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Abstract

Nowadays, an increasing number of cameras and surveillance systems can be observed.
The amount of information that these devices produce is enormous, and it is not in human
power to process it all, therefore using computing power is needed. Modern computer
vision algorithms, especially object detection, already achieve excellent results. One of the
disadvantages of current vision algorithms is high computational complexity. Therefore,
it is desired to implement these algorithms into a suitable device with better performance
to power ratio. FPGA represents a reliable option due to its parallel and power-efficient
computing. This dissertation aims to propose methods for optimising the object detector in
an image running on an FPGA. These detectors use boosted soft cascades of classifiers with
local image feature like weak classifiers. The proposed detectors use sequential evaluation
of weak classifiers. More positions in the image are evaluated in parallel to increase the
detection performance. Also, a new approach for multiscale object detection is proposed; its
advantage is no need for external memory. The new detectors were experimentally verified
on the tasks of detecting faces and license plates. The results outperform the current state-
of-the-art, allow to create object detectors with higher detection performance, better power
to resources ratio and better detection accuracy.

Abstrakt

V dnesni dobé je patrny nartist poc¢tu kamer a dohledovych systému ve vefejném prostoru.
Mnozstvi informaci které tato zarizeni produkuji je enormni a neni v lidskych silach je
vSechny vyhodnotit a interpretovat. Pouziti vypocetnich technologii je nezbytné. Mod-
erni algoritmy pocitacového vidéni jiz dosahuji skvélych vysledka, jejich Sirsimu pouziti v
praxi zatim brani nizky vykon zafizeni a vysoké pozadavky na vypocetni zdroje a energii.
Jednou z moznosti je vyuziti vysokého paraelniho vykonu FPGA pro efektivni zpracovani
téchto algoritmi. Cilem této disertac¢ni prace je predstavit navrzené metody optimalizace
detektoru objektt v obraze bézicich na FPGA. Tyto detektory vyuzivaji boostovatelné soft
kaskady klasifikatort spolu s lokdlnimi obrazovymi piiznaky, které slouzi jako slabé klasi-
fikatory. Navrzené postupy vyuzivaji sekvencéni vyhodnoceni slabych klasifikatoru. Pro
zvyseni vykonu detekce je vyhodnocovano soucasné vice pozic v obraze. Je navrzen novy
pristup pro detekci objekti riizné velikosti nevyzadujici externi pamét. Vytvorené detektory
byly experimentalné ovéreny na tilohach detekce obli¢ej a poznavacich znacek automobili.
Dosazena vysledky prekonédvaji soucasny stav poznani, umoznuji vytvorit detektory objektl
s vysSim detekénim vykonem, lepSim pomérem vykonu a spotfebovanych zdroji FPGA a s
lepsi presnosti detekce.
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Glossary

ACF Aggregated Channel Features.
BRAM Block Random Access Memory element on FPGA.

CLK FPGA clock speed in M H z.

CNN Convolution Natural Network.
DSP Digital Signal Processing element on FPGA.

FF Flip Flop register on FPGA.
FPGA Field-Programmable Gate Array.

FPS Frame Peer Second.
HSG Histogram of Significant Gradients.

LBP Local Binary Patterns.
LRD Local Rank Difference.

LUT Look Up Table on FPGA.

SVM Support Vector Machine.



Chapter 1

Introduction

Nowadays, an increasing number of cameras and surveillance systems can be observed. We
can see cameras at toll gates, security cameras in buildings or police surveillance systems.
The amount of information that these devices produce is enormous, and it is not in human
power to process and interpret it all. The only option is to use computing power to analyse
the huge number of videos and frame sequences. Modern computer vision algorithms have
passed the point, where it is reasonable to start implementing them widely. Algorithms for
object detection and recognition, for example of human faces, pedestrians, cars, or traffic
signs already outperform human. In general, one of the disadvantages of advanced vision
algorithms is high computational complexity. For this reason, it is necessary to use powerful
computer systems with high energy consumption and cost. Also, it would be convenient to
process most data locally without the need for remote servers, so-called edge computing.

One solution can be the hardware acceleration of computer vision algorithms on FPGA
or ASIC chips. The aim is to create low-cost, low-power devices for real-time video pro-
cessing. The deployment of algorithms to FPGA and ASIC circuits is specific and differs
greatly from deployment to conventional computing systems. Usually, a direct implemen-
tation of computer vision algorithms without their modification is inefficient, slow and
resource-intensive. The acceleration of computer vision algorithms in hardware has long
been the goal of many scientific works. This topic is attractive due to its potential practical
application, and a combination of different research fields: image processing and hardware
acceleration.

This thesis presents my contributions to the state-of-the-art in the topic of visual object
detection in FPGA. Specifically, the work is focused on fast and powerful object detectors
with low demands on resources. Such detectors could be applied mainly in transport,
industry or security. One of the applications of the detector will be demonstrated on the
task of detecting license plates for parking control in residential zones. The benefits will be
shown in comparison to current technologies.

The contribution itself is in proposing methods for optimizing object detection on FP-
GAs. The main focus is on detectors using boosted soft cascades of classifiers with local im-
age features as weak classifiers. Sequential evaluation of weak classifiers has been upgraded
with parallelization by evaluation of several independent image positions simultaneously.
Also, a new approach for multi-scale object detection has been proposed; its advantage is
no need for external memory. Using these methods to create effective detector verifies the
hypothesis: that it is possible to design an object detector based on soft cascade deployed
in programmable hardware with resulting precision comparable to the state-of-the-art, with



real-time performance, with lower power consumption and less computing resource demands
comparing to existing ones.

The thesis consists of a commented set of articles. Next chapter introduces related
state-of-the-art. Chapter 3 presents the main contribution of the work. Chapters 4,5 and 6
are core of my dissertation thesis, representing commented re-formatted copies of my papers
[1, 2, 3]. The chapter 7 describes the application of the detector into practice, using it in
several research projects and outlines future work. The work finishes with a conclusion.



Chapter 2

Object detection in images using
embedded devices

This part of the dissertation thesis provides an overview of the state of the art of object
detection on hardware platforms. The focus is mainly on general object detection using
boosted classifiers and on a summary of other authors’ work on the topic of detection in
hardware. This chapter is included to introduce the reader into the topic because the papers
I published did not offer enough space for more detailed information. Recent scientific
contributions on the topic are also described, as our articles were published through the
years 2013-2020, and the state-of-the-art has evolved since then.

Object detection in image is one of the fundamental algorithms of computer vision.
The definition of object varies and it is largely application dependent. It is often defined
by a set of annotated example images [4]. Object detection in image is a popular topic
in the scientific community with wide practical scope. Over the years, many approaches
to object detection have been proposed. From the first methods based on hand-designed
ad-hoc detectors [5, 6] or template matching [7] trough part-based methods [8, 9, 10] the
field progressed to appearance-based detectors [11, 12, 13, 14, 15, 16, 17, 18|.

The appearance-based detectors use statistical analysis and supervised machine learn-
ing methods to learn distinctive object characteristics. The first of these methods used
Support Vector Machines (SVM)[19] in combination with Haar’s features[20] or Gabor
filters[21]. SVM is a mathematical method for searching best separating hyperplane in a
feature space. It produces classifiers with a simple structure suitable for parallel imple-
mentation. Modern approaches use SVM and Histograms of Oriented Gradient(HOG) for
detection of pedestrians[22, 23, 24, 25, 26], cars[27], traffic sign[28], etc. The most suc-
cessful detection methods designed for devices with limited computational resources are
based on sliding windows and boosted classifiers [11, 12, 13, 14, 29, 30, 31, 32, 33, 34, 35].
These methods enable creating powerful and accurate universal detectors of relatively rigid
and visually distinct objects such as faces [11, 36, 33, 30], pedestrians[14], traffic signs[37],
licence plates[38, 39], etc. Another large class of appearance-based detectors builds on
deep learning, specifically on Convolutions Neural Networks (CNN) [40]. These methods
represent state-of-the-art in terms of detection accuracy and variability of objects they can
handle [15, 16, 17, 41].

Over the years, many hardware implementations of various object detectors have been
proposed. The implementations typically belong to following categories of detection meth-
ods:



e Ada-Boost based detectors — cascades of boosted classifiers [11] with Haar image
features [29, 30, 31, 32, 33, 34, 35] or soft-cascades [12] typically with LBP/LRD
features [42, 43, 44].

e SVM [19] typically in combination with HOG [23, 24, 25, 27, 28].
e Boosted decision tree with Aggregate channel feature(ACF) detector [45, 46].
e CNN in various forms [47, 48, 49, 50, 51].

e Other methods implementing detection using background subtraction [52], keypoints [53]
or ad-hoc detection algorithms [54].

2.1 Object detection using boosted classifiers

Viola and Jones [11] in 2001 presented the first practical general object detector. It it uses
an efficient cascade of boosted classifiers with Haar-like image features (weak classifiers)
in a sliding window fashion to gradually classify overlapping image windows into back-
ground and object classes. Viola and Jones used the learning algorithm Adaptive Boosting
(AdaBoost) [55] which selects and sorts weak classifiers each based on a single computa-
tionally simple image feature by their importance. Haar-like features encode local image
freqency and can be efficiently calculated using integral image in constant time. The main
advantage of the detector is the use of the attentional cascade of classifiers, which is a
mechanism that decides very quickly on simple background areas and spends more time at
ambiguous positions. This ultimately reduces the computational complexity of detection
by several orders of magnitude. The combination of efficient features, powerfull classifiers
and the cascade structure resulted in a first real-time detector of the frontal face (running
at 15 frames per second on 384x288 pixel images at the time of publication). The Viola-
Jones detector had gained immense popularity and was the basis to a significant number
of modifications [12, 13, 56, 57, 14].

The most effective modifications of the attentional cascade of Viola-Jones is to let the
individual cascade stages to share information and to increase the number of rejection
decisions. For example, the soft-cascade of Bourdev and Brand [12] produces one long
classifier and thresholds for rejection decisions after each weak classifier. The rejections
in the Viola and Jones detector occur after the end of each stage, one of which usually
contains tens of weak classifiers. The combination of more frequent rejection decisions and
a single continuous classifier results in much faster detectors while maintaining the same
accuracy. However, the threshold selection method proposed by Bourdev and Brand is far
from optimal.

Sochman and Matas [13] proposed optimal rejection threshold selection scheme for soft-
cascades inspired by Wald’s Sequential Probability Ratio Test (SPRT). They used SPRT to
generate an optimal sequential decision strategy on weak classifiers selected by AdaBoost
which can additionaly include also positive acceptance thresholds. The resulting WaldBoost
algorithm can be considered the state-of-the-art in the field of boosted detectors.

Boosted classifier used for object detection can be build on various types of week
classifiers and image features. The main requirements on weak classifiers are high dis-
criminative power and low computational complexity. Viola and Jones [11] and follow-up
works [12, 29, 30, 31, 32, 33| utilised Haar-like image features. Haar features are wavelet
features that extract local frequency information. They originated from the theoretical
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Figure 2.1: (Top) ACF detector principle [57]. (Bottom) The principle of boosted cascade
training optimization as suggested by Bar et al. [14]

work by A. Haar [58]. Haar wavelets respond to oriented edges and bars in images and
Haar features can be calculated by convolution of an input image with the Haar wavelets.
The advantage of Haar features is constant time calculation from an integral representation
of an image.

Very popular features for object detection [42, 43, 59] are local binary patterns (LBP) [60]
which capture local shape of image intensity. They use sampling of the local neighbour-
hood to construct a binary code from intensity values which is invariant to monotonous
changes in image intensity and can be calculated in constant time. Similar features named
Local Rank Differences (LRD) [61] and Local Rank Patterns (LRP) [62] were proposed to
reduce memory requirements for weak classifier coefficient and for effective implementation
on GPUs [63, 59] and FPGA [64].

Dollar et al. [56] suggested to combine more types of image features as precomputed
image channels to improve detection accuracy (named aggregated channel features - ACF).
They use a combination of gradient histograms (HOG), colour (including grayscale, RGB,
HSV, and LUV), and gradient magnitude. For better performance, the features are pre-
calculated to separate image channels and optionally aggregated to lower resolution. Dollar
et al. also proposed simple decision trees as weak classifiers in the soft-cascade. ACF was
further extended by an effective multi-scale detection using Fast Feature Pyramids [57]
which calculates feature channels only for a sparse set of image scales which are used to
efficiently approximate the rest of the scales. This saves computing power and possibly
memory of hardware platforms.

Ohn-Bar and Trivedi [14] focused on the limitations of the boosted classifiers and de-
scribed the relationship between the capacity of boosting classifier, dataset size, and dataset
properties. They introduced knowledge from neural network training as data augmentation
into the training of boosting classifiers. Besides, they inspected the effect of increasing
model capacity on accuracy. They demonstrated that combining these approaches im-
proves the accuracy of detection. The resulting detectors (ACF+ and LDCF+) provide the
best-known accuracy among non-CNN techniques while operating in real-time.



2.2 Ada-Boost based hardware detectors

Since Viola and Jones published their real-time detector [11], there has been much effort
to implement the detector in hardware, typically in FPGAs [29, 30, 31, 32, 33, 34, 35, 42,
43, 44, 65].

One of the first FPGA implementations was proposed by Lai et al. [29]. Their parallel
implementation of the original Viola and Jones detector achieved a speeds up to 143 frames
per second (FPS) at 640x480 resolution and a single scale. Due to high demands on FPGA
resources, they had to limit the cascade to only the first three stages (52 features), which
led to low detection accuracy and the other stages had to be computed on CPU. Cho
et al. [30] proposed a similar approach with several parallel blocks computing classifiers
at different locations to accelerate the processing speed. Their implementation supports
multi-scale detection at the cost of storing the whole image to FPGA memory. This leads to
high memory demands and limited image resolution. These implementations of the original
detector used Haar feature with an integral image which is not really suitable for FPGAs for
several reasons. The integral image increases memory requirements — each pixel requires
a higher bit depth depending on the Haar feature size (even 20 and more bits per pixel are
need). However, the calculation of the features without the integral image directly from
the image data is very computationally demanding and not possible in constant time. The
integral image allows calculation in constant time and the maximum number of memory
reads required is 9 from different parts of the detection window depending on the specific
Haar feature shape and position. Such memory reads can not be aligned and result in
inefficient memory access. Reading these values from BRAM is restricted by the number of
memory ports and the parallelization is limited by the non-uniform memory access pattern.
Typicaly, the memory access limitation is mitigated by scaling the image and implementing
the sliding window as a register array with FIFO line buffers (stored in BRAM) to enable
fast reading of integral image in a single clock cycle. It allows for parallel access to all pixels
in the window using a multiplexer network. The size of this multiplexer network increases
linearly with the size of the detection window and with the number of pixels accessed in
parallel. This causes enormous demands on logic resources and limits the implementations
to using only small and fixed window sizes.

Huang and Vahid [34] partially solved the multiplexer network size problem by limit-
ing feature positions. They developed a method with automatically generates a minimal
multiplexer network for a specific detector. Brousseau and Rose [35] reduced the multi-
plexer network size by preloading adjacent pixels, allowing parallel evaluation of classifiers
in adjacent scanning windows. However, this requires the use of a very complex evaluation
control mechanism which is necessary to rearrange execution of classifiers after some are
terminated in order to maintain high utilization of the parallel memory accesses.

Other works used local image patterns instead of Haar features. Jin et al. [42] proposed
a design of a fully pipelined monolithic Ada-boost classifier with LBP which executes a all
features for one detection window position in parallel per one clock cycle. This results in
a high-speed detector; however, the demands on logic and register resources are enormous.
Kadlcek and Fucik [43] proposed similar fully pipelined architecture with LBP features
utilizing unique and unusual LBP shapes selected by a genetic algorithm. However, the
high expense of FPGA resources allows only for the implementation of a limited number of
weak classifiers.

Zeméik and Zadnik [44] suggested an approach based on the Wald-Boost detection
algorithm with local rank differences (LRD) features. They precompute and store several
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Figure 2.2: Complex memory access structure for LRD feature evaluating proposed by
Zemcik[44].

Table 2.1: Comparison of performance and power consumption of Ada-Boost based hard-
ware detectors. *Only a pre-dection with a shortened classifier is done in FPGA, further
post-processing is needed.

Feature Image size FPGA LUT FF BRAM CLK FPS
Lai 2007* [29] Haar 640x480 Virtex2 VP30 21K 8K 44 126 143
Granat 2007 [31] Haar 256 %256 Virtex2 LX250 - - 100 24 <5
Zemcik 2007 [44] LRD 640x480  Virtex-II 1490(SL) - 14 100 22
Hiromoto 2008 [32] Haar 640x 480 Virtexb LX330 63K 56K - 160 30
Cho 2009 [30] Haar 640x480 Virtex5 LX110T 67K 22K 41 - 7
Kyrkou 2011 [33] Haar 320240 Virtex2 VP30 26K 24K 24 100 64
Huang 2011 [34] Haar 320240 Virtex5 LX155T 80K - - 65 100
Brouss 2012 [35] Haar 320x240 Stratix4 GX530  — - - 125 50
Jin 2012%* [42] LBP 640x480 Virtex5 LX330 128K 75K 286 125 300
Kadlcek 2013* [43] LBP 1024x1024  Virtex2 LX250 1007(SL) - 31 130 130

smoothed images corresponding each to a different shape of LRD features. A sophisticated
memory pattern allows reading block of 3x3 values to evaluate one weak classifier in one
clock cycle. However, storing the precomputed values increases demands on memory, and
the complex memory access structure requires too many logic resources.

2.3 ACF based hardware detectors

Object detectors based on ACF [57] are very popular due to their excellent performance,
good accuracy, and an available set of ready-to-use classifiers (faces, pedestrians, traffic
signs, cars) and a toolkit to train user-specific classifiers [66]. Song et al. [67] proposed
the first implementation of ACF in FPGA for pedestrian detection in the driver assistance
system. This non-parallel implementation of the original ACF detector used ten feature
channels. Multi-scale detection, however, requires multiple readings of the image from an
external memory.

Mitsunari et al. [45] introduced a more effective implementation of ACF. They focused
on problematic parts of the algorithm to enable parallelization on FPGA. The calculation
of the HOG feature (using trigonometric functions and a square root) was replaced by an
approximation (using only multiplication and addition). Further, they reduced memory
requirements with only 2% accuracy penalty by quantizing both classifier’s coefficient and
thresholds (from 32 to 2 bits). Decision trees used in ACF as weak classifiers requires
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Table 2.2: Comparison of performance and power consumption of ACF and SVM based
hardware detectors. *Only feature preprocessing done in FPGA. **Only a pre-dection with
a shortened classifie

Type Stride Image size FPGA LUT FF BRAM DSP CLK FPS
Martelli 2011* [68] SVM+Covariance 8 640x480 XC6VLX240T 1553 (SL) - 3 22 154 132
Yazawa 2015 [69] SVM+HOG 5 640480 Cyclonelll 17K (LE) 11K - - 70 13
Ma 2015 [23] SVM+HOG 4 1620x1200 XC6VLXT760 46K 187K 381 190 150 10
Said 2016* [70] SVM+Covariance 4 640x480 XC6VLX240T 1357 (SL) - 8 46 222 292
Song 2016 [67] ACF 4 640x480 166 30
Kyrkou 2016 [65] SVM+LBP 5 800600 Spartan6 LX150T 33K 20K 256 59 70 40
Bilal 2017 [71] SVM+HSG 4 640480 Cyclone IV 751 496 3 0 50 25
Mitsunari 2018 [45] ACF 4 1920x1080 ZX7Z045 138K 149K 389 128 — 176
Durre 2018 [25] SVM+HOG 8 1920x1080 Stratix V 3529 2657 ~41 26 142 68
Wang 2018* [24] SVM+HOG 4 640480 Cyclone IV 17K K 338 144 108 60
An 2019 [72] SVM+HOG 8 1920x1080  Stratix IV 7625 4503  ~7 41 - 60
Li 2019%* [73] SVM+HOG 8 512x512 Stratix IV 313K 90K 859 268 320 10000

complicated memory access because selected decision nodes depend on the input data.
Thus, parallel processing is complicated due to memory access conflicts. Mitsunari et al.
resolved this issue by storing each channel in a separate memory bank in combination with
SIMD-like processing which enabled channel-wise parallel implementation. To maximize
the efficacy, the memory access conflicts are minimized by a complex processing order
scheduling.

2.4 SVM based hardware detectors

SVM is a prevalent classification algorithm utilized for implementing object detectors in
FPGA [23, 68, 69, 70, 65, 71, 25, 72, 73]. This is thanks to the fact that the SVM detectors
have simple rigid structure suitable for parallel implementation — they include space-
uniform feature extraction and a multi-channel convolution. SVM classifiers with HOG
features [22] have support in OpenCV [74] which also includes set of pre-trained classifiers
(pedestrians, traffic signs, cars, etc.). This facilitates experimentation and testing. How-
ever, the absence of an attention method in the basic SVM detectors is disadvantageous.
Unlike boosted detectors, SVM detectors do not incorporate early rejection, therefore it is
necessary to evaluate all features at all image positions. That leads to increased demands on
computing resources and/or processing time with the associated increased power consump-
tion. HOG feature evaluation on FPGA requires a large number of complex computations
on floating-point arithmetic. Square root, arctangent, and normalization (division) evalua-
tions are necessary. [75]

Martelli et al. [68], and Said and Atri [70] proposed a SVM detector with set of image
features extracted by learned linear filters. The calculation of the above is much easier
than HOG evaluation. They use FPGA to accelerate the feature extraction. The SVM
calculation itself takes place in a connected general purpose processor.

Ma et al. [23] implemented the Opencv version of the HOG+SVM detector [22]. They
applied a fixed-point arithmetic instead of the original floating-point arithmetic. In their
implementation, HOG feature rows are processed in parallel. Since cells in one row can
be used for block normalization of the next row, alternating between odd and even rows
prevents computing histograms twice, and leads to a processing speed-up. Bilal et al. [71]
use Histogram of significant gradients (HSG) instead of HOG. The hardware for HSG
calculations is simplified and does not require floating-point arithmetic.

11



Table 2.3: Comparison of performance and power consumption of selected CNN based
hardware detectors

CNN  Image size FPGA LUT FF BRAM DSP CLK FPS
Nakahara 2018 [47] Light YOLOv2 224x224 XCZU9EG 135K 370K 1706 377 300 300
Ma 2018 [48] SSD 300x 300 GX2800 532K - 3844 4363 300 34
Nguyen 2019 [49] Simple YOLOv2 416x416 ~ XC7VC707 155K 115K 1144 272 200 60
Kang 2019 [50] VGG16+SSD 640x480 XC7VX690 181K 497K 1470 3074 210 42
Wu 2019 [51] MobileNet+SSD - XCzZU2 161K 301K 771 2070 430 31

Li et al. [73] suggested a high-speed vision platform for detection of multiple highly
distinctive objects. They use a short SVM classifier with HOG features in a highly parallel
system that receives the input of 64 pixels per clock cycle. This allows detection of fast-
moving objects at 10000 fps.

2.5 CNN based hardware detectors

Historically, the first hardware object detectors used [76] neural networks. They were typi-
cally designed to handle one specific problem and did not achieve satisfactory performance
and accuracy. The use of neural networks was then temporarily abandoned, and the focus
was on methods based on boosted classifiers. Along with the growing popularity of deep
learning for object detection [15, 16, 17], a large number of articles discussed the possibilities
of their practical implementation on hardware platforms [77, 78, 49, 51, 47].

CNN are computationally intensive. Graphic Processing Units (GPUs), which have
massive parallel performance, enable to compute CNN-based detectors in a reasonable
time. However, GPUs have very high power consumption, so the use of FPGAs could have
significant benefits due to massive parallel and power-efficient computing. However, it is
hard to deploy standard neural networks into embedded devices because of a large number
of operations and parameters CNN-based detectors have. Another disadvantage is the use
of floating-point arithmetic in standard networks, which is resource-intensive on FPGAs.

Several early FPGA implementations used the floating-point representation that has
enormous computation costs [77, 78]. Some works [83, 84, 85] demonstrated that a floating-
point representation is unnecessarily redundant and the CNNs coefficients and intermediate
results can be retrained and quantized to a very low-bit precision (even 1 or 2 bits for net-
work weights) without a significant loss of accuracy. The quantization approach has been
adopted for FPGAs by multiple authors [49, 51, 47]. Nakahara et al. [47] used standard
YOLOv2 CNN [16] and implemented a mixed-precision CNN, which consists of binarized
input layers and half-precision (16 bit) output CNN layers. The resulting detector achieved
better accuracy than a fully quantized detector. Nguyen et al. [49] used a binarized version
of YOLO CNN [15] and found that memory access and memory throughput to external
DRAM memory is the main factor limiting performance. They focused on decreased dy-
namic random access to memory in order to increase performance.

Another approach how to optimize CNN-based detector is to use lightweight architec-
tures such as Xception [18] and MobileNetV2 [17] which use depthwise separable convo-
lutions as a replacement to the standard convolutions. Depthwise separable convolutions
significantly reduce the number of operations and parameters with only a limited loss of
accuracy. Wu et al. [51] compared standard convolution with separable convolution, and in
addition, they rearranged input features and weights to increase performance.
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Figure 2.3: ROC curves of selected detectors on FDDB: A Benchmark for Face Detection
in Unconstrained Settings [79]. ASFD [80] - the best current method using CNN; Faster
RCNN [41] - very popular CNN based method; LDCF+ [14] - the best current boosted
classifier based method(ACF+); ACF [57] - boosted decision tree classifier; Viola-Jones [11]
- original algorithm Viola-Jones using AdaBoost and Haar features; Kienzle et. al. [81] -
SVM based detector with HOG features
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Figure 2.4: ROC curves of selected detectors on Caltech Pedestrian Dataset [82]. Important
algorithms: VJ [11] - original Viola-Jones detector using AdaBoost and Haar features;
HOG [22] - SVM based detector with HOG features; LDCF [57] - boosted decision tree
classifier with ACF; F-DNN [26] - the best current CNN based method
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2.6 Summary

Figure 2.3 and Figure 2.4 illustrate a comparison of selected types of detectors for faces [79]
and pedestrians [82]. These datasets are standardly used to benchmark detection methods
and they include highly challenging scenarios including partially overlapped objects, over-
and underexposure, tiny and big objects, and various rotations. Comparisons on older
datasets (as used by Viola and Jones [11]) would make no practical sense nowadays because
CNN-based methods achieve nearly 100% accuracy at the moment. The ROC curves show
that algorithms based on CNN achieve the best accuracy in both detection tasks. Advanced
boosted algorithms ACF [57] and ACF+ [14]) provide a slightly lower accuracy but still
outperform the original algorithms by Viola-Jones and SVM+HOG based [26, 22]. This is
especially evident in face detection, where SVM+HOG based algorithms practically do not
work at all. However, these are the results of standard implementations running on a CPU
or GPU. Efficient CNN detector implementations in hardware use optimization methods
such as quantization of coefficients or network size limitation which, in general, reduce
detection accuracy [83, 84] almost to the level of the boosted classifier based algorithms.

Overview Tables 2.1, Tables 2.2 and Tables 2.3 display the speed and amount of re-
sources required for various implementations of the object detector in hardware. SVM
based detectors achieve seemingly excellent performance; for example, Li [73] reports 10000
fps at resolution 512x512 pixels. However, direct comparison of the reported frame-rates
is almost meaningless as the detectors are designed for different types of objects, they pro-
vide different detection accuracy, the scan images at different resolutions and with different
window strides. Moreover, the individual detectors significantly differ in the resources and
power they consume. In general, modern boosted classifiers provide very good accuracy
and speed trade-off in high-throughput and resource limited scenarios, where only a small
number of object classes with relatively consistent appearance need to be detected. CNNs
excel at more complex detection tasks where resource and power effectiveness is not that
crucial.
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Chapter 3

Goals and Contributions

This thesis focuses on object detection in images on hardware platforms. The scope of the
work is to shift the scientific knowledge and apply it into the practice.

Presumed usage of object detectors developed here is industrial, transport or security
applications, i.e. in tasks such as the detection of faces, pedestrians, products, licence
plates. Practical deployment of such object detectors needs to meet specific requirements.
The resolution of the processed image is an important parameter. This resolution depends
a) on the resolution of the input image, b) on the expected size ranges of the searched objects
and c) on the size of the detection window. Thus, the expected object size ranges signif-
icantly affect the required performance of the detector. Traffic and security applications
require approximately 10 to 20 frames per second for suitable object tracking. Industrial
applications often require even higher processing speeds. High-speed detectors also allow
for processing image data in the camera without storing them on a fast external memory;
the absence of external memory further reduces the price of the resulting device.

A typical requirement is that the detectors should achieve the best accuracy possible.
In general, object detectors often balance a speed-precision trade-off. Detection of visually
diverse, rotated, or distorted objects will either be less accurate or will require a complex
system with a large number of computational resources. For example, in the task of licence
plates detection in toll gates, where the approximate size and rotation is known, excellent
accuracy can be expected. However, a similar task, licence plates detection for parking
control in residential zones, is more challenging due to unconstrained conditions (variable
position, scale, rotation, etc.), and therefore lower accuracy can be expected.

The technical goal is to create a powerful universal object detector for FPGA hardware
with good accuracy and low resource consumption. Such detector should process at least
FullHD video at 15 frames per second and should detect small and large objects with limited
variability. The detector should achieve accuracy (recall with precision 0.70) of at least 95%
for face detection and 99% for LP detection. Important parameters for the low price of
the device are low power consumption and a small number of FPGA resources used. The
detectors are expected to be utilised in smart cameras. Such smart camera should perform
the maximum number of operations directly in-site and send out only the results for further
processing. Thanks to this, it would be possible to reduce the data flow from the camera
as expected by edge computing.
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3.1 Technical implications

At the beginning of my research work, there were already several successful attempts to
create an object detector in hardware [30, 31, 32, 33, 34, 35, 42, 44]. A detailed overview
of the individual solutions was given in the previous chapter. In summary, the results show
that the practical use of these detectors is limited. In order to increase the performance
and accuracy of detectors and the resolution of the processed image, it is necessary to
improve current detection methods in hardware, modify detection algorithms and apply
hardware-specific features.

Choice of classifier algorithm

Hardware detectors based on boosted classifiers have the most advantages for the applica-
tions mentioned above. The specifically targeted ad-hoc detectors have an excellent power-
to-resource ratio in some applications. However, the ad-hoc detectors are not universal,
the accuracy of detection is low, and they do not cope with changing conditions. Creating
a detector for a new object class means a lot of work and an uncertain result. The SVM
based detectors have good performance and relatively low resource consumption. However,
they provide low detection accuracy not applicable in modern applications.

CNN based detectors provide the best accuracy and excel at complex detection task.
Due to a large number of operations, they have high demands on logic and memory resources
and have relatively low performance. Besides, the CNN optimisations for FPGAs means a
loss of accuracy down to the level of a modern boosted classifier. Considered tasks such as
face/pedestrian detection and licence plate detection have only a small number of object
classes with a relatively consistent appearance, for which CNN seems unnecessarily complex.
In conclusion, the modern boosted classifiers provide sufficient accuracy and speed trade-off
considering these tasks with high-throughput and resource-limited scenarios.

Individual modifications of boosted classifiers, such as soft-cascade or Waldboost [11,
12, 13], only differ in the training process. The evaluation step does not vary much; the only
difference is that soft-cascades and Waldboost allow rejecting after each weak classifier and
the original Viola-Jones algorithm [11] allows rejecting after each stage (a set of several weak
classifiers). The planned detector should evaluate all modifications of boosted classifiers.
The best way to reach high detection accuracy and performance is training the boosted
classifiers with Waldboost algorithm [13] and with augmentation, as suggested by Bar et
al. [14].

Two approaches for implementation of boosted classifier based detector were developed
— fully pipelined monolithic detector [42, 43] and sequential detector [44, 35, 33]. Fully
pipelined detectors assess all features for one detection window position in parallel per
one clock cycle. In general, the fully pipelined detectors are high-throughput and easy to
implement. However, they have high demands on FPGA resources and usually evaluate only
a limited number of weak classifiers, which leads to lower accuracy. Sequential detectors
assess the features gradually. The parallelisation of sequential detectors is possible by
processing multiple features or multiple positions at the same moment. They require fewer
resources and allow for better accuracy, but they are more challenging to control. I have
focused on sequential detectors because they meet the required parameters better and offer
space for further development.
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Choice of weak classifiers

Many authors [31, 32, 30, 33, 34, 35] use Haar-like features as weak classifiers. High bit depth
for storing integral image and complex logic to access feature values make them resource
demanding. Therefore, it isn’t easy to increase the performance of such detectors. Other
works [44, 42, 43] apply LBP or their modifications (LRD, LRP) as weak classifiers. Their
advantage is in loading only surrounding pixels (block reading) for effective calculation.
LBP-like features are mainly used in combination with fully pipelined detectors [42, 43].
Zeméik and Zadnik [44] verified the sequential approach by developing a suitable object
detector. Their detector used LRD features with a size of 3x3 and subsampling of the
original image in the ratios 1x1, 1x2, 2x1 and 2x2. For direct evaluation of the feature, it
may require loading blocks of up to 6x6 pixels. It seems unnecessary to read data from the
sliding windows (usually created as a register array with FIFO line buffers), and a better
option is to read it directly from the addressable memory composed of BRAM. An optimal
structure of this BRAM memory allows data reading without the use of a complicated
multiplexer network. Zeméik and Zadnik reduced the logic resources required for reading
such large blocks by precalculating the subsampled versions of the image into memory.
Reading only 3x3 blocks already precalculated in memory becomes sufficient for feature
evaluation. The disadvantages are increased memory requirements and the need for storing
differently sized subsampled versions of the original image. This has led to a complicated
memory structure and high logic and memory resources demands.

Hereby proposed detectors are inspired by the detector introduced by Zemcik and Zad-
nik [44]. The main difference is that local image features of different sizes are not calculated
from precalculated values, but directly from the original image. It saves memory resources,
but on the other hand, it means reading blocks of different sizes (3x3, 3x6, 6x3 and 6x6
pixels), which is more complicated compared to the original constant size of 3x3. For sim-
plicity, a 6x6 block (the worst case) can always be read and then subsampled as needed. A
well-designed memory structure allows reading of unaligned 6x6 blocks at the same time,
thus reducing logic and memory requirements.

Multiscale-detection

Designing an effective multi-scale detection on FPGA is an unresolved issue. Many related
works do not address multi-scale detection at all [29, 31, 44, 43]. Several works [30, 32]
suggest storing the entire image in BRAM memory, but this is not always feasible, especially
at higher resolutions. Other works solve multi-scale detection by multiple image loading
from external memory [34, 35]. Kyrkou et al. [33] reduced the number of loading from
external memory by using more classifiers with different window sizes.

We have proposed a more efficient method of multi-scale detection. It does not require
multiple image readings and uses significantly less memory than needed when storing entire
images. The core is that the single scale detection requires only a narrow strip of the
image memory, with the minimum height as the detection window. The same principle
can be used for smaller versions of the image in multi-scale detection. Furthermore, it
enables generating these smaller versions from the previous ones with fixed scale unit on-
the-fly. The proposed method allows detecting objects of different sizes directly from the
data coming from the sensor; the resulting system may not contain external memory at
all, which would reduce the cost of the device. This approach can be further combined
with the use of multiple classifiers with different window sizes. However, the memory
requirements for storing multiple classifiers using LBP /LRD features are often greater than
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the memory consumption when storing stripes of image. But the benefit always depends
on the resolution of the input image, the height of detection window and the number of
down-scaled versions.

Detector optimization

Parallel processing is one way to increase the performance of the detector on FPGA. Many
authors [30, 29, 33] use parallel computation of more features in one position. Since the
average number of evaluated features in one position is very small, it does not allow a
high level of parallelization. When using the sliding window approach, it is necessary to
evaluate all weak features and only then it is possible to move to the next one. In pipeline
processing, premature rejection often results in a penalty meaning a speculative evaluation
of other features or insertion of blank operations. Brousseau and Rose [35] suggested a
method of evaluating features in neighbouring positions. The number of evaluated classifiers
in specific positions is variable, which causes problematic divergence of the calculation.
Besides, this approach combined with sliding windows leads to an increase of multiplexing
network complexity, and thus an increase in logical resources. The detector introduced by
Zeméik and Zadnik [44], which is the basis for the proposed detectors, did not use any
parallel processing.

We have proposed an approach for evaluating multiple positions in the pipeline simul-
taneously. This is possible by reading the data directly from BRAM memory, where the
data for evaluating all positions of the entire line are accessed. It enables us to evaluate a
bigger number of independent positions at the same time at various stages of evaluation.
After evaluating the required features in one position, there is no need to wait for the eval-
uation of the surrounding positions; it is possible to move to the next position in the same
line. This eliminates the issue with divergence and allows the creation of a longer pipeline
without penalizing after the early rejection. The extension of the pipeline has a positive
effect on the increase of the maximum circuit frequency and consequently, the rise of the
detector performance.

We also suggest using more detectors connected in a cascade to increase performance.
Each of these detectors performs detection in a different part of the image and at a dif-
ferent scale version. The optimal distribution can be precalculated so that the number of
positions evaluated by each detector is approximately the same. This modification allows
the detector’s performance to be scaled very well for the needs of a specific application.

3.2 Goal of the thesis

The primary goal of this thesis is to improve the state-of-the-art in the field of object
detection in the image on hardware platforms. The hypothesis is: It is possible to design
an object detector based on soft cascade deployed in programmable hardware with resulting
precision comparable to the state-of-the-art, with real-time performance, with lower power
consumption and less computing resource demands comparing to existing ones.

The method of proof is creating a hardware detector that meets the required parameters
and thus exceeds the state-of-the-art. Completing this task will require developing new
methods and performing many experiments. In order to investigate of task the detector
design, I have chosen to pursue the following methods:

e using local image features (LBP/LRD) and soft cascade classifiers in sequential engine
with efficient block reading of image values for weak classifier evaluation,
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e creating a multi-scale on-the-fly detector for high-resolution image data processing
(without the need for external memory),

e using parallelization of weak classifier calculations by processing multiple positions
at the same time, both at the level of sequential engine and cascade connection of
multiple detectors.

The above proposed methods are being examined with the aim to confirm the presented
hypothesis. The experiments will be performed in the detection of faces, pedestrians and
license plates. Comparisons with other authors will be made on the face detection task,
which is usually presented on other papers. For a fair comparison of performance due to
different resolutions, detection window size, detection stride, multi-scaling, etc. a conversion
to the number of processed detection windows per clock cycle will be used.

3.3 Core contributions

This thesis contributes to the state-of-the-art in the field of object detection in the image on
hardware platforms. Three papers validating the hypothesis were published. They represent
the experimental proof and demonstrate that it is possible to create the detector with
defined parameters. The papers show that the proposed hardware detector outperformed
the state-of-the-art in several aspects:

e better detection performance among boosted classifier — multi-scale face detection on
Full HD (1920x1080 pixels) video at 60 fps (for object size 21 pixels and more) versus
640x480 at 30 fps by Hiromoto et al. [32],

e better detection performance in processed detection windows per clock cycle among all
hardware detectors — up to 2.33 versus only processing detector with 1.97 by Jin [42]
of full detector with 0.95 by Zeméik and Zadnik [44],

e better performance/resources ratio — in all resources: LUT, REG and BRAM; the
graphical comparison is in paper [2],

e better accuracy in face detection on CMU dataset [11] — recall 97 % with 0.2 false
positives per image (FPPI) versus recall 91 % with 0.2 FPPI presented by Hiromoto
et al. [32] and Kyrkou et al. [33],

e comparable accuracy in licence plate detection — aligned licence plates recall 99 %
with 0.2 FPPI and unconstrained recall 98 % with 0.2 FPPI on own dataset

The contributions that implement experimental proof of thesis were presented in the
following papers:

o High performance FPGA object detector: Hardware prototype, FPL! 2013. Paper with
introduce an architecture of an engine for high-performance multi-scale detection of
objects in videos based on WaldBoost training algorithm. The key properties of the
architecture include the processing of streamed data and low resource consumption.
The engine is implemented in FPGA and that it can process 640x480pixel video
streams at over 160 fps without the need of external memory.

'nternational Conference on Field Programmable Logic and Applications
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o Cascaded Stripe Memory Engines for Multi-Scale Object Detection in FPGA, TCSVT?
2019. Evolution of the previous paper witch expands performance and usability.
FPGA detector can process a stream of image data so that it stores a narrow stripe
of the input image and its scaled versions and uses a detector unit which is efficiently
pipelined across multiple image positions within the memory. We show how to process
images with up to 4K resolution at high framerates using cascades engine. As a detec-
tor algorithm use boosted soft cascade with simple image features that require only
pixel comparisons and look-up tables; therefore, they are well suitable for hardware
implementation.

e Unconstrained License Plate Detection in FPGA, submitted to VEHITS?. This paper
shows the practical use of the previous detector in traffic application on the task of
detecting unconstrained License Plate. To detect and localize license plates is use
multiple sliding window detectors based on simple image features, each tuned to a
certain range of projections. On a large dataset is detection rate 98%.

Results presented in these papers proof the hypothesis of this thesis.

3.4 Other publications

I am a co-author of some other publications dealing with other areas of image processing.
I focused mainly on the effective implementation of the algorithm on the FPGA and the
modification of the algorithm for stream image processing on the fly, ie without the use of
external memory. List of my other publications in chronological order:

e Single-Loop Approach to 2-D Wavelet Lifting with JPEG 2000 Compatibility, SBAC-
PADW* 2015 [86]. In this paper is presented a novel approach to 2-D single-loop
wavelet lifting with can be efficiently pipelined in hardware. A newly developed 2-D
core of CDF 5/3 wavelet filter is presented that, using a new sequence of operations,
simplify the design. Moreover, the proposed approach, that uses one pass for 2-
D transform, directly produces final output and reduces significantly the need for
storing intermediate results into memory.

e High Dynamic Range Video Concepts, Technologies and Applications, Real-Time HDR
Video Processing and Compression Using an FPGA, 2016 [87]. The chapter in the
book deals with hardware acceleration of HDR, video acquisition and compression.
Individual HDR images are obtained by composing several differently exposed images
obtained with a standard camera. Description of HDR compression and its imple-
mentation on FPGA.

e True HDR camera with bilateral filter based tone mapping, SCCG? 2017 [88]. In paper
is presented a real-time HDR processing system evaluated on a custom hardware cam-
era platform. They are proposal modifications of the the State-of-the-arts algorithms
enabling efficient implementation on FPGA platform and real-time performance. The
main focus of the paper is on acceleration of Durand local tone-mapping operator in-
volving real-time bilateral filter. The proposed solution is compared to the existing
research results in terms of speed, resource consumption, and numerical accuracy.

2IEEE Transactions on Circuits and Systems for Video Technology

3International Conference on Vehicle Technology and Intelligent Transport Systems

“International Symposium on Computer Architecture and High Performance Computing Workshop
®Spring Conference on Computer Graphics
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The publications presented above do not directly contribute to the scientific goal and hy-
pothesis validation of the dissertation. However, technologically they add to the options of
using object detection in images. In some applications, for example, in bad light conditions
such as sharp backlight, it is advantageous to combine object detection with HDR image
processing to improve accuracy. In addition, the platforms created in these publications
were used for experimental work with object detection.
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Chapter 4

High Performance Architecture for
Object Detection in Streamed
Video

Before 2013, when this article was published, several successful attempts to create an object
detector in hardware were proposed. However, their parameters were insufficient, and the
practical use of these detectors was limited. In this paper, we have proposed a practical
object detector in hardware that allows detected objects on video with resolution 640x480
and 160 frame per second.

Main contribution is to use boosted soft cascades of classifiers with local image features
as weak classifiers. The combination of the unique structure of the memory and the local
features enabled the effective sequential evaluation of weak classifiers. Another advantage
is the new detection method, which allows the detection of objects of different sizes on-the-
fly, i.e. without reloading the image and extreme demands on FPGA memory resources.
Proposed detector outperformed state-of-the-art in better detection performance and better
performance /resources ratio.

The work was also selected for a presentation within the FPL Demo Night [89], where
it had good reviews.

The work builds on the previous work of Pavel Zemdéik [44]. My contribution in this
paper was designing a memory structure for efficient reading of image values per block for
effective evaluation of a weak classifier. Also, I suggested on-the-fly multi-scale detection
and implemented a detector simulator in C language to verify detector properties. Finally,
I implemented and tested the detector in the VHDL language.
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High Performance Architecture for Object Detection in Streamed
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ZEMCIK Pavel, JURANEK Roman, MUSIL Martin, MUSIL Petr a HRADIS Michal. High
Performance Architecture for Object Detection in Streamed Videos. In: Proceedings of FPL
2013. Porto: IEEE Circuits and Systems Society, 2013, s. 1-4. ISBN 978-1-4799-0004-6 [1]

Author participation: 30 %
Conference ranking: A2 (Qualis!)

Abstract

Object detection is one of the key tasks in computer vision. It is computationally intensive
and it is reasonable to accelerate it in hardware, and especially in programmable hardware.
The possible benefit of the acceleration is reduction of the computational load of the host
computer system, increase of the overall performance of the applications, and reduction
of the power consumption. In this paper, we shortly review the WaldBoost-based object
detection algorithm and introduce a novel architecture of engine for high performance multi-
scale detection of objects in video. We implemented the engine in FPGA and we show that
it can process 640 x 480 pixel video streams at over 160 fps without the need of external
memory, and with only modest consumption of FPGA resources. We evaluate the design,
compare it to state of the art designs, and discuss its features and limitations. We conclude
with remarks for future work.

4.1 Introduction

Object detection is one of the key methods used by the contemporary image and video
processing applications, such as security and surveillance, production control, quality in-
spection, and human-machine interaction. One of most widely used methods [11] uses
classifier to evaluate every sub-window of an input image in order to determine whether
the area contains target object or not. In case of objects occurring in multiple sizes, the
detection should be performed in multiple scales of the images or multiple sizes of the
classification window.

Several authors proposed hardware implementations of object detectors [30, 34, 90, 33,
29, 44]. In most cases, they use cascade of boosted classifiers proposed by Viola and Jones
[11] but other approaches to the detection, such as neural networks [91], are also used.
Many object detectors use the original detection cascade with Haar features [30, 33] that
are not particularly suitable for hardware implementation. Moreover, most of the designs
use relatively large memory structures to store the input image. These drawbacks are
avoided in the presented design.

The key properties of our architecture are the following. We use very simple feature
extractors — Local Binary Patterns (LBP) [92] and Local Rank Functions (LRF) [93]. We
replaced the cascade of boosted classifiers with WaldBoost [13] classifier, which provides
improved detection speed and accuracy. At the same time, the engine does not need external
memory storage as it requires only a narrow image buffer stripe which fits in the on chip
memory.

"http://www.conferenceranks.com/
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The architecture can handle streamed input, process it, and add detection results into
the video stream in real-time A single instance of the detection engine implemented in
FPGA can process 640 x 480 pixel video stream faster than in real-time — at over 160 frames
per second with the clock speed of 152 MHz while consuming around 0.5 W of power. The
accuracy of the detection measured on the task of face detection reaches over 85 % with
one false positive detection per image. When synthesized, it consumes only modest amount
of FPGA resources and thus multiple instances of the detection engine can be implemented
in a single FPGA chip in order to boost the performance, or to enable detection of multiple
object types at the same time. Special focus was put on minimization of the expensive
memory structures usage and on low energy demand.

The paper describes the architecture, its implementation in Xilinx Spartan 6 LX45T
FPGA, evaluates its properties on the face detection task, and compares it to the state of
the art detection architectures.

4.2 Related Work

The following sections briefly review object detection with classifiers, methods of feature
extraction, and methods of implementation of the detectors in hardware platforms.

Object Detection with Classifiers

Object detection with classifiers is one of the fastest methods for robust object detection
in images. The best known and most widely used detector training algorithm is Cascade
of boosted classifiers proposed by Viola and Jones [11]. The detection cascade subdivides
the classifier into several increasingly complex classifiers (called stages). After evaluation
of a stage, a decision about the class of the input image is made. Early stages can reject
majority of background samples and thus the computational complexity is kept quite low.
Every stage is composed from very simple elementary classifiers called weak hypotheses.
More advanced method, Soft cascade [12], learns a sequential classifier which makes de-
cision about image class after evaluation of every weak hypothesis. In this work, we use
WaldBoost algorithm [13], which produces soft cascade classifier represented by a sequence
of weak hypotheses h(t) = ((é(t), a®, H(t))thl where T is the total number of weak hypothe-
ses. Every hypothesis contains parameters of feature extraction ¢®), a list of responses
a® and a threshold 1), Response of t-th weak hypothesis h®) on image sub-window X is
obtained by indexing o(*) using the response of the corresponding image feature f (X, qb(t)),
see Section 4.2.

t
k
HO(X) = Za;& 4069 (4.1)
k=1
(t) (®)
(#) _ 0 H (X) <46
SHX) { St (X) otherwise (42)

The response of the strong classifier H®) in every step is accumulated (4.1), and tested
against #) (4.2). When the sum falls below the threshold, the evaluation ends as the input
is likely to be the background. If the evaluation reaches the last weak hypothesis, the final
decision is positive and it is likely that the object has been detected.
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Figure 4.1: Nine cells C are taken from X according to feature parameters ¢. Central cell
c is marked by red, and border cells C? are marked by green (applies for LBP evaluation).

Given an input image, the classifier is presented with its sub-images X from every
position. Thus, every image area is classified and the positive final decisions are treated as
detections. Multi-scale detection is usually solved either by scaling of classifier window, or
scaling of the image. In this work, we explored both options.

Feature Extraction

So far, most widely used image features in both software and hardware are Haar features
[94] as they proved to be a good information extraction tool for various tasks [34, 33, 29].
Haar features calculate differences of image intensities in adjacent rectangular areas. Other
features, such as Local Binary Patterns (LBP) [92] or Local Rank Functions (LRF) [93],
perform comparably or better than Haar features, and they offer interesting properties from
the implementation point of view [93, 95, 44]. Another features, quite frequently exploited
for detection, are Histograms of Oriented Gradients (HOG) [22], 3D Haar features [96], and
others [97, 90]. Such features typically have good properties for various tasks, including
detection of faces or pedestrians, but they are not suitable for hardware implementation.

In the presented work, we use LBP and LRD (subset of LRF) features, and parametrize
them by their geometrical properties. LBP features are defined as ¢“BF = (z,y,u,v)
where x,y corresponds to position in image X, and u,v € {1,2} is size of feature cells
in pixels. LRD features additionally contain identifiers of two selected cells a and b, thus
GLRD — (z,y,u,v,a,b). A feature is evaluated from 3 x 3 grid of cells C represented by
sums of their values in X, see Figure 4.1. Equations (4.3) and (4.4) evaluate LBP and LRD
features respectively ([-] returns 1 when the comparison is true, 0 otherwise). Parameters
X and ¢ impose C' as mentioned above. LBP features compare central cell ¢ with all other
cells CB. The results are concatenated to produce 8-bit word. LRD features calculate ranks
of the cells a and b, and subtract them, producing results in range (—8;8). Rank is the
number of positive comparisons of the cell value to all other cells.

8

fLBP(X, ¢LBP> _ 221 1 ] (4.3)
5 9
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In both cases, the results of feature evaluation do not significantly depend on brightness
and contrast in the image. Therefore, normalization of the image of any kind is not required.
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Figure 4.2: Block diagram of the proposed engine. The data for Feature Extraction blocks
are loaded from Stripe Image Memory, weak hypotheses are evaluated using Alpha Ta-
ble Memory blocks, and Threshold blocks evaluate strong classifier responses. Instruction
Memory block holds the classifier program controlling the operation of the engine.

All the operations used in the feature evaluation are very simple (comparison, addition,
subtraction) and thus the hardware implementation is relatively straightforward and it
consumes only very little resources as shown in experiments.

Object Detection in Hardware

Since Viola and Jones published their real-time detection framework, much effort has been
put into implementation of the detector in hardware, typically in FPGAs. Several designs
for specific applications were introduced as well as general purpose detectors. Kim et
al. [90] introduced real-time eye detector for FPGA based on AdaBoost classifier and MSC
local image features. Cho et al. [30] proposed architecture implementing AdaBoost cascade
detector with Haar features. In their approach, large memory is used to perform multi-
scale detection on a pyramid of integral images. Huang and Vahid [34] also used Cascade
classifier with Haar features and they tried to reduce resource requirements of integral image
memory by a multiplex network and by constraints during the training process. A relatively
low resources detection system was proposed by Zeméik and Zadnik [44]. They used a
WaldBoost classifier and LRD image features. They used only a small image strip to save
resources of FPGA. Multi-scale detection was made possible only by an external DSP unit
which precalculates an image pyramid. Kyrkou and Theocharides [33] introduced AdaBoost
Cascade detector which combines two approaches to perform multi-scale detection — image
downscaling and scaling of scanning window. Such design, however, does have relatively
high consumption of resources as it uses classifiers with Haar features and normalization
must be performed — in this case using square integral image. Moreover, usage of memory
is high due to an extensive image buffering.

The proposed architecture is based on design proposed by Zeméik and Zadnik [44]. Alike
their architecture, LRD features and strip image memory are used. Proposed architecture
brings a significant improvement in multi-scale object detection (no need of external memory
resources), higher input image resolution, stream video processing and average FPS, all of
this with only small FPGA resource footprint.

4.3 Proposed Architecture

The detector is designed as microprogrammed unit specialized in evaluation of weak hy-
potheses. Microprogram is synthesized from the results of machine learning process.
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Representation of a Detector

Figure 4.2 shows block diagram of the engine. It works as a programmable automata driven
by an instruction set with fixed size. Detector implements equations (4.1) and (4.2). It
executes a classifier consisting of a long sequence of weak hypotheses on every image position
and compares cumulative response to thresholds. A position is marked as positive when
all weak hypotheses are evaluated. An instruction code for a stage t stores parameters for
feature extraction ¢*), stage identifier ¢ for addressing table o¥) and (), and additional
information for engine control. The position of a feature is stored on 10 bits, size on 2 bits,
ranks a and b for ¢“P on 4 bits each, and identifier ¢ on 10 bits. The whole instruction
takes 64 bits. Items in « tables are quantized to 9 bits, and thresholds 6 are stored on 16
bits.

The weak hypothesis evaluation block is pipelined to increase an overall performance.
The pipeline has 9 stages, and therefore 9 weak hypotheses are processed in parallel. The
instructions are loaded from the instruction memory and passed to the execution modules
through delay units. The utilization of pipeline is almost 100 % given the ratio between
the number of weak hypotheses to evaluate and clock cycles to fill the pipeline.

Feature Extraction Units

The detection engine implements LBP and LRD image features described in Section 4.2.
The size of feature cell (u, v in ¢) is limited to maximum 2 pixels and thus the features are
limited to 6 x 6 pixel area. The position of a feature is not limited. Figure 4.3 shows four
versions of cells that can be extracted form a feature area. The limitation to 6 x 6 pixels
per feature does not adversely affect accuracy of the classifiers as shown earlier [93].

6 6 6 6

Figure 4.3: Cell configurations considered in this work. From 6 x 6 pixel area, four versions
of 3 x 3 grid (shown in green) are extracted.

The block scheme of LRD feature evaluation, is shown in Figure 4.4. In the principle,
DSP blocks extracts the grid of cells 3 x 3 cells. One of the versions is selected for evaluation
according to feature parameters u,v. The ranks for a and b are calculated as a number
of positive comparisons of selected cell values. The feature response is then calculated as
the difference between the two ranks. Evaluation of LBP feature is similar — it is based on
parallel comparison of central cell with the cells at the boundary.

The response of a weak hypothesis is finally obtained from the look-up table assigned
to the feature using the result of the feature evaluation described above. The number of
entries in the table for depends on the type of the feature. Typically it is 256 entries are
used for LBP, and 17 for LRD (for implementation reasons 32 items are used).
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Figure 4.4: Circuit for LRD feature evaluation implementing (4.4). DSP blocks on the
left extracts the four versions of cells. One versions is selected according to the current
instruction. Two ranks are then calculated (circuit for calculation of one rank is shown in

dashed block).

Memory Access Unit

One of the key requirements for the detection engine is the ability to process streamed data
without excessive use of resources. Therefore, the proposed engine stores only a narrow
image stripe holding a small part of the currently processed image and and its scaled
versions. The scaled versions are calculated on the fly. The image strip is illustrated in
Figure 4.5.

The memory is organized as a circular buffer of rows. In the proposed design, each 36-
bit memory cell stores 6 image pixels (with 6-bit per pixel). For the purpose of the FPGA
implementation, we convert 8-bit source image into 6-bit by discarding 2 least significant
bits in order to save resources. This does not measurably reduce detection rate due to the
properties of image features that are based on comparison of pixels only. Moreover, the
image conversion can be reflected in the classifier training process.

Memory addressing is optimized for reading of 6 x 6 pixel blocks in every clock cycle. To
enable this feature, interleaved addressing and 12 separately addressable memory structures
must be used. This approach has significantly lower resource requirements than switching
networks used for loading data from integral image for Haar feature evaluation. Also, the
proposed solution outperforms the designs with external memory, DSPs, or large synthe-
sized memory in FPGAs. In our experimental design, Xilinx Spartan 6 LX45T FPGA is
used, and the memory is implemented in 12 BRAM blocks that store 32 lines of the image.
The width of the buffer in pixels and the required number of the BRAMs used depends on
the width of the input image (640 pixels in our case).

Image Scale Unit

The multi-scale detection is performed using scaled versions of the image (pyramid) in the
image stripe stored in the image buffer. We explored two solutions that can be implemented
in the engine.

Fine Image Scaling creates first octave of the pyramid using fine scaling unit (e.g.
scale factor 5/6 with bilinear interpolation, which we use in this work). The subsequent
octaves are calculated from the previous ones by downscaling with factor of 1/2. This pro-
cess is illustrated in Figure 4.5. The performance of this solution is much higher compared
to use of 5/6 scaling units only The approach results in slightly irregular scanning scales
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Figure 4.5: Tllustration of image scaling approaches. Top: Fine scaling utilizing 5/6 and 1/2
scaling units, Middle: coarse scaling with only 1/2 scaling units, and Bottom: content of
the image buffer stripe in the memory buffer for fine scaling option (top), and coarse scaling
option (bottom). The original data are stored in the first 640 columns. Lower resolution
scales are calculated on-the-fly from the original data.

as 1/2 is slightly different from (5/6)* but the difference is marginal (less than 2 %). The
5/6 scaling factor can be alternatively changed e.g. to 4/5 in case it is suitable for target
application. A drawback of this approach is still relatively large memory requirement for
complete image pyramid, and consumption of resources for the scaling unit. Even when
only a narrow stripe is stored, its width can easily reach thousands of pixels.

Coarse Image Scaling scales images in memory by the factor of 1/2 only, as illustrated
in Figure 4.5, and instead of the fine 5/6 scaling to use several classifiers with different
window size. To cover the same scales as in case of 5/6 scaling unit, four classifiers have to
be used — 18 x 18, 21 x 21, 26 x 26 and 31 x 31 pixels In this case the engine has to store four
different classifier descriptions. The advantages of this strategy include decrease of memory
space required for the downscaled images and also the reduced resource consumption fine
scaling units are no longer required. The disadvantages, on the other hand, include the need
to store more classifier definitions and the need to evaluate the classifiers at more positions.
This is caused by the fact that with the size of the classifier window, the scanning step can
not be adjusted to match the fine scaling version (e.g. the step of 31 x 31 pixel window
should be (5/6)~2 = 1.728 pixels). In the present design, the step for all classifiers 1 pixel.
This significantly increases the number of positions to evaluate from 828,885 using fine
scaling and 24 pixel window to 1,379,524 using coarse scaling and the four detectors.

In the experiments presented in Section 4.4, we refer to different versions of the engine
as 5/6 or 1/2. The 5/6 means that the engine uses fine scaling option and only one classifier.
The 1/2 means that the engine uses coarse scaling option and four classifiers.
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Accumulators and Thresholding Unit

The pipeline contains an accumulator for every classifier position being processed (presently,
two 9 stage pipelines and thus 18 accumulators are used, see also Section 4.4). After eval-
uation of a weak hypothesis, the corresponding accumulator is updated with the weak
hypothesis response and compared with a threshold assigned to the weak hypothesis. Ac-
cording to the WaldBoost evaluation strategy, the position is rejected if the accumulator
value is lower than the threshold. Otherwise, the subsequent weak hypothesis is scheduled
for evaluation. If all the weak hypotheses of the classifier are processed with no reject
decision, the corresponding position is assumed to contain the target object. The length
of the classifier depends on the application and results of machine learning process. The
identified locations present the output of the detection process. The locations can be sent
out in the form of a bitmap or just a list of positions with positive detection results based
on the desired application.

Estimation of Engine Throughput

The theoretical maximal throughput (frames per second) can be empirically estimated using
(4.5) where f is the operating frequency, n, is number of pipelines, n; is the average number
of weak hypotheses per window, P is the total number of positions to evaluate in the image
(and its scaled version), and ¢s and ¢; are constants reflecting the number of cycles required
for image scaling and image loading respectively.

= f.np
nf'P‘FCS-i-CZ'

(4.5)

The detector speed is not necessarily a constant as it reflects average case. It can locally
change with irregularities in data. It is faster when no target object is present in image,
and gets slower with the number of objects, as every detected object requires all weak
hypotheses to be evaluated.

4.4 Experiments and Results

The detection architecture was experimentally synthesized in a relatively small Xilinx Spar-
tan 6 LX45T FPGA and evaluated on the Xilinx SP605 evaluation board?. The whole
system is illustrated in Figure 4.6. Ethernet camera CAMEA Modicam M621 provides a
640 x 480 pixels video input at 60 fps The board is connected to a host PC through the
PCI Express endpoint module.

In the experimental design, two pipelines for weak hypothesis evaluation are used to
parallelise the detection process and to increase the overall performance. Image data,
instruction memory, and classifier definitions are shared between the pipelines while the
other units are replicated (address logic, multiplex network applied to the output of image
memory, feature evaluation block, response accumulators, and thresholding unit). The
theoretical throughput of the complete engine is 2 weak hypotheses per clock cycle (1 per
pipeline). One of the pipelines, however, shares BRAM port with the image scaling unit
and thus the performance is slightly reduced — down to approximately 1.85 weak hypotheses
per cycle if the 5/6 scaling unit is used.

2VHDL sources, classifiers, and additional experimental results can be downloaded form http://
medusa.fit.vutbr.cz/fpga-engine
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Figure 4.6: Block scheme of the architecture implemented in Xilinx SP605 Evaluation kit.

The performance of the engine was evaluated on face detection task. The detectors were
trained by framework [62]. It supports all image features present in the detection engine,
and it supports quantization of a(!) and #®) values. All classifiers were composed from 128
weak hypotheses. Although the classifiers used in the experiment contain only one type of
features (either LBP or LRD), the detection engine supports combination of different types
of features.

In the experiments, different engine versions were used to demonstrate how the different
versions of scaling and image features affect the performance, resource consumption, and
power consumption. The combinations were: LBP 5/6, LRD 5/6, LBP 1/2, and LRD 1/2
Each combination refers to a feature type used and scaling unit version. The 5/6 means that
fine scaling units are used, and thus only one classifier is required for the detection. The
1/2 means that the image pyramid is created by 1/2 scaling unit, and thus four classifiers
for detection must be used. In the versions with 5/6 scaling, the number of scales is limited
to 7. This results in detection of objects in range of scales equal to approximately 4x
magnification. In the versions with 1/2 scaling, the number of levels is in principle not
limited but only 2 scales are created to match the 5/6 versions.

The results of the experiments can be subdivided into two basic parts — evaluation of
properties of the classifiers and their detection performance in order to ensure feasibility of
the architecture from the detection point of view, and evaluation of the resource consump-
tion by the detection engine implementation in hardware.

Evaluation of Classifiers Properties

In the configuration with the 5/6 scaling unit, the detector uses a classifier with 24 x 24
pixels resolution. When the 1/2 scaling unit is used, four classifiers with different window
sizes are used to emulate the 5/6 scaling step (18 x 18, 21 x 21, 26 x 26 and 31 x 31 pixels).
Figure 4.7 summarizes classification performance of all the classifiers. The classifiers have
similar detection rates regardless their size, and thus the use of different classifiers for
different scales does not significantly change the accuracy of the whole system compared to
the situation when only a single classifier is used. Figure 4.7 shows ROC curves of Viola and
Jones Haar cascade (with 6,061 weak hypotheses) and our LRD and LBP detectors (128
weak hypotheses). The detection rates of our detectors are comparable to the detectors
used by the state-of-the-art architectures.

The speed of the WaldBoost object detectors is determined by the average number of
weak hypotheses evaluated per image position. Figure 4.7 shows average speeds of the
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Figure 4.7: Evaluation of detectors on MIT4+CMU dataset. Top: Area under Precision-
Recall curve, Middle: Average number of weak hypotheses evaluated per window. Bottom:
ROC curves of our detectors and comparison to Viola&Jones detector.
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detectors used in experiments. Larger detectors tend to be a bit slower, but the relative
difference between small and large detectors is not very significant to influence the overall
speed of the engine.

In some cases, depending on the results of the machine learning process, the classification
does not have to be done for each pixel position of the scanning window but e.g. for every
second positions or every third positions without loosing the detection performance. If this
is the case, the speed of the proposed engine is positively affected (in case of evaluation
of every second position the speedup is approximately 4x) Of course, alternative forms of
pre-processing to eliminate some image areas are also possible — e.g. color based processing,
area of interest definition, or similar approaches. Such pre-processing is not present in the
current design but it can be easily added.

Resource Consumption

Table 4.1 summarizes the resource consumption of the four different configurations of the
presented engine and prediction of maximal throughput F' according to (4.5). It shows that
LBP versions use more BRAM blocks because, in general, LBP weak hypothesis prediction
value tables are much larger than the tables in LRD weak hypotheses (256 in LBP and 17
in LRD). This fact can be observed especially in the versions with 1/2 scaling unit, which
need more memory to store the four classifiers. Difference between the versions using the
LRD features are marginal. Less demanding design versions are those with LRD classifiers,
especially the LRD 1/2. Highest performance to resource consumption ratio is provided
the LRD 5/6 variant as its performance reaches over 160 fps.

FPGA Resources ] Performance F

Registers LUTs BRAMs [MHz] [fps]

LBP 1/2 | 1678 (3%) 7098 (26%) 77 (66%) 163 91
LBP 5/6 | 1737 (3%) 7405 (27%) 43 (37%) 152 131
LRD 1/2 | 1673 (3%) 7014 (26%) 29 (25%) 163 107
LRD 5/6 | 1732 (3%) 7373 (27%) 31 (27%) 152 164

Table 4.1: Device utilization summary on Spartan6 LX45T (without camera and PCle
interface modules)

Results Discussion

The results of the experiments show that the proposed design is indeed capable of real-time
detection of objects in video. We would like especially to highlight the ability to process
streamed video without the need to use external memory. The design is scalable so several
pipelines can be implemented in a single FPGA to boost the performance. Thanks to simple
yet powerful image features the design consumes only very little resources and electrical
energy while keeping competitive detection rate.

Still remain a few options how to modify the engine. Subsampling the image (e.g. by
1/2) before transfer to image buffer would decrease memory requirements, and increase the
performance significantly. However such change would limit minimal size of detected objects
to 2x size of the classifier. Classifiers with more weak hypotheses would increase detection
accuracy. The number is limited only by on-chip memory. In such case, the throughput of
the engine would be affected only slightly, as longer classifiers do not increase computational
complexity too much.
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Table 4.2 shows comparison to FPGA architectures for object detection that were pro-
posed in recent years. Two variants of the presented design are listed — highest performance
variant (LRD 5/6) and least resources (LRD 1/2). Our engines use less than one third of
LUT tables and registers compared to detectors from [33, 29]. Compared to [30, 34, 90]
it consumes only a small fraction of resources. Our engine requires more BRAM blocks
than the other engines, but it does not need any external memory block or a DSP unit for
the storage of images. Unlike the engines proposed by [33, 29, 44], our engine implements
stream processing on a single FPGA chip.

The proposed design is suitable for applications that can benefit from embedded ob-
ject detection, ranging from applications built into video cameras, where price and power
consumption are critical, to applications where the computational performance needs to be
offloaded to reduce the computational load of a host computer.

FPS Features Scaling method Scale factor Freq. [MHz] BRAMs LUTs Regs. FPGA

Huang [34] — Haar Img. scaling 1.2 65 — 80000 —  Virtex5 LX155T
Cho [30] 7 Haar Img. scaling 1.2 41 66900 21900 Virtex5 LX110T
Kim [90] 50 MCT Img. scaling 106 18 133000 45700 Virtexb LX330T
Kyrkou [33] 40 Haar Img. /feature scaling 1.33 100 24 25800 23800 Virtex2 XC2VP30
Lai [29] 143 Haar Img. scaling 1.25 126 44 20900 7800 Virtex2 XC2VP30
Zemcik [44] 22 LRD None None — 14 2980 —  Virtex2 250

Our LRD 5/6 | 164 LRD Img. scaling 1.2 152 31 7373 1732 Spartan6 LX45T
Our LRD 1/2 | 103 LRD fmg. scaling + 1.2 163 20 7014 1673 Spartan6 LX45T

multiple classifiers

Table 4.2: Comparison of the presented engine with similar designs. The FPS column
shows performance on 640x480 pixel input.

4.5 Conclusion

This paper presented a novel architecture for object detection in images and video using
a scanning window and classification of its contents by a WaldBoost classifier. The main
achievements of the new architecture include very high performance, multi-resolution de-
tection, extremely compact design with no need of external memory, and generally low
consumption of hardware resources.

Such design is possible thanks to the novel approach to feature extraction — features are
not scaled but they are large enough to emulate smaller scaled features. This leads into a
very small design of the detection engine. Multi-scale detection is achieved either by fine
scaling of the image and use of fixed size classifier, or by coarse scaling of the image and use
of four different classifiers. The platform is configurable and individual requirements can be
reflected in selection of LBP or LRD image features and different image scaling strategies.
The presented configurations range from the smallest design using LRD features with no
scaling, to the fastest design — LBP with scaled image. The design is capable of processing
640 x 480 pixel video stream at over 160 fps with only a small consumption of resources,
and it could be easily extended to process larger video frames.

Future work include improvements in the multi-resolution design, further reduction of
resource consumption, improved implementation of multiple classifiers in one engine, and
algorithmic improvements, such as prediction of neighborhood results.
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Chapter 5

Cascaded Stripe Memory Engines
for Multi-Scale Object Detection
in FPGA

This article builds on the previous one and brings improvement of the parameters and us-
ability of the detector. The results published in this article are used to verify the hypothesis.
There is a detailed comparison of performance, detection accuracy and consumed resources
with other works. For a fair comparison with other works, the conversion to the number of
processed detection windows per clock cycle was made.

The main contribution of the article is a further increase in detection performance using
more detectors connected in a cascade. The unique feature of the proposed architecture
is the cascading nature of detector blocks, where one block passes re-scaled image data to
the subsequent block in the chain. The slowest element in the chain then limits the total
speed. We can generate the optimal distribution of processed parts of the image so that
all detectors in the cascade are loaded similarly. It is possible to set the size of the stripe
memory of each detector in the cascade individually and thus save space in multi-scale
detection. Experiments with different cascade configurations are presented on the tasks of
the faces and license plates detection. The resulting detectors outperform the state-of-the-
art in detection performance represented by the number of processed detection windows per
clock cycle. We introduced the first multi-scale hardware detector capable of processing a
4K image. The proposed detectors have a better performance/resources ratio compared to
the state-of-the-art.

My contribution in this paper was the proposal of the cascade connection of detectors.
I modified the detector hardware implementation in VHDL and created a tool to generate
the optimal distribution for the cascade of detectors. By conducting a set of experiments
on various cascade detector configurations, the properties were tested.

35



Cascaded Stripe Memory Engines for Multi-Scale Object De-
tection in FPGA

MUSIL Petr, JURANEK Roman, MUSIL Martin and ZEMCIK Pavel. Cascaded Stripe
Memory Engines for Multi-Scale Object Detection in FPGA. IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 30, no. 1, page. 267-280. ISSN 1051-8215.[2]

Author participation: 30 %
Journal ranking: WoS: IF 4.133, Scopus: Q1 0,983

Abstract

Object detection in embedded systems is important for many contemporary applications
that involve vision and scene analysis. In this paper, we propose a novel architecture for
object detection implemented in FPGA, based on the Stripe Memory Engine (SME), and
point out shortcomings of existing architectures. SME processes a stream of image data so
that it stores a narrow stripe of the input image and its scaled versions and uses a detector
unit which is efficiently pipelined across multiple image positions within the SME. We show
how to process images with up to 4K resolution at high framerates using cascades of SMEs.
As a detector algorithm, the SMEs use boosted soft cascade with simple image features
that require only pixel comparisons and look-up tables; therefore, they are well suitable for
hardware implemenation. We describe the components of our architecture and compare it
to several published works in several configurations. As an example, we implemented face
detection and license plate detection applications that work with HD images (1280x720
pixels) running at over 60 frames per second on Xilinx Zynq platform. We analyzed their
power consumption, evaluated the accuracy of our detectors, and compared them to Haar
Cascades from OpenCV that are often used by other authors. We show that our detectors
offer better accuracy as well as performance at lower power consumption.

5.1 Introduction

Object detection in embedded systems is an important task that many applications of
computer vision and scene analysis benefit from. Industrial quality control systems ad-
dress various markers, traffic monitoring uses detection of cars and license plates, biometric
systems detect faces and facial features, driver assistance systems detect cars and pedestri-
ans. The detection is especially important in applications that directly rely on it, such as
recognition or tracking, and in these applications, the speed, accuracy, power consumption,
and/or robustness of detection matters most. In this paper, we address object detection
implemented in embedded hardware. We focus on boosted detectors which analyze sub-
windows of an input image by a classifier composed from weak classifiers based on simple
image features such as Haar [98] or Local Binary Patterns (LBP) [1]. Multi-scale detec-
tion is solved by scaling and processing of the input image in multiple resolutions — image
pyramid. Embedded object detectors are often implemented directly in software using li-
braries such as OpenCV [74]. While this approach is easy and straightforward, it often is
quite slow as detection is computationally demanding task and embedded processors tend
to be simpler and slower than desktop CPUs. Another approach is to implement a cus-
tom detection algorithm exploiting various acceleration resources of the target platform —
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Figure 5.1: Comparison of Haar Cascade detector model (top) and Soft Cascade (bottom)
that we use in our architecture. The main difference is that Soft Cascade does not contain
stages and accumulates the response throughout the classifier. Another difference is that
in Soft Cascade case the evaluation of the response can be terminated after every weak
classifier.

CPU [95], GPU [99] or Field Programmable Gate Array (FPGA) [30, 1, 100, 68, 34, 33, 43]
units. This is advantageous in many areas where the deployment of standard PC-based or
embedded software solution is not possible, e.g. because of resource consumption, physical
dimensions, industrial or military conditions, etc.

The object detection in embedded devices typically belongs to one of the three detection
method categories. 1/ AdaBoost-based detectors — cascades of boosted classifiers [98] or
soft cascades [57]. They typically use Haar image features [30, 31, 34, 33|, or LBP [1]. 2/
Support Vector Machines (SVM) with Histograms of Oriented Gradient features (HOG)
[22, 100, 65, 101, 68]; and 3/ Other methods implementing detection with background
subtraction [52], keypoints [53], neural networks [102], or custom detection algorithms [54].
Most works, including thin one, belong to the first category, we give the detailed review of
them in Section 5.3.

In this paper, we propose a simple and easy to use building block for FPGA that solves
the object detection using state of the art boosted soft cascade classifier. We focused on
implementa