the big
cost of these algorithms inspired many researches to come up with some combination of
happens-before-based and lockset-based algorithms. These combinations are often called
hybrid algorithms.

Hybrid algorithms. Hybrid algorithms such as [15,57, 129, 164] combine the two ap-
proaches described above.
In RaceTrack [164], a notion of a threadset was introduced. The threadset is maintained

for each shared variable and contains information concerning threads currently working with
the variable. The method works as follows. Each time a thread performs a memory access
on a variable, it forms a label consisting of the thread identifier and its current private
clock value. The label is then added to the threadset of the variable. The thread also
uses its vector clock to identify and remove from the threadset labels that correspond to
accesses that are ordered before the current access. Hence the threadset contains solely
labels for accesses that are concurrent. At the same time, locksets are used to track locking
of variables, which is not tracked by the used approximation of the happens-before relation.
Intersections on locksets are applied if the approximated happens-before relation is not able
to assure an ordered access to shared variables. If an ordered access to a shared variable is
assured by the approximated happens-before relation, the lockset of the variable is reset to
the lockset of the thread that currently accesses it.

One of the most advanced lockset-based algorithms that also uses the happens-before
relation is Goldilocks presented in [15]. The main idea of this algorithm is that locksets
can contain not only locks but also volatile variables (i.e., variables with atomic access that
may also be used for synchronisation) and, most importantly, also threads. An appearance
of a thread r in a lockset of a shared variable means that ¢ is properly synchronised for
using the given variable. The information about threads synchronised for using certain
variables is then used to maintain the transitive closure of the happens-before relation
via the locksets. An advantage of Goldilocks is that it allows locksets to grow during
a computation when the happens-before relation is established between operations over
v. The basic Goldilocks algorithm is relatively expensive but can be optimised by short
circuiting the lockset computation (three cheaper checks that are sufficient for race freedom
between the two last accesses on a variable are used) and using a lazy computation of
the locksets (the locksets are computed only if the previous optimisation is not able to
detect that some events are in the happens-before relation). The optimised algorithm has
a considerably lower overhead approaching in some cases pure lockset-based algorithms.

A similar approach to Goldilocks but for the JPF model checker has been presented
in [87]. This algorithm does not map variables to locksets containing threads and syn-
chronisation elements (such as locks) but threads and synchronisation elements to sets
of variables. This modification is motivated by the fact that the number of threads and
locks is usually much lower than the number of shared variables. The modification can
be done because model checking allows the method to modify structures associated with
different threads at once. In a dynamic analysis, this cannot be done and locksets must be
maintained in a distributed manner.

In [154], an abstract interpretation over abstract heaps is performed. The algorithm
maintains the so-called object use graphs (OUG) capturing accesses from different threads
to particular objects. Nodes of an OUG represent events performed with the object for
which the OUG is built, and edges denote approximated happens-before relations between
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the events. The data race detection algorithm performed after the OUGs are built then
does not need to analyse the entire program but only relatively small OUGs. A data race
is detected if there exist two events such that: (1) There is no ordering between the events,
(2) the events originate from different threads, (3) at least one event is a write action, and
(4) the events are not done under a common lock protection.

Type-based algorithms. In [56,59], a clone of classic Java called ConcurrentJava has
been proposed. The papers presented several annotations of using synchronisation prim-
itives and of accessing shared variables allowing race-freeness be checked by an extended
typing system of ConcurrentJava. For instance, each definition of a shared variable can be
annotated with an annotation guarded-by [ which requires each access to the particular
variable to be guarded by a lock .

A combination of type-based and data flow analysis has been presented in [160]. The
proposed algorithm uses typestates to handle locking states for each variable and does not
need any annotation provided by the user. Typestates are computed using an intrapro-
cedural data-flow analysis and symbolic path simulation. The technique is able to handle
large programs but still produces false alarms mainly due to unsupported synchronisation
mechanisms (only locks are supported).

2.2.2 Atomicity Violation

Atomicity is a non-inference property. The notion of atomicity is rather generic. It is
parametrised by (1) a specification of when two program executions may be considered
equivalent from the point of view of their overall impact and (2) a specification of which
code blocks are assumed to be atomic. Then an atomicity violation can be defined as
follows.

Definition 2. A program execution violates atomicity iff it is not equivalent to any other
execution in which all code blocks which are assumed to be atomic are executed serially.

An execution that violates atomicity of some code blocks is often denoted as an un-
serialisable execution. The precise meaning of unserialisability of course depends on the
employed notion of equivalence of program executions.

Detection of Atomicity Violation

Taking into account the generic notion of atomicity, methods for detecting atomicity viola-
tions can be classified according to: (1) The way they obtain information about which code
blocks should, in fact, be expected to execute atomically. (2) The notion of equivalence
of executions used (we will get to several commonly used equivalences in the following).
(3) The actual way in which an atomicity violation is detected (i.e., using static analysis,
dynamic analysis, etc.).

As for the blocks to be assumed to execute atomically, some authors expect the pro-
grammers to annotate their code to delimit such code blocks [63]. Some other works come
with predefined patterns of code which should typically execute atomically [70, , 150].
Still other authors try to infer blocks to be assumed to execute atomically, e.g., by analysing
data and control dependencies between program statements [159], where dependent pro-
gram statements form a block which should be executed atomically, or by finding out access
correlations between shared variables [107], where a set of accesses to correlated shared vari-
ables should be executed atomically (together with all statements between them).
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Below, we first discuss approaches for detecting atomicity violations when considering
accesses to a single shared variable only and then those which consider accesses to several
shared variables.

Atomicity over one variable. Most of the existing algorithms for detecting atomicity
violations are only able to detect atomicity violations within accesses to a single shared
variable. They mostly try to detect a situation where two accesses to a shared variable
should be executed atomically, but are interleaved by an access from another thread.

In [159], blocks of instructions which are assumed to execute atomically are approxi-
mated by the so called computational units (CUs). CUs are inferred automatically from
a single program trace by analysing data and control dependencies between instructions.
First, a dependency graph is created which contains control and read-after-write dependen-
cies between all instructions. Then the algorithm tries to partition this dependency graph
to obtain a set of distinct subgraphs which are the CUs. The partitioning works in such
a way that each CU is the largest group of instructions where all instructions are control
or read-after-write dependent, but no instructions which access shared variables are read-
after-write dependent, i.e., no read-after-write dependencies are allowed between shared
variables in the same computational unit. Since these conditions are not sufficient to parti-
tion the dependency graph to distinct subgraphs, additional heuristics are used. Atomicity
violations are then detected by checking if the strict 2-phase locking (2PL) discipline [17]
is violated in a program trace. Violating the strict 2PL discipline means that some CU
has written or accessed a shared variable which another CU is currently reading from or
writing to, respectively (i.e., some CU accessed a shared variable and before its execution is
finished, another CU accesses this shared variables). If the strict 2PL discipline is violated,
the program trace is not identical to any serial execution, and so seen as violating atomic-
ity. Checking if the strict 2PL discipline is violated is done dynamically during a program
execution in case of the online version of the algorithm, or a program trace is first recorded
and then analysed using the off-line version of the algorithm.

A much simpler approach of discovering atomicity violations was presented in [109].
Here, any two consecutive accesses from one thread to the same shared variable are con-
sidered an atomic section, i.e., a block which should be executed atomically. Such blocks
can be categorised into four classes according to the types of the two accesses (read or
write) to the shared variable. Serialisability is then defined based on an analysis of what
can happen when a block b of each of the possible classes is interleaved with some read or
write access from another thread to the same shared variable which is accessed in b. Out
of the eight total cases arising in this way, four (namely, r/w/r, w/w/r, w/r/w, r/w/w) are
considered to lead to an unserialisable execution. However, the detection algorithm does
not consider all the unserialisable executions as errors. Detection of atomicity violations
is done dynamically in two steps. First, the algorithm analyses a set of correct (training)
runs in which it tries to detect atomic sections which are never unserialisably interleaved.
These atomic sections are called access interleaving invariants (Al invariants). Then the
algorithm checks if any of the obtained Al invariants is violated in a monitored run, i.e., if
there is an Al invariant which is unserialisably interleaved by an access from another thread
to a shared variable which the Al invariant (atomic section) accesses. While the second
step of checking AT invariants violation is really simple and can be done in a quite efficient
way, the training step to get the Al invariants can lead to a considerable slow down of the
monitored application.

A more complicated approach was introduced in [57, 156], where atomicity violations
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are sought using the Lipton’s reduction theorem [102]. The approach is in particular based
on checking whether a given run can be transformed (reduced) to a serial one using com-
mutativity of certain instructions (or, in other words, by moving certain instructions left
or right in the execution). Both [57] and [156] use procedures as atomic blocks by default,
but users can annotate blocks of code which they assume to execute atomically to provide
a more precise specification of atomic sections for the algorithm. For the reduction used to
detect atomicity violations, all instructions are classified, according to their commutativity
properties, into 4 groups: (1) Right-mover instructions R which can be swapped with im-
mediately following instructions. (2) Left-mover instructions L which can be swapped with
immediately preceding instructions. (3) Both-mover instructions B which can be swapped
with preceding or following instructions. (4) Non-mowver instructions N which are not
known to be left or right mover instructions. Classification of instructions to these classes
is based on their relation to synchronisation operations, e.g., lock acquire instructions are
right-movers, lock release instructions are left-movers, and race free accesses to variables
are both-movers (a lockset-based dynamic detection algorithm is used for checking race
freeness). An execution is then serialisable if it is deadlock-free and each atomic section
in this execution can be reduced to a form R*N’L* by moving the instructions in the exe-
cution in the allowed directions. Here, N’ represents a single or no non-mover instruction
and both-mover instructions B can be taken as right-mover instructions R or left-mover
instructions L. Algorithms in both [57] and [156] use dynamic analysis to detect atomicity
violation using the reduction algorithm described above.

Other approaches using the Lipton’s reduction theorem [102] can be found in [62, 155]
where type systems based on this theorem are used to deal with atomicity violations.

In [62], atomicity is analysed in programs written in a language called AtomicJava,
a subset of Java with a type system for atomicity. The type system works with atomicity-
related types denoting an expression as compound, atomic, mover (in the sense of Lipton),
etc. These types may, moreover, be conditional upon the locks held. The user may anno-
tate methods by the atomicity types and he/she can also annotate variables by locks the
variables are supposed to be guarded with. The type inference rules proposed in the paper
then automatically derive type constraints whose solution (if any) provides atomicity types
for particular methods. If the methods were annotated by the user, conformance of the
automatically derived and manually provided atomicity types is checked. The use of the
conditional atomicity types makes the analysis more precise than the previous approaches.

In [155], a more simple type system for programs with non-blocking synchronisation is
used which operates with five atomicity-related types: atomic, non-atomic, right-, left-, and
both-mover expressions are distinguished. Again, procedures are considered as the main
unit of atomicity. In this case, no annotations are provided, the technique just informs
on which methods it considers atomic and which not, which is a bit restricting. Methods
which are not executed atomically may, but need not violate atomicity assumptions of the
programmer.

Atomicity over multiple variables. The above mentioned algorithms consider atom-
icity of multiple accesses to the same variable only. However, there are situations where
we need to check atomicity over multiple variables, e.g., when a program modifies three
different variables representing a point in a three-dimensional space. Even if we ensure that
every consecutive read and write accesses to each of these variables are executed atomically,
the program can still have an unserialisable execution. This is because the three atomic
blocks guarding each pair of accesses to each of these variables can be interleaved with
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other atomic blocks operating with these variables. Some of these variables can then end
up modified by a different thread than the others which cannot happen in a serial execution.
Nevertheless, the above discussed detectors would not detect any atomicity violation here.

In [7], the problem of violation of atomicity of operations over multiple variables is
referred to as a high-level data race. In the work, all synchronised blocks (i.e., blocks of
code guarded by the synchronised statement) are considered to form atomic sections.
The proposed detection of atomicity violations is based on checking the so-called view
consistency. For each thread a set of views is generated. A view is a set of fields (variables)
which are accessed by a thread within a single synchronised block. From this set of views,
a set of maximal views (maximal according to set inclusion) is computed for the thread.
An execution is then serialisable if each thread is only using views which are compatible,
i.e., form a chain according to set inclusion, with all maximal views of other threads. Hence,
the detection algorithm uses a dynamic analysis to check whether all views are compatible
within a given program trace. Since the algorithm has to operate with a big number of sets
(each view is a set), it suffers from a big overhead.

A different approach is associated with the Velodrome detector [63]. Here, atomic
sections (called transactions) are given as methods annotated by the user. Detection of
atomicity violations is based on constructing a graph of the transactional happens-before
relation (the happens-before relation among transactions). An execution is serialisable if
the graph does not contain a cycle. The detection algorithm uses a dynamic analysis to
create the graph from a program trace and then checks if it contains a cycle. If yes, the
program contains an atomicity violation. Since creating the graph for an entire execution is
inconvenient, nodes that cannot be involved in a cycle are garbage collected or not created
at all. Like the previous algorithm, Velodrome too may suffer from a considerable overhead
in some cases.

The simple idea of AI invariants described in [109] has been generalised for checking
atomicity over pairs of variables in [70, 150], where 11 or 14, respectively, problematic
interleaving scenarios were identified. The user is assumed to provide the so-called atomic
sets that are sets of variables which should be operated atomically. In [150] there is proposed
an algorithm which infers which procedure bodies should be the so-called units of work w.r.t.
the given atomic sets. This is done statically using a dataflow analysis. An execution is then
considered serialisable if it does not correspond to any of the problematic interleavings of
the detected units of work. An algorithm capable of checking unserialisability of execution
of units of work (called atomic-set-serialisability violations) is described in [70], based on
a dynamic analysis of program traces. The algorithm introduces the so-called race automata
which are simple finite state automata used to detect the problematic interleaving scenarios.

There are also attempts to enhance well-known approaches for data race detection to
be able to detect atomicity violations over multiple variables. One method can be found
in [107] where data mining techniques are used to determine access correlations among an
arbitrary number of variables. This information is then used in modified lockset-based and
happens-before-based detectors. Since data race detectors do not directly work with the
notion of atomicity, blocks of code accessing correlated variables are used to play the role
of atomic sections. Access correlations are inferred statically using a correlation analysis.
The correlation analysis is based on mining association rules [3] from frequent itemsets,
where items in these sets are accesses to variables. The obtained association rules are
then pruned to allow only the rules satisfying the minimal support and minimal confidence
constraints [3]. The resulting rules determine access correlations between various variables.
Using this information, the two mentioned data race detector types can then be modified
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to detect atomicity violations over multiple variables as follows. Lockset-based algorithms
must check for every pair of accesses to a shared variable that the shared variable and all
variables correlated with this variable are protected by at least one common lock. Happens-
before-based algorithms must compare the logical timestamps not only with accesses to the
same variables, but also with accesses to the correlated variables. The detection can be
done statically or dynamically, depends on the data race detector which is used.

2.2.3 Order Violations

Order violations form a much less studied class of concurrency errors than data races and
atomicity violations, which is, however, starting to gain more attention lately. An order
violation is a problem of a missing enforcement of some higher-level ordering requirements.
For detecting order violations, one needs to be able to decide for a given execution whether
the instructions executed in it have been executed in the right order. An order violation
can be defined as follows.

Definition 3. A program execution exhibits an order violation if some instructions executed
in it are not executed in an expected order.

Detection of Order Violations

Like in the case of atomicity violations, a prerequisite for detecting order violations is to
know which order restrictions are assumed. These can be specified manually, generic order
requirements may be used (e.g., an object must be first initialised and only then used),
or some restrictions may be automatically inferred. The order restrictions considered in
current approaches are often quite simple, frequently considering only pairs of instructions.
The actual discovery of order violations can in theory be done dynamically as well as stati-
cally. Currently, however, there are not many works dealing with order violation detection
as has been pinpointed in [108].

In [162], authors introduce, for each memory operation o, a set of memory operations
PSet(0) which o depends upon and which can safely occur before 0. These sets are ex-
tracted from a set of correct executions of the analysed program. Then, order violations
are sought in further runs by looking for a memory operation o such that the previous
memory operation dependent upon o is not in PS et(0).

The ConMem tool [165] detects several behavioural patterns corresponding to order
violations that can lead to a program crash. For each test input, ConMem monitors one ex-
ecution of the given program. It uses a dynamic analysis to first identify parts of executions
(denoted as ingredients) that may lead to a crash if ordered differently than in the given exe-
cution (e.g., assignments of null to a shared pointer and dereferences of this shared pointer
from different treads). Then, ConMem analyses synchronisation around these potentially
problematic constructions to see whether fatal interleavings exist to trigger an error (e.g.,
an interleaving where a thread #; assigns null to a shared variable v, and subsequently,
a thread r, dereferences v). The paper describes four problematic patterns consisting of
ingredients and timing conditions that lead to an error and that ConMem is able to detect.
One example is the Con-NULL pattern with ingredients rp—a thread ¢ reads a pointer ptr,
wp—a thread #, writes null to ptr, and timing conditions requiring wp to execute before rp
with no write operation on ptr happening in between of wp and rp. Another example is the
Con-UnlInit pattern with ingredients r—a thread #; reads a variable v without previously
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writing to v, w—a thread #, initialises v, and the timing condition requiring r to execute
before w.

2.2.4 Deadlocks

Deadlocks are a class of safety errors which is quite often studied in the literature. However,
despite that, the understanding of deadlocks still varies in different works. We stick here
to the meaning common, e.g., in the classical literature on operating systems. To define
deadlocks in a general way, we assume that given any state of a program, (1) one can
identify threads that are blocked and waiting for some event to happen and (2) for any
waiting thread ¢, one can identify threads that could generate an event that would unblock
t.

Definition 4. A program state contains a set S of deadlocked threads iff each thread in S
1s blocked and waiting for some event that could unblock it, but such an event could only be
generated by a thread from S .

Most works consider a special case of deadlocks, namely, the so-called Coffman dead-
lock [32]. A Coffman deadlock happens in a state in which four conditions are met: (1) Pro-
cesses have an exclusive access to the resources granted to them, (2) processes hold some
resources and are waiting for additional resources, (3) resources cannot be forcibly removed
from the tasks holding them until the resources are used to completion (no preemption on
the resources), and (4) a circular chain of tasks exists in which each task holds one or more
resources that are being requested by the next task in the chain. Such a definition perfectly
fits deadlocks caused by blocking lock operations but does not cover deadlocks caused by
message passing (e.g., a thread #; can wait for a message that could only be sent by a thread
fr, but t, is waiting for a message that could only be sent by ;).

Detection of Deadlocks

Detection of deadlocks usually involves various graph algorithms as it is, for instance, in
the case of the algorithm introduced in [128] where a thread-wait-for graph is dynamically
constructed and analysed for a presence of cycles. Here, a thread-wait-for graph is an arc-
labelled digraph G = (V, E) where vertices V are threads and locks, and edges E represent
waiting arcs which are classified (labelled) according to the synchronisation mechanism
used (join synchronisation, notification, finalisation, and waiting on a monitor). A cycle
in this graph involving at least two threads represents a deadlock. A disadvantage of this
algorithm is that it is able to detect only deadlocks that actually happen. The following
works can detect also potential deadlocks that could happen but did not actually happen
during the witnessed execution.

In [72], a different algorithm called GoodLock for detecting deadlocks was presented.
The algorithm constructs the so-called runtime lock trees and uses a depth-first search to
detect cycles in it. Here, a runtime lock tree T, = (V, E) for a thread ¢ is a tree where vertices
V are locks acquired by t and there is an edge from v; € V to v, € V when v| represents the
most recently acquired lock that ¢ holds when acquiring v,. A path in such a tree represents
a nested use of locks. When a program terminates, the algorithm analyses lock trees for
each pair of threads. The algorithm issues a warning about a possible deadlock if the order
of obtaining the same locks (i.e., their nesting) in two analysed trees differs and no “gate”
lock guarding this inconsistency has been detected.
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The original GoodLock algorithm is able to detect deadlocks between two threads only.

Later works, e.g., [2,19] improve the algorithm to detect deadlocks among multiple threads.
In [2], a support for semaphores and wait-notify synchronisation was added. The recent
work [84] modified the original algorithm so that runtime lock trees are not constructed.

Instead, the algorithm uses a stack to handle the so-called lock dependency relation. The
algorithm computes the transitive closure of the lock dependency relation instead of per-
forming a depth first search in a graph. The modified algorithm uses more memory but the
computation is much faster.

A purely data-flow-based interprocedural static detector of deadlocks called RacerX
has been presented in [16]. The detection it implements has two phases: (1) The control
flow graph of each procedure is obtained and the complete control flow graph of the whole
system is constructed. (2) A data-flow analysis is performed over the constructed graph
and the order in which locks are nested is analysed. A deadlock is reported when locks are
not obtained every time in the same order. In [157], a bottom-up data-flow static analysis
is used to detect deadlocks. The algorithm traverses the call graph bottom-up and builds
a lock-order graph per method. Each node of the lock-order graph represents a set of objects
that may be aliased and an edge in the graph indicates nested locking of objects along some
code path. If the obtained graph contains cycles, a possible deadlock is reported. Both
algorithms produce many false alarms due to the approximations they use.

The algorithm presented in [124] reduces the number of false alarms obtained by a data-
flow interprocedural analysis described in the previous paragraph using six conditions. The
first four represent results of reachability, alias, escape, and approximated may-happen-in-
parallel analyses. The next two conditions handle special cases of using reentrant locks and
a guarding lock. The algorithm filters all potential deadlocks through these conditions and
reports only those which fulfil all the conditions.

A combination of symbolic execution, static analysis, and SMT solving is used in [36] to
automatically derive the so-called method contracts guaranteeing deadlock free executions.
The algorithm does not focus on detection of deadlock if the whole program is available.
Instead, the algorithm analyse pieces of code (usually libraries) and automatically infers
conditions that must be fulfilled when these libraries are used in order to avoid deadlocks.

2.2.5 Missed Signals

Missed signals are another less studied class of concurrency errors. The notion of missed
signals assumes that it is known which signal is intended to be delivered to which thread
or threads. A missed signal error can be defined as follows.

Definition 5. A program execution contains a missed signal iff there is sent a signal that
is not delivered to the thread or threads to which it is intended to be delivered.

Since signals are often used to unblock waiting threads, a missed signal error typically
leads to a thread or threads being blocked forever.

Detection of Missed Signals

There are not many works focusing specially on missed signals. Usually, the problem is
studied as a part of detecting other concurrency problems. In [2], a lost notification error
is reported if there is a notify event e in a trace tr and there exists a trace that is a feasible
permutation of tr in which e wakes up fewer threads than it does in tr. Such a situation is
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possible when the wait event of one of the threads woken in tr is not constrained to happen
before the event e.

In [76], several code patterns that might lead to a lost notification are listed. For
instance, each call of wait () must be enclosed by a loop checking some external condition.
A pattern-based static analysis is then used to detect such bug patterns.

2.3 Liveness and Mixed Errors

Liveness errors are errors which violate liveness properties of a program, i.e., prevent some-
thing good from happening. They have infinite (or finite, but complete) witnesses. Dealing
with liveness errors is much harder than with safety errors because algorithms dealing with
them have to find out that there is no way something could (or could not) happen in the
future, which often boils down to a necessity of detecting loops. Mixed errors are then
errors that that have both finite witnesses as well as infinite ones, whose any finite prefix
does not suffice as a witness.

Before we start discussing more concrete notions of liveness and mixed errors, let us
first introduce the very general notion of starvation [117].

Definition 6. A program execution exhibits starvation iff there exists a thread which waits
(blocked or continually performing some computation) for an event that needs not occur.

Starvation can be seen to cover as special cases various safety as well as liveness (mixed)
errors such as deadlocks, missed signals, and the below discussed livelocks or blocked
threads. In these situations, an event for which a thread is waiting cannot happen, and the
situations are clearly to be avoided. On the other hand, there are cases where the event
for which a thread is waiting can always eventfully happen despite there is a possibility
that it never happens. Such situations are not welcome since they may cause performance
degradation, but they are sometimes tolerated (one expects that if an event can always
eventually happen, it will eventually happen in practice).

2.3.1 Livelocks and Non-progress Behaviour

There are again various different definitions of a livelock in the literature. Often, the works
consider some kind of a progress notion for expressing that a thread is making some useful
work, i.e., doing something what the programmer intended to be done. Then they see
a livelock as a problem when a thread is not blocked but is not making any progress.
However, by analogy with deadlocks, we feel it more appropriate to restrict the notion of
livelocks to the case when threads are looping in a useless way while trying to synchronise
(which is a notion common, e.g., in various works on operating systems). That is why, we
first define a general notion of non-progress behaviour and then we specialise it to livelocks.

Definition 7. An infinite program execution exhibits a non-progress behaviour iff there is
a thread which is continually performing some computation, i.e., it is not blocked, but it is
not making any progress.

A non-progress behaviour is a special case of starvation within an infinite behaviour. On
the other hand, starvation may exhibit even in finite behaviours and also in infinite progress
behaviours in which a thread is for a while waiting for an event that is not guaranteed to
happen. As we have said already above, livelocks may be seen as a special case of non-
progress behaviour [117].

26



Definition 8. Within an infinite execution, a set S of threads is in a livelock iff each of the
threads in S keeps running forever in some loop in which it is not intended to run forever,
but which it could leave only if some thread from S could leave the loop it is running in.

As was mentioned before, there are many, often inconsistent, definitions of a live-
lock. Moreover, many works do not distinguish between livelocks and a non-progress be-
haviour [20,73,100,143,146]. Other papers [113,118] take a livelock to be a situation where
a task has such a low priority that it does not run (it is not allowed to make any progress)
because there are many other, higher priority, tasks which run instead. We do not consider
such a situation a livelock and not even a non-progress behaviour but a form of starvation.
There are even works [5] for which a thread is in a livelock whenever it is executing an in-
finite loop, regardless of what the program does within the loop. However, there are many
reactive programs which run intentionally in an infinite loop, e.g., controllers, operating
systems and their components, etc., and it is not appropriate to considered them to be in
a livelock.

Detection of Livelocks and Non-progress Behaviour

We are not aware of any works specialising in detection of livelocks in the sense we defined
them above, which requires not only detection of a looping behaviour but also of the fact
that this behaviour could be escaped only if some of the livelocked threads could escape
it. There are, however, works considering detection of non-progress behaviour (sometimes
under the name of livelock detection, but we stick here to speaking about detection of
non-progress behaviour).

The first issue the non-progress detection methods have to deal with is getting to know
what is to be considered a non-progress behaviour. In the literature there are used various
different notions of progress. Some works, e.g., [143], define progress by looking at the
communication among two or more cooperating threads. If a thread communicates, it is
progressing. In [65], progress is associated with operations on the so-called communication
objects (such as shared variables, semaphores, FIFO buffers, etc.). In [100, 116], progress
is defined by reaching a so-called progress action or progress statement, respectively (e.g.,
delivering output, responding to the environment, etc.). In [73], progress is expressed
by a so-called liveness signature, a set of state predicates and temporal rules, specifying
which application states determine whether a program is making a progress when they are
repeatedly reached.

To enable a non-progress detection, the general notions of progress from above have to
be concretised for a particular program. This is mostly expected to be done by the user,
e.g., by specifying progress actions [100], labelling statements as progress statements [74],
annotating the code [73], calling actions of the so-called observer [20], etc. However, some
works do not require any user input and use a fixed notion of progress [(5].

One of the most common approaches for detecting non-progress behaviour in finite-state
programs is to use model checking [(5,74] and search for non-progress cycles [19]. In [67],
no non-progress cycles are being sought, instead bounded model checking is used to find a
path where no progress is being made for a user-specified period of time. Such an approach
can lead to false alarms, but can be used for large and infinite-state programs. Recently,
there has also appeared various (infinite-state) program analyses, based, e.g., on transition
predicate abstraction and ranking function synthesis, for proving (non-)termination. These
can also be used for verifying liveness properties [33], but these approaches, albeit useful,
for instance, for verifying drivers, are still not applicable to large software systems.
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Another often used approach is to use a dynamic analysis in the form of dynamic mon-
itoring [6,73]. In [73], a liveness signature, a set of state predicates and temporal rules,
is used to determine whether a program is making progress. In other words, the liveness
signature determines which program states are significant in determining whether a pro-
gram is making a progress. If a program does not reach any of these program states for
some time, the program is at a so-called standstill, i.e., is not making progress. In [0], the
so-called Q-Learning is used to navigate a program execution to follow paths which most
likely lead to an execution trace in which the program is not making progress. In case of
finite-state programs, the tool searches for an execution trace containing a non-progress
loop, in case of infinite-state programs, it tries to find an execution trace of a user-specified
length. A problem with dynamic monitoring techniques is that they cannot distinguish be-
tween a non-progress behaviour and starvation because they are checking bounded liveness
properties [139], which are in fact safety properties, not liveness properties.

In [20], a static analysis is used to detect a non-progress behaviour in programs written
in Ada. Progress is defined here as a communication with an external observer. KEach
program is represented by a control flow graph. To detect a non-progress behaviour, the
method searches the control flow graph for an infinite loop in which no communication with
the external observer is performed.

There are also works which attempt to use approaches often used for detection of other
concurrency errors. For example, in [69], the authors define antipatterns which may lead to
a non-progress behaviour and use static and dynamic analyses to locate these antipatterns
in programs.

In [100], the authors define progress as an execution of a progress action and a progress
cycle as a cycle which contains at least one progress action. Then they translate a necessary
condition of an existence of a non-progress behaviour, i.e., that there exists an infinite run
in which progress cycles are repeated only a finite number of times, into a homogeneous
integer programming problem. Subsequently, they try to find a solution to this problem.
If the problem has no solution, then the program surely does not contain a non-progress
behaviour. A downside of this method (apart from its cost) is that it is incomplete, so if
the problem has a solution there may or may not be a non-progress behaviour.

2.3.2 Blocked Threads

We speak about a blocked thread appearing within some execution when a thread is blocked
and waiting forever for some event which can unblock it. Like for a deadlock, one must
be able to say what the blocking and unblocking operations are. The problem can then be
defined as follows.

Definition 9. A program execution contains a blocked thread iff there is a thread which is
waiting for some event to continue and this event never occurs in the erecution.

An absence of some unblocking event which leaves some thread blocked may have various
reasons. A common reason is that a thread, which should have unblocked some other thread,
ended unexpectedly, leaving the other thread in a blocked state. In such a case, one often
speaks about the so-called orphaned threads [50]. Another reason may be that a thread is
waiting for a livelocked or deadlocked thread.

28



Detection of Blocked Threads

We are not aware of any works specialising in this kind of errors. Of course, the most
simple solution to deal with this error is to check that a thread is waiting for more than
some time to be unblocked. This is, however, a very crude approach. In fact, a similar
approach is used in MySQL to detect deadlocks and it was shown [108] that it is quite
inaccurate detection method which often leads to false alarms and, in case of MySQL, to
unnecessary restarts.

Like with all previous errors, another possibility is to use model checking [14], limited by
its high price and problems with some program operations like input and output. In theory,
one could also use, e.g., static analysis for detection of some undesirable code patterns that
could cause permanent blocking, similar to deadlock antipatterns [69] in case of a deadlock.
However, detection of this kind of errors remains mostly an open issue.

2.4 Conclusion

We have provided a uniform classification of common concurrency errors, mostly focusing on
shared memory systems. In the definitions, we have have tried to stress the basic skeleton
of the considered phenomena together with the various notions that parameterise these
phenomena and that must be fixed before one can speak about concrete appearances of the
given errors. These parameters are often used implicitly, but we feel appropriate to stress
their existence so that one realizes that they have to be fixed and also that various specialised
notions of errors are in fact instances of the same general principle. We decided to define
all the considered errors in an informal way in order to achieve a high level of generality.
For concrete and formal definitions of these errors, one has to define the memory model
used and the exact semantics of all operations that may (directly or indirectly) influence
synchronisation of the application, which typically leads to a significant restriction of the
considered notions.

We have also mentioned various detection techniques for each studied concurrency error
and briefly described the main ideas they are based on. It is evident that some concurrency
errors are quite often studied (e.g., data races or atomicity violations), and some have
a shortage of algorithms for their detection (e.g., order violations or missed signals). Despite
some of the latter problems may appear less often than the former ones and they are also
typically more difficult to detect, detection of such problems is an interesting subject for
future research and one of the goal of this thesis.

29



Chapter 3

Combining Dynamic Analysis and
Model Checking

This chapter presents the DA-BMC tool chain that we proposed to allow one to combine
dynamic analysis and bounded model checking for finding synchronisation errors in con-
current Java programs. The idea is to use suitable dynamic analyses to identify executions
that are suspected to contain synchronisation errors, reproduce these executions in a model
checker, and perform bounded model checking in a vicinity of the replayed execution to
confirm whether there are some real errors.

3.1 Introduction

The previous chapter described various approaches for detecting concurrency errors. Many
of these approaches were based on dynamic analysis. The advantage of dynamic analysis
is that it scales well and thus can handle very large programs. The disadvantage is that
it analyses only a concrete execution of a program and can detect only errors encountered
in it. To improve on this restriction, dynamic analyses usually extrapolate the behaviour
of a program to detect also errors that may happen, yet did not occur in the execution.
The price for such an ability to detect errors not seen in the execution is the precision.
Extrapolation often over-approximates the behaviour of a program, assuming existence of
executions that are not feasible in reality. Detecting errors in such infeasible executions
then leads to false positives. On the other hand, techniques like model checking are precise
and can detect all errors in a program without producing false alarms. However, to do so,
model checking must search the whole state space of a program (or a significant portion
of it), which may be impossible for larger programs. In this chapter, we describe a tool
chain denoted as DA-BMC' that tries to combine advantages of both dynamic analysis and
(bounded) model checking.

In our tool chain, implementing the approach proposed in [78], we use the infrastructure
offered by the Contest tool [13] to implement suitable dynamic analyses over Java programs
and to record selected points of the executions of the programs that are suspected to
contain errors. We then use the Java PathFinder (JPF) model checker [151] to replay
the partially recorded executions, using JPF’s capabilities of state space generation to
heuristically navigate among the recorded points. In order to allow the navigation, the
JPF’s state space search strategy, including its use of partial order reduction to reduce the

thttp://www.fit.vutbr.cz/research/groups/verifit/tools/da-bmc
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searched state space, is suitably modified. Bounded model checking is then performed in
the vicinity of the replayed executions, trying to confirm that there is really some error in
the program and/or to debug the recorded suspicious behaviour.

We illustrate capabilities of DA-BMC on several case studies, showing that it really
allows one to benefit from advantages of both dynamic analysis and model checking.

3.2 Recording Suspicious Executions

The first step when using DA-BMC is to use a suitable dynamic analysis to identify execu-
tions suspected to contain an error and to record some information about them—recording
the entire executions would typically be too costly. In DA-BMC, this phase is implemented
on top of the Contest tool [13]. Contest provides a listener architecture (implemented via
Java byte-code instrumentation) on top of which it is easy to implement various dynamic
analyses. We further refer to two such analyses, namely, Eraser+ and AtomRace intended
for detection of data races (and, in the second case, also atomicity violations), which have
been implemented as Contest plugins in [89]. Further analyses can, of course, be added.
Contest also provides a noise injection mechanism which increases the probability of man-
ifestation of concurrency-related errors.

In order to record executions, we have implemented another specialised listener on
top of Contest. We record information about an execution in the form of a trace which
is a sequence of monitored events that contains partial information about some of the
events that happen during the execution. In particular, Contest allows us to monitor
the following events: thread-related events (thread creation, thread termination), memory-
access-related events (before integer read, after integer read, before float write, after float
write, etc.), synchronisation-related events (after monitor enter, before monitor exit, join,
wait, notify, etc.), and some control-related events (basic block entry, method enter, and
method exit). The user can choose only some of such events to be monitored. As shown in
our case studies, one should mainly consider synchronisation-related and memory-access-
related events, which help the most when dealing with the inherent non-determinism of
concurrent executions.

Each monitored event contains information about the source-code location from which
it was generated (class and method name, line and instruction number) and the thread
which generated it. The recorded trace also contains information produced by the applied
dynamic analysis which labels some of the monitored events as suspicious from the point
of view of causing an error.

3.3 Replaying Recorded Traces

The second step when using DA-BMC is to reproduce suspicious executions recorded as
traces of monitored events in a model checker. More precisely, there is no guarantee that
the same execution as the one from which the given trace was recorded will be reproduced.
The tool will simply try to generate some execution whose underlying trace corresponds
with the recorded trace. It is also possible to let the model checker generate more executions
with the same trace.

In DA-BMC, we, in particular, use the Java PathFinder (JPF) model checker [151].
JPF provides several state space search strategies, but also allows one to add new user-
specific search strategies. Moreover, it provides a listener mechanism which is useful for
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performing various analyses of the searched state space and/or for guiding the search strate-
gies to a specific part of the state space. JPF uses several state space reduction techniques,
including partial order reduction (POR), which out of several transitions that lead from a
certain state may explore only some [13].

A recorded trace is replayed by navigating JPF through the state space of a program
such that the monitored events encountered on the search path correspond with the ones
in the recorded trace. The states being explored during the search are stored in a priority
queue. The priority of the inserted states depends on the chosen search strategy (DFS
and BFS are supported). In each step, the next parent state to be processed is obtained
from the queue. After that, all relevant children of the parent state are generated. Here,
we should note that, in JPF, a transition between a parent and child states represents, in
fact, a sequence of events happening in a running program. This sequence is chosen by the
POR to represent all equivalent paths between the two states. Into the priority queue, we
only save the child states that may appear on a path corresponding to the recorded trace.
In other words, each program event encountered within the JPF’s transition between the
parent and child states must either be an event which is not monitored (and hence ignored),
or an event which corresponds with the one stored in the recorded trace at an appropriate
position. This correspondence is checked during the generation of a transition in JPF.

Sometimes, it is also necessary to influence the POR used by JPF. That happens when
the POR decides to consider another permutation of the events than the one actually
present in the trace. Then, the POR is forced to use the needed permutation as follows.
If the generation of the sequence of events that the POR wants to compose into a single
transition encounters some monitored event, and this event differs from the one expected
in the recorded trace, then we force JPF to finish the generation of the sequence of events
to be put under a single transition and to create a new state. The navigation algorithm
then searches the transitions enabled in this state that correspond with the recorded trace
(if there is none, the search backtracks).

Since the replaying is driven by a sequence of monitored events generated from the
Contest’s instrumentation of the given program, we run the instrumented byte-code in
JPF. We, however, make JPF skip all the code that is a part of Contest in order not to
increase the size of the state space being searched. Moreover, Contest not only adds some
instructions into the code, but also replaces some original byte-code instructions. This
applies, e.g., for the instructions wait, notify, join, etc. In this case, when such an
instruction is detected in JPF, we dynamically replace it with the original instruction.

As the JPF’s implementation of sleep() ignores interruption of sleeping threads, we
provide a modified implementation of the interrupt() and sleep() methods which cor-
rectly generate an exception if a thread is interrupted by another thread when sleeping.
For that to work correctly, the possibility of branching of the execution after sleep () must
be enabled in JPF.

Still, it might not be possible to replay a trace if the program depends on input or
random data or if it uses some specific dynamic data structures like hash tables where, e.g.,
objects might be iterated in a different order in each run of the program. In these cases, it
is necessary to modify the source code of the analysed program, e.g., by adding JPF data
choice generators to eliminate these problems.
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Table 3.1: Overhead generated by trace recording

Execution time with Slowdown due to recording
Eraser in seconds (number of events in the trace)
Bank 1.62 44% (2 035) 34% (1 211)
Airlines 0.85 7% (969) 58% (609)
Crawler 4.45 31% (3 288) 23% (1 859)
DinPhil 0.49 43% (110 035) 25% (55 257)

3.4 Bounded Model Checking

As we have already said above, the trace recorded from a suspicious execution does not
identify the execution from which it was generated in a unique way. Moreover, even the
original suspicious execution based on which the applied dynamic analysis generated a warn-
ing about the possibility of some error needs not contain an actual occurrence of the error
(even if the error is real). To cope with such situations, apart from possibly exploring sev-
eral paths through the state space corresponding with the recorded trace, we use bounded
model checking that starts from the states from which an event that is marked as suspicious
is enabled, or from some of its predecessors. The latter is motivated by the fact that once
a suspicious event is reached, it may already be too late for a real error to manifest.

To be able to use bounded model checking to see whether an error really appears in
the program, it is expected that the user supplies a JPF listener capable of identifying
occurrences of the error (in our experiments, which concentrate on data races, we, e.g., use
a slight modification of the PreciseRaceDetector listener available in JPF). The listeners
looking for occurrences of errors may be activated either at the very beginning of replaying
of a trace, or they may be activated at the beginning of each application of bounded model
checking. The user is allowed to control both the depth of the bounded model checking as
well as the number of backward steps to be taken from a suspicious event before starting
bounded model checking.

3.5 Experiments

To demonstrate capabilities of DA-BMC, we consider four case studies. The first two,
BankAccount and Airlines, are simple programs (with 2 or 8 classes, respectively) in which
a data race over a single shared variable can happen. The DiningPhilosophers case study
is a simple program (3 classes) implementing the problem of dining philosophers with
a possibility of a deadlock. Finally, our last case study, Crawler, is a part of an older
version of an IBM production software (containing 19 classes) with a data race manifesting
more rarely and further in the execution. All the tests were performed on a machine with
2 Dual-Core AMD Opteron processors at 2.8GHz.

First, we measured the slowdown of program executions when recording various types of
events. An analysis of the overhead associated with trace recording is presented in Table 3.1.
The first column of the table gives the average time needed for executing the particular
case studies while they are monitored by the Eraser dynamic analysis implemented as
a Contest plugin. The second column gives the average slowdown when recording all the
events that can be monitored by Contest and hence DA-BMC (cf. Section 3.2). Finally,
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Table 3.2: Finding real errors in traces produced by Eraser

Error discovery ratio (traces found / BMC runs) Time/memory consumption (sec/MB)
No. of DFS BFS DFS BFS
traces 1 5 1 5 1 5 1 5
Bank | 46%(1/1) | 49%(2/2) | 46%(1/1) | 46%(2/2) | 2/517 4/633 3/522 5/659
Airlines | 100%(1/1) | 100%(1/1) | 100%(1/1) | 100%(1/1) | 1/482 1/482 1/482 1/482
DinPhil | 100%(1/1) | 100%(1/1) | 100%(1/1) | 100%(1/1) | 11/417 | 20/411 | 20/414 | 22/413
Crawler | 7%(0.8/15) | 7%(1.8/34) | 2%(0.5/49) | 2%(1.2/50) | 122/1312 | 268/1479 | 311/2857 | 321/3020

Table 3.3: Efficiency of finding errors using DF'S in traces of Crawler
produced by AtomRace

= Max depth of bounded model checking

5 No. of backtracked states / 30 40 50 60 70 80

§ Max depth of BMC " 10 | 78%(0) | 78%(1) | 78%(3) - - -

- 3/10 | 5/15 | 10/30 | 15/45 | 20/60 3| 20 - 90%(0) - 90%(2) [ 90%(2) | 90%(2)
§ 1] 66% | 71% 78% 84% 90% g 30 - - 92%(2) - 94%(0) -
EL5 1% | 73% 80% 85% 90% 40 - - - - - 89%(5)

the third column gives the average slowdown when the thread and memory-access events
are recorded only.

To sum up, when recording all the possible types of events mentioned above, the slow-
down was about 30-40 %. When recording only thread and memory-access-related events,
the slowdown was just about 20-30 % but the number of corresponding paths found by JPF
increased by about 50 %.

Note, however, that the overhead differs quite significantly from one example to another.
Therefore, the types of events to be recorded should be chosen depending on the program
being analysed, taking into account which kind of events and how often it can generate. For
instance, since the DiningPhilosophers case study is a program which frequently switches
threads, but minimally accesses shared variables, it is sufficient to record only thread-related
events in order to precisely navigate through the state space.

Next, we performed a series of tests in which we measured how often a real error is
identified when replaying a trace and performing bounded model checking (BMC) in its
vicinity. We let JPF to always backtrack 3 states from the state before a suspicious event
and to use the maximum BMC depth of 10. The results are shown in Table 3.2. We
distinguish whether 1 or up to 5 paths corresponding to the recorded trace were explored,
using either DFS or BFS. For each of these settings and each case study, the left part of
Table 3.2 gives the percentage of recorded traces based on which a real error was found.
Further, in brackets, it is shown how many corresponding paths were on average found by
JPF for a single trace, and how many times BMC was on average applied when analysing
a single trace. The right part of Table 3.2 then gives the corresponding time and memory
consumption. Clearly, BFS has higher time and memory requirements than DFS (mainly
because it performs significantly more runs of BMC). It is also less successful in finding an
error if the error manifests later in the execution (like in Crawler). It can also be seen that
the number of corresponding paths searched has a little contribution to the overall success
of finding a real error.

The low percentage of real errors found in traces of Crawler is mostly due to the number
of false alarms produced by Eraser that were eliminated by DA-BMC, which nicely illus-
trates one of the main advantages of using DA-BMC. Further, note that classical model
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checking as offered by JPF did not find any error in this case since it ran of our deadline
of 8 hours (DFS) or ran out of the 24GB of memory available to JPF (BFS). To analyse
how successful DA-BMC is in finding real errors in traces recorded in Crawler and how the
success ratio depends on the various settings of DA-BMC, we have then done experiments
with traces recorded using the AtomRace analysis, which does not produce any false alarms.
The results can be seen in Table 3.3. Its left part shows how the percentage of real errors
found depends on the number of explored paths corresponding to the recorded trace, the
number of states backtracked from the state before a suspicious event, and the maximum
BMC depth. The right part analyses in more detail how the percentage depends on the
number of backtracked states and the maximum BMC depth (a single path corresponding
to a recorded trace is analysed). The numbers in brackets express the percentage of re-
plays which reached a 10 minute timeout. We can see that while increasing the number of
searched corresponding paths has some influence on the error detection, it is evident that
the BMC settings have a much greater impact. Moreover, the number of backtracked states
increases the chances to find an error much more than the increased maximum depth of
BMC.

3.6 Conclusion

We have presented DA-BMC—a tool chain combining dynamic analysis and bounded model
checking for finding errors in concurrent Java programs (and also for debugging them). We
have demonstrated on several case studies that DA-BMC allows one to benefit from the
precision of model checking while not having to accept its full computational price. Said
from a different perspective, one benefits from the relatively cheap dynamic analyses while
the number of false alarms they produce is reduced via a use of bounded model checking.
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Chapter 4

The ANaConDA Framework

This chapter presents the ANaConDA framework that allows one to easily create dynamic
analysers for analysing multi-threaded C/C++ programs on the binary level. As the anal-
ysis is performed on the binary level, it does not require the source code of the program,
and it also sees all the optimisations done by the compiler, allowing it to be more precise.
The framework is quite general and can be instantiated for dealing with programs using
various thread models. It also supports noise injection.

4.1 Introduction

Most of the techniques mentioned in Chapter 2 were implemented (and optimised) for
Java. This does not mean that their principles could not be applied for C/C++ and other
programming languages too. However, re-implementing an analysis once implemented for
a different language environment is a tedious endeavour. Likewise, when there appears
an idea for a new analysis, the journey to obtaining its fully functional implementation is
usually rather long. While there are many frameworks simplifying this task for Java (which
is one of the reasons why the implementations often target Java), there are only a handful
of such tools for C/C++.

To address the lack of tools for C/C++, this chapter presents the ANaConDA framework
which is a framework for adaptable native-code concurrency-focused dynamic analysis built
on top of PIN [I11]. The goal of the framework is to simplify the creation of dynamic
analysers for analysing multi-threaded C/C++ programs on the binary level. In order to
perform a dynamic analysis, one first needs to monitor the execution of a program. However,
monitoring the execution of a program can be quite challenging and programmers might
spend more time writing the monitoring code than by writing the analysis code itself. That
is why the framework provides a monitoring layer offering notification about important
events, such as thread synchronisation or memory accesses, so that developers of dynamic
analysers can focus solely on writing the analysis code. In addition, the framework also
supports noise injection which will be discussed in more detail in the next chapter.

In order to be able to monitor the execution of a program and perform some dynamic
analysis as well as to insert some noise into the execution of the program, a need to execute
some additional code in some places of the execution of the original program arises. There
are several levels at which one can insert such additional code to the program—namely, at
the source code level, at the level of the intermediate code, or at the binary level.

Inserting the code at the binary level has one big advantage over the other approaches
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in that it does not need to have the source files of the program being analysed, which is
particularly important when dealing with libraries whose source files might not be available
even for the developers of the program under test. Another advantage might be that this
kind of instrumentation is more precise in that we can insert the code exactly where we want
it to be executed, and the placement is not affected by any optimisations possibly made
by the compiler. These advantages of course come at the cost of that we may possibly lose
access to various pieces of high-level information about the program (names of variables,
etc.). However, even such information can be available if we have the debugging information
present in the program, and moreover, we can also get access to some low-level information,
like register allocations, which might be important for some analyses.

In this chapter, we identify several typical problems that arise when trying to monitor
the execution of multi-threaded C/C++ programs at the binary level (such as monitoring
function execution, retrieving information about the executed code, dealing with atomic,
conditional, or repeated instructions, as well as supporting different C/C++ multithreading
libraries), and we discuss their possible solutions. The problems are first discussed on
a general level, a more detailed description is given in the following sections, where a
concrete implementation of the chosen solutions is described. Then we focus more on how
to write an analyser using the framework, how to get some useful information which may
help the user in locating an error, and how to use the tool. As the framework can be
instantiated to support various multithreading libraries, we also describe some concrete
instantiations, in particular, the instantiation for pthreads and Win32 API. Finally, we
discuss several real-life experiments done with the framework.

Related Work. There exist many frameworks which may be used to simplify the creation
of dynamic analysers for Java programs. The closest to ANaConDA is IBM ConTest [14]
which inspired some parts of the design of ANaConDA. RoadRunner [(1] is another frame-
work very similar to ANaConDA. Both of these frameworks can monitor the execution of
multi-threaded Java programs and provide notification about important events in their exe-
cution to dynamic analysers built on top of the frameworks. CalFuzzer [32] is an extensible
framework for testing concurrent programs which can also be used to create new static
and dynamic analysers and to combine them. Chord [121] is another extensible framework
which might be used to productively design and implement a broad variety of static and
dynamic analyses for Java programs. When dealing with C/C++ programs, the options are
much poorer. One tool somewhat related to ANaConDA is Fjalar [68] which is a framework
for creating dynamic analysers for C/C++ programs. However, Fjalar is primarily designed
to simplify access to various compile-time and memory information. It does not provide
any concurrency-related information. Moreover, it is build on top of Valgrind [126], which
brings several disadvantages as discussed in Section 4.3.

As for binary instrumentation frameworks, many were developed over the years. Most
of them, such as PIN [111] or Valgrind [120], control the whole execution of a program,
instrumenting its code just before it is executed (using just-in-time compilation) or when it
is loaded into the memory. Other frameworks, e.g., PEBIL [95], instrument the program’s
binary file in advance and do not participate in its execution in any way. There are also
frameworks which combine these two approaches—e.g., VMAD [31] inserts several versions
of the instrumented code into the program’s binary file and then chooses at run-time which
version will be executed.
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»ad70 <unlock_usr>:

401113: mov $0x602540 ,%edi _~»ae20 <unlock >: / ad70: mov Y%rdi,%rdx
'5401118: callq 400e80 <unlock>-" ae20: mov $0x1,%esi / oo
40111d: test %eax,%eax<---___ _ ae25: jmpq ad70 <unlock usr> 7 adab: xor %eax,%eax

- - - adaT:

retq - _

Figure 4.1: An example of an execution not triggering an after-function
notification

Plan of the chapter. The rest of the chapter is organised as follows. In the next section,
various typical problems of monitoring the execution of C/C++ programs at the binary
level are discussed with their possible solutions. Section 4.3 then describes the concrete
implementation of the proposed solutions in the ANaConDA framework. Section 4.4 shows
how to configure the framework to support different multithreading libraries and Section 4.5
provides the basics of how to use the framework to analyse a multi-threaded C/C++ pro-
gram. In Section 4.6, an experimental evaluation of the framework is given. Section 4.7
then concludes the chapter and discusses some of the interesting directions for future work.

4.2 Monitoring at the Binary Level

In this section, we discuss several typical problems that arise when trying to monitor and
analyse the execution of a multi-threaded C/C++ program compiled to a binary form. In
particular, after a brief introduction of the types of binary instrumentation frameworks
that one can use to insert execution-monitoring code, we discuss the problems of mon-
itoring function execution, retrieving information about executed instructions, handling
atomic, conditional, and repeatable instructions, and abstracting concrete synchronisation
primitives for the analysers to be used. For these problems, we analyse possible solutions,
trying to stay on a rather general level. In Section 4.3, we will then present some further
implementation details concerning the use of the proposed solutions in the ANaConDA
framework.

4.2.1 Instrumentation Frameworks

There exist several frameworks for binary instrumentation which can be used to insert
execution-monitoring code to a program. They might be divided into two groups—static
and dynamic binary instrumentation frameworks.

Static binary instrumentation frameworks, like, e.g., PEBIL [95], insert execution-moni-
toring code to a program by rewriting the object or executable code of the program before
the program is executed, thus modifying the content of the program’s binary file. Dynamic
binary instrumentation frameworks, like, e.g., PIN [111] or Valgrind [120], insert execution-
monitoring code to a program at run-time, leaving the program’s binary file untouched.

An advantage of static binary instrumentation is that it does not suffer from the over-
head of instrumenting the code of a program every time it is executed. On the other hand, it
cannot handle constructions like self-modifying or self-generating code, which is not known
before the program actually executes. On the contrary, dynamic binary instrumentation
is slower, but it can cover all the code that is executed by a program. Furthermore, since
the binary file of the program is not modified in any way, the instrumentation is more
transparent to the user who can run some (possibly lengthy) analysis on the program and,
at the same time, use the program as usual. This possibility is also very important when
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analysing libraries as it allows the user to analyse a library when used by a program being
analysed and simultaneously allow other programs to use the same library as usual. This
is not possible without maintaining two separate versions of the library and coping with
problems with paths to these versions when the code of the library is rewritten before its
execution (usage) in case of static instrumentation.

However, regardless of which of the two types of the instrumentation approaches is used,
there are some issues that need to be dealt with when analysing multi-threaded programs
at the binary level. These issues are discussed below.

4.2.2 Monitoring Execution of Functions

The first problem to deal with is how to properly monitor the invocation and termination
of functions. This is very important when analysing multi-threaded C/C++ programs
as thread management, synchronisation of threads, and other thread-related actions are
typically implemented by calling specific library functions. For instance, if an analyser needs
to know that the monitored program acquired a lock, the best time to issue a notification
about this event is after the function performing the lock acquisition is finished. However,
since call instructions are not fall-through instructions (i.e., there is no guarantee that the
instruction by which the program will continue after the invoked function finishes will be
the instruction right after the given call instruction), one cannot place the code notifying
an analyser about the event after the call instruction itself.

One way to solve the above problem could be to wrap the function to be monitored
in another function and call everywhere in the program the wrapper function instead of
the original one. The wrapper function could then internally call the original function,
but also execute some code before and after it is called. This solution, however, suffers
from two problems. First, the framework used for the binary instrumentation would have
to support function wrapping (replacement), and second, calling the original function from
the wrapper function might be quite time consuming and may lead to a significant slowdown
of the whole analysis. Moreover, to wrap a function, we need to have a wrapper function
with the same signature as the original function, containing the required monitoring code,
so it might also be problematic to use this approach when we do not know in advance which
functions we will be wrapping.

Another way to solve the problem could be to insert the monitoring code before and
after the code of the monitored function itself, e.g., by inserting the code before the first
instruction of the function and before each return instruction in the code of the function. So,
instead of issuing the notification after the function returns, the analyser would be notified
right before the function returns, which would be practically the same from the point of
view of the analyser. An additional advantage of this approach would be that it would also
decrease the instrumentation overhead as instead of analysing all call instructions (to see
whether they could invoke the function to be monitored) and instrumenting many of them,
the code of the functions to be monitored would only be instrumented. Nevertheless, this
approach has one critical pitfall-—mamely, at the binary level, it is possible to return from
a function even from code not belonging to that function!

A concrete example where instrumenting all return instructions of a function will not
trigger the code that should be executed after the function returns can be seen in Fig-
ure 4.1. The figure shows three pieces of code. On the left there is a part of the binary code
generated from a simple C++ program which uses the pthread library to guard a critical sec-
tion through the pthread_mutex_lock and pthread_mutex_unlock functions. The other
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(a) Parts of assembly code executed by the first and second threads, (b) The only (c) Some

respectivelly. The code uses the exchange and add (xadd) instruction possible impossible

to increment a value at a specific memory address atomically. interleavings interleavings

Figure 4.2: An example illustrating problems concerning atomic instructions

two code snippets are parts of the code of the pthread’s __pthread_mutex_unlock and
__pthread_mutex_unlock_usercnt functions. Once the execution of the program reaches
the call instruction at address 401118, the program calls __pthread_mutex_unlock1 (the
function pthread_mutex_unlock is in fact just an alias of __pthread_mutex_unlock). The
execution then continues in the __pthread_mutex_unlock function which adds the sec-
ond argument of the __pthread_mutex_unlock_usercnt function and then jumps to it.
The program starts executing the __pthread_mutex_unlock_usercnt function, and after
a while, it returns, but not to the __pthread_mutex_unlock function (because this function
did not call it, it jumped to it), but to the function that called __pthread_mutex_unlock.
Now, it should be clear where the problem is: If we instrument the __pthread_mutex_unlock
function, there will never be a notification that a thread released a lock because there will
be no code inserted before the return instruction which is executed to return from the call
to the __pthread_mutex_unlock function. Moreover, when we try to insert the monitoring
code before the return instruction that is really executed in the given example, we have
to be still careful. The reason is that we do not know whether some optimisation did not
make more functions jump to the given code. If so, it could, for instance, happen that the
pthread_mutex_lock function jumps to this part of code too, which would lead to issuing
a notification that a thread released a lock while it instead acquired it.

Nevertheless, there is a solution to the above described problem. Namely, we can use
the fact that no library function can jump outside of the code of the library itself. This
is because when the library is compiled, the compiler can insert jumps just to the parts of
the code it knows, and it knows only the code of the library itself. So, if we insert some
monitoring code before every return instruction in the library, we must be able to detect
that the program is returning from a call to some of the library’s functions. The only
issue that is then left is to find out from which function the program is actually returning.
Probably the most efficient way in doing so is to partially monitor the call stack, i.e., when
a function whose execution should be monitored is called, some monitoring code inserted
before the first instruction of the function can be triggered, and in this code, we can save
the current state of the thread’s call stack (the value of the stack pointer is quite sufficient).
Then, when a return instruction is executed in the library, we can check if the current
stack pointer matches the previous stored one, and if yes, issue a notification that a certain
library function has been executed.

IFor the sake of simplicity, we ignore here the fact that the function is not called directly, but through
the jump table stored in the .plt section of the program’s binary.
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4.2.3 Retrieving Required Information

A further problem to be solved is how to provide analysers with sufficient information
about an instruction or function whose execution has just finished. This is because a lot
of information is lost when an instruction or function is finished. For example, we often
do not know which memory an instruction has accessed after the instruction is executed
because the memory address might have been computed from the values of some registers,
and those values might have been changed when the instruction was executed. Similarly,
when a function is executing, we can access its parameters easily, but when its execution
finishes, the arguments might not be easily obtainable anymore.

To provide an analyser all the information it needs, it is thus often necessary to preserve
some of the information obtained before executing some instructions and to reuse this
information in the monitoring code executed later. In case of multi-threaded programs,
such information must be tracked for each thread separately, and since it might be accessed
quite frequently, the efficiency of storing it is of a high importance. As the best way to
deal with this problem, we see a utilisation of some kind of thread local storage, which is
lock-free, i.e., it does not require any synchronisation between the threads. Fortunately,
some binary instrumentation frameworks, such as PIN [111], provide a support of thread
local storage.

In fact, according to our experience, it is often useful to store also information which
can be computed even after executing some instructions. This is, in particular, the case of
source-code information about the code being executed such as the names of variables ac-
cessed. Such information may be available, e.g., through the debugging information present
in the program’s binary, but accessing it is often slow. If we get this information in some
monitoring code and know that some other monitoring code executed after a while will
need this information too, it is better to store the extracted information and reuse it later
than to extract it again.

4.2.4 Atomic Instructions

Another problem which may arise when analysing programs at the binary level is the need to
properly handle atomic instructions that access the memory more than once. Indeed, when
a single instruction accesses the memory multiple times, the monitoring code should notify
the analyser about that, which is typically done by generating the appropriate number of
memory access events. If the instruction is not atomic, this is perfectly fine, but when
the instruction is atomic, some analysers need to be informed about the atomicity of the
appropriate sequence of memory accesses, or else they might produce false alarms.

In particular, some of the detectors which may have troubles with atomic instructions
are data race detectors, such as Eraser [138] or AtomRace [97], and atomicity violation
detectors, such as AVIO [110]. Both these kinds of detectors analyse possible interleavings of
accesses to particular memory addresses and report an error if there are two unsynchronised
memory accesses to the same memory address and at least one of the accesses is a write
access, or there is an interleaving of the memory accesses which is unserialisable. Clearly,
if such detectors are not informed that some sequence of memory accesses is guaranteed to
execute atomically, they can produce false alarms. A concrete illustration of such a scenario
can be seen in Figure 4.2 which shows a situation when two threads are executing the code of
the AtomicIncrement function. This function uses the exchange and add (xadd) instruction
to atomically increment a value at a given memory address. The xadd instruction first reads
a value at a given memory address, then adds some value to it, and then stores the modified
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value back at the same memory address. If the monitoring code notifies the analysers
that the program read a value from some memory address and then wrote to the same
memory address without the information that these two accesses happened atomically, the
analyser will assume that all the interleavings shown in Figures 4.2b and 4.2c are possible
in the program because the threads are not synchronised in any way. However, in fact, the
interleavings in Figure 4.2b are the only ones that can happen in the program.

One possible solution to this problem is to extend the access notifications with additional
information saying that an access that has just happened occurred atomically wrt. some
previous access. Pairing such accesses in the analyser may, however, be problematic (e.g.,
leading to backtracking in the analysis). In our opinion, a better way is to introduce a new
type of notification which tells the analyser that one instruction performed multiple accesses
at once, and let it decide if it wants to react to this situation and how (the analysers must
of course be ready to receive such notifications).

Note that in some higher programming languages like Java, there is no need to solve
this kind of problems when performing analysis at the binary, or more precisely byte-code,
level as there are no byte-code instructions which access the memory more than once [101].
Atomic updates are implemented here as a block of byte-code instructions placed between
the monitorenter and monitorexit instructions which lock the memory address securing
that no other thread will access it until the update is completed. If all accesses to the
memory address are guarded by the same lock, the analysers will see that there are no
possible interleavings leading to an error on this memory address and will not produce false
alarms. The same solution can be used in C/C++ programs, but using atomic instructions
can be much more efficient, and hence it is often used.

4.2.5 Conditional Instructions and Loops

Beside the atomic instructions there are a few other kinds of instructions which must be
carefully handled in order not to confuse various existing analysers. This is, in particular,
the case of the conditional instructions and the repeat instructions. While the conditional
instructions might not be executed at all even when the control reaches them, the repeat
instructions, on the contrary, may be executed more than once as though they were placed
in a loop. For instance, the rep-prefixed instructions, designed for manipulating continuous
sequences of memory locations (e.g., within string operations), are both conditional and
repeat instructions since they may be executed a fixed number of times, until some condition
is met, or sometimes not executed at all (if the loop they involve should be executed zero
times).

Since many of these kinds of instructions access memory, we need to be sure that
the access notifications are sent correctly, i.e., that the analyser is notified only when the
instruction was really executed or every time the instruction was executed in a loop. When
using dynamic binary instrumentation frameworks, where the instructions are executed by
some kind of a virtual machine, the virtual machine can usually handle these things for us.
On the other hand, in case of the static binary instrumentation, where we might not know
if the instruction will be executed or how many times it will be executed, the situation can
become unsolvable without some approximation.

4.2.6 Abstraction of Synchronisation Primitives

Since thread management and synchronisation in C/C++ programs is usually done by
calling suitable library functions as we have already mentioned above, and since there exist
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many different libraries which can be used for this purpose, a further question is how to
support analysis of programs using any of these libraries with a minimum additional effort
(at least when no highly non-standard synchronisation means are used).

In order to allow for an easy support of multiple libraries, the dynamic analysers them-
selves should clearly be separated from low-level details of using the libraries. For example,
an analyser should not know that a lock is represented by a pthread_mutex_t structure
or a Windows HANDLE, it should just be able to say whether two locks are the same or
not. More generally, according to our experience, in order to satisfy the needs of common
analysers, one needs to allow them (1) to suitably identify program threads in order to be
able to distinguish which thread behaves in which way, (2) to recognise which functions
are used for various standard synchronisation operations, and (3) to suitably identify the
synchronisation resources used (such as locks or conditions) in order to be able to say which
of them are used when.

Since one can hardly find a fully automatic solution of the above needs, we find as
appropriate to provide users with a support allowing them to solve these issues in an easy
way manually. In particular, for a given library, the users should be able to easily specify:

e Which functions in the library are performing common thread-related actions such as
acquiring a lock, waiting on a condition, etc.

e Which arguments of these functions represent the synchronisation resources they work
with.

e How to transform the concrete representations of synchronisation resources and threads
to their abstract identifications.

In Section 4.3, we will describe in more detail the concrete implementation of this approach
as used in our framework.

4.3 Implementation

To validate the solutions proposed in the previous section, we have implemented a prototype
tool which can monitor the execution of a multi-threaded C/C++ program, insert noise
into it, and provide analysers that can be written on top of it with various important
pieces of information that are typically needed when detecting errors in concurrency. In
this section, we will discuss how the above discussed general ideas have been concretised in
the implementation.

We have based our implementation, called the ANaConDA? framework, on top of the
PIN binary instrumentation framework [111]. There are several reasons motivating the use
of PIN as a binary instrumentation backend. First, PIN performs dynamic instrumentation,
i.e., it instruments a program in the memory before it is executed. This means that the
binary files of the program are left untouched. This is especially important when dealing
with libraries as it allows one to transparently use an instrumented version of a library and
simultaneously use the library as usual in other programs. PIN can also be used on both
Linux and Windows, compared to Valgrind which is Linux-only, which allows a much wider
range of programs to be analysed. Of course, PIN is primarily developed for use with Intel
binaries. However, if the binary code does not contain any special AMD-only instructions,
PIN works fine even for AMD binaries. Another advantage of PIN is that it preserves the

2 http://www.fit.vutbr.cz/research/groups/verifit/tools/anaconda
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parallel execution of threads of the analysed multi-threaded program. Valgrind, on the
contrary, serialises thread execution [126], which may unnecessarily slow down the program
and also the analysis as the analysis code usually runs in these threads too.

Synchronisation. To allow the tool to be easily used for developing dynamic analysers
capable of running over various libraries for thread management and synchronisation, we
followed the propositions made in Section 4.2.6 and implemented a system which allows the
user to easily abstract the information needed by typical analysers from the concrete form
used in a given library into a common format available for the analysers. In particular, for
each important type of synchronisation functions, e.g., functions for acquiring and releasing
locks or for signaling conditions and waiting on them, the user may specify the names of
the functions implementing these operations. For an abstract identification of the synchro-
nisation resources used (e.g., locks or conditions), we introduced special Mapper objects.
When the user defines the names of synchronisation functions, he also specifies the indices
of their arguments holding the synchronisations resources used by these functions as well
as the the Mapper object which should be used to translate these resources to their abstract
names. The translation is then done through the map() method which takes a pointer to
an address where the appropriate argument of the encountered synchronisation function
is stored and returns a number abstractly identifying the appropriate synchronisation re-
source. For example, for the case of locks and conditions from the pthread library used
to synchronise threads, the mapper objects can use the fact that the locks and conditions
are objects of the pthread_mutex_t and pthread_cond_t structures existing in the same
logical memory space shared by the threads. Since objects existing in the same memory
space are uniquely identified by their addresses, one can devise a Mapper object which sim-
ply uses the addresses of the objects as their identifiers in this case (hashed to 32 bits as is
usual also for various other identifiers in PIN). Finally, as for an abstract identification of
threads, we use the fact that the PIN framework already provides some thread abstraction,
and so we reuse it for a unique thread identification.

As the synchronisation functions to be monitored are assumed to be specified by the
users, and hence we do not know them and cannot prepare wrappers in advance, we cannot
use the function wrapping approach for monitoring function executions (not to mention that
calling the original function from a wrapper function is often really slow). Therefore, we
use the approach for monitoring function executions proposed at the end of Section 4.2.2.
Namely, we insert a monitoring code before the first instruction of every synchronisation
function specified by the user and also before all the return instructions in the libraries
containing at least one of these functions. When some synchronisation function is about
to be executed, the monitoring code stores the current value of the stack pointer together
with a pointer to the notification function which should be called after the monitored
function is executed to a separate shadow stack. Once a return instruction is to be executed,
the monitoring code compares the current value of the stack pointer with the one stored
at the top of the shadow stack, and if there is a match, it will notify the analyser that
a synchronisation function was executed by calling the notification function stored at the
top of the shadow stack.

Special Instructions. We have implemented the support for notification about several
atomic accesses to memory from an atomic instruction as discussed in Section 4.2.4 (so
far for accesses to the same memory address only, which is sufficient for detecting data
races on which we currently concentrated). To handle conditional instructions discussed
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in Section 4.2.5, we used the PIN’s INS_InsertPredicatedCall() function to put the
monitoring code around these instructions. Inserting the code through this function ensures
us that PIN will check if the instruction will really be executed and invoke the monitoring
code in this case only. However, unfortunately, using this function to insert the monitoring
code around the rep-prefixed instructions led to a very strange behaviour in which the
monitoring code was sometimes not invoked even when the instruction was executed. To
fix this problem, we had to use the INS_InsertCall() function as code inserted using
this function is always called, and we then check ourselves if the instruction will or will
not be executed. This implementation is a little less efficient as letting the PIN do the
checks is quicker, but it behaves correctly, and considering that the amount of rep-prefixed
instructions is not so large, it is a quite negligible slowdown.

Backtraces. A problem that has not been considered in Section 4.2.3 is that the informa-
tion needed for analysis is not the only information useful for the users. When the analyser
detects an error, it should provide the users as much information as possible to help them
localise the error. Retrieving information about the executed code, such as names of vari-
ables or locations in the source code, can give the users some information about the error.
However, this information is often not sufficient since it may be difficult to know how the
program got to the variable or location where the error was detected. A much better help
to the user is a backtrace to the erroneous part of the program.

ANaConDA currently supports backtraces equivalent to the ones given by the Linux
backtrace() function, which contain the return addresses of the currently active function
calls. The return addresses are stored on the call stack in the corresponding stack frames.
The top stack frame’s address can be obtained from the base pointer register, and each
stack frame also contains the previous value of the base pointer, referring to the previous
stack frame. By following the chain of base pointers, we can extract the return addresses
and create a backtrace although we have to be careful when processing the stack frames as
sometimes (e.g., during the initialisation of the program) the base pointer register may be
used for other purposes and might point somewhere else than to a stack frame. The advan-
tage of this approach is that we do not need to monitor every function call in the program
and update the backtrace constantly. We are constructing the backtrace on demand, i.e.,
only when the analyser explicitly requests it, and we only need to know the value of the
base pointer register, which can be retrieved with a negligible overhead. The only drawback
is that the program must properly create the stack frames, which may sometimes not be
true if some optimisations are used.

4.4 Instantiation

The ANaConDA framework abstracts analysers built on top of it from the specific mul-
tithreading library used, but it of course cannot do that without any information about
the library. As explained in more detail in the previous section, the user must specify:
(1) the names of the functions performing various thread-related operations, (2) the in-
dices of parameters holding the synchronisation primitives the functions operate with, and
(3) the Mapper objects used to abstract the synchronisation primitives to numbers uniquely
identifying them. Abstraction of synchronisation primitives is necessary because their repre-
sentation varies across various libraries, but analysers need to work with them in a uniform
way.
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pthread mutex_lock 1 addr() __pthread__mutex_unlock_usercnt 1 addr ()
pthread mutex trylock 1 addr()

(a) Lock acquisitions (lock file) (b) Lock releases (unlock file)

Figure 4.3: An example of the configuration of monitoring lock operations in
the pthread library

Pthreads. For example, if we use the pthread library and want to get notifications
about lock acquisitions and releases, we have to specify that the pthread_mutex_lock
and pthread_mutex_trylock functions are performing the lock acquisitions and that the
__pthread_mutex_unlock_usercnt function handles the lock releases. This is done by
adding the names of these functions to the lock and unlock configuration files, respectively.
All of these functions are taking the lock as the first parameter, and because locks are objects
of the pthread_mutex_t structure, we can use the ANaConDA framework’s built-in mapper
object addr to convert the addresses of these objects into numbers uniquely representing
them. To give this information to ANaConDA, we have to specify the index and the
name of the Mapper object right after the name of the corresponding monitored function
as can be seen in Fig. 4.3. The instantiation for signaling conditions and waiting on them
is similar, we just have to instruct the framework to monitor the pthread_cond_signal,
pthread_cond_broadcast, and pthread_cond_wait functions by inserting the appropriate
information to the signal and wait configuration files.

Win32 API. As for the Win32 API, there is no function that performs purely lock
acquisitions. Instead, the WaitForSingleObject function is used taking a generic HANDLE
as the first parameter and performing a lock acquisition only if the HANDLE represents a lock
(it may also represent, e.g., a thread or an event). In this case, we have an alternate way
to tell ANaConDA when a function performs a lock acquisition. We can specify that the
WaitForSingleObject function is a generic wait function whose behaviour depends on the
type of the synchronisation primitive passed to it and then name a function which creates or
initialises new locks. The framework then remembers which synchronisation primitives are
locks because they were created by the user-identified lock creation/initialisation function.
Subsequently, when a generic wait function (like WaitForSingleObject) is called, it will
first determine what kind of synchronisation primitive its parameter represents. If it is
a lock, it will properly trigger the lock acquisition notifications. In particular, in Win32
API, locks are created by the CreateMutex function which returns a HANDLE representing
the lock. Configuring lock releases is much simpler as they are performed by a dedicated
ReleaseMutex function which takes the lock (HANDLE) as the first parameter. As the HANDLE
is in fact a generic pointer, we can also use the addr mapper object here to transform it
into a unique number.

The Win32 API has no functions for signaling conditions and waiting on them. If such
operations are needed, the users usually implement the operations themselves or use some
libraries like pthread-win32 implementing them. However, as ensuring that the functions
performing these operations will trigger the corresponding ANaConDA notifications is as
easy as adding a few lines to the appropriate configuration files, the framework does not
have any problems with the users using their own custom functions for these operations,
which illustrates the generality of the framework.

Another problem with the Win32 API is that some of the functions that need to be
monitored are jumping at the beginning of other monitored functions. In this case, PIN
executes the monitoring code inserted before such functions, and if no special care was
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taken, the analyser would get a notification about a single event multiple times. The
solution could seem to be easy as one could, e.g., think of simply specifying that one of
the functions should not be monitored. However, the functions often have exactly the
same names, so one cannot so easily differentiate between them. The framework solves this
problem by checking if the stack pointer changed when a monitored function is about to be
executed, and it does not issue a notification if its value remained the same as that means
that nobody called the function, and the control must have jumped to it.

4.5 Usage

To analyse a multi-threaded C/C++ program using ANaConDA, one first has to write (or
get) an analyser to be used. The analyser must have the form of a shared object (in Linux)
or a dynamic library (in Windows) which contains a set of functions that ANaConDA
should call when a specific event, such as a lock acquisition, occurs in the program being
analysed. The analyser has to register the callback functions for the events it needs to
be notified about. This is done by calling the appropriate registration functions (provided
by ANaConDA) in the init () function of the analyser, which ANaConDA executes once
the analyser is loaded. For example, to be notified about lock acquisitions and releases,
the analyser has to register its callback functions using the SYNC_AfterLockAcquire and
SYNC_BeforeLockRelease functions, respectively.

Performing the actual analysis is then quite simple. One just needs to execute the PIN
framework with ANaConDA as the pintool® to be used and specify the analyser which
should perform the desired analysis together with the program which should be analysed.
Noise injection can be enabled and configured in the noise section of the anaconda.conf
configuration file. Currently, only the sleep and yield noise is supported, but the user may
use different noise injection settings for the read and write accesses and also for each of the
monitored functions. The slowdown of the execution of the analysed program is similar to
Fjalar, i.e., around 100 times. Note, however, that the slowdown is mainly due to PIN and
depends on many factors such as the amount of instrumentation inserted, the amount of
information requested by the analyser, the amount of noise injected into the program, etc.

4.6 Experiments

To test whether ANaConDA can handle really large and complex programs, we have used it
to analyse the Firefox browser (more than 3 million lines of code) which uses the pthread
library. We did not find any severe or unknown errors. We did, however, find several data
races which are left in the code since they are considered harmless. Considering the size of
the program, the fact that it is thoroughly checked for data races regularly, and also that
we used a very simple data race detector and performed only a very limited set of tests
since we did not have any automatic test suite to use, we consider these results to still be
quite promising.

We further analysed the unicap libraries for video processing, which also use the
pthread library and are considerably smaller (about 40k lines of code) which allowed us to
perform a larger number of tests. We have found several (previously unknown) data races
in the 1ibunicap and libunicapgtk libraries. Two of the data races can be considered

3A pintool can be thought of as a PIN plugin that can modify the code generation process inside PIN,
i.e., it determines which code should be executed and where in the monitored program.
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severe as they may cause a crash of the program which uses these libraries. In both cases,
one thread may reset a pointer to a callback function (i.e., set it to NULL) in between of the
times when another thread checks the validity of this pointer and calls the function refer-
enced by it, which can cause an immediate segmentation fault. We are currently preparing
to report these errors to the developers using the ANaConDA’s recently added backtrace
support that can provide a rather detailed information where and why the error occurred.

Finally, we also successfully tested the framework on several Windows toy programs
(100-500 lines of code). An application to larger programs is planned for the near future.

4.7 Conclusion

In this chapter, we have presented ANaConDA—a framework simplifying the creation of
dynamic analysers for analysing multi-threaded C/C++ programs on the binary level.
We have discussed several typical problems which arise when monitoring multi-threaded
C/C++ programs at the binary level in order to allow for their dynamic analysis, and we
have proposed solutions to these problems. We have shown how to instantiate it for several
widely used multithreading libraries and demonstrated on several case studies that it can
handle even large real-life programs. With the help of the framework, we were able to write
a simple analyser in a day and successively find several errors with it, which shows the
usefulness of the framework.

For the future, there are several interesting directions that can be taken. First, we
would like to improve our implementation of the proposed ideas, extend it by a support
of more C/C++ concurrency libraries, and test the resulting tool on larger concurrent
C/C++ programs. We would also like to implement more dynamic analyses on top of our
framework and include their evaluation into the further experiments.
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Chapter 5

Improved Noise Injection

This chapter describes how to utilise noise injection to increase the efficiency of dynamic
analysis and testing. Beside proposing how the noise injection can be improved and devising
several new noise injection techniques, this chapter also includes a detailed comparison of
both the new and the existing noise injection techniques and gives some general suggestions
on how to use the noise injection in particular scenarios.

5.1 Introduction

The result of both testing and dynamic analysis greatly depends on the witnessed execution
of a multi-threaded program. Unfortunately, there is a huge amount of executions one may
encounter, and only a small fraction of them usually cause an error. It is often harder to
find the rare executions containing the error than to detect the error within the execution
that contains it. One way to deal with this problem was described in Chapter 3 where
an extrapolating dynamic analysis was used to find suspicious executions that are highly
likely to contain an error. Such executions were then replayed in a (bounded) model checker
which determined if they indeed contain an error or not. Despite the optimisation offered by
the approach, replaying complex executions may not be feasible due to their size or presence
of operations that cannot be replayed, such as input/output operations. A much simpler,
cheaper, yet effective approach that addresses the same problem is noise injection which
influences the scheduling of threads so that different interleavings of concurrent actions are
witnessed, and one may more likely see the executions that contain an error. The biggest
advantage of noise injection is its generality. It works well with techniques designed for
both testing and dynamic analysis, and these techniques do not need to be changed in any
way to work with each other.

In this chapter, multiple results achieved recently in the area of noise-based testing
and dynamic analysis are presented. In particular, multiple heuristics for solving the noise
placement problem (i.e., where and when to generate noise) as well as the noise seeding
problem (i.e., how to generate the noise) are introduced and experimentally evaluated.

Moreover, we propose an improvement to the typical usage of noise injection which
allows one to use a fine-grained combination of several noise placement and noise seeding
heuristics within a single program. To demonstrate how the fine-grained combination of
noise can be used, we create a new (fine-grained) noise injection technique tailored for im-
proving the chances to detect data races, the most common type of concurrency errors. We
implemented this new noise injection technique using the ANaConDA framework and tested
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it on a set of smaller C/C++ projects. The obtained results show that using fine-grained
noise injection techniques can lead to a further increase of chances to spot a concurrency
errors. We also discuss the possible influence of various noise injection settings on dynamic
analysis of multi-threaded C/C++ programs.

Apart from the technique mentioned above, we also present two additional noise injec-
tion heuristics—in particular, a new noise placement heuristic based on access patterns of
shared variables and a new noise seeding heuristic which blocks all threads but one. Both of
these heuristics target common atomicity violation scenarios, and the newly proposed noise
seeding heuristic might also help in order violation scenarios. The newly proposed heuris-
tics are compared with a selection of already existing heuristics which provided promising
results in the previous experimental comparisons [54,99].

The presented set of 8 Java benchmark programs and 4 C benchmark programs is the
so-far largest comparison of noise-injection-based testing techniques. The comparison shows
that the different heuristics can indeed significantly improve the efficiency of testing. How-
ever, they also show that there is no single best noise injection technique among the many
noise injection heuristics, requiring a careful selection of the noise injection technique(s) to
be used in a given scenario.

Finally, the chapter also provides a unified overview of multiple results from the area of
noise-based testing and dynamic analysis that were published in the past few years [54,55,

,92,93,96,99]. In particular, various noise injection heuristics and their influence on error
detection and ability to increase concurrency-related coverage [54,96,99] (absolutely and
relatively, i.e., taking into account the longer test execution time caused by noise injection)
are studied. The obtained experiences with noise injection on different levels (namely, Java
bytecode and C/C++ binaries) are summarized into suggestions that can make further
applications of noise-based testing and dynamic analysis easier.

Plan of the chapter. The rest of the chapter is organized as follows. Section 5.2 de-
scribes the current heuristics used to solve the noise placement and noise seeding problems.
Then it presents our proposal of improving the typical usage of noise injection by combining
different noise placement and noise seeding heuristics. Finally, it introduces several new
noise injection heuristics. Section 5.3 evaluates the improved noise injection proposed in
the previous section, showing that combining different noise placement and noise seeding
heuristics can further increase the efficiency of both testing and dynamic analysis. Sec-
tion 5.4 summarises the previously published comparisons and then focuses on evaluating
the newly proposed heuristics. It provides a deep comparison of both the new and existing
heuristics, showing that the newly proposed heuristics are useful in many cases, but none
of the heuristics included in the comparison is best in every situation. It also discusses var-
ious technical aspects of noise injection on binary and byte-code levels and provides a few
suggestions for noise-based testing and dynamic analysis. Section 5.5 then concludes the
chapter and mentions several possible future directions in the area of noise-based testing
and dynamic analysis.

5.2 Noise Injection

Noise injection techniques [11] aim at increasing the number of different interleavings wit-
nessed in the executions of a multi-threaded program by disturbing the scheduling of its
threads. This is achieved by inserting certain noise generating code at some locations of
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the program whose goal is to force the program to switch threads at times when it would
normally seldom do it. This way, rare executions may be forced to appear, possibly leading
to an occurrence of an error (or to a behaviour that can be claimed suspicious by a dynamic
analyser).

The effectiveness of noise injection depends on a satisfactory solution to the noise place-
ment and noise seeding problems. The noise placement problem addresses the question
where, i.e., at which program locations, and when, i.e., at which executions of these loca-
tions, to cause a noise. The noise seeding problem then determines how to cause the noise,
i.e., which type of noise generating mechanism should be used, and how long it should
last. The problems are, of course, not independent, and so, a suitable combination of noise
placement and noise seeding heuristics (and of suitable values of their many parameters) is
to be sought in practice.

In this section, we first discuss the existing approaches for solving the noise placement
and noise seeding problems. Then, we argue that these approaches can be improved by
a careful fine-grained combination of different noise injection techniques. Finally, we pro-
pose several new noise injection techniques.

5.2.1 Noise Placement Heuristics

Noise placement heuristics determine where, i.e., at which program locations, and when,
i.e., at which executions of these locations, should a noise be injected.

It is discussed in several papers [11, 18 | that putting a noise at every possible
program location (ploc [11]) is inefficient. This approach significantly increases the incurred
overhead, and it does not help much in increasing chances to find bugs since only a few
relevant context switches are critical for a concurrency error to manifest. Also, it turns out
that putting a noise at a certain program location can help to spot the concurrency error,
but it can also mask it completely.

The IBM ConTest tool [12] allows one to inject a noise only before and/or after concur-
rency-related events (namely, accesses to class member variables, static variables, and arrays
stored in the JVM heap, calls of wait(), interrupt(), notify(), monitorenter, and
monitorexit routines). Since the tool has no information which member fields and arrays
are really shared (i.e., accessed by multiple threads), all instructions operating with the
heap are considered. Moreover, motivated by a coding anti-pattern in which developers use
calls of wait () instead of proper synchronization, ConTest is able to intercept calls to the
wait() and sleep() routines too.

The rstest tool [144] considers as possibly interesting only those locations that ap-
pear before concurrency-related events. Moreover, rstest uses a simple escape analysis and
a lockset-based algorithm to identify the unprotected accesses to shared variables. An un-
protected access reads or writes a variable which is visible to multiple threads without
holding an appropriate lock. This optimization reduces the number of program locations
where the noise can be put but suppresses the ability to detect some concurrency errors, e.g.,
high-level data races or deadlocks where all accesses to problematic variables are correctly
guarded by a lock.

Moreover, the number of accesses to shared memory and calls of synchronization ele-
ments is still high in multi-threaded programs. Therefore, several heuristics for determining
more concretely where and when to put a noise were proposed [18,41, 144, 148].

The simplest heuristic is based on a random number generator [11, 144]. This random
heuristic puts a noise before an executed program location with a given probability, where
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the probability is the same for all program locations considered. Most other heuristics
extend this heuristic in a way that they reduce the number of possible program locations
before which the noise might be injected. When considering all possible program locations
in a program, this heuristic is called random-all below to distinguish it from the other
heuristics that can be seen as modifications of the random heuristic.

It was shown [18] that restricting the number of program locations only to those access-
ing shared variables or a specific shared variable when applying the random-all heuristic
increases the probability of spotting an error. These two modifications of the random-all
heuristic are denoted here as sharedVar-all and sharedVar-one, respectively. When the
shared Var-one heuristic is used, the shared variable is usually chosen randomly from a list
of known shared variables.

Several heuristics based on concurrency coverage models have been published. Coverage-
directed generation of interleavings [11] considers two coverage models. The first model de-
termines whether the execution of each method was interrupted by a context switch. The
second model determines whether a method execution was interrupted by any other method.
The level of methods used here can be in most of the cases too coarse. In [145], a coverage
model considers, for each synchronization primitive, various distinctive situations that can
occur when the primitive is executed (e.g., in the case of a synchronized block defined using
the Java keyword synchronized, the tasks are: synchronization wvisited, synchronization
blocking some other thread, and synchronization blocked by some other thread). The ap-
proach then injects a noise at corresponding synchronization primitive program locations to
increase the coverage. None of these two heuristics focuses on accesses to shared variables
which can limit their ability to discover some concurrency errors, e.g., data races.

A coverage-based noise placement heuristic [99] (referred to as coverage further on)
targets both accesses to shared variables as well as the use of synchronization primitives,
and so it can be used to discover lock-based deadlocks as well as data-related concurrency
errors, such as data races and atomicity violations. The heuristic considers only program
locations that appear before concurrency-related events as suitable for noise injection. The
technique detects subsequent accesses to shared variables and monitors whether these ac-
cesses originated in different threads. Such couples of subsequent accesses are considered
as interesting to be influenced by noise. The noise in particular tries to test the opposite
orderings of recorded events in each couple. Therefore, a noise is put before the first access
recorded in a couple with a hope that the access which was recorded as the subsequent
occurs earlier. If both accesses are guarded by the same lock, the described approach would
inject a noise into a shared critical section which would not change the ordering of the
recorded events. In such a case, the heuristic injects the noise before the appropriate lock-
ing operation where the common lock was obtained. Additionally, this heuristic monitors
the frequency of a program location execution during a test and puts a noise at the given
program location with a probability biased wrt. this frequency—the more often a program
location is executed the lower probability is used.

5.2.2 Noise Seeding Heuristics

Noise seeding heuristics determine how to cause a noise, i.e., which type of noise generating
mechanism should be used, and how long should it last, i.e., how strong the noise should
be.

As the primary purpose of injecting a noise is to disturb the usual scheduling of threads,
the noise generating mechanism should influence the scheduler in some way. There exist
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several ways how a scheduler decision can be affected in Java [11]. The priority heuristic
changes priorities of threads which allows chosen threads to make progress more often than
threads with a lower priority. The yield heuristic injects one or more calls of the yield()
method which causes a context switch. The sleep heuristic injects one call of sleep(), and
the wait heuristic injects a call of wait (). The sleep() and wait () methods take a timeout
for which to block a thread as their parameter. In case of the wait heuristic the concerned
thread must first obtain a special shared monitor, then call wait() with a timeout on it,
and finally, release the monitor. Using the monitor makes the current thread flush all local
data to shared memory and make them visible for other threads. Likewise, the synch Yield
heuristic combines the yield heuristic with obtaining a monitor. The busyWait heuristic
does not obtain a monitor, but instead loops for some time.

The haltOneThread heuristic [1418] occasionally stops one thread until all remaining
threads cannot make any further progress. Finally, the timeout Tamper heuristic randomly
reduces the time-out used when calling the sleep() and wait() methods in the tested
program. This allows one to test that the delay inserted by these methods is not used
instead of proper synchronization.

All the noise seeding heuristics mentioned above are parametrised by the strength of
noise. In case of the sleep, wait and busyWait heuristics, the strength gives the time to
wait or loop. In the case of the yield heuristic, the strength says how many times the
yield () routine should be called. Finally, in the case of the priority heuristic, the strength
determines how much the thread priority changes.

In [18], a barrier scheduling heuristic based on semaphores is presented. Each shared
variable is assigned a specific semaphore in such a way that a thread is made to wait just
before the particular shared variable is accessed. When more than one thread is waiting
at the same monitor (and thus for access to the same variable), then the notifyAl1()
method is used to simultaneously advance the waiting threads in hope to spot a data race.
To prevent deadlocks, the waiting of threads on the injected semaphores is timed.

While the above works discuss noise seeding heuristics for Java, many of them are also
applicable for other languages such as C/C++. For example, the ANaConDA framework,
introduced in the previous chapter, supports the yield, sleep, and busyWait heuristics.

5.2.3 Fine-Grained Combinations of Noise

In our opinion, the previously used approaches to noise injection have one drawback—namely,
they allow the user to specify the noise seeding heuristic at a global level only, meaning
that the same type of noise with the same parameters will be used everywhere in the
program (an exception is the random setting of ConTest when a random type of noise with
random parameters is used every time some noise is to be generated). However, in our
opinion, supported by the later presented experimental data, it is sometimes beneficial to
use different noise seeding heuristics for different locations in the program (e.g., for the read
accesses, write accesses, each of the thread synchronisation functions, etc.) and to do it in
a systematic rather than random way.

To illustrate our idea, take, e.g., the case of data races. Considering that a data race
arises when there are two unsynchronised accesses to the same memory address and at least
one of the accesses is a write access, it might appear to be better to use the sleep noise than
the yield noise. This is because when we encounter some access to the memory address of
interest, the best we can do is to search the other threads for the second (conflicting) access.
This means that as many of the remaining threads should go through as many memory
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accesses as possible. Forcing the program to switch threads several times using the yield
noise of a commonly used strength will help us to search only a small part of the executions
of the other threads. The sleep noise will block the execution of the thread performing the
first access giving us considerably more time to detect the second (conflicting) access in one
of the remaining threads." However, a problem is that if we use the same sleep noise for
all accesses, we will block not only the thread performing the first access, but also many of
the remaining threads, which will unnecessarily lower the number of memory accesses they
will perform. Hence, what we want to achieve is to lower the amount of noise injected into
the remaining threads which we search for the second conflicting access.

The above situation is where the more fine-grained noise injection configuration pro-
posed below can help. In particular, we can use different noise placement heuristics for
different, possibly conflicting types of accesses to hold the threads performing one of the
types of accesses more than the threads performing the other type of accesses. There are
two ways to do that. One possibility is to use the sleep noise only, but with a bigger strength
for one of the access types and considerably lower for the other. However, an even better
way is to force the threads performing the second type of accesses to give up the CPU
(using the yield noise) as this will help more threads to perform more memory accesses. As
we will show in the experiments section, this approach really gives us better results than
using a single global noise seeding heuristic, and, in addition, it often slows the execution
of the program much less.

A question left open in the previous paragraph is which accesses should be hold more
and which less. In our opinion, supported by later experiments, this mainly depends on
which of the conflicting accesses happens more rarely. Clearly, if one of the conflicting
accesses happens more rarely (e.g., a write access if there are few possibilities to write and
many possibilities to read), it is better to hold the thread performing the rare access using
a sleep noise and search for the more common accesses than doing it conversely.

5.2.4 New Noise Heuristics

In this section, we propose several new noise placement and noise seeding heuristics, in-
cluding the one based on the fine-grained combinations of noise that was already discussed
in the previous section and which we now develop into a concrete noise injection heuristic.
While these heuristics are tailored to help with the detection of specific kinds of concurrency
errors, they are often useful in other situations as well.

Read/write noise. The read/write noise placement heuristic uses different noise settings
for the shared variable read accesses and write accesses. The settings might differ in the
frequency which controls how often a noise is generated before a particular class of accesses
or in the chosen noise seeding heuristic. The heuristic is motivated by the common data
race scenarios where there are two unsynchronized accesses to a shared variable and at least
one of these accesses is a write access. So, when a memory access is encountered, the best
thing one can do is to search the other threads for the second (conflicting) access. In order
to lower the noise injected to the other threads, the fact that one of the accesses causing
a data race is typically a write access while the other is a read access is exploited. Based on
this observation, a stronger noise before one type of memory accesses and a weaker noise
before the other is injected.

LA similar effect could be reached by using a much stronger yield noise, which would, however, involve
actively waiting threads that would in turn unnecessarily slow down the entire system.

54



Pattern noise. The pattern noise placement heuristic injects a noise before accesses to
variables which were already accessed before within the same method or function. The
motivation here is to create a noise placement heuristic that would help in discovering
atomicity violation scenarios. An atomicity violation occurs when two accesses to a shared
variable, which should be performed atomically, are interleaved by another access to this
variable. The idea is to inject a noise before the second (or any further) access to a shared
variable from the same thread within a logical unit (a program method in this case) so other
threads have more time to access this variable in between the accesses, causing an atomicity
violation. It makes sense to inject such noise even inside a block intended by the programmer
to be executed atomically (e.g., a block defined by the synchronized keyword in Java) and
test whether the synchronization is implemented correctly.

Inverse noise. Some kinds of concurrency errors manifest in situations where a thread
executes an action earlier that it should, e.g., sends a notification before someone starts
waiting, accesses a variable before it is initialized, etc. The inverseNoise noise seeding
heuristic does the opposite of the haltOneThread heuristic. That is, it stops all but one
thread and allows this one thread to get as far as possible in its execution. This increases
chances that the thread will trigger an action which it should perform only after some of
the blocked threads do something, e.g., start waiting, initialize a variable, etc. Moreover,
the other threads are stopped at the nearest instrumentation point which is suitable for
noise injection. Therefore, the current thread has the opportunity to execute instructions
which trigger an atomicity violation if some of the blocked threads are blocked within
an improperly guarded atomic section.

5.3 Evaluating Improved Noise Injection in C/C++

In this section, we present the results of our experiments of utilising noise injection when
testing and dynamically analysing C/C++ programs. Both the previously existing and the
newly proposed approach discussed in the previous section are validated. We use these
results to justify the proposed improvement and also as a basis for a discussion of the
possible influence of various noise injection settings on testing and dynamic analysis of
multi-threaded C/C++ programs.

5.3.1 Experimental Setup

For our experiments, we used 116 multi-threaded programs implementing a simple ticket
algorithm on top of the pthread library. These programs were created by students of an
advanced operating systems course. Note that most of them were rated full points as the
test script and a brief code review did not find any errors. We were, however, able to find
various errors in many of these programs using dynamic analysis in conjunction with noise
injection or even just the noise injection alone.

Algorithm 1 describes the general idea behind the ticket algorithm that each of the
programs implements. The goal is to synchronise all threads of a program in doing some
mutually exclusive work (modelled by calling doWork()). When a thread wants to do
the work, it is assigned a ticket number and waits for its turn. The getticket () function
assigns a thread the first free ticket (i.e., a ticket with the lowest ticket number not assigned
to any other thread yet). This is done using a shared variable next_ticket holding the
number of the next free ticket. All accesses to this variable are done in a critical section
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Algorithm 1: Ticket algorithm
1 foreach thread do

2 while (ticket = getticket()) < M do
3 sleep(random);

4 await(ticket);
5
6
7

doWork();
advance();
sleep(random);

guarded by the tmutex lock. The accesses to the part where the work is done are then
guarded by a monitor entered by calling the await() function and left by calling the
advance () function. These two functions work with a shared variable curr_ticket which
determines the ticket number needed to enter the monitor. The await () function reads the
curr_ticket variable and forces the thread to wait if it is not its turn (i.e., if it does not
have a ticket with the curr_ticket number). The advance () function then increments the
curr_ticket variable allowing another thread to enter the part guarded by the monitor.
Accesses to curr_ticket in each of the functions are done in critical sections guarded by
the mmutex lock. If the work is done M times, the threads finish their execution.

5.3.2 Detecting Data Races

To look for data races in the considered programs, we used the simple detector called Atom-
Race [97]. AtomRace tracks which memory addresses are being accessed by the particular
threads by monitoring the before and after memory access notifications. If it discovers that
two threads can concurrently access the same memory address (at least one of them for
writing), which is detected by the appropriate pairs of before and after memory accesses
being overlapped, it informs about a data race. As it is normally not very probable to
see two concurrent memory accesses, AtomRace uses noise injection to disturb the usual
scheduling of threads in order to witness executions in which such memory accesses happen
(if that is allowed by the program under test). Clearly, when AtomRace announces a data
race, it is a real data race, not a false alarm (of course, provided that it takes into account
the possible appearance of atomic instructions).

Using AtomRace implemented on top of the ANaConDA framework, we were able to
find data races in 23 of the 116 considered programs, all of them having various kinds of
negative impacts on the expected behaviour of the programs. We find this quite satisfactory
taking into account that three quarters of these programs were rated full points because
they passed all the standard tests.

To further analyse how the noise injection settings influence the overall success of the
detector to find data races, we selected 13 of the 23 programs in which we were able to find
bugs and performed a large number of tests on them. The remaining programs were not
included in the tests as they contained deadlocks in addition to data races, which made
them difficult to compare to the rest of the programs. The results are shown in Table 5.1,
each column representing one of the tested programs and each row one of the configurations
of the noise injection in the following format: First, a base configuration of noise generation
used at memory accesses and synchronisation functions is given, consisting of the type of
noise, its frequency, and its strength. The rs prefix put before the type of noise indicates
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Table 5.1: Success ratio of the AtomRace detector for various configurations
of the noise injection (the values represent the percentage of runs, out of 500,
in which a data race was found)

Noise configuration \ Program t01| t02| t03| t04| t05| t06| tO7| tO8| t09| t10|tll| t12| t13
instrumented, no sleep or yield noise 24| 11.8 0.2 1.2| 0.0| 1.0| 16| 22| 04| 0.0|/0.0| 0.0| 322
sleep 500 10 69.2 | 46.6 | 100.0 [ 100.0| 1.2| 53.6| 69.4| 98.6| 0.6| 0.2 0.8| 0.2]100.0

yield 500 10 3.8] 354 14| 108 0.0| 14| 54| 11.6| 06| 1.8|0.0f 0.2| 84.4

rs-sleep 500 10 96.4 |87.8| 97.0| 86.2| 0.6| 31.0| 79.0(99.2| 9.2| 10.0(2.4| 0.2]100.0

rs-yield 500 10 6.0 17.0 0.2 0.6/ 00| 06| 6.2 90| 04| 1.6[(00| 04| 71.2

sleep 100 10 64.0| 69.2| 80.2| 56.0| 54| 40.2| 70.4| 81.0| 31.2| 31.4| 0.6|42.4| 98.4

yield 100 10 0.8] 17.0 04| 3.0 00| 00| 42| 6.0/ 06| 0.8]|00| 0.0]| 428

rs-sleep 100 10 21.4| 55.8| 23.0| 11.8| 0.0| 18.2| 60.4| 71.8|34.4|37.0| 0.8| 27.6| 92.8

rs-yield 100 10 1.8 9.0 0.6 1.0/ 0.0 04| 32| 34| 06| 20|0.0| 00| 348

sleep 500 20 34.6 | 48.2(100.0 |100.0| 0.6| 31.8| 79.0| 97.8| 0.0| 0.4| 0.2| 0.6]|100.0

yield 500 20 142 56.4| 44| 94| 00| 22| 86| 17.0| 1.0| 08| 0.2| 0.0| 94.0

sleep 500 5 24.2] 68.2(100.0| 69.2| 6.4| 26.8| 79.8| 90.2| 1.8| 22| 14| 0.0]100.0

yield 500 5 2.8 22.2 3.0 134| 00| 36| 58| 52| 06| 1.2]0.0| 0.0| 63.0

sleep 100 20 59.2| 30.4| 78.6 6.0/ 56| 61.0] 67.2| 86.4| 32.2| 33.6| 0.8{42.6| 98.8

yield 100 20 1.2 19.0 0.6 3.0/ 00| 18| 64| 68| 14| 0.8|0.0| 0.2| 54.2

sleep 100 5 52.4| 73.6| 784 | 74.4| 14.2| 18.4| 61.0| 74.0| 29.8| 30.6 | 0.2| 38.0| 98.2

yield 100 5 1.4| 13.0 0.2 14| 00| 06| 34| 42| 18| 1.6|0.0| 02| 388

sleep 500 10 / read 20 / write 5 64.889.4| 99.0| 80.8| 0.0| 17.0| 28.6| 91.2| 04| 22| 04| 0.0|100.0
sleep 500 10 / read 5 / write 20 33.4| 57.2(100.0| 91.6| 43.0/92.6|96.2(99.8| 12| 0.6| 14| 0.0]100.0
yield 500 10 / read 20 / write 5 3.8 31.4| 38 9.0/ 00| 14| 36| 92| 18| 1.8(/04| 0.0| 86.0
yield 500 10 / read 5 / write 20 5.0 | 59.6 2.0 82| 00| 16| 9.2|198| 18| 0.2(0.0| 0.0 88.0
sleep 100 10 / read 20 / write 5 73.4| 444| 674| 22| 0.0]| 79.0| 51.2| 73.0|34.4(37.0| 0.8 0.0| 99.2
sleep 100 10 / read 5 / write 20 3141 276 70.8| 69.2| 4.8(89.2| 79.6| 68.8| 30.0| 29.6( 1.2 0.0| 99.2
yield 100 10 / read 20 / write 5 0.8] 13.2 0.2 22| 00| 04| 46| 42| 1.0| 0.8[0.0| 0.0 49.0
yield 100 10 / read 5 / write 20 1.2 23.0 04| 26| 00| 14| 66| 58| 06| 0.8]0.0| 0.0| 488
sleep 500 10 / read sleep / write yield | 51.2| 61.2| 59.2(100.0| 0.0| 24| 0.8]| 8.8| 0.2 2.6|0.2| 0.0]100.0
sleep 500 10 / read yield / write sleep | 18.6 | 38.4| 99.4|100.0 | 50.6 | 80.895.6 |97.0| 74| 4.6| 1.2| 0.0]100.0
yield 500 10 / read sleep / write yield | 32.6 | 64.6 | 63.8(100.0| 0.0| 4.6| 0.0| 68.6| 0.2| 3.8/ 0.2| 0.0]100.0
yield 500 10 / read yield / write sleep | 10.0| 52.2| 98.0|100.0 |51.0|95.0|99.6 |98.8| 6.0 4.2|2.0| 0.0{100.0
sleep 100 10 / read sleep / write yield | 34.2|81.0 | 44.0 74162.4| 0.0 22| 55.0| 28.8(37.6| 0.8| 0.0| 87.4
sleep 100 10 / read yield / write sleep 941 356| 52.4| 96.8| 9.6| 37.6| 78.6| 62.0| 1.0| 24|0.0| 0.0| 88.2
yield 100 10 / read sleep / write yield | 25.8| 46.4| 51.2 6.2|/64.4| 02| 44| 69.6|/43.0/43.4(0.2| 0.0| 85.6
yield 100 10 / read yield / write sleep | 16.6 | 33.6| 43.6| 94.4| 7.2| 35.6| 80.2| 61.2| 1.4| 1.6| 0.2 0.0| 90.6

that the strength is not implemented as constant, but as random with the given value being
the maximum possible strength. The values of the frequency say how probable it is that
some noise will be generated every time the given location is reached on the scale from 0
to 1000, i.e., 500 means 50 %, 100 means 10 % etc. The values of the strength say how
many times a yield should be called at the given location of the given thread or how many
milliseconds the thread should wait in case of the sleep noise. Then, if applicable, differences
from the base configuration in the strength and possibly also type of noise are given behind
a slash separately for the read and write accesses. The values in the body of the table
then express the percentage of runs (out of 500) in which the data race detector found
a data race, i.e., the percentage of executions which actually led to an error. The first noise
configuration in the table corresponds to runs where no sleep nor yield noise is generated,
but the noise generation code is inserted, together with the code notifying the AtomRace
detector about the execution. However, even such instrumentation is already generating
some small noise which can help manifestation of errors as we will see in Section 5.3.3.
The selected programs contain various kinds of errors that all lead to data races in the
end. In two of the programs (t01 and t02), the data race is on the next_ticket variable.
In the first program (t01), the variable is updated in a critical section, but then read outside
of it. Since the getticket () function performing these accesses is frequently called from
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many of the threads, the data race manifests quite often®. In the second program (t02),
the accesses to the variable are not guarded at all, so the data race manifests even more
often. The next program (t03) contains a data race on a shared variable used to assign
IDs to each of the threads. This variable is updated and read without any synchronisation,
however, all of these accesses happen when the threads are started one immediately after
another, so the data race may only occur during this short time. Program t04 uses a shared
structure to store the thread IDs and their current tickets. Accesses to all the members
of this structure are not synchronised, leading to data races on each of them, multiplying
the probability that a data race appears. Program t05 has a rarely occurring data race on
individual items of a shared array where each item may be accessed by the main thread, and
one of the other threads simultaneously just before the main thread starts to wait for the
second thread to end (join). Programs t06, t07, and t08 contain data races on a timespec
structure, shared among all threads, used to randomly generate the number of milliseconds
a thread should sleep before and after entering the monitor. Some of these programs access
the structure more often than the others, so the frequency of encountering a data race
vary between them. The next two programs (t09 and t10) read the curr_ticket variable
outside a critical section at one place. All other accesses are, however, performed in the
critical section, so it is not very likely that a data race would occur. Program t11 uses
the same lock for guarding the critical section in the getticket () function as well as the
critical sections in the monitor functions await () and advance() leading to an extremely
rare situation where two threads enter the critical section in the getticket() function
and access the next_ticket variable (because the code does not check if the tmutex lock
was acquired successfully and just continues). A similar situation happens in program
t12, which initialises the tmutex and mmutex locks in each of the created threads, which
resets the locks’ ownership information, status, and other fields. Changing the ownership
information often leads to assertion errors as we will see in Section 5.3.3. On the other
hand, resetting the lock status leads to data races since it allows more threads to enter the
critical sections guarded by these locks. However, these data races can manifest only if the
noise simultaneously prevents all assertion errors which may otherwise show up before the
data races. The last program (t13) contains a data race on a shared variable used to store
the return codes of pthread library’s functions. Since this variable is accessed at so many
places in the program, the data race occurs very often here.

Evaluation of the Results

As can be seen from Table 5.1, the sleep noise is clearly superior in helping AtomRace in
finding data races when the same strength is used. However, using the sleep noise too much
can sometimes have quite the contrary effect—hiding the data races instead of helping
to find them. Take, for example, programs t01 and t02. They contain a similar error
of not guarding the accesses to the next_ticket variable, but while t01 is not guarding
only some of the read accesses, t02 is not guarding any of the accesses, so the possibility
of encountering a data race in an execution should be higher here than in case of t01.
However, when using the sleep noise with frequency 500 (50 %) and strength 10, data races
are detected in only 47 % of t02 runs, while in case of t01 it was nearly 70 %. After
decreasing the frequency to 100 (10 %) or strength to 5, the success ratio of data race

2This is the case when the program is run with the instrumentation needed for AtomRace and with the
instrumentation for noise generation which is just not generating any sleep nor yield noise. The same holds
for the discussion of the other case studies too.
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detection increases to nearly 70 %. The problem here is that if we put all the threads to
sleep for about the same time (which is the more probable the higher the frequency is),
the scheduling of threads will remain the same as without the noise, not introducing the
uncommon executions we wanted to witness. In many cases, lowering the frequency helps,
likewise using a random strength instead of the fixed one. Sometimes even using a smaller
fixed strength might help as we do not block the threads for too much time which increases
the chances that there will be some threads which we might search when we start sleeping
(there are often none if we use a too strong strength—e.g., when using strength 20 in t02,
we detect data races in only 30 % runs even if we use frequency 100). Similar problems
happen when using noise injection in Java programs [17].

The results also support our opinion from Section 5.2.3 that using different noise injec-
tion settings for different locations can give better results. This approach can, e.g., help in
solving the problem discussed in the previous paragraph. Indeed, in case of t02, instead of
using a random strength, it is better to use fixed strengths 20 for reads and 5 for writes,
which leads to detection of a data race in nearly 90 % of runs. Moreover, the approach
also helps in many other cases, e.g., in case of t06, t07, and t08 where using sleep noise
with strength 5 for reads and strength 20 for writes gives similar or better results than
using strength 10 for all accesses. In some cases where lowering the frequency decreases the
probability of detecting a data race, like in t04, we can use yields for reads and sleeps for
writes with the frequency being 100 only and still keep the success ratio as for frequency
500, which speeds up the execution of the program considerably. Sometimes combining
various strengths or different types of noise is the only way to detect some data races in
a fair number of testing runs as, e.g., in case of t05.

Further, we also verified our assumptions from Section 5.2.3 that blocking the more rare
types of accesses should give us better results. For example, t04 contains data races on
members of a structure which are written to several times, but read from frequently. The
results are very good when using the sleep noise with a high frequency and strength, but
they are considerably worse when the amount of noise is lower. However, using frequency
100 with the sleep noise for the rare writes and yield noise for the common reads gives
us nearly the same results as using the strong noise. On the other hand, when we use
the opposite combination of noise for the different accesses, the results are very poor. In
cases where the read and write accesses to the variable on which a data race is found are
equally common, like in case of t06 and t07, it is still better to use the sleep noise for
writes and yield noise for reads. This is due to when considering all accesses to all variables
in the program, the read accesses are typically more frequent, and so we will not block
the remaining threads too much. On the other hand, consider the t09 and t10 programs.
They contain a data race on a shared variable which is accessed mostly in a critical section
except several reads. So all the writes are guarded and there are only several reads that
may access the shared variable when it is written to. If we block the threads performing
the write, it is highly improbable that we will find the rare unguarded read in some of the
remaining threads, but blocking the threads performing the rare reads allows us to find the
data race in a fair number of runs.

The statement that blocking the rarer accesses gives us better results seems not to hold
in case of t05 where with frequency 500, using the sleep noise for reads and yield noise for
writes is clearly better, but with frequency 100, it is just the opposite. The problem here
is that the write accesses are so rare that if we use a small frequency, we will not block the
execution of the thread performing the write access to find the conflicting read in the other
threads in the meantime. So when using a high frequency, the probability to inject the noise
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before some write is relatively high, and it is better to use the sleep noise for writes. On
the other hand, the read accesses are performed in a loop, and so there is a large number
of them. Causing too much noise before the reads does not help here at all as it often hides
the data races, but if we inject the noise before the reads with a low frequency, we will still
have a good chance to encounter the rare writes in the other threads.

5.3.3 Detecting Assertion Errors

Apart from increasing chances to see an error or to produce a warning from a dynamic
analyser, noise injection can also be used in conjunction with the mechanism of C/C++
assertions. The assertions explicitly guard the execution of a program against situations
which, from the perspective of the programmer, should never happen, but if they happen,
the programmer should be notified about them. When dealing with the naturally non-
deterministic execution of multi-threaded programs, it is hard to say, even for a skilled
programmer, whether some situation is really excluded from happening, and so the number
of assertion checks tends to be higher in multi-threaded C/C++ programs. The noise
injection can then be conveniently used to increase the chances to see the executions which
violate the assertions present in the code alerting the programmer about situations he/she
did not expect to occur.

We have also tested whether the noise injection can help us in detecting wrong usages
of the pthread library such as cases when a thread releases a lock which it does not own and
the like. Such scenarios are detected directly by assertions built into the pthread library.
We used the same set of 116 programs as before and checked their output for assertion
errors originating from the pthread library. Among the 116 programs, we found 3 that
break the built-in assertions.

Again, we studied how the noise injection settings influence the overall success of de-
tecting the wrong usages of the pthread library. The results are shown in Table 5.2, each
column representing one of the tested programs and each row one of the configurations of
the noise injection in the same format as in Table 5.1. The values in the body of the table
then express the percentage of runs (out of 500) which ended with an assertion error.

The first two programs (t02 and t12) are both initialising the tmutex lock in each of the
created threads, resetting the lock’s ownership information and status when a new thread
is started. This allows more than one thread to acquire the lock as one thread may acquire
the lock, and then another thread may start, reset the status of the lock to not acquired and
afterwards acquire the lock itself, hence becoming the owner of the lock. If the program now
switches to the first thread, and this thread will release the lock, the pthread library will
raise an assertion error saying that some thread is trying to release a lock which it does not
own. This also leads to data races as more than one thread may access the critical section
guarding the next_ticket variable and access it. The third program (t14) releases the
mmutex lock twice in the advance () function, instead of acquiring it and then releasing it.
Due to this, while some thread is inside the critical section of advance(), another thread
can acquire the not locked mmutex, and then the former thread may release it despite it
never acquired it, which causes the same assertion error as in case of the first two programs.
Note, however, that this situation is quite rare as the threads may usually acquire the lock
only a moment before the problematic release is done.

As can be seen from Table 5.2, running the instrumented program without any noise
gives us already good results when trying to detect a wrong usage of the pthread library.
However, this is because we are in fact injecting a very weak noise into the execution as
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Table 5.2: Success ratio of finding assertion errors for various configurations of
the noise injection (the values represent the percentage of runs which ended
with an assertion error)

Noise configuration \ Program t02 | t12| t14
normal run 0.0| 0.0| 0.0
instrumented, no sleep or yield noise | 48.0| 50.8 | 8.0
sleep 500 10 0.0| 0.0 1.2

yield 500 10 62.4(51.0| 8.8

rs-sleep 500 10 3.2 1.0 3.8

rs-yield 500 10 41.2| 48.8 8.0

sleep 100 10 2.0| 27.8 7.2

yield 100 10 49.6 | 51.2 6.6

rs-sleep 100 10 16.4| 32.8| 6.8

rs-yield 100 10 44.2 1 56.2| 8.8

sleep 500 20 0.0 00| 2.6

yield 500 20 64.6 |55.2 | 6.6

sleep 500 5 00| 00| 3.2

yield 500 5 58.6 | 48.4 8.2

sleep 100 20 421 26.4| 2.0

yield 100 20 56.6 | 47.4 7.4

sleep 100 5 21.2 | 25.6 4.6

yield 100 5 51.0 | 49.4 8.0

sleep 500 10 / read 20 / write 5 0.0/ 0.0| 5.2
sleep 500 10 / read 5 / write 20 0.0/ 0.0| 6.0

yield 500 10 / read 20 / write 5 62.4| 00| 7.6
yield 500 10 / read 5 / write 20 64.0| 0.0|10.4

sleep 100 10 / read 20 / write 5 74| 00| 54
sleep 100 10 / read 5 / write 20 9.2 0.0| 4.6
yield 100 10 / read 20 / write 5 49.6| 0.0 6.2
yield 100 10 / read 5 / write 20 54.6| 0.0| 7.0

sleep 500 10 / read sleep / write yield 22| 00| 34
sleep 500 10 / read yield / write sleep 0.0/ 0.0| 3.0
yield 500 10 / read sleep / write yield 0.2] 00| 28
yield 500 10 / read yield / write sleep 0.0/ 0.0| 1.6
sleep 100 10 / read sleep / write yield | 50.2| 0.0| 6.4
sleep 100 10 / read yield / write sleep | 22.4| 0.0| 4.4
yield 100 10 / read sleep / write yield | 60.6| 0.0 9.4
yield 100 10 / read yield / write sleep | 47.4| 0.0 3.4

we let the framework execute the noise injection code (although it inserts no noise) which
by itself disturbs the scheduling of the threads. In runs with no instrumentation (even
when the program is running within the PIN framework), the success ratio is practically
zero. The yield noise may sometimes help us to achieve slightly better results while the
sleep noise is mostly rather hiding the errors. In case of t14, the success of encountering
an assertion error is very dependent on when and where the noise is injected and not so
much on the noise settings used, since the wrong usage manifests only in a very specific
situations. So if we manage to inject the noise in the right place and at the right time, even
weak noise will help.

5.3.4 Testing C/C++ vs. Java Programs

We also tried to compare how much the various types of noise help in case of C/C++
programs compared to Java programs. Since implementing the same program in two dif-
ferent programming languages in a way that the implementation is as close as possible is
not an easy task, we have chosen a simple bank program for the tests, which is one of the
typical and often used case studies [91]. This program contains a data race on a shared
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Table 5.3: Success ratio of the AtomRace detector for various configurations
of the noise injection (the values represent the percentage of runs in which
a data race was found)

Noise Type rs-sleep
Frequency 500 100
Strength 20 10 5 20 10 5
C++ 98.8 | 99.0 | 100.0 | 91.6 | 91.8 | 91.2
Java 100.0 | 100.0 | 99.6 | 99.4 | 99.8 | 99.0
Noise Type rs-yield
Frequency 500 100
Strength 20 10 5 20 10 5
C++ 67.6 | 63.8 | 58.8 | 52.0 | 41.8 | 52.4
Java 36.2 | 29.0 | 242 | 224 | 21.8 | 28.6

variable accessed usually in a critical section, but sometimes also outside of it.

To test the Java version of the program, we used ConTest [11] together with a Java
implementation of AtomRace [97]. Since the ConTest tool uses random strengths, we used
the rs-sleep and rs-yield noise in the C++ version of the program to be able to compare
them to the corresponding ConTest’s types of noise. The results are shown in Table 5.3.
The values express the percentage of runs (out of 500) in which the data race detector found
a data race, i.e., the percentage of executions which actually lead to an error.

We can see that while the sleep noise is a little more helpful in case of the Java version
of the program compared to the C/C++ version, giving the nearly 100% success ratio even
for lower frequencies, the yield noise is clearly better in case of the C++ version, helping
to find a data race in twice as many runs as in the Java version. A question that remains
is whether the differences are caused by the programming language itself or whether they
depend on the concrete thread management and synchronisation library used.

5.4 Comparison of Noise Injection Techniques

While the main focus of the previous section was to evaluate the improved noise injection,
which allows one to combine different noise placement and noise seeding heuristics, and
compare it with the existing approaches to noise injection, which are restricted to a single
pair of noise placement and noise seeding heuristics, this section focuses more on the noise
injection heuristics themselves. In particular, this section evaluates the newly proposed
heuristics and compare them with the best currently known heuristics.
This section first presents a selection of results of previously published comparisons [54,
, 99] of the older noise injection heuristics. Based on the results, the most promising
heuristics and their parameters are pinpointed and used in a new comparison of the old
and newly proposed noise injection heuristics on a set of C and Java benchmarks. The used
set of benchmarks is the so-far biggest set of benchmarks used for evaluating noise-injection-
based testing. The mentioned selection of the most promising heuristics that we have been
done allowed us to test the selected promising noise configurations much more thoroughly
(which would not be possible with all of the possible noise configurations due to the high
time requirements of the experiments). The obtained results are discussed separately for
C/C++ and Java because of the different noise injection infrastructures used for testing
programs written in these languages—in particular, for C/C++ code, instrumentation on
the binary level was used, whereas for Java, instrumentation on the bytecode level was used.
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The differences between the noise-based testing of C/C++ programs on the binary level
and of Java programs on the bytecode level are presented next. Despite the differences, the
commonalities and dissimilarities of the obtained results are discussed. Finally, some hints
on how to effectively use noise-based testing are presented.

5.4.1 Results of Previously Performed Comparisons

In this section, the most important aspects of previously published comparisons of noise
injection heuristics [54, 90, 99] are highlighted. These results were used to set up an en-
vironment for the comparisons presented in this article. In particular, the results lead
to a choice among the many possible configurations of noise placement and noise seeding
heuristics—those which provide good results in the comparisons presented in this section.

Comparison of Existing Heuristics

An extensive and systematic comparison of results of various existing noise placement and
noise seeding heuristics including the coverage-based noise placement heuristics and the
related noise seeding heuristics introduced above for Java has been published in [96]. The
heuristics were compared according to their efficiency to improve detection of concurrency
errors, to improve the concurrency-related coverage metrics HBPair* and Avio* in the con-
sidered test cases, and to affect the execution time of the considered test cases. The
HBPair* and Avio* metrics described in [52] have been chosen due to their very good ratio
of providing satisfactory results from the point of view of suitability for saturation-based
or search-based testing and a relatively low overhead of measuring the achieved coverage
(and hence their suitability for performing many tests with an acceptable interference with
the tested programs). The SearchBestie platform [93] was used to set up and execute the
needed tests with IBM ConTest [12]. The heuristics were evaluated on a set of 4 test cases
(namely, Airlines, Crawler, FTPServer, and TIDOorbJ test cases) described in [52].

First, there was done a comparison of several noise seeding heuristics denoted as basic
below (namely, the yield, synchYield, wait, busyWait, and sleep) and the IBM ConTest
mized noise seeding heuristic which randomly chooses one of the basic noise seeding heuris-
tics at each call of the noise injection routine. Then, the improvement which can be achieved
by combining basic noise seeding heuristics with the haltOneThread and timeoutTamper-
ing heuristics was studied. All heuristics were used with the random-all noise placement
heuristic enabled.

The results indicate that there is no optimal configuration, i.e., for each test case and
each testing goal (improvement of coverage, error manifestation, or overhead minimization),
one needs to choose different noise seeding heuristic [96]. Moreover, in some cases, the noise
injection heuristics improved the obtained results considerably while, in some other cases,
the noise seeding configurations used with the random-all noise placement heuristic actu-
ally provided considerably worse—demonstrating the ability of noise injection techniques
to mask concurrency errors [90]. The timeoutTamper heuristic provided a considerable im-
provement for the crawler test case. As already said, this test case is a skeleton of an IBM
software product. When developers extracted the skeleton, they modeled its environment
using timed routines. The timeoutTamper heuristic influences these timeouts in a way
leading to a significantly better results.

Next, a comparison of different noise placement heuristics has been published by Letko [96]
as well. Mainly, the random-all, sharedVar, and coverage heuristics were considered. Ad-
ditionally, a heuristic which randomly sets up noise settings before each test execution was
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considered in the comparison too. The noise placement heuristics were again compared
according to the ability to detect concurrency errors and to provide a high coverage. Then,
a comparison of the heuristics using relative results was provided as well. In this compari-
son, the total number of covered tasks or detected errors was divided by the execution time
(in seconds) the heuristics needed to achieve the results.

Again, none of the heuristics achieved best results in the comparisons for all the consid-
ered test cases. Overall good results were obtained by different versions of the sharedVar
heuristic which focuses noise to shared variables only. There was no winner among the
two versions of the heuristic: shared Var-all which targets all accesses to shared variables
and sharedVar-one which targets accesses to a single randomly chosen shared variable in
each test execution. The heuristic using random settings for each test execution achieved
on average good results too.
(namely, 20 and 50 times) were used for the comparison—some of the randomly chosen
settings therefore provided very good results regardless of the test case which turned in the
overall results. The coverage heuristic achieved good results in some cases as well.

Finally, the best relative improvement achieved by noise-based testing in the considered
test cases was presented by Letko [96]. Table 5.4 shows the results obtained when evaluating
the best relative improvement (denoted as Impr.) in the experiments for the considered
metrics and test cases. The improvement is computed as a relative improvement compared
to the configuration without noise injection (note that collection of coverage information
and the instrumentation itself already introduce a certain amount of noise). The next
three columns (denoted as nFreq, Seeding heur., and Placement heur.) present the noise
frequency, noise seeding heuristic, and noise placement heuristic used. Combinations of
the basic noise seeding heuristics with the timeout Tampering heuristic (denoted as ¢t) and
haltOneThread heuristic (denoted as ht) were also allowed and evaluated.

This was because accumulated results from multiple runs

Table 5.4: The best relative improvement achieved by noise heuristics

Test Metric Impr. | nFreq. | Seeding heur. Placement heur.
Airlines Error 5.93 150 | yield + tt sharedVar-one
Avio* 1.99 - - no noise
HBPair* 1.90 - - no noise
Crawler Error * - busy Wait coverage
Avio* 8.20 50 | mixed + tt + ht sharedVar-all
HBPair* 3.55 200 | mixed + tt 4+ ht sharedVar-all
FTPServer | Error 1.09 50 | sleep sharedVar-one
Avio* 1.26 50 | wait 4+ tt + ht sharedVar-all
HBPair* 1.55 150 | busyWait + ht sharedVar-all
TIDOrbJ Error -
Avio* 1.12 200 | busyWait + tt + ht | sharedVar-one
HBPair* 1.23 200 | busyWait + tt 4+ ht | sharedVar-one

The improvement of the error manifestation ratio (denoted as Error) in the TIDOorbJ
test case is not present because the version of the test case we used contains no error.
The % symbol in the error manifestation ratio of the Crawler test case means that the
improvement cannot be computed because in the experiments, the error does not manifest
when the noise was disabled. The best value, which was achieved by the coverage heuristic,

64



Table 5.5: Success ratio of the AtomRace detector for various configurations
of the noise injection (the values represent the percentage of runs, out of 500,
in which a data race was found)

Noise injection configuration Test case
ConfID | Placement heur. ‘ Seeding heur. ‘ Freq. ‘ Strength t05 | t06 | t07
instrumented, no sleep or yield noise 0.0 1.0 1.6
1 random-all sleep 500 10 1.2 | 53.6 | 69.4
2 random-all sleep 500 0-10 0.6 | 31.0 | 79.0
3 read/write sleep /sleep /sleep | 500 | 10/5/20 | 43.0 | 92.6 | 96.2
4 read/write yield / yield / sleep 500 | 10/10/10 | 51.0 | 95.0 | 99.6

reached 2 % of error manifestation in this test case (on average 1 error manifestation per
50 executions).

In some cases (e.g., in the Airlines test case), the improvement of the error detection
is high, reaching several hundreds percents. The lowest improvement was achieved in the
FTPServer test case. This is mainly because the error manifestation ratio is quite high
even without the noise injection and by the fact that any performance degradation in effect
makes the code containing the error execute less often. Overall, the table presents the
positive effect of relatively cheap and easy to use noise injection technique in the process
of testing concurrent programs. Again, one cannot claim a clear winner among the noise
placement and noise seeding heuristics. However, the shared Var noise placement heuristic
achieved very good overall results in this evaluation.

Comparison of Existing and Improved Noise Injection

Next, a comparison of the read/write noise placement heuristic with the random-all heuris-
tic on a set of 14 C programs implementing a simple ticket algorithm using the pthreads
library is presented in Section 5.3. These programs were created by students of an advanced
operating systems course and all contain data races. They are referred as test cases t01
to t14. The ANaConDA framework [55] was used to perform the tests. The framework
uses the Intel PIN framework [111] for dynamic binary instrumentation to insert the code
implementing the noise injection heuristics into a C/C++ program binary. As the frame-
work cannot provide concurrent coverage information yet, an evaluation of the successfully
detected data races in each test run was performed. For the detection of data races, a C++
implementation of the AtomRace dynamic detector [95] was used.

Results obtained for some selected noise injection configurations and test cases are shown
in Tables 5.5 and 5.6. Each configuration is defined by a noise placement and noise seeding
heuristics together with the values of frequency and strength used (denoted as Placement
heur., Seeding heur., Freq., and Strength, respectively). If the read/write noise placement
heuristic is used, the Seeding heur. and Strength columns then contain 3 values. These
are the values used for the synchronization operations, read accesses and write accesses,
respectively. In case of the Seeding heur. column, the values represent the noise seeding
heuristic used, and in case of the Strength column, the value of strength used. If the value
of strength is an interval, the particular value was taken randomly from the interval each
time the noise was injected.

The read/write noise placement heuristic allows to use different noise seeding heuristics
and their parameters for different types of memory accesses. Of course, there are many pos-
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Table 5.6: Success ratio of the AtomRace detector for various configurations
of the noise injection (the values represent the percentage of runs, out of 500,
in which a data race was found)

Noise injection configuration Test case
ConfID ‘ Placement heur. ‘ Seeding heur. ‘ Freq. ‘ Strength t04 | t05
instrumented, no sleep or yield noise 1.2 0.0

read/write sleep /sleep /yield | 100 | 10/10/10 | 7.4 | 62.4
read/write sleep / yield /sleep | 100 | 10/10/10 | 96.8 9.6
read /write yield /sleep /yield | 100 | 10/10/10 | 6.2 | 64.4
read/write yield / yield /sleep | 100 | 10/10/10 | 94.4 | 7.2

| | S| Ot

sibilities how to combine them, so the two most promising combinations were focused. First,
the same noise seeding heuristics have been used, but parametrized them with different val-
ues of strength, i.e., a bigger strength for one type of memory accesses and a considerably
lower for the second one was applied. The goal was to lower the amount of noise injected
to the threads that are intended to be search through when detecting data races. As the
results in Table 5.5 show, such configurations (Configuration no. 3) achieved better results
than the configurations using the random-all heuristic (Configurations no. 1 and 2).

Configurations which use different noise seeding heuristics for different memory accesses
were also used. More precisely, the sleep heuristic for one type of memory accesses and the
yield heuristic for the second one were studied. Their values of strength were left the same.
The goal was not only to lower the amount of noise injected to the threads to be searched
through, but also to allow the threads to perform as many memory accesses as possible.
While the sleep noise is blocking the thread performing the first access, the yield noise is
forcing the program to quickly switch threads so the threads will be running more often and
hence perform more memory accesses. As the results in Table 5.5 show, such configurations
(Configuration no. 4) achieved even better results than the ones combining different values
of strength (Configuration no. 3).

The tests also proved that it is important to choose the right type of memory accesses
before which the stronger noise is injected. When there are only a few unprotected write
accesses which might cause a data race, the stronger noise should be put before these
accesses. This is because it is far more probable that one will encounter the more common
read accesses in the other threads which are being searched than the rare write accesses.
If the situation is opposite, the stronger noise should be put before the read accesses.
Table 5.6 shows the difference in results for two programs which mainly differ in how a data
race might manifest. As the t04 test case contains only a few unprotected write accesses
which might cause a data race and many unprotected read accesses, the configurations
injecting a stronger noise before the write accesses (Configurations no. 6 and 8) give
far superior results than configurations injecting a stronger noise before the read accesses
(Configurations no. 5 and 7). In case of the t05 test case which contains only a few
unprotected read accesses and many unprotected write accesses, the results are completely
opposite.

5.4.2 A Comparison of Noise Injection Techniques in C/C++

In this section, new experiments that were performed with C programs and noise injection
heuristics selected according to the experience from older experiments described in the
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previous section are presented (new experiments with Java programs will be described
in the following section). First, a description of the testing environment and experiment
settings which are used to compare selected noise injection heuristics, including the newly
proposed heuristics, is given. Then, the obtained results of these heuristics on four C
programs are provided.

Testing Environment

The ANaConDA framework [55] already mentioned in Section 5.4.1 was used to perform the
tests. For each execution of a test, the framework collects information about test duration
and about the fact whether an error has manifested. In contrast to the previous compar-
isons where each noise configuration was given an equal number of test executions, in this
comparison, each considered configuration of noise heuristics was given 20 minutes of real
time to test the program and average results were computed. Therefore, the configurations
with higher impact on the performance were provided with lower number of executions of
the test. This allows to demonstrate efficiency of the heuristics in practical testing scenarios
where the time and other resources for testing are usually limited.

Heuristics. As there are many possible combinations of various noise placement and noise
seeding heuristics and as each of these heuristics might be parametrised in many different
ways, there exists a large number of configurations that might be used. In order to keep the
number of considered configurations on a reasonable level, the focus is devoted to heuristics
and their parameters which provided good results in the previous comparisons and also on
the new heuristics introduced in the previous sections.

In case of the noise placement heuristics, the following ones are considered: the random-
all heuristic which is used as a base-line, the sharedVar-all and sharedVar-one heuristics
which provided good results in the evaluation of noise placement heuristics for testing
Java programs, the read/write heuristic which turned out to be efficient in the previous
experiments with noise injection in C/C++, and the newly proposed pattern heuristic. All
these heuristics decide whether to inject a noise based on the frequency parameter which
controls how often the noise is injected at the selected place. The frequency parameter was
set such that the noise was generated either in 15 % or 30 % of situations. These values
were also inspired by the results of the previous comparisons.

As for the noise seeding heuristics, the sleep, yield, and busyWait heuristics were consid-
ered because they provided good results in some cases in the previous comparisons. More-
over, the newly proposed inverseNoise heuristic was added. The noise seeding heuristics are
parametrised by the strength parameter. This parameter was set to 2 and 20 milliseconds in
the case of sleep and busy Wait heuristics and to 10 and 100 executions of the yield () func-
tion in the case of the yield heuristic. In the case of the read/write heuristic, the strength
parameter for writes and reads was set in the mutually complementary way. That is, if a
higher value for writes (e.g., 20 ms) was used, the lower value for reads (i.e., 2 ms) was
applied, and vice versa. As for the newly proposed inverseNoise, the parameter was set to
2 and 20 operations executed by the current thread while other threads are blocked. The
higher values were chosen based on the results of the previous comparisons where a stronger
noise often helped more than a weaker one. The lower values were used primarily because
of the read/write heuristic, where combining strong and a much weaker noise led to the
best results. Also, as the yield heuristic disturbs the usual scheduling of threads far less
than the other noise seeding heuristics, higher values of strength were used for it. In case of
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the read /write noise placement heuristic, configurations combining the sleep and yield noise
seeding heuristics with fixed values of strength were also used (10 for the sleep heuristic
and 50 for the yield heuristic).

The combinations of heuristics described above give 81 noise configurations (5 X 2 noise
placement heuristics, 4 X 2 noise seeding heuristics, and 1 configuration without noise—
referred to as nonoise below). Note that the previous comparisons did not contain the
sharedVar-all, sharedVar-one and the newly proposed pattern noise placement heuristics.
Also, the busyWait and the newly proposed inverseNoise noise seeding heuristics were not
considered. They are thus examined for C/C++ programs for the first time.

Test cases. For the experiments, 4 simple C programs (about 200 to 500 lines of code)
implementing a simple ticket algorithm using the pthreads library were used. These pro-
grams were chosen from a set of programs which were already mentioned in Section 5.4.1
and previously used in experiments presented in Section 5.3. The chosen programs are
referred to as test cases t01, t03, t05 and t06. The main reason to use only a subset of
programs was that some of the newly tested noise placement heuristics need information
about the variables which are accessed. In case of C/C++ programs, these information
need to be extracted from the debugging information of the program. However, the ANa-
ConDA framework has only a partial support for extracting this kind of information, and
for many of these programs the compiler generated debugging information which the frame-
work was not able to process. So in order to test these new heuristics, availability of this
information is required. As the framework imposes a huge slowdown on the execution of
the tested program, bigger programs were not considered for the tests because one would be
able to perform only a few testing runs in the given 20 minute time slot. All the programs
were executed on an 4-core Intel Xeon X5355 2.66GHz machine with the Hyper-threading
support (up to 8 threads might run simultaneously) and 64GB memory running Linux with
the 2.6.32 kernel.

The selected programs contain various kinds of errors that all lead to data races in the
end. In t01, the data race is on a shared variable holding the number of a ticket allowed to
enter a critical section. The variable is updated in a critical section, but then read outside
of it. The next program (t03) contains a data race on a shared variable used to assign
IDs to each of the threads. This variable is updated and read without any synchronization,
however, all of these accesses happen when the threads are started one immediately after
another, so the data race may only occur during this short time. Program t05 has a rarely
occurring data race on individual items of a shared array where each item may be accessed
by the main thread and one of the other threads simultaneously just before the main thread
starts to wait for the second thread to end (join). Program t06 contains a data race on
a timespec structure, shared among all threads, used to randomly generate the number of
milliseconds a thread should sleep before and after entering the monitor.

Experimental Results

In this section, a comparison of the efficiency of detecting concurrency-related errors using
various noise injection configurations is described first. Then, focus is devoted to the results
obtained by the newly proposed heuristics.

Since all of the test cases contain a data race and the consequences of these data races
are not always externally visible, a dynamic analysis using the AtomRace dynamic detec-
tor [98] was performed in order to find these errors. Like the noise injection, the dynamic
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Figure 5.1: A comparison of configurations across all of the considered C test
cases

analysis requires the program to be instrumented, so it is problematic to compare the re-
sults obtained with and without dynamic analysis. However, note that the tests that were
originally used to evaluate the considered student projects from which the test cases are
derived did not found any errors. The instrumentation of a program usually increases the
probability of finding an error, even when no noise is injected, as the execution of the in-
strumented code itself causes a sort of a very weak noise which might help a little with the
error detection. So, even with the nonoise configuration, it was possible to detect some
errors in the 20 minute time slot in most of the test cases (namely, t01, t03, and t06).

To compare the efficiency of each configuration, their general success across all of the
test cases executed was measured. The results are summarized in Figure 5.1. The x-axis
shows the noise configurations grouped by the noise placement and noise seeding heuristics
with the values of noise frequency and strength represented by the different hatch of the
bars. The y-axis then shows the number of test cases (out of 4) for which the respective
configuration was among the best 30 % of the configurations (i.e., among the best 24
configurations in the case). Here, the best configurations were chosen according to the
percentage of runs in which a data race was detected. The other noise configurations were,
in fact, capable of detecting an error in most of the test cases too, but in less test runs.

The graph shows that even when the test cases are very similar and contain the same
type of concurrency errors, most of the configurations work only for some of the test cases.
Of course, one can see that some of the configurations were more successful than the others.
In general, configurations using the sleep and busyWait heuristics were the most successful
ones. The most successful approach was to combine these heuristics with the random-all,
read/write, or pattern heuristics.

A further analysis of the results has also shown that choosing the right combination of
noise placement and noise seeding is important, but tweaking the values of noise frequency
and strength may also significantly influence the results. Many configurations provided
very different results when the values of frequency or strength were changed.

As for the newly proposed heuristics, configurations using the pattern heuristic proved
to be very useful in most of the test cases (namely, the t01, t03, and t06 test cases). On the
other hand, the inverseNoise heuristic helped only a little and only when combined with the
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random-all heuristic. As for the heuristics tested for the first time in C programs, namely
the sharedVar-all and sharedVar-one heuristics, these heuristics achieved good results for
some test cases, but they were not so good overall compared to the other noise placement
heuristics.

5.4.3 A Comparison of Noise Injection Techniques in Java

In this section, new experiments with noise injection techniques in Java are presented.
Similarly to the the results for C presented above, description of the testing environment
and test cases is given first. Subsequently, a summary of the obtained results is presented.

Testing Environment

The code instrumentation and noise injection was done using the IBM ConTest frame-
work [12] executed with plug-ins implementing the noise heuristics and collecting selected
coverage information. Automatic test instrumentation, execution, and evaluation was or-
chestrated by the SearchBestie framework [93]. In contrast to the experiments with noise
injection to C programs, the infrastructure collected not only information related to exe-
cution time and error manifestation but also coverage under two selected coverage metrics,
namely, HBPair* and Avio*, which were already used in the previous comparisons men-
tioned above and which were chosen due to their very good ratio of providing satisfactory
results in the experiments with saturation-based testing described in [52] and a relatively
low overhead of measuring the achieved coverage.

Heuristics. In the comparison below, all the configurations previously described in the
comparison of noise heuristics for testing C/C++ programs were used, together with several
more configurations based on the coverage-based heuristic [99] introduced in Section 5.2.1.
Hence, the following noise placement heuristics are considered: random-all, sharedVar-
all, sharedVar-one, pattern, read/write, and the coverage-based coverage heuristic which is
exclusive to the comparison of Java programs. The reason why the coverage heuristic is
studied only for the Java programs is the fact that the ANaConDA framework, used in the
experiments with C programs, is not currently able to provide any coverage information and
thus cannot support any coverage-based heuristics. All the heuristics were parametrized by
the frequency parameter set to 15 % or 30 %. Note that this is the first time the read/write
and the newly proposed pattern heuristic are evaluated on Java test cases.

As for the noise seeding heuristics, the same heuristics as in the C comparison above are
considered, namely, yield, sleep, busyWait, and the newly proposed inverNoise heuristics.
Again, two levels of noise strength for each of the heuristics were used: 2 and 20 milliseconds
for the sleep and busyWait heuristics, 2 and 20 instructions for the inverNoise heuristic,
and 10 and 100 executions of yield() for the yield heuristic. Finally, experiments with
the configuration which injects no noise into the execution but which instruments the code
and collects coverage information were evaluated as well (referred to as nonoise below).
Recall, that execution of any injected code in fact influences performance and scheduling
of threads.

The above described combinations of heuristics give 97 noise configurations (6 X 2 noise
placement heuristics, 4 X 2 noise seeding heuristics, and 1 nonoise configuration). Similarly
to the comparison for C programs, each configuration was given a 20 minutes time slot to
test the considered program.
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Test cases. The above described configurations of noise injection techniques were evalu-
ated on 8 Java test cases based on 6 Java programs of various size. The Airlines, Crawler,
and FtpServer test cases are described in [52]. The Animator test case is based on a simple
graphic application for algorithm animation called XtangoAnimator. The test case creates
a window and draws a picture according to a given batch file. The test case consists of 31
classes and contains a data race that leads to NullPointerException.

The Rowver test case is a Java version of the NASA Ames K9 Rover Executive [64]. The
test case, consisting of 83 classes, executes a selected high-level plan or plans—programs
written in a language that specifies actions and constraints on the movement, experimental
apparatus, and other resources of the rover. The test case contains a deadlock and a data
race in the testing environment during exchanging of two consecutive high-level plans. Both
errors make the test hang. Similarly to the Crawler test case, the probability of spotting
the errors is extremely low without the use of a noise injection.

The Elevator test case is a simple real-time discrete event simulator [153] which con-
tains atomicity violation leading to NullPointerException. FElevators are modeled as
individual threads that poll directives from a central control board. The communication is
synchronized using locks. The used configuration simulates 4 elevators.

Moreover, to demonstrate that the testing environment also plays an important role in
the testing process, two prominent test cases in which the probability of spotting the error
is extremely low (namely, Rover and Crawler) were executed on two different hardware
configurations (the results are then referred to as Crawler2 and Rover2). The Airlines,
Animator, Crawler, and Rover test cases were executed on Intel i5-2500 machines with
2GB memory running Linux with the 2.6.32 kernel and 64bit Sun (Oracle) JVM version
1.6. The Crawler2, Elevator, FtpServer, and Rover2 test cases were executed on Intel i7-
3770K machines with 4GB memory running Linux with the 3.2.0 kernel and 64bit OpenJDK
JVM version 1.6.

Experimental Results

In this section, results comparing efficiency of the considered noise configurations from the
most important point of view, namely their efficiency in error detection, are presented.
Then, a short discussion of the results these heuristics achieved in terms of coverage is
provided. Next, results achieved by the newly proposed heuristics are highlighted. And
finally, the influence of the testing environment is discussed.

In a vast majority of the test cases, the error does not manifest during the 20 minutes
long testing of non-instrumented code. Instrumentation of the test cases usually increases
the probability to spot an error a bit because the instrumented code is executed in lo-
cations suitable for noise injection. In particular, the nonoise configuration was able to
detect an error within the given time slot in two test cases, namely, the Airlines (the error
manifested in 8 % of runs) and FTPServer (the error manifested in 66 % of runs).

The success of noise-based testing in detection of concurrency errors is summarized in
Figure 5.2. The figure shows configurations grouped by the noise placement and noise
seeding heuristics on the x-axis (the noise frequency and strength are represented by the
different hatch of the bars). The y-axis shows the number of test cases (out of 8) in which
the particular configuration was able to detect concurrency errors within the given time.
In most cases, there were only a few configurations which were able to detect errors in the
given time (ranging from 2 in the Elevator test case to 9 in the Crawler test case). In the
Airlines and FTPServer test cases where the probability of spotting an error is much higher
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Figure 5.2: A comparison of noise configurations across all of the Java test
cases

than in the other test cases, all of the noise configurations were able to detect the errors.

The figure shows that there is no silver bullet among the considered heuristics. Indeed,
none of the columns reached value 8 which would mean that the heuristics worked for all
the considered test cases. Moreover, one can clearly see that some of the configurations
were mostly successful (mainly the configurations combining the coverage heuristic with
the sleep and busyWait heuristics) and some were successful only in the easy Airlines and
FTPServer test cases (for instance, the pattern noise placement heuristic combined with
most of the noise placement heuristics).

A further analysis of the results also shows that in most of the cases choosing the right
combination of noise placement and noise seeding heuristics was far more important then
tweaking the noise frequency and noise strength parameters. Many configurations provided
similar results when any value of strength and frequency was used.

Overall, the results focused on the detection of concurrency errors show that noise-based
testing is able to dramatically increase the probability of finding concurrency errors. It is
enough to use any combination of noise injection heuristics in order to detect errors that do
manifest during normal test executions even through only rarely (as can be seen from the
Airlines and FTPServer test cases). Moreover, in the case of truly rarely manifesting con-
currency errors which are hard to spot even during the noise-based testing, a careful choice
of the combination of noise placement and noise seeding heuristics and their parameters is
necessary.

As for the coverage obtained under considered coverage metrics, the results clearly
show a positive impact of noise-based testing in comparison with the nonoise configuration.
In some cases, a high achieved coverage correlated with a success in error detection (for
instance, in the Elevator test case), sometimes this correlation could be identified only
between the error detection ability and one of the coverage metrics (e.g., Avio* metric
in the Airlines test case and HBPair* in the Rover2 test case), and sometimes there was
no correlation between the error detection ability and any of the considered metrics (for
instance, in the Animator and FTPServer test cases). Therefore, one cannot claim that
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there is in general a correlation between the ability to detect errors and to achieve a high
Avio* or HBPair* coverage. However, a further analysis of the results indicates that it might
be the case that if the error depends on a behavior reflected by the coverage metrics, the
configurations which achieve a high concurrency coverage are able to detect the error (for
instance, Avio® and the atomicity violation in the Airlines test case and HBPair* and the
deadlock error in the Rover test case).

Next, we discuss efficiency of the newly proposed heuristics (namely, the pattern and
inverseNoise) and the read/write heuristic. The newly proposed heuristics did not help
much in detection of concurrency errors which was a bit surprising because the preliminary
results obtained on the Rover test case (when the noise with frequency of 5 % only was
injected and coverage data were not collected) the combination of the newly proposed
heuristics achieved the highest error detection improvement®. Nevertheless, the heuristics
achieved good results in obtaining a high coverage in some cases (e.g., in the Airlines test
case). On the contrary, the read/write heuristic achieved very good results in improving the
ability to detect concurrency errors in the Airlines and FTPServer test cases. Errors in these
test cases were found by all the considered noise configurations, but noise configurations
with the read/write heuristic increased the percentage of the detected erroneous runs the
most.

Finally, the influence of the testing environment described in Section 5.4.3 (in particular,
the different hardware used) on programs under test was analyzed on the Crawler/Crawler2
and Rover/Rover2 test cases. In the Crawler/Crawler2 test cases, the results clearly show
the influence of the environment. The error was detected by 9 noise configurations in
the Crawler test case. In the Crawler2 test case, the number of successful configurations
increased to 39 including all the 9 configurations which worked for the Crawler test case.
Additionally, in the Crawler2 test case which was executed on a machine with more available
cores as described above, the obtained results show higher numbers of achieved coverage and
a higher error detection ratio (i.e. the number of executions in which a suitable configuration
was able to detect the error). Conversely, in the Rover/Rover2 test cases, the influence of
the environment was minimal. The same configurations were able to detect the error and
the achieved coverage reached almost the same levels.

5.4.4 Specifics of Noise Implementation

Before the comparison of the results obtained for C and Java test cases is provided, dif-
ferences in implementing the noise injection techniques for C/C++ and Java programs are
discussed here. There are various ways to insert noise injection code into a program. The
code might be inserted directly to the source code of the program, to its intermediate code
(e.g., Java bytecode), or to the binary code. In general, inserting the code to the source
code of the program have several disadvantages. It requires to have the source code of the
program (and all of the libraries it uses), which might not always be available. It is also less
precise as the compiler might, e.g., move the code elsewhere because of some optimizations.
Therefore, the ANaConDA framework [55] used for the C/C++ programs and the IBM
ConTest framework [12] used for the Java programs insert the noise injection code on the
binary and bytecode levels, respectively. In this section, a short summary of the experiences
with implementing the noise injection techniques on the binary level of C/C++ code and
the Java bytecode level is presented.

3 A hypothesis to be tested in the future is that the positive impact of the new heuristics on error detection
is reduced by the further noise associated with collecting coverage data.
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Inserting some code to the bytecode of a program is not a big problem as the bytecode
instructions are quite simple and JVM uses minimum optimizations complicating this task.
However, inserting code to binaries of a C/C++ program is not such easy task. On the
binary level there are used highly optimized instructions such as conditional and repeat
instructions [54]. While the conditional instructions might not be executed when the con-
trol reaches them, the repeat instructions may be executed more than once as though they
were placed in a loop. Moreover, the rep-prefixed instructions, designed for manipulating
continuous sequences of memory locations (e.g., within string operations), are both condi-
tional and repeat instructions since they may be executed a fixed number of times, until
some condition is met, or sometimes not executed at all. When the binary code contains
such instruction, one has to be sure that the noise is injected only when the instruction was
really executed or every time the instruction was executed in a loop.

Distinguishing local and shared variables represents another problem. In Java, local
data are stored on the current thread stack and possibly shared data are stored on the
heap. Since there exist different instructions for accessing stack and heap, it is easy to
distinguish accesses to the heap and apply noise only to them. On the binary level, local
variables are on the stack too but the stack is just a reserved part of memory which might
be accessed in the same way as the memory containing globally accessible variables. If noise
injection before accesses to local variables is not desirable, one has to determine before each
access whether the accessed variable is stored in memory containing the stack or not.

Finally, in some cases (e.g., in the implementation of the access pattern detector for the
pattern noise placement heuristic), tracking of method or function entry and exit events is
necessary. Again, such events were fairly easily identified in Java bytecode but fairly difficult
to detect on the binary level of C/C++ programs where returning from functions is often
heavily optimized by the compiler, e.g., using jumps between functions with the effect of
the control effectively returning from another function than the one that was called [54],
etc.

To sum up, the implementation of the actual noise generators is of equal difficulty
in C and Java. On the other hand, instrumentation and execution monitoring is much
harder on the binary level as described above. Overcoming the obstacles of the binary
level optimizations has a negative impact on the overhead of the ANaConDA framework
for noise-based testing and dynamic analysis.

5.4.5 Comparison of Results Obtained for C and Java Test Cases

In this section, discovered commonalities and dissimilarities when analyzing the obtained
results of experiments with C and Java programs are briefly described. Note that this
comparison may be partially influenced by the used infrastructures for noise injection in
C and Java which differ as highlighted in the previous section and the test cases which
are also not directly comparable (the comparison studies simple C programs created by
students which implement a solution for the same problem and Java programs of various
size implementing different problems). Nevertheless, the findings presented here might still
be of interest for the users of noise-based testing.

The Java experiments indicate that the success of noise-based testing depends mainly on
carefully choosing the noise placement and noise seeding heuristics (tweaking the frequency
and strength parameters did not improve the results much). On the contrary, the results
for the C programs show that strength and frequency of noise are also very important in
the considered test cases. Further analysis of the results achieved for the Java Airlines test
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case indicate that they share a few characteristics with the C programs. In particular, the
same heuristics (including the new ones) provided good results, tweaking of frequency and
strength did considerably affect the results, and stronger noise provided often good results.
The Airlines test case is of similar size, contains a similar data-depending error, and the
error manifestation ratio without any noise heuristics is also comparable.

In the considered C test cases, the results clearly show that a majority of noise configu-
rations provided similar results across the four considered test cases. A configuration which
provided good results in one test case was successful also in the other test cases and vice
versa the configurations which provided poor improvement achieved poor results in all con-
sidered test cases. This is most probably caused by the similarity of the test cases. Indeed,
the very similar results were also achieved for the Crawler/Crawler2 and Rover/Rover2 test
cases in Java. The configurations which provided good results for the Crawler (Rover) test
case were among the good ones even under the slightly different conditions represented by
the Crawler2 (Rover2) test cases.

5.4.6 Hints for Noise-based Testing

The results presented above indicate that there is no single optimal noise configuration. The
same noise setting may provide significantly different results for different test cases, testing
goals, as well as testing environment. Moreover, using a wrong noise injection technique can
in some cases even degrade the quality of the testing process. Therefore, if no information
concerning the tested program is available, a good option is to start with the random setting
which selects noise heuristics and their parameters at random before each execution of the
tested program. This setting often does not achieve the overall best results as mentioned
above but it provides reasonably good results with a minimal effort. Further, if one has at
least a suspicion that the program under test may contain a data-dependent error (such as
a data race or an atomicity violation), based on the experience, using some of the heuristics
focused on shared variables (or restricting the random choice of noise heuristics to those
focusing on shared variables) might be a good idea.

If one has to set up the noise seeding and placement heuristics manually (i.e., there is
no support for the random choice of noise heuristics in repeated test), based on the results,
one can recommend using the yield, synchYield, wait, and busyWait heuristics, which often
provided good results in the experiments described above. The yield and synch Yield heuris-
tics have a smaller impact on the performance while still providing good improvement in
some cases. The wait and busyWait heuristics cause a considerable performance degrada-
tion, but they can help to test even rarely executed synchronization scenarios. Further, the
results indicate that using a low noise frequency (in particular, below 5 %) or using a high
noise frequency (in particular, over 50 %) does not bring a higher probability of spotting
an error or obtaining a higher coverage. On the contrary, a high noise frequency used with
a demanding heuristic (e.g., busyWait) has a negative impact on the efficiency of the test.

All the considered advanced noise seeding heuristics (i.e., timeoutTampering, haltOne-
Thread) including the newly proposed heuristics (i.e., coverage, read/write, and pattern-
based) provide in some cases a considerable improvement of the testing process. Therefore,
it is worth to enable them and test whether they positively affect results of the considered
test case. If they do, the results indicate that the same heuristics might be providing good
results even if the test is executed in a different environment. This is because the efficiency
of these heuristics depends on appearance of certain code patterns in the program under
test. Therefore, a simple static analysis of the program might help with the decision making
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(e.g., an analysis which detects appearance of wait () and sleep() could indicate that the
timeout Tampering heuristic might provide good results). Next, the results also indicate
that heuristics which put noise at carefully selected locations only provide better results
than heuristics which simply put noise randomly or at too many locations.

To sum up, above a number of hints that may be useful when applying noise-based
testing is provided. But, it is important to repeat that choosing a suitable noise configu-
ration is a difficult task, and the hints need not work in all cases. Hence, the final advice
is to—if possible—experiment with more different noise settings. There also exists various
automated approaches for solving this problem, i.e, for finding suitable noise settings, based
on using search techniques [52], multi-objective genetic algorithms [10], or data mining [12].

5.5 Conclusion

This chapter discussed noise-based testing that helps to examine different thread inter-
leavings during testing and dynamic analysis of concurrent programs and hence increases
chances of finding concurrency-related errors.

We have proposed an improvement to the basic noise injection approach to be used
to increase chances of spotting an error when testing or dynamically analysing a multi-
threaded C/C++ program. We have experimentally validated the proposed improvement
on a set of C/C++ programs, and we have also discussed the effect of various noise settings
when dealing with such types of programs.

Then we presented an overview of multiple results in the area of noise-based testing.
Beside discussing various existing heuristics, we further created two new heuristics for
the noise placement and noise seeding problems that play a crucial role in noise-based
testing. Results of some previously performed comparisons of noise injection techniques
were summarized and used as a basis for performing a new, more thorough comparison of the
most promising noise injection heuristics as well as the new noise heuristics proposed in this
chapter. The heuristics were compared according to their ability to find concurrency errors,
to increase concurrency coverage, and to cause an acceptable performance degradation.

The presented experimental results show that noise injection can indeed very signif-
icantly improve the testing process, but there is no silver bullet among the many noise
injection techniques. Their performance depends on the test case, test goal, as well as test
environment. Hence, for a new test case, experimenting with the various noise injection
heuristics may be needed—or, as often done in industrial practice (e.g., within the indus-
trial use of ConTest in IBM mentioned in Section 1.1), one can apply a randomly selected
mix of the heuristics. Alternatively, one can use techniques such as genetic programming
or data mining to automatically learn from so-far performed test runs what the best noise
setting for the given context might be.

Several promising directions for future work were envisaged: (1) One could try to intro-
duce some more sophisticated noise heuristics, e.g., tailored for a specific detector or type
of concurrency errors. In fact, going in this direction, a noise placement heuristic similar
to the pattern noise is used in Chapter 7 by the method for dynamic contract validation
to increase the probability to detect a contract violation. (2) Since using different noise
injection configurations for the read and write accesses proved to be useful in our experi-
ments, it may be interesting to look more into the fine-grained use of noise and find more
rules how to use it, perhaps supported by some preliminary analysis of the program at test
or allowing the noise settings to be automatically suitably adjusted during a test execution
based on the so-far obtained results. (3) One could think of new heuristics and approaches
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combining the simplicity of noise injection with the recent developments in the field of
systematic testing. For instance, one could use noise-based testing to roughly explore the
behavior of the tested program and use systematic testing to test only particular areas of
the program behavior. (4) Noise injection is a lightweight testing approach that has a mod-
erate impact on the performance of the test. Nevertheless, there is a simple possibility to
further improve its performance by using partial instrumentation of the code. In this case,
only selected parts of the code would be instrumented, and therefore affected by the noise.
All parts of the code which would be known to be safe or to contain no concurrency related
behavior could be omitted during the instrumentation. (5) Finally, there is still a lot of
space for new combinations of static and dynamic analyses, further improving efficiency of
the testing processes.
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Chapter 6

Transactional Memory Programs

This chapter proposes several approaches for monitoring Transactional memory (TM) pro-
grams and studies their impact on the behaviour of the monitored programs. The con-
sidered approaches range from specialised lightweight monitoring to generic heavyweight
monitoring. The implemented monitoring tools are publicly available and the implementa-
tion techniques used for lightweight monitoring may be used as an inspiration for developing
other specialised lightweight monitors.

6.1 Introduction

Transactional memory (TM) [67,71] is an increasingly popular technique for synchronising
threads in multi-threaded programs, which is both easy to use and provides good perfor-
mance. When using TM, the threads are synchronised by defining transactions that may
be executed optimistically in parallel and will succeed if they do not interfere with each
other. Even though using TM may be easier, there are still various opportunities to make
mistakes that lead to performance degradation and errors, which rises a clear demand for
tools for analysing and debugging TM programs. Because performance analyses usually
require the program to be executed to be able to analyse its performance, dynamic analysis
is often used here as it would be able to address both correctness and performance-related
issues of TM programs.

In order to be able to implement various dynamic analyses of the behaviour of TM
programs, one first needs to monitor their execution. However, the monitoring code may
influence the monitored program’s behaviour and hamper the results of some analyses.
That is why, in this chapter, we propose several different ways of monitoring C/C++ TM
programs and then experimentally study their influence on the behaviour of the monitored
programs. Our monitoring approaches range from lightweight to heavyweight monitoring.
The monitored programs are taken from the well-known STAMP benchmark [26].

As our primary metric for evaluating the influence of the different monitoring ap-
proaches, we use the number of transactions that aborted during the execution of the
monitored TM programs as this metric gives a good insight into their contention level, i.e.,
into the number of conflicting concurrent transactions. The more conflicts and aborts the
more work for the TM system.

In this chapter, we also present an experimental evaluation of the influence of different
kinds of lightweight and heavyweight monitoring approaches for TM programs that we
propose, both in terms of global numbers of aborts as well as numbers of aborts for different
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types of transactions. Moreover, we also show that the obtained results can be significantly
influenced by the environment in which the monitoring is performed.

The results presented in this chapter can be used in several ways. First, they can show
researchers or developers interested in monitoring TM programs how the behaviour of these
programs can be influenced by different monitoring techniques as well as the environment.
Second, the proposed and implemented monitoring techniques are available to the scientific
community and can be used in other settings, which is especially easy for the case of
heavyweight monitoring since we implemented a quite generic TM monitoring platform on
top of the ANaConDA framework [53]. The lightweight monitoring approaches are rather
specialised; however, the described implementation techniques can be useful if there is
a need for implementing yet another lightweight monitor.

Related work. To the best of our knowledge, there are only a couple of works dealing
with monitoring of TM programs, namely the works [27,105]. These works aim at providing
the users with a variety of interesting data about the execution of a TM program by tracing
its operations. However, only the authors of [27] discuss how their monitoring influences the
monitored programs, and this discussion is rather brief and addresses only the global number
of aborts. We provide a much more detailed study of the influence of monitoring on the
monitored programs, using more and/or different monitoring approaches and considering
other metrics besides the global numbers of aborts.

6.2 Monitoring Transactional Memory Programs

In this section, we briefly recall general principles and properties of both lightweight and
heavyweight monitoring techniques, and we propose several ways to use these approaches
in monitoring TM programs. The influence of these techniques on the monitored programs
is then experimentally studied in the next section.

6.2.1 Lightweight and Heavyweight Monitoring

Lightweight monitoring [105] strives to minimize the impact of the monitoring activity
on the behaviour of the monitored TM program. To achieve this goal, only a limited
amount of information is collected, mainly the kind of information that can be obtained
fast enough and with minimal intrusion. This makes lightweight monitoring particularly
suitable for analysing a program for performance issues. To achieve the highest performance,
the monitoring code is usually embedded into the monitored program itself by modifying its
source or intermediate code, or even its binary. In all these cases, the monitored program
is modified and differs from the original one.

Besides the limited amount of information provided, another disadvantage of the light-
weight approach is its lack of automation and/or versatility. The program must be modified
again and again for each change in the information to be collected, no matter how small that
change is. Sometimes, the required information can be acquired by modifying only some of
the libraries used by the program (such as the TM run-time libraries in our case), but then
the monitoring will be restricted to those programs that use this specific library. Moreover,
embedding monitoring code into a library may be problematic if it is being shared with
other programs running on the system, requiring one to manage and maintain multiple
versions of the same library.
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Heavyweight monitoring [111] trades performance for versatility. It frequently uses a spe-
cific run-time environment, such as some kind of a low-level virtual machine, to execute
the code of the given program and to monitor its execution. Executing the program in
such an environment slows down its execution considerably but enables the acquisition of
nearly any information required about the execution of the program. Moreover, environ-
ments supporting dynamic instrumentation are able to insert (or remove) the monitoring
code during the execution of the program, leaving its original code untouched. Finally, by
having full control of the code being executed, these environments are able to monitor even
self-modifying or self-generating code.

6.2.2 Lightweight Monitoring of TM Programs

In order to study the impact of monitoring on the behaviour of monitored TM programs, we
proposed and implemented several lightweight monitoring approaches. These approaches
differ in how much information they are collecting and how they are collecting this infor-
mation. TM libraries usually provide information about the global numbers of started,
committed, and aborted transactions. We take the possibility of obtaining this information
as a starting point, and our monitoring approaches allow one to obtain various refinements
of this information.

Our lightest monitoring approach (denoted as the statistics collector or sc in the ex-
periments) allows one to obtain not only the global numbers of started, committed, and
aborted transactions, but also all of these numbers separately for each thread and each
type of transaction. In order to be as lightweight as possible, this information is obtained
in such a way that the monitoring code maintains two counters for each thread and each
type of transaction: the first one tracking the number of started transactions and the sec-
ond one recording the number of committed transactions. These counters are stored in
a two-dimensional array so that each combination of a thread and a type of transaction has
its own exclusive set of counters. As each thread is accessing a different part of the array,
no additional synchronization is introduced. Further, to achieve the best performance, the
array is static with a defined maximum number of supported threads and types of transac-
tions, and no boundary checks are done during the monitoring—the monitoring code just
accesses a counter and increments it. The numbers of aborts are then computed from the
numbers of started and successfully committed transactions.

Our next monitoring approach (denoted as the event logger or el in the experiments)
is based on registering TM operations (events) in an event log (list) during a program
execution, followed by a post mortem processing of these events. An event is generated (and
stored in the event log) only when a transaction starts or successfully commits, and the
number of aborts is computed later. In order to minimize the probe effect, each thread has
its own event log which resides in the main memory, and hence no additional synchronization
between the threads or interaction with the file system is needed'.

Finally, we have implemented several variants of the event logger. The el-a variant
differs from the basic event logger in that it is explicitly tracking the aborts and does not
compute them from the number of started and successfully committed transactions. The
el-arw variant does additionally track transactional reads and writes, which significantly
increases the number of events collected. Further, we extend all the three above mentioned
event logger approaches by collecting and associating a time stamp for each logged event

!Eliminating the interaction with the file system is very important as writing to a file introduces a sig-
nificant intrusion to the execution of a program.
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(leading to variants denoted as el-ts, el-a-ts, and el-arw-ts in the experiments). The time
stamp is retrieved from the Intel TSC (Time Stamp Counter) register, and storing the time
stamp doubles the data size of each event.

The implementation of all of our monitoring approaches is available? and can be used
either directly or serve as an inspiration for implementing other specialized monitors. The
current implementation is restricted to the TL2 library and requires a modification of the
source code of the program to be monitored. Since the TL2 library provides a set of macros
representing the TM operations and these macros are used by the testing programs, our
implementation inserts the monitoring code into the programs by modifying these macros.
Thus, the source code of the programs is modified at compile time when the modified
macros are being expanded by the compiler. Still, we need to recompile the programs with
a different set of macros every time we need to change the way the monitoring is done or
the type of information to be acquired.

6.2.3 Heavyweight Monitoring of TM Programs

For versatile heavyweight monitoring of TM programs, we have proposed and implemented
an extension of the ANaConDA framework [53]. The ANaConDA framework is based on
PIN [111], a dynamic binary instrumentation tool from Intel. ANaConDA enables mon-
itoring of multi-threaded C/C++ programs and allows one to obtain information about
common synchronisation operations, such as memory accesses or lock acquisitions and re-
leases. In order to support (heavyweight) monitoring of TM programs, we extended the
ANaConDA framework to include a support for monitoring TM operations as described
below.

The C/C++ programming languages usually include a support for TM by making use
of a software library. In this setting, monitoring the TM operations implies intercepting
the calls of the functions in this library. As there are many libraries implementing TM
for C/C++, our extension is not restricted to a specific library and may be easily instan-
tiated for any TM library. This allows one to analyse a broad variety of TM programs,
not only a subset of programs using a specific library. Regardless of the concrete imple-
mentation/library used, TM is supported by five basic operations: three operations for
managing transactions (tzStart, trtCommit, and tzAbort); and two operations for managing
the transactional accesses to the main memory (txRead and txWrite).

To be able to monitor the five basic TM operations of a concrete TM library with ANa-
ConDA, the user has to identify which library functions implement these operations and
which of their parameters reference memory locations. After that, the extended ANaConDA
framework is able to monitor any TM program that uses that particular TM library. Cur-
rently, we instantiated the extended ANaConDA framework with a support for monitoring
programs that use the TL2-x86° or the TinySTM?* libraries.

We implemented all of the approaches described in the previous sections as plug-ins
for the extended ANaConDA framework. The framework monitors the execution of a TM
program and sends notifications of the relevant TM events to the plug-in. The plug-in then
processes the events in the same way as the lightweight monitoring approaches. Unlike in
the case of lightweight monitoring, the heavyweight monitoring does not require customized
versions of the monitored program specifically tailored for a particular monitoring strategy.

2http://github.com/fiedorjan/lightweight-stm-monitoring
3http://stamp.stanford.edu/releases.shtml#t12-x86
4http://tmware.org/tinystm
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Table 6.1: Average number of aborts in original runs and runs with
lightweight monitoring.

genome intruder kmeans ssca2 vacation yada

variant high low high low
orig 2.6 -10* 4.3 -10" 5.6 -10° 5.2-10° 2.6-10> 4.9 -10° 2.6 -10* 2.7 -10°
sc 2.8 -10* 4.3-107 5.4-10° 5.1-10° 3.5-10> 4.9 -10° 2.7 -10* 2.6 -10°
E el 2.3:10* 3.8:10" 4.3-10° 4.0-10° 2.7-10*> 4.6-10° 2.5:10* 2.6 -10°
g el-ts 2.2 -10* 3.5-107 3.7-10° 3.4-10° 2.0-10> 4.4-10° 2.4-10* 2.3-10°
= ecla 2.3 -10* 3.7-10" 4.0-10° 3.7 -10° 2.0-10> 4.4-10° 2.4-10* 2.5-10°
5‘3 el-a-ts  2.1-10* 3.4-107 2.9-10° 2.7-10° 2.2-10> 3.9-10° 2.1-10* 2.1-10°

ellarw  2.1-10* 1.1-107 3.2-10° 3.4-10° 1.9-10> 0.5-:10° 0.8 -10* 1.8 -10°
el-arw-ts 2.5 -10* 0.8 -107 2.3 -10° 2.7 -10° 2.5-10> 0.5-:10° 0.8 -10* 1.5 -10°

Based on the type of information requested by each plug-in, the framework instruments
the original code of the monitored program upon loading it into the main memory with the
code which collects the required information.

6.3 Experimental Evaluation of the Impact of Monitoring

We will now present a set of experiments that evaluate the influence of the monitoring
approaches described in the previous section on the behaviour of a set of benchmark TM
programs from several different points of view. For our experiments, we used 6 out of 8 pro-
grams from the STAMP benchmark suite [26], namely genome, intruder, kmeans, scca2,
vacation, and yada. These programs utilise transactional memory to solve a wide variety
of problems. In case of the kmeans and vacation programs, we also distinguish the high
and low variants that use respectively the high and low contention configurations available
in the benchmark. The remaining two benchmarks, bayes and labyrinth, were excluded
due to technical problems unrelated with the work described in this paper.

For the experiments, we used two different environments. The first environment, which
we will refer to as £5355-6/GB, consists of a single machine with 4-core Intel Xeon X5355
2.66 GHz CPU and 64 GB of memory, running Linux with the 3.2.0 kernel. The second
environment, which we will refer to as £3/50-8GB, is a cluster containing three identical
nodes with 4-core Intel Xeon X3450 2.66 GHz CPUs and 8 GB of memory, running Linux
with the 2.6.26 kernel. As all of the CPUs which we used support Hyper-threading, up
to 8 threads may run seemingly simultaneously on any of these machines. To achieve max-
imal concurrency, all of the benchmarks were configured to use 8 threads. For lightweight
monitoring, programs were compiled with -g and -03 flags.

6.3.1 Comparison of Lightweight Monitoring Approaches

First, we evaluate the impact of the different variants of lightweight monitoring that we
proposed on the behaviour of the monitored programs. As a metric, we use the global
number of transactions aborted during the program run. The presented experiments were
performed in the £5355-6/GB environment.

Table 6.1 shows the average global number of aborts (out of 100 runs) for each of
the tested programs when executed with the different variants of lightweight monitoring
described in Section 6.2.2. The variant orig represents a run without any monitoring, i.e.,
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Table 6.2: Average aborts in original runs and runs with lightweight
monitoring without outliers.

genome intruder kmeans ssca2 vacation yada

variant high low high low
orig 2.6 -10* 4.3 -10" 5.6 -10° 5.0-10° 2.6-10> 4.9 -10° 2.5-10* 2.6 -10°
sc 2.7 -10* 4.4-107 5.4-10° 5.0-10° 2.5-10> 4.9 -10° 2.6 -10* 2.6 -10°
E el 2.2-10* 3.8:10" 4.2-10° 3.9-10° 1.7-10*> 4.6-10° 2.5:10* 2.6 -10°
g el-ts 2.1-10* 3.5-107 3.7-10° 3.3-10° 1.6-10> 4.3 -10° 2.4-10* 2.3 -10°
= ecla 2.3 -10* 3.7-107 3.9-10° 3.6-10° 1.9-10> 4.4-10° 2.4-10* 2.5-10°
5‘3 el-a-ts  2.1-10* 3.4-107 2.9-10° 2.6-10° 1.6-10> 3.9-10° 2.1-10* 2.1-10°

ellarw  2.1-10* 1.1-107 3.2-10° 3.2-10° 1.8-10> 0.5-:10° 0.8 -10* 1.8 -10°
el-arw-ts 2.4 -10* 0.9 -107 2.3 -10° 2.6 -10° 1.7 -10> 0.5-10° 0.8 -10* 1.5 -10°

the execution of the original program with no modifications. The parameters of each of
the programs were set to the values recommended for the so-called standard runs of the
programs in the STAMP benchmark suite”.

When performing the most lightweight monitoring (sc), the global number of aborts
does not change much and stays almost always within a range of 5 % from the original
runs. The only exception is the ssca2 benchmark which gets near 35 % more aborts than
in the original runs. This is caused by the so-called outliers, i.e., rare runs that achieve
a number of aborts much higher than usual, which distorts the results. This effect is more
noticeable in the cases where the global number of aborts is relatively low and even one of
such outlying runs may change the average values considerably. For example, the results for
the ssca2 benchmark using the sc monitoring approach contained two runs with 4300 and
3800 global numbers of aborts. When we look at the global number of aborts and remove
the 10 runs identified as outliers, we get close to the original global number of aborts even
for the ssca2 benchmark. These results can be seen in Table 6.2. In particular, we take as
outliers the runs which achieved a significantly different global number of aborts than the
rest of the runs based on their Euclidian distance from the 10 runs with the closest global
number of aborts.

When we try to obtain the same information as above using the event logger approach
(el), we see that the global number of aborts drops much more than when using the sc
approach—changing up to 25 % of the original value. This is because logging the events
in a list is more intrusive than just incrementing a counter. This demonstrates that it is
indeed quite important how the monitored information is acquired and registered as even
slightly different methods that obtain the same information may have considerably different
impact on the behaviour of the monitored TM programs.

When we start collecting more information (events) than just the number of started
and committed transactions, we get an even lower global number of aborts. When logging
the number of aborts as well (using the el-a approach), the drop in the number of aborts
is not that significant yet (up to 30 % of the original value) as the number of events of this
type is not that high. However, when we start tracking the read and write operations as
well (using the el-arw approach), the global number of aborts often suffers large drops (the

5These parameters are recommended by the STAMP authors when running the benchmarks natively,
i.e., directly on a concrete operating system, not in a simulator or another tool negatively affecting its
performance.
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change is up to 90 % of the original value). This is related to the fact that the number of
reads and writes is usually much higher than the number of starts and commits.

If we also start collecting the time stamps (using the el-ts, el-a-ts, and el-arw-ts ap-
proaches), the global number of aborts does also drop when compared with the variants
not collecting the time stamps. However, in general, despite collecting time stamps is usu-
ally more intrusive than tracking the aborts, it is less intrusive than tracking the reads and
writes.

6.3.2 Comparison of Lightweight and Heavyweight Monitoring

In this section, we compare the impact of the lightweight and heavyweight implementations
of the considered monitoring approaches. Since heavyweight monitoring greatly slows down
the tested programs, for these experiments the parameters of the benchmarking programs
were set to the values recommended by the STAMP authors for the so-called simulation
runs, which are suitable when executing a program in a simulator or another tool that
negatively affects its performance. Since the simulation runs generate much less aborts
than the standard ones, meaning that the results might be negatively influenced by the
outliers, we remove 10 (out of 100) runs marked as the outliers during the evaluation. Due
to the higher time cost of these tests, the experiments were performed in the z34/50-8GB
environment.

Table 6.3 shows the average global number of aborts for each of the tested programs for
the lightweight and heavyweight implementations of the monitoring approaches described
in Section 6.2.2. The heavyweight implementations come in two different versions. The
first version, called PIN, does the monitoring by executing the lightweight monitoring im-
plementation, i.e., the modified versions of the programs, in the PIN framework without
doing any instrumentation of the program. The purpose of this version is to show how the
use of PIN’s low-level virtual machine changes the behaviour of the monitored program
even without the influence of the instrumentation needed to capture the monitored events.
The second version, denoted as ANaConDA, is the true heavyweight implementation where
the counter incrementation and event collection is done through the callbacks provided by
the extended ANaConDA framework.

First of all, let us note that compared with the results of the standard runs (Table 6.2),
the results of the simulation runs exhibit the same tendencies when monitored using the
lightweight approaches (and hence we can consider their use instead of the standard runs
meaningful). The main difference is that the simulation runs are more prone to problems
with outliers as their execution time is quite short and even a very short disruption during
the execution may change significantly the overall results. For example, the results ob-
tained for the yada benchmark using the sc¢ monitoring approach contain several runs with
significantly greater global number of aborts even after the 10 outliers have been removed
(in fact, in this batch of runs there were 14 runs with a very high global number of aborts).

When we start monitoring the programs using the heavyweight versions of the moni-
toring approaches, we can see a massive drop in the global number of aborts (more than
95 %). This drop is mainly caused by PIN’s low-level virtual machine as just running the
original (non-modified) version (orig) of a program in PIN leads to an extreme drop in the
global number of aborts (more than 95 %). The additional disruption introduced by the
monitoring code does not influence much the behaviour. In fact, rather than having the
effect of decreasing the global number of aborts, like in the case of the lightweight monitor-
ing, inserting the monitoring code actually helps to increase the number of aborts a little
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Table 6.3: A comparison of average number of aborts for lightweight and
heavyweight monitoring.

genome  intruder kmeans ssca2 vacation yada

variant high low high low
orig 67.6 22850.0 3804.7 1626.1 6.5 23.4 4.9 9362.3
sc 73.3 22013.1 4115.7 1721.5 7.2 23.3 5.3 11659.3
%o el 63.1 17663.5 2722.9 1245.9 12.2 25.2 5.3 9354.7
g el-ts 61.3 16797.2 2402.7 1236.4 13.0 22.6 4.7 8118.7
2 ela 65.8 16504.1 2204.3 1091.0 16.6 22.6 4.0 8096.3
;ED el-a-ts 64.3 16112.9 1696.8 942.8 15.6 19.7 3.8 6846.7
el-arw 72.7 8238.9 2891.2 1877.0 18.0 19.9 3.7 5804.0
el-arw-ts  107.1 9499.4 3463.6 2121.3 22.0 22.6 4.7 4458.0
orig 3.7 85.8 0.2 0.1 0.0 2.1 0.2 595.1
sc 3.4 81.1 0.4 0.1 0.0 2.0 0.3 584.4
el 8.6 92.2 7.2 6.7 0.5 24 0.5 589.3
z,  elts 9.4 106.9 9.0 7.8 0.7 2.5 0.3 571.2
= ela 7.0 101.6 14.9 12.2 0.5 2.1 0.2 580.2
el-a-ts 7.4 95.7 17.5 14.6 0.6 2.4 0.3 576.6
el-arw 13.2 476.8 36.6 28.6 0.9 10.1 1.6 715.2
el-arw-ts  24.1 1567.1 213.2 139.3 1.0 14.6 2.8 902.4
orig 10.8 71.4 0.3 0.1 0.0 1.9 0.2 595.6
sc 9.3 109.8 0.2 0.1 0.0 3.4 0.6 729.6
g el 13.7 109.7 8.6 7.8 0.6 4.0 0.5 704.3
g elts 11.3 119.2 9.8 8.6 0.8 4.0 0.4 687.4
2 ela 12.3 126.0 20.8 16.7 0.9 3.6 0.7 702.4
<Z: el-a-ts 11.0 133.8 24.5 18.0 0.9 4.0 0.5 682.3
el-arw 20.8 1653.4 178.5 126.9 1.3 174 2.8 1100.1

el-arw-ts  34.4 3132.9 480.8 305.8 1.5 19.1 3.7 1260.8

in the heavyweight monitoring. This effect increases as we collect more information while
monitoring, which is a completely opposite tendency compared to the lightweight monitor-
ing. Also, the monitoring code inserted by ANaConDA has a greater effect on increasing
the global number of aborts than using the lightweight monitoring code executed in PIN.

Another effect that the heavyweight monitoring has on the considered programs is that
it suppresses the outliers. Table 6.3 contains the results evaluated from the runs not marked
as outliers, but the results are nearly identical even when considering all of the runs.

6.3.3 Impact of the Monitoring on Different Types of Transactions

The global number of aborts is an important performance metric and hence also a good
basic metric of how the behaviour of the monitored programs is influenced by the monitoring
layer. However, one may want to get a more detailed information about the behaviour of
a program and also about the way how it is influenced by monitoring. To go one step
further in this direction, we now consider monitoring numbers of aborts of different types
of transactions and the influence of monitoring on these numbers. Since TM libraries do
not give us statistics for different types of transactions, we use the information obtained
using the sc monitoring approach as a baseline behaviour of a program in this case. As
the global number of aborts when using the sc monitoring approach is very similar to the
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Table 6.4: Average number of aborts for different types of transactions.

intruder kmeans-high

variant Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

sc 13.9-10° 91.0 -10°  20.5 -10° 51.7 -10° 24.9 -10* 51.0 -10°
= el 9.5-10° 85.2-10° 19.9 -10° 40.9 -10° 22.1 -10*  44.0 -10°
2 elts 8.1-10° 83.5-10° 18.9-10° 35.1-10° 21.8-10* 36.0-10°
E ela 9.5-10° 86.0-10° 19.0 -10° 37.8-10° 21.9-10* 37.0-10°
% elats 8.7 -10° 83.0-10° 17.0-10° 26.8 -10° 22.2-10* 33.0-10°
= el-arw 5.1-10° 23.6-10° 3.3-10° 31.3 -10° 8.3 .10 12.0-10°

el-arw-ts 51106 22.3-10° 1.1 -10° 22.6 -10° 7.7 100 11.0 -10°

original global number of aborts, we may safely assume that this behaviour is very close
to the original one. The presented experiments were again performed in the 25355-64GB
environment.

Table 6.4 shows the average number of aborts for each type of transactions present in
the intruder and kmeans benchmarks (in the latter case, for the variant with high con-
tention). As can be seen, the various kinds of monitoring influence each type of transactions
differently. When looking at transactions of Type Tz2 and Tz8 for the intruder bench-
mark or at transactions of Type Tx5 for the kmeans benchmark, one can see that utilizing
the event logger with or without direct tracking of aborts (el and el-a, respectively) does
not influence the average number of aborts much. The drop in the number of aborts is
around 10 % here. Also, the collection of time stamps (the el-ts and el-a-ts approaches)
changes these numbers minimally. However, when we start tracking the reads and writes
(the el-arw approach), the number of aborts drops considerably (by around 65-85 %).

On the other hand, some types of transactions, like transactions of Type Tz1 for the
intruder benchmark and transactions of Type T4 for the kmeans benchmark are more
affected by the event logger (el) approach and exhibit a significant decrease in the number
of aborts (by around 20-30 %). The number of aborts does not drop much when we add the
direct tracking of aborts (el-a), but it lowers again (by around 10-20 %) when we include
the collection of time stamps (the el-ts and el-a-ts approaches). When we start tracking
the reads and writes in these types of transactions, the number of aborts drops again (by
around 10-30 %), but this drop is not that significant as in the case of the previously
described transaction types.

One may think that the abrupt drop in the number of aborts that we saw in the transac-
tions of Type Tz2, Tx3, or Tx5 when we started tracking the reads and writes is connected
to the number of memory accesses in these types of transactions since the influence of the
monitoring should be different for transactions with a high and low number of memory ac-
cesses, respectively. However, our analysis of the data showed no clear dependency between
the number of accesses and the drops in the number of aborts. For example, transactions
of Type Tx2 perform on average 110 accesses to the TM, while transactions of Type Tz3
just 3 and transactions of Type Tx5 only 2. Still, the tendencies they exhibit for the var-
ious monitoring approaches are the same. The exact cause of this behaviour remains an
interesting direction for future work.
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Table 6.5: Average aborts in runs with lightweight monitoring in the
x3450-8GB environment.

genome intruder kmeans ssca2 vacation yada

variant high low high low
orig 3.0 -10* 3.0-107 5.7-10° 4.1-10° 6.3-10> 3.6-10° 3.1-10* 5.0 -10°
sc 3.1-10* 3.0-10" 6.0-10° 4.4-10° 11.7 -10> 3.6 -10° 3.2-10* 5.0 -10°
E el 2.7-10* 2.9-10" 4.9-10° 3.7-10° 3.4-10*> 3.4-10° 3.0-10* 4.6 -10°
g el-ts 2.6 -10* 2.9-107 4.5-10° 3.3-10° 1.9:10> 3.3-10° 2.8-10* 4.4 -10°
= ecla 2.8 .10 2.8-10" 4.2-10° 3.1-10° 5.2-10>° 3.3-10° 2.7-10* 4.3 -10°
5‘3 el-a-ts 2.6 -10* 2.5-10"7 3.1-10° 2.3-10° 2.3:10> 3.0-10° 2.5-10* 3.6 -10°

el-arw 2.4 -10* 0.8-107 3.4-10° 3.7 -10° 5.1:-10> timeout 3.5-10* 2.9 -10°
el-arw-ts 2.8 -10* 0.7 -107 2.5 -10° 2.2 -10° 2.4 -10% timeout timeout timeout

6.3.4 Influence of the Environment

In the previous sections, we discussed that even a slight disturbance of the monitored
TM program’s execution by the monitoring code could impact its behaviour. However,
changes in the monitoring code are not the only factor that may influence the behaviour
of the monitored program. Other factors include changes of the environment in which the
monitoring is done. That is why we now compare both of our execution environments used
for acquiring the experimental results.

In particular, Table 6.5 shows results of the same experiments with lightweight monitor-
ing as Table 6.1 but this time from the z3450-8GB environment instead of £5355-64GB.°
We can see that the tendencies for the various monitoring approaches are similar to the
ones presented before. However, the average global number of aborts changed for some of
the benchmarks. For example, the intruder benchmark achieved around 30 % less aborts
on this machine regardless of the monitoring approach used. On the other hand, the yada
benchmark got twice as many aborts with any monitoring approach used.

Moreover, interestingly, some of the benchmarks seem to behave the same way as on
the previously used machine when looking at the global number of aborts only. However,
when looking at aborts for different types of transactions, one finds out that the program
is in fact behaving differently. When looking at the kmeans benchmark, the average global
number of aborts for the original run (orig) is nearly the same, but this is not true when
we compare the number of aborts per transactions type.

In particular, Table 6.6 contains the average number of aborts for each type of trans-
actions present in the intruder and kmeans (high contention variant) benchmarks. When
we look at the sc monitoring approach and compare transactions of Type Tz4 and Tzd
with the results presented in Table 6.4, we see that the number of aborts for transactions of
Type Tz increases by about 20 % while the number of aborts for transactions of Type Tz5
drops by more than 85 %. Moreover, the tendencies exhibited by transactions of type Tz5
change: now, the number of aborts starts actually increasing when more intrusive monitor-
ing approaches are used. Also, the time stamp collection greatly increases the number of
aborts here.

We see a similar change in the behaviour in the intruder benchmark for transactions of

6The missing values for some of the benchmarks for the el-arw and el-arw-ts monitoring approaches in
Table 6.5 are caused by all of the runs timing out due to the extensive swapping as the main memory was
rapidly filled out with the collected events.
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Table 6.6: Average aborts for different types of transactions in the z3450-8GB

environment.
intruder kmeans-high
variant Tx1 Tx2 Tx3 Tx4 Tx5 Tx6
sc 3.2-.10° 88.9-10° 17.5-10° 59.8 -10° 3.6 -10* 6.0 -10°
= el 3.8-10° 84.1-10° 16.5-10° 48.7 -10° 6.3 -10* 7.0 -10°
20 elts 4.2 -10° 85.9-10° 16.5-10° 44.0 -10° 7.6 -10* 8.0 -10°
E ela 3.9.10° 85.9-10° 15.4-10° 41.0 -10° 6.4 -10* 7.0 -10°
5 elats 4.0 -10° 83.9-10° 13.1-10° 29.9 -10° 7.7 -10* 8.0 -10°
3 elarw 3.7-10° 15.3-10° 2.3 -10° 33.4 -10° 6.9 -10* 7.0 -10°
el-arw-ts 4.4 -10° 14.6 -10° 1.1 -10° 23.5-10° 10.1-10*  14.0 -10°

Type Txz1. While the other two types of transactions exhibit similar tendencies and number
of aborts, the number of aborts in transactions of Type TzI drops by more than 75 % when
using the sc monitoring approach. Using the more intrusive monitoring approaches then
increases the number of aborts.

6.4 Analysis of the Impact of Heavyweight Monitoring

It is hard to explain all the above presented changes in the behaviour of the monitored
TM programs since, for that, one would typically need some additional information about
their original behaviour. However, gathering such information is usually impossible without
monitoring and hence without again changing the behaviour.

Nevertheless, the situation is a bit different for the specific case when one wants to
analyse differences between what happens within lightweight and heavyweight monitoring.
In this case, the environment used for heavyweight monitoring has more influence on the
behaviour than the actual collection of information about the monitored program. Hence,
one may come with a hypothesis why the behaviour changes in a certain way in heavyweight
monitoring and then try to support the hypothesis by analysing differences of suitable data
collected about the behaviour of the monitored program during lightweight and heavyweight
monitoring processes. We follow this path below.

Our hypothesis why the behaviour of the monitored TM programs changes so signif-
icantly during heavyweight monitoring is as follows. The run-time environment used in
heavyweight monitoring has to execute not only the code of the monitored program but
also the monitoring code that collects desired information about the execution of the pro-
gram as well as other essential code for managing the running threads, for determining
when and where to execute the monitoring code, etc. As a result, there is more code to be
executed inside each transaction block, but there is even more code to be executed outside
of the transactions. This, of course, influences the timing of the transactions as their exe-
cution is moved further apart in the program’s execution, and even though their execution
is longer, their chances to overlap and possibly abort are decreased. This phenomenon is
illustrated in Figure 6.1 (where an abort of a transaction within the normal execution is
highlighted in red hatching).

To support the above hypothesis, we computed how much time is spent inside and
outside the transactional blocks (using recorded timestamps of starts, aborts, and commits
of transactions). The results are shown in Table 6.7. One can clearly see that the relative
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Figure 6.1: Differences between normal and monitored execution.

Table 6.7: Average percentage of time spent in transactions.

genome intruder kmeans ssca2 vacation yada

variant high low high low

el-a-ts 45.4% 71.6% 33.1% 26.9% 50.8% 96.2% 95.4% 89.0%
el-arw-ts  60.3% 95.3% 78.6% 75.0% 63.8% 99.0% 98.9% 97.2%

el-a-ts 13.9% 15.6% 8.1% 6.3% 3.4% 29.7% 27.8% 56.3%
el-arw-ts  24.9% 29.9% 22.7% 23.4% 5.0% 65.1% 61.7% 74.1%

Heavy | Light

time spent inside transactions is much lower when using heavyweight monitoring than
when using lightweight monitoring. This confirms our hypothesis and explains why we get
significantly less aborts during heavyweight monitoring. Moreover, the table also shows
that when we start registering transactional reads and writes, we spend more time in
transactions, and, correspondingly, we also get more aborts (cf. Table 6.3).

6.5 Conclusion

We have presented several approaches of lightweight and heavyweight monitoring of TM
programs. The proposed monitoring techniques are publicly available and can be used
directly or serve as an inspiration for implementing other specialized monitors. We have
also presented an experimental evaluation of the influence of these monitoring approaches on
the number of aborts, both at the global level and for each type of transactions present in
the monitored programs. Further, we have shown that not only the monitoring process
influences the number of aborts, but also the environment in which the monitoring is
performed has a great impact on the overall behaviour.

From our experiments, we concluded that when using lightweight monitoring strategies,
the more information we monitor the less aborts we usually get, both globally and per
transaction type as well. However, one has to be careful of the role of outliers and of the
fact that the number of aborts does not decrease in the same way across different types
of transactions. Moreover, sometimes, the number of aborts can even increase when we
increase the amount of monitoring. Such a behaviour is easily observed when the environ-
ment used causes a massive initial drop in the number of aborts. This is, in particular,
visible when using environments for heavyweight monitoring.

In the future, it would be interesting to find analytical explanations for the various
phenomena observed during the experiments reported in this paper. Such explanations
could then perhaps be used as a basis for finding means for neutralizing the influence of
the monitoring approaches on the monitored runs. Furthermore, one can use the developed
monitoring layer as a basis for developing various dynamic analyses allowing one to detect
errors in the monitored programs.
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Chapter 7

Contracts for Concurrency

This chapter describes how to detect errors in multi-threaded programs using the so-called
contracts for concurrency. Contracts for concurrency define how functions should be used
in a concurrent setting so that they do not interfere with each other. Besides extending
the basic notion of contracts for concurrency from the literature with data and contex-
tual information, the chapter proposes two novel methods for their dynamic validation.
These methods were able to unveil previously unknown errors in several programs from the
industry.

7.1 Introduction

The divide-and-conquer strategy is frequently applied to the development of large software
products where the whole application is divided into interacting software modules, collab-
oratively developed by multiple teams. Objects in object-oriented programming languages
are an example of such software modules. Accessing the services provided by a software
module requires one to follow a protocol that includes: (i) the syntax of the service, i.e.,
the name of the service and the type of its input and output parameters; (ii) the semantics
of the service, i.e., the expected behavior of the service for a given set of input parame-
ters; and (iii) the service access restrictions, e.g., the domain of the valid values for each
parameter, dependency relations between services, atomicity requirements for execution in
a concurrent setting, etc.

Violating the protocol of a service may cause all sorts of misbehaviors—from subtle,
perhaps admissible but wrong results to fault-stop fails, such as exceptions and segmenta-
tion faults. Compilers take good care of Aspect (i) of the protocol, i.e., syntax validation.
Aspect (ii), service semantics, although not verified by compilers, is usually at least doc-
umented. Aspect (iii), service access restrictions, is usually not verified by compilers nor
documented, which results in a deep dependency on programmers’ clairvoyance on the usage
of the services—in particular, when concurrency issues are involved.

In this chapter, we aim at reducing the above problem by addressing Aspect (iii), i.e.,
service access restrictions, for the context of concurrent (multi-threaded) programs. In par-
ticular, we address restrictions of using services provided by software modules in a concur-
rent setting with the aim of avoiding atomicity violations and similar concurrency-related
errors. Atomicity violations (see Chapter 2) are a class of errors which result from an incor-
rect definition of the scope of an atomic region. Such errors are usually hard to localise and
diagnose, which becomes even harder when using (third-party) software libraries where it is
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unknown to the programmer how to form the atomic regions correctly when accessing the
library. Even new synchronisation techniques, such as transactional memories discussed in
the previous chapter, designed to ease the process of writing concurrent programs, do not
entirely avoid this problem and suffer from atomicity violations as well [39].

One way to address the problem of proper atomicity is to associate a contract with each
program module/library and then check whether the contract is indeed respected. In fact,
the notion of contract is, in general, not restricted to concurrent programs. In the general
case, a contract [116] regulates the use of methods of an object by specifying a set of pre-
conditions the program must meet before calling the object methods. For the particular case
of concurrent programs, Sousa et al. proposed in [142] the concept of the so-called contracts
for concurrency. A contract for concurrency is a particular case of a software protocol that
allows one to enumerate sequences of public methods of a module that are required to be
executed atomically. Contracts may be written by the software module/library developer
or inferred automatically from the program (based on its typical usage patterns) [1412].

In this chapter, assuming that the appropriate contracts for concurrency have been
obtained, we propose two methods for dynamically verifying that such contracts are re-
spected at program run time. In particular, the first method belongs among the so-called
lockset-based dynamic analyses whose classic example is the Eraser algorithm for data race
detection [137] and whose common feature is that they track sets of locks that are held by
various threads and used for various synchronization purposes. The tracked lock sets are
used to extrapolate the synchronization behaviour seen in the witnessed test runs, allowing
one to warn about possible errors even when they do not directly appear in the witnessed
test runs. We have implemented our approach in a prototype tool, and we present experi-
mental results obtained with our implementation.

While the lockset-based method works well in many cases, it may produce both false
positives and negatives. Some of these problems are caused by the method itself as lockset-
based methods are imprecise in general. However, many of the problems are caused by the
limitations of the (basic) contracts which does not allow one to precisely describe which
situations are errors and which not. To address this problem, we extended the notion
of contracts for concurrency by allowing them to reflect both the data flow between the
methods (in that a sequence of method calls only needs to be atomic if they manipulate
the same data) and the conteztual information (in that a sequence of method calls needs
not be atomic wrt all other sequences of methods but only some of them). Then, we
propose a method for dynamic validation of contracts based on the happens-before relation
which utilises vector clocks in a way optimized for contract validation. This method does
not suffer from false alarms and supports the extended contracts. We implemented this
method using the ANaConDA framework and obtained promising experimental results,
including discovery of previously unknown errors in large real-world programs.

Plan of the chapter. The rest of the chapter is organised as follows. In Section 7.2, we
discuss related work. In Section 7.3, we present the notion of contracts for concurrency.
In Section 7.4, we present a simple method for dynamic validation of contracts based on
locksets and discuss its advantages and disadvantages. In Section 7.5, we provide experi-
mental results showing that even the simple method can detect many contract violations.
In Section 7.6, we extend the basic contracts to consider the data flow and/or the con-
textual information of method calls. In Section 7.7, we describe a more advanced method
for dynamic validation of contracts based on the happens-before relation which supports
the extended contracts. We also provide results of experiments with this method showing
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that it is able to detect a broader variety of concurrency-related errors, not only atomicity
violations. Section 7.8 concludes the chapter.

7.2 Related Work

Design by contract was introduced by Meyer [117] as a way to write robust code, using
contracts between programs and objects, checked at runtime. In this context, a contract
consists of a pre- and post-condition of a method such that when the call of a method
satisfies its pre-condition, the post-condition is guaranteed to be satisfied upon return from
the method.

Cheon et al. [28] proposed a way of using contracts to specify protocols for accessing
objects in a sequential setting. The contracts use regular expressions describing sequences
of calls that can be executed for a given object. Hurlin [79] extended [28] with operators
allowing one to specify which methods may be executed concurrently. The work, however,
does not show how to validate such contracts, it only proposes a technique for automatically
generating programs from contracts that are to be proven correct (e.g., by theorem proving)
to show that the contracts adhere to the protocols they specify.

The basic contracts for concurrency that we are building on here first appeared in [141],
where the authors propose a static approach which can formally prove that no contract
violation is possible. For that, however, they assume that properly handled contracts must
appear in code blocks declared as atomic (with the atomicity assured by the run-time sup-
port). If a different way of guarding the contracts is used, a false alarm is issued. Moreover,
the approach scales to relatively small programs only. For more complex programs, one has
to restrict the analysis to program fragments, e.g., individual methods, in order to achieve
a reasonable performance. This leads to a loss of precision as contracts may span across
several methods and thus be missed by the analysis.

Another problem with the static approach is related to the fact that contracts for
concurrency are required to operate atomically only when all the involved method calls
operate on the same object. This is a natural requirement since the atomic execution is
critical only when working with data elements that are mutually related, which is assumed
to be reflected in that they are stored within one object. However, static validation does
not have precise information on which objects the methods are called on. Hence, calls of
methods on different objects are mixed together, leading to possible false alarms. Classic
alias and escape analyses can be used to infer this information from the source code of the
program, but these analyses provide only approximate information and may still lead to
false alarms.

Both of our approaches for dynamic contract validation avoid the above false alarms
since they have precise run-time information about the objects that particular methods are
executed on. Moreover, they also scale quite well. On the other hand, despite the use of
locksets and happens-before relation to extrapolate the behaviour of the witnessed test runs,
these approaches can miss some contract violations that do not happen in the witnessed
test runs nor they can be deduced from the locking patterns or other synchronisation used
in these traces. In order to minimize the number of possibly missed contract violations, one

can combine our approaches with noise injection techniques [52] that maximize the number
of thread interleavings witnessed in a set of test runs.
ICFinder [103] uses static analysis to automatically infer which pairs of calls to a module

are incorrect. This is achieved by identifying and applying two common incorrect composi-
tion patterns: one capturing stale value errors and the other one trying to infer correlations
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between method calls by analyzing the CFG of the client’s program. These patterns are
extremely broad and yield many false positives. The authors address this issue by filtering
the results from the static analysis with a dynamic analysis that only considers violations

defined in [149]. This analysis assumes that the notion of atomic set was correctly inferred
by ICFinder.
In [22,135], typestates are used to specify protocols for accessing objects. A typestate

can describe both the legal sequences of method calls and the data these methods may work
with. In [22], the protocol must be defined by the user and then validated using three static
analyses. If these analyses cannot establish correctness of the program, dynamic analysis
is used to find protocol violations. In [135], a dynamic analysis is used to automatically
infer protocols from program runs and then static analysis is used to check the protocols.
All the protocols, however, do not consider concurrency-related issues. Beckman et al. [10]
showed how to use typestates in concurrent scenarios. Their approach, however, requires
the user not only to define the protocols to be checked, but also to annotate the code with
additional information needed by the static checker to check if the protocols are respected.
Typestate specifications are also much more complex compared with the specifications based
on contracts we propose in this chapter.

The work [112] deals with JavaMOP specifications of desired program properties that
are validated dynamically at runtime. Using the approach, one can specify that some
sequence of methods must be atomic, but the specific way of ensuring the atomicity (e.g.,
the fact that some lock must be held) has to be encoded by the user in the specification. On
the other hand, when our contracts are used for checking atomicity, the user just specifies
the sequence of method calls and does not have to care about the way the atomicity should
be ensured.

Leaving the specific area of contracts and focusing in general on finding errors in concur-
rent programs, most works have concentrated on detecting data races and deadlocks (as we
have indeed discussed in previous chapters too). These errors are, however, of a different na-
ture than those captured by contracts, and hence methods and tools developed for detecting
them—including well-known ones, such as, Eraser [137], RaceTrack [161], GoldiLocks [15],
FastTrack [60], or GoodLock [72]—cannot be used for contract violation detection.

Significantly less works targeted detection of various kinds of atomicity violation [58,109,

|, including different forms of high-level data races [10,38,51] or stale value errors [11,

,38]. Detectors based on access patterns to shared variables [106,119], type systems [25],
semantic invariants [35], and dynamic analysis [58,63,161] have been proposed for detecting
this kind of errors. Despite atomicity violation is closer to contract violation, contract
violation is still more general. This is, atomicity violations can be detected as contract
violations (possibly with a need to view accesses to variables as method calls) but not
vice versa. An example of an error that can be captured via contract validation but not
atomicity validation is that of order violation. Such an error happens in the Link Manager,
described in Section 7.7.3, where a shared queue is used before it is initialised. As the queue
(variable) is accessed only once in each of the threads and both accesses are guarded by
the same lock, it is neither an atomicity violation nor a data race, and yet we were able to
detect it.

7.3 Contracts for Concurrency

A contract for concurrency [111] (or simply contract herein) is a protocol for accessing
public services of a module, i.e., the methods of its public API, expressing which of the
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methods are correlated and should be executed in the same atomic context (wrt its API
usage) if applied on the same computational object. Therefore, a program that conforms
to a contract is guaranteed to be safe from atomicity violations.

Formally, let Xy be a set of all public method names (the API) of a software module
(or library). A contract is a set R of clauses where each clause o € R is a regular expression
over Zy;. A contract violation occurs if any of the sequences represented by the contract
clauses is interleaved with an execution of methods from Xj; over the same object.

Ezxample. Consider the java.util.ArrayList implementation of a resizable array of the
Java standard library, and, for simplicity, take the following subset of the available methods:
add(obj), contains(obj), index0f (obj), get (idx), set(idx, obj), remove(idx), and
size (). The below clauses belong to the contract for the ArrayList library:

(01) contains indexOf

(02) index0f ( set | remove | get)
(03) size (remove | set |get)
(04) add ( get | indexOf )

Clause p; states that the execution of contains() followed by index0f () should be
atomic. Otherwise, the program may confirm the existence of an object in the array but
fail to obtain its index as a concurrent thread can, e.g., remove the object. Clause 0>
represents a similar scenario where the index of an object is obtained and then the index is
used to modify the object. Without atomicity, a concurrent change of the array may shift
the position of the object and cause malfunction. Clause g3 deals with programs that verify
whether a given index is in a valid range (e.g., index < size()) and then access the array.
To ensure size() is still valid when accessing the array, the calls must execute atomically.
Clause p4 represents a scenario where an object is added to the array and then the program
tries to obtain information about it by querying the array. Without atomicity, the object
may no longer exist or its position in the array may have shifted.

Another relevant clause in the contract of ArrayList is:

(05) contains indexOf ( set |remove)

However, the contract’s semantic already enforces this clause since it results from the com-
position of clauses p; and 0;.

7.4 Lockset-based Dynamic Validation of Contracts

In this section, we propose a dynamic approach to check whether a contract is violated
or not. Our dynamic validation looks for contract violations based on concrete program
executions. Possible violations not witnessed during the execution of the program may be
missed, but all of the methods encountered during the execution are taken into account, and
so contract violations caused by method calls from all over the program are detected. Since
all of the threads are running and all objects are known when the program is executing, we
know precisely whether all of the methods called in a sequence use the same object, and
we do not report any false alarms due to mixing calls on different objects as is common in
static analysis.

Since we look for contract violations based on concrete executions, we can avoid some
false alarms, but on the other hand, we can miss some errors. In order to minimise this pos-
sibility, we employ one of the dynamic analysis techniques—namely, the lock sets [137]—to
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extrapolate the actually witnessed behaviour and hence detect possible contract violations
even when they were not actually witnessed. Moreover, we utilise noise injection tech-
niques [52] (see Chapter 5) to enforce synchronisation scenarios, which normally appear
only rarely, leading to behaviours (and possibly contract violations) that would not be
covered by extrapolation of the common synchronisation scenarios only.

7.4.1 Detection of Contracts

In order to validate a contract, we first need to detect the sequences it contains in the
execution of a program. To do that, we encode each contract, i.e., all of its sequences,
as a single finite state automaton. As each clause of the contract represents a regular
expression, we use standard methods for transforming (star-free) regular expressions' into
finite automata to perform the conversion and then merge all these automata into a single
one. The transitions of the automaton represent method calls and the accepting states
represent situations where a contract sequence was detected.

Each thread manages a list of finite state automata instances which represent the cur-
rently encountered incomplete contract sequences. Whenever a method m € Xy is encoun-
tered, we try to advance each of these instances using the method m. If we cannot advance
the instance, the contract sequence is invalid and we discard it. If we successfully advanced
the instance to the next state, call it g, we check if ¢ is an accepting state. If yes, a contract
sequence is detected; if not, we leave the instance in ¢ and go on. Moreover, we check if we
can advance any of the finite state automata from their starting state using the method m.
If yes, then the beginning of another contract sequence was detected and we create a new
instance of the automaton which will monitor the execution of this contract sequence to
check if it can be accepted or not.

7.4.2 Checking the Atomicity Condition

When a contract sequence is detected, the next step is to check if the atomicity condition
is met, i.e., if the program ensures that all methods of this contract sequence are executed
atomically. The static approach does this by checking if all of the methods of the detected
contract sequence are enclosed in code blocks declared as atomic, which can be done by
analysing the source code of the program.

We propose a lockset-based method, inspired by [137], to perform these checks which is
more suited for dynamic analysis. This method checks if at least one lock is held during the
execution of a contract sequence by monitoring the lock acquisitions and releases during
the execution of a contract sequence. If this condition is not satisfied, i.e., no locks are held
throughout the execution, then the contract is being violated.

The method works online, i.e., it performs the contract validation during the execution
of a program, and is based on the analysis state o = (A, H, R) where:

e A : T — 2" records the set of locks acquired by a thread.

e H : T xR — 2F records the set of locks held by a thread when a contract sequence
starts.

e R : T xR — 2% records the set of locks released by a thread during the execution of
a contract sequence.

IStar-free regular expressions are used in the static contract validation approach [142]. We can, however,
easily generalize our approach to general regular expressions.
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In the initial analysis state, all sets of [CONTRACT SEQUENCE START]

locks are empty, reflecting that at the be- H = Hlo:=A]
ginning of the execution, no locks are held R := RJo:=0]
by any thread, i.e., oo = (0, 0, @) Fig. 7.1 (A,H, R) iseq_start(t,g) (A,H/,R')

shows rules according to which the analysis

state is updated for each operation of the [CONTRACT SEQUENCE END]

if H, )\ R/(0o) = (0 then ERROR

target program.

seq__end(t,0)
The rule [CONTRACT SEQUENCE START] (4. H.R) = (4. H,R)

records that a thread t is starting an execu- [LOCK ACQUIRED]
tion of a contract sequence ¢ by remember- A" = Alt:= A, U {m}]
ing the locks which are currently held by (A,H,R) —acq(t.m) (A’,H,R)

the thread. It also clears the set of locks re- [LOCK RELEASED]

leased by the thread as no locks could have VoeER:R = Ro:=R(0)U im)]
been released yet. (A, H,R) =™ (A H R’

The rule [CONTRACT SEQUENCE END| T U
records that a contract sequence o was de- Figure 7.1: Analysis rules.

tected in a thread r and checks the atomicity

condition by comparing the set of locks held when the contract sequence started its execu-
tion with the set of locks released during its execution. If at least one lock was held all the
time the contract sequence was executed, the contract is valid, and no error is issued. If all
locks held at the beginning of the execution of the contract sequence were released before
its execution finished, a contract violation is reported.

The rule [LOCK ACQUIRED] records that a thread ¢ acquired a lock m, and it updates the
set of locks currently acquired by this thread. Finally, the rule [LOCK RELEASED] records
that a thread 7 released a lock m, and it updates the set of locks released by the thread for
each contract sequence currently executed by this thread.

7.4.3 Discussion of the Proposed Approach

The above method may produce both false positives (i.e., false alarms) as well as false
negatives. False positives may be caused by the fact that not guarding an execution of
a contract sequence with a single lock throughout its entire duration does not mean that it
will not be executed atomically. Take the situation shown in Fig. 7.2(a) as an example. Not
a single one of the contract sequences is guarded by a lock, yet there is no contract violation
as the synchronisation ensures that the contract sequence in Thread 1 is always executed
before the contract sequence in Thread 2. Therefore there is no interference between these
two contract sequences, and hence no contract violation. Yet the method reports both of
the contract sequences being violated.

False negatives may happen since holding a lock when executing a contract sequence
does not always ensure that no other thread interferes with it. Take the situation in
Fig. 7.2(b) as an example. The executions of the contract sequence in both Thread 1 and
Thread 2 are guarded by a lock. However, these locks are different and thus the execution
of the contract sequence in Thread 1 may be interleaved with the execution of the contract
sequence in Thread 2, violating the contract sequence in Thread 1. Yet the method does
not report any error.

To solve the above problems, we need to take into account thread interleavings. When
guarding the same contract sequence with two different locks in two different threads, we
should issue an error only when these two threads may interleave each other. Conversely,
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(a) An atomically executed (b) A not reported contract violation.

contract reported as errorneous.

Figure 7.2: Examples of situations where the contract validation fails.

when a contract sequence is not guarded by a lock, we should report an error only when
this thread may be interleaved by another thread executing the same contract sequence.
When using a static approach such as [141], this information is hard to obtain as one would
need to infer it from the source code of the program where the scheduling of threads is
unknown. On the other hand, the dynamic approach actually sees the concrete thread
interleavings, and so it is easier to get the needed information. Unfortunately, the lockset
method does not work with it in any way. Moreover, incorporating this information into
the lockset method would be counterproductive as it would kill the extrapolation which
increases chances to detect errors. A way to go here seems to be a use of dynamic analysis
based on the happens-before relation as used, e.g., in the GoldiLock data race detector [15].
This is the direction that we follow in Section 7.7.

7.5 Experiments

This section presents an experimental comparison of the proposed dynamic validation of
contracts with the static approach of [142]. To compare the approaches, we implemented
the method described in Section 7.4 as a plug-in for the IBM Concurrency Testing Tool
(ConTest) [13]. The ConTest infrastructure provides a fully automatic Java byte-code
instrumentation and a listeners architecture that facilitated the implementation of the pro-
posed method as well as execution and dynamic analysis of the benchmarks.

The comparison of the static and dynamic approaches is done using a subset of the small
benchmark programs which were previously used to evaluate the static approach [112],
namely, the Account, Allocate Vector, Arithmetic DB, Jigsaw, Store, and Vector fail test
cases. All these benchmark programs had to be slightly modified in order to allow us
to execute them and use ConTest to analyse their runs. Namely, we did the following
modifications by hand: (1) test arguments were provided if missing; (2) infinite loops
(which are not a problem for the static approach, but cannot be present during a dynamic
analysis) were transformed to finite loops with a small number of iterations to avoid infinite
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Table 7.1: An experimental comparison of static and dynamic contract

validation.
Program ‘ Static analysis ‘ Dynamic analysis
Contract Duration CFG Detected Duration Detected Failed
Benchmark LOC  Clauses (sec.) Nodes  Violations (sec.) Violations  Assertions
Account 68 2 0,041 158 2 0,011 2 0,96
Allocate Vector 167 1 0,120 882 1 0,099 1 0,00
Arithmetic DB 325 2 0,272 2256 2 0,010 2 0,06
Jigsaw 147 1 0,044 125 1 0,009 1 0,44
Store 769 1 0,090 559 1 0,303 1 1,00
VectorFail 100 2 0,048 244 2 0,009 2 0,09

executions; (3) exceptions generation and handling (commented out due to limits of the
static approach) were uncommented; (4) the Atomic annotations preferred by the static
approach were turned back to synchronized blocks; and (5) all assertions and correctness
checks already present in the test cases were extended to send notifications to our ConTest
plug-in. The dynamic analysis tests were executed on a Linux machine with an i5-4200M
CPU (i.e., comparable with the machine used to evaluate the static approach in [112]),
running Linux 3.16, and OpenJDK 1.6 JVM.

Table 7.1 summarises results of the comparison between our dynamic approach and the
static approach of [1412]. The table is divided into three sections. In the leftmost part,
basic characteristics of the benchmark programs are provided. In particular, the test case
name, the number of effective lines of the original Java code (without our modifications,
which added only a few extra lines of code), and the number of contract clauses for the
benchmark program as manually identified by the authors of the static approach.

The middle part of Table 7.1 characterizes results of the static analysis obtained in [142].
Namely, the average analysis duration in seconds is provided with the number of control flow
graph (CFG) nodes generated and processed. Finally, the number of detected violations of
contract clauses for each benchmark program is shown.

The rightmost part of the table shows the average results (from 1000 test executions)
obtained with our dynamic approach. In particular, the average execution time of the
instrumented test in seconds is provided, followed by the average number of detected viola-
tions of contract clauses. Finally, the average ratio of failed assertions (usually implemented
as conditions checking memory consistency) provided by the authors of the tests is reported.
The standard deviations of the execution times as well as failed assertions were quite low.
The standard deviation of the number of violated contract was zero (i.e., the algorithm
always detected all the violations).

Concerning both the considered static as well as dynamic approach, there are two in-
teresting aspects we would like to emphasize: (i) the ability of both approaches to detect
contract violations; and (ii) the very low execution time taken by both approaches (of
course, a further evaluation on larger test cases remains to be done).

In both approaches, all violations were always correctly reported. Such a good result of
the dynamic approach depends on the quality of the test that executes the problematic part
of the code and on the ability of the lockset approach to extrapolate other behaviours from
the witnessed execution, and therefore to detect possible violations even from executions
where the problem did not occur. This can, in particular, be demonstrated on the Allocate
Vector, Arithmetic DB, and VectorFail benchmark programs where the assertion-based
detection reported the problem in less than 10 % of executions while the dynamic approach
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void replace(int a, int b) {
if (array.contains(a)) {
int idx=array.index0f (a);
array.set (idx,b); } 3

Figure 7.3: Example of atomicity violation with data dependencies.

always detected a possible violation.

Let us now get back to the time consumed by the analyses. In both cases, the analysis
itself took less than one second for the considered simple test programs. However, there was
a significant difference in the overhead of the underlying infrastructures. The initialisation
of the static approach within the Soot analysis environment [112] took nearly 40 seconds for
each benchmark. The dynamic approach was much faster. The bytecode instrumentation
took about 0.5 seconds. The slowdown of the test execution was within 5 % because only
the method entry and lock operation events were instrumented (i.e., most of the code was
executed with no instrumentation and hence no overhead).

7.6 Extending Contracts for Concurrency

As it turns out, the basic definition of contracts for concurrency, introduced in Section 7.3,
is sometimes quite restrictive and can classify valid concurrent programs as unsafe. Hence,
in this section, we propose two extensions that improve the expressiveness of contracts:
one extends them with parameters, making it possible to consider the data flow between
method calls; and the other adds contextual information that restricts the situations in
which atomicity shall be enforced.

7.6.1 Extending Contracts with Parameters

Figure 7.3 illustrates a situation where basic contracts may be too restrictive. It shows
a procedure that replaces item a in an array by item b. The procedure contains two
atomicity violations: (i) item a needs not exist anymore when index0f is called; and (ii)
the index obtained may be outdated when set is executed. A basic contract of Section 7.3
could cover this situation by a clause (gg) contains indexOf set. However, the given
sequence needs to be executed atomically only if contains and index0f have the same
argument, and the result of index0f is used as the first argument of set.

To express in a contract how the flow of data influences the dependencies between
methods, we extend the contract specification by considering method call parameters and
return values, expressed as meta-variables. Then, if a contract should be enforced only if
the same object appears as an argument or as the return value of multiple calls in the given
call sequence, we may express that by using the same meta-variable at the position of all
the concerned parameters and/or return values.

Clause pg may then be refined as follows—in particular, note the repeated use of meta-
variables X/Y, requiring the same objects 0;/0, to appear at the positions of X/Y, resp.:
(0y) contains(X) Y = indexO£f(X) set(Y, ). Here, the underscore is a free meta-variable
that imposes no restrictions.

Ezample. With the above extension, it is possible to refine the contract for the standard
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library java.util.ArrayList as follows:

(07) contains(X) indexO£(X)

(Q’z) X = index0f( ) (removeX) | set(X, )| getX))
(Qg) X =size() (remove(X)| set(X, )|getX))

(0y) add(X) ( get(X)| index0£(X) )

This contract captures in detail the dependencies between method calls, expressing the
relations that are problematic, excluding those that do not constitute atomicity violations.

7.6.2 Extending Contracts with Spoilers

Interleaving a sequence of calls listed in a contract clause with some methods of the given
API may lead to an atomicity violation, while this is not the case for other methods. This
is, however, not reflected in the basic contracts. For example, the clause contains index0f
states that this sequence of calls must always be executed atomically (wrt methods of the
given module), regardless of which methods the other threads are executing. Interleaving
a thread executing this sequence with another one is thus a contract violation regardless
of whether the other thread executes remove or get, not distinguishing that the former is
harmful while the latter not.

To cope with the above, we propose to augment contracts with contextual informa-
tion, allowing one to express in which context the contract clauses shall be enforced. For
that, each clause of the basic contract (now called a target) will be coupled with a set of
spoilers that restrict its application. A spoiler represents a set of sequences of methods
that may violate its target. Client programs must then ensure that each target is exe-
cuted atomically wrt its spoilers, whenever executed on the same object. For the target
clause contains indexO0f, a possible spoiler is remove, and the extended clause would be:
contains indexO0f «~ remove.

Formally, as before, let R be the set of target clauses where each target o € R is a regular
expression over Xy. Let S be the set of spoilers where each spoiler o € S is a regular
expression over Xy;. We also define the alphabets Xp C Xy and Xg € Xy for the methods
used in the targets or spoilers, respectively.

A contract is then a relation C € R X S which defines for each target the spoilers that
may cause atomicity violations. Note that one target may be violated by more than one
spoiler and also one spoiler may violate more than one target. A contract is violated if any
sequence represented by a target ¢ € R executed on the same object o is fully interleaved
with an execution of the sequence representing its spoiler o € C(p) on the object 0. A target
sequence r is fully interleaved by a spoiler sequence s if the execution of r starts before the
execution of s and the execution of s ends before that of r.?

Ezample. The basic contract for java.util.ArrayList with spoilers extending it with
contextual information is below:

(o)) contains indexOf ¢« remove

(07) indexOf (remove | set| get) ¢ remove | add | set
(03) size (remove | set| get) « remove

(0y) add indexOf «~ remove | set

2Partial interleavings of targets and spoilers are not considered to cause an error. If they do, this can be
handled by adding a new contract clause (target) whose spoiler is the appropriate fraction of the original
spoiler.
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This contract explicitly captures which interferences are harmful and which interleavings
shall be forbidden. All other interleavings, not captured by spoilers, are considered safe.

Finally, the extension of contracts with spoilers can be combined with the extension with
parameters, allowing one to define fine-grained atomicity requirements for the methods of
a module. This can be illustrated by the below clause:

contains(X) index0f(X) «~ remove( ).

This clause requires sequences of contains and index0f to be executed atomically but
only when executed over the same object, when dealing with the same item X, and only
wrt concurrent execution of remove. This captures the fact that any concurrent removal
may lead to an atomicity violation, by either removing object X or by altering its position
in the array. Note that add is not a spoiler since it does not interfere with the position of
X as elements are added to the end of the array.

7.7 Happens-before-based Dynamic Contract Validation

We now propose a dynamic contract validation method for contracts with contextual in-
formation (i.e., using both targets and spoilers) as defined in Section 7.6.2. Though not
discussed here in detail, the method can be easily extended to support parameters by con-
sidering separate instances of target/spoiler pairs for different values of parameters (as done
in our implementation). The method was published in [37] together with a complementary
method for static validation of contracts. While the static approach can formally prove that
no contract violation is possible, it does not scale well, supports contracts with parameters
only, and produces many false alarms. As the method for static validation of contracts is
not part of the contribution of this thesis, it is not discussed in this chapter in more detail.

Below, we first formalize a notion of multi-threaded program traces used as the input
of our analysis. Then we define the happens-before relation that captures the ordering of
events in program traces. Next, we describe our method for detecting contract violations.
Finally, we provide results of experiments with a prototype implementation of the approach.

7.7.1 Preliminaries

For the below, we fix a set of threads T, a set of targets R, a set of spoilers S, a set of
contracts C € R x S, and a set of locks L. We consider program traces in the form of
sequences of events of the following types: a thread entering/exiting a method, a thread
acquiring /releasing a lock, and a thread forking/joining another thread. Since each of the
events can appear multiple times in a trace, we assume the events to be indexed by their
position in the trace. However, we do not take the indices into account when looking for
matches of the regular expressions of targets/spoilers in a trace. We denote the set of all
events that can be generated by a thread r € T as E;, and let E = U;erE;. Then, a trace is
a sequence T = ej...e, € EY. We let ¢; € v denote that the event e; is present in the trace
7. By start(t)/end(t), we denote the first/last event generated by a thread z.

Given a trace 7 = e;...e, € E*, we call its sub-sequence r = e;e;,...€;, 1 < k < n,
an instance of a target o € R iff (1) r consists of well-paired method enter/exit events
executed by a thread r € T, (2) when restricted to the enter events only, r matches the
regular expression of o (if o contains stars, the longest possible matches are considered
only), and (3) apart from the events e;,, ..., ¢; there is no event from the alphabet of o
executed by ¢ between the indices i and i; in 7. Intuitively, an instance of a target can
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interleave with events that are not its part, but only if they are outside of its alphabet.
For instance, for a target o = abc and a trace T = aabdc, there is an instance of o between
indices 2 and 5 but not between 1 and 5. We denote by e; € r that the event ¢; is present
in the target instance r. We let start(r) = e;, and end(r) = e;, denote the first/last event
of r, respectively. We let [p]" be the set of all instances of a target o € R in a trace T and
[R]" = Ugerlo]™ be the set of all instances of all targets from R in 7.

Likewise, we define the notion of an instance s of a spoiler o € S in a trace 1, its
beginning/end events start(s)/end(s), respectively, the set [o-]” of all instances of o~ in 7, and
the set [S]” = Uy es[o]™ of all instances of all spoilers from S in 7.

A happens-before relation <y, over a trace T = e;...e, € E* is the smallest transitively-
closed relation on the set {ey, ...,e,} of events in 7 such that e; <;; ex holds whenever j < k
and one of the following holds: (i) Both events e; and e; are performed by the same thread
(program order). (ii) Both events e; and e, acquire or release the same lock. (iii) One of
the events e; and e is a fork/join of a thread u in a thread ¢ and the other is executed by
u (fork-join synchronization). If two indices in a trace are not related by a happens-before
relation, then the corresponding events are considered to be concurrent.

A contract (0,0) € C is violated in a trace 7 iff there is a target instance r € [o]" and
a spoiler instance s € [0]” s.t. start(s) £up start(r)Aend(r) £np end(s). Intuitively, the contract
(0,0) is violated in 7 if there are instances r/s of o/o, resp., where r may start before s and
end after s, i.e., the target instance can be fully interleaved with the spoiler instance.

7.7.2 On-the-Fly Dynamic Contract Validation

If the entire trace is available, dynamic contract validation is easy. For all possibly con-
flicting instances of targets and spoilers, one simply checks whether a target is fully in-
terleaved with a spoiler or not, i.e., Y(o,0) € C,¥r € [0]",Vs € [0]" checks if start(s) 4np
start(r) A end(r) £y end(s) is satisfied. If it is, an error is reported.

However, this approach is not very practical. It scales poorly with the size of the trace,
which can be huge. In some cases, e.g., for reactive programs, the trace can even be infinite.
To address this problem, we propose an on-the-fly dynamic contract validation algorithm
which does not require the whole trace to be available and yet guarantees that if a contract
is violated in the trace, this will be detected.

Trace Windows

A crucial concept for our on-the-fly dynamic contract validation is the concept of a trace
window, providing a gradually moving, partial view of the trace. Formally, a trace window
v is a subsequence of the trace 7. While, in the extreme case, the trace window may actually
contain the entire trace, the goal is to keep it as small as possible. Later, we show that
there is a maximum number of events that we need to keep in the window in order not to
miss any error and that this number grows only with the number of targets and spoilers,
not with the size of the trace.

We denote by [p]Y the set of all instances of a target o € R in a window v and by
[R]Y = Uyerlo]” the set of all instances of all targets from R in v. In the same manner, we
define the set [o]V of all instances of spoiler o € S in v and the set [S]Y = Uges[o]V of all
instances of all spoilers from S in v.

We move events into the trace window v as soon as they occur. However, in order
for the window not to grow indefinitely, we also have to remove some events from it. We
define the v — e operation which removes e from v. We also generalize this operation for
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instances of targets/spoilers. The v — r operation removes all events from r € [R]Y from
v provided they do not belong to another currently tracked instance of a target or spoiler,
ie,Veser:v—oe & (Mxe[RIYU[SI,x#r:e ¢ x) AN(¥x € [R]" U[S], start(x) €
vAend(x) ¢ v:e; ¢ x). Likewise, we define the v — s operation that removes all events from
s € [S]" from v. As we show below, one can discard events corresponding to some of the
older spoiler and target instances when newer ones appear in the window. The conditions
allowing us to discard such instances are safe in that at least one instance of a violation of
each target by each spoiler is always reported. However, if there are multiple occurrences
of the conflict, just one is guaranteed to be preserved.

Discarding Spoilers

First, we aim at reducing the number of spoiler instances in a trace window. We say that
discarding a spoiler instance s (i.e., removing this particular instance from the current trace
window and not considering it in further contract violation detection) is safe iff whenever
a contract violation can be detected using s, it can be detected without s too. The below
lemma shows that, under some natural assumptions, reflected in our analysis, an instance
s1 of a spoiler o can be safely discarded from the window provided the window contains
a newer instance of the spoiler o, i.e., an instance s, that started later than s;.

In particular, we assume that events appear in the window v as soon as they appear
in the trace 7. Moreover, we assume that as soon as an instance r of a target o appears
in the window v, i.e., r € [p]Y becomes true, r is checked for contract violation against all
instances s of all spoilers o € C(p) conflicting with the given target o that appear in the
window v, i.e., s € [’]Y. Then the following holds.

Lemma 1. Let 51,5, € [0]Y be instances of a spoiler o € S present in a window v of a trace
7. If 51 started before sy, i.e., start(s)) <pp start(sy), it is safe to discard s\ from v.

Proof of Lemma 1. By contradiction. Assume there is a trace T with a window v and two
spoiler instances si, 52 € [07]Y of a spoiler o € S where start(sy) <pp start(sy), and it is not
safe to discard s; from v. Then, there must be a contract (o, o) € C and an instance r € [o]”
of the target o in the trace 7 s.t. s; violates r, but s, does not violate r. This means that
the following conditions must hold: (1) start(s\) £n» start(r) A end(r) £p» end(sy) since s
violates r. (2) start(sy) <pp start(r) V end(r) <p, end(s;) since s, does not violate r.

Consider first that start(sy) <pp start(r) holds. Then, since s; and s, are such that
start(sy) <pp start(sy), we get start(s;) <pp start(r). However, this contradicts the first
condition above, which requires that start(sy) £up start(r) holds.

Hence, it must be the case that end(r) <, end(s;) holds. This means that » must appear
in v before s, appears in there. However, then, a contract violation is detected before s;
is removed from the window, and once a contract violation has already been detected, any
further optimization is safe (in fact, the analysis can be stopped once a contract violation
is detected).

O

Using Lemma 1 and the fact that spoiler instances in a single thread are ordered wrt <,
we can prove the below lemma that limits the number of spoiler instances to be preserved.

Lemma 2. Let T ={t e T| start(t) = e = [ < j } be the set of threads that started before
the end of a window v =e;...ej. For each thread t € T and for each spoiler o € S, we need
to preserve just the last instance of o in v running within t.
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Proof of Lemma 2. Take any thread t € T and any spoiler o € S. Since the definition of
spoiler instances rules out overlapping of spoiler instances within a particular thread, if the
set of instances of o that appear in v within ¢ is not empty, we can order these instances
into a sequence si,...,s, such that start(s;) <u, start(s;) for any 1 <i < j < n. Then, by

Lemma 1, it suffices to preserve just the last spoiler instance s, in the sequence.
O

Discarding Targets

We now aim at reducing the number of target instances, which turns out to be more
challenging than for spoilers. We say that discarding a target instance r is safe wrt a spoiler
instance s iff whenever a contract violation between r and s can be detected, then a conflict
between s and some other target instance r’ can be detected too. Note that, unlike in the
case of spoilers, discarding a target instance is defined as safe wrt a given spoiler instance
and not in general.

First, Lemma 3 shows that, given instances r; and r, of a target o where r; ends before
rp starts, r; can be safely discarded wrt any spoiler instance that (i) has not even started
before the end of the window or that (ii) started even before ry.

Lemma 3. Let v = ¢;...e; be a window of a trace T with two instances ri,r» € [0]” of
a target o € R such that end(ri) <pp start(ry). It is safe to discard ri wrt any instance
s € [o]" of a spoiler o € S forming a contract with o, i.e., (0,0) € C, whenever either
(i) s starts behind the window v, meaning that if start(s) = e;, then j < I, or (ii) s starts
before ry starts, i.e., start(s) <pp start(ry).

Proof of Lemma 3. By contradiction. Assume that there is a trace T with a window v =
e;...ej, two target instances ri,r € [0]” of a target o € R such that end(r)) <u, start(ry),
and it is not safe to discard a spoiler instance s € C(p) despite it is the case that either
(i) s starts behind the window v, i.e., if start(s) = ¢;, then j < [, or (ii) s starts before ry,
i.e., start(s) <pp start(ry).

Then, there must be some instance s € [o]" of a conflicting spoiler o € C(p) that appears
in the trace T and that is violated by r; but not r;. For the spoiler instance s, the following
conditions must hold: (1) start(s) £pp start(ri) A end(r)) 4m» end(s) because s violates ry.
(2) start(s) <up start(r2) V end(ry) <p» end(s) because s does not violate r;.

Clearly, if it is the case that s starts before ry, i.e., start(s) <pp start(r;), we immediately
have a contradiction with Condition (1), which requires start(s) £ start(r;). Hence, assume
that s starts only after the end of the window.

Next, assume that end(r;) <pp end(s) holds. Since it is moreover the case that end(ry) <pp
start(rp) holds, and the program order guarantees that start(r;) <pp end(ry), end(ri) <pp
end(s) holds too. However, this contradicts with Condition (1), which requires that end(ry) £
end(s) holds.

Hence, it must be the case that start(s) <u, start(rp) holds. However, this means that s
must start in v, which is a contradiction.

O

Next, we consider the case when an instance s of a spoiler ¢ is running at the end of
the window v, there are two instances r; and r, of the same target o conflicting with o, r|
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ends before r, starts, but s does not start before r;| and r,. Lemma 4 shows that, in this
case, discarding r; is safe wrt s.

Lemma 4. Assume a window v of a trace T with two target instances ry, ry € [0]Y of a target
0 € R s.t. end(r)) <pp start(rp). Let s € [0]" be an instance of a spoiler o € S that forms
a contract with o, i.e., (0,0) € C, it is running at the end of v, i.e., start(s) € v but
end(s) ¢ v, and it has not started before the given target instances, i.e., start(s) £pp start(ry).
Then discarding ry is safe wrt s.

Proof of Lemma 4. By contradiction. Assume that there is a trace T with a window wv,
two target instances rj,r; € [0]Y, and an instance s € [o]" of a spoiler o € C(p) such that
start(s) € v, end(s) ¢ v, and start(s) 4np start(ry). Further, assume that end(r|) <pp start(rp),
and yet discarding r; from v is not safe wrt s.

It is not safe to remove r| from v wrt s iff 7| can be violated by s while r, cannot. Then,
the following conditions must hold: (1) start(s) #up start(ry) A end(ry) £m» end(s) because s
violates ry. (2) start(s) <py start(rp) V end(ry) <pp» end(s) because s does not violate r;.

First, assume that end(ry) <pp, end(s) holds. Since end(r1) <pp start(rp) holds, and the
program order guarantees that start(ry) <pp end(rp), we get end(ry) <pp end(s). However, this
contradicts with Condition (1) above, which requires that end(r;) £ end(s) holds.

Hence, it must be the case that start(s) <, start(ry) holds. However, this contradicts
with the assumption of the lemma that start(s) £, start(ry).

O

Since we check each spoiler instance against all target instances that are currently in the
trace window as soon as the spoiler instance gets into the window, we can prove the below
upper bound on the number of target instances to be preserved. Intuitively, by Lemma 3,
one instance is kept wrt all not yet started and—on the other hand—old but still running
spoiler instances. Further, by Lemma 4, one instance per thread in which a newer spoiler
instance is running is to be preserved.

Lemma 5. Let Ty ={t e T| start(t) = ¢, = [ < j } be the threads that started before the end
of a window v =e;...ej, and let To ={ t € Ty | end(t) = ¢, = [ > j } be the threads running
at the end of v. For each thread in T and each target o € R, we need to preserve at most
|T>| + 1 instances of o.

Proof of Lemma 5. Take any thread t € T| and any target o € R. Due to immediate checks
of conflicts between any target instance in the window and any spoiler instance that appears
in the trace window, from the point of view of preserving target instances, we care about
their possible conflicts with only those spoiler instances that have not yet terminated or
that have not even started yet.

The definition of target instances implies that we do not have to consider overlapping
target instances within particular threads. Therefore, if the set of instances of ¢ that appear
in v within the thread ¢ is not empty, we can order these instances into a sequence ri,...,r,
such that end(r;) <p start(r;) for any 1 <i < j<n.

Further, the definition of spoiler instances implies that we do not have to consider
overlapping instances of spoilers running within a single thread. Hence, there can be at
most |T>| running instances of spoilers from S at the end of v: one instance in each thread of
T,. For each of them, Lemma 4 may be applicable to a subsequence of the target instances
Tly...,Fm, m < n. These subsequences may differ just in the value of m. Lemma 4 allows us
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to preserve just the last instance r,,. However, since the value of m can be different for each
of the subsequences, we may end up preserving |T»| target instances, one for each spoiler
instance running at the end of v.

Next, if Lemma 4 is not applicable wrt some running spoiler instance s to a suffix
Ftls--->Tn, m = 0, of the sequence of target instances running within 7 in v because
start(s) <pp ¥m+1, Lemma 3 allows us to preserve just r,. The same r, is to be preserved
for each running spoiler instance. Moreover, due to Lemma 3, it is also enough to preserve
r, with respect to all spoiler instances that have not yet started. Hence, we get the upper

bound of |T;| + 1 target instances.
O

Vector Clocks and Further Optimizations

Next, as a further optimization, we will first introduce an application of vector clocks for ef-
ficiently tracking information about the happens-before relation between the spoiler/target
instances that are (or were) in the current trace window. Essentially, instead of remember-
ing the entire sequence of events forming a target/spoiler instance, we will remember the
vector clocks of their start and end only. Keeping just these two vector clocks is sufficient
as we need to know the happens-before relation only between the starts and ends of con-
flicting target/spoiler instances. Next, from Lemma 5, we know that we need to track—in
the worst-case—for each thread and for each target, one instance of the target for each
thread in which some potentially conflicting spoiler instance is running (a consequence of
Lemma 4) plus one further instance for all other running or not yet started spoiler instances
(a consequence of Lemma 3). We will propose an optimisation which will allow us to pre-
serve, for each thread ¢ and each target o, the vector clocks of both the beginning and end
just for the last instance of ¢ in r only. For the other instances required to be tracked by
Lemma 4, we will remember the vector clock of their end only.

In general, a vector clock VC : T — N contains a clock value for each thread r € T
recorded at a certain point. In particular, we maintain, for each ¢ € T, a vector clock
C; whose entries C,(u) record, for each u € T, the clock value of the last operation of u
that happens before the current operation of t. The f~component of this vector clock then
represents the clock of the thread . It is incremented at each lock release or fork operation.
Next, we maintain a vector clock L; for each lock [ € L. These vector clocks are updated on
synchronisation operations that impose a happens-before order of operations from different
threads in a way described in [60].

Further, we assign to each event e € T executed by a thread r € T a vector clock VC,. This
vector clock is set to the value of C, when e is encountered in the execution of the program.
It can then be determined whether an event e, executed in the thread ¢ happens before
an event e, executed in a thread u, i.e., e, <pp ey, by checking whether VC,, (f) < VC,, (¢).

To allow for checking the conditions determining if a contract was violated or not, it now
suffices to record the vector clocks of the start and end of the spoiler and target instances
that are to be kept in the window wrt Lemmas 1, 3, and 4.

Moreover, for the target instances r to be remembered according to Lemma 4, i.e.,
those for which there is some running spoiler instance s that can collide with r, we can
reduce the amount of stored information even further as follows. Instead of storing the
vector clocks of the beginning and end of each target instance r of the above kind that
appears in some thread ¢, we proceed as follows: (1) We remember in which threads u
there are running spoiler instances s satisfying the first condition of contract violation
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wrt r, i.e., start(s) #£pp start(r). (2) We remember the time when r ends its execution,
i.e., VCenar(t), which is needed to check the second condition of contract violation, i.e.,
end(r) £ end(s), once s ends. Both of these pieces of information can be remembered by
maintaning a mapping PVy"” : T — N for the thread 7 € T, the target o € R whose instance
r is, and the spoiler o € S whose instance s is. Namely, for each thread u containing a
spoiler instance s satisfying the first condition of contract violation, we may set PV¥ “(u) to
VCena(r(t), while setting the other entries of PV,Q"T to 0.3

Using the above, when a spoiler instance s finishes its execution in a thread ¢, it suffices to
check PV2(t) for each thread u other than ¢ (as we do not consider conflicts within a single
thread).* If the value is not 0, we know that the first condition of contract violation between
s and the target instance r that ran in the thread u that we remebered through PVZ“ only
was satisfied. Then, by checking PVS7(t) < VCpasy(u), we can determine if a violation
occurred or not.

Method Description

We now summarise our optimized on-the-fly contract violation detection. Most of it is
done by Algorithm 2 at method exit events. Algorithm 2 handles both conflicts between
the latest, so far fully remembered spoiler and target instances (lines 3, 11) as well as
between newly finished spoiler instances and older target instances partially remembered
via PVY (lines 12-13). Algorithm 2 also discards older target/spoiler instances r’/s” (lines
7, 9) and maintains the PV?’ mapping (line 6). The latter is done by recording the above
described data about an older target instance r’ that can still collide with some running
spoiler instance s according to Lemma 4, which is tested on lines 4-6, before r’ is removed
from the window.

Apart from the above, at an entry to a method, we perform recognition of target/spoiler
instances. That is done using finite automata for recognising sequences of events matching
the regular expressions representing the corresponding targets/spoilers, respectively. New
runs through the automata may be initiated at each event, and, at the same time, an
attempt to extend all so-far unfinished runs is done (if such a run cannot be extended via
the current event and the event belongs to the alphabet of the concerned automaton, the
run is discarded). When an exit from a method is encountered, a check is performed to see
whether some of the runs has reached an accepting state (this will then be recognised via
the end(r)/end(s) predicates on lines 1/8 of Algorithm 2).

7.7.3 Implementation and Experiments

We implemented the above approach extended to distinguish values of one parameter by
tracking different target/spoiler instances for its different values. We used the ANaConDA
framework [55] to monitor method calls and synchronization events in running C/C++
programs. ANaConDA also provides us with heuristic noise injection. As discussed in the

3By setting PV (u) to VC,un(f), we remember both that the first condition of contract violation has
been satisfied between r and s and the time when r ended. The time is remembered multiple times for
possibly different threads u, but we tolerate this for the sake of obtaining uniform data structures. Since
the space needed to store PV¥7 corresponds to that of a vector clock, and we have a single PV?“ instead of
two vector clocks for each target instance that needs to be remembered according to Lemma 4, we save up
to 2 - |T,| — 1 vector clocks where T, is the set of currently running threads.

4The meaning of the threads is swapped here wrt the previous paragraph in order to have the explanation
in line with the code in Fig. 2.
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Algorithm 2: Contract violation detection at method exit.
Data: window v, event e € E generated by thread ¢t € T

1 if o e R,r € [p]! : e = end(r) then // Target ended
2 for c € C(o),ueT:u+tdo

3 if ds € [o]Y : start(s) £np start(r) A end(r) #pp end(s) then r is violated by s ;
4 if ds € [o]] : start(s) € v A end(s) ¢ v then

5 if start(s) <pp start(r) then

6 L L if A €[]V : ¥ # r A start(s) £m start(r’) then PV (u) = VConao/(1) ;
7 if 3r €lo] : ¥ #r then v—7r;

8 if ceS,se[o]!:end(s) = e then // Spoiler ended
9 if 3s’ €[o]y : 5" # s then v— s ;
10 for pe C(o),ueT:u#tdo
11 if 3Jr e [o]Y : start(s) 4np start(r) A end(r) £np end(s) then r is violated by s ;
12 if PV (1) # 0 A PV (1) < VConas)(u) then
13 L an instance of g is violated by s;

Table 7.2: Validation results for dynamic analysis.

n g —_
= B 2 ~
i £z, 32
€8 o83 ~—= Q
L E2 23325 3
Benchmark = Op A A<® n B
Coord03 [10] 8 380 0 0 380 116 1.01
Coord04 [11] 4 24 0 0 24 53 0.52
Local [10] 4 2 0 0 2 27 0.52
NASA [10] 1 100 O 0 100 96 0.60
Account [152] 1 176 0 0 176 54 0.53
Link Manager 2 1 0 0 1 15K 1.14
Chromium-1 2 2 0 0 2 7.5M 49.12

previous text, this can increase the number of witnessed interleavings and hence chances to
see an interleaving from which our analysis can deduce that a contract violation is possible.
We thus use two orthogonal methods to find rare concurrency-related bugs: noise injec-
tion and extrapolation based on the happens-before relation. Moreover, we use a specific
kind of noise tailored for the given purpose. In particular, we inject noise before the last
method of each target instance which prolongs its execution and increases chances to en-
counter a spoiler instance capable of interleaving the target instance and causing a contract
violation.

We tested our implementation on a set of small benchmarks with known atomicity
violations as well as two real-world programs, Link Manager and Chromium-1. The small
programs were taken from [10,11,152] and were also used to evaluate the static validation
method [37] (we used a C++ version as close as possible to the Java version).

Link Manager is a component of a cloud-connected thermostat used for managing paral-
lel task processing (we were not allowed to identify the company developing it). A manager
thread is issuing tasks to ezecutor threads, which send results of the assigned tasks back to
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the manager through a shared queue. Our tool was used in the early stages of development
of this program, and it uncovered an order violation error that happened when an executor
sent the result of its task before the manager initialised the queue used to transfer the data.
This caused the manager to wait forever for the task to be finished. One of the contracts
we checked required that the queue cannot be used before it is initialised, i.e., no send or
receive can occur between the start of the manager and the initialisation of the queue.
The error occurred very rarely, so normal tests were unable to detect it. Our tool, however,
was able to detect the error, and it was then promptly fixed.

Chromium-1 is a program from the RADBench benchmark [30], an older version of
the Chrome browser (version 6.0.472.35) containing a known atomicity violation leading to
an assertion failure. As this error can be described using a contract, we tried our tool to
find the error. The experiment was successful, showing that our tool can handle even large
programs. Interestingly, to find the error without the on-the-fly approach, one would need
to store a trace with more than 17 million method calls (about 1.6 GB of data) while the
on-the-fly method needed about 10 MB of data only.

Table 7.2 provides results of experiments with our dynamic approach. The 7/S Pairs
column gives the number of target/spoiler pairs considered. The column Contract Vio-
lations gives the number of instances of such pairs found violated.” The column False
Positives, which was included for compatibility with the results of static contract valida-
tion as presented in [37], contains zeros only as, unlike the static approach, the dynamic one
considers solely executable sequences of method calls (indeed, they were seen to execute).
The column Potential AV contains numbers of detected contract violations that need not
stay real if the values of more than one parameter per contract are taken into account
(which is not yet supported in our tool). The column contains zeros only showing that we
sufficed with tracking a sole parameter in all our experiments.® The column Real AV gives
numbers of contract violations guaranteed to be real as they used at most one parameter,
and our tool was thus able to distinguish the needed instances. Finally, the columns SLOC
and Time give the numbers of lines of the considered programs and the analysis time.

The results show that our approach can be used to find real errors in real-world pro-
grams. Moreover, it can be used to detect not only atomicity violations, but also order
violations which are hard to be found using exiting techniques.

7.8 Conclusion

We proposed two approaches for dynamic validation of contracts in concurrent code, one
based on locksets and the other on happens-before relation. When compared with previously
proposed static approaches, our approaches can suppress some of the false alarms produced
by the static approaches, and they are also more scalable. On the other hand, since we
build on observing concrete runs, our approaches can miss some errors that would not be
missed by the static approaches.

To detect as many contract violations as possible, the first approach employs a lockset-
based extrapolation of the synchronization behaviour observed in performed test runs,

5Compared with the static approach [37], we look for contract violations in the ezecution of a program,
not its source code. As the code containing a contract violation may be executed repeatedly, we can detect
(and report) the same contract violation many times. The static approach reports it only once.

6We tried an experiment in which we tracked no parameter values at all. Then, for Chromium-1, our
tool reported 14 potential violations instead of the 2 real ones, showing that distinguishing target/spoiler
instances is important.
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which allows the method to warn about possible contract violations even when they were
not seen in a concrete execution. Unfortunately, this extrapolation can suffer from both
false positives and negatives due to the fact that it does not utilise any information about
thread interleavings. In order to solve this problem, we have further introduced a second
approach based on the happens-before relation, which does reflect thread interleavings, and
we extended the basic notion of contracts for concurrency with arguments and spoilers,
each of the extensions allowing one to describe contracts more precisely.

We have evaluated both approaches on a set of simple as well as real-world programs.
While the lockset-based approach can detect atomicity violations only, the happens-before-
based approach can also detect errors such as order violations. Moreover, it produces no
false alarms. In addition, both of these approaches may use noise injection to increase
the number of observed thread interleavings and hence to increase the chances to see in-
terleavings containing a contract violation or at least symptoms that such a violation is
possible.

There are many possibilities for future work. For instance, while it is conceptually easy
to support contracts with both arguments and spoilers in the dynamic approach, this can
be rather costly in practice due to many target and spoiler instances to be tracked. Suitable
optimisations are thus likely needed. Further, it seems promising to combine the dynamic
approach with the existing static approaches—e.g., by letting some static approach to drive
the dynamic one to likely problematic code. More involved ways of automatically deriving
contract candidates are also an interesting issue for further work.
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Chapter 8

Conclusion

The main goal of the thesis is to advance the research in the area of detecting errors
in multi-threaded programs. Despite the fact that a plenty of detection techniques were
invented over the years, many companies still have a hard time finding tools which can
detect errors they are encountering in the programs they are developing. There are several
main reasons why they cannot use the techniques already available, the most common ones
being that the tools implementing the techniques do not support the programs they have,
the programs contain types of errors the techniques are unable to detect, or the techniques
just cannot handle larger software. While it is impossible to create a technique which would
be universal and effective at the same time, developing practical techniques usable in the
industry is always welcome, especially nowadays where multi-threaded programs can be
found even in the smallest devices.

While the most common types of concurrency errors already have a lot of techniques
for their detection, detection methods for other kinds of errors are clearly lacking in this
area. It is not that these types of errors are so rare that it is not worth to deal with them.
Actually, many software developers encounter these errors more often than they would like.
It is mostly that these types of errors are more complex, and thus it is much harder to
develop techniques to detect them.

This thesis contributes to the research in the area of detecting concurrency errors in
several ways. It starts with improving existing techniques by combining dynamic analysis
and (bounded) model checking, exploiting their strengths and suppressing their weaknesses.
The idea is to reduce the state space to be searched by a (bounded) model checker using
information provided by a dynamic analysis. While the resulting technique is much more
efficient and precise than either of the two utilised techniques, it still cannot handle large
real-world programs where even the reduced state space is too big.

Another contribution is a proposal of improved noise injection which allows one to com-
bine several noise placement and noise seeding heuristics in a single run of a program. This
improvement further increases the chances of noise injection to uncover rare executions
containing errors and thus makes any technique whose detection capabilities rely on seeing
such executions more efficient. Besides improving the noise injection in general, the the-
sis also introduces several new noise injection heuristics which can be used separately or
combined together.

The third contribution is the development of the ANaConDA framework which allows
one to analyse C/C++ programs on the binary level. While many of the existing detection
techniques are applicable on C/C++ programs, there are only few implementations of
these techniques for this class of programs. The goal of this framework is to ease the
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development of tools for analysing C/C++ programs. The framework also supports various
noise injection techniques that can be used to increase the efficiency of any technique
implemented using this framework.

Beside allowing one to analyse C/C-++ programs, the framework was later extended
to support transactional memory, a new kind of synchronisation which starts to be used
more and more. The next contribution of the thesis is the discussion of various caveats
of monitoring programs using transactional memory (which is required for their analysis)
and a usage of noise injection techniques for fixing the behaviour of such programs (as the
behaviour is often changed because of the monitoring).

The last contribution is the invention of a brand new technique for detecting several
kinds of concurrency errors, namely the well-known atomicity violations and also the less
studied order violations and missed signals. All of these errors may be described using the so
called contracts for concurrency and then checked using the new technique. The technique
also works very well with the noise injection techniques, it fact, a slightly modified version
of one of the previously invented noise injection techniques is used here to greatly increase
the efficiency of the detection technique.

The results were published in proceedings of Eurocast 2011 and 2015, RV 2011 and
2012, PADTAD 2012, and MEMICS 2014, and in the special issue of the STVR journal
focusing on concurrency. A part of the content of Chapter 7 is currently under review
at the ICST 2017 conference. Moreover, they have been implemented in the ANaConDA
framework. A paper describing this framework also won the best tool paper award at
the RV 2012 conference. The framework has been tested in collaboration with industrial
partners (we were not allowed to mention them explicitly) and various errors were found in
their programs.

As for future work, we discussed it already in the different chapters. Let us highlight
just some general directions here. As there is no silver bullet heuristic when using noise
injection, it is always important to pick up (and combine) the right heuristics and choose
the right parameters for them. So developing new noise injection heuristics, e.g., tailored
for specific concurrency errors, detection techniques, or classes of programs, and inventing
(automatic) approaches for determining the best parameters for them, e.g., by utilising
search techniques, generic algorithms, or data mining, is more than helpful. With the
ANaConDA framework, it is easier than ever to implement the existing dynamic analyses
for C/C++ programs or to quickly develop new analyses and test how they work in practice.
There are also many ways how to extend the framework. To mention a few, one can add
a support for analysing multi-process programs (in addition to multi-threaded programs),
for handling additional kinds of synchronisation such as RCU (read-copy-update), or for
extracting a more detailed information about the code being analysed.
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