
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Intelligent Systems

Ing. Jan Fiedor

Practical Methods of Automated Verification
of Concurrent Programs

Praktické metody automatizované verifikace paralelńıch programů

Extended Abstract of a Ph.D. Thesis

Supervisor: prof. Ing. Tomáš Vojnar, Ph.D.

Key Words

Dynamic analysis, concurrency, noise injection, testing, transactional memory,
contracts.

Kĺıčová slova

Dynamická analýza, souběžnost, vkládáńı šumu, testováńı, transakčńı paměť,
kontrakty.

The original of the thesis is available in the library of Faculty of Information
Technology, Brno University of Technology, Czech Republic.

Contents

1 Introduction 5
1.1 Detecting Errors in Multi-threaded Programs 5
1.2 Goals of the Thesis . 8

2 Concurrency Errors 9
2.1 Safety Errors . 10

2.1.1 Data Races . 10
2.1.2 Atomicity Violation . 10
2.1.3 Order Violations . 11
2.1.4 Deadlocks . 11
2.1.5 Missed Signals . 11

2.2 Liveness and Mixed Errors . 12
2.2.1 Livelocks and Non-progress Behaviour 12
2.2.2 Blocked Threads . 13

3 Combining Dynamic Analysis and Model Checking 14
3.1 Experiments . 15

4 The ANaConDA Framework 16
4.1 Experiments . 17

5 Improved Noise Injection 18
5.1 Evaluating Improved Noise Injection 19
5.2 Evaluating New Heuristics . 20

6 Transactional Memory Programs 23
6.1 Experimental Evaluation . 24

7 Contracts for Concurrency 26
7.1 Experiments . 27

8 Conclusion 29

Bibliography 31

Curriculum Vitae 37

Abstract 38

3

1 Introduction

Up until the era of multi-cores, multi-threaded programs were needed mainly
for high performance computing. Such programs were developed by specialists
having deep knowledge about multi-threaded computation and problems related
to it. Nowadays, every moderately complex program is usually multi-threaded
in order to provide the best performance possible. The problem is that writing
multi-threaded programs is significantly harder than writing single-threaded
programs. It is not sufficient to just split the computation into several parts and
execute each part in a separate thread. Some parts may be dependant on other
parts, requiring them to be executed first, some parts may access the same
resources and cannot do so simultaneously, etc. In the end, the programmer
must properly synchronise these threads. Failing to do so may lead to errors.
On the other hand, oversynchronising the program, i.e., not allowing the other
threads to run even when it is safe to do so, may prevent the errors, but may
also degrade the performance of the program.

As multi-threaded programs are usually used to achieve maximum perfor-
mance, programmers rarely end up oversynchronising them. This also means
that they usually tend to synchronise only the parts which they think needs
it. Unfortunately, many programmers are unable to correctly identify the
parts that needs to be synchronised. This may lead to various concurrency
errors caused by a missing synchronisation. Such errors usually manifest very
rarely, and thus it is very hard to detect and localise them. Because of that,
techniques for detecting such errors are needed to help the programmers to
fix them. Indeed, reports [Kre06, CHPW00, Res03] emphasize that it often
takes more than a month to fix a concurrency-related error and that nearly
70 % of the fixes are buggy when first released. The topic of detecting errors
in multi-threaded programs is both interesting and challenging, and also very
relevant nowadays as the multi-core processors are not only present in desktop
computers now, but also in devices like tablets, mobile phones, etc.

1.1 Detecting Errors in Multi-threaded Programs

Detecting errors in multi-threaded programs is much harder than in sequential
programs because they may manifest only under very rare interleavings of
actions executed by the different threads. Such interleavings are not very likely
to be spot during classical testing, but they can occur in the production where
the software is run for a much longer time, on different machines, under different
load, and in different environment settings. This situation in turn stimulates
research efforts devoted to all sorts of advanced methods for testing, analysis,
and verification of multi-threaded programs.

5

Formal verification methods, such as, e.g., model checking [BK08, CGP99],
may potentially be able to precisely analyze a given program. Unfortunately,
these precise approaches do not scale well for complex software systems. The
size of the state space to be analyzed in such systems is simply too big to
be handled by the precise approaches despite various optimizations that are
used in advanced formal verification techniques. Therefore, more lightweight
approaches such as static and dynamic analyses or intelligent testing are often
used. These approaches use approximations of the analyzed programs to cope
with the complexity of the systems, which can pay off in the number of detected
errors despite such approaches can both miss errors as well as produce false
alarms [AB01a].

Static analyses, such as [HP04], usually focus on searching for purely syn-
tactic error patterns (possibly slightly refined, e.g., by using some information
on the behavior of the verified programs pre-computed by suitable dataflow
or type analyses). Such analyses scale well to even large code bases and may
provide valuable information to the developer [KMB10], but they often cannot
discover concurrency-related errors because they do not model threads and
their interactions [HP04]. Of course, there also exist static analyses which do
consider concurrent threads, such as, e.g., [AB01b, NPSG09]. These analyses
are able to detect concurrency-related errors, but they often produce many
false alarms due to the abstractions they work with.

Testing [EFG+03b, HAP+12, MQB07, YNPP12] relies on (possibly re-
peated) execution of a given program. It can precisely analyze all aspects of
concurrent behavior, but it can only consider the witnessed execution paths and
thread interactions. To increase the chances that testing will find concurrency-
related errors, one can use (1) dynamic analysis [BH06, EQT07] techniques
extrapolating the witnessed behaviour and/or (2) techniques allowing one
to increase the number of different interleavings witnessed in repeated test
runs (such as systematic testing [HAP+12, MQB07, YNPP12] or noise injec-
tion [EFG+03b]). As this thesis concentrates mainly on dynamic analysis and
testing, we discuss these approaches in more detail below.

Stress testing. Many discussions on various forums suggest to use stress
testing for discovering concurrency-related errors by simply executing a large
number of threads competing for shared resources. This approach increases the
possibility of spotting concurrency errors a little, and it can help to reveal some
concurrency errors—usually those which manifest quite often. This may lead
developers to a false conviction that the program is tested enough [PGB+05].

Noise injection. Noise injection inserts delays into the execution of selected
threads with the aim of forcing new (legal) interleavings, which have so far not

6

been witnessed and tested. This approach allows one to test more interleavings
of synchronization-sensitive actions in shorter time because the system is not
that much overloaded by other actions. Noise injection is also able to test legal
interleavings of actions which are far away from each other in terms of execution
time and in terms of the number of concurrency-relevant events [EFG+03b]
between those actions during average executions provided that strong enough
noise is injected into some of the threads. In a sense, the approach is similar
to running the program inside a model checker such as JPF [VHBP00] with
a random exploration algorithm enabled. However, model checkers such as
JPF are often limited in the programming constructs they natively support.
Moreover, making purely random scheduling decisions may be less efficient
than using some of the noise heuristics which influence the scheduling at some
carefully selected places important from the point of view of synchronization
only. The approach of noise injection is mature enough to be used for testing
of real-life software, and it is supported by industrial-strength tools, such as
IBM Java Concurrency Testing Tool (ConTest) [EFG+03b] or the Microsoft
Driver Verifier where the technique is called delay fuzzing [htt13]. Within IBM,
ConTest allowed many bugs to be discovered, and as far as we can say, it is
still in industrial use.

Systematic testing. Systematic testing [HAP+12, MQB07, MQB+08,
WTH+12, YNPP12] uses a deterministic control over the scheduling of threads.
This approach can be seen as execution-based model checking which system-
atically tests as many thread interleaving scenarios as possible. Before the
execution of each instruction which is considered as relevant from the point
of view of detecting concurrency-related errors, the technique computes all
possible scheduler decisions. The concrete set of instructions considered as
concurrency-relevant depends on the particular implementation of the technique
(often, shared memory accesses and synchronization relevant instructions are
considered as concurrency relevant). Each such decision point is considered
a state in the state space of the system under test, and each possible decision is
considered an enabled transition at that state. The decisions that are explored
from each state are recorded in the form of a partially ordered happens-before
graph [MQB07], totally ordered list of synchronization events [WTH+12], or
simply in the form of a set of explored decisions [HAP+12, YNPP12]. During
the next execution of the program, the recorded scheduling decisions can be
enforced again when doing a replay or changed when testing with the aim of
enforcing a new interleaving scenario.

Dynamic analysis. Another way to improve traditional concurrency testing
is to use dynamic analysis which collects various pieces of information along

7

the executed path and tries to extrapolate the witnessed behavior in order to
find errors which are in the program but did not necessarily occur during the
execution. Many problem-specific dynamic analyses have been proposed for
detecting special classes of errors, such as data races [EQT07, PS03, SBN+97,
LVK08a], atomicity violations [LTQZ06], or deadlocks [BH06, JPSN09, AS06].
These techniques may find more bugs in fewer executions than classical testing.
Some of the techniques, e.g., [EQT07], are even sound (i.e., do not miss an
error) and precise (i.e., do not suffer from false alarms) with respect to the
observed execution path. However, most of the approaches are unsound and
typically produce many false alarms.

Efficiency of dynamic analysis can be increased when a different execution
path is analyzed during each execution of the test. A combination of noise
injection or systematic testing and dynamic analysis can thus lead to a synergy
effect. However, monitoring of the program behavior by a dynamic analysis
algorithm typically introduces further synchronization among threads and
represents a form of noise affecting thread scheduling, which may be important
to take into account when applying regular noise injection heuristics.

Combined techniques. Finally, there are tools and techniques that combine
various approaches to test multi-threaded programs. For instance, multiple
techniques get use of information obtained by static and/or dynamic analysis
in navigating systematic testing tools. An example of such a technique is the
recently published active testing approach, targeting certain types of errors, such
as data races [Sen08], atomicity violations [PS08], and deadlocks [JPSN09]. The
technique uses results of approximate static and/or dynamic analyses to hint
systematic testing where a potential error can be found. The technique works in
two stages. During the first prediction phase, a static and/or dynamic analysis
is performed and warnings about specific concurrency errors are collected. In
the second validation phase, the test is repeatedly executed with a deterministic
scheduler. The scheduler behaves as a random scheduler until some thread
reaches an action discovered during the prediction phase. If such an action is
spotted, all threads that are about to execute this action are stopped. Whenever
more threads are stopped, the scheduler enforces all possible interleavings.

1.2 Goals of the Thesis

The main goal of the thesis is to develop new techniques for detecting con-
currency errors. This goal is naturally very broad as it is next to impossible
to create a technique that would be able to detect any kind of error in any
given program. While the existing techniques can detect various kinds of
concurrency errors in different classes of programs, they certainly do not cover

8

everything, leaving a lot of space for new techniques. Moreover, many of
the existing techniques also have trouble handling larger programs or require
complex configuration in order to provide reasonable results, making them hard
to use in practice. Hence, this thesis focuses in particular on four main aspects
(sub-goals) that the invented techniques should accomplish:

1. Increase efficiency of the current approaches.

2. Be practical, i.e., easily usable in practice.

3. Support a broader variety of programs, i.e., more program constructions.

4. Support more properties to be checked, i.e., detect less commonly studied
kinds of errors.

The thesis focuses on (1) increasing the efficiency of current dynamic analysis
techniques by combining them with other approaches like noise injection or
bounded model checking to exploit their strengths and suppress their weaknesses,
and (2) developing new dynamic analysis techniques utilising precise yet effective
extrapolations. Most of the proposed techniques are implemented using the
ANaConDA framework that allows one to easily analyse multi-threaded C/C++
programs, a common class of programs which is surprisingly often not supported
by the implementations of various existing techniques. Also some of the
newly invented techniques are able to detect some of the less-studied kinds of
concurrency errors such as order violations. Moreover, the tools implementing
the techniques are simple to use in practice, often give good results with just
the default configuration, and can handle any C/C++ program even without
its source code available.

The following sections summarise the contributions of the thesis, each
section covering one or more of the goals mentioned above.

2 Concurrency Errors

Many works devoted to detection of concurrency errors have been published
in recent years and many of them presented definitions of concurrency errors
that the proposed algorithms are able to handle. These definitions are usually
expressed in different terms suitable for a description of the particular considered
algorithms, and they surprisingly often differ from each other in the meaning
they assign to particular errors. To help understanding the errors and developing
techniques for detecting them, this section strives to provide a uniform taxonomy
of concurrency errors common in current programs.

The inconsistencies in definitions of concurrency errors are often related to
the fact that authors of various analyses adjust the definitions according to the

9

method they propose. Sometimes the definitions differ fundamentally, however,
often, the definitions have some shared basic skeleton which is parameterised
by different underlying notions. In our description, we try to systematically
identify the generic skeletons of the various notions of concurrency errors as
well as the underlying notions parameterising them.

2.1 Safety Errors

Safety errors violate safety properties of a program, i.e., cause something bad
to happen. They always have a finite witness leading to an error state.

2.1.1 Data Races

Data races are one of the most common (mostly) undesirable phenomena in
concurrent programs. To be able to identify an occurrence of a data race in
an execution of a concurrent program, one needs to be able to say (1) which
variables are shared by any two given threads and (2) whether any given two
accesses to a given shared variable are synchronised in some way. A data race
can then be defined as follows.

Definition 1. A program execution contains a data race iff it contains two
unsynchronised accesses to a shared variable and at least one of them is a write
access.

Note, however, that not all data races are harmful—data races that are not
errors are often referred to as benign races.

2.1.2 Atomicity Violation

Atomicity is a non-inference property. The notion of atomicity is rather generic.
It is parametrised by (1) a specification of when two program executions may
be considered equivalent from the point of view of their overall impact and
(2) a specification of which code blocks are assumed to be atomic. Then an
atomicity violation can be defined as follows.

Definition 2. A program execution violates atomicity iff it is not equivalent to
any other execution in which all code blocks which are assumed to be atomic
are executed serially.

An execution that violates atomicity of some code blocks is often denoted as
an unserialisable execution. The precise meaning of unserialisability of course
depends on the employed notion of equivalence of program executions.

10

2.1.3 Order Violations

Order violations form a much less studied class of concurrency errors than
data races and atomicity violations, which is, however, starting to gain more
attention lately. An order violation is a problem of a missing enforcement
of some higher-level ordering requirements. For detecting order violations,
one needs to be able to decide for a given execution whether the instructions
executed in it have been executed in the right order. An order violation can be
defined as follows.

Definition 3. A program execution exhibits an order violation if some instruc-
tions executed in it are not executed in an expected order.

2.1.4 Deadlocks

Deadlocks are a class of safety errors which is quite often studied in the literature.
However, despite that, the understanding of deadlocks still varies in different
works. We stick here to the meaning common, e.g., in the classical literature
on operating systems. To define deadlocks in a general way, we assume that
given any state of a program, (1) one can identify threads that are blocked and
waiting for some event to happen and (2) for any waiting thread t, one can
identify threads that could generate an event that would unblock t.

Definition 4. A program state contains a set S of deadlocked threads iff each
thread in S is blocked and waiting for some event that could unblock it, but such
an event could only be generated by a thread from S.

Most works consider a special case of deadlocks, namely, the so-called
Coffman deadlock [CES71]. A Coffman deadlock happens in a state in which
four conditions are met: (1) Processes have an exclusive access to the resources
granted to them, (2) processes hold some resources and are waiting for additional
resources, (3) resources cannot be forcibly removed from the tasks holding them
until the resources are used to completion (no preemption on the resources), and
(4) a circular chain of tasks exists in which each task holds one or more resources
that are being requested by the next task in the chain. Such a definition perfectly
fits deadlocks caused by blocking lock operations but does not cover deadlocks
caused by message passing (e.g., a thread t1 can wait for a message that could
only be sent by a thread t2, but t2 is waiting for a message that could only be
sent by t1).

2.1.5 Missed Signals

Missed signals are another less studied class of concurrency errors. The notion
of missed signals assumes that it is known which signal is intended to be

11

delivered to which thread or threads. A missed signal error can be defined as
follows.

Definition 5. A program execution contains a missed signal iff there is sent
a signal that is not delivered to the thread or threads to which it is intended to
be delivered.

Since signals are often used to unblock waiting threads, a missed signal
error typically leads to a thread or threads being blocked forever.

2.2 Liveness and Mixed Errors

Liveness errors are errors which violate liveness properties of a program, i.e.,
prevent something good from happening. They have infinite (or finite, but
complete) witnesses. Dealing with liveness errors is much harder than with
safety errors because algorithms dealing with them have to find out that there
is no way something could (or could not) happen in the future, which often
boils down to a necessity of detecting loops. Mixed errors are then errors that
that have both finite witnesses as well as infinite ones, whose any finite prefix
does not suffice as a witness.

Before we start discussing more concrete notions of liveness and mixed
errors, let us first introduce the very general notion of starvation [Tan07].

Definition 6. A program execution exhibits starvation iff there exists a thread
which waits (blocked or continually performing some computation) for an event
that needs not occur.

Starvation can be seen to cover as special cases various safety as well
as liveness (mixed) errors such as deadlocks, missed signals, and the below
discussed livelocks or blocked threads. In these situations, an event for which
a thread is waiting cannot happen, and the situations are clearly to be avoided.
On the other hand, there are cases where the event for which a thread is
waiting can always eventfully happen despite there is a possibility that it never
happens. Such situations are not welcome since they may cause performance
degradation, but they are sometimes tolerated (one expects that if an event
can always eventually happen, it will eventually happen in practice).

2.2.1 Livelocks and Non-progress Behaviour

There are again various different definitions of a livelock in the literature. Often,
the works consider some kind of a progress notion for expressing that a thread is
making some useful work, i.e., doing something what the programmer intended
to be done. Then they see a livelock as a problem when a thread is not blocked

12

but is not making any progress. However, by analogy with deadlocks, we feel it
more appropriate to restrict the notion of livelocks to the case when threads
are looping in a useless way while trying to synchronise (which is a notion
common, e.g., in various works on operating systems). That is why, we first
define a general notion of non-progress behaviour and then we specialise it to
livelocks.

Definition 7. An infinite program execution exhibits a non-progress behaviour
iff there is a thread which is continually performing some computation, i.e., it
is not blocked, but it is not making any progress.

A non-progress behaviour is a special case of starvation within an infinite
behaviour. On the other hand, starvation may exhibit even in finite behaviours
and also in infinite progress behaviours in which a thread is for a while waiting
for an event that is not guaranteed to happen. As we have said already above,
livelocks may be seen as a special case of non-progress behaviour [Tan07].

Definition 8. Within an infinite execution, a set S of threads is in a livelock
iff each of the threads in S keeps running forever in some loop in which it is
not intended to run forever, but which it could leave only if some thread from S
could leave the loop it is running in.

As was mentioned before, there are many, often inconsistent, definitions
of a livelock. Moreover, many works do not distinguish between livelocks
and a non-progress behaviour [BBM07, Sta08, LŞW06, Tai94, HSH05]. Other
papers [MR97, MP92] take a livelock to be a situation where a task has such
a low priority that it does not run (it is not allowed to make any progress)
because there are many other, higher priority, tasks which run instead. We do
not consider such a situation a livelock and not even a non-progress behaviour
but a form of starvation. There are even works [And91] for which a thread is
in a livelock whenever it is executing an infinite loop, regardless of what the
program does within the loop. However, there are many reactive programs
which run intentionally in an infinite loop, e.g., controllers, operating systems
and their components, etc., and it is not appropriate to considered them to be
in a livelock.

2.2.2 Blocked Threads

We speak about a blocked thread appearing within some execution when a thread
is blocked and waiting forever for some event which can unblock it. Like for
a deadlock, one must be able to say what the blocking and unblocking operations
are. The problem can then be defined as follows.

13

Definition 9. A program execution contains a blocked thread iff there is a thread
which is waiting for some event to continue and this event never occurs in the
execution.

An absence of some unblocking event which leaves some thread blocked
may have various reasons. A common reason is that a thread, which should
have unblocked some other thread, ended unexpectedly, leaving the other
thread in a blocked state. In such a case, one often speaks about the so-called
orphaned threads [FNU03]. Another reason may be that a thread is waiting for
a livelocked or deadlocked thread.

3 Combining Dynamic Analysis and Model
Checking

Many existing approaches for detecting concurrency errors are based on dynamic
analysis. The advantage of dynamic analysis is that it scales well and thus
can handle very large programs. The disadvantage is that it analyses only
a concrete execution of a program and can detect only errors encountered in
it. To improve on this restriction, dynamic analyses usually extrapolate the
behaviour of a program to detect also errors that may happen, yet did not
occur in the execution. The price for such an ability to detect errors not seen
in the execution is the precision. Extrapolation often over-approximates the
behaviour of a program, assuming existence of executions that are not feasible
in reality. Detecting errors in such infeasible executions then leads to false
positives. On the other hand, techniques like model checking are precise and
can detect all errors in a program without producing false alarms. However,
to do so, model checking must search the whole state space of a program (or
a significant portion of it), which may be impossible for larger programs. In this
section, we describe a tool chain denoted as DA-BMC 1 that tries to combine
advantages of both dynamic analysis and (bounded) model checking.

In our tool chain, implementing the approach proposed in [HKV09], we
use the infrastructure offered by the Contest tool [EFG+03a] to implement
suitable dynamic analyses over Java programs and to record selected points
of the executions of the programs that are suspected to contain errors. We
then use the Java PathFinder (JPF) model checker [VHBP00] to replay the
partially recorded executions, using JPF’s capabilities of state space generation
to heuristically navigate among the recorded points. In order to allow the navi-
gation, the JPF’s state space search strategy, including its use of partial order
reduction to reduce the searched state space, is suitably modified. Bounded

1http://www.fit.vutbr.cz/research/groups/verifit/tools/da-bmc

14

Table 1: Finding real errors in traces produced by Eraser

Error discovery ratio (traces found / BMC runs)Time/memory consumption (sec/MB)

No. of DFS BFS DFS BFS

traces 1 5 1 5 1 5 1 5

Bank 46%(1/1) 49%(2/2) 46%(1/1) 46%(2/2) 2/517 4/633 3/522 5/659

Airlines 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1) 1/482 1/482 1/482 1/482

DinPhil 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1) 11/417 20/411 20/414 22/413

Crawler 7%(0.8/15)7%(1.8/34)2%(0.5/49) 2%(1.2/50) 122/1312 268/1479 311/2857 321/3020

model checking is then performed in the vicinity of the replayed executions,
trying to confirm that there is really some error in the program and/or to
debug the recorded suspicious behaviour.

We illustrate capabilities of DA-BMC on several case studies, showing that
it really allows one to benefit from advantages of both dynamic analysis and
model checking.

3.1 Experiments

To demonstrate capabilities of DA-BMC, we performed a series of tests in
which we measured how often a real error is identified when replaying a trace
and performing bounded model checking (BMC) in its vicinity. We let JPF
to always backtrack 3 states from the state before a suspicious event and to
use the maximum BMC depth of 10. The results are shown in Table 1. We
distinguish whether 1 or up to 5 paths corresponding to the recorded trace
were explored, using either DFS or BFS. For each of these settings and each
case study, the left part of Table 1 gives the percentage of recorded traces
based on which a real error was found. Further, in brackets, it is shown how
many corresponding paths were on average found by JPF for a single trace,
and how many times BMC was on average applied when analysing a single
trace. The right part of Table 1 then gives the corresponding time and memory
consumption. Clearly, BFS has higher time and memory requirements than
DFS (mainly because it performs significantly more runs of BMC). It is also
less successful in finding an error if the error manifests later in the execution
(like in Crawler). It can also be seen that the number of corresponding paths
searched has a little contribution to the overall success of finding a real error.

The low percentage of real errors found in traces of Crawler is mostly due
to the number of false alarms produced by Eraser that were eliminated by DA-
BMC, which nicely illustrates one of the main advantages of using DA-BMC.
Further, note that classical model checking as offered by JPF did not find any
error in this case since it ran of our deadline of 8 hours (DFS) or ran out of
the 24GB of memory available to JPF (BFS).

15

4 The ANaConDA Framework

Many of the existing techniques are implemented for Java. This does not mean
that their principles could not be applied for C/C++ and other programming
languages too. However, re-implementing an analysis once implemented for
a different language environment is a tedious endeavour. Likewise, when there
appears an idea for a new analysis, the journey to obtaining its fully functional
implementation is usually rather long. While there are many frameworks
simplifying this task for Java, there are only a handful of such tools for C/C++.

To address the lack of tools for C/C++, this section presents the ANaConDA
framework which is a framework for adaptable native-code concurrency-focused
dynamic analysis built on top of PIN [LCM+05]. The goal of the framework
is to simplify the creation of dynamic analysers for analysing multi-threaded
C/C++ programs on the binary level. In order to perform a dynamic analysis,
one first needs to monitor the execution of a program. However, monitoring the
execution of a program can be quite challenging and programmers might spend
more time writing the monitoring code than by writing the analysis code itself.
That is why the framework provides a monitoring layer offering notification
about important events, such as thread synchronisation or memory accesses, so
that developers of dynamic analysers can focus solely on writing the analysis
code. In addition, the framework also supports noise injection which will be
discussed in more detail in the next section.

In order to be able to monitor the execution of a program and perform
some dynamic analysis as well as to insert some noise into the execution of
the program, a need to execute some additional code in some places of the
execution of the original program arises. There are several levels at which one
can insert such additional code to the program—namely, at the source code
level, at the level of the intermediate code, or at the binary level.

Inserting the code at the binary level has one big advantage over the other
approaches in that it does not need to have the source files of the program
being analysed, which is particularly important when dealing with libraries
whose source files might not be available even for the developers of the program
under test. Another advantage might be that this kind of instrumentation
is more precise in that we can insert the code exactly where we want it to
be executed, and the placement is not affected by any optimisations possibly
made by the compiler. These advantages of course come at the cost of that
we may possibly lose access to various pieces of high-level information about
the program (names of variables, etc.). However, even such information can
be available if we have the debugging information present in the program, and
moreover, we can also get access to some low-level information, like register
allocations, which might be important for some analyses.

16

Still, monitoring C/C++ programs on the binary level can be quite difficult.
One of the problems to be dealt with is monitoring of function execution.
This is because the monitoring code has to cope with that the control can be
passed among several functions by jumps. Hence, the control can return from
a different function than the one that was called. Another problem is that the
monitoring code must properly trigger notifications for various special types of
instructions such as atomic instructions, which access several memory locations
at once but in an atomic way, or conditional and repeatable instructions,
which might be executed more than once or not at all. Further, some pieces
of information about the execution of instructions or functions (such as the
memory locations accessed by them), which are crucial for various analyses,
may be lost once the instruction or function finishes its execution, and it is
necessary to explicitly preserve this information for later use. Finally, in order
to support various multithreading libraries, the analysers must be abstracted
from the concrete library used. The ANaConDA framework solves all of the
above problems for the user which greatly simplifies the task of implementing
various analyses for C/C++ programs. Moreover, the framework also provides
debugging information, various kinds of backraces, and other information which
may be used to precisely localise the detected errors.

4.1 Experiments

To test whether ANaConDA can handle really large and complex programs,
we have used it to analyse the Firefox browser (more than 3 million lines of
code). We did not find any severe or unknown errors. We did, however, find
several data races which are left in the code since they are considered harmless.
Considering the size of the program, the fact that it is thoroughly checked for
data races regularly, and also that we used a very simple data race detector and
performed only a very limited set of tests since we did not have any automatic
test suite to use, we consider these results to still be quite promising.

We further analysed the unicap libraries for video processing, which are
considerably smaller (about 40k lines of code) and allowed us to perform
a larger number of tests. We have found several (previously unknown) data
races in the libunicap and libunicapgtk libraries. Two of the data races
can be considered severe as they may cause a crash (segmentation fault) of
the program which uses these libraries. In both cases, one thread may reset
a pointer to a callback function in between of the times when another thread
checks the validity of this pointer and calls the function referenced by it.

Finally, we also successfully tested the framework on several Windows toy
programs (100–500 lines of code). We have also used the framework for all of
the experiments described in the upcoming sections.

17

5 Improved Noise Injection

The result of both testing and dynamic analysis greatly depends on the witnessed
execution of a multi-threaded program. Unfortunately, there is a huge amount
of executions one may encounter, and only a small fraction of them usually
cause an error. It is often harder to find the rare executions containing the
error than to detect the error within the execution that contains it. One way to
deal with this problem is to use noise injection which influences the scheduling
of threads so that different interleavings of concurrent actions are witnessed,
and one may more likely see the executions that contain an error.

The effectiveness of noise injection depends on a satisfactory solution to
the noise placement and noise seeding problems. The noise placement problem
addresses the question where, i.e., at which program locations, and when, i.e.,
at which executions of these locations, to cause a noise. Currently, various
modifications of the random heuristic are used. The random-all heuristic put
a noise before all possible locations with a given probability (called frequency).
The sharedVar-all and sharedVar-one heuristics then restrict the possible
locations just to accesses to all shared variables and one chosen shared variable,
respectively. The noise seeding problem then determines how to cause the
noise, i.e., which type of noise generating mechanism should be used, and how
long it should last. The most commonly used heuristics are yield, sleep, and
busyWait, where yield injects one or more calls of yield(), sleep injects one call
of sleep(), and busyWait just loops for some time. They are parametrised by
the strength of noise. In case of the sleep and busyWait heuristics, the strength
gives the time to wait or loop. In case of the yield heuristic, the strength says
how many times the yield() routine should be called.

One of the main contributions of the thesis is a proposal of an improvement
to the typical usage of noise injection which allows one to use a fine-grained
combination of several noise placement and noise seeding heuristics within
a single program. To demonstrate how the fine-grained combination of noise
can be used, we create a new (fine-grained) noise injection technique tailored
for improving the chances to detect data races, the most common type of
concurrency errors. We implemented this technique as a concrete noise injec-
tion heuristic called read/write noise using the ANaConDA framework. This
heuristic allows one to use different noise settings for read and write accesses
separately. The settings might differ in the frequency which controls how often
a noise is generated before a particular class of accesses or in the chosen noise
seeding heuristic. We tested the heuristic on a set of smaller C/C++ projects
and the obtained results show that using heuristics combining several noise
seeding and noise placement heuristics can lead to a further increase of chances
to spot a concurrency errors.

18

Apart from the technique mentioned above, we also present two additional
noise injection heuristics—in particular, a new noise placement heuristic called
pattern noise and a new noise seeding heuristic called inverseNoise. The pattern
noise placement heuristic injects a noise before accesses to variables which were
already accessed before within the same method or function. The inverseNoise
noise seeding heuristic stops all but one thread and allows this one thread to
get as far as possible in its execution. Both of these heuristics target common
atomicity violation scenarios, and the newly proposed noise seeding heuristic
might also help in order violation scenarios. The newly proposed heuristics
are compared with a selection of already existing heuristics which provided
promising results in the previous experimental comparisons [FV12b, LVK12].

5.1 Evaluating Improved Noise Injection

To evaluate how the improved noise injection approach can further increase
the chances to detect errors in multi-threaded programs, we compared the
read/write noise placement heuristic, which uses different noise seeding heuristics
for read and write accesses, with the random-all heuristic, which uses a single
noise seeding heuristic for all accesses. We implemented both heuristics in the
ANaConDA framework [FV13] and then used them in conjunction with a C++
implementation of the AtomRace dynamic detector [LVK08b] to detect data
races in 14 C programs implementing a simple ticket algorithm.

Results obtained for some selected noise injection configurations and test
cases are shown in Tables 2 and 3. Each configuration is defined by a noise
placement and noise seeding heuristics together with the values of frequency and
strength used (denoted as Placement heur., Seeding heur., Freq., and Strength,
respectively). If the read/write noise placement heuristic is used, the Seeding
heur. and Strength columns then contain 3 values. These are the values used for
the synchronization operations, read accesses and write accesses, respectively.
In case of the Seeding heur. column, the values represent the noise seeding
heuristic used, and in case of the Strength column, the value of strength used.
If the value of strength is an interval, the particular value was taken randomly
from the interval each time the noise was injected.

The read/write noise placement heuristic allows to use different noise seeding
heuristics and their parameters for different types of memory accesses. Of
course, there are many possibilities how to combine them. One can use the
same noise seeding heuristics, but parametrize them with different values of
strength. As the results in Table 2 show, such configurations (Configuration
no. 3) achieved better results than the configurations using the random-all
heuristic (Configurations no. 1 and 2). Another possibility is to use different
noise seeding heuristics for different memory accesses, e.g., the sleep heuristic

19

Table 2: Success ratio of the AtomRace detector for various configurations of
the noise injection (the values represent the percentage of runs, out of 500, in
which a data race was found)

Noise injection configuration Test case
ConfID Placement heur. Seeding heur. Freq. Strength t05 t06 t07

instrumented, no sleep or yield noise 0.0 1.0 1.6
1 random-all sleep 500 10 1.2 53.6 69.4
2 random-all sleep 500 0–10 0.6 31.0 79.0
3 read/write sleep / sleep / sleep 500 10 / 5 / 20 43.0 92.6 96.2
4 read/write yield / yield / sleep 500 10 / 10 / 10 51.0 95.0 99.6

Table 3: Success ratio of the AtomRace detector for various configurations of
the noise injection (the values represent the percentage of runs, out of 500, in
which a data race was found)

Noise injection configuration Test case
ConfID Placement heur. Seeding heur. Freq. Strength t04 t05

instrumented, no sleep or yield noise 1.2 0.0
5 read/write sleep / sleep / yield 100 10 / 10 / 10 7.4 62.4
6 read/write sleep / yield / sleep 100 10 / 10 / 10 96.8 9.6
7 read/write yield / sleep / yield 100 10 / 10 / 10 6.2 64.4
8 read/write yield / yield / sleep 100 10 / 10 / 10 94.4 7.2

for one type of memory accesses and the yield heuristic for the second one, and
leave the values of strength the same. As the results in Table 2 show, such
configurations (Configuration no. 4) achieved even better results than the ones
combining different values of strength (Configuration no. 3).

Table 3 shows the difference in results for two programs which mainly
differ in how a data race might manifest. As the t04 test case contains only
a few unprotected write accesses which might cause a data race and many
unprotected read accesses, the configurations injecting a stronger noise before
the write accesses (Configurations no. 6 and 8) give far superior results than
configurations injecting a stronger noise before the read accesses (Configurations
no. 5 and 7). In case of the t05 test case which contains only a few unprotected
read accesses and many unprotected write accesses, the results are completely
opposite.

5.2 Evaluating New Heuristics

To evaluate the new noise injection heuristics, we compared them with the
best existing heuristics. We implemented both the new and existing heuristics
in the ANaConDA framework [FV13] and used the AtomRace dynamic detec-

20

tor [LVK08b] to detect data races in 4 of the C programs mentioned in the
previous section. For each execution of a test, the framework collects informa-
tion about test duration and about the fact whether an error has manifested.
Each considered configuration of noise heuristics was given 20 minutes of real
time to test the program and average results were computed. Therefore, the
configurations with higher impact on the performance were provided with lower
number of executions of the test. This allows to demonstrate efficiency of the
heuristics in practical testing scenarios where the time and other resources for
testing are usually limited.

Heuristics. In case of the noise placement heuristics, the following ones are
considered: the random-all heuristic which is used as a base-line, the sharedVar-
all and sharedVar-one heuristics which provided good results in the evaluation
of noise placement heuristics for testing Java programs, the read/write heuristic
which turned out to be efficient in the previous experiments with noise injection
in C/C++, and the newly proposed pattern heuristic. All these heuristics decide
whether to inject a noise based on the frequency parameter which controls how
often the noise is injected at the selected place. The frequency parameter was
set such that the noise was generated either in 15 % or 30 % of situations.
These values were also inspired by the results of the previous comparisons.

As for the noise seeding heuristics, the sleep, yield, and busyWait heuristics
were considered because they provided good results in some cases in the previous
comparisons. Moreover, the newly proposed inverseNoise heuristic was added.
The noise seeding heuristics are parametrised by the strength parameter. This
parameter was set to 2 and 20 milliseconds in the case of sleep and busyWait
heuristics and to 10 and 100 executions of the yield() function in the case
of the yield heuristic. In the case of the read/write heuristic, the strength
parameter for writes and reads was set in the mutually complementary way.
That is, if a higher value for writes (e.g., 20 ms) was used, the lower value
for reads (i.e., 2 ms) was applied, and vice versa. As for the newly proposed
inverseNoise, the parameter was set to 2 and 20 operations executed by the
current thread while other threads are blocked. The higher values were chosen
based on the results of the previous comparisons where a stronger noise often
helped more than a weaker one. The lower values were used primarily because
of the read/write heuristic, where combining strong and a much weaker noise
led to the best results. Also, as the yield heuristic disturbs the usual scheduling
of threads far less than the other noise seeding heuristics, higher values of
strength were used for it. In case of the read/write noise placement heuristic,
configurations combining the sleep and yield noise seeding heuristics with fixed
values of strength were also used (10 for the sleep heuristic and 50 for the yield
heuristic).

21

Figure 1: A comparison of configurations across all of the considered C test
cases

Results. To compare the efficiency of each configuration, their general success
across all of the test cases executed was measured. The results are summarized
in Figure 1. The x-axis shows the noise configurations grouped by the noise
placement and noise seeding heuristics with the values of noise frequency and
strength represented by the different hatch of the bars. The y-axis then shows
the number of test cases (out of 4) for which the respective configuration was
among the best 30 % of the configurations (i.e., among the best 24 configu-
rations in the case). Here, the best configurations were chosen according to
the percentage of runs in which a data race was detected. The other noise
configurations were, in fact, capable of detecting an error in most of the test
cases too, but in less test runs.

The graph shows that even when the test cases are very similar and contain
the same type of concurrency errors, most of the configurations work only for
some of the test cases. Of course, one can see that some of the configurations
were more successful than the others. In general, configurations using the sleep
and busyWait heuristics were the most successful ones. The most successful
approach was to combine these heuristics with the random-all, read/write, or
pattern heuristics.

A further analysis of the results has also shown that choosing the right
combination of noise placement and noise seeding is important, but tweaking
the values of noise frequency and strength may also significantly influence the
results. Many configurations provided very different results when the values of
frequency or strength were changed.

As for the newly proposed heuristics, configurations using the pattern
heuristic proved to be very useful in most of the test cases (namely, the t01,
t03, and t06 test cases). On the other hand, the inverseNoise heuristic helped
only a little and only when combined with the random-all heuristic. As for the

22

heuristics tested for the first time in C programs, namely the sharedVar-all
and sharedVar-one heuristics, these heuristics achieved good results for some
test cases, but they were not so good overall compared to the other heuristics.

6 Transactional Memory Programs

Transactional memory (TM) [GK10, HLR10] is an increasingly popular tech-
nique for synchronising threads in multi-threaded programs, which is both
easy to use and provides good performance. When using TM, the threads are
synchronised by defining transactions that may be executed optimistically in
parallel and will succeed if they do not interfere with each other. Even though
using TM may be easier, there are still various opportunities to make mistakes
that lead to performance degradation and errors, which rises a clear demand
for tools for analysing and debugging TM programs. Because performance
analyses usually require the program to be executed to be able to analyse its
performance, dynamic analysis is often used here as it would be able to address
both correctness and performance-related issues of TM programs.

In order to be able to implement various dynamic analyses of the behaviour
of TM programs, one first needs to monitor their execution. However, the
monitoring code may influence the monitored program’s behaviour and hamper
the results of some analyses. That is why we propose several different ways of
monitoring C/C++ TM programs and then experimentally study their influence
on the behaviour of the monitored programs. Our monitoring approaches range
from lightweight to heavyweight monitoring. The monitored programs are
taken from the well-known STAMP benchmark [CMCKO08].

The lightest monitoring approach statistics collector (sc) tracks the number
of started and committed transactions by maintaining two counters for each
thread and each type of transaction. The event logger (el) approach tracks the
same information by registering TM operations (events) in an event log and then
processing them post mortem. Its variants el-a and el-arw additionally track
aborts and also transactional reads and writes. The el-ts, el-a-ts, and el-arw-ts
variants also collect time stamps for each logged event. While the lightweight
implementation of these approaches tracks the TM operations by embedding
the monitoring code into the monitored program itself and thus modifying its
source code, the heavyweight implementation uses the ANaConDA framework
which tracks these operations without changing the monitored program.

As our primary metric for evaluating the influence of the different monitoring
approaches, we use the number of transactions that aborted during the execution
of the monitored TM programs as this metric gives a good insight into their
contention level, i.e., into the number of conflicting concurrent transactions.
The more conflicts and aborts the more work for the TM system.

23

We also present an experimental evaluation of the influence of different
kinds of lightweight and heavyweight monitoring approaches for TM programs
that we propose, both in terms of global numbers of aborts as well as numbers
of aborts for different types of transactions. Moreover, we also show that the
obtained results can be significantly influenced by the environment in which
the monitoring is performed.

The results can be used in several ways. First, they can show researchers or
developers interested in monitoring TM programs how the behaviour of these
programs can be influenced by different monitoring techniques as well as the
environment. Second, the proposed and implemented monitoring techniques are
available to the scientific community and can be used in other settings, which
is especially easy for the case of heavyweight monitoring since we implemented
a quite generic TM monitoring platform on top of the ANaConDA frame-
work [FV12a]. The lightweight monitoring approaches are rather specialised;
however, the described implementation techniques can be useful if there is
a need for implementing yet another lightweight monitor.

6.1 Experimental Evaluation

To evaluate the influence of the considered monitoring approaches on the
behaviour of the monitored programs, we compare the impact of the lightweight
and heavyweight implementations. Since heavyweight monitoring greatly
slows down the tested programs, for these experiments the parameters of the
benchmarking programs were set to the values recommended by the STAMP
authors for the so-called simulation runs, which are suitable when executing
a program in a simulator or another tool that negatively affects its performance.
Since the simulation runs generate much less aborts than the standard ones,
meaning that the results might be negatively influenced by the outliers, we
remove 10 (out of 100) runs marked as the outliers during the evaluation.

Table 4 shows the average global number of aborts for each of the tested pro-
grams for the lightweight and heavyweight implementations of the monitoring
approaches. The heavyweight implementations come in two different versions.
The first version, called PIN, does the monitoring by executing the lightweight
monitoring implementation, i.e., the modified versions of the programs, in
the PIN framework without doing any instrumentation of the program. The
purpose of this version is to show how the use of PIN’s low-level virtual machine
changes the behaviour of the monitored program even without the influence
of the instrumentation needed to capture the monitored events. The second
version, denoted as ANaConDA, is the true heavyweight implementation where
the counter incrementation and event collection is done through the callbacks
provided by the extended ANaConDA framework.

24

Table 4: A comparison of average number of aborts for lightweight and heavy-
weight monitoring.

genome intruder kmeans ssca2 vacation yada

variant high low high low

L
ig
h
tw

ei
g
h
t

orig 67.6 22850.0 3804.7 1626.1 6.5 23.4 4.9 9362.3

sc 73.3 22013.1 4115.7 1721.5 7.2 23.3 5.3 11659.3

el 63.1 17663.5 2722.9 1245.9 12.2 25.2 5.3 9354.7

el-ts 61.3 16797.2 2402.7 1236.4 13.0 22.6 4.7 8118.7

el-a 65.8 16504.1 2204.3 1091.0 16.6 22.6 4.0 8096.3

el-a-ts 64.3 16112.9 1696.8 942.8 15.6 19.7 3.8 6846.7

el-arw 72.7 8238.9 2891.2 1877.0 18.0 19.9 3.7 5804.0

el-arw-ts 107.1 9499.4 3463.6 2121.3 22.0 22.6 4.7 4458.0

P
IN

orig 3.7 85.8 0.2 0.1 0.0 2.1 0.2 595.1

sc 3.4 81.1 0.4 0.1 0.0 2.0 0.3 584.4

el 8.6 92.2 7.2 6.7 0.5 2.4 0.5 589.3

el-ts 9.4 106.9 9.0 7.8 0.7 2.5 0.3 571.2

el-a 7.0 101.6 14.9 12.2 0.5 2.1 0.2 580.2

el-a-ts 7.4 95.7 17.5 14.6 0.6 2.4 0.3 576.6

el-arw 13.2 476.8 36.6 28.6 0.9 10.1 1.6 715.2

el-arw-ts 24.1 1567.1 213.2 139.3 1.0 14.6 2.8 902.4

A
N
aC

on
D
A

orig 10.8 71.4 0.3 0.1 0.0 1.9 0.2 595.6

sc 9.3 109.8 0.2 0.1 0.0 3.4 0.6 729.6

el 13.7 109.7 8.6 7.8 0.6 4.0 0.5 704.3

el-ts 11.3 119.2 9.8 8.6 0.8 4.0 0.4 687.4

el-a 12.3 126.0 20.8 16.7 0.9 3.6 0.7 702.4

el-a-ts 11.0 133.8 24.5 18.0 0.9 4.0 0.5 682.3

el-arw 20.8 1653.4 178.5 126.9 1.3 17.4 2.8 1100.1

el-arw-ts 34.4 3132.9 480.8 305.8 1.5 19.1 3.7 1260.8

When we start monitoring the programs using the heavyweight versions of
the monitoring approaches, we can see a massive drop in the global number
of aborts (more than 95 %). This drop is mainly caused by PIN’s low-level
virtual machine as just running the original (non-modified) version (orig) of
a program in PIN leads to an extreme drop in the global number of aborts
(more than 95 %). The additional disruption introduced by the monitoring code
does not influence much the behaviour. In fact, rather than having the effect
of decreasing the global number of aborts, like in the case of the lightweight
monitoring, inserting the monitoring code actually helps to increase the number
of aborts a little in the heavyweight monitoring. This effect increases as we
collect more information while monitoring, which is a completely opposite
tendency compared to the lightweight monitoring. Also, the monitoring code
inserted by ANaConDA has a greater effect on increasing the global number of
aborts than using the lightweight monitoring code executed in PIN.

25

7 Contracts for Concurrency

In this section, we address restrictions of using services provided by software
modules in a concurrent setting with the aim of avoiding atomicity violations
and similar concurrency-related errors. Atomicity violations (see Section 2)
are a class of errors which result from an incorrect definition of the scope
of an atomic region. Such errors are usually hard to localise and diagnose,
which becomes even harder when using (third-party) software libraries where
it is unknown to the programmer how to form the atomic regions correctly
when accessing the library. Even new synchronisation techniques, such as
transactional memories discussed in the previous section, designed to ease the
process of writing concurrent programs, do not entirely avoid this problem and
suffer from atomicity violations as well [DPL13].

One way to address the problem of proper atomicity is to associate a contract
with each program module/library and then check whether the contract is
indeed respected. In fact, the notion of contract is, in general, not restricted to
concurrent programs. In the general case, a contract [Mey92] regulates the use
of methods of an object by specifying a set of pre-conditions the program must
meet before calling the object methods. For the particular case of concurrent
programs, Sousa et al. proposed in [SDFL15] the concept of the so-called
contracts for concurrency. A contract for concurrency is a particular case of
a software protocol that allows one to enumerate sequences of public methods
of a module that are required to be executed atomically. Contracts may be
written by the software module/library developer or inferred automatically
from the program (based on its typical usage patterns) [SDFL15].

In this section, assuming that the appropriate contracts for concurrency
have been obtained, we propose two methods for dynamically verifying that
such contracts are respected at program run time. In particular, the first
method belongs among the so-called lockset-based dynamic analyses whose
classic example is the Eraser algorithm for data race detection [SBN+97] and
whose common feature is that they track sets of locks that are held by various
threads and used for various synchronization purposes. The tracked lock sets
are used to extrapolate the synchronization behaviour seen in the witnessed
test runs, allowing one to warn about possible errors even when they do not
directly appear in the witnessed test runs. We have implemented our approach
in a prototype tool, and we present experimental results obtained with our
implementation.

While the lockset-based method works well in many cases, it may produce
both false positives and negatives. Some of these problems are caused by the
method itself as lockset-based methods are imprecise in general. However,
many of the problems are caused by the limitations of the (basic) contracts

26

which does not allow one to precisely describe which situations are errors and
which not. To address this problem, we extended the notion of contracts
for concurrency by allowing them to reflect both the data flow between the
methods (in that a sequence of method calls only needs to be atomic if they
manipulate the same data) and the contextual information (in that a sequence
of method calls needs not be atomic wrt all other sequences of methods but
only some of them). Then, we propose a method for dynamic validation of
contracts based on the happens-before relation which utilises vector clocks in
a way optimized for contract validation. This method does not suffer from false
alarms and supports the extended contracts. We implemented this method
using the ANaConDA framework and obtained promising experimental results,
including discovery of previously unknown errors in large real-world programs.

7.1 Experiments

We implemented the method based on the happens-before relation using the
ANaConDA framework [FV13]. The method supports contracts with both pa-
rameters (data flow information) and targets/spoilers (contextual information).
The ANaConDA framework is used to monitor method calls and synchroniza-
tion events in running C/C++ programs. ANaConDA also provides us with
heuristic noise injection. As discussed in the previous sections, this can increase
the number of witnessed interleavings and hence chances to see an interleaving
from which our analysis can deduce that a contract violation is possible. We
thus use two orthogonal methods to find rare concurrency-related bugs: noise
injection and extrapolation based on the happens-before relation. Moreover,
we use a specific kind of noise tailored for the given purpose. In particular,
we inject noise before the last method of each target instance which prolongs
its execution and increases chances to encounter a spoiler instance capable of
interleaving the target instance and causing a contract violation.

We tested our implementation on a set of small benchmarks with known
atomicity violations as well as two real-world programs, Link Manager and
Chromium-1. The small programs were taken from [AHB03, AHB04, VPG04]
and were also used to evaluate a static validation method proposed in [DFF+16]
(we used a C++ version as close as possible to the Java version).

Link Manager is a component of a cloud-connected thermostat used for
managing parallel task processing (we were not allowed to identify the company
developing it). A manager thread is issuing tasks to executor threads, which
send results of the assigned tasks back to the manager through a shared queue.
Our tool was used in the early stages of development of this program, and it
uncovered an order violation error that happened when an executor sent the
result of its task before the manager initialised the queue used to transfer the

27

Table 5: Validation results for dynamic analysis.

Benchmark T
/
S

p
a
ir

s

C
o
n
tr

a
ct

V
io

la
ti

o
n
s

F
a
ls

e
P

o
si

ti
v
e
s

P
o
te

n
ti

a
l

A
V

R
e
a
l

A
V

S
L

O
C

T
im

e
(s

)

Coord03 [AHB03] 8 380 0 0 380 116 1.01
Coord04 [AHB04] 4 24 0 0 24 53 0.52
Local [AHB03] 4 2 0 0 2 27 0.52
NASA [AHB03] 1 100 0 0 100 96 0.60
Account [VPG04] 1 176 0 0 176 54 0.53

Link Manager 2 1 0 0 1 1.5K 1.14
Chromium-1 2 2 0 0 2 7.5M 49.12

data. This caused the manager to wait forever for the task to be finished. One
of the contracts we checked required that the queue cannot be used before it is
initialised, i.e., no send or receive can occur between the start of the manager
and the initialisation of the queue. The error occurred very rarely, so normal
tests were unable to detect it. Our tool, however, was able to detect the error,
and it was then promptly fixed.

Chromium-1 is a program from the RADBench benchmark [JPPS11], an
older version of the Chrome browser (version 6.0.472.35) containing a known
atomicity violation leading to an assertion failure. As this error can be described
using a contract, we tried our tool to find the error. The experiment was
successful, showing that our tool can handle even large programs. Interestingly,
to find the error post mortem, one would need to store a trace with more than
17 million method calls (about 1.6 GB of data) while our method, which works
on-the-fly, needed about 10 MB of data only.

Table 5 provides results of experiments with our dynamic approach. The
T/S Pairs column gives the number of target/spoiler pairs considered. The
column Contract Violations gives the number of instances of such pairs found
violated.2 The column False Positives, which was included for compatibility
with the results of static contract validation as presented in [DFF+16], contains
zeros only as, unlike the static approach, the dynamic one considers solely
executable sequences of method calls (indeed, they were seen to execute). The
column Potential AV contains numbers of detected contract violations that
need not stay real if the values of more than one parameter per contract are

2Compared with the static approach [DFF+16], we look for contract violations in the execution of a program,
not its source code. As the code containing a contract violation may be executed repeatedly, we can detect
(and report) the same contract violation many times. The static approach reports it only once.

28

taken into account (which is not yet supported in our tool). The column
contains zeros only showing that we sufficed with tracking a sole parameter in
all our experiments.3 The column Real AV gives numbers of contract violations
guaranteed to be real as they used at most one parameter, and our tool was
thus able to distinguish the needed instances. Finally, the columns SLOC and
Time give the numbers of lines of the considered programs and the analysis
time in seconds.

The results show that our approach can be used to find real errors in
real-world programs. Moreover, it can be used to detect not only atomicity
violations, but also order violations which are hard to be found using exiting
techniques.

8 Conclusion

The main goal of the thesis is to advance the research in the area of detecting
errors in multi-threaded programs. Despite the fact that a plenty of detection
techniques were invented over the years, many companies still have a hard time
finding tools which can detect errors they are encountering in the programs
they are developing. There are several main reasons why they cannot use the
techniques already available, the most common ones being that the tools imple-
menting the techniques do not support the programs they have, the programs
contain types of errors the techniques are unable to detect, or the techniques
just cannot handle larger software. While it is impossible to create a technique
which would be universal and effective at the same time, developing practical
techniques usable in the industry is always welcome, especially nowadays where
multi-threaded programs can be found even in the smallest devices.

While the most common types of concurrency errors already have a lot of
techniques for their detection, detection methods for other kinds of errors are
clearly lacking in this area. It is not that these types of errors are so rare that it
is not worth to deal with them. Actually, many software developers encounter
these errors more often than they would like. It is mostly that these types of
errors are more complex, and thus it is much harder to develop techniques to
detect them.

This thesis contributes to the research in the area of detecting concurrency
errors in several ways. It starts with improving existing techniques by combining
dynamic analysis and (bounded) model checking, exploiting their strengths
and suppressing their weaknesses. The idea is to reduce the state space to
be searched by a (bounded) model checker using information provided by

3We tried an experiment in which we tracked no parameter values at all. Then, for Chromium-1, our tool
reported 14 potential violations instead of the 2 real ones, showing that distinguishing target/spoiler instances
is important.

29

a dynamic analysis. While the resulting technique is much more efficient and
precise than either of the two utilised techniques, it still cannot handle large
real-world programs where even the reduced state space is too big.

Another contribution is a proposal of improved noise injection which allows
one to combine several noise placement and noise seeding heuristics in a single
run of a program. This improvement further increases the chances of noise
injection to uncover rare executions containing errors and thus makes any
technique whose detection capabilities rely on seeing such executions more
efficient. Besides improving the noise injection in general, the thesis also
introduces several new noise injection heuristics which can be used separately
or combined together.

The third contribution is the development of the ANaConDA framework
which allows one to analyse C/C++ programs on the binary level. While many
of the existing detection techniques are applicable on C/C++ programs, there
are only few implementations of these techniques for this class of programs. The
goal of this framework is to ease the development of tools for analysing C/C++
programs. The framework also supports noise injection that can be used to
increase the efficiency of any technique implemented using this framework.

Beside allowing one to analyse C/C++ programs, the framework was later
extended to support transactional memory, a new kind of synchronisation
which starts to be used more and more. The next contribution of the thesis is
the discussion of various caveats of monitoring programs using transactional
memory (which is required for their analysis) and a usage of noise injection
techniques for fixing the behaviour of such programs (as the behaviour is often
changed because of the monitoring).

The last contribution is the invention of a brand new technique for detecting
several kinds of concurrency errors, namely the well-known atomicity violations
and also the less studied order violations and missed signals. All of these
errors may be described using the so called contracts for concurrency and then
checked using the new technique. The technique also works very well with
the noise injection techniques, it fact, a slightly modified version of one of the
previously invented noise injection techniques is used here to greatly increase
the efficiency of the detection technique.

The results were published in proceedings of Eurocast 2011 and 2015, RV
2011 and 2012, PADTAD 2012, and MEMICS 2014, and in the special issue of
the STVR journal focusing on concurrency. A part of the content of Section 7 is
currently under review at the ICST 2017 conference. Moreover, they have been
implemented in the ANaConDA framework. A paper describing this framework
also won the best tool paper award at the RV 2012 conference. The framework
has been tested in collaboration with industrial partners (we were not allowed
to mention them explicitly) and various errors were found in their programs.

30

As for future work, let us highlight just some general directions here. As
there is no silver bullet heuristic when using noise injection, it is always
important to pick up (and combine) the right heuristics and choose the right
parameters for them. So developing new noise injection heuristics, e.g., tailored
for specific concurrency errors, detection techniques, or classes of programs,
and inventing (automatic) approaches for determining the best parameters for
them, e.g., by utilising search techniques, generic algorithms, or data mining, is
more than helpful. With the ANaConDA framework, it is easier than ever to
implement the existing dynamic analyses for C/C++ programs or to quickly
develop new analyses and test how they work in practice. There are also many
ways how to extend the framework. To mention a few, one can add a support for
analysing multi-process programs (in addition to multi-threaded programs), for
handling additional kinds of synchronisation such as RCU (read-copy-update),
or for extracting a more detailed information about the code being analysed.

Bibliography

[AB01a] Cyrille Artho and Armin Biere. Applying Static Analysis to Large-
Scale, Multi-Threaded Java Programs. In Proc. of ASWEC’01,
pages 68–76, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

[AB01b] Cyrille Artho and Armin Biere. Applying Static Analysis to Large-
Scale, Multi-Threaded Java Programs. In Proc. of ASWEC’01.
IEEE Computer Society, 2001.

[AHB03] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data
races. Software Testing, Verification and Reliability, 13(4):207–
227, December 2003.

[AHB04] Cyrille Artho, Klaus Havelund, and Armin Biere. Using block-
local atomicity to detect stale-value concurrency errors. Auto-
mated Technology for Verification and Analysis, pages 150–164,
2004.

[And91] Gregory R. Andrews. Concurrent programming: principles and
practice. Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA, 1991.

[AS06] Rahul Agarwal and Scott D. Stoller. Run-time Detection of
Potential Deadlocks for Programs with Locks, Semaphores, and
Condition Variables. In Proc. of PADTAD’06, pages 51–60, New
York, NY, USA, 2006. ACM.

31

[BBM07] Johann Blieberger, Bernd Burgstaller, and Robert Mittermayr.
Static Detection of Livelocks in Ada Multitasking Programs. In
Proc. of Ada-Europe’07, pages 69–83, Berlin, Heidelberg, 2007.
Springer-Verlag.

[BH06] Saddek Bensalem and Klaus Havelund. Dynamic Deadlock Anal-
ysis of Multi-threaded Programs. In Proc. of HVC’05, volume
3875 of LNCS, pages 208–223, Berlin, Heidelberg, 2006. Springer-
Verlag.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press, 2008.

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks.
ACM Comput. Surv., 3:67–78, June 1971.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled.
Model Checking. MIT Press, 1999.

[CHPW00] Crispin Cowan, Heather Hinton, Calton Pu, and Jonathan
Walpole. The cracker patch choice: An analysis of post hoc
security techniques. In Proceedings of the 23rd National Informa-
tion Systems Security Conference. USENIX Association, 2000.

[CMCKO08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle
Olukotun. STAMP: Stanford Transactional Applications for
Multi-Processing. In Proc. of IISWC’08, 2008.

[DFF+16] Ricardo F. Dias, Carla Ferreira, Jan Fiedor, João M. Lourenço,
Aleš Smrčka, Diogo G. Sousa, and Tomáš Vojnar. Verify-
ing concurrent programs using contracts. Technical report,
2016. http://www.fit.vutbr.cz/~vojnar/Publications/

tr-contracts-16.pdf.

[DPL13] Ricardo J. Dias, Vasco Pessanha, and JoĂ Lo M. LourenĂ§o. Pre-
cise detection of atomicity violations. In Armin Biere, Amir Nahir,
and Tanja Vos, editors, Hardware and Software: Verification and
Testing, volume 7857 of Lecture Notes in Computer Science, pages
8–23. Springer Berlin / Heidelberg, November 2013. HVC 2012
Best Paper Award.

[EFG+03a] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarde Nir, Gil
Ratsaby, and Shmuel Ur. Framework for Testing Multi-threaded
Java Programs. Concurrency and Computation: Practice and
Experience, 15(3-5):485–499, 2003.

32

http://www.fit.vutbr.cz/~vojnar/Publications/tr-contracts-16.pdf
http://www.fit.vutbr.cz/~vojnar/Publications/tr-contracts-16.pdf

[EFG+03b] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil
Ratsaby, and Shmuel Ur. Framework for Testing Multi-threaded
Java Programs. Concurrency and Computation: Practice and
Experience, 15(3-5):485–499, 2003.

[EQT07] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: A
Race and Transaction-aware Java Runtime. In Proc. of PLDI’07,
pages 245–255, New York, NY, USA, 2007. ACM.

[FNU03] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug pat-
terns and how to test them. In IPDPS’03: Proceedings of the 17th
International Symposium on Parallel and Distributed Processing,
page 286, Washington, DC, USA, 2003. IEEE.

[FV12a] Jan Fiedor and Tomáš Vojnar. ANaConDA: A Framework for
Analysing Multi-threaded C/C++ Programs on the Binary Level.
In Proc. of RV’12. LNCS 7687, Springer, 2012.

[FV12b] Jan Fiedor and Tomáš Vojnar. Noise-based Testing and Analysis
of Multi-threaded C/C++ Programs on the Binary Level. In
Proc. of PADTAD’12, pages 36–46, New York, NY, USA, 2012.
ACM.

[FV13] Jan Fiedor and Tomáš Vojnar. ANaConDA: A Framework for
Analysing Multi-threaded C/C++ Programs on the Binary Level.
In Proc. of RV’13, volume 7687 of LNCS, pages 35–41. Springer-
Verlag, 2013.

[GK10] Rachid Guerraoui and Michal Kapalka. Principles of Transac-
tional Memory. Morgan and Claypool Publishers, 2010.

[HAP+12] Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and
Mary Jean Harrold. Testing Concurrent Programs to Achieve
High Synchronization Coverage. In Proc. of ISSTA’12, pages
210–220, New York, NY, USA, 2012. ACM.

[HKV09] Vendula Hrubá, Bohuslav Křena, and Tomáš Vojnar. Self-healing
assurance using bounded model checking. In Proc. of EURO-
CAST’09. LNCS 5717, Springer, 2009.

[HLR10] Tim Harris, James Larus, and Ravi Rajwar. Transactional Mem-
ory, 2nd Edition. Morgan and Claypool Publishers, 2010.

[HP04] David Hovemeyer and William Pugh. Finding Concurrency Bugs
in Java. In Proc. of PODC’04, July 2004.

33

[HSH05] Alex Ho, Steven Smith, and Steven Hand. On deadlock, livelock,
and forward progress. Technical report, University of Cambridge,
2005.

[htt13] Power Framework Delay Fuzzing. On-
line at: http://msdn.microsoft.com/en-
us/library/hh454184(v=vs.85).aspx, April 2013.

[JPPS11] Nicholas Jalbert, Cristiano Pereira, Gilles Pokam, and Koushik
Sen. Radbench: A concurrency bug benchmark suite. In Proceed-
ings of the 3rd USENIX Conference on Hot Topic in Parallelism,
HotPar’11, Berkeley, CA, USA, 2011. USENIX Association.

[JPSN09] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A
Randomized Dynamic Program Analysis Technique for Detecting
Real Deadlocks. In Proc. of PLDI’09, pages 110–120, New York,
NY, USA, 2009. ACM.

[KMB10] Devin Kester, Martin Mwebesa, and Jeremy S. Bradbury. How
Good is Static Analysis at Finding Concurrency Bugs? In Proc.
of SCAM’10, pages 115–124. IEEE Computer Society, 2010.

[Kre06] Brian Krebs. A time to patch II: Mozilla, 2006. Last visited
March 2016.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. In Proc. of PLDI’05. ACM,
2005.

[LŞW06] Stefan Leue, Alin Ştefănescu, and Wei Wei. A livelock freedom
analysis for infinite state asynchronous reactive systems. In
Christel Baier and Holger Hermanns, editors, CONCUR 2006 –
Concurrency Theory, volume 4137 of Lecture Notes in Computer
Science, pages 79–94. Springer Berlin / Heidelberg, 2006.

[LTQZ06] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO:
Detecting Atomicity Violations via Access Interleaving Invariants.
In Proc. of ASPLOS’06, pages 37–48, New York, NY, USA, 2006.
ACM.

[LVK08a] Zdeněk Letko, Tomáš Vojnar, and Bohuslav Křena. Atomrace:
data race and atomicity violation detector and healer. In PAD-
TAD’08, pages 1–10, New York, NY, USA, 2008. ACM.

34

[LVK08b] Zdeněk Letko, Tomáš Vojnar, and Bohuslav Křena. AtomRace:
Data Race and Atomicity Violation Detector and Healer. In Proc.
of PADTAD’08, pages 1–10, New York, NY, USA, 2008. ACM.

[LVK12] Zdeněk Letko, Tomáš Vojnar, and Bohuslav Křena. Influence
of Noise Injection Heuristics on Concurrency Coverage. In Proc.
of MEMICS’11, volume 7119 of LNCS, pages 123–131, Berlin,
Heidelberg, 2012. Springer-Verlag.

[Mey92] Bertrand Meyer. Applying ”design by contract”. Computer,
25(10):40–51, October 1992.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of reactive
and concurrent systems. Springer-Verlag New York, Inc., New
York, NY, USA, 1992.

[MQB07] M. Musuvathi, S. Qadeer, and T. Ball. CHESS: A Systematic
Testing Tool for Concurrent Software. Technical Report MSR-
TR-2007-149, Microsoft Research, 2007.

[MQB+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu. Finding
and reproducing heisenbugs in concurrent programs. In OSDI’08,
pages 267–280, Berkeley, CA, USA, 2008. USENIX Association.

[MR97] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. ACM Trans. Comput. Syst.,
15(3):217–252, 1997.

[NPSG09] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay.
Effective Static Deadlock Detection. In Proc. of ICSE’09, pages
386–396. IEEE Computer Society, 2009.

[PGB+05] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug
Lea, and David Holmes. Java Concurrency in Practice. Addison-
Wesley Professional, 2005.

[PS03] Eli Pozniansky and Assaf Schuster. Efficient On-the-fly Data
Race Detection in Multithreaded C++ Programs. In Proc. of
PPoPP’03, pages 179–190, New York, NY, USA, 2003. ACM.

[PS08] Chang-Seo Park and Koushik Sen. Randomized Active Atom-
icity Violation Detection in Concurrent Programs. In Proc. of
SIGSOFT’08/FSE-16, pages 135–145, New York, NY, USA, 2008.
ACM.

35

[Res03] Eric Rescorla. Security holes... who cares? In Proceedings of the
12th Conference on USENIX Security Symposium, pages 75–90,
Berkeley, CA, USA, 2003. USENIX Association.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: A Dynamic Data Race Detector
for Multi-threaded Programs. In Proc. of SOSP’97, pages 27–37,
New York, NY, USA, 1997. ACM.

[SDFL15] Diogo G. Sousa, Ricardo J. Dias, Carla Ferreira, and JoĂ Lo M.

LourenĂ§o. Preventing atomicity violations with contracts. eprint
arXiv:1505.02951, May 2015.

[Sen08] Koushik Sen. Race Directed Random Testing of Concurrent
Programs. In Proc. of PLDI’08, pages 11–21, New York, NY,
USA, 2008. ACM.

[Sta08] William Stallings. Operating Systems: Internals and Design
Principles. Prentice Hall, 6 edition, April 2008.

[Tai94] Kuo-Chung Tai. Definitions and detection of deadlock, livelock,
and starvation in concurrent programs. In ICPP’94: Proceedings
of the 1994 International Conference on Parallel Processing, pages
69–72, Washington, DC, USA, 1994. IEEE.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. Prentice
Hall Press, Upper Saddle River, NJ, USA, 2007.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon
Park. Model Checking Programs. In Proc. of ASE’00, page 3,
Washington, DC, USA, 2000. IEEE Computer Society.

[VPG04] C. Von Praun and T.R. Gross. Static detection of atomicity viola-
tions in object-oriented programs. Journal of Object Technology,
3(6):103–122, 2004.

[WTH+12] Jingyue Wu, Yang Tang, Gang Hu, Heming Cui, and Junfeng
Yang. Sound and Precise Analysis of Parallel Programs through
Schedule Specialization. In Proc. of PLDI’12, pages 205–216,
New York, NY, USA, 2012. ACM.

[YNPP12] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam.
Maple: A Coverage-driven Testing Tool for Multithreaded Pro-
grams. In Proc. of OOPSLA’12, pages 485–502, New York, NY,
USA, 2012. ACM.

36

Curriculum Vitae

Personal Data

Name: Jan Fiedor
Born: April 2, 1985, Bohumı́n, Czech Republic
E-mail: fiedorjan@centrum.cz

Telephone: +420 721 344 247

Education

2009 – now PhD. (ongoing)—Faculty of Information Technology, Brno
University of Technology. Research theme: Practical Methods
of Automated Verification of Concurrent Programs.

2007 – 2009 Master’s degree (Ing.)—Faculty of Information Technology,
Brno University of Technology. Graduated with honors. Mas-
ter thesis: Design and Implementation of a Tool for Formal
Verification of Systems Specified in RT-Logic Language.

2004 – 2007 Bachelor’s degree (Bc.)—Faculty of Information Technology,
Brno University of Technology. Graduated with honors.
Bachelor thesis: Instant Messaging System.

1996 – 2004 Secondary education—Gymnázium Orlová, Orlová.

Experience

09/2013 – 12/2013 IT department of Faculty of Science and Technology,
Universidade Nova de Lisboa, Lisbon, Portugal. Short
Time Scientific Mission within the European COST
Action project IC1001 (Euro-TM) focused on devel-
oping methods for analysing multi-threaded programs
using Transactional Memory.

2009 – now Part-time development engineer at FIT BUT, Brno,
CZ. Development of C/C++ tools for dynamic analy-
ses and testing of multi-threaded C/C++ programs.

2006 – now Lecturer at ApS Brno, Brno, CZ. Courses focusing
on C/C++ programming and administration of MS
Windows (MCP 70-270/290/291, MCT 70-620/640,
MCSA).

Language skills

Czech, English.

37

fiedorjan@centrum.cz

Abstract

V dnešńı době jsou v́ıcevláknové programy běžné a s nimi i chyby v souběžnosti.
Během posledńıch let bylo vytvořeno mnoho technik pro detekci takovýchto
chyb, a i přesto maj́ı vývojáři softwaru problém nalézt správné nástroje pro
analýzu svých programů. Důvod je jednoduchý, funguj́ıćı neznamená vždy
praktický. Hodně nástroj̊u implementuj́ıćıch detekčńı techniky je obt́ıžně
použitelných, přizp̊usobených pro konkrétńı typy programů nebo synchronizace,
nebo špatně škáluj́ı, aby zvládly analyzovat rozsáhlý software. Pro některé typy
chyb v souběžnosti dokonce ani neexistuj́ı nástroje pro jejich detekci, i přesto že
vývojáři softwaru na tyto chyby často narážej́ı ve svých programech. Hlavńım
ćılem této práce je navrhnout nové techniky pro detekci chyb ve v́ıcevláknových
programech. Tyto techniky by měly být schopny analyzovat rozsáhlé programy,
umožnit detekci méně studovaných typ̊u chyb v souběžnosti, a podporovat
širokou škálu programů s ohledem na to, jaké programové konstrukce použ́ıvaj́ı.

38

	Introduction
	Detecting Errors in Multi-threaded Programs
	Goals of the Thesis

	Concurrency Errors
	Safety Errors
	Data Races
	Atomicity Violation
	Order Violations
	Deadlocks
	Missed Signals

	Liveness and Mixed Errors
	Livelocks and Non-progress Behaviour
	Blocked Threads

	Combining Dynamic Analysis and Model Checking
	Experiments

	The ANaConDA Framework
	Experiments

	Improved Noise Injection
	Evaluating Improved Noise Injection
	Evaluating New Heuristics

	Transactional Memory Programs
	Experimental Evaluation

	Contracts for Concurrency
	Experiments

	Conclusion
	Bibliography
	Curriculum Vitae
	Abstract

