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Abstract

The thesis is concerned with camera pose estimation from correspondences of 3D/2D lines, i. e.

with the Perspective-n-Line (PnL) problem. Attention is focused on large line sets which can

be e�ciently solved by methods using linear formulation of PnL. Up to date, methods working

only with point-line correspondences were known. Motivated by this, two novel methods based

on the Direct Linear Transformation (DLT) algorithm are proposed: DLT-Plücker-Lines working

with line-line correspondences and DLT-Combined-Lines working with both point-line and line-line

correspondences. In the latter case, the redundant information reduces the minimum of required

line correspondences to 5 and improves accuracy of the method. The methods were extensively

evaluated and compared to several state-of-the-art PnL methods in various conditions including

simulated and real-world data. DLT-Combined-Lines achieves results similar to or better than state-

of-the-art, while it is still highly e�cient. In addition, the thesis introduces a unifying framework

for DLT-based pose estimation methods, within which the proposed methods are presented.

Abstrakt

Diserta£ní práce se zabývá odhadem pózy kamery z korespondencí 3D a 2D p°ímek, tedy tzv. per-

spektivním problémem n p°ímek (angl. Perspective-n-Line, PnL). Pozornost je soust°ed¥na na

p°ípady s velkým po£tem £ar, které mohou být efektivn¥ °e²eny metodami vyuºívajícími lineární

formulaci PnL. Dosud byly známy pouze metody pracující s korespondencemi 3D bod· a 2D p°ímek.

Na základ¥ tohoto pozorování byly navrºeny dv¥ nové metody zaloºené na algoritmu p°ímé lineární

transformace (angl. Direct Linear Transformation, DLT): Metoda DLT-Plücker-Lines pracující s ko-

respondencemi 3D a 2D p°ímek a metoda DLT-Combined-Lines pracující jak s korespondencemi 3D

bod· a 2D p°ímek, tak s korespondencemi 3D p°ímek a 2D p°ímek. Ve druhém p°ípad¥ je redun-

dantní 3D informace vyuºita k redukci minimálního po£tu poºadovaných korespondencí p°ímek na

5 a ke zlep²ení p°esnosti metody. Navrºené metody byly d·kladn¥ testovány za r·zných podmínek

v£etn¥ simulovaných a reálných dat a porovnány s nejlep²ími existujícími PnL metodami. Metoda

DLT-Combined-Lines dosahuje výsledk· lep²ích nebo srovnatelných s nejlep²ími existujícími meto-

dami a zárove¬ je zna£n¥ rychlá. Diserta£ní práce také zavádí jednotný rámec pro popis metod pro

odhad pózy kamery zaloºených na algoritmu DLT. Ob¥ navrºené metody jsou de�novány v tomto

rámci.
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Chapter 1

Introduction

Computers take part in our lives, and that part is increasing as computers get faster, smaller, easier

to use and more powerful. If a camera is connected to a computer, it is given a chance to �see�,

enhancing its capabilities. The computer does not see in fact; it just gets a meaningless mosaic

of pixels. In order to give a meaning to the pixels (i. e. to s e e ), the computer must be given

instructions for interpreting the pixel values or it must be able to learn them. People who prepare

such instructions or teach computers to learn them deal with computer vision.

The goal of computer vision is to allow computers to see. To see like humans perhaps, or even

better. This is a very ambitious goal and it is still too far from being true due to its complexity.

However, some tasks have already been solved. Computers are able, for example, to �nd speci�c

objects in images, to recognize human faces, to localize a robot using on-board cameras, or to

reconstruct 3D objects, or even whole cities, from multiple images.

Accomplishing of many tasks in computer vision is achieved through the exploitation of features.

Features are interesting parts of an image or a scene in this context. Depending on an application,

the features can be points, lines, curves, regions, more complicated structures, or combinations of

them. If features in a scene are captured by a camera, they can be used to infer various geometric

relations: Either between objects of the scene, or between the scene and the camera. By exploiting

the geometric relations, it is possible to reconstruct a 3D scene, to localize and navigate a mobile

robot, to operate a robotic arm (solely on the basis of visual information) or to augment user's view

with additional information, to give an example. A fundamental underlying task of each of these

applications is pose estimation � the task of determining the relative position and orientation of a

camera and an object to each other in 3D space1.

While pose estimation methods utilizing point features have been in focus of researchers for

some time and they are thus relatively mature, pose estimation methods utilizing line features lag

behind. However, points and lines carry a complementary information about a scene and it is thus

desirable to make use of both. Points have an exact location, whereas the �location� of a line along

its direction is inherently unknown. On the other hand, lines are more robust primitives because

they can be broken or partially occluded, but they are still visible and they can be exploited. Recent

state-of-the-art methods are e�cient and accurate, but they utilize lines only in the image space.

In the 3D space, just point features are used (exploiting the fact that if 3D points lie on a 3D line,

1 The problem of absolute pose estimation is also known as the problem of absolute orientation or exterior

orientation in photogrammetry.
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their projections must coincide with projection of that line in the image). That means only point-

line correspondences are used and the potential of line-line correspondences is wasted, although

line-line correspondences may carry stronger geometric information about a scene than point-line

correspondences.

The goal of the thesis is to improve accuracy and robustness of current state-of-the-art on pose

estimation from lines by incorporating 3D lines and thus also the line-line correspondences directly

into the pose estimation process, which will be experimentally proved. The thesis studies the linear

formulation of pose estimation from lines, which is especially suitable for scenarios with large sets of

lines. The Direct Linear Transformation (DLT)-based formulation, which was used to exploit only

point-line correspondences so far, is of special interest. The thesis contributes to the state-of-the-

art by formulating two new methods for pose estimation, which are built upon the DLT and make

use of line-line correspondences. A secondary contribution of the thesis is a unifying view on the

DLT-based methods for pose estimation from lines.

Although the work presented in the thesis is my own, it has been in�uenced by many discussions

with Pavel Zem£ík and Martin �adík. They also both collaborated with me on writing our joint

papers.

This work is organized into six chapters. In Chapter 2, basic concepts are introduced upon which

the thesis is build. In Chapter 3, a review of related work and state-of-the-art of pose estimation

from line correspondences is presented. In Chapter 4, the state-of-the-art is critically analyzed and

two new methods � DLT-Plücker-Lines and DLT-Combined-Lines � are proposed and presented

in a unifying framework, which relates the proposed methods with the existing method for pose

estimation, DLT-Lines. In Chapter 5, performance of the proposed methods is benchmarked and

compared to the state-of-the-art using simulations and real-world experiments. Finally, the thesis

is concluded in Chapter 6 by summarizing its key points and by suggesting future research. The

core of the thesis is constituted by Chapters 4 and 5.
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Chapter 2

Basic Concepts

Since mathematical notation and related concepts vary in literature, they way how they are used in

the thesis is de�ned in this chapter. The mathematical notation is introduced �rst. Then, camera

model is introduced. An introduction to parameterization of 3D lines using Plücer coordinates

follows. After that, projection of points and lines onto the image plane is derived in the context

of the used camera model and line parameterization. Finally, a method of solving a homogeneous

system of linear equations is introduced.

2.1 Notation

Scalars are typeset in italics (x,X), vectors are typeset in bold (l, L). All vectors are thought of

as being column vectors unless explicitly transposed. Matrices are typeset in sans-serif fonts (t, D),

the identity matrix is denoted by I and the zero matrix by 0. 2D entities are denoted by lower case

letters (x, l, t), 3D entities by upper case letters (X, L, D). Some of the symbols used in this work

are organized in the following table.

scalar vector matrix

2D a � h, j � n, q, s,
l, p, t, u, x, ϵ t

x, y, δ, ϵ, ε, π, σ

3D E, L, S, T , X, Y , Z, 0, E, L, N, T, 0, I, D, K, L, M, P,
A, B, Γ, ∆, Σ, Θ U, V, X, Y R, U, V, W, Z, Σ

No formal distinction between coordinate vectors and physical entities is made. Transformation and

projection matrices acting on points and lines are distinguished by a dot and a bar, respectively (Ḋ,

Ṗ, D̄, P̄).

Operators and functions are denoted as follows.

� Equality of up to a nonzero scale factor is denoted by ≈ ,

� transposition by ⊤,

� ℓ2 norm (Euclidean norm) of a vector by ∥.∥ ,
� ℓ1 norm of a vector by ∥.∥1 ,
� Kronecker product by ⊗ ,

� vectorization of a matrix in column-major order by vec(.) ,

� the skew symmetric matrix associated with the cross product by [.]× ,

i. e. [a]×b = a× b.
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Finally, the following two functions are de�ned. The �rst one is mean◦(.) � the mean of all

atomic elements of its argument. In the case of a vector, the result is straightforward:

mean◦(a) =

∑n
i=1 ai
n

. (2.1)

In the case of a matrix, the result is the mean of all matrix entries (not just of column/row vectors):

mean◦(M) = mean◦(vec(M)) . (2.2)

In the case of a set, the elements of the set are concatenated into a single vector or matrix �rst, the

function is evaluated after the concatenation

mean◦({Xi}) = mean◦((X
⊤
1 X⊤

2 . . .X⊤
n )

⊤) , (2.3)

where i = 1 . . . n.

The second function is mean|◦|(.) � the mean of absolute values of all atomic elements of its

argument. It acts on vectors, matrices and sets in the same way as the function mean◦(.) does.

2.2 Camera Model

A camera with central perspective projection is assumed, where 3D points and lines project onto an

image plane which does not coincide with the center of projection. This is called a pinhole camera

model [18]. The model is parameterized using two sets of parameters: extrinsic and intrinsic

parameters.

Extrinsic parameters encode the position and orientation � i. e. the pose � of a camera in space.

A transition from the world to the camera coordinate system is realized through a translation

followed by a rotation The translation is parameterized using a 3 × 1 translation vector T =

(T1 T2 T3)
⊤, which represents the position of the camera in the world coordinate system. The

rotation is parameterized using a 3× 3 rotation matrix R describing the orientation of the camera

in the world coordinate system by means of three consecutive rotations along the three axes Z, Y ,

X by respective Euler angles Γ, B, A. The pose of a camera thus has 6 Degrees of Freedom (DoF):

T1, T2, T3, A, B, Γ.

The task of pose estimation can be alternatively formulated as object pose estimation (w. r. t. the

camera coordinate system). In this work, however, the earlier formulation is adopted, i. e. estimation

of the pose of a camera (w. r. t. the object or world coordinate system). The two formulations are

equivalent.

Intrinsic parameters describe how the (physical) coordinates of 2D points in the image plane

map to its image coordinates (in pixels). Such mapping can be expressed by an upper-triangular

3× 3 camera calibration matrix K.

Putting together both the extrinsic parameters (R, T) and the intrinsic parameters (K), a 3D
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point X can be related to its projection u in the image by the equation

u ≈ K [R −RT]X . (2.4)

Both X and u are expressed in homogeneous coordinates.

When the camera is intrinsically calibrated, i. e. when K is known, the image coordinates u can

be converted into the normalized image coordinates x = K−1u. The projection x of a 3D point X

in the normalized image plane can then be computed directly

x ≈ [R −RT]X . (2.5)

In the rest of this work, a pinhole camera with known intrinsic parameters is assumed, i. e.

coordinates of 2D points and lines are the normalized image coordinates.

2.3 Plücker Coordinates

Plücker Coordinates are the only linear over-parameterization with linear projection function. More-

over, it is a complete parameterization using �only� 6 DoF.

Given two distinct 3D points X = (X1 X2 X3 X4)
⊤ and Y = (Y1 Y2 Y3 Y4)

⊤ in homogeneous

coordinates, a line joining them in projective 3-space is a homogeneous 6-vector L ≈ (U⊤ V⊤)⊤ =

(L1 L2 L3 L4 L5 L6)
⊤, where

U⊤ = (L1 L2 L3) = (X1 X2 X3) × (Y1 Y2 Y3) , (2.6)

V⊤ = (L4 L5 L6) = X4(Y1 Y2 Y3) − Y4(X1 X2 X3) .

The V part encodes direction of the line while the U part encodes position of the line in space. In

fact, U is a normal of an interpretation plane � a plane passing through the line and the origin. As

a consequence, L must satisfy a bilinear constraint U⊤V = 0. Existence of this constraint explains

the discrepancy between 4 DoF of a 3D line and its parameterization by a homogeneous 6-vector.

More on Plücker coordinates can be found e. g. in [18].

2.4 Projection of Points and Lines

The way, how transformations of points and lines are made, depends on the chosen parameterization.

In the following, 3D lines are assumed to be parameterized using Plücker coordinates and 3D points

are assumed to be parameterized using homogeneous coordinates.

Transformation of a Point. A homogeneous 3D point X = (X1 X2 X3 X4)
⊤ in the world

coordinate system is transformed to a point ḊX in the camera coordinate system using a 4 × 4

point displacement matrix

Ḋ ≈

 R −RT

01×3 1

 . (2.7)
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Projection of a Point. After 3D points are transformed into the camera coordinate system, they

can be projected onto the normalized image plane using the 3 × 4 canonical camera matrix (I 0).

Compositing the two transformations yields the 3× 4 point projection matrix

Ṗ ≈
[
R −RT

]
. (2.8)

A 3D point X is then projected using the point projection matrix Ṗ as

x ≈ ṖX , (2.9)

where x = (x1 x2 x3)
⊤ is a homogeneous 2D point in the normalized image plane.

Transformation of a Line. A 3D line parameterized using Plücker coordinates can be trans-

formed from the world into the camera coordinate system using the 6× 6 line displacement matrix1

D̄ ≈

 R R[−T]×

03×3 R

 . (2.10)

Projection of a Line. After 3D lines are transformed into the camera coordinate system, their

projections onto the image plane can be determined as intersections of their interpretation planes

with the image plane; see Figure 2.1 for illustration. The normal U of an interpretation plane

is identical to the image line l in the coordinate system of the camera, hence only U needs to

be computed when projecting L, and only the upper half of D̄ is needed, yielding the 3 × 6 line

projection matrix [13]

P̄ ≈
[
R R[−T]×

]
. (2.11)

The line projection matrix in Eq. (2.11) can also be achieved by compositing the two transformations

de�ned by the line displacement matrix D̄ (2.10) and by the 3× 6 canonical camera matrix (I 0).

Figure 2.1: 3D line projection. The 3D line L is parameterized by its direction vector V and
a normal U of its interpretation plane, which passes through the origin of the camera coordinate
system {C}. Since the projected 2D line l lies at the intersection of the interpretation plane and
the image plane, it is fully de�ned by the normal U.

A 3D line L is then projected using the line projection matrix P̄ as

l ≈ P̄L , (2.12)
1 Please note that our line displacement matrix di�ers slightly from the matrix of Bartoli and Sturm [4, Eq. (6)],

namely in the upper-right term: We have R[−T]× instead of [T]×R due to di�erent coordinate system.
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where l = (l1 l2 l3)
⊤ is a homogeneous 2D line in the normalized image plane.

2.5 Solving a Homogeneous System of Linear Equations

Methods presented in this work often solve a homogeneous system of linear equations, which can

be described by the matrix equation

Mx = 0 . (2.13)

If the system has m equations and n unknowns, then the measurement matrix M containing coe�-

cients of the equations is m × n, and the vector of unknowns x has n entries. The trivial solution

x = 0 is not of interest, hence the desired solution must be constrained, typically

argmin
x

∥Mx∥2

s. t. ∥x∥ = 1 .
(2.14)

Eq. (2.13) holds only in an ideal (noise-free) case. If equation coe�cients in M are perturbed by

noise, an inconsistent system is obtained

Mx′ = ϵ , (2.15)

where x′ is only an approximate solution and ϵ is an m-vector of measurement residuals.

In an ideal case (2.13) and assuming m ≥ n, M has rank n − 1 and x is the right nullspace of

M of rank 1. However, in a noisy case (2.15), M has full rank n, thus its nullspace must have rank

0. This implies nonexistence of an exact solution. Still, an approximate solution may be found in

a least-squares sense. If a rank de�cient matrix M′ is found

argmin
M′

∥M′ −M∥2

s. t. rank(M′) = rank(M)− 1 ,
(2.16)

then, the approximate solution x′ of the system (2.15) is the right nullspace of M′ of rank 1, i. e.

M′x′ = 0 . (2.17)

Remark 2.1: In the rest of the thesis, the above-described way of solving a homogeneous linear

system Mx = 0 will be referred to as �homogeneous linear least squares�. Although a mathemat-

ically correct term would be �low-rank approximation� (of M), the former designation was chosen

due to its analogy to the term �linear least squares�, which designates solving of a linear system

Mx = b.
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Chapter 3

Pose Estimation from Lines

Points are the most commonly used features, not only for pose estimation. It is so because points

are the simplest geometric primitives, easy to represent mathematically and easy to handle in a

space of any dimension [18]. A substantial amount of research has been dedicated to point features

and their applications in computer vision. Lines, on the other hand, are more di�cult to represent,

especially in spaces of dimension 3 and higher. This was naturally re�ected in less research e�ort

dedicated to line features.

Nevertheless, points and lines carry a complementary information about a scene and it is thus

desirable to make use of both. Points have an exact location, whereas the �location� of a line

along its direction is inherently unknown. On the other hand, lines are a more robust type of a

primitive, because they can be broken or partially occluded, but they are still visible and they can

be exploited. Additionally, lines provide stronger structural information about a scene than points,

see Figure 3.1. Lines are especially useful and sometimes indispensable in situations where point

features are unreliable. This might be caused, for example, by a lack of texture or presence of

repetitive patterns, see Figure 3.2. Such conditions are typical for man-made environments � wiry

structures, streets, facades of buildings, corridors, rooms etc. Lines are often abundant in such

environments [27].

The task of camera pose estimation from lines has a �nite number of solutions for 3 and more

lines. However, in the minimal case of 3 lines, solutions of the Perspective-3-Line (P3L) problem are

multiple: up to 8 solutions may exist [6]. The ambiguity is removed by adding one or more lines and

thus the PnL problem has a unique solution for n ≥ 4 [33]. Having said that, special con�gurations

Figure 3.1: Representation of a building (on the left) using points (center) and lines (right).1

1The data is a courtesy of [32].
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of lines must not be forget, for which the PnL problem has an in�nite number of solutions even for

n ≥ 4. Such cases are termed singular con�gurations (e. g. a set of parallel lines, in which case, it is

impossible to locate the camera along the lines). Generally, methods for pose estimation are known

to be prone to singular and sometimes also to quasi-singular con�gurations of lines [28].

The PnL problem has been receiving attention for more than a quarter of century. Some of

the earliest works are the ones of Dhome et al. from 1989 [12] and Liu et al. from 1990 [22]. They

introduce two di�erent ways to deal with the PnL problem: iterative and algebraic2 approaches.

As the names suggest, the algebraic methods solve PnL by minimizing an algebraic error in �one

step�, while the iterative methods iteratively minimize a nonlinear error function, which usually

has a geometric meaning. Both approaches have di�erent properties and thus also di�erent use.

A speci�c subset of algebraic approaches are the methods based on linear formulation of the PnL

problem.

Figure 3.2: Point matches (top) and line matches (bottom) in a pair of images of a low-texutre
scene. Only 9 matches were found using points, while 54 matches were found using lines.3

2Sometimes also called non-iterative approaches.
3The images and line matches are a courtesy of [34].
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3.1 Iterative Methods

The iterative approaches consider pose estimation as a nonlinear least squares problem by iteratively

minimizing speci�c error function, which usually has a geometrical meaning. In the early work of

Liu et al. [22], the authors attempted to estimate the camera position and orientation separately

developing a method called R_then_T. Later on, Kumar and Hanson [20] introduced a method called

R_and_T for simultaneous estimation of camera position and orientation, and proved its superior

performance to R_then_T. Recently, Zhang et al. [37] proposed two modi�cations of the R_and_T

algorithm exploiting the uncertainty properties of line segment endpoints. Several other iterative

methods are also capable of simultaneous estimation of pose parameters and line correspondences,

e. g. [11, 36]. They pose an orthogonal approach to the common RANSAC-based correspondence

�ltering and consecutive separate pose estimation.

Iterative algorithms su�er from two common major issues when not initialized accurately: They

converge slowly, and more severely, the estimated pose is often far from the true camera pose,

�nding only a local minimum of the error function. This makes iterative approaches suitable for

�nal re�nement of an initial solution, provided by some other algorithm.

3.2 Algebraic Methods

The algebraic approaches estimate the camera pose by solving a system of (usually polynomial)

equations, minimizing an algebraic error. Their solutions are thus not necessarily geometrically

optimal; on the other hand, no initialization is needed.

Among the earliest e�orts in this �eld are those of Dhome et al. [12] and Chen [6]. Both methods

solve the minimal problem of pose estimation from 3 line correspondences in a closed form. Solutions

of the P3L problem are multiple: up to 8 solutions may exist [6]. Unfortunately, neither method

is able to exploit more measurements to remove the ambiguity, and both methods are sensitive to

presence of image noise.

Ansar and Daniilidis [3] developed a method that is able to handle 4 or more lines, limiting

the number of possible solutions to 1. Lifting is employed to convert a polynomial system to linear

equations in the entries of a rotation matrix. This approach may, however, fail in cases of singular

line con�gurations (e. g. lines in 3 orthogonal directions [28]) as the underlying polynomial system

may have multiple solutions. The algorithm has quadratic computational complexity (O(n2), where

n is the number of lines), which renders it impractically slow for processing higher numbers of lines.

The method also becomes unstable with increasing image noise, eventually producing solutions with

complex numbers.

Recently, two major improvements of algebraic approaches have been achieved. First, Mirzaei

and Roumeliotis [26] proposed a method, which is more computationally e�cient (O(n)), behaves

more robustly in the presence of image noise, and can handle the minimum of 3 lines, or more. A

polynomial system with 27 candidate solutions is constructed and solved through the eigendecompo-

sition of a multiplication matrix. Camera orientations having the least square error are considered

to be the optimal ones. Camera positions are obtained separately using linear least squares. A

weakness with this algorithm is that it often yields multiple solutions. Also, despite its linear com-
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putational complexity, the overall computational time is still high due to slow construction of the

multiplication matrix, which causes a high constant time penalty: 78ms / 10 lines.

The second recent improvement is the Robust PnL (RPnL) algorithm of Zhang et al. [35]. Their

method works with 4 or more lines and is more accurate and robust than the method of Mirzaei

and Roumeliotis. An intermediate model coordinate system is used in the method of Zhang et al.,

which is aligned with a 3D line of longest projection. The lines are divided into triples, for each of

which a P3L polynomial is formed. The optimal solution of the polynomial system is selected from

the roots of its derivative in terms of a least squares residual.

The RPnL algorithm was later modi�ed by Xu et al. [33] into the Accurate Subset based PnL

(ASPnL) algorithm, which acts more accurately on small line sets. However, it is very sensitive

to outliers, limiting its performance on real-world data. A drawback of both RPnL and ASPnL is

that their computational time increases strongly for higher number of lines � from 8ms / 10 lines to

630 � 880ms / 1000 lines.

3.3 Methods based on Linear Formulation of PnL

A speci�c subset of algebraic methods are methods exploiting a linear formulation of the PnL

problem (LPnL). Generally, the methods solve a system of linear equations, the size of which is

directly proportional to the number of measurements. The biggest advantage of LPnL methods is

their computational e�ciency, making them fast for both low and high number of lines.

The most straightforward way to solve LPnL is the Direct Linear Transformation (DLT) algo-

rithm [18]. It transforms the measured line correspondences into a homogeneous system of linear

equations, whose coe�cients are arranged into a measurement matrix. The solution then lies in

the nullspace of the matrix. A necessary condition to apply any DLT method on noisy data is

to prenormalize the input in order to ensure that the entries of the measurement matrix are of

equal magnitude. Otherwise, the method will be oversensitive to noise and it will produce results

arbitrarily far from the true solution.

The �rst DLT method for solving PnL is the method of Hartley and Zisserman [18, p. 180].

Following the terminology of Silva et al. [29], we call the method DLT-Lines. It does not act

directly on 3D lines, but rather on 3D points lying on 3D lines (for example line endpoints). It

exploits the fact that if a 3D line and a 3D point coincide, their projections also must coincide. The

DLT-Lines method requires at least 6 line correspondences.

Recently, we introduced a new DLT method [II], which acts on 3D lines directly The lines are

parameterized using Plücker coordinates, hence the name of the method is DLT-Plücker-Lines.

The method yields more accurate estimates of camera orientation than DLT-Lines at the cost of a

bit larger reprojection error and slightly lower computational e�ciency. Also, the minimum number

of lines required is 9.

Even more recently, Xu et al. [33] introduced a new set of methods exploiting the linear for-

mulation of the PnL problem. The authors were inspired by the state-of-the-art Perspective-n-

Point (PnP) solver working on the same principle [14]. Similarly to DLT-Lines, the new methods

act on 3D points and 2D lines. The methods of Xu et al. [33] can be categorized by two criteria.

Firstly, by parameterization of 3D points (either by Cartesian or by barycentric coordinates � this
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is denoted in the method's names by �DLT� and �Bar�, respectively). Secondly, by the manner in

which a solution is obtained from the nullspace. The solution is either an exact rank-1 nullspace

computed in closed form using homogeneous linear least squares, or it is estimated from an �e�ective

nullspace� [21] of a dimension 1 � 4 (higher dimensions typically occurring under the presence of

noise). This is denoted in the method's names by �LS� and �ENull�, respectively. All the following

methods require at least 6 line correspondences, although the e�ective null space solver (ENull) is

sometimes able to recover the correct solution of an underdetermined system de�ned by 4 or 5 lines.

The four LPnL methods of Xu et al. are the following:

LPnL_DLT_LS parameterizes 3D points using Cartesian coordinates, and it uses homogeneous

linear least squares to recover the solution: entries of the rotation matrix and translation vector.

This is exactly the same algorithm as DLT-Lines [18, p. 180], so we use the name DLT-Lines to

refer to the method in the rest of the paper.

LPnL_DLT_ENull parameterizes 3D points using Cartesian coordinates, and it uses the e�ective

nullspace solver [21] to recover the solution: entries of the rotation matrix and translation vector.

It achieves higher accuracy than DLT-Lines.

LPnL_Bar_LS parameterizes 3D points using barycentric coordinates, which depend on the po-

sition of 4 arbitrarily chosen control points. Position of the control points with respect to camera

is solved using homogeneous linear least squares. Alignment of the 4 camera- and world-referred

control points de�nes the camera pose. Accuracy of the method is similar to DLT-Lines.

LPnL_Bar_ENull parameterizes 3D points using barycentric coordinates. Position of the 4 control

points with respect to camera is solved using the e�ective nullspace solver. Alignment of the 4

camera- and world-referred control points de�nes the camera pose. The method is even more

accurate than LPnL_Bar_LS.

3.4 Handling Mismatched Correspondences

In practice, mismatches of lines (i. e. outlying correspondences) often occur, which degrades the

performance of camera pose estimation or even impedes it. It is thus necessary to identify and �lter

out mismatched correspondences and work preferably with correct matches.

RANSAC-based

The RANdom SAmple Consensus (RANSAC) algorithm [15] is commonly used to identify and

remove outliers. It is a hypothesize-and-test scheme, where random samples are drawn from a set

of data points, model parameters (i. e. hypotheses) are computed from the samples, and consensus

of other data points is tested. This is repeated until a hypothesis with su�cient consensus is found

or an iteration limit is exceeded.

A correct hypothesis is generated only if all data points in the sample are inliers. Since the

chance of drawing an outlier-free sample depends not only on the fraction of inliers in the data but

also on the size of the sample, it is desirable to use a minimal model. A non-minimal model can

also be used, but, on average, more iterations are needed to obtain a correct hypothesis with the

same probability as when using a minimal model.
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In the context of pose estimation from lines, the data points are usually tentative line corre-

spondences, the model parameters are parameters of a camera pose, and the consensus may be

quanti�ed e. g. by reprojection error of corresponding lines. The minimal number of line correspon-

dences required to determine a camera pose is 3, but methods working with 4 line correspondences

are also being used to generate hypotheses.

The RANSAC scheme can handle any percentage of outliers in theory as long as at least one

outlier-free sample can be found. RANSAC is nondeterministic due to the use of random sampling.

However, dozens of di�erent RANSAC modi�cations have been introduced [25] eliminating various

drawbacks of the original algorithm, e. g. [8, 9, 30].

Algebraic Outlier Rejection

As the LPnL methods work with 5 and more line correspondences, they cannot compete with the

minimal (P3L) methods when plugged into a RANSAC-like framework due to an increased number

of iterations.

This motivated an alternative scheme called Algebraic Outlier Rejection (AOR, [14]). It is

an iterative approach integrated directly into the pose estimation procedure. Speci�cally, it is

integrated into solving of the homogeneous linear system (2.13). Each line correspondence is assigned

a weight, and the weights are arranged on the main diagonal of a square matrix W. This yields a

homogeneous system of weighted linear equations

WMx = 0 . (3.1)

At the beginning, all weights are initialized to 1, conservatively assuming that all line correspon-

dences are inliers. An approximate least-squares solution x' of the system (3.1) is computed by

Singular Value Decomposition (SVD) of M⊤WM, and a residual vector ϵ of the solution is com-

puted as

ϵ = Mx′ . (3.2)

An algebraic error ε of each line correspondence is computed from the residual vector ϵ as a norm of

a sub-vector of corresponding residuals. E. g., for a case with 2 equations per line correspondence,

the algebraic error of the i-th correspondence is εi = ∥(ϵ2i−1 ϵ2i)∥. All correspondences are then

assigned new weights

wi =

 1 if εi ≤ max(εmax, δmax) ,

0 otherwise ,
(3.3)

and the whole procedure is repeated until convergence of the solution x′. The constants εmax

and δmax are prede�ned thresholds. The strategy for choosing εmax may be arbitrary but the

authors [14] recommend εmax = Q25(ε1, . . . , εn) which is the algebraic error of the correspondence

that is at the boundary of the 25th percentile. The function is used as a robust estimator to reject

correspondences with largest errors. The other threshold, δmax, needs to be reached to consider

a speci�c correspondence as an outlier. Its purpose is to avoid unnecessary rejections of inlier

correspondences in an outlier-free case, and to achieve faster convergence.

The authors claim the break-down point to reach 60% when applied to the PnP problem, and

the process to usually converge in less than 5 iterations.
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Chapter 4

Pose Estimation from Lines

using Direct Linear Transformation

This chapter contains the majority of contributions of the thesis. First, the state-of-the-art is

critically analyzed and the resolution is outlined. Then, two novel DLT-based methods for pose

estimation from line correspondences are introduced and related to one existing DLT-based method.

The methods are formulated within a novel unifying framework for DLT-based PnL methods.

4.1 Analysis of the State-of-the-Art

Pose estimation from line correspondences is a fundamental task required for many applications of

computer vision � 3D reconstruction of a scene, localization and navigation of a robot, operation

of a robotic arm solely on the basis of visual information, or augmentation of user's view with

additional information, for example.

When estimating camera pose �from scratch�, the following pipeline is typically used:

(i) Obtain tentative feature correspondences,

(ii) �lter out outliers,

(iii) compute a solution from all inliers, and

(iv) iteratively re�ne the solution, e. g. by minimizing reprojection error (optionally).

Task (i) is usually carried out by appearance-based or geometry-based matching of lines. Task (ii) is

usually carried out by iterative solving of a problem with a minimal number of line correspondences

(i. e. P3L) in a RANSAC loop. Tasks (iii) and (iv), on the other hand, require solving a PnL problem

with potentially high number of lines, which might be a time-consuming task. It is thus of interest

to solve the task using an e�cient algorithm.

As presented in the previous chapter, methods for solving PnL can be categorized as either

iterative or algebraic. The iterative algorithms [7, 11, 20, 22, 36, 37] need initialization. This

makes them suitable only for �nal re�nement (iv) of an initial solution, which must be provided

by some other algorithm. The initial solution (iii) may be provided by an algebraic algorithm

[3, 6, 12, 26, 33, 35]. Among these, the methods of Chen [6] and Dhome et al. [12] are able to

exploit only 3 line correspondences, thus they cannot be used in scenarios with more lines. The

algorithm of Ansar and Daniilidis [3] overcomes the limitation of �xed number of lines, allowing to
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use 4 and more lines. However, it has a quadratic computational complexity in the number of lines,

which renders it impractically slow even for scenarios with dozens of lines. Mirzaei and Roumeliotis

[26] eliminated the computational burden by introducing a method with linear computational com-

plexity. Nonetheless, its runtime is still high due to a slow construction of a multiplication matrix,

causing a high constant time penalty: it takes 78ms to process 10 lines. Another drawback of the

method is that it often yields multiple solutions. The shortcomings of [26] have been overcome by

Zhang et al. [35] in their RPnL algorithm: it always yields a single solution and it takes 8ms to

compute a pose of 10 lines. However, the computational time increases strongly for higher number

of lines: it takes 880ms to process 1000 lines. The related method ASPnL of Xu et al. [33] inherits

the attributes of RPnL. Alhough ASPnL is more accurate on small line sets, its runtime follows

the characteristic of RPnL.

The non-LPnL algebraic methods only have been discussed so far. Nevertheless, in tasks in-

volving a high number of lines, the non-LPnL methods are outperformed by the LPnL methods: by

DLT-Lines of Hartley and Zisserman [18] and by the methods of Xu et al. [33]. These state-of-the-art

methods are e�cient and accurate especially in scenarios with high number of lines. Interestingly

enough, they do not exploit all available information: They only utilize points in 3D space, but

3D lines remain unused. This means only point-line correspondences are used and the potential of

line-line correspondences is unexploited, leaving a promising room for research and improvement.

The thesis aims for better accuracy and robustness than the state-of-the-art by introducing a

new linear method for pose estimation. The method shall utilize line-line correspondences and keep

the advantage of being fast which LPnL methods have in common. The goal is elaborated in the

rest of this work and it is veri�ed experimentally using both synthetic and real-world data.

The attention is focused on methods based on the DLT. First, a unifying framework for all

DLT-based PnL methods is presented in Section 4.2. Then, all three DLT-based PnL methods are

formulated within the framework. The methods are:

DLT-Lines of Hartley and Zisserman [18, p. 180], exploiting point-line correspondences only �

Section 4.3.

DLT-Plücker-Lines of ours [II], exploiting line-line correspondences only � Section 4.4.

DLT-Combined-Lines of ours [I], exploiting both point-line and line-line correspondences � Sec-

tion 4.5.

4.2 Common Structure of DLT Methods

In this section, the novel unifying framework for DLT-based PnL methods is introduced. Given the

point-line or line-line correspondences, the camera pose can be estimated using a PnL method. The

DLT-based PnL methods have the following steps in common:

1. Input data is prenormalized to achieve good conditioning of the linear system.

2. A projection matrix is estimated using homogeneous linear least squares, and the e�ect of

prenormalization is reverted.
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3. The pose parameters are extracted from the estimated projection matrix. This includes also

constraint enforcement in the case of noisy data, since the constraints are not taken into

account during the least-squares estimation.

Prenormalization

Since the DLT algorithm is sensitive to the choice of coordinate system, it is crucial to prenormalize

the data to get a properly conditioned measurement matrix M [16]. Various transformations can

be used, but the optimal ones are unknown. In practice, however, the goal is to reduce large values

of point/line coordinates. This is usually achieved by centering the data around the origin and

by scaling them s. t. an average coordinate has the absolute value of 1 (which means the average

distance to the origin shall equal to
√
2 and

√
3 in the 2D and 3D case, respectively). Speci�c

prenormalizing transformations are proposed for each method in the following sections.

Linear Estimation of a Projection Matrix

As a starting point, a system of linear equations needs to be constructed, which relates (prenor-

malized) 3D entities with their (prenormalized) image counterparts through a projection matrix,

denoted P. The relation might be the projection of homogeneous 3D points x ≈ ṖX in Eq. (2.9),

or the projection of Plücker lines l ≈ P̄L in Eq. (2.12), or other linear system, or a combination of

those. The problem of camera pose estimation now resides in estimating the projection matrix P,

which encodes all the six camera pose parameters T1, T2, T3, A, B, Γ.

The system of linear equations is transformed into a homogeneous system of linear equations

(see Appendix A of the thesis for details), i. e. a system having only a zero vector at the right-hand

side.

Mp = 0 (4.1)

M is a measurement matrix containing coe�cients of equations generated by correspondences be-

tween 3D entities and their image counterparts. Each of the n correspondences gives rise to a

number of independent linear equations (usually 2), and thus to the same number of rows of M.

The number of columns of M equals d, which is the number of entries contained in P. The size of

M is thus 2n× d. Eq. (4.1) is then solved for the d-vector p = vec(P).

As mentioned in Section 2.5, Eq. (4.1) holds only in a noise-free case. If a noise is present in

the measurements, an inconsistent system is obtained:

Mp′ = ϵ . (4.2)

Only an approximate solution p′ may be found through minimization of a 2n-vector of measurement

residuals ϵ in a least-squares sense s. t. ∥p′∥ = 1.

Once the system of linear equations given by Eq. (4.2) is solved, the estimate P′ of the projection

matrix P can be recovered from the d-vector p′.
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Extraction of Pose Parameters

The estimate P′ of a projection matrix P obtained as a solution of the system (4.2) does not satisfy

the constraints imposed on P. In fact, a projection matrix P has only 6 DoF � the 6 camera pose

parameters T1, T2, T3, A, B, Γ. It has, however, more entries: The 3× 4 point projection matrix

Ṗ ≈
[
R −RT

]
(4.3)

has 12 entries and the 3× 6 line projection matrix

P̄ ≈
[
R R[−T]×

]
(4.4)

has 18 entries. This means that the projection matrices have 6 and 12 independent linear constraints,

respectively.

The �rst six constraints are imposed by the rotation matrix R that must satisfy the orthonor-

mality constraints (unit-norm and mutually orthogonal rows). The other six constraints in the

case of P̄ are imposed by the skew-symmetric matrix [−T]× (three zeros on the main diagonal and

antisymmetric o�-diagonal elements).

In order to extract the pose parameters, the scale of an estimate P′ of a projection matrix P has

to be corrected �rst, since p′ is usually of unit length as a minimizer of ϵ in Eq. (4.2). The correct

scale of P′ can only be determined from the part which does not contain the translation T. In both

cases of Ṗ (4.3) and P̄ (4.4), it is the left 3 × 3 submatrix � let us denote it P′
1 � an estimate of a

rotation matrix R. A method of scale correction is recommended based on the fact that all three

singular values of a proper rotation matrix should be 1. See Algorithm 1.

Algorithm 1: Scale correction of a projection matrix.

Input: An estimate P′ of a projection matrix, possibly wrongly scaled and without ful�lled con-

straints.

1. P′
1 ← left 3× 3 submatrix of P′

2. UΣV⊤ ← SVD(P′
1)

3. s← 1/mean(diag(Σ))

Output: sP′.

Alternatively, the scale can also be corrected so that det(sP′
1) = 1, but Algorithm 1 proved to be

more robust in practice.

Further steps in the extraction of pose parameters di�er in each method, they are thus described

separately in the following sections.

4.3 DLT-Lines

DLT-Lines is the method by Hartley and Zisserman [18, p. 180]. In the following text, the method

is put into context using the unifying framework of the previous section. DLT-Lines exploits the

fact that a 3D point X lying on a 3D line L projects such that its projection x = ṖX must also lie
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on the projected line: l⊤x = 0, see Figure 4.1. Putting this together yields the constraint equation

l⊤ṖX = 0 . (4.5)

The pose parameters are encoded in the 3 × 4 point projection matrix Ṗ, see Eq. (2.8). Since Ṗ

has 12 entries, at least 6 lines are required to fully determine the system, each line with 2 or more

points on it.

X

l

R,T{W}

{C}

Figure 4.1: A point X lying on a 3D line projects s. t. its projection must lie on the image line l
� a projection of the 3D line.

Prenormalization

The known quantities of Eq. (4.5), i. e. the coordinates of 3D points and 2D lines, need to be

prenormalized. In the case of the DLT-based pose estimation from points [17], Hartley suggests to

translate and scale both 3D and 2D points so that their centroid is at the origin and their average

distance from the origin equals to
√
3 and

√
2, respectively.

By exploiting the principle of duality [10], it is suggested to treat coordinates of 2D lines as

homogeneous coordinates of 2D points, and then to follow Hartley in the prenormalization procedure

� i. e. to apply translation to the origin and then anisotropic scaling.

Linear Estimation of the Point Projection matrix

The point projection matrix Ṗ and its estimate Ṗ′ are 3×4, so the corresponding measurement matrix

Ṁ is n× 12, where n is the number of point-line correspondences Xi ↔ li, (i = 1 . . . n, n ≥ 12). Ṁ

is constructed as

Ṁ(i, :) = X⊤
i ⊗ l⊤i , (4.6)

where Ṁ(i, :) denotes the i-th row of Ṁ in the Matlab notation. See Appendix A.3 of the thesis for

a derivation of Eq. (4.6). The 3D points Xi must be located on at least 6 di�erent lines.

Extraction of Pose Parameters

First, the scale of Ṗ′ is corrected using Algorithm 1, yielding sṖ′. Then, the left 3 × 3 submatrix

of sṖ′ is taken as the estimate R′ of a rotation matrix. A nearest rotation matrix R is found in the

sense of the Frobenius norm using Algorithm 2.
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Algorithm 2: Orthogonalization of a 3× 3 matrix.

Input: A 3× 3 estimate R′ of a rotation matrix R.

1. UΣV⊤ ← SVD(R′)

2. d← det(UV⊤)

3. R← dUV⊤

Output: R.

Please, note that Algorithms 1 and 2 can be combined and executed at once.

The remaining pose parameter to recover is the translation vector T, which is encoded in the

fourth column Ṗ′
4 of Ṗ′, see Eq. (2.8). It is recovered as T = R⊤sṖ′

4, completing the extraction of

pose parameters.

4.4 DLT-Plücker-Lines

DLT-Plücker-Lines is a novel method, which was published in [II]. It exploits the linear projection of

3D lines parameterized using Plücker coordinates onto the image plane, as described in Section 2.3.

A bene�t of this method is higher accuracy of camera orientation estimates compared to DLT-Lines.

The formation of a 2D line l as a projection of a 3D line L is de�ned by the constraint equation

(2.12)

l ≈ P̄L , (4.7)

as illustrated in Figure 4.2. The pose parameters are encoded in the 3× 6 line projection matrix P̄,

see Eq. (2.11). Since P̄ has 18 entries, at least 9 lines are required to fully determine the system.

L
l

{W}

{C}

V

U

R,T

Figure 4.2: A 3D line L parameterized using Plücker coordinates is de�ned by a normal U of its
interpretation plane and by its direction vector V. Its projection is denoted l.

Prenormalization

The known quantities of Eq. (4.7) need to be prenormalized, i. e. the Plücker coordinates of 3D

lines L, and the coordinates of 2D lines l. Since the homogeneous Plücker coordinates of a 3D

line L cannot be simply treated as homogeneous coordinates of a 5D point (because of the bilinear

constraint, see Section 2.3), the following prenormalization is suggested.
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Translation and scaling is applied in this case as well. However, both translation and scaling

a�ect only the U part of each L, and not the V part. Therefore, the V parts are adjusted �rst by

multiplying each L by a nonzero scale factor so that ∥V∥ =
√
3. Then, translation is applied to

minimize the average magnitude of U. Since ∥U∥ decreases with the distance of L from the origin,

it is feasible to translate the lines so that the sum of squared distances from the origin is minimized.

This can be e�ciently computed using the Generalized Weiszfeld algorithm [1]. Finally, anisotropic

scaling is applied so that the average magnitude of all U parts matches the average magnitude of

all V parts. Both translation and scaling of lines is achieved by premultiplying them by a 6× 6 line

similarity matrix [4]. The procedure is summarized in Algorithm 3.

Algorithm 3: Prenormalization of 3D lines parameterized by Plücker coordinates.
Note: See Section 2.1 for the de�nition of function mean|◦|(.).

Input: A set of m 3D lines {Lj}, j = 1 . . .m.

1. For all lines do: Lj =

√
3

∥Vj∥
· Lj

2. T← Generalized_Weiszfeld_Algorithm({Lj}) ▹ Aftab et al. [1]

3. For all lines do: Lj =

 I [−T]×

0 I

Lj ▹ translation

4. SX ←
mean|◦|({Vj})
mean|◦|({Lj,1})

, SY ←
mean|◦|({Vj})
mean|◦|({Lj,2})

, SZ ←
mean|◦|({Vj})
mean|◦|({Lj,3})

5. For all lines do: Lj =


SX

SY
SZ

0

0 I

Lj ▹ scaling

Output: A set of m prenormalized 3D lines {Lj}, j = 1 . . .m.

Prenormalization of 2D lines can be carried out in the same way as in the case of the DLT-Lines

method, see Section 4.3.

Linear Estimation of the Line Projection Matrix

The line projection matrix P̄ and its estimate P̄′ are 3×6, so the corresponding measurement matrix

M̄ has 18 columns. The number of its rows depends on m, the number of line-line correspondences

Lj ↔ lj , (j = 1 . . .m, m ≥ 9). By exploiting Eq. (4.7), each correspondence generates three rows

of M̄ (Matlab notation is used to index the matrix elements):

M̄(3j−2 : 3j, :) = L⊤
j ⊗ [lj ]× . (4.8)

The line measurement matrix M̄ is thus 3m×18. Note that only two of the three rows of M̄ de�ned

by Eq. (4.8) are needed for each line-line correspondence, because they are linearly dependent. M̄

will be only 2m× 18 in this case. See Appendix A.1 of the thesis for a derivation of Eq. (4.8).
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Extraction of Pose Parameters

First, the scale of P̄′ is corrected using Algorithm 1, yielding sP̄′. Then, the camera pose parameters

are extracted from the right 3×3 submatrix of sP̄′, which is an estimate of a skew-symmetric matrix

premultiplied by a rotation matrix (i. e. R[−T]×, see Eq. (2.11)). Since sP̄′ has the structure of the

essential matrix [23], the algorithm of Tsai and Huang [31] is proposed to decompose sP̄′, as outlined

in Algorithm 4. This completes the extraction of pose parameters.

The variable q = (Σ1,1 +Σ2,2)/2 in Algorithm 4 is an average of the �rst two singular values of

sP̄′
2 to approximate the singular values of a properly constrained essential matrix, which should be

(q, q, 0). The ±1 term in Step 4 of Algorithm 4 denotes either +1 or −1 which has to be put on the

diagonal so that det(RA) = det(RB) = 1.

Alternative ways of extracting the camera pose parameters from sP̄′ exist, e. g. computing the

closest rotation matrix R to the left 3 × 3 submatrix of sP̄′
1 and then computing [T]× = −R⊤sP̄′

2.

However, our experiments showed that the alternative ways are less robust to image noise. Therefore,

the solution described in Algorithm 4 was chosen.

Algorithm 4: Extraction of pose parameters from the estimate P̄′ of a line projection matrix,
inspired by [31].

Input: An estimate P̄′ of a line projection matrix P̄.

Input: Corrective scale factor s.

1. P̄′
2 ← right 3× 3 submatrix of P̄′

2. UΣV⊤ ← SVD(sP̄′
2)

3. Z←


0 1 0

−1 0 0

0 0 0

 , W←


0 −1 0

1 0 0

0 0 1

 ,

q ← (Σ1,1 + Σ2,2)/2

4. Compute 2 candidate solutions (A, B):

RA ← UW diag(1 1 ± 1)V⊤, [T]×A ← qVZ V⊤

RB ← UW⊤diag(1 1 ± 1)V⊤, [T]×B ← qVZ⊤V⊤

5. Accept the physically plausible solution, so that the scene lies in front of the camera.

R← RA , T← TA or

R← RB , T← TB .

Output: R, T.

4.5 DLT-Combined-Lines

DLT-Combined-Lines is a novel method published in [I]. It is a combination of DLT-Lines and DLT-

Plücker-Lines methods, exploiting the redundant representation of 3D structure in the form of both

3D points and 3D lines, see Figure 4.3. The 2D structure is represented by 2D lines. The primary

bene�t of the method is a higher accuracy of the camera pose estimates and smaller reprojection
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error, the secondary bene�t is the lower number of required lines.

X

l

L

{C}

{W}

V

U

R,T

Figure 4.3: A 3D line L is parameterized by both Plücker coordinates of the line (i. e. the normal
U of its interpretation plane and its direction vector V) and a point X lying on the line. L may be
parameterized by many such points. Projection of the point X must lie on the projection l of the
line L.

The central idea of the method is to merge two systems of linear equations, which share some

unknowns, into one system. The unknowns are entries of the point projection matrix Ṗ used in

DLT-Lines and the line projection matrix P̄ used in DLT-Plücker-Lines. The two systems de�ned

by Eq. (4.5) and (4.7) can be merged so that the set of unknowns of the resulting system is formed

by the union of unknowns of both systems. It can be observed that the shared unknowns reside in

the left 3×3 submatrices of Ṗ and P̄. If unknowns of the resulting system are arranged in a feasible

manner, a new 3× 7 matrix P̈ can be constructed, which is a �union� of Ṗ and P̄:

Ṗ ≈ [ R −RT ]

P̄ ≈ [ R R[−T]×]

}
P̈ ≈

[
R −RT R[−T]×

]
(4.9)

The matrix is called a combined projection matrix, because it allows to write the projection equations

for point-line, line-line, and even point-point correspondences, as follows:

l⊤P̈
(

X⊤ 0 0 0
)⊤

= 0 , (4.10)

l ≈ P̈
(
U⊤ 0 V⊤

)⊤
, (4.11)

x ≈ P̈
(

X⊤ 0 0 0
)⊤

. (4.12)

These equations can then be used to estimate P̈ linearly from the correspondences.

A secondary bene�t of the method is that it requires only 5 lines (and 10 points on them) � less

then DLT-Plücker-Lines and even less then DLT-Lines. To explain why, the following matrices are

de�ned �rst: the left-most 3× 3 submatrix of P̈ is denoted P̈1, the middle 3× 1 submatrix (column

vector) is denoted P̈2, and the right-most 3× 3 submatrix is denoted P̈3.

P̈ =
[
R −RT R[−T]×

]
=

[
P̈1 P̈2 P̈3

]
(4.13)
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P̈ has 21 entries, but since it encodes the camera pose, it has only 6 DoF. This means it has 14

nonlinear constraints (homogeneity of the matrix accounts for the 1 remaining DoF). Ignoring the

nonlinear constraints, which are not taken into account during the least-squares estimation, P̈ has

20 DoF. Each point-line correspondence generates 1 independent linear equation (4.10) and each

line-line correspondence generates 2 independent linear equations (4.11). Since P̈2 is determined

only by point-line correspondences and since it has 3 DoF, at least 3 3D points are required to fully

determine it. An analogy holds for P̈3: since it is determined only by line-line correspondences and

since it has 9 DoF, at least 5 (in theory 41⁄2) 3D lines are required to fully determine it. The required

number of m line-line correspondences and n point-line correspondences is thus m= 9, n= 3, or

m=5, n=10, or something in between satisfying the inequality (n + 2m) ≥ 20, see Table 4.1. In

such minimal cases, the points must be distributed equally among the lines, i. e. each point or a pair

of points must lie on a di�erent line; otherwise, the system of equations would be under-determined.

Table 4.1: Minimal numbers of line-line and point-line correspondences required for the DLT-
Combined-Lines method.

point-line n = 3 4 5 6 7 8 9 10

line-line m = 9 8 8 7 7 6 6 5

Let us proceed with the description of the algorithm. Please notice that the prenormaliza-

tion procedure will be unusually described after the de�nition of a measurement matrix, because

prenormalization is strongly motivated by its structure.

Linear Estimation of the Combined Projection Matrix

The combined projection matrix P̈ and its estimate P̈′ are 3×7, so the combined measurement matrix

M̈ has 21 columns. Number of its rows depends on n � the number of point-line correspondences

Xi ↔ li, (i = 1 . . . n), and on m � the number of line-line correspondences Lj ↔ lj , (j = n +

1 . . . n+m). The minimal values of n and m depend on each other and are given in Table 4.1. Each

point-line correspondence (4.10) leads to one row of M̈, and each line-line correspondence (4.11)

gives rise to three rows of M̈ (Matlab notation is used to index the matrix elements):

M̈(i, :) = (X⊤
i 0 0 0) ⊗ l⊤i , (4.14)

M̈(3j−n−2 : 3j−n, :) = (U⊤
j 0 V⊤

j ) ⊗ [lj ]× . (4.15)

The combined measurement matrix M̈ is thus (n+ 3m)× 21. Note that only two of the three rows

of M̈ de�ned by Eq. (4.15) are needed for each line-line correspondence, because they are linearly

dependent. Our experiments showed that using all three rows brings no advantage, so only two of

them are used in practice. In this case, M̈ is only (n+ 2m)× 21. See Appendix A of the thesis for

derivations of Eq. (4.14) and (4.15).

The combined measurement matrix M̈ can also be constructed by stacking and aligning the
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point measurement matrix Ṁ and the line measurement matrix M̄:

M̈ =

 Ṁn×12 0n×9

M̄(:, 1:9) 03m×3 M̄(:, 10:18)

 . (4.16)

Remark 4.1: It is advisable to scale both Ṁ and M̄ so that the sums of squares of their entries

are equal. (If they were not, it would negatively a�ect the scales of those parts of the solution

p̈ = vec(P̈), which are determined exclusively by Ṁ or M̄, but not by both of them. These are the

entries 10-12 and 13-21 of p̈, which contain estimates of translation. See the middle and right part

of P̈ in Eq. (4.13).)

Remark 4.2: The method can easily be extended to point-point correspondences (4.12) by adding

extra rows to M̈. Each of the p point-point correspondences Xk ↔ xk, (k = n+m+1 . . . n+m+p)

generates three rows

M̈(3k−n−m−2 : 3k−n−m, :) = (X⊤
i 0 0 0) ⊗ [xi]× , (4.17)

two of which are linearly independent. See Appendix A.2 of the thesis for a derivation of Eq. (4.17).

Prenormalization

Prenormalization of 2D lines is rather complicated in this case. The problem is that a 2D line l

is in the direct form and on the opposite side than the line projection matrix P̄ in Eq. (4.11), and

it is in the transposed form and on the same side like the point projection matrix Ṗ in Eq. (4.10).

Thus, when undoing the e�ect of a prenormalizing 2D transformation t, the inverse transformation

is t−1 for P̄, and t⊤ for Ṗ. Since both Ṗ and P̄ are parts of P̈, both inverse transformations must

be identical (t⊤ = t−1). However, this only holds for a 2D rotation, which is practically useless as a

prenormalizing transformation. It is thus suggested not to prenormalize 2D lines at all.

Prenormalization of 3D points and 3D lines is also nontrivial, because transformations of 3D

space a�ect the coordinates of points and lines di�erently. However, it can be achieved by pursuing

the goal from the beginning of Section 4.2: to center the data around the origin by translation, and

to scale them s. t. an average coordinate has the absolute value of 1.

Please note that translation and scaling a�ects only the U part of a 3D line L, and only the

(X1 X2 X3)
⊤ part of a 3D point X. Therefore, (i) the una�ected parts of L and X (i. e. V and

X4) must be adjusted beforehand: Each 3D line and each 3D point is normalized by multiplication

by a nonzero scale factor, so that ∥V∥ =
√
3, and X4 = 1. Note that this adjustment does not

change the spatial properties of 3D points/lines. Then, (ii) translation is applied to center the 3D

points around the origin1. Although the translation is intuitively correct (it results in zero mean

1 Another possible translation is to center the 3D lines using the Generalized Weiszfeld algorithm [1] as it is done
in Algorithm 3. However, our experiments showed that the two possible translations yield nearly identical robustness
of the method. It is thus suggested to translate the 3D structure to the centroid of points, because its computation
is cheaper.
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of 3D points), it is not optimal in terms of entries of the measurement matrix (joint zero mean of

(X1 X2 X3)
⊤ and U). Therefore, (iii) another translation is applied to achieve a joint zero mean of

all (X1 X2 X3)
⊤ and U. The translation can be easily computed in closed form using Algorithm 6.

Finally, (iv) anisotropic scaling is applied so that the average magnitudes of all X1 and L1, X2 and

L2, X3 and L3, and X4 and V are equal, i. e.

mean|◦|({Xi,1}) + mean|◦|({Lj,1}) =

= mean|◦|({Xi,2}) + mean|◦|({Lj,2}) =

= mean|◦|({Xi,3}) + mean|◦|({Lj,3}) =

= mean|◦|({Xi,4}) + mean|◦|({Vj}) .

(4.18)

This ensures that also the corresponding blocks of the combined measurement matrix M̈ will have

equal average magnitude. The very last step of prenormalization (v) is not applied to the input

primitives, but to the measurement matrix after its construction. Its point- and line-related parts Ṁ

and M̄ should be scaled as stated in Remark 4.1 above. The whole prenormalization is summarized

in Algorithm 5.

Extraction of Pose Parameters

The estimates of a rotation matrix R and a translation vector T are multiple in the combined pro-

jection matrix P̈ (4.13). Moreover, the left-most R is determined by twice as many equations. This

can be exploited to estimate the camera pose more robustly. In the following text, the de�nitions

of submatrices P̈1, P̈2, and P̈3 from Eq. (4.13) are used.

First, the scale of the estimated combined projection matrix P̈′ is corrected using Algorithm 1,

yielding sP̈′. The �rst estimate of R is in the direct form in sP̈′
1, from which it can be extracted

using Algorithm 2, yielding R1. The �rst estimate of T is in sP̈′
2, premultiplied by −R. It can be

recovered as T2 = −R⊤
1 sP̈

′
2. The second estimates of R and T are in the form of an essential matrix

in sP̈′
3, from which they can be extracted using Algorithm 4, yielding R3 and T3.

Now, the question is how to combine R1, R3, and T2, T3. Our experiments showed that R1

is usually more accurate than R3, probably because it is determined by twice as many equations

(generated by both line-line and point-line correspondences). The experiments also showed that T2

is usually more accurate than T3. This is probably because P̈′
2 has no redundant DoF, contrary to

P̈′
3, which has 3 redundant DoF. However, the estimates can be combined so that the result is even

more accurate. Since the error vectors of T2 and T3 tend to have opposite directions, a suitable

interpolation between them can produce more accurate position estimate

T = k ·T2 + (1− k) ·T3 . (4.19)

The value of k should be between 0 and 1. Based on grid search, an optimal value of 0.7 has been

found (the error function has a parabolic shape).

Regarding the rotation estimates, the grid search discovered R1 is indeed more accurate than R3.

However, R1 is not fully `compatible' with T in terms of reprojection error2. Interpolating between

2As an example, imagine a camera located left to its ground truth position and oriented even more left.
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Algorithm 5: Prenormalization of 3D points and 3D lines in DLT-Combined-Lines.
Note: See Section 2.1 for the de�nition of function mean◦(.).

Input: A set of n 3D points {Xi}, i = 1 . . . n.
Input: A set of m 3D lines {Lj}, j = n+ 1 . . . n+m.

1. For all points Xi and lines Lj do:

Xi =
Xi

Xi,4
, Lj =

√
3

∥Vj∥
· Lj

2. T1 ← mean({X(1:3, i)}) ▹ centroid of points
3. For all points Xi and lines Lj do:

Xi =

 I −T1

0⊤ 1

Xi , Lj =

 I [−T1]×

0 I

Lj ▹ �rst translation

4. T2 ← argmin
T

(
mean◦( {X(1:3, i) −T} ∪ {Uj −T×Vj} )

)2
▹ use Algorithm 6

5. For all points Xi and lines Lj do:

Xi =

 I −T2

0⊤ 1

Xi , Lj =

 I [−T2]×

0 I

Lj ▹ second translation

6. SX ←
mean|◦|({Xi,4}) + mean|◦|({Vj})
mean|◦|({Xi,1}) + mean|◦|({Lj,1})

SY ←
mean|◦|({Xi,4}) + mean|◦|({Vj})
mean|◦|({Xi,2}) + mean|◦|({Lj,2})

SZ ←
mean|◦|({Xi,4}) + mean|◦|({Vj})
mean|◦|({Xi,3}) + mean|◦|({Lj,3})

7. For all points Xi and lines Lj do:

Xi =


SX

SY
SZ

0

0⊤ 1

Xi , Lj =


SX

SY
SZ

0

0 I

Lj ▹ scaling

Output: A set of n prenormalized 3D points {Xi}, i = 1 . . . n.
Output: A set of m prenormalized 3D lines {Lj}, j = n+ 1 . . . n+m.
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Algorithm 6: Finding a translation T2 of 3D points {Xi} and 3D lines {Lj} s. t. the mean of
{X(1:3, i)} ∪ {Uj} will be zero after the translation.

Input: A set of n 3D points {Xi}, i = 1 . . . n.
Input: A set of m 3D lines {Lj}, j = n+ 1 . . . n+m.

1. a← n+ 2m ,

b←
∑
j

Lj,1 +
∑
i

Xi,1 , c←
∑
j

Lj,2 +
∑
i

Xi,2 , d←
∑
j

Lj,3 +
∑
i

Xi,3 ,

e←
∑
j

Lj,4 , f ←
∑
j

Lj,5 , g ←
∑
j

Lj,6

2. TX ← −
a2b+ be2 − acg + adf + cef + deg

a(a2 + e2 + f2 + g2)

TY ← −
a2c+ cf2 + abg − ade+ bef + dfg

a(a2 + e2 + f2 + g2)

TZ ← −
a2d+ dg2 − abf + ace+ beg + cfg

a(a2 + e2 + f2 + g2)

Output: Translation T2 = (TX TY TZ)
⊤.

R1 and R3 yields an orientation R `compatible' with T:

R = R1 · exp(k · log(R⊤
1 R3)) . (4.20)

Here, `exp' and `log' denote matrix exponential and matrix logarithm, respectively. The whole pose

extraction procedure is summarized in Algorithm 7.

Algorithm 7: Extraction of pose parameters from the estimate P̈′ of a combined projection matrix.

Input: An estimate P̈′ of a line projection matrix P̈.

Input: Corrective scale factor s.

1.

[
P̈′
1 P̈′

2 P̈′
3

]
← P̈′ ▹ divide into submatrices

2. Extract R1 from P̈′
1 using Algorithm 2.

3. T2 = −R⊤
1 sP̈

′
2

4. Extract R3, T3 from P̈′
3 using Algorithm 4.

5. R = R1 · exp(k · log(R⊤
1 R3)) ▹ interpolate

T = k ·T2 + (1− k) ·T3

Output: R, T.

4.6 Algebraic Outlier Rejection

To deal with outliers, the DLT-based methods can be equipped with an Algebraic Outlier Rejection

module. The AOR scheme, developed originally for a PnP method, was described in Section 3.4.

However, our experiments showed that its application to DLT-based LPnL methods requires a
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di�erent setting.

The di�erence is in the strategy for choosing the threshold εmax. The authors [14] recommend

εmax = Q25(ε1, . . . , εn) which is the algebraic error of the correspondence that is at the boundary

of the 25th percentile. However, our experiments showed that the strategy is not robust enough

for LPnL methods. A slightly di�erent strategy is thus suggested with a good trade-o� between

robustness and the number of iterations: At the beginning, line correspondences with error up to the

90th percentile are accepted. In further iterations, the percentile number is progressively decreased

until it reaches 25. The strategy is thus εmax = Qp(ε1, . . . , εn), where Qp(.) denotes the p-th

percentile and p decreases following the sequence 90, 80, . . . , 30. Then, it remains constant 25 until

error of the solution stops decreasing. This strategy usually leads to approximately 10 iterations.

Remark 4.3: It is important not to prenormalize the data before using AOR because it will

impede the identi�cation of outliers. Prenormalization of inliers should be done just before the last

iteration.

Compared to RANSAC, the greatest bene�t of this approach is a low runtime independent of

the fraction of outliers. On the other hand, the break-down point is roughly between 40% and 70%

of outliers, depending on the underlying LPnL method, whereas RANSAC, in theory, can handle

any fraction of outliers.

4.7 Summary

Although the three above described DLT-based PnL methods share a common basis, they di�er in

certain details. Their properties are summarized in Table 4.2. All three methods work exclusively

with lines in the image space. In the scene space, however, DLT-Lines works with points, DLT-

Plücker-Lines works with lines, and DLT-Combined-Lines works with both points and lines. The

question is whether utilization of 3D lines, i.e. line-line correspondences, does improve the accuracy

and robustness of camera pose estimation while preserving the e�ciency of DLT-based methods.

The most important di�erence is in the projection matrices. The line projection matrix P̄ of

DLT-Plücker-Lines encodes the rotation matrix R in a form of an essential matrix having only 3

redundant DoF. This is a promise of a more accurate estimation of camera orientation compared to

DLT-Lines, where R is encoded in a direct form having 6 redundant DoF. The same holds for the

combined projection matrix P̈ of DLT-Combined-Lines. Moreover, P̈ contains multiple estimates of

both R and T. A suitable combination of the estimates may further increase the accuracy of the

�nal pose.

Prenormalization of the inputs of the methods pursues a common goal of having the data

centered around the origin with a unit average absolute value of the coordinates. This goal is

motivated by a good condition of the resulting linear system. Generally, it can be achieved by

applying translation and scaling to the inputs. In the case of DLT-Combined-Lines, it is more

complicated due to di�erent e�ects of the transformations on coordinates of points and lines in the

3D space. Prenormalization of image lines is futile in this case as it is restricted to rotations only.

In principle, the methods could also be extended to estimate the pose of an uncalibrated camera,
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Table 4.2: Comparison of the DLT-based LPnL methods.

DLT-Lines DLT-Plücker-Lines DLT-Combined-Lines
I
n

p
u

t

2D (image) 2D lines 2D lines 2D lines

- prenormalization translation (in dual space) translation (in dual space) �
scaling (in dual space) scaling (in dual space)

3D (scene) 3D points 3D lines 3D points + 3D lines

- prenormalization translation multiplication by a constant multiplication by a constant

scaling translation translation

scaling translation

scaling

Minimum of lines 6 9 5


5 lines + 10 points

...

9 lines + 3 points

speci�cation 12 points, 2 on each line � m+ n, s. t. (2m+ n) ≥ 20

Projection matrix Ṗ ≈
[
R −RT

]
3×4

P̄ ≈
[
R R[−T]×

]
3×6

P̈ ≈
[
R −RT R[−T]×

]
3×7

Constraint equations l⊤ṖX = 0 l ≈ P̄L
l⊤P̈

(
X⊤ 0 0 0

)⊤
= 0

l ≈ P̈
(
U⊤ 0 V⊤ )⊤
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i. e. to estimate both extrinsic and intrinsic parameters of a camera. The corresponding projection

matrix Ṗ, P̄ or P̈ would be premultiplied by the upper-triangular 3× 3 camera calibration matrix K

in this case, so the number of unknowns of the resulting linear system and also the number of DoF of

the projection matrix would grow from 6 up to 11 (depending on the number of intrinsic parameters).

According to preliminary experiments, robustness of all three methods drops considerably in this

case, making them useless for practical applications. A better choice would be a method tailored

speci�acaly for estimation of parameters of an uncalibrated camera in this case, such as [5].

The minimum of required lines is conditioned by the size and structure of the estimated projec-

tion matrix. It ranges from 9 lines for DLT-Plücker-Lines over 6 lines for DLT-Lines to only 5 lines

for DLT-Combined-Lines.
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Chapter 5

Experimental Evaluation and Applications

The goal of the thesis was to improve the accuracy and robustness of the state-of-the-art in pose

estimation from lines by designing a new DLT-based method utilizing line-line correspondences. The

method should also be fast comparably to other LPnL methods. Two new methods were proposed

in the previous chapter: DLT-Plücker-Lines and DLT-Combined-Lines.

To verify that the goal was achieved, the newly proposed methods were tested using both

synthetic and real data and their performance was compared to the state-of-the-art methods. The

real data comprised building exteriors, an indoor corridor and small-scale objects on a table. The

tested criteria were following.

1. The primary criterion of experiments was accuracy because it arguably is the primary objective

of pose estimation. It was evaluated using both synthetic lines in Section 5.1 and real data in

Section 5.2.

2. A secondary objective, although equally important from a practical point of view, is robustness

to image noise, because noise is always present in measurements in practice. Accordingly,

robustness to image noise was evaluated using synthetic lines in Section 5.1.

3. Since the proposed methods were also required to be fast comparably to other methods, their

speed was measured using synthetic lines in Section 5.1.

Besides the main criteria, the following aspects were also investigated to have a more comprehensive

knowledge about behavior of the proposed methods.

� Because methods for pose estimation are known to be prone to singular or quasi-singular

con�gurations of 3D primitives in general, robustness to quasi-singular line con�gurations

was examined (see Section 5.2 of the thesis).

� From an application point of view, identi�cation and rejection of mismatched line correspon-

dences (i. e. outliers) is a frequent scenario. Therefore, the methods were also tested for

robustness and speed when plugged into an outlier rejection scheme or into a RANSAC loop

using synthetic lines (see Section 5.3 of the thesis).

� Lastly, the camera poses estimated by the methods were used as an initialization for Bundle

Adjustment (BA) in Section 5.2 to see how the initialization a�ects its convergence and run-

time.

The accuracy of pose estimates is expressed in terms of position error and orientation error of

the camera and in terms of reprojection error of the lines. The three error measures should cover
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majority of applications for which pose estimation methods are used. For example, robot localization

requires small position error, visual servoing requires both small position and orientation error,

whereas augmented reality applications or BA favour small reprojection error. The error measures

are de�ned as follows:

∆T Position error is the distance ∥T′ −T∥ from the estimated position T′ to the true position

T.

∆Θ Orientation error was calculated as follows. The di�erence between the true and estimated

rotation matrix (R⊤R′) is converted to axis-angle representation (E, Θ) and the absolute value

of the di�erence angle |Θ| is considered as the orientation error.

∆π Reprojection error is an integral of squared distance between points on the image line

segment and the projection of an in�nite 3D line, averaged over all individual lines.

The proposed methods were evaluated and compared with state-of-the-art methods, which are listed

below together with corresponding marks used throughout this chapter.

Ansar, the method by Ansar and Daniilidis [3], implementation from [33].

Mirzaei, the method by Mirzaei and Roumeliotis [26].

RPnL, the method by Zhang et al. [35].

ASPnL, the method by Xu et al. [33].

LPnL_Bar_LS, the method by Xu et al. [33].

LPnL_Bar_ENull, the method by Xu et al. [33].

DLT-Lines, the method by Hartley and Zisserman [18, p. 180] described in Section 4.3, my

implementation.

DLT-Plücker-Lines, our method published in [II] and described in Section 4.4.

DLT-Combined-Lines, our method published in [I] and described in Section 4.5.

All of the methods were implemented in Matlab. The implementations originate from the respective

authors, if not stated otherwise.

5.1 Synthetic Lines

Monte Carlo simulations with synthetic lines were performed under the following setup: at each

trial, m 3D line segments were generated by randomly placing n = 2m line endpoints inside a cube

spanning 103m which was centered at the origin of the world coordinate system. For the methods

which work with 3D points, the line endpoints were used. A virtual pinhole camera with image

size of 640× 480 pixels and focal length of 800 pixels was placed randomly in the distance of 25m

from the origin. The camera was then oriented so that it looked directly at the origin, having all

3D line segments in its �eld of view. The 3D line segments were projected onto the image plane.

Coordinates of the 2D endpoints were then perturbed with independent and identically distributed

Gaussian noise with standard deviation of σ pixels. 1000 trials were carried out for each combination

of the parameters m and σ, where m = 3 � 10,000 lines and σ = 1, 2, 5, 10 and 20 pixels.
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Accuracy and Robustness

Accuracy of pose estimation and robustness to image noise of each method was evaluated by mea-

suring the estimated and true camera pose while varying m and σ similarly to [26].

The results showing accuracy of the methods and their robustness to image noise are depicted

in Figure 5.1. For the sake of brevity, only noise levels of σ = 2 and 10 pixels are shown. The

complete distribution of errors is presented in Appendix B of the thesis. Errors for each method

are plotted from the minimal number of lines to 10,000 lines (or less, if the method runs too long

or if it has enormous memory requirements). In the following text, the method names are typeset

in bold and they are often augmented with their plot marks to ease referencing into result charts.

The results show high sensitivity to noise of Ansar . Even under slight image noise σ = 2 pixels,

the measured accuracy is poor. The other non-LPnL methods (Mirzaei , RPnL , ASPnL )

outperform the LPnL methods for low number of lines (3 � 10), as expected. ASPnL is the most

accurate among them. An exception is the LPnL method LPnL_Bar_ENull , accuracy of which

is close to ASPnL. It even outperforms ASPnL in the case of strong image noise (σ = 10 pixels),

see Figure 5.1 (b, d, f).

For high number of lines (100 � 10,000), the LPnL methods outperform the non-LPnL ones.

LPnL_Bar_ENull and DLT-Combined-Lines are signi�cantly most accurate in both orien-

tation and position estimation, and they also yield the lowest reprojection error. With increasing

number of lines, accuracy of the LPnL methods further increases, while errors of the non-LPnL

methods do not fall below a certain level. This gets more obvious with increasing levels on noise.

Each of the LPnL methods also eventually reaches its limit, as it can bee seen in Figure 5.1 (d,

f). However, the accuracy limits of non-LPnL methods lag behind the limits of LPnL methods.

Moreover, the non-LPnL methods often yield completely wrong pose estimates, as it can be seen in

the distribution of errors in Figures B.1 � B.15 in Appendix B of the thesis.

DLT-Lines and LPnL_Bar_LS behave nearly identically, the latter being slightly more

accurate. The only di�erence between the two is the use of barycentric coordinates, which is

probably the cause of the slightly better results. However, DLT-Lines proves to be more accurate

in position estimation and reprojection under strong image noise. DLT-Plücker-Lines keeps up

with the two aforementioned methods for 25 and more lines.

The best accuracy on many lines is achieved by the LPnL_Bar_ENull andDLT-Combined-

Lines methods, being the best in all criteria. While they are comparable in orientation estimation,

DLT-Combined-Lines outperforms LPnL_Bar_ENull in estimation of camera position and in

reprojection for many lines. The higher accuracy of DLT-Combined-Lines is most apparent

under strong image noise, see Figure 5.1 (d, f).

The distributions of errors of the individual methods over all 1000 trials are provided in Fig-

ures B.1 � B.15 in Appendix B of the thesis.

Speed

E�ciency of each method was evaluated by measuring runtime on a desktop PC with a quad core

Intel i5-661 3.33GHz CPU and 10GB of RAM. As it can be seen in Figure 5.2, the only method with

O(m2) computational complexity in the number of lines m is Ansar . The space complexity of the
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(c) Median position error ΔT [m], σ = 2 pixels

3 4 5 6 7 8 9 10 25 50 100 200 500 1k 2k 5k 10k
# lines

10-1

100

(e) Median reprojection error Δπ [ ], σ = 2 pixels
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Figure 5.1: Median orientation errors (top), position errors (middle) and reprojection errors
(bottom) as a function of the number of lines for two levels of image noise (left : σ = 2 pixels, right :
σ = 10 pixels). Each data point was computed from 1000 trials.
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Figure 5.2: Runtimes as a function of the number of lines, averaged over 1000 trials. Logarithmic
vertical axis.

used implementation is apparently also quadratic. It was not possible to execute the method already

for 100 lines due to lack of computer memory. Other tested methods have O(m) computational

complexity. However, the runtimes di�er substantially. It is apparent that the LPnL methods are

signi�cantly faster than the non-LPnL methods.

RPnL and ASPnL , being related methods, are nearly equally fast. Runtimes of both

methods rise steeply with increasing number of lines, reaching 630.2ms on 1000 lines for ASPnL.

The two methods were not evaluted for more lines. Runtime of Mirzaei , on the other hand,

grows very slowly, spending 155.2ms on 1000 lines. However, Mirzaei is slower than RPnL for

m < 200 lines. This fact is caused by computation of a 120 × 120 Macaulay matrix in Mirzaei's

method which has an e�ect of a constant time penalty.

The LPnL methods are one to two orders of magnitude faster than the non-LPnL methods. The

fastest two are DLT-Lines and LPnL_Bar_LS , spending about 1ms on 10 lines, and not more

than 3ms on 1000 lines. Slightly slower are DLT-Plücker-Lines , DLT-Combined-Lines and

LPnL_Bar_ENull , spending about 3 � 5ms on 10 lines, and about 6 � 12ms on 1000 lines. The

slowdown factor for DLT-Plücker-Lines is the prenormalization of 3D lines. This is also the case

of DLT-Combined-Lines, where a measurement matrix of a double size must be additionally

decomposed compared to the competing methods, see Eq. (4.16). Computationally demanding part

of LPnL_Bar_ENull is the e�ective null space solver carrying out Gauss-Newton optimization.

5.2 Real-World Buildings and Man-Made Objects

In this section, the proposed methods are validated on real-world data and compared to state-of-

the-art methods. Ten datasets were utilized, which contain images with detected 2D line segments,

reconstructed 3D line segments, and camera projection matrices. Example images from the datasets

are shown in Figure 5.3. Number of images in each dataset ranged from 3 to 72 and number of

lines ranged from 30 to 1841. Line correspondences are also given except for datasets Timberframe

House, Building Blocks and Street in which case the correspondences were established automatically
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Figure 5.3: Example images from used datasets. The images are overlaid with reprojections of
3D line segments using the camera pose estimated by the proposed method DLT-Combined-Lines.
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based on geometric constraints. The Timberframe House dataset contains rendered images, while

the rest contains real images captured by a physical camera. The Building Blocks and Model House

datasets capture small-scale objects on a table, the Corridor dataset captures an indoor corridor,

and the other six datasets capture exterior of various buildings. The Building Blocks dataset is the

most challenging because many line segments lie in a common plane of a chessboard.

Accuracy

Each PnL method was run on the data, and the errors in camera orientation, camera position and

reprojection of lines were averaged over all images in each dataset. The mean errors achieved by all

methods on individual datasets are given in Table 5.1 and visualized in Figure 5.4.

On datasets with small number of lines (MH: 30 lines, COR: 69 lines), the results of non-LPnL

and LPnL methods are comparable, see Figure 5.4. Contrarily, on other datasets with high number

of lines (177 � 1841 lines), the non-LPnL methods are usually less accurate than the LPnL methods.

Ansar was run only on the MH dataset containing 30 lines, because it ran out of memory on

other datasets. It shows rather poor performance. Mirzaei yields usually the least accurate

estimate on datasets with high number of lines (TFH, BB, MC1, MC2, MC3, WDC). On other

datasets, it performs comparably to the other methods. A slightly better accuracy is achieved by

RPnL , but it also has trouble on datasets with high number of lines (TFH, BB, STR). The

related method ASPnL mostly performs better than RPnL with an exception of datasets with

many lines (BB, STR). Nevertheless, ASPnL yields the most accurate pose estimates on MH and

COR. This complies with the �ndings of Xu et al. [33], who state that ASPnL is suitable rather

for small line sets.

The most accurate results on each dataset are predominantly achieved by the LPnL methods:

Most of the top-3 results are achieved by LPnL_Bar_ENull , followed by the proposed method

DLT-Combined-Lines , see Table 5.1. LPnL_Bar_LS and DLT-Lines also sometimes

achieve top-3 accuracy, although it happens less frequently. DLT-Plücker-Lines is the least

accurate LPnL method on real-world data, being the only LPnL method which performs slightly

below expectations based on synthetic data. Results of other methods are consistent with the results

achieved on synthetic lines (Section 5.1).

Bundle Adjustment

As Bundle Adjustment (BA) is commonly used as a �nal step in 3D reconstruction problems, it is

interesting to see how its results are a�ected by initialization. For this purpose, BA was run on the

datasets1 and initialized using camera poses provided by the tested methods.

A line-based BA engine was preferred. Unfortunately, the only suitable engine was the one

of Mi£u²ík and Wildenauer [27], which was a commercial solution unavailable to public. Thus, it

was chosen to use a more common point-based BA engine, representing 3D structure only by line

segment endpoints. Similarly to [27], an implementation based on the publicly available Ceres Solver

[2] was chosen. The implementation uses the Levenberg-Marquardt algorithm [24] to optimize an

1 The Timberframe House, Building Blocks and Street datasets were excluded from the experiment because the
line correspondences were not provided.
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Table 5.1: Experiments with real data. Mean orientation error ∆Θ [°], position error ∆T [ ] and reprojection error ∆π [ ] for each method and
image dataset. The top-3 results for each dataset are typeset in bold and color-coded ( best , 2nd-best and 3rd-best result).

Dataset TFH BB STR MH COR MC1 MC2 MC3 ULB WDC

∆Θ - - - 4.96 - - - - - -

Ansar ∆T - - - 0.38 - - - - - -

∆π - - - 5e-05 - - - - - -

∆Θ 32.24 88.18 0.90 0.46 0.22 4.83 15.47 5.00 2.51 36.52

Mirzaei ∆T 11.04 168.47 1.92 0.04 0.10 1.53 7.37 1.82 1.27 6.44

∆π 1e+06 2e+06 8e-07 4e-07 1e-06 3e-06 3e-05 1e-02 2e-06 7e+03

∆Θ 20.46 23.27 4.91 0.61 0.40 1.45 0.43 2.33 3.96 0.50

RPnL ∆T 15.32 53.03 9.73 0.07 0.13 0.43 0.22 1.22 2.08 0.23

∆π 6e-05 7e-06 9e-05 3e-06 6e-06 2e-06 1e-07 2e-05 6e-06 1e-06

∆Θ 7.76 37.82 22.08 0.25 0.10 0.15 0.20 2.08 4.89 0.51

ASPnL ∆T 6.11 76.61 30.47 0.02 0.03 0.04 0.08 0.74 2.22 0.23

∆π 6e-04 2e+03 3e+02 5e-08 9e-08 2e-08 1e-08 4e-06 3e-06 1e-06

∆Θ 1.10 1.98 0.15 0.45 0.13 0.03 0.03 0.09 0.49 0.18

LPnL_Bar_LS ∆T 1.05 7.23 0.27 0.04 0.05 0.01 0.02 0.03 0.22 0.11

∆π 7e-07 1e-06 8e-08 8e-07 1e-06 2e-09 1e-09 6e-08 2e-07 4e-08

∆Θ 0.57 0.30 0.11 0.32 0.10 0.04 0.03 0.07 0.39 0.08

LPnL_Bar_ENull ∆T 0.45 1.13 0.16 0.02 0.04 0.01 0.02 0.02 0.18 0.05

∆π 2e-07 2e-08 3e-08 2e-07 4e-07 8e-10 7e-10 5e-08 1e-07 2e-08

∆Θ 0.47 2.18 0.11 0.95 0.12 0.12 0.28 0.23 0.23 0.16

DLT-Lines ∆T 0.44 8.11 0.18 0.09 0.05 0.04 0.16 0.08 0.10 0.10

∆π 2e-07 1e-06 2e-08 1e-06 2e-06 6e-09 4e-08 3e-07 3e-08 6e-08

∆Θ 1.11 1.04 0.93 17.58 0.38 0.28 0.22 0.48 0.77 0.34

DLT-Plücker-Lines ∆T 1.28 11.69 1.78 0.74 0.13 0.40 0.50 0.27 0.47 0.39

∆π 1e-06 8e-07 2e-06 3e-02 3e-06 2e-06 9e-07 2e-05 8e-07 1e-06

∆Θ 0.39 0.40 0.22 0.41 0.11 0.11 0.15 0.16 0.20 0.23

DLT-Combined-Lines ∆T 0.32 1.88 0.38 0.04 0.04 0.04 0.07 0.05 0.08 0.12

∆π 7e-08 4e-08 6e-08 3e-07 2e-07 2e-08 2e-08 2e-07 7e-08 2e-07
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Figure 5.4: Experiments with real data. Mean orientation errors (∆Θ,top), position errors (∆T, middle) and reprojection errors (∆π, bottom)
on individual datasets. All vertical axes are logarithmic.
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objective function based on reprojection errors � the distances between observed and reprojected

point positions. However, the objective function does not utilize the frequently used squared loss,

but it is robusti�ed instead by using the Huber's loss function [19], making it less sensitive to outliers.

Furthermore, optimization of intrinsic camera parameters was deactivated to allow comparison to

pose estimation methods, which do not take the intrinsic parameters into account. As a result, only

camera poses and 3D structure were optimized.

BA was initialized using 3D structures provided by the datasets and using camera poses gener-

ated by the tested pose estimation methods. Furthermore, BA was also initialized using the ground

truth camera poses provided in the datasets. The BA engine then optimized each problem. Be-

cause we wanted it to �nd the optimum as accurately as possible, the stopping criterion (a change

in the value of an objective function between consecutive iterations) was set to 10−16. After the

optimization, the resulting camera poses and 3D structure were obtained. Because initialization

by di�erent camera poses may cause the resulting 3D structures to be slightly di�erent both in

shape and position in space, they were aligned by a similarity transformation. The resulting camera

poses were transformed using the same transformation. After the alignment, the camera poses were

compared.

All optimizations initialized by various pose estimation methods and by the ground truth poses

terminated successfully by �nding a minimum of the objective function. All minima had the same

function value but, within the scope of each single dataset, the minima were not identical: Af-

ter aligning the optimized 3D structures, the camera poses di�ered by a magnitude of 0.1 ◦ and

0.01 length unit. This is approximately the same magnitude of di�erence as before BA. Since a

unique minimum of the objective function was not found, accuracy of the individual pose estimation

methods could not be compared in relation to BA, results of which could be considered as a more

accurate ground truth.

Nevertheless, it is possible to compare the rate of convergence of BA expressed in terms of

runtime. Generaly, BA initialized by camera poses computed by a pose estimation method ran

comparably long to the BA initialized by the ground truth camera poses (the runtimes ranged from

≈ 0.6 s for the Model House dataset to ≈ 7.5 s for the Wadham College dataset). An exceptionally

long runtime was observed in the case of RPnL and ASPnL in the Merton College III dataset

and in the case of Mirzaei in the Wadham College dataset. This indicated the initialization was

worse.

From a practical point of view, the time spent on estimation of camera poses (i. e. initialization

of BA) also counts. Therefore, the total time spent on pose estimation and on BA is a more

appropriate measure. The used datasets contain rather a few camera poses, thus the time of pose

estimation is relatively low compared to the time of BA. Even though, the di�erences in total

runtime between individual methods are clearly visible in Figure 5.5. Apart from the exceptionally

long runtimes mentioned above, it can be observed that the LPnL-based methods systematically

yield lower total runtimes of pose estimation and BA compared to the non-LPnL ones. Di�erences

can be observed even among the LPnL-based methods: The proposed method DLT-Combined-

Lines provides a speedup over its closest competitor LPnL_Bar_ENull ranging from none (for

the Wadham College dataset) to 1.27× (for the Merton College I dataset).
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Figure 5.5: Total time spent on pose estimation and Bundle Adjustment in seconds.

5.3 Summary

As it was stated at the beginning of Chapter 4, the thesis aims for better accuracy and robustness

than the state-of-the-art in pose estimation from lines by designing a new DLT-based method

utilizing line-line correspondences. The method shall keep the common advantage of LPnL methods

of being fast.

Two new linear methods for pose estimation were introduced which utilize line-line correspon-

dences. First, The DLT-Plücker-Lines method which competes with the state-of-the-art in some

aspects, but it does not exceed it. Second, the DLT-Combined-Lines method which does outperform

the state of the art.

1. Accuracy � The DLT-Combined-Lines method outperforms the state-of-the-art in estimation

of camera position for many lines (Section 5.1: Figure 5.1) and it is comparable to state-of-

the-art in orientation estimation. The performance is con�rmed also by the results on real

data (Section 5.2: Table 5.1), where DLT-Combined-Lines achieves top-3 results on majority

of the used datasets.

2. Robustness to image noise � The higher accuracy of the estimates of DLT-Combined-Lines is

most apparent under strong image noise, which proves its better robustness to this disturbance

(Section 5.1: Figure 5.1).

3. Speed � DLT-Combined-Lines does not deviate from other LPnL methods as it preserves their

common advantage of being fast. A pose of 1000 lines is estimated in about 12ms (Section 5.1:

Figure 5.2).

As it was proven in the experiments listed above, the criteria were ful�lled: Both accuracy and

robustness improved while speed was comparable to other DLT-based methods. Thus the dissertation

goal was achieved.

Beyond this goal, limits of DLT-Combined-Lines were determined when handling quasi-singular

line con�gurations (near-planar, near-concurrent, and 2 or 3 line directions), it was shown that DLT-

Combined-Lines can be used together with AOR to �lter out mismatched line correspondences for

up to 60% of mismatches , and it was also shown that DLT-Combined-Lines can decrease the total

time spent on pose estimation and the following BA over the state-of-the-art (Section 5.2).
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Chapter 6

Conclusions

The goal of the thesis was to improve accuracy and robustness of pose estimation from lines � i. e. of

the Perspective-n-Line (PnL) problem � with accent on the formulation based on the Direct Linear

Transformation (DLT). The methods based on a linear formulation of PnL (LPnL) are especially

suitable for scenarios with large line sets due to their e�ciency and accuracy. The goal shall have

been achieved by proposing a new linear method utilizing line-line correspondences and keeping the

common advantage of LPnL methods of being fast.

Starting from the existing method DLT-Lines which exploits only point-line correspondences, the

thesis contributes to the state-of-the-art by proposing two novel methods for pose estimation: DLT-

Plücker-Lines which exploits line-line correspondences, and DLT-Combined-Lines which exploits

both point-line and line-line correspondences. Another contribution of the thesis is a unifying

framework for all DLT-based methods for pose estimation from lines.

The method DLT-Combined-Lines uses DLT to recover the combined projection matrix. The

matrix is a combination of projection matrices used by the DLT-Lines and DLT-Plücker-Lines

methods, that work with 3D points and 3D lines, respectively. The proposed method works with

both 3D points and lines, which leads to a reduction of the minimum of required lines from 6 (and

9, respectively) to only 5 lines. The method can also easily be extended to use not only 2D lines

but also 2D points. The combined projection matrix contains multiple estimates of camera rotation

and translation, which can be recovered after enforcing constraints of the matrix. Multiplicity of

the estimates leads to better accuracy compared to the other DLT-based methods.

Both novel methods are benchmarked on synthetic data and compared to several state-of-the-art

PnL methods. Practical usefulness of the methods is tested on real data comprising buildings and

other man-made objects. For larger line sets, DLT-Combined-Lines is comparable to the state-of-

the-art method LPnL_Bar_ENull in accuracy of orientation estimation; Yet, it is more accurate

in estimation of camera position and it yields smaller reprojection error under strong image noise.

On real-world data, DLT-Combined-Lines achieves top-3 results in both orientation estimation,

position estimation and reprojection error. When using pose estimation methods to initialize Bundle

Adjustment (BA), DLT-Combined-Lines provides a speedup up to 1.27× over LPnL_Bar_ENull in

the total runtime of pose estimation and BA. This also indicates the proposed method keeps the

common advantage of LPnL methods: very high computational e�ciency. The poses of 1000 lines are

estimated in 12ms on a contemporary desktop computer. Altogether, the proposed method DLT-

Combined-Lines shows superior accuracy and robustness over its predecessors DLT-Lines and DLT-
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Plücker-Lines, which make use either of point-line or line-line correspondences. DLT-Combined-

Lines make use of both types of correspondences, yet it is fast. As it was proven in the experiments,

the requirements were ful�lled: Both accuracy and robustness improved while speed was comparable

to other DLT-based methods. Thus the dissertation goal was achieved.

Future work involves examination of the combined projection matrix to adaptively combine the

multiple camera rotation and translation estimates contained in the matrix. Inspired by the work

of Xu et al. [33], the proposed methods can also be combined with the e�ective null space solver.

This might further increase accuracy of the methods.

Matlab code of the proposed methods as well as other tested methods and the experiments are

made publicly available.1

1http://www.fit.vutbr.cz/~ipribyl/DLT-based-PnL/
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