
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

GENERICKÝ ZPĚTNÝ PŘEKLAD ZA ÚČELEM ROZ-
POZNÁNÍ CHOVÁNÍ
GENERIC REVERSE COMPILATION TO RECOGNIZE SPECIFIC BEHAVIOR

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. LUKÁŠ ĎURFINA
AUTHOR

VEDOUCÍ PRÁCE Doc. Dr. Ing. DUŠAN KOLÁŘ
SUPERVISOR

BRNO 2014



Abstrakt
Práce je zaměřena na rozpoznávánı́ specifického chovánı́ pomocı́ generického zpětného překladu.
Generický zpětný překlad je proces, který transformuje spustitelné soubory z různých architektur a
formátů objektových souborů na stejný jazyk na vysoké úrovni. Tento proces se vztahuje k nástroji
Lissom Decompiler. Pro účely rozpoznánı́ chovánı́ práce zavádı́ Language for Decompilation –
LfD. LfD představuje jednoduchý imperativnı́ jazyk, který je vhodný pro srovnávanı́. Konkrétnı́
chovánı́ je dáno známým spustitelným souborem (např. malware) a rozpoznánı́ se provádı́ jako
najı́tı́ poměru podobnosti s jiným neznámým spustitelným souborem. Tento poměr podobnosti
je vypočı́tán nástrojem LfDComparator, který zpracovává dva vstupy v LfD a rozhoduje o jejich
podobnosti.

Abstract
Thesis is aimed on recognition of specific behavior by generic reverse compilation. The generic
reverse compilation is a process that transforms executables from different architectures and object
file formats to same high level language. This process is covered by a tool Lissom Decompiler.
For purpose of behavior recognition the thesis introduces Language for Decompilation – LfD. LfD
represents a simple imperative language, which is suitable for a comparison. The specific behavior
is given by the known executable (e.g. malware) and the recognition is performed as finding the
ratio of similarity with other unknown executable. This ratio of similarity is calculated by a tool
LfDComparator, which processes two sources in LfD to decide their similarity.

Klı́čová slova
zpětný překlad, dekompilace, obfuskace, malware, chovánı́ programu, podobnost

Keywords
reverse compilation, decompilation, obfuscation, malware, program behavior, similarity

Citace
Lukáš Ďurfina: Generic Reverse Compilation to Recognize Specific Behavior, disertačnı́ práce,
Brno, FIT VUT v Brně, 2014



Generic Reverse Compilation to Recognize Specific Be-
havior

Prohlášenı́
Prehlasujem,že dizertačnú prácu som vypracoval samostantne pod vedenı́m Doc. Dr. Ing. Dušana
Koláře a uviedol som všetky literárne zdroje, z ktorých som čerpal.

. . . . . . . . . . . . . . . . . . . . . . .
Lukáš Ďurfina

December 10, 2014

Poděkovánı́
Ďakujem môjmu školitel’ovi Doc. Dr. Ing. Dušanovi Kolářovi a kolegom z projektu Lissom za ich
pripomienky, spoluprácu a odborné rady. Taktiež d’akujem mojej rodine a priatel’om, ktorı́ ma
podporovali počas štúdia.

c© Lukáš Ďurfina, 2014.
Tato práce vznikla jako školnı́ dı́lo na Vysokém učenı́ technickém v Brně, Fakultě informačnı́ch
technologiı́. Práce je chráněna autorským zákonem a jejı́ užitı́ bez udělenı́ oprávněnı́ autorem je
nezákonné, s výjimkou zákonem definovaných přı́padů.



Contents

1 Introduction 3

2 Definitions 4

3 Malware 6

3.1 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Types of Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Obfuscation of Binary Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Obfuscation at the Source Code Level . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Reverse Engineering 11

4.1 Software Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 History of Decompilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Machine Code Decompilers . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.2 Object Code Decompilers . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.3 Assembly Decompilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.4 Decompilers for Virtual Machines . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Decompilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 The dcc Decompiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.2 Boomerang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.3 REC Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.4 Hex-Rays Decompiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.5 Decompile-it.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.6 SmartDec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.7 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.8 Comparison of Decompilers . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Future of Machine-Code Decompilation . . . . . . . . . . . . . . . . . . . . . . . 21

1



5 Lissom Decompiler 23

5.1 ISAC Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 LLVM Compiler System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Design of a Retargetable Decompiler . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5.1 Detection of Statically Linked Code . . . . . . . . . . . . . . . . . . . . . 30

5.5.2 Overview of Front-end Analysis . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Middle-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7.1 Reconstruction of High-Level Constructs . . . . . . . . . . . . . . . . . . 58

5.7.2 Analysis of Signed and Unsigned Integer Types . . . . . . . . . . . . . . . 59

5.7.3 Obtaining Used Variables in Function Calls . . . . . . . . . . . . . . . . . 60

5.7.4 Optimizations in Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7.5 Renaming of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7.6 Elimination of Redundant Brackets . . . . . . . . . . . . . . . . . . . . . 64

5.8 Malware Decompilation Experience . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.8.1 Psyb0t – MIPS Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.8.2 Aidra and Darlloz – Linux Worms . . . . . . . . . . . . . . . . . . . . . . 75

6 Detection of Specific Behavior 80

6.1 C Source Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.1 Moss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.2 JPlag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Language LfD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Tool LfDComparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Results 85

7.1 C Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Detection of Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Conclusion 93

Bibliography 95

A LfD ANTLR grammar 101

2



Chapter 1

Introduction

Reverse compilation is a process which has been researched for many years. Due to new architectures
and new compilers for these architectures it is very evolving and difficult process. A wide-known
name for reverse compilation is also decompilation. The main aim of decompilation is a gain of
high level source code, which was used to create an executable. So it is a reverse process to the
compilation.

The motivation for getting original source code from executable can be various: debugging, theft
of intellectual property, or analysis of its behavior. This thesis is aimed on the last point and its
goal is to recognize specific behavior of different executables, mainly malware. Thesis summarizes
the various types of obfuscations, which are used to protect malware against detection by antivirus
system. Obfuscations change the binary code, but the behavior remains the same.

Generic decompiler has to be able to process executables of different object file formats from
different architectures. We created the decompiler that successfully completes this task. Other
task of decompiler is suppressing of differences caused by various obfuscations. The ability to
produce the source code without damages by obfuscations is important for finding the similarities
between source codes obtained by decompilation from related executables. Therefore, the design of
decompiler is adapted to more complicated conditions, which are given by malware environment.

The decompiler transforms executable to high level language (C, Python’, or LfD). LfD is a simple
imperative language, which is designed for the purpose of this thesis. By getting the output in
this language, we are able to compare behavior of executables, which are originally from different
architectures and file formats or obfuscated. This part is completed by the tool LfDComparator.
One of possible usage is detection of malware for the architecture as ARM, MIPS, or PowerPC, if
we have recognized its binary for x86.

The organization of this thesis is following: Chapter 2 defines the most important keywords for
this thesis. The following Chapter 3 presents new trend in malware, called Internet of things. It
also introduces various types of obfuscations. The history of reverse engineering is summarized in
Chapter 4. Except the history, the currently available and well-known decompilers are listed and
compared. The generic decompiler is described in Chapter 5. It covers the overall design, front-end,
middle-end, back-end, and real experience with malware analysis on the output source code from
the decompiler. The next Chapter 6 studies the opportunities for the comparing of the output source
codes and recognizing the specific behavior. Experimental results are shown in Chapter 7. There
are the examples of C output from decompiler and the results of specific behavior recognition. The
last Chapter 8 concludes the thesis.

3



Chapter 2

Definitions

These chapter defines the most important keywords of this thesis. We assume that the reader is
familiar with the basics of formal language theory and the theory of compiler design (see [4]).

• Alphabet [46]. An alphabet is a finite, nonempty set of elements, which are called symbols.

• Language [46]. Let Σ be an alphabet and L ⊆ Σ∗. Then, L is a language over Σ.

• Context free grammar [46] is a quadruple (N,T, P, S), whereN is a finite set of nonterminals,
T is a finite set of terminals, S ∈ N is the starting nonterminal, and P is a finite set of rules
of the form A→ w, where A ∈ N and w ∈ (N ∪ T )∗.

• Basic block [15] is a portion of the binary code that has one entry point, meaning no code
within it is the destination of a jump instruction anywhere in the program, and it has one exit
point, meaning only the last instruction can cause the program to begin executing code in a
different basic block. Under these circumstances, whenever the first instruction in a basic
block is executed, the rest of the instructions are necessarily executed exactly once.

• Control flow graph [78] is a single-root, connected and directed graph for describing control
flow information of a program. It is represented by a triple (N,E, h), where N is the set of
basic blocks, E is the set of directed edges between these basic blocks, and h is the entry
point of the program and h ∈ N .

• Call graph [12]: Let P = {p1, p2, ...} be the finite set of procedures of a program. A call
graph is a triple (N,E, h), where N is the set of procedures and ni ∈ N represents one and
only one pi ∈ P , E is the set of edges and (ni, nj) ∈ E represents one or more references of
pi to pj , and h is the main procedure and h ∈ N .

• Memory place is an addressable place that can be written or read. It could be register, place
on the stack, or place in the memory. The memory place is defined if its content is modified
(it is assigned a new value). The memory place is used if it is referenced (its value is used).

• Definition-use chain [12] for a definition d at instruction i is the set of instructions j, where
d could be used before being redefined.

• Use-definition chain [12] for a use u at instruction j is the set of instructions i, where u was
defined.

4



• Obfuscation [49] is a process when some instructions of the original code are replaced by
program fragments that are semantically equivalent but more difficult to analyze, or additional
instructions are added to the program and they do not change its behavior.

• Dead code [18] refers to computations whose results are never used. The notion of results not
used must be considered broadly. For example, if it is possible for a computation to generate
exceptions or raise signals whose handling can affect the behavior of the rest of the program,
then we cannot consider that computation to be dead. Code that is dead can be eliminated
without affecting the behavior of the program.

• Malware [53] is any software that is developed for the purpose of doing harm to computers
or via computers. Malware can be classified in several ways, including on the basis of how
it is spread, how it is executed and/or what it does. The main types of malware include
worms, viruses, trojans, backdoors, spyware, and rootkits. Worms and viruses are computer
programs that replicate themselves without human intervention. The difference is that a virus
attaches itself to, and becomes part of, another executable (i.e., runnable) program, whereas a
worm is self-contained and does not need to be part of another program to replicate itself. A
trojan, or trojan horse, is software that is disguised as a legitimate program in order to entice
users to download and install it. A backdoor (usually written as a single word) is any hidden
method for obtaining remote access to a computer or other system. Spyware is software that is
installed in a computer for the purpose of covertly gathering information about the computer,
its users and/or or other computers on the network to which it is connected. A rootkit is
software that is secretly inserted into a computer and which allows an intruder to gain access
to the root account and thereby be able to control the computer at will.

5



Chapter 3

Malware

In this chapter, we describe a new area known as Internet of Things, where malware is causing
serious troubles. We continue with a problem with modifying executable files to obstruct reverse
engineering of such files, this process is known as the obfuscation and it can be done by more
techniques which are explained in the following section.

3.1 Internet of Things

According to the company Gartner Inc., the Internet of Things is the network of physical objects that
contain embedded technology to communicate and sense or interact with their internal states or the
external environment. By these physical objects we can imagine all electronic devices that use to
be denoted as intelligent, e.g DVD players, fridges, or toasters too. It is becoming more interesting
with increasing usage of protocol IPv6, which provides a possibility for each such a device to have
own IP address. In another words, such a device can be easily targeted and attacked. This result of
this attack may be that all your friends receive the spam messages from your fridge.

From the view of malware analyst, the complication is the large number of several different
architectures. These new devices may come with new generations of architectures and processors,
what will put bigger demands on the analysts. Already now, there are used MIPS, ARM, PowerPC,
or SuperH architectures and malware starts to aim at them. This is a new approach, because in the
close history there was a trend to attack computers with x86 architectures, or mobile phones usually
on ARM architecture. This new trend brings requirements for new ways how to detect malware.

There is an estimation from Cisco [14] that there are more than 12 billions of connected people,
processes, data and things to the internet. Cisco expects the number of things to reach 1.8 trillion in
2020. Based on this we can expect that this is going to be very interesting field for malware creators.
Example of such a malware is a worm Linux.Darlloz, which was discovered by Symantec [51]. We
have analyzed this worm also by our decompiler and the analysis is described later in 5.8.2.

3.2 Obfuscation

The obfuscation is a thoughtful process of modification with aim to hide information without causing
any damage to this information. We know several types of obfuscation and they are shown in the
following text. This section is created from the article [67].

6



3.2.1 Types of Obfuscation

The general division dictates two main areas:

• binary files obfuscation

• source files obfuscation

Another division can be made according to a purpose:

• hide new algorithm, technology (protect intellectual property)

• hide well-known algorithm, technology (prevent unwanted detection)

In some point of view, we can say that obfuscation wants to achieve security through obscurity,
what can be successful only in some particular cases.

3.3 Obfuscation of Binary Files

The base for this obfuscation is knowledge of an instruction set of aimed architecture, because it is
natural that obfuscator for ARM executable would damage executable for the x86 architecture or
other incompatible platform. The advantage is that well-written obfuscator can be usable for more
executable formats of the given architecture. It is common to see obfuscator for both PE and ELF
format on the x86 architecture [1].

We can take a look on the most used techniques [34]:

• Dead-code insertion

The idea is same as inserting instruction NOP, but a single instruction would not be very
helpful, because it can be simply filtered. Dead code does nothing useful at all, it only
decreases performance and confuses the code. It can consist of various complex algorithms,
which unbend attention from real object of the inspection. We use AT&T syntax.

push %eax
push %ebx
push %ecx
;some magic with eax, ebx, ecx
pop %ecx
pop %ebx
pop %eax

• Code transposition

It is based on a finding of independent pieces of codes, and their mutual exchange. Transpo-
sition can be made on two instructions, but it can also be done on whole blocks. It depends
on the skills of author how precisely he can determine independent blocks of code. Another
way of code transposition is adjusting jumps and calls, and reassembling blocks of such code.

7



mov (%ecx), %eax
mov $10, %ebx
mul %ebx

mov $10, %ebx
mov (%ecx), %eax
mul %ebx

• Register realignment

It is simple method, when we exchange the certain number of registers. The code works with
other registers, so the bytes in binary code, which represent used registers, are different, but an
algorithm is still the same one. In another words, we create different admissible permutation
of registers for the given code.

mov %ebx, %eax
xor %ecx, %ecx
test %ecx, %eax

mov %edx, %ecx
xor %eax, %eax
test %eax, %ecx

The important note is that there are some restrictions. It is definitely not be a good idea to
exchange register esp on the x86 architecture, because it causes a corruption of stack. Such
a corruption ends with the crash of application.

• Instruction substitution

Instruction set of the x86 architecture is very wide, so the single action can be performed by
more combinations of instructions [31]. This fact is used for substitution technique. We can
distinguish 3 subcategories according to the change of code size:

– code expansion - new code is formed by more instructions than original

add $4, %eax add $2, %eax
add $2, %eax

– code shrinking - new code has less instructions than original

add $100, %eax
mul $0
inc %eax

mov $1, %eax

– code alternating - new code has same size as original; the following three blocks do the
same

mov $0, %ebx
mov %eax, %eax

xor %ebx, %ebx
mul $1

sub %ebx, %ebx
add $0, %eax

A very popular approach is exchanging instructions, which have different semantics, but with clever
updates they have the same result. We present it on the replacing of push and call:

push %eax sub $4, %esp
mov %eax, (%esp)

8



call sub_count push $0x401020
jmp sub_count

In the first example, we decrease stack pointer, and after that we store value from eax to stack. If
we use in the following code pop the beginner could be confused due to no push. The second
example uses the fact how the instruction call works, it stores the address, where the control
should be returned after finish of called subroutine. This approach has a great advantage. You can
set an arbitrary address for continuing after return from function.

The binary form of files provides another opportunities for code obfuscation, the good example is
function call dispatching, what is nicely implemented in PEScrambler [27]. The technique is based
on the redirections of all internal and external function calls to a single function, which acts as the
dispatcher. The result is that all instructions CALL has the same operand and the reverse engineer
does not know which specific function is called from the dispatcher.

3.4 Obfuscation at the Source Code Level

Source code obfuscation can be divided into two types according to the result of the obfuscation:

• obscure source code to make it more difficult to read and understand

• obscure compiled executable to make more difficult to understand its disassembly

In this thesis we are interested in the second type.

Editing source code is essentially different from editing binary code. There is no possibility to use
some introduced techniques from the previous section, for example register realignment.

On the other hand, we can easily hide the data in program. We can imagine that all strings can be
written in an encrypted form, and at the moment of use there will be called a decryption function,
so the base function will get the data in correct form, but in the source and also in the data section
of executable, the strings will be illegible. The encrypted form and the decryption function can be
changed for each compilation, so every released version could have different data section and also
different code for the decryption routine. This method could be utilized by botnet owners for better
hiding of bots. The majority of bots support self update and by this way they could be updated
regularly by new version.

We can also approximate function call dispatching, the function calls will be redirected by the single
dispatcher, but from the code it will not be easy to recognize, which function is really called. This is
usually applied for the linked functions from the external libraries. On the other hand, this method
can hide the imports of variables from such libraries too. The trick is done by using WINAPI
functions LoadLibrary and GetProcAddress1. The following example obfuscates the call
of CreateFileA.
HMODULE hDLL = LoadLibrary(”Kernel32.dll”);
if (hDLL) {

fCreateFile = GetProcAddress(hDLL, ”CreateFileA”);
// call by fCreateFile

}

1http://msdn.microsoft.com/en-us/library/ms123401.aspx

9

http://msdn.microsoft.com/en-us/library/ms123401.aspx


After successful running of this code, we can use the variable fCreateFile in the same way as
WINAPI function CreateFileA. Still it is not so great. In spite of the fact that we do not see a
direct call to WINAPI function, the function name is stored in the data section as a string. Anyway,
this can be solved by the string encryption, which encodes the both strings in this example, so the
name of the function and the library will be completely hidden. The problem is a recognition of
appropriate functions and loading the correct library for the each one. The solution is a database
of libraries and corresponding functions, which would be complex and it has to be periodically
updated.

10



Chapter 4

Reverse Engineering

Reverse engineering is a process of an examination, not change or replication [11]. We take reverse
engineering as a process, which has a goal to understand properties, states, and architecture of an
examined object, e.g. software. The result of such a process should be information how we can
build the object again. The process can be divided into several subgroups according to a level of
abstraction.

Redocumentation is the most simple one. It aims only on recreating of a product documentation. The
extraction of a design is more complicated. The process covers the creation of design according to
available documentation, personal experience or skills from the product area. The most complicated
process is a re-engineering. It includes an upgrade or enhancement of an existing product.

4.1 Software Reverse Engineering

Reverse engineering is widely spread in the software engineering. In Figure 4.1 there is shown a
relation between software engineering and reverse engineering. Cryptoanalysis is a discipline, where
reverse engineering is used to reveal a weakness of security ciphers implementation. The producers
of integrated circuits battle with reverse engineering, because the development is expensive and
rivals can save a lot of money by copying the design of circuit.

We focus on reverse engineering in the area of software development. For the simple analysis of
a program we can use a debugger. This program requires a knowledge of assembly language and
it allows us to analyze only running program, so we do not cover the parts of code, which are not
used during the execution. This analysis belongs to a dynamic analysis. The advantage is that we
see the stored values in registers or in the stack.

The basic tool for the static analysis – analysis does not need to execute a program is a disassembler.
It works in a opposite way to assembler, it converts machine code into assembly language. It is hard
to read this code as it is for the debugger. The disassembler supports specific architecture, what is
given by the differences between instructions sets of the architectures. The process of disassembling
meets several important issues:

• division of the code and data – it touches mainly Von Neumann architectures and it is
equivalent to Halting Problem [29]

• decoding of instructions – it affects architectures with variable size of instructions

11



Design

Source code

with comments

Source code

without comments

Assembly

code

Object code

Machine code

Requirements

Solution

Programming Redocumentation

Compiler

Assembler

Linker
Disassembler

Machine code

decompiler

Object code

decompiler

Software

engineering

Reverse

engineering

Figure 4.1: Relation between reverse and software engineering [39].

The mainly used disassemblers are: IDA Pro, objconv, Bastard, objdump, or Dissy that is practically
a graphical interface for objdump.

This thesis is interested in decompilation. Decompilation is an advanced technique of reverse
engineering. It is a process of transformation the binary executable code into higher programming
language [12]. In another words, it is a reverse process to compilation. The Figure 4.2 illustrates both
processes. The compiler parses the source code, creates an internal representation, runs analyses
and optimizations, and finally produces binary code. The decompiler follows same principals, but
it works in the reverse way.

4.2 History of Decompilation

The history of decompilers stretches back more than 50 years. Decompilers process various input
formats and translate them into different types of the high level language (HLL) representations.
This chapter is not intended to be an exhaustive list of all existing decompilers; we present only few
milestones for each input-format category. A more detailed description can be found in [22].

4.2.1 Machine Code Decompilers

Machine-code decompilation has a surprisingly long history. Halstead [26] reports that the Donnelly-
Neliac (D-Neliac) decompiler was producing Neliac (an Algol-like language) code from machine
code in 1960. Decompilers at this time were based on pattern matching, and left more difficult cases
for solving by the programmers. Barbe’s PILER System was the first attempt to build a general
decompiler. The system was able to read the machine code of several different target architectures,
and generate code for several different HLLs. Only one input phase was completed (for the
GE/Honeywell 600 machine) and only two output phases were written (Fortran and COBOL) [6].

12



Parser

Analyses

Generator of machine code

Machine code

Source code Source code

Machine code

Generator of high level code

Analyses

Decoder

IR
(Internal

representation)

IR

IR

IR

Compiler Decompiler

Figure 4.2: Workflow of the compiler and decompiler [22].

Exec-2-C was an experimental project by the company Austin Code Works, and it was not com-
pleted. Intel 80286/DOS executables were disassembled, converted to an internal format, and finally
converted to C. Machine-related properties, such as registers and condition codes, were visible in
the output. According to [28], only a very basic recovery of the C language code (e.g., conditional
statements, loops) was performed. The University of Queensland Binary Translator (UQBT) uses
a standard C compiler as the back-end. In other words, it emits C source code. The output is not
intended to be readable, and it is very difficult to read it in practice. However, the output is compil-
able, so UQBT could be used for optimizing programs for a particular platform, or cross-platform
porting [65].

4.2.2 Object Code Decompilers

Object-code decompilers have several advantages over machine-code decompilers, but are less
common, presumably because the availability of object code without source code is low.

Schneider and Winger in 1974 took a contrived grammar for a compiler and they inverted it to
produce a matching decompiler [59]. This works only for a particular compiler, and only under
certain circumstances; it was shown in [59] that Algol 60 could not be deterministically decompiled.
It generally fails in the presence of optimizations, which are now commonplace. In 1988, there
was written a quick decompiler Decomp for a specific purpose—to port a game from one platform
to another, without having the original source code. Decomp was an object-code decompiler, and
produced files that needed significant hand editing before they could be recompiled.

13



4.2.3 Assembly Decompilers

There was a pressing need to convert assembly language programs (second generation languages)
to HLLs (third generation languages), but this is a somewhat easier task than machine code de-
compilation because assembler programs contain valuable information about symbolic names and
linked functions as well as information about data and code separation, which are not available in
executable programs. For example, it eliminates the problem of separating data from instructions
in the parsing phase of a decompiler.

On the other hand, whenever an input assembly language code is obtained from executables (e.g.,
by disassemblers), all the previously mentioned benefits are missing and decompilation of such
assembly code is roughly equal to decompilation of executables (e.g., the data versus code problem).

Zebra was a prototype decompiler developed at the Naval Underwater Systems Center [8]. It was
an assembly decompiler, this time emitting another assembly language. The report concluded that
decompilation to capture the semantics of a program was not economically practical, but it also
noted that it is useful as an aid for program porting. University of London’s asm21toc reverse
compiler was created in 2000. This assembly language decompiler for Digital Signal Processor’s
(DSP) code was written in a compiler-compiler called rdp. The authors note that DSP is one of the
last areas where assembly languages are still commonly used. This decompiler has to face several
problems unique to DSP processors [33].

4.2.4 Decompilers for Virtual Machines

Virtual machine specifications (like Java or .Net bytecode) are rich in information such as names
and types, making decompilers for these platforms much easier. However, good type analysis is
still necessary for recompilability.

The Sable group at McGill University, Canada, have developed a framework for manipulating Java
bytecode called Soot. The main purpose of Soot are optimizations of bytecode, but they have also
built a decompiler called Dava1 on top of Soot. With Dava, they have been concentrating on the
more difficult aspects of bytecode decompilation, like typing of local variables, generating stack
variables, or structuring. JODE (Java optimize and decompile environment)2 is an open source
decompiler and obfuscator/optimizer. JODE has a verifier, similar to the Java runtime verifier, that
attempts to find type information from other class files. JODE is able to correctly infer types of
local variables and to transform code into a more readable format, closer to the way Java is naturally
written, than early versions of Dava.

4.3 Decompilers

In this section, we introduce the nowadays most popular machine-code decompilers and other
projects related to decompilation. Description given in this section is mostly based on the official
information presented by the authors of these tools. We will focus on supported target architectures,
object file formats (OFFs), and other features.

1http://www.sable.mcgill.ca/dava/
2http://sourceforge.net/projects/jode/

14

http://www.sable.mcgill.ca/dava/
http://sourceforge.net/projects/jode/


4.3.1 The dcc Decompiler

The dcc decompiler was developed by Cristina Cifuentes while she was a PhD student at the
Queensland University of Technology in 1991–1994. It was introduced in her dissertation thesis [12].
The dcc decompiler is distributed under the GPL license.

The structure of the decompiler resembles that of a compiler: a front-end, middle-end, and back-end
which perform separate tasks. The front-end is a machine-language dependent module that reads in
machine code for a particular machine and transforms it into an intermediate, machine-independent
representation of the program. The middle-end (as known as the Universal Decompiling Machine
or UDM) is a machine and language-independent module that performs the core of the decompiling
analysis: data-flow and control-flow analysis. Finally, the back-end generates the C language code
for the input program [61].

This decompiler was developed as a prototype for the Intel i80286 architecture and for DOS
executables. dcc uses compiler and library signature recognition to decompile user routines only.
The amount of signatures is very limited due to a narrow range of decompiled targets. The decompiler
provides comments for each subroutine, and it has command switches to generate the bitmap of
the program, call graph, output assembler file, statistics on the number of low-level and high-level
instructions in each subroutine, and information on the control-flow graph of each subroutine [12].

4.3.2 Boomerang

Boomerang3 is an open source project. It was strongly inspired by UQBT—A Resourceable and
Retargetable Binary Translator in 1996 [65], and it was established in 2002. The original author
is Mike Van Emmerik. Boomerang was originally released under a BSD-like license, however, it
tends to be more GPL-oriented in its latest release (2006).

It works to ease the pain of reverse engineering by searching for patterns in machine code and
replacing them with equivalent C constructs. It uses a series of algorithms that convert machine
code to C code and then it makes automatic substitutions throughout. Ideally, all that is left for the
reverse engineer is to rename the variable and function identifiers. Boomerang also accepts a set of
hints that specify the names of known data structures so that the program can automatically replace
those names as they are seen in the decompiled code [47].

Boomerang can decompile the code for several architectures: Intel x86, SPARC, and PowerPC.
It supports commonly used object formats like UNIX ELF, Windows PE, and Apple Mach-O.
The major limitation is missing recognition of statically linked code. This causes complications
for decompiling programs that were compiled with the option -static and, because, all system
libraries, like libc, are linked to the program’s code. The decompiled code is then disarranged
because the code of a library can be larger than the code of the program itself. The output is
generated in the C language, but there is no effort to generate code with correct syntax.

The Boomerang decompiler is probably the first attempt to create a retargetable decompiler by
using a domain-specific language for description of the target architecture. The SLED language,
developed within the New Jersey Machine-Code Toolkit [56] project, was used for this purpose.
This project exploits the SLED language [55] for compact description of instruction syntax and
coding. However, this language does not support description of instruction semantics. Therefore,
this language itself cannot be used for generation of tools like compilers or decompilers. Therefore,

3http://boomerang.sourceforge.net/

15

http://boomerang.sourceforge.net/


the authors of the Boomerang decompiler have to use it together with the RTL-based semantics
description language SSL [13]. According to the Boomerang’s source code and author’s notes,
the usage of SLED/SLL was slow and error-prone for more complex processor architectures, such
as Intel x86. Moreover, the final solution is not truly retargetable because several target-platform
related parts are hand-coded.

During the first phase of the analysis, called decoding, the code is translated from machine code to an
intermediate representation. Each instruction is disassembled and it is expanded into the respective
SSL semantics. When jump or call instructions are encountered, the decoding is performed by
following the execution paths; this approach of disassembling is called recursive traversal because
the program flow is followed. During decoding, sequential instructions are grouped together into
basic blocks, which are connected together afterwards, according to flow transition instructions, in
order to construct the control-flow graph. The instructions belonging to the same basic block satisfy
the property that all of them are always executed before all the subsequent ones.

Once a code fragment is completely decoded and its control-flow graph is built, it is transformed
into a static single assignment form (SSA) [22]. The particularity of this representation is that every
definition of a program variable gives a rise to a new variable, thus the same variable is defined
only once. For example, the first definition of the variable A generates the variable A1 and the
j-th definition generates the variable Aj . The main advantage of the SSA form is that it allows to
enormously simplify the data-flow analysis process because it makes explicit the relation between
the use of a variable (when it appears inside an expression) and its definition (when it appears on
the left-hand side of an assignment). A trick has to be used when more than one definition reaches
the same use, but through different paths: a special statement, called φ-statement, is inserted at the
beginning of the basic blocks that uses these definitions, and it is used to define a new variable which
indicates the use of multiple concurrent definitions. For example, if both Ai := 0 and Aj := 1
reach the instruction B := A+ 1 of a block k, the instruction Ak := φ(i, j) is inserted before B’s
definition, which is then translated into B := Ak + 1 to explicitly specify that the assignment uses
either Ai or Aj [9].

4.3.3 REC Studio

REC Studio—Reverse Engineering Compiler [57] is a freeware, but not open-source, interactive
decompiler, which is still under development. It reads a Windows, Linux, OS X or raw executables
(e.g., firmware), and attempts to produce a C-like representation of the code and data used to build
the executable. It uses more powerful analysis techniques such as partial SSA and supports 32-bit
and 64-bit executables. The software is available for mainly used platforms: Windows, Linux
(Ubuntu), and OS X. However, this software is unstable on several architectures (e.g., Windows),
and it often crashes during decompilation.

The author wrote on his web page [57] that the disassemblers used in REC were taken from various
sources. Due to this fact, we estimate that it is very complicated to add support for a new architecture.
Also, it is a considerable amount of code from different origins, what makes it hard to maintain.
REC has loaders for more object file formats (OFF): PE, ELF, COFF, and Mach-O. We can estimate
that there is unique code for each loader. Its author also claims that debugging information is also
supported and the decompiler can process the DWARF format and, partially, the PDB format.

The architecture of the decompiler is presented in Figure 4.3. The input executable is processed
by a file reader, which supplies data to the symbol table and disassembler. Procedure finder uses
the symbol table and code walker to detect functions. Then, the procedure analyzer is run over

16



File Reader

Binary

Disassember Symbol Table

Code Walker

Procedure
Finder

Procedure
Analyzer

Output

Control Flow
Analyzer

Data Flow
Analyzer

Type Analyzer

Code
Structuring

Frame
Analyzer

Local/Param
Variables

Expression
Propagation

Figure 4.3: The architecture of REC Studio decompiler [57].

the detected functions and it cares about the coordination of control flow, data flow, type analyzer,
and code structuring. Data-flow analysis has specialized analyzers for frames, local variables,
parameters, and expression propagation. Finally, the result of the procedure analyzer is taken by
the output module to print the HLL code.

4.3.4 Hex-Rays Decompiler

The Hex-Rays Decompiler4 is the nowadays decompilation “standard”. It is implemented as a
plugin to the IDA disassembler5. The Hex-Rays Decompiler supports the x86 (also x86 64) and
ARM target architectures. It also supports both major OFFs—ELF, PE, Mach-O. The output is
generated as a highly readable C code; however, the output is not designed for re-compilation, only
for more rapid comprehension of what the program is doing.

4www.hex-rays.com/products/decompiler/
5www.hex-rays.com/products/ida/

17

www.hex-rays.com/products/decompiler/
www.hex-rays.com/products/ida/


This software is commercial and distributed without sources. The first version of the x86 decompiler
was released in 2007, support of ARM decompilation has been added in 2010, and support for x86 64
has been added in 2014. The current version is 1.7, and there is no plan for additional supported
target platforms. Its author, Ilfak Guilfanov, claims that this is the first decompiler able to process
real-world executables.

The plugin enhances the existing disassembler with another view over the input executable and adds
several new features. The decompilation itself is very fast and oriented on function detection and
recovery.

It supports most of the common features like distinguishing loop types (for, while, presence of
breaks, etc.), creation of compound conditions, usage of debugging information, highly accurate
recovery of functions, arguments, and return values, etc. There is also a software development kit
which gives access to the decompiler’s internals and one can easily create new plugins or scripts
(using Ruby or Python). It also has a GUI which helps with easy understanding of the decompilation
process and better readability of the generated code. The interface is interactive; therefore, it is
possible to fine-tune the results (e.g., specification of data structures, function arguments).

4.3.5 Decompile-it.com

The author of this project is Naftali Schwartz. Up to the day of this document creation, there is no
published article about this project, therefore, its description is very brief.

This project is tightly linked to the Valgrind6 framework. Therefore, it probably has the same
advantages and disadvantages as Valgrind. Valgrind is a framework for building dynamic analysis
and instrumentation tools (e.g., memory error detector, cache and branch-prediction profiler, thread
error detector). It supports several UNIX-based target operating systems (e.g., Linux, Android,
Darwin) and target architectures (e.g., MIPS, ARM, x86) and it is distributed under the GPL license.

The project has not yet been released and it is available only as a web interface7 which is limited
to the decompilation of x86/Linux executables. It seems that debugging information is mandatory.
The official site claims that the following problems are at least partially solved: reconstruction of
composite types and unions, detection and transformation of instruction idioms, and recovery of
switch statements, unrolled loops, and inlined functions. According to author’s note [60], the MIPS
and ARM architectures are also supported as well as C++ generated executables. The license of
this tool is unknown..

4.3.6 SmartDec

The original name of this decompiler is TyDec and was firstly presented in [64]. In present, its
license is unknown and it is distributed as a demo application without sources.

Later, it was renamed to SmartDec8. The work on the decompiler was based on a research related to
automatic type reconstruction in disassembled C programs [19]. This is the reason why SmartDec
takes assembly code as the input.

6http://valgrind.org/
7http://decompile-it.com/
8http://decompilation.info/

18

http://valgrind.org/
http://decompile-it.com/
http://decompilation.info/


This decompiler is focused on decompilation of executables produced by C++ compilers. It supports
specific C++ constructs, such as virtual functions, classes, class hierarchies, i.e., inheritance relations
between classes, constructors, destructors, types of pointers to polymorphic classes, non-virtual
member functions, layout and types of class members, calls to virtual functions, and exception
raising and handling statements.

SmartDec performs decompilation in several steps:

1. Parsing of the input assembly listing and creation of program representation as a sequence
of assembly instructions. SmartDec currently handles the GNU objdump and Microsoft
dumpbin output formats.

2. Building of the control-flow graph and isolation of functions.

3. Transformation of assembly instructions into platform-independent program representation.

4. Analysis of functions:

(a) joint reaching definitions and constant propagation analysis;

(b) dead code elimination;

(c) reconstruction of local variables, function arguments, and return values;

(d) reconstruction of integral and composite types;

(e) structural analysis, including the reconstruction of compound conditions and loops.

5. HLL code generation, optimization and output.

4.3.7 Other Approaches

We can also find other approaches of machine-code analysis. DeDe is an example of a machine-code
decompiler focused on one particular source language—Delphi [17]. It achieves the best results
with reconstruction of resources (e.g., forms, strings), but decompilation of code is insufficient
because it only produces well-commented assembler code. Therefore, the code is not recompilable
in Delphi.

The Jakstab project [37] is a static analysis framework written in Java which currently supports the
x86 architecture and 32-bit PE or ELF executables. Its purpose is not decompilation, but translation
of machine code to a low-level IR language. Afterwards, it performs several data and control-flow
analyses over this representation that can be used for “smart” disassembly, function detection [38],
etc. It is designed to be adaptable to multiple hardware platforms by using customized instruction
decoding and processor specifications similar to the Boomerang decompiler. The whole system was
developed as part of Johannes Kinder’s PhD thesis [36].

4.3.8 Comparison of Decompilers

In Table 4.1, we summarize the base features of the decompilers and knowledge obtained from our
tests. The features marked with an asterisk (*) are claimed by the authors but are not included in
any publicly available release.

From this table, we can see that the most popular file formats are Windows Portable Executable (PE)
and UNIX/Linux ELF formats, as well as the Intel x86 architecture. The C language is the most

19



dc
c

B
oo

m
er

an
g

R
E

C
St

ud
io

H
ex

-R
ay

s
D

ec
om

pi
le

r

de
co

m
pi

le
-i

t.c
om

Sm
ar

tD
ec

x86 x86 x86 x86 x86 x86
Supported architectures

SPARC SPARC ARM MIPS*

PPC MIPS x86 64 ARM*

Supported OFFs
DOS-
MZ

ELF ELF ELF ELF none

PE PE PE

COFF Mach-O

Mach-O
Input

binary binary binary binary binary asm
Output language

C C C-like C C C/C++
Distribution

source source binary binary web-
service

binary

License
GPL BSD+

GPL
freeware commer-

cial
GPL? unknown

DWARF dbg support 5 5 3 3 3 5

PDB dbg support 5 5
partial

3 5 5

Interactive interface 5 3 3 3 5 5

Statically linked code
detection 3 3 5 3 5 5

Retargetability
no yes unknown unknown unknown unknown

Documentation
yes yes partial yes no no

Quality of output
not
tested

middle middle high not
tested

low

Table 4.1: Overview of features and tests of existing decompilers

20



common output language. Other features are supported less often. Unfortunately, we have to state
that none of actively developed decompilers is available with its source code under a non-restricting
license. Moreover, most of these tools tend to be proprietary software.

We have presented and commented the results of four decompilers. According to our judgement,
Hex-Rays Decompiler is the best one. Boomerang takes the second place. REC Decompiler is on
the third place, where the main reason are failures for function detection. The last one is SmartDec.

Except SmartDec, other decompilers are able to recognize and use strings from data section, which
helps a lot for code understanding. Conditions handling is very important and fortunately it is
implemented by all decompilers. SmartDec is not able to reconstruct loops, other compilers are
able to do it, but they generate a do-while or while loop. Moreover, REC Decompiler uses
an endless loop with break inside of if for loop termination. Hex-Rays works with arrays
better than the other decompilers. It declares a char array instead of an int array, but it is the
single decompiler that generates at least some declaration. Boomerang generates an access to an
array without declaring the array, REC Decompiler and SmartDec do not recognize arrays and use
pointer access. Hex-Rays handles a lot of widely used idioms. Boomerang decompiles idioms code
partially so it is hard to decide. REC Decompiler does not handle idioms and it generates code
directly according to the output of the compiler, SmartDec moves code related to idioms to separated
functions which are not called from main. Function detection is quite successfully done by all
decompilers except for REC Decompiler. The program for calculation of Ackermann function is
correctly decompiled only by Hex-Rays Decompiler.

4.4 Future of Machine-Code Decompilation

There is a large group of challenges for machine code decompilation, which are waiting for more
competitive resolution. Briefly, we can mention the following challenges.

• Executables produced by a C++ compiler. The C++ language supports much more com-
plicated constructions than the C language and with the new standard ISO C++11, it becomes
more and more powerful. With a growing power of the language, the complexity of its com-
pilers grows too. This is, of course, reflected in complexity of the generated code. So, binary
code of the executable is complicated and the original constructions are also complicated, and
usually hard to transform into an understandable C source code.

A short list of new features from the last C++ standard, which may cause complications:

– lambda functions and expressions

– multithreading memory model, including thread-local storage

– garbage collection

• Structures and unions. These constructs are hard to decompile because the members of a
structure can work as independent variables, and from machine code, any context connection
could be invisible. This problem is quite well solvable when debug information is available
and this information exactly tells which structures are used and which variable belong to it.
On the other hand, in terms of malware, debug information is almost never available, so this
can be in practice used only for self-testing. Now, we see a potential in type information of
the standard library functions. If there is used, e.g., fopen, the decompiler can know that

21



it returns a pointer to struct FILE, and it can work with this knowledge later, when the
pointer is used.

• Obfuscated code. Obfuscated code is used for hiding the meaning of code. Obfuscation is
also used by malware, which wants to prevent the inspection of its code. The decompilation
of malware would be very beneficial for analytics from anti-virus companies. Obfuscated
code is specific for its usage of a wide variety of different code constructions which differ a lot
from usual constructions generated by compilers. An obfuscator may divide functions in more
separated blocks, which are located on more places through the executable. This makes it very
hard to recognize such functions and the same applies for the reconstruction of arguments.
Arithmetic expressions are changed to explore more difficult operations. Furthermore, dead
code may be inserted on arbitrary places. This issue is taken into account in the Lissom
decompiler.

• Executables produced by compilers for functional languages (e.g., Haskell). Functional
programming is completely different in comparison with procedural or object-oriented pro-
gramming. Also, the generated executable has different structure, which is non-standard for
decompilers aimed on processing executables from procedural language and producing the
output in (imperative) procedural languages.

• New processor architectures. New processor architectures are presented much more often.
More powerful and productive methods allow to develop new processors faster and cheaper.
We can expect that new processors will come to market regularly. Such a situation requires
decompilers to be retargetable; otherwise, they would not be able to react fast enough to
support new architectures.

• Parallel computing, multithreading. This is also related to GPU (Graphics Processing
Unit), which is still more and more used for various computing tasks. There are several
different forms of parallel computing: bit level, instruction level, data, and task parallelism.
A decompiler will have to reveal what is run in parallel and generate the output code according
to that.

22



Chapter 5

Lissom Decompiler

Decompiler is developed within the team, where the author of thesis is one of the team members.
Author is mainly involved in research and development of the front-end. Therefore this part is
described with more details. However, other parts are also described for providing the overall view
on the decompiler framework. This chapter is based on articles [42, 68, 70–75, 77].

We present an overview of a retargetable decompiler. Our approach is not tied to any particular target
platform. The primarily utilization of this tool is a static platform-independent malware analysis.
With its help, it is possible to inspect malware code on a much more abstract and unified form
of representation, while preserving the functional equivalence of the code. Therefore, malware
analysts do not need to have a deep knowledge of the target platform (i.e. instruction set and
processor architecture) and they can fully focus on the malware analysis.

The retargetable decompiler is based on exploitation of the ADL ISAC [44], which is intended to
be used for designing new application-specific instruction set processors (ASIPs). However, we
use this formalism for the description of existing platforms. The front-end of the decompiler uses
generated instructions semantics from this description. The decompiler core is based on the LLVM
Compiler System1, which we use for a translation from LLVM IR code into HLL.

5.1 ISAC Language

The ISAC language [44] was developed within the Lissom project at Brno University of Technol-
ogy [43]. The project has two basic scopes. The first scope is a development of an ADL for the
description of Multiprocessor Systems-on-Chip (MPSoC). The second scope is a transformation
of MPSoC description into advanced software tools (e.g. a C compiler, a simulator, etc.) or into
a hardware realization of each processor. The ISAC language belongs into a so-called mixed ADL.
It means that a processor model consists of several parts. In the resource part, processor resources,
such as registers or memory hierarchy, are declared. In the operation part, processor instruction
set with behavior of instructions and processor micro-architecture is described. Processor model
can be written in two levels of accuracy—instruction-accurate or cycle-accurate. The retargetable
decompiler currently uses the first one.

The assembler and coding sections capture the format of instructions in the assembly and machine
language, so they define instructions in textual and binary forms. For the behavioral model, the

1http://llvm.org/

23

http://llvm.org/


RESOURCES { // HW resources
PC REGISTER bit[32] pc; // program counter
REGISTER bit[32] regs[16]; // register file
RAM bit[32] memory {SIZE(0x10000); FLAGS(R, W, X); };

}
OPERATION reg REPRESENTS regs
{ /* textual and binary description of registers */ }

OPERATION op_add { // instruction description
INSTANCE reg ALIAS {rd, rs, rt};
ASSEMBLER { ”ADD” rd ”=” rs ”,” rt };
CODING { 0b0001 rd rs rt };

// instruction behavior
BEHAVIOR { regs[rd] = regs[rs] + regs[rt]; };

}

Figure 5.1: Example of a ISAC language source code.

behavior section is used. In this section, a subset of the ANSI C language can be used. The behavior
section defines the semantics of each operation. For example, a simple instruction with its behavior
is described using the assembler, coding, and behavior sections, see Figure 5.1.

5.2 LLVM Compiler System

The LLVM Compiler System was originally designed as a compiler framework to support trans-
parent, lifelong program analysis and transformation for arbitrary programs, by providing high-
level information to compiler transformations at compile-time, link-time, run-time and in idle-time
between runs [3]. Nowadays, the use of LLVM spans over many different areas, including com-
pilation (Clang, LLVM D Compiler, Trident Compiler), video decoding (Jade), signal processing
(Faust), static checking (Calysto), and implementation of various programming languages (Unladen
Swallow, Rubinius, Pure). The key features of LLVM include a universal, language-independent
instruction set, type system, intermediate representation (LLVM IR [2]), many built-in sophisticated
optimization algorithms and passes, link-time optimizations, just-in-time (JIT) code generation, and
application programming interface for several programming languages.

Consider the C source code in Figure 5.2. This straightforward implementation of the factorial
function can be directly compiled into the LLVM IR. The output of this conversion is shown in
Figure 5.3. This example shows us some of the properties of the LLVM IR:

• The used RISC-like instruction set captures the key operations of ordinary processors, but
avoids most of machine-specific constraints. Most instructions are in the three-address form—
they take either one or two operands and produce a single result. The instruction set includes
arithmetic instructions (e.g. add, mul), bitwise instructions (e.g. shl, and), memory
access instructions (e.g. load, store, alloca), conversion instructions (e.g. trunc,
zext), and other instructions (e.g. icmp, call). Furthermore, every basic block ends with
a terminator instruction (e.g. br, ret) which explicitly specifies its successor basic blocks.

24



int factorial(int n) {
if (n == 0)

return 1;
return n*factorial(n-1);

}

Figure 5.2: A simple implementation of the factorial function in C.

• According to the presence of the phi instruction in Figure 5.3, the virtual registers are in
the Static Single Assignment (SSA) form (see [16]), where each variable is assigned exactly
once. The use of this form results in a simplification of many compiler optimizations.

• A language-independent type system is used. Every instruction and SSA register has an
associated type and all operations obey strict type rules. This enables several optimizations
which otherwise would not be possible (at least not in such a straightforward way). Primitive
types include void, boolean, variable-sized integers, and floating-point types. Derived types
include pointers, arrays, structures, and functions. The cast instruction can be used for type
conversions (other ways of type conversions are not possible). Address computation and
address arithmetic is done by the getelementptr instruction.

• The LLVM IR can exist in the following three forms: textual (as in Figure 5.3), binary
(compiled textual representation), and in-memory (compiler internal representation). All of
these representations are equivalent—that is, one can be transformed to the others without
any loss of information.

5.3 Design of a Retargetable Decompiler

The objective of the decompiler is a static analysis of a binary code and its transformation into a HLL.
It is important to preserve the functional equivalence of the transformed program; otherwise, further
code analyses will be inaccurate. This is a very difficult task because we have to deal with missing
information in the input code (e.g. because of compiler optimizations, malware obfuscation, etc.).
The usage of the retargetable decompiler requires from user to describe the target architecture in the
ISAC ADL. Then, the front-end of the decompiler can be automatically generated by a tool-chain
generator based on this description. After that, it is possible to reversely translate binary executables
for this architecture.

The toolkit consists of two main parts—the preprocessing part and the decompiler core, see Fig-
ure 5.4. The structure of the decompiler core is similar to a classical compiler. It consists of
a front-end, a middle-end, and a back-end. The only platform-specific part is the front-end. For
this purpose, the binary coding and semantics of each processor instruction is extracted from the
architecture model in ISAC. This is a major difference against other retargetable decompilers, be-
cause it is not necessary to manually reconfigure the decompiler for a new architecture. It should be
noted that in present, there is no other competitive method of automatically-generated retargetable
decompilation.

25



define i32 @factorial(i32 %n) {
entry:

%0 = icmp eq i32 %n, 0
br i1 %0, label %bb2, label %bb1

bb1:
%1 = add i32 %n, -1
%2 = icmp eq i32 %1, 0
br i1 %2, label %factorial.exit, label %bb1.i

bb1.i:
%3 = add i32 %n, -2
%4 = call i32 @factorial(i32 %3)
%5 = mul i32 %4, %1
br label %factorial.exit

factorial.exit:
%6 = phi i32 [ %5, %bb1.i ], [ 1, %bb1 ]
%7 = mul i32 %6, %n
ret i32 %7

bb2:
ret i32 1

}

Figure 5.3: The generated LLVM IR code from the code in Figure 5.2.

Decompiler

G

E

N

E

R

A

T

O

R

Coutput

LLVM IR

LLVM IR

Preprocessing

PE2CCOFF

ELF2CCOFF

...

Conversion

plugins

Converter

db

sign. Compiler

detector

optional

input files
PDB file

F R O N T - E N D

M I D D L E - E N D

B A C K - E N D

target

architecture

 models

ARM

x86

MIPS

input

application
...ELF WinPE

CCOFF

LfD

information
type

signatures
library

Unpacker

Python’

PPC

PIC

Figure 5.4: The concept of the retargetable decompiler.

The preprocessing part analyses the input application to detect the used file format, compiler, and,
if the file was packed, the used packer. After that, it unpacks and converts the examined platform-
dependent application into an internal object file format CCOFF (Codasip Common Object File
Format). The conversion is done via our plugin-based converter [42]. We support conversions
from Windows PE, UNIX ELF, Apple Mach-O, and other formats. Non-standard file formats can
be supported via a direct implementation of the appropriate plugin, or via an automatic plugin
generation based on the format description in our object-file-format description language [40].
Afterwards, such CCOFF files are processed by the decompiler core.

26



The decompiler core is built on top of the LLVM Compiler System. The LLVM assembly language,
LLVM IR, is used as an internal code representation of the decompiled applications throughout the
decompilation process. The core of our decompiler consists of three basic parts—a front-end, a
middle-end, and a back-end, described next.

The unified CCOFF files are firstly processed by the front-end, which is the only platform-specific
part of the decompiler because its instruction decoder is automatically generated based on the target
architecture model in the architecture description language (ADL). The ISAC model is transformed
by a semantics extractor [30], which transforms the semantic description (i.e. snippets of C code)
of each instruction into a sequence of LLVM IR instructions, which properly describe its behavior.
The extracted semantics and binary encoding of each instruction is used for an automatic generation
of an instruction decoder. The decoder translates the application’s machine code into sequences
of LLVM IR instructions, which characterizes its behavior in a platform-independent way. This
intermediate program representation is further analysed and transformed in the static-analysis phase
of the front-end. This part is responsible for eliminating statically linked code, detecting the used
ABI, recovering of functions, arguments, etc. [73]. When debugging information or symbols are
present in the input application, we may utilize them to get a more accurate result. Although this
may be useful during source recovery or code migration, this type of information is almost never
present in case of malware, so we do not rely on it.

Afterwards, the LLVM IR program representation is optimized in the middle-end by using many
built-in optimizations available in LLVM and our own passes (e.g., optimizations of loops, constant
propagation, control-flow graph simplifications).

Finally, the back-end part converts the optimized intermediate representation into the target high-
level language (HLL). Currently, we support three target HLLs: C, Python-like language, and
LfD (specific language described in 6.2). The second one is very similar to Python, except a few
differences—whenever there is no support in Python for a specific construction, we use C-like
constructs. The conversion itself is done in a several-step way. First, the input LLVM IR is
converted into another intermediate representation: back-end intermediate representation (BIR).
During this conversion, high-level control-flow constructs, such as loops and conditional statements,
are identified and reconstructed. After that, the obtained BIR is optimized, and finally, it is emitted
in the form of the target HLL.

Apart from the target HLL, we are able to produce the call graph of the decompiled application,
control-flow graphs for all functions, and an assembly representation of the application.

5.4 Preprocessing

Preprocessing part covers the convertion of the executable file into CCOFF file and gathering
additional information about the executable file. Firstly, we describe the conversion issue and then,
the the tool for inspection of executable and its output.

In present, we can find a variety of commonly used object file formats. Some of them are proprietary
formats (e.g. Symbian E32Image, Apple Mach-O, Android DEX), others are open standards (e.g.
UNIX ELF, COFF, PE). Some of these formats are open and well documented (ELF), and there
are existing converters for them, while other formats are still being analyzed by reverse engineers
(DEX). In the Lissom project, a specialized COFF-based file format called CCOFF is used for
internal code representation. CCOFF is used by a complete set of retargetable tools that are

27



Supported
architectures

x86
ARM + Thumb

MIPS
PowerPC

Supported OFFs

ELF
PE

COFF
Mach-O

Input binary
Output language C, Py’, LfD
Distribution web-service
License unspecified
DWARF dbg support 3

PDB dbg support 3

Interactive interface 5

Statically linked code detection 3

Retargetability yes
Documentation yes
Quality of output high

Table 5.1: Overview of Lissom Decompiler features. Compare with 4.1

automatically generated in Lissom project (instead of decompiler, also retargetable disassembler or
simulator).

CCOFF was designed in reference to independency on any particular architecture, universality and
good readability. Therefore, it is possible to describe architectures with different types of endianity,
byte sizes, instructions lengths, or instruction alignments. It is also possible to store executable,
object, or library code within the CCOFF format.

The CCOFF structure is similar to the COFF format – basically, it has one header, followed by
section headers, sections, and symbolic information (symbols, relocations, and debug information).
The section’s content is characterized by section flags. The format of CCOFF is textual; therefore,
it is possible to study its content without any additional tools, see Figure 5.5.

Our solution is designed as a plugin-based system, where each plugin implements a conversion of
one or more object file formats. The main converter (i.e. the host application) handles the user
interface, manages conversion plugins, and provides the common functionality for plugins (e.g.
CCOFF file manipulation) [45].

The conversion is done by plugins. Currently, we provide plugins for convering ELF, PE, E32Image,
Mach-O, DEX, and their derivates. We use several existing third-party libraries for file formats
manipulations. For handling ELF, PE, and Mach-O, the Binary File Descriptor (BFD) library is used.
It is used for unified format manipulation because it supports a lot of object file formats [10]. During
the conversion, the content of an input file is mapped to a BFD internal canonical structure, uniformly

28



AgT62kG9y7 //magic string
32 // word bit-size
4 // bytes per word
0 // byte order, 0-little, 1-big
... // flags, entry point, etc.
30 // section count
1 // symbol table count
... // information about sections
.text // *** section header *** - name
1 // is address absolute?
143654972 // section address
T // section flags

// section data follows
00111111110000001111110000000101
00000000000000000000000000000000

Figure 5.5: Example of the CCOFF format.

characterizing items like sections, section flags, symbols, and architecture type. Afterwards, this
form is transformed to a structure suitable for the CCOFF format, and finally CCOFF file is saved.

The information about executable file is gathered by the application called fileinfo. It obtains the
same information as the readelf utility, but independently on the used target format (i.e. it supports
ELF, Windows PE and other common formats). Another its advantage is a built-in packer/compiler
detector. The detection algorithm is based on pattern matching of the entry-point instructions with
an internal signature database.

Example of signature can look like 5589E583EC18C7042401000000FF15--------E8,
where each character represents a nibble of instruction’s encoding. Some code parts are variable as
a target address in the call instruction. Such variable parts must be skipped during matching. In the
signature they are represented by a wild-card character -.

Application fileinfo provides information for generation of XML configuration file for the front-end.
The configuration of front-end allows setting a lot of options, therefore a XML file is generated by
several scripts that cooperate with fileinfo.

The most important items in XML configuration are:

• targetArchitecture – architecture of input file (detected by fileinfo)

• entryPointAddress – address of entry point (detected by fileinfo)

• toolName – name of detected compiler or packer (detected by fileinfo)

• versionInfo – version of detected compiler or packer (detected by fileinfo)

• semantics – semantics of architecture

• signatures – files with signatures of statically linked code

• types – files with type information for functions

• abis – files with ABI descriptions

• inputFile – input file

• outputFile – output file

29



5.5 Front-end

The objective of the front-end is a translation from the CCOFF file into a sequence of low-level
LLVM IR instructions. We use a name decfront for the front-end. As it was said before, it is a
single part of decompiler, which is platform-independent and therefore it is generated according to
architecture description. To be precise, an instruction decoder is generated, and the others analysis
are generic. So, they are same for all architectures.

The large part of decfront is detection of statically linked code. This feature helps to decrease time
of decompilation and also to improve the result. It is described closely in 5.5.1. The main part of
the front-end is the static analysis of the decoded code before generation of final LLVM IR code.
This part includes several specific analyses, some of them are architecture-specific. The cooperation
and work flow of decfront is shown in Figure 5.6. This figure presents complete image of decfront
architecture design.

Figure 5.6: The architecture of decfront.

Firstly, detection of statically linked code is described. It covers also support tools and description
of used file formats, which are utilized during the whole process. The detailed descriptions of
decfront analysis follow. It is important to note that all these analyses are static.

30



5.5.1 Detection of Statically Linked Code

This section is based on the article [68]. The author of the thesis is the author of the toolkit for a
detection of statically linked code. The inspiration for this toolkit is taken from FLIRT [23]. This
detection is important for static binary analyses as a decompilation. Main aim is to eliminate such
a code to save a time for a process of decompilation and also for an analysis of the results from
the decompiler. The second addition is a delivery of valuable information about recognized code.
We can directly mark some piece of the code as a concrete function. The significance of statically
linked code removal for decompilation is also described in the article [75].

Linking of static libraries is available for all widely used platforms and compilers, therefore the
process should be generic. Naturally, we cannot assume that we will recognize same version of
library on different architectures by a single signature. The goal is to have a single tool for same
action on libraries from different architectures and file formats. This is achieved by usage of unified
object file format (CCOFF). Libraries are transformed to this format and the next tool continues by
processing libraries in this format.

The signatures are not directly created from transformed libraries. From libraries we extract patterns,
where each module from library is described by a single pattern. Finally, the patterns are processed
into signatures and if there are conflicts, they are stored into separated files. This method allows
easily to join patterns from more libraries into a single signature.

The signatures assign the name of functions for recognized code, but for the decompilation it is very
important to know the type of arguments and return values. This is covered by type information.
Our decompiler is based on LLVM, therefore the C types are directly transformed into LLVM types
and they are used in that type information.

There are two mainly used object file formats: ELF and PE. The first tool, which touches the
libraries, has to handle at least these two formats to get closer to generic purpose. The second and
better option is to convert library from different formats into single common format. This is used
in our solution. We use tool bintran [42], which converts object files from ELF, PE, or Mach-O
formats into own CCOFF file format developed by the project Lissom. Thence, we can have tool
for processing only this unified format. The library is an archive of object module files. Bintran
extracts these module files from library, converts each module to the CCOFF format, and finally
stores them all into own archive format.

Pattern Files

The second step is ensured by the tool ccoff2pat. This tool takes a converted library and generates
a pattern file. The file contains a header and one pattern for each module from library. The pattern
from module is taken only if it has at least 128 non-variable bits. The variable bits are used on the
place of references. We do not know exact value of variable bit, because there is usually encoded
an address, which is updated by the linker. According to the our experience, the lower number of
non-variable bits causes too many false positives.

The header is formed by four lines, on the first line there is an identifier (magic number) for this file
format R14kdP0a7q. Then, there is a size of byte in bits. The minimal size of instruction in bits
is placed on the third line, and the last one is the number of lines with patterns (one pattern is on
one line). The minimal size of instruction is important, because of usage for different architectures.
For example, on the MIPS platform all instructions have same length 32 bits. This length forms
minimal compare unit for signature creation and also for later searching in executables.

31



R14kdP0a7q
8
32
6
[256 bits] 04 9405 00F8 1 0000 accept 3 0024 _psp_descriptormap 0048 _errno 0078

sceNetInetAccept [tail bits]
[256 bits] 30 F26D 0074 1 0000 atest 0 [tail bits]
[256 bits] 0C 05D8 00EC 1 0000 asprintf 4 0060 vxprintf 0078 realloc 00AC malloc

00C0 strcpy [tail bits]
[256 bits] 1C 4487 009C 1 0000 bind 3 0018 _psp_descriptormap 003C _errno 0060

sceNetInetBind [tail bits]
[256 bits] 0C 5AC0 008C 1 0000 chdir 3 000C _psp_path_absolute 001C sceIoDopen

002C sceIoDclose [tail bits]
[256 bits] 0C 634C 0058 1 0000 closedir 4 0010 free 0018 sceIoDC 002C

_psp_set_errno 0034 _errno [tail bits]

Figure 5.7: A preview of a pattern file.

The example is shown in Figure 5.7. Sequences of bits are replaced by [] blocks. This pattern
file is extracted from library for MIPS architecture, where all instructions have same length 32 bits,
therefore the minimal length is 32 (the second line).

The first part of pattern is 256 chars, char is one of 0, 1, or ., where dot means variable bit. These
256 bits represent the first bits of module. If the module has less than 256 bits, the missing bits are
also represented by dots. Then, there is a number of bytes used for calculation of CRC code and
the CRC code. This number depends on the distance of the first byte with variable bit after first 256
bits. Such a byte determines the end of code, which is used for CRC calculation. If the module is
smaller than 256 bits, the CRC will be obviously 0000. We use the CRC16 algorithm.

Behind CRC code, there is a number of public symbols of that module, for each public symbol
there is its address and name. There should be always at least one public symbol. The same form
is used for references, the difference is that there could be no reference, then there is just a 0 (the
case of the second pattern in example). The references can be used for resolution of modules, which
have same other parts (starting bits and CRC code). Because of generic approach it is much more
complicated to use references. Therefore it is not applied at this moment and it is mentioned in a
future research. The last part is [tail bits], which contains the bits sequence after bits used
for CRC code. This part can be empty. Its size is not limited, so it is filled out with all remaining
bits. The content is same as it is for the first part, it consists of 0, 1, or .. The tail bits are used
if there is unequal bit at same position for two modules. In that case, we store information about
position and value of that bit to distinguish between modules.

Signature Files

The next step is creation of a signature file from one or more pattern files. The main reasons for this
transformation are detection of conflicts and finding of common first bits. A conflict is a state, when
two or more patterns have equal first bits, CRC codes, and tail bits. Such patterns are excluded from
signature file into separate file, called exception file.

The tool pat2sig is developed for this action. It loads all input pattern files. It takes the smallest
minimal instruction size as the compare unit size. Imagine that it is 32. Now, the patterns are
divided into groups. The first group is derived from the first 32 bits of the first pattern. All other

32



patterns are tested if they have same first 32 bits, and if yes, they are included into this group. This
is done recursively for all patterns until each pattern is in some group. There could be only one
pattern in the group if it has unique first 32 bits. This process continues in groups with at least two
patterns, there are compared next 32 bits to create subgroups. Dividing into groups is stopped when
there is no more first bits or each pattern is in own group or subgroup.

The next step is detection of collisions. Now, it is quite simple step due to division of patterns into
groups. If there is more than one pattern in group, they are tested for differences in CRC codes,
tail bits, or references. If they cannot be distinguished, they are moved out into exception file.
According to the way how the module is recognized, there are three types of signature:

• N - normal type: module is recognized by first bits or CRC code.

• T - tail type: module is recognized by tail bit (its position and value).

• R - relocation type: module is recognized by the relocation (reference).

The better precision and performance of signature is achieved by sorting of signatures before writing
them into output file. The idea is based on a fact that the signatures with larger number of bytes
included in CRC calculation are more accurate, so they are written firstly. If the number of such
bytes is same, the second sort is done by the size of the module. The bigger modules reduce more
code, which is skipped by search with another signatures.

Header of the signature file is formed by four lines. The format is very similar to pattern file header.
On the first line, there is a string for identification of the file type (Sig14sd77x). It is followed
by the number of bits in byte, the size of compare unit and the number of lines with signatures. The
header is followed by lines with signatures, where, on the single line, there is at least one signature.

Sig14sd77x
8
32
7
[256 bits] | 1 N FF E60F 0B0C 2 0000 permute 016C getopt
[32 bits] [32 bits] [192 bits] | 1 N FF 904A 0150 1 0000 memcpy

[192 bits] | 1 N 64 D4BA 0084 1 0000 memmove
[192 bits] | 1 N B4 6347 00E0 1 0000 memset
[192 bits] | 1 N B4 6347 00D4 1 0000 stpncpy
[192 bits] | 2 T 64 706F 008C 27 1 1 0000 strcpy T 0090 35 0

1 0000 stpcpy
[192 bits] | 2 R 18 8D32 0028 000C _free_r 1 0000 free R 18

8D32 0028 000C _pvalloc_r 1 0000 pvalloc
[32 bits] [192 bits] | 1 N 5C AD03 007C 1 0000 strcmp

Figure 5.8: A preview of signature file.

Division of patterns into groups is used for creation a tree-like format. This format decreases
a memory consumption of loaded signatures, and also, it helps to get more efficient search. In
Figure 5.8, the module of function getopt has unique first bits, so they are all written. Other
modules have same 32 bits from beginning, so these bits are written only once. The indentation
ensures an inclusion of modules to same group. We see that on the following 32 bits there is a
difference in module of function strcmp, which has listed own 32 bits, and other modules have
common 32 bits. All remaining modules are different in the next 32 bits, so they are listed separately.

33



The format of line is related to the pattern format. Firstly, there are bits, but they can be divided into
groups as it was described. Then, there is a separator |, its effect is clearly visual. The next number
is count of described modules. The following letter designates the type of the concrete signature,
the valid letters are N – normal type, T – tail type, and R – reference type. The next two numbers
are related to CRC – a count of used bytes and the CRC code. Then, there is the size of module in
bytes. The last part includes public symbols: their count, and for each symbol there is its offset in
module and name.

The case when the tail type is used is a little more complicated. The count of described modules
can be 1 or more. The additional information about important bit in tail bits is stored after module
size. There is the offset of that bit and its value. The part with public symbols is same. If there are
at least two described modules, the next one is introduced by letter T, it has same CRC code, so this
is not written again. There is only the size of this module, the different bit information and listed
public symbols.

Figure 5.9: The process of signature file creation.

Whole process of the signature file creation is illustrated in Figure 5.9. The dash lines indicate an
option that more pattern files can be transformed in a single signature. We remove more collisions
between patterns by the transformation of more pattern files. Also, it is practical to transform
patterns from more libraries of the single compiler. Than, we cover the produced code of this
compiler by the single signature file.

Type Information

Type information brings additional data for recognized functions in the statically linked code. The
core information are types of argument and return value. The advantage of separation of types and
signatures is a possibility of usage also for functions, which are known from imports in executable
files (in another words: which are not related to the statically linked code, because they are linked
dynamically). The file with type information is shown in Figure 5.10.

34



TYP374INFO
2
%struct.IO_marker = type { %struct.IO_marker*, %struct.FILE*, i32 }
%struct.FILE = type { i32, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8

*, %struct.IO_marker*, %struct.FILE*, i32, i32, i32, i16, i8, [1 x i8], i8*,
i64, i8*, i8*, i8*, i8*, i32, i32, [40 x i8] }

10
setbuffer void 3 %struct.FILE*, i8*, i32 # void setbuffer (FILE *restrict, char

*restrict, size_t)
fprintf i32 3 %struct.FILE*, i8*, ... # int fprintf (FILE *restrict, const char

*restrict, ...)
printf i32 2 i8*, ... # int printf (const char *restrict, ...)
remove i32 1 i8* # int remove (const char *)
rename i32 2 i8*, i8* # int rename (const char *, const char *)
tmpfile %struct.FILE* 0 # FILE * tmpfile ()
tmpnam i8* 1 i8* # char * tmpnam (char *)
fclose i32 1 %struct.FILE* # int fclose (FILE *)
fflush i32 1 %struct.FILE* # int fflush (FILE *)
fopen %struct.FILE* 2 i8*, i8* # FILE * fopen (const char *restrict, const char

*restrict)

Figure 5.10: A preview of file with library type information.

The file with type information is generated from one or more C header files. The tool is implemented
as a plugin into the Clang compiler. The Clang is C front-end for LLVM and it allows to use plugins,
which are able to connect to various states of C file or header file processing. The plugin is connected
to part, which creates an abstract syntax tree. When the declaration of new function is parsed, the
plugin adds information for this function – types of arguments and type of return value. If the type
is a structure, it processes its declaration and creates a separated type information for this structure.

On the first line of file with type information there is magic string TYP374INFO. The file consists
of two main parts – declarations of structures and declarations of functions. The number of declared
structures is on the second line. Then, there is one structure declaration on each line. In our example
the long declaration is divided into more lines to be able to show it. This part is followed by the
number, which means the count of function declarations. And then, there is one declaration for
each line. If there is used structure in structure, the declaration has to be listed for all of them.
In %struct.FILE there is used a pointer to %struct.IO marker, so its declaration is also
listed.

All the types are directly transformed into LLVM types. The reason is usage in our decompiler, which
has LLVM framework as its middle-end and back-end. This transformation is very straightforward
due to usage of Clang. Clang as LLVM front-end supports a conversion of all C types into LLVM
types. For example, int is converted into i32, or char* into i8*. Some information (e.g. sign
type modifiers) are stripped, because their are not so needed in decompilation. Also, the modifier
const is not transformed, because it is important only for the compiler.

The format for function declaration is quite simple. The first string is name of the described function.
The type of return value follows. Then, there is a number of arguments and their types. Each type
is divided by a comma. Behind the terminating symbol #, there is the original C declaration, which
is used later by decompiler only for informative purposes.

35



Detection by Matching Signatures

The big amount of different libraries results into a lot of available signatures for the decompiler.
The decompiler has to choose some subset of them to be applied. It is smart to sort signatures by
various conditions, at least by an architecture and object file format. In the better case, we could
also sort them by the concrete compiler or compiler version. This information could be included
directly in the signatures, but that was rejected, because we want to avoid loading of each signature
for the decision if it should be used or not.

The tool fileinfo provides the information about the architecture of executable, its file format, used
compiler or packer. If the executable is packed, there is no need to use signatures, because the
code is changed in many ways and it prevents finding of some library code. This tool helps the
decompiler to set conditions for signature selection. For example, if an executable is for the x86
architecture and it is the PE format, compiled by Delphi, we take only signatures for these specific
parameters. It saves time and resources due to disposal of many signatures for other compilers as
gcc or Microsoft Visual C.

Decompiler loads all selected signatures and sorts them by the same strategy as is used for signatures
when they are written into a file. After load of the executable, the search can be started. The search
is performed only on the bytes from code sections, because it is wasteful to look on data or other
sections. From the loaded signatures the decompiler determines the size of minimal compare unit.
Then, it reads and compares parts of code with this size. The tree-like structure is fully exploited,
because we make only a single comparison between code and signatures, which have common
starting part.

If there is a hit on the first bits, there is a control of CRC checksum or tail bit for tail type signature.
After this all is correctly compared, the code is marked as statically linked code. Such a code is not
more compared with other signatures and decompiler stores internally the addresses and the names
of functions in this code. As a last step, the decompiler pairs the recognized functions with type
information. This is done simply by matching the function names.

5.5.2 Overview of Front-end Analysis

The front-end part is basically responsible for translation of input platform-dependent machine-
instructions into an independent code representation in the LLVM IR notation. However, it is
necessary to apply several methods of static analysis, such as detection and recovery of functions
and loops, data-flow and control-flow analysis. These methods are described in the following text.

Data Sections Analysis

Data section analysis manages data objects. It reads and stores the whole decompiled file, because
we need access to both code and data sections. This analysis is used by other parts of the decompiler.
Usually, in the case when there is a read of memory on some address. Motivation is to find out the
value on that address. This analysis tries to investigate the bytes and determine the type of this part
of memory and its value. This investigation can be supported by additional information provided
by the caller.

Such additional information is a composite of an expected type and optionally size can be added.
Without this information we try to recognize string value and if we are not successful, we mark it

36



as 4 bytes integer. It is possible to recognize a floating point number, but it has to be demanded by
the hint. The reason is any special marks of such a number. We can compare it with string. If we
find a sequence of bytes, which are printable characters and it is ended with zero, it is with a great
probability a string. Such an assumption cannot be done for floating point numbers.

Each recognized data object is stored. Therefore, the next access on the memory address, which is
covered by already created data object, gets this object. The advantage is the requirement to use hint
from only one place and all other accesses have the recognized data object without providing of hint.
We can illustrate this situation on a simple access of two different functions on same string. We
have an address, which is used by functions memcpy and strlen. The second function indicates
that there is a string on this address. This hint is used as a hint for data object recognition. As the
result, the call of memcpy uses this information and it has a recognized string as an argument.

Application Binary Interface

Each architecture has its own specific application binary interface (ABI). This interface determines
the way how the arguments are passed to functions, the value is returned from function, which
register is used as a stack pointer and other features related to usage of registers.

We created a format for describing ABI. Each architecture, which is supported by the decompiler,
has to be described in this format. An example for MIPS architecture is shown in Figure 5.11. The
types are used in the LLVM IR syntax. Names and numbers of registers are given by the ADL
description of the architecture. It consists of these parts (sections):

• data – it covers the mapping of types. The other sections are more simple due to this part.
In the other sections, there can be the same rules for different types. So here the types are
mapped into the common one and this one is used later.

• stack-direction – direction of storing arguments on the stack (available is right to left
- RTL, or left to right - LTR).

• stack – information about stack. The register which works as the stack pointer, its value
and the alignment.

• jump – place (stack or register), where the address for a return from function is stored.

• return – describes where is stored the return value from the callee.

• passing – describes where are stored the arguments for the callee.

• flags – describes the map between registers and flags (this section is optional).

Knowledge of this interface is essential for calling of linked (statically or dynamically) functions,
which are linked according to the concrete architecture ABI. Also, for the reconstruction of argu-
ments this information helps to decide if the detected place has bigger probability to be an argument,
because it is typically used for this purpose. The writing into place given by section jump is used
to detect the type of function call. If the function is called without storing the following address
into this place, it is optimized version of call – tail call.

37



section data
i1 i32
i8 i32
i16 i32
i64 i32:i32
* i32

section stack-direction
RTL

section stack
Reg gpregs 29
start 0
align 4

section jump
i32 Reg gpregs 31

section return
i32 Reg gpregs 2
float fReg fpuregs_s 0
double fReg fpuregs_d 0
i32:i32 Reg gpregs 2:3

section passing
i32:i64 from gpregs 0 to 4 Reg start 4
i32:i64 Stack
float from fpuregs_s 0 to 2 fReg start 12 step 2
float Stack
double from fpuregs_d 0 to 0 fReg start 0 step 2
double Stack

Figure 5.11: Description of ABI for MIPS architecture.

Exploitation of Debugging and Symbolic Information

In order to accelerate the decfront or provide more precise output, it is also possible to exploit
debugging or symbolic information contained in the input executables or provided as an external
file. It should be noted that debugging information is included only in a small amount of real-world
executables, but we can easily generate it in our own testing executables. This part of decfront was
implemented in a cooperation with Peter Matula and Jaromı́r Končický.

There are two common formats of debugging information—DWARF [21] and PDB [48]. DWARF
is an open format. Therefore, the support is included without any major problems. PDB is a
proprietary format created by Microsoft. It is more complicated to handle it and it required to create
an entire tool for this task. We have previously analyzed its structure by using reverse-engineering
techniques [41]. A brief overview of its structure is depicted in Figure 5.12. The information in the
PDB file is divided into separated streams. Each stream contains data about a concrete scope.

Debugging information provides data about functions, their names, location, arguments, and return
types. Similar information is available for global and local variables. Therefore, we are able to
use the same names for functions and variables which were originally used by the developer of the
decompiled executable.

38



Header

Bit array with blocks offset

Stream 1

Stream 2

....

Stream N

Streams Index (root directory)

Pointers to root directories

Figure 5.12: Structure of a PDB file.

Symbolic information is very similar to debugging information—it is an additional piece of infor-
mation stored within the executable by a compiler. However, it only contains information about
function names and their positions in code sections. On the other hand, presence of symbolic
information is more common in real-world applications.

All three types (DWARF, PDB, and symbolic information) are different, so they are unified in
the common representation in the decfront. The information about each function is stored in the
separated class. The robustness of available information is given by its source. If the source is just
the symbolic information, the class has only the name and the start address of the function. On the
other hand, if the source is PDB or DWARF, we have there complete data about arguments, return
value, the end address of function, and also local variables.

Instruction Decoding

The necessary part of the translation process is instruction decoding. This part was implemented
in a cooperation with Jakub Křoustek. It converts machine-instructions into a proper LLVM IR
form. The instruction decoder for the particular architecture is automatically generated based on
the extracted semantics and binary coding. The instruction decoder is responsible for translating
architecture-specific binary machine code into an internal code representation as a sequence of
low-level LLVM IR instructions (i.e., a block with several LLVM IR instructions for each input
machine instruction). As we can see, its functionality is similar to a disassembler, except that its
output is not an assembly language, but rather the semantics description of each instruction. This
part has to deal with platform-specific features. For example, it has to support architectures with
different endianness.

Another issue is decoding the code with variable size of different instructions. The problem can be
caused by encoding the data between the instructions. This issue is related to architecture x86. The
decoder decodes the data as instructions and this could signify the few wrongly decoded instructions

39



after the end of data. The decision if given bytes are code or data is equivalent to halting problem.
So, we use two heuristics to avoid it. If there is the debugging information we have a proper start
address of functions. This ensures that we do not have corrupted decoding on the starts of functions.
The second heuristic is based on the checking the target address of jumps. If we find the address
of jump inside of some instruction, we perform the decoding at this address again. We divide this
instruction into two new instructions. If it is needed (the second instruction takes at least one new
byte from the following one after new decoding), the following instructions are also decoded again.

Import and Export Tables

The analysis covers processing of two types of tables. The import table contains information about
imported functions. These functions are imported from various dynamically linked libraries. The
export table holds the public symbols, which are provided for public use. This table is usually filled
in by the dynamic libraries. The user finds here a summary of functions, which are implemented by
given library.

Each item of an import table is described by these fields:

• address – the function address

• name – name of the function

• libID – id of library. This is internal information and it points to an internal table with more
information about the library

• ord – an ordinal number of function. Function can be recognized by its ordinal number in
given library. In this case, the name can be unavailable. This usage is not recommended,
because the number can be different in various versions of libraries. Nevertheless, we meet a
lot of executables, which use this approach.

For usage in the decompiler, we need a name for each import. Imports without name are fixed due
to knowledge of library and ordinal number. A part of decompiler is a collection of ORD files.
ORD files have really simple structure. On each line there are the ordinal number and the name of
function. There is a first 7 lines of file for library ws2 32.dll.

1 accept
2 bind
3 closesocket
4 connect
5 getpeername
6 getsockname
7 getsockopt

We have one file for one library. So we do not cover the case of different ordinals of different
library version. The main reason is that we do not know a version of library that was used by an
original author of decompiled binary. So we would not be able to determine which version of ORD
file should be selected.

Exports are used mainly for function detection. The item looks same as for import, but libID is not
used. We utilize only the address and the name. The address gives us the start address of function.

40



Jump Table Analysis

Jump table analysis depends directly on the import table. Usually, compilers do not call linked
functions by direct jump on the address of import. They create a part of code with a lot of jumps on
the imports. So, the user code jumps on the addresses in this jump table. Our motivation is to have
direct calls of linked functions. This point requires to connect addresses in jump table with imports.

For ELF format the jump table is represented by PLT table in .plt section. Unfortunately, this
may not be true for malware or non-standard binaries. Also, it is solved differently for other file
formats. We manage to implement generic analysis. It goes through the code and it finds jumps to
addresses from import table. It is important to check that it is only a jump and not proper call. We
recognize this by watching if the return address is set before executing the jump. If it is not set, we
take it as a jump. In the case that it is the proper call, it may be special case, when linked function
is called directly by the address from import (jump table step is skipped).

Previous recognition is important, because we remove the code of jump table from decompilation
result. The reason is that it is not a real user code and it would introduce messy calls of functions
in output.

The following listing shows an example of jump table for architecture x86 and file format PE.

4074a6: 90 nop
4074a7: 90 nop
4074a8: ff 25 f0 b1 40 00 jmp *0x40b1f0
4074ae: 90 nop
4074af: 90 nop
4074b0: ff 25 ec b1 40 00 jmp *0x40b1ec
4074b6: 90 nop
4074b7: 90 nop
4074b8: ff 25 d8 b1 40 00 jmp *0x40b1d8
4074be: 90 nop
4074bf: 90 nop

There are nop instructions to provide a better alignment of addresses. On other architecture, various
instructions can be inserted there, e.g. for preparing arguments or similar. This fact makes situation
more complicated. Imagine that jump on the address 4074b0 targets onto scanf. Now, we can
call scanf by jump on 3 different addresses: 4074ae, 4074af, and 4074b0. The analysis
solves it by a search for the first previous jump. All visited instructions by this search are marked
to represent the same function.

Syscalls

Syscall is a specific type of call, which provides a service of the operating system, e.g hardware
access, process handling, or network communication. It is a low level of communication between
the operating system and an application. The front-end transforms these syscalls into calls of well-
known functions. Such a behavior is very tight with an architecture, so the analysis works a little
bit different according to the architecture of a decompiled binary.

However, the call depends also on the operating system. Linux and OpenBSD have more than 300
different calls, NetBSD supports around 500 functions. According to our experience, it is enough to
support the important subset of this calls, which is described by the POSIX standard. This standard
includes widely used functions as open, read, close, or fork. The advantage is that operating

41



systems from Microsoft are also POSIX-compliant and so, we cover all commonly used operating
systems by this approach.

Currently, we support syscalls on these architectures:

• mips – call is executed by the instruction syscall and the called function is determined
by the value in register v0. The code in assembly language looks like this:
415110: 24020fa3 li v0,4003
415114: 0000000c syscall

When we find this instruction, we track the value in this register and make a lookup in built-in
table to find the function. In this example it is read()2.

• arm – situation is very similar to mips. The call is executed by the instruction svc. There
is a difference, that the number of function is encoded in instruction code. E.g. function
unlink() is called by:
160e4: ef90000a svc 0x0090000a

It has number 10 and we can see it as the a in the code of instruction3.

• x86 – on this architecture the syscall is more complicated. It is executed as an interrupt by
instruction int 0x80. The number of called function is in register al, but the structure of
code is not straightforward (AT&T syntax):
805591f: 0f b6 c0 movzbl %al,%eax
8055922: 57 push %edi
8055923: 56 push %esi
8055924: 53 push %ebx
8055925: 55 push %ebp
8055926: 89 e7 mov %esp,%edi
8055928: 8b 5f 14 mov 0x14(%edi),%ebx
805592b: 8b 4f 18 mov 0x18(%edi),%ecx
805592e: 8b 57 1c mov 0x1c(%edi),%edx
8055931: 8b 77 20 mov 0x20(%edi),%esi
8055934: 8b 6f 28 mov 0x28(%edi),%ebp
8055937: 8b 7f 24 mov 0x24(%edi),%edi
;this is jump on 8055959 (-> int)
805593a: ff 15 40 81 05 08 call *0x8058140
8055940: 5d pop %ebp
8055941: 5b pop %ebx
8055942: 5e pop %esi
8055943: 5f pop %edi
8055944: 3d 7c ff ff ff cmp $0xffffff7c,%eax
8055949: 72 0d jb 0x8055958
805594b: f7 d8 neg %eax
805594d: 50 push %eax
805594e: e8 62 f8 ff ff call 0x80551b5
8055953: 8f 00 popl (%eax)
8055955: 83 c8 ff or $0xffffffff,%eax
8055958: c3 ret
8055959: cd 80 int $0x80
805595b: c3 ret
805595c: b0 3f mov $0x3f,%al
805595e: e9 bc ff ff ff jmp 0x805591f

2http://www.rdos.net/svn/tags/V9.2.5/watcom/bld/clib/h/sysmips.h
3http://lxr.free-electrons.com/source/arch/arm/include/asm/unistd.h?v=3.1;a%

3Darm

42

http://www.rdos.net/svn/tags/V9.2.5/watcom/bld/clib/h/sysmips.h
http://lxr.free-electrons.com/source/arch/arm/include/asm/unistd.h?v=3.1;a%3Darm
http://lxr.free-electrons.com/source/arch/arm/include/asm/unistd.h?v=3.1;a%3Darm


The key component for this analysis is an interpreter, which will be described later. By its
help we are able to find out that the jump on the address 805595e will continue by another
jump on address 805593a (here the data section analysis is called to find the target of call)
finally to instruction int. So, we can track the previous set of register al, find the value 63
and recognize call of function dup2()4.

Detection of main() Function

This feature is aimed on binaries without symbols or debug information. Such binaries are created
with a tool strip and its usage is usual. The goal is to find out the address, where the main
function is located. It is important for another analysis as function detection – it can start searching
from this function. Also, we can avoid writing of some unwanted functions into the result, e.g.
startup and exit routines that are generated by compiler. Another advantage is that we can follow a
program logic easier. Without it, we can have many functions and we need to find main manually.
It is possible to generate call graph and to estimate main function according to it, but it may be
inaccurate and time-consuming.

Both file formats (ELF and PE) provide information about the entry point, but this is only a
place, where the program starts its execution. The compiler puts there specific routines to prepare
environment for running user code or other similar action. Each compiler solves this task by own
attitude. Therefore some generic approach for analysis of the code, which is located on the entry
point, to get address of main function is not possible.

Our approach is compiler specific. We use the information about detected compiler to select an
algorithm, which is aimed on that specific compiler. One algorithm can handle compilers with
same major and minor version. In a lot of cases, the compilers with different minor version can be
covered by the same algorithm, but it has to be tested.

We distinguish three approaches how to describe finding out main function address:

• encoded in data – the address is stored in data section. It may be the same offset from the
start of section or it may be found from a load on some specific place.

• jump – we know the address where should be a jump on the main. Then, we ensure that we
have correctly decoded instruction on that address, check that it is the instruction of the jump
and find out the target. Such a jump can be located by the offset of entry point or by the offset
from the call of some very specific system function (which is linked dynamically, so we have
its address from jump table analysis and we need to only find the call of this function).

• store to register or stack – the address may be placed as an argument for a function like
libc start main. In that case, we find the call of this function, so we are able to find the
instruction that does store of the address. According to the compiler we check for register or
stack storage.

Some compilers are harder to describe, because various settings of compiler influence the way how
the main is reached. An example is the MSVC compiler from Microsoft. An algorithm is built in
the way try and see, because it is affected by the mode (release or debug), the state of incremental
linking, and others.

4http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html

43

http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html


Delay Slots Handling

A delay slot is an instruction slot that is executed without the effects of the preceding instruction. The
most common form is a single arbitrary instruction located immediately after a branch instruction,
like in this example:

8900400: 0e24011c jal 8900470 <printf>
8900404: 24845fe8 addiu a0,a0,24552

This is, for example, used on the MIPS architecture. We need to update such code to follow the
principles of other architectures without delay slots during the decompilation process.

In the ideal case, it could mean that all we need to do is to switch two instructions—branch instruction
and the instruction in the delay slot, but this is not very correct, because it requires at least a change
of instruction address to follow ascending attitude. The design of our decompiler allows to merge
semantics of more instructions into one instruction. This technique is used for handling delay slots.
The semantics of instruction in delay slot is inserted into a previous instruction of branch and its
own body is leaved as empty. It is illustrated by this generated LLVM IR (variables with substring
delay slot were before in following instruction at address 8900404, which is now empty):

;8900400 00001110001001000000000100011100 0e 24 01 1c
;JAL {35914012}
%call_8900400 = add i26 35914012, 0 ; unsigned, Signed: -31194852
%u0_8900400 = add i32 143655940, 0 ; Assign current PC
%_d_8900400 = add i32 4, 0
%add_8900400 = add i32 %u0_8900400, %_d_8900400
;Assign to return address register @gpregs31, we filter it out
%u1_8900400 = add i32 143655940, 0 ; Assign current PC
%_h_8900400 = add i32 -268435456, 0
%and_8900400 = and i32 %u1_8900400, %_h_8900400
%conv_8900400 = zext i26 %call_8900400 to i32
%_k_8900400 = add i32 2, 0
%shl_8900400 = shl i32 %conv_8900400, %_k_8900400
%or_8900400 = or i32 %and_8900400, %shl_8900400
%call2_delay_slot_8900400 = add i16 24552, 0 ; signed, Unsigned: 24552
%u0_delay_slot_8900400 = load i32* @gpregs4
%shr_delay_slot_8900400 = sext i16 %call2_delay_slot_8900400 to i32
%add.i_delay_slot_8900400 = add i32 %u0_delay_slot_8900400, %

shr_delay_slot_8900400
store i8* getelementptr inbounds([19 x i8]* @.str_arg_1, i64 0, i64 0), i8** %

local_15
%arg5_8900400 = load i8** %local_15
%local_16_tmp_6 = call i32 (i8*,...)* @printf(i8* %arg5_8900400) nounwind
store i32 %local_16_tmp_6, i32* %local_16

;8900404 00100100100001000101111111101000 24 84 5f e8
;ADDIU {4}, {4}, {24552}
; nop()

We need to have information that an instruction is in a delay slot. That is solved in two ways—an
instruction can be directly marked that it is in a delay slot, or we could have information that the
architecture uses delay slots and the instruction is a branch instruction. Then, we know that the next
instruction after branch instruction is in a delay slot.

44



x86 FPU Analysis

The floating point unit (FPU) is on architecture x86 designed with 8 working registers (st0 -
st7), which work as a stack and state registers. There is a pointer on a register with a value from 0
to 7. Each register has size of 80 bits. Access to these registers is not direct by giving a number of
specific register, but it is implemented as an offset to pointer.

This approach requires specific handling by the decompiler. If we want to know which register
is touched, we have to know a value of the pointer. Pointer value is stored in the state register,
therefore we are able to watch all operations with the pointer value and follow it. Such a following
has an advantage that we can process each decompiled function separately.

Analysis works in three separated steps:

1. Process all instructions and find operations with registers. If the register is an FPU working
or state register, we replace the current operation with a new specific operation, that will be
updated in next step. There are 4 specific operations: load and store for working register, and
load and store for a state register.

2. In this step, the operations created in the previous step are updated. The code is processed
according to the control flow and there is set the number of register for each operation. We
start at main()with pointer value 7. The first operation should be load from the state register
and we update it by setting of value 7 in it. Following the operation of load or store into
the working register, we know the current pointer value, so we add offset and update this
operation with specific number of register. The pointer may be decreased by 1 and saved
by store operation into the state register. This process sets the concrete numbers of working
registers in all load and store operations. Therefore, we are able to generate LLVM IR with
correct register numbers. The algorithm is built in a way that we can start with an arbitrary
value from 0 to 7, and decompiled code is correct.

3. The last step is oriented on the returns from functions. If a function returns a floating point
value, it is stored in the working register that is determined by the pointer value. We can
identify this value after the second step is finished and also, we need to have complete control
flow analysis to know which jumps are returns from functions.

Separation of access to state register has one more advantage. We can easily ignore it when LLVM
IR code is generated. Handling of a pointer value is not a part of original source code, therefore
without ignoring we would get the output with added unwanted code.

Control-Flow Analysis

Control-flow analysis (CFA) is the most important analysis of the whole decompiler and many other
analysis depend on its results. It means that wrong output of this analysis will have bad impact on
the output of other analysis and, therefore, on the whole result of decompilation. The aim of CFA
is to divide the code into basic blocks, which are later used for, e.g., function detection or reaching
definitions analysis.

Control flow is affected by branch instructions. Firstly, we need to recognize branch instructions
and then mark them according to their purpose. The tricky part is that the purpose of a branch can
be changed whenever we get more knowledge, i.e., branch on some address can become a tail call

45



when we find out that this address is an address of a function. We use the following flags for branch
instructions:

• branch – every branch instruction is marked by this flag. If no other flag is used, it is an
unconditional jump inside of a function.

• conditional branch – a branch that is taken only if a condition is true. Assignment of this
mark is easy because these branches are specific. Indeed, it is enough to check if there is a
condition associated to the branch.

• unknown branch – is a flag for a branch with an unknown target address. It is used for
jumps based on a register or a memory place when we are not able to calculate the value of
the register or memory place, and therefore, we are not able to decide the target address. This
type is usually later change into another type as switch or pointer call.

• defined function call – indicates that a branch calls a function that is defined in the decoded
code. This mark is assigned dynamically because it depends on function detection.

• linked function call – indicates that a branch calls an externally defined function, so its
body will not be in an output of decompiler. This means that the function is dynamically or
statically linked (a statically linked function is removed by static code recognition, so now it
is comparable to a dynamically linked function in a question of visibility to decompiler).

• return – is a flag for branch, which returns from current function. The form of that branch
differs a lot on different architectures. On MIPS, it is a branch by the specific register, on
ARM or x86, it is a branch by a value stored on the stack.

• tail call – is used in a combination with a function or an external function call when we
detect that the compiler made an optimization and created a call of a child function, which
will return to the parent function of the current function. Shortly, a function A calls B, B calls
C by a tail call, and the return in C will return directly to A.

• pointer call – is the flag for a branch that calls a function indirectly by a pointer. That could
be, e.g., a jump by a register and we are able to find out that the address of some function is
stored in the register.

• switch – similarly as pointer call, but we find out that the target address is taken from jump
table and all target addresses are inside of the current function.

Another task of CFA is a calculation of instruction successors and predecessors. This is used
intensively by an interpreter (will be described later), which has to know which way to go. The
knowledge of basic blocks is a main part for this calculation. The instructions inside of a basic
block have only a single successor and a single predecessor. The first instruction of a basic block
can have one or more predecessors and a single successor. The last instruction of a basic block has
a single predecessor and zero, one, or more successors. Zero number of successors will be used for
the last basic block of a function (it is finished by the return).

Conditional Branches

Design of conditional branches is different between the architectures. We do not need to implement
a demanding analysis for the MIPS architecture, because the condition is part of the encoded
instruction, e.g.:

46



8900374: 1080000d beqz a0,89003ac

From this instruction we know how to build the condition. It is a compare of value in register a0
with 0, and if yes, the branch is taken. Without any additional updates we generate directly correct
LLVM IR (truncated):

;BEQ {4}, $ZERO, {13}
%u0_8900374 = load i32* @grepgs4
%_c_8900374 = add i32 0, 0
%phitmp_8900374 = icmp eq i32 %u0_8900374, %_c_8900374
br i1 %phitmp_8900374, label %pc_89003ac, label %pc_8900378

Situation is more complicated on architectures ARM and x86, because the conditional branches use
flags registers for decision if branch should be taken. Also, the names of registers for given flags are
different on these architectures, therefore we use optional part of ABI description to map registers
of given architecture to specific flags. For ARM it looks like:

section flags
OF flagv
SF flagn
ZF flagz
CF flagc

The names of flags are taken from architecture x86. It is evident from the listing of same section
for x86:

section flags
OF of
SF sf
ZF zf
CF cf

Now, we present the analysis on the example of x86 code. We have this assembly code:

8048530: 83 7d 0c 00 cmpl $0x0,0xc(%ebp)
8048534: 75 18 jne 804854e

Without any deeper analysis we are able to generate the LLVM IR (for jne) directly according to
its semantics:

%u0_subinst_70_8048534 = load i1* @zf0
%_d_subinst_70_8048534 = add i1 1, 0
%_b_8048534 = xor i1 %u0_subinst_70_8048534, %_d_subinst_70_8048534
br i1 %_b_8048534, label %pc_804854e, label %pc_8048536

If we compare it with LLVM IR for conditional branch on the MIPS architecture, we see that there
is not any comparison between values, but the branch is taken according to the result of calculation
with xor operation, where value in register zf0 (represents zero flag ZF) is included.

The analysis has to handle 2 detached tasks:

1. Reconstruct the comparison from the equation with flag registers.

2. Find an instruction where the flags are set to reveal the operands for the comparison.

Reconstruction of the comparison is based on the creation of a postfix equation and search for
such an equation in an internal map with equations for all valid comparisons. Equation from our

47



example belongs to comparison not equal. It is described in internal map as (we have there more
combinations):

1 ZF xor
ZF 1 xor

This is one of simple equations, because it is defined as ZF = 0, but e.g. great than is defined as
ZF = 0 and SF = OF, so the map for it looks like:

ZF SF OF xor or 1 xor
ZF OF SF xor or 1 xor
SF OF xor ZF or 1 xor
OF SF xor ZF or 1 xor

The equations in the map are built according to the semantics of instructions and there are used
operators xor and or.

The last step is finding the instruction that sets the flag registers. There is used control flow graph,
which is created by CFA. And finally, in this instruction we identify the variables, which are used
in calculations to set the values in flag registers. From all these information we can substitute
operations in conditional branch instruction to get much more nicer LLVM IR code (truncated):

%condFromFlags_8048534 = icmp ne i32 %u6_8048530, %u5_8048530
br i1 %condFromFlags_8048534, label %pc_804854e, label %pc_8048536

And the compared values are set in the previous instruction:

%u4_8048530 = add i8 0, 0 ; signed. Unsigned: 0
%u5_8048530 = sext i8 %u4_8048530 to i32
%u6_8048530 = load i32* %stack_var_8 ; value from stack

Function Detection

There are two main methods of function detection. Both methods were implemented in a cooperation
with Břetislav Kábele. The first one uses a top-down approach and the second one uses a bottom-up
approach. By using the top-down approach, it is possible to recognize function headers, and by
using the bottom-up analysis, we can detect their bodies. These two methods are interconnected
and they form an iterative, bidirectional function search algorithm. There is a third method, which
uses debugging information, but it is a simple method. It just creates the functions on the addresses
that are gained from debugging information without any additional validation.

Top-Down Detector

The top-down analysis starts with a single block containing the whole program. This block is
subsequently divided into smaller blocks until there remain only detected functions. After that, the
functions are divided into basic blocks. For simplicity, an assumption is used that every instruction
in the program has the same width and there are no gaps between instructions. The first assumption
can be reached by an abstraction and the second one by renumbering addresses of instructions. A
division of blocks represents a common operation for functions and basic blocks. It needs several
other operations for its work—mapping of an instruction address to a block, splitting a block into
two blocks by a given address, and transformation of a set of blocks to a different set of blocks via
the previous operation.

48



Figure 5.13: An example for the top-down analysis.

The main splitting operation works recursively. In each iteration, it picks and removes an address
from a set of addresses and splits the block containing this address. The picked address becomes the
first address of the block and the previous address becomes the last address of another block. The
set of addresses usually contains addresses of jump instructions and a creation of this set depends on
a target-architecture-specific calling convention. The definition of the split operation is architecture
independent. However, its platform-independent implementation is problematic because of filling
the set of addresses. Therefore, the detection by this approach must be robust and it must handle all
types of call conventions and call instructions. An example is presented in Figure 5.13, the set of
addresses contains 0x039C, 0x041C, and 0x03DC. The first block 0x0368–0x0468 contains
the whole program and in each iteration it is divided by an arbitrary address from the set. This
approach is also used in the PROPAN system introduced in [35].

Bottom-Up Detector

The bottom-up analysis, introduced in [62] and tested on TriCore and PowerPC ELF executables, is
an opposite of the top-down analysis. In the first step, every instruction is considered to be a block.
Then, the blocks are iteratively being joined, until basic blocks are created. Finally, basic blocks
are connected to form functions.

A basic operation of this analysis is joining two blocks into a single block. The start address of the
new block is the start address of the first block and the end address is the end address of a second
block, therefore the order of blocks is important. An example is presented in Figure 5.14.

Figure 5.14: An example for the bottom-up analysis.

49



The most difficult phase is deciding which blocks should be joined. Similarly to the top-down
analysis, we have to find all instructions which call functions. This is usually solved by heuristics
dependent on the environment, which is a part of CFA. Two sets of jumps are created. The first
set, Jd, is formed by decidable jumps. CFA has to assure that jumps that do not call functions are
not included in this set. The second set, Ju, contains undecidable jumps. An undecidable jump is
a jump with an unknown target. The ideal state is Ju being empty and the set Jd containing only
jumps that are calls of functions. Unfortunately, it is not possible to always reach such a state [35].

Data-Flow Analysis

Data-flow analysis (DFA) is based on the memory places. If we have a set of registers and flag
registers, R, and the set of all places for storing values in memory and stack, M , then the memory
place l ∈ R ∪M can contain a value of a variable. Every function uses memory places for input
and output arguments. The DFA computes these arguments from instructions that access the stack
or registers. Input arguments are stored in the analyzed function and output arguments are passed
to the called function in a point of a call so not all of them are considered. After the computation,
real arguments are recognized as the intersection of the input and received (output from parent)
arguments. The return address is a memory place containing a return value, i.e., the value of the
program counter (PC). The analysis is looking for storing the PC to a memory place and transmits
this place to a proper function. The last step is a recognition of return values. We use the same
principle as for function arguments.

This algorithm is advantageous due to no dependency on call conventions. Indeed, it can handle
custom call conventions. An exception is statically or dynamically linked code of standard libraries,
which follow call conventions of the particular architecture (described in the ABI). Therefore, the
DFA utilizes this fact for functions from such libraries.

Function Arguments Recognition

A recognition of arguments and return values is made by analysing function bodies. This analysis
was implemented in cooperation with Břetislav Kábele. If we know the used application binary
interface (ABI), this task is much easier. Indeed, it is enough to check instructions that work with
registers or the stack according to the ABI description. However, attention has to be paid for
instructions that access registers only locally. This means that inside of a function, the registers that
are defined for argument passing are used but the arguments were not passed by them. This is the
main weakness of the ABI use and, therefore, it is useful mainly for speeding up the recognition.

For the Intel x86 architecture, a detection by a prologue and epilogue is normally used. It is a special
case of ABI detection. This method recognizes only arguments; it is not able to recognize return
values. It is based on a fact that passing arguments by stack is so specific that it is easier to analyze
it, but it requires to use the frame at the beginning of the function. If the frame is not used, the
problem is partially solved by heuristics aimed on local variables. A modification detecting both
arguments and return values was published in [5] and tested on the Intel x86 architecture.

Another method compares the number of passed values. It works on a pair caller–callee. First,
memory places for both the caller and callee are detected. These places are compared, and in the
case of a match, an argument is identified. An import role is played by the order of the write and read
instructions. If there is a write before a read in the callee, it signals an occurrence of a local variable.
An enhancement of this method is realized by a propagation of arguments through a call graph.

50



Arguments are propagated from functions located in leaves to the root. An advanced modification
of this approach was introduced in [80] and implemented in the ITA binary translation framework
which translates binary code of the IA-64 architecture.

Stack

The storage of local variables is ensured by the stack. The stack analysis aims on the accesses to
memory, which belongs to stack accesses and they describe the usage of local variables. We create
a local variable for each accessed offset. But, to get the offset we need to identify the load or store
to memory, which is based on the value of stack pointer and value added to this one.

This analysis is run separately on each function, because local variables have validity inside of the
function body. At the start, we need to know which register represents the stack pointer. This
knowledge is earned from the ABI description (section stack). Subsequently, we seek for
the loads and stores to memory, where the address depends on the value in such a register. By the
current value of stack pointer and the value added to it, we resolve the offset of the local variable.
Except these operations, we monitor the operations with stack pointer register. There are possible
situations, when the value from the original stack pointer register is copied to another register, and
in this moment, there are two valid stack pointer registers.

Interpreter

An important role is played by an interpreter of intermediate code. An essential step of decompilation
is a recognition of jump targets during the static analysis. This step is not trivial for indirect jumps,
where the target of a jump is stored in a specified operand. For the sake of simplicity, in what
follows, we use the term jump even for call instructions.

Jump instructions can be found in all supported architectures:

• MIPS:

jalr t9

• ARM:

mov pc, r2

• x86:

jmp eax

If we want to find a function which is called by an indirect jump, we have to resolve the value of
the argument. The resolution is done by static interpretation of the code and tracking the value of
the argument. The interpreter uses a control-flow graph for obtaining the order of instructions for
processing because it contains all direct instruction predecessors. These predecessors are interpreted
whenever the interpreter does not have all the necessary values. The processing is terminated if
there are more predecessors and these predecessors differ in the modification of the tracked object.
At this time, this is resolved by a calculation and usage of use-def chains.

51



The interpreter is also used for the calculation of the jump target. Often, it is not given by a
direct number, but by the sequence of operations which calculate the address (usually left shift and
addition). This is easier case, because we can do that without created control flow graph.

The usage through whole decompiler raises the requirement for a good performance, therefore the
interpreter is able to cache results to save unnecessary calculations, when the same task is to be
interpreted again. Moreover, it detects a dead lock when control flow forms a loop and interpretation
could run forever in this case.

Global Variables Detection

This analysis has a goal to reveal the global variables and the global constants too. The difference is
that the constants cannot be touched with a write operation. Similarly, as for the function detection,
we are able to utilize debugging information to get exact addresses, names, and types of global
variables.

A property of global variables is that they are located in the memory, usually in some section of
executable. The constants use to be put e.g. in the section .data. We search for all write and read
operations from memory (that are not stack related). We mark the addresses with flag if the address
is written or read. Finally, we process these addresses and if the address is accessed only by the read
operation, we create a constant, otherwise a variable. The type is derived from the following usage
of read value, or how it is prepared for the write. The value from their global variable is stored in
floating point register, so we know its type:

@glob_var_80487f8 = internal global double 0x4002a3d70a3d70a4 ; value: 2.33

The type can be found out very precisely, if the value is used in some linked function and we know
the types of arguments. For example, it is straightforward to set type i8* for value, which is used
as the first argument for function printf:

@.str_arg_8048780 = internal constant [11 x i8] c”mul by \25f\0A\00”

Local Variables Detection

One type of local variables is created by the stack analysis. But, the local variables may be
allocated in the registers. Mainly, if there are used optimizations in the compilation process. In
our representation, the registers have a status like a global variable. Of course, it is valid to
generate LLVM IR code with usage of registers as global variables. Unfortunately, it decreases the
strength of optimizations in middle-end and back-end and also, it raises the running time of these
optimizations. Therefore, we have a motivation to replace usage of register with a usage of locally
declared variable. The replace operation is based on the definition-use and use-definition chains.

Currently, the analysis creates local variables instead of registers in two cases:

• function argument – it is a use of value in register. We find all associated definitions and
replace them with a local variable.

• function return value – it is a definition of value in register. So similarly, we replace all
associated uses with a local variable.

52



In both cases, we know also the type, so the local variable is declared with correct type. That
removes the need of conversions, because if function returns a pointer, we would need to convert
it to the same type as the register has (usually an integer type). It is event more important for
architectures as ARM, where one class of registers is used for both integer and floating point value
and the registers are declared as integers. In that case, the function returns the float value, and
without usage of local variable, we have to convert it to integer type and we loose the precision.

Dead Code Elimination

Some code can become useless during various analyses. For example, we can calculate the target
address of a branch and store that address. Then, code for calculation of the address is not needed
anymore—it is dead. This analysis can help to maintain clean code, which should contribute to
faster run of all analyses. Moreover, it has great impact of allocated memory. Debugging should be
also easier due to a smaller amount of code to be processed.

This analysis processes code reversely. It marks used variables and if it finds an operation which
defines a not used variable, it removes the operation. In the same way, it cycles over the instruction
until no operation is removed.

Type Analysis

The type analysis decides which type is used and provides a propagation of this type. The simple
part of this analysis covers the following base types: char, int, float, double, char *, and
other pointers. The complex part will cover the following composite types: arrays, structures, and
unions. The complex part is a work in progress and it is not described here, because it belongs
to another PhD thesis. The simple part is much easier because it can be based on types of used
registers, type information about functions, or debugging information.

The idea is more or less shown in the text about local variables. On that place, we take the type
directly from its usage and apply it to a local variable. This analysis implements the same idea, but
it updates the types for variables created in the stack analysis and global variables analysis.

LLVM IR Generator

The LLVM IR generator is the last part of the front-end. The task of this part is a generation LLVM
IR in a textual representation. It has to generate the declarations of all linked functions, global
variables, and constants. The next step is producing the IR code for the decompiled executable.
This code is divided into functions, which are recognized by the function detection. The generator
uses a basic indentation of code for better orientation, which is very needed for debugging during
the development. An example of generated LLVM IR code for a single instruction:

;804857a 1110101100010011 eb 13
;JMP {19} decode__instr_grpxx_op1_eip32_rel8__instr_jmp_rel8__op1
%u0_804857a = add i8 19, 0 ; used signed value. Unsigned value: 19
%u1_804857a = sext i8 %u0_804857a to i32
%u2_804857a = add i32 134514042, 0 ; Assign current PC
%_e_804857a = add i32 2, 0
%u3_804857a = add i32 %u2_804857a, %_e_804857a
%u4_804857a = add i32 %u3_804857a, %u1_804857a
br label %pc_804858f ;4 * %u4_804857a

53



Finally, the generator emits metadata. These metadata contains all supporting information for
the subsequent parts of the decompiler—the middle-end and back-end. It includes the number of
decompiled functions or the real names for variables and arguments (this is acquired from debugging
information):

!decomp.debug.local_var_names.main.u6_8048664 = !{!7}
!7 = metadata !{metadata !”a”}

!decomp.func_count = !{!34}
!34 = metadata !{ i32 3 }
!decomp.detected_compiler = !{!35}
!35 = metadata !{ metadata !”llvm (i686-pc-linux-gnu)” }

After this generation, there is a release of the allocated resources and the front-end exits to allow
continue of the middle-end.

5.6 Middle-end

The text of this section is based on report [70] and paper [76]. The middle-end is developed by Petr
Zemek, but its description is included for the complete view of the decompiler. We move to the
middle-end and present methods for this part, which is responsible for optimizing the intermediate
representation that is the output of the front-end. A general view on this part is shown in Figure 5.15.

Figure 5.15: A general view on the middle-end part.

The middle-end is based on the opt tool5 from the LLVM platform. This tool provides many built-
in optimizations and analyses. Next, we give a brief overview of existing optimizations available
in opt.

However, before we do this, it should be noted that the optimizations cannot be adopted as they are.
The reason is that in the decompiler, we will convert low-level representations (binary applications)
into high-level representations with focus on analysability of the resulting code. The goal of a
compiler is quite different. Indeed, a compiler goes in a converse way, starting from source code
written in some high-level language and ending with either assembly code or a binary file. To this
end, a compiler utilizes transformations to ease this process, like lowering high-level constructs or
transforming statements into several instructions. We do not want to include such optimizations
because they make the code less readable. However, in many times, such optimizations are part
of other optimizations that are useful for us. Therefore, we have to be careful which parts of
optimizations we enable. In several cases, we will need to modify the optimizations to select
precisely the modifications which are useful.

The following optimizations are (partly after modification) reused in the decompiler.

• Alias analysis. Alias analysis, also known as pointer analysis, is used to determine which
memory locations may be accessed indirectly by using pointers. For example, there may be

5http://llvm.org/docs/CommandGuide/opt.html

54

http://llvm.org/docs/CommandGuide/opt.html


a pointer to a local variable, and its value may be changed by modifying the variable itself
or by using the pointer. The opt tool supports several alias analyses, which may be used to
improve the results of many optimizations.

• Dead code elimination. By using the -adce and -dce parameters, we may eliminate so-
called dead code. This is code that is either not reachable or that does not perform any meaning-
ful computation. Furthermore, we may remove other dead constructs, like types, global vari-
ables, loops, function prototypes, orstore instructions. This removal is enabled by using the
-deadtypeelim, -globaldce, -loop-deletion, -strip-dead-prototypes,
and -dse switches of opt, respectively.

• Constant propagation. The -constprop switch provides intraprocedural constant propa-
gation and merging. For example,

add i32 1, 6

will be simplified to i32 7. Furthermore, -ipconstprop implements a simple interpro-
cedural constant propagation. The difference between an intraprocedural and interprocedural
optimization is that the former optimizes each function in separation without considering
function calls while the latter optimizes all functions as a whole and takes function calls into
account.

• Combination of redundant instructions. By using the -instcombine parameter, we
may combine several instructions to form fewer, simple instructions. For example,

%Y = add i32 %X, 1
%Z = add i32 %Y, 1

will be simplified to
%Z = add i32 %X, 2

Many sub-optimizations of this optimization require a special treatment. For example, we
do not want it to revert the re-construction of idioms that has been done in the front-end. As
this optimization, like others mentioned in this list, are primarily utilized during compilation,
high-level constructs may be lowered by using various idioms into a less-readable form,
which is what we do not want.

• Conversion of switch instructions into branches. If the target high-level language does
not support the switch statement, we may use this parameter to convert all occurrences of
the switch instruction into a series of branches.

• Reassociation of expressions. The -reassociate parameter reassociates commutative
expressions in an order that is designed to promote better results of other optimizations. For
example, 4 + (x + 5) is converted into x + (4 + 5), which can be further simplified
into x + 9.

• Emission of control-flow graphs. A control-flow graph is a representation, using notation
from graph theory, of all paths that might be traversed through a program during its execution.
By using the -dot-cfg parameter, we may print control-flow graphs of all the functions in
the module. This can be utilized during debugging.

• Emission of a call graph. A call graph is a directed graph that represents calling relationships
between functions in a program. Like with the emission of control-flow graphs, by using the
-dot-callgraph switch, we may emit the call graph of the module.

55



• Various debug prints. The opt tool provides various methods of printing information that
may be useful during the development. For example, when several optimizations are applied
at once, it allows its user to print the module after each of them has run.

Since in the decompiler we go from a low-level representation into a high-level representation,
some optimizations that compilers usually use should not be utilized. For example, consider the
optimization called scalar replacement of aggregates (see [50]), available in opt by using the
-scalarrepl parameter. This optimization breaks aggregated types, like structures or arrays,
into individual variables. For example, this optimization turns the following C code

struct ComplexNum {
double r;
double i;

};

ComplexNum a = {1.5, 2.3};

into

double var1 = 1.5;
double var2 = 2.3;

Although such an optimization is perfectly reasonable to be used by a compiler, in the decompiler,
it makes more harm than good. Indeed, we would like to keep aggregated types untouched because
such high-level types are used by programmers when they write their code.

To improve middle phase in terms of effectiveness, the LLVM IR code generated by our front-end
is annotated. We utilize the fact that LLVM IR allows metadata to be attached to instructions
in the program that can convey extra information about the code. The used annotations include
information about application binary interface (calling conventions, system calls, etc.), names for
variables, count of reconstructed funtions, and detected used compiler.

5.7 Back-end

The text of this section is based on report [70] and paper [76]. Back-end is developed mostly by
Petr Zemek, but its description is included for the complete view of the decompiler. The author of
thesis implemented the module for generating the output in LfD language. The goal of the back-end
is to convert the input LLVM IR into the target high-level language (HLL).

A general structure of this part is displayed in Figure 5.16, and we now shortly discuss it.

Recall that by taking the analyzed requirements in [79] into account, we have decided to first
convert the input LLVM IR into another IR, called BIR (Back-end Intermediate Representation).
Then, based on the target HLL that the user of the decompiler has selected, we use an appropriate
generator to generate source code in that language. The generators take BIR as their input. The
generated source code is then the output of the decompiler.

In this section, we propose a more detailed design of the back-end with respect to methods that will
be needed in there. We start by analyzing what parts of the back-end will be required. First, we need
to read the input LLVM IR into memory. Then, we have to convert it into BIR while reconstructing
high-level constructs, such as conditional statements (if/else-if/else) and loops (for and
while loops), from the low-level constructs in LLVM IR. Apart from the actual code, we also have

56



Figure 5.16: Proposed general structure of the back-end.

to obtain debugging information, which is stored as metadata in LLVM IR. After we have BIR with
attached debugging information, we will require to run optimizations over it. Even though the input
LLVM IR has already been optimized in the middle-end, by converting it into BIR, which is more
high-level than LLVM IR, more optimizations will be needed. After BIR has been optimized, we
will need to rename variables to make the code more readable. In this phase, we may utilize the
debugging information we have obtained earlier. Finally, we may use an appropriate generator to
emit source code in the selected HLL.

Based on the analysis above, we design a detailed structure of the back-end, shown in Figure 5.17.
We have included two new phases: generation of control-flow graphs (CFGs) and call graphs (CGs).
The main reason of including both of these phases is that by they may considerably improve manual
analysis of malware by analysts. Furthermore, as we will see, CGs and CFGs will be needed in
some optimizations.

Figure 5.17: Proposed detailed structure of the back-end.

In the remainder of the present chapter, we will focus on the design of methods that will be needed
in some of the eight parts of the proposed back-end’s structure.

57



This sections includes a discussion about reconstruction of high-level constructs, like conditional
statements and loops, from low-level constructs, such as jumps between basic blocks. It proposes
an analysis to differentiate between signed and unsigned integral types. Subsequently, it discusses
optimizations over BIR that are needed to get as readable resulting code as possible. During some
optimizations, we need to know the variables that are read or modified in function calls. To improve
the generated code and incorporate debugging information, renaming of variables has to be done.
As the last, there is an analysis that removes redundant brackets from the emitted code.

5.7.1 Reconstruction of High-Level Constructs

As has been said in the introduction to the present chapter, LLVM IR is a fairly low-level represen-
tation, in the sense that instead of using conditional statements, like if/else-if/else clauses,
there are only conditional jumps. However, conditional statements and loops are easier to read
than a spaghetti code full of goto statements [25]. To this end, we have to design a method of
reconstructing high-level constructs from low-level constructs.

Figure 5.18 shows several types of regions in a control-flow graph (CFG) that define high-level
constructs. Region (a), composed of blocks B1 through B3, shows a sequence of statements,
where all the blocks are executed right after each other. Region (b) displays the structure of an
if-then-else statement. In there, block B1 is executed, and then, depending on a condition,
either B2 (then) or B3 (else) are taken. After that, no matter which of the two blocks was
executed, B4 is performed.

Figure 5.18: Several types of regions defining high-level constructs.

Region (c) shows a simplified version of an if-then-else statement—an if-then statement.
The difference is that in (c), if the condition evaluates to false, then B3 is directly executed, without
going over B2. Otherwise, it works in the same way. The last region, (d), displays a while loop,
where B1 contains a condition that is evaluated before every iteration and B2 represents the loop’s
body. Once the condition is not satisfied, the loop is exited.

To structure the input LLVM IR, we propose the following method. For every function, we start
by an unstructured CFG that is obtained by a direct conversion of LLVM IR into BIR. Then, we
keep iterating over the CFG and during every iteration, we try to identify some of the high-level
constructs from Figure 5.18. If there is a group of blocks that matches a high-level construct, we

58



convert it into a representation of such a construct. For example, if we identify a while loop,
we create an instance of WhileLoopStmt, which is the representation of a while loop in BIR
(see [79]). The resulting loop will then behave as a single block, so the number of nodes in the CFG
is decreased. We keep performing iterations until there are no changes in the CFG, which means
that all high-level constructs that could be identified have been identified.

5.7.2 Analysis of Signed and Unsigned Integer Types

In LLVM IR, there is no distinction between signed and unsigned integers in terms of types—that
is, there is only a single integer type, with varying bit width. However, several programming
languages, like the C language, make this distinction. Sometimes, the behavior greatly depends on
whether a variable is of a singed or an unsigned type. Consider the following snippet of C code:

char c = -1;
if (c > 0) {

// ...
}

In this piece of code, the value of the condition c > 0 depends on whether c is a signed character
or an unsigned one6. Therefore, it is of major importance for us to correctly recognize the actual
type of c.

Even though LLVM IR does not provide any distinction of signed and unsigned integers in terms
of types, several instructions come in two variants—one signed and one unsigned. For example,
consider the division instruction, div. If sdiv is used, then both of its operands are treated as
signed numbers. On the other hand, if udiv is used, they are considered to be unsigned. Other ways
of obtaining the information about the signess of a variable are by utilizing cast and comparison
instructions.

The proposed method of finding out whether a variable is signed or unsigned consists of finding
such instructions and setting an appropriate type to the variable. For example, if an integer variable
is always used as an operand of “unsigned instructions”, we can make it an unsigned integer.
Furthermore, assignment instructions may be used to propagate the information on signess between
more variables.

5.7.3 Obtaining Used Variables in Function Calls

In many optimizations, discussed later, we will need to have sets of variables which may be read or
written in a function call. For example, consider the following piece of code:

a = 10
func()
return a

When we know that the variable a is not read or modified in the call to func(), we may optimize
the code to

func()
return 10

6The C standard [24] says that whether char is signed or unsigned is implementation-defined, so it varies from
compiler to compiler.

59



However, if a is read or modified in the call, we cannot perform this optimization because it would
change the behavior of the code.

To be more specific, for every function call, we will need to have the following sets of variables:

• Variables that may be read in the call. These are variables which sometimes may be read but
sometimes not—that is, we do not know for certain whether such variables will be read in the
call.

• Variables that may be written in the call. This is an analogy with the previous point in terms
of written-into variables.

• Variables whose value is not changed in the call. These variables may be read or modified in
the call, but their value is never changed in the call. In other words, the call may modify the
variable, but after it returns, the variable will always have the same value is it had before the
call.

We implemented the following method of computing such sets of variables. First, for every function
and function call in the module, we initialize all the sets of variables to the empty set. Then, we
keep iterating over function bodies until none of the sets changes, and during every iteration, we do
the following. We make a pass through all function bodies, and during a pass, we update the sets
of variables for both the function and the calls that are inside the body. As there is a finite number
of variables in the module and during every iteration, we never remove anything from a set, this
algorithm always halts. After that, we have successfully computed all the needed sets of variables.

We speedup the computation by the following method. We begin by constructing a call graph (CG)
of the decompiled program. In this CG, we see what functions are called in which functions, i.e.
we see function dependencies. Then, we compute all strongly connected components (SCCs) in the
graph. After that, we create an empty list named order. In this list, we will store functions in an
order that will speedup the computation of used variables in function calls. We initialize the list by
inserting all functions that do not call any other functions. The order in which such functions are
inserted does not matter. Now, repeat (1) and (2), given next, until we have included all functions
in the list.

(1) If there is a function that calls just the functions that are already in order, insert such a
function at the end of order.

(2) Insert at the end of order all functions from an SCC that contains the greatest number of
functions that are in order. If there is a match between several SCCs, insert the functions
from the smallest one.

5.7.4 Optimizations in Back-end

Even though the main place for optimizing the code is the middle-end, there will still be a need for
doing optimizations also in the back-end. As you will see shortly, the reason is that after converting
LLVM IR to BIR and reconstructing high-level constructs, additional passes should be performed
to improve code readability. In this section, we discuss three such optimizations.

60



Simplification of Arithmetical Expressions

After a direct conversion of LLVM IR into BIR and manipulation of BIR during other passes in the
back-end, there may be a need for simplifying arithmetical expressions. For example, the following
statement

a = -1 * (rand() + -1) * 2

may be simplified into

a = -2 * (rand() - 1)

The new form is clearly more readable than the original one.

The following design of a method simplifies arithmetical expressions. We keep traversing the BIR
representation of the decompiled program and try to identify constructions that can be simplified.
As we have seen above, such constructions may include conversion of n + -1 into n - 1. If the
current module has been changed during an iteration, we perform another iteration, until the module
is not changed. In this way, we simplify even expressions that need more than a single pass over
BIR to be properly optimized.

Copy Propagation

The second optimization is used to reduce the number of assignments in the module. As LLVM IR
resembles assembly languages, there are a lot of load and stores from memory. These operations,
when converted into BIR, results into assignments into temporary variables. To make the code more
readable, we should eliminate such auxiliary assignments that just copy expressions by propagating
the expression through the code. For example, the following code

a = func()
var5 = a
return var5;

may be simplified into

return func()

First, we compute so-called def-use and use-def chains by using the standard data-flow algorithms
(see [4]). They provide information on definitions and uses of variables so at every program point,
we know where the variables used in the statement were lastly modified. We then use the information
from both of these chains during the actual optimization, described next.

The copy propagation optimization will work as follows. First, we compute the above-mentioned
chains. Then, we keep iterating over BIR and at every assignment of the form a = expr, we
check how many next uses the variable a on the left-hand side of the assignment has. This can be
done by using the computed chains. After that, if the replacement of a for expr in all of the uses is
valid (i.e. we do not alter the behavior of the code), we can replace it. We keep traversing the BIR
until the code does not change, which means that no further copy propagations can be made.

As a special case, if we find that a variable has no uses, we may eliminate it. Indeed, if a variable is
never used, it has no sense of keeping it.

61



Conversion of Global Variables To Local Variables

The last optimization we will discuss deals with conversion of global variables into local variables.
The rationale behind this optimization is that when using global registers, like many assemblers do,
including LLVM, we may end up with a large number of global variables, even if some of them are
used only locally. Moreover, global variables make the code harder to optimize and less readable.
To this end, we propose the following method of converting global variables into local variables.

We begin by an example. The following code
a = 10
b = 9
c = 8

def func1():
printf(”%d\n”, c)

def func2():
global b
b = 5
printf(”%d\n”, c)

where a, b, and c are global variables, may be simplified into
c = 8

def func1():
printf(”%d\n”, c)

def func2():
printf(”%d\n”, c)

provided that certain conditions are met. The reason for converting b into a local variable is that the
only function where it is used is func2. Furthermore, b in there is used only to store the value 5.
The global variable a has been removed completely because it is never used.

The conversion of global to local variables will work as follows. We keep iterating over BIR and
during every iteration, we compute the sets of variables read and modified in every function (see
Section 5.7.3). Then, based on the computed results, we check the following cases whether some
of them applies. If so, them we perform an optimization.

(1) If a global variable is used only in a single function and it is not used in recursion, we may
convert it into a local variable.

(2) If a global variable is used in a function just to store temporary results, we may also turn it
into a local variable.

(3) If there is a global variable that is not used in any function, we may remove it.

We keep iterating over BIR until the code does not change.

5.7.5 Renaming of Variables

To make the resulting source code as readable as possible, we should give variables as meaningful
names as we can. Of course, since the decompiler takes as its input a binary application where

62



there may be no variable names (a stripped binary file with no debugging information), this is
not always possible. However, we have designed ways of renaming variables which improve the
readability of the generated code. These ways are described next. However, before we delve into
details, let us note that the usual way of variables naming is to use either some common prefix
and an increasing sequence of numbers (var1, var2, ...) or the address of the definition of the
variable (var ffffc408, var ffffc412, ...). A program containing such names of variables
is not very readable because two different variables with similar numbers may be mistakenly
interchanged. Furthermore, such variable names do not say anything about their purpose.

In the decompiler, we will consider the following cases when variables may be renamed.

• When the input binary was compiled with debugging information and we have successfully
extracted this information in the front-end, we may use it. Then, we obtain a one-to-one
correspondence between the names of variables that were in the original source code and the
names of the variables in the code produced by the decompiler. This way, instead of

def func1(var1, var2):
var3 = var1 + var2
return var3

we may generate

def add(a, b):
sum = a + b
return sum

Of course, this is just a trivial example, but in real-world code, knowing the original variable
names can make a huge difference.

• When there is no debugging information available or we simply have to name auxiliary
variables generated by the compiler that produced the original binary file, we will produce
more readable variable names: names of fruits. For example, instead of

var1 = rand()
var2 = var1 + rand()
if var1 < var2:

return var1 - var2

we will generate

apple = rand()
banana = apple + rand()
if apple < banana:

return apple - banana

The larger the code is, the more readable it becomes after we use such names rather than
var1, var2, etc.

• Consider for loops. In this type of a loop, we iterate by using a so-called induction variable
which is modified after the end of every iteration. Usual names of such variables are i, j, k,
etc. By utilizing this programming habit, we may assign such names to induction variables
of the reconstructed loops. For example, instead of

for var1 in range(1, 11):
for var2 in range(1, 11):

var3[var1][var2] = var1 + var2

63



we will generate

for i in range(1, 11):
for j in range(1, 11):

banana[i][j] = i + j

• When there is a variable which always stores the result that is returned from a function, we
will name it result. For example, instead of

var10 = rand()
if var10 < 255:

var10 = 255
return var10

we will generate

result = rand()
if result < 255:

result = 255
return result

• Finally, if the entry function of the decompiled binary takes two parameters, then according
to the tradition of the C language, we name such a function main and its two parameters
argc and argv. That is, instead of

def entry_func(var1, var2):
# ...

where entry func has been detected as the entry function of the application, we will
generate

def main(argc, argv):
# ...

5.7.6 Elimination of Redundant Brackets

As BIR is of the form of an abstract syntax tree, there is no explicit notion of brackets around
expressions. Instead, brackets are emitted during the generation of the target HLL. This brings us
a need to distinguish situations when brackets are necessary to be emitted and when we can omit
them. For example, the following code

a = ((((b) + (c)) + (d)) + (e))

can be simplified into

a = b + c + d + e

by utilizing the priority and associativity of operators in our HLL. Of course, since our goal is to
make the resulting code as readable as possible, we appreciate if there are only brackets that improve
readability. To this end, we use the following method. For every target HLL, a table prescribing
the priority, associativity, and commutativity of operators have to be given. Then, before emitting
brackets in an expression, we check whether brackets are needed in the current situation.

To improve the readability even more, the table has to be able to force brackets in some places. For
example, consider the following piece of code in our HLL, which resembles the Python programming
language:

64



if a & b | c:
# ...

A question that an analyst might ask is: “Is a & b going to be evaluated before b | c or vice
versa?” The problem is that some operators are less commonly used so it may be not clear what is
their precedence. By forcing the decompiler to emit brackets around a & b, the order of evaluation
becomes clear:

if (a & b) | c:
# ...

5.8 Malware Decompilation Experience

Decompiler is currently available as an online service and it is free to use athttp://decompiler.
fit.vutbr.cz/. We get a lot of feedback from whole world. Users decompiled a large number
of various binaries from standard executables for Windows to specialities as firmware for MIPS
routers. The result was a plenty of suggestions to improve, but fortunately, also compliments for
our tool.

Online service has some limitations as maximal running time of decompilation. The fully functional
tool is used in company AVG Technologies. It helps to better uncover the behavior of malware. This
section introduces two analysis of malware programs, which are also published in [71] and [69].

5.8.1 Psyb0t – MIPS Malware

This section is based on paper [71]. The paper brought the bigger interest in our decompiler from
security academical groups and it helped to form hackathon group on the given conference.

We present a step-by-step case study of malware decompilation by using the previously described
retargetable decompiler. The target of our examination is a computer worm called psyb0t [7], which
attacks network infrastructure devices (e.g. modems and routers) running MIPS processors with
Linux-based operating systems. The following text describes all the major decompilation phases
with illustrations.

Initial Recognition Using the Third-Party Tools

Our instance of psybot has MD5 hash 58f00c14942cae1e9f24b03d55cd295d and the size
of the examined binary file is 29,264 byte. This is the latest known version of this malware7. Tt
marks itself as “PSYB0T v2.9L”. The previous mentioned articles about psyb0t analysis were
focused mainly on the older version 2.5L [7].

The very first step of an initial analysis is detection of the file format and the target platform. The
file starts with an identifier “’0x7f’ELF”’. In other words, it is the ELF file format [63] that is
used on UNIX-based systems. Therefore, we can obtain additional information by using standard
Linux tools like readelf or objdump. Relevant parts of the former one’s output are shown in
Figure 5.19.

7It should be noted that psyb0t has successors, like the Chuck Norris botnet [66].

65

http://decompiler.fit.vutbr.cz/
http://decompiler.fit.vutbr.cz/


ELF Header:
Magic: 7f454c46010101000000000000000000
Class: ELF32
Data: 2’s compl.,little endian
OS/ABI: UNIX - System V
Type: EXEC (Executable file)
Machine: MIPS R3000
Entry point address: 0x106828
Start of program headers: 52 (bytes into file)
Start of section headers: 0 (bytes into file)
Number of program headers: 2
Number of section headers: 0
Section header string table index: 0

Figure 5.19: Information about the (packed) executable file gathered by using the readelf utility.

According to the output, it is an executable file for the 32-bit MIPS architecture and it uses the little-
endian encoding (this architecture is explicitly called MIPSel). Its entry point address (i.e. address
of the first instruction executed during the application run-time) is atypical because it is usually
placed somewhere nearby 0x08000000; the section and symbol tables are empty, which is also
unusual but correct. The information about the originally used compiler is usually stored in the
optional .comment section, but this file lacks such a section. Moreover, the file content is also
atypical because there are no visible strings, such as symbol names, section names, or strings for
user interaction during run-time.

Based on these clues, we can guess that the file is packed and maybe obfuscated by some packer or
protector. In comparison with Windows, the number of Linux packers is very limited (e.g. gzexe,
Elfcrypt, UPX, and HASP). A detection of the used packer is difficult because the existing packer
detectors (e.g. PEiD, ProtectionID, Exeinfo PE) do not support the ELF format and its packers,
see [40] for details. In the classical approach, presented in [7, 20, 32], it is necessary to distinguish
the used packer manually, unpack it, and analyse it by using a MIPS disassembler. Luckily, our
retargetable decompiler can handle such situation automatically. A detailed description of the
decompilation process follows.

Preprocessing Phase

The analyses done in the previous subsection are usually used when inspecting malware manually.
We do not need any of the above-mentioned third-party software to perform such analyses. Indeed,
our decompiler performs them automatically by itself so no manual intervention is needed. In a
greater detail, the first part of the decompilation process begins at our file-information-gathering
application called fileinfo. It obtains the same information as the readelf utility does in
Figure 5.19 but independently on the used target format (i.e. it supports ELF, Windows PE and other
common formats). Another its advantage is a built-in packer/compiler detector.

The detection algorithm is based on the pattern matching of the entry-point instructions with an inter-
nal signature database. The sequence of the entry-point instructions for the psyb0t malware starts at
file offset 0x6828 and it contains sequence “e00011040000f7272028a4000000e6ac0080
0d3c”; its translation to the MIPS machine code is illustrated in Figure 5.20.

66



Address Hex dump MIPS instruction
------------------------------------------
0x00006828 041100e0 bal 0x00006bac
0x0000682c 27f70000 addiu s7,ra,0
0x00006830 00a42820 add a1,a1,a0
0x00006834 ace60000 sw a2,0(a3)
0x00006838 3c0d8000 lui t5,0x8000

Figure 5.20: Entry-point instructions of the UPX packed code (little-endian encoding).

This sequence is matched with the internal signature for the MIPSel/ELF UPX packer8 of the
shortened little-endian form “----11040000f7272028a4000000e6ac”. Symbol ’-’ denotes
a variable part—in this case an immediate value of the conditional branch instruction bal.

Therefore, we figured out that the UPX packer for the MIPS architecture was used for application
packing. The used version of UPX was 3.03 and this was the up-to-date version when the malware
started spreading. In normal circumstances, we are able to unpack such a file by using our internal
plugin-based unpacker, see [40] for details. The UPX unpacking plugin is trivial—it simply invokes
the UPX packer with argument -d. This argument switches UPX’s behavior to unpacking mode.
However, this input file was manually modified to disable this form of unpacking.

The psyb0t’s author wiped out (i.e. replaced by zero bytes) the four parts used by UPX to detect
packed binaries. The first (file offset 0x0078), second (0x6803, near the entry point), and fourth
(0x722c) part consists of the string “UPX!” and are mandatory for detection by UPX. The third
part laying at file offset (0x6848) is not necessary for the detection and it originally contained the
following string:

$Info: This file is packed with the UPX executable
packer http://upx.sf.net $ $Id: UPX 3.03 Copyright
(C) 1996-2008 the UPX Team. All Rights Reserved. $

The unpacking of such a file can be done in two ways. (1) Execute the application in a MIPS
emulator and break execution after the UPX decompression routine is done and the original entry
point is hit. Afterwards, dump the memory content to disk and reconstruct the ELF file by using
this memory dump. Every step of this process can be done automatically without a user interaction.
Retargetability can be preserved via the concept of a retargetable simulation, presented in [54].
(2) Manually patch the three missing “UPX!” strings and use UPX for unpacking.

The first method is marked as our future research but unavailable yet. Therefore, we have to
manually modify the file by using the second method. This is the only manual interaction needed
during the complete decompilation process of this file. The modified file can be easily unpacked via
the upx -d command. The unpacked file size is 127,892 bytes that gives us a 22.88% compression
ratio. The unpacked file contains 20 sections, 133 symbols, and several hundred strings.

The last part of the preprocessing phase is a conversion of the unpacked ELF file into an internal
CCOFF based format. This is done by using our another plugin-based application as illustrated in
Figure 5.4.

8http://upx.sourceforge.net/

67

http://upx.sourceforge.net/


The front-End Phase

Next, the unpacked psyb0t application in the CCOFF format is processed in the front-end phase.
At first the instruction decoder has to be automatically generated based on the MIPS architecture
model in the ISAC language. The model is relatively simple—about 4000 lines in this ADL. After
that, the instruction decoder translates the MIPS machine-code instructions stored in CCOFF into
LLVM IR platform-independent representation that is further processed by the following analyses.

In the front-end phase, various analyses are applied, but in what follows, we focus only on those
related to our subject. This means that we exclude, for example, a description of analysis that reads
DWARF debugging information from the executable because psyb0t does not contain any DWARF
data.

Firstly, we process the whole executable to reveal data as strings. This is important for later usage
of these strings in function calls. It is implemented by analysing data sections. The analysis tries
to find a sequence of printable characters terminated by the zero byte. Such a sequence is marked
as a string and its address is stored. If we detect an access to this address, we know that it uses a
specific string and we have the value of that string.

The executable contains also symbols for functions. As we will see later, it does not have the
symbols for all functions, but we can use the available symbols to improve the decompilation
results. This analysis is simple and just stores the pairs with the address and name of each symbol,
see Table 5.2 for illustration. Since there is a symbol for the main function, we can skip the entry
point analysis. If the executable was without that symbol (i.e. stripped), this analysis would try
to find the address of main by using its internal compiler-specific database or by using a heuristic
detection.

Function address Function name

0x404c20 main

0x402da0 cgen

0x40450c ddos

0x406f44 IrcPrivmsg

0x40eb14 rsgen

0x4156ac rscan

0x4162cc backup

0x41646c spoof

0x416b98 kill all

Table 5.2: Shortened list of functions extracted from symbols.

The analysis ensures that it checks the latency of the current instruction, and if it is the instruction
followed by the delay slot, it will take the following instruction and incorporate its semantics into the
current instruction. Finally, it inserts a nop (i.e. instruction that does nothing) instruction instead of
an instruction that was in the delay slot. After this analysis, we can work with code without taking
delay slots into account.

The next analysis is aimed on creating a control-flow graph (CFG). It examines all branch instruc-
tions, tries to get the target addresses and resolve the type of branches. The goal is to recognize

68



Address MIPS instruction
-------------------------------------
0x410534: lui gp, 0xfc0
0x410538: addiu gp, gp, -30884
0x41053c: addu gp, gp, t9
...
0x4105c0: lw t9, -32268(gp)
0x4105c4: nop
0x4105c8: jalr t9

Figure 5.21: Example of code interpretation.

conditional and unconditional branches, function calls, and returns from a function. A challenge
hidden in this executable file is the usage of position independent code (PIC). This means that
functions are called by indirect branches.

On the MIPS platform, the indirect branch is of the form jalr t9. Therefore, if we want to know
the called function, we have to track the value that is stored in register t9. This is ensured by our
internal static-code interpreter, which uses a partially created CFG. It goes backwards in the CFG
and searches for a store of a value in the tracked register, see [73] for details. We illustrate how the
interpreter works on the piece of psyb0t code listed in Figure 5.21.

On address0x4105c8, there is a call of a function whose address is stored in registert9. Therefore,
we call the interpreter to track this register and find its value. The interpreter goes backwards in the
CFG and identifies the write of a value into t9 on address 0x4105c0. The written value is read
from memory on offset -32268 from value of the gp register. Next, the interpreter has to get the
value of gp. This register is written on the beginning of the function. Therefore, it is not a problem
to find it by traversing the CFG. The value is given by the following expression: 0x0fc0 << 16
- 30884 + t9. The current function is called by register t9, so the interpreter uses the address
of the current function in this expression. It has the value of gp. It subtracts 32268 from this value
and the result is address of memory, where the final value is stored.

After control-flow analysis, we can detect functions. As we mentioned before, the executable under
decompilation has symbols, but this analysis is run nevertheless because the set of symbols can
be incomplete. This is also that case. The number of available function symbols is 34, but the
overall number of detected functions is 91. This can be caused by linked code from libraries without
symbols or by special compiler routines. The detection of functions is realized by our algorithms
that were presented in [73].

Psyb0t often uses the snprintf function, which is used to build commands for an IRC server.
This function has a variable number of arguments and it would be very eligible for us to know the
accurate number of arguments and their types. This is solved by a variadic-function analysis. It
takes a look on a call of such a function, and if we can get the formatting string, which is the only
fixed argument, we can continue. The following arguments depend on that string and by processing
the string, we find out the missing arguments. For example, given string

’’
%s %s :%s‘‘, we

know that there are three more char* arguments.

At the end, we generate LLVM IR code, which is processed by the middle-end, described next.

69



The middle-End Phase

In this stage, we have a very low-level LLVM IR of the input binary. Each basic block represents a
single assembly instruction, and there may be many redundant instructions (recall that each assembly
instruction is decompiled in isolation). The key role of the middle-end part of our decompiler is to
optimize the input LLVM IR code and prepare it for the back-end.

For example, consider the block in Figure 5.22, which was generated by the front-end for the
instruction jalr t9 on address 0x41a088.

%u0_41a088 = add i32 4300940, 0
%_c_41a088 = add i32 4, 0
%u1_41a088 = add i32 %u0_41a088, %_c_41a088
%_e_41a088 = add i32 31, 0
%u2_41a088 = load i32* @gpregs25
%u0_ds_41a088 = add i16 119, 0
%u1_ds_41a088 = sext i16 %u0_ds_41a088 to i32
store i32 %u1_ds_41a088, i32* @gpregs24
%arg1049_41a088 = load i32* @gpregs4
%r_41a088 = call i32 @usleep(i32 %arg1049_41a088)
store i32 %r_41a088, i32* @gpregs2

Figure 5.22: A block generated by the front-end for the instruction jalr t9 on ad-
dress 0x41a088.

As described in paragraph 5.8.1, jalr is an indirect branch to an address stored in a register, and
a store of the return address in another register. By using our interpreter and the import table from
the executable file, we were able to detect that the branch is actually a call to the function usleep
from <unistd.h>. However, due to generality, a lot of boilerplate code has to be emitted along
with the call, which is optimized in the middle-end. The block from Figure 5.22 after optimizations
can be seen in Figure 5.23.

The back-End Phase

The back-end part takes as input optimized LLVM IR, and produces code in the specified target
language (C, Python’ , or LfD). More specifically, the following actions are performed:

1. The input LLVM IR is converted into BIR, which is the internal representation used throughout
the back-end. During this conversion, high-level constructs, such as conditional statements
or loops, are identified and reconstructed.

2. The obtained BIR is optimized by various optimizations, like conversion of global variables to
local variables (when possible), constant and copy propagation, conversion of while loops
to for loops, simplification of arithmetic expressions, restructuring of compound statements,
etc.

3. Variables are given more readable names. When debugging information is available, we use
the names from there. Otherwise, we try to rename the variables to have as readable names
as possible. For example, instead of var1, var2, . . . , we name variables by fruit names.

4. If requested, the call graph or control-flow graphs are constructed and emitted.

70



%res0_41a088 = tail call i32 @usleep(i32 %arg1)
store i32 %res0_41a088, i32* @gpregs2, align 4

Figure 5.23: The block from Figure 5.22 after optimizations.

5. The target code in the specified language is emitted by converting BIR into a text representation
in the requested language.

As a special feature, not present in other decompilers, we are able to reconstruct some symbolic
names of constants passed to various functions from the standard libraries, such as socket. Even
though the mapping of constants into their symbolic names is often implementation-defined, by
using the information provided by the preprocessing phase, we were able to detect the version of the
linked standard library. Therefore, we know the implementation-defined mapping of constants to
their symbolic names, and we are able to utilize it to improve the readability of the generated code.

For example, consider the following call to socket, done by psyb0t:

var12 = socket(2, 3, 255);

The first parameter specifies the address family to be used with the socket. In the statically linked
library, 2 corresponds to PF INET, which is the IP protocol family. The second parameter specifies
desired type of communication. For 3, this is SOCK RAW, which indicates that the communication
is directly to the network protocols. The last parameter is the particular protocol to be used with the
socket, which, in our case, maps to IPPROTO RAW (raw IP packets). Hence, we just generate

var12 = socket(PF_INET, SOCK_RAW, IPPROTO_RAW);

Moreover, we utilize the information that we are calling a function from the standard library by
assigning a more meaningful name to the variable storing the result. Since socket returns socket
file descriptor (upon successful completion), a more appropriate name is sock id. Therefore, in
the very end, we generate the following piece of code:

sock_id = socket(PF_INET, SOCK_RAW, IPPROTO_RAW);

Analysis of the Obtained Results

Psyb0t is an IRC bot, which reads the topic of the IRC channel after connecting to the server and gets
commands from this topic. It scans devices in the network and tries to log in by default usernames
and passwords or uses an exploit when the login fails. Once a shell of the vulnerable device is
acquired, psyb0t downloads itself from a remote server by using the wget application into the
victim’s location /var/tmp/udhcpc.env. This new instance of psyb0t is executed afterwards.
It supports classical malware actions like DDoS attacks, brute-force attacks on router passwords,
download of files, visitation of web pages, or execution of shell commands [32].

There are two known versions of psyb0t. We have decompiled the newer one, which identifies
itself as [PRIVATE] PSYB0T v2.9L. This version is better secured against unpacking by UPX
and it affects more network devices, mainly models by Linksys, Netgear, and other routers running
DD-WRT or OpenWrt firmware. The application is written in the C language. This can be spotted
by the names of called functions and also by the usage of position independent code, which can be
simply turned on by flag fPIC of the GNU gcc compiler.

71



In this section, we introduce a brief description of psyb0t’s behavior by using snippets of code from
the decompiler in order to show how the decompiler is useful for faster analysis of malware.

In the previous section, we have presented the whole decompilation process in a step-by-step way,
and we have shown the code from our own decompiler. Now, we can analyse the obtained HLL
source code. We describe the behavior of psyb0t immediately after its execution, i.e. the code
starting at the entry-point—the main function.

Firstly, we can take a look at the call graph. It is good for a fast detection of relations between
functions. A part of that graph is shown in Figure 5.25. A complete call graph is omitted due to
space constraints. The most important parts of the main function are listed in Figure 5.24. The
comments were added manually. Selected parts are listed separately with describing notes.

int main(int argc, char **argv) {
//...
uint32_t *file = fopen(”/var/tmp/udhcpd.mtx”,”w”);
//...
uint32_t fd = fileno((uint32_t *)file);
//...
uint32_t err_code = flock(fd, LOCK_EX | LOCK_NB);
//...
RSeed();
//...
Daemonize();
//...
system(”/etc/firewall_start”);
system(”iptables -A INPUT -p tcp --dport 23 -j DROP”);
system(”rm -f /var/tmp/udhcpc.env”);
//...
backup(); // Backup file /var/tmp/hosts
//...
function_404b1c(); // Prepare IRC nickname
//...
function_4056cc(); // Wait for commands
//...
fclose(fd); // Remove mutex file and quit
//...

}

Figure 5.24: Simplified code of the main function by using the Lissom project retargetable decom-
piler.

The first operation in main is opening of a file named udhcpd.mtx in a temporary folder. It is
opened in the writing mode. The author of psyb0t followed a good practice and checked the result
of the operation.

uint32_t *file = fopen(”/var/tmp/udhcpd.mtx”, ”w”);
var3 = (uint32_t)file;
if (file == NULL) {

return 1;
}

Subsequently, there is a obtained file descriptor, which is checked for validity. If it is valid, the
application tries to lock the file. After this operation, we can better understand the suffix .mtx in
the name of the file, because it serves as a mutex. The lock is exclusive and it is does not block

72



system

sleep

flock

forkfread gettimeofdayfopen srandfclosestrcmp exit

filenofunction_404810

xDec

function_404b1c

main

backup Daemonize RSeed getipip2c

fetch

snprintf strncmp strncpy strlenparse

Figure 5.25: A part of the call graph for main. Nodes in black are user-defined functions while
grey nodes denote external functions.

when the locking is done. The mutex is acquired only if there is no other running instance of psyb0t.
Otherwise, the application is terminated.

uint32_t fd = fileno(file);
if (fd == -1) {

var3 = 1;
return 1;

}
var9 = 6;
uint32_t err_code = flock(fd, LOCK_EX | LOCK_NB);

In all the three previous calls of linked functions, the back-end applies renaming of variables storing
the returned values. For fopen, it uses the common name file. For fileno, it uses fd as a
file descriptor, and finally, for flock, it uses err code. We can take a closer look on the call of
flock. The original second argument is 6, but the back-end is able to find out the names of the
symbolic constants that form this value.

If the lock is acquired, the application calls internal function RSeed, which initializes the pseudo-
random generator of numbers by calling srand. An important call is that of function Daemonize,
where the application is forked and the parent process is terminated. The child process continues
in its execution on background with starting and setting a firewall, and removing itself from the file
system. The second call of system updates firewall rules to drop all the packets on tcp port 23
(i.e. disable inbound telnet communication). The third command removes the file that psyb0t uses
for spreading, probably to cover its tracks. After removal, psyb0t is located only in memory and
a reset of the infected device will disinfect it. The executed shell commands are of the following
form:

/etc/firewall_start
iptables -A INPUT -p tcp --dport 23 -j DROP
rm -f /var/tmp/udhcpc.env

Afterwards, the memory-located psyb0t backups the file /var/tmp/hosts inside the backup
function and reports itself to the C&C IRC channel naming itself as a regular expression9 (in-
side function 404b1c). The last nine symbols are generated randomly as an index to string

’’
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ‘‘ using the previously initialised pseudo-

random generator.

The data section analysis provides us an array with strings that are the names of commands which
are accepted by psyb0t. These commands are received from the topic of the connected IRC channel.

9\[NIP\]-[A-Z0-9]{9}

73



const char *STRINGS[] = {
”mode”, ”login”, ”logout”, ”_exit_”, ”sh”,
”tlist”, ”kill”, ”killall”, ”silent”, ”getip”,
”visit”, ”scan”, ”rscan”, ”sleep”, ”sel”, ”esel”,
”rejoin”, ”upgrade”, ”wupgrade”, ”ver”, ”wget”,
”lscan”, ”rlscan”, ”getinfo”, ”rsgen”, ”vsel”,
”split”, ”gsel”, ”sflood”, ”uflood”, ”iflood”,
”pscan”, ”fscan”, ”r00t”, ”sql”, ”pma”, ”socks”,
”rsloop”, ”report”, ”uptime”, ”usel”, ”spoof”,
”viri”, ”smb”, ”cgen”

};

Some of these strings are the same as names of the reconstructed functions and we can presume that
such functions implement these commands.

One of the commands is fetch and we have a function with the same name. If we take a look at
it, we can see the following code:

snprintf((uint8_t *)&var_9, 5120,
”GET /servlet/view/banner/javascript/zone?zid=81&
pid=0&random=%d&millis=%lu HTTP/1.1\r\nHost: %s\r
\n%s%sReferer: %s\r\n\r\n”,
var_18, var_20, (uint8_t *)&var_12, (uint8_t *)
&var_13, (uint8_t *)&var_16, (uint8_t *)&var_17);

len = strlen((uint8_t *)&var_9);
dpage(-23184, (uint16_t)var_9, 0, 1);

There is a preparation of an HTTP command that is used in the internal function dpage that uses
standard functions socket, connect, send, and recv for network communication. Psyb0t
uses a timeout by registering a function for handling SIGALRM. Before connect, there is a call
alarm(3) to wait at most three seconds for connection, and before recv, there is alarm(12).

During its run-time, psyb0t loops in function 4056cc awaiting for other commands obtained
either from an IRC channel topic or through a private massage. Commands scan, rscan, lscan,
rlscan, pscan, and fscan tell psyb0t to scan for other vulnerable devices and try to spread
itself to them (as described in the beginning of this section).

Finally, in Table 5.3, we provide some statistics about the output from the decompiler. The result in
the Python’ language is shorter because it does not use types. The size of both Python’ and C files
is quite large. In the future, we plan to improve our optimization algorithms in the back-end part to
remove even more code and produce more readable output.

Feature Value

Internal functions count 91

External functions count 57

Function calls 1278

C output size 553 kB

Python’ output size 453 kB

LfD output size 15 kB

Table 5.3: Statistics about the decompiler output for psyb0t.

74



We have given a step-by-step case study of decompiling the psyb0t worm, targeting modems and
routers with MIPS processors, by using the Lissom project’s retargetable decompiler. We can
conclude that by using our decompiler, we are able to speedup the analysis of malware because we
deal with high-level code (cf. [20, 32], where only the output from a disassembler is used, which
requires many additional analyses to be done).

5.8.2 Aidra and Darlloz – Linux Worms

This section is based on article [69] on the AVG blog. At the end of 2013, a new worm that
targets small Internet-enabled devices was discovered10. The worm, called Linux.Darlloz11, is
capable of infecting a wide range of Internet-of-things devices, like routers, security cameras, and
entertainment systems that are increasingly equipped with an Internet connection.

The Linux.Darlloz worm is interesting also from another point of view. When it is executed on an
infected device, it first checks if another malicious worm, Linux.Aidra12, runs on that device, and if
so, it removes the competing worm from the device. This kind of war between malicious-software
writers is not something that we see very often, and it is assumed that in the future, we may see
more of these fights over the control of Internet-of-things devices.

Overview of the Samples and Initial Analysis

We have analyzed over twenty samples of the Linux.Darlloz and Linux.Aidra worms. All the samples
were in the Linux ELF file format, but they were built for different architectures. More specifically,
we had samples of Linux.Darlloz for the MIPS, ARM, PowerPC, and Intel x86 architectures, and
samples of Linux.Aidra for MIPS, ARM, and PowerPC. We have not seen a version of this worm
for Intel x86. Moreover, we had samples of Linux.Aidra for the SuperH architecture, but we did
not analyze them because the decompiler does not support this architecture at the moment.

Some of the Linux.Aidra samples were compiled with debugging information, which the decompiler
utilized to give functions and variables more meaningful names and types. Moreover, almost none
of the samples were stripped, so we had available also symbols for functions. On the other hand, all
the samples of Linux.Darlloz were stripped so no symbols or debugging information were available.
We have only detected that the Linux.Darlloz binaries were built by using GCC 4.1.2. Finally, none
of the binaries were packed by a packer or protector.

Analysis of Linux.Aidra

This worm is unique due to the fact that its source code is freely available. From the words of its
author, it is a mass-tool commanded by IRC that allows scanning and exploiting routers to make a
botnet. In addition to this, one can perform attacks with TCP flood.

Due to the openness of its source code, a highly detailed analysis is possible to be done. However,
during our analysis, we have found that the binary samples we had available differ with some respect

10http://www.symantec.com/connect/blogs/linux-worm-targeting-hidden-devices
11http://www.symantec.com/security_response/writeup.jsp?docid=

2013-112710-1612-99
12http://www.symantec.com/security_response/writeup.jsp?docid=

2013-121118-5758-99

75

http://www.symantec.com/connect/blogs/linux-worm-targeting-hidden-devices
http://www.symantec.com/security_response/writeup.jsp?docid=2013-112710-1612-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-112710-1612-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-121118-5758-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-121118-5758-99


to the provided source code, even though the samples report the same version as the source files:
lightaidra 2012. This means that the worm was modified before it was put out in the wilderness. In
what follows, we explicitly point out these differences.

When the worm is started, it performs the following actions:

• calls user function deamonize(), which calls Linux function fork(). As the function
name suggests, this makes the process running as a daemon.

• writes its process identifier (PID) into file /var/run/.lightpid. This can be seen from
the following piece of code that our decompiler generated:
fd = fopen(”/var/run/.lightpid”, ”a+”);
if (fd != NULL) {

v3 = getpid();
fprintf(fd, ”\%d”, v3);
v4 = fclose(fd);

}

As we will see later, Linux.Darlloz utilizes this file to kill his enemy. If there already runs an
instance of the worm on the infected system, it is killed and replaced with a new instance. This can
be utilized when a new version of the worm intrudes the device. It tries to connect to IRC servers
whose addresses are encoded in the binaries. In the original sources, the list of servers is encoded
by a substitution cipher.

We have discovered that the samples contained hard-coded addresses. One of such address was
94.23.X.Y:6667. The name of the IRC channel is hard-coded in the binaries (originally
#chan, but some samples use different names, such as #drogs). By calling user function
connect to irc(), it connects to an IRC server under a name generated by getrstr(). This
name has always a fixed prefix, depending on the architecture. This prefix was originally [a], [m],
[s], [p], and [x] for ARM, MIPS, SuperH, PowerPC, and other architectures, respectively. However,
in the samples, this prefix is fixed (for example, [PrEd0ne] or [falcon]). Finally, after the prefix,
there is a sequence of 10 random characters. Sometimes, a password is present (for example,
SHTDDoS), but not in all samples.

The most important function is irc requests(). In there, a connection to the server is kept open
by replying PONG to PING requests from the server. The commands to be performed by the worm
are obtained by reading the channel topic (TOPIC) or receiving private messages (PRIVMSG).
The commands are received in functionpub requests(), where the received string is parsed, and
then a matching function is called. For example, upon receiving PRIVMSG:.exec, user function
cmd exec() is called with a string specifying the command to be executed. This function calls
Linux function popen(). In this way, the attacker may execute any command on the infected
device.

Apart from waiting for commands, the worm tries to infect other devices. It does this by calling user
function cmd advscan(), which scans the given range of IP addresses. The scanning is done in
a separate thread so the main process can wait for commands. More precisely, 128 threads are used
for scanning.

There are two possible ways of intruding other devices:

• by utilizing a vulnerability of D-link routers. When a live IP address is detected, the worm
tries to connect to port 80 (http) and sends the following POST request, which exploits a

76



vulnerability that is present in some D-link routers. If the exploit succeeds, the router returns
its configuration file in an XML format. The worm parses the file to obtain a password for
the root user. This password is then used when connecting to the vulnerable device through
the telnet service on port 23.

• by using a name and login received from the IRC channel. In this case, it tries to connect to
the received address directly, again by using the telnet service on port 23.

The connection through telnet is done in user function cmd advscan join(). If the login data
are correct, it downloads script getbinaries.sh by executing

rm -rf /var/run/getbinaries.sh
wget -c \%s/getbinaries.sh -P /var/run && sh /var/run/getbinaries.sh &

where %s is substituted with the address of a remote server that hosts the script. This script then
downloads binaries for all the supported architectures (MIPS, ARM, PowerPC, and SuperH) and
executes them. One of them will eventually start. After that, the script erases itself to cover its
tracks. Some samples have modified the above way of downloading the script, and execute the
following commands instead:

rm -rf /var/run/getbinaries.sh
cp /usr/bin/-wget /usr/bin/wget
cp /bin/-wget /bin/wget
cp /usr/bin/wg /usr/bin/wget
cp /bin/wg /bin/wget
wget -c \%s/getbinaries.sh -P /var/run && sh /var/run/getbinaries.sh &

All these commands we see in the output C file as the system calls by function system().

Analysis of Linux.Darlloz

The analysis of Linux.Darlloz was harder due to the fact that all the samples were stripped. This
means that no symbols or debugging information were available. However, by analyzing system
calls, we were able to reconstruct the names of several functions. Moreover, we have given more
readable names to user-defined functions to make the results of the analysis more readable.

A simplified version of the worm’s call graph can be seen in Figure 5.26. Nodes with full line are
user functions and nodes with dashed line are Linux functions. In what follows, we describe all
these functions in detail.

In user function mask as httpd(), the worm tries to mask itself as httpd (an HTTP server) by
calling Linux function prctl(). This can be seen from the following piece of code:

prctl(PR_SET_NAME, (int32_t)”httpd”, 0, 0, 0);

In user function remove aidra(), the worm tries to detect Linux.Aidra, analyzed in the previous
section, kill it, and prevent the device from being infected by Linux.Aidra again. This is done in the
following several-step way. First, it loads modules for netfilter/iptables, which is a firewall typically
used on Linux:

exec_sh_mod(”ins_mod /lib/modules/uname -r” \
”/kernel/net/ipv4/netfilter/ip_tables.ko”);

exec_sh_mod(”ins_mod /lib/modules/uname -r” \
”/kernel/net/ipv4/netfilter/iptable_filter.ko”);

77



Figure 5.26: Simplified call graph of Darlloz.

The subcommand uname -r returns the version of the operating system. Then, it configures the
firewall to drop packets from TCP port 23, which is the telnet service:

exec_sh_cmd(”iptables -D INPUT -p TCP --dport 23 -j DROP”);
exec_sh_cmd(”iptables -A INPUT -p TCP --dport 23 -j DROP”);

This prevents Linux.Aidra and remote users from connecting to the compromised device. After
that, it tries to kill telnetd to make sure no telnet access is possible:

kill_process(”telnetd”);

and to kill its competing worm, Linux.Aidra:

kill_aidra(”/var/run/.lightpid”);
kill_aidra(”/var/run/.aidrapid”);
kill_aidra(”/var/run/lightpid”);

Finally, it tries to erase many files by calling Linux function unlink():

unlink(”/var/run/.lightscan”);
unlink(”/var/run/lightscan”);
unlink(”/var/run/mipsel”);
unlink(”/var/run/mips”);
// ... (skipped)
unlink(”/bin/wget”);
unlink(”/usr/bin/wget”);
unlink(”/usr/bin/-wget”);

User function exec sh cmd() simply executes the given command through /bin/sh. In a
greater detail, it calls Linux function fork(), and the execution of the command is performed by
the created child process so the main process can continue. User function kill aidra() works
as follows. As a parameter, it takes a path to the file storing the PID of Linux.Aidra (see the analysis
of Linux.Aidra). This is /var/run/.lightpid. It opens the file by calling user function
sys open(), reads the PID from the file by user function sys read(), converts its textual
representation into a number by C standard function strtol(), and calls Linux function kill()
with the PID and SIGKILL as arguments. This kills the process. User function kill process()

78



takes a single parameter, which is the name of the process. Upon calling, the function traverses
all directories in /proc, and tries to convert their names into numbers by calling strtol().
In /proc, the system keeps the PIDs of all existing processes. Thus, the converted number
represents a PID. Then, for every such directory PID, it tries to read /proc/PID/stat, which
holds information about the process. After that, it parses the data to see if the process matches the
name that was given to kill process(). If this is so, then it calls Linux function kill(),
which kills the process. The worm then starts to listen on port 58455 (hard-coded into the binaries)
by using Linux functions bind() and listen(). After that, it waits for orders on that port in an
infinite loop. We have also found out that first, it tries to communicate with IP addresses from the
range 117.201.X.1 - 117.201.Y.254.

For spreading it generates random IP addresses excluding some ranges. When a valid range is gen-
erated, the worm tries to intrude the remote host on the generated IP address by the following means:
via telnet (port 23) and by exploiting a PHP vulnerability. In user function try telnet(), if the
worm successfully accesses TCP port 23. It tries some hard-coded combinations of login/password
to access the host as admin/admin. When it succeeds, it executes the commands that create binary
files in the ELF file format. When the above-mentioned telnet attempt fails, it tries to intrude the
host by exploiting the php-cgi Information Disclosure Vulnerability13 through a HTTP POST
request. In user function try php exploit(), it tries to connect to the IP address and send a
malicious POST request:

for (unsigned int i = 0; i < 5; i++) {
sys_connect(&socket, a1);
char *ch = cgi_bin_php[i];
send_post_request(socket, a1, ch);

}

We show how the retargetable decompiler can be used for malware analysis. Its results help to get
a better knowledge of malware internals and implementation.

13http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1823

79



Chapter 6

Detection of Specific Behavior

Our retargetable decompiler creates a platform that processes various types of binaries into an
unified representation—C language, Python’, or LfD. Due to this platform, we are able to compare
binaries from different architectures on the higher level. This topic is also very extensive as the
reverse engineering. Since, the development of decompiler was very demanding, this topic is not
researched in such a depth.

We designed a schema to find similarity between two arbitrary binaries that can be processed by the
decompiler. The idea is that we have a (malware) binary that is well-known for us and we compare
it with unknown binaries to find a similar (malware) binary. Following the problematic situation
in the area of Internet of Things, we could have malware for x86. This is analysed and described
by the analysts, because they know this architecture quite well. And, there is a bunch of binaries
for ARM, MIPS, or PowerPC that can be analysed and classified automatically as the same or very
similar malware.

There is a possibility to use output to C and current tools for finding similarities for the C language.
We introduce 2 tools that are aimed for revealing the plagiarism, but they are not so successful
for this more specific goal. We have proposed a simplified language LfD, which is easier to
analyse, therefore the similarity is found with higher precision. For this language, we have a tool
LfDComparator, that is able to handle two input files in LfD language and decide the ratio of their
similarity. The language LfD and tool LfDComparator are created and implemented by the author
of this thesis.

6.1 C Source Analyzers

For our comparison, we use two robust tools JPlag developed on Karlsruhe Institute of Technology1

and Moss developed on Stanford University2. The comparison on the source code for the malware is
not a standard way, because naturally, the source code for it is not available. On the other hand, these
tools solve a quite common issue if they detect similarities in source code to unveil the plagiarism.

1http://jplag.ipd.kit.edu/
2http://theory.stanford.edu/˜aiken/moss/

80

http://jplag.ipd.kit.edu/
http://theory.stanford.edu/~aiken/moss/


6.1.1 Moss

Moss is an abbreviation of a Measure Of Software Similarity. It is developed from 1994. Its
algorithm analyze code in many languages as C, C++, Java, Python, Javascript, Pascal, and much
more. It is provided as an internet service. The authors declare that Moss is a significant improvement
over other cheating detection algorithms. Therefore, we expected that it could be able to find
similarities also over the output sources from the decompiler.

More details about this system are available in paper [58]. It introduces a class of local document
fingerprinting algorithms. Authors developed winnowing, an efficient local fingerprinting algorithm.
The main idea of this algorithm is defined as: In each window select the minimum hash value. If
there is more than one hash with the minimum value, select the rightmost occurrence. Now save all
selected hashes as the fingerprints of the document.

6.1.2 JPlag

JPlag is a system that finds similarities among multiple sets of source code files. It currently supports
Java, C, C++, and some more languages. It is implemented in Java. More information about this
tool is available in the paper [52].

JPlag’s algorithm computes similarity in two phases:

1. All programs are parsed and converted to token strings.

2. These tokens are compared in pairs for determining the similarity of each pair. The used
method is Greedy String Tiling. During each comparison, JPlag attempts to cover one token
(string) with substrings (tiles) taken from the other as well as possible. The similarity value
is given by the percentage of token strings that can be covered.

Naturally, this method starts to fail if there is used for cycle instead of while, or a statement
switch instead of if sequence. For bigger change to be successful, we should avoid these issues
by design of simple language—LfD.

6.2 Language LfD

LfD is an abbreviation for Language for Decompilation. It is designed to be really simple. It persists
only the most important information, which are call graphs, constants and a part of control flow –
loops. It is easy to extend, so it is widely open for the future research. For processing the files in
LfD, the ANTLR3 framework is used. The language is described by a context free grammar, which
is expressed using Extended Backus-Naur Form4, see Appendix A for the complete listing of the
grammar. This form is required by the ANTLR framework.

The output code is quite austere, but the objection is aiming for the better similarity detection. There
are three main parts:

• functions – the code is inside their bodies. The arguments are not defined, because they are
used only if they are constant.

3http://www.antlr.org/
4http://www.cs.cmu.edu/˜pattis/misc/ebnf.pdf

81

http://www.antlr.org/
http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf


• loops – are represented by the keyword LOOP.

• constants – can be strings, integers, or floating point numbers.

An example of output is shown in Figure 6.1. There are visible string constants and also, the control
flow and call graphs with functions and loops is well understandable. This is a base for the following
comparison of such a programs.

factorize() {
printf(”Prime factors of %d: ”);
LOOP {

printf(”%d x ”);
}
printf(”%d\n”,);

}

main() {
scanf(”%d”);
factorize();
LOOP {

scanf(”%d”);
factorize();

}
}

Figure 6.1: An example with the program in LfD.

6.3 Tool LfDComparator

This tool compares 2 inputs in the the LfD language and decides their similarity. The output is given
by a number between 0 and 100 – it means a percentage of the inputs similarity. LfDComparator is
developed in Java and it uses the ANTLR framework. LfD is described by an ANTLR grammar, so
we are able to use ANTLR framework to generate a lexical analyzer and parser for this language.
LfdComparator uses these generated parts and it is built over them.

For deciding the similarity, the LfDComparator compares 2 areas:

• control flow and call graphs – the tool travels the call graph in both inputs and compares the
loops, function calls and their arguments. There is important if the main function is present.
If yes, the process is easier – the tool starts from this function. If there is not this function, the
heuristics tries to find the functions that could be main. It is done by the search with an idea
as a depth-first search. We want to find the functions that have the most deep call graph. If
there are more such functions, we do more comparisons and the result with the highest score
is taken.

There are 2 types of functions: defined (there is their definition in the source) and linked (they
are just called – such as printf). According to this type, the different action is executed
for the processed function call. If the linked function is called, we compare the names in the
both inputs, if there are the same linked functions (or very similar functions – this is going
to be explained later). If there are defined functions, we make a comparison of their bodies

82



or if they were compared earlier, we use the stored result of their comparison. So for the
defined functions, there is no impact of their names. This is logical, because the names can
vary without any influence on the behavior.

• constants – During the traversal of both inputs the tool saves all constants and the functions
that use them. After the comparison described in the previous point is finished, these saved
constants are compared. It is a simple comparison of the value, but we again take in an
account the very similar functions and we allow some special differences in the string literals.
Therefore, the combinations of a constant and function given by these 2 calls are matched
successfully:

puts(”Catch me if you can”)

printf(”Catch me if you can\n”)

The tricky part of the control flow comparison is the loop. There can be 3 different situations that
are detected and taken as similar:

• no loop – this is usually caused by the compiler optimizations. The compiler finds a loop in
the original source code. It also finds out that the number of loop iterations is constant and it
is better to generate the body of the loop more times (equal to the constant).

• usage of loop – compiler generates the code as it is described in the source code. It may be
the same code as in the previous case, but without usage of compiler optimizations, the loop
is not removed.

• partial usage of loop – compiler can detect a part of loop as loop invariant. Such a part can
be moved out of the loop if the optimizations are used.

These situations are not solved by the decompiler, because it does not try to optimize the output in
this way. It creates the loop only if there is a branch in the code. Therefore, these special situations
are used here. Moreover, there are more important for the comparison of the behavior similarity
than for well understanding of the behavior itself.

For the comparison of the linked function calls we mention very similar functions. LfDComparator
has internal database with functions that are considered as very similar from the view of behavior.
The good example is a pair printf and puts. These pairs are not taken as 100% same. Therefore
the sources, where the only difference is usage of very similar functions, produce the result a near
under 100%.

As the last point, we can take a look at two LfD sources that are evaluated by LfdComparator as the
almost same (the result is 97%):

83



compute() {
printf(”Calculation of %d: ”);
LOOP {

printf(”%d”);
}

}

main() {
scanf(”%d”);
compute();
printf(”Done\n”);

}

(a) The first LfD source.

function_809324() {
fprintf(”Calculation of %d: ”);
fprintf(”%d”);
fprintf(”%d”);
fprintf(”%d”);
fprintf(”%d”);

}

main() {
scanf(”%d”);
function_809324();
puts(”Done”);

}

(b) The second LfD source.

Figure 6.2: Example of two LfD sources that have the similarity of 97%.

84



Chapter 7

Results

In this chapter, we present two kinds of results. The first result consists of a standard C output from
the decompiler, where the output C sources are compared to the original input sources. The second
result shows how the individual tools are effective in detection of similarity.

7.1 C Outputs

The decompiler was extensively tested. There are integration and night tests. During the night tests,
decompiler is currently tested by 70118 different decompilations. Only in 83 cases, we generate
invalid LLVM IR code, so the C output is not created. There is a binary suite for each supported
architecture with pre-compiled binaries. The second part of night tests is composed of C source
codes, which are compiled before the test, and the created binaries are then decompiled. Each
source code is compiled for each architecture with different optimization level (-O0, -O1, -O2),
file format (pe, elf), and other configurations (with or without debug symbols, strip). For some
architecture, we also use more types of compilers (gcc, clang).

Figure 7.1: The integration testing schema.

85



Integration tests serve as a fast check of new changes in the decompiler source code. After each
commit, the decompiler is built and these tests are run. Currently, there are 24 source code files for
this test. Each file is compiled for each architecture with debug symbols and with the optimization
level -O0. Then, the file is decompiled to C output. The aim of the decompiler is to produce
compilable files, what is important for integration testing. Now, we compile the original source
code into executable A, the decompiled source code into executable B. Both executables are
executed with the same inputs. The outputs and exit codes are compared. If there is a change to
worse results as it was in the previous run of integration tests, the author of a commit is immediately
notified by e-mail. The schema of test is shown in Figure 7.1.

There are the examples of C outputs in Figure 7.2. We show output for the MIPS architecture with
debug symbols and without optimizations. This code is very close to the original code, because we
have available all important information due to compilation with debug symbols and binary code is
not tweaked by the optimizations. Therefore, we can use same names for arguments and variables
as it is in the original source code.

int ack(int m, int n) {
if (m == 0) {
return n + 1;

}
else if (n == 0) {

return ack(m - 1, 1);
}
else {

return ack(m - 1, ack(m, n-1));
}

}

int main(int argc,char *argv[]) {
int res = 0, x = 0, y = 0;

scanf(”%d %d”,&x,&y);
res = ack(x ,y);
printf(”ackerman( %d , %d ) = %d\n

”,x,y,res);

return res;
}

(a) Original source code.

int32_t ack(int32_t m, int32_t n) {
if (m == 0) {

return n + 1;
}
int32_t v1 = m - 1;
int32_t v2;
if (n == 0) {

v2 = ack(v1, 1);
} else {

v2 = ack(v1, ack(m, n - 1));
}
return v2;

}

int main(int argc, char **argv) {
int32_t res = 0; // bp-32
int32_t x = 0; // bp-28
int32_t y = 0; // bp-24
scanf(”%d %d”, &x, &y);
int32_t v1 = ack(x, y);
res = v1;
printf(”ackerman( %d , %d ) = %d

\n”, x, y, v1);
return res;

}

(b) Output from decompiler.

Figure 7.2: Comparison for MIPS - ELF with debug symbols and optimization -O0.

In Figure 7.3, there is an example with calculation of the greatest common divider (gcd). The
compilation is done without debug symbols (strip is not applied, so there is symbolic information).
Therefore, the function gcd has the same name as in the original source code. But the arguments
are recovered by the data-flow analysis of the decompiler and the names for them are generated. We
see that the structure of algorithm is a little bit different, but this is normal phenomenon for usage
of optimization (-O1).

86



Also, notice that the names of all local variables are generated. There is a difference, that decompiler
does not use the local variable for original variable res, but directly put the call of gcd as the
argument of printf.

int gcd(int a, int b)
{
while( 1 )
{

a = a % b;
if (a == 0)
{
return b;

}
b = b % a;

if (b == 0)
{
return a;

}
}

}

int main(int argc,char *argv[])
{
int a = 0, b = 0;
scanf(”%d %d”, &a, &b);

int res = gcd(a, b);
printf(”gcd %d %d = %d\n”, a, b,

res);
return 0;

}

(a) Original source code.

int32_t gcd(int32_t a1, int32_t a2)
{
int32_t v1;
while (true) {

v1 = a1 % a2;
if (v1 == 0) {

return a2;
}
int32_t v2 = a2 % v1;
if (v2 == 0) {

break;
}
a2 = v2;
a1 = v1;

}

return v1;
}

int main(int a1, char **a2) {
int32_t v1 = 0; // bp-12
int32_t v2 = 0; // bp-16
scanf(”%d %d”, &v1, &v2);
printf(”gcd %d %d = %d\n”, v1,

v2, gcd(v1, v2));
return 0;

}

(b) Output from decompiler.

Figure 7.3: Comparison for ARM - ELF without debug symbols and optimization -O1.

The last example shows the Fibonacci function in Figure 7.4. This case is forx86 andPE file format.
There is used compilation with strip, so all symbols are removed from the binary. Therefore, the
function function 401560 is recovered by the function detection. Hint for that is the name of
function, which is now not preserved from the original source code, but it is generated according
to address, where the function is recovered. The usage of advanced optimizations -O2 results in
usage of while loop in the decompiled source code, and also instead of two recursive calls, there
is only the single one.

There is a difference in main function, where the loop while is used instead of original for loop.
This is not a mistake, but it is caused by the fact that for loop is harder to reconstruct.

More results can be obtained on the decompiler website http://decompiler.fit.vutbr.
cz/decompilation/, where are also prepared simple C source codes, but the users can load
own C sources or binaries.

87

http://decompiler.fit.vutbr.cz/decompilation/
http://decompiler.fit.vutbr.cz/decompilation/


unsigned fib(int x)
{

if (x > 2)
{
return fib(x - 1) + fib(x - 2);

}
else
{

return 1;
}

}

int main(int argc, char *argv[])
{

int i, numtimes = 0, number = 0;
unsigned value;

printf(”Input number of
iterations: ”);

scanf (”%d”, &numtimes);
for (i = 1; i <= numtimes; i++)
{

printf (”Input number: ”);
scanf (”%d”, &number);
value = fib(number);
printf(”fibonacci(%d) = %u\n

”, number, value);
}
return 0;

}

(a) Original source code.

int32_t function_401560(int32_t a1)
{
if (a1 < 3) {

return 1;
}
int32_t v1 = function_401560(a1

- 1);
while (a1 > 4) {

a1 -= 2;
v1 += function_401560(a1 -

1);
}
return v1 + 1;

}

int main(int a1, char **a2) {
int32_t v1 = 0; // bp-24
int32_t v2 = 0; // bp-20
printf(”Input number of

iterations: ”);
scanf(”%d”, &v1);
if (v1 < 1) {

return 0;
}
int32_t v3 = 1;
printf(”Input number: ”);
scanf(”%d”, &v2);
printf(”fibonacci(%d) = %u\n”,

v2, function_401560(v2));
while (v1 >= v3 + 1) {

v3++;
printf(”Input number: ”);
scanf(”%d”, &v2);
printf(”fibonacci(%d) = %u\n

”, v2, function_401560(
v2));

}
return 0;

}

(b) Output from decompiler.

Figure 7.4: Comparison for x86 - PE with strip and optimization -O2.

7.2 Detection of Similarity

In this part, we compare the results of JPlag, Moss, and LfDComparator in detection of similarity.
Firstly, we test the detection on the binaries from different compilers. We have 10 testing C files
(students projects, tool cat, and similar). We produce 30 different binaries for each file, they are a
combination of these options:

• architecture – MIPS, ARM, x86

• file format – ELF, PE (PE is not generated in combination with MIPS)

• optimization – O0, O2

88



• additional information – debugging information (DWARF), symbols, stripped

Then, the decompiler is used to decompile all these binary files into C files. We have C files that
are tested for similarity by JPlag and Moss. By this test, we simulate a generic detection on binaries
from different architectures and file formats.

Each pair from these 30 C files is processed and its similarity is recorded. The number of comparisons
is given by

(
30
2

)
= 435. We have 10 different inputs, so each tool produces 4350 results. In ideal

case, we should be close to 100% similarity in the all comparisons. We decide to merge results in
the 10 groups (step by 10%) for better presentation.

The results of Moss are presented in Figure 7.5. Moss provides the results as the 2 numbers for each
compared pair, when at least some small similarity is found. These 2 numbers mean the ratio of
similar part. The numbers can be lightly different according to the size of result, so we take average
as the single result for the pair. We sort given results in the 10 groups. All unlisted pairs are put
in the group 0-10%. Overall results are really bad. This tool would not be usable for similarity
detection.

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

[
%
]

N
um

be
ro

fc
om

pa
ri

so
ns

Figure 7.5: Results of comparison from Moss.

Figure 7.6 presents the results of JPlag. We see that the majority of results is below 30%, what
is not very good result, but it is better than Moss. There is a little bit more detections over 70%.

89



Such a number can be considered as very good and it is a sign that the compared files have quite
similar behavior. These detections of larger similarity are reached if debugging information is
present. Unfortunately, this is not usual for real world binaries or malware. Overall, JPlag is also
inappropriate tool for deciding the similarity of decompiled results.

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

[
%
]

N
um

be
ro

fc
om

pa
ri

so
ns

Figure 7.6: Results of comparison from JPlag.

LfDComparator achieves better results as the previous tools, see Figure 7.7. The reason is usage
of specialized language LfD 6.2 and also a more specific aim of this tool. We still have some
cases, where the results are bellow 40%. These cases could be improved by enhancements of the
decompiler and LfDComparator.

For this kind of testing, it is important to not create false positives. LfdComparator has a good result
also for this. We take one file in LfD for each tested file, so we have 10 different files to test. Except
one comparison, where the result is 24%, all other comparisons are below 10%.

Finally, we test the LfdComparator with real malware. There are used previously described malware
Aidra and Darlloz (see 5.8.2), because they target more architectures. So we examine real cases with
malware from different architectures, what is a suitable test for verifying of generic comparison.
The result is shown in Table 7.1.

The test was run on 20 binaries:

90



0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

0

100

200

300

400

500

600

700

800

900

1,000

[
%
]

N
um

be
ro

fc
om

pa
ri

so
ns

Figure 7.7: Results of comparison from LfDComparator.

• Aidra (9 binaries)

– ARM (3)

– MIPS (5)

– PowerPC (1)

• Darlloz (11 binaries)

– ARM (2)

– MIPS (5)

– PowerPC (2)

– x86 (2)

The higher percentage of similarity is obtained for the binaries of same malware. In the left top part,
there are the numbers for the Aidra binaries. The similarity of behaviour is almost 100% for pair
ARM – PowerPC. The same result is get for some mips binaries, but there is not so great success,
because it is the same architecture.

91



The results for Darlloz binaries are located in the right bottom part. The result of 99% is achieved
only for binaries from PowerPC, but there are still the results over 90% between binaries from
arm and x86. Also, positive fact is avoiding of false positives – the similarity of Aidra and Darlloz
binaries is in all cases under 5%. Overall, the test with these two malware families can be considered
as successful.

ai
dr

a-
ar

m
-8

8b
36

c

ai
dr

a-
ar

m
-3

82
c5

c

ai
dr

a-
ar

m
-a

3a
be

e

ai
dr

a-
m

ip
s-

3e
bb

92

ai
dr

a-
m

ip
s-

91
ac

17

ai
dr

a-
m

ip
s-

23
9b

c7

ai
dr

a-
m

ip
s-

ac
f0

8a

ai
dr

a-
m

ip
s-

c0
35

ac

ai
dr

a-
pp

c-
f8

95
a9

da
rl

lo
z-

ar
m

-8
a5

cc
b

da
rl

lo
z-

ar
m

-9
81

98
9

da
rl

lo
z-

m
ip

s-
1d

0f
fd

da
rl

lo
z-

m
ip

s-
5e

f7
ac

da
rl

lo
z-

m
ip

s-
9d

9c
01

da
rl

lo
z-

m
ip

s-
19

91
1c

da
rl

lo
z-

m
ip

s-
b0

2d
28

da
rl

lo
z-

pp
c-

30
40

11

da
rl

lo
z-

pp
c-

b6
1b

85

da
rl

lo
z-

x8
6-

00
a2

29

da
rl

lo
z-

x8
6-

5b
43

21

88b36c – 88 76 76 86 76 76 88 99 0 0 0 0 0 0 1 1 0 0 0

382c5c 88 – 99 78 78 77 78 78 99 3 0 1 2 2 2 3 4 2 2 2

a3abee 76 99 – 78 78 77 78 78 99 0 0 0 0 0 0 0 1 1 0 0

3ebb92 76 78 78 – 76 99 77 99 70 0 0 0 0 0 0 0 1 1 0 0

91ac17 86 78 78 76 – 76 75 76 70 0 0 0 0 0 0 0 1 1 0 0

239bc7 76 77 77 99 76 – 99 99 70 1 1 1 1 1 2 1 1 1 1 1

acf08a 76 78 78 77 75 99 – 99 79 3 3 1 1 1 1 3 3 2 2 2

c035ac 88 78 78 99 76 99 99 – 70 3 3 0 0 0 0 0 3 3 2 2

f895a9 99 99 99 70 70 70 79 70 – 2 3 3 0 1 0 1 1 2 2 2

8a5ccb 0 3 0 0 0 1 3 3 2 – 91 71 72 70 71 71 81 82 94 93

981989 0 0 0 0 0 1 3 3 3 91 – 71 72 71 72 71 81 82 94 95

1d0ffd 0 1 0 0 0 1 1 0 3 71 71 – 74 78 74 78 72 71 72 71

5ef7ac 0 2 0 0 0 1 1 0 0 72 72 74 – 74 76 74 72 71 71 71

9d9c01 0 2 0 0 0 1 1 0 1 70 71 78 74 – 74 78 71 71 72 71

19911c 0 2 0 0 0 2 1 0 0 71 72 74 76 74 – 74 70 71 70 70

b02d28 1 3 0 0 0 1 3 0 1 71 71 78 74 78 74 – 71 72 73 72

304011 1 4 1 1 1 1 3 3 1 81 81 72 72 71 70 71 – 99 76 76

b61b85 0 2 1 1 1 1 2 3 2 82 82 71 71 71 71 72 99 – 74 76

00a229 0 2 0 0 0 1 2 2 2 94 94 72 71 72 70 73 76 74 – 97

5b4321 0 2 0 0 0 1 2 2 2 93 95 71 71 71 70 72 76 75 97 –

Table 7.1: Results of comparison between malware binaries.

The disadvantage is a need of comparison between two inputs. This requirement causes a high
number of comparisons, which can take a quite long time for bigger binaries. The solution could be
extracting some preciously selected parts, storing them in a database and make search by database
engine. This next step is not covered by this thesis, but it is going to be researched and developed
in the continuing master thesis.

92



Chapter 8

Conclusion

This thesis describes how to recognize specific behavior by the generic reverse compilation. This
issue is divided in two separated tasks – a generic reverse compilation (decompilation) and recog-
nition of specific behavior (on the outputs from decompilation). According to presented results, we
can consider both tasks as successfully solved. Of course, there is a great area for future research
and a lot of enhancements, but the important part is a verification that this idea is valid and it can be
used for e.g. malware detection.

The generic reverse decompilation is a process performed by the Lissom Decompiler. Author of
this thesis is one of its developers and he is responsible for the front-end part. Nowadays, this tool is
available as the online service on the http://decompiler.fit.vutbr.cz/. Moreover, it
is used for the malware analysis in the company AVG Technologies [69]. The development of this
tool was really time demanding. On the other hand, the quality of its output is very important for
the following analysis for recognition of specific behavior. Also, it is a part that ensures the generic
approach. The generic approach of decompilation is a requirement, which is not easy to provide. It
is visible in the features preview of the other decompilers, see 4.1.

The Lissom Decompiler is able to process binaries from MIPS, ARM, PowerPC, and x86 architec-
tures in the most used object file formats – PE, ELF, COFF, and Mach-O. We can label it as generic
and retargetable, because its all parts are unified and the support of a new architecture is provided
by supplying the semantics, which describes the architecture. As a part of the decompiler, a toolkit
for a recognition and annotation of the statically linked code was created. The decompiler generates
the output in three languages: C, Python’, and LfD.

The thesis introduces a new simple language LfD (Language for Decompilation). It is the simple
language for an analysis, which recognizes specific behavior. The specific behavior is recognized
as the percentage of behavior similarity between two files, where the one of them is known and the
second one is unknown. A model case is known malware for one architecture and the detection of
this malware between unknown binaries for the other architectures. Similarity between each pair is
calculated by the tool LfDComparator.

In the results, we firstly presented the output of the decompiler in the C language. Then, we showed
that the finding of similarity on the C outputs is problematic also by very complex tools. The last
part of results consists of the recognition of specific behavior on the files in LfD language by the
LfDComparator. The detection is shown on selected testing files and also on the real malware
binaries.

93

http://decompiler.fit.vutbr.cz/


The thesis presented an innovative approach for the analysis of executable’s behavior, which is
capable to be applied in the generic way. Future research will be aimed for improving the decompiler
to be more complex and robust tool, and finding the possibilities how to extract key parts of LfD
sources to store them in a database and usage of a database engine for recognition of the similar
parts.

94



Bibliography

[1] C. Kruegel A. Moser and E. Kirda. Limits of static analysis for malware detection. In
Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual,
pages 421 –430, dec. 2007.

[2] V. Adve and C. Lattner. LLVM: A compilation framework for lifelong program analysis &
transformation. In International Symposium on Code Generation and Optimization, pages
75–86, Palo Alto, US-CA, 2004.

[3] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke. LLVA: A low-level virtual
instruction set architecture. In 36th Annual ACM/IEEE International Symposium on
Microarchitecture, San Diego, US-CA, 2003.

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Boston, 2nd edition, 2006.

[5] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In 13th
International Conference on Compiler Construction (CC’04), pages 5–23, Berlin,
Heidelberg, DE, 2004. Springer-Verlag.

[6] P. Barbe. The PILER system of computer program translation. Technical report, Probe
Consultants Inc, 1974.

[7] T. Baume. Netcomm NB5 botnet – psyb0t 2.5L. [online], 2009. Available on
http://www.baume.id.au/psyb0t/PSYB0T.pdf?info=EXLINK.

[8] D. L. Brinkley. Intercomputer transportation of assembly language software through
decompilation. Technical report, Naval Underwater Systems Center, Princeton, US-RI, 1981.

[9] D. Bruschi, L. Martignoni, and M. Monga. Code normalization for self-mutating malware.
IEEE Security and Privacy, 5(2):46–54, 2007.

[10] S. Chamberlain. The Binary File Descriptor Library. Iuniverse Inc., 2000.

[11] E.J. Chikofsky and II Cross, J.H. Reverse engineering and design recovery: a taxonomy.
Software, IEEE, 7(1):13–17, Jan 1990.

[12] C. Cifuentes. Reverse Compilation Techniques. PhD thesis, School of Computing Science,
Queensland University of Technology, Brisbane, QLD, AU, 1994.

[13] C. Cifuentes and S. Sendall. Specifying the semantics of machine instructions. In 6th
International Workshop on Program Comprehension (IWPC’98), pages 126–133,
Washington, US-DC, 1998. IEEE Computer Society.

95

http://www.baume.id.au/psyb0t/PSYB0T.pdf?info=EXLINK


[14] Cisco. Connections counter: The internet of everything in motion. [online], May 2014.
Available on http://newsroom.cisco.com/feature-content?type=
webcontent&articleId=1208342.

[15] J. Cocke. Global common subexpression elimination. SIGPLAN Not., 5(7):20–24, 1970.

[16] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991.

[17] +DaFixer. Delphi Reverse Engineering - Adding functionality to a Delphi program. [online],
2012. Available on http://www.woodmann.com/fravia/dafix_t1.htm.

[18] S. K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for code
compaction. ACM Trans. Program. Lang. Syst., 22(2):378–415, March 2000.

[19] K. Dolgova and A. Chernov. Automatic type reconstruction in disassembled C programs. In
15th Working Conference on Reverse Engineering (WCRE’08), pages 202–206, Washington,
US-DC, 2008. IEEE Computer Society.

[20] DroneBL. Network bluepill – stealth router-based botnet has been DDoSing DroneBL for the
last couple of weeks. [online], 2009. Available on http://dronebl.org/blog/8.

[21] DWARF Debugging Information Committee. DWARF Debugging Information Format, 4
edition, 2010. Available on http://www.dwarfstd.org/doc/DWARF4.pdf.

[22] M. J. Van Emmerik. Static Single Assignment for Decompilation. PhD thesis, University of
Queensland, Brisbane, QLD, AU, 2007.

[23] Fast Library Identification and Recognition Technology (FLIRT).
http://www.hex-rays.com/idapro/flirt.htm, 2012.

[24] International Organization for Standardization. [ISO/IEC 9899:2011] ISO/IEC.
Programming Languages–C. Geneva, CH, 2012.

[25] N. Gray. A Beginners C++, chapter 4. 2002. Available on
http://www.uow.edu.au/˜nabg/ABC/ABC.html.

[26] M. H. Halstead. Machine-Independent Computer Programming. Spartan Books, 1962.

[27] N. Harbour. Advanced software armoring and polymorphic kung-fu, 2008.

[28] History Of Decompilation. [online], 2012. Available on http://www.
program-transformation.org/Transform/HistoryOfDecompilation2.

[29] R. N. Horspool and N. Marovac. An approach to the problem of detranslation of computer
programs. The Computer Journal, 23(3):223–229, 1980.

[30] A. Husár, M. Trmač, J. Hranáč, T. Hruška, K. Masařı́k, D. Kolář, and Z. Přikryl. Automatic C
compiler generation from architecture description language ISAC. In 6th Doctoral Workshop
on Mathematical and Engineering Methods in Computer Science MEMICS’10, pages 84–91,
Brno, CZ, 2010. Masaryk University.

[31] Intel. Intel architecture software developers manual volume 2: Instruction set reference,
1999.

96

http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
http://www.woodmann.com/fravia/dafix_t1.htm
http://dronebl.org/blog/8
http://www.dwarfstd.org/doc/DWARF4.pdf
http://www.hex-rays.com/idapro/flirt.htm
http://www.uow.edu.au/~nabg/ABC/ABC.html
http://www.program-transformation.org/Transform/HistoryOfDecompilation2
http://www.program-transformation.org/Transform/HistoryOfDecompilation2


[32] M. Janus. Heads of the hydra. malware for network devices. [online], 2011. Available on
https://www.securelist.com/en/analysis/204792187/Heads_of_the_
Hydra_Malware_for_Network_Devices.

[33] A. Johnstone, E. Scott, and T. Womack. Reverse compilation for digital signal processors: A
working example. In 33rd Annual Hawaii International Conference on System Sciences
(HICSS’00), pages 316–325, Los Alamitos, US-CA, 2000. IEEE Computer Society.

[34] A. Karnik, S. Goswami, and R. Guha. Detecting obfuscated viruses using cosine similarity
analysis. In Modelling Simulation, 2007. AMS ’07. First Asia International Conference on,
pages 165–170, March 2007.

[35] D. Kästner and S. Wilhelm. Generic control flow reconstruction from assembly code. ACM
SIGPLAN Notices, 37(7), 2002.

[36] J. Kinder. Static Analysis of x86 Executables. PhD thesis, Technische Universität Darmstadt,
DE, 2010.

[37] J. Kinder and H. Veith. Jakstab: A static analysis platform for binaries. In Computer Aided
Verification, volume 5123 of Lecture Notes in Computer Science, pages 423–427. Berlin,
Heidelberg, DE, 2008.

[38] J. Kinder, F. Zuleger, and H. Veith. An abstract interpretation-based framework for control
flow reconstruction from binaries. In 10th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’09), pages 214–228, Berlin, Heidelberg, DE,
2009. Springer-Verlag.

[39] J. Křoustek. Analýza a převod kódů do vyššı́ho programovacı́ho jazyka. Master’s thesis, FIT
VUT v Brně, 2009.

[40] J. Křoustek and D. Kolář. Preprocessing of binary executable files towards retargetable
decompilation. In 8th International Multi-Conference on Computing in the Global
Information Technology (ICCGI’13), pages 259–264, Nice, FR, 2013. International
Academy, Research, and Industry Association (IARIA).

[41] J. Křoustek, P. Matula, J. Končický, and D. Kolář. Accurate retargetable decompilation using
additional debugging information. In 6th International Conference on Emerging Security
Information, Systems and Technologies (SECURWARE’12), pages 79–84. International
Academy, Research, and Industry Association (IARIA), 2012.

[42] J. Křoustek, P. Matula, and L. Ďurfina. Generic plugin-based convertor of executable file
formats and its usage in retargetable decompilation. In 6th International Scientific and
Technical Conference (CSIT’11), pages 127–130. Ministry of Education, Science, Youth and
Sports of Ukraine, Lviv Polytechnic National University, Institute of Computer Science and
Information Technologies, 2011.

[43] Lissom. [online], 2013. Available on
http://www.fit.vutbr.cz/research/groups/lissom/.

[44] K. Masařı́k. System for Hardware-Software Co-Design. VUTIUM. Brno University of
Technology, Faculty of Information Technology, Brno, CZ, 1st edition, 2008.

97

https://www.securelist.com/en/analysis/204792187/Heads_of_the_Hydra_Malware_for_Network_Devices
https://www.securelist.com/en/analysis/204792187/Heads_of_the_Hydra_Malware_for_Network_Devices
http://www.fit.vutbr.cz/research/groups/lissom/


[45] P. Matula. Tools for executable file format conversions. Bachelor’s thesis, Brno University of
Technology, Faculty of Information Technology, Brno, CZ, 2011.

[46] A. Meduna. Automata and Languages: Theory and Applications. Springer-Verlag, London,
GB, 2005.

[47] M. Melanson. Breaking eggs and making omelettes: Intelligence gathering for open source
software development. [online], 2005. Available on
http://multimedia.cx/eggs/images/linuxtag-2005-re-paper.pdf.

[48] Microsoft Corporation. Description of the .pdb files and of the .dbg files.
http://support.microsoft.com/kb/121366.

[49] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection. In
Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual,
pages 421–430, Dec 2007.

[50] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, San Francisco, US-CA, 1997.

[51] D. O’Brien. The internet of things: New threats emerge in a connected world. [online],
January 2014. Available on http://www.symantec.com/connect/blogs/
internet-things-new-threats-emerge-connected-world.

[52] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among a set of programs
with jplag. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 8:1016–1038, 2000.

[53] The Linux Information Project. [online], February 2006. Available on
http://www.linfo.org/malware.html.

[54] Z. Přikryl. Advanced Methods of Microprocessor Simulation. PhD thesis, Brno University of
Technology, Faculty of Information Technology, 2011.

[55] N. Ramsey and M. Fernández. Specifying representations of machine instructions. ACM
Transactions on Programming Languages and Systems, 19(3):492–524, 1997.

[56] N. Ramsey and M. F. Fernandez. The New Jersey Machine-Code Toolkit. In USENIX
Technical Conference, pages 289–302, 1995.

[57] Reverse Engineering Compiler (REC). [online], 2013. Available on
http://www.backerstreet.com/rec/rec.htm.

[58] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’03, pages 76–85, New York, NY, USA, 2003. ACM.

[59] V. Schneider and G. Winiger. Translation grammars for compilation and decompilation. BIT
Numerical Mathematics, 14(1):78–86, 1974.

[60] N. Schwartz. New valgrind decompliation tool: Help wanted. [Valgrind-developers] http:
//sourceforge.net/mailarchive/message.php?msg_id=29903738,
September 2012.

98

http://multimedia.cx/eggs/images/linuxtag-2005-re-paper.pdf
http://support.microsoft.com/kb/121366
http://www.symantec.com/connect/blogs/internet-things-new-threats-emerge-connected-world
http://www.symantec.com/connect/blogs/internet-things-new-threats-emerge-connected-world
http://www.linfo.org/malware.html
http://www.backerstreet.com/rec/rec.htm
http://sourceforge.net/mailarchive/message.php?msg_id=29903738
http://sourceforge.net/mailarchive/message.php?msg_id=29903738


[61] The dcc Decompiler. [online], 2013. Available on
http://itee.uq.edu.au/˜cristina/dcc.html.

[62] H. Theiling. Extracting safe and precise control flow from binaries. In 7th Conference On
Real-Time Computing Systems and Applications (RTCSA’00), pages 23–30. IEEE Computer
Society, 2000.

[63] TIS Committee. Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification, 1995. http://refspecs.freestandards.org/elf/elf.pdf.

[64] K. Troshina, A. Chernov, and Y. Derevenets. C decompilation: Is it possible? In
International Workshop on Program Understanding (IWPU’09), pages 18–27, 2009.

[65] UQBT - A Resourceable and Retargetable Binary Translator. [online], 2012. Available on
http://itee.uq.edu.au/˜cristina/uqbt.html.

[66] P. Čeleda and R. Krejčı́. An analysis of the chuck norris botnet 2. [online], 2011. Available
on http://www.muni.cz/ics/research/cyber/chuck_norris_botnet.

[67] L. Ďurfina and D. Kolář. C source code obfuscator. Kybernetika, 48(3):8, 2012.

[68] L. Ďurfina and D. Kolář. Generic detection of the statically linked code. In Proceedings of
the Twelfth International Conference on Informatics INFORMATICS 2013, pages 157–161.
Faculty of Electrical Engineering and Informatics, University of Technology Košice, 2013.

[69] L. Ďurfina, J. Křoustek, P. Matula, and P. Zemek. Linux.Aidra vs Linux.Darlloz: War of the
worms. [online], February 2014. Available on
http://blogs.avg.com/news-threats/war-of-the-worms/.

[70] L. Ďurfina, J. Křoustek, and P. Zemek. Design of merhods for retargetable decompilation.
Internal document, Brno University of Technology, Faculty of Information Technology,
Brno, CZ, 2012.

[71] L. Ďurfina, J. Křoustek, and P. Zemek. Psyb0t malware: A step-by-step decompilation case
study. In 20th Working Conference on Reverse Engineering (WCRE’13), pages 449–456,
Koblenz, DE, 2013. IEEE Computer Society.

[72] L. Ďurfina, J. Křoustek, and P. Zemek. Retargetable machine-code decompilation in your
web browser. In 3rd IEEE World Congress on Information and Communication Technologies
(WICT 2013), pages 57–62. IEEE Computer Society, 2013.

[73] L. Ďurfina, J. Křoustek, P. Zemek, and B. Kábele. Detection and recovery of functions and
their arguments in a retargetable decompiler. In 19th Working Conference on Reverse
Engineering (WCRE’12), pages 51–60, Kingston, ON, CA, 2012. IEEE Computer Society.

[74] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář, T. Hruška, K. Masařı́k, and A. Meduna.
Advanced static analysis for decompilation using scattered context grammars. In Applied
Computing Conference (ACC’11), pages 164–169. World Scientific and Engineering
Academy and Society (WSEAS), 2011.

[75] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář, T. Hruška, K. Masařı́k, and A. Meduna. Design
of a retargetable decompiler for a static platform-independent malware analysis.
International Journal of Security and Its Applications (IJSIA), 5(4):91–106, 2011.

99

http://itee.uq.edu.au/~cristina/dcc.html
http://refspecs.freestandards.org/elf/elf.pdf
http://itee.uq.edu.au/~cristina/uqbt.html
http://www.muni.cz/ics/research/cyber/chuck_norris_botnet
http://blogs.avg.com/news-threats/war-of-the-worms/


[76] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář, T. Hruška, K. Masařı́k, and A. Meduna. Design
of a retargetable decompiler for a static platform-independent malware analysis. In 5th
International Conference on Information Security and Assurance (ISA’11), volume 200 of
Communications in Computer and Information Science, pages 72–86, Berlin, Heidelberg,
DE, 2011. Springer-Verlag.

[77] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář, K. Masařı́k, T. Hruška, and A. Meduna. Design
of an automatically generated retargetable decompiler. In 2nd European Conference of
Computer Science (ECCS’11), pages 199–204. North Atlantic University Union, 2011.

[78] T. Wei, J. Mao, W. Zou, and Y. Chen. A new algorithm for identifying loops in
decompilation. In HanneRiis Nielson and Gilberto Filé, editors, Static Analysis, volume 4634
of Lecture Notes in Computer Science, pages 170–183. Springer Berlin Heidelberg, 2007.

[79] P. Zemek. Design of a language for unified code representation. Internal document, Brno
University of Technology, Faculty of Information Technology, Brno, CZ, 2012.

[80] J. Zhang, R. Zhao, and J. Pang. Parameter and return-value analysis of binary executables. In
31st Annual International Computer Software and Applications Conference (COMPSAC’07),
volume 1, pages 501–508, Washington, US-DC, 2007. IEEE Computer Society.

100



Appendix A

LfD ANTLR grammar

grammar Lfd;

file
: (func)+
;

func
: ID ’(’ ’)’ block
;

block
: ’{’ statement* ’}’
;

statement
: func_call ’;’
| loop_stmt
;

func_call
: ID arguments
;

loop_stmt
: ’LOOP’ block
;

arguments
: ’(’ argumentList? ’)’
;

argumentList
: argument (’,’ argument)*
;

argument

101



: DecimalLiteral
| FloatingPointLiteral
| CharacterLiteral
| StringLiteral
| booleanLiteral
| func_call
| ’NULL’
;

booleanLiteral
: ’true’
| ’false’
;

// Lex part, symbols start with big letter

DecimalLiteral : (’0’ | ’1’..’9’ ’0’..’9’*);

FloatingPointLiteral
: (’0’..’9’)+ ’.’ (’0’..’9’)* Exponent?
| ’.’ (’0’..’9’)+ Exponent?
| (’0’..’9’)+ Exponent
| (’0’..’9’)+
| (’0x’ | ’0X’) (HexDigit )*

(’.’ (HexDigit)*)?
( ’p’ | ’P’ )
( ’+’ | ’-’ )?
( ’0’ .. ’9’ )+

;

fragment
Exponent : (’e’|’E’) (’+’|’-’)? (’0’..’9’)+ ;

fragment
HexDigit : (’0’..’9’|’a’..’f’|’A’..’F’) ;

CharacterLiteral
: ’\’’ ( EscapeSequence | ˜(’\’’|’\\’) ) ’\’’
;

StringLiteral
: ’”’ ( EscapeSequence | ˜(’\\’|’”’) )* ’”’
;

fragment
EscapeSequence

: ’\\’ (’b’|’t’|’n’|’f’|’r’|’x’|’\”’|’\’’|’\\’)
| UnicodeEscape
;

fragment
UnicodeEscape

: ’\\’ ’u’ HexDigit HexDigit HexDigit HexDigit
| ’\\’ ’x’ HexDigit HexDigit
;

102



ID
: [_a-zA-Z][_a-zA-Z0-9]+
;

INT
: [0-9]+
;

WS
: [ \r\t\u000C\n]+ -> skip
;

LINE_COMMENT
: ’#’ .*? ’\r’? ’\n’ -> skip
;

103


	Introduction
	Definitions
	Malware
	Internet of Things
	Obfuscation
	Types of Obfuscation

	Obfuscation of Binary Files
	Obfuscation at the Source Code Level

	Reverse Engineering
	Software Reverse Engineering 
	History of Decompilation
	Machine Code Decompilers
	Object Code Decompilers
	Assembly Decompilers
	Decompilers for Virtual Machines

	Decompilers
	The dcc Decompiler
	Boomerang
	REC Studio
	Hex-Rays Decompiler
	Decompile-it.com
	SmartDec
	Other Approaches
	Comparison of Decompilers

	Future of Machine-Code Decompilation

	Lissom Decompiler
	ISAC Language
	LLVM Compiler System
	Design of a Retargetable Decompiler
	Preprocessing
	Front-end
	Detection of Statically Linked Code
	Overview of Front-end Analysis

	Middle-end
	Back-end
	Reconstruction of High-Level Constructs
	Analysis of Signed and Unsigned Integer Types
	Obtaining Used Variables in Function Calls
	Optimizations in Back-end
	Renaming of Variables
	Elimination of Redundant Brackets

	Malware Decompilation Experience
	Psyb0t – MIPS Malware
	Aidra and Darlloz – Linux Worms


	Detection of Specific Behavior
	C Source Analyzers
	Moss
	JPlag

	Language LfD
	Tool LfDComparator

	Results
	C Outputs
	Detection of Similarity

	Conclusion
	Bibliography
	LfD ANTLR grammar

