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Abstract

This thesis is concerned with camera pose estimation from correspondences of 3D/2D

lines, i. e. with the Perspective-n-Line (PnL) problem. Attention is focused on large

line sets which can be e�ciently solved by methods using linear formulation of PnL.

Up to date, methods working only with point-line correspondences were known. Mo-

tivated by this, two novel methods based on the Direct Linear Transformation (DLT)

algorithm are proposed: DLT-Plücker-Lines working with line-line correspondences and

DLT-Combined-Lines working with both point-line and line-line correspondences. In

the latter case, the redundant information reduces the minimum of required line corre-

spondences to 5 and improves accuracy of the method. The methods were extensively

evaluated and compared to several state-of-the-art PnL methods in various conditions

including simulated and real-world data. DLT-Combined-Lines achieves results similar

to or better than state-of-the-art, while it is still highly e�cient. In addition, the thesis

introduces a unifying framework for DLT-based pose estimation methods, within which

the proposed methods are presented.

Abstrakt

Tato diserta£ní práce se zabývá odhadem pózy kamery z korespondencí 3D a 2D p°ímek,

tedy tzv. perspektivním problémem n p°ímek (angl. Perspective-n-Line, PnL). Pozornost

je soust°ed¥na na p°ípady s velkým po£tem £ar, které mohou být efektivn¥ °e²eny meto-

dami vyuºívajícími lineární formulaci PnL. Dosud byly známy pouze metody pracující

s korespondencemi 3D bod· a 2D p°ímek. Na základ¥ tohoto pozorování byly navrºeny

dv¥ nové metody zaloºené na algoritmu p°ímé lineární transformace (angl. Direct Linear

Transformation, DLT): Metoda DLT-Plücker-Lines pracující s korespondencemi 3D a 2D

p°ímek a metoda DLT-Combined-Lines pracující jak s korespondencemi 3D bod· a 2D

p°ímek, tak s korespondencemi 3D p°ímek a 2D p°ímek. Ve druhém p°ípad¥ je redun-

dantní 3D informace vyuºita k redukci minimálního po£tu poºadovaných korespondencí

p°ímek na 5 a ke zlep²ení p°esnosti metody. Navrºené metody byly d·kladn¥ testovány

za r·zných podmínek v£etn¥ simulovaných a reálných dat a porovnány s nejlep²ími exis-

tujícími PnL metodami. Metoda DLT-Combined-Lines dosahuje výsledk· lep²ích nebo

srovnatelných s nejlep²ími existujícími metodami a zárove¬ je zna£n¥ rychlá. Tato dis-

erta£ní práce také zavádí jednotný rámec pro popis metod pro odhad pózy kamery za-

loºených na algoritmu DLT. Ob¥ navrºené metody jsou de�novány v tomto rámci.
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Chapter 1

Introduction

Computers take part in our lives, and that part is increasing as computers get faster,

smaller, easier to use and more powerful. If a camera is connected to a computer, it is

given a chance to �see�, enhancing its capabilities. The computer does not see in fact; it

just gets a meaningless mosaic of pixels. In order to give a meaning to the pixels (i. e.

to s e e ), the computer must be given instructions for interpreting the pixel values or

it must be able to learn them. People who prepare such instructions or teach computers

to learn them deal with computer vision.

The goal of computer vision is to allow computers to see. To see like humans perhaps,

or even better. This is a very ambitious goal and it is still too far from being true due

to its complexity. However, some tasks have already been solved. Computers are able,

for example, to �nd speci�c objects in images, to recognize human faces, to localize a

robot using on-board cameras, or to reconstruct 3D objects, or even whole cities, from

multiple images.

Accomplishing of many tasks in computer vision is achieved through the exploita-

tion of features. Features are interesting parts of an image or a scene in this context.

Depending on an application, the features can be points, lines, curves, regions, more

complicated structures, or combinations of them. If features in a scene are captured by a

camera, they can be used to infer various geometric relations: Either between objects of

the scene, or between the scene and the camera. By exploiting the geometric relations, it

is possible to reconstruct a 3D scene, to localize and navigate a mobile robot, to operate

a robotic arm (solely on the basis of visual information) or to augment user's view with

additional information, to give an example. A fundamental underlying task of each of

these applications is pose estimation � the task of determining the relative position and

orientation of a camera and an object to each other in 3D space1.

1 The problem of absolute pose estimation is also known as the problem of absolute orientation or
exterior orientation in photogrammetry.
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While pose estimation methods utilizing point features have been in focus of re-

searchers for some time and they are thus relatively mature, pose estimation methods

utilizing line features lag behind. However, points and lines carry a complementary infor-

mation about a scene and it is thus desirable to make use of both. Points have an exact

location, whereas the �location� of a line along its direction is inherently unknown. On

the other hand, lines are more robust primitives because they can be broken or partially

occluded, but they are still visible and they can be exploited. Recent state-of-the-art

methods are e�cient and accurate, but they utilize lines only in the image space. In

the 3D space, just point features are used (exploiting the fact that if 3D points lie on

a 3D line, their projections must coincide with projection of that line in the image).

That means only point-line correspondences are used and the potential of line-line corre-

spondences is wasted, although line-line correspondences may carry stronger geometric

information about a scene than point-line correspondences.

The goal of this thesis is to improve accuracy and robustness of current state-of-the-

art on pose estimation from lines by incorporating 3D lines and thus also the line-line

correspondences directly into the pose estimation process, which will be experimentally

proved. The thesis studies the linear formulation of pose estimation from lines, which is

especially suitable for scenarios with large sets of lines. The Direct Linear Transformation

(DLT)-based formulation, which was used to exploit only point-line correspondences so

far, is of special interest. The thesis contributes to the state-of-the-art by formulating

two new methods for pose estimation, which are built upon the DLT and make use of

line-line correspondences. A secondary contribution of this thesis is a unifying view on

the DLT-based methods for pose estimation from lines.

Although the work presented in this thesis is my own, it has been in�uenced by many

discussions with Pavel Zem£ík and Martin �adík. They also both collaborated with me

on writing our joint papers.

The text of this thesis is organized into six chapters. In Chapter 2, basic concepts are

introduced upon which this thesis is build. In Chapter 3, a review of related work and

state-of-the-art of pose estimation from line correspondences is presented. In Chapter 4,

the state-of-the-art is critically analyzed and two new methods � DLT-Plücker-Lines

and DLT-Combined-Lines � are proposed and presented in a unifying framework, which

relates the proposed methods with the existing method for pose estimation, DLT-Lines.

In Chapter 5, performance of the proposed methods is benchmarked and compared to

the state-of-the-art using simulations and real-world experiments. Finally, the thesis is

concluded in Chapter 6 by summarizing its key points and by suggesting future research.

The core of this thesis is constituted by Chapters 4 and 5.
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Chapter 2

Basic Concepts

Since mathematical notation and related concepts vary in literature, they way how they

are used in this thesis is de�ned in this chapter. The mathematical notation is intro-

duced �rst. Then, coordinate systems are de�ned and camera model is introduced. A

brief review of 3D lines parameterizations follows. After that, projection of points and

lines onto the image plane is derived in the context of the used camera model and line

parameterization. Next, detection and matching of image lines is outlined. Finally, a

method of solving a homogeneous system of linear equations is introduced, and the role

of Singular Value Decomposition in this task is established.

2.1 Notation

Scalars are typeset in italics (x,X), vectors are typeset in bold (l, L). All vectors are

thought of as being column vectors unless explicitly transposed. Matrices are typeset in

sans-serif fonts (t, D), the identity matrix is denoted by I and the zero matrix by 0. 2D

entities are denoted by lower case letters (x, l, t), 3D entities by upper case letters (X,

L, D). Some of the symbols used in this thesis are organized in the following table.

scalar vector matrix

2D a � h, j � n, q, s,
l, p, t, u, x, ϵ t

x, y, δ, ϵ, ε, π, σ

3D E, L, S, T , X, Y , Z, 0, E, L, N, T, 0, I, D, K, L, M, P,
A, B, Γ, ∆, Σ, Θ U, V, X, Y R, U, V, W, Z, Σ

No formal distinction between coordinate vectors and physical entities is made. Trans-

formation and projection matrices acting on points and lines are distinguished by a dot

and a bar, respectively (Ḋ, Ṗ, D̄, P̄).
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Operators and functions are denoted as follows.

� Equality of up to a nonzero scale factor is denoted by ≈ ,

� transposition by ⊤,

� ℓ2 norm (Euclidean norm) of a vector by ∥.∥ ,
� ℓ1 norm of a vector by ∥.∥1 ,
� Kronecker product by ⊗ ,

� vectorization of a matrix in column-major order by vec(.) ,

� the skew symmetric matrix associated with the cross product by [.]× ,

i. e. [a]×b = a× b.

Finally, the following two functions are de�ned. The �rst one is mean◦(.) � the mean

of all atomic elements of its argument. In the case of a vector, the result is straightforward:

mean◦(a) =

∑n
i=1 ai
n

. (2.1)

In the case of a matrix, the result is the mean of all matrix entries (not just of column/row

vectors):

mean◦(M) = mean◦(vec(M)) . (2.2)

In the case of a set, the elements of the set are concatenated into a single vector or matrix

�rst, the function is evaluated after the concatenation

mean◦({Xi}) = mean◦((X
⊤
1 X⊤

2 . . .X⊤
n )

⊤) , (2.3)

where i = 1 . . . n.

The second function is mean|◦|(.) � the mean of absolute values of all atomic elements

of its argument. It acts on vectors, matrices and sets in the same way as the function

mean◦(.) does.

2.2 Camera Model

A camera with central perspective projection is assumed, where 3D points and lines

project onto an image plane which does not coincide with the center of projection. This

is called a pinhole camera model [30]. The model is parameterized using two sets of

parameters: extrinsic and intrinsic parameters.
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Extrinsic parameters encode the position and orientation � i. e. the pose � of a

camera in space. Let us have a world coordinate system and a camera coordinate system,

both of which are right-handed. The camera X-axis goes right, the Y -axis goes up and

the Z-axis goes behind the camera, so that the points placed in front of the camera

have negative Z coordinates in the camera coordinate system. A transition from the

world to the camera coordinate system is realized through a translation followed by a

rotation, see Figure 2.1. The translation is parameterized using a 3×1 translation vector

T = (T1 T2 T3)
⊤, which represents the position of the camera in the world coordinate

system. The rotation is parameterized using a 3 × 3 rotation matrix R describing the

orientation of the camera in the world coordinate system by means of three consecutive

rotations along the three axes Z, Y , X by respective Euler angles Γ, B, A. The pose of

a camera thus has 6 Degrees of Freedom (DoF): T1, T2, T3, A, B, Γ.

Figure 2.1: The world coordinate systems (right), the camera coordinate system (left)
and the transition between them through a translation T followed by a rotation R.

The task of pose estimation can be alternatively formulated as object pose estimation

(w. r. t. the camera coordinate system). In this thesis, however, the earlier formulation is

adopted, i. e. estimation of the pose of a camera (w. r. t. the object or world coordinate

system). The two formulations are equivalent.

Intrinsic parameters describe how the (physical) coordinates of 2D points in the

image plane map to its image coordinates (in pixels). Such mapping can be expressed
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by an upper-triangular 3× 3 camera calibration matrix

K =


sx k x0

0 sy y0

0 0 1

 , (2.4)

where

� sx is the scale factor in the x direction of an image,

� sy is the scale factor in the y direction of an image,

� k = sy tan θ is the skew factor, where θ is the angle between the x and y image

axis,

� (x0 y0)
⊤ are the coordinates of the principal point � a point in the image plane

where the plane meets the camera Z-axis.

Putting together both the extrinsic parameters (R, T) and the intrinsic parameters

(K), a 3D point X can be related to its projection u in the image by the equation

u ≈ K [R −RT]X . (2.5)

Both X and u are expressed in homogeneous coordinates.

When the camera is intrinsically calibrated, i. e. when K is known, the image co-

ordinates u can be converted into the normalized image coordinates x = K−1u. The

projection x of a 3D point X in the normalized image plane can then be computed

directly

x ≈ [R −RT]X . (2.6)

In the rest of this thesis, a pinhole camera with known intrinsic parameters is assumed,

i. e. coordinates of 2D points and lines are the normalized image coordinates.

2.3 Parameterizations of 3D Lines

Using the words of Hartley and Zisserman [30], �lines are very awkward to represent in

3-space�. A 3D line has 4 DoF, which could be naturally represented as a homogeneous

5-vector. However, such representation cannot be used easily together with homogeneous

4-vectors representing points and planes in projective 3-space. Several parameterizations

have thus been developed to parameterize 3D lines [8]. They can be categorized based
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on the ability to represent all lines � such parameterizations are complete, the other are

partial. They can also be divided based on how many parameters are used [71]: nonlinear

minimal representations using 4 parameters, and linear over-parameterizations using 5

or more parameters.

Minimal Parameterizations use 4 parameters to describe a 3D line, which equals

to its number of DoF. The Denavit-Hartenberg parameterization [19] was developed to

model motion of robots. The idea is to relate each joint of a robot to the adjacent joint

by two distances and two angles. The Cayley representation was developed by Zhang and

Koch [71] to allow unconstrained optimization during sparse Bundle Adjustment (BA)

[62]. Three of the four Cayley parameters encode rotation of a 3D line w. r. t. the reference

coordinate system, and the fourth parameter is the distance of the line to the reference

origin. Other minimal parameterizations can be found e. g. in [26, 28, 52, 53, 57].

Unfortunately, projection functions of the minimal representations are di�cult to

express explicitly [71]. From the point of view of camera pose estimation, this is a dis-

advantage because projection functions of 3D lines are the foundation of pose estimation

methods. The projection function should be as simple as possible in terms of the pose

parameters or, at least, in the entries of a projection matrix.

Linear Over-Parameterizations often have simpler projection functions. The pa-

rameterization by Closest Point and Direction and the parameterization by Two Points

(in Euclidean coordinates) both have bilinear projection functions [8]. They also both

have 6 DoF, and they are both partial representations because lines at in�nity cannot

be handled. If the points in the Two Points representations are parameterized using

homogeneous coordinates, the number of DoF increases to 8, but the parameterizations

becomes complete because lines at in�nity are no longer a special case. The dual repre-

sentation to Two Points is the representation by Two Planes. It has the same properties:

it has 8 DoF, it is complete, and the projection function is bilinear.

Another complete parameterizations is the Plücker Matrix, which is a 4 × 4 skew-

symmetric homogeneous matrix L constructed from the homogeneous coordinates of two

distinct 3D points X and Y lying on a line

L = XY⊤ −YX⊤ . (2.7)

The Plücker matrix has two major disadvantages: First, it has as much as 16 DoF,
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although it encodes only 6 parameters because it is skew-symmetric. Second, projection

of a 3D line parameterized using Plücker matrix onto an image plane is a quadratic

function of a projection matrix [30, Eq. (8.2)].

Plücker Coordinates

Plücker Coordinates are the only linear over-parameterization with linear projection

function. Moreover, it is a complete parameterization using �only� 6 DoF. Plücker co-

ordinates are any permutation of the 6 parameters of the Plücker matrix in Eq. (2.7).

Usually, the parameters are chosen so that they have a geometric meaning:

Given two distinct 3D points X = (X1 X2 X3 X4)
⊤ and Y = (Y1 Y2 Y3 Y4)

⊤ in

homogeneous coordinates, a line joining them in projective 3-space is a homogeneous

6-vector L ≈ (U⊤ V⊤)⊤ = (L1 L2 L3 L4 L5 L6)
⊤, where

U⊤ = (L1 L2 L3) = (X1 X2 X3) × (Y1 Y2 Y3) , (2.8)

V⊤ = (L4 L5 L6) = X4(Y1 Y2 Y3) − Y4(X1 X2 X3) .

The V part encodes direction of the line while the U part encodes position of the line in

space. In fact, U is a normal of an interpretation plane � a plane passing through the

line and the origin. As a consequence, L must satisfy a bilinear constraint U⊤V = 0.

Existence of this constraint explains the discrepancy between 4 DoF of a 3D line and its

parameterization by a homogeneous 6-vector. More on Plücker coordinates can be found

e. g. in [30].

2.4 Projection of Points and Lines

The way, how transformations of points and lines are made, depends on the chosen

parameterization. In the following, 3D lines are assumed to be parameterized using

Plücker coordinates and 3D points are assumed to be parameterized using homogeneous

coordinates.

Transformation of a Point. A homogeneous 3D point X = (X1 X2 X3 X4)
⊤ in the

world coordinate system is transformed to a point ḊX in the camera coordinate system
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using a 4× 4 point displacement matrix

Ḋ ≈

 R −RT

01×3 1

 . (2.9)

Projection of a Point. After 3D points are transformed into the camera coordinate

system, they can be projected onto the normalized image plane using the 3 × 4 canon-

ical camera matrix (I 0). Compositing the two transformations yields the 3 × 4 point

projection matrix

Ṗ ≈
[
R −RT

]
. (2.10)

A 3D point X is then projected using the point projection matrix Ṗ as

x ≈ ṖX , (2.11)

where x = (x1 x2 x3)
⊤ is a homogeneous 2D point in the normalized image plane.

Transformation of a Line. A 3D line parameterized using Plücker coordinates can

be transformed from the world into the camera coordinate system using the 6 × 6 line

displacement matrix1

D̄ ≈

 R R[−T]×

03×3 R

 . (2.12)

Projection of a Line. After 3D lines are transformed into the camera coordinate

system, their projections onto the image plane can be determined as intersections of

their interpretation planes with the image plane; see Figure 2.2 for illustration. The

normal U of an interpretation plane is identical to the image line l in the coordinate

system of the camera, hence only U needs to be computed when projecting L, and only

the upper half of D̄ is needed, yielding the 3× 6 line projection matrix [21]

P̄ ≈
[
R R[−T]×

]
. (2.13)

The line projection matrix in Eq. (2.13) can also be achieved by compositing the two

1 Please note that our line displacement matrix di�ers slightly from the matrix of Bartoli and Sturm
[7, Eq. (6)], namely in the upper-right term: We have R[−T]× instead of [T]×R due to di�erent coordinate
system.
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transformations de�ned by the line displacement matrix D̄ (2.12) and by the 3×6 canon-

ical camera matrix (I 0).

Figure 2.2: 3D line projection. The 3D line L is parameterized by its direction vector
V and a normal U of its interpretation plane, which passes through the origin of the
camera coordinate system {C}. Since the projected 2D line l lies at the intersection of
the interpretation plane and the image plane, it is fully de�ned by the normal U.

A 3D line L is then projected using the line projection matrix P̄ as

l ≈ P̄L , (2.14)

where l = (l1 l2 l3)
⊤ is a homogeneous 2D line in the normalized image plane.

2.5 Detection and Matching of Lines

Methods for pose estimation from lines rely on correspondences between 3D lines and

image lines. The method how lines are detected in an image and how they are matched

to their corresponding 3D counterparts is outlined in this section.

Line detection. Lines in an image are typically detected in the form of line segments

using a three-staged algorithm. First, a gradient image is computed or edges are detected.

Second, candidate �line support regions� are build by grouping of adjacent pixels having

similar gradient orientation. Third, line segments are �tted to the candidate regions and

perceptually meaningless segments are discarded. Such an approach is used e. g. by the

Line Segment Detector (LSD) [25], its modi�ed version LSDF-Loc [9] or EDlines [4].

Line matching. Matching of lines is based either on their appearance, on geometric

constraints or on the combination of both. In the case of appearance-based matching, a
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descriptor is used to encode the line's appearance (i. e. its neighborhood) into a feature

vector. Similarly to SIFT [42] for points, several descriptors for lines have been proposed.

The Mean-Standard deviation Line Descriptor (MSLD) [66] was among the �rst, and

indeed, it is inspired by SIFT in how appearance of regions is encoded along a line.

Alternative contemporary line descriptors are e. g. Line Signatures [65], Line-based Eight-

directional Histogram Feature (LEHF) [32] or Line Band Descriptor (LBD) [70].

A hybrid approach for line matching combining both appearance-based and geometry-

based features was introduced by Zhang and Koch [69]. The LBD descriptor and simple

geometric constraints are used to reject false candidate line matches. Kim and Lee [36]

deal with matching of pairs of intersecting lines, arguing that line pairs are less ambiguous

for matching than single lines. For that purpose, they proposed the Line Intersection

Context Feature (LICF).

In the case of large distances between camera positions or in the case of wiry objects,

the appearance-based attributes of lines change dramatically, and they are thus useless.

This motivated line matching techniques relying exclusively on geometric constraints.

Schindler et al. [54] proposed a technique suitable for Manhattan environments, where

each line is assigned one of three mutually orthogonal directions at the time of detection.

This information simpli�es the following matching process. Hofer et al. [33] deal with 3D

reconstruction from multiple views. When adding a new camera view, a potentially large

set of hypothetical matches is computed using weak epipolar constraints. The hypotheses

can be later merged based on their spatial proximity and they are �nally veri�ed or re-

jected based on their reprojection error and observation angle. Mi£u²ík and Wildenauer

[48] approach the joint problem of line matching and camera pose estimation as search-

ing through the parameter space of camera poses. They generate tens of thousands of

virtual camera views, and compare line segments in the real and virtual view by Chamfer

matching [6, 58], which can be implemented very e�ciently. The number of candidate

views can also be reduced by estimating vanishing points in the input image.

2.6 Solving a Homogeneous System of Linear Equations

Methods presented in this thesis often solve a homogeneous system of linear equations,

which can be described by the matrix equation

Mx = 0 . (2.15)
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If the system hasm equations and n unknowns, then the measurement matrixM contain-

ing coe�cients of the equations ism×n, and the vector of unknowns x has n entries. The

trivial solution x = 0 is not of interest, hence the desired solution must be constrained,

typically

argmin
x

∥Mx∥2

s. t. ∥x∥ = 1 .
(2.16)

Eq. (2.15) holds only in an ideal (noise-free) case. If equation coe�cients in M are

perturbed by noise, an inconsistent system is obtained

Mx′ = ϵ , (2.17)

where x′ is only an approximate solution and ϵ is an m-vector of measurement residuals.

In an ideal case (2.15) and assuming m ≥ n, M has rank n − 1 and x is the right

nullspace of M of rank 1. However, in a noisy case (2.17), M has full rank n, thus its

nullspace must have rank 0. This implies nonexistence of an exact solution. Still, an

approximate solution may be found in a least-squares sense. If a rank de�cient matrix

M′ is found

argmin
M′

∥M′ −M∥2

s. t. rank(M′) = rank(M)− 1 ,
(2.18)

then, the approximate solution x′ of the system (2.17) is the right nullspace of M′ of

rank 1, i. e.

M′x′ = 0 . (2.19)

Remark 2.1: In the rest of the thesis, the above-described way of solving a homoge-

neous linear system Mx = 0 will be referred to as �homogeneous linear least squares�.

Although a mathematically correct term would be �low-rank approximation� (of M), the

former designation was chosen due to its analogy to the term �linear least squares�, which

designates solving of a linear system Mx = b.
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Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix factorization. Let us have an m×n
matrix M of real numbers. It is factorized by SVD into three matrices

M = UΣV⊤ , (2.20)

where

� U is an m×m orthonormal matrix whose columns are the left singular vectors of

M,

� Σ is an m×n diagonal matrix of non-negative numbers � singular values of M, and

� V is an n× n orthonormal matrix whose columns are the right singular vectors of

M.

It is common to order the singular values on the diagonal of Σ in descending order.

In the context of linear systems, SVD can be advantageously used to obtain an

approximate solution of an over-determined and inconsistent homogeneous system of

linear equations, as de�ned by Eq. (2.17). The approximate solution x′ is exactly the

right singular vector of M associated with the smallest singular value, i. e. the last column

of V obtained by SVD in Eq. (2.20).

Concepts established in this chapter constitute a foundation for the rest of this thesis.

Let us now proceed to the description of state-of-the-art of pose estimation from lines.
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Chapter 3

Pose Estimation from Lines

Points are the most commonly used features, not only for pose estimation. It is so

because points are the simplest geometric primitives, easy to represent mathematically

and easy to handle in a space of any dimension [30]. A substantial amount of research

has been dedicated to point features and their applications in computer vision. Lines, on

the other hand, are more di�cult to represent, especially in spaces of dimension 3 and

higher. This was naturally re�ected in less research e�ort dedicated to line features.

Nevertheless, points and lines carry a complementary information about a scene and

it is thus desirable to make use of both. Points have an exact location, whereas the

�location� of a line along its direction is inherently unknown. On the other hand, lines

are a more robust type of a primitive, because they can be broken or partially occluded,

but they are still visible and they can be exploited. Additionally, lines provide stronger

structural information about a scene than points, see Figure 3.1. Lines are especially

useful and sometimes indispensable in situations where point features are unreliable. This

Figure 3.1: Representation of a building (on the left) using points (center) and lines
(right).1

1The data is a courtesy of [67].
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might be caused, for example, by a lack of texture or presence of repetitive patterns, see

Figure 3.2. Such conditions are typical for man-made environments � wiry structures,

streets, facades of buildings, corridors, rooms etc. Lines are often abundant in such

environments [49].

The task of camera pose estimation from lines has a �nite number of solutions for

3 and more lines. However, in the minimal case of 3 lines, solutions of the Perspective-

3-Line (P3L) problem are multiple: up to 8 solutions may exist [11]. The ambiguity is

removed by adding one or more lines and thus the PnL problem has a unique solution

for n ≥ 4 [68]. Having said that, special con�gurations of lines must not be forget, for

which the PnL problem has an in�nite number of solutions even for n ≥ 4. Such cases are

termed singular con�gurations (e. g. a set of parallel lines, in which case, it is impossible

Figure 3.2: Point matches (top) and line matches (bottom) in a pair of images of a
low-texutre scene. Only 9 matches were found using points, while 54 matches were found
using lines.2

2The images and line matches are a courtesy of [70].
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to locate the camera along the lines). Generally, methods for pose estimation are known

to be prone to singular and sometimes also to quasi-singular con�gurations of lines [51].

The PnL problem has been receiving attention for more than a quarter of century.

Some of the earliest works are the ones of Dhome et al. from 1989 [20] and Liu et al. from

1990 [40]. They introduce two di�erent ways to deal with the PnL problem: iterative and

algebraic3 approaches. As the names suggest, the algebraic methods solve PnL by mini-

mizing an algebraic error in �one step�, while the iterative methods iteratively minimize a

nonlinear error function, which usually has a geometric meaning. Both approaches have

di�erent properties and thus also di�erent use. A speci�c subset of algebraic approaches

are the methods based on linear formulation of the PnL problem.

3.1 Iterative Methods

The iterative approaches consider pose estimation as a nonlinear least-squares problem by

iteratively minimizing speci�c error function, which usually has a geometric meaning. In

the early work of Liu et al. [40], the authors attempted to estimate the camera position

and orientation separately developing a method called R_then_T. Orientation of the

camera in space is obtained from 8 or more line correspondences which de�ne the entries

of a rotation matrix. The matrix is estimated up to an unknown scale factor by linear

least squares. The scale of the matrix is corrected ex post by enforcing the Frobenius

norm of the matrix to be three. However, the other constraints of the rotation matrix,

such as unit-norm and mutually orthogonal rows, are not enforced.

Later on, Kumar and Hanson [37] have introduced a method called R_and_T for

simultaneous estimation of camera position and orientation, which is computed using

iterative least squares. The authors proved superior performance of their algorithm to

R_then_T.

Christy and Horaud [12] have proposed two methods for pose estimation for the para-

perspective and weak-perspective camera models. If the methods converge, their results

are compatible with the perspective camera model. In the absence of a good initialization,

the methods converge faster compared to methods using the full perspective camera

model. By using the weak-perspective camera model, an assumption must hold that the

depth of an object is small compared to the distance of the object from the camera, and

that visible scene points are close to the optical axis. Therefore, the full projective cases

cannot be handled.

Inspired by the point-based Orthogonal Iteration (OI) algorithm for points [43],

3Sometimes also called non-iterative approaches.
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X. Zhang et al. [73] proposed the Line-based Orthogonal Iteration (LOI) algorithm,

which iteratively minimizes two geometric objective functions in the object space. The

objective functions are

EV(R) =
n∑

i=1

∥∥EV
i

∥∥2 , (3.1)

EX(R,T) =
n∑

i=1

∥∥EX
i

∥∥2 , (3.2)

where n is the number of line correspondences, and EV
i and EX

i are the coplanarity errors

EV
i = (I− Ki)RVi , (3.3)

EX
i = (I− Ki)R(Xi −T) . (3.4)

For each line correspondence, the matrix Ki = I −NiN
⊤
i is a 3 × 3 symmetric matrix

projecting vectors in Euclidean 3-space orthogonally onto an interpretation plane de�ned

by its normal Ni. Thus, (I− Ki) is a matrix which, after it is applied to a vector, yields

a rejection of that vector from an interpretation plane de�ned by its normal Ni. The

coplanarity error EX
i is thus the orthogonal distance of an arbitrary point Xi on a 3D

line to the interpretation plane of the corresponding 2D line. Accordingly, the other

coplanarity error EV
i is the orthogonal distance of an endpoint of a unit-norm direction

vector Vi of the 3D line to the interpretation plane. By substituting (3.3) into (3.1) and

(3.4) into (3.2), and by using the de�nition of Ki, the objective functions are

EV(R) =
n∑

i=1

∥NiN
⊤
i RVi∥2 , (3.5)

EX(R,T) =
n∑

i=1

∥NiN
⊤
i R(Xi −T)∥2 . (3.6)

The LOI algorithm alternates between optimization of the rotation matrix R and the

translation vector T.

Recently, Y. Zhang et al. [74] proposed two modi�cations to the R_and_T algorithm

of Kumar and Hanson [37] by exploiting the uncertainty properties of line segment end-

points. The modi�cations are suitable for cases where line segments are �tted to noisy

edge points using least squares, which are cases where errors of the endpoints are nega-

tively correlated.

Several other iterative methods are also capable of simultaneous estimation of pose
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parameters and line correspondences. They present an orthogonal approach to separate

correspondence �ltering and consecutive pose estimation. David et al. [17] proposed

an approach called Soft-POSIT (it was �rst proposed for points [16], then it was pro-

posed also for lines [17]), where two phases are repeated: First, 3D line endpoints are

projected onto the image plane and they are matched to nearest 2D line segments by

minimizing the point-to-line distances using weighted least squares. This is known as the

softassign algorithm [24]. Second, the pose of a weak-perspective (also known as scaled

orthographic) camera is estimated using the Pose from Orthography and Scaling with

ITeration (POSIT) algorithm [18]. The whole process is then repeated until the pose

converges. Again, depth of an object must be small compared to the distance of the

object from the camera, and scene points must lie close to the optical axis due to the use

of the weak-perspective camera model.

Recently, X. Zhang et al. [73] introduced an approach which outperforms the Soft-

POSIT algorithm by taking an advantage of the fact that some prior on the camera

pose is often available in practice. The prior is modelled by a Gaussian Mixture Model

that is progressively re�ned by hypothesizing new correspondences. This reduces the

number of potential matches and the pose space can be explored more thoroughly than

by SoftPOSIT at a similar computational cost. The work of X. Zhang et al. is based on

the earlier work of Moreno-Noguer et al. [50] who used pose priors for pose estimation

from points.

3.2 Algebraic Methods

The algebraic approaches estimate the camera pose by solving a system of (usually poly-

nomial) equations, minimizing an algebraic error. Their solutions are thus not necessarily

geometrically optimal; on the other hand, no initialization is needed.

Among the earliest e�orts in this �eld are those of Dhome et al. [20] and Chen

[11]. Both methods solve the minimal problem of pose estimation from exactly 3 line

correspondences in a closed form. Dhome et al. [20] proposed a closed-form solution

by deriving a P3L polynomial. 3D lines are transformed into an intermediate model

coordinate system chosen s. t. the �rst of the three lines is collinear with the X-axis

and the second one is parallel to the XY-plane. Similarly, 2D lines are transformed into

a virtual image plane in an intermediate camera coordinate system s. t. its XZ-plane

corresponds to the interpretation plane of the �rst image line and its X-axis is collinear

to that image line. Chen [11] proposed another approach to derive a P3L polynomial

by introducing a canonical con�guration. The con�gurations is achieved by rotating the
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3D lines s. t. one of the three lines already lies in its interpretation plane de�ned by

its 2D image. Camera orientation, which is estimated �rst, has thus only 2 remaining

DoF instead of 3. Camera position is estimated afterwards by solving a system of linear

equations. Chen's method often produces complex solutions.

Ansar and Daniilidis [5] developed a method that is able to handle 4 or more lines,

limiting the number of possible solutions to 1. Lifting is employed to convert a polyno-

mial system to a linear system with 46 variables and with unknowns being the entries of

a rotation matrix. In the case of four line correspondences, an additional SVD must be

computed. The approach of Ansar and Daniilidis may, however, fail in cases of singular

line con�gurations (e. g. lines in three orthogonal directions) [51] as the underlying poly-

nomial system may have multiple solutions. The algorithm has quadratic computational

complexity (O(n2), where n is the number of lines). The method gets unstable with

increasing image noise, eventually producing solutions with complex numbers.

Recently, two major improvements of algebraic approaches have been achieved. First,

Mirzaei and Roumeliotis [47] proposed a method which is more computationally e�-

cient (O(n)), behaves more robustly in the presence of image noise, and can handle

the minimum of 3 lines, or more. The approach is inspired by the earlier work of

Hesch and Roumeliotis [31], who presented a similar algorithm for the Perspective-n-

Point (PnP) problem. Mirzaei and Roumeliotis formulated the PnL problem as non-

linear least squares, and solve it as an eigenvalue problem. A polynomial system with

27 candidate solutions is constructed and solved through the eigendecomposition of a

27 × 27 multiplication matrix. The multiplication matrix is obtained as the Schur com-

plement [46, 3.7.11] of an intermediate 120 × 120 Macaulay matrix (the matrix can be

precomputed o�ine in symbolic form). Camera orientations having the smallest least-

square error are considered to be the optimal ones. The orientation is described using

the Cayley-Gibbs-Rodrigues parameterization [55]. Camera positions are obtained sepa-

rately using linear least squares. The algorithm often yields multiple solutions.

RPnL. The second recent improvement is the Robust PnL (RPnL) algorithm of Zhang

et al. [72], inspired by the success of the Robust PnP (RPnP) approach for points [39].

The method works with 4 or more lines and it is more accurate and robust than the

method of Mirzaei and Roumeliotis. The RPnL method has two essential stages:

(i) Computation of coarse candidate solutions. The n lines are divided into n − 2

triplets, each triplet containing the line of longest projection and the line of second longest

projection. An intermediate model coordinate system is used s. t. its Z-axis is parallel

to the 3D line of longest projection and its origin is identical to the origin of the world
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coordinate system. A P3L polynomial is formed for each line triplet and a cost function is

constructed as the sum of squares of the P3L polynomials. The cost function is derived

and the real roots of the derivative are selected as solutions of the whole polynomial

system. The candidate pose solutions (i. e. rotation matrices and translation vectors) are

computed from the solutions of the polynomial system, but the `coarse' rotation matrices

do not necessarily satisfy the orthonormality constraints.

(ii) Re�nement of the candidate solutions and selection of the optimal solution. Each

line is parameterized by a point Xi and a direction Vi. The points {Xi} are transformed

from world to camera coordinate system by the candidate coarse R and T, and each

point is orthogonally projected onto its corresponding interpretation plane, yielding its

projection X⊥
i . The two sets of points {(Xi,X

⊥
i )} are aligned using a standard 3D

alignment scheme [64]. The alignments yield �ne candidate poses. The �ne candidate

poses are then pruned based on their orthogonal errors

E⊥ =

n∑
i=1

(N⊤
i RVi)

2 . (3.7)

The orthogonal error E⊥ is a sum of squares of dot products (i. e. cosines of angles)

between the normalNi of an interpretation plane and the directionVi of a corresponding

3D line rotated by R to the camera coordinate system. Compare the orthogonal error

E⊥ in Eq. (3.7) to the objective function of the LOI algorithm, which uses coplanarity

errors (Eq. (3.5) on page 18). Although they may look similar, the orthogonal error E⊥

is an algebraic criterion while the objective function in Eq. (3.5) is a geometric criterion.

Finally, the optimal solution is selected based on the smallest reprojection error Eπ

according to Taylor and Kriegman [60]

Eπ =
n∑

i=1

∫ li

0
d2i (t) dt =

n∑
i=1

li
3
(d2is + dis · die + d2ie) . (3.8)

The reprojection error Eπ is a sum of reprojection errors of all n line correspondences.

Reprojection error of a single line correspondence is an integral of a square of di(.), which

is the shortest distance from a point x on the line segment l detected in the image to

the projection p(L) of the 3D line L (see Figure 3.3). A point x(t) on a line segment

is parameterized by t varying from 0 to li, which is the length of a line segment. The

value of di(.) at the start and at the end of a line segment is denoted by dis and die,

respectively.
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Figure 3.3: Reprojection error according to Taylor and Kriegman [60].

ASPnL. The RPnL algorithm was later modi�ed by Xu et al. [68] into the Accurate

Subset based PnL (ASPnL) algorithm, which acts more accurately on small line sets. The

modi�cation is in the second �re�nement� stage, which is applied to all coarse candidate

poses from the �rst stage. The re�ned translation vector is computed by least squares

from a set of linear equations. The rotation matrix is optimized iteratively. Small rotation

corrections are expressed using the Cayley-Gibbs-Rodriguez (CGR) parameterization

([55], having only 3 parameters), and the optimization is performed using the Newton

method. Complexity of each iteration is constant. After all candidate poses are re�ned,

the �nal pose is selected based on the smallest orthogonal error in Eq. (3.7). The ASPnL

method is very sensitive to outliers.

3.3 Methods based on Linear Formulation of PnL

A speci�c subset of algebraic methods are methods exploiting a linear formulation of the

PnL problem (LPnL). Generally, the methods solve a system of linear equations, whose

size is linearly proportional to the number of measurements, i. e. the number of line

correspondences. The system of linear equations can be transformed into a homogeneous

system of linear equations as described in Section 2.6, i. e. a system having only a zero

vector at the right-hand side

Mx = 0 . (3.9)

The most straightforward way to solve LPnL is the Direct Linear Transformation

(DLT) algorithm. Its name �rst appeared in 1971 in the work of Abdel-Aziz and Karara

[1], but the idea dates back to 1963 to the work of Sutherland [59]. DLT transforms sim-

ilarity equations (2.14) describing the measured line correspondences into homogeneous

linear equations, i. e. into the form of Eq. (3.9). Then, it solves this system by a standard

method, e. g. by SVD.

If measurements are inconsistent, which happens almost always in practice, an exact
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solution x does not exist. Nevertheless, an approximate solution x′ can be computed

in the least-squares sense. The approximate solution lies in the rank-1 right nullspace

of a matrix M′, which is obtained through a low-rank approximation of M (the original

measurement matrix M usually has full rank due to the measurements inconsistencies).

A necessary condition to apply any DLT method on noisy data is to prenormalize

the input in order to ensure that the entries of the measurement matrix are of equal

magnitude. Otherwise, the method will be oversensitive to noise and it will produce

results arbitrarily far from the true solution [30].

DLT-Lines. The �rst DLT method for solving PnL is the method of Hartley and

Zisserman [30, p. 180] from 2004. Following the terminology of Silva et al. [56], the

method is called DLT-Lines. It does not act directly on 3D lines, but rather on 3D points

lying on 3D lines (for example line endpoints). It exploits the fact that if a 3D line and a

3D point coincide, their projections also must coincide. The DLT-Lines method requires

at least 6 line correspondences. To the best of my knowledge, DLT-Lines was the only

existing LPnL method until 2015.

DLT-Plücker-Lines. In 2015, we introduced a new DLT method [II], which acts on

3D lines directly. The lines are parameterized using Plücker coordinates, hence the name

of the method is DLT-Plücker-Lines. The method will be elaborated in Section 4.4.

Parallel to our e�ort in 2016, Xu et al. [68] introduced a new set of methods exploiting the

linear formulation of the PnL problem. The authors were inspired by a state-of-the-art

PnP solver working on the same principle [22]. Similarly to DLT-Lines, the new methods

act on 3D points and 2D lines. The methods of Xu et al. [68] can be categorized by two

criteria.

1. By coordinates used to parameterize 3D points.

� Cartesian coordinates (denoted in the method's names by �DLT�).

� Barycentric coordinates (denoted in the method's names by �Bar�).

2. By a type of the nullspace, from which a solution x is obtained.

� An exact rank-1 nullspace computed in closed form using homogeneous linear

least squares (denoted in the method's names by �LS�).

� An �e�ective nullspace� [38] of a dimension 1 � 4 (denoted in the method's

names by �ENull�).
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A taxonomy of the methods is depicted in Table 3.1.

Table 3.1: Taxonomy of LPnL methods of Xu et al. [68].

Coordinates

Cartesian barycentric

N
u
ll
sp
a
ce

exact LPnL_DLT_LS LPnL_Bar_LSrank-1

�e�ective
LPnL_DLT_ENull LPnL_Bar_ENullnullspace�

solver

All of the methods require at least 6 line correspondences, although the e�ective

nullspace solver (ENull) is sometimes able to recover the correct solution of an under-

determined system de�ned by 4 or 5 lines.

The four LPnL methods of Xu et al. are the following.

LPnL_DLT_LS parameterizes 3D points using Cartesian coordinates, and it uses ho-

mogeneous linear least squares to recover a 1 dimensional nullspace in which the solution

resides. The solution x consists of entries of the rotation matrix and the translation

vector. This is exactly the same algorithm as DLT-Lines of Hartley and Zisserman [30,

p. 180], so the name DLT-Lines is used to refer to the method in the rest of this thesis.

LPnL_DLT_ENull parameterizes 3D points using Cartesian coordinates, and it uses

the e�ective nullspace solver [38] to recover a solution from a nullspace of dimension 1 �

4. The solution x consists of entries of the rotation matrix and the translation vector.

LPnL_Bar_LS parameterizes 3D points using barycentric coordinates, which depend

on the position of 4 arbitrarily chosen control points. The solution x consists of Cartesian

coordinates of the control points w. r. t. camera, and it is solved using homogeneous linear

least squares. Alignment of the 4 camera- and world-referred control points de�nes the

camera pose. The method is roughly as accurate as DLT-Lines.

LPnL_Bar_ENull parameterizes 3D points using barycentric coordinates, which de-

pend on the position of 4 arbitrarily chosen control points. The solution x consists of

24



Cartesian coordinates of the control points w. r. t. camera, and it is solved using the ef-

fective nullspace solver. Alignment of the 4 camera- and world-referred control points

de�nes the camera pose. The method is even more accurate then LPnL_Bar_LS.

3.4 Handling Mismatched Correspondences

In practice, mismatches of lines (i. e. outlying correspondences) often occur, which de-

grades the performance of camera pose estimation or even impedes it. It is thus necessary

to identify and �lter out mismatched correspondences and work preferably with correct

matches.

RANSAC-based

The RANdom SAmple Consensus (RANSAC) algorithm [23] is commonly used to identify

and remove outliers. It is a hypothesize-and-test scheme, where random samples are

drawn from a set of data points, model parameters (i. e. hypotheses) are computed from

the samples, and consensus of other data points is tested. This is repeated until a

hypothesis with su�cient consensus is found or an iteration limit is exceeded.

A correct hypothesis is generated only if all data points in the sample are inliers.

Since the chance of drawing an outlier-free sample depends not only on the fraction of

inliers in the data but also on the size of the sample, it is desirable to use a minimal

model. A non-minimal model can also be used, but, on average, more iterations are

needed to obtain a correct hypothesis with same probability as when using a minimal

model.

In the context of pose estimation from lines, the data points are usually tentative line

correspondences, the model parameters are parameters of a camera pose, and the con-

sensus may be quanti�ed e. g. by reprojection error of corresponding lines. The minimal

number of line correspondences required to determine a camera pose is 3, but methods

working with 4 line correspondences are also being used to generate hypotheses.

The RANSAC scheme can handle any percentage of outliers in theory as long as at

least one outlier-free sample can be found. RANSAC is nondeterministic due to the use

of random sampling. However, dozens of di�erent RANSAC modi�cations have been

introduced [45] eliminating various drawbacks of the original algorithm, e. g. [13, 14, 61].
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Algebraic Outlier Rejection

As the LPnL methods work with 5 and more line correspondences, they cannot compete

with the minimal (P3L) methods when plugged into a RANSAC-like framework due to

an increased number of iterations.

This motivated an alternative scheme called Algebraic Outlier Rejection (AOR, [22]).

It is an iterative approach integrated directly into the pose estimation procedure. Specif-

ically, it is integrated into solving of the homogeneous linear system (2.15). Each line

correspondence is assigned a weight, and the weights are arranged on the main diagonal

of a square matrix W. This yields a homogeneous system of weighted linear equations

WMx = 0 . (3.10)

At the beginning, all weights are initialized to 1, conservatively assuming that all line

correspondences are inliers. An approximate least-squares solution x' of the system (3.10)

is computed by SVD of M⊤WM, and a residual vector ϵ of the solution is computed as

ϵ = Mx′ . (3.11)

An algebraic error ε of each line correspondence is computed from the residual vector ϵ as

a norm of a sub-vector of corresponding residuals. E. g., for a case with 2 equations per

line correspondence, the algebraic error of the i-th correspondence is εi = ∥(ϵ2i−1 ϵ2i)∥.
All correspondences are then assigned new weights

wi =

 1 if εi ≤ max(εmax, δmax) ,

0 otherwise ,
(3.12)

and the whole procedure is repeated until convergence of the solution x′. The constants

εmax and δmax are prede�ned thresholds. The strategy for choosing εmax may be arbitrary

but the authors [22] recommend εmax = Q25(ε1, . . . , εn) which is the algebraic error of

the correspondence that is at the boundary of the 25th percentile. The function is used

as a robust estimator to reject correspondences with largest errors. The other threshold,

δmax, needs to be reached to consider a speci�c correspondence as an outlier. Its purpose

is to avoid unnecessary rejections of inlier correspondences in an outlier-free case, and to

achieve faster convergence.

The authors claim the break-down point to reach 60% when applied to the PnP

problem, and the process to usually converge in less than 5 iterations.
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Chapter 4

Pose Estimation from Lines

using Direct Linear Transformation

This chapter contains the majority of contributions of this thesis. First, the state-of-

the-art is critically analyzed and the resolution is outlined. Then, two novel DLT-based

methods for pose estimation from line correspondences are introduced and related to

one existing DLT-based method. The methods are formulated within a novel unifying

framework for DLT-based PnL methods.

4.1 Analysis of the State-of-the-Art

Pose estimation from line correspondences is a fundamental task required for many ap-

plications of computer vision � 3D reconstruction of a scene, localization and navigation

of a robot, operation of a robotic arm solely on the basis of visual information, or aug-

mentation of user's view with additional information, for example.

When estimating camera pose �from scratch�, the following pipeline is typically used:

(i) Obtain tentative feature correspondences,

(ii) �lter out outliers,

(iii) compute a solution from all inliers, and

(iv) iteratively re�ne the solution, e. g. by minimizing reprojection error (optionally).

Task (i) is usually carried out by appearance-based or geometry-based matching of lines,

as outlined in Section 2.5. Task (ii) is usually carried out by iterative solving of a problem

with a minimal number of line correspondences (i. e. P3L) in a RANSAC loop. Tasks

(iii) and (iv), on the other hand, require solving a PnL problem with potentially high
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number of lines, which might be a time-consuming task. It is thus of interest to solve

the task using an e�cient algorithm.

As presented in the previous chapter, methods for solving PnL can be categorized

as either iterative or algebraic. The iterative algorithms [12, 17, 37, 40, 73, 74] need

initialization. This makes them suitable only for �nal re�nement (iv) of an initial solution,

which must be provided by some other algorithm. The initial solution (iii) may be

provided by an algebraic algorithm [5, 11, 20, 47, 68, 72]. Among these, the methods

of Chen [11] and Dhome et al. [20] are able to exploit only 3 line correspondences,

thus they cannot be used in scenarios with more lines. The algorithm of Ansar and

Daniilidis [5] overcomes the limitation of �xed number of lines, allowing to use 4 and

more lines. However, it has a quadratic computational complexity in the number of

lines, which renders it impractically slow even for scenarios with dozens of lines. Mirzaei

and Roumeliotis [47] eliminated the computational burden by introducing a method

with linear computational complexity. Nonetheless, its runtime is still high due to a

slow construction of a multiplication matrix, causing a high constant time penalty: it

takes 78ms to process 10 lines. Another drawback of the method is that it often yields

multiple solutions. The shortcomings of [47] have been overcome by Zhang et al. [72] in

their RPnL algorithm: it always yields a single solution and it takes 8ms to compute a

pose of 10 lines. However, the computational time increases strongly for higher number

of lines: it takes 880ms to process 1000 lines. The related method ASPnL of Xu et al.

[68] inherits the attributes of RPnL. Alhough ASPnL is more accurate on small line sets,

its runtime follows the characteristic of RPnL.

The non-LPnL algebraic methods only have been discussed so far. Nevertheless, in

tasks involving a high number of lines, the non-LPnL methods are outperformed by the

LPnL methods: by DLT-Lines of Hartley and Zisserman [30] and by the methods of Xu

et al. [68]. These state-of-the-art methods are e�cient and accurate especially in scenarios

with high number of lines. Interestingly enough, they do not exploit all available infor-

mation: They only utilize points in 3D space, but 3D lines remain unused. This means

only point-line correspondences are used and the potential of line-line correspondences

is unexploited, leaving a promising room for research and improvement.

This thesis aims for better accuracy and robustness than the state-of-the-art by in-

troducing a new linear method for pose estimation. The method shall utilize line-line

correspondences and keep the advantage of being fast which LPnL methods have in com-

mon. The goal is elaborated in the rest of this thesis and it is veri�ed experimentally

using both synthetic and real-world data.

The attention is focused on methods based on the DLT. First, a unifying framework
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for all DLT-based PnL methods is presented in Section 4.2. Then, all three DLT-based

PnL methods are formulated within the framework. The methods are:

DLT-Lines of Hartley and Zisserman [30, p. 180], exploiting point-line correspondences

only � Section 4.3.

DLT-Plücker-Lines of ours [II], exploiting line-line correspondences only � Section 4.4.

DLT-Combined-Lines of ours [I], exploiting both point-line and line-line correspon-

dences � Section 4.5.

4.2 Common Structure of DLT Methods

In this section, the novel unifying framework for DLT-based PnL methods is introduced.

Given the point-line or line-line correspondences, the camera pose can be estimated using

a PnL method. The DLT-based PnL methods have the following steps in common:

1. Input data is prenormalized to achieve good conditioning of the linear system.

2. A projection matrix is estimated using homogeneous linear least squares, and the

e�ect of prenormalization is reverted.

3. The pose parameters are extracted from the estimated projection matrix. This

includes also constraint enforcement in the case of noisy data, since the constraints

are not taken into account during the least-squares estimation.

Prenormalization

Since the DLT algorithm is sensitive to the choice of coordinate system, it is crucial to

prenormalize the data to get a properly conditioned measurement matrix M [27]. Various

transformations can be used, but the optimal ones are unknown. In practice, however,

the goal is to reduce large values of point/line coordinates. This is usually achieved by

centering the data around the origin and by scaling them s. t. an average coordinate has

the absolute value of 1 (which means the average distance to the origin shall equal to
√
2

and
√
3 in the 2D and 3D case, respectively). Speci�c prenormalizing transformations

are proposed for each method in the following sections.

Linear Estimation of a Projection Matrix

As a starting point, a system of linear equations needs to be constructed, which relates

(prenormalized) 3D entities with their (prenormalized) image counterparts through a
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projection matrix, denoted P. The relation might be the projection of homogeneous 3D

points x ≈ ṖX in Eq. (2.11), or the projection of Plücker lines l ≈ P̄L in Eq. (2.14), or

other linear system, or a combination of those. The problem of camera pose estimation

now resides in estimating the projection matrix P, which encodes all the six camera pose

parameters T1, T2, T3, A, B, Γ.

The system of linear equations is transformed into a homogeneous system of linear

equations (see Appendix A for details), i. e. a system having only a zero vector at the

right-hand side.

Mp = 0 (4.1)

M is a measurement matrix containing coe�cients of equations generated by correspon-

dences between 3D entities and their image counterparts. Each of the n correspondences

gives rise to a number of independent linear equations (usually 2), and thus to the same

number of rows of M. The number of columns of M equals d, which is the number of

entries contained in P. The size of M is thus 2n × d. Eq. (4.1) is then solved for the

d-vector p = vec(P).

As mentioned in Section 2.6, Eq. (4.1) holds only in a noise-free case. If a noise is

present in the measurements, an inconsistent system is obtained:

Mp′ = ϵ . (4.2)

Only an approximate solution p′ may be found through minimization of a 2n-vector of

measurement residuals ϵ in a least-squares sense s. t. ∥p′∥ = 1.

Once the system of linear equations given by Eq. (4.2) is solved, the estimate P′ of

the projection matrix P can be recovered from the d-vector p′.

Extraction of Pose Parameters

The estimate P′ of a projection matrix P obtained as a solution of the system (4.2) does

not satisfy the constraints imposed on P. In fact, a projection matrix P has only 6 DoF

� the 6 camera pose parameters T1, T2, T3, A, B, Γ. It has, however, more entries: The

3× 4 point projection matrix

Ṗ ≈
[
R −RT

]
(4.3)

has 12 entries and the 3× 6 line projection matrix

P̄ ≈
[
R R[−T]×

]
(4.4)
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has 18 entries. This means that the projection matrices have 6 and 12 independent linear

constraints, respectively.

The �rst six constraints are imposed by the rotation matrix R that must satisfy the

orthonormality constraints (unit-norm and mutually orthogonal rows). The other six

constraints in the case of P̄ are imposed by the skew-symmetric matrix [−T]× (three

zeros on the main diagonal and antisymmetric o�-diagonal elements).

In order to extract the pose parameters, the scale of an estimate P′ of a projection

matrix P has to be corrected �rst, since p′ is usually of unit length as a minimizer of ϵ

in Eq. (4.2). The correct scale of P′ can only be determined from the part which does

not contain the translation T. In both cases of Ṗ (4.3) and P̄ (4.4), it is the left 3 × 3

submatrix � let us denote it P′
1 � an estimate of a rotation matrix R. A method of scale

correction is recommended based on the fact that all three singular values of a proper

rotation matrix should be 1. See Algorithm 1.

Algorithm 1: Scale correction of a projection matrix.

Input: An estimate P′ of a projection matrix, possibly wrongly scaled and without

ful�lled constraints.

1. P′
1 ← left 3× 3 submatrix of P′

2. UΣV⊤ ← SVD(P′
1)

3. s← 1/mean(diag(Σ))

Output: sP′.

Alternatively, the scale can also be corrected so that det(sP′
1) = 1, but Algorithm 1

proved to be more robust in practice.

Further steps in the extraction of pose parameters di�er in each method, they are

thus described separately in the following sections.

4.3 DLT-Lines

DLT-Lines is the method by Hartley and Zisserman [30, p. 180]. In the following text,

the method is put into context using the unifying framework of the previous section.

DLT-Lines exploits the fact that a 3D point X lying on a 3D line L projects such that its

projection x = ṖX must also lie on the projected line: l⊤x = 0, see Figure 4.1. Putting

this together yields the constraint equation

l⊤ṖX = 0 . (4.5)
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The pose parameters are encoded in the 3× 4 point projection matrix Ṗ, see Eq. (2.10).

Since Ṗ has 12 entries, at least 6 lines are required to fully determine the system, each

line with 2 or more points on it.

X

l

R,T{W}

{C}

Figure 4.1: A point X lying on a 3D line projects s. t. its projection must lie on the
image line l � a projection of the 3D line.

Prenormalization

The known quantities of Eq. (4.5), i. e. the coordinates of 3D points and 2D lines, need

to be prenormalized. In the case of the DLT-based pose estimation from points [29],

Hartley suggests to translate and scale both 3D and 2D points so that their centroid is at

the origin and their average distance from the origin equals to
√
3 and

√
2, respectively.

By exploiting the principle of duality [15], it is suggested to treat coordinates of

2D lines as homogeneous coordinates of 2D points, and then to follow Hartley in the

prenormalization procedure � i. e. to apply translation to the origin and then anisotropic

scaling.

Linear Estimation of the Point Projection matrix

The point projection matrix Ṗ and its estimate Ṗ′ are 3×4, so the corresponding measure-

ment matrix Ṁ is n× 12, where n is the number of point-line correspondences Xi ↔ li,

(i = 1 . . . n, n ≥ 12). Ṁ is constructed as

Ṁ(i, :) = X⊤
i ⊗ l⊤i , (4.6)

where Ṁ(i, :) denotes the i-th row of Ṁ in the Matlab notation. See Appendix A.3 for a

derivation of Eq. (4.6). The 3D points Xi must be located on at least 6 di�erent lines.
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Extraction of Pose Parameters

First, the scale of Ṗ′ is corrected using Algorithm 1, yielding sṖ′. Then, the left 3 × 3

submatrix of sṖ′ is taken as the estimate R′ of a rotation matrix. A nearest rotation

matrix R is found in the sense of the Frobenius norm using Algorithm 2.

Algorithm 2: Orthogonalization of a 3× 3 matrix.

Input: A 3× 3 estimate R′ of a rotation matrix R.

1. UΣV⊤ ← SVD(R′)

2. d← det(UV⊤)

3. R← dUV⊤

Output: R.

Please, note that Algorithms 1 and 2 can be combined and executed at once.

The remaining pose parameter to recover is the translation vector T, which is encoded

in the fourth column Ṗ′
4 of Ṗ

′, see Eq. (2.10). It is recovered as T = R⊤sṖ′
4, completing

the extraction of pose parameters.

4.4 DLT-Plücker-Lines

DLT-Plücker-Lines is a novel method, which was published in [II]. It exploits the linear

projection of 3D lines parameterized using Plücker coordinates onto the image plane, as

described in Section 2.3. A bene�t of this method is higher accuracy of camera orientation

estimates compared to DLT-Lines.

The formation of a 2D line l as a projection of a 3D line L is de�ned by the constraint

equation (2.14)

l ≈ P̄L , (4.7)

as illustrated in Figure 4.2. The pose parameters are encoded in the 3×6 line projection

matrix P̄, see Eq. (2.13). Since P̄ has 18 entries, at least 9 lines are required to fully

determine the system.

Prenormalization

The known quantities of Eq. (4.7) need to be prenormalized, i. e. the Plücker coordinates

of 3D lines L, and the coordinates of 2D lines l. Since the homogeneous Plücker coor-

dinates of a 3D line L cannot be simply treated as homogeneous coordinates of a 5D

point (because of the bilinear constraint, see Section 2.3), the following prenormalization

is suggested.
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L
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{W}

{C}

V

U

R,T

Figure 4.2: A 3D line L parameterized using Plücker coordinates is de�ned by a normal
U of its interpretation plane and by its direction vector V. Its projection is denoted l.

Translation and scaling is applied in this case as well. However, both translation and

scaling a�ect only the U part of each L, and not the V part. Therefore, the V parts are

adjusted �rst by multiplying each L by a nonzero scale factor so that ∥V∥ =
√
3. Then,

translation is applied to minimize the average magnitude of U. Since ∥U∥ decreases
with the distance of L from the origin, it is feasible to translate the lines so that the

sum of squared distances from the origin is minimized. This can be e�ciently computed

using the Generalized Weiszfeld algorithm [2]. Finally, anisotropic scaling is applied so

that the average magnitude of all U parts matches the average magnitude of all V parts.

Both translation and scaling of lines is achieved by premultiplying them by a 6× 6 line

similarity matrix [7]. The procedure is summarized in Algorithm 3.

Prenormalization of 2D lines can be carried out in the same way as in the case of the

DLT-Lines method, see Section 4.3.

Linear Estimation of the Line Projection Matrix

The line projection matrix P̄ and its estimate P̄′ are 3 × 6, so the corresponding mea-

surement matrix M̄ has 18 columns. The number of its rows depends on m, the number

of line-line correspondences Lj ↔ lj , (j = 1 . . .m, m ≥ 9). By exploiting Eq. (4.7), each

correspondence generates three rows of M̄ (Matlab notation is used to index the matrix

elements):

M̄(3j−2 : 3j, :) = L⊤
j ⊗ [lj ]× . (4.8)

The line measurement matrix M̄ is thus 3m × 18. Note that only two of the three rows
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Algorithm 3: Prenormalization of 3D lines parameterized by Plücker coordinates.
Note: See Section 2.1 for the de�nition of function mean|◦|(.).

Input: A set of m 3D lines {Lj}, j = 1 . . .m.

1. For all lines do: Lj =

√
3

∥Vj∥
· Lj

2. T← Generalized_Weiszfeld_Algorithm({Lj}) ▹ Aftab et al. [2]

3. For all lines do: Lj =

 I [−T]×

0 I

Lj ▹ translation

4. SX ←
mean|◦|({Vj})
mean|◦|({Lj,1})

, SY ←
mean|◦|({Vj})
mean|◦|({Lj,2})

, SZ ←
mean|◦|({Vj})
mean|◦|({Lj,3})

5. For all lines do: Lj =


SX

SY
SZ

0

0 I

Lj ▹ scaling

Output: A set of m prenormalized 3D lines {Lj}, j = 1 . . .m.

of M̄ de�ned by Eq. (4.8) are needed for each line-line correspondence, because they

are linearly dependent. M̄ will be only 2m × 18 in this case. See Appendix A.1 for a

derivation of Eq. (4.8).

Extraction of Pose Parameters

First, the scale of P̄′ is corrected using Algorithm 1, yielding sP̄′. Then, the camera pose

parameters are extracted from the right 3×3 submatrix of sP̄′, which is an estimate of a

skew-symmetric matrix premultiplied by a rotation matrix (i. e. R[−T]×, see Eq. (2.13)).

Since sP̄′ has the structure of the essential matrix [41], the algorithm of Tsai and Huang

[63] is proposed to decompose sP̄′, as outlined in Algorithm 4. This completes the

extraction of pose parameters.

The variable q = (Σ1,1+Σ2,2)/2 in Algorithm 4 is an average of the �rst two singular

values of sP̄′
2 to approximate the singular values of a properly constrained essential

matrix, which should be (q, q, 0). The ±1 term in Step 4 of Algorithm 4 denotes either

+1 or −1 which has to be put on the diagonal so that det(RA) = det(RB) = 1.

Alternative ways of extracting the camera pose parameters from sP̄′ exist, e. g. com-
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puting the closest rotation matrix R to the left 3×3 submatrix of sP̄′
1 and then computing

[T]× = −R⊤sP̄′
2. However, our experiments showed that the alternative ways are less ro-

bust to image noise. Therefore, the solution described in Algorithm 4 was chosen.

Algorithm 4: Extraction of pose parameters from the estimate P̄′ of a line projection
matrix, inspired by [63].

Input: An estimate P̄′ of a line projection matrix P̄.

Input: Corrective scale factor s.

1. P̄′
2 ← right 3× 3 submatrix of P̄′

2. UΣV⊤ ← SVD(sP̄′
2)

3. Z←


0 1 0

−1 0 0

0 0 0

 , W←


0 −1 0

1 0 0

0 0 1

 ,

q ← (Σ1,1 + Σ2,2)/2

4. Compute 2 candidate solutions (A, B):

RA ← UW diag(1 1 ± 1)V⊤, [T]×A ← qVZ V⊤

RB ← UW⊤diag(1 1 ± 1)V⊤, [T]×B ← qVZ⊤V⊤

5. Accept the physically plausible solution, so that the scene lies in front of the camera.

R← RA , T← TA or

R← RB , T← TB .

Output: R, T.

4.5 DLT-Combined-Lines

DLT-Combined-Lines is a novel method published in [I]. It is a combination of DLT-

Lines and DLT-Plücker-Lines methods, exploiting the redundant representation of 3D

structure in the form of both 3D points and 3D lines, see Figure 4.3. The 2D structure is

represented by 2D lines. The primary bene�t of the method is a higher accuracy of the

camera pose estimates and smaller reprojection error, the secondary bene�t is the lower

number of required lines.

The central idea of the method is to merge two systems of linear equations, which

share some unknowns, into one system. The unknowns are entries of the point projection

matrix Ṗ used in DLT-Lines and the line projection matrix P̄ used in DLT-Plücker-Lines.

The two systems de�ned by Eq. (4.5) and (4.7) can be merged so that the set of unknowns
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Figure 4.3: A 3D line L is parameterized by both Plücker coordinates of the line (i. e.
the normal U of its interpretation plane and its direction vector V) and a point X lying
on the line. L may be parameterized by many such points. Projection of the point X
must lie on the projection l of the line L.

of the resulting system is formed by the union of unknowns of both systems. It can be

observed that the shared unknowns reside in the left 3 × 3 submatrices of Ṗ and P̄. If

unknowns of the resulting system are arranged in a feasible manner, a new 3× 7 matrix

P̈ can be constructed, which is a �union� of Ṗ and P̄:

Ṗ ≈ [ R −RT ]

P̄ ≈ [ R R[−T]×]

}
P̈ ≈

[
R −RT R[−T]×

]
(4.9)

The matrix is called a combined projection matrix, because it allows to write the projec-

tion equations for point-line, line-line, and even point-point correspondences, as follows:

l⊤P̈
(

X⊤ 0 0 0
)⊤

= 0 , (4.10)

l ≈ P̈
(
U⊤ 0 V⊤

)⊤
, (4.11)

x ≈ P̈
(

X⊤ 0 0 0
)⊤

. (4.12)

These equations can then be used to estimate P̈ linearly from the correspondences.

A secondary bene�t of the method is that it requires only 5 lines (and 10 points on

them) � less then DLT-Plücker-Lines and even less then DLT-Lines. To explain why,

the following matrices are de�ned �rst: the left-most 3 × 3 submatrix of P̈ is denoted

P̈1, the middle 3× 1 submatrix (column vector) is denoted P̈2, and the right-most 3× 3

submatrix is denoted P̈3.

P̈ =
[
R −RT R[−T]×

]
=

[
P̈1 P̈2 P̈3

]
(4.13)
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P̈ has 21 entries, but since it encodes the camera pose, it has only 6 DoF. This means

it has 14 nonlinear constraints (homogeneity of the matrix accounts for the 1 remaining

DoF). Ignoring the nonlinear constraints, which are not taken into account during the

least-squares estimation, P̈ has 20 DoF. Each point-line correspondence generates 1 inde-

pendent linear equation (4.10) and each line-line correspondence generates 2 independent

linear equations (4.11). Since P̈2 is determined only by point-line correspondences and

since it has 3 DoF, at least 3 3D points are required to fully determine it. An analogy

holds for P̈3: since it is determined only by line-line correspondences and since it has 9

DoF, at least 5 (in theory 41⁄2) 3D lines are required to fully determine it. The required

number of m line-line correspondences and n point-line correspondences is thus m=9,

n=3, or m=5, n=10, or something in between satisfying the inequality (n+2m) ≥ 20,

see Table 4.1. In such minimal cases, the points must be distributed equally among the

lines, i. e. each point or a pair of points must lie on a di�erent line; otherwise, the system

of equations would be under-determined.

Table 4.1: Minimal numbers of line-line and point-line correspondences required for the
DLT-Combined-Lines method.

point-line n = 3 4 5 6 7 8 9 10

line-line m = 9 8 8 7 7 6 6 5

Let us proceed with the description of the algorithm. Please notice that the prenor-

malization procedure will be unusually described after the de�nition of a measurement

matrix, because prenormalization is strongly motivated by its structure.

Linear Estimation of the Combined Projection Matrix

The combined projection matrix P̈ and its estimate P̈′ are 3 × 7, so the combined mea-

surement matrix M̈ has 21 columns. Number of its rows depends on n � the number of

point-line correspondences Xi ↔ li, (i = 1 . . . n), and on m � the number of line-line

correspondences Lj ↔ lj , (j = n+ 1 . . . n+m). The minimal values of n and m depend

on each other and are given in Table 4.1. Each point-line correspondence (4.10) leads

to one row of M̈, and each line-line correspondence (4.11) gives rise to three rows of M̈

(Matlab notation is used to index the matrix elements):

M̈(i, :) = (X⊤
i 0 0 0) ⊗ l⊤i , (4.14)

M̈(3j−n−2 : 3j−n, :) = (U⊤
j 0 V⊤

j ) ⊗ [lj ]× . (4.15)
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The combined measurement matrix M̈ is thus (n + 3m) × 21. Note that only two of

the three rows of M̈ de�ned by Eq. (4.15) are needed for each line-line correspondence,

because they are linearly dependent. Our experiments showed that using all three rows

brings no advantage, so only two of them are used in practice. In this case, M̈ is only

(n+ 2m)× 21. See Appendix A for derivations of Eq. (4.14) and (4.15).

The combined measurement matrix M̈ can also be constructed by stacking and align-

ing the point measurement matrix Ṁ and the line measurement matrix M̄:

M̈ =

 Ṁn×12 0n×9

M̄(:, 1:9) 03m×3 M̄(:, 10:18)

 . (4.16)

Remark 4.1: It is advisable to scale both Ṁ and M̄ so that the sums of squares of their

entries are equal. (If they were not, it would negatively a�ect the scales of those parts of

the solution p̈ = vec(P̈), which are determined exclusively by Ṁ or M̄, but not by both of

them. These are the entries 10-12 and 13-21 of p̈, which contain estimates of translation.

See the middle and right part of P̈ in Eq. (4.13).)

Remark 4.2: The method can easily be extended to point-point correspondences (4.12)

by adding extra rows to M̈. Each of the p point-point correspondences Xk ↔ xk, (k =

n+m+ 1 . . . n+m+ p) generates three rows

M̈(3k−n−m−2 : 3k−n−m, :) = (X⊤
i 0 0 0) ⊗ [xi]× , (4.17)

two of which are linearly independent. See Appendix A.2 for a derivation of Eq. (4.17).

Prenormalization

Prenormalization of 2D lines is rather complicated in this case. The problem is that a

2D line l is in the direct form and on the opposite side than the line projection matrix

P̄ in Eq. (4.11), and it is in the transposed form and on the same side like the point

projection matrix Ṗ in Eq. (4.10). Thus, when undoing the e�ect of a prenormalizing

2D transformation t, the inverse transformation is t−1 for P̄, and t⊤ for Ṗ. Since both

Ṗ and P̄ are parts of P̈, both inverse transformations must be identical (t⊤ = t−1).
However, this only holds for a 2D rotation, which is practically useless as a prenormalizing

transformation. It is thus suggested not to prenormalize 2D lines at all.
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Prenormalization of 3D points and 3D lines is also nontrivial, because transformations

of 3D space a�ect the coordinates of points and lines di�erently. However, it can be

achieved by pursuing the goal from the beginning of Section 4.2: to center the data

around the origin by translation, and to scale them s. t. an average coordinate has the

absolute value of 1.

Please note that translation and scaling a�ects only the U part of a 3D line L, and

only the (X1 X2 X3)
⊤ part of a 3D point X. Therefore, (i) the una�ected parts of L

and X (i. e. V and X4) must be adjusted beforehand: Each 3D line and each 3D point is

normalized by multiplication by a nonzero scale factor, so that ∥V∥ =
√
3, and X4 = 1.

Note that this adjustment does not change the spatial properties of 3D points/lines.

Then, (ii) translation is applied to center the 3D points around the origin1. Although

the translation is intuitively correct (it results in zero mean of 3D points), it is not

optimal in terms of entries of the measurement matrix (joint zero mean of (X1 X2 X3)
⊤

and U). Therefore, (iii) another translation is applied to achieve a joint zero mean of

all (X1 X2 X3)
⊤ and U. The translation can be easily computed in closed form using

Algorithm 6. Finally, (iv) anisotropic scaling is applied so that the average magnitudes

of all X1 and L1, X2 and L2, X3 and L3, and X4 and V are equal, i. e.

mean|◦|({Xi,1}) + mean|◦|({Lj,1}) =

= mean|◦|({Xi,2}) + mean|◦|({Lj,2}) =

= mean|◦|({Xi,3}) + mean|◦|({Lj,3}) =

= mean|◦|({Xi,4}) + mean|◦|({Vj}) .

(4.18)

This ensures that also the corresponding blocks of the combined measurement matrix

M̈ will have equal average magnitude. The very last step of prenormalization (v) is not

applied to the input primitives, but to the measurement matrix after its construction. Its

point- and line-related parts Ṁ and M̄ should be scaled as stated in Remark 4.1 above.

The whole prenormalization is summarized in Algorithm 5.

Extraction of Pose Parameters

The estimates of a rotation matrix R and a translation vector T are multiple in the

combined projection matrix P̈ (4.13). Moreover, the left-most R is determined by twice

as many equations. This can be exploited to estimate the camera pose more robustly.
1 Another possible translation is to center the 3D lines using the Generalized Weiszfeld algorithm [2]

as it is done in Algorithm 3. However, our experiments showed that the two possible translations yield
nearly identical robustness of the method. It is thus suggested to translate the 3D structure to the
centroid of points, because its computation is cheaper.
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Algorithm 5: Prenormalization of 3D points and 3D lines in DLT-Combined-Lines.
Note: See Section 2.1 for the de�nition of function mean◦(.).

Input: A set of n 3D points {Xi}, i = 1 . . . n.
Input: A set of m 3D lines {Lj}, j = n+ 1 . . . n+m.

1. For all points Xi and lines Lj do:

Xi =
Xi

Xi,4
, Lj =

√
3

∥Vj∥
· Lj

2. T1 ← mean({X(1:3, i)}) ▹ centroid of points
3. For all points Xi and lines Lj do:

Xi =

 I −T1

0⊤ 1

Xi , Lj =

 I [−T1]×

0 I

Lj ▹ �rst translation

4. T2 ← argmin
T

(
mean◦( {X(1:3, i) −T} ∪ {Uj −T×Vj} )

)2
▹ use Algorithm 6

5. For all points Xi and lines Lj do:

Xi =

 I −T2

0⊤ 1

Xi , Lj =

 I [−T2]×

0 I

Lj ▹ second translation

6. SX ←
mean|◦|({Xi,4}) + mean|◦|({Vj})
mean|◦|({Xi,1}) + mean|◦|({Lj,1})

SY ←
mean|◦|({Xi,4}) + mean|◦|({Vj})
mean|◦|({Xi,2}) + mean|◦|({Lj,2})

SZ ←
mean|◦|({Xi,4}) + mean|◦|({Vj})
mean|◦|({Xi,3}) + mean|◦|({Lj,3})

7. For all points Xi and lines Lj do:

Xi =


SX

SY
SZ

0

0⊤ 1

Xi , Lj =


SX

SY
SZ

0

0 I

Lj ▹ scaling

Output: A set of n prenormalized 3D points {Xi}, i = 1 . . . n.
Output: A set of m prenormalized 3D lines {Lj}, j = n+ 1 . . . n+m.
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Algorithm 6: Finding a translation T2 of 3D points {Xi} and 3D lines {Lj} s. t. the
mean of {X(1:3, i)} ∪ {Uj} will be zero after the translation.

Input: A set of n 3D points {Xi}, i = 1 . . . n.
Input: A set of m 3D lines {Lj}, j = n+ 1 . . . n+m.

1. a← n+ 2m ,

b←
∑
j

Lj,1 +
∑
i

Xi,1 , c←
∑
j

Lj,2 +
∑
i

Xi,2 , d←
∑
j

Lj,3 +
∑
i

Xi,3 ,

e←
∑
j

Lj,4 , f ←
∑
j

Lj,5 , g ←
∑
j

Lj,6

2. TX ← −
a2b+ be2 − acg + adf + cef + deg

a(a2 + e2 + f2 + g2)

TY ← −
a2c+ cf2 + abg − ade+ bef + dfg

a(a2 + e2 + f2 + g2)

TZ ← −
a2d+ dg2 − abf + ace+ beg + cfg

a(a2 + e2 + f2 + g2)

Output: Translation T2 = (TX TY TZ)
⊤.

In the following text, the de�nitions of submatrices P̈1, P̈2, and P̈3 from Eq. (4.13) are

used.

First, the scale of the estimated combined projection matrix P̈′ is corrected using

Algorithm 1, yielding sP̈′. The �rst estimate of R is in the direct form in sP̈′
1, from

which it can be extracted using Algorithm 2, yielding R1. The �rst estimate of T is in

sP̈′
2, premultiplied by −R. It can be recovered as T2 = −R⊤

1 sP̈
′
2. The second estimates of

R and T are in the form of an essential matrix in sP̈′
3, from which they can be extracted

using Algorithm 4, yielding R3 and T3.

Now, the question is how to combine R1, R3, and T2, T3. Our experiments showed

that R1 is usually more accurate than R3, probably because it is determined by twice

as many equations (generated by both line-line and point-line correspondences). The

experiments also showed that T2 is usually more accurate than T3. This is probably

because P̈′
2 has no redundant DoF, contrary to P̈

′
3, which has 3 redundant DoF. However,

the estimates can be combined so that the result is even more accurate. Since the error

vectors of T2 and T3 tend to have opposite directions, a suitable interpolation between
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them can produce more accurate position estimate

T = k ·T2 + (1− k) ·T3 . (4.19)

The value of k should be between 0 and 1. Based on grid search, an optimal value of 0.7

has been found (the error function has a parabolic shape), see Figure 4.4.

Regarding the rotation estimates, the grid search discovered R1 is indeed more ac-

curate than R3. However, R1 is not fully `compatible' with T in terms of reprojection

error2. Interpolating between R1 and R3 yields an orientation R `compatible' with T:

R = R1 · exp(k · log(R⊤
1 R3)) . (4.20)

Here, `exp' and `log' denote matrix exponential and matrix logarithm, respectively. The

whole pose extraction procedure is summarized in Algorithm 7.

Algorithm 7: Extraction of pose parameters from the estimate P̈′ of a combined pro-
jection matrix.

Input: An estimate P̈′ of a line projection matrix P̈.

Input: Corrective scale factor s.

1.

[
P̈′
1 P̈′

2 P̈′
3

]
← P̈′ ▹ divide into submatrices

2. Extract R1 from P̈′
1 using Algorithm 2.

3. T2 = −R⊤
1 sP̈

′
2

4. Extract R3, T3 from P̈′
3 using Algorithm 4.

5. R = R1 · exp(k · log(R⊤
1 R3)) ▹ interpolate

T = k ·T2 + (1− k) ·T3

Output: R, T.

4.6 Algebraic Outlier Rejection

To deal with outliers, the DLT-based methods can be equipped with an Algebraic Out-

lier Rejection module. The AOR scheme, developed originally for a PnP method, was

described in Section 3.4. However, our experiments showed that its application to DLT-

based LPnL methods requires a di�erent setting.

The di�erence is in the strategy for choosing the threshold εmax. The authors [22]

recommend εmax = Q25(ε1, . . . , εn) which is the algebraic error of the correspondence
2As an example, imagine a camera located left to its ground truth position and oriented even more

left.
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Figure 4.4: Search for an optimal value of the interpolation parameter k, used in
Eq. (4.19) and (4.20). Errors in estimated camera pose for the DLT-Combined-Lines
method as a function of k. All vertical axes are logarithmic, the error values are averaged
over 1000 random trials. Detailed setup of the experiments can be found in Section 5.1.
The optimal value of k is approximately 0.7.
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that is at the boundary of the 25th percentile. However, our experiments showed that

the strategy is not robust enough for LPnL methods. A slightly di�erent strategy is thus

suggested with a good trade-o� between robustness and the number of iterations: At

the beginning, line correspondences with error up to the 90th percentile are accepted.

In further iterations, the percentile number is progressively decreased until it reaches 25.

The strategy is thus εmax = Qp(ε1, . . . , εn), where Qp(.) denotes the p-th percentile and

p decreases following the sequence 90, 80, . . . , 30. Then, it remains constant 25 until

error of the solution stops decreasing. This strategy usually leads to approximately 10

iterations.

Remark 4.3: It is important not to prenormalize the data before using AOR because

it will impede the identi�cation of outliers. Prenormalization of inliers should be done

just before the last iteration.

Compared to RANSAC, the greatest bene�t of this approach is a low runtime inde-

pendent of the fraction of outliers. On the other hand, the break-down point is roughly

between 40% and 70% of outliers, depending on the underlying LPnL method, whereas

RANSAC, in theory, can handle any fraction of outliers.

4.7 Summary

Although the three above described DLT-based PnL methods share a common basis, they

di�er in certain details. Their properties are summarized in Table 4.2. All three methods

work exclusively with lines in the image space. In the scene space, however, DLT-Lines

works with points, DLT-Plücker-Lines works with lines, and DLT-Combined-Lines works

with both points and lines. The question is whether utilization of 3D lines, i.e. line-line

correspondences, does improve the accuracy and robustness of camera pose estimation

while preserving the e�ciency of DLT-based methods.

The most important di�erence is in the projection matrices. The line projection

matrix P̄ of DLT-Plücker-Lines encodes the rotation matrix R in a form of an essential

matrix having only 3 redundant DoF. This is a promise of a more accurate estimation of

camera orientation compared to DLT-Lines, where R is encoded in a direct form having 6

redundant DoF. The same holds for the combined projection matrix P̈ of DLT-Combined-

Lines. Moreover, P̈ contains multiple estimates of both R and T. A suitable combination

of the estimates may further increase the accuracy of the �nal pose.

Prenormalization of the inputs of the methods pursues a common goal of having the
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Table 4.2: Comparison of the DLT-based LPnL methods.

DLT-Lines DLT-Plücker-Lines DLT-Combined-Lines

I
n

p
u

t
2D (image) 2D lines 2D lines 2D lines

- prenormalization translation (in dual space) translation (in dual space) �
scaling (in dual space) scaling (in dual space)

3D (scene) 3D points 3D lines 3D points + 3D lines

- prenormalization translation multiplication by a constant multiplication by a constant

scaling translation translation

scaling translation

scaling

Minimum of lines 6 9 5


5 lines + 10 points

...

9 lines + 3 points

speci�cation 12 points, 2 on each line � m+ n, s. t. (2m+ n) ≥ 20

Projection matrix Ṗ ≈
[
R −RT

]
3×4

P̄ ≈
[
R R[−T]×

]
3×6

P̈ ≈
[
R −RT R[−T]×

]
3×7

Constraint equations l⊤ṖX = 0 l ≈ P̄L
l⊤P̈

(
X⊤ 0 0 0

)⊤
= 0

l ≈ P̈
(
U⊤ 0 V⊤ )⊤
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data centered around the origin with a unit average absolute value of the coordinates.

This goal is motivated by a good condition of the resulting linear system. Generally, it

can be achieved by applying translation and scaling to the inputs. In the case of DLT-

Combined-Lines, it is more complicated due to di�erent e�ects of the transformations on

coordinates of points and lines in the 3D space. Prenormalization of image lines is futile

in this case as it is restricted to rotations only.

In principle, the methods could also be extended to estimate the pose of an uncal-

ibrated camera, i. e. to estimate both extrinsic and intrinsic parameters of a camera.

The corresponding projection matrix Ṗ, P̄ or P̈ would be premultiplied by the upper-

triangular 3× 3 camera calibration matrix K in this case, so the number of unknowns of

the resulting linear system and also the number of DoF of the projection matrix would

grow from 6 up to 11 (depending on the number of intrinsic parameters). According

to preliminary experiments, robustness of all three methods drops considerably in this

case, making them useless for practical applications. A better choice would be a method

tailored speci�acaly for estimation of parameters of an uncalibrated camera in this case,

such as [10].

The minimum of required lines is conditioned by the size and structure of the esti-

mated projection matrix. It ranges from 9 lines for DLT-Plücker-Lines over 6 lines for

DLT-Lines to only 5 lines for DLT-Combined-Lines.
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Chapter 5

Experimental Evaluation and Appli-

cations

The goal of this thesis was to improve the accuracy and robustness of the state-of-the-art

in pose estimation from lines by designing a new DLT-based method utilizing line-line

correspondences. The method should also be fast comparably to other LPnL methods.

Two new methods were proposed in the previous chapter: DLT-Plücker-Lines and DLT-

Combined-Lines.

To verify that the goal was achieved, the newly proposed methods were tested using

both synthetic and real data and their performance was compared to the state-of-the-art

methods. The real data comprised building exteriors, an indoor corridor and small-scale

objects on a table. The tested criteria were following.

1. The primary criterion of experiments was accuracy because it arguably is the pri-

mary objective of pose estimation. It was evaluated using both synthetic lines in

Section 5.1 and real data in Section 5.4.

2. A secondary objective, although equally important from a practical point of view,

is robustness to image noise, because noise is always present in measurements in

practice. Accordingly, robustness to image noise was evaluated using synthetic lines

in Section 5.1.

3. Since the proposed methods were also required to be fast comparably to other

methods, their speed was measured using synthetic lines in Section 5.1.

Besides the main criteria, the following aspects were also investigated to have a more

comprehensive knowledge about behavior of the proposed methods.
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� Because methods for pose estimation are known to be prone to singular or quasi-

singular con�gurations of 3D primitives in general, robustness to quasi-singular line

con�gurations was examined in Section 5.2.

� From an application point of view, identi�cation and rejection of mismatched line

correspondences (i. e. outliers) is a frequent scenario. Therefore, the methods were

also tested for robustness and speed when plugged into an outlier rejection scheme

or into a RANSAC loop using synthetic lines in Section 5.3.

� Lastly, the camera poses estimated by the methods were used as an initialization for

BA in Section 5.4 to see how the initialization a�ects its convergence and runtime.

The accuracy of pose estimates is expressed in terms of position error and orienta-

tion error of the camera and in terms of reprojection error of the lines. The three error

measures should cover majority of applications for which pose estimation methods are

used. For example, robot localization requires small position error, visual servoing re-

quires both small position and orientation error, whereas augmented reality applications

or BA favour small reprojection error. The error measures are de�ned as follows:

∆T Position error is the distance ∥T′ − T∥ from the estimated position T′ to the

true position T.

∆Θ Orientation error was calculated as follows. The di�erence between the true and

estimated rotation matrix (R⊤R′) is converted to axis-angle representation (E, Θ)

and the absolute value of the di�erence angle |Θ| is considered as the orientation

error.

∆π Reprojection error is an integral of squared distance between points on the image

line segment and the projection of an in�nite 3D line, averaged1 over all individual

lines.

The proposed methods were evaluated and compared with state-of-the-art methods,

which are listed below together with corresponding marks used throughout this chapter.

Ansar, the method by Ansar and Daniilidis [5], implementation from [68].

Mirzaei, the method by Mirzaei and Roumeliotis [47].

RPnL, the method by Zhang et al. [72].

1 Please note that Taylor and Kriegman [60] de�ned the reprojection error as a sum over all individual
lines, see Eq. (3.8) on page 21. Such a de�nition makes the reprojection error dependent on the number
of lines, which doesn't make comparison of di�erent scenes very intuitive. For this reason, it was decided
to de�ne the total reprojection error as an average over all individual lines.
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ASPnL, the method by Xu et al. [68].

LPnL_Bar_LS, the method by Xu et al. [68].

LPnL_Bar_ENull, the method by Xu et al. [68].

DLT-Lines, the method by Hartley and Zisserman [30, p. 180] described in Sec-

tion 4.3, my implementation.

DLT-Plücker-Lines, our method published in [II] and described in Section 4.4.

DLT-Combined-Lines, our method published in [I] and described in Section 4.5.

All of the methods were implemented in Matlab. The implementations originate from

the respective authors, if not stated otherwise.

5.1 Synthetic Lines

Monte Carlo simulations with synthetic lines were performed under the following setup:

at each trial, m 3D line segments were generated by randomly placing n = 2m line

endpoints inside a cube spanning 103m which was centered at the origin of the world

coordinate system. For the methods which work with 3D points, the line endpoints were

used. A virtual pinhole camera with image size of 640 × 480 pixels and focal length of

800 pixels was placed randomly in the distance of 25m from the origin. The camera was

then oriented so that it looked directly at the origin, having all 3D line segments in its

�eld of view. The 3D line segments were projected onto the image plane. Coordinates

of the 2D endpoints were then perturbed with independent and identically distributed

Gaussian noise with standard deviation of σ pixels. 1000 trials were carried out for each

combination of the parameters m and σ, where m = 3 � 10,000 lines and σ = 1, 2, 5, 10

and 20 pixels.

Accuracy and Robustness

Accuracy of pose estimation and robustness to image noise of each method was evaluated

by measuring the estimated and true camera pose while varyingm and σ similarly to [47].

The results showing accuracy of the methods and their robustness to image noise are

depicted in Figure 5.1. For the sake of brevity, only noise levels of σ = 2 and 10 pixels are

shown. The complete distribution of errors is presented in Appendix B at the end of this

thesis. Errors for each method are plotted from the minimal number of lines to 10,000

lines (or less, if the method runs too long or if it has enormous memory requirements). In
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(d) Median position error ΔT [m], σ = 10 pixels
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Figure 5.1: Median orientation errors (top), position errors (middle) and reprojection
errors (bottom) as a function of the number of lines for two levels of image noise (left :
σ = 2 pixels, right : σ = 10 pixels). Each data point was computed from 1000 trials.
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the following text, the method names are typeset in bold and they are often augmented

with their plot marks to ease referencing into result charts.

The results show high sensitivity to noise of Ansar . Even under slight image noise

σ = 2 pixels, the measured accuracy is poor. The other non-LPnL methods (Mirza-

ei , RPnL , ASPnL ) outperform the LPnL methods for low number of lines (3 �

10), as expected. ASPnL is the most accurate among them. An exception is the LPnL

method LPnL_Bar_ENull , accuracy of which is close toASPnL. It even outperforms

ASPnL in the case of strong image noise (σ = 10 pixels), see Figure 5.1 (b, d, f).

For high number of lines (100 � 10,000), the LPnL methods outperform the non-

LPnL ones. LPnL_Bar_ENull and DLT-Combined-Lines are signi�cantly most

accurate in both orientation and position estimation, and they also yield the lowest

reprojection error. With increasing number of lines, accuracy of the LPnL methods

further increases, while errors of the non-LPnL methods do not fall below a certain level.

This gets more obvious with increasing levels on noise. Each of the LPnL methods also

eventually reaches its limit, as it can bee seen in Figure 5.1 (d, f). However, the accuracy

limits of non-LPnL methods lag behind the limits of LPnL methods. Moreover, the

non-LPnL methods often yield completely wrong pose estimates, as it can be seen in the

distribution of errors in Figures B.1 � B.15 in Appendix B.

DLT-Lines and LPnL_Bar_LS behave nearly identically, the latter being slightly

more accurate. The only di�erence between the two is the use of barycentric coordinates,

which is probably the cause of the slightly better results. However, DLT-Lines proves

to be more accurate in position estimation and reprojection under strong image noise.

DLT-Plücker-Lines keeps up with the two aforementioned methods for 25 and more

lines.

The best accuracy on many lines is achieved by the LPnL_Bar_ENull and DLT-

Combined-Lines methods, being the best in all criteria. While they are comparable

in orientation estimation, DLT-Combined-Lines outperforms LPnL_Bar_ENull in

estimation of camera position and in reprojection for many lines. The higher accuracy of

DLT-Combined-Lines is most apparent under strong image noise, see Figure 5.1 (d,

f).

The distributions of errors of the individual methods over all 1000 trials are provided

in Figures B.1 � B.15 in Appendix B.

Speed

E�ciency of each method was evaluated by measuring runtime on a desktop PC with a

quad core Intel i5-661 3.33GHz CPU and 10GB of RAM. As it can be seen in Figure 5.2
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Figure 5.2: Runtimes as a function of the number of lines, averaged over 1000 trials.
Logarithmic vertical axis.

and Table 5.1, the only method with O(m2) computational complexity in the number

of lines m is Ansar . The space complexity of the used implementation is apparently

also quadratic. It was not possible to execute the method already for 100 lines due to

lack of computer memory. Other tested methods have O(m) computational complexity.

However, the runtimes di�er substantially. It is apparent that the LPnL methods are

signi�cantly faster than the non-LPnL methods.

RPnL and ASPnL , being related methods, are nearly equally fast. Runtimes of

both methods rise steeply with increasing number of lines, reaching 630.2ms on 1000 lines

for ASPnL. The two methods were not evaluted for more lines. Runtime of Mirzaei ,

on the other hand, grows very slowly, spending 155.2ms on 1000 lines. However,Mirzaei

is slower thanRPnL form < 200 lines. This fact is caused by computation of a 120×120
Macaulay matrix in Mirzaei's method which has an e�ect of a constant time penalty.

The LPnL methods are one to two orders of magnitude faster than the non-LPnL

methods. The fastest two are DLT-Lines and LPnL_Bar_LS , spending about

1ms on 10 lines, and not more than 3ms on 1000 lines, see Table 5.1. Slightly slower are

DLT-Plücker-Lines , DLT-Combined-Lines and LPnL_Bar_ENull , spending

about 3 � 5ms on 10 lines, and about 6 � 12ms on 1000 lines. The slowdown factor

for DLT-Plücker-Lines is the prenormalization of 3D lines. This is also the case of

DLT-Combined-Lines, where a measurement matrix of a double size must be addi-

tionally decomposed compared to the competing methods, see Eq. (4.16). Computation-

ally demanding part of LPnL_Bar_ENull is the e�ective null space solver carrying out

Gauss-Newton optimization.
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Table 5.1: Runtimes in milliseconds for varying number of lines, averaged over 1000
trials.

# lines 10 100 1000 10,000

Ansar 4.1 - - -

Mirzaei 77.9 84.2 155.2 1097.2

RPnL 8.8 41.3 879.5 -

ASPnL 8.7 29.5 630.2 -

LPnL_Bar_LS 1.1 1.2 2.3 13.7

LPnL_Bar_ENull 5.2 5.3 6.7 19.5

DLT-Lines 1.0 1.2 2.7 20.5

DLT-Plücker-Lines 3.0 3.6 8.2 68.9

DLT-Combined-Lines 3.7 4.6 12.1 109.8

5.2 Quasi-Singular Line Con�gurations

Methods for pose estimation are known to be prone to singular or quasi-singular con�g-

urations of 3D primitives, as stated in Chapter 3. Therefore, robustness of the methods

to quasi-singular line con�gurations was also evaluated. The setup from Section 5.1 was

used with the number of lines �xed to m = 200, and standard deviation of image noise

�xed to σ = 2 pixels. Three types of quasi-singular line con�gurations were tested:

near-planar line distribution, near-concurrent line distribution, and limited number of

line directions. These cases are degenerate for the method of Ansar, thus it is not

mentioned anymore in this section.

Near-planar Line Distribution

Lines were generated inside a bounding cuboid spanning 103m, and the cuboid was

progressively �attened until it became a plane. The errors of the methods as a function

of the cuboid's height (relative to its other dimensions) are depicted in Figure 5.3. Nearly

all methods start to degrade their accuracy when �atness of the cuboid reaches a ratio

of 1:10 and they perform noticeably worse at the ratio of 1:100. Mirzaei , all three

DLT-based methods ( , , ) and LPnL_Bar_LS mostly stop working. RPnL

and ASPnL do work, but they often fail. The only working method is LPnL_Bar-

_ENull . The full distribution of errors can be found in Figure B.16 in Appendix B.
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Figure 5.3: Robustness of the methods to near-planar line distribution. Median orien-
tation errors (top left), position errors (top right) and reprojection errors (bottom left)
as a function of the height of a bounding volume of 3D lines. The height is relative to
the other dimensions of the volume.
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Near-Concurrent Line Distribution

Lines were generated randomly, but an increasing number of lines was forced to intersect

at a single random point inside the cube until all lines were concurrent. Mirzaei ,

RPnL , ASPnL and LPnL_Bar_LS degrade their accuracy progressively, al-

though ASPnL and LPnL_Bar_LS are reasonably accurate even in the full concurrent

case, see Figure 5.4. The DLT-based methods ( , , ) work without any degradation

as long as 3 and more lines are non-concurrent. LPnL_Bar_ENull works without

degradation also in the full concurrent case. The full distribution of errors in the near-

concurrent case can be found in Figure B.17 in Appendix B.
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Reprojection error Δπ [ ]
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Figure 5.4: Robustness of the methods to near-concurrent line distribution. Median
orientation errors (top left), position errors (top right) and reprojection errors (bottom
left) as a function of the number of lines which are not concurrent out of total m = 200
lines.
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Limited Number of Line Directions

Lines were generated randomly, but they were forced to have a certain direction. Three

di�erent scenarios were tested:

� 2 random directions,

� 3 random directions, and

� 3 orthogonal directions.

Mirzaei does not work in either case, see Figure 5.5. RPnL and ASPnL do

work, but they are susceptible to failure. DLT-Plücker-Lines and DLT-Combined-

Lines do not work in the case of 2 directions, they work unreliably in the case of 3

directions, and they start working �awlessly if the 3 directions are mutually orthogonal.

DLT-Lines , LPnL_Bar_LS and LPnL_Bar_ENull work in all three cases.
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Figure 5.5: The distribution of orientation errors (top), position errors (middle) and
reprojection errors (bottom) for the case with 2 random line directions (left), 3 random
line directions (center) and 3 orthogonal line directions (right). Each distribution over
1000 trials is depicted by a box, where median is depicted by a black dot, the interquartile
range (IQR) by the box body, minima and maxima in the interval of 10× IQR by whiskers,
and outliers by isolated dots.
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Behavior of the DLT-based methods in quasi-singular cases is similar. The proper-

ties of DLT-Combined-Lines are apparently inherited from its two predecessor meth-

ods DLT-Lines and DLT-Plücker-Lines. Accuracy of the DLT-based methods is

degraded:

� If 3D lines tend to be planar (�atness ≈ 1:10 or more).

� If all 3D lines but 2 (or less) are concurrent.

� If 3D lines are organized into 3 or less directions.

(DLT-Lines works, but DLT-Plücker-Lines and DLT-Combined-Lines work only if the 3

directions are orthogonal.)

5.3 Line Correspondences with Mismatches

As mismatches of line correspondences (i. e. outliers) are often encountered in practice,

robustness to outliers was also tested. The experimental setup was the same as in Sec-

tion 5.1, using m = 500 lines having endpoints perturbed with slight image noise σ = 2

pixels (which is less then 0.5% of the 640×480 pixels image). The image lines simulating

outlying correspondences were perturbed with an additional extreme noise with σ = 100

pixels. The fraction of outliers varied from 0% to 80%.

Ansar, Mirzaei, and RPnL methods were plugged into a MLESAC [61] framework

(a generalization of RANSAC which maximizes the likelihood rather than just the num-

ber of inliers). Since Ansar cannot handle the �nal pose computation from potentially

hundreds of inlying line correspondences, the �nal pose is computed by RPnL. The

probability that only inliers will be selected in some iteration was set to 99%, and the

number of iterations was limited to 10,000. The inlying correspondences were identi�ed

based on the line reprojection error. No heuristics for early hypothesis rejection was

utilized, as it can also be incorporated into AOR, e. g. by weighting the line correspon-

dences. DLT-Lines, DLT-Plücker-Lines, and DLT-Combined-Lines methods were

equipped with AOR, which was set up as described in Section 3.4.

The setup presented by Xu et al. [68] was also tested: LPnL_Bar_LS and LPnL-

_Bar_ENullmethods with AOR, and aP3L solver andASPnL plugged into a RANSAC

framework, generating camera pose hypotheses from 3 and 4 lines, respectively. The au-

thors have set the required number of inlying correspondences to 40% of all correspon-

dences, and limit the number of iterations to 80. When this is exceeded, the required

number of inliers is decreased by a factor of 0.5, and another 80 iterations are allowed.

The inlying correspondences are identi�ed based on thresholding of an algebraic error �
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the residuals ϵi of the least-squares solution in Eq. (4.2), where the measurement matrix

Ṁ is used, de�ned by Eq. (4.6).

The tested methods are summarized in the following list (the number at the end of

MLESAC/RANSAC denotes the number of lines used to generate hypotheses).

Ansar+MLESAC4+RPnL, Ansar plugged into a MLESAC loop, the �nal

solution computed by RPnL.

Mirzaei+MLESAC3.

RPnL+MLESAC4.

P3L+RANSAC3, the setup by Xu et al. [68].

ASPnL+RANSAC4, the setup by Xu et al. [68].

LPnL_Bar_LS+AOR, the setup by Xu et al. [68].

LPnL_Bar_ENull+AOR, the setup by Xu et al. [68].

DLT-Lines+AOR.

DLT-Plücker-Lines+AOR, the proposed method with AOR, published in [II].

DLT-Combined-Lines+AOR, the proposed method with AOR, published in

[I].

The RANSAC-based approaches can theoretically handle any percentage of outliers.

This is con�rmed by Mirzaei+MLESAC3 and RPnL+MLESAC4 , as their

accuracy does not change w. r. t. the fraction of outliers. What does change however,

is the number of iterations (and thus also the runtime). Even though, the limit of

10,000 iterations was almost never reached. A di�erent situation occurred when testing

Ansar+MLESAC3+RPnL , where the iteration limit was sometimes reached even

at 20% of outliers (see the distribution of runtimes in Figure B.18d in Appendix B). This

suggests that Ansar is a poor hypothesis generator, and the MLESAC framework needs

to iterate more times to get a valid hypothesis.

P3L+RANSAC3 andASPnL+RANSAC4 have much lower runtimes, which

is caused mainly by the setup limiting the number of iterations to a few hundreds. The

setup has, on the other hand, a negative e�ect on the robustness of the method: the

break-down point is only 60 � 70%, as it is apparent in Figure 5.6. This issue was not

observed by Xu et al. [68], because they tested the methods only up to 60% of outliers.
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(b) Mean position error ΔT [m]

(c) Mean reprojection error Δπ [ ], log scale
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Figure 5.6: Experiments with outliers. Mean camera orientation errors (a), position
errors (b), reprojection errors (c) and runtimes (d) depending on the percentage of out-
liers out of total m = 500 line correspondences. Standard deviation of image noise was
σ = 2 pixels. Each value is an average over 1000 trials.

LPnL methods with AOR have constant runtimes regardless of the fraction of out-

liers. The fastest one is DLT-Lines+AOR running 10ms on average. The pro-

posed method DLT-Combined-Lines+AOR runs 31ms on average, and LPnL-

_Bar_ENull+AOR is the slowest one with 57ms, see Figure 5.6d.

The robustness of the LPnL methods di�ers signi�cantly. DLT-Plücker-Lines

+AOR breaks-down at about 40%, but it occasionally generates wrong solutions

from 30% up (see the isolated green dots in Figures B.18a � c in Appendix B). It is

called a �soft� break-down point. LPnL_Bar_ENull+AOR behaves similarly, but it

yields smaller pose errors. DLT-Lines+AOR , LPnL_Bar_LS +AOR , and the

proposed method DLT-Combined-Lines+AOR , on the other hand, have a �hard�
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break-down point at 70%, 65%, and 60%, respectively. This means they do not yield

wrong solutions until they reach the break-down point. The distributions of errors of the

tested methods over all 1000 trials are provided in Figure B.18 in Appendix B.

The RANSAC-based approach is irreplaceable in cases with high percentage of out-

liers. Nevertheless, for lower fractions of outliers, the LPnL+AOR alternatives are more

accurate and 4 � 31× faster than the RANSAC-based approaches, depending on the

chosen LPnL method.

5.4 Real-World Buildings and Man-Made Objects

In this section, the proposed methods are validated on real-world data and compared to

state-of-the-art methods. Ten datasets were utilized, which contain images with detected

2D line segments, reconstructed 3D line segments, and camera projection matrices. Ex-

ample images from the datasets are shown in Figure 5.7, and their characteristics are

summarized in Table 5.2. Line correspondences are also given except for datasets Timber-

frame House, Building Blocks and Street in which case the correspondences were estab-

lished automatically based on geometric constraints. The Timberframe House dataset

contains rendered images, while the rest contains real images captured by a physical

camera. The Building Blocks and Model House datasets capture small-scale objects on a

table, the Corridor dataset captures an indoor corridor, and the other six datasets cap-

ture exterior of various buildings. The Building Blocks dataset is the most challenging

because many line segments lie in a common plane of a chessboard.

Accuracy

Each PnL method was run on the data, and the errors in camera orientation, camera

position and reprojection of lines were averaged over all images in each dataset. The

mean errors achieved by all methods on individual datasets are given in Table 5.3 and

visualized in Figure 5.8.

On datasets with small number of lines (MH: 30 lines, COR: 69 lines), the results

of non-LPnL and LPnL methods are comparable, see Figure 5.8. Contrarily, on other

datasets with high number of lines (177 � 1841 lines), the non-LPnL methods are usually

less accurate than the LPnL methods. Ansar was run only on the MH dataset con-

taining 30 lines, because it ran out of memory on other datasets. It shows rather poor

performance. Mirzaei yields usually the least accurate estimate on datasets with high
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Figure 5.7: Example images from used datasets. The images are overlaid with repro-
jections of 3D line segments using the camera pose estimated by the proposed method
DLT-Combined-Lines.
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Table 5.2: Datasets used in the experiments with real data.

Dataset Source Abreviation #images #lines

Timberframe House MPI� TFH 72 828

Building Blocks MPI� BB 66 870

Street MPI� STR 20 1841

Model House VGG� MH 10 30

Corridor VGG� COR 11 69

Merton College I VGG� MC1 3 295

Merton College II VGG� MC2 3 302

Merton College III VGG� MC3 3 177

University Library VGG� ULB 3 253

Wadham College VGG� WDC 5 380
�MPI dataset http://resources.mpi-inf.mpg.de/LineReconstruction/.

�VGG dataset http://www.robots.ox.ac.uk/~vgg/data/data-mview.html.

number of lines (TFH, BB, MC1, MC2, MC3, WDC). On other datasets, it performs

comparably to the other methods. A slightly better accuracy is achieved by RPnL , but

it also has trouble on datasets with high number of lines (TFH, BB, STR). The related

method ASPnL mostly performs better than RPnL with an exception of datasets

with many lines (BB, STR). Nevertheless, ASPnL yields the most accurate pose esti-

mates on MH and COR. This complies with the �ndings of Xu et al. [68], who state that

ASPnL is suitable rather for small line sets.

The most accurate results on each dataset are predominantly achieved by the LPnL

methods: Most of the top-3 results are achieved by LPnL_Bar_ENull , followed by

the proposed method DLT-Combined-Lines , see Table 5.3. LPnL_Bar_LS and

DLT-Lines also sometimes achieve top-3 accuracy, although it happens less frequently.

DLT-Plücker-Lines is the least accurate LPnL method on real-world data, being the

only LPnL method which performs slightly below expectations based on synthetic data.

Results of other methods are consistent with the results achieved on synthetic lines

(Section 5.1).

64

http://resources.mpi-inf.mpg.de/LineReconstruction/
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html


Table 5.3: Experiments with real data. Mean orientation error ∆Θ [°], position error ∆T [ ] and reprojection error ∆π [ ] for
each method and image dataset. The top-3 results for each dataset are typeset in bold and color-coded ( best , 2nd-best

and 3rd-best result).

Dataset TFH BB STR MH COR MC1 MC2 MC3 ULB WDC

∆Θ - - - 4.96 - - - - - -

Ansar ∆T - - - 0.38 - - - - - -

∆π - - - 5e-05 - - - - - -

∆Θ 32.24 88.18 0.90 0.46 0.22 4.83 15.47 5.00 2.51 36.52

Mirzaei ∆T 11.04 168.47 1.92 0.04 0.10 1.53 7.37 1.82 1.27 6.44

∆π 1e+06 2e+06 8e-07 4e-07 1e-06 3e-06 3e-05 1e-02 2e-06 7e+03

∆Θ 20.46 23.27 4.91 0.61 0.40 1.45 0.43 2.33 3.96 0.50

RPnL ∆T 15.32 53.03 9.73 0.07 0.13 0.43 0.22 1.22 2.08 0.23

∆π 6e-05 7e-06 9e-05 3e-06 6e-06 2e-06 1e-07 2e-05 6e-06 1e-06

∆Θ 7.76 37.82 22.08 0.25 0.10 0.15 0.20 2.08 4.89 0.51

ASPnL ∆T 6.11 76.61 30.47 0.02 0.03 0.04 0.08 0.74 2.22 0.23

∆π 6e-04 2e+03 3e+02 5e-08 9e-08 2e-08 1e-08 4e-06 3e-06 1e-06

∆Θ 1.10 1.98 0.15 0.45 0.13 0.03 0.03 0.09 0.49 0.18

LPnL_Bar_LS ∆T 1.05 7.23 0.27 0.04 0.05 0.01 0.02 0.03 0.22 0.11

∆π 7e-07 1e-06 8e-08 8e-07 1e-06 2e-09 1e-09 6e-08 2e-07 4e-08

∆Θ 0.57 0.30 0.11 0.32 0.10 0.04 0.03 0.07 0.39 0.08

LPnL_Bar_ENull ∆T 0.45 1.13 0.16 0.02 0.04 0.01 0.02 0.02 0.18 0.05

∆π 2e-07 2e-08 3e-08 2e-07 4e-07 8e-10 7e-10 5e-08 1e-07 2e-08

∆Θ 0.47 2.18 0.11 0.95 0.12 0.12 0.28 0.23 0.23 0.16

DLT-Lines ∆T 0.44 8.11 0.18 0.09 0.05 0.04 0.16 0.08 0.10 0.10

∆π 2e-07 1e-06 2e-08 1e-06 2e-06 6e-09 4e-08 3e-07 3e-08 6e-08

∆Θ 1.11 1.04 0.93 17.58 0.38 0.28 0.22 0.48 0.77 0.34

DLT-Plücker-Lines ∆T 1.28 11.69 1.78 0.74 0.13 0.40 0.50 0.27 0.47 0.39

∆π 1e-06 8e-07 2e-06 3e-02 3e-06 2e-06 9e-07 2e-05 8e-07 1e-06

∆Θ 0.39 0.40 0.22 0.41 0.11 0.11 0.15 0.16 0.20 0.23

DLT-Combined-Lines ∆T 0.32 1.88 0.38 0.04 0.04 0.04 0.07 0.05 0.08 0.12

∆π 7e-08 4e-08 6e-08 3e-07 2e-07 2e-08 2e-08 2e-07 7e-08 2e-07
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Figure 5.8: Experiments with real data. Mean orientation errors (∆Θ,top), position errors (∆T, middle) and reprojection
errors (∆π, bottom) on individual datasets. All vertical axes are logarithmic.
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Bundle Adjustment

As Bundle Adjustment (BA) is commonly used as a �nal step in 3D reconstruction

problems, it is interesting to see how its results are a�ected by initialization. For this

purpose, BA was run on the datasets2 and initialized using camera poses provided by

the tested methods.

A line-based BA engine was preferred. Unfortunately, the only suitable engine was

the one of Mi£u²ík and Wildenauer [49], which was a commercial solution unavailable to

public. Thus, it was chosen to use a more common point-based BA engine, represent-

ing 3D structure only by line segment endpoints. Similarly to [49], an implementation

based on the publicly available Ceres Solver [3] was chosen. The implementation uses the

Levenberg-Marquardt algorithm [44] to optimize an objective function based on reprojec-

tion errors � the distances between observed and reprojected point positions. However,

the objective function does not utilize the frequently used squared loss, but it is robus-

ti�ed instead by using the Huber's loss function [35], making it less sensitive to outliers.

Furthermore, optimization of intrinsic camera parameters was deactivated to allow com-

parison to pose estimation methods, which do not take the intrinsic parameters into

account. As a result, only camera poses and 3D structure were optimized.

BA was initialized using 3D structures provided by the datasets and using camera

poses generated by the tested pose estimation methods. Furthermore, BA was also

initialized using the ground truth camera poses provided in the datasets. The BA engine

then optimized each problem. Because we wanted it to �nd the optimum as accurately

as possible, the stopping criterion (a change in the value of an objective function between

consecutive iterations) was set to 10−16. After the optimization, the resulting camera

poses and 3D structure were obtained. Because initialization by di�erent camera poses

may cause the resulting 3D structures to be slightly di�erent both in shape and position

in space, they were aligned by a similarity transformation. The resulting camera poses

were transformed using the same transformation. After the alignment, the camera poses

were compared.

All optimizations initialized by various pose estimation methods and by the ground

truth poses terminated successfully by �nding a minimum of the objective function. All

minima had the same function value but, within the scope of each single dataset, the

minima were not identical: After aligning the optimized 3D structures, the camera poses

di�ered by a magnitude of 0.1 ◦ and 0.01 length unit. This is approximately the same

magnitude of di�erence as before BA. Since a unique minimum of the objective function

2 The Timberframe House, Building Blocks and Street datasets were excluded from the experiment
because the line correspondences were not provided.
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Figure 5.9: Total time spent on pose estimation and Bundle Adjustment in seconds.

was not found, accuracy of the individual pose estimation methods could not be compared

in relation to BA, results of which could be considered as a more accurate ground truth.

Nevertheless, it is possible to compare the rate of convergence of BA expressed in

terms of runtime. Generaly, BA initialized by camera poses computed by a pose esti-

mation method ran comparably long to the BA initialized by the ground truth camera

poses (the runtimes ranged from ≈ 0.6 s for the Model House dataset to ≈ 7.5 s for the

Wadham College dataset). An exceptionally long runtime was observed in the case of

RPnL and ASPnL in the Merton College III dataset and in the case of Mirzaei

in the Wadham College dataset. This indicated the initialization was worse.

From a practical point of view, the time spent on estimation of camera poses (i. e.

initialization of BA) also counts. Therefore, the total time spent on pose estimation and

on BA is a more appropriate measure. The used datasets contain rather a few camera

poses, thus the time of pose estimation is relatively low compared to the time of BA.

Even though, the di�erences in total runtime between individual methods are clearly

visible in Figure 5.9. Apart from the exceptionally long runtimes mentioned above, it

can be observed that the LPnL-based methods systematically yield lower total runtimes

of pose estimation and BA compared to the non-LPnL ones. Di�erences can be observed

even among the LPnL-based methods: The proposed method DLT-Combined-Lines

provides a speedup over its closest competitor LPnL_Bar_ENull ranging from none

(for the Wadham College dataset) to 1.27× (for the Merton College I dataset).

5.5 Summary

As it was stated at the beginning of Chapter 4, the thesis aims for better accuracy

and robustness than the state-of-the-art in pose estimation from lines by designing a
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new DLT-based method utilizing line-line correspondences. The method shall keep the

common advantage of LPnL methods of being fast.

Two new linear methods for pose estimation were introduced which utilize line-line

correspondences. First, The DLT-Plücker-Lines method which competes with the state-

of-the-art in some aspects, but it does not exceed it. Second, the DLT-Combined-Lines

method which does outperform the state of the art.

1. Accuracy � The DLT-Combined-Lines method outperforms the state-of-the-art in

estimation of camera position for many lines (Section 5.1: Figure 5.1) and it is com-

parable to state-of-the-art in orientation estimation. The performance is con�rmed

also by the results on real data (Section 5.4: Table 5.3), where DLT-Combined-

Lines achieves top-3 results on majority of the used datasets.

2. Robustness to image noise � The higher accuracy of the estimates of DLT-Combined-

Lines is most apparent under strong image noise, which proves its better robustness

to this disturbance (Section 5.1: Figure 5.1).

3. Speed � DLT-Combined-Lines does not deviate from other LPnL methods as it

preserves their common advantage of being fast. A pose of 1000 lines is estimated

in about 12ms (Section 5.1: Figure 5.2).

As it was proven in the experiments listed above, the criteria were ful�lled: Both ac-

curacy and robustness improved while speed was comparable to other DLT-based methods.

Thus the dissertation goal was achieved.

Beyond this goal, limits of DLT-Combined-Lines were determined when handling

quasi-singular line con�gurations (near-planar, near-concurrent, and 2 or 3 line directions,

see Section 5.2), it was shown that DLT-Combined-Lines can be used together with AOR

to �lter out mismatched line correspondences for up to 60% of mismatches (Section 5.3),

and it was also shown that DLT-Combined-Lines can decrease the total time spent on

pose estimation and the following BA over the state-of-the-art (Section 5.4).
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Chapter 6

Conclusions

The goal of this thesis was to improve accuracy and robustness of pose estimation from

lines � i. e. of the Perspective-n-Line (PnL) problem � with accent on the formulation

based on the Direct Linear Transformation (DLT). The methods based on a linear

formulation of PnL (LPnL) are especially suitable for scenarios with large line sets due

to their e�ciency and accuracy. The goal shall have been achieved by proposing a new

linear method utilizing line-line correspondences and keeping the common advantage of

LPnL methods of being fast.

Starting from the existing method DLT-Lines which exploits only point-line corre-

spondences, this thesis contributes to the state-of-the-art by proposing two novel meth-

ods for pose estimation: DLT-Plücker-Lines which exploits line-line correspondences,

and DLT-Combined-Lines which exploits both point-line and line-line correspondences.

Another contribution of this thesis is a unifying framework for all DLT-based methods

for pose estimation from lines.

The method DLT-Combined-Lines uses DLT to recover the combined projection ma-

trix. The matrix is a combination of projection matrices used by the DLT-Lines and

DLT-Plücker-Lines methods, that work with 3D points and 3D lines, respectively. The

proposed method works with both 3D points and lines, which leads to a reduction of

the minimum of required lines from 6 (and 9, respectively) to only 5 lines. The method

can also easily be extended to use not only 2D lines but also 2D points. The combined

projection matrix contains multiple estimates of camera rotation and translation, which

can be recovered after enforcing constraints of the matrix. Multiplicity of the estimates

leads to better accuracy compared to the other DLT-based methods.

Both novel methods are benchmarked on synthetic data and compared to several

state-of-the-art PnL methods. Practical usefulness of the methods is tested on real data

comprising buildings and other man-made objects. For larger line sets, DLT-Combined-
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Lines is comparable to the state-of-the-art method LPnL_Bar_ENull in accuracy of ori-

entation estimation; Yet, it is more accurate in estimation of camera position and it

yields smaller reprojection error under strong image noise. On real-world data, DLT-

Combined-Lines achieves top-3 results in both orientation estimation, position estima-

tion and reprojection error. When using pose estimation methods to initialize Bundle

Adjustment (BA), DLT-Combined-Lines provides a speedup up to 1.27× over LPnL_Bar-

_ENull in the total runtime of pose estimation and BA. This also indicates the proposed

method keeps the common advantage of LPnL methods: very high computational ef-

�ciency. The poses of 1000 lines are estimated in 12ms on a contemporary desktop

computer. Altogether, the proposed method DLT-Combined-Lines shows superior ac-

curacy and robustness over its predecessors DLT-Lines and DLT-Plücker-Lines, which

make use either of point-line or line-line correspondences. DLT-Combined-Lines make

use of both types of correspondences, yet it is fast. As it was proven in the experiments,

the requirements were ful�lled: Both accuracy and robustness improved while speed was

comparable to other DLT-based methods. Thus the dissertation goal was achieved.

Future work involves examination of the combined projection matrix to adaptively

combine the multiple camera rotation and translation estimates contained in the matrix.

Inspired by the work of Xu et al. [68], the proposed methods can also be combined with

the e�ective null space solver. This might further increase accuracy of the methods.

Matlab code of the proposed methods as well as other tested methods and the exper-

iments are made publicly available.1

1http://www.fit.vutbr.cz/~ipribyl/DLT-based-PnL/
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Appendix A

Derivation of M from 3D/2D Corre-

spondences

Correspondences between 3D entities and their 2D counterparts are de�ned by equations

which, in turn, generate rows of a measurement matrix M. The following derivations are

made for a single 3D/2D correspondence. More correspondences lead simply to stacking

the rows of M.

A.1 Line-Line Correspondence

We start from Eq. (2.14) de�ning the projection of a 3D line L by a line projection matrix

P̄ onto the image line l

l ≈ P̄L . (A.1)

Its sides are swapped and premultiplied by [l]×

[l]×P̄L ≈ [l]×l . (A.2)

The right-hand side is apparently a vector of zeros

[l]×P̄L = 0 . (A.3)

Using Lemma 4.3.1 of [34], we get(
L⊤ ⊗ [l]×

)
· vec(P̄) = 0 . (A.4)

The left-hand side can be divided into the measurement matrix M = L⊤ ⊗ [l]× and the
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vector of unknowns p̄ = vec(P̄), �nally yielding the homogeneous system

Mp̄ = 0 . (A.5)

A.2 Point-Point Correspondence

The derivation is the same as in the case of line-line correspondences, but starting from

Eq. (2.11) de�ning the projection of a 3D point X by a point projection matrix Ṗ onto

the image point x.

x ≈ ṖX (A.6)

[x]×ṖX ≈ [x]×x (A.7)

[x]×ṖX = 0 (A.8)(
X⊤ ⊗ [x]×

)
· vec(Ṗ) = 0 (A.9)

Mṗ = 0 (A.10)

A.3 Point-Line Correspondence

We start from Eq. (4.5) relating the projection of a 3D point X and an image line l

l⊤ṖX = 0 . (A.11)

Since Eq. (A.11) already has the right-hand side equal to 0, Lemma 4.3.1 of [34] can be

applied directly to see how the measurement matrix M is generated:(
X⊤ ⊗ l⊤

)
· vec(Ṗ) = 0 , (A.12)

Mṗ = 0 . (A.13)
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Appendix B

Error Distributions of the Methods

This appendix contains boxplots visualizing distributions of errors of individual PnL

methods under various conditions. Each distribution over 1000 trials is depicted by a

box, where:

� black dot inside a mark = median,

� box body = interquartile range (IQR),

� whiskers = minima and maxima in the interval of 10× IQR, and

� isolated dots = outliers.

The methods are assigned the following marks in the �gures:

Ansar,

Mirzaei,

RPnL,

ASPnL,

LPnL_Bar_LS,

LPnL_Bar_ENull,

DLT-Lines,

DLT-Plücker-Lines,

DLT-Combined-Lines.

B.1 Robustness to Image Noise

Figures B.1 � B.5 depict errors in estimated camera orientation ∆Θ [◦] as a function of

the number of lines (m = 3 � 10,000) for increasing levels of image noise with standard

deviation σ = 1, 2, 5, 10 and 20 pixels. Accordingly, Figures B.6 � B.10 depict errors

in estimated camera position ∆T [m], and Figures B.11 � B.15 depict reprojection errors

∆π [ ].
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B.2 Robustness to Quasi-Singular Cases

Figure B.16 depicts errors in estimated camera pose as a function of `�atness' of the lines

(lines in near-planar con�guration). Similarly, Figure B.17 depicts errors as a function

of the number of non-concurrent lines. The total number of lines was m = 200 and

standard deviation of image noise was σ = 2 pixels.

B.3 Robustness to Outliers

Figure B.18 depicts errors in estimated camera pose as a function of the fraction of

outliers out of total m = 500 line correspondences with image noise σ = 2 pixels.
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Figure B.1: Errors in camera orientation ∆Θ [◦] for image noise with standard deviation σ = 1pixel.
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Figure B.2: Errors in camera orientation ∆Θ [◦] for image noise with standard deviation σ = 2pixels.
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Figure B.3: Errors in camera orientation ∆Θ [◦] for image noise with standard deviation σ = 5pixels.
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Figure B.4: Errors in camera orientation ∆Θ [◦] for image noise with standard deviation σ = 10pixels.
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Figure B.5: Errors in camera orientation ∆Θ [◦] for image noise with standard deviation σ = 20pixels.
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Figure B.6: Errors in camera position ∆T [m] for image noise with standard deviation σ = 1pixel.
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Figure B.7: Errors in camera position ∆T [m] for image noise with standard deviation σ = 2pixels.
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Figure B.8: Errors in camera position ∆T [m] for image noise with standard deviation σ = 5pixels.
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Figure B.9: Errors in camera position ∆T [m] for image noise with standard deviation σ = 10pixels.
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Figure B.10: Errors in camera position ∆T [m] for image noise with standard deviation σ = 20pixels.
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Figure B.11: Reprojection errors ∆π [ ] for image noise with standard deviation σ = 1pixel.
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Figure B.12: Reprojection errors ∆π [ ] for image noise with standard deviation σ = 2pixels.

100



3 4 5 6 7 8 9 10 25 50 100 200 500 1000 2000 5000 10000

10-8

10-6

10-4

10-2

100

102

104

106

108

Figure B.13: Reprojection errors ∆π [ ] for image noise with standard deviation σ = 5pixels.
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Figure B.14: Reprojection errors ∆π [ ] for image noise with standard deviation σ = 10pixels.
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Figure B.15: Reprojection errors ∆π [ ] for image noise with standard deviation σ = 20pixels.
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Figure B.16: Robustness to near-planar line distribution. The distribution of orientation
errors (∆Θ, top), position errors (∆T, middle) and reprojection errors (∆π, bottom) as a
function of `�atness' (the ratio of height of a volume containing 3D lines w. r. t. to its other
dimensions). The number of lines was m = 200 and standard deviation of image noise was
σ = 2 pixels.
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Figure B.17: Robustness to near-concurrent line distribution. The distribution of orienta-
tion errors (∆Θ, top), position errors (∆T, middle) and reprojection errors (∆π, bottom) as a
function of the number of lines, which are not concurrent, out of all m = 200 lines. Standard
deviation of image noise was σ = 2 pixels.
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Figure B.18: Robustness to outliers. The distribution of orientation errors (∆Θ, a), position
errors (∆T, b), reprojection errors (∆π, c) and runtimes (d) as a function of the fraction of
outliers, out of total 500 line correspondences.
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