
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

FINITE-STATE BASED RECOGNITION NETWORKS
FOR FORWARD-BACKWARD SPEECH DECODING

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Dipl.-Ing. MIRKO HANNEMANN
AUTHOR

BRNO 2016

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

FINITE-STATE BASED RECOGNITION NETWORKS
FOR FORWARD-BACKWARD SPEECH DECODING
ROZPOZNÁVACÍ SÍTĚ ZALOŽENÉ NA KONEČNÝCH STAVOVÝCH PŘEVODNÍCÍCH PRO DOPŘEDNÉ

A ZPĚTNÉ DEKÓDOVÁNÍ V ROZPOZNÁVÁNÍ ŘEČI

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Dipl.-Ing. MIRKO HANNEMANN
AUTHOR

VEDOUCÍ PRÁCE Doc. Ing. LUKÁŠ BURGET, Ph.D.
SUPERVISOR

BRNO 2016

Abstract
Many tasks can be formulated in the mathematical framework of weighted finite state trans-
ducers (WFST). This is also the case for automatic speech recognition (ASR). Nowadays,
ASR makes extensive use of composed probabilistic models – called decoding graphs or
recognition networks. They are constructed from the individual components via WFST
operations like composition. Each component is a probabilistic knowledge source that con-
strains the search for the best path through the composed graph – called decoding. The
usage of a coherent framework guarantees, that the resulting automata will be optimal in
a well-defined sense. WFSTs can be optimized with the help of determinization and min-
imization in a given semi-ring. The application of these algorithms results in the optimal
structure for un-pruned search and the optimal distribution of weights for pruned search is
achieved by applying a weight pushing algorithm. The goal of this thesis is to further de-
velop the recipes and algorithms for the construction of optimal recognition networks. We
introduce an alternative weight pushing algorithm, that is suitable for an important class
of models – language model transducers, or more generally cyclic WFSTs and WFSTs with
failure (back-off) transitions. We also present a recipe to construct recognition networks,
which are suitable for decoding backwards in time, and which, at the same time, are guar-
anteed to give exactly the same probabilities as the forward recognition network. For that
purpose, we develop an algorithm for exact reversal of back-off language models and their
corresponding language model transducers. We apply these backward recognition networks
in an optimization technique: In a static network decoder, we use it for a two-pass decoding
setup (forward search and backward search). This approach is called tracked decoding and
allows to incorporate the first pass decoding into the second pass decoding by tracking hy-
potheses from the first pass lattice. This technique results in significant speed-ups, since it
allows to decode with a variable beam width, which is most of the time much smaller than
the baseline beam. We also show that it is possible to apply the algorithms in a dynamic
network decoder by using the incrementally refining recognition setup. This additionally
leads to a partial parallelization of the decoding.

Keywords
Automatic speech recognition, LVCSR decoding, recognition networks, weighted finite state
transducers, N-gram language models, weight pushing

Bibliographic citation
Mirko Hannemann: Finite-state based recognition networks for forward-backward speech
decoding, PhD thesis, Brno, Brno University of Technology, Faculty of Information Tech-
nology, 2016

Abstrakt
Pomocí matematického formalismu váhovaných konečných stavových převodníků (weighted
finite state transducers WFST) může být formulována řada úloh včetně automatického
rozpoznávání řeči (automatic speech recognition ASR). Dnešní ASR systémy široce využí-
vají složených pravděpodobnostních modelů nazývaných dekódovací grafy nebo rozpozná-
vací sítě. Ty jsou z jednotlivých komponent konstruovány pomocí WFST operací, např. kom-
pozice. Každá komponenta je zde zdrojem znalostí a omezuje vyhledávání nejlepší cesty
ve složeném grafu v operaci zvané dekódování. Využití koherentního teoretického rámce
garantuje, že výsledná struktura bude optimální podle definovaného kritéria. WFST mo-
hou být v rámci daného polookruhu (semi-ring) optimalizovány pomocí determinizace a
minimalizace. Aplikací těchto algoritmů získáme optimální strukturu pro prohledávání,
optimální distribuce vah je pak získána aplikací “weight pushing” algoritmu. Cílem této
práce je zdokonalit postupy a algoritmy pro konstrukci optimálních rozpoznávacích sítí.
Zavádíme alternativní weight pushing algoritmus, který je vhodný pro důležitou třídu mod-
elů - převodníky jazykového modelu (language model transducers) a obecně pro všechny
cyklické WFST a WFST se záložními (back-off) přechody. Představujeme také způsob
konstrukce rozpoznávací sítě vhodné pro dekódování zpětně v čase, které prokazatelně pro-
dukuje ty samé pravděpodobnosti jako dopředná síť. K tomuto účelu jsme vyvinuli algo-
ritmus pro exaktní reverzi back-off jazykových modelů a převodníků, které je reprezentují.
Pomocí zpětných rozpoznávacích sítí optimalizujeme dekódování: ve statickém dekodéru je
využíváme pro dvoustupňové dekódování (dopředné a zpětné vyhledávání). Tento přístup
— “sledovací” dekódování (tracked decoding) — umožnuje zahrnout výsledky vyhledávání
z prvního stupně do druhého stupně tak, že se sledují hypotézy obsažené v rozpoznávacím
grafu (lattice) prvního stupně. Výsledkem je podstatné zrychlení dekódování, protože tato
technika umožnuje prohledávat s variabilním prohledávacím paprskem (search beam) – ten
je povětšinou mnohem užší než u základního přístupu. Ukazujeme rovněž, že uvedenou tech-
niku je možné využít v dynamickém dekodéru tím, že postupně zjemňujeme rozpoznávání.
To navíc vede i k částečné paralelizaci dekódování.

Klíčová slova
Automatické rozpoznávání řeči, dekodování řeči, rozpoznávací sítě, váhované konečné stavové
automaty, jazykové modely

Bibliografická citace
Mirko Hannemann: Rozpoznávací sítě založené na konečných stavových převodnících pro
dopředné a zpětné dekódování v rozpoznávání řeči, disertační práce, Brno, FIT VUT v Brně,
2016

4

Finite-state based recognition networks for forward-
backward speech decoding

Declaration of Originality
I hereby declare that this thesis and the work reported herein was composed by and
originated entirely from me. The work has been supervised by Doc. Ing. Lukáš Burget,
Ph.D. and Doc. Dr. Ing. Jan Černocký. Information derived from the published and un-
published work of others has been acknowledged in the text and references are given in the
list of sources. Some of the used recognition systems were set-up by the members of the
BUT Speech@FIT research group or in cooperation with third parties (Microsoft Research,
Kaldi team, Johns Hopkins University).

. .
Mirko Hannemann

17.07.

c© Mirko Hannemann, 2016.
This work was created at the Brno University of Technology at the Faculty of Information
Technology. It is protected by the Czech copyright law and any use without the permission
of the author is illegal, except for the exceptions specified in the law.

Rozpoznávací sítě založené na konečných stavových
převodnících pro dopředné a zpětné dekódování v
rozpoznávání řeči

Prohlášení
Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením Doc. Ing. Lukáše
Burgeta, Ph.D. a Doc. Dr. Ing. Jana Černockého. Uvedl jsem všechny literární prameny a
publikace, ze kterých jsem čerpal. Některé systémy použité v práci byly vytvořeny členy
výzkumné skupiny BUT Speech@FIT samostatně nebo ve spolupráci s třetími stranami
(Microsoft Research, Kaldi team, Johns Hopkins University).

. .
Mirko Hannemann

17.07.

c© Mirko Hannemann, 2016.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

6

Acknowledgements
I want to thank Lukáš Burget, who was my thesis supervisor, for his feedback and for the
discussions, especially for his efforts to advance our general machine learning knowledge. I
especially want to thank Daniel Povey, who was my first supervisor at Microsoft Research
and who had the original idea of decoding forwards and backwards in time and to perform
an iterative weight pushing. I also want to thank him and his family for their hospitality.
Thanks go to Honza Černocký for reviewing this thesis and for never being tired in coming
up with new projects and funding and to all colleagues from Speech@FIT for their help
and good atmosphere at work. I also want to thank Jasha Droppo, who was my second
supervisor at MSR, for the discussions on parallelizing the decoding algorithm and revers-
ing the language model. I thank Geoffrey Zweig for hosting me at MSR and for useful
discussions on decoding in general. Thanks go to Sanjeev Khudanpur for his input on the
weight-pushing algorithm and on language modeling. I want to thank my wife Tereza for
the patience she had with the inconveniences caused by the process of writing this thesis,
and I want to thank God for providing me with the time and health necessary to achieve
it. Some of the work described here was done when the author was summer intern at
Microsoft Research, Redmond, WA. This work was partly supported by the Intelligence
Advanced Research Projects Activity (IARPA) BABEL program, the European Union’s
Horizon 2020 project No. 645523 BISON and Czech Ministry of Education, Youth and
Sports from the National Programme of Sustainability (NPU II) project

”
IT4Innovations

excellence in science – LQ1602“.

7

Contents

Table of Contents 2

1 Introduction 5
1.1 Motivation: search graphs and decoding networks 5
1.2 Claims of the thesis . 6

1.2.1 Contribution and authorship . 7
1.2.2 Structure of the thesis . 8

2 Weighted finite state transducers and LVCSR decoding 9
2.1 Automatic speech recognition . 9
2.2 Speech recognition decoding . 12
2.3 Weighted finite state transducers . 13
2.4 Weighted finite state transducer based decoding 15

2.4.1 Decoding graph construction in the Kaldi toolkit 16
2.5 Back-off language models as finite state automata 19

2.5.1 Difficulties with the representation of back-off arcs 21
2.6 Parallel Speech Decoding . 25

2.6.1 Coarse and fine-grained parallelization 25
2.6.2 Stage parallelism through rank convergence 27

3 An alternative weight pushing algorithm 29
3.1 Weight pushing algorithm . 29
3.2 Ergodic Markov chains and non-negative matrices 33
3.3 Alternative weight pushing algorithm . 37
3.4 Experimental validation . 41
3.5 Conclusions . 43

4 Exact reversal of ARPA back-off language models 44
4.1 Motivation: forwards and backwards search 44
4.2 Construction of an exactly reversed language model 45
4.3 The treatment of missing N-grams . 48
4.4 Proof: Exact reversal of the language model 51
4.5 Motivation by Bayes’ formula . 57
4.6 Conclusions . 60

5 Combining forward and backward search in decoding 62
5.1 Introduction: combining forward and backward search 62
5.2 Construction of a reversed decoding graph 65

1

5.2.1 Reversing L, C and H . 66
5.3 Incremental forward and backward search 68

5.3.1 Finding the optimal operating point 68
5.3.2 Tuning the beam parameters . 70
5.3.3 Parallel incremental forward and backward search 72

5.4 Tracked decoding . 74
5.4.1 Tracking tokens with an arc-lattice 76
5.4.2 Beam-width policy . 77
5.4.3 Generation of the arc-lattice . 79
5.4.4 Experimental results . 81
5.4.5 Importance of beam parameters . 82

5.5 Conclusions . 86

6 Conclusions 87
6.1 Summary of the findings . 87
6.2 Future work . 89

Bibliography 91

A Scripts and executables in the Kaldi toolkit 97

2

List of Figures

2.1 Three-state Hidden Markov Model . 10
2.2 Viterbi search in composite model . 10
2.3 Simple phoneme-based recognition network 11
2.4 Components of automatic speech recognition 11
2.5 Dependencies and parallelism in the Viterbi algorithm 12
2.6 WFST corresponding to three-state HMM from figure 2.1 15
2.7 Acceptor U describing the acoustic scores of the utterance. 15
2.8 One path of the context dependency transducer C 17
2.9 Deterministic context dependency transducer C 18
2.10 Pronunciation lexicon transducer L . 18
2.11 Weighted finite state acceptor (WFSA) implementation of a bi-gram LM . . 20
2.12 WFSA resulting from the tri-gram back-off ARPA LM 21
2.13 Weighted finite state acceptor (WFSA) implementation of a tri-gram LM . 24
2.14 Parallel LVCSR implementation on CPU and GPU 26
2.15 Rank convergence in the Viterbi algorithm 27
2.16 Rank convergence in Viterbi algorithm with rank bigger than one 28

3.1 Example of weight pushing . 31
3.2 Pseudocode of single-source shortest path algorithm [Mohri(2002)] 32
3.3 Example of ergodic Markov chain and corresponding transition matrix . . . 35
3.4 Decoding performance of backward decoding network 42

4.1 Example of a forward path through a tri-gram language model 46
4.2 The backward path corresponding to the path in figure 4.1 46
4.3 The same example of figure 4.1 with backing-off 47
4.4 The backward structure corresponding to figure 4.3 47
4.5 Forward and backward WFSA for tri-gram back-off ARPA LM 49
4.6 WFSA for tri-gram LM with just three words A, B, C 52
4.7 Decoding performance of backward decoding network and tri-gram LM . . . 61

5.1 Forward and backward speech recognition: Example ASR result 63
5.2 Illustration of forward and backward search [Nolden et al.(2013)] 64
5.3 Reversing lexicon transducer L . 67
5.4 One path of the deterministic context transducer C 67
5.5 Reversal of HMM structure for phoneme HMM 67
5.6 Reversing the HMM transducer Ha . 68
5.7 Finding the optimal operating point on the RTF/WER curve 70
5.8 Max-tokens beam: frame-wise scores for three files from Eval2000 test set . 72
5.9 Parallel implementation of incremental forward backward decoding 74

3

5.10 First iteration of incremental forward-backward decoding on Eval2000 set . 75
5.11 One example utterance from the WSJ Nov’92 test set 76
5.12 Frame score differences between current best partial and final best path . . 77
5.13 Tracked decoding example illustrating the beam width policy 78
5.14 Performance of tracked decoding RTF/WER on WSJ Nov’92 test set 82
5.15 Profiling the tracked two-pass decoding . 83
5.16 Testing the extra-beam - RTF/WER . 84
5.17 Analyzing the effect of the lattice-beam . 85
5.18 Analyzing the effect of different max-beam settings 85

List of Tables

5.1 Example analysis of search errors on the WSJ Nov’92 test set 81
5.2 Quantitative analysis of search errors on WSJ Nov’92 test set 81

4

Chapter 1

Introduction

1.1 Motivation: search graphs and decoding networks

The application I had in mind while writing this thesis was the search for the best path
through a composed probabilistic model, represented as weighted finite state acceptor
(WFSA) or transducer (WFST). The task can be for example the decoding of the most
probable sequence of words in large vocabulary automatic speech recognition (LVCSR).
However, the approach presented here can also be used in other tasks, which can be formu-
lated in the WFST framework, as e.g. in finding the most probable sentence in statistical
machine translation and finding the most probable pronunciation of a spelled word in
grapheme-to-phoneme conversion.

Automatic speech recognition (ASR) can be formulated in the WFST framework [Al-
lauzen et al.(2004)], [Mohri et al.(2008)]. Nowadays, ASR makes extensive use of composed
WFSTs, called decoding graphs or recognition networks. WFSTs are used to represent the
language model (LM), the pronunciation lexicon and the Hidden Markov Models (HMM) in
a unified framework. These component WFSTs are integrated into a single WFST by the
composition operation. Each component is a probabilistic knowledge source that constrains
the search for the best path through the composed graph. This search is called decoding.
The usage of a coherent framework guarantees, that the resulting automata will be opti-
mal in a well defined sense. WFST can be optimized by operations like determinization
and minimization in a given semi-ring. The application of these algorithms results in the
optimal (deterministic and minimal) structure for un-pruned search.

An optimized recognition network can contain up to millions of states, and the resulting
search state space (trellis) is even several orders of magnitude larger. Given the complexity
of most of the tasks, the resulting huge search spaces cannot be explored exhaustively. It
is necessary to use heuristic pruning techniques. In this case, we have to distinguish search
errors, which are due to the incomplete exploration of the search space (e.g. through search
beams and other pruning techniques), from modeling errors, which are due to insufficient
(or bad) training data or due to inaccurate models (independence assumptions, choice of
distribution, smoothing, . . .). In general, the goal is to reduce the amount of search errors
at given run-time requirements (decoding speed). This can be achieved by operations like
weight pushing, which aim to distribute the weights along the path in a way that is optimal
for pruned search.

The goal of this thesis is to further develop the recipes and algorithms for the con-
struction of optimal recognition networks. We aim to find the optimal trade-off between
improving search speed and reducing search errors.

5

1.2 Claims of the thesis

The focus of this thesis is the construction of optimal forward and backward recognition
networks and the development of decoding techniques that combine forward and backward
decoding to achieve speed-ups. We introduce the idea of symmetrically decoding forwards
and backwards in time. For some tasks, the pruned backward search can be more efficient
than the forward search. Moreover, we show, that the search errors of forward and backward
search are mutually independent. To concentrate on search errors rather than on modeling
errors, we require both decoding passes to be symmetric – i.e. both models are equally
powerful and are constructed to assign exactly the same probabilities to hypotheses. This
guarantees that each difference in comparing the results of forward and backward decoding
corresponds to a search error. For most of the time frames in beam search decoding, a very
narrow beam is sufficient. Therefore, we decode with a variable beam width – using a small
baseline beam and only increasing it in places, where the forward and backward searches
disagree. Decoding with a variable beam width results in significant speed-ups.

The main contributions of this thesis can be summarized in the following points:

• Symmetric forward and backward decoding: To speed-up the decoding, as op-
posed to multi-pass recognition techniques [Nguyen et al.(1993)], we use forward and
backward recognition passes which are equally powerful. Equally powerful forward
and backward decoding has been used before for the purpose of system combination
[Li et al.(2009)] and confidence estimation [Jouvet and Fohr(2014)]. However, we
require that the forward and backward recognition networks assign exactly the same
probability scores, which allows us to detect search errors, to recombine partial paths
and to incorporate the first pass into the second pass.

• WFSTs resulting from back-off and interpolated language models: We show,
that the common practice to convert interpolated LMs into back-off LMs, when storing
them in the ARPA file format, leads to problems in the construction of the recognition
network in the log-probability semi-ring. We give details about the approximation
and the correct handling of back-off arcs and explain “missing” N-grams.

• Alternative weight pushing algorithm: We give the theoretical justification and
explain details of the alternative weight pushing algorithm, that is suitable for an
important class of models – language model transducers, or more generally cyclic
WFSTs and WFSTs with failure (back-off) transitions.

• Construction of symmetric backward recognition networks: We present a
recipe to construct recognition networks, which are suitable for decoding backwards
in time, fulfill the criteria of determinism and similar size, and which, at the same
time, are guaranteed to give exactly the same probabilities as the forward recognition
network.

• Exact back-off language model reversal: For the purpose of constructing back-
ward recognition networks, we develop an algorithm for exact reversal of back-off
language models and their corresponding language model transducers, which is valid
for both types of approximations: using epsilon arcs or using failure arcs. We show
the derivation of the formulas by a series of steps guaranteeing WFST equivalence,
as well as the derivation from Bayes’ rule.

6

• Tracked decoding and variable beam width: We develop a two-pass decoding
setup (forward search and backward search), that allows to incorporate the first pass
decoding into the second pass decoding by tracking hypotheses from the first pass
lattice. This technique allows to decode with a variable beam width, which is most
of the time much smaller than the smallest single-pass beam at the same word error
rate. The beam is only increased in areas, where forward and backward decoding
disagree.

• Speed-up and parallelization: We have implemented the backward recognition
networks for both static and dynamic network decoders and show experiments that
demonstrate significant speed-ups in both cases. Applying the incrementally refining
recognition setup of [Nolden et al.(2013)] additionally leads to a partial parallelization
of the decoding.

1.2.1 Contribution and authorship

My work on the topic of this thesis started at the Kaldi workshop 2010, where I was
part of the team implementing a WFST based speech decoder. Several implementation
designs were tested, finally the one from Daniel Povey was the simplest and fastest and
was used further on as the main Kaldi decoder. The outcome of these efforts is described
in the common paper [Povey et al.(2011)]. In the Kaldi workshop 2011, I was part of
the team, whose task was to add lattice generation to the Kaldi decoder. Again, several
approaches were discussed and implemented, and the final format of the lattices was decided.
I conducted the experiments exploring the properties of the new Kaldi lattice generation
[Povey et al.(2012)].

While I was at an internship at Microsoft Research (MSR), under supervision of Daniel
Povey, we developed the technique of forward-backward decoding. The original idea came
up in discussions with Daniel Povey and Geoffrey Zweig. I developed a recipe for the
generation of backward decoding networks (section 5.2), together with an initial reversal
algorithm for bi-gram language models and I ran a series of experiments exploring the
properties of forward and backward decoding and an analysis of the pruning behavior of
the Kaldi decoder.

During the internship, my task was to come up with a method for guiding the second
pass decoding with the results from the first pass. For that purpose, I developed the graph-
arc lattices and the algorithm to construct them from the Kaldi lattices (section 5.4.3).
I also designed the tracked decoding algorithm (section 5.4), implemented it and ran the
experimental validation of tracked decoding on a smaller LM.

Afterwards, I implemented the tracked decoding into the Kaldi toolkit and continued
the experiments by switching to a larger LM. Together with Daniel Povey, we developed the
initial reversal algorithm for WFSTs resulting from ARPA LMs with epsilon arcs. I derived
the formulas for this approach in the first part of section 4.4. I also explained the presence of
missing N-grams in the LM (section 4.3) and showed how to correctly deal with them in the
forward and backward models. This approach for LM reversal was used in a more thorough
evaluation of the tracked decoding, which we published in [Hannemann et al.(2013)]. In this
thesis, I also analyze the contribution of the different pruning parameters of the technique
(section 5.4.5).

Since the standard weight pushing algorithm was failing for higher order LMs, together
with Daniel Povey, we discussed several approaches to weight pushing. The final idea of
using the matrix power method was suggested by Daniel Povey and Sanjeev Khudanpur

7

and first implemented into the Kaldi toolkit by Ehsan Variani and Pegah Ghahrmani.
However, we only mentioned it very briefly in [Hannemann et al.(2013)] without giving
much explanation. In chapter 3, I provide a theoretical justification of the algorithm from
the theory of Markov chains and non-negative matrices and explain the derivation of the
algorithm in detail. I generalized the algorithm to be able to push towards the final state
and show the relation between the test for stochasticity and the propagation in the matrix-
vector multiplication.

After we published the forward-backward decoding, the authors of [Nolden et al.(2013)]
showed that it is possible to use our recipe for generating the exactly matching back-
ward models [Hannemann et al.(2013)] in an incremental forward-backward decoding setup.
While I was at my second internship at MSR under the supervision of Jasha Droppo, to-
gether with the authors of [Maleki et al.(2014)], we were looking for a way to implement
the approach of [Maleki et al.(2014)] in a parallel speech decoder for LVCSR. Realizing the
analogy of the approach of decoding mis-matching portions of speech [Nolden et al.(2013)]
and the approach of decoding chunks [Maleki et al.(2014)], I implemented the incremental
forward-backward decoding into the MSR recognizer and ran experiments to analyze the
potential of using the incremental decoding for the parallelization of the decoding (section
5.3).

Since the initial algorithm for the reversal of ARPA LMs was only for transducers using
the epsilon-arc approximation for back-off arcs, together with Jasha Droppo, I developed
the constructive approach for LM reversal described in section 4.2 and showed that it is
also valid for failure arcs. Afterwards, I also derived the proof for correctness in section 4.4
by a series of pushing operations and the derivation of the LM reversal from Bayes’ rule in
section 4.5.

1.2.2 Structure of the thesis

This thesis is organized as follows:

• Chapter 2 introduces the basic concepts and necessary definitions for automatic
speech recognition, weighted finite state transducers, language models and the con-
struction of recognition networks.

• Chapter 3 provides the theoretical framework of the alternative weight pushing
algorithm by deriving it from the theory of Markov chains and non-negatives matrices.

• Chapter 4 describes the constructive approach for the exact reversal of back-off
language models as well as the formal proof and derivation.

• Chapter 5 Explains the application of the forward and backward recognition net-
works in speed-up techniques.

– Section 5.2 explains the construction of the symmetric backward recognition
network from its components.

– Section 5.3 shows experiments with the incremental decoding in a dynamic
network decoder.

– Section 5.4 explains the tracked decoding and shows experiments exploring its
parameters.

• Chapter 6 Summarizes the findings in this thesis.

8

Chapter 2

Weighted finite state transducers
and LVCSR decoding

2.1 Automatic speech recognition

The task in automatic speech recognition (ASR) is to recognize the words uttered in a
segment of recorded audio and to correctly transcribe them to their corresponding textual
word form. W = w1,, wn is the (unknown) uttered sequence of words (usually from a
fixed vocabulary V). The encoding and transmission of the audio signal introduces errors
due acoustic deviations of the channel (microphone, telephone network, etc.). The resulting
audio will be recorded, and then some acoustic analysis (feature extraction) is performed,
resulting in the sequence of acoustic vectors X = x1, . . . , xm, called acoustic observation.
The task in ASR is to decode the observation X to the (possibly wrong) word sequence Ŵ.

The dominant approach to ASR is statistical pattern matching - i.e. to learn patterns
from training examples and for the recognition, the observation is compared against the
trained patterns and classified according to the goodness of match. To decode an utterance,
we search for the word sequence Ŵ with the maximum a-posteriori probability (MAP) given
the acoustics. This results in the fundamental equation of speech recognition:

Ŵ = arg max
W

P (W|X) = arg max
W

P (W)P (X|W)

P (X)
(2.1)

Since the posterior probability P (W|X) is difficult to model, we applied Bayes’ rule.
The probability of the observation sequence P (X) for a particular utterance doesn’t depend
on the hypothesized word sequence and doesn’t influence the arg max. P (X|W) is called
the acoustic model, which computes the likelihood that the observation X will be produced,
when the speaker utters the words W and P (W) is the language model, which is the prior
probability that the speaker utters the word sequence W.

Commonly, the acoustic model is a hidden Markov model (HMM, example in figure
2.1). A first-order HMM is defined by a finite set of states si ∈ Q, the state transition
probabilities aij = P (sj |si), a set of emission symbols x ∈ X (in our case continuous, but
can be also discrete) and the emission probabilities bi(xt) = p(xt|si). The state transitions
P (si+1|si) model the temporal structure of speech. The sequence of states is not observed.
The emission probabilities model the acoustic observations P (xi|si), i.e. the sequence of
emission symbols is observed. In the HMM framework, a common approximation is to

9

a11 a22 a33

a12 a34a23

b1(x) b2(x) b3(x)

Figure 2.1: Three-state left-to-right Hidden Markov Model with depicted one-dimensional
continuous emission probabilities and a selected path through it (figure from Lukáš Burget).

search for the optimal state sequence S instead of searching for the optimal word sequence:

Ŵ ≈ arg max
S

m−1∏
i=0

P (xi|si)P (si+1|si) (2.2)

In the most simple case of isolated word recognition, the HMMs model whole words
and in decoding, the Viterbi algorithm searches for best path for each HMM separately,
and then the scores of the best paths are compared. In connected speech recognition, we
construct a composite model of the word models and the language model (LM) functions
as a grammar, which constrains which words can follow each other. This is the most simple
form of a recognition network.

while state C is a collector state to save full expanded links between every word pairs.

W
2

W
1

0 1 2 3 t

Time

Figure 2.2: Viterbi search in composite model [Young et al.(2006)]. Each word is repre-
sented with a left-to-right HMM, and the final states of words are connected to the initial
states according to the LM. The initial and final states are not tied to an observation (non-
emitting). Therefore, during decoding, the word connections are followed within the same
time frame.

If there are too many words in the vocabulary to reliably estimate all word models on

10

the training data, it is necessary to use HMMs that model sub-word units (e.g. phonemes)
instead of whole words. In this case, we need a mapping from words to phonemes, which is
given in the form of a pronunciation lexicon. We give a small example:

ONE w ah n

TWO t uw

THREE th r iy

Given this example pronunciation lexicon, figure 2.3 shows the corresponding simple
recognition network for connected speech recognition with phoneme sub-word units.

ah n sil

uw sil

r iy sil

one

two

three

w

t

th

P(W2|W1)one

three

two

Figure 2.3: Simple phoneme-based recognition network. Words are modeled by phonemes
(sil: silence) and bi-gram probabilities are applied at word transitions (figure from Lukáš
Burget). Each phoneme is modeled by a three-state HMM, thus in the figure, we show only
the transitions connecting the phoneme models and words.

In figure 2.4, we summarize the basic structure of an ASR system. The recognition
network is a composition of the LM (accepting word sequences), the pronunciation lexi-
con (mapping the words to phonemes), and the HMM structure, modeling the temporal
structure of the phonemes. We conceptually split the HMMs into the HMM structure
(transition probabilities aij), which are considered as part of the static recognition network
and emission probabilities bi(ot), which produce the acoustic likelihoods scores p(xi|si) for
each frame, and are usually applied dynamically during the recognition.

speech input feature
extraction

acoustic
model
P (X|W)

decoding: search for
best hypothesis Ŵ =
argmaxwP (W) ·P (X|W)

recognition network

recognized text

HMM structure pronunciation
lexicon

language
model P (W)

Figure 2.4: Components of automatic speech recognition

11

2.2 Speech recognition decoding

The algorithm [Viterbi(1967)] that is used for the search for the best path through the
recognition network belongs to the class of algorithms called dynamic programming [Bell-
man(1952)]. In this class of algorithms, we can reduce the global task of finding the best
path, to the task of recursively solving the sub-problem of choosing the predecessor with
the best partial path up to this time. Figure 2.5 shows this for the Viterbi algorithm.

1

2

3

4

5

6

State

Speech
Frame
(Time)1 2 3 4 5 6

b3 o 4()

a35

Stage

Figure 2.5: Dependencies and parallelism in the Viterbi algorithm. Left: Viterbi algorithm
applied to an HMM in isolated word recognition [Young et al.(2006)] Right: Dependencies
in time-synchronous Viterbi search: The sub-problem of finding the max token in the cur-
rent time step depends on all incoming arcs from the previous time step (stage) [Maleki
et al.(2014)].

The Viterbi algorithm [Viterbi(1967)] is a special form of the single source shortest path
problem (SSSP), which has been extensively studied [Gibbons(1985)], [Cormen et al.(2009)].
As seen in the left part of figure 2.5, the search graph (in the example the HMM out-most
left) unfolds to the trellis structure of search states, where each HMM state is copied for
each time step. Often, the Viterbi algorithm is implemented as a token passing algorithm
[Young et al.(1989)]. We think of a token as a record of a particular state in the HMM that
is active on a particular time frame and contains the accumulated score of the partial path
explored so far (as well as a back-pointer).

As opposed to figure 2.5, the search graphs used in LVCSR (seen as composite HMM)
are usually huge and the resulting number of search states in the trellis is an order of
magnitude higher. Therefore, we would not construct the full trellis, but build it frame by
frame. Every graph state in a particular time frame can only be reached by states from
the previous time frame (figure 2.5). This special dependency structure is used in the time-
synchronous Viterbi algorithms, which are applied in the majority of speech decoders. The
advantage is, that only scores of paths of the same length need to be compared, and only
the states of the current frame need to be kept in memory.

Alternatively, we can represent the state transitions in a matrix P, where each entry
pij represents the sum of all transitions from state i to state j. Given a vector of forward
(Viterbi) probabilities for each state at a certain time, the vector of forward probabilities
for the next time step is obtained by “multiplying” the matrix Pij (tropical semi-ring,

12

explained in next section 2.3). The weights of the matrix Pij need to be computed at each
time step – the transition probabilities aij are fixed, but we need to evaluate the emission
probabilities bj(ot) given the observation at the current time step. Usually, the probabilities
are computed on-the-fly by combining the so called acoustic scores (bj(ot)) with the so called
graph scores (aij , containing LM and HMM transitions).

Due to the huge search spaces when using large vocabularies or context-dependency, it
is usually not efficient or not possible at all to perform an exhaustive search. In this case,
pruning needs to be applied (e.g. beam search [Lowerre(1976)]). The choice of an efficient
pruning strategy is the dominant factor in determining the recognizer speed. Typically, only
a percent of the states of the search graph are active at each time frame and as a result, for
the straight forward implementation, their data structures are scattered in memory, which
leads to cache failures and slow memory access. Thus, the application of pruning changes
the properties of the basic SSSP fundamentally and the algorithm design becomes more
complex.

2.3 Weighted finite state transducers

Throughout this work, we think of weighted finite state acceptors/transducers (WFSA/WFST)
as having a set of states with one distinguished start state1. Each state has a final weight
(or 0̄ (infinite cost) for non-final states) and there is a set of arcs between the states, where
each arc has an input label (for WFST also an output label), and a weight. Formally, we
introduce a WFSA [Mohri(1997)], [Mohri and Riley(2001)] as:

A = (Σ, Q, i, F,E, λ, ρ) over a semi-ring (K,⊕,⊗, 0̄, 1̄) (2.3)

A semi-ring [Kuich and Salomaa(1986)] is an algebraic structure – it is a ring that may
lack negation. It has two associative operations ⊕ and ⊗ that are closed over the set K, they
have identities 0̄ and 1̄, respectively. ⊗ distributes over ⊕ and 0̄ is an annihilator. When
the weights represent probabilities, the appropriate semi-ring is the probability semi-ring
(R+,+,×, 0, 1) 2. For numerical stability, often log-probabilities are used, which results in
the log semi-ring (R ∪ ∞,⊕log,+,∞, 0) with ∀a, b ∈ R ∪ ∞, a ⊕log b = − log(exp(−a) +
exp(−b)). When we use the Viterbi approximation, we replace the ⊕log with the minimum
and the resulting semi-ring is the tropical semi-ring (R+ ∪∞,min,+,∞, 0). A special class
of semi-rings are divisible semi-rings, i.e. ∀a, b ∈ K, a⊕ b 6= 0̄ : ∃a1 ∈ K : a = (a⊕ b)⊗a1. In
other words, a1 is the remainder of the division of a by a⊕ b and we introduce the inversion
operation: a1 = (a⊕ b)−1 ⊗ a.

A WFSA is given by:

• an alphabet or label set Σ

• a finite set of states Q

• an initial state i ∈ Q
• a set of final states F ⊆ Q
• a finite set of transitions E ⊆ Q× (Σ ∪ ε)×K×Q
• an initial weight λ

• and a final weight ρ(q)

1As used in the OpenFST toolkit: www.openfst.org
2Sometimes, it is used in a more general sense, not limiting the numbers to between zero and one.

13

www.openfst.org

A transition t = (p[t], l[t], w[t], n[t]) ∈ E can be represented as an arc from the source state
p[t] to the destination state n[t], with the label l[t] and weight w[t], which is typically a
probability (or log-probability). Transitions labeled with the empty string ε consume no
input. For each state q ∈ Q, E[q] denotes the set of transitions leaving q. The transition
weights can be also represented in form of the transition matrix Pi,j ∈ |Q| × |Q|, where
each entry pij = w[t] contains the sum of weights of all transitions t from state i = p[t] to
state j = n[t]. If no corresponding transition exists, the entry is 0̄.

A path in A is a sequence of consecutive transitions π = t1 . . . tn with n[ti] = p[ti+1], i =
1, . . . , n − 1. A successful path is a path from the initial state i to one of the final states
f ∈ F . The label of a path π is the concatenation of the labels of its constituent transitions:
l[π] = l[t1] . . . l[tn] and the weight associated to π is the ⊗-product of the initial weight,
the weights of its constituent transitions and the final weight ρ(n[tn]) of the state f = n[tn]
reached by π:

w[π] = λ⊗ w[t1]⊗ . . .⊗ w[tn]⊗ ρ(n[tn]) (2.4)

The total weight of an WFSA is the sum of all successful paths from the initial state i
to all of the final states F :

wtot =
⊕

∀π,p[π]=i,n[π]=f∈F

w[π] (2.5)

A symbol sequence is accepted by A if there exists at least one successful path π labeled
with x = l[π]. The weight associated by A to the sequence x is then the ⊕-sum of the
weights of all the successful paths π labeled with x. In the same way, the weight of a set of
paths is the ⊕-sum of the weights of the individual paths. A state q is accessible if there
is a path from the initial state i to q. A state q is co-accessible if there is a path from q
to a final state f ∈ F . A WFSA is trim or connected if it contains neither inaccessible nor
co-inaccessible states. A WFSA is stochastic, if the transitions out of each state q (and the
final-probability) “sum to one” in the given semi-ring:

∀q ∈ Q,

 ⊕
e∈E[q]

w[e]

⊕ ρ[q] = 1̄ (2.6)

It is only possible to make the WFSA stochastic if the total weight of the entire WFSA
is 1̄. Otherwise, there is a left-over weight that must be handled. In practice this may be
discarded, or put on the initial or final states of the WFSA.

WFSTs generalize WFSAs by replacing the single transition label by a pair (i, o) of an
input label and an output label:

A = (A,B, Q, i, F,E, λ, ρ) over a semi-ring (K,⊕,⊗, 0̄, 1̄) (2.7)

, where A is the finite input alphabet, B is the final output alphabet, and a transition
t = (p[t], i[t], o[t], w[t], n[t]) ∈ E has an input label i[t] and an output label o[t].

A WFST associates pairs of symbol sequences and weights, i.e. it represents a weighted
binary relation between symbol sequences. Two WFSAs are equivalent if they associate the
same weight to each input string, i.e. weights may be distributed differently along the paths
of two equivalent acceptors [Mohri and Riley(2001)]. Two WFSTs are equivalent if they
associate the same output sequence and weights to each input sequence, i.e. the distribution
of the weight or output labels along paths need not be the same in the two WFSTs.

14

There might be some confusion about the terms “weight” and “cost”. Usually, by
mentioning “weights” in this thesis, we refer to a general probability representation in any
semi-ring, and by mentioning “costs” (not to be confused with cost functions in e.g. Bayes
decision rule), we refer to probabilities in the log- or tropical semi-rings, where a cost is a
floating point number that typically represents a negated log-probability.

2.4 Weighted finite state transducer based decoding

Also LVCSR can be formulated in the framework of weighted finite state acceptors/trans-
ducers (WFSA/WFST) [Allauzen et al.(2004)], [Mohri et al.(2008)]. As seen in figure 2.6,
the HMM search graph can be represented as WFST. We refer to this WFST as the HMM
structure transducer H. The input labels are identifiers of probability density functions
(PDF-ids, often context-dependent HMM states).

0 1pdf1:aa/1.0

pdf1:<eps>/a_11

2pdf2:<eps>/a_12

pdf2:<eps>/a_22

3pdf3:<eps>/a_23

pdf3:<eps>/a_33

4<eps>:<eps>/a_34

Figure 2.6: WFST H corresponding to three-state left-to-right HMM from figure 2.1. The
notation of an arc is

”
input:output/weight“, where

”
<eps>“ stands for the ε (no sym-

bol). Instead of attaching the emission probabilities to the state, we attach them to the
incoming arcs of a state. Thus, the input labels correspond to identifiers of probability den-
sity functions (PDF-ids). During decoding, the PDF-ids are used to evaluate the emission
probabilities assigned to the destination state of the arc. The acoustic likelihood score is
combined (⊗) with the weight of the arc, corresponding to the transition probability aij.
The output label is the identity of the phoneme (aa). The final arc is non-emitting (<eps>
input). In composite models, it can serve to interconnect the individual (sub-word HMM)
models according to the pronunciation lexicon and the LM.

0 1

1/4.86

2/4.94

3/5.31
4/5.91

5/4.56

6/5.99

2

1/4.16

2/5.44

3/6.19
4/5.02

5/4.78

6/5.33

3

1/5.23

2/8.53

3/6.02
4/6.47

5/7.42

6/6.11

Figure 2.7: Acceptor U describing the acoustic scores of the utterance [Povey et al.(2012)].

To decode an utterance of T frames in the WFST framework, i.e. to find the most likely
state sequence through the trellis, we construct an acceptor (WFSA) U , as in figure 2.7. It
has T+1 states, with an arc for each combination of (time, PDF-id). The weights on these
arcs correspond to negated and scaled acoustic log-likelihoods3. We construct the trellis S

3In figure 2.7, we represented the acoustic likelihoods (which can be very small numbers) in the negative
log-semi-ring, while in figure 2.6, we showed the weights the probability semi-ring for illustrational purposes.
Of course, the composition must be done with both weights in the same semi-ring.

15

with WFST composition [Povey et al.(2012)]:

S ≡ U ◦H. (2.8)

The trellis has approximately T+1 times more states than H. The decoding problem
is equivalent to finding the best path through S, which can be done with the shortest
path algorithm in the corresponding semi-ring. The best path is represented as a linear
WFST. The output symbol sequence of this best path represents the decoding result, i.e. the
recognized sequence of phonemes (and words)4. The input symbol sequence of the best
path represents the sequence of PDF-ids used for each time frame. If there is a direct
correspondence between the PDF-id and the state in the H transducer (for example if
pdf1 = 1, pdf2 = 2, pdf3 = 3 in figure 2.6), we obtain the sequence of states as well. This is
called the state-level alignment. As done in the Kaldi toolkit [Povey et al.(2011)], the input
labels can be constructed in such a way, that they represent the PDF-id, the graph state
and the transition number, so that all this information will be available in the state-level
alignment. We refer to these identifiers as Kaldi transition-ids.

In practice, S is not searched exhaustively, but beam pruning is used. Let B be the
searched subset of S, containing a subset of the states and arcs of S obtained by some
heuristic pruning procedure. When we do Viterbi decoding with beam-pruning, we are
finding the best path through B. Since a LVCSR system can have up to ten-thousands of
PDF-ids and there are typically hundreds to thousands of frames in an utterance, it is not
very practical to construct U in advance. Also, due to pruning, just a subset of PDF-ids
needs to be evaluated for each frame. Therefore, we are dynamically composing U during
decoding. This corresponds to combining (⊗) the acoustic likelihood score with the arc
weights (transition probabilities, called graph score) on-the-fly.

Conceptually, we split HMMs (containing transition probabilities and emission prob-
abilities) into the HMM structure transducer H (figure 2.6) and the acoustic model (the
emission probabilities, which produce the acoustic likelihoods scores p(xi|si) for each frame).
The HMM structure transducer H represents the transitions, i.e. the part of the HMM net-
work, that is fixed for all time steps. It maps from a sequence of acoustic unit identifiers
(e.g. one PDF-id per frame) to a sequence of phonemes.

Nowadays, instead of phonemes as sub-word acoustic units, usually we use context-
dependent phonemes. Most often, tri-phones are used (including the current phoneme and
one to the left and to the right). Thus, the basic building block of the graph (figure 2.6) are
tri-phone HMMs. In this case, an additional component is needed: the phoneme-to-context-
phoneme mapping. Due to data sparsity not all possible context-dependent phonemes can
be observed sufficiently often in training, usually, a clustering algorithm (e.g. decision tree)
is applied to reduce the number of units to train.

2.4.1 Decoding graph construction in the Kaldi toolkit

Already in figure 2.4, we indicated the building blocks of a recognition network: the HMM
structure, the pronunciation lexicon and the LM. Instead of the simple three-state HMM in
figure 2.6, now, we use a recognition network composed of thousands of sub-word HMMs,
connected according to the phoneme-to-context-phoneme mapping, the pronunciation lex-
icon and the LM. We represent each component as WFST. The standard recipe for the
decoding graph construction is [Mohri et al.(2008)]:

HCLG = min(det(H ◦ C ◦ L ◦G)), (2.9)
4In our example just “aa”, but for composite models, we obtain the sequence of phoneme HMMs used.

16

here, H, C, L and G are the components, which are created separately and are integrated
into a single WFST(HCLG) (called decoding graph) with WFST composition (denoted
as ◦). H, C, L and G represent the HMM structure, the phonetic context-dependency
transducer, the lexicon transducer and the LM (grammar), respectively. As in figure 2.6,
the result is a “fully expanded” graph, where the arcs correspond to HMM transitions, the
input labels are the identifiers of PDF-ids (context-dependent HMM states), and the output
labels represent words as accepted by the LM. For both the input and output labels, the
special symbol ε may appear, meaning “no label is present.” In the following, we briefly
describe the H, C and L transducers. The G transducer is described in detail in section
2.5. Unless otherwise mentioned, the experiments in this work were conducted with the
Kaldi toolkit [Povey et al.(2011)]5.

The HMM structure transducer H was already described in figure 2.6, but here, we
extend our model to an ergodic loop of many sub-word HMMs. An example will be given
in the upper part of figure 5.6. As a particularity of the Kaldi toolkit [Povey et al.(2011)],
the HMM structure transducer is created without self-loops (called Ha) to reduce the size
of the model. The self-loops are added in a final step.

The context-dependency transducer C is a mapping from context-dependent phonemes
to phonemes. Figure 2.8 explains how to construct a deterministic mapping and figure 2.9
shows the full context WFST C for the toy example with only two phonemes. From this
example, it is clear, that C is huge, and therefore it is often constructed and composed
on-the-fly.

<eps>,<eps> <eps>,k<eps>:k k,ae<eps>-k-ae:ae ae,tk-ae-t:t t,<eps>ae-t-<eps>:$

<eps>,k k,ae<eps>-k-ae:k ae,tk-ae-t:ae t,<eps>ae-t-<eps>:t

Figure 2.8: One path of the context-dependency transducer C, mapping from context-dependent
phonemes to phonemes. We compose it with the lexicon WFST L from the right, i.e. we think of the
phonemes being generated from the lexicon. Therefore, the output symbols are actually the input of
the mapping, which might be confusing. Upper sequence: Given the word ‘cat’ and its pronunciation
‘k ae t’, the naive implementation would be to have one arc for each phoneme (output symbol) and
put the corresponding tri-phone on the input label. The tri-phone encoding ‘k-ae-t’ means that ‘ae’
is the center phoneme, with ‘k’ and ‘t’ as left and right context. This naive implementation results in
a FST, that is not deterministic (given the output symbols). Lower part: The deterministic solution
[Mohri et al.(2008)] is to delay the tri-phone symbols until all its constituting phonemes have been
observed. To compensate the delay, we introduce a special end-of-sequence symbol ‘$’ on the last
arc.

The lexicon WFST is a mapping from words to phoneme sequences. We give an example
taken from Vasil Panayotov’s blog6. We are given the following pronunciation lexicon:

5The graph construction is only described very briefly in [Povey et al.(2011)], so whenever we cite this
paper, we also refer to the official Kaldi documentation http://kaldi-asr.org/doc/graph.html.

6http://vpanayotov.blogspot.cz/2012/06/kaldi-decoding-graph-construction.html

17

http://kaldi-asr.org/doc/graph.html
http://vpanayotov.blogspot.cz/2012/06/kaldi-decoding-graph-construction.html

<eps>,<eps>

<eps>,x

<eps>:x

<eps>,y
<eps>:y

x,x

<eps>-x-x:x

x,y
<eps>-x-y:y

x,<eps>

<eps>-x-<eps>:$

y,x

<eps>-y-x:x

y,y

<eps>-y-y:y

y,<eps>

<eps>-y-<eps>:$

x-x-x:x
x-x-y:y

x-x-<eps>:$

x-y-x:x

x-y-y:y

x-y-<eps>:$

y-x-x:x

y-x-y:y

y-x-<eps>:$

y-y-x:x

y-y-y:y

y-y-<eps>:$

Figure 2.9: Deterministic context-dependency transducer C, mapping from context-dependent
phonemes to phonemes, shown for only two phonemes ‘x’ and ‘y’. We compose it with the lexicon
WFST L from the right and with the HMM transducer H from the left. The tri-phone encoding
‘x-y-z’ means that ‘y’ is the center phoneme, with ‘x’ and ‘z’ as left and right context. ‘$’ is the
end-of-sequence symbol.

0 1<eps>:<eps>/0.69315
sil:<eps>/0.69315

#0:#0

4k:Cay

6

k:K.

3
ey:ache

5

ey:<eps>

7
ey:<eps>

k:<eps>/0.69315
2

k:<eps>/0.69315
sil:<eps>

#1:<eps>/0.69315 #1:<eps>/0.69315

#2:<eps>/0.69315
#2:<eps>/0.69315

Figure 2.10: Pronunciation lexicon transducer L. The first arc for each word (starting from state
1) outputs the word identifier. The last arc of a word is looped back to the word initial state 1, so that
all possible words can follow. There is an optional silence (sil) at the begin of the sentence and in
between words. Thus, we ‘split’ the word-final arc, either looping back to state 1 with log-probability
-log(0.5) or going over state 2 and producing a silence (sil). The ‘#0’ is a disambiguation symbol
forwarded from the G transducer.

ache ey k

Cay k ey #1

K. k ey #2

The symbols #1 and #2 are disambiguation symbols [Mohri(1997)]. Without adding
them, the resulting WFST would not be determinizable, since the phoneme sequence ‘k
ey’ can result in two different words. Therefore, we insert auxiliary phone symbols disam-
biguating the two possible homophones before the determinization7. We also need to add

7Disambiguation symbols need to be passed through the C and H transducers by adding self-loops at
each state, and after determinizing the final WFST HCLG, we replace them by ε.

18

disambiguation symbols if a phoneme sequence can be a prefix of another. The resulting
lexicon WFST is shown in figure 2.10.

So far, we have introduced the WFST components Ha, C and L. The remaining WFST
G is explained in the following section. The final formula for the graph creation in Kaldi is
(asl - add self loops, rds - remove disambiguation symbols):

HCLG = asl(min(rds(det(Ha ◦min(det(C ◦min(det(L ◦G)))))))) (2.10)

2.5 Back-off language models as finite state automata

The ARPA language model (LM) format is one of the most widely used standards for
encoding N-gram back-off LMs in text form. The ARPA format has most probably been
created by Douglas B. Paul [Paul and Baker(1992)] from MIT Lincoln Labs for the DARPA
Spoken Language System (SLS) community - hence its name. A wide class of LMs can be
encoded in the ARPA format - including e.g. interpolated LMs.

Statistical language models estimate the probability of a word sequence W (usually
sentence or utterance):

P (W) = P (w1, w2, . . . , wN) (2.11)

P (W) = P (w1)P (w2|w1)P (w3|w1, w2) . . . P (wN |w1, . . . , wN−1),

where the terms P (wi| . . .) are the conditional probabilities of words given their history.
N-gram LMs approximate the conditional probability of a word by shortening the history
to the previous N − 1 words:

P (w1 . . . wm) ≈
m∏
i=1

P (wi|wi−N+1 . . . wi−1) (2.12)

Every history corresponds to a possible state of the search space. Even if more powerful
LMs are available today (based e.g. on the maximum-entropy principle or on recursive neural
networks), often they are still approximated with N -gram models, since long histories lead
to intractable search spaces.

Statistical smoothing techniques are applied to the distribution of counts, since it is
not possible to observe all possible word sequences (N -gram, including history) sufficiently
often in the training texts. On top of that, typically models of different N -gram order are
combined. Either different orders of history are interpolated, or the higher order model
performs backing-off by leaving out the first word in the history and looking-up the shorter
history in the lower order model. This process is repeated recursively until the words in
the context are found.

N-gram LMs can be expressed as weighted finite state acceptors (WFSA) - each LM
history corresponds to one state of the automaton (hi = wi−N+1 . . . wi−1). N-gram LMs can
be conveniently integrated into the speech decoding process - the search space is defined by
the WFSA corresponding to the N-gram LM. However, the number of possible states of a
model of order N with a vocabulary size V is V N−1 and the number of possible arcs (and N-
grams) is V N , which becomes clearly intractable for higher orders of N (typical vocabulary
sizes go into the hundreds of thousands). As a consequence, ARPA language models only
store the probabilities of those N-grams that occur sufficiently often. The probability of
other N-grams is estimated by recursively

”
backing-off“ to models of lower order (N − 1)

19

that use shortened histories (leaving out the first word of the history). Back-off LMs were
introduced by S. Katz [Katz(1987)]:

PKatz(wi|wi−N+1 . . . wi−1) =

=

 P ′(wi|hi) = dwi−N+1...wi ·
C(wi−N+1 . . . wi−1wi)

C(wi−N+1 . . . wi−1)
if C(wi−N+1 . . . wi) > k

αwi−N+1...wi−1 · Plower(wi|wi−N+2 . . . wi−1) otherwise

(2.13)

Here, d is the amount of discounting applied ([Katz(1987)] used Good-Turing smooth-
ing), C is the occurrence count of the given N-gram in the training corpus and k is the
cut-off frequency (minimum number of occurrences). αwi−n+1...wi−1 is the so called back-off
weight, which is dependent on the current history. It usually corresponds to the sum of
probability mass that was discounted from all N-grams sharing the same history and is
now available to be re-distributed by the lower order distribution Plower, that can be recur-
sively defined in exactly the same way as PKatz. Alternatively, a different type of back-off
distribution can be used, as e.g. in Kneser-Ney smoothing [Kneser and Ney(1995)].

w1 w2

w3

w2/P (w2|w1)

w
3 /P

(w
3 |w

1)

w1/P (w1|w2)

w 3
/P
(w
3
|w 2

)

w 2
/P
(w
2
|w 3

)w
1 /P

(w
1 |w

3)

w1 w2

bo w3

w2/P (w2|w1)

ε/α(w
1)

w 2
/P
(w

2
)

w3/P (w3)

Figure 2.11: Weighted finite state acceptor (WFSA) implementation of a bi-gram LM. Left: fully
connected model (V × V arcs) Right: WFSA approximation of a bi-gram back-off model [Mohri
et al.(2008)], just showing the representation of transitions leaving state w1. The bi-gram w1w2 was
seen sufficiently often during training and is thus represented by a direct link between the history
states w1 and w2. The bi-gram w1w3 was not seen sufficiently often, thus the model backs-off to
the history-less state “bo” with the cost of the back-off weight α(w1). No symbol is consumed in
this transition - indicated by the ε-symbol. Leaving the back-off state, the lower order (uni-gram)
probabilities are applied (P (w3)). The approximation with the back-off state can greatly reduce the
number of arcs, but it also introduces non-determinism. If ε would be a regular label, the WFSA
would be deterministic (only a single outgoing arc per label in each state). However, since ε doesn’t
consume any symbol, the bi-gram w1w2 can be either formed by taking the arc w1 → w2 or by going
over the back-off arc: w1 → bo→ w2.

As seen in figure 2.11, back-off LMs can be represented as WFSA, but since not all
possible history states and arcs can be specified for higher N and V , usually an approxi-
mate structure with back-off arcs is used [Allauzen et al.(2003)], [Mohri et al.(2008)]. The
probabilities P ′(wi|hi) and the back-off weights α (equation 2.13) are pre-computed, and
only those are stored in the ARPA format. For each N-gram (e.g. tri-gram abc) with
C(abc) > k, an ARPA file contains an entry in the form ’P ′(c|ab) abc α(abc)’, where
P ′(c|ab) is the discounted probability P (c|ab), and α(abc) is the back-off weight of backing-
off from the higher order N-gram abc to the shortened history bc. Thus, if C(abcd) < k

20

then P (d|abc) = α(abc)P (d|bc). For the highest order, there are no explicit history states.
For example in a tri-gram LM, we don’t create states for every tri-gram, but we use the
tri-grams as connections between bi-gram states (e.g. the tri-gram abc connects the states
ab and bc).

We can interpret the highest order (e.g. tri-gram) connections in an alternative way:
we could create the highest order (tri-gram) history state as target of the transition, but
there would only be the possibility of immediately backing-off to the corresponding lower
order (bi-gram) state. In this interpretation, the back-off weights for the highest order
N are assumed to be always one (zero in log-domain), and therefore there is no need to
specify them. This interpretation has the advantage, that there are only two types of arcs:
going towards a higher order by extending the history, and backing-off to lower orders by
shortening the history. This simplifies some derivations in chapter 4. Figure 2.12 shows an
example ARPA text file and the corresponding WFSA.

\data\
ngram 1=4
ngram 2=2
ngram 3=2

\1-grams:
-5.234679 a -3.3
-3.456783 b
0.0000000 <s> -2.5
-4.333333 </s>

\2-grams:
-1.45678 a b -3.23
-1.30490 <s> a -4.2

\3-grams:
-0.34958 <s> a b
-0.23940 a b </s>
\end\

start <s><s>

0<eps>/2.5

<s>a

a/1.3049
a

a/5.2347

b

b/3.4568

</s></s>/4.3333

<eps>/3.3

ab
b/1.4568

<eps>

<eps>/3.23

ab</s>
</s>/0.2394

<eps>/4.2
b/0.34958

Figure 2.12: Left: Definition of a tri-gram ARPA back-off language model. For each N-gram
‘abc’, there is an entry in the form ’P ′(c|a, b) abc α(a, b, c)’, where P ′(c|a, b) is the discounted
probability P (c|a, b), and α(a, b, c) is the back-off weight of backing-off from a higher order N-gram
to the shortened history abc. The probabilities are by convention given as logarithms to the basis
of two. Right: The WFSA resulting from the tri-gram back-off ARPA LM defined on the left.
The highest-order N-grams (tri-grams) behave slightly differently than lower-order N-grams: The
transition for tri-gram <s>ab is going from state <s>a to state ab. In an alternative interpretation,
this is equivalent to going to an imaginary state <s>ab and immediately backing-off to state ab. If for
some reason the bi-gram ab would be missing in the ARPA file (removed line ’−1.45678a b − 3.23’),
the state ab would be created as target state for the tri-gram abc, however, the arc from a to ab would
not exist, and the back-off arc from ab to b would be with zero cost.

2.5.1 Difficulties with the representation of back-off arcs

As seen in figure 2.11, the approximate structure of back-off arcs with the symbol ε in-
troduces non-determinism. Therefore, it is important to pay attention to the computation
of the arc weights of the LM WFST G. The same structure (figure 2.11) can be used to
represent both back-off LMs and interpolated LMs. We compare the formulas for both
models:

21

Pbackoff (wi|hi) =

{
P ′(wi|hi) if C(wi, hi) > k
αbo(hi) · Plower(wi|h̄i) otherwise

(2.14)

Pint(wi|hi) = P ′(wi|hi) + αint(hi) · Plower(wi|h̄i) (2.15)

h̄i = wi−N+2 . . . wi−1. (2.16)

We observe, that the only principal difference is the incorporation of the lower order
probabilities – either we add them in the interpolated LM, or we decide to use them based
on the condition C(wi, hi) > k. That means, in the back-off LM, we should not use the
lower order distribution, if the higher order N-gram was observed sufficiently often. This
has the important consequence, that the back-off weights α are computed differently in
both cases:

αint(hi) = 1−
∑

P ′(wi|hi) (2.17)

αbo(hi) =
αint(hi)∑

wi|C(wi,hi)<=k Plower(wi|h̄i)
. (2.18)

αint(hi) is computed so that Pint(wi|hi) forms a valid distribution by assuming, that
we always add the lower order distribution Plower. This means, if we compute P ′(wi|hi),
αint(hi) and Plower(wi|h̄i) for an interpolated LM, and use it as arc weights in the LM
transducer G, we should always take the sum of all possible paths which accept the same
symbol sequence. For example, in figure 2.11, we should sum the arc w1 → w2 and the path
going over the back-off arc: w1 → bo → w2 to correctly obtain the weight for the bi-gram
w1w2. If we use the tropical semi-ring in decoding, which only picks the best of the possible
paths, we do not obtain the correct probability. Using the (log-) probability semi-ring is
also incorrect, since for orders higher than bigram, after backing-off more than once, the
original context is lost and the lower-order paths will not continue with the correct state.

Partly to avoid this problem and partly since the ARPA format is the most commonly
used file format (which was designed for back-off LMs), many popular LM tool-kits8 convert
the probabilities of interpolated LMs to back-off LMs before saving them to the ARPA file:

P ′′(wi|hi) = Pint(wi|hi) = P ′(wi|hi) + αint(hi) · Plower(wi|h̄i) (2.19)

α′′(hi) =
1−

∑
P ′′(wi|hi)∑

wi|C(wi,hi)<=k Plower(wi|h̄i)
. (2.20)

That means, we use the interpolated probability Pint(wi|hi) instead of P ′(wi|hi). In case
Plower is itself an interpolated probability, we have to recursively add all lower orders. The
resulting model can be used as a back-off LM. Its origin as an interpolated LM is no longer
visible when stored in the ARPA format.

If we would just use Pint(wi|hi), without changing the back-off weights α′′(hi), the
decoding in the tropical semi-ring would produce the correct result, since it is guaranteed
for interpolated LMs, that Pint(wi|hi) ≥ αint(hi) · Plower(wi|h̄i). However, to interpret
the model as a back-off LM, the back-off weights α′′(hi) are re-computed. Therefore, if the
original counts are no longer available (only ARPA given), the original interpolation weights
αint are lost9, and the decoding in the tropical semi-ring is not guaranteed to produce the
correct result, since it is now possible that Pint(wi|hi) < α′′(hi) · Plower(wi|h̄i)10.

8For example SRILM http://www.speech.sri.com/projects/srilm/.
9We could reverse-engineer the equations, but due to complexities like missing N-grams and pruning,

this is non-trivial.
10In rare cases, where C(wi, hi) > k for almost all wi, it is even possible, that α′′(hi) > 1.0.

22

http://www.speech.sri.com/projects/srilm/

Luckily, this is not happening very frequently, and will not have a big impact e.g. on word
error rates. For back-off LMs, αbo(hi) (equation 2.18) is computed under the assumption,
that we only back-off, if C(wi, hi) <= k. Therefore, when we compute P ′(wi|hi), αbo(hi) and
Plower(wi|h̄i) for a back-off LM (or convert an interpolated LM to a back-off representation
as in equation 2.20) and use these as arc weights in G, we should only take the back-off
arcs if there is no corresponding arc with the higher-order N-gram. For example, in figure
2.11, we are not allowed to use the back-off arc w1 → bo → w2, because there is a bi-
gram arc w1 → w2. In other words, for these models, when we represent back-off arcs
with ε, we do not obtain the correct probability, neither with the probability semi-ring,
which is summing all possible paths, nor with the tropical semi-ring (taking only the best
path). When decoding with the tropical semi-ring, we would incorrectly take the back-off
path if P ′(wi|hi) < αbo(hi) · Plower(wi|h̄i)11. As already said, luckily, this does not happen
very frequently, and most often, this inconsistency for the tropical semi-ring is neglected.
[Allauzen et al.(2003)] introduce an algorithm to obtain a back-off WFST G′, that produces
correct results in the tropical semi-ring, even when using ε-arcs.

An exact and deterministic implementation of back-off LMs with WFSA would require a
different type of arc. The so called failure arcs were introduced for efficient string matching
[Aho and Corasick(1975)]. Usually, in the literature (e.g. [Allauzen et al.(2003)]), a special
arc label ϕ (or φ) is used to mark failure arcs. A failure arc doesn’t consume any symbol
and it has the semantic interpretation, that it can only be taken, if no other symbol on
any of the other out-going arcs of the same state can be accepted. This works similar to
the ‘default’ case in a C-language ‘switch’ statement. [Allauzen et al.(2003)] shows how
to evaluate paths through WFSTs with failure arcs. These failure-arc-type WFSA accept
sequences of words with exactly the same probabilities as when correctly implemented as
a back-off LM in any of the LM tool-kits. The algorithm that we are going to develop in
chapter 4 will work for both, ε- and failure-arc-type WFSA. Figure 2.13 shows an example
of a tri-gram back-off LM implemented with failure arcs, and explains, why failure arcs
contradict the Markov assumption.

As explained, there are correct solutions for WFSTs generated from back-off LMs, when
working in the tropical semi-ring. This is true when taking the probabilities as estimated
for a back-off LM or when converting an interpolated LM to a back-off LM. However,
during the construction of the recognition network (section 2.4.1), we usually work in the
(log-) probability semi-ring – most important are the determinization and weight pushing
operations. When we compute the arc weights for back-off LMs, but implement the back-
offs arcs with ε, the summation of the redundant back-off paths in the probability semi-ring
actually has the consequence, that the probabilities of outgoing arcs do not sum to one, but
to a slightly higher value, i.e. the resulting WFSA is no longer stochastic. Since the LM
WFSA has cycles, the weight of a cycle can be greater than one, which causes the WFSA
to have an infinite total weight (equation 2.5). As we will see in section 3.1, this can cause
the conventional weight pushing algorithm to fail.

The correct solution would be to implement weight pushing (i.e. the shortest path
algorithm) and the determinization for WFSA with failure arcs, i.e. respecting the semantics
of failure arcs. As seen in figure 2.13, this is a non-trivial task, since failure arcs violate the
Markov assumption, i.e. when following a failure arc, we have to remember the history of
arcs to be able to choose the successor arcs correctly12.

11This might be the case, if P (w1, w2)� P (w1)P (w2).
12In the composite recognition network HCLG, the number of past arcs to be remembered can be quite

high, since the arcs with word label can be farther apart.

23

u,v v,w

v

bo

w

v,x

w/P (w|u, v)

ϕ/α(u, v)

ϕ/α(v, w
)

ϕ/α(v)

w
/P
(w
|v)

w
/P
(w
)

x/P (x|v)

Figure 2.13: Weighted finite state acceptor (WFSA) implementation of a tri-gram back-off LM
using failure arcs. Only selected arcs are shown. A failure-arc, indicated by ϕ, doesn’t consume
any symbol and it can only be taken, if no other symbol on any of the other out-going arcs of the
same state can be accepted. I.e. we can not take the arc (v) → (v, w), since there is a direct arc
(u, v)→ (v, w). Failure arcs have the peculiarity that the decision, which arc to take, is made based
on the current symbol, but the symbol is only consumed later in the next non-failure arc. If there
are several failure-arcs in a row (e.g. backing-off (u, v) → (v) → (bo)), we compare the same input
symbol (w) several times against the outgoing arcs of different states (v and bo). Therefore, the
decision to not take the arc (bo)→ (w) is based on the fact, that there exists an arc (u, v)→ (v, w).
This contradicts the Markov property of the model, because after backing-off (u, v)→ (v), due to the
Markov assumption, it is not possible to decide in state bo, whether we came originally from (u, v)

or from some other state (x, v), or just from (v). Therefore, to correctly implement the semantics
of failure arcs, completely different algorithms are necessary.

Since, to the best of our knowledge, determinization and shortest path algorithms for
failure arcs in the probability semi-ring are not yet available, we conclude, that there is no
absolutely correct way to construct recognition networks. When using (bigram13) interpo-
lated LMs, we should not convert the probabilities to a back-off LM, as it is usually done.
We would compose the recognition network in the log-semi-ring, i.e. apply determinization
and weight pushing in the log-semi-ring. Once the final recognition network is obtained,
we apply the algorithm in [Allauzen et al.(2003)] (section “Exact offline representation”)
to obtain a WFST, that can be correctly used for decoding in the tropical semi-ring. For
back-off LMs, the situation is worse. We would have to convert the back-offs LMs to an
interpolated LM for the purpose of building and optimizing the recognition network in the
log-semi-ring. Without going into details, this is not always possible. Therefore, we have to
be aware of the fact, that when interpreted in the log-semi-ring (using ε arcs), these models
are not stochastic and can have an infinite total weight. This has important consequences
for the weight pushing algorithm (section 3.1). Therefore, we present an alternative weight
pushing algorithm (section 3.3), that can handle this problem.

13For higher order interpolated LMs we would have to introduce context-specific back-off states to make
sure we continue the back-off paths with the right context.

24

2.6 Parallel Speech Decoding

During the last decade, Moore’s law, the trend of increasing clock rates by reducing transis-
tor gate lengths, has slowed down and the power consumption of chips has become a major
issue [Horowitz et al.(2005)]. There seems to be a Pareto relation [Horowitz et al.(2005)]
between increasing performance and increased power consumption. Therefore, it is more
efficient to run more units or cores in parallel at a lower clock speed instead of a single core
running at higher clock speed. As a result, there is a need for parallel algorithms, which
can efficiently use multiple cores that are usually present in recent systems.

The challenge in parallelization is to divide the task into sub-problems, that are as
independent of each other as possible - to minimize the communication between the tasks
and to avoid waiting times. At the same time, each of the sub-problems should be of
approximately the same computational complexity to achieve a good load balancing and
thus work efficiently. The maximum possible speed-up in parallelization is determined by
the proportion of code that needs to be run serially (Amdahl’s law). Depending on the size
of the sub-problems that can be identified as being independent, we can distinguish coarse
level and fine-grained parallelization. We think of fine-grained parallelizations as working
on the level of individual states/arcs/densities or even on instruction level, while coarse
refers to parallelism among decoding passes or chunks/segments of the utterance.

2.6.1 Coarse and fine-grained parallelization

Coarse level parallelization for LVCSR can be achieved, if different stages of processing
or different knowledge sources are distributed to different cores. Speech recognition has
several stages of processing (feature extraction, acoustic model evaluation, graph search),
which can be distributed among cores. Another opportunity for coarse parallelization is the
presence of multiple acoustic feature sets (acoustic models), where different feature streams
can be computed on multiple cores. Coarse level parallelization has the advantage, that
the serial algorithms do not need to be changed, i.e. no overhead due to communication
and extra data structures is introduced. However, the scalability is limited by the number
of available stages or feature streams and model components, which is usually small. The
optimal distribution of computation tasks to multiple cores depends on the task (e.g. size
of the recognition network, complexity of the acoustic model) and on the processor and
memory configuration [You et al.(2009)]. A typical system can have a combination of
several CPU cores with shared memory and a graphic processing unit (GPU), or multiple
CPUs can be connected over a network. Two recent examples of systems using parallel
CPUs and GPUs are given in figure 2.14 and in [Cardinal et al.(2013)].

In a single-threaded system, typically the majority of time is spent in the acoustic model
evaluation (e.g. 80% in [You et al.(2009)]). At the same time, the acoustic model evalu-
ation (either GMM or neural networks) is easily parallelizable (e.g. [Dixon et al.(2009)]).
While the acoustic model evaluation can be easily parallelized in a fine-grained way [Dixon
et al.(2009)], the fine-grained parallelization of the graph search is less trivial.

In dynamic programming algorithms (and SSSP), the sub-problems that do not depend
on each other, and thus can be computed in parallel, form stages or wave-fronts [Maleki
et al.(2014)] (see figure 2.5). There are efficient and scalable parallel algorithms to solve
the general SSSP, many of them are based on the delta-stepping algorithm [Meyer and
Sanders(2003)]. The idea is, that nodes are assigned to buckets and all nodes within a
bucket are updated at the same time in parallel. Also the queue (and sorting) operations

25

Read Files

Initialize data

structures

CPU
 Manycore GPU

ead Fil

alize d

Backtrack

Output Results

uctures

put Res

Ba ack

Phase 0

Phase 1
PhPhas

Acoustic Likelihood
Computation

Phase 2
Phas

Graph Traversal

Save

Backtrack Log

PhasPhas

PhasPhas

ase 0

11ase 1

ic Likelihood
mputation

2ase 2

Traversal

Save

track Logk

ase ase

ase ase

B
ac

kt
ra

ck

Ta
b
le

A
ct

iv
e  

S
et

W
F
S
T

H
M

M

W

R  
W

R

R
 W

Data
 Control

B
a TaTa

W

Data
Control

R

R
W

R

W
W

R
W

R

Collect  

Backtrack Info

acktraacktra

ktrack

Prepare ActiveSet

Iteration Control

LM Model
Lookup

L
ar

g
e

L
M

L

R

G

Figure 2.14: LVCSR implementation on CPU and GPU [Kim et al.(2012)] – acoustic model
evaluation and graph search is implemented on GPU, language model re-scoring due to memory
requirements on CPU.

can be parallelized. There are also recent implementations on GPUs, which are able to
process huge graphs and achieve significant speed-ups [Davidson et al.(2014)].

While the general SSSP is well parallelizable, this is not true for search in LVCSR.
As already pointed out, the arc weights are computed dynamically (acoustic scores are
added). Also, due to pruning, only a fraction of the states of the recognition network are
kept in memory. Thus, the application of pruning changes the properties of the basic SSSP
fundamentally, which makes it difficult to design a parallel algorithm for Viterbi search in
LVCSR, that would be scalable to a high degree of parallelism and at the same time stays
efficient.

Several parallelization attempts have been made with word-based HMMs and recogniz-
ers using linear lexica, however, for ASR systems with large vocabularies, a lexical-tree or
more efficient WFST based decoders are desirable. [Phillips and Rogers(1999)] describe
an WFST-based approach, that introduces fine-grained parallelism by organizing the data
structures and grouping the computations according to a state of the recognition network.
The computations belonging to each state are assigned to a core according to the modulo
operation, which should achieve uniform load balancing. They achieved a speed-up factor
of 3..6 on 4..12 processors.

Another idea was pursued by [Parihar and Hansen(2008)]. They use a lexical-tree based
decoder, i.e. using the lexicon transducer (uni-gram) and storing the word history with each
token. Then, it is possible to split the lexical tree at the root into several sub-trees for each
thread. To achieve a good load balancing, the split was done between similar sounding
phones. However, the approach did not scale to more than 2-4 threads.

[You et al.(2009)] present an analysis on several algorithm designs to implement fine-
grained parallelism for the Viterbi graph search. They showed, that the optimal algorithm
design varies with the architecture (multi-core CPU vs. GPU). [Chong et al.(2009)] im-

26

plemented a WFST based recognizer for a medium sized LVCSR completely on the GPU,
which already achieved a 11x speed-up. However, in case huge language models of higher
order (tri-gram and more) need to be used, the limited memory on the GPU would not be
sufficient. To solve this, [Kim et al.(2012)] showed how to utilize the CPU in parallel for
the language model on-the-fly re-scoring.

An alternative architecture is presented in [Cardinal et al.(2013)] - here, an A-star
algorithm is used for search, and the computation of the heuristic is performed on the
GPU. For that purpose a backward decoding with a uni-gram recognition network (LM
look-ahead) is performed, which is parallelized by distributing transitions among cores
according to the destination state (aggregation approach).

2.6.2 Stage parallelism through rank convergence

𝑣𝑖 𝑣𝑗𝑆𝑘𝑃
𝑣𝑗+1

Figure 2.15: Rank convergence in Viterbi algorithm [Maleki et al.(2014)]. ~vi contains the scores
of the states at time i. If at time k, the search converges to only one active state, then all future
frames depend only on the score of this single state. Therefore, independent of the initialization at
time i, the resulting vector ~vj will be equal, except for an additive offset, which is constant for all
its components. That means, the rank of state scores is independent of the initialization.

An interesting observation concerning Viterbi decoding (and many FST based algo-
rithms in general) was made by [Maleki et al.(2014)]: If we would start decoding in the
middle of a sentence by assigning a random score to all states, usually, after a quite limited
amount of time frames (20-50), the algorithm converges to a small set of active states,
which is independent of the initialization at the start frame. We can interpret this as an
all-pair-shortest-path problem [Cormen et al.(2009)], i.e. finding the shortest path between
any pair of states in the graph. If we represent the possible transitions between states in
one time step as a transition matrix, each time step of the Viterbi algorithm can be seen
as a matrix-matrix multiplication of the transition matrix in the tropical semi-ring. The
observation is, that resulting all-pairs-shortest-path matrix (containing the score of paths
between two states) will converge to a matrix of small orthogonal rank after several frames.
We obtain the Viterbi forward score for the final time frame by multiplying the all-pairs
matrix with an initial vector from the left. As seen in figure 2.15, if the rank of the all-pairs
matrix is one, this leads to the situation that the Viterbi forward scores for all frames after
the point of convergence are independent of the initialization vector (off by a constant).

This fact can be exploited to parallelize the Viterbi algorithm across stages - in other
words to split it into time chunks which can be processed in parallel. If each randomly
initialized chunk is long enough for the algorithm to converge to a single state at some
point, then the state sequence after that is independent of the initialization and only the
beginning frames of each chunk need to be fixed in a consecutive parallel fix-up phase.

27

𝑆𝑎 𝑆𝑘 𝑆𝑖 𝑆𝑖+1

Figure 2.16: Rank convergence in Viterbi algorithm with rank bigger than one [Maleki, unpub-
lished]. During the fix-up phase Si+1, only the values of those input nodes Si that originate from
different active states (different color) need to be fixed.

For small decoding tasks, this algorithm showed very promising results [Maleki et al.(2014)],
but for LVCSR, the rank (number of active states) does usually not converge to one, but to
a small number. In this case, the state scores will be linear combinations of vectors resulting
from the few active states - see figure 2.16. A similar parallelization can be applied as in
the singular case, but the fix-up phase gets slightly more complex. Using huge networks
also makes it necessary to introduce state pruning. It is not clear, which states to activate
during the random initialization. Therefore, the set of states in the fix-up phase might only
be partly overlapping with the random-initialization phase, which complicates the fix-up
phase of the algorithm.

An open research question is whether it is possible to automatically detect frames in
advance, where the rank will converge, and what is the optimal segmentation into chunks for
a given task. While we have no direct answer to that question, we suspect, that at the points
with few remaining active states, the decoding results of a forward and backward search
will agree (see chapter 5). Therefore, it should be possible to split the segments at points,
where forward and backward search agree. This leads to an approach to parallelization,
which is described in section 5.3.

28

Chapter 3

An alternative weight pushing
algorithm

We explain the connection between Markov chains, non-negative matrices and weighted
finite state acceptors (WFSA). Based on that, we introduce an alternative weight pushing
algorithm, that is able to deal with possibly infinite total weight, and is much more efficient
for acceptors with cycles. This alternative weight pushing algorithm is suitable for an
important class of models - i.e. language model transducers or more generally (cyclic)
WFSAs with failure transitions.

3.1 Weight pushing algorithm

As a prerequisite to this chapter, we assume, that we are able to construct a model (WFSA)
that has some desired properties (i.e. being deterministic and minimal). The application
we had in mind (chapter 4) was to construct a (back-off) language model (LM) acceptor,
that has the desired size and structure and is deterministic (except for the ε-arcs). If we
want to use the resulting acceptor in a pruned search (i.e. for LVCSR), it is desirable, that
the acceptor has yet another property - to be (locally) stochastic.

Two WFSAs are equal, if they accept the same set of input label sequences with the
same path weights. In other words, two equivalent WFSAs (or WFSTs) may differ by the
way the weights (and output labels) are distributed along the path, even if they have the
same topology with the same input labels [Mohri and Riley(2001)]. It was pointed out by
[Mohri and Riley(2001)], that the distribution of weights along the path plays a crucial
role in pruned search. Pruning is typically based on the weight accumulated along a path
explored so far - often it is a combined weight (e.g. acoustic, pronunciation and language
model for LVCSR). Typically, we prune by limiting the breadth of the search around the
current best path (called beam pruning).

[Mohri and Riley(2001)] conjectured, that the optimal distribution of weights for pruned
search should be such, that the weights (coming from different knowledge sources such as
acoustic and language model) are locally synchronized for the sequential decisions, which
arc to take next. Another common wisdom is, that the knowledge should be applied as
early as possible in search - to be able to rule out unlikely paths as early as possible. This
manifests itself in techniques like LM look-ahead [Ortmanns et al.(1996)], which are used in
LVCSR decoding with dynamic networks. For statically compiled networks (or monolithic
models like the LM WFSAs dealt with here), this corresponds to “pushing” the weights as

29

much as possible towards the initial state. As shown in [Mohri et al.(2008)], pushing weights
towards the initial state is actually equivalent to making the weights of the outgoing arcs of
every state sum to one in the given semi-ring1, i.e. making the WFSA stochastic. When the
weights are distributed in such a way, the pruned search will be more effective - i.e. a smaller
beam can be used. However, the overall best path (and accuracy) is still the same - in the
asymptotic case of a very wide beam. [Mohri and Riley(2001)] show substantial speed-ups
for several tasks in LVCSR, when modifying the transition probabilities of a WFSA in
such a way, that the weights of paths through the WFSA form a stochastic distribution.
Therefore, for optimal pruning in LVCSR with the probability semi-ring, we want to obtain
a WFSA, where weights of outgoing arcs sum to one for each state.

We give a general definition of weight pushing for WFSAs, where we refer to the def-
inition of a WFSA given in section 2.3. The generalization to WFSTs is given by inter-
preting weight-output label pairs as new weights combined by the appropriate semi-ring
[Mohri(1997)]]2.

Re-weighting [Mohri et al.(2008)] is an operation on WFSAs that alters the weights
w[ti] of individual transitions and the final-probabilities ρ(n[tn]), while leaving unaffected
the weights w[π] of successful paths (i.e. from initial to final states). The possible ways
to change the transition weights of a WFSA can be expressed with the help of a potential
function V : Q → K \ 0̄, which can be an arbitrary function on states, assigning a value
of K (except 0̄) to every state q. Given such a function, we can update the initial weight
λ, the transition weights w[e] and the final weights ρ(f) according to the following [Mohri
and Riley(2001)]:

λ ← λ⊗ V (i) (3.1)

∀e ∈ E,w[e] ← [V (p[e])]−1 ⊗ (w[e]⊗ V (n[e])) (3.2)

∀f ∈ F, ρ(f) ← [V (f)]−1 ⊗ ρ[f] (3.3)

If the re-weighting is carried out this way, it is easy to see, that the overall weight of a
successful path is not changed, since the potentials along any successful path cancel each
other. Thus, the resulting WFSA is equivalent to the original one. The simplest possible
re-weighting operation is to multiply ⊗ a fixed value k to the weights of all incoming arcs
into a particular state q′ and to divide (−1) the same value from the weights of all arcs
leaving that state. This is achieved with the potential function:

V (q) =

{
k ∈ K \ 0̄ if q = q′

1̄ otherwise
(3.4)

Weight pushing is a special case of re-weighting, that aims to make the WFSA stochastic,
or in other words to push the weights as much as possible towards the initial state. This
is achieved [Mohri and Riley(2001)] by setting the potential function V (q) to the shortest
distance d[q] from q to any of the final states F :

∀q ∈ Q, V (q) = d[q] =
⊕

π∈P (q)

w[π] (3.5)

Here, P (q) is the set of all paths from q to any of the final states F . Figure 3.1 shows an
example of weight pushing in the tropical and probability semi-ring.

1For the tropical semi-ring, this means that the maximum over all outgoing arcs is one.
2OpenFST uses the Gallic semi-ring, which uses composite weights (ProductWeight) of an output label

string and the arc weight. For the strings, we use the longest common prefix as ⊕ and concatenation as ⊗.

30

0

1

a/0

b/1

c/5

2

d/0

e/1

3

e/0

f/1

e/4

f/5

0/0

1

a/0

b/1

c/5

2

d/4

e/5

3/0

e/0

f/1

e/0

f/1

0/15

1

a/0

b/(1/15)

c/(5/15)

2

d/0

e/(9/15)

3/1

e/0

f/1

e/(4/9)

f/(5/9)

Figure 3.1: Example of weight pushing [Mohri et al.(2008)]. Left: WFSA before applying the
weight pushing. Center: Weight pushing in the tropical semi-ring (⊕ is the minimum operation
and ⊗ is addition). In this case, the potential function is the shortest distance to the final state,
as computed by a Viterbi algorithm, that runs backwards from the final state. State 1 and 3 can
be reached with zero cost, state 2 with cost 4. Thus, for each arc we ⊗ (add) the potential of the
destination state and −1 (subtract) the potential of the source state. Right: Weight pushing in the
probability semi-ring. The potential function is the sum of all paths meeting in a state, as computed
by the forward algorithm.

There are several algorithms to compute the shortest distance, based on the dynamic
programming principle, whose complexity depends on the semi-ring and the type of WFSA
that is dealt with. For the tropical semi-ring, a Viterbi algorithm can be used. If the
log-probability or probability semi-ring is used, however, all possible paths towards a state
need to be summed, which is especially difficult, if the WFSA has cycles. A cycle can be
followed an infinite amount of times, generating an infinite number of paths that need to
be summed. So we need to guarantee that the weight of any cycle is w(π) < 1̄. In other
words, we need to be able to compute the closure

⊕∞
i=1w

i, otherwise the cycle would result
in an infinite total weight. If a semi-ring fulfills this condition for ∀w ∈ K, it is called closed
semi-ring - see [Mohri(2002)] for an exact general definition. If the structure of the WFSA
is simple, i.e. the cycles are not nested and can be easily identified, the closure operation
could be directly applied. For WFSAs resulting from LMs, this is not true, since the cycles
are nested in a complex way.

In [Mohri(2002)], the set of k-closed semi-rings is introduced, which guarantees that the
maximum number of times a cycle needs to be followed is k:

∀a ∈ K, ∃k :
k+1⊕
i=0

ai =
k⊕
i=0

ai =
l⊕

i=0

ai,∀l ≥ k (3.6)

For that class of semi-rings, figure 3.2 presents a generic shortest distance algorithm as
given by [Mohri(2002)]. The algorithm manages a queue of states S that need to be updated.
After extracting the state q from the queue, the so called relaxation operation (starting from
line 10) consists in propagating the accumulated weight update r[q] to all arcs e leaving
the state. For all destination states n[e] which meet the relaxation condition (line 11),
i.e. the update is bigger than zero, we update the distance d[n[e]] and the tentative update
r[n[e]] and add the state to the queue. The algorithm continues until the queue is empty.
For k-closed semi-rings, the relaxation condition (line 11) makes an update unnecessary,
if the weight of a loop has already been added k times. The algorithm is thus iterative
and operates by locally forwarding weight mass through the WFSA according to the queue
policy. The algorithm is efficient, if the number k is small, and if the state transition matrix
is sparse, i.e. |E| � |Q|2.

31

Figure 3.2: Pseudocode of single-source shortest path algorithm used in the generic weight pushing
algorithm [Mohri(2002)]. The algorithm computes the shortest distance d[q] from the initial state
s for each state q of the WFSA G. To compute the shortest distance to the final state, we have to
start with the final state and follow the arcs in the opposite direction.

For the (log-) probability semi-ring, there is no k < ∞, for which equation 3.6 would
hold, but it is still a closed semi-ring (k → ∞). The generic shortest-distance algorithm
can’t be used in this case, however, closed semi-rings are covered by the generic Floyd-
Warshall and Gauss-Jordan algorithms [Lehmann(1977)]. These algorithms solve the so
called algebraic path problem by computing the all-pair shortest distance with a time com-
plexity of O(n3) (n proportional to the number of states), but they are not as efficient for
our purpose, since they don’t take advantage of the sparsity of the transition matrix and
since we are actually just interested in the distance from one single (start) state. As soon
as the WFSA has thousands of states, an algorithm with complexity O(n3) is clearly not
feasible.

One strategy is to decompose the WFSA into several strongly connected components,
where any state of a component is reachable by any other state of the same component
by a path of limited length. In this case, the all-pair shortest distance only needs to be
computed for each component separately. However, it is relatively easy to see, that a model
of language such as the N-gram consists basically of just a single huge strongly connected
component. Since the history is limited to a few previous words, and even completely erased
on sentence boundaries, it is obvious that in principle any sequence of words is repeatable
after a limited amount of time steps. Thus, the complexity of the Floyd-Warshall algorithm
cannot be reduced this way.

The original relaxation condition for the generic algorithm (figure 3.2, line 11) is given
by:

d[n[e]] 6= d[n[e]]⊕ (r′ ⊗ w[e]) (3.7)

where d is the distance and r′ is the tentative update to be propagated, i.e. the weight
accumulated since the last relaxation of q = p[e]. Thus, (r′ ⊗ w[e]) is the weight to be
added in the relaxation. To handle also semi-rings that are not k-closed, [Mohri(2002)]

32

replaces the relaxation condition by an approximate test with a metric ∆:

∆(d[n[e]], d[n[e]]⊕ (r′ ⊗ w[e])) ≥ δ (3.8)

where δ ≥ 0̄ is a positive number used for approximation. For the probability semi-ring, the
condition simplyfies to (r′ × w[e]) ≥ δ. Due to limited machine precision, there is actually
always some δ for which this condition will not be met. Thus, with a k-closed semi-ring, a
cycle will not be followed more than k times, and in our case the algorithm stops updating
as soon as:

l : ∆

(
l⊕

i=0

w[π]i,
l−1⊕
i=0

w[π]i

)
= w[π]l ≤ δ (3.9)

where w[π] is the weight of the cycle. If l is large (w[π] → 1̄ or δ → 0̄) the algorithm will
iterate for a long time until it converges. For w[π] ≥ 1̄, the algorithm fails to converge at
all. In this case, the total weight of the WFSA becomes infinity.

When we apply the weight pushing algorithm to WFSA that are constructed from back-
off language models, we have to distinguish two cases: As explained in section 2.5.1 and
figure 2.11, the ε-style back-off arcs lead to duplicate paths. In case the weights were taken
from a back-off LM estimated for failure arcs, but the back-off arcs are represented with
ε, the outgoing arcs will not exactly sum to one, but to a slightly higher value. When
occurring in a loop, the condition w[π] < 1̄ does no longer hold. That means, the generic
weight pushing algorithm [Mohri(2002)] as implemented in OpenFST will fail to converge,
because the total weight of the entire WFSA will not be finite. If the weights are correctly
estimated as interpolated LM, the representation with ε arcs results in a stochastic WFSA.
However, the weight in cycles can still be very close to one, so that the generic algorithm
is inefficient (equation 3.9).

3.2 Ergodic Markov chains and non-negative matrices

In the previous section, we explained why we want a model that has a (locally) stochas-
tic weight distribution, and why for WFSA, that are cyclic, the standard weight pushing
algorithm [Mohri and Riley(2001)] is either inefficient or completely fails to converge3, if
the total weight of the WFSA is not finite. For this purpose, we need a weight pushing
algorithm that will always succeed. We show here, that this problem can be solved, if we
represent the WFSA as an ergodic Markov chain.

Here, we deal with Markov chains, which are, by definition, already stochastic, and
thus don’t need weight pushing. However, they will serve us for the purpose of introducing
important concepts and the basic idea of our algorithm. Later, we generalize to non-negative
matrices. A Markov chain [Grinstead and Snell(1997)] can be defined similar to the WFSA
(equation 2.3), but discarding the labels Σ. To have a more flexible definition, every state
can be a potential initial state:

M = (Q,F,E, λ) over a semi-ring (K,⊕,⊗, 0̄, 1̄). (3.10)

It is given by:

3The algorithm for weight pushing in the log semi-ring provided with OpenFST www.openfst.org might
still work for some smaller models (e.g. LMs with small vocabulary), if the delta parameter is chosen to
be sufficiently small. We observed that typically as soon as the WFSA contains states with a huge fan-out
(� 1000), the algorithm fails to converge.

33

www.openfst.org

• a set of states Q

• a set of final or absorbing states F ⊆ Q

• a set of transitions E ⊆ Q×K×Q

• an initial weight λ

A transition t = (p[t], w[t], n[t]) ∈ E is seen as a move (step) from the source state
p[t] to the destination state n[t] with weight w[t]. Markov chains were introduced with
probabilities as weights, thus, in this section, we only consider the probability semi-ring
(R ∈ [0, 1],+,×, 0, 1). Usually, the transition weights are represented in form of the transi-
tion matrix Pi,j ∈ |Q|×|Q|, where each entry pij = w[t] contains the weight of the transition
t from state i = p[t] to state j = n[t]. If the corresponding transition doesn’t exist, the
entry is 0̄. In place of the initial weight λ, one can add a super-initial state i with outgoing
weights defined by λ – as done in the WFSA definition (equation 2.3). Instead of having a
final weight ρ as in equation 2.3, a Markov chain can be seen as having a super-final state
f ′ and transitions from f ∈ F to f ′ with pf,f ′ = ρ[f]. The literature on Markov chains
doesn’t use the term final state, but instead uses the term absorbing state, which is a state
that cannot be left, i.e. it has a self-loop probability of one. All other states are called
transient. A Markov chain is absorbing if it has at least one absorbing state and from every
state it is possible to reach an absorbing state. If we represent an WFSA as Markov chain
by using the sum of all arcs from state i to state j as entry pij in the transition matrix
P, we see, that every trim (connected) WFSA corresponds by definition to an absorbing
Markov chain.

Representing the transition weights in a matrix has the advantage, that we can elegantly
compute the outcome of a process after several steps: The ijth entry p(n)ij of the matrix Pn

(n-th power of the matrix) gives the probability that the Markov chain, starting in state
qi, will be in state qj after n steps [Grinstead and Snell(1997)]. The function λ with the
probability of starting in a particular state can be represented as a state probability vector
λ. Similar, if v is the row vector with elements vi representing the probability of being in
state qi at a certain time n, then:

v(n) = λPn (3.11)

An important class of Markov chains are ergodic Markov chains [Grinstead and Snell(1997)],
also called irreducible. A Markov chain is ergodic, if it is possible to go from any state to
any state (not necessarily in one move). In this case, the corresponding WFSA consists
only of one strongly connected component, and there are no absorbing final states. An
important sub-class of ergodic Markov chains are regular chains (also called primitive). A
Markov chain is called a regular chain if there exists some positive n for which the power
Pn of the transition matrix has only positive elements4. In other words, it is possible to
go from any state to all other states (including self-loop) in exactly n steps. Every regular
chain is ergodic, but not all ergodic chains are regular - see the example in figure 3.3.

An absorbing Markov chain is not ergodic. This holds for WFSAs, which are absorbing
Markov chains with only the final states being absorbing states. However, if the WFSA is
trim (every state can be reached on a successful path), we can make the WFSA ergodic by
connecting the final states f ∈ F to the initial state i. Now, every state can be reached
from any other state, by going over any of the final states.

4When talking about probabilities, this means not zero.

34

0

a
11-a

b

2

1-b

1-c

c
P =

 a 1− a 0
0 b 1− b

1− c 0 c


Figure 3.3: Example of an ergodic Markov chain and its corresponding transition matrix. If
a > 0 ∧ b > 0 ∧ c > 0, then it can be easily shown that already for P2 (n = 2) all p(2)ij > 0,
so that the Markov chain is also regular. That means any state can be reached from any state
with a maximum of two steps. For that reason, with n → ∞, the state distribution approaches an
equilibrium, according to the proportion of a, b and c. If a = b = c = 0 (removing the self-loops),
the chain is no longer regular. It is still obvious that every state can be reached from any other state,
but the matrix P becomes a permutation matrix, which means that the state distribution oscillates
between three different configurations, but never converges. From this example, it is easy to see, that
adding self-loops, i.e. increasing the values on the diagonal makes an ergodic chain a regular one.

In a next step, if P is the transition matrix of an ergodic Markov chain, then we can
obtain the transition matrix of a regular chain by:

P′ = k I + (1− k)P , 0 < k < 1, k ∈ R (3.12)

Since the ergodicity guarantees, that every state can be reached, interpolating with the
identity matrix I guarantees, that the diagonal elements p′ii > 0 are positive, which means,
that it is possible to take self-loops to stay in every state. Thus, after n steps, when all
states of the ergodic chain have been reached, P′n will have all elements positive5. It is
easy to see, that P′ and P have the same eigenvectors v6 (P′v = k′v):

0 =
(
P′ − k′ I

)
v =

(
k I + (1− k)P− k′ I

)
v = (1− k)

(
P− k′ − k

1− k
I

)
v (3.13)

The fundamental limit theorem for regular chains [Grinstead and Snell(1997)] says that
if P is the transition matrix of a regular Markov chain, then with n → ∞, the powers
Pn approach a limiting matrix W with all rows containing the same vector w where all
components of w are positive and sum to one:

W = lim
n→∞

Pn. (3.14)

This states that the probability of being in state qj (the jth entry of v) in the long run
is independent of the starting state qi (vj → wj). From this, it follows that wP = w, and
any row vector v with vP = v is a constant multiple of w.

The unique normalized vector w is called fixed row vector and represents the stationary
distribution of the process. In other words, there is just one stationary distribution, i.e. only
one left eigenvector corresponding to the eigenvalue one7, that solves the equation vP =
v. From equation 3.14, it follows that for any initial probability vector λ, the process
approaches the fixed row vector w for n→∞:

5Once a state is entered with some probability, the non-zero self-loop guarantees that is possible to stay
in all successive time steps.

6If k � 1 or k′ → 1, then also the eigenvalue will be very similar.
7There can be other eigenvectors, whose eigenvalue (absolute value) are smaller than one, which will

vanish with limn→∞Pn.

35

lim
n→∞

λPn = λW = w. (3.15)

Given equation 3.12, we can convert every ergodic chain into a regular chain with the
same eigenvector. Thus it is also clear, that there is only one strictly positive fixed vector
for ergodic Markov chains. However, this fixed vector has a slightly different interpretation
[Grinstead and Snell(1997)]:

An =
I + P + P2 + . . .+ Pn

n+ 1
, lim
n→∞

An = W, (3.16)

where W is a matrix, all of whose rows are equal to the unique fixed probability vector
w for P. Therefore, the ijth entry of the matrix An gives the expected value of the
proportion of times that the process is in state qj in the first n steps, when starting from
state qi. As already seen in figure 3.3, for ergodic Markov chains that are not regular, the
state distribution doesn’t converge. However, the state distribution averaged over time does
converge. The law of large numbers for ergodic Markov chains [Grinstead and Snell(1997)]
states, that the proportion of times that an ergodic chain is in state qj in n steps - Hj(n) -
is independent of the starting state qi:

P (|Hj(n)− wj | > ε)→ 0, ∀ε > 0. (3.17)

So far, we were dealing with regular Markov chains, i.e. we assumed that P is a row-
stochastic matrix, where every row sums to one. Now, we want to generalize equation 3.14
to the case, where P is not normalized. A generalization of the results on Markov chains is
given within the theory of non-negative matrices [Berman and Shaked-Monderer(2012)]. A
non-negative matrix is a matrix with all entries pij ≥ 0. In the same way as the transition
matrix Pij of Markov chains, every non-negative matrix can be associated to a directed
graph, with the only difference, that the transition weights are no longer limited to be in
the interval [0, 1] and that the matrix is not required to be row-stochastic. The Perron the-
orem [Berman and Shaked-Monderer(2012)] states, that for every non-negative primitive
(i.e. regular) matrix P, the maximum eigenvalue ρ(P) (also called spectral radius) is posi-
tive, simple8, singular (only one eigenvalue of this modulus) and has a positive eigenvector
(called left and right Perron vector, whose normalized entries sum to one). For n → ∞,
the matrix converges:

lim
n→∞

(
P

ρ(P)

)n
= L, L = xT y, xyT = 1, (3.18)

where x and y are positive right and left eigenvectors: PxT = ρ(P)xT , x > 0, yP =
ρ(P)y, y > 0. From this, it follows that for any initial probability vector λ, the ratio of
state weights in λ will converge9 to a vector proportional to the left eigenvector y:

lim
n→∞

λ

(
P

ρ(P)

)n
= λL = (λxT)y = cy. (3.19)

8The algebraic multiplicity is one. Algebraic multiplicity is the number of times an eigenvalue appears
in the characteristic polynomial of a matrix.

9We don’t know ρ(P), but independent of the normalizing constant, the ratio of the components of vector
λ will converge to the ratio in the left eigenvector. To achieve numerical stability, we need to normalize,
and we could normalize λ to unit length or to the first component being one.

36

Similarly, for any initial probability vector λ, if we multiply from the right, the ratio of
state weights in λ will converge to a vector proportional to the right eigenvector xT :

lim
n→∞

(
P

ρ(P)

)n
λT = LλT = xT (yλT) = dxT . (3.20)

If the matrix P is not regular, but non-negative and irreducible (ergodic), the Perron-
Frobenius theorem [Berman and Shaked-Monderer(2012)] states, that the maximum (ab-
solute value) eigenvalue ρ(P) is still positive, simple (algebraic multiplicity one) and has
a positive eigenvector (called Perron vector). There are no non-negative eigenvectors for
P except for multiples of the Perron vector. All of them have eigenvalues with modulus
ρ(P), however, there can be several complex eigenvalues with this maximum modulus. The
eigenvalues with modulus ρ(P) are ρ(P) e2πil/k with l = 0, 1, . . . , k − 1 and k is called the
index of cyclicity.

With the help of a permutation matrix R, every non-negative matrix P can be converted
into the Frobenius form:

RT PR =


0 P12 0 . . . 0
0 0 P23 . . . 0
...

...
. . .

...
0 0 0 . . . Pk−1k

Pk1 0 0 . . . 0

 , (3.21)

where the 0-matrices on the diagonal are square. This means, that every non-negative
matrix with index of cyclicity k > 1 (i.e. ergodic but not regular) corresponds to a directed
graph, whose states can be clustered into k stages, where the states of stage l+ 1 can only
be reached by the states of stage l. This can be seen in the example in figure 3.3. When
a = b = c = 0, there are three alternating stages with one state each.

3.3 Alternative weight pushing algorithm

In section 3.1, we motivated the need to make the WFSA stochastic through the use
of a weight pushing algorithm. We showed, that for the (log-) probability semi-ring, the
generic (exact) algorithm for k-closed semi-rings is not applicable, and the generic algorithm
for closed semi-rings (all-pair-shortest-path) is not feasible for WFSAs with big strongly
connected components (which is the case for WFSAs based on N-gram LMs). We showed,
that the convergence of the approximate iterative algorithm depends on the weight in a
loop (equation 3.9). If the weight of a loop ω[π] ≥ 1 (or the sum of several loops meeting
in the same state), the algorithm fails to converge. As already explained, this can be the
case for ε-style back-off LMs, when the weights were taken from a back-off LM (section
2.5.1). Thus, we need a weight pushing algorithm, that will also succeed for those kinds of
WFSAs.

We represent the WFSA in the probability semi-ring10 by using the transition matrix
Pij , where pij is the sum of the weight of all transitions between state i and state j. The
transition matrix is usually sparse (contains 0̄ for all non-existing transitions). Our solution
is based on the theory of non-negative matrices and ergodic Markov chains as introduced in
section 3.2. The fundamental limit theorem for regular chains in equation 3.15 suggests an

10Even for the implementation, we found it more convenient to use actual probabilities instead of negative
logs, as used in the log-semi-ring.

37

iterative algorithm to find the stationary distribution. This is similar to the power method
for finding the dominant eigenvector w of the matrix P, by starting from a random or
uniform positive vector v and iterating by letting v← Pv each time.

If the WFSA is not normalized, the generalization is given by the Perron theorem in
equation 3.18. Since we do not know the normalizing spectral radius ρ(P) in advance, we
re-normalize the resulting vector v at each step so that vI is 1, where I is the initial state
of the WFSA11. By equation 3.19, we know that if we iterate uT ← uT P, we converge
to a multiple of the dominant left eigenvector y. This corresponds to a multiple of the
stationary distribution w of the normalized chain and also corresponds to the minimum
distance from the initial state in the probability semi-ring. The law of large numbers for
Markov chains (equation 3.17) tells us, that the elements of this vector correspond to the
average proportion of times that the chain is in each of the states in the long run. If we
instead iterate v ← Pv (equation 3.20), it results in the dominant right eigenvector of P,
which, in the probability semi-ring, is the minimum distance towards the final states (or
the super-final state).

The Perron theorem is only true for regular chains, but as explained in section 3.2, we
can make every trim WFSA ergodic by connecting the final states f ∈ F to the initial
state I12. That means we modify one column in the transition matrix: if j is the initial
state, then pij is set to the final-probability ρ[i] of state i. As a second step, we need to
guarantee, that the resulting ergodic WFSA is also regular13. We can make the WFSA
regular by interpolating P with the identity matrix (equation 3.12). Alternatively, we can
modify the iteration to v ← Pv + k v14. The parameter k is set to a small value (0.1) to
not slow down the convergence too much. This algorithm is very efficient in practice, it
generally converges within several tens of iterations.

At the end, we have a vector v with vI = 1, and a scalar c > 0, such that

cv = Pv. (3.22)

The vector v contains the distribution of average state occupancies and is used as the
potential function V (q) : Q → K − 0̄ for the re-weighting operation (equation 3.2). This
means we compute a modified transition matrix P∗, by letting

p∗ij = pij vi/vj , (3.23)

and transforming the final probabilities by ρ∗i = ρi vI/vi, where vI is the potential of the
initial state. Using the re-weighting with the potential function V guarantees, that the
resulting WFSA is equivalent to the original one.

If we apply the left Perron eigenvector as potential function in the re-weighting operation
(equation 3.2), it results in pushing the weight towards the final state, or more precisely in
making the WFSA input stochastic. That means, either all incoming arcs sum to one, if
the total weight is one, or more generally they sum to the same quantity for all states. If
we use the right Perron eigenvector as potential function in the re-weighting, it results in

11Any normalization will lead to the same eigenvector. Actually, in the implementation, we normalize to
unit length, as in the matrix power algorithm.
12This acts like an arc from the super-final state to the initial state with probability one. It will not

change an already stochastic WFSA, since all components of the resulting eigenvector will be equal.
13That is, we want index of cyclicity one. This is, for example, necessary for linear WFSAs (in figure 3.3),

which have several multiple eigenvalues with the same magnitude but different complex phases.
14More exact would be (1− k)Pv + k v, but it doesn’t affect the result.

38

pushing the weights towards the initial state and in making the WFSA output stochastic -
i.e. all outgoing arcs sum to one (or more generally to the same quantity).

We show this by writing one element of equation 3.22 as

c vi =
∑
j

pij vj , (3.24)

by dividing by vi, it easily follows that c =
∑

j p
∗
ij . This means each row of the modified

matrix P∗ sums to c (modulus of the eigenvalue of the Perron vector). In the classical weight
pushing algorithm [Mohri and Riley(2001)], we assume a stochastic WFSA (equation 2.6),
so that after weight pushing, all outgoing transitions of a state “sum to” 1̄ in the given
semi-ring. Our solution is to use a modified pushing operation, which results in a WFSA,
for which the transitions out of all states (and the final probability ρ) “sum to” the same
quantity c:

∀q ∈ Q,

 ⊕
e∈E[q]

w[e]

⊕ ρ[q] = c. (3.25)

This means that the left-over weight, which is usually added to the initial or final states
and which can cause the standard algorithm to fail, is now uniformly “smeared” all over
the WFSA.

Algorithm 1 gives the pseudo-code of the alternative weight pushing algorithm15. The
main program consists of the flat initialization of the vector v, then we iterate until conver-
gence (Iterate) and finally apply the reweighting operation (ModifyFst). The heart of the
algorithm is the function Propagate, which is both used in the test for stochasticity (TestAc-
curacy) and in the main iterative algorithm (Iterate). The only difference is, whether the
outgoing arcs are reweighted with the potential function (prob ·v[d]/v[s]) or the propagated
probability mass is summed from the destination states of the outgoing arcs (prob · v[d]).
Notice also the symmetry of pushing towards the final or towards the initial state – we
only have to switch the role of source and destination state16. The stopping criterion in
TestAccuracy is the ratio between the maximum and minimum arc sum – which should
converge to one.

Our algorithm is in practice an order of magnitude faster than the more generic al-
gorithm for conventional weight-pushing [Mohri and Riley(2001)], when applied to cyclic
WFSAs. The speed of the algorithm is determined by the convergence of the matrix power
method, iterating by repeatedly multiplying the state distribution vector with the (sparse)
transition matrix, i.e. going through all states in a pre-defined order every time. The con-
vergence of the matrix power method depends on the ratio between the biggest ρ(P) and
the second biggest eigenvalue.

Mohri’s algorithm (3.2) is similar to a backward (Viterbi-like) algorithm on the given
semi-ring, using the new relaxation condition (equation 3.8) to propagate the probability
mass and to update the queue. A state is put to the queue, if the accumulated probability
mass has changed more than the delta parameter since the last visit. The queue is processed
according to the queue policy until it is empty. For the queue method, the proofs for
convergence of the matrix power algorithm can no longer be applied.

15The algorithm assumes that the weights were stored in the log-semi-ring.
16We check if the log-ratio is below the threshold. We do not test at each iteration, to save the time of

re-weighting the arcs.

39

Algorithm 1 Pseudo-code of the alternative weight pushing algorithm.

vo id Main () {
vec tor<double , num states> v = 1 / sq r t (num states) // f l a t i n i t
f o r (a l l s t a t e s s) :

f o r (a l l a r c s arc l e av ing s) :
prob = exp(−arc . weight) // convert to p r obab i l i t y semi−r i ng
predecessors [t] . add (t u p l e (s , prob))

f ina l = exp(−finalweight (s))
predecessors [i n i t i a l s ta te] . add (t u p l e (s , f ina l)) // f o r c e e r g od i c i t y

I t e r a t e (backwards , delta) // un t i l s t a t i ona ry d i s t r i b u t i o n found
ModifyFst (backwards) // weight pushing opera t ion

}

doub le TestAccuracy (boo l backwards) { // t e s t s t o c h a s t i c i t y
vec tor<double , num states> state sums =

Propagate (backwards , do rewe ight ing)
re turn l og (max (state sums) / min (state sums))

}

vo id I t e r a t e (boo l backwards , delta) {
f o r (maximal 2000 i t e r a t i o n s) :

vec tor<double , num states> new v =
Propagate (backwards , no t r ewe ight ing)

new v += 0.1 ∗ v // regu la r , us ing power method (M + 0.1∗ I)
v = new v / sq r t (new v dot new v) // renorma l i z e with L2−norm
i f (t e s t i t e r a t i o n and TestAccuracy () <= delta) :

re turn // has converged
output warning : Did not converge !

}

vo id ModifyFst (boo l backwards) { // weight pushing opera t i on
v = −l og (v) // convert to log−p r obab i l i t y
f o r (a l l s t a t e s s) :

f o r (a l l a r c s arc l e av ing s) :
i f (backwards)

arc . weight = arc . weight + (v [t] − v [s]) // outgoing norma l i za t i on
e l s e // forwards

arc . weight = arc . weight + (v [s] − v [t]) // incoming norma l i za t i on
i f (backwards)

finalweight (s) = finalweight (s) + (v [i n i t i a l s ta te] − v [s])
e l s e

finalweight (s) = finalweight (s) + (v [s] − v [i n i t i a l s ta te])
}

vec tor<double> Propagate (boo l backwards , boo l reweighting) {
f o r (a l l s t a t e s d) :

f o r (a l l (s t a t e s , prob) in predecessors [d]) :
i f (backwards) {

i f (reweighting)
state sums [s] += prob ∗ v [d] / v [s]

e l s e
state sums [s] += prob ∗ v [d] // v j = sum i v i ∗ p j i .
// summing in the source s t a t e −> d i s t anc e to the f i n a l s t a t e
// pushing the weights towards the i n i t i a l s t a t e

} e l s e { // forwards
i f (reweighting)

state sums [d] += prob ∗ v [s] / v [d]
e l s e

state sums [d] += prob ∗ v [s] // v i = sum j v j ∗ p j i
// summing in d e s t i n a t i on s t a t e −> d i s t anc e to i n i t i a l s t a t e
// pushing the weights towards the f i n a l s t a t e

}
re turn state sums

}

40

Apart from that, both algorithms use different initial distributions. Mohri’s algorithm
starts from the initial state, the new algorithm uses a uniform or a random vector as initial
state distribution. Also, a different test for convergence is used. Mohri’s algorithm uses the
delta relaxation and the new algorithm checks the minimum and maximum over all states
of the sum of the outgoing weights of a state. However, both differences can be considered
minor.

One issue with the alternative weight pushing algorithm is that it was derived under
the assumption, that all arcs in the WFST are of the same type. The transition matrix
Pij treats all arcs in the same way. The LM transducer, which accepts/emits sequences of
words, actually consists of arcs with a word label, and arcs representing the back-off arcs,
that don’t accept any symbol. Therefore, there are multiple paths through the model with
different number of arcs to accept the same word sequence. We can see this in analogy to
composite HMMs, which have emitting and non-emitting arcs, which are computed in two
separate steps in the forward/Viterbi algorithm.

Another related open problem to derive a weight pushing algorithm, i.e. a shortest
distance algorithm in the log-semi-ring, which respects the special semantics of failure arcs.
Under this interpretation, the back-off LM would be correctly normalized and the total
weight of the transducer would be one. Due to the incorrect interpretation of back-off
LM (section 2.5.1), we are pushing weights that are greater than one. In case a state has
a single outgoing arc, this results in a negative arc weight (when represented as negated
log-probability), which can cause problems for several graph algorithms and their common
implementations.

3.4 Experimental validation

We measure the effect of the new weight pushing algorithm by constructing a full recognition
network (HCLG, section 2.4.1). In addition to the forward network, we construct a back-
ward network (section 5.2) as the composition of the reversed components. The language
model is reversed according to chapter 4, but the resulting transducer is not yet stochastic.
We want to emphasize, that this is not just a reversed LM WFST. As will be explained in
chapter 4 WFST reversal is not feasible to LM WFST, but we have to use the algorithm
explained in the same chapter. The outcome of the LM reversal is not yet normalized, thus
we want to apply weight pushing. The generic weight pushing algorithm (figure 3.2) is not
applicable in this case, therefore, we apply the new weight pushing algorithm described in
this chapter. We measure the decoding performance of the backward network with and
without applying the new weight pushing algorithm to the reversed language model before
the composition of HCLG. The experiment was done using Kaldi’s Switchboard recipe
(egs/swbd/s5c/tri3/). We report the performance on the Eval2000 data set17, using a
speaker-independent tri-phone GMM model on LDA transformed MFCC features and a
language model trained on Switchboard. We test on two different recognition networks of
different sizes (using a bi-gram and tri-gram LM). The real-time-factor was measured on a
single core of a Intel(R) Core(TM) i5-2500 CPU at 3.30GHz with 8 GB of memory.

As seen from figures 3.4, the application of the weight pushing is crucial for the perfor-
mance - the un-pushed backward language model performs much worse. We also compare
to the performance of the forward graph. Since all components, including the language

17The decoding parameters are set to: rescore-acoustic-score 13.0, word insertion penalty 0.0, acoustic
scale 1/12, max-active 7000, lattice-beam 6.0.

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 36 37 38 39 40 41 42 43

re
al

tim
e

fa
ct

or

word error rate

HCLG forward

HCLG backward push G

HCLG backward

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 34 36 38 40 42 44 46

re
al

tim
e

fa
ct

or

word error rate

HCLG forward

HCLG backward push G

HCLG backward

Figure 3.4: Decoding performance of backward decoding network reported on the Eval2000 data
set with a GMM model. We tested it using a bi-gram LM (top) and a tri-gram LM (bottom).
Shown is the relation between word error rate and real-time-factor. Better performance is indicated
by curves closer to the lower left corner. We compare the performance of the backward decoding
network (HCLG backward) with and without the application of the new weight pushing algorithm.
For comparison, we also show the performance of the forward decoding network (HCLG forward).
In this case, no weight pushing is necessary.

model, are stochastic (except for the issues with back-off arcs mentioned above) and thus
should have optimal performance, it is not necessary to apply weight pushing. As explained
in chapter 5, the performance of the forward and backward graphs is not necessarily the
same, depending e.g. on properties of language and domain (here conversational English).
However, the comparison indicates, that the weight pushing results in a network, that is
not far from the optimal performance.

42

3.5 Conclusions

To achieve an optimal pruning behavior, it is desirable that the given WFST is stochastic.
If the WFST is stochastic or has a similar optimal weight distribution, we showed that it is
necessary to perform weight pushing. Given the theoretical background for weight pushing,
we showed why the standard algorithm is either inefficient for the type of models used
or fails to converge at all. By explaining the connection between non-negative matrices
and ergodic Markov chains, we motivated an alternative weight pushing algorithm, that
always converges and is much more efficient for the given task of optimizing language
model transducers.

43

Chapter 4

Exact reversal of ARPA back-off
language models

We present details about how to exactly reverse ARPA back-off language models (LM). For
the purpose of searching for the best path through composed probabilistic models forwards
and backwards in time and to combine these searches, it is desirable to have a backwards
language model, that assigns exactly the same scores as the forward language model, while
at the same time it has the same properties of being deterministic, stochastic and of minimal
size to guarantee an optimal search. We show an approach to construct such a backwards
LM, which is valid when using failure arcs and also when using epsilon arcs to represent the
back-off structure as weighted finite state acceptor. This means that the weight of a path
in the backward LM WFSA is equal to the corresponding forward LM WFSA, independent
of the origin of the weights, i.e. whether estimated as interpolated, converted interpolated
or back-off LM. We test the reversal algorithm on language models of different sizes and
on different corpora and we compare it to training a language model on the time reversed
training texts.

4.1 Motivation: forwards and backwards search

The application that we had in mind while investigating into this kind of models was the
search for the best path through a composed probabilistic model. This can be for example
the decoding of the most probable sequence of words in large vocabulary automatic speech
recognition (LVCSR). However, the reversed language models presented here can also be
used in many other tasks as e.g. in finding the most probable sentence in statistical machine
translation. Given the complexity of most of the tasks, it is necessary to use heuristic
pruning techniques, which introduce search errors. As will be explained in more detail in
section 5.1, the search errors of searching forwards and backwards are mutually independent.
Therefore, backward search has the potential to find the best path, even if it was pruned
by the forward search.

Both models, forward and backward, should be equally powerful, i.e. have roughly the
same accuracy and run-time requirements, and have similar structure, size and level of
determinism to guarantee an optimal search. If both models, forward and backward, assign
exactly the same probabilities to a hypothesis, it has the advantage, that the results of
forward and backward decoding can be compared or combined (section 5.1). To be able to
compare and combine the scores of partial results (paths), also the model structure (the

44

distribution of weights along paths) should be similar in the forward and backward model.
Our assumption is that we are given a composed forward graph HCLGfwd (section 2.4.1),

where one of the components is an LM acceptor G (section 2.5). The task is to obtain a
backward graph HCLGbwd that fulfills all of the above mentioned requirements. As will be
explained in more detail in section 5.2, the solution is to reverse each component separately
and then construct the backward graph HCLGbwd in analogy to the forward graph. The
trivial solution to apply WFST reversal is not sufficient, since the resulting graph would
not have a similar level of determinism and not have a similar distribution of weights as
the forward graph, i.e. it would show sub-optimal behavior when used in a pruned search.
As we will see in this chapter, especially the (reversed) LM component would introduce a
great degree of local ambiguity - the word context is delayed in the reversed model (section
4.2) and might result in falsely pruned paths.

To reverse the LM acceptor G turns out to be a complex task – this is the topic dealt
with in this chapter. The task is to construct an LM acceptor Gbwd, that assigns exactly
the same scores as Gfwd (to the reversed utterances). Again, a trivial solution is to apply
WFSA reversal to Gfwd (followed by epsilon removal, determinization, and weight pushing
in the log semi-ring - as explained in section 3.1, this is needed to achieve optimal pruning
behavior and makes the WFSA stochastic). However, for LMs of higher order than bi-
gram, this approach fails. As explained in section 4.2, this is because of the delayed word
context and different backing-off states. Additionally, as already explained in section 3.1,
the conventional weight pushing cannot be applied to WFSAs resulting from LMs, but we
should use the alternative weight pushing (section 3.3). Thus, to achieve optimal search
behavior, we need to construct an LM acceptor Gbwd with similar structure as the forward
acceptor Gfwd that assigns exactly the same scores to the reversed utterances, and that also
makes it possible to compare partial word sequences of forward and backward decoding.

Another trivial solution would be to train a new model on the reversed training texts
(e.g. [Tang and Cristo(2008)]) - given that those are still available. This does however not
result in exactly the same scores for the same utterances, since there is usually no such
constraint applied in the LM estimation1. Since we wanted exactly the same scores, we
did not follow this approach further. Also, it would make our approach inconvenient to
use in cases where the original LM text is no longer available. To determine the impact of
those score differences, we compare an exactly reversed tri-gram model to a tri-gram model
trained on the reversed training texts. We test the LM reversal algorithm on language
models of different sizes.

4.2 Construction of an exactly reversed language model

In section 2.5, we explained how N-gram back-off language models are represented as
weighted finite state automata and stored in the ARPA format. In this section, we show
how to construct a backward LM, that has the same properties as the forward LM – i.e. it
is deterministic (except for the ε-arcs), has the same size and a similar structure. The
algorithm presented here is valid for failure arcs and for epsilon arcs.

1Based on the idea that Kneser-Ney models apply a constraint for the marginal distributions to estimate
the probabilities in the LM, we assume that it is possible to formulate another type of constraint, that
the LM probabilities should be estimated in such a way, that when estimated on reversed training texts
and applying the exact reversal algorithm presented here, it should give the same probabilities as when
estimating the normal forward LM.

45

The WFSA corresponding to the forward LM accepts a sequence of words and accu-
mulates the weights along the path - see figure 4.1. If the probability semi-ring is used,
the path weight is the product of the individual probabilities. If logarithmic probabilities
are used, the path weight is the sum of the individual scores. Two WFSA are equal, if
they accept the same set of sequences with the same path weights. Thus, it is possible
to distribute the weights differently along the path, as long as the total product (or sum
for logarithmic weights) stays the same for all paths. When we directly apply FSA rever-
sal, which basically corresponds to swapping the source and destination states of the arcs,
the resulting structure would be highly non-deterministic. In the example (figure 4.1), we
would start backwards from the final state. All incoming arcs into the final state (only one
example is shown) have the label</s>. Thus, we would have to apply the tri-gram proba-
bility P (</s>|c, d) after only having seen only one symbol of the tri-gram (</s>). However,
only after two more symbols d, c have been seen, the destination state can be determined
unambiguously. For that reason, it would be logical to delay the application of the weight
(probability), until a sufficient number of symbols have been consumed to unambiguously
determine the destination state. For a tri-gram LM, this means delaying the weights by
two steps. Figure 4.2 shows the corresponding path in the backward LM.

<s> <s>a ab bc cd d</s>
<s>:1 a :P (a|<s>) b :P (b|<s>a) c : P (c|a, b) d : P (d|b, c) </s>:P (</s>|c, d)

Figure 4.1: Example of a forward path through a tri-gram language model - every state cor-
responds to a history of the two last symbols consumed. The model accepts the sequence a, b, c, d
(input symbols) and the path weight is the product of the individual probabilities. For simplicity,
sentence-start and sentence-end are treated here as ordinary symbols. Only one path is shown, but
the reader has to keep in mind, that there e.g. multiply arcs entering the final state, all with the
same label.

</s> </s>d dc cb ba <s>

a<s> <s>

</s>:1 d : 1 c :P (</s>|c, d) b :P (d|b, c) a :P (c|a, b) <s>:P (b|<s>a)·P (a|<s>)<s
>:
P (
b|<
s>
a)

ε :P (a|<s>)

Figure 4.2: The backward path corresponding to the path in figure 4.1. Additionally to reversing
the path, the weights/probabilities have been delayed by two steps. Therefore, two arcs with prob-
ability one have been inserted at the beginning. To compensate, we could add two ε-arcs at the
end (as depicted in dashed), where the last arc corresponds to backing-off to a history-less state
at the sentence beginning (now end). Instead of introducing back-off arcs at the end of the sen-
tence, we can collapse the probabilities of all the lower-order back-offs onto one arc, i.e. we use
P (b|<s>a) ·P (a|<s>) ·P (<s>) (we assumed P (<s>) = 1 before). This is well in line with the com-
mon WFST LM implementation, which assumes, that the state reached by an N-gram containing
the sentence-end symbol is a final state.

When certain N-grams do not have sufficient coverage in the training corpus and are
approximated by backing-off to lower order N-grams (see figure 4.3), the sequence of the
weights in the backward LM is again exactly reversed as in the forward LM, and the same

46

<s> <s>a ab bc
cd d</s>

c

fc

cg

ch

ci

l

0

<s>:1 a :P (a|<s>) b :P (b|<s>a) c : P (c|a, b)
</s>:P (</s>|c, d)g : P (g|b, c)

ϕ
: α
(b
, c
)

ϕ
: α(f, c)

d
: P

(d|c)

h : P (h|c)

i : P (i|f, c)

ϕ : α(
l) c : P (c)

Figure 4.3: The same example of a forward path as in figure 4.1, but with backing-off. The thick
arcs correspond to the path in fig. 4.1 and further arcs have been added to illustrate the structure of
the back-off LM. Since the N-gram bcd was not seen sufficiently often, it is approximated by backing-
off to state c with back-off weight α(b, c) and then using the bi-gram cd with probability P (d|c). The
failure-arc (symbolized by ϕ) doesn’t consume any symbol, but this arc is chosen for all symbols,
that have no outgoing arc out of the same state (’default’ clause). For the non-deterministic WFSA
approximation, we would use the symbol ε instead and not consume a symbol either. The state 0

corresponds to the history-less back-off state when backing-off to uni-grams.

</s> </s>d dc

c

cb ba a<s>

hc

ic cf

gc

0 l

</s>g

</s>h

ck

b

</s>:1 d :1 c : P (</s>|c, d) ϕ
: P
(d
|c) b : α(b, c)

a : P (c|a, b) <s>:P (b|<s>a)·P (a|<s>)

ϕ : P (h|c) f
: α

(f
, c
)

i : P (i|f, c)

g :P
(g|b

, c)

ϕ : P
(c)

l : α(l)

g
: 1

c : P (</s>|c, g)

h
: 1

c : P (</
s>|c, h)

k : P (k|b, c)

a
: α
(a, b)

Figure 4.4: The backward structure corresponding to figure 4.3. The thick arcs correspond to the
path in fig. 4.2, and all solid arcs are reversed arcs from fig. 4.3. Dashed arcs have been added to
illustrate further structure of the backward model. Similar as in figure 4.2, the weights have been
delayed by two steps. Compared to the forward structure in figure 4.3, the sequence of weights is
exactly reversed. The probability on an arc between two particular states is the same in the forward
and backward model. I.e. compare the forward arcs bc − c − cd in fig. 4.3 to the backwards arcs
dc− c− cb in this figure (cb corresponds to bc). However, since all labels are off by two states in the
backward model, the back-off probability α(b, c) is now actually applied on a bi-gram arc with a label
(b) and the bi-gram probability P (d|c) is applied on a back-off arc with ϕ. Since all backward-tri-
grams ending in cb (like dcb, hcb) share b as last label, it is logical to first back-off from the history
(dc, hc) to the common history c and then apply the common label b. Since the reverse order of the
weights has been preserved, the bi-gram probabilities serve now as back-off weights, and the former
back-off weights serve as bi-gram probabilities. The same holds for the history-less state 0 - the
uni-gram back-off weight α(l) and the uni-gram probability P (c) have switched their role.

47

delay of the weights is applied to make the model deterministic2. However, the sequence of
the labels for back-off arcs is changed - back-off weights and lower-order N-grams change
their role. The reason for that is we always have to back-off to a common history before
consuming the next label - so the failure-arc (symbolized by ϕ) in the backward model takes
the lower-order N-gram probability (from the forward model) and the label-arc takes the
former back-off weight. Figure 4.4 shows this in the construction of a backward back-off
LM from figure 4.3.

Figure 4.4 shows that it is possible to construct a backward LM, that has the same size
and structure as the forward LM and is deterministic. From the construction, we observe,
that a forward LM can be transformed into a backward LM by a series of relatively simple
steps: Since the sequence of labels is processed in reversed order, the names of all states and
N-grams are reversed (abc becomes cba). The N-grams of the highest order do not have
back-off weights, and thus they stay unchanged (arcs appear similar in the forward and
backward models). However, for all lower-order N-grams, the role of the back-off weight
and the N-gram probability changes. When represented in the ARPA format (figure 2.12),
the transformation becomes even simpler: For all lower-order N-grams, the whole line is
reversed, and for the highest-order N-gram, only the N-gram is reversed. E.g. for a tri-gram
LM, a bi-gram entry P (b|a) a b α(a, b) becomes α(a, b) b a P (b|a) and a tri-gram entry
P (c|a, b) a b c becomes P (c|a, b) c b a. The symbols for sentence begin and sentence end
have to be exchanged, and special care has to be taken for N-grams starting and ending
a sentence. For all N-grams ending a sentence, we multiply all lower-order probabilities
(e.g. for N-gram ba</s>we use P (b|a,<s>) · P (a|<s>), times P (<s>) if not one).

By introducing the short-hand notation P (ABCD) = P (D|A,B,C), we can write the
rules for a four-gram LM in the form of equations:

P (A) = α(A) (4.1)

α(A) = P (A)

P (BA) = α(AB)

α(BA) = P (AB)

P (CBA) = α(ABC)

α(CBA) = P (ABC)

P (DCBA) = P (DCBA).

4.3 The treatment of missing N-grams

Figure 4.5 shows the LM reversal rules (equation 4.1) applied to a tri-gram back-off ARPA
LM. While the rules are rather simple, an additional complexity arises, when representing
ARPA models (back-off N-gram LMs in general) as WFSAs. If there is an N-gram entry
for abcd in the ARPA, the resulting WFSA needs the back-off states bcd, cd and d. Due to
LM pruning, and due to other reasons that we are going to explain in this section, for some
of the N-grams abcd defined in the ARPA file, there is no corresponding tri-gram entry bcd
or bi-gram entry cd, i.e. we are not given the probality α(bcd) of backing-off abcd → bcd,

2The model is only truly deterministic, if we use failure arcs, but the construction presented here is also
valid for ε-arcs.

48

\data\
ngram 1=4
ngram 2=2
ngram 3=2

\1-grams:
-5.234679 a -3.3
-3.456783 b
0.0000000 <s> -2.5
-4.333333 </s>

\2-grams:
-1.45678 a b -3.23
-1.30490 <s> a -4.2

\3-grams:
-0.34958 <s> a b
-0.23940 a b </s>
\end\

start <s><s>

0<eps>/2.5

<s>a

a/1.3049
a

a/5.2347

b

b/3.4568

</s></s>/4.3333

<eps>/3.3

ab
b/1.4568

<eps>

<eps>/3.23

ab</s>
</s>/0.2394

<eps>/4.2
b/0.34958

start <s><s>

0<eps>/4.3333

<s>b

b

</s></s>/2.5

aa/3.3

bb

<eps>/inf

ba

a/0.2394

<eps>/5.2347

ba</s>

</s>/4.2+1.3049
<eps>/3.4568

a/3.23

<eps>/1.4568
</s>/0.34958+1.3049

Figure 4.5: Upper part: Forward WFSA for the tri-gram back-off ARPA LM (repeated from
figure 2.12). We apply the rules from equation 4.1 (and swap sentence begin/end symbols) to obtain
the backward WFSA (lower part). We see that exactly the same probabilities are used between the
states (e.g. a → ab in upper model and a → ba in lower model) and that back-off weights in the
upper model are now on word arcs in the lower model. As already said, an alternative interpretation
of a tri-gram transition ab → bc is to go to an imaginary state abc and immediately backing off to
state bc. Therefore, the final state in the upper part is the tri-gram state ab</s>. However, since
this is a final state, there is no way to back-off from it to the state b</s>. Moreover, in the forward
ARPA definition (upper left), the N-gram corresponding to the state b</s> is missing.

neither P (d|b, c). N-grams that are needed for the construction of the WFSA, but not
defined in the ARPA, we call missing N-grams.

During the construction of the recognition graph from the forward LM, missing back-off
states are usually added automatically. For example, in the tri-gram LM in the upper part
of figure 4.5, the tri-gram <s>ab leads into the state ab. Let’s imagine the corresponding
back-off bi-gram ab is not given in the ARPA file (e.g. due to pruning): In this case, during
the construction of the recognition graph, the state ab needs to be automatically created,
as it is the target of the tri-gram. Since there is no bi-gram probability for ab (P (b|a) = 0.0,
and no successor bi-grams), we should immediately back-off to state b. Thus, the bi-gram
ab is added with back-off weight α(a, b) = 1.0 (zero in log-domain). However, it should
not be possible to reach the newly created state ab from a, since the N-gram ab is missing
(P (b|a) = 0.0 or minus infinity in log-domain).

In terms of the WFSA representation of the LM (right part of figure 4.5), this would
mean, that there would be no link between a and ab, and the link between ab and b would
be added with zero cost. In the reversed LM, where forward probability and back-off weight
change their role, this does lead to the situation, that we are able to reach ba from b with
α(a, b) = 1.0, but we are not able to back-off from ba to a, since this corresponds to a path

49

that was not present in the forward model (P (b|a) = 0.0). If we would make the missing
N-grams explicit in the ARPA file, in the forward ARPA file, the missing N-gram would
result in an entry ’−inf a b 0.0’, and in the backward ARPA file, this results in entries of
the type ’0.0 b a −inf’. This might seem awkward, because we never have infinte log-back-
off weights in the forward LM, but it is necessary to make the forward and backward LMs
match exactly.

An example of a missing N-gram is in figure 4.5: For the entry ab</s>, the back-off
state b</s> is missing in the ARPA. It would be automatically added when constructing
the WFSA, but here it is not necessary, since after observing the sentence-end symbol, no
other N-gram can follow3. Even if we don’t need it in the forward model, it still has an
effect on the backward model. To make the missing N-gram explicit in the forward model
(upper part), we would add it in such a way, that we can back-off to the missing state b</s>
and from it to the final state </s>. However, b</s> should not be reachable through the
missing N-gram b → b</s>. According to the rule, we create ’−inf b </s> 0.0’ in the
forward ARPA. In the reverse model (lower part), this corresponds to being able to reach
the missing state by the N-gram <s>→<s>b, but not being able to back-off from <s>b to
the lower order state b, since this corresponds to a path that was not present in the forward
model. This results in adding ’0.0 </s> b − inf’ in the backward ARPA and exactly
corresponds to the state <s>b in figure 4.5, which can be reached with probability one, but
there can be no back-off arc leaving this state (indicated as dashed arc with infinite cost).
To summarize, we need to add the state <s>b in the reverse model, but the back-off link
<s>b→ b is not allowed to have an equivalent backward model.

Missing N-grams result from a complex interplay of the type of back-off distribution,
cut-off frequencies and LM pruning (e.g. based on entropy [Stolcke(1998)]). As we have
already explained, the first type of N-grams that are missing in the ARPA file are back-
off N-grams that end a sentence (e.g. b</s>). Otherwise, if we don’t apply pruning, we
would expect that the presence of a higher-order N-gram implies the presence of the lower-
order N-gram (e.g. with a shortened history), since the absolute observation count of the
lower-order N-gram should be equal or higher than the count of the higher-order N-gram.
We encounter missing N-grams, when we use different cut-off frequencies (parameter k in
equation 2.13) for different N-gram orders. For example, when we use SRILM’s default
setting k4 = 1, k3 = k2 = k1 = 2 for four-gram LMs, we get missing tri-grams for all
four-grams, whose back-off tri-gram was only observed once.

As we will see now, we also get missing N-grams, if we use lower-order distributions,
which are not based on counts. The distribution for the highest-order N-grams P ′(wi|hi)
(equations 2.13, 2.16) is usually based on the counts C(hi, wi). When back-off models
were introduced [Katz(1987)], also the lower-order back-off distributions Plower were based
on counts. However, when we have to back-off, we should make use of the fact that this
particular word is unseen in the given context. We would expect a different distribution
of words, than when we were not given that information, i.e. not just expect any frequent
word. In other words, we should use a different type of distribution for Plower(wi|h̄i) than
for P ′(wi|hi). Following that intuition, Kneser-Ney-type LMs [Kneser and Ney(1995)] use
a back-off distribution, where the probability of a word, unseen in a certain context, is
proportional to the number of possible predecessor words types that can occur before that
context:

3By convention, a state reached by an N-gram containing the sentence-end symbol is a final state.

50

Pbackoff (wi|wi−n+1 . . . wi−1) =
|wi−n : C(wi−n . . . wi) > k|∑
wi
|wi−n : C(wi−n . . . wi) > k|

. (4.2)

As a consequence, we can expect words or phrases, that appear frequently, but only in
very few different contexts, to have a low probability in the back-off model. For example,
we would not expect the word “Francisco” to appear in many other contexts than together
with “San Francisco”, despite the fact that it is a frequent word. For that reason, we often
find higher-order N-grams in the LM, such as “San Francisco area”, for which the back-off
N-gram “Francisco area” is missing. When constructing the backward LM, we will add the
missing N-gram “area Francisco” with probability one and infinite back-off weight. This
means, that after observing “area Francisco”, we are only able to continue with “San” and
there can be no back-off to “Francisco”, which would allow to continue with another word.

In fact, when experimenting with LMs trained on sentences from the Wall Street Jour-
nal corpus [Paul and Baker(1992)], we observed that any common multi-word phrase can
result in missing lower-order N-grams. An N-gram starting within a multi-word phrase has
very few different left contexts, which causes it to have low back-off probability. If the right
context of that N-gram is either almost completely undetermined or completely determined
(e.g. sentence end), all N-grams that would continue the phrase fall below the cut-off fre-
quency and are thus not present in the LM. Typically, a multi-word phrase like “on behalf
of” or “New York City” is followed by a word that introduces lot’s of ambiguity - e.g. “on
behalf of the”. If no N-gram “behalf of the X” is above the cut-off frequency, then also the
back-off N-gram “behalf of the” is missing in the LM, since the probability of seeing it in a
new context other than “on” is extremely low. As already mentioned, also for all N-grams
ending a sentence, there is no succeeding N-gram, which is a similar situation. It is quite
obvious, that LM pruning (e.g. based on entropy [Stolcke(1998)]) will increase the number
of missing N-grams. According to the same principle, N-grams with a low probability in
the back-off distribution, and no successor N-grams (due to pruning) are missing as well.

4.4 Proof: Exact reversal of the language model

We have verified that our “reversed” ARPA LM, and also the corresponding WFST assigns
the same score to a reversed sentence that our original ARPA LM assigned to the original
sentence. In this section, we sketch a proof for the correctness of the algorithm for reversing
the LM, as presented in section 4.2. The steps are valid for back-off and interpolated LMs.
We do this by introducing a series of simple transformations, that each guarantee the
equivalence of the LM WFSA (the same sequence of symbols gets the same score):

1. Modify the ARPA model to make the back-off costs zero while maintaining the
sentence-level scores the same,

2. Convert to “max-ent” form, reverse in the “max-ent” form, which is easy,

3. Convert back to ARPA form [still not normalized per word],

4. Convert to a WFSA, and apply the new weight pushing.

Input to the algorithm is a language model (LM) in ARPA format4, which contains
entries in the form ’p(ABC) ABC α(ABC)’, and its representation as a WFSA (top of

4ARPA stores log-probabilities, but for simplicity, we show probabilities here.

51

figure 4.5). Here, ABC stands for the three words A,B,C, p is the N-gram weight and α is
the back-off weight. We use the notation p(ABC) meaning P (C|A,B). The result of these
steps is a reverse LM that assigns exactly the same scores as the forward LM.

First step: Pushing the back-off costs

CA

BA

AA

0

A

AC

AA

AB

B

BC

BB

BA

C

A
/p
(A
)

γ/
α
(A
)

C/p(AC)

B/
p(A

B)

A
/p(A

A
)

γ/
α(
AB

)

C/p
(AB

C)

B/p(ABB)
A/p(ABA)

γ/α(C
A
)

B/p(CAB)

γ/α(BA)

B/p(BAB)

γ/α(AA)

B/p(AAB)

γ/α(BC)

C/p(BC)

Figure 4.6: WFSA of a toy tri-gram LM with just three words A, B, C, focusing on the N-grams
that contain AB. On the left, there are states corresponding to histories ending in A, in the center
are N-grams that start with A and on the right are N-grams starting in B. For a vocabulary V = 3,
every state (except for the zero-gram 0) has four incoming and four outgoing arcs. Conceptually, we
see a tri-gram arc AB → BC as two arcs AB → ABC with p(ABC) and backing-off ABC → BC

with α(ABC) = 1.0. In this interpretation, all arcs with word labels go up one level in the hierarchy,
and all back-off arcs go down one level in the hierarchy.

In the first step, we push the weights α() of back-off transitions. We do this using the
simple potential function defined in equation 3.4. This means, we multiply a fixed value k to
the weights of all incoming arcs into a particular state q′ and we divide the same value from
the weights of all arcs leaving that state. We do so starting from the uni-gram-back-offs,
and then going upwards to the bi-gram-back-offs, and so on (the highest order back-offs
are 1.0 anyway). In figure 4.6, we show the relevant arcs for this operation: To push the
back-off weight α(A) from the arc A → 0, we divide all outgoing arcs of the state A by
α(A) (e.g. the arc A→ AB, thus we change p(AB)), and we multiply all incoming arcs of
A by α(A) (e.g. the arc BA → A, thus we change α(BA)). Pushing the weights from all
uni-gram back-offs results in a WFSA Pz1:

pz1(A) = p(A)α(A) (4.3)

αz1(A) = 1.0

pz1(AB) = p(AB)/α(A)

αz1(AB) = α(AB)α(B)

pz1(ABC) = p(ABC)

52

We only write one equation for each type of arcs, i.e. from pz1(AB) = p(AB)/α(A), we
also know that pz1(CB) = p(CB)/α(C), and so on. With our notation, we want to show
the whole WFSA for all possible N-gram orders. Therefore, we write also the tri-gram
probabilities pz1(ABC), which are not affected by this step. If we would have a four-gram
LM, it is clear, that also pz1(ABCD) is not affected. If we would have a bi-gram LM, we
join the tri-gram arc and the tri-gram back-off arc into one arc, using α(AB) = 1.0:

pz1,bigram(AB) = pz1(AB)·αz1(AB) = (p(AB)/α(A))·(α(AB)α(B)) = p(AB)·α(B)/α(A),

and we would truncate our derivation, since we would already have an WFSA with back-off
weights one. For tri-gram LMs, we apply now a second pushing step, where we push the
weight αz1(AB) = α(AB)α(B) from the back-off arc AB → B. From figure 4.6, we see,
that we divide all outgoing arcs of the state AB by αz1(AB), and we multiply all incoming
arcs of AB by the same quantity. From figure 4.6, we see, that the arc AB → ABC is
influenced by AB → B and BC → C, thus both αz1(AB) and αz1(BC) influence p(ABC).
This step results in a WFSA Pz2:

pz2(A) = p(A)α(A)

αz2(A) = 1.0

pz2(AB) =
p(AB)α(AB)α(B)

α(A)

αz2(AB) = 1.0

pz2(ABC) =
p(ABC)

α(AB)α(B)

αz2(ABC) = α(ABC)α(BC)α(C)

For tri-grams, we use α(ABC) = 1.0 and truncate or derivation with:

pz2,trigram(ABC) = pz2(ABC)αz2(ABC) =
p(ABC)α(BC)α(C)

α(AB)α(B)
.

A clear pattern is observed. To summarize, for an N-gram of any order, by a series of N −1
weight pushing steps, we obtain a WFSA Pz that has all back-off weights one (log zero):

pz(A) = p(A)α(A) (4.4)

pz(AB) =
p(AB)α(AB)α(B)

α(A)

pz(ABC) =
p(ABC)α(ABC)α(BC)α(C)

α(AB)α(B)
. . .

Second step: Converting to “max-ent” form

In a second step, we view the WFSA in a multiplicative space, which is inspired by the
N-gram features in a maximum entropy LM [Berger et al.(1996)]. It models the probability
of an N-gram with the help of a set of feature functions fi(hi, wi):

pλ(wi|hi) =
1

Zλ(hi)
exp

(∑
i

λi fi(hi, wi)

)
(4.5)

53

Here, Zλ(hi) is the normalizer to form a valid distribution and λi is the weight of the
feature function fi(hi, wi), which in the simplest case is a binary indicator function, which
can select particular words and histories (N-grams), but also other types of features can be
used, asking about part-of-speech etc. Here, we assume an indicator function fi for each uni-
gram, bi-gram, tri-gram and so on. When evaluating the words ABC, a back-off LM would
only consider p(BC), if there is no p(ABC) in the LM, in which case it has to back-off to
history B. On the other hand, in interpolated LMs, p(ABC) is estimated by interpolating
the N-gram features of all orders. This is similar in a ’maxent-type’ model, however, we
don’t use additive interpolation, but multiply (exponential of sum) the feature contributions
of lower orders. Inspired by this, we transform our LM weights into a multiplicative space,
where all N-gram orders contribute:

pmaxent(ABC) = pf (ABC) · pf (BC) · pf (C). (4.6)

With this step we actually leave the original semi-ring, but we use it just as an inter-
mediate step for explanation. When we use a back-off LM, we want to construct the model
so that:

pmaxent(ABC) =


pz(ABC) if pz(ABC)
pz(BC) else if pz(BC) .
pz(C) elsewhere

(4.7)

This can be achieved by setting:

pf (C) = pz(C) (4.8)

pf (BC) = pz(BC)/pz(C)

pf (ABC) = pz(ABC)/pz(BC)

. . .

The combined weight pushing from back-off arcs and conversion to “max-ent” type
results in:

pf (A) = p(A)α(A) (4.9)

pf (AB) =
p(AB)α(AB)

α(A) p(B)

pf (ABC) =
p(ABC)α(ABC)

α(AB) p(BC)

pf (ABCD) =
p(ABCD)α(ABCD)

α(ABC) p(BCD)
. . .

The advantage is that this ’maxent-type’ model can be easily reversed by:

pfr(ABC) = pf (CBA) (4.10)

As already mentioned in section 4.2, the sentence begin and end symbols have to be
switched in the ARPA file, and we assign the uni-gram probability of the former sentence
begin (usually it is ignored, but in our case it won’t be one) to the new sentence begin
(former sentence end). Also, as explained in section 4.3, we have to explicitly add the
missing back-off states before the reversal (e.g. if back-off state AB is not present for an

54

entry XAB - see lower part of figure 4.5). In the following equations, we treat pb(AB) = 1.0
if the state AB was added as a missing back-off state.

The resulting reverse maxent-type model can be transformed back to the ARPA-type:

pb(C) = pfr(C) (4.11)

pb(BC) = pfr(BC) · pfr(C)

pb(ABC) = pfr(ABC) · pfr(BC) · pfr(C)

. . .

The resulting backward LM is then:

pb(A) = p(A)α(A) (4.12)

pb(BA) =
p(AB)α(AB) p(A)

p(B)

pb(CBA) =
p(ABC)α(ABC) p(AB) p(A)

p(BC) p(B)

pb(DCBA) =
p(ABCD)α(ABCD) p(ABC) p(AB) p(A)

p(BCD) p(BC) p(B)
. . .

So far, for the conversion to the “max-ent” form, we assumed a back-off LM (equations
4.7, 4.8). If the probabilities are represented as an interpolated LM, we want to construct
a model, so that:

pmaxent,int(ABC) =


pz(ABC) + pz(BC) + pz(C) if pz(ABC)

pz(BC) + pz(C) else if pz(BC) .
pz(C) elsewhere

(4.13)

This can be achieved by setting:

pm(C) = pz(C) (4.14)

pm(BC) =
pz(BC) + pz(C)

pz(C)

pm(ABC) =
pz(ABC) + pz(BC) + pz(C)

pz(BC) + pz(C)
. . .

Also here, the model can be easily reversed by:

pmr(ABC) = pm(CBA) (4.15)

We can convert the max-ent model for interpolated LMs back with:

pb(C) = pmr(C) (4.16)

pb(BC) = pmr(BC) · pmr(C)− pmr(C)

pb(ABC) = pmr(ABC) · pmr(BC)− pmr(BC) · pmr(C)

pb(XABC) = pmr(XABC) · pmr(ABC)− pmr(ABC) · pmr(BC) · pmr(C)

. . .

Here, we show also the equation resulting for four-grams, to indicate continuation of
the series. In the further steps, we only continue with the equations for back-off LMs, to
save space.

55

Last step: Pushing the forward probabilities to back-off arcs

Now, in a final step, we take the result for back-off LMs (equation 4.12) and we apply a
similar but inverse operation to what we applied to push the weights from the back-off
arcs (equation 4.4). We can show, that this results exactly in the algorithm presented in
section 4.2 (equation 4.1). First, we transform the uni-gram probabilities into the desired
form (equation 4.1) by pushing the p(A). This is the equivalent step to equation 4.3, but
this time, we don’t push α(A) from the arc A → 0, but 1/p(A). From figure 4.6 (now we
have to read AB as BA), we see that this affects the arcs to and from the state A (and B),
among them are bi-gram probabilities and bi-gram back-offs:

pb1(A) = α(A) (4.17)

αb1(A) = p(A)

pb1(BA) =
p(AB)α(AB) p(A) p(B)

p(B)

αb1(BA) =
1

p(A)

pb1(CBA) =
p(ABC)α(ABC) p(AB) p(A)

p(BC) p(B)

αb1(CBA) = 1.0

pb1(DCBA) =
p(ABCD)α(ABCD) p(ABC) p(AB) p(A)

p(BCD) p(BC) p(B)

αb1(DCBA) = 1.0.

Of course, pb1(CBA) and pb1(DCBA) are not affected by this step, but we copy them
from equation 4.12. Now, we transform the bi-gram probabilities by pushing 1/ (p(AB) p(A)).
This also affects the tri-gram CBA and its back-off arc:

pb2(A) = α(A) (4.18)

αb2(A) = p(A)

pb2(BA) = α(AB)

αb2(BA) = p(AB)

pb2(CBA) =
p(ABC)α(ABC) p(AB) p(A)

1

αb2(CBA) =
1

p(AB) p(A)

pb2(DCBA) =
p(ABCD)α(ABCD) p(ABC) p(AB) p(A)

p(BCD) p(BC) p(B)

αb2(DCBA) = 1.0.

56

The third step is analogous for the tri-grams, by pushing 1/ (p(ABC) p(AB) p(A)):

pb3(A) = α(A) (4.19)

αb3(A) = p(A)

pb3(BA) = α(AB)

αb3(BA) = p(AB)

pb3(CBA) = α(ABC)

αb3(CBA) = p(ABC)

pb3(DCBA) = p(ABCD)α(ABCD) p(ABC) p(AB) p(A)

αb3(DCBA) = 1/ (p(ABC) p(AB) p(A)) .

For a four-gram LM α(ABCD) = 1.0 and there is only one arc with weight:

pb4(DCBA) = pb3(DCBA)αb3(DCBA) = p(ABCD) (4.20)

We see, that the N-gram probability for the highest order stays the same pb(DCBA) =
p(ABCD), and for all lower orders, the N-gram and back-off probabilities change their
role. Thus, we have shown, that these steps result exactly in the same solution as in the
equations 4.1.

4.5 Motivation by Bayes’ formula

[Lee and Kawahara(2009)] point out, that the reverse LM can be constructed with the
help of Bayes’ rule. However, no details were given, especially it is unclear how to treat
back-offs and back-off states. Here, we try to derive the LM reversal using Bayes’ rule. The
basic assumption is that the joint probability of word sequences should be the same in the
forward and backward models:

pb(wN , . . . , w1) = pf (w1, . . . , wN). (4.21)

This sounds reasonable, if the probabilities are based on counts. However, this might
not be the case, if the lower-order probabilities are following another distribution, as e.g. the
left-continuation probabilities used in Kneser-Ney language models (equation 4.2). We start
our derivation with the uni-grams (pb(A) = p(A)) and bi-grams:

pb(A) = p(A)

pb(B) = p(B)

pb(B,A) = p(A,B)

pb(B) pb(A|B) = p(A) p(B|A)

pb(A|B) =
p(A) p(B|A)

p(B)
. (4.22)

57

We continue with the tri-grams:

pb(C,B,A) = p(A,B,C)

pb(C) pb(B|C) pb(A|C,B) = p(A) p(B|A) p(C|A,B)

p(C)
p(B) p(C|B)

p(C)
pb(A|C,B) = p(A) p(B|A) p(C|A,B)

pb(A|C,B) =
p(A) p(B|A) p(C|A,B)

p(B) p(C|B)
=
P (A,B,C)

P (B,C)
. (4.23)

We can generalize this derivation for all N-gram orders. Given the forward word se-
quence wN1 , we derive:

pb(w1|wN , wN−1, . . . , w2) =
p(w1, . . . , wN)

p(w2, . . . , wN)
=

∏N
i=1 p(wi|w

i−1
1)∏N

i=2 p(wi|w
i−1
2)

. (4.24)

If we compare these formulas to equation 4.12, we see that we derived the same formulas
– except for the additional back-off weights of the forward model. We repeat equation 4.12
here (moving the back-offs for clarity):

pb0(A) = p(A)α(A)

pb0(BA) =
p(AB) p(A)

p(B)
· α(AB)

pb0(CBA) =
p(ABC) p(AB) p(A)

p(BC) p(B)
· α(ABC)

pb0(DCBA) =
p(ABCD) p(ABC) p(AB) p(A)

p(BCD) p(BC) p(B)
· α(ABCD)

. . .

With the help of Bayes’ rule, we determined the N-gram probabilities of the reversed
model, but we didn’t figure out the back-off weights. If we transform our solution to a form,
that exactly retrieves the probabilities obtained from Bayes’ rule, we can use the resulting
back-off weights as a Bayes’-like solution, i.e. we can assume, that the resulting model is
correctly normalized to sum to one. In a similar series of pushing steps as before, we can
push the former back-off weights α of the forward model, so that the structure of the Bayes’
formula is retrieved. Thus, we start again from equation 4.12, as we did in equation 4.17,
but instead of pushing 1/p(A), we push the back-off weights (1/α(A)) from the uni-grams:

58

pb1(A) = p(A)

αb1(A) = α(A)

pb1(BA) =
p(AB) p(A)

p(B)
· α(AB)α(B)

αb1(BA) = 1/α(A)

pb1(CBA) =
p(ABC) p(AB) p(A)

p(BC) p(B)
· α(ABC)

αb1(CBA) = 1.0

pb1(DCBA) =
p(ABCD) p(ABC) p(AB) p(A)

p(BCD) p(BC) p(B)
· α(ABCD)

αb1(DCBA) = 1.0.

(4.25)

Then, we push 1/ (α(AB)α(B)) from the bi-grams:

pb2(A) = p(A)

αb2(A) = α(A)

pb2(BA) =
p(AB) p(A)

p(B)

αb2(BA) =
α(AB)α(B)

α(A)

pb2(CBA) =
p(ABC) p(AB) p(A)

p(BC) p(B)
· α(ABC)α(BC)α(C)

αb2(CBA) = 1/ (α(BC)α(C))

pb2(DCBA) =
p(ABCD) p(ABC) p(AB) p(A)

p(BCD) p(BC) p(B)
· α(ABCD)

αb2(DCBA) = 1.0.

(4.26)

59

Now, we push 1/ (α(ABC) + α(BC) + α(C)) from the tri-grams:

pb3(A) = p(A)

αb3(A) = α(A)

pb3(BA) =
p(AB) p(A)

p(B)

αb3(BA) =
α(AB)α(B)

α(A)

pb3(CBA) =
p(ABC) p(AB) p(A)

p(BC) p(B)

αb3(CBA) =
α(ABC)α(BC)α(C)

α(BC)α(C)

pb3(DCBA) =
p(ABCD) p(ABC) p(AB) p(A)

p(BCD) p(BC) p(B)
· α(ABCD)α(BCD)α(CD)α(D)

αb3(DCBA) =
1

α(ABC)α(BC)α(C)
.

(4.27)

Now, we would continue5:

pb4(DCBA) =
p(ABCD) p(ABC) p(AB) p(A)

p(BCD) p(BC) p(B)

αb4(DCBA) =
α(ABCD)α(BCD)α(CD)α(D)

α(ABC)α(BC)α(C)
.

(4.28)

The general rule for the back-off arcs is then:

αb(wN , wN−1, . . . , w1) =

∏N
i=1 α(wi, . . . , wN)∏N−1

i=1 α(wi, . . . , wN−1)
. (4.29)

Together, equations 4.24 and 4.29 give another formalism to construct the backward
LM probabilities. The computation is slightly more complicated than the simple rule given
in section 4.2, but the resulting probabilities are closer to a normalized (stochastic) distri-
bution, so that it should be possible to skip the weight pushing step.

4.6 Conclusions

We motivated the idea of performing a forwards and backwards search through composed
finite state machines and explained that, in order to construct the backward decoding graph,
we need a reversed language model that has a similar structure and gives similar scores as
the forward LM. We explained the approximation of the LM with weighted finite state
acceptors and showed a constructive solution for an algorithm that results in a backward
LM that assigns exactly the same scores as the forward LM. We paid special attention to
the back-off structure and explained how to deal with missing N-grams. Finally, we showed

5For the highest order, there would be just one arc, multiplying p ·α, e.g. for the four-gram model, there
is an arc from state DCB to state CBA with weight pb(DCBA) · αb(DCBA).

60

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 34 35 36 37 38 39 40 41 42 43

re
al

tim
e

fa
ct

or

word error rate

HCLG forward

HCLG backward push G

HCLG backward text

Figure 4.7: Decoding performance of backward decoding network reported on the Eval2000 data
set with a GMM model and a tri-gram language model. Shown is the relation between word error
rate and real-time-factor. Better performance is indicated by curves closer to the lower left corner.
We compare the performance of the backward decoding network (HCLG backward push G) with the
application of the new weight pushing algorithm to the performance of a tri-gram LM trained on the
reversed training texts (HCLG backward text). For comparison, we also show the performance of
the forward decoding network (HCLG forward). In this case, no weight pushing is necessary.

that the constructive algorithm for the language model reversal can be derived by a series
of steps, where each step guarantees WFSA equivalence, as well as the motivation from
Bayes’ rule with constraints on joint word probabilities.

Up to this point, we are able to construct a backward LM that gives exactly the same
scores for the reversed sentences as the forward LM, and at the same time, has the same size
and a similar structure and is deterministic (except for the ε-arcs). For tasks, for which the
backward LM is used in a pruned search (including LVCSR), it is desirable that it has yet
another property - (locally) stochasticity. For that purpose, we can apply the alternative
weight pushing algorithm as introduced in chapter 3.3.

We tested the algorithms on a bi-gram (see section 3.4) and tri-gram LM and compared
it to the simpler but less exact method of reversing the training texts. Figure 4.7 shows the
results of the decoding graphs from tri-gram LMs. The experimental setting is the same as
in section 3.4. The performance of the backward model with exact reversal, and the one
resulting from training with the reversed training texts is very similar, however in the area
with low word error rates, the performance of the exact model matches the performance of
the forward model more closely. As already pointed out, the performance of the forward
and backward model are not necessarily the same, depending on the task (i.e. the properties
of the language). However, the performances of forward and backward models are not far
from each other. We can speculate, that language evolved in such a way, that humans can
understand it with more ease. Therefore, we would expect that language is optimized to
be easier understandable in the forward time direction, than when reversed in time. This
might explain the advantage of the forward decoding.

61

Chapter 5

Combining forward and backward
search in decoding

We introduce a speed-up technique for weighted finite state transducer (WFST) based
decoders - applicable to both static and dynamic network decoders. The technique is based
on the idea that one decoding pass using a wider beam can be replaced by two decoding
passes with smaller beams, decoding forwards and backwards in time. The advantages of
decoding backwards in time is explained in section 5.1. The approach that is followed in
this thesis is to use forward and backward passes in a decoder that works with a variable
beam width, controlled by the (dis)agreement of the two decoding passes. For the purpose
of backwards decoding, we have to construct a backwards decoding network with certain
properties, explained in section 5.2. The details of LM reversal have already been explained
in chapter 4.

One possible realization of the variable beam width decoding is to run the forward and
backward passes in parallel, and perform an iterative refinement with increased beam width
in those places, where forward and backward decoding disagree. This is explored in section
5.3. Another realization of the basic idea is a technique we call tracked decoding, detailed in
section 5.4. The main idea is that the second decoding pass (backwards) can use detailed
information gathered from the first pass (forwards) to increase the decoding beam in places
where the two passes disagree. The speed-up is achieved by using a narrow beam during
the first pass, as well as in the second pass in places where no disagreement is detected.
Otherwise the beam is increased to include all ‘tracked’ tokens. In section 5.4.4, we give
an experimental validation of our method on a Wall Street Journal corpus (WSJ) decoding
task. We find that our method gives a substantial speed-up of two to three times or even
more, at the “more accurate” operating points of decoding where search errors are small.

5.1 Introduction: combining forward and backward search

The application that we had in mind while writing this thesis was the decoding of the
most probable sequence of words in LVCSR. Given the complexity of the task - the search
graph can contain up to millions of states - the resulting huge search spaces cannot be
explored exhaustively. It is necessary to use heuristic pruning techniques. In this case, we
have to distinguish search errors, which are due to the incomplete exploration of the search
space, from modeling errors, which are due to insufficient training data or due to inaccurate
models.

62

fwd: IS SHERMAN ARE CONIFER AND THREE MOST RECENT CASUALTY REPORT
bwd: IS BADGER A REMARK ON VANCOUVER+S MOST RECENT CASUALTY REPORT
ref: IS THERE A REMARK ON VANCOUVER+S MOST RECENT CASUALTY REPORT

Figure 5.1: Forward and backward speech recognition: Example ASR result on Resource Manage-
ment corpus. Bad signal quality at the start of the utterance confused almost the whole utterance in
forward recognition, while it almost didn’t harm the backwards decoding (only the immediate word
’there’ is mis-recognized). An OOV could cause similar effects.

The most widely used search technique in LVCSR is the Viterbi algorithm with beam
search [Lowerre(1976)]. Beam search is a breadth-first style search, comparing partial paths
of the same length (time-synchronously). At each time only those paths are kept and further
expanded, whose partial path score is better than the current best score extended by a beam
width. The beam width is a trade-off between speed and accuracy.

For many search tasks (e.g. in planning algorithms) for which the search space cannot
be explored exhaustively, it is known, that if the average branching factor of the backward
search graph is smaller than that of the forward graph, it is better to perform the search
on the backward graph. For example [Tang and Cristo(2008)] showed, that the amount of
errors in automatic speech recognition of street-city-state tuples (as used e.g. in the US)
can be reduced when performing the search backwards in time, since this gives a lower
‘dynamic task complexity’ [Tang and Cristo(2008)]. Since forward search uses the ‘history’
and backward search uses the ‘future’, there is hope that the search errors of searching
forwards and backwards are mutually independent. A path that is not promising (low
scores) at the beginning is likely to be pruned by forward search, even if it has a high
overall score towards the end. It has a chance not to be pruned by backwards search,
because looking backwards this path has high scores at the beginning (which was the end
in forward search). Figure 5.1 shows a recognition result obtained in an early stage of our
experiments that demonstrates this situation. Figure 5.2 illustrates the potential of forward
and backward search.

In addition to beam search, another strategy to deal with the complexity of the task
is to use multiple decoding passes, which has been a common practice already for a long
time (e.g. [Murveit et al.(1993)]). Usually inexpensive and approximate models are used in
a first pass to generate an intermediate representation, which is then ‘re-scored’ using more
complex models. As intermediate representation, among others, lists of N-best recognition
results or lattices of possible hypothesis sequences are used.

Not only different types of models can be used in the successive decoding passes, but
also different approaches to search. In [Austin et al.(1991)], the idea of performing the
second pass backwards in time was introduced. As an intermediate representation, they
use the active words for each time frame and the corresponding word end scores, obtained
from a Viterbi beam search in the forward pass using approximate and faster models. The
active words per frame are used to limit the word expansion in the backwards search, which
is also a Viterbi search, and the word end scores serve as a good estimate of the path cost
of the remaining speech. Thus the second pass usually takes only a fraction of the time of
the first pass, so that more complex algorithms or models can be used. Alternatively, the
forward pass can be sped up by using approximate models [Nguyen et al.(1993)]. A more
recent re-discovery of the same idea is [Lee et al.(1998)] and [Lee and Kawahara(2009)],
which use a word trellis as intermediate representation and stack decoding (A-star search)
in the backward pass. Also [Cardinal et al.(2013)] use a uni-gram Viterbi backward pass,

63

0 10 20 30 40 Time / State

S
ta

te ���������	�

����	�
��	�

����	�
���	�

��

��

���
������

�	
������

���������

�����������

Fig. 1. Forward search with tight beam finds the wrong word.

S
ta

te

least one is wrong.

0 10 20 30 40 Time / State

S
ta

te

���������	�
�

������������

��

��

����������

���������

����������

������
�����

������
�	�
�

Fig. 2 The backward search (coincidentally) finds the correct

Fig. 4

Figure 5.2: Illustration of forward and backward search [Nolden et al.(2013)]. In the background,
acoustic likelihoods for each state are shown as they evolve over time. Bright colors indicate higher
probability. In the forward search (upper part), the low-score ’valley’ around frame 7/8 causes the
correct path (green) to fall out of the beam (dotted). The red path is chosen, but later (frames 20-30)
it turns out to have poor scores. Even if it has better overall scores, the correct path can not be
recovered, since it was already pruned. In the backward search (lower part), the situation is different
- starting from the end, the lower path looks much more promising (frames 30-35) and the upper
path falls out of the beam. The low likelihoods around frame 7/8 do not distract the recognizer
this time, so the backward search does find the correct path. The illustration explains that, to a
certain extent, search errors of forward and backward search are independent. Of course, with a
wide-enough beam, also the forward search would find the overall best path.

which is then used as a heuristic in A-star forward decoding with the full language model.
Opposed to these works, this work (first published in [Hannemann et al.(2013)]) focuses

on using forward and backward passes that are balanced or symmetric, i.e. on using models
that are similarly powerful in both passes. This has the advantage that the hypotheses
of both passes can be used for comparison or combination. The idea of symmetric passes
was already used by [Li et al.(2009)] and [Abo-Gannemhy et al.(2010)] (see also [Tang
and Cristo(2008)]). They combine the outputs of the symmetric forward and backward
passes based on LM scores or confidence measures (ROVER technique1). Also [Jouvet and

1The ROVER [Fiscus(1997)] procedure aligns the different hypotheses and relies on a voting procedure
to determine the best candidate word sequence.

64

Fohr(2013a)] and [Jouvet and Fohr(2013b)] use the framework of [Lee and Kawahara(2009)]
to ROVER two symmetric passes, and they show that the combination of forward and
backward passes is especially effective in improving the performance. The follow-up work
[Jouvet and Fohr(2014)] shows, that the comparison of hypotheses from the forward and
backward passes is an effective confidence measure for selecting automatically transcribed
data for semi-supervised LVCSR training.

The idea of our work [Hannemann et al.(2013)] is to speed up the decoding by using the
(dis)agreement of the two symmetric decoding passes - decoding forwards and backwards in
time. In beam search, a constant beam width is usually applied to the whole test set. We
however use a decoder with a variable beam width, that is only increased in areas, where
the two decoding passes disagree. There are two ways to implement this idea: Inspired by
[Hannemann et al.(2013)], the authors of [Nolden et al.(2013)] showed that the comparison
of the hypotheses of two symmetric forward and backward passes can be used in incremental
decoding, where the search beam is extended in areas, where the two passes don’t agree in
the first run. As a consequence, the system uses a variable beam width and is dynamically
focusing only on the parts that are difficult. Similar to all symmetric techniques mentioned
so far, they use two independent forward and backward passes, which has the advantage
that the two passes can run in parallel (section 5.3).

In analogy to the non-symmetric techniques, in this work we want to use the infor-
mation gathered in the first pass (e.g. forwards) to guide the search of the second pass
(e.g. backwards), as shown in [Hannemann et al.(2013)]. In this approach, the beam width
can be adjusted for every frame, so that a more careful search (increased beam) is only
carried out in areas where the two passes disagree. The speed-up is achieved by using a
narrow beam during the forward pass, and in the backward pass in places where no dis-
agreement is detected (section 5.4). The application of the presented methods assumes that
a segmentation or an algorithm for end point detection is given.

5.2 Construction of a reversed decoding graph

The construction of decoding graphs with Kaldi was described in section 2.4.1. If we want
to perform the search in two symmetric forward and backward decoding passes, we need
two corresponding decoding graphs - HCLGfwd and HCLGbwd . Both models should be
equally powerful, i.e. have roughly the same accuracy and run-time requirements, and have
similar structure, size and level of determinism to have optimal pruning behavior. We
also want to compare the probabilities (or scores) of the outputs from the forward and
backward passes (e.g. to estimate the optimal beam width). That means, we want two
models HCLGfwd and HCLGbwd , that ideally produce the same overall score for the same
hypothesis in both the forward and the backward passes. Due to the pruned search, both
passes can result in different search errors (due to the different dynamic task complexity
forwards and backwards). However, both models should not make different modeling errors,
hence they should assign the same scores to the same hypotheses. We also want to be able
to compare the scores of partial results (paths). Therefore, also the model structure (the
distribution of weights along paths) should be similar in the forward and backward passes.

Given a forward graph HCLGfwd , the task is to obtain a backward graph HCLGbwd

that will assign exactly the same overall score to the same utterance and will fulfill all
the above stated requirements. Because our method treats disagreement between the best
paths found by the two passes as a search error, we want the backward decoding graph to
be equivalent to the reverse of the forward one.

65

The trivial solution to apply WFST reversal to HCLGfwd is not sufficient, since the
resulting graph would not have a similar level of determinism and distribution of weights as
the forward graph, i.e. it would show sub-optimal behavior when used in a pruned search.
To make the resulting WFST determinizable, we would have to introduce disambiguation
symbols [Mohri et al.(2008)] at different places than in the forward graph. As we already
explained in section 4.2, especially the (reversed) LM component would introduce a great
degree of local ambiguity.

Instead, the solution is to separately construct the time-reversed versions of H, C,
L and G, and then to build a composed model HCLGbwd in an analogous way as the
forward graph was constructed (section 2.4.1). Since the resulting HCLGbwd is a cyclic
transducer, the conventional weight pushing algorithm cannot be used in case the total
weight is greater than one, as was explained in 3.1. We can resort to the alternative weight
pushing introduced in section 3.3.

The time-reversed versions of H, C, L and G are again not simply the WFST reverses
of the forward ones, but must be separately constructed. Depending on the task, the
reversal of each component is of different complexity. The hardest input to reverse was
the ARPA-format LM acceptor G. We have already given an algorithm for creating an
equivalent but “time-reversed” LM in chapter 4. The reversal of H, C and L is rather
trivial [Hannemann et al.(2013)] and is described in the next section. We made the code
for all methods described here available as part of the Kaldi toolkit.

5.2.1 Reversing L, C and H

The construction of the reversed pronunciation lexicon transducer Lbwd (phones to words)
is simple: the individual phone sequences (pronunciations) are reversed, and the disam-
biguation symbols [Mohri(1997)] (figure 2.10) are introduced after that. The disambigua-
tion symbols now distinguish suffixes (ambiguous sequences at word endings), while in the
forward case they distinguish prefixes. Figure 5.3 shows a reversed toy lexicon and the
resulting transducer.

The context-dependency transducer Cbwd (figure 5.4) is constructed in the usual way,
and looks identical to Cfwd. After the composition of Lfwd ◦ Gbwd, the phonetic context
window (which are the input symbols for C) is reversed in time (a-b-c to c-b-a). Therefore,
to look-up the corresponding models (PDFs) in the phonetic decision tree, we have to
reverse the phonetic context. Then, we look-up using the phoneme context window and the
HMM state.

The HMM structure transducer Hbwd, is constructed in the same way as Hfwd, except
for the reversed phonetic context. The individual (three-state) HMMs for each phone
are constructed separately and the relevant PDFs are looked-up from the decision tree.
Then, the phone HMMs must be reversed and weight-pushed in the log-semi-ring (including
epsilon removal) to make the time-reversed transition probabilities of each state stochastic.
As seen in figure 5.5, for the left-to-right HMMs, there is a simpler way to determine
the transition probabilities of the reversed model: We can assign them in the reversed
order. This observation is even true for more complicated symmetric structures. After
reversing the phone HMMs individually, we construct the composite Ha transducer, which
contains them in self-loops (example in figure 5.6). Due to the reversal of individual HMMs,
the ordering of the self-loops and forward transitions changes, which doesn’t matter for
decoding, but needs to be considered when mapping resulting alignments at transition
level.

66

A ax #1
ABERDEEN n iy d er b ae
ABOARD dd r ao b ax
ABOVE v ah b ax
ADD dd ae #1
BOARD dd r ao b #1

0

1

<eps>:<eps>/0.5

2

sil:<eps>/0.5

sil:!SIL/0.5

3

sil:!SIL/0.5

4
ax:A

5n:ABERDEEN

6dd:ABOARD

7
v:ABOVE

8

dd:ADD

#4:<eps>

sil:<eps>

#1:<eps>/0.5 #1:<eps>/0.5

9iy:<eps>

13
r:<eps>

16ah:<eps>

18
ae:<eps>

10
d:<eps>

14ao:<eps>

17
b:<eps>

#1:<eps>/0.5

#1:<eps>/0.5

11
er:<eps>

12
b:<eps>

ae:<eps>/0.5

ae:<eps>/0.5

15
b:<eps>

ax:<eps>/0.5

ax:<eps>/0.5

ax:<eps>/0.5

ax:<eps>/0.5

Figure 5.3: Reversing lexicon transducer L. The phone sequences are reversed (upper part), and
new disambiguation symbols (#1) are inserted afterwards. Then, the lexicon transducer is built in
the same way as in the forward network (lower part).

eps-eps eps-a
#-1/a

a-b
eps-a-b/b

b-c
a-b-c/c

c-d
b-c-d/d

d/eps
c-d-eps/$

Figure 5.4: One path of the context transducer C. The deterministic version [Mohri et al.(2008)]
has a delay of two input symbols until the tri-phone-symbol is produced. The C transducer looks
identically in forward and backward networks.

0 1
0:0/1

1:1/0.61105

2
1:1/0.38895

2:2/0.44853

3
2:2/0.55147

3:3/0.524

4
3:3/0.476

0 1
3/1

3/0.524

2
2/0.476

2/0.44853

3
1/0.55147

1/0.61105

4/1
0/0.38895

Figure 5.5: Reversal of HMM structure for phoneme HMM: Top: forward HMM. We apply
WFST reversal, weight pushing in the log-semi-ring and epsilon removal to obtain the backward
HMM (bottom). We observe, that for left-to-right HMMs, the transition probabilities are exactly
assigned in reverse order.

67

0

12:aa/-2.3842e-07

2
8:ae

3

0:sil

4301:#0

5
4:<eps>

710:<eps>/1.1921e-07

9

284:<eps>/0.11113

10285:<eps>/2.9449

11

286:<eps>/2.9449

0:<eps>

6

6:<eps>/-5.9605e-08

812:<eps>/-1.1921e-07

288:<eps>/2.6975

289:<eps>/2.6975

12290:<eps>/0.14469

291:<eps>/0.55411

293:<eps>/1.5476

294:<eps>/1.5476

295:<eps>/0.17433

296:<eps>/2.5934
298:<eps>/2.4625

0:<eps>

0:<eps>

13

300:<eps>

0:<eps>

0

16:aa/-2.9802e-07

2

12:ae

3
300:sil/0.0014797

4
301:#0

6
4:<eps>

8
10:<eps>

10
290:<eps>/0.042848

11
294:<eps>/3.521

12

298:<eps>/4.3156

0:<eps>

5

2:<eps>

78:<eps>

291:<eps>/2.6294

295:<eps>/2.1292

9284:<eps>/0.21149

288:<eps>/0.62223 296:<eps>/2.473

285:<eps>/0.97005

289:<eps>/0.74257

293:<eps>/1.6679

286:<eps>/1.0904

0:<eps>

0:<eps>

0:<eps>

Figure 5.6: Reversing the HMM transducer Ha - upper part: forwards transducer, lower part:
reversed backwards transducer. Here, we show the mono-phone case, without self-loops. For
each transducer, we show two mono-phone models (aa, ae) with three-state forward HMMs (Kaldi
transition-ids 2,4,6 and 8,10,12; the odd numbers are for self-loops - not shown) and the silence
model (transition ids 284-300, almost ergodic connections between states). The mono-phone mod-
els (aa,ae,silence) are reversed individually (including epsilon removal and weight pushing in the
log-semi-ring) before composing Ha.

5.3 Incremental forward and backward search

5.3.1 Finding the optimal operating point

So far, we have explained how to construct a static WFST based recognition network for
backward decoding. However, the approach to the construction of the backward decod-
ing network described in this chapter is not limited to static networks. Already [Nolden
et al.(2013)] has applied the reversal of the components described here in a dynamic network
decoder. Many recent dynamic network decoders are basically compiling a WFST based
recognition network, but leaving out one component, which is then composed dynamically.
For example, [Soltau and Saon(2009)] use a uni-gram LM (more precisely LM look-up
scores) to compile a WFST based recognition network and then apply the higher-order
N-gram LM dynamically. Since in our approach, all components are reversed individually,

68

no change is necessary when dynamically composing the components.
We want to replace one decoding pass with a wide beam by a forward and backward

pass with narrow beams. Thus, we must find the right operating point for the forward and
backward passes. If badly chosen, the two passes will be two times slower than the single
pass. The beam should be small enough to allow for substantial speed-ups, but on the other
hand, the beam must be big enough to allow for a reasonable comparison of the forward
and backward paths. For significant portions of the decoding, we would like to find a good
path with one of the two (forward or backward) passes. If both, forward and backward
decoding, are completely off, we have to increase the beam everywhere, and there is no
advantage over the single pass approach.

Usually a decoder doesn’t have only a single parameter (beam width) to tune [Low-
erre(1976)], but a series of parameters, which are not independent of each other. The most
important parameter is the global beam width, given as a log-constant, indicating how much
the likelihood of partial paths can be worse than the current best partial path before the
partial path gets pruned out. This is called acoustic pruning. Additionally, most decoders
apply so called histogram pruning [Steinbiss et al.(1994)]. The idea is to limit the number
of hypotheses being generated at a certain point in time. This is an upper limit, which is
applied mainly in portions of the speech signal with high uncertainty. If the best partial
hypothesis has a low score, too many other bad hypotheses are kept. In this case, too
much computational effort is spent with little chance of actually finding the correct path.
Thus, by limiting the maximum active tokens, the computation can be significantly reduced
without much affecting the word error rate. We can select a tightened beam limit based on
a histogram over state hypothesis scores, therefore the name histogram pruning. However,
for our purposes it is sufficient to think of the tokens as being ranked. To effectively limit
the number of tokens to the given upper limit (called “max-tokens”), we pick the score of
the token at rank “max-tokens”, and use it as a tightened beam threshold, which we call
the max-tokens beam. As soon as the number of tokens exceeds the limit, this max-tokens
beam width is used for the decoding.

Depending on the architecture, other tuning parameters might be applied, too. [Nolden
et al.(2012)] gives an overview of pruning techniques. Many decoders predict the max-tokens
beam based on the max-tokens beam used in the last frame, to avoid generating tokens,
which will be pruned anyway. [van Hamme and van Aelten(1996)] formulate this approach
as an adaptive controller. Dynamic decoders usually apply tighter beams on tokens at
word ends [Steinbiss et al.(1994)]. If the decoder is implemented with a re-entrant tree
and token passing, where lists of tokens are attached to a state of the search network, we
can impose a limit on the maximum number of tokens assigned to each state (called LM
state pruning). When dynamically composing the recognition network with higher-order
language models, special techniques to deal with LM scores might be effective. [Agarwal
et al.(2014)] describes the use of a language model slack2 on top of the beam to ‘smear’ the
effect of the LM score over several frames. Also, parameters like the number of N-best paths
being generated or the width of the generated lattice [Povey et al.(2012)] have a significant
effect on the decoding speed. In our case, we use lattices as intermediate representation
and we try to find a balance between a sufficient depth to contain the relevant hypotheses
and a minimum impact on the real-time factor.

2The word is used in a similar way as for the slack variables used in support vector machines.

69

5.3.2 Tuning the beam parameters

We ran initial experiments to determine the effect of the two most important parameters:
the beam width and the maximum number of active tokens applied in the histogram prun-
ing. These two parameters are used in almost all types of decoders. We ran the experiment
with the Microsoft Argon decoder (documented in [Agarwal et al.(2014)], Version 2016-02-
17). It is a highly optimized dynamic network decoder, developed by Microsoft Research
(mainly Geoffrey Zweig and Jasha Droppo). We report the results on the HUB5 2000
English Evaluation Speech database from LDC (“Eval 2000”). However, the word error
rates reported here are not computed with the official scoring tools (NIST scoring toolkit
SCTK), thus they are about 3% worse than when using this tool. The acoustic model is
a deep neural network trained on a subset of Switchboard, using 1500 context-dependent
tied states. For decoding, we use a tri-gram language model (7.2 million entries) that is
dynamically composed.

Figure 5.7 summarizes the relation between performance (word error rate - WER) and
speed (real-time-factor - RTF) on many different operating points (defined by a setting
of beam width and maximum active tokens - called max-tokens). We observe that both
parameters depend on each other in a non-trivial way. Therefore, we would have to test
all possible combinations of parameters and then determine the optimal WER and the
corresponding tuning parameters for each RTF. The resulting curve is sometimes called
Pareto-optimal. For the forward and backward passes, we want to achieve the most accurate
decoding using only a fraction of the decoding time of the single pass. Thus, starting from
a point on the Pareto-optimal curve with low WER (and high RTF), we would move along
the optimal curve towards lower RTF.

 37

 38

 39

 40

 41

 42

 43

 44

 0.1 0.15 0.2 0.25 0.3 0.35

w
or

d
er

ro
r r

at
e

realtime factor

beam 9

beam 10

beam 11

beam 14

beam 30

max-tokens 14000

max-tokens 30000

Figure 5.7: Finding the optimal operating point on the real-time-factor and word error rate
curve, while tuning the maximum number of active tokens (max-tokens) and beam width (beam).
The settings of beam width and max-tokens are grouped by lines that leave one of the parameters fixed
while varying the other. All curves ’beam’ leave the beam width constant while running experiments
with different values for max-tokens. For clarity, we don’t show the curves for beam width 12,13,15
which follow a similar trend. The curves ’max-tokens’ (black) measure different beam widths for a
fixed number of max-tokens.

70

One simplified strategy that is used most often is to treat the beam width as the main
parameter that is varied, and to use a high number of max-tokens which is only effective in
areas of high confusion. From figure 5.7, it is evident (black lines) that this strategy is not
optimal in our case. For the lower RTFs, this setting is sub-optimal, since too many tokens
are created. The decoder is in the optimal operating point, when only those tokens are
generated, that actually have a chance to become the best path. In other words, in areas of
high confusion (e.g. due to noisy speech), many tokens are generated, but most probably,
these portions of speech will result in errors anyway. Therefore, the max-tokens beam was
introduced. We should set it as low as possible, i.e. to the value, from where the WER
starts increasing. From this, it is clear, that when decreasing the acoustic beam to tune
to a lower RTF (and unfortunately higher WER), we should also decrease the max-tokens
beam. For this reason, the optimal setting of max-tokens is to some extent proportional to
the the average number of active tokens that we get, if we decode with a certain acoustic
beam.

For the highly optimized token-passing decoder used here, we observed that the optimal
operating point is when we set max-tokens in such a way, that for more than half of the
frames, the resulting max-tokens beam is smaller than the acoustic beam. That means, max-
tokens (the number of active tokens) is the dominant parameter determining the amount
of computation that needs to be done for each frame. In the lower part of figure 5.8, we
observe that the optimal operating point (beam 13, max-tokens 14000) is actually most of
the time dominated by the max-tokens (i.e. the max-tokens beam is smaller than the beam
13 - gray line).

If we assume that max-tokens is the main factor determining the computation time,
another simple strategy would be to keep the beam width fixed and to change only the
max-tokens. From figure 5.7, we see that as soon as the beam is wide enough (around
13-14) this is (almost) the optimal solution for a wide range of RTFs. Only for the higher
WER (above 38-39%), this strategy is slightly sub-optimal. We would have to decrease the
beam width as well. What we observe is that along the Pareto-optimal curve, we have to
proportionally increase both the beam width and the max-tokens. As a first approximation,
it may be sufficient to choose a reasonable operating point and keep one parameter fixed
while varying the other.

The Argon decoder uses the idea of [van Hamme and van Aelten(1996)], who propose
an adaptive controller for steering the beam width for each frame in such a way, that the
resulting number of tokens is approximately equal to the max-tokens parameter. Thus, for
each frame a different (adaptive) beam is used, which is increased if less than max-tokens
have been generated, and decreased, if too many tokens have been generated. The upper
limit is the acoustic beam width.

Since in the optimal operating point, the max-tokens beam is the limiting parameter,
it is clear that we will not improve the WER by increasing the acoustic beam width while
keeping max-tokens fixed. However, what we observed when increasing the beam much
further is that the WER actually increased (figure 5.7, red line, beam 30). This (perhaps)
surprising non-linear effect is a particularity of the decoder, that most probably results from
the adaptive beam [van Hamme and van Aelten(1996)]. In the lower part of figure 5.8, we
see that the resulting max-tokens beam at acoustic beam 30 is most of the time lower than
the max-tokens beam at acoustic beam 13. The dynamically adapted beam (steering to
follow the max-tokens beam) is sometimes narrower than necessary (i.e. under-generates).

71

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250

to
ke

n
s

frame

before max-tokens beam 13 after max-tokens beam 13 before max-tokens beam 30

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250

m
ax

-t
ok

en
s

b
ea

m

frame

beam 13 beam 30

Figure 5.8: Frame-wise scores for three files from the Eval2000 test set. Utterance boundaries
are around frame 400 and 880. Compared are two different acoustic beam widths - 13 (black), which
is about optimal for the RTF/WER and 30 (red), which is over-shooting. Upper part: Numbers
of active tokens before and after the application of the histogram pruning (‘after max-tokens 30’ is
not shown, as it looks very similar to ‘after max-tokens 13’). Max-tokens is set to 14000 in both
cases, which is the optimal setting for beam 13. Lower part: max-tokens beam (after applying the
max-tokens limit).

5.3.3 Parallel incremental forward and backward search

As introduced in section 2.6, the parallelization of the decoding of an utterance into chunks
seems to be an interesting idea. According to [Maleki et al.(2014)], it is possible to split
an utterance at places, where the rank of all-pairs-shortest-path matrix will converge to
one (singular matrix). In other words, this happens at frames, where just one token will
survive. An open question is whether it is possible to automatically detect such frames in
advance, in order to find the optimal segmentation of a given utterance into chunks. At the
points with low rank, i.e. with few remaining active states, a small beam should be sufficient
to decode them. In other words, at those points, we would expect the decoding results of
the forward and backward search to agree, even if both run with a small beam. Therefore,
a good segmentation for the parallelization of the decoding is to split the utterance at
points, where forward and backward search agree. These thoughts lead to an approach to
parallelization, which is described here.

The idea of performing a symmetric forward and backward search as introduced in
section 5.1, first published in [Hannemann et al.(2013)], was used by [Nolden et al.(2013)] to
implement an incremental high-level decoding algorithm, that can tune the pruning beam
for individual words in an unsupervised way. As opposed to [Hannemann et al.(2013)],
where the results of the first pass are integrated into the second decoding pass, both passes,
forward and backward search, are run independently and symmetrically.

72

The incremental decoding, as described in [Nolden et al.(2013)] first runs a forward and
backward decoding on the whole utterance, but with a small beam. Then the decoded
words are aligned to each other. Words are considered matching, if they have the same
word identity as well as a matching time boundary. All non-matching words are grouped
into continuous segments which are extended by one matching word to the left and to
the right. The assumption is that the acoustic alignment of words further apart than one
matching word will have no effect on the alignment and acoustic score of the current word
to be decoded. The identified segments of non-matching words are then decoded with an
increased beam and the results are integrated into the results of the first pass. This process
is iterated until the whole utterance matches. This way, the beam for each word is tuned to
the minimum necessary beam. As pointed out by [Nolden et al.(2013)], for the incremental
decoding of partial utterances, the left and right LM contexts of the segment need to be
correctly initialized in the decoding. We also need to remember the left and right acoustic
cross-word contexts, which can be achieved by remembering the states of the recognition
network at the segment boundaries in the first pass – these can then serve as initial and
final states for the second pass decoding.

We re-implemented the incremental forward-backward decoding in the Microsoft Argon
decoder (documented in [Agarwal et al.(2014)], Version 2016-02-17), and show an additional
analysis focussing on the parallelization of the approach. Since the forward and backward
searches are run independently, this approach has the advantage, that forward and back-
ward search can be run in parallel. Figure 5.9 illustrates a parallel implementation of the
incremental decoding. Due to the high-level nature of the incremental forward-backward
decoding, even each mis-matching segment on its own can be decoded in parallel using the
approaches to parallelization described in section 2.6.

In figure 5.10, we show an analysis of the incremental forward-backward decoding on the
Eval2000 database. We ran the experiment with the Microsoft Argon decoder (documented
in [Agarwal et al.(2014)], Version 2016-02-17) and used the setup described in the last
section. We observe, that the overall speed-up of the technique will be determined by the
setup of the first pass (forward and backward) decoding. We choose an operating point
from the Pareto-optimal curve in figure 5.7, that is several times faster than a well-tuned
baseline (tuned for a trade-off RTF/WER, around RTF 0.3-0.5), but still in the area where
the results of forward and backward decoding are partially matching. Using such a setting,
we observe that after the first parallel forward/backward pass, in average approximately
50% of the complete utterances agree and thus the decoding can be finished.

For the utterances that are partially mis-matching, we find in average around 1.5 mis-
matching segments (’islands’) per file. That means we can achieve a speed-up of 1.5 on
these utterances, and only a part of the utterance actually needs to be decoded again.
Therefore, the total amount of time spent in the second pass will be much smaller than
in the first pass, even if it runs at a higher RTF (increased beam). Similarly, the amount
of time spent in further iterations will quickly decrease. One could reduce the scheme to
a two-pass decoding and directly set the beam to the single-pass beam in the second pass
(parallel forward/backward), which would still result in a significant overall speed-up. The
acoustic model scores in the parallel forward/backward decoding can be shared, as well
as they can be shared across the iterations. The amount of time spent in calculating the
acoustic scores can be significant, however, for the particular acoustic model used in the
experiments (a DNN implemented on a GPU) the computation of scores consumes only
ca. 20% of the time, and this could even be further reduced by further parallelization.

73

Figure 5.9: Parallel implementation of incremental forward backward decoding [Nolden
et al.(2013)]. First (upper part), two cores run a quick initial forward and backward decoding
of the whole utterance with a narrow beam in parallel, then (center) the results are aligned and mis-
matching regions (‘islands’) are identified (indicated in red). If there are no mis-matching regions,
the decoding is done. Else (lower part), in a second pass, the identified mis-matching segments are
decoded in parallel with a wider beam. In this example, there are two ‘islands’, both of them are
decoded forwards and backwards, which means four cores can be used in parallel. The results of the
decoded segments are integrated into the results of decoding the whole utterance, and this process is
iterated until the results for the whole utterance match.

5.4 Tracked decoding

After using independent and parallel forward/backward decoding passes in the last section,
in this section, we want to use the information gathered in the first pass (e.g. forwards) to
guide the search of the second pass (e.g. backwards). In this approach, the beam width can
be adjusted for every frame, so that a more careful search is only carried out in the areas
where the two passes disagree.

While analyzing the pruning behavior of the Kaldi decoder on the Wall Street Journal
(WSJ) test set, we found that, except for a few points in time, for most of the speech frames
a narrow beam is sufficient. We analyze the pruning behavior by comparing the score of
the current best active token at each frame3 and the score of the token that will ultimately
result in the best overall path4. Figure 5.11 explains the effect of pruning with the help of
one example utterance, and figure 5.12 quantitatively analyzes the score differences between

3We think of a token as a record of a particular state in HCLG that is active on a particular frame and
has the accumulated score of the partial path explored so far.

4To determine this, we run a decoding using a wide beam, back-track the best path and compute its
score at each frame.

74

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

u
tt

e
ra

n
ce

s/
se

g
m

e
n
ts

RTF (different beam settings along Pareto curve)

different words
non-matching islands

different scores

Figure 5.10: The first iteration of the incremental forward-backward decoding on the Eval2000
test set. The test set has 1831 files, each is decoded with the forward and the backward decoder
independently. Shown are the number of utterances that have either mis-matching total utterance
scores (’different scores’) or differ in the decoded words (’different words’). We see that requiring
the exact same score is a stricter criterion than requiring that the same sequence of words are
decoded. Not shown, but very closely above the line ’different scores’ is also the line for ’differing
state sequences’, which is an even stricter criterion. To evaluate these criteria, we selected a set of
operating points approximating the Pareto-optimal curve from figure 5.7 (resulting in the RTF along
the x-axis). As a baseline, we assume that the single pass decoding will run at approximately 0.3-0.5
RTF, where we start approaching the lowest WER (37.3%). Therefore, we show operating points,
which are two to five times faster than that (corresponds to WER 38.3%-40.3%) - this constitutes
the speed-up we can expect from the technique (forward and backward decoding run in parallel). As
seen from figure 5.7, going for even lower RTF would result in much worse WER. The number of
non-matching stretches of words (’islands’, shown as red line) is related to the number of utterances
with different words (black line). The ratio is between one and two and slightly increasing towards
the lower RTF.

the current best and the final best path. Most of the time this difference is much smaller
than the typical beam width between 10 and 15. This suggests that it would be beneficial
to be able to identify those problematic areas (frames) and to only use the wide beam in
these areas, while otherwise using a small beam. We aim to use the decoding results of an
initial forward pass to identify the problematic frames on the backward pass.

Based on this motivation, our approach towards decoding is to do a first pass (which
happens to be a forward pass) with a narrow beam, and then to do a second pass in the
opposite direction, also with a narrow beam, but using knowledge obtained during the
first pass. The first pass outputs a lattice with state-level alignments [Povey et al.(2012)].
Note that this lattice does not contain all partial paths explored in the first pass, but only
those word-sequences that are within a specified beam of the best word-sequence (posterior
pruning with lattice beam). We want to treat the paths in this lattice in a special way in
the second decoding. That is,

1. We want to avoid pruning out paths that appeared in the first-pass lattice.
2. On frames where we would otherwise have pruned out those paths, we want to increase

the pruning beam.

75

-15

-10

-5

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400 450 500

sc
o
re

frame

partial diff
best diff 11
best diff 19

Figure 5.11: Beam search: example utterance from the WSJ Nov’92 test set. We analyze partial
scores of forward decoding for two different beam widths (beam 11.0 and 19.0). Looking at the score
of the current best token for each frame, the absolute differences between beam 11.0 and beam 19.0
are small compared to the overall path score. Therefore, we show relative score differences:
“partial diff” (yellow): the score difference of current best tokens, decoding with beam 19.0 and 11.0
“best diff 11” (green): the difference of the current best token (beam 11.0) and the partial score of
the final best path (beam 11.0) at same frame - i.e. which is only known after finishing the decoding.
“best diff 19” (magenta): the difference of the current best token (beam 11.0) and the partial score
of the final best path at beam 19.0.
We see (“partial diff”), that beginning around frame 325, the search with beam 19.0 found a better
path, so the difference becomes negative. It is also observable (“best diff 11”), that most of the time,
the current best partial score is also the score of the (future) best path, which means a small beam
would be sufficient. Only at a few places, the path that is going to win, is off for a short time.
Around frame 290, we miss the final winning path (“best diff 19”), if the beam is too small. Not
immediately, but only after frame 325, this results in better overall scores (“best diff 19” vs. “best
diff 11”).

5.4.1 Tracking tokens with an arc-lattice

During decoding, we need to be able to identify which active tokens in our second-pass
decoder correspond to paths in the first-pass lattice. One possible way to do this would
be to designate a set of context-dependent HMM states (PDF-ids) on each frame that are
“special” because they appear in the first pass lattices. However, we did not pursue this
because it could lead to too many irrelevant tokens being kept in the beam. Instead, we
chose to identify those paths through the second-pass decoding graph that correspond to
paths in the first-pass lattice. We implemented this as a separate step, outside of the decoder
code. It takes the standard output lattice from the first pass, and processes it into something
we call an arc-lattice, whose symbols identify arcs (see below) in our second-pass decoding

76

0 2 4 6 8 10 12
0

2

4

6

8

10
x 104

Figure 5.12: Histogram of score differences: Shown are the scores of the current best partial
path at each frame minus the partial score of the path that is going to be the final best path, not
necessarily the correct one (decode beam 13.0, WSJ Nov’92 test set at WER 10.8%).

graph HCLG2nd. We explain the arc-lattice generation process below (Section 5.4.3).
The second-pass decoder, which we will refer to as our tracking decoder, is a lattice-

generating decoder that takes an extra input5, namely the arc-lattices for each utterance.
Let a token be a record of a particular state in HCLG that is active on a particular frame.
Our tracking decoder gives tokens an extra, Boolean property that identifies whether they
are tracked or not. A tracked token is one that corresponds to a state in the arc-lattice.
Tracked tokens are never pruned. Tracked tokens are also used to determine the pruning
beam used on each frame.

5.4.2 Beam-width policy

For the second-pass decoding with the tracking decoder, we use the tracked tokens to
determine the beam width to use for each frame. Here we describe the policy we use to
set the beam width. The decoder has three configurable values that specify how it sets the
frame-specific beam: the beam, the max-beam and the extra-beam. On a particular frame,
let the score difference between the highest-score token and the lowest-score tracked token
be D. Then the beam width on that frame is given by:

max(beam,min(max-beam, D + extra-beam)).

Figure 5.13 illustrates the beam width policy. Unless otherwise specified we let extra-beam
be zero and max-beam be large6; we try various values of the beam for our experiments
here7.

5Usually, inputs are the decoding graph HCLG, the acoustic model and the acoustic features.
6This is system-specific. We e.g. selected 100 for this task in Kaldi, although this may be too large.
7For a few utterances, the decoding does not terminate in a final state, when decoding with a small

beam. This poses a problem for the reversal and the creation of the arc-lattice. In these cases, we used an
increased final-beam to not prune away the path that leads to the final state.

77

(a) single pass backwards

least one is wrong.

0 10 20 30 40 Time / State

S
ta

te

���������	�
�

������������

��

��

����������

���������

����������

������
�����

������
�	�
�

Fig. 2 The backward search (coincidentally) finds the correct

Fig. 4

(b) single pass forwards
0 10 20 30 40 Time / State

S
ta

te ���������	�

����	�
��	�

����	�
���	�

��

��

���
������

�	
������

���������

�����������

Fig. 1. Forward search with tight beam finds the wrong word.

S
ta

te

(c) 1st backwards, 2nd forwards

trates such a search error based on a decoder which can only
recognize two alternative single-words. The actual search
space in LVCSR is cyclic and contains tens of thousands of

on,
the decoder follows the path of lowest resistance based on its
tight beam, which leads through the wrong upper word, while
the globally best path leads through the correct lower word,

����	�
��	�

����	�
���	�

���
������

0 10 20 30 40 Time / State

S
ta

te

����������	

�����������

��

��

����������

���������

����������

������	�����

������	���	

Fig. 3. With a wider beam, the forward search finds the cor-

Figure 5.13: Tracked decoding example illustrating the beam width policy. The illustration of
forward and backward search is repeated from figure 5.2 [Nolden et al.(2013)].
a) Single pass backward decoding in reversed time direction; shows the accumulated scores of the
best path. Towards the left, the partial acoustic scores are worse, thus the accumulated log-scores
increase faster (solid line: score of best path, dashed: plus beam width).
b) Single pass forward decoding. At the beginning good acoustic scores, but towards the end the
partial log-scores increase faster. The overall path is worse due to pruning.
c) Backward-forward tracked decoding: Paths in the first pass lattice (red) are time-reversed and
tracked. Since the scores of the tracked tokens are farther off than the initial 2nd pass beam, the beam
is increased to include all tracked tokens, plus an extra beam. If the beam exceeds the max-beam, it
is not further increased, but all tracked tokens are still kept.

78

Regardless of the beam-width, we never prune away the tracked tokens. Note that
even if we keep the beam equal to the single pass beam during the tracked second pass, our
method is doing more than simply choosing the best path from two (forward and backward)
passes, because for paths found by the first-pass search, it is possible to “recombine” with
paths that were found by the second-pass search. Some parts of the utterance might have
scores similar to figure 5.13, i.e. be advantageous for backwards decoding; other parts might
have the opposite characteristic. If partial paths of tracked tokens and second-pass tokens
meet in the same state, they can recombine and thus we would continue decoding the rest
of the utterance with the maximum of the two partial scores (likelihoods). Therefore, the
combined path can have a better score than either two single paths.

5.4.3 Generation of the arc-lattice

As mentioned above, the arc-lattice is a special kind of lattice that allows us to identify
arcs in HCLG2nd that were present in the first-pass lattice. This means there is a path
in the lattice, that went through the corresponding state in HCLG1st at the given time.
The arc-lattice is an acceptor FST, i.e. it has only one symbol on each arc. These symbols
correspond to arcs in HCLG2nd. We first construct a mapping between integers and the
individual arcs in HCLG2nd; this involves creating tables for mapping pairs of (node, arc)
to integers, because the product of (#states) × (maximum #arcs) may be greater than the
32-bit integer range.

We now describe how we create the arc-lattice. First, let us point out that the standard
Kaldi lattices [Povey et al.(2012)] (and also HCLG) are WFSTs whose input symbols cor-
respond to integers called transition-ids and whose output symbols correspond to words.
The transition-ids may be mapped to PDF-ids, which correspond to context-dependent
HMM-states (the transition-ids contain more information about the exact transition used,
but this is not needed here). We first map the transition-ids in the input lattice to PDF-
ids, and also map the input symbols of HCLG2nd from transition-ids to PDF-ids. This is
necessary because the order of self-loops versus “forward transitions” on the forward versus
backward graphs differ, which makes the sequences of transition-ids differ even for paths
that are “really” the same; this issue does not arise with PDF-ids. We then change the out-
put symbols of HCLG2nd (which were previously words) to symbols identifying the arc in
HCLG2nd (integer mapping to (node,arc) pair). Let the resulting FST be called HCLGarc;
it has the same structure as HCLG2nd but different labels on the arcs.

After doing the symbol mappings described above, we reverse the first-pass lattice
LAT1st to retrieve the labels in reversed time order and obtain LATrev. We map the
input labels from transition-ids to PDF-ids to correct for the self-loop order, “project it
on the input”, which means we keep only the input labels (PDF-ids) and then we remove
the weights (they will be contained in HCLG2nd) and remove epsilon arcs. Now, we can
compose LATrev ◦ HCLGarc to obtain a transducer from PDF-id sequences in the lattice
(input) to sequences of symbols for HCLG2nd arcs (output).

Lattice-determinization [Povey et al.(2012)] is an operation in a special semi-ring, that
keeps only the best path for a symbol sequence (e.g. the best segmentation), but it is as-
signed the weight of all paths with that symbol sequence. We apply lattice-determinization
on the resulting transducer to retain only the best path for each sequence of PDF-ids in the
lattice. As a result, for each sequence of PDF-ids, we have a single path of HCLG2nd arcs.
Then, we project on the output, i.e. we keep only the output labels corresponding to arcs

79

in HCLG2nd, and we determinize again8 – this time on the output labels, i.e. we keep only
the best path for each arc sequence. The result is an acceptor lattice for HCLG2nd arcs
which we call LATarc. Since the first-pass lattice contains the alignments (the sequence
of PDF-ids), also the resulting arc-lattice contains timing information (it is a trellis). The
timing information is represented in sequences of HCLG2nd-arcs. For example, we see se-
quences of repeated arcs on self-loops, followed by a forward arc. Algorithm 2 summarizes
the arc-lattice generation.

Algorithm 2 Generation of arc-lattices (graph-state-lattices):

1. Map HCLG2nd to PDF-to-Arc transducer HCLGarc:

(a) HCLG2nd : transduces PDF-ids into words
(b) Encode HCLG2nd (node-id, arc-id) into output symbols.
(c) Map input to be self-loop order independent.

2. Map first-pass lattice LAT1st to LATrev:

(a) Map input (self-loops), project on input, remove weights.
(b) Time reverse lattice and remove epsilons.

3. Compose: LATarc = LATrev ◦HCLGarc:

(a) Obtains sequences of HCLG2nd arcs for PDF sequence in lattice.
(b) det(LATarc): Lattice-determinize (on PDF-ids) in special semi-ring
→ single HCLG2nd path left for each sequence of PDFs.
(c) Project to HCLG2nd (node, arc) symbols, determinize again.

→ The output is an acceptor lattice for HCLG2nd graph arcs.

During decoding, a token is tracked and never pruned if it was reached by a sequence
of HCLG2nd-arcs in the arc-lattice that correspond to a path in the first pass lattice. We
could think of it in this way, that at each time step, there is a set of states, which we should
keep in any circumstances. Since we explore backwards and with a wider beam than in the
forward pass, it is possible that these states are reached by other paths than those used in
the arc-lattice, and that these paths (and their corresponding tokens) have a better score
than the those following the arc-lattice. In this case, the tokens recombine, i.e. we only
keep the better token. We implemented it in this way, that the winning token inherits the
status of being tracked, so that we still keep tracking the path.

It needs to be pointed out, that the implementation with the external creation of the
arc-lattices is just one possibility. It would be also possible to compute a mapping of
graph states between HCLG1st and HCLG2nd at the time of graph construction, and to
provide this mapping together with the two graphs as input to the tracked decoding. This
implementation has the advantage, that fewer changes to the decoder had to be made, and
that the memory consumption is smaller.

8Using the standard determinization algorithm.

80

5.4.4 Experimental results

We tested the proposed forward-backward tracked decoding on the Wall Street Journal
(WSJ) November’92 open-vocabulary test set (333 utterances) using a standard tri-phone
HMM+GMM system (Kaldi recipe ’tri2a’ [Povey et al.(2011)], trained on the ’si84’ portion
of WSJ). The experiments were conducted with the extended 146k vocabulary using the
pruned tri-gram language model ’bd tgpr’ that was trained on all WSJ training texts. The
lattices [Povey et al.(2012)] were generated with a lattice beam of 4.0.

We can detect and evaluate search errors by aligning the recognition outputs to a
decoding with a very wide beam. We align the results of both forward and (reversed)
backward decodings with the wide-beam-decoding. Table 5.1 shows an example of such an
alignment. We implemented a 4D-Levenshtein edit-distance algorithm for that purpose.
Table 5.2 confirms the intuition that forward and backward search errors are independent.
With the help of the tracked forward-backward decoding, most of the search errors were
eliminated.

f: BRIAN J. KILLING CHAIRMAN OF BELL - ATLANTA X. INVESTMENT
. . S S .

b: BRIAN J. DAILY CHAIRMAN OF BELL AND LAND SIX INVESTMENT
. I S S .

p: BRIAN J. DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT
.

w: BRIAN J. DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT

r: BRIAN J. KELLY CHAIRMAN OF BELL - ATLANTIC’S INVESTMENT

Table 5.1: Analysis of search errors on the WSJ Nov’92 test set by aligning forward and backward
search errors (with beam 11.0) against a decoding with a wide beam (29.0).
Shown are the outputs of forward decoding (f), backwards decoding (b) and forward-backward ’ping-
pong’ decoding (p), aligned to a decoding with very wide beam (w) and reference transcription (r).
The search errors are indicated by ’I’ for insertion, ’S’ for substitution and ’-’ for deletion.

beam width forward errors backward errors co-occur ping-pong
11.0 144 230 32 14
13.0 84 108 14 6

Table 5.2: Analysis of search errors on WSJ Nov’92 test set by aligning against a wide beam
(29.0). The co-occurrence of an error (’co-occur’) means that both, forward and backward pass,
made an error in the same alignment position. It does not necessarily mean that both produced
the same error. With two-pass ’pingpong’ decoding, all independent search errors were corrected
(all those that are not co-occurring), and even a good portion of the co-occurring errors could be
removed.

We measured the total elapsed time for the two-pass forward and backward (tracked)
decoding and relate it to the word error rate (WER). The real-time factor was measured on
a single core of an Intel(R) CPU i5-2500 (3.3GHz, 8GB RAM). The results in figure 5.14
show, that for the lowest word error rates (WER< 10.5), the two-pass tracked decoding
runs about 2-3 times faster than the individual forward/backward passes at the same WER.
This corresponds to the “more accurate” operating points of decoding where search errors
are small. However, in this setup, the speed-ups are diminishing for operating points faster
than ≈ 0.6 real-time using our method. The issue seems to be that if the beams are

81

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

re
al

tim
e

fa
ct

or

word error rate

rt wer forward
rt wer backward

rt wer pingpong 2*beam var
rt wer pingpong noextra

Figure 5.14: Performance of tracked decoding: Shown are curves for word error rate vs. real-time
factor on the WSJ Nov’92 test set. For single-pass decodings, the beam varies between 10-18, for the
two-pass (‘pingpong’) decoding the beam varies between 7-13. We used extrabeam = 0 and found
maxbeam = 2·beam as a good compromise between speed and accuracy. The lattice-beam is 4.0, but
for beam < 10.0 we decrease it step-wise by 0.5 down to 0.5. As will be explained in section 5.4.5:
We compare the variable-beam decoding (‘2beam var’, orange) to a decoding without generating
extra tokens in the variable beam (‘noextra’, red) by setting maxbeam = beam, which shows the
additional benefit of the variable beam over just combining lattices of forward and backward passes.

too narrow, the two decoding passes disagree substantially and too much effort is spent in
decoding with a widened beam in areas that disagree. Also, [Nolden et al.(2013)] points out
that a too narrow beam could lead to a degenerated search, where both passes produce the
same errors (e.g. focussing on silence and noise models, which are symmetric). The WER
curve in figure 5.14 is not always smooth, which points to the fact that fixing a search error
does not necessarily mean fixing a word error.

5.4.5 Importance of beam parameters

The proposed decoder has several parameters to tune: forward beam, backward beam,
lattice-beam, extra-beam and max-beam. This section analyzes the importance and typical
settings for those parameters. Since the WER-RTF curves for single-pass forward and
backward decodings are similar, we typically set the forward beam and backward beam to
the same value. In the backward pass (tracked decoding), we have three types of tokens:

• Tokens that are generated in the normal way within the narrow beam.

• Tracked tokens, which are never pruned.

• Extra tokens, which are generated due to the increased variable beam, which is the
difference between the best token and the worst tracked token plus extra beam.

Looking at the different components of the beam-width-policy (section 5.4.2), there seem
to be two strategies one could pursue: either track many tokens and try to combine good
forward and backward paths, while limiting the generation of extra tokens, or just track

82

������

�
����

�����

��
��

�����

��
���	������
����
���	������

���������
�����	����

��������

��

��

���

���

���

���

���

���

���

���

���

����	� �

����	! �

����	�� �

Figure 5.15: Profiling the tracked two-pass decoding on a single core CPU. Shown is the percent-
age of time spent in different parts of the algorithm at three operating points (beam 8.5 as optimal,
others as not optimal). The first pass is the lattice-generating ‘forward search’ (which is also our
single-pass baseline) and the second pass can be seen as consisting of a) normal backward decoding
(column ‘backward search’), b) generating the arc-lattice (‘arc-graph’), c) additionally tracking to-
kens from the first pass (‘tracking’) and d) generating extra tokens within the increased variable beam
(‘extra beam’). The acoustic scores were not cached between the two passes. The contributions of
‘arc-graph’ and ‘tracking’ (together < 20%) could be possibly optimized by a better implementation,
but the two individual passes constitute a lower bound (around 70% of the time is spent there). For
beam 7.0, we used lattice-beam 1.0, and got 11.36% WER at 0.85 RTF. For beam 8.5: lattice-beam
4.0, 10.38% WER at 1.06 RTF. For beam 12.0: lattice-beam 4.0, 10.23% WER at 2.63 RTF.

few tokens and generate many extra tokens up to the variable beam difference. To analyze
the importance of the extra tokens, we can compare the proposed tracked decoding using
the variable beam (which is the distance of the best active token to the worst tracked token
plus the extra-beam) to a decoding without generating extra tokens. We can achieve this
by limiting the beam to maxbeam = beam and thus effectively disabling the variable beam.
Since tokens ’tracked’ by the first-pass lattice are kept anyway, this effectively corresponds to
combining the lattices of the forward and backward pass. Figure 5.14 (’2beam’ vs. ’noextra’)
shows that creating extra tokens within the variable beam gives a substantial improvement
on top of that. This shows that the extra tokens are important, especially for the operating
points with low WERs.

To get an insight on the optimal size of the forward/backward beam, we profiled the
tracked decoding in figure 5.15. We observe, that the time spent in the two individual
decoding passes (without tracking / extra tokens) is the dominant factor - thus we want to
keep this value small. However, if we reduce the beam too much, we observe (figure 5.14
for error rates > 11.5%) that the two-pass decoding is no longer better than the single-
pass decoding. From figure 5.15 we see, that for narrow beam widths, most of the time is
consumed in the generation of extra tokens, which effectively means decoding with a higher
beam. Below a certain beam width (11% in figure 5.14) the error rates in the single passes
grow rapidly with only little RTF to gain. This means that the divergence between the
best paths from forward and backward decoding is too big, so that the algorithm has to
increase the variable beam a lot to track the first pass tokens. The max-beam parameter
limits the variable beam, so that in these situations, the decoding is not slowed down too

83

much (at the cost of higher WER).
With an optimal setting of the beam, we can reach a significant WER decrease by just

generating a small amount of extra tokens in the variable beam (‘extra beam’ in figure
5.15, optimal around beam 8.5). This point corresponds to the turning point in figure
5.14 (around RTF 1.0) - it is the ‘sweet spot’. Above that, though little time needs to be
spent for tracking and for generating extra tokens, too much time is spent in the individual
forward/backward decodings, and the overall RTF increases rapidly.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 10.2 10.4 10.6 10.8 11 11.2 11.4

re
al

tim
e

fa
ct

or

word error rate

"rt_wer_forward"
"rt_wer_backward"

"rt_wer_pingpong0"
"rt_wer_pingpong1"
"rt_wer_pingpong2"
"rt_wer_pingpong4"

Figure 5.16: Testing the extra-beam: WER vs. real-time factor on WSJ Nov’92 test set using
the bi-gram LM with 5k vocabulary. We set the parameters to lattice-beam 6.0 and max-beam 100.0
and varied the extra-beam from 0.0 to 4.0 ’pingpong0. . .4’. All settings of extra-beam resulted in
very similar curves.

In an experiment using a smaller vocabulary, we tested the influence of the extra-beam
parameter. Figure 5.16 suggests, that this parameter doesn’t have any significant influence.
It seems that increasing this parameter has a similar effect to simply decoding with a wider
beam. Therefore, we set the extra-beam to zero in the further experiments (also in figure
5.14). Now, in figure 5.17, we investigate the effect of the lattice-beam. We can see, that
pruning the lattice with different beams and generating the corresponding arc-lattice has
mainly the effect, that larger lattices result in higher RTF, visible in the area with the
higher WER. Thus, we want to make the lattices as small as possible. However, for the
most accurate operating points with low WER, we want to have a wider lattice that is more
likely to contain the best path. Figure 5.17 suggests that it seems to be a good strategy to
increase the lattice-beam linearly with the beam. We can set an upper bound of 4.0, which
is enough to get good results in re-scoring the lattice.

Finally, after tuning all other parameters, we investigate different settings of the max-
beam parameter. Figure 5.18 suggests, that the exact setting of the parameter max-beam
doesn’t influence the potential speed-up of the technique (the ‘sweet-spot’), but mainly
influences the shape of the curve from the ‘sweet spot’ towards the higher WER. Using no
limit for the beam even for huge divergences between forward and backward pass seems
wasteful. Therefore, it seems to be reasonable (figure 5.18) to increase the max-beam slowly
with increasing beam. Once a reasonable beam has been reached, the divergence between
forward and backward passes gets smaller, and the max-beam is no longer needed.

84

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 10.2 10.4 10.6 10.8 11 11.2 11.4

re
al

tim
e

fa
ct

or

word error rate

"rt_wer_pingpong4"
"rt_wer_pingpong5"
"rt_wer_pingpong6"

"rt_wer_pingpong_var"

Figure 5.17: Analyzing the effect of the lattice-beam on WSJ Nov’92 test set using the big bi-gram
LM with 147k vocabulary. We set the parameters to extrabeam = 0.0 and maxbeam = 100.0 and
varied the lattice-beam from 4.0 to 6.0 (curves ‘pingpong{4,5,6}’). Then, we tried increasing the
lattice beam linearly from 0.5 to 5.0 (curve ‘pingpong var’), i.e. we started with lattice-beam 0.5 at
beam 6.5 and increased it until we had 5.0 at beam 11.0.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8

re
al

tim
e

fa
ct

or

word error rate

pingpong max100 var
pingpong max20 var

pingpong 2*beam var

Figure 5.18: Analyzing the effect of different max-beam settings on WSJ Nov’92 test set using the
big bi-gram LM with 147k vocabulary. As already explored, we set the parameters to extrabeam = 0.0

and linearly increased the lattice-beam from 0.5 to a maximum of 4.0. Now, we compare three
strategies of setting max-beam: a) using a fixed max-beam of 100.0 b) using a fixed max-beam
of 20.0 c) changing the max-beam linearly with the beam: maxbeam = 2 · beam. We also tried
maxbeam = beam, which had slightly worse performance for WER > 11.0. We see, that using a
fixed maxbeam leads to a slight increase of RTF for the lowest WER, which indicates, that too many
extra tokens are generated due to the variable beam.

85

5.5 Conclusions

We proposed how to integrate information from two symmetric decoding passes, decoding
forwards and then backwards in time. In order to implement this we needed to construct
reverse decoding networks that assign exactly the same scores as the forward decoding.

We explored two implementations, one approach using an incremental decoding that can
be easily parallelized, and another approach that allows for a more fine-grained steering of
the beam by tracking the paths from a first-pass lattice in the second pass. More specifically,
in the second pass of tracked decoding, we modify the pruning behavior of the decoder to
treat specially tokens that were part of successful paths in the first pass, and to increase
the decoding beam for parts of the utterance where the forward and backward decoding
disagree. Our decoding method results in a roughly two to three-fold speed-up.

The proposed speed-up method can be applied in any ASR based technology, for exam-
ple in the fast generation of lattices for audio indexing. The tracked decoding could be used
to generate lattices that contain certain desired paths (e.g. the reference forced alignment
for discriminative training).

Our algorithms use the WFST approach [Mohri et al.(2008)] to speech recognition.
For the tracked decoding, other speed-up techniques such as acoustic look-ahead [Nolden
et al.(2011)] and various types of fast acoustic score computation are also applicable. We
expect that those methods can be combined with the technique described here and bring
complementary speed-ups.

86

Chapter 6

Conclusions

6.1 Summary of the findings

In this thesis, we have introduced the idea of symmetrically decoding forwards and back-
wards in time. For tasks like LVCSR decoding, the search space cannot be explored ex-
haustively. For some tasks, the pruned backward search is more efficient than the forward
search. Moreover, we showed experimentally that the search errors of forward and back-
ward search are mutually independent. Forward search prunes based on the “history” and
backward search prunes based on the “future”. To be able to concentrate on search errors
rather than on modeling errors, we require both decoding passes to be symmetric – i.e. both
models are equally powerful and are constructed to assign exactly the same probabilities
to hypotheses (paths, word sequences). The symmetry of both passes allows us to compare
the recognition results of forward and backward decoding. Each difference detects a search
error. We have shown, that for most of the time frames in beam search decoding, a very
narrow beam is sufficient to keep the final best path. Therefore, we are able to decode with
a variable beam width – we use a small baseline beam and only increase it in places, where
the forward and backward searches disagree.

One possible realization of the variable beam width decoding is to run the forward and
backward passes in parallel, and to iteratively refine the decoding (by increasing the beam
width) in places, where both passes disagree. We showed that, for about 50% of the utter-
ances, the results already match after the first iteration. For the remaining utterances, the
stretches of mis-matching words (in average 1.5 per utterance) can be decoded in parallel.
This approach is very similar to chunk based decoding and is a high-level technique that can
be applied additionally to other coarse-grained and fine-grained parallelization techniques.

Another realization of the variable beam width is the tracked decoding presented in
this thesis, which runs forward and backward decoding sequentially. During the second
pass (tracked decoding, backwards), we are able to identify which active tokens correspond
to paths that were present in the first-pass lattice. These are called tracked tokens and
they are never pruned, regardless of the beam width. We track tokens with an acceptor
lattice of graph-states of the backward decoding graph, which is generated from the first
pass lattice with a series of WFST operations. Tracked tokens are used to determine the
variable pruning beam for each frame. In places where disagreement is detected, the beam
is increased to include all tracked tokens. Otherwise, in the second pass, the same narrow
beam is used that was used in the first pass.

Even if we don’t increase the beam in the second pass, our method is doing more than
simply choosing the best path from the two passes because it is possible to “recombine”

87

partial paths from the first-pass and second-pass search (effectively combining the forward
and backward lattices). On top of that, the variable beam leads to the generation of extra
partial hypotheses in areas where both passes disagree, which gives an additional speed-up.

Tracked decoding leads to a 2-3 times speed-up compared to a single pass forward
decoding. Since most of the time is spent in the forward and backward decoding with the
narrow beam, this beam determines the possible speed-up. It should be small enough to
decode at least two times faster than the original single pass, and it should be wide enough
to allow for a reasonable comparison of the forward and backward search results, i.e. either
of the two passes should obtain a solution, that is at least partly correct. If we decrease
the beam below a critical threshold the speed-up vanishes, since an excessive amount of
extra tokens are generated. Thus, we introduce an upper limit to the variable beam, which
becomes effective in the areas of higher word error rates. We show that the main tuning
parameters, which are the log beam width and the maximum number of active tokens for
the histogram pruning, are dependent on each other.

Reversal of the recognition network

To construct the backward recognition network, it is not sufficient to apply WFST reversal
to the forward network, since this will result in highly non-deterministic structures. It is
necessary to construct reverse models for each component separately and to compose the
components in the same way as in the forward network. It turned out that the transducers
for HMM structure, context-dependency and pronunciation lexicon are rather easy to re-
verse, however, the reversal of the LM transducer is difficult. The stochasticity of outgoing
arcs will not be satisfied when reversing the model, i.e. the optimal weight distribution for
backward search is different from the one used in forward search. Therefore, we have to
apply weight pushing to the reversed components. Our approach to the construction of
backward recognition networks is not limited to static network decoders. Since all com-
ponents are reversed individually, no change is necessary when dynamically composing the
components in a dynamic network decoder.

To represent N-gram LMs as WFSTs, an approximate structure is necessary, since a
fully connected model is prohibitive. When representing back-off arcs as either failure arcs
or epsilon arcs, we actually violate the assumptions of the WFST algorithms. Either, when
using failure arcs, the semi-ring concept is changed and a new class of algorithms is needed.
On the other hand, when approximating back-offs using epsilon arcs, non-determinism is
introduced. If the weights are taken from back-off LMs, the weight of cycles can be greater
than one and results in an infinite total weight. A general weight pushing algorithm is based
on the shortest path algorithm in the given semi-ring. The (log) probability semi-ring is
not closed (due to cycles), therefore an approximate iterative weight pushing algorithm is
used as the standard weight pushing (e.g. in OpenFST), whose convergence depends on the
weight in a loop, which must be smaller than one. However, this is not the case for WFSA
resulting from back-off LMs and the weight pushing algorithm will not converge.

We presented an alternative weight pushing algorithm, which will always converge.
Similar to the power method for finding the dominant eigenvector of a matrix, we use
the Perron theorem to obtain the dominant right eigenvector of the transition matrix of
an ergodic WFST. This vector represents the minimum distance towards the final states
(stationary state distribution), which we can use as the potential function in re-weighting.
This results in pushing the weights towards the initial state and making the WFSA output
stochastic. More precisely, the outgoing arcs sum to the same quantity for all states,

88

which means that the total weight, causing the standard algorithm to fail, is now uniformly
“smeared” all over the WFSA. Our algorithm is in practice an order of magnitude faster
than the more generic conventional weight pushing algorithm.

The most difficult component to reverse is the WFST resulting from the back-off LM.
We require that it assigns exactly the same probabilities as the forward LM. To guarantee
an optimal search, the backward WFST should also be deterministic, stochastic and of
minimal size. Thus, simple WFST reversal is not sufficient. We derive the construction of
the backward LM satisfying these requirements, which is valid when using exact back-off
models using failure arcs, and also when approximating them with epsilon arcs.

The constructive approach to obtain the backward LM consists of applying the N-gram
probabilities with a delay, and to switch the functions of labeled word arcs and back-off
arcs. We also explain the origin of missing N-grams, and how to represent them correctly in
the backward LM. With the help of a series of weight pushing operations and representation
changes of the probabilities, where each step guarantees WFSA equivalence, we show that
our LM reversal algorithm can also be derived step by step. By applying the constraint
that the joint word probabilities should be the same for the forward and backward LM for
all N-gram orders, we are able to show that the same algorithm can be derived from Bayes’
rule. The application of weight pushing to the resulting backward LM is crucial for optimal
performance. We compared this ’exact’ LM with a backward LM resulting from training on
the reversed training texts. The performance of both is very similar, except for low word
error rates, where the exact model performs better – more closely to the forward LM.

6.2 Future work

The proposed speed-up method can be applied in any ASR based technology, as e.g. in
the fast generation of lattices for audio indexing and the tracked decoding could be used
to generate lattices that contain desired paths, such as the forced-alignment reference for
the discriminative training of acoustic models. Additionally to decoding forwards and
backwards in time, depending on the task, there might be other ways of decoding, which
could result in independent search errors, and thus lead to additional speed-ups.

The alternative weight pushing algorithm was derived under certain assumptions. In
particular, we assume that all arcs in the WFST are of the same type. However, there
are “emitting” arcs with a word label, and “non-emitting” arcs representing e.g. the back-
off arcs. An open problem is to derive a weight pushing algorithm respecting the special
semantics of back-off arcs. Under this correct interpretation, if the back-off LM was correctly
normalized, the total weight of the transducer will be one, and we avoid the negative log-
probabilities resulting from pushing weights greater than one. The original Kaldi recipe for
the construction of recognition networks [Povey et al.(2011)] used the assumption, that all
components are stochastic, which eliminates the necessity for weight pushing. We want to
find a derivation for the exact LM reversal, which directly produces a properly normalized
stochastic WFST.

There is some inconsistency between the algorithms for decoding graph construction,
which usually assume the log-semi-ring, and the decoding algorithms, which use the tropical
semi-ring. Together with different interpretations of the failure/epsilon arcs, this opens
several dimensions of design choices, and the different options should be systematically
explored to find a consistent framework for decoding graph construction that results in an
optimal decoding. When using epsilon arcs for back-offs, the WFSTs resulting from back-
off LMs introduce non-determinism to the graph, which results in multiple evaluations

89

of the same models during decoding. It is not possible to apply determinization on the
LM transducer, since this would lead to a fully connected N-gram, which is not feasible.
However, in a preliminary experiment, we showed, that after the composition with the
lexicon transducer, it is possible to apply another slightly modified determinization step,
which respects the special semantics of failure arcs. The resulting transducer is bigger, but
still managable. After this step, the transducer is deterministic, and no special arcs are
needed (e.g. failure arcs) to correctly represent the back-off LM - i.e. the resulting transducer
is consistent with the log-semi-ring. Therefore, the resulting WFST LG is either already
stochastic, or can be normalized with the weight pushing in the log-semi-ring. Thus, many
of the problems to which we point in this thesis could be solved.

90

91

Bibliography

[Abo-Gannemhy et al.(2010)] W. Abo-Gannemhy, I. Lapidot, and H. Guterman, “Speech
recognition using combined forward and backward Viterbi search.” in IEEE
Convention of the Electrical and Electronic Engineers in Israel, 2010.

[Agarwal et al.(2014)] A. Agarwal, E. Akchurin, C. Basoglu, G. Chen, S. Cyphers,
J. Droppo, A. Eversole, B. Guenter, M. Hillebrand, R. Hoens, X. Huang, Z. Huang,
V. Ivanov, A. Kamenev, P. Kranen, O. Kuchaiev, W. Manousek, A. May, B. Mitra,
O. Nano, G. Navarro, A. Orlov, M. Padmilac, H. Parthasarathi, B. Peng,
A. Reznichenko, F. Seide, M. L. Seltzer, M. Slaney, A. Stolcke, Y. Wang, H. Wang,
K. Yao, D. Yu, Y. Zhang, and G. Zweig, “An introduction to computational networks
and the computational network toolkit.” Tech. Rep. MSR-TR-2014-112, August
2014. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=226641

[Aho and Corasick(1975)] A. V. Aho and M. J. Corasick, “Efficient string matching: an
aid to bibliographic search.” Communications of the ACM, vol. 18, no. 6, pp.
333–340, 1975.

[Allauzen et al.(2003)] C. Allauzen, M. Mohri, and B. Roark, “Generalized algorithms for
constructing statistical language models.” in Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics – Volume 1, ser. ACL ’03.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2003, pp. 40–47.

[Allauzen et al.(2004)] C. Allauzen, M. Mohri, M. Riley, and B. Roark, “A generalized
construction of integrated speech recognition transducers.” in Proceedings IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2004.
(ICASSP ’04), vol. 1, May 2004, pp. I–761–4 vol.1.

[Austin et al.(1991)] S. Austin, R. Schwartz, and P. Placeway, “The forward-backward
search algorithm.” in Proc. ICASSP, 1991, pp. 697–700.

[Bellman(1952)] R. Bellman, “On the theory of dynamic programming.” Proceedings of
the National Academy of Sciences, vol. 38, no. 8, pp. 716–719, 1952.

[Berger et al.(1996)] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra, “A maximum
entropy approach to natural language processing.” Computational Linguistics, vol.
22, number 1, pp. 39–71, 1996.

[Berman and Shaked-Monderer(2012)] A. Berman and N. Shaked-Monderer,
“Non-negative matrices and digraphs.” in Computational Complexity, R. A. Meyers,
Ed. Springer New York, 2012, pp. 2082–2095.

92

http://research.microsoft.com/apps/pubs/default.aspx?id=226641

[Cardinal et al.(2013)] P. Cardinal, P. Dumouchel, and G. Boulianne, “Large vocabulary
speech recognition on parallel architectures.” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 21, no. 11, pp. 2290–2300, Nov 2013.

[Chong et al.(2009)] J. Chong, E. Gonina, Y. Yi, and K. Keutzer, “A fully data parallel
WFST-based large vocabulary continuous speech recognition on a graphics
processing unit.” in Interspeech 2009, 10th Annual Conference of the International
Speech Communication Association, September 2009.

[Cormen et al.(2009)] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Third Edition. MIT press, 2009.

[Davidson et al.(2014)] A. Davidson, S. Baxter, M. Garland, and J. D. Owens,
“Work-efficient parallel GPU methods for single-source shortest paths.” in 2014
IEEE 28th International Parallel and Distributed Processing Symposium. IEEE,
2014, pp. 349–359.

[Dixon et al.(2009)] P. Dixon, T. Oonishi, and S. Furui, “Fast acoustic computations
using graphics processors.” in ICASSP 2009. IEEE International Conference on
Acoustics, Speech and Signal Processing, April 2009, pp. 4321–4324.

[Fiscus(1997)] J. G. Fiscus, “A post-processing system to yield reduced word error rates:
Recognizer Output Voting Error Reduction (ROVER).” in Proceedings 1997 IEEE
Workshop on Automatic Speech Recognition and Understanding, Dec 1997, pp.
347–354.

[Gibbons(1985)] A. Gibbons, Algorithmic graph theory. Cambridge University Press,
1985.

[Grinstead and Snell(1997)] C. M. Grinstead and J. L. Snell, Introduction to Probability,
2nd ed. American Mathematical Society, GNU General Public License, July 1997.

[Hannemann et al.(2013)] M. Hannemann, D. Povey, and G. Zweig, “Combining Forward
and Backward Search in Decoding.” in Proc. ICASSP 2013, 2013, pp. 6739–6743.
[Online]. Available: http://www.fit.vutbr.cz/research/view˙pub.php.en?id=10324

[Horowitz et al.(2005)] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and
K. Bernstein, “Scaling, power, and the future of CMOS.” in Electron Devices
Meeting, 2005. IEDM Technical Digest. IEEE International. IEEE, 2005, pp. 7–pp.

[Jouvet and Fohr(2013b)] D. Jouvet and D. Fohr, “Combining Forward-based and
Backward-based Decoders for Improved Speech Recognition Performance.” in Proc.
Interspeech 2013 - 14th Annual Conference of the International Speech
Communication Association, 2013.

[Jouvet and Fohr(2014)] ——, “About Combining Forward and Backward-Based
Decoders for Selecting Data for Unsupervised Training of Acoustic Models.” in Proc.
Interspeech 2014, 2014, pp. 815–819.

[Jouvet and Fohr(2013a)] ——, “Analysis and Combination of Forward and Backward
Based Decoders for Improved Speech Transcription.” in Text, Speech, and Dialogue,
ser. Lecture Notes in Computer Science, I. Habernal and V. Matoušek, Eds.

93

http://www.fit.vutbr.cz/research/view_pub.php.en?id=10324

Springer Berlin Heidelberg, 2013, vol. 8082, pp. 84–91. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40585-3˙12

[Katz(1987)] S. M. Katz, “Estimation of probabilities from sparse data for the language
model component of a speech recognizer.” in IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 35(3), 1987, pp. 400–401.

[Kim et al.(2012)] J. Kim, J. Chong, and I. Lane, “Efficient On-The-Fly Hypothesis
Rescoring in a Hybrid GPU/CPU-based Large Vocabulary Continuous Speech
Recognition Engine.” in Proc. Interspeech, 2012, pp. 1183–1186.

[Kneser and Ney(1995)] R. Kneser and H. Ney, “Improved backing-off for M-gram
language modeling.” in Proc. ICASSP-95, International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, May 1995, pp. 181–184.

[Kuich and Salomaa(1986)] W. Kuich and A. Salomaa, “Semirings, Automata,
Languages.” in EATCS Monographs on Theoretical Computer Science, vol. No. 5.
Springer-Verlag, Berlin, Germany, 1986.

[Lee and Kawahara(2009)] A. Lee and T. Kawahara, “Recent development of open-source
speech recognition engine Julius.” in Proc. APSIPA Annual Summit and Conference,
2009.

[Lee et al.(1998)] A. Lee, T. Kawahara, and S. Doshita, “An efficient two-pass search
algorithm using word trellis index.” in Proc. ICSLP, 1998.

[Lehmann(1977)] D. J. Lehmann, “Algebraic structures for transitive closure.”
Theoretical Computer Science, vol. 4, pp. 59–76, 1977.

[Li et al.(2009)] T. Li, W. Xu, J. Pan, and Y. Yan, “Improving automatic speech
recognizer of voice search using system combination.” in Sixth International
Conference on Fuzzy Systems and Knowledge Discovery, 2009. FSKD ’09, vol. 4,
Aug 2009, pp. 477–480.

[Lowerre(1976)] B. Lowerre, “The Harpy Speech Recognition System.” Ph.D. dissertation,
Carnegie Mellon University, 1976.

[Maleki et al.(2014)] S. Maleki, M. Musuvathi, and T. Mytkowicz, “Parallelizing Dynamic
Programming Through Rank Convergence.” in Proc. ACM PPoPP’14. ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
February 2014. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=208241

[Meyer and Sanders(2003)] U. Meyer and P. Sanders, “∆-stepping: a parallelizable
shortest path algorithm.” Journal of Algorithms, vol. 49, no. 1, pp. 114–152, 2003,
1998 European Symposium on Algorithms.

[Mohri(2002)] M. Mohri, “Semiring frameworks and algorithms for shortest-distance
problems.” Journal of Automata, Languages and Combinatorics, vol. 7, pp. 321–350,
March 2002.

[Mohri(1997)] ——, “Finite-state transducers in language and speech processing.”
Computational linguistics, vol. 23, no. 2, pp. 269–311, 1997.

94

http://dx.doi.org/10.1007/978-3-642-40585-3_12
http://research.microsoft.com/apps/pubs/default.aspx?id=208241

[Mohri and Riley(2001)] M. Mohri and M. Riley, “A Weight Pushing Algorithm for Large
Vocabulary Speech Recognition.” in Proc. Eurospeech 2001, 7th European
Conference on Speech Communication and Technology, 2001.

[Mohri et al.(2008)] M. Mohri, F. C. N. Pereira, and M. Riley, “Speech recognition with
weighted finite-state transducers.” in Handbook on Speech Processing and Speech
Communication, Part E: Speech recognition, L. Rabiner and F. Juang, Eds.
Heidelberg, Germany: Springer-Verlag, 2008, p. 31.

[Murveit et al.(1993)] H. Murveit, J. W. Butzberger, V. V. Digalakis, and M. Weintraub,
“Large-vocabulary dictation using SRI’s decipher speech recognition system:
Progressive search techniques.” in Proc. ICASSP Vol. 2, 1993, pp. 319–322.

[Nguyen et al.(1993)] L. Nguyen, R. Schwartz, F. Kubala, and P. Placeway, “Search
algorithms for software-only real-time recognition with very large vocabularies.” in
Proceedings of the Workshop on Human Language Technology, 1993, pp. 91–95.

[Nolden et al.(2011)] D. Nolden, R. Schlüter, and H. Ney, “Acoustic look-ahead for more
efficient decoding in LVCSR.” in Proc. Interspeech, 2011.

[Nolden et al.(2012)] ——, “Extended search space pruning in LVCSR.” in Proc.
ICASSP. IEEE, 2012.

[Nolden et al.(2013)] ——, “Efficient nearly error-less LVCSR decoding based on
incremental forward and backward passes.” in Proceedings ASRU 2013, IEEE
Workshop on Automatic Speech Recognition and Understanding, 2013, pp. 1–6.

[Ortmanns et al.(1996)] S. Ortmanns, H. Ney, and A. Eiden, “Language-model look-ahead
for large vocabulary speech recognition.” in Proc. ICSLP 96, Fourth International
Conference on Spoken Language Processing, vol. 4, Oct 1996, pp. 2095–2098.

[Parihar and Hansen(2008)] N. Parihar and E. Hansen, “A lexical-tree division-based
approach to parallelizing a cross-word speech decoder for multi-core processors.” in
EUSIPCO 2008, 16th European Signal Processing Conference, Aug 2008, pp. 1–5.

[Paul and Baker(1992)] D. B. Paul and J. M. Baker, “The Design for the Wall Street
Journal-based CSR Corpus.” in DARPA Speech and Language Workshop. Morgan
Kaufmann Publishers, 1992.

[Phillips and Rogers(1999)] S. Phillips and A. Rogers, “Parallel speech recognition.”
International Journal of Parallel Programming, vol. 27, no. 4, pp. 257–288, 1999.

[Povey et al.(2011)] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer,
and K. Vesely, “The Kaldi speech recognition toolkit.” in Proc. ASRU. IEEE, 2011.

[Povey et al.(2012)] D. Povey, M. Hannemann, G. Boulianne, L. Burget, A. Ghoshal,
M. Janda, M. Karafiat, S. Kombrink, P. Motlicek, Y. Quian, N. Thang Vu,
K. Riedhammer, and K. Vesely, “Generating exact lattices in the WFST framework.”
in Proc. ICASSP. IEEE, 2012, pp. 4213–4216.

95

[Soltau and Saon(2009)] H. Soltau and G. Saon, “Dynamic network decoding revisited.”
in Proc. ASRU 2009, IEEE Workshop on Automatic Speech Recognition
Understanding, Nov 2009, pp. 276–281.

[Steinbiss et al.(1994)] V. Steinbiss, B.-H. Tran, and H. Ney, “Improvements in beam
search.” in Proc. ICSLP, vol. 94, no. 4, 1994, pp. 2143–2146.

[Stolcke(1998)] A. Stolcke, “Entropy-based pruning of backoff language models.” in
Proceedings DARPA Broadcast News Transcription and Understanding Workshop.
Morgan Kaufmann, February 1998, pp. 270–274.

[Tang and Cristo(2008)] M. Tang and P. D. Cristo, “Backward viterbi beam search for
utilizing dynamic task complexity information.” in Proc. Interspeech, 2008, pp.
2090–2093.

[van Hamme and van Aelten(1996)] H. van Hamme and F. van Aelten, “An
adaptive-beam pruning technique for continuous speech recognition.” in Proc. ICSLP
96, Fourth International Conference on Spoken Language Processing, vol. 4, Oct
1996, pp. 2083–2086.

[Viterbi(1967)] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm.” IEEE Transactions on Information Theory, vol. 13,
no. 2, pp. 260–269, April 1967.

[You et al.(2009)] K. You, J. Chong, Y. Yi, E. Gonina, C. J. Hughes, Y.-K. Chen,
W. Sung, and K. Keutzer, “Parallel scalability in speech recognition.” IEEE Signal
Processing Magazine, vol. 26, no. 6, pp. 124–135, November 2009.

[Young et al.(1989)] S. J. Young, N. Russell, and J. Thornton, Token passing: a simple
conceptual model for connected speech recognition systems. Cambridge University
Engineering Department Cambridge, UK, 1989.

[Young et al.(2006)] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. A. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland, “The HTK
Book. Revised for HTK Version 3.4.” 2006.

96

Appendix A

Scripts and executables in the
Kaldi toolkit

Most of the algorithms and recipes described in this thesis have been integrated into the
Kaldi toolkit. The master script invoking the scripts for single pass backward and two-pass
tracked decoding can be found in egs/wsj/s5/local/run_fwdbwd.sh.

However, since the utils/ directory is linked to all experiment directories egs/, the
described scripts can be accessed from all recipes. During the preparation of the train-
ing/decoding directories, the first step is to reverse the lexicon. This is done with pro-
viding the --reverse option to utils/prepare_lang.sh. For the preparation of
the decoding directory, we use the script utils/reverse_lm.sh, which creates a new
lang_test/ directory with the reversed LM transducer. It is very similar to the normal
utils/prepare_lang_test.sh, i.e. creating the LM WFST with src/bin/arpa2fst,
however, the heart of it is a call to utils/reverse_arpa.py, which takes as input a
textual LM in ARPA format and outputs the exactly reversed LM in ARPA format. In
this python script, we first read the ARPA file, add missing N-grams (section 4.3) and in a
second pass we create the backward LM.

At the end of utils/reverse_lm.sh, we apply the alternative weight pushing algo-
rithm to make the WFST stochastic. One particularity is that arpa2fst doesn’t support
the representation of back-off arcs of missing N-grams (section 4.3) in the backward LM.
Therefore, we have to manually remove these arcs. To make a sanity check that everything
went right, we can use the script utils/reverse_lm_test.sh, which generates random
word sequences from the forward LM, reverses them and checks, that they are assigned the
same scores in the forward and backward LM (including different ways of backing-off).

The last step towards the creation of a backward recognition network is to compose the
HCLG transducer from the individual components with the script utils/mkgraph.sh,
which also has an option --reverse. After the lexicon transducers and LM transducers
are already reversed, the only thing left to do is the reversal of the HMM transducer – the
--reverse option is passed further to the executable src/bin/make-h-transducer.
The relevant source code is actually in src/hmm/hmm-utils.cc. Here, the context
window into the decision tree is reversed (section 5.2.1), and the individual (context-phone)
HMMs are reversed and pushed, before composing them as Ha transducer.

The forward/backward decoding is done with the script steps/decode_fwdbwd.sh.
In case of a simple backward decoding (using src/gmmbin/gmm-latgen-faster) we
use the --reverse option, and the only two things that need to be changed compared

97

to a forward decoding is the time reversal of the acoustic features with the executable
src/featbin/reverse-feats (where the code is actually in
src/feat/feature-functions.cc), and the reversal of the decoded text in the scoring
script steps/score_kaldi.sh (called by local/score.sh).

To use the tracked decoding, we run the first pass as just described (--beam is the
baseline beam width and --latbeam is the lattice pruning beam), and then we decode in
the opposite direction, using the --first_pass option as an additional input, followed
by the first pass decoding directory, from which we take the lattices.

The script steps/decode_fwdbwd.sh has two additional options --extra_beam
and --max_beam, which set the extra beam and the beam limit (section 5.4.2), respectively.
If the --first_pass option is given, we convert the first pass lattice to the graph-arc ac-
ceptor lattice (section 5.4.3) and use the executable src/gmmbin/gmm-latgen-tracking
to perform the tracked decoding. All the necessary source code for the arc-lattice generation
is in src/latbin/lattice-arcgraph.cc, which compiles also to the corresponding
executable.

In src/decoder/lattice-tracking-decoder.{cc,h} is the implementation of
the tracking decoder. The arc-lattice is read as standard WFSA. The central method
LatticeTrackingDecoder::Decode() gets it as an input parameter. Each token
(represented as a struct Token) has an additional component, the state in the arc-
lattice. The main methods inside Decode(), that realize the decoding and tracking are
ProcessEmitting() and ProcessNonemitting(), which are called alternately. The
beam width policy (section 5.4.2) is implemented in the method GetCutOff(), where the
variable extra_cutoff is computed, as well as in ProcessNonemitting().

98

	Table of Contents
	Introduction
	Motivation: search graphs and decoding networks
	Claims of the thesis
	Contribution and authorship
	Structure of the thesis

	Weighted finite state transducers and LVCSR decoding
	Automatic speech recognition
	Speech recognition decoding
	Weighted finite state transducers
	Weighted finite state transducer based decoding
	Decoding graph construction in the Kaldi toolkit

	Back-off language models as finite state automata
	Difficulties with the representation of back-off arcs

	Parallel Speech Decoding
	Coarse and fine-grained parallelization
	Stage parallelism through rank convergence

	An alternative weight pushing algorithm
	Weight pushing algorithm
	Ergodic Markov chains and non-negative matrices
	Alternative weight pushing algorithm
	Experimental validation
	Conclusions

	Exact reversal of ARPA back-off language models
	Motivation: forwards and backwards search
	Construction of an exactly reversed language model
	The treatment of missing N-grams
	Proof: Exact reversal of the language model
	Motivation by Bayes' formula
	Conclusions

	Combining forward and backward search in decoding
	Introduction: combining forward and backward search
	Construction of a reversed decoding graph
	Reversing L, C and H

	Incremental forward and backward search
	Finding the optimal operating point
	Tuning the beam parameters
	Parallel incremental forward and backward search

	Tracked decoding
	Tracking tokens with an arc-lattice
	Beam-width policy
	Generation of the arc-lattice
	Experimental results
	Importance of beam parameters

	Conclusions

	Conclusions
	Summary of the findings
	Future work

	Bibliography
	Scripts and executables in the Kaldi toolkit

